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ABSTRACT 

Multiphase flow is the simultaneous flow of two or more phases, in direct contact, and 
is important in the oil industry, e.g. in production wells, in sub-sea pipelines and during 
the drilling of wells. The behaviour of the flow will depend on the properties of the 
constituent phases, the flow velocities and volume fractions of the phases and the 
geometry of the system. In solids-in-liquid flows, measurement of the local solids 
volume fraction distribution and the local axial solids velocity distribution in the flow 
cross section is important for many reasons including health and safety and economic 
reasons, particularly in oil well drilling operations. However upward inclined solids-
liquid flows which are frequently encountered during oil well drilling operations are not 
well understood. Inclined solids-liquid flows result in non-uniform profiles of the solids 
volume fraction and axial solids velocity in the flow cross-section. In order to measure 
the solids volumetric flow rate in these situations it is necessary to measure the 
distributions of the local solids volume fraction and the local axial solids velocity and 
then to integrate the product of these local properties in the flow cross section. 
 
This thesis describes the development of a non-intrusive Impedance Cross-Correlation 
(ICC) device to measure the local solids volume fraction distribution and the local 
solids axial solids velocity distribution in upward inclined solids-water flows in which 
these distributions are highly non-uniform. The ICC device comprises a non-conductive 
pipe section of 80mm internal diameter fitted with two arrays of electrodes, denoted 
„array A‟ and „array B‟, separated by an axial distance of 50mm. At each array, eight 
electrodes are equispaced over the internal circumference of the pipe.  A control system 
consisting of a microcontroller and analogue switches is used such that, for arrays A 
and B, any of the eight electrodes can be configured as an „excitation electrode‟ (V+), a 
„virtual earth measurement electrode‟ (Ve) or an „earth electrode‟ (E) thus enabling the 
local mixture conductance in different regions of the flow cross-section to be measured 
and thereby allowing the local solids volume fraction in each region to be deduced. The 
conductance signals from arrays A and B are also cross-correlated to yield the local 
solids axial velocity in the regions of flow under interrogation. 
 
A number of experiments were carried out in solids-in-water flows in a flow loop with 
an 80 mm inner diameter, 1.68m long Perspex test section which was inclined at three 

different inclination angle to the vertical (o0 , o15 and o30 ). The obtained results show 
good quantitative agreement with previous work carried out using intrusive local 
probes. Integration of the flow profiles in the cross section also yielded excellent 
quantitative agreement with reference measurements of the mean solids volume 
fraction, the mean solids velocity and the solids volumetric flow rate. Furthermore, this 
study also showed good qualitative agreement with high speed film of the flow. It is 
believed that the method of velocity and volume fraction profile measurement 
described in this thesis is much simpler to implement, more accurate and less expensive 
than the currently very popular technique of dual-plane Electrical Resistance 
Tomography (ERT).  
 
Finally, the thesis describes a mathematical model for predicting the axial velocity 
distribution of inclined solids-water flows using the solids volume fraction profiles 
measured by the ICC device. Good agreement was obtained between the predicted 
velocity profiles and the velocity profiles measured using the ICC device. 
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 NOMENECLATURE LIST 

 
Acronyms 

 
  DP  Differential Pressure    

EFM Electromagnetic F low Metering 

EIT Electrical Impedance Tomography 

ERT Electrical Resistance Tomography  

FEMLAB F inite Element Method Laboratory 

ICC Impedance Cross Correlation 

ID Inner Diameter  

LDA Laser Doppler Anemometry  

LED Light Emitting Diode  

LE Latch Enable 

Movf  Mean oil volume fraction 

PDO  Petroleum Development Oman 

PIV Particle Image Velocimetry  

 

V+ „Excitation Electrodes‟ 

Ve „Virtual Earth Measurement Electrodes‟ 

E „Earth Electrodes‟ 

Z „High Impedance‟ 

 
 

Symbols 
 
 

A  The cross sectional area of the pipe. 
 

DC  The drag coefficient resisting the motion of a particle. 
 

C(y) The dispersed phase volume fraction. 

D  The pipe diameter. 

d  The particle diameter. 

dx
du  

The phase velocity in x direction. 
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dy
du  

The phase velocity in y direction. 
 

dz
du  

The phase velocity in z direction. 

dx
dp

 
The axial pressure gradient. 

F  The frictional pressure loss along the length of pipe. 

gF  The downward force on a particle due to gravity. 

f  Frequency. 

s
f  The sampling frequency. 

g  Gravity. 

h 
The length of the measuring working section over which the 
pressure gradient is measured. 
 

I  Electrical current. 

i th No. of hole ( see Chapters 4&5). 
 

j th The boundary voltage measurement. 
 

K The configuration constant gain ( see Section 3.10). 
 

K The Turbine meter factor (see Section 6.3.2). 
 

k  The conductance circuit gain (see Section 3.6). 
 

L The effective axial sensors separation. ( see Section 3.3) 
 

L The length of pipe under consideration. (see Section 6.3.3) 

M  The mass flow rate. 

s
M  The mass solids flow rate. 

 

w
M  The mass water flow rate. 

 

mth No. of electrodes in both arrays A and B.  
 

N  “Pixels”. 
 

n The iteration number. 
 

P  “Pixels” . 
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1
P  The upstream pressure. 

 

2
P  The downstream pressure. 

 

Q  The volumetric flow rate. 
 

TQ  The total volumetric flow rate. 
 

iQ  The mean phase flow rate. 
 

sQ  The solids volumetric flow rate. 

wQ  The water volumetric flow rate. 
 

refs,Q  The reference solids volumetric flow rate. 
 

refw,Q  The reference water volumetric flow rate. 
 

reft,w,Q  The water volumetric flow rate from turbine. 
 

meass,Q  The solids volumetric flow rate obtained by ICC. 
 

R  The friction factor. 

Ra The feedback resistor ( see Chapter 4). 
 

fR  The effective system resistance. 
 

pRe  The particle Reynolds number. 
 

)(Rxy   The Cross-correlation function. 
 

SAM 
The set of electrodes in array A connected to the input of inverting 
amplifier Ve,A. 
 

SBM 
The set of electrodes in array B connected to the input of inverting 
amplifier Ve,B. 
 

ji,s  
The sensitivity coefficient relating changes in the jth boundary 
voltage measurement. 
 

 

T  

 
The total time period in cross-correlation. 
 

t  Time. 
 

UCC 
The mean flow velocity calculated from total volume flow ( see 
Section 2.6.4.4). 
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Uh 
The mean flow velocity calculated  by cross correlation ( see 
Section 2.6.4.4). 
 

UWS The superficial water velocity. 
 

i
u  The mean flow velocity. 

 

wu  The mean water velocity. 

cu  The critical velocity. 
 

wu  The local water velocity. 
 

hu  The homogenous flow velocity 

su  The local axial solids velocity. 
 

su  The average solids velocity. 
 

pu  The particle velocity with respect to the fluid. 
 

u(y)  The axial fluid velocity at coordinate y. 

V  Voltage. 

p
V  The particle velocity. 

 

slip
V  The local axial slip velocity. 

 

 
T

V  The terminal velocities. 
 

sV  The voltage response of the solids hopper load cell. 
 

wV  The voltage response of the water hopper load cell. 
 

V7,A The output voltage from array A. 
 

V7,B The output voltage from array B. 
 

wB,6,V  The output voltage from Array B when water only. 
 

mB,6,
V  The output voltage when both water and solids flows. 

 

i6B,V  The output voltage from the detection circuitry associated with 
array B when the nylon rod is inserted into the ith hole. 

6B,0V  The output voltage when the nylon rod was absent. 
 

i6B,
įV  Sensitivity parameter. 
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stai,6B,įV  The voltage difference obtained from static test. 

modeli6B,įV  The voltage difference obtained by COMSOL. 
 

x(t) The output signal form upstream sensor X. 
 

y(t) The output signal from downstream sensor Y. 
 

meas
Y  

The measurement values obtained from integrated local 
measurements obtained by the ICC.  
 

ref
Y  The reference measurement obtained from the reference devices. 

  Δı  The conductivity matrix. 

 Δĳ  The potential difference matrix. 
  S  The sensitivity matrix. 

 
 
 
Greek symbols 
 
 

sα  The local solids volume fraction. 

 iα  The mean volume fraction. 
 

ref
α  The reference mean volume fraction. 

refs,α  The mean solids volume fraction in the working section. 
 

meass,α  The mean solids volume fraction obtained by the ICC. 

EIT
α  The mean volume fraction obtained by EIT system. 

  The relative percentage error. 

μ  The laminar viscosity. 

wμ  The water viscosity. 

T
  The eddy viscosity. 

mρ  The mean density. 

wρ  The density of the water. 
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m
ı  The local mixture conductivity.  

s
ı  The  solids conductivity. 

w
ı  The water conductivity. 

  The transit time in cross-correlation. 

  
The phase angle. 
 

 
    
Subscripts  
 

B  Ball ( see Chapter 5) 

c  Continuous phase ( see Section 8.4) 

D  Drag ( see Chapter 5) 

d  dispersed phase (see Section 8.4) 

ICC  Impedance Cross Correlation 

i  Number of pixel ( see Chapter 4) 

j  boundary voltage measurement ( see Chapter 4) 

m  mixture 

meas measured value by the ICC 

p  Practical 

ref  Reference value 

s Solids 

slip  Slip velocity ( see Chapter 1) 

T  Terminal ( see Chapter 5) 

t  Turbine (see Section 6.3.2) 
 

w  Water 
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Chapter 1 INTRODUCTION  

 
 

 

 

This chapter starts by explaining the motivation for choosing this particular 

research project. The problem of multiphase flow metering is discussed, as are 

possible applications for a non-intrusive, relatively simple and robust, solids-liquid 

flow metering device. Finally, the aims and research objectives are given, and the 

chapter ends by describing the layout of the thesis. 
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1.1 Motivation 
 
In many industrial processes it is often of extreme importance to measure fluid flow 

rates accurately. Flow rate measurement may be essential for a variety of reasons 

including process control and on-line monitoring applications. Although many flows 

may consist of a single fluid flowing in pipe, multiphase flows are becoming 

increasingly important, particularly in the oil industry. 

 
Multiphase flows, where two or three fluids, which may or may not carry solids, flow 

simultaneously in a pipe are important in many applications within the oil, mining, 

paper pulp, natural gas and other industries, even measuring the concentration of 

beans in tomato sauce Akagawa et al., (1989). It is vital for these industries to 

precisely monitor the flow properties, such as the mean volume fraction  iα and 

mean velocity  iu  of each phase to quantify the mean phase flow rateiQ , as: 

A iu iαiQ                                                                          1-1 

 

where: A  is the cross-sectional area of the pipe. 

 
Traditional commercial measuring techniques employ large, heavy and expensive 

separators to divide the mixture into its various components and meter them 

individually, which is time consuming and expensive (see Figure 1-1). Furthermore, 

such measurements can be unrepresentative because they do not operate 

continuously and sample only a fraction of the total production. 
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Figure 1-1: Test separator used in the oil industry [Al-Aufi and Al-Hinai, 2002] 
 

A major problem for the measurement of multiphase flow is that it can occur in a 

number of different, not necessarily clearly defined, regimes such as stratified or 

dispersed or annular or slug Hewitt et al., (1986), which require different 

measurement techniques. For example for a homogeneous multiphase flow, a single 

phase flow measurement technique may sometimes be acceptable; however where 

the flow is transient and intermittent, such as in the slug regime, single phase 

techniques cannot be applied. Furthermore, complex coupling between the two phase 

flow pattern and the geometry of the containing pipe, which will change with 

changes of pipe geometry, complicate the measurement. Changes in pipe geometry 

due to the presence of bends, fittings and valves, can disrupt flow patterns over long 

distances (both upstream and downstream) before a stable pattern is again 

established. 

 
Different fluid combinations, including gas-liquid flows, gas-solid flows, gas-liquid-

solid flows, liquid-liquid flows and liquid-solid flows are all regarded as multiphase 

flows. The current investigation deals with solids-in-liquid flows, or to be more 

specific, with solids-water flows. The current research is restricted to multi-

component flow in a pipe of cylindrical cross-section.  
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There are many commercial devices which are able to measure the velocity of a 

single phase flow which may also be used for the measurement of multiphase flow, 

but they will measure only the mean (homogeneous) velocity of the mixture and not 

the phase velocities of the components in the flow. There are also commercial 

devices capable of measuring volume fraction in oil-gas, oil-water, water-gas flow 

and solids-water flows. It can be said that while the problem of measuring volume 

fraction in multiphase flows is now largely solved when phases are uniformly 

distributed in cross-section. Techniques for accurate measurement of the local 

velocity of each flowing component require further investigation (Wei et al., (1998).  

 
The development of techniques for measuring the flow of water-solids mixtures and 

monitoring the conditions of the flow remains an important multiphase flow problem. 

Inserting an intrusive measuring device into the pipeline is generally not acceptable 

with multiphase flows containing solids since it will be liable to damage by abrasion, 

and blockages may build up around it. Both problems are seriously exacerbated in 

small diameter pipelines. Thus, in recent years, advances in water-solids 

measurements have been based on the use of non-intrusive techniques. Optical, 

ultrasound, nuclear, conductance and electrostatic transducers are increasingly 

finding application in such metering devices.  

 
In the oil and gas industry there are numerous instances when flow is in pipelines that 

are neither vertical nor horizontal but inclined at some arbitrary angle to the vertical. 

For example, when a single production platform drills a number of wells to maximise 

exploitation of a particular reservoir, most of those wells will have sections which are 

inclined to the vertical. In such circumstances it will be necessary to monitor the 

solids flow rates in solids-liquid flows, for example, to monitor the flow of drilling 

cuttings during drilling operations, for non-horizontal and non-vertical pipes.  

 
Often in drilling operations, to remove the drilling cuttings produced by the bit at the 

base of the well, drilling mud is pumped into the well via the drill pipe, past the 

cutting bit, returning up the well bore. The returning mixture is a good example of 

solids-liquid flow. Knowing the rate at which an oil well is being drilled, it is 

theoretically possible to predict the volumetric flow rate, sQ , at which the cuttings 

should return to the surface. If sQ  is less than the predicted value, rock cuttings 
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could be jammed in the well or the well bore, and this could lead to the drilling head 

becoming stuck in the well. On the other hand, if the value of sQ  is greater than 

predicted this could mean that the well is collapsing. Either of these scenarios would 

entail costs of millions of pounds sterling and need to be avoided. There is thus a 

need for a technology capable of monitoring solids-liquid flows.  

 
The steady state volumetric flow rate sQ  of the cuttings in the pipe is given by: 

dA
A

susαsQ                                                                      1-2       

where: A represents the cross-sectional area of the pipe carrying the flow, sα is the 

local solids volume fraction and su  is the local axial solids velocity. Measurement of 

the distributions of sα  and su  is particularly necessary in situations where their 

distributions are highly skewed (non-uniform), for example in horizontal and inclined 

flows. 

 
At present, there are few commercially available devices for measuring both the local 

solids volume fraction and velocity distributions in water-solids flows in inclined 

pipes. Although the measurement of the solids volume fraction distribution in solids-

in-water flows can be made using Electrical Resistance Tomography (ERT) - which 

can be very expensive – techniques for accurately measuring the axial solids velocity 

distribution are by no means so well developed. It should be noted that dual-plane 

ERT can be used to measure the solids axial velocity distribution. Moreover it must 

be also be noted that ERT is still in its infancy and is still essentially an experimental/ 

developing technique.  

 
The purpose of this research is to develop a low cost device that measures the local 

solids volume fraction,sα , and the local solids axial velocity, su , in highly non-

uniform solids-liquid flows. One of the most widely used techniques for velocity 

measurement in multiphase flow is spatial cross-correlation, and the device proposed 

here to measure the local solids volume fraction distribution and the local axial solids 

velocity distribution in solids-water flows in which the distributions are highly non-

uniform, is a non-intrusive Impedance Cross-Correlation (ICC) device.  

 
The very nature of solids-liquid flows means that there will be non-uniform profiles 
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for the solids volume fraction and the axial solids velocity over the pipe cross-

section. In such situations, to measure the solids volumetric or mass flow rate it is 

necessary to measure the profile of the local solids volume fraction and local axial 

solids velocity over the pipe cross-section and then obtain the relevant flow rate by 

integration. 

 
Multiphase flows can contain any combination of gas, liquid and solid flows, and 

may contain more than one component of the same phase at the same time, for 

instance, water and oil. Thus to better understand the research aims and objectives, 

the properties of multiphase flows are discussed and explained in Section 1.2, 

possible industrial applications of the research are introduced in Section 1.3, and 

industrial implications, are discussed in Section 1.4. 

1.2 Properties of multiphase flow 
 
To understand the types of flows, and measurements that have been undertaken in 

this research, basic properties of the multiphase flows are described here. Figure 1-2 

is a schematic representation of multiphase flow and depicts the flow of a mixture of 

liquid (water) and solid particles in a cylindrical pipe. 

 
In Figure 1-2, sQ  represents the volumetric flow rate of the solid particles, and wQ  

represents the volumetric flow rate of the water. For a steady state flow, sQ  and wQ  

can be calculated using the following Equations: 

dA
A

susαsQ                                                                      1-3 

 )dAsα-(1
A

wuwQ                                                           1-4 

 

whereμ‟ A‟ represents the cross-sectional area of the pipe, sα  , su represent the local 

solids volume fraction and the local axial solids velocity respectively, and wu   

represents the local axial water velocity. The local solids volume fraction sα  in the 

flow is defined as the volume of the solids in a local sample as a fraction of the total 

volume of the local sample. 
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Figure 1-2: Schematic representation of a multiphase flow in a cylindrical pipe 
 

The difference between the local velocities, su  and wu , is called the local axial slip 

velocity, 
slip

V , see Equation 1-5. 

s
uwu

slip
V                                                                    1-5 

 

The average solids volume fraction sα  in the flow cross-section is defined as in 

Equation 1-6:  


A

dA
s

α
A

1
sα                                                                      1-6 

The average solids velocity su  over the cross-sectional area, can be calculated as:  

 

s
αA

s
Q

A

dA
s

α
A

dA
s

u
s

α

su 


                                                        1-7 

And the average liquid velocity wu  over the cross-sectional area, can be calculated 

as:  
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   )
w

α-A(1
w

Q

A
dA

s
α-1

A
dA

w
u 

s
α1

wu 
 

                                1-8 

The necessary basics of multiphase flows relevant to this thesis may be understood 

from these equations. Later in the thesis multiphase flows will be discussed in more 

detail. 

 

1.3 The measurements needed for this research 
 
In uniform flow in a pipe both the local solids volume fraction, is,α  and the local 

axial solids velocity, is,u , would be constant across the pipe cross-section and 

Equation 1-6 would reduce to is,αsα  . Similarly Equation 1.7 would reduce to 

is,usu  . In such conditions any global flow measuring device that measures the 

mean values of is,α  and is,u  across a pipe cross-section would give a reasonably 

accurate measure of sα  and su . Equation 1-3 for the volumetric flow rate of the solid 

particles would simplify to: 

susAαsQ                                                                            1-9 

 

However, local flow parameters are generally not uniformly distributed in the flow 

cross-section. A good example is upward solids-liquid flow in an inclined pipe, as 

shown schematically in Figure 1-3, where the distribution of the solids across the pipe 

cross-section is highly non-uniform. The distribution will depend on the density of the 

solids; the more dense the solids the less the net upward buoyancy force on its 

particles. Thus the more dense the particles the quicker they sink to the lower side of 

the inclined pipe – all other things being equal - causing a layer of solid particles to 

develop. If more than one solid was being transported the density and size of the 

particles would both vary and the layer of particles on the lower side of the inclined 

pipe would also be non-uniform.  

 
If the layer of dense solid on the lower side of the inclined pipe becomes thick 

enough, it can slip/slide down the pipe against the fluid flow. Such reverse flow may 

be episodic or, under suitable circumstances, continuous.  
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Simultaneously the liquid is flowing upwards over the surface of the solid particles, 

and in so doing it entrains particles from the top of the layer back into the liquid flow, 

taking them further up the pipe. We may therefore see a kind of recycling process 

with particles being carried upstream sinking to the lower side of the inclined pipe 

being carried a distance downstream before being caught up by the fluid and carried 

upstream again. Of course, some solid particles could, depending on the fluid forces 

they experience, be carried up the pipe without ever sinking onto the solid layer. The 

process of entrainment is strong enough to ensure that there is a net upwards solids 

flow despite the downward motion of the solids bed at the lower side of the pipe.  

 
There will be a dynamic balance between the conflicting forces and a flow will be 

established where the time averaged local solids volume fraction shows a variation 

across the pipe from a high value at the lower side of the inclined pipe to a much 

lower value at the upper side of the pipe. Naturally, the time averaged axial velocity 

profile for solids carried in multi-phase flow in an inclined pipe will be 

correspondingly complex with larger axial solids velocities in the forward direction at 

the upper side of the inclined pipe and smaller axial solids velocities in the reverse 

direction at the lower side. 

 

In non-uniform flows it is accepted that complete profiles of sα  and su  must be 

acquired in order to determine sQ  using Equation 1-3. One aim of the current 

investigation will be to develop a device that will measure the distribution of sα  and 

su  in the flow cross-section. 
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Figure 1-3: A solids-liquid flow in an inclined pipe 
 

1.4 Possible applications for multiphase flow measurement  
 
This section describes possible applications of a device capable of measuring the local 

properties of a solids-liquid pipe flow. This is not an exhaustive list, its purpose is to 

show the range of areas to which the current research could be applicable. 

  
Before introducing possible applications of a solids-liquid flow measurement device, 

it is important to note the generic nature of much of the current investigation. The 

intended application is for a solids-water flow or more generally for a non-conducting 

dispersed phase in an electrically conducting continuous liquid. However, depending 

on the measurement method, the device could also have applications in such flows as 

gas-in-water and oil-in-water. It is intended that the device developed will be non-

intrusive.  

 

1.4.1 Oil and gas industry applications 
 
Part of the original funding for this research came from the oil industry and the 

original intended application is within this field. An oil or gas well does not produce a 

single phase product. Often oil, gas, water and solids will be produced simultaneously 

from the same well, although for the majority of the time the predominant flow is two 

phases. Indeed oil and gas production probably is of the greatest interest in multiphase 
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flow measurement research and traditionally the oil and gas industry has been one of 

the largest funders of multiphase flow research. Much equipment developed within 

these industries is then subsequently devolved for other applications. 

 
The following oil and gas industry applications are the ones for which this technology 

was originally intended. As such it has already attracted funding from both public and 

industrial sources which suggests that it is a viable market.  

 
During oil well drilling operations a fluid, known as drilling mud, is pumped into the 

well. This fluid passes down the drill pipe, past the cutting bit, and then back up the 

well bore. As the fluid returns to the surface it carries with it the drilling cuttings 

produced at the base of the well. This returning mixture is a solids-liquid flow. This 

operation is shown schematically in Figure 1-4. 

 

 
 

Figure 1-4: Representation of oil well drilling [http: //science.howstuffworks.com/oil-
drilling4.htm., accessed 20/04/08] 

 
 
As stated earlier in this chapter the rate at which an oil well is being drilled is known. 

Therefore it should be possible to predict the volumetric flow rate, sQ , at which the 

rock cuttings will return to the surface. However this expected volumetric flow rate 

does not always occur. As state previously, if sQ  falls below the predicted value it is 

possible that rock cuttings are jammed in the well, which can lead to the entire drilling 

head becoming stuck in the well. Similarly if sQ  is higher than the predicted value 

then this could indicate that the well is collapsing. As either of these outcomes could 
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entail a cost of several million pounds they need to be avoided if possible. However, 

stopping drilling due to a false alarm is costly in terms of lost production, so a 

technology capable of accurately monitoring the solids flow rate would be of great 

assistance to the drilling team. 

 
Although the thesis is primarily concerned with solids-in water flows, the technology 

that developed could also be used in a range of other applications in the oil industry in 

which water continuous multiphase flow occurs. Examples are given in (a) to (e) 

below: 

(a) An area, in which considerable research into multiphase flow measurement is 

taking place, is well testing. As an oil well ages the relative fractions of oil, water 

and gas brought to the surface will vary. If the fraction of the desired product, 

whether oil or gas, drops too low the cost of operating the well will outweigh the 

income, so well testing needs to be carried out at regular intervals. At present the 

most common way to check the output from a well is to take a test separator to 

the well-head. The separator is attached to the production line, separates the 

phases and then individually meters each one. The test separators require the well 

to be off-line during testing and have reported that approximately 2% of 

production time is lost due to test separation procedures (Thorn et al., 1999). 

Possibly more importantly, test separators do not operate at flow conditions that 

are representative of those during production because they introduce a pressure 

drop of up to 100psi onto the well. Test separation is expensive, and Priddy 

(1999) has reported that for BP Exploration Operating Company Ltd. to carry out 

seventy-five well tests in a year on their Cusiana oil field in Colombia, which has 

eleven wells producing up to 500 thousand barrels of oil per day, costs 

£2.25million in operating costs. Jamieson (1999) reported that Shell UK 

Exploration and Production saved £40million in capital expenditure alone by 

installing four multiphase flow meters offshore in the North Sea. He also reported 

that Shell UK Exploration and Production expect to save between £180million 

and £280million in capital expenditure by 2010. Jamieson has also estimated that 

worldwide about 10000 multiphase flow meters, worth approximately £1billion, 

will be purchased between 2008 and 2010. Major oil companies such as Shell and 

BP calibrate multiphase flow meters at the well-head using test separators. 
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However, both Jamieson (1999) and Priddy (1999) consider that despite such 

precautions the measurements made by these devices are not satisfactory, and 

suggest that an increase in specialist laboratory facilities and instruments will be 

required as the need for multiphase flow meters increases. A relatively simple 

and robust non-intrusive device which could, for example, measure either the 

relative fractions or the proportion of gas present would be extremely valuable to 

the oil and gas industry.  

(b) Another on-site application is downhole testing. Oil wells often produce oil and 

water from different strata along their length. Lowering a flow meter down the 

well hole allows the flow from each individual layer (stratum) to be monitored, 

and layers which are producing water can be found and sealed off. Jamieson 

(1999) has reported that the conditions downhole can reach a pressure of 850bar 

and a temperature of 150oC, which prevents dissolved gases from coming out of 

solution and can result in a two-phase flow which as compared to three phase 

flow is advantageous for multiphase metering (Zuber et al., (1965), making it 

more suitable for the technology which is expected to be developed in the current 

project.  

(c) Another major application is allocation metering. Modern oil fields often produce 

relatively small amounts of oil so oil companies often combine production 

facilities and pipeline facilities to lower operating costs and manpower 

requirements to keep the field economically viable. Priddy (1999) has reported 

that the Eastern Trough Area Project in the North Sea, groups together seven oil 

and gas fields for these reasons. It is important in these types of situations to 

accurately meter each partner‟s allocation of oil or gas. εeter accuracies in this 

application must be higher because of the need for fiscal quality monitoring. 

Thorn et al suggest that while well testing requires an accuracy of ±10% 

allocation monitoring requires accuracies of better than ±5% (Thorn R.et.al, 

1999). At the moment it is not known what will be the accuracy of the meter to be 

developed in this project, but the author is optimistic that it could be within ±5%.  

(d) When drilling an oil well, there is the chance of bringing a pocket of natural gas 

from first entry in to the well through the mud out to the surface causing an 

eruption or explosion. This puts the staff on the oil rig in danger, destroys 
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expensive equipment, delays production and damages the environment around the 

oil well. Therefore, the understanding of multiphase flows is very important when 

developing control strategies to prevent explosions caused by the release of natural 

gas in the drilling process. Using a multiphase flow meter allows the driller to 

detect the presence of gas in the well and to determine the likely time the gas will 

take to reach the surface, which gives the driller the opportunity to take the 

necessary steps to prevent an explosion. 

(e) To extract the oil from oil wells a pump has to be placed on the top of the well. 

This pump could stop operating if the oil is too heavy or too viscous to be pumped. 

To solve this problem steam (and sometimes water and gas) is pumped into the 

well, which helps move the oil towards the pump because of the increased 

temperature and pressure generated when the steam is pumped into the well. Using 

multiphase flow meters could facilitate this process by quantifying the properties 

of the multiphase flow in the pipe, which could provide the information needed to 

determine the quantity of steam needed to be pumped into the well to move the oil.  

1.4.2 Other applications of multi-phase flow 
 
In order to explain how this research relates to real world events, and how the results 

of this research could help solve current industrial issues, this section introduces some 

applications of multiphase flows, the emphasis here is on the need for metering. 

 
Mining industry: Water is often used as a carrier medium for a range of different 

solids including such important materials as cement, coal, and iron ore, sometimes 

over long distances. After extraction, minerals usually need to be transported to other 

sites either for ongoing shipment or to be used. Traditionally this was done by road or 

rail transport, but now hydraulic transport is often a more attractive option. 

Constantini and Parsons (1974),  Goosen and Cooke (1996),  Asakura, et al., (1992), 

Seshadri, et al., (2001) and Ling, et al., (2003) have all argued that hydraulic transport 

usually results in a lower environmental impact and lower costs. For example, 

Constantini and Parsons (1974) estimate that a proposed 900 mile potash pipeline in 

Western Canada capable of transporting 6 million tons of potash per year would cost 

one third of the equivalent rail transport network. Therefore, hydraulic methods are 

attractive to the mining industry for transportation of raw materials. The resurgence of 
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coal as a major energy source been an impetus for substantial developmental effort 

devoted to transportation of coal slurry. The multiphase measuring device developed 

in this research project, if successful, could be applied to the measure of 

transportation of solids-in-liquids outside the gas and oil industry. 

 
When using hydraulic transportation systems it is vital to ensure that the solids 

(minerals) are suspended in the flow. Thus, the speed of the suspension and the 

pressure drop along the pipe must be known and allowed for when designing the 

system and selecting the pumps which drive the system, so as to ensure the most 

economical and efficient operation - which is critical to ensure the cheapest running 

costs Lucas, et.al., (2004). As the size of hydraulic transport pipelines increases this 

becomes more important. For example, Constantini and Parsons (1974) have 

estimated that a proposed 1000 mile long coal pipeline in the USA capable of 

transporting 37 million tons of coal per year would cost $650 million to build with an 

operating cost of $137 million per annum. If improved knowledge of pumping loads 

could result in even a 1% saving in operating costs this would save $1.37 million per 

annum. However a survey of the literature showed that examples of local 

measurements acquired in these flows are uncommon. 

 
Kakka (1974) has reported the case of a 53 mile long iron-ore pipeline in Tasmania 

used for transporting the mineral from the mine to waiting cargo ships. Here an 

instrument was required for measuring both the solids volume fraction and velocity in 

order to calculate the volumetric flow rate of ore into the ships. A number of existing 

devices have been developed and are in current use measuring the local properties of a 

multiphase flow (Lucas, et al., 1998; Dong, et al., 2003; Lucas and Mishra, 2005). 

These flow meters have different uses or applications such as when they are used to 

measure the local properties of multi-phase flows, however they generally suffer from 

either being intrusive, being limited to fluid-fluid flows being optical and unable to 

penetrate into a solids-liquid mix, or being complex, expensive and requiring a high 

level of technical support, see Chapter 2. The device to be developed here should be 

non-intrusive and relatively robust. 

 
The study of two-phase flow is attracting more attention at present and the two-fluid 

model in which the fluid and the particle are regarded as two continuum materials 

fully filling the available space is widely used with the equations of state of the two 
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phases well established (Wang, et al., 2003). Concentrated solids/liquid flow occurs 

when the mean volume concentration of suspended solids exceeds 5-10% and is 

characterized by momentum transfer due to the collisions between particles and the 

movement of particles from one layer to another. Continuum descriptions require 

defining equations that relate the concentration of solids and the energy distribution 

and dissipation in the mixture to micro-mechanical aspects of particle motion and the 

material properties of the particles (Savage,1984; Campbell, 1990). Thus, research has 

concentrated on the less complex case of dilute two phase flow and avoided the 

complexities of dense two-phase flow which is usually met in reality (Takashi Hibiki, 

(2002). Key physical parameters that need to be controlled in any experiment are the 

ratio of solid and fluid densities, the shape, size and mechanical properties of the solid 

particles, and the viscosity of the fluid. 

 
A further possible area of interest in this field is dredging and underwater mining. 

Ljubicic, et al., (1989) report an investigation into measuring the amounts of coal cut 

from the sea floor and being sucked onto a waiting vessel. Similar techniques, without 

the cutting tool, are used for the collection of aggregates at sea. What is important in 

both processes is to ensure that the solids are efficiently removed from the sea bed 

and it is clear that improved knowledge of the flow in the suction pipe would be 

valuable. 

 
For example, the Palm Islands in Dubai are three large artificial islands, currently 

being constructed in the shape of palm trees and each will support residential 

communities and resorts. It is possible to make these islands due to the wide 

continental shelf off the Dubai coast and its relatively shallow depth. The islands are 

built from 80x106m³ of sand dredged from the approach channel. Had suitable 

multiphase flow meters been available to measure the solids volumetric rates during 

dredging and during the spraying of the sand-water mixture, the process could have 

been much more efficiently managed.   

 
It is likely that any device developed in the current investigation will be applicable in 

the areas of hydraulic transportation dredging and spraying of sand-water mixtures as 

described above. 
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Process industry: Within the process industries there are many examples of the need 

for the continuous measurement of solids in liquids, in particular water treatment 

processes where solids are removed from solids-liquid flows. Such removal can be 

achieved in a number of ways including centrifugal filtering and belt press separation. 

However, as Chu and Lee (1999) report, not all of the water can be removed by 

mechanical methods and to release this so-called bound water, a polymer flocculant is 

added to the process stream causing suspended particles in the water to aggregate, 

forming a floc. The quantity of polymer that must be added will vary with the type 

and volume fraction of the solids. If too little polymer is added the separated sludge 

will contain too high a water volume fraction. If too much polymer is added this not 

only incurs unnecessary costs but the resulting liquid stream can contain polluting 

levels of polymer (Abu-Orf, et al., 1997). Chu and Lee (1999) report that the process 

by which water is displaced out of the process stream (dewettability) will decrease if 

too much polymer is added. Abu-Orf, et al., (1988) have reported that the U.S.A. 

produced 5.3 million tons a day of dry solids from municipal wastewater treatment 

alone as long ago as 1993, and that to achieve that production approximately $130 

million was spent each year on polymer flocculants. Even a 1% reduction in polymer 

usage could result in substantial saving. Traditionally, the quantity of flocculant to be 

added is assessed by visual inspection of the separated sludge, the condition of which 

can vary hourly (Abu-Orf, et al., 1979; Chu and Lee, 1999). Therefore there is a need 

for an instrument which gives on-line determination of the solids content of the flow.  

 
Grieve, et al., (1999) report research into the application of solids-liquid measurement 

technology to level and moisture content measurements within water purification 

filters. As the operating filter and the resulting filter cake are both solids-liquid 

mixtures there is a possible application of new multiphase measurement technology 

here. The water treatment application described is, of course, analogous to many other 

solids-liquid pipeline flows within the process industries.  

 
Within the field of separation there is a wide range of possible applications of 

multiphase measurement technology such as the measurement of the local solids 

volume fraction inside hydrocyclones, as reported by Bond, et al., (1999), or the 

measurement of component interface positions within a settling tank as reported by 

Schüller, et al., (1999). It is likely that there will be applications of the technology 
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presented in this thesis to these areas. 

 
Modern manufacturing techniques have made possible the assembly and use of micro-

chemical devices which are better than the commonly used batch reactors because 

they use only minimal amounts of fluids. Such devices have high heat and mass 

transfer rates, and shorter reaction times. In these micro-chemical reactors, multiphase 

flows are present and it is highly desirable to know the characteristics of these 

multiphase flows to ensure efficient operation and to develop new designs. For this, 

knowledge of flow patterns, volumetric content, pressure drop, liquid film thickness, 

and internal mixing quality is necessary (Halter, et al., 2004); Severin Waelchli, 2006; 

Feng, et.al., 2005). 

 
Fermentation produces foams in both chemical and biochemical processes. 

Unfortunately, too much foam causes loss of sterility and so, to store the unwanted 

foam, oversized vessels are used which increases the cost of the process. Thus 

monitoring and controlling different foam phases that occur is important (Varley, et.al., 

2004).  

 
Because of their advantages over other reactors, bubble column multiphase reactors are 

used extensively in the chemical and biochemical industries. Their advantages include 

simplicity of construction because of the absence of mechanical moving parts, good 

mixing, good mass and heat transfer rates, high thermal stability, low power 

consumption and low operational costs. In these reactors gas is injected into a 

continuous liquid phase. The properties of the bubbles generated depend on how the gas 

is injected, reactor geometry, the operating conditions and on the physical and chemical 

properties of the two phases. These factors determine the shape, size, and velocity of the 

bubbles and whether or not the bubbles coalesce. It is necessary to measure the values 

of these parameters to construct an accurate model of bubble columns to obtain more 

efficient operation (Gourich, et al., 2006; Pradhan, et.al., 2008). 

 
Many chemical processes require measurement of the rate of mass transfer and the 

interfacial area per unit volume in a multiphase flow in order to control or improve the 

overall performance of a chemical process. Examples include oxidation reactions, 

chlorination reactions, and aerobic fermentation (Steinemann and Buchholz, 1984). 

Generally in mass exchangers and in chemical reactors it is important to know bubble 
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diameters, volume fractions and the mass transfer rates. Reliable methods of measuring 

the properties of such complex flows are needed in order to maximise efficiency and to 

lower operational costs (Lucas, et al., 1999; Pohorecki, et al., 2005; Favelukis and Ly, 

2005; Gao, et al., 2006; Pyung Seob Song, et al., 2005). 

 
Geophysical applications: Although the current investigation aims to develop a device 

capable of making solids volume fraction measurements in pipe flows it may be 

applicable to other fields where a measurement of solids volume fraction is required. A 

number of these can be found within Geophysics. A good example is the measurement 

of sediment density on the sea bed as reported by Hulbert, et al., (1982). A similar 

application involving the measurement of sediment density in a bore-hole was reported 

by Lauer-Leredde, et, al., (1998). The density of a sediment is directly related to its 

solids volume fraction and therefore this is a possible application of the current 

research. A similar application is the detection of sediment height on the sea bed. The 

sediment level is usually measured by detecting the point at which the local sediment 

volume fraction drops to zero. An example of this application is reported by Ridd 

(1992). It is likely that any device developed in the current investigation will be 

applicable in these areas. 

 
Many geophysical applications involve the measurement of conductivities, densities, or 

water volume fractions over large areas or the pinpointing of anomalous areas in an 

otherwise even material. A good introduction to this field is given by Griffiths, et al., 

(1983). Particular applications include the detection of layer interfaces within soils 

reported by Lagace, et al., (1996) and the detection of leaks from storage ponds or pipes 

reported by Binley, et al., (1999) and Jordana, et al., (1999). Although the current 

research is unlikely to be directly applicable in these areas it is possible that it could be 

developed for such applications.  

 
Multiphase technology is also applicable to non-flowing mixtures. A device that can 

measure the volume fraction in a fluid mixture that is flowing may also be used with a 

mixture that is static. Thus, multiphase flow devices may be applicable to mixtures 

which are not contained in a pipe. For example, such sensors could be used in vessels 

and reactors with streams of bubbles, such as are present in many processes in industry. 

Thus, the results and conclusions of this research could be of use in a number of 

applications in different industries. To develop the uses of the multiphase flow meter, 
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the following subsections discuss some of the applications of multiphase flow meters in 

modern industries. 

Nuclear industry:  The understanding of multiphase flows is an important aspect in 

nuclear reactors where two-phase flow is used in the cooling process. The nuclear 

reactor generates steam by heating water using radioactive processes, the generated 

steam is then used to spin a turbine (the steam turbine) that generates electricity. After 

that, the steam is cooled and returned to the steam generator. The cooling process 

creates water vapour and a two-phase water-steam flow. Calculating the heat transfer in 

the nuclear reactor is important to ensure both efficient and safe operation (Lucas, et al., 

2001). The heat transfer can be more accurately calculated if the diameter of the water 

droplets in the flow is known, and this can be achieved by measuring the size of the 

bubbles, and the volume fraction of the two-phase flow (Beggs and Brill, 1973). 

 
Food Industry: The transportation of food within a plant often involves the flow of 

solid–liquid food mixtures within a pipe. However, such systems have specific 

requirements; they generally convey high solids fractions where the solids that have 

only a small density difference with the carrier liquid and the carrier liquid is usually 

highly viscous and non-Newtonian. The lack of a tested theory based on measured 

solids-liquid flows represents a major barrier in this industry to the extension of 

continuous aseptic processing technology (Holdsworth, 1992: Crilly and Fryer, 1993; 

Willhoft, 1993). 

1.5 Research aims and objectives 
 
The aim of this work is to design a novel non-intrusive impedance cross-correlation 

(ICC) flow meter. This device should be able to measure local volume fractions and 

local velocities in a non-uniform multiphase flow e.g solids-water flow. By taking 

measurements in each part of the flow cross-section, profiles of local volume fraction 

and local velocity will be extracted.  

 
The data produced from the device can be used among other things for validating 

electrical resistance tomography (ERT) systems Lucas, et al., (1998). The ICC device 

will have similar features to an ERT system. It consists of two electrode arrays 

mounted around the pipe. It is intended that, the ICC device will be low cost 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-48060DX-3&_user=495973&_coverDate=05%2F31%2F2003&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1182614626&_rerunOrigin=google&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=d40af57b4ed333256f9386b27b5688df#bib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-48060DX-3&_user=495973&_coverDate=05%2F31%2F2003&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1182614626&_rerunOrigin=google&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=d40af57b4ed333256f9386b27b5688df#bib41
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(compared to an ERT system) and will not required sophisticated algorithms to 

analyse the acquired data.  

 
These aims are achieved by meeting the following objectives: 

 
 Carrying out a literature review regarding multiphase flow measurement 

instrumentation and techniques. 

 
 Designing and building an ICC flow meter with two axially separated 

electrode arrays A and B. 

  
 Designing a conductance circuit to measure the mixture conductance at each 

array.  

 
 Designing a switching circuit for the impedance cross-correlation flow meter 

controlled by computer via a LABJACK data acquisition and control unit to 

alternately take data at each electrode array. 

 
 Performing a series of static bench tests in order to investigate spatial 

variations in the sensitivity of the electric sensing field for different electrode 

configurations in each array. 

 
 Developing an ICC flow meter model in FEMLAB (COMSOL) to simulate 

the static bench test experiments. 

  
 Installing the ICC device in a pipe inclined at 30º, 15o and 0o to the vertical in 

a real flow loop to measure the properties of solids-in water flows.  

 
 Selecting the regions of flow to be interrogated by designing an electrode 

selection mechanism for both electrode arrays A and B. 

 
 Determining the mean volume fraction in each region by measuring the 

mixture conductivity and invoking εaxwell‟s equation for mixtures of 

materials of different conductivities. 
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 Measuring the local solids velocity distribution by cross-correlating 

fluctuations of the measured mixture conductivity at corresponding regions of 

the flow cross-section in arrays A and B. 

 
 Developing a mathematical model for inclined solids-water flow and checking 

the modelling results with the experimental results. 

1.6 Thesis outline 
 
In this section a brief outline is given of the contents and relative emphasis of the 

subsequent chapters in this thesis. 

 
Chapter 2 

 
This chapter presents a literature survey that discusses multiphase flow. It also 

introduces the different flow regime for vertical and horizontal multiphase flow. 

Section 2.4 gives different applications of multiphase flows and their measurement. 

Also it introduces two phase flow in an inclined pipe and introduces different 

measurement techniques for measuring solids-liquid flows. Finally, it reviews the 

different principles, techniques, and technologies for measuring multiphase flows in 

the real world of the oil and gas industry. 

 
Chapter 3 

 
In this chapter the design and construction of the measurement hardware and 

software are presented. It presents drawings of the ICC device and also presents the 

design and construction of the electrode selection circuits controlled by computer via 

a LABJACK data acquisition system and control device. The principle of operation 

for each electronic circuit is presented. The data acquisition system and control units 

are described. 

 
Chapter 4  

 
This chapter introduces the modelling of a single plane of the ICC flow meter. This 

includes a comprehensive guide to FEMLAB and how to set up the different 

parameters of the ICC flow meter model. It also familiarises the reader with the 
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FEMLAB software. Sensitivity distributions for different electrode configurations 

are presented. For each electrode configuration a Centre of Action for the relevant 

sensing field is defined. 

 

Chapter 5  

 
This chapter presents the results of static and dynamic experimental tests, using the 

ICC equipment described in Chapters 3 and 4. The static experimental testing was 

carried out to validate the finite element model presented in Chapter 3.  Results are 

presented and interpretations are provided. Errors in the results are discussed and 

possible improvements are suggested. 

 
Chapter 6    

 
The multiphase flow loop that has been developed at the University of  Huddersfield 

is described. All the reference measurement devices and their calibrations are 

presented in this chapter. In addition the experimental procedure is described covering 

the use of the ICC device and the reference measurement instruments. 

 
Chapter 7  

 
All experimental results are presented in this chapter. Including 3D plots of profiles 

for the local solids velocity and local solids volume fraction distributions. 

Measurement errors are also discussed. 

 
Chapter 8  

   
This chapter presents a mathematical model for inclined solids water flow bared on 

pervious models for inclined oil and water flows. The results obtained from the model 

compared it with the experimental results. 

 

Chapter 9 

    
This chapter draws conclusions about the results and achievements of the research. It 

starts by describing the achievements one by one and drawing relevant conclusions. A 
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summary of the novel features and the contribution to knowledge of this research is 

provided. Finally, the author addresses recommendations for future work on the ICC 

device.
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Chapter 2 LITERATURE REVIEW 

 
 

 

The aim of this chapter is to review recent relevant literature to provide a detailed 

background to this research project, to ensure the research is topical and up-to-

date, and to ensure the research to be undertaken is relevant to the needs of the oil 

and gas industry. First the chapter reviews and describes the different two-phase 

flow regimes: gas-liquid, liquid-liquid and solid-liquid. Next the chapter discusses 

the principles, and reviews the techniques, and technologies for measuring solids-

in-liquids flows. In particular, the final part of the chapter addresses the problems 

previously encountered with Electrical Resistance Tomography and conductivity 

probes before proposing a non-intrusive Impedance Cross-Correlation 

measurement system similar in principle to ERT for the measurement of solids 

axial velocity and solids volume fraction. 
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2.1  Introduction 
 
The emphasis of the literature review is to provide the necessary background for the 

investigation to be undertaken. The project is derived from the declared needs of 

industry and the expertise, equipment and laboratory space available at the University 

of Huddersfield. After careful consideration the emphasis of the project will be on the 

measurement volume fraction and velocity distribution in two-phase solids-in-liquids 

flow. In the permitted time scale and resources available, interesting and useful 

phenomena concerned with the details of the flow such as turbulence intensities and 

eddy dimensions will not be considered.  

2.2  Multiphase flow 
 
A multiphase flow is where the flowing fluid consists of a mixture of two or more 

phases, and each phase has different characteristics. In the oil and gas industry; 

water, natural gas, oil and solids such as sand, are the typical components when 

dealing with multiphase flows. This research limits itself to two-phase flow: in 

particular solid-in-liquid flow through a pipe. In practical laboratory work the 

fluids tend to be air, water or oil, and the solids may be sand, mica or glass, see for 

example Goharzedeh and Rogers (2009) and Lucas and Panagiotopoulos (2009).  

2.3  The Fluid Properties 
 
Because multiphase mixtures contain different components with different properties, 

the overall properties of the multiphase mixture will depend on the properties and 

relative proportions of the different components. Unfortunately, the number of 

parameters which help determine flow characteristics is very large: of particular 

importance are density, viscosity, mean particle size, particle shape, pipe diameter, 

angle of pipe inclination to the vertical, phase velocities, expansibility and 

compressibility all of which can vary with changes in temperature and pressure. 

Lovick and Angeli (2004) have claimed that even the material from which the pipe is 

made will have an effect on droplet size in oil-water disperse flows. 

 
The practical condition under which the work is carried out is important, for example, 

the work described in this thesis does not include consideration of heavy oils and is 

restricted to room temperatures, so viscous effects are not expected to introduce any 
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significant changes to the results obtained between different experiments. This is 

confirmed by Gysling and Loose (2005) who conducted an extensive review of the 

effect of viscosity on oil and gas flows in pipes. They confirmed the findings of 

Charles et al., (1961) that for viscosities, such as apply to this research, the liquid 

viscosity has little effect on flow pattern transition boundaries. The fluid components 

tend to separate from each other according to the differences in their densities that 

cause the different physical distribution for each component, and are largely the basis 

for the different flow regimes observed in multiphase flows. 

 
However, the physics of multiphase flows is complex so that a large number of 

different descriptions have been used and are being used (Matsui G (1984)). This 

thesis attempts to be consistent in its use of terms and, where possible, to use common 

terms to describe common types of flow. This thesis follows the lead of Jana et al., 

(2006), that four main flow regimes are adequate to describe, for example, horizontal 

fluid-fluid multiphase flows and that these regimes may also be applied as descriptors 

to vertical and inclined flows. See Figure 2.1 which shows the four flow regimes: 

Stratified flow, Slug/plug flow, Dispersed “bubble” flow, and Annular flow.  

 
Some of the key parameters used to quantify the behaviour of multiphase flows are: 

volume fraction, superficial velocity and actual velocity of a phase. Volume fraction 

is the time averaged fraction of the volume which is occupied by a phase. Superficial 

velocity is the velocity of a phase in the multiphase flow if it was flowing alone in a 

channel or pipe; superficial velocity may be defined as
A

iQ
. Actual velocity is the 

velocity which would be measured if the velocity of a small volume of a phase could 

actually be determined. 

 
Concentrated solids-liquid flow are those where the mean volume concentration of 

suspended solids exceeds 5-10% and here the momentum transfer due to collisions 

between particles and the movement of particles is an important consideration in both 

viscous forces and turbulence. Turbulent energy distribution and dissipation in such 

mixtures is related to micro-mechanical aspects of particle motion and the properties 

of the particle material. This is a demanding approach and as a consequence most 

research thus far has focused on dilute two-phase flow (Al -Aufi and Al-Hinai, 2002). 
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Key physical parameters that need to be controlled in any experiment are the ratio of 

solid and fluid densities, the shape, size and mechanical properties of the solid 

particles, and the viscosity of the fluid. 

2.4  Fluid-fluid Flow Regimes 
 
The workers who first laid the basis for the present descriptions of flow regimes did 

so over fifty years ago, Russell et al., (1959) and Charles et al., (1961). Being able to 

define the flow regime of a multiphase flow is crucial for the future development an 

accurate quantitative flow model, but there are, as yet, no standard classifications for 

flow regimes, and researchers have tended to refine and add to the classification of 

flow regimes according to their own analysis or understanding (Rodriguez and 

Oliemans, 2006). Because the classification of the flow regime often tends to be 

visual there is always some subjectivity in classifying the flow regime. Recently, 

however, it has been increasingly realised that the number of regimes used to describe 

a flow should be limited. 

  
There are significant and substantial differences in flow patterns between vertical, 

inclined and horizontal pipe flow. As would be expected, because gravitational and 

buoyancy forces act parallel to pipe wall for vertical flow, radial symmetry exists and 

the flow patterns tend to be simpler. The lower the flow rates the greater the 

differences between vertical, inclined and horizontal pipe flows – all other things 

being equal. A brief, simplified review and description of the main regimes for 

upward vertical, inclined and horizontal two-phase flows taken from the available 

literature is presented in the following sections. To aid this rationalisation gas-liquid 

and liquid-flows have been combined, this follows the example of Bannwart et al., 

(2004), who worked to identify flow patterns in heavy crude oil-water flows and 

suggested strong correspondence with gas-liquid flows. 

 
It needs to be mentioned that there is a marked lack of experimental data on liquid-

liquid and liquid-solid, two-phase flows, particularly in inclined pipes. Some ten years 

ago Doran and Barnea (1996) and Doran et al., (1997) commented that – at that time – 

hardly any data could be found for solid-liquid flow in inclined pipes and none at all 

concerning solid layers at the bottom of the pipe. In 2006, Rodriguez and Oliemans 

(2006) had cause to remark on the very modest number of publications that addressed 
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liquid-liquid flow patterns in horizontal pipes and that they couldn‟t find any 

qualitative data on the effect of angle of inclination for oil-water flow patterns. Even 

more recently Yerrumshetty (2007) has claimed that little or no empirical data was 

available concerning the behaviour of solids in solid-liquid flows.  

 
The reason is not hard to find, building the necessary and appropriate test-rigs is 

expensive, difficult and costly in terms of both time and laboratory space. One 

consequence of this is that a number of authors have used pipes of narrow diameter, 

e.g. Henthorn et al., (2005) who used a 25mm diameter pipe, and Grassi et al., (2008) 

who used a 21mm diameter pipe. With pipes of small diameter less than about 10mm, 

surface tension effects could be an important factor in the observed flow patterns, 

unless the liquid is very viscous, so the transfer of such results to pipes of 80mm 

diameter and larger must be treated with caution.  

 
However, it appears that the situation is now changing, the author has found 

significant activity in the field of multi-phase flow with resurgent 

industrial/commercial interest and the funding of the development of new techniques, 

see Table 2-1 which presents a list of techniques used to investigate. This project is 

part of that development. 

 
Table 2-1: Techniques used in the investigation of flow patterns and mixture/particle 

velocities 
 

Authors Technique Phase(s) Investigation 
 

Lee, S. and Durst, F. 
(1982) 

Laser-Doppler Sand grains in air. 
Upward flow in 
vertical glass pipe 
20.9mm ID 
 
 

Particle velocity 
profiles 

Vigneaux et al. (1988) High frequency 
impedance probe 

Kerosene–water and 
oil – water in 100mm 
and 200mm ID SS 
pipe  

Flow patterns and 
mixture velocities at 
angles of inclination 0–
65o to horizontal 

Alajbegovic et al. 
(1994) 

Single beam gamma-
ray densitometer and 
laser-Doppler 
anemometer 

Ceramic and 
polystyrene beads in 
water. Vertical 
30.6mm ID FEP pipe 

Volume fractions and 
velocity profiles  
 
 
 

Angeli and Hewitt 
(2000) 

Impedance probe Oil - water in 
24mm ID horizontal 
Perspex pipe 

Stratified wavy/drops, 
three layer 
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Lucas, G.P. and Jin, 
N.D 

(2001) 

Resistance cross-
correlation flow meter 

Oil – water in 150mm 
ID Perspex working 
section. Angles of 
inclination to the 
horizontal up to 75o 

Flow velocities and  
flow patterns.    

Matousek, V. (2002) Differential pressure 
transducer, flow meter, 
radiometric density 
meter 

Fine, medium and 
coarse sand particles in 
water, horizontal and 
vertical, 150mm ID. 
Plexiglass observation 
section  

Concentration profiles 

Wang et al. (2003) Electrical impedance 
tomography 

2mm diameter non-
conducting beads in 
water. 50mm ID 
horizontal Perspex 
pipe  

Solids distribution 

Lovick and Angeli 
(2004) 

Impedance, 
conductivity probe 

Oil - water in 38mm 
ID horizontal SS pipe 

Dual continuous flow, 
dispersion of oil in 
water  

Lucas et al. (2004) Dual sensor 
conductance probe 

Air – water in 80mm 
ID vertical Perspex 
pipe 

Local gas volume 
fraction and local gas 
velocity 

Rodriguez O. and 
Oliemans, R. (2006) 

Records of moving 
images 

Oil – water in 82.8mm 
ID SS pipe. Horizontal 
and small positive 
inclinations 

Flow patterns, water 
holdup, angle of 
inclination (0o, +2o and 
+5o to horizontal) 

Jana et al. (2006) Conductivity probe Kerosene - water 
in 25mm ID vertical 
perspex 
pipe 

Bubbly, dispersed, core 
annular flow (oil in the 
core) 

Chakrabarti et al. 
(2007) 

Non-intrusive optical 
probe 

Kerosene – water in 
horizontal 25.4mm ID 
Perspex pipe 

Stratified flow patterns  

Goharzadeh and 
Rodgers (2009) 

Particle image 
velocimetry and 
refractive index 
matching 

Three phase oil-air-
glass beads in 25.4mm 
ID horizontal Plexiglas 
pipe 

Slug flow 

Lucas, G.P. and 
Panagiotopoulos, N. 

(2009) 

Dual sensor 
capacitance probe 

Oil – water in 80mm 
ID vertical Perspex 
tube  

Oil volume fraction and 
velocity profiles 

 
 

2.4.1 Fluid-Fluid vertical flows 
 
The classification and description of flow patterns begins with vertical flow. These 

are the simplest patterns found for two-phase fluid-fluid flows because gravitational 

and buoyancy forces act parallel to the flow and radial symmetry exists. Figure 2-1 

shows a generic map of two-phase flows in vertical pipes issued by the Norwegian 

Society for Oil and Gas Measurement as recently as 2005 (Dahle, 2005). 
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Figure 2-1: Generic map of two-phase flows for vertical pipe geometry [Dahle, 2005] 
(Superficial phase velocity = Phase volume flow rate /cross-sectional area of pipe) 

 
 

2.4.1.1 Bubbly flow 
 
Bubbly flow happens when there is a liquid travelling upwards in a vertical pipe with 

bubbles of the lighter phase gas dispersed relatively uniformly in the heavier phase, 

e.g. air bubbles in water. Bubble flow occurs only when the superficial gas velocity is 

relatively low. The movement of these gas bubbles is very complex and they tend not 

to coalescence together. As the superficial liquid velocity increases, the bubbles 

become finer and more uniformly dispersed in the liquid flow. Because of 

gravitational and buoyancy effects the mean velocity of the bubbles tends to be higher 

than the mean velocity of the fluid. Lucas et al., (2004) performed extensive 

measurements on air-in-water flows. Their results tend to confirm those of previous 

workers but their technique – a dual sensor capacitance probe - was a radical step 

forward in giving 3D profile of the flow patterns, see Figure 2-2 below.  The gas 

velocity profiles presented were typical for this kind of flow, a broad peak centred on 

the pipe axis decreasing to about 70% of the centreline velocity near to the pipe wall 

after which there is a sudden drop to zero at the wall. The local gas volume fraction 
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was a clear maximum (about 5%) on pipe centre-line falling away more or less 

linearly to 0% at the pipe wall.  

 

Figure 2-2: Local gas volume fraction distributions for vertical upflow in 80mm ID 
pipe: superficial gas velocity 0.033ms-1, three water superficial velocities (a) 0.10ms-1, 

(b) 0.38ms-1 and (c) 0.91ms-1 (Lucas et al., 2004)  
 
 

The same phenomena has been observed with liquid-liquid flows. Both Vigneaux et 

al., (1988) and Jana et al., (2006) described the flow patterns of kerosene in water, 

that the kerosene forms oblate spheres within the continuous water medium, and 

strongly resemble the bubbly flow pattern with gas-liquid flows. 

  
Lucas and Panagiotopoulos (2009) extended their earlier work to include oil-in-water 

flows. They found the same broad axial velocity distribution for oil as they had 
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previously found for air and concluded that the velocity profiles for gas in water and 

oil in water flows are very similar in shape notwithstanding that oil is over 600 times 

as dense as air. However they found that the oil volume fraction profiles across the 

pipe tend to be flatter than those for air, and change in character with volume flow 

rate much more so than those for air. For the values of the mean oil volume fraction 

(movf) investigated they found that over the range of 0.05 < movf < 0.2 the oil 

volume fraction across the pipe changes dramatically. For a movf of 0.068 the oil 

volume fraction distribution across the pipe took the shape of a broad peak with its 

maximum on the centre-line and falling to near zero at the walls. But by the time the 

movf has reached just 0.121 the distribution had changed to being flat across the pipe 

with a sharp drop-off near the wall. With further increase in movf, to greater than 

0.19, the distribution became slightly concave, again with a sharp drop-off near the 

wall. 

2.4.1.2 Slug Flow 
 
When the gas flow rate increases the smaller gas bubbles coalesce into plugs, which 

can occupy the majority of the cross-sectional area of the flow. The gas plugs are 

separated by regions containing predominantly liquid which are called slugs and will 

fill the cross-sectional area of the flow, see Figure 2.1. These large gas bubbles are so-

called, Taylor bubbles and are described as having a bullet shape (Davies and Taylor, 

1950). With further increase in the gas rate, the size and the velocity of the 

plugs/bubbles increases. The liquid between the bubbles will usually contain smaller 

scattered gas bubbles. The same general phenomena are observed with oil-in-water 

flow. 

2.4.1.3  Churn Flow 
 
With yet further increase in the gas superficial velocity, churn flow occurs. The flow 

acquires a more turbulent character, which destroys the liquid laminar film and so 

forms an unstable flow regime. This results in a churning movement of the liquid in 

the flow. Because churn flow is superficially similar to slug flow these two regimes 

are sometimes grouped together as slug flow. Churn flow normally occurs in larger 

diameter pipes rather than smaller diameter ones. The transition to annular flow is the 



LITERATURE REVIEW 

 65 

point where the liquid separating the gas bubbles disappears and the bubbles coalesce 

into a gas core.  

 
For an immiscible liquid such as light oil flowing with water in a pipe of 25.4mm ID, 

as the superficial velocity of the water approaches about 1ms-1 the size of the oil drops 

decreases and they become dispersed as fine drops in the water probably due to the 

shearing forces created by the turbulence (Jana et al., 2006). 

2.4.1.4  Annular Flow  
    
With gas-water and light oil-water flows the transition between bubbly flow and 

core/annular flow occurs when the droplets of lighter phase begin to coalesce in the 

centre of the pipe to form a continuous core which pushes the water into an outer 

annulus. The transition appears to be a very chaotic with highly irregular flow patterns 

before settling down (Jana et al., 2006). 

  
In annular gas-liquid flows, the liquid gathers and travels on the pipe wall while the 

gas travels in the centre of the pipe. However, a part of the liquid continues to travel 

as entrained drops in the centre of the pipe with the gas. In vertical annular upward 

flow, gravity has a greater effect on the more dense liquid, slowing it relative to the 

less dense gas. Thus gravity may be said to generate a difference between the liquid 

and gas velocities (slip).  

 
When two fluids are forced to flow in opposite directions, e.g. when the liquid is 

descending and the gas rising, the relative velocity between the liquid and gas is high, 

so the annular regime dominates. When both fluids (gas and liquid) are descending, 

the liquid is likely to flow faster than the gas and the relative velocity between gas and 

liquid can be said to be against the direction of flow. Again this leads to larger relative 

velocities and this tends to lead to the annular flow regime being preferred. 

2.4.2 Fluid-fluid horizontal flow 
 
As would be expected the major differences between horizontal and with vertical flow 

regimes are at lower superficial liquid velocities because here there is greater 

opportunity for stratified flow to develop. In horizontal fluid-fluid flows, different 
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immiscible fluids separate from each other because of gravitational effects, and this 

allows distinct flow regimes to develop in the pipe system. 

 
Figure 2-3 shows a generic map of two-phase flows in horizontal pipes issued by the 

Norwegian Society for Oil and Gas Measurement (Dahle, 2005). Seven regimes or 

sub-regimes are shown, but these can be reduced to four main types of horizontal flow 

regimes; Stratified flow, Slug/plug flow, Dispersed flow (where one phase becomes 

dispersed as drops in the other) and Annular flow (Gourich et al., 2006; Dahle, 2005; 

Carpentero-Rogero et al., (2009), Grassi et al., (2008). The similarity with the 

classifications for vertical flow is, of course, deliberate.  A brief explanation for each 

of these flow regimes is provided in the following subsections. 

 

Figure 2-3: Generic map of two-phase flows for horizontal pipe geometry (Dahle, 
2005) 

 
In principle there is no theoretical difference between the mechanisms of oil-water 

flows and gas-water flows, but as Poesio et al., (2007) have pointed out the orders of 

magnitude differences in important quantities means the results obtained from gas-air 

flow are not always directly transferable to liquid-liquid flows. This is very 

unfortunate given the mass of literature that exists on gas-air flows and the relative 

little that has been written on liquid-liquid flows.  
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2.4.2.1 Stratified Flow 
 
For low flows of both fluids, the less dense fluid tends to merge together and flow in 

the top part of the pipe, while the heavier fluid flows in the lower side of the pipe. At 

these low flow rates, the different phases share a smooth boundary, and each phase 

occupies a more or less constant proportion of the flow along the pipe. For gas-liquid 

flows the difference in densities of the two fluids is large and the flow ranges over 

which stratified flow is found is correspondingly larger.  

2.4.2.2 Slug/Plug flow 
 
Chakrabarti et al., (2007) have observed that for horizontal flows of air-water, 

stratified flow is not often seen in practice; the interface of the separated and stratified 

layers becomes wavy and slug/plug flow soon develops. They also observed that for 

kerosene-water flows the stratified flow patterns are more complicated and that 

degrees of separation can persist in the form of bubbles or large plugs of the lighter oil 

in the shape of “kerosene chunks” near the top of the pipe, not the uniform elongated 

Taylor bubbles found with air-water flows. Of course such a phenomenon will depend 

upon the relative densities and viscosities, but is generally seen only for superficial oil 

velocities of less than 0.5ms-1, see Figure 2-4 (Grassi et al., 2008).  

 
If the superficial liquid velocity increases at lower gas flow rates the waves in the 

liquid at the gas-liquid boundary will touch the upper wall of the pipe creating gas 

plugs. The body of liquid filling the pipe and separating the plugs is called a slug. 

Slug dominated flow is very similar to plug flow, but contains bigger gas bubbles, and 

the liquid slugs themselves contain more bubbles. The term “sparkling waves” has 

been used to describe this flow when the liquid slugs contain many gas bubbles and 

“semi-slug” when the boundary waves do not entirely fill the pipe (Franca, L., et.al 

(1992) , Jones O.C, et.al (1976)). With oil-in-water, slug flow appears at very low oil 

flow-rates and when the superficial water velocity is low enough to avoid 

fragmentation of drops, thus the flow region over which slug/plug flow dominates is 

very limited, the water superficial velocity should be less than abut 1ms-1 and the oil 

superficial velocity less than about 0.2ms-1. 
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Figure 2-4: Oil plugs in water, after Grassi et al., (2008)  (pipe ID 21mm, water 
superficial velocity 0.5ms-1, oil superficial velocity 0.1ms-1) 

 
 

Previous work by Marruaz et al., (2001) on an industrial rig and more recent 

laboratory work by Goharzadeh and Rodgers (2009) examined plug/slug flow for air-

water mixtures. They found that for established and steady slug flow, increasing the 

velocity of either phase decreases the length of the liquid slugs. This would be 

expected given that increase in phase velocities would initiate transition to dispersed 

flow.  

2.4.2.3 Dispersed Bubble Flow  
 

For slug, plug or stratified gas-water flows if the superficial velocity of the water is 

further increased, and remains greater than that of the gas, dispersed bubble flow 

occurs. Here, gas bubbles are scattered throughout the body of the liquid just as with 

vertical bubble flows. Because of their lower density, the gas bubbles tend to gather at 

the upper wall of the pipe, however, and when the velocity of the liquid is high 

enough, turbulence effects disperse the gas bubbles into the liquid along the pipe. 

 
An exactly corresponding phenomenon is observed with oil-in-water, with the oil 

drops becoming dispersed within the water. This phenomenon is observed from very 

dilute oil-in-water dispersions to more concentrated dispersions of larger oil drops. 

Rodriguez and Oliemans (2006) reported that they had observed dispersions of water 

in oil. However, on reading further these authors qualify their observation by saying 

that this did not necessarily mean the existence of an oil-continuous region, rather it 

meant very low water flow rates so that the observation of a continuous water phase 

was problematic. 
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Compared with the figure for gas-water flows (see Figure 2-3) the dispersed “bubble” 

region for oil-water flows occupies a much greater relative area. In fact it is the 

dominant mode of flow if the superficial water velocity is greater than three times the 

oil superficial velocity. 

 

Figure 2-5: Oil dispersed in water, Grassi et al., (2008) (pipe ID 21mm, water 
superficial velocity 0.7-2.6 ms-1, gas superficial velocity 0.03-0.1 ms-1) 

 

The available literature on droplet size in pipe flow is exclusively for dispersed flow 

and agrees that the maximum diameter of the oil drops decreases with increase in 

continuous phase velocity, i.e. water flow rate (Lovick and Angeli, 2004, Chakrabarti 

et al., 2007). As the above Figure 2-5 suggests, and as confirmed by Lovick and 

Angeli (2004) even for fully dispersed flow the phase distribution across the pipe will 

be influenced by gravitational forces, and even where the oil fraction is as high as 

80% there will be little or no oil present at the bottom of the pipe and no water present 

at the top.  

2.4.2.4 Core Annular Flow 
 
For gas-water flows if the gas superficial flow rate is increased such that the gas 

attains a much higher velocity than the liquid, then the boundary between the two 

phases takes on a wavy shape. The tips of these wavelets are blown off into the gas 

stream. As the gas flow continues to increase there comes a time at which the gas in 

the flow travels in the centre of the pipe while the liquid travels on the pipe walls and 

as droplets within the gas. The effect of gravity makes a thicker film of liquid in the 

lower side of the horizontal pipe, but if the velocity of the gas flow increases 

sufficiently, the thickness of the liquid film becomes more uniform around the pipe‟s 

circumference. The slightly increased thickness of the liquid film at the lower side of 

the pipe differentiates vertical and the horizontal annular flows. However, when the 

gas has a very high velocity, the liquid is entrained in the gas as a fine mist and the 
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liquid travels as random drops in a “flow fog”. The film on the pipe wall disappears 

entirely. Annular and the mist flow regimes are commonly grouped together and 

known as annular flow fog. Horizontal annular flow is very similar to vertical annular 

flow, provided allowance is made for gravity which affects the slippage of each phase 

in the vertical flow and density variations across the pipe for horizontal flow. 

 
For oil-water flows the same phenomena are observed, see Figure 2-6 though Conan 

et al., (2009) have recently observed that for very light oils a third layer of pure oil 

may appear at the top of the pipe, but they suggest this may have been a result of the 

manner in which they injected the oil into the water flow. 

 

Figure 2-6: Core annular flow oil in water, Grassi et al., (2008)  (pipe ID 21mm, water 

superficial velocity 1ms-1, gas superficial velocity 0.5ms-1) 

McKibben et al., (2000) performed a laboratory study on heavy-oil-water flows in a 

horizontal steel pipe of 53mm ID with a transparent working section. Five oils were 

used with densities varying from 884 – 985kgm-3 and viscosities from 620 – 

11200mPa.s. In these experiments the oil flow was established and the water 

gradually introduced. They found that for low water-to-oil ratios, up to about 20% in a 

total flow of about 6 l/min (a bulk velocity of less than 0.05ms-1), the water took the 

form of slugs within the oil. The velocity of these slugs was found to be about twice 

the superficial velocity of the oil. As the water flow increased it was observed that a 

layer of streamlined oil flow could be sitting on a turbulent layer of water. For all the 

bulk flow velocities used, up to about 0.12ms-1, the water appeared to be concentrated 

in the lower side of the pipe but water was occasionally detected along the axis of the 

pipe and even at the top of the pipe.  
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McKibben et al., (2000) considered that viscosity and density differences between the 

oil and the water were insufficient to explain all the results obtained, particularly the 

flow patterns obtained with the heavier oils, and so introduced a new factor 

“wettability” of the pipe wall. This was used to explain the fact that, even at low 

velocities the heavier oils were present as a bottom layer on the pipe wall. The heavier 

oils preferentially wet the steel of the pipe wall.  

2.4.3 Fluid-fluid inclined flow 
 
Prediction of flow patterns in inclined pipes is important if the operator is to avoid 

formation of a stationary deposit which causes a partial blockage of the pipe, 

increasing system losses and reducing system efficiency. One of the first to study two-

phase upflow patterns in inclined pipes was Scott (1985) who observed that for low 

flow rates the water close to the oil-water interface moves with the oil as it flows up 

the pipe but that close to the lower side of the pipe gravitational effects could cause a 

layer of water to flow backwards. As the angle of inclination increased segregated 

flow patterns were replaced with wavy flow where the size of the waves increased as 

the angle of inclination increased, at least up to about 30o.  

 
Vigneaux et al., (1988) investigated oil-water upflows in pipes at between 5o and 65o 

from the vertical for two pipes, one 100mm ID and the other 200mm ID. The 

emphasis of their research was on the effect of the angle of inclination and mixture 

velocity on the radial distribution of the volume fraction. For flows at 15o to the 

horizontal, where the water volume fraction was about two-thirds and oil propagated 

as droplets in the water, they found that the diameter of the pipe made a difference to 

the volume fraction distribution, with a much higher gradient found in the smaller 

diameter pipe. Here the mean superficial velocity was 0.235ms-1 and the 

concentration of water ranged from 80% near the lower side of the inclined  pipe to 

30% at the top of the 100mm ID pipe and 50% at the top of the 200mm ID pipe. For 

lower flows the pattern is more stratified with the water gathering in the lower side of 

the pipe. As the slope of the pipe increased to 55o, a continuous oil flow appears at the 

top of the pipe and the water volume fraction as a function of distance from the pipe 

axis approximates an S shaped curve: 100% at the lower side of the inclined pipe to 

zero at the upper side of the inclined pipe. However, the S shape was much steeper for 

the smaller diameter pipe. 
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For inclined two-phase flows the degree of inclination will affect the flow patterns 

observed. Because of net gravitational forces on the different components there is a 

tendency for stratification. The heavier components tend to sink to the lower side of 

the pipe wall, while the lighter components do the opposite. Different levels of 

stratification occur, which depend on the realative density of the materials and the 

degree of inclination. Studies on this type of flow condition can be read in Lucas et.al 

(2001) , G. Oddie, H et.al (2003) and Hing-De Jin Wang et.al (2003) . For example, if 

the gas velocity is greater than the liquid, slippage takes place and liquid holdup 

occurs. The steeper the angle of inclination the more important is hold-up. At angles 

of inclination of about 30o to the horizontal large slugs of liquid could be generated 

and the appearance is of backward flow of the liquid. This effect is at its maximum 

between about 20o and about 70o to the horizontal (Carpentero-Rogero et.al (2009). 

However, while qualitative information is available reliable quantitative data on the 

effects of change in angle of inclination is very difficult to come across (Rodriguez 

and Oliemans, 2006).  

 
Flores (1997) and Flores et al., (1998) carried out experimental and theoretical 

studies on oil-water flow in vertical and inclined pipes to better characterize flow 

patterns and develop models to predict flow pattern transitions, holdup and 

pressure drops. Studies were carried out in a 50mm ID pipe using mineral oil and 

water for angles of inclination of 90°, 75o, 60°, and 45o from the horizontal. He 

found that the slippage decreased as the angle of inclination increased, and that for 

the moderate oil and water flow rates used the flow was dominated by dispersed 

oil-in-water. Grassi et al., (2008) have suggested that the flow patterns change little 

with small changes in the angle of inclination of the pipe, but in inclined gas-liquid 

flows the different phases tend to separate from each other because of gravitational 

effects, and this does depend on the angle of inclination and the flow regimes will 

range from those found with vertical flow to those found for horizontal flow. 

Nevertheless, it is possible to say there are four main types of flow regimes for co-

current gas-liquid flow in inclined pipes: Stratified and wavy flow, Plug/slug flow, 

Atomization and Annular flow. A brief explanation for each of these flow regimes 

is provided in the following subsections.  
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2.4.3.1  Stratified and wavy flow 
 
For relatively low gas and liquid flow rates the gas and liquid phases separate into two 

distinct layers with the liquid at the lower side of the inclined pipe below the gas 

phase but this depends on the slope of the pipe. At low flow rates, the two phases 

have a smooth boundary, and each phase occupies a more or less constant proportion 

of the pipe. For uphill flow, if the superficial velocity of either or both phases 

increases waves appear on the liquid surface. Rodriguez and Oliemans (2006) 

investigated oil in water flows for horizontal flow and flow at 1o, 2o and 5o above the 

horizontal. They found significant changes in the flow patterns even for these small 

angles of inclination, but the largest changes were limited to low, stratified flows. In 

particular, the disappearance at 5o of stratified flow separated by a clearly defined 

interface. By 5o there was mixing at the interface for all the flow rates investigated. 

Kumara et al., (2009) also found flow pattern to be sensitive to the angle of the pipe 

and confirmed that even for slight pipe inclinations, 5o or less above the horizontal, 

established smoothly stratified flows in horizontal pipes disappeared. 

  
For the case where the flow of the liquid is downhill while the gas continues to flow 

uphill the increased relative speed of the two phases generate waves in the interface. 

However, should the liquid be flowing downhill there is the possibility of be transition 

from laminar to turbulent liquid flow so that, even without gas flow present, natural 

instability of the interface occurs (Lioumbas et al., 2005). 

2.4.3.2 Plug/slug flow 
 
As the liquid flow rate passes a certain critical value waves in the liquid at gas-liquid 

boundary touch the upper side (top) of the pipe creating gas plugs and liquid slugs. 

Some authors term these slugs rather than plugs because the gas phase remains to 

some extent continuous and the actual slugs contain large gas bubbles. This is 

probably the most frequently encountered flow regimes during co-current gas–liquid 

flow in inclined pipes and over the last decades has attracted the interest of many 

researchers (e.g. Grolman and Fortuin, 1997; Rodriguez and Oliemans, 2006, Poesio, 

et al., 2007).  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4X3DMYY-1&_user=495973&_coverDate=12%2F16%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1182467644&_rerunOrigin=google&_acct=C000024198&_version=1&_urlVersion=0&_userid=495973&md5=3bce321edcf51f97a50e598ad5876b5a#bib11
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2.4.3.3 Dispersed “bubble” flow 
 
If, for gas-water flows, the superficial velocity of the water is further increased, and 

remains greater than that of the gas, dispersed bubble flow occurs. Here, gas bubbles 

are scattered throughout the body of the liquid just as with vertical bubble flows. 

Because of their lower density, the gas bubbles tend to gather at the upper wall of the 

inclined pipe, however, and when the velocity of the liquid is high enough, turbulence 

effects disperse the gas bubbles into the liquid along the pipe. In the case of uphill 

flow the gas bubbles maintain their separate identity to a higher velocity than for 

horizontal flow.  

 
Dispersion is observed with oil-in-water flows, from very dilute oil-in-water 

dispersions to more concentrated dispersions of larger oil drops. Lucas and Jin (2001) 

in their investigation of homogeneous velocity present results for oil-in-water but 

their figures also present regions of high oil flows and small water flows which are 

described as dispersion of oil in water. 

2.4.3.4 Dispersed or atomised flow 
 
This type of flow is encountered at very high gas flow rates, where the liquid forms a 

thin film around the pipe circumference while the gas travels in the centre of the pipe. 

However, a part of the liquid continues to travel as drops in the centre of the pipe with 

the gas. For both horizontal and vertical flows if the gas velocity increases 

sufficiently, liquid is entrained into the gas and dispersed throughout the gas phase as 

a fine mist so that the liquid travels as random drops in a “flow fog”. The film on the 

pipe wall disappears entirely. 

  
The flow rates at which at the transition to atomised flow takes place for oil-water 

flows will depend on the angle of inclination of the pipe. Kumar et al., (2009) have 

found that for upflow the steeper the pipe the lower the superficial velocities at which 

the dispersed flow pattern emerged. Rodriguez and Oliemans (2006) had reported 

similar findings in terms of a narrowing of the transition region between different 

flow regimes, and an extension of the range of flow rates at which dispersed flow 

could be found. 
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2.5  Solids-fluid flow regimes 
 
Essentially, slurry is a mixture of solid and liquid, its physical characteristics depends 

on many factors such as the concentration and size distributions of the solids in the 

liquid phase, whether or not the flow is turbulent and the degree of turbulence, 

viscosity of the fluid, and the dimensions of the pipe carrying the flow. As would be 

expected the size and shape of the particles will have an effect on the flow patterns. 

Henthorn at al (2005) claim to have shown that even variation in particle shape can 

greatly affect the flow. Mica flakes, non-spherical sand particles and spherical glass 

beads of much the same density and equivalent volume diameters were used. The 

greater drag forces exercised by the less spherical particles, is believed to dissipate 

energy through turbulence effects, and significantly slow the flow.  

 
Particles carried by a liquid and moving in a pipe will experience forces due to being 

submerged in the liquid, due to particle-particle interaction and may also interact with 

the pipe wall. Assuming a sufficiently dilute solution so that the particle-particle 

interactions can be ignored (at least to a first degree) the forces on a particle will be 

the body forces of weight, buoyancy and drag. Should the fluid flow be turbulent 

there will be additional forces on the particle due to its interaction with turbulence 

eddies. Sand slurries contain particles up to a few millimetres diameter with a 

relatively high density and are considered settling slurries since the solid particles 

tend to accumulate at the bottom of the pipe. 

 
The flow of solid-liquid slurries in pipes differs from the flow of homogeneous 

liquids in a number of ways. With liquids the nature of the flow (i.e., laminar, 

transitional, or turbulent) can be characterized from a knowledge of the physical 

properties of the fluid and the pipe system. Characterization of slurry flow is not as 

simple as that because superimposed on the properties of the liquid are the properties 

of the solid particles and the effect of the particles on the mixture properties (Coiado 

and Diniz, 2001). Suppose a two-phase solid-liquid mixture flows in a horizontal 

pipe. If the slurry flow rate is high enough, all the solid particles will be suspended. If 

the flow rate is reduced, the solid particles whose density is higher than that of the 

carrier liquid tend to settle out and agglomerate at the  lower side of the pipe, forming 

a moving deposit, above which flows a heterogeneous mixture. Decreasing the flow 

rate further causes the moving bed height to increase while its mean velocity 
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decreases. At some stage in the development of the bed, the forces on the particles at 

the base of the bed resisting motion become greater than the forces acting to move the 

particles. That is three, layers exist in the pipe (Doron and Barnea, 1993). 

 
Doron, et al., (1997) have shown that with inclined pipes a fourth layer is possible. At 

the lower side of the inclined pipe there may be slippage of the solids deposited on the 

pipe under gravitational forces. They found that as the pipe tilted the bed height 

initially increased and reached a maximum with upward tilt of the pipe between 20o to 

40o. For angles of inclination greater than this the gravitational effect becomes more 

pronounced and the bed height is reduced.  

 
The limit deposition velocity (sometimes the suspending velocity) is the minimum 

fluid flow required to suspend a solid particle in the pipe. Below this velocity particles 

will settle out to form a bed on the lower side of the pipe, above this velocity particles 

on the lower side of the pipe will be taken up by the flow and all the particles are fully 

suspended in the pipe. It will depend on particle diameter, particle concentration and 

angle of inclination of the pipe carrying the flow. For angles of inclination from 0o to 

about 30o it was found that for a given solid concentration the limit deposition 

velocity remained more or less constant – about 3ms-1 for a 13% concentration of 

particles of density 2650kg/m3, and mean diameter 0.36mm in a 100mm ID pipe. Of 

course, the less dense the particles and the lower their concentration, the lower the 

limit deposition velocity. 

 
Homogeneous flow, or a close approximation to it, is encountered in slurries of high 

solids concentrations and fine particle sizes. The heterogeneous suspension regime is 

the most important mode of transport of granular materials by pipelines, because the 

maximum amount of solids is transported per unit energy input. There is in the 

literature a considerable number of publications about heterogeneous suspension 

regime in horizontal pipe. On the other hand, the number of articles concerning 

heterogeneous regime in non-horizontal pipeline is limited, and there is a substantial 

lack of information about the development of equations which permit computation of 

head loss (Coiado and Diniz, 2001). 
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2.5.1 Solids-fluid vertical flow  
 
When considering vertical flow of solids in a fluid it is easy to see why there cannot 

be stratified flow or slug/plug flow. Also because the gravitational force is parallel to 

the pipe wall and there will be radial symmetry in the flow there cannot be an 

asymmetric distribution of particles in the flow. Thus vertical flow of solids in a fluid, 

whether gas or liquid must be suspended axi-symmetric. Not all solids have a density 

greater than that of water, so we would expect there to be instances when the solid 

particle velocity was greater than the fluid velocity due to the action of buoyancy 

forces. In vertical pipes the velocity of solids for upward flow is less than the fluid 

velocity and it is greater for downward flow. The difference is approximately the 

value of the settling velocity, approximately, (Raudkivi, 1989). 

2.5.1.1  Suspended axi-symmetric flow 
 

Velocity profiles  

 
Lee and Durst (1982) considered upward vertical flow of spherical glass beads in air 

of mean velocity of between 5.60ms-1 and 5.84ms-1, in a 20.9mm diameter pipe. Four 

different diameter particles were used: 0.1mm, 0.2mm, 0.4mm and 0.8mm. The 

volume ratio of particles to air ranged from 0.058% to 0.112%. They made three 

practical observations; (i) That the profile of the mean particle velocity was more or 

less-constant (flat) across the pipe, especially for the larger particles, (ii) The mean 

particle velocity was always less than the mean air velocity, and the larger the particle 

the slower its velocity, and (iii) There was a narrow layer at the pipe wall, larger than 

the viscous sub-layer of the air flow, into which the particles did not intrude. The 

larger the particle the wider the particle-free region near the wall. 

  
Tsuji et al., (1984) measured the mean and fluctuating velocities of the particles in a 

gas-solid flow in a vertical pipe. They used polystyrene spheres (1020kgm-3, 0.2mm 

to 3mm diameter) in a vertical glass pipe of ID 30.5mm. In agreement with Lee and 

Durst they found that the smaller the particle size, the more uniform was the mean air 

velocity distribution across the pipe, all other things being equal. They also found that 

large particles increased air turbulence throughout the pipe section, while small 

particles reduced it. Medium sized particles tended to increase turbulence in the 
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vicinity of the pipe centre and reduced it near the pipe wall. Lee and Durst (1982) had 

found that the presence of the 0.8mm diameter glass particles increased the measured 

turbulence intensities for the air flows they used. This phenomenon has been 

confirmed more recently by Yerrumshetty (2007) who has shown that for mean solids 

concentrations greater than about 0.1% the presence of the solid particles alters the 

turbulence patterns, and that the larger the particles the greater the effect. The 

presence of larger particles, where particle Reynold number is greater than about 70, 

caused the production of additional turbulence, while particles with smaller Reynold 

number increased the rate of dissipation of turbulent energy.  

  
δouge et al., (1λλ1) investigated “relatively dilute” flows of particles of 0.2mm and 

0.5mm diameter in fast flowing air (as high as 18.9ms-1) in a vertical pipe. The 

diameter of the pipe does not appear to be given in the paper. This paper is primarily 

concerned with the effect of the particles on the airflow, but the authors confirm that 

velocity fluctuation for the air increased with increase in particle diameter, that the 

velocity profiles for both air and particles are fairly flat across the pipe, and there is a 

clear decrease in particle velocity close to the wall.  

 
The work of Sumner et al., (1990) and Bartosik and Shook (1995) can be seen as an 

extension of the work of Lee and Durst to the upward flow of fine, medium and 

coarse sand particles (respective diameters about 0.2mm, 0.5mm and 0.8mm) in water 

of mean velocity from about 2.5ms-1 to about 7 ms-1 in a 25.8mm ID pipe. Three solid 

concentrations were investigated: 10%, 30% and 40% by volume. The particle density 

was 2650kgm-3. Their reported data agrees well with the mean particle velocity 

patterns found by Lee and Durst (1982), (i) That the profile of the mean particle 

velocity was more or less-constant across the pipe, especially for the larger particles, 

(ii) The mean particle velocity was less than the mean fluid velocity, (iii) There was a 

narrow layer at the pipe wall, into which the particles did not intrude. They suggest 

this is about the width of one half the particle diameter. 

 
Alajbegovic et al., (1994) investigated solid-water upflow in a vertical pipe of ID 

30.6mm. Two solids were used; ceramic spheres of mean diameter 2.23mm and 

density 2450kgm-3, and expanded polystyrene of mean diameter 1.79mm and density 

32kgm-3. For the ceramic particles the particle velocity was generally less than that of 

the fluid, but the velocity of the polystyrene particles was – as expected - everywhere 
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greater than the fluid velocity. The diameters of both the ceramic and polystyrene 

spheres were larger than those reported above and the velocity profiles, while fairly 

uniform across the pipe were less so than those observed for smaller diameter 

particles. The measured axial velocities for both particles and all flow rates examined 

did, in fact show a broad but shallow peak centred on the pipe‟s axis, with the peak 

for the polystyrene particles more distinct than for the ceramic, see Figures 2-7 and 2-

8  below.  

 
Figure 2-7: Velocity profiles of ceramic beads in water  

Top line: superficial water velocity (UWS) = 2.20ms-1, 
middle line: UWS = 1.89ms-1, bottom line; UWS = 1.41 ms-1 

 

 
Figure 2-8: Velocity profiles of polystyrene beads in water  

Top line: superficial water velocity (UWS) = 2.22ms-1, middle line: UWS = 1.77ms-1, bottom 
line; UWS = 1.44ms-1 
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It was also noticed that in the case of the ceramic particles only, close to the pipe wall, 

the fluid velocity fell below that of the particles. The cross-over point moved away 

from the wall the higher the flow velocity, from about one tenth the radius to three-

quarters the radius as the superficial liquid velocity rose from 1.42ms-1 to 2.20ms-1. 

 
Particle concentration/volume fraction 

 
Alajbegovic et al., (1994) presented measured volume fraction distributions for the 

ceramic beads for a number of flow conditions. The data presented confirmed that for 

low liquid flows the volume fractions for the ceramic particles showed an almost 

uniform distribution cross the pipe, but as the fluid velocity increased the volume 

fraction at the centre of the pipe increased. Alajbegovic et al., presented the results of 

Sakaguchi et al., (1991), to confirm their findings that the higher the superficial liquid 

velocity the more the solid particles shift towards the pipe‟s centreline. Though, of 

course, the degree and extent will depend in the size, shape and density of the solid 

particles and the pipe diameter. Both sets of authors agreed that there exists a particle 

free region close to the pipe wall for all the flow velocities and particles tested. The 

particle free zone can be seen in the figure below which represents the data of 

Alajbegovic et al. 

 

 
Figure 2-9: Volume fraction profiles, ceramic beads in water  

Green line: superficial water velocity (UWS) = 2.22ms-1,  
Brown line: UWS = 1.77ms-1, Blue line; UWS = 1.44 ms-1 
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Sumner et al., (1990) and Bartosik and Shook (1995) found the finer the sand particles 

in sand-water flows the more uniform the concentration across the pipe. As with 

Alajbegovic et al., at smaller particle diameters (d=0.2mm) the particle concentration 

was uniform almost to the wall, but for larger particle diameters (d=0.8mm) there was 

a clear tendency for the particles to travel nearer the centre of the pipe.  Both papers 

found that, all other things equal, the lower the particle concentration the more even 

was the particle distribution across the pipe. 

  
Yerrumshetty (2007) attempted an explanation: Very fine particles would follow the 

small-scale motions of the fluid so that the action of turbulent diffusion would 

produce a uniform concentration distribution over the pipe cross-section. Given the 

small scales involved this could be to within the immediate vicinity of the wall. 

However, he claimed that there was insufficient information available in the literature 

to quantitatively test the hypothesis.  

2.5.2 Solids-fluid horizontal flow 
 
A horizontal solids-fluid flow is asymmetric. The distribution will depend on the 

density of the solids; the more dense the solids the less the net upward buoyancy force 

on its particles. The more dense the particles the quicker they sink to the lower side of 

the inclined pipe – all other things being equal – which can cause a layer of solid 

particles to develop. If more than one solid was being transported the density and size 

of the particles would both vary and the layer of particles on the lower side of the 

inclined pipe would also be non-uniform.  

2.5.2.1 Stratified (stationary and/or moving bed) 

 
An introduction to the flow patterns in a solids-liquid two-phase flow is given in 

Akagawa et al., (1989) and shown in Figure 2-10. Although Figure 2-10 is for flow in 

an annulus it is considered relevant here because the flow regimes it depicts are, 

essentially, those that occur for solid-in-fluid flows in all horizontal pipes. The four 

regimes may be classified as: Stratified (Figure 2-10 d) – for horizontal pipes a two-

phase sand-water flow will generally consist of two layers when the water flow 

velocity is below a so-called limit deposition velocity, there will be a stationary bed of 

sand at the lower side of the pipe and the upper side of the pipe is filled with a relative 
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weak heterogeneous mixture. For a small increase in water flow, particles in the top of 

the sand bed are moved by the flow and the sand bed now consists of two layers; a 

stationary base, above which is a moving layer and the upper side of the pipe is filled 

with a heterogeneous mixture. For very low liquid velocities the solid particles may 

pile up in the pipe to such an extent that a blockage may occur but this is rarely 

observed in real situations. The limit deposit velocity increases with pipe diameter 

and thus so does the critical velocity that will keep the suspended coarse particles in 

motion (Doron and Barnea, 1996).  

 
As the liquid flows upwards over the surface of the solid particles it entrains particles 

from the top of the layer back into the liquid flow, taking them further up the pipe. 

We may therefore see a kind of recycling process with particles being carried 

upstream sinking to the lower side of the inclined pipe being carried a distance 

downstream before being caught up by the fluid and carried upstream again. Of 

course, some solid particles could, depending on the fluid forces they experience, be 

carried up the pipe without ever sinking onto the solid layer. Yerrumshetty (2007) has 

pointed out that a packed bed is most likely to result when superficial velocities are 

very low and when the solid particles are very dense, and gives the example of lead, 

10 838 kgm-3. 

2.5.2.2 Moving bed 
 
Further increase in the superficial velocity of the fluid will cause the particles in all of 

the sand bed to move with the flow, see Figure 2-10 c. Matousek (2002) has shown 

that the size of the sand particles is important, the finer the particles the lower the 

limit deposition velocity. Matousek drew two conclusions: that the layer which first 

forms on the bottom of the pipe is likely to consist of predominantly course sand, and 

concentration profiles for finer sands are more likely to be uniformly distributed over 

the cross-section of the pipe.  

2.5.2.3 Suspended asymmetric 
 
If the fluid superficial velocity increases further to above the so-called suspending 

velocity (the minimum velocity for which the flow is fully suspended in the pipe) all 

the sand particles will be suspended in the pipe, see Figure 2-10 b. However, as with 
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dispersed and annular flows for two-phase gas-liquid flows the sand is not uniformly 

dispersed throughout the pipe cross-section.  

2.5.2.4  Suspended symmetric 
 
For the highest flow rates the sand particles become uniformly distributed throughout 

the pipe cross-section, see Figure 2-10 a. 

 
 

Figure 2-10: Two-phase flow patterns for horizontal solids-liquids flows. The liquid 
velocity decreases from high in (a) to low in (d) (Akagawa et al., 1989) 

 

2.5.3 Solids-fluid inclined flow  
 
Horizontal solids-fluid flow is very different from vertical and inclined flow is even 

more complex. For example, as stated above, vertical flow in a pipe is axi-symmetric 

for both velocity and concentration for both phases, while for horizontal flow these 

quantities are asymmetric. But with inclined flow an important additional 

complication occurs with the sand bed. For vertical flow there can be no sand bed, 

with horizontal flow there can be a two layer sand bed, the bottom layer stationary 

and the top layer moving with the flow, but with a sand bed in an inclined pipe the 

bed can consist of three layers, as shown schematically in Figure 2-11, where the 

distribution of the solids across the pipe cross-section is highly non-uniform. 

  
If the layer of solid on the lower side of the inclined pipe becomes thick enough, it 

can slip/slide down the pipe against the fluid flow. Such reverse flow may be episodic 

or, under suitable circumstances, continuous (Doron et al., 1997). If the process of 
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entrainment is strong enough it will ensure that there is a net upwards solids flow 

despite the downward motion of the solids bed at the lower side of the pipe.  

 

 
 

Figure 2-11: A solids-liquid flow in an inclined pipe 
 
Lucas et al., (1999) investigated solids volume fraction and velocity distributions for 

4mm diameter plastic beads of density 1341kgm-3 in water flowing upwards in an 

80mm ID pipe. Measurements were made with a local conductivity probe with the 

pipe vertical and at 5o to the vertical. The vertical distributions of both the local solids 

fraction and the axial velocity distribution were very similar to those reported above. 

  
The distributions measured for the 5o angle for water superficial velocity about 

0.21ms-1 and solids superficial velocity about 0.021ms-1 were skewed, as would be 

expected. The local solids volume fraction is higher on the lower side of the inclined 

pipe and decreases towards the top of the pipe. The local axial velocity distribution 

was also skewed, but inversely so to the local solids volume fraction. At the bottom of 

the pipe the local axial velocity distribution was at its minimum, with some indication 

that there was possible reverse flow adjacent to the pipe wall, gradually increasing to 

a maximum value at the top of the pipe.  

 
Using a 27.8mm ID glass pipe Yakubov et al., (2006) investigated solid-liquid flows 

for various angles of inclination between 0o and 90o. Three sets of solid light particles 

of mean diameters 1.5mm, 2.5mm and 3.2mm were used with water as the fluid 
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medium. The solid material was not specified but the densities claimed were very 

low: 1.25kgm-3 and 2.65kgm-3. These cannot be correct given that photos and 

diagrams in the article show the solid particles did not float, so the densities are more 

likely to be 1250kgm-3 and 2650kgm-3. The purpose of this project was to determine 

the effect of angle of inclination on the solids bed formed on the bottom of the pipe, 

so the range of water flow velocities was limited. Yakubov et al., (2006) claimed to 

have had beds formed in the pipe for slopes as great as 70o for superficial water 

velocities of less than about 0.05ms-1.  

 
For angles of inclination of less than about 40o, a solids layer was formed on the 

bottom of the pipe for superficial water velocities below about 0.13ms-1. At this flow 

rate the water began to move particles in the surface while leaving a motionless layer 

at the bottom of the pipe. As the water velocity increased saltation occurred (the lift 

exerted by the water on a particle is sufficient to pull it away from the surface and into 

the flow; as the particle moves into the water away from the bed, the lift decreases 

and the particle sinks back towards the surface). For slopes of greater than 20o, very 

little further increase in water flow rate was required for the break-up of the bed. 

  
Yakubov et al., (2006) found that the critical superficial water velocity required to 

remove particles from the bed increased with particle diameter, particle density, with 

angle of inclination up to about 45o and inversely with height of the bed. 

 
Doron et al., (1997) found that for a given solid concentration (13% by weight for 

particles of density 2650kgm-3 and diameter 0.36mm), all other things being equal, 

the limit deposition velocity remained more or less constant (about 3ms-1) for an angle 

of inclination between 0o and about 30o. Above that angle the limit deposition velocity 

increased and the likelihood of the bottom layer of particles slipping down the inside 

of the pipe also increased. Generally, Doron et al., (1997) found that the greater the 

density of the particles and the higher the concentration the higher the limit deposition 

velocity. 

2.6 Solids-liquid flow measurement methods 
 
A number of detailed reviews of multiphase flow measurement devices already exist 

in the literature. For this investigation only methods which can take a local 
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measurement in a pipe cross-section are considered, thus techniques such as gamma 

ray attenuation, which gives measurements averaged along the length of a chord of 

the cross-section are not discussed. Similarly global measurement techniques are not 

discussed. Any literature review of reasonable length can provide only a brief 

discussion of the theoretical and practical basis of some of the wide range of 

techniques used to take local measurements in multiphase flows. Applications of each 

are presented and the suitability of each technique for the particular solids-liquid flow 

proposed for this investigation is then critically discussed. The reader is referred to 

referenced sources for more information. In conclusion this section will show why 

one particular technique was chosen for development and application to the current 

investigation. 

 

2.6.1 Optical methods 
 
A variety of techniques can be included within the general classification of optical 

methods which could be applied to the flow conditions of the current investigation. 

Applications in which each technique has been used are then described. Finally the 

possible application of each method to the current investigation is critically examined. 

Experimental studies of two-phase flows such as slurries are hindered because even 

solids fractions as low as 10%, the mixtures are becoming optically opaque. 

Acoustical scattering and magnetic resonance imaging techniques are used for 

measuring some aspects of the flows, but it is desirable that the powerful techniques 

of laser Doppler velocimetry and particle image velocimetry should be used (Adrian 

1991). This has led to the well-known technique of matching the refractive indices of 

the solids and the liquid by careful choice of both to achieve maximum optical 

transparency of solids/liquid mixtures. However, in practice the depth to which one 

can “see” into the mixture is limited by seemingly random variations of the refractive 

index of the liquid caused by changes in its temperature, by variation of the refractive 

index of the material of the solids due to imperfections and some reflection from the 

particle surfaces. For example, Chen and Kadambi (1994) achieved only about 25mm 

penetration through 50% concentrations of 40 lm silica sand particles in a sodium 

iodide solution. Yianneskis, M. and Whitelaw, J.H. (1984)  successfully used ID2 lm 

silica gel particles at 14% volume concentration in a 51 mm diameter pipe, but 

reported that other brands of silica gel particles gave limited penetration at high 
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concentrations due to refractive index variations within the particles. However, work 

is continuing and Wei, F.et.al. (1998) has described new refractive index-matched 

systems for solid particles in liquids which significantly extended penetration depths 

and maximum concentrations by improving transparencies, making experimental 

investigations in relatively large scale pipes possible, possibly up to 100mm ID.  

2.6.1.1 Velocimetric methods 
 
This method involves tracking the paths of individual particles or bubbles. A good 

review of previous research on measurement techniques for multiphase flow is 

reported by Chaouki et al (1997). The simplest velocimetric measuring technique is 

photography. Cinematographic techniques have been used by Scarlett and Grimley 

(1974) in solids-liquid flows and by Gunn and Al-Doori (1985) and Polonsky et al 

(1998) in gas-liquid flows. 

 
In a solids-liquid flow, cinematography is used to follow the path of tracer particles 

within the flow; but to visualise the tracer particles the rest of the flow must be 

invisible to the camera. To achieve this, the liquid and the majority of the solid 

particles must have matched refractive indices and be translucent to the wavelength of 

light used. If the measurements are to be carried out on flow in a cylindrical pipe – the 

usual case – then measures must be taken to eliminate refraction effects due to the 

round pipe. This usually involves constructing a liquid filled rectangular box round 

the pipe. To visualise the motion of the tracer particles in 3 dimensions, images must 

be acquired at two mutually perpendicular positions and then recombined, see Figure 

2-3 Scarlett and Grimley (1974). Using this system the probability of tracer particles 

passing through designated pixels in the pipe cross-section can be measured.  
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Figure 2-12: The optical method of Scarlett and Grimley (1974). 
 
 

For gas-liquid flow measurements, Yamamoto et al., (1998) incorporated 

sophisticated image analysis into their system. Using two perpendicular images, like 

those in the method of Scarlett and Grimley (1974) they were able to track individual 

bubbles in three dimensions, as they rose through a liquid column in flows with much 

higher volume fractions than previously achieved. In the case of Scarlett and Grimley 

(1974), the total gas volume fraction had to be low in order that individual bubbles 

could be imaged clearly. Gunn and Al-Doori (1985) used high speed video cameras to 

record the passage of bubbles through a column of water. Polonsky et al., (1998) used 

video cameras to record the movement of large Taylor bubbles which covered almost 

the entire cross-section of the pipe. In these applications the possibility of capturing 

more than one bubble in the direct line of sight of the camera was low. The system of 

Gunn and Al-Doori (1985) was also used to record the interaction of an intrusive 

probe with rising bubbles. 

 
Obviously photographic methods cannot be applied directly to industrial applications 

as they require expensive equipment and the analysis of the data can be extremely 

time-consuming. Additionally, in order to achieve a reasonable level of accuracy, high 

speed cameras  must be used operating at speeds of up to 3000 frames per second 

(Scarlett and Grimley, (1974)). Because of these disadvantages, photographic 

methods were not considered suitable for the current investigation. 
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Another form of velocimetry is laser velocimetry. Here a sheet of laser light is shone 

across the flow and particles, or bubbles, in the flow appear to shine as they cross the 

light sheet and reflect the light. A camera aimed perpendicularly at the light sheet can 

record the instant these particles cross the light sheet, assuming that the flow between 

the camera and the sheet is relatively transparent. This technique generally uses 

translucent particles which, if the material is chosen carefully, are generally invisible 

to the camera but reflect the laser light. A variation of this technique is streak 

velocimetry where the laser light is pulsed twice for each exposure on the camera 

(Hassan and Blanchat, 1991). This results in each image appearing as a streak 

showing the path of each particle. The length of each streak is directly proportional to 

the velocity of the particle. A second variation of this technique is Particle Image 

Velocimetry (PIV), where each image records the instantaneous position of the 

particle (Jones and Delhaye, (1976)). Analysis of a series of these images allows the 

particle tracks to be determined and the velocity calculated. In both of these variations 

the solids volume fraction is measured using a counting technique.  

 
The advantage of laser velocimetry over conventional velocimetry is that higher 

volume fraction flows can be used without having to introduce tracers. However the 

technique still requires a relatively translucent flow, and a large quantity of specialist 

hardware and software. Again it is also not easily applicable in an industrial 

environment. For these reasons it was decided that this technique was also not suitable 

for the current investigation. 

2.6.1.2 Laser Doppler Anemometry 
 
Laser Doppler Anemometry (LDA) relies on the Doppler effect. Here a laser beam is 

focussed onto a control volume in the cross-section of the multiphase flow, see Figure 

2-13. The bubbles or particles in the flow scatter the beam and the frequency of the 

scattered light is measured. The frequency of the scattered light is different from that 

of the incident beam and the difference in frequency is proportional to the velocity of 

the object which caused the scattering. This method also allows calculation of the 

solids volume fraction by counting the number of particles which pass through the 

control volume (Chaouki et al., 1997; Jones and Delhaye 1976; Chen and Kadambi, 

1994). 
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Because an important requirement for LDA is a clear optical path to the control 

volume it is usually limited to flows of low dispersed phase concentrations and may 

have difficulties if the particle size were to exceed 4mm diameter (Sheng and Irons, 

1991). A number of researchers have attempted to circumvent the low concentration 

condition. Wei et al (1998) optimised the tip of a local LDA probe in order to reduce 

the distance between the measuring window and the control volume. This reduced the 

chance of particles passing between the two. In solids-liquid flow, both Chen and 

Kadambi (994) and Yianneskis and Whitelaw (1984), successfully used a matched 

refractive index system and a small number of tracer particles.  

 

Figure 2-13: Local LDA probe (Sheng and Irons, 1991) 
 

Marié (1983) has proposed LDA for the measurement of the flow rate of a liquid. 

Here a transmitter sends a laser beam into the liquid flow. The beam is reflected to a 

receiver by particles seeded into the flow. The reflected beam laser will be modulated 

by the flow rate and by combining/comparing initial and reflected beams a Doppler 

shift will be observed. To reflect the laser beam seeding particles have to be inserted 

into the liquid and this might affect on the flow rate of the liquid.  

 
In conclusion LDA suffers from many of the problems identified with velocimetric 

techniques. Again, specialist, high cost, equipment is required, and there is no real 

possibility of developing the technique for industrial use in rugged conditions. For 

these reasons it was decided that LDA was not a suitable technique for the current 

investigation. 



LITERATURE REVIEW 

 91 

2.6.1.3 Fibre-optic probes 
 
By inserting probes into the flow it is possible to make local measurements in a two-

phase flow, using optical methods, regardless of the disperse phase volume fraction 

(Moura and Matvillet, 1996). Here light is transmitted down an optical fibre to an 

open tip situated within the flow. Some of the light is reflected, either back up the 

same fibre or up a parallel fibre. The remainder of the light is transmitted out into the 

flow. The relative proportion of light which is reflected depends on the refractive 

index of the material surrounding the tip of the probe. Generally, these intrusive 

probes determine which phase the tip of the device is immersed in at a given time and 

because the flow must be fluid-fluid this type of device is unsuitable for the current 

investigation. 

 
An intrusive optical probe that can be used in a solids-liquid flow has been reported 

by Akagawa et al., (1989). Light was transmitted into the flow through an optical 

fibre as before. However a receiving fibre was positioned near to the first fibre in such 

a way that particles passing close to the pair reflected light into it. Two sensors of this 

type separated by a known axial distance were used to measure the solids velocity. 

This type of device would be applicable to the current investigation although it 

requires relatively complex equipment and analysis. However, the probes were 

intrusive and in order to minimise the flow disturbance, research has been carried out 

into the optimum shape of probe, see Moura and Marvillet (1996), Cartellier and 

Achard (1991), and Jones and Delhaye (1976). If the method selected for this 

investigation were to be intrusive, then this work would be useful. 

2.6.2 Tracer methods 
 
Tracers are the most commonly used method to measure the mean solids velocity. 

Radioactive tracers are injected into a flow and the time taken for them to reach a 

downstream detector measured. This gives a measure of the mean tracer velocity 

along the length of travel. Making the properties of the tracer similar to the properties 

of the solids component, was a method used by Tallon et al., (1998) to measure the 

mean flow of solids in a pneumatic transport application. However, this method has 

been adapted by some researchers to allow local measurements. Tracer particles are 

mixed with the solid component of the flow as if a mean estimate was to be made but 
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instead of using only one downstream detector, a carefully positioned array of 

detectors is used. This allows the local position and trajectory of each tracer particle 

to be measured at a given cross-section of pipe, so the solids velocity and the solids 

volume fraction can be measured using a counting method, see Chaouki et al., (1997). 

It was decided that it was unsuitable for this investigation due to the high cost and 

complexity of the necessary equipment. 

2.6.3 Sampling methods 
 
Sampling involves removing some of the flowing mixture from the pipe. The simplest 

way is to put a small pitot tube into the flow at a relevant position, as has been done 

successfully by Miller and Gidaspow (1992) for gas-solids flows. However, 

researchers such as Nasr-El-Din and Shook (1985) claim that the presence of the pitot 

tube affects the flow and that solids will tend to be deflected around the probe rather 

than entering it. These researchers recommended the use of isokinetic sampling to 

ensure that the flow enters the pitot. Here fluid is drawn out through the rear of the 

isokinetic sampling probe in such a way that the static pressure at the mouth of the 

tube  is identical to that which would exist at the same point in the flow in the absence 

of the tube. Whichever method is used to acquire the sample, the analysis is the same. 

The withdrawn sample is separated and measured off-line allowing the local 

volumetric flow rate of each phase to be measured. 

 
However, this method does not allow the local solids volume fraction or the local 

solids velocity to be directly determined because the volumetric solids flow rate at a 

point is proportional to the product of these properties, and the velocity cannot be 

independently determined without additional information. Rao and Dukler (1971) 

acquired this extra information using an isokinetic-momentum probe. The sampling 

tube was mounted on a sensitive strain gauge. It was then possible to measure the 

force applied by the solids as they struck the sampling tube. This extra information 

allowed both the solids volume fraction and solids velocity to be measured. 

 
An important factor in accurate sampling is the diameter of the sampling tube which 

must be large enough to ensure that a relatively undisturbed flow enters it, but small 

enough not to significantly disturb the overall flow pattern. Rao and Dukler (1971) 

used solid particles 0.065mm in diameter with a sampling tube 1.6mm diameter. They 
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claimed that this ensured that a representative flow of solids entered the tube. Miller 

and Gidaspow (1992) claimed accurate results using a 0.47mm diameter tube with 

0.075mm diameter solid particles. If the solid particles were to be as large as, say, 

4mm in diameter then to achieve the same ratio of sampling tube diameter to solids 

diameter as Rao and Dukler (1971) and Miller and Gidaspow (1992) the tube would 

have to be between 25mm and 100mm in diameter. In laboratory conditions where the 

working section of a flow loop is likely to be less than 100mm in diameter these sizes 

make this method unsuitable.  

2.6.4 Electrical methods 
 
Electrical measurement methods applied to two-phase flows rely on the electrical 

properties of the phases being measurably different. The electrical properties most 

frequently used are the conductivity and permittivity of the different phases. In this 

research the solid particles may be assumed to be insulators, i.e. their electrical 

conductivity is negligible. The permittivity of the solids and water are not relevant 

because in the present investigation the measurement technique employed differences 

between the conductivity of the solids particles and the water. Thus, only electrical 

conductivity measurement techniques are discussed here. In order to make direct local 

electrical measurements in a two-phase flow an intrusive local device may be used. 

 
In the present investigation the conductivities of the two phases differ significantly. 

The conductivity for university tap water at 20oC is approximately 150μScm-1. As 

stated above the conductivity of the solids is, for all particles present is effectively 

zero. 

2.6.4.1 Local conductivity probes for fluid-fluid flows 
 
The majority of research that has been carried out on local conductivity measurement 

probes for flow measurement has been in the area of fluid-fluid flows. These devices 

may use a penetration principle similar to that employed by local optical probes as 

described in Section 2.6.1.3. Such probes consists of a conducting needle tip 

supported by, but insulated from, a conducting holder, see Figure 2-14. Current is 

sourced at the needle electrode and the conducting casing (which forms a second 

electrode) is earthed. If the probe tip is immersed in a non-conducting medium current 

does not flow. If the probe tip is immersed in a conducting medium current flows. The 
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measured potential difference across the two electrodes is low if the probe is 

immersed in the conducting phase and high if the probe is immersed in the non-

conducting phase. It is thus quite simple, theoretically, to measure the relative time 

that the probe is immersed in each phase and hence to estimate the volume fraction of 

each phase (Lucas et al., 2004). This technique has been extended to obtain bubble 

velocities by mounting two needle electrodes axially separated, and cross-correlating 

the two signals. Cross-correlation applied to flow measurement is described in Section 

2.11. 

 

Figure 2-14: General representation of a penetration type conductivity probe tip 
(Lucas et al., 2004) 

 

Obviously this technique cannot be applied directly to solids-liquid flow 

measurement. However researchers have investigated the disturbance to flows caused 

by the presence of local probes in two-phase flow fields, the properties of electrical 

fields in two-phase flows, the optimal probe parameters for cross-correlation flow 

measurement, and also methods of constructing local probes. This research could be 

applicable to the current investigation and therefore it is briefly reported here. 

 
Ceccio and George (1996) have reported finding considerable disturbance of the flow 

by local probes, and Jones and Delhaye (1976) and Moura and Marvillet (1996) have 

reviewed penetration type local probe techniques. Cartellier and Achard (1991) have 

presented an assessment of the relative accuracies of local disperse phase volume 

fraction measurement using a wide variety of local penetration probes. As errors in all 

local probe measurements will be introduced by probe intrusion, the latter is an 
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interesting reference. Probes are reported as having relative accuracies of between 

±5% and ±20% which suggests that this type of probe could achieve the accuracy 

needed for useful industrial application. 

  
Many of the probes reported used only single sensors (Vigneaux, et al., 1988; Clark et 

al, 1992). Angeli and Hewitt (1996) reported the use of a probe 0.86mm in diameter 

in a pipe 25.4mm in diameter. Sheng and Irons (1991) reported the use of a 1.5mm 

diameter probe in a model of a large steel making ladle. Teyssedou et al., (1998) 

reported more detailed tests on a 1mm diameter probe used in a 19mm pipe. They 

varied the sharpness of the probe tip which changed the distance between the needle 

electrode and the earthed casing, and discovered that with a large electrode separation 

the probe gave an artificially high reading when positioned near the pipe wall. They 

concluded that the large electrode separation caused the electric field around the probe 

to penetrate further into the flow and this allowed the pipe wall to affect the field and 

therefore alter the reading.  

 
The literature also contains reports of penetration probes with two sensors, designed 

to estimate the local dispersed phase velocity using cross-correlation. However these 

velocity estimates are compared with reference measurement see Lucas et. al., (2005). 

Thang and Davis (1979) reported using a 1.6mm diameter probe in a 50mm diameter 

pipe with an axial distance between the two sensors of about 5mm. Van der Welle 

(1985) reported using a dual sensor probe with a sensor separation of 10mm although 

the other dimensions of the probe were not given. Revankar and Ishii (1993)  reported 

the use of a probe 0.7mm in diameter in a 5mm diameter pipe with an axial distance 

between the sensors of 4mm. Serizawa et al., (1975) used a 1.8mm diameter probe in 

a 60mm diameter pipe with an axial distance between the sensors of 5mm. Some 

authors such as Castello-Branco and Schwerdtfeger (1994) and Sun et al., (1998) have 

reported using a dual sensor probe where the probe diameter is much the same 

magnitude as the sensor separation. Castello-Branco and Schwerdtfeger (1994) used a 

1.8mm diameter penetration probe, with a 2mm sensor separation, for measuring large 

bubble plumes in casting ladles. Sun et al., (1998) reported the use of a sensor 

separation of 2mm although the overall diameter of the device was not given.  

 
Gunn and Al-Doori (1985) investigated the effect of intrusive probes on the flow field 

by photographing the flow around the probe. They used two 4mm diameter probes 
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separated by an axial distance of 11mm. The experiments were carried out in a 15mm 

deep slot so that the probe was visible to the camera at all times. Their conclusions 

were that bubbles in the flow were deformed as they struck the probe. However they 

concluded that the overall flow was not affected by the probe. 

 
In conclusion, probes with diameters of between 0.7mm and 4mm have been used by 

researchers in this field. The ratio of probe diameter to pipe diameter varied between 

0.03 and 0.14, suggesting a range of opinion on the ideal ratio of probe/pipe diameter 

to minimise flow disturbance. The sensor separations used in these devices varied 

from 2mm to 11mm, with no authors reporting substantial errors in their velocity 

estimates. This literature review suggests that although probes affect those bubbles 

which they actually penetrate, they do not affect the overall flow field. Finally, the 

majority of the probes examined had been constructed by bonding the components 

together with an epoxy resin. This gave the necessary strength whilst also insulating 

the components from each other. 

2.6.4.2 Local conductivity probes for solids-liquid flows 
 
Compared to the research carried out into penetration probes for fluid-fluid flows, 

little has been done involving local conductivity measurement probes for solids-liquid 

flows. Possibly because in solids-liquid applications the probe cannot penetrate the 

particles, it is usually designed to measure the conductivity of the mixture, 
m

ı , in a 

small volume around itself. A known electrical current, I  , is established between two 

electrodes and the potential difference, V , is then measured either between these two 

electrodes, or between two other electrodes in the vicinity.  

 
The conductivity of a two phase mixture is a function of the electrical conductivity of 

each phase and the relative volume fractions of each phase. If the conductivity of each 

of the two phases and of the mixture is known, the dispersed phase volume fraction 

can be estimated. Many relationships have been developed to give this estimate 

(MacTaggart R.S. et.al (1993)). 

 
Nasr-El-Din et al (1985) developed a 4.8mm diameter probe for use in these types of 

pipe flows. The probe used a four electrode configuration with current injected 

between two “field” electrodes and the resulting potential difference measured across 
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two “sense” electrodes, see Figure 2-15. Using this configuration the author claimed 

that electro-chemical effects were eliminated. He also claimed that this configuration 

eliminated variations in the conductivity reading due to varying mixture velocity. The 

“field” electrodes were areas of the casing whilst the “sense” electrodes were the ends 

of 0.3mm diameter wire. The two “sense” electrodes were 1mm apart. The 

components were bonded together, and insulated from each other, with an epoxy 

resin. 

 

Figure 2-15: Local conductivity probe of Nasr-El-Din et al (1985) 
 

Using this probe Nasr-El-Din et al took measurements in a 50mm diameter pipe, and 

obtained profiles of the solids volume fraction across the pipe. Whilst the results were 

not validated against any reference measurements, some factors were noted which 

could be applicable to the present investigation: the conductivity measurement varied 

with the orientation of the probe relative to the pipe wall, and as the particle diameter 

increased above the separation of the sense electrodes the probe began to 

underestimate the solids volume fraction. 

 
The wall effect mentioned above has also been noted by Teyssedou et al (1988), and 

such results are not surprising given the asymmetrical nature of the probe design. As 

the conductivity of the liquid varies with temperature it is also not surprising that 

variations in measured values were observed as the temperature of the system 

changes. No explanation was given for the observation that as the particle diameter 

increased there was drop in measured solids volume fraction close to the pipe wall, 

but it was suggested that it be taken as a guide for the design of this type of probe. 

 

MacTaggart et al (1993) extended the work of Nasr-El-Din et al (1985) by developing 

a probe for measuring the solids volume fraction in a tank containing a solids-liquid 

mixture. The probe design had strong similarities with that of Nasr-El-Din: the probe 
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was 4.8mm in diameter, used a four electrode measurement technique and the “sense” 

electrodes were 1mm apart. Using this device profiles of local solids volume fraction 

were made for a large mixing vessel. As might be expected most of the conclusions 

reached were similar to those of Nasr-El-Din (1985). MacTaggart also reported a wall 

effect, that the solids volume fraction estimate varied depending on which field 

electrode was facing the wall, and it was concluded that the area of the field electrode 

closest to the wall had an effect on the measurement. No explanation for this was 

given, it was merely presented as a guideline for the design of this type of probe. 

 
Asakura et al (1992) reported a probe that did not use a four electrode measurement 

technique. It was claimed that the 3mm diameter probe could be used to measure 

solids velocity as well as solids volume fraction. However, few details of the device, 

or the measurement technique, were given. The probe possessed three “ring shaped” 

electrodes formed from 0.3mm diameter wire arranged as shown in Figure 2-16. 

Adjacent electrodes were separated by 10mm. 

 

 
 

Figure 2-16: The local conductivity probe of Asakura et al (1992) 
 

The most obvious measurement technique for use with this device would be to inject 

current from the centre electrode to each of the outer electrodes. This would result in 

two measurable potential differences which could be cross-correlated to give a solids 

velocity estimate. The signal from either of these two “sensors” might also be used to 

give a solids volume fraction measurement. Using this device Asakura et.al (1992) 

measured profiles of solids volume fraction and solids velocity across a 51mm 

diameter pipe. However the measurements were not tested against any reference 

devices nor was there any discussion of possible errors. 

 
A six electrode probe was developed by Xie et al (1998) to measure the velocity of a 

flow of blood, which can be considered a solids-liquid flow. While details of the 
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dimensions of this device were not reported, its general configuration is shown in 

Figure 2-17. 

 
 

Figure 2-17: The local conductivity probe of Xie et al (1998) 
 
Xie et.al (1998) claimed that by establishing an alternating current across the 

outermost electrode pair, and measuring the resulting potential differences as shown 

in Figure 2-17, measurement of the resistivity of the blood could be made. However a 

number of assumptions were made in order to justify this, in particular that the 

resistivity was proportional to the velocity of the blood due to the changing alignment 

of the blood cells. Results were referred against an unspecified “speedometer” but 

clearly such an effect would not be present in the investigations proposed for this 

project. 

2.6.4.3 Six-electrode local probe for solids-liquid flow 
 
Lucas et.al (1999) designed and built a six-electrode conductivity probe of diameter 

4mm which can be used in solids-water pipe flow (see Figure 2-18).  

 

Figure 2-18: Six-electrode local probe of Lucas al (1999) 
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This probe was used in conjunction with a computer controlled traversing mechanism, 

to obtain the distributions of the local solids volume fraction and the local solids axial 

velocity both in vertical upwards and inclined solids-water flows. Inserting an 

intrusive measuring device into the pipeline is generally not acceptable with 

multiphase flows containing solids since it will be liable to damage by abrasion, and 

blockages may build up around it. So it was decided that it was unsuitable for this 

investigation. The results obtained by Lucas and his colleagues were obtained using 

an obtrusive technique but will help to confirm the results obtained by the author of 

this thesis. 

2.6.4.4 Electrical Impedance Tomography Systems 
 
Electrical Resistance Tomography (ERT), also known as Electrical Impedance 

Tomography (EIT), is a technique that uses conduction currents for imaging the 

structure of the solids-liquid flow (Hua Li et.al (2008), Wang, M. et.al (2005), Wu, Y. 

et.al (2005), E Fransolet et.al (2002) and Wang, M. et.al (1999). From a number of 

electrodes, a d.c or high frequency electrical current is injected into the flow and the 

resulting potential distribution is measured. The larger the number of sources and 

receivers the higher the spatial resolution of the image produced. From the measured 

data, a computer model of the electrical conductivity distribution is found from 

which, to within some predetermined tolerance, the phase volume fraction can be 

found. ERT measurements do not require a probe that intrudes into the flow, all the 

electrodes are mounted around the inside of the flow pipe, see Figure 2-19. 
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Figure 2-19: Dual plane Electrical Resistance Tomography system 
 
The ERT device in Figure 2-19 had 16 stainless steel electrodes spaced equidistantly 

around the internal circumference of an 80m diameter pipe in each of two planes. 

Each electrode measured 5mm in the axial direction and 10mm circumferentially. For 

water-continuous multiphase flows, for which the dispersed phase is non-conducting, 

the pipe is surrounded by a number of electrodes which are in contact with the water. 

Current is successively injected between pairs of electrodes and voltages 

measurements are made between other electrode pairs see Figure 2-20. The 

relationship between conductivity ı  and potential ĳ  is 

0ĳ)(ı                                                                          2-12 

 

Figure 2-20: Single plan Electrical Resistance Tomography system 
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It is possible to determine the conductivity distribution in the flow cross-section from 

the measured boundary voltages. For a conducting continuous phase and non-

conducting dispersed phase the local dispersed phase volume fraction can be 

determined from the measured local conductivity using: 

 
w2ımı
m2ıw2ı

α 
                                                      2-13 

The flow cross-section is divided into P „pixels‟. N measurement configurations are 

used to obtain N boundary voltage measurements (where typically N=P) 

For small       

                    P

1i
iΔıji,SjΔΦ                (j =1,2,….N)                                  2-14 

where: ji,S  is a normalised sensitivity coefficient relating changes in the jth boundary 

voltage measurement to changes in the conductivity in the ith pixel. The minus sign is 

present in Equation 2-14 because boundary voltage measurement will reduce as pixel 

conductivity increases. Following the example of Lucas et.al (1999), Equation 2-14 is 

re-written in matrix form so that it can be solved by standard software packages.  

         Δı1
nSΔĳ                                                    2-15 

 
Hence           ΔĳnSΔı                                                        2-16 

 

where: n is an iteration number,  Δı  is the conductivity matrix,  S  is the sensitivity 

matrix and  Δĳ  is the potential difference matrix. 

 
The above matrix equation is solved iteratively, each step towards the solution being 

obtained using the conjugate gradients method. For each iteration a new set of values 

for  S  are found because the sensitivity coefficients ji,S  are affected by the 

conductivity distribution („soft field‟ effect) their values have to be updated at each 

step see Lucas et.al (1999). These are substituted back into the original equation to 
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give a new S matrix (S is updated) and the process is repeated. The process stops 

either after a specified number of iterations (not used here) or when the change in the 

value of  S  is sufficiently small and convergence is reached. The dispersed phase 

volume fraction in each pixel is then calculated.  

 
Balasubrammaniam in an unpublished thesis (2008/2009) has reported on a somewhat 

similar investigation to this research but using EIT to investigate mean velocity of oil-

water mixtures and volume fraction oils of two-phase oil and water flows in a pipe of 

circular cross-section. Of particular interest here is the comparison 

Balasubrammaniam made between the values obtained using EIT and his reference 

values. 

  
Balasubrammaniam measured the mean volume fraction of oil for constant flow rates 

(water 3.5m3/h and oil 1.0m3/h) in an 80mm ID pipe inclined at 0o, 15o, 30o, 45o and 

60o to the vertical. He used a dp cell to provide a reference measure ref
α  in order to 

compare with the results obtained using an EIT system with 16 electrodes 
EIT

α . His 

results appear in Table 2-2.  

 
Table 2-2: Volume Fraction Values at Different inclinations obtained by 

Balasubrammaniam (2008/2009) 
 

θ 0 (angle of 
inclination to 

vertical) 

Mean volume 
fraction of oil 

using EIT, 
EIT

α  

Mean volume 
fraction of oil 
using dp cell, 

ref
α  

% error 

0 0.0568 0.1837 -69% 

15 0.0517 0.1134 -54% 

30 0.0408 0.0978 -58% 

45 0.0489 0.0771 -36% 

60 0.0858 0.0473 81% 

 

It can be seen that there is a considerable difference between the reference mean 

volume fraction, ref
α , and the measured mean volume fraction using the EIT system, 

EIT
α

. 
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Balasubrammaniam (2008/2009) himself concluded that his results clearly revealed a 

problem with his EIT system: in particular he emphasised that the volume fraction 

values found by EIT do not follow the accepted pattern. That for his results, as the 

angle of inclination to the vertical steadily increases, the value of refα  first 

decreases, then increases. Balasubrammaniam concluded that this is a quite different 

trend from that normally observed whereby refα  steadily decreases with increasing 

inclination. He also commented on the obvious differences in values of refα , is and 

EIT
α .  

 

However, before commenting on the measured values of refα  and 
EIT

α , it is 

worthwhile observing that the volume fraction distributions across the pipe, obtained 

by Balasubrammaniam, behaved in an apparently strange manner.  If the pipe were 

divided by a vertical line passing through the centre of the pipe one would expect the 

volume fraction distribution to be symmetrical about that line. With the EIT 

measurements this was the case only for 0o. In all other  flow conditions investigated 

by Balasubrammaniam the oil appeared either well to the left or to the right of the 

vertical line. Nor did the volume fraction distribution obtained by EIT always show 

the lighter oil to be in the top half of the pipe.  Referring to the values of the mean 

volume fraction that is actually calculated two comments are necessary. Comparing 

Balasubrammaniam‟s results for the volume fraction distribution obtained using the 

EIT for an angle of inclination of 30o, even allowing for the obvious error in 

symmetry (the oil flow appears in the bottom half of the pipe on the right hand side) 

there are clear differences with values measured using the dp cell, which give the 

pattern that would be expected, see Figure 2-21 and Figure 2-22. This puts a question 

mark over the image reconstruction software. Note that this software used by 

Balasubrammaniam was supplied by a commercial vendor of EIT systems- who also 

supplied the hardware used by Balasubrammaniam. 
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Figure 2-21: Volume fraction distribution at 30o  inclination as found by EIT, 
water 3.5 m3/hr and oil 1.5 m3/hr. 

. 
 

 

Figure 2-22: Reference volume fraction distribution at 30o inclination as obtained 
by local probe, water 3.5m3/hr and oil 1.5 m3/hr 

 
Another point needs to be included here. Quite apart from distribution of volume 

fraction over the cross-section there is the question of the actual values measured by 

the EIT. In some distributions that Balasubrammaniam obtained (the one for 0o is the 

most obvious) the maximum measured value of the local volume fraction ( from the 

EIT)  is well below the average value obtained by the dp cell. That is the EIT method 

seriously underestimates the actual volume fraction. Balasubrammaniam did compare 

his results with the volume fraction distribution obtained by Lucas and 

Panagiotopoulos (2009) using dual sensor probes (Figures 2-23 and 2-24) and 
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reported that while those authors found a volume fraction which was more or less 

constant over the pipe cross-section he found a bell shaped pattern with a well-defined 

maximum on the pipe centre-line. This puts a second question mark over the image 

reconstruction software. It is known that the complicated and advanced digital 

signalling processing software inherent in the EIT system can lead to inaccurate 

estimates of the local solids volume fraction as has been noted previously (E Fransolet 

et.al (2002)).  

 

Figure 2-23: Volume fraction as a function of radial distance from centre of pipe 

measured using EIT system for reference oil fraction 0.15, after Balasubrammaniam 

(2008/2009) 

 

Figure 2-24: Volume fraction as a function of radial distance from centre of pipe, 
after Lucas and Panagiotopoulos (2009) 
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Balasubrammaniam also reports the measured velocity of bubbles obtained using a 

cross-correlation technique. The cross-correlograms are just what would be expected. 

Assuming the same volume flow rates as used for the measuring the volume fractions 

would expect a minimum bubble velocity of about 0,25ms-1 (the mean flow of the oil-

water mixture). The velocities Balasubrammaniam reports, about 0.36ms-1, are what 

one would expect in an inclined pipe where the bubbles travel much faster. 

 
Balasubrammaniam attempted to measure the mean flow velocity (UCC) across the 

pipe cross-section using a cross-correlation technique where the planes of the 

electrodes were 30mm apart. Simultaneously he calculated the mean flow velocity 

(Uh) by dividing the total volume flow rate by the cross-sectional area of the pipe.  

 
Generally he found that the smaller the angle of inclination the less good the 

correlation. For a flow rate of 6.5m3/h of water and 2.0m3/h of oil the correlograms 

for inclinations of 0o and 60o are shown in Figures 2-25 and 2-26 respectively.  

 
The first thing that is obvious is that for 0o inclination the trace shows a signal with a 

lot of background noise (broader peak) while the trace for the 60o inclination shows a 

very narrow peak. The second very noticeable point is that the magnitude of the 

correlation coefficient at inclination of 60o is about ten times as great as the other (in 

some cases the ratio was thirty-five). This tends to indicate that the disturbances in the 

flow preserved their identities much better for a pipe that was not vertical. 

  
As would be expected there was greater agreement between the mean velocities 

determined for sharper peaks of larger amplitudes and the mean velocity found from 

the total volume flow rate. This was true even though flow patterns are less 

symmetrical for more horizontal pipes.  
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Figure 2-25: (a) Correlogram for pipe at 0o to vertical: water 6.5 m3/hr and oil 
2.0m3/hr hr, averaged time delay 0.0959 sec, calculated mean flow velocity, 0.313 

ms-1, reference flow velocity 0.470 ms-1 
 

 

Figure 2-26: (b) Correlogram for pipe at 60o to vertical: water 6.5 m3/hr and oil 
2.0m3/hr hr, averaged time delay 0.0625 sec, calculated mean flow velocity, 0.480 

ms-1, reference flow velocity 0.470 ms-1 
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A rather strange feature of the mean velocities can be seen when the measured results 

for UCC are plotted against the calculated values for Uh (Figure 2-27).  For each 

inclination of the pipe, UCC is plotted against Uh and for each set of points the best fit 

straight line has a slope about 0.6 – 0.7.  Thus it appears that for small inclinations 

(pipe nearly vertical) the correlation device is more accurate for low flow rates, while 

for the larger inclinations this device is more accurate for faster flows. 

Balasubrammaniam does not comment on this and an explanation does not spring to 

mind. 

 

Figure 2-27: Mean velocity obtained by cross-correlation verses mean velocity 
calculated from total volume flow rate divided by cross-sectional area of pipe. 

 

In the present study the proposed ICC system is intended to overcome the 

disadvantages of the dual-plane ERT system including a major disadvantages of the 

ERT system - its high initial and maintenance costs.  
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2.7  Conductivity measurement device 
 
Apart from its use in two-phase flow, electrical measurement conductivity has been 

used in a variety of other fields. It was decided that research carried out in these other 

areas could be applicable to the present investigation as it was important to identify 

any other fields in which the current research could be applied. Therefore a brief 

review of conductivity measurement in other fields was carried out and is presented 

below. 

2.7.1 Electrolyte conductivity measurement devices 
 
The area of application most closely related to two-phase flow measurement is the 

measurement of the conductivity of electrolytes and other liquids. Volanschi et 

al.,(1992) have reported the use of a two electrode solid state instrument used for 

measuring pH but there appear to have been considerable electro-chemical effects and 

drifting of measurements with this device (Volanschi et al.,(1994)). 

  
Ncube et al.,(1991) reported the use of a two electrode probe with one electrode 

having an area 0.001mm2 and the other having an area 500mm2. They claimed that 

this caused the measurement to be localised at the small electrode. However they 

reported substantial drift over time using this system which Nasr-El-Din et al.,(1985) 

and Volanschi et al., (1992) have suggested is caused by electro-chemical effects 

which could be negated by using a four electrode system. 

2.8 Comments on conductivity methods 
 
Local conductivity probes that measure local values of solids volume fraction and 

solids velocity are reported in the literature. These devices appear to be relatively 

inexpensive, and their simple and robust construction allows them to be made with a 

variety of different geometries for different industrial applications. The probes varied 

in diameter from 3mm to 4.8mm giving ratios of probe diameter to pipe diameter of 

between 0.06 and 0.1.  

 
The major disadvantage of these devices is that they are intrusive, despite the opinions 

of Gunn and Al-Doori (1985) which suggest that such effects are negligible. Inserting 

an intrusive measuring device into the pipeline is generally not acceptable with solids-
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water flows since it will be liable to damage by abrasion, particularly in small ID 

pipes, and blockages may build up around it Consequently, recent advances in water-

solids measurements based on non-intrusive techniques are generally given priority, 

in particular optical, ultrasound, nuclear, conductivity and electrostatic transducers. 

This thesis concentrates on non-intrusive conductivity measurement. 

2.9 Relating mixture conductivity to the solids volume fraction 
 
Estimating the local solids volume fraction sα  by measuring the local mixture 

conductivity mı  is a relatively simple and economical method which can yield 

accurate results. The method relies on the fact that the electrical conductivity of a 

solids-liquid mixture depends on the conductivity and the relative volume of each of 

the phases. In the proposed investigation the liquid, water, is conductive whilst the 

solids assumed to have a conductivity of zero. Therefore as  sα  increases mı  will 

fall. 

 
In order to obtain an accurate estimate of sα  it is necessary to accurately relate it to 

mı . Many expressions have been developed for this relationship, of which 

Maxwell's [1873] was one of the earliest, see Equation 2-17. A review of these 

relationships is given by Nasr-El-Din et al.,(1985) and also in MacTaggart et al., 

(1993). Experimental testing of some of their relationships has been reported by De 

La Rue and Tobias (1959).  

w
2ı

s
ı

w
ı

s
ı

s
α

w2ımı

wımı





                                               2-17 

 
 
 

Here sα  is the local solids volume fraction. mı , wı  and sı  are the conductivities 

of the mixture, the continuous phase (water), and the dispersed phase (solids) 

respectively. εaxwell‟s relationship assumes that the particles are evenly sized 

spheres and that they are in an ordered arrangement at a low volume fraction. This 

low volume fraction condition allowed Maxwell to assume that the electrical field 

around any one particle was unaffected by any other particles. In the current 

investigation the assumption is made that sı  is effectively zero. Therefore εaxwell‟s 
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relationship reduces to Equation 2-18. 

   
)sα(2

)sα-2(1

wımı                                                   2-18 

 
Nasr-El-Din et al(1985) and De La Rue and Tobias (1959) reported that a number of 

other researchers have independently developed theoretical relationships that reduce 

to this simplified form of Maxwell‟s relationship. Turner (1973)  and Neale and 

Nader as reported by Nasr-El-Din et al (1985) have demonstrated that εaxwell‟s 

relationship accurately fits experimental data for solids volume fractions up to 0.55, 

and de la Rue and Tobias (1959) have reported experimental work by a number of 

researchers that confirm that εaxwell‟s relationship can be relied upon. 

 
Bruggeman (1935), in deriving Equation 2-19, extended εaxwell‟s relationship to 

solid spheres of random size and distribution, and so the equation should apply to 

mixtures with solids volume fractions approaching 1.  

    sıwısα1
3
1

wı
mı

sımı 




                                        2-19 

2.10 Cross-correlation flow velocity measurement 
 
As a solid particle passes an upstream sensor it causes a momentary change in its 

output signal. The same particle then travels to a downstream sensor and causes a 

similar change in the output signal as it passes. The time delay between these changes 

in output signal will be approximately equal to the time taken for the particle to travel 

the distance between the sensors. This is inversely proportional to the particle mean 

velocity. To calculate the solids mean velocity, the time lag between the changes in 

output signal measured at the upstream and downstream sensors must be found. This 

is done by cross-correlation. 

  
Cross-correlation can be considered as the process of matching two signals as a 

function of the time delay between them (Beck. M.S. et.al (1987)). Consider two time 

signals x(t)  from upstream sensor X and y(t)  from the downstream sensor Y. The 

cross-correlation function )(xyR   of x(t)  and y(t) is defined in Equation 2-20. If 



LITERATURE REVIEW 

 113 

the signals are unrelated 0)(xyR   for all values of τ. However, a very important 

property of the cross-correlation function is that if x(t)  and y(t) are the output signals 

of a cross-correlation flow meter, )(xyR   will have a maximum values when  

p
τ ,where pτ is equal to the time taken for particles to travel from the first to 

second sensor.  

 


 T

0
τ)dty(t x(t)

T

1
lim

T
)(xyR                                              2-20 

 

In Equation 2-20 T  is the time period over which the signals x(t)  and y(t)  are 

sampled. Note T must be greater than the time taken for the particle to pass between 

the sensors. 

 
Because the cross-correlation function )(xyR   has a maximum value when pττ   

the mean transit time of particles in the flow to pass between sensors X and Y, pτ can 

be found by determining the value of τ at which )(xyR    is at maximum. In a 

uniform two phase flow where all disperses particles travel with velocity pV  then 

since pVLpτ   where L  is the distance between sensors X and Y, the particle 

velocity pV  can be calculated. Unfortunately, researchers have demonstrated that in 

vertically upward, bubbly flows, the characteristic flow velocity obtained using 

impedance cross-correlation techniques does not correspond to either the velocity of 

the continuous phase or the velocity of the discontinuous phase. Rather, it 

corresponds to the propagation velocity of naturally occurring void fraction waves 

also known as kinematic waves, in the flow see Beck et.al (1987).  
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Figure 2-28: Schematic diagram of cross-correlation flow meter Beck et.al (1987). 
 
Nevertheless, Lucas et.al (2001)  has also shown that it is possible to use impedance 

cross-correlation techniques to measure the velocity of Taylor bubbles in the slug 

flow regime and but that by using the conventional cross-correlation technique it is 

not possible to measure the velocity of the liquid phase in the slug regime. Lucas et.al 

(1997)  has also demonstrated however, for that bubbly flows, the mean velocities of 

the dispersed and continuous phases can be derived from the kinematic wave velocity.  

 
In cross-correlation flow measurement two linked design parameters of the device are 

critical. These are the axial separation of the two sensors, L , and the sampling 

frequency of the device 
s

f . When computing the cross-correlation function the 

accuracy of the estimate of the time delay associated with the peak of the cross-

correlation function is approximately equal to  
p

 where 
s

f

1įτ  . Thus the 

higher the sampling frequency 
s

f , the greater the accuracy with which pτ  is 

measured. However, pτ  will reduce as L  reduces, so the smaller the value of L  the 

greater will be the error to a given value of s
f . In this way the accuracy of the cross-
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correlation velocity estimate is dependent on both L  and 
s

f . This relationship is 

discussed in detail by Beck et.al (1987). 

  
Generally, when deciding upon the value for L , a compromise between maintaining 

the similarity of the flow patterns between the upstream and downstream sensors, and 

the accuracy of resolution of measurement of the transit time will have to be made. 

The smaller the separation the greater the similarity of the signals obtained from the 

two sensors and the easier it is to obtain a distinct and obvious maximum for 

)(xyR  . On the other hand, the relatively slow process of data acquisition, and 

possible interference of the electrical fields between the two sensor arrays requires a 

longer distanceL . Both the similarity of signals and the dynamic behaviour of the 

system must be considered.  

 
However, in general terms given that what is required is a low-cost, non-intrusive 

device it appears obvious that a cross-correlation technique should be used to 

determine the particle velocity. Such a method has the added advantages that it is 

readily understandable and reasonably easy to apply. Therefore, the speed of data 

collection plays a dominant role in the use of cross-correlation algorithm. 

2.11 Conclusions from the literature review  
 
As described in Chapter 1, the aim of this investigation is to measure the local solids 

volume fraction and the local axial solids velocity, sα  and su  respectively, in upward 

solids-liquid flows in pipes inclined at different angles to the vertical. In this 

investigation measurements are intended to be made at 0o, 15o and 30o to the vertical 

and it is intended to use these measurements to calculate the solids volumetric flow 

rate and area averaged values of the solids volume fraction and the axial solids 

velocity, s,measQ , s,measα , and s,measu , respectively, see Chapter 6 for the 

experimental details.  It is expected that there will be a dynamic balance and a flow 

will be established where the time-averaged local solids volume fraction shows a 

variation across the pipe from a high value at the “lower side ” to a much lower value 

at the upper side of the pipe. Naturally, the time-averaged axial velocity profile for 

solids carried in multi-phase flow in an inclined pipe will be correspondingly 

complex, with an axial solids velocity in the forward direction at the upper side of the 
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inclined pipe and smaller axial solids velocity at the bottom with the possibility of 

reverse flow adjacent to the lower face of the pipe. 

 
At present, there are few commercially available devices for measuring the local 

solids volume fraction and velocity distributions in water-solids flows in inclined 

pipes. These devices include ERT, however that method presently suffers from a 

number of drawbacks. It is relatively costly in terms of the equipment itself, the high 

quality technical support required and the computing time necessary to adequately 

process the necessary information. The greater accuracy required the greater the 

number of electrodes required, but the accompanying processing goes up as the 

square of the number of electrodes. Thus a 16 electrodes arrangement has 104 

possible combinations while an eight electrode arrangement has only 20 

combinations. While a laptop PC running Windows and equipped with 2 serial ports 

may be used to control the ERT system, the data sets needed to generate conductivity 

images requires sophisticated inversion software. A fully 3-D imaging technique is 

presently impractical on a PC, the computer processing power required for detailed 

resolution of in-pipe velocities and distributions is still outside the capabilities of even 

modern PCs.   

 
ERT is unable to measure the flow rate of the continuous phase and in its current form 

has difficulties in presenting an absolute value. Some have argued that the only 

measure of data quality is the degree to which reciprocal measurements agree. 

Reciprocal measurements are measurements in which the transmitter electrodes and 

the receiver electrodes have been interchanged. Thus the electrode geometry remains 

the same. Ideally, reciprocal measurements should be identical. Other more rigorous 

calibration and referencing techniques are required. 

 
In addition, the algorithms required to interpret the measured voltages into a 

description of, say, solids fraction in a flow are complex so that different algorithms 

can give slightly different results, and the resolution will be limited by the spatial 

smoothing necessary in the imaging algorithm. In addition, the flow patterns produced 

are a function of electrode position, so mis-alignment will introduce systematic errors 

in addition to any random errors. The clarity and definition of the patterns will be a 

related to electrode size and the fact that they have to be positioned at the boundary 

(pipe wall) of the flow. Thus the resolution will be sharpest in the region of the pipe 
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wall and in the centre may be limited to 5%-10% of the pipe diameter for smaller 

numbers of electrodes.   

 
Nevertheless accurate determination of the mean values of both local solids volume 

fraction and the local axial solids velocity require local measurements to be made 

inside the pipe at a sufficiently large number of locations on the given pipe cross-

section, this is particularly true for inclined flows where particle velocity and local 

solids volume fraction can be highly skewed. This will require a non-intrusive 

method. The above review of the literature shows that the only non-intrusive devices 

that can give reliable results are laser methods or conductance/correlation techniques. 

Laser equipment is not readily available, is relatively expensive and unlikely to be 

acceptable for industrial application, not to mention that on-site flows are highly 

likely to contain oils and so be opaque. Conductance methods combined with cross-

correlation techniques look very promising, and with the present rate at which 

processing power is increasing it is to be hopes that certain key problem associated 

with dual-plane ERT can substantially reduced.  

 
On the basis of the literature review and industrial constraints on the project it is 

proposed that the measurement system to be adopted will be similar to previous ERT 

systems used for online monitoring of solids-in-water flows. Impedance Cross-

Correlation (ICC) is a device similar in principle ERT. The experimental results 

obtained from this system will be compared with the ERT results obtained by Lucas 

et al., (1998) and a six-electrode local probe obtained by Lucas et al., (2000). The 

design of the ICC device will be given in the next chapter. 
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Chapter 3 INSTRUMENT DESIGN AND 

CONSTRUCTION 
 
 
 
 
 

 

This chapter describes the measurement principles, design considerations and 

construction of the Impedance Cross-Correlation flow meter. The conductance 

measurement electronic circuit that was designed and constructed is explained. The 

chapter also describes the design and construction of the electrode selection 

circuitry controlled by computer via a LABJACK data acquisition and control unit. 

Software was successfully developed to control the selection of the electrode 

configurations for the two electrode arrays (A and B).  

 

.  
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3.1 Basic measurement method 
 
As mentioned in Chapter 2, measurements of conductivity have previously been 

successfully used in a wide variety of applications to multiphase flow measurement 

(Wei F et.al , 1998). Of course, to measure the local solids volume fraction sα  by 

measuring the local mixture conductivity mı  the relationship between sα  and mı  

must be known. In a solids-water flow, with which this project is concerned, the 

liquid is assumed conducting and its conductivity is wı . The solids are assumed to 

be composed of insulating material with an electrical conductivity of zero. The 

measured local conductivity, mı  , of a region of the flow – which is known, or 

assumed, to contain a representative concentration of the solids particles - can then be 

used to make an estimate of the local solids volume fraction, sα , using the simplified 

form of εaxwell‟s equation (Maxwell, J.C. (1873))  for conductivity of mixtures, see 

Section 2.9: 

    
w2ımı
m2ıw2ı

sα 
                                                                   3-1 

 
The concept behind the electrical conductivity technique is that the conductivity of a 

two phase mixture depends on the volume fraction of the disperse phase, the 

conductivity of the multiphase fluid decreasing with increasing solids volume 

fraction. 

 
To measure su , the local axial solids velocity, fluctuations in the local mixture 

changes in conductivity which occur as solid particles pass each of two axially 

separated conductivity sensors, are detected and cross-correlated, see Section 2.10. 

3.2  Design considerations of the Impedance Cross-Correlation flow 
meter for multi-component flow measurement 

 
In this project, the ICC consists of two electrode arrays attached to the inner surface 

of the pipe carrying the two-phase flow, (see Figure 3-1). In each electrode array there 

are eight stainless steel electrodes mounted equidistantly around the internal 

circumference of the pipe. The electronic circuitry was such that any electrode or 
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combination of electrodes in an array could be selected to be (i) excited by a 10kHz 

excitation voltage (V+), or (ii) be earthed (E), or (iii) used as a „virtual earth‟ 

measurement (Ve). For example, if it was desired to measure the solids flow velocity 

only at the upper side of an inclined pipe, the electrodes which were at the upper side 

of the pipe were used. It is considered that this arrangement is novel and has not been 

used before for multiphase flow measurement of solids in liquids. To protect the ICC 

and provide additional shielding from electronic interference it was enclosed within 

an earthed stainless steel cover as shown in Figure 3-3(a). 

 

 

Figure 3-1: Schematic diagram of the Impedance Cross-Correlation device 
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The essential principle of the instrument is that the electrodes in a given array, on the 

inner surface of the pipe carrying the multiphase flow, are used to introduce an 

electric current into the solids-water mixture. An inverting amplifier is used to 

measure the mixture conductance (and hence the mixture conductivity) at specific 

locations in the flow cross section at arrays A and B, from which the solids volume 

fraction at these locations can be calculated. Cross correlation of conductance 

measurements at corresponding locations in the flow cross section at arrays A and B 

enables the solids velocity at these locations to be determined. 

3.3 Construction of the ICC device 
 
In order to make the necessary measurements using the flow loop system available at 

the University of Huddersfield, for multiphase flow testing, the instrument had to be 

designed with the following factors in mind: 

 
 To achieve the required cross-correlation in order to determine the velocity of 

the flow, two separate electrode arrays must be used, (see Figure 3.1). Two 

arrays are sufficient but a third array was also constructed in case it was found 

necessary to alter the axial separation of the arrays. The possible axial array 

separations L  that could be achieved using the ICC device that was 

constructed are 30 mm, 20mm and 50mm (see Figure 3-1) although the value 

of L  that was used in the present investigation was always 50mm. 

 
 For highly non-uniform solids distributions, to measure the solids velocity and 

volume fraction profiles in each part of the pipe, each of the two electrode 

arrays consisted of eight electrodes mounted around the pipe. The internal 

circumference of the pipe was 80 mm so the eight electrodes will be some 

31mm apart – centre to centre. This is considered a sufficient distance for two 

reasons, firstly the electrodes are sufficiently far apart for there to be adequate 

space around each electrode. This ensures that the electrical connections to 

one electrode do not interfere with the connections to a neighbouring 

electrode. Secondly the electrodes are close enough together to give an 

adequately detailed picture of the flow in the pipe.  
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 To select the optimum axial separation L  between the two electrode arrays a 

survey of previous work was carried out.  X. Den et al. (2001) found that for 

an 80mm diameter pipe the optimum distance L  between the two electrodes 

arrays for the purpose of determining the flow velocity by cross-correlation 

should be 50mm centre to centre, see Figure 3.1. He obtained that result by 

experimentally varying the distance between two electrode arrays 

incrementally and observing which separation gave the best results. 

 
 „Cross-talk‟ between the two electrode arrays had to be eliminated. 

 
 To determine the detailed profiles of sα  and su , it was necessary to determine 

the optimum duration of data acquisition from each electrode configuration. 

The LABJACK data acquisition card which was used could acquire data from 

multiple channels at a rate of 1 kHz per channel for considerably longer than 

60 seconds, but 60 seconds was considered to be sufficient for the purposes of 

the experiments.  

 
 To determine the detailed profiles of sα  and su  it was necessary to ensure 

that the positions of each of the eight electrodes in each array was properly 

identified and clearly matched to the relevant channel of the electronic 

circuitry. 

 
 For each electrode configuration data was acquired from both the ICC and 

reference measurement devices and the results compared. This is discussed in 

the next chapter.  

 

3.4 ICC design and construction 
 
The mechanical system of the ICC consisted of the sleeve (flange and ICC casing) the 

flow tube (pipe element and O rings) and the electrode assembly, see Table 3-1.  
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Table 3-1: ICC components list 
 

 

3.5 Assembly drawing 
 
Figures 3-2 to 3-4 show the ICC meter, drawn using SolidWorks software. 

 

 
                       (a)                                                               (b) 

Figure 3-2: ICC body design 

Component 
designation Component  Type Number 

of items 
Component 

Material Comment 

Sleeve 

Flange  BS4504 DN80 2 PVC 3 inch  

ICC casing Tubular 1 Stainless steel 
210mm OD 
115mm ID  

310mm long  

Flow tube 
Pipe element Tubular 1 Peak 

110mm OD 
80mm ID 

310mm long  
„O‟ rings M9 4 Rubber Thickness 2mm 

Electrode 
assembly 

 
 

Electrodes  E6013 24 Stainless steel  

Bolts M8 24 Stainless steel  

Cable terminals 3.2mm ID 16 Copper  

Washers M6 24 Stainless steel  

Nuts M8 48 Stainless steel  
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Figure 3-2 (a) shows the dimensions of the cross-section of the device. Figure 3-2 (b) 

shows the three arrays of electrodes. In each array, there are eight electrodes around 

the circumference of the pipe. Array C was not used in the present investigation. The 

four „O‟ rings, with two at the top and two at the bottom are for sealing the flow tube 

into the stainless steel casing. Flanges were fitted to the ends of the stainless steel 

casing to enable it to be mounted into the flow loop. 

 
Figure 3-3 (a) shows the casing of the device. It was made of a stainless steel, and was 

used to protect the inner structure of the ICC, which is common practice in industry. 

Figure 3-3 (b) shows how the electrodes were mounted in the flow tube wall. At the 

inner surface of the flow tube wall the electrodes were in contact with the multiphase 

mixture. At the outer surface of the flow tube wall were connectors enabling the 

electrodes to be connected to the relevant electronic circuitry. 

 

 
 

(a) (b)  
Figure 3-3: ICC body and casing 
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Figure 3-4: Electrode assembly 

Figure 3-4 shows the pipe prepared for an electrode, with a hole drilled through the 

pipe for the electrical connection and a groove cut in the face of the pipe to take the 

electrode, and also it shows the array with the electrodes in place. Figure 3-5 (a) 

shows an individual array without the electrodes and Figure 3-5 (b) shows the array 

with the electrodes in place. 

 
 

       (a) Cross section of ICC device without          (b) Cross section of ICC device with  
electrodes  in place                                      electrodes in place 

Figure 3-5: Electrode  array  
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Figure 3-6: Electrode assembly 
 
Figures 3-3, 3-4, 3-5, 3-6 and 3-8 show details of the electrodes and their positions in 

the ICC. Each array of eight electrodes was arranged on a cross-sectional plane of the 

pipe. As can be seen a hole is drilled through the tube wall and on the inner face a 

groove is cut to take the rectangular stainless steel electrode which had dimensions of 

2.3mm circumferentially x 2mm longitudinally x 0.4mm radially. The electrodes had 

a long pin on the back that passed through the wall of the pipe enclosed in an 

insulating sleeve. The top of the pin was threaded and the copper wires carrying the 

excitation or measurement signals were attached to the pin, see Figure 3-6, using a 

washer and double nut arrangement which was used to mechanically hold the 

electrode firmly in place and to grip the wires. Figure 3-5 (a) shows an array without 

electrodes and Figure 3-5 (b) shows the array with electrodes in place.  

 
Output data were simultaneously acquired from both electrode arrays A and B. After 

reconstruction these measurements give profiles of the conductivity distribution 

within the flow cross-section at the axial positions of the electrode arrays. The level of 

detail given by each profile is a function of the number and position of the active 

electrodes in each array.  
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Figure 3-7: Arrangement of electrode array on the pipe 
 

 

Figure 3-8: Photo of Impedance Cross-Correlation device 
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Note that, before its use the flow loop the ICC flow meter was subject to a series of 

bench tests, both static and dynamic. These are described in the next chapter. 

3.6  Conductance circuit design  
 
The schematic diagram, Figure 3-9, shows the main components of the circuit for 

measuring the conductance of the multiphase mixture at each the two electrode arrays. 

It is made up of six main stages. As channels for both arrays A and B are the same it 

is only necessary to describe one in detail.  

 

 

Figure 3-9: Schematic diagram of the conductance measurement circuit 
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Figure 3-10: Photo of the conductance measurement circuit 
 

 
In Figure 3-9, the XR-2206 is a monolithic function generator integrated circuit 

(working in a similar manner to a 555 timer) capable of producing high quality pulse 

waveforms of high-stability and accuracy. The output waveforms can be both 

amplitude and frequency modulated by an externally supplied voltage. Frequency of 

operation can be selected externally over a range of 0.01Hz to more than 1MHz.  The 

excitation signal V+ was a sine wave of frequency 10kHz of amplitude 2V peak to 

peak. The purpose of using the XR-2206 is to ensure that the V+ electrodes in array A 

and the V+ electrodes in array B were connected alternately to the excitation source. 

This meant that arrays A and B were never active at the same time and so cross-talk 

was prevented between the two arrays. The switching frequency was 100kHz and the 

excitation signal applied to the V+ electrodes is 10 kHz and this resulted in the signals 

shown in Figure 3-11 being applied to the V+ electrodes in arrays A and B. It can be 

seen from Figure 3-11 that when array A is active, array B is not , so cross-talk 

between the two arrays is eliminated.  

 
The switching mechanism is controlled by the XR-2206 (see http://www.jaycar.com-

(accessed 04/03/10) for details) which is a generator with two states: low (0) and high 

(1). Since the ICC has two electrode arrays A and B, there are two corresponding 

http://www.jaycar.com-access/
http://www.jaycar.com-access/
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electronic circuits, channels A and B. Each channel has an analogue switch DG-403 

controlled by the XR-2206 (see http://www.intersil.com (access 04/03/10) for details) 

to enable switching between the two channels. Both channels are connected to an 

excitation signal (V+), to channel A via switch 4 (SW-4) which is connected to 

electrodes in array A. The same signal is also connected to channel B via switch 3 

(SW-3) which is connected to electrodes in array B. 

 
For channel A, switches SW-1 and SW-4 in the DG 403/A are normally open but a 

high state signal from the XR-2206 will close both. This will result in the 10kHz 

measurement signal V+ being connected to the electrode set SAS (the set of electrodes 

in array A connected to V+) and the measurement circuit being connected to the 

electrode set SAM (the set of electrodes in array A connected to the input of inverting 

amplifier Ve,A) via the conductive fluid.   

 
Channel B is completely isolated from channel A because of the sequencing of the 

signals by the XR-2206. For channel B, switches SW-2 and SW-3 in the DG 403/B 

are normally open but a low state signal from the XR-2206 will close both. This will 

result in the 10kHz measurement signal V+ being connected to the electrode set SBS 

(the set of electrodes in array B connected to V+) and the measurement circuit being 

connected to the electrode set SBM (the set of electrodes in array B connected to the 

input of inverting amplifier Ve,B) via the conductive fluid. At this stage channel A is 

completely isolated from channel B because of the opposite state of its switches.  

 

Figure 3-11: Excitation signals applied to the V+ electrodes of each array 

http://www.intersil.com/
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The differential amplifier takes the difference between its two input signals, V2 and 

V3, amplifies the difference, and outputs it as V4, Figure 3-9. In the current work a 

technique has been developed to maximise the sensitivity of the system to changes in 

conductivities measured by arrays A and B. In the new technique the transmitted 

signal was treated using the initial signal fed into the system to isolate a signal that 

represents only the disturbance. To do this, a copy of the excitation signal is fed into 

the system (V3,A) and is adjusted in level to match that of the measured signal being 

fed into the differential amplifier (V4,A) when only water is present. The result is that 

signal V4,A will have an amplitude only when the measured conductivity changes 

from the conductivity of water and has zero (or very small) amplitude at other times. 

Similarly for array B. This allowed the use of a high gain amplifier without it getting 

saturated. Accordingly, a signal with high sensitivity and high amplitude that fully 

represents the disturbances was attained. 

 
In each channel the voltage V4 was fed into an AD630 integrated circuit which was 

configured as a precision rectifier, see Figure 3-9. The main effect of this stage was to 

perform full wave rectification on voltage V4 and output the result as V5.  This signal, 

V5, was then fed into a low pass Butterworth filter with cut-off frequency of 200Hz. 

This frequency was determined by iteration. Different frequencies were tried and the 

best result found. This removed the high frequency carrier wave content from the 

signal to give a DC output voltage, V6. The voltage V6 is proportional to V4 as in 

Equation 3-2 where k is the gain of the circuit: 

 

V6 = kV4                     3-2 

 
The voltage V6 was fed into a high pass filter to remove the DC components which 

are unnecessary for cross-correlation. The zero adjustment allows the DC offset of 

V6,B to be adjusted. During the setting-up procedure, the zero adjust was used to set 

the output voltage V6,B to zero when air only was present in the pipe and hence the 

mixture conductivity ( mı ) was effectively zero. For each array separately the output 

from the high pass filter was used to measure the fluctuating conductance between the 

V+ set of electrodes and Ve, set of electrodes. V7,A and V7,B were the voltages used for 

cross-correlation velocity measurement (V7,A is also known as O/P CH-A and V7,B as 

O/P CH-B). V6,B  was used to measure the mean conductance between S1 and S2.  
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S1 represent an electrode, or set of electrodes in array B that is to be connected to the 

excitation source. S2 is an electrode or set of electrodes in array B that is to be 

connected to the virtual earth of the inverting amplifier (Ve,B). S3 represent an 

electrode, or set of electrodes in array A that is to be connected to the excitation 

source. S4 is an electrode or set of electrodes in array A that is to be connected to the 

virtual earth of the inverting amplifier (Ve,A).  

3.7 Electrode selection and assignment  
 
This section shows how specific electrodes in array B (say) are connected together to 

form set S1 which is connected to V+, and how electrodes in array B (say) are 

connected together to form set S2 which is connected together to Ve,B ( see Figure 3-

9). It also describes how the remaining electrodes in array B are connected to ground. 

A similar arrangement was used for sets S3 and S4 for array A. 

 
Consider array B: one group of electrodes is connected to S1 and hence to V+, 

another electrode group is connected to S2 and hence to Ve,B
. Another electrode group 

is connected to ground. 

 
For the mth (1 ≤ m ≤ 8) electrode in array B, whether it is connected to S1, S2 or 

ground is determined using three analogue switches (denoted AAm, BBm and CCm, 

see Figure 3-12). The input signals to AAm, BBm and CCm which determine whether 

the electrode is connected to S1, S2 or ground, come from Q1-m, Q2-m and Q3-m in 

latches L1, L2 and L3 respectively (see Figure 3-12). In turn the outputs  Q1-m, Q2-m and 

Q3-m are set sequentially using one of eight electrode potential signal from the 

LABJACK data acquisition + control unit and three independent „‟δatch enable‟‟ 

signals from the LABJACK.  

 
For array A: The principle of operation is the same as for array B, the only 

difference is that one electrode group is connected to S3 and hence to V+, the second 

electrode group is connected to S4 and hence to Ve,A. Another electrode group is 

connected to ground. 

 
For the mth (1 ≤ m ≤ 8) electrode in array A, whether it is connected to S3, S4 or 

ground is determined using three analogue switches (denoted DDm, EEm and FFm, see 
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Figure 3-12). The input signals to DDm, EEm and FFm which determine whether the 

electrode is connected to S3, S4 or ground, come from Q4-m, Q5-m and Q6-m in latches 

L1, L2 and L3 respectively (see Figure 3-12). In turn the output  Q4-m, Q5-m and Q6-m 

are set sequentially using one of eight electrode potential signal from the LABJACK 

data acquisition + control unit and three independent „‟δatch enable‟‟ signals from 

the LABJACK.  

3.7.1 Electronic switching circuit for arrays A and B 
 
The electronic circuit was designed to be able to select any electrodes from a given 

array (A or B) and connect them to excitation (V+), measurement (Ve) or to earth (E) 

in the corresponding channel (A or B) of the conductance measurement circuit (see 

Figure 3.9). 

  
Both array A and array B were used to determine the electrical impedance 

/conductivity of the multiphase flow, but when array A was active, array B was not, 

and vice versa. The excitation signal V+ was applied to an electrode or set electrodes 

(S3) in array A and the conductance was measured. The measured value would change 

with changes in the volume fraction of the dispersed phase. Then an exactly similar 

electrode arrangement would be activated in array B. The signals taken from the two 

arrays could then be cross-correlated to find the time it took for the solids to travel 

from one array to the next. 

 
In Figure 3-12, the electrode selection circuit, there are eight main electronic 
components:  
 
 
 The pulse generator, XR-2206 (see http://www.jaycar.com-(accessed 04/03/10) 

for details), which is used to switch between arrays A and B and can be seen in 

the top left hand corner. 

 
 An analogue switch, AD403 (for more detail see for details 

http://www.intersil.com (accessed 04/03/10)), indicated as GG connects S2 to 

the input Ve,B of the inverting amplifier in channel B, also see Figure 3-9. In 

addition, the analogue switch GG connects S1 to the excitation signal (V+).  

 

http://www.jaycar.com-access/
http://www.intersil.com/
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 An analogue switch, AD403 (for more detail see http://www.intersil.com 

(accessed 04/03/10)), indicated as HH connects S4 to the input Ve,A of the 

inverting amplifier in channel A, also see Figure 3-9. Analogue switch HH also 

connected S3 to the excitation signal (V+).   

 
 The six 74AC573 chips in Figure 3-12, are three latches, L1 to L3, for Array B 

and three latches, L4 to L6 for array A, (for more detail see 

http://www.datasheetcatalog.org  (accessed 04/03/10)). Each latch is activated 

separately by three independent latch signals from the LABJACK data 

acquisition and control unit (see Figure 3-12).  

 
 Three analogue switches, AAm, BBm and CCm for each electrode in array B and 

DDm, EEm and FFm for each electrode in array A, details of which are given in 

http://www.intersil.com (accessed 04/03/10). 

 
It should be noted that Figure 3-12 shows only electrode 1 in array B, so analogue 

switches AA1, BB1 and CC1 are shown connected for electrode 1 in array B. In fact, 

the three analogue switches AAm, BBm and CCm can be set to connect to any of the 

mth electrodes in array B, as required. Similarly the three analogue switches DD1, EE2 

and FF3 can be connected for electrode 1 in array A. In fact, the three analogue 

switches DDm, EEm and FFm can be set to connect to any of the mth electrodes in array 

A, as required. The electrode potential selection signals from the LABJACK are 

shown for electrode 1 in array A and array B. In fact LJ1 to LJ8 are used to select the 

potential for electrodes 1 to 8 respectively for both array A and array B. 

 

 

http://www.intersil.com/
http://www.datasheetcatalog.org/
http://www.intersil.com/
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Figure 3-12: A schematic diagram of the electrode selection circuit (for electrode 1 for array A & B) 
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Figure 3-13: A photo of the electrode selection circuit for array A 
 

 

 
 

Figure 3-14: Block diagram of the experimental setup 
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3.7.2 Principle of operation 
 
The circuit used a dedicated MATLAB code. A PC was used to communicate with the 

LABJACK to set the desired electrode configuration for both arrays A and B. 

Fourteen signals were sent from the LABJACK to both arrays. Note that for array A, 

three 74AC573 chips were required and each pin of this chip is fed with eight defined 

signals and one latch signal. A similar arrangement was in place for array B. The latch 

output response to the received signal depended upon the state of the Latch Enabled 

input (LE) or pin 11. Each electrode in the ICC meter has an input from each of the 

three latches. The selection of the electrode configurations is operated by the analogue 

switches DG-403 (see Figure 3-12). The output of this circuit is connected to the 

conductance circuit (see Figure 3-9) which was discussed in Section 3.6. The 

mechanism can be summarised as follows: 

 
For Array B 

 8 bits for Latch L1 to set Q1-m (for m=1 to 8). Then LE bit is used to enable L1. 

 8 bits for Latch L2 to set Q2-m (for m=1 to 8). Then LE bit is used to enable L2. 

 8 bits for Latch L3 to set Q3-m (for m=1 to 8). Then LE bit is used to enable L3. 

 
For Array A 

 

 8 bits for Latch L4 to set Q4-m (for m=1 to 8). Then LE bit is used to enable L4. 

 8 bits for Latch L5 to set Q5-m (for m=1 to 8). Then LE bit is used to enable L5. 

 8 bits for Latch L6 to set Q6-m (for m=1 to 8). Then LE bit is used to enable L6. 

 
Note that in the present study, if the mth electrode in array B was set to a given 

potential ( V+, Ve or E) then the corresponding electrode in array A was also set to the 

same potential. Consequently the electrode potential signal (LJ1 to LJ8, see Figure 3-

12) from the LABJACK could be used for both arrays A and B. 

 
As mentioned earlier, there are four states to be chosen from to define the electrode 

status. Tables 3-2  and 3-3 shows the general truth table of the selection of the four 

states for array B and array A respectively.  
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Table 3-2: Truth table for mth electrode in array B. 
 

Electrode status Q1-m Q2-m Q3-m 

Excitation electrode (V+) H L X 

Virtual earth measurement electrode(Ve) L L X 

Earth electrode (E) X H L 

High impedance (Z) X H H 

  
 

Table 3-3: Truth table for mth electrode in array A. 
 

Electrode status Q4-m Q5-m Q6-m 

Excitation electrode (V+) H L X 

Virtual earth measurement electrode(Ve) L L X 

Earth electrode (E) X H L 

High impedance (Z) X H H 

 
 
where: H is state High (1), L is state Low (0) and X is either (0 or 1). m is the 

electrode number (m=1 to 8). 

 
It is now shown how electrode 1 in each array can be connected to one of three 

potentials (V+, Ve or E) see Figure 3-12.  

 
For Array B, taking electrode 1 as an example, to set this electrode to excitation 

(V+), according to the truth table (see Table 3-2), Q1-1 in L1 is set High and Q2-1 in L2 

is set Low. This will activate SW-1 to close and SW-2 to open from switch AA1 (see 

Figure 3-12). This will result in setting electrode 1 to excitation since SW-1 is opened 

and SW-2 is closed in switch BB1 because Q2-1 in L2 is set Low. 

 
To set the same electrode to virtual earth (measurement, Ve), both Q1-1 in L1 and Q2-1 

in L2 are set Low (see Table 3-2). This will result in SW-1 and SW-2 from switch 

AA1 remaining in their normal state (see Figure 3-12). This will result in setting 

electrode 1 to virtual earth since SW-1 is opened, and SW-2 is closed in switch BB1 

because Q2-1 in L2 is set Low. 
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To set the same electrode to earth (E), according to the truth table (Table 3-2) Q2-1 in 

L2 is set High and Q3-1 in L3 is set Low. This will activate SW-1 to close and SW-2 

to open from switch BB1. This will result in setting electrode 1 to earth since SW-1 is 

opened, and SW-2 is closed in switch CC1 because Q3-1 in L3 is set Low. 

 
To set the same electrode to high impedance (Z), both Q2-1 in L2 and Q3-1 in L3 are 

set High. This will activate SW-1 to close and SW-2 to open from switch BB1. This 

will result in setting electrode 1 to high impedance since SW-1 is closed and SW-2 is 

opened in switch CC1 because Q3-1 in L3 is set High. Note that, the high impedance 

(Z) state is usually not used in the current investigation. However, the author has used 

it as an indication of an unconnected (not being used) electrode.  

 
For Array A, taking electrode 1 as an example, to set this electrode to excitation 

(V+), according to the truth table (see Table 3-3), Q4-1 in  L4 is set High and Q5-1 in 

L5 is set Low. This will activate SW-1 to close and SW-2 to open from switch DD1 

(see Figure 3-12). This will result in setting electrode 1 to excitation since SW-1 is 

opened and SW-2 is closed in switch EE because Q5-1 in L5 is set Low. 

 
To set the same electrode to virtual earth (measurement, Ve), both Q4-1 in L4 and Q5-1 

in L5 are set Low (see Table 3-3). This will result in SW-1 and SW-2 from switch 

DD1 remaining in their normal state (see Figure 3-12). This will result in setting 

electrode 1 to virtual earth since SW-1 is opened and SW-2 is closed in switch EE1 

because Q5-1 in L5 is set Low. 

 
To set the same electrode to earth (E), according to the truth table (see Table 3-3) Q5-1 

in L5 is set High and Q6-1 in L6 is set Low. This will activate SW-1 to close and SW-

2 to open from switch EE1. This will result in setting electrode 1 to earth since SW-1 

is opened and SW-2 is closed in switch FF1 because Q6-1 in L6 is set Low. 

 
To set the same electrode to high impedance (Z), both Q5-1 in L5 and Q6-1 in L6 are 

set High. This will activate SW-1 to close and SW-2 to open from switch EE1. This 

will result in setting electrode 1 to high impedance since SW-1 is closed and SW-2 is 

opened in switch FF1 because Q6-1 in L6 is set High. Note that, the high impedance 
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(Z) state is usually not used in the current investigation. However, the author has used 

it as an indication of an unconnected (not being used) electrode. 

 
An array of LEDs was used in the circuit. Each column of LEDs represented four 

states (Excitation, Virtual earth measurement, Earth and High impedance) of each 

electrode (Figure 3-13). Since there were two electrode arrays, a similar argument 

applies to each one in terms of circuit design and operation. 

3.8 Data acquisition and control system, and data processing 
 
The data acquisition and control system is computer based. All controls were 

automated using MATLAB software, Figure 3-15.  

 

 

Figure 3-15: Block diagram of the experimental setup 
 
The LABJACK has eight analogue input (AI) channels (see Figure 3-16). At this 

stage only two channels (AI0 and AI1) are needed to read the voltage signals from 

V7,A and V7,B (see Figure 3-9). As stated earlier V7,A and V7,B  are the signals used for 

cross correlation but V6,B is used for volume fraction measurement (see Section 3.10).  

The D-connector of the LABJACK was used to feed the digital electrode selection 

signals from the PC. These signals were generated using MATLAB code developed 

by the author (see Appendix Code-1). The reason for using the D-connector instead of 

the normal output channels (AO) is because the number of channels is not enough to 

cover 14 digitals electrode selection signals 
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Data were collected at a sampling rate of 1kHz per channel, and the LABJACK data 

acquisition card was used to record the data. The Analogue Input function as it 

appears in MATLAB  reads a specified number of scans (up to 4096) at a specified 

scan rate (up to 8192 Hz) from the 0, 1 Analogue Inputs. The actual scan rate was 

equivalent to 1kHz per channel.  First, data is acquired and stored in the LABJACK's 

4096 sample RAM buffer. Then, the data was transferred to the PC. The Analogue 

Input MATLAB function has only 60 seconds of run time. To compensate for this 

limitation, each data collection was taken ten times then averaged using ensemble 

averaging. 

 

 

 
Figure 3-16: Analogue to Digital converter (LABJACK) ( http://labjack.com/u12 

accessed 02/01/07) 
 

3.8.1 LABJACK short-circuit protection 
 
LABJACK digital outputs have no short-circuit protection. In order to protect the 

LABJACK outputs from short-circuit it is recommended by the LABJACK company 

to add a 1.5kΩ serial resistor to the output. However, since the digital outputs operate 

at 5V a 1.5 k resistor would restrict the maximum digital output current to  

5V/1500Ω= 0.0033 A = 3.3 mA 

 
But the maximum current per channel is 20 mA, so a decision was made to use only a 

500 ohm resistor and restrict the maximum current per channel to 10 mA. These 

resistors were installed inside the DB25 plug that connects to the LABJACK (see 

http://labjack.com/u12
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Figure 3-14). This decision also allows for the LABJACK limitation of a maximum 

total current of 200 mA.  

3.8.2 Programming the latches 

 
A MATLAB code was created by the author for automatic electrode selection. The 

code, (see Appendix Code-2,) operates when the “SetRing1” function (controls Array 

A) or “SetRing2” function  (controls Array B) (see Appendix Code-3) are used. The 

parameters of these two functions are given by: 

SetRing1(a,b,c,d,e,f,g,h) 

SetRing2(a,b,c,d,e,f,g,h) 

 
where: 

a status of electrode 1 

b status of electrode 2 

c status of electrode 3 

d status of electrode 4 

e status of electrode 5 

f status of electrode 6 

g status of electrode 7 

h status of electrode 8 

 
The status, which can be confirmed by the LED array (see Figure 3-17), is a one digit 

number as follows: 

1  Connected to excitation signal (V+) 

2 Connected to virtual earth measurement (Ve) 

3 Connected to earth (E) 

4 Not connected i.e. high impedance (Z). 

 

3.8.3 Circuit validation 
 
First, the MATLAB code was set to any electrode configuration, for example, 

SetRing1 (2, 2, 2, 2, 1, 1, 1, 1). This means that electrodes 1-4 in array A are set as 

virtual earth electrodes and electrodes 5-8 as excitation electrodes. The first four 



INSTRUMENT DESIGN AND CONSTRUCTION 

 143 

electrodes have green LEDs switched on and the other four electrodes have red LEDs 

set switched on simultaneously. 

 

 

Figure 3-17: LED circuit 
 

This step was repeated for all the different electrode configurations just to check the 

signals sent from MATLAB via the LABJACK were lighting the correct LEDs. 

 
Next the ICC flow meter was connected to the switching circuit as shown as in Figure 

3-18. This test was to test the continuity of the switching circuit i.e. to make sure that 

the signal going to each electrode is really the signal from the MATLAB sent through 

the LABJACK. To do this, a volt-meter was connected between the excitation output 

signal of the switching circuit and the electrodes in the ICC meter. For example, 

SetRing1 (1,2,2,2,2,2,2,2) sets electrode 1 in array A as excitation and all other 

electrodes in array A to virtual earth (Ve,A). The volt-meter was simply used to show 

continuity of connection between the excitation output and electrode 1. In every case 

the resistance measured was within the range 50.3 to 50.5 ohm. The resistance 

between the excitation output and all other electrodes in array A was essentially 

infinite. This was then repeated, in turn, for all the other electrodes of array A. The 

same procedure was followed for array B. 

3.9 Measurement of solids velocity 
 
In order to measure the velocity of a solid particle passing through the ICC flow meter 

the fluctuating output voltage, V7,B between S1 and S2 is taken as being the output 

from array B. Similarly, the fluctuating output voltage, V7,A between S3 and S4 is 

taken as being the output from array A. The conductance between the array A 

electrodes and between the array B of electrodes vary due to the passage of the non 
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conducting solids particles and these variations in conductance were measured using 

the two-channel circuit described in section 3.6 and shown in Figure 3-9. The two 

signals were then cross-correlated using a program written in MATLAB, and an 

estimate of the solids velocity, su  , was made, see Figure 3-18. 

 

Figure 3-18: Schematic of the cross-correlation flow meter and instrumentation 
 

Figure 3-18 shows a block diagram of the set up of the ICC flow meter. As can be 

seen, the correlation flow meter consists of two electrode arrays and is used to obtain 

the mean velocity of the solids between arrays A and B in that part of the flow cross-

section preferentially interrogated by the electrode selection for arrays A and B (see 

Chapter 5) . The outputs from the arrays were fed to the electronic circuits and these 

outputs were fed to the analogue to digital converter (LABJACK). Both signals were 

then cross-correlated using software written in MATLAB listed in Appendix Code-5.  

3.10 Solids volume fraction measurement 
 
As mentioned in Section 2.9 the local solids volume fraction measured by the ICC 

meter, sα , is given by εaxwell‟s relationship which, see Equation (3-1), can be re-

arranged as  
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)wımı (sαw2ım2ı                   3-3 
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



 
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ı

m
ı
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wı
mı

1

sα                                                                  3-4    

 
For a general understanding of the calculation theory for obtaining sα  the following 

equations (3-5 to 3-7) can be summarised in general form. This will be followed by a 

detailed description of calculating sα  involved in this work.  

 
The DC output voltage B6,V  (see Figure 3-9) is proportional to the gain of the 

system so from Equation 3-6 the constant, K , can be found.  

 

wKıw6,B,V                                                                        3-5 

 
where: w6,B,V  is the output voltage from array B when water only is present in the 

flow, so; 

wı
w6,B,V

K                                       3-6 

where: wı  is the water conductivity.  

 
Then, the conductivity of the mixture mı  can be calculated from the output voltage 

measured for the two-phase flow, using the equation; 

 

m
ıK 

mB,6,
V                                                                      3-7 

 

where: 
mB,6,

V  is the output voltage when both water and solids are flowing 

obtained from array B.  
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Having found K  and measured 
mB,6,

V , mı , can be found. Then by substituting, 

mı  and wı  into Equation 3-5, the solids volume fraction sα  can be calculated. The 

value of the constant „ K ‟  was found to vary slightly for  the eight rotational positions 

a given configuration. Consequently, „K‟ was written as 
nI,B,

K corresponding to the 

value of „ K ‟ for the nth rotational position of the Ith configuration. The measured 

value of „ K ‟( for Config-I,II and III)  
IB,

K ,
IIB,

K  and 
IIIB,

K  respectively.  Where 

IB,
K ,

IIB,
K  and 

IIIB,
K  are obtained from: 


1n

nI,B,
K

8

1
IB,

K                                                         3-8 

 


1n

nII,B,
K

8

1
IIB,

K                                                      3-9 

 


1n

nIII,B,
K

8

1
IIIB,

K                                                    3-10 

 
 
The values of 

IB,
K ,

IIB,
K  and 

IIIB,
K  are given in Table 3-4 

 

Table 3-4: Definitions and measured values of K for each electrode configuration ( 
Config-I,II and III) 

 

Constant  Definition 
Measured 
value of K 

IB,
K  Config-I Array B 0.0526 

IIB,
K  Config-II Array B 0.0592 

IIIB,
K  Config-III Array B 0.0667 

 

From Equations 3-5 and 3-7 we have that for the nth  rotational  position of the Ith 

configuration  
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wı 
nI,B,

K
wB,6,

V                                              3-11 

and 

mı 
nI,B,

K
mB,6,

V                                              3-12 

and so, 

 
w

ı
m

ı

 
wB,6,

V
mB,6,

V                                                        3-13 

 

mB,6,
V is measured (for all rotational positions of a given configuration) for a given 

set of experimental conditions and 
wB,6,

V is a measured ( for all rotational positions 

of a given configuration) for water only (i.e. the test section is full of “water only”) 

periodically during a give series of test. The quantity  
w

ı
m

ı
 obtained for a given 

rotational position of a given electrode configuration from Equation 3-13 could there 

be subtitled into Equation  3-4 to find sα . Because 
wB,6,

V was measured regularly 

throughout a given  series of tests, the measured values of sα were unaffected by 

changes in the water conductivity wı which have arises due to changes in the water 

salinity or changes in the water temperature. 
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Chapter 4 IMPEDANCE CROSS-CORRELATION 

MODELLING, SIMULATION AND ANALYSIS 
 
 
 

 

 
In this chapter, a model for a single array of 8 electrodes was developed using a 

finite element analysis package (COMSOL). The chapter begins by giving the aim 

and objectives for carrying out this modelling. Then the modelling procedure is 

presented as is the sensitivity distribution in the flow cross-section for different 

electrode configurations. The sensitivity distribution and ‘’Centre of Action’’ for all 

electrode configurations that have been used in this investigation are described. 
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4.1 Introduction  
 
In order to investigate the characteristics of the impedance cross correlation flow 

meter (ICC) and how it functions in different flow regimes, it‟s important to model its 

performance. This software package chosen for this modeling work is FEMLAB 

(COMSOL). 

4.2 Modelling aims and objectives: 
 
The main aim of the work presented in this chapter is to model just one of the two 

arrays of 8-electrodes. The model was produced using two dimensional finite element 

analysis. This model was used to calculate a sensitivity distribution for different 

electrode configurations. This aim was achieved by meeting the following objectives: 

 
 Carrying out a review of the finite element software COMSOL to become 

familiar with it. 

 
 To model a single array of 8-electrodes. 

 
 To investigate which electrode configurations interrogated deepest into the 

flow cross-section. 

 
 To measure the sensitivity distribution for given electrode configurations (see 

Tables 4-2, 4-3 and 4-4). 

 
 To calculate a Centre of Action (CoA) for each electrode configuration from 

the sensitivity distribution results. The CoA is discussed in Section 4.9 and its 

position defined by Equations 4.5 and 4.6. 

4.3 FEMLAB software package 
 
Finite Element Method Laboratory (FEMLAB) is a computer software package based 

on MATLAB that is used for solving various types of Partial Differential Equations 

(PDEs) (http://www.saw.uwaterloo.ca/femlab (accessed 04/03/10)). In 2005, the 

FEMLAB software was re-named COMSOL Multiphysics in its later versions, after 

Version 3.1 (the version used in this project to carry out the ICC flow meter 

investigation).   

http://www.saw.uwaterloo.ca/femlab
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The COMSOL Multiphysics package was used. This commercial software package is 

designed to solve systems of coupled two and three-dimensional PDEs. It can model 

physical phenomena over a wide range of applications including electromagnetics. 

Using finite element methods it can easily be set up to model complex problems that 

cannot readily be solved using analytical techniques. This project used the AC/DC 

module which can model electrostatic, magnetostatic, and electromagnetic 

phenomena including the performance of capacitors, inductors, even micro-sensors, 

and solve for the electromagnetic and electrostatic fields in devices that include 

anisotropic dielectrics and maeterials with different electric permittivities and/or 

magnetic permeabilities. It allows the boundary conditions (and mesh parameters) to 

be entered by the researcher via a graphics interface. The sub-module of particular 

interest here is the Conductive Media (DC) module which contains the necessary 

material on electrostatics and conductive media, see Figure 4-1.  

 

Figure 4-1: FEMLAB modules[http://www.saw.uwaterloo.ca/femlab , accessed on  
04/03/10)] 

 
 
 
 

http://www.saw.uwaterloo.ca/femlab
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The typical modelling steps of FEMLAB are (http://www.saw.uwaterloo.ca/femlab 

(accessed 04/03/10): 

 
I. Defining the geometry: Here, the model is input as a drawing according to 

specified dimensions and scales. To achieve this, coordinate axes are defined 

and a grid is established. 

 
II. Defining the physics: Here the relevant equations and boundary conditions are 

defined. Each element is input and specified individually. Then the model tests 

the elements for compatability. If any elements are not compatible an error 

message will appear. 

 
III. Mesh specification: The initial parameters of the mesh to be used for the 

solution to the PDEs are input quite simply by clicking on the mesh button. A 

refine button may be used to adjust mesh size until it is sufficiently fine. This 

step will, largely, be a balance between how “fast” is the computer and how 

complicated is the model. The more complicated the model, the smaller the 

mesh size, the greater the number of steps required for an acceptable the 

solution, the higher the computation rate needed. 

 
IV. Computation: This requires the solution of the well-known Laplace equation:   

  0,ĳı                                                                   

This equation has been solved many times for numerous boundary conditions 

and step II defines those applicable here. The COMSOL Multiphysics package 

then sets up the corresponding electromagnetic equations and energy balances 

and runs through the required number of steps to obtain the solution(s) of the 

PDEs for the system entered. 
 
V. Post-processing: Selection from the large number of graphical routines in the 

post-processing menu to obtain the most useful and user friendly form of the 

results of the computations. 

 
From the above steps we can define a simple and basic flowchart of the computation 

sequence of FEMLAB, see Figure 4-2. 

http://www.saw.uwaterloo.ca/femlab
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Figure 4-2: FEMLAB flowchart 
 

4.4 Modelling steps 
 

4.4.1 Geometrical design set up 
 
The aim of designing the COMSOL computational model of the flow meter is to 

calculate the total current through the measurement electrodes (virtual earth 

electrodes, Ve) of the ICC device. The field sensitivity at a particular location in the 

flow cross-section (for a given electrode configuration) to the presence of a non-

conducting particle, can be measured by the change in the total current through the 

virtual earth electrodes brought about by the presence of that particle at that particular 

point. (Compared to the total current through the Ve electrodes when no particles are 

present in the flow cross-section). Sensitivity variations in the flow cross-section can 

be tested for by inserting a simulated nylon rod into a simulation of the ICC flow 

meter at different positions in the flow cross-section.  
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The model was set in a two dimensional modelling (2D) state. The 2D model was 

preferred to the 3D model in this study because: 

 
 Fewer mesh elements are involved in the solving process and hence 

convergence is quicker. 

 
 2D takes less computational time than the 3D model. 

 
 2D allows investigating more meshing options. 

 
By following the modelling steps below a computational model for the ICC flow 

meter was achieved. In section 4.5, a description is given of how spatial variations in 

the sensitivity of the sensing fields associated with different electrode configurations 

are calculated. 

 

1st step 

 
The ICC design process commenced by drawing a circle on the 2D Gemo1 sheet of 

FEMLAB. This was done using the draw menu in FEMLAB. By clicking on the 

„‟circle‟‟ button a window appeared allowing the desired position and diameter 

(80mm) of the circle to be entered, see Figure 4.3. All eight electrode positions in the 

array and the electrode dimensions (2.3 x 0.4mm) were also entered. 

 

Figure 4-3: 2D single array, 8-electrode sensor 
 



IMPEDANCE CROSS-CORRELATION MODELING, SIMULATION AND ANALYSIS 
 

 154 

2nd step 

 
There are two sets of data which must be inserted at this stage. The sub-domain 

boundary conditions must be set for the 8 electrodes (Figure 4-4) and the conducting 

media (Figure 4-5). This includes: Stainless-steel electrical conductivity = 4.032 

(S/m), electrode thickness = 0.4mm and water electrical conductivity = 0.01S/m. 

 
In a dual array system the electrodes are directly in contact with the material inside 

the vessel. Different models may be used to describe the dual array system based on 

the required complexity and it might, for example, be necessary to include such 

phenomena as contact impedance between the electrode and the process material in 

the equations (http://www.saw.uwaterloo.ca/femlab (accessed 04/03/10). The 

electrical field distribution associated with the system is determined by solving the 

Laplace equation ( http://www.saw.uwaterloo.ca/femlab (accessed 04/03/10). 

  0,ĳı                                                                       4-1 

where: ĳ  is the local electrical potential and ı  is the local electrical conductivity.  

 

 

Figure 4-4: Sub-domain conditions for the 8 electrodes 
 

 

http://www.saw.uwaterloo.ca/femlab
http://www.saw.uwaterloo.ca/femlab
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Figure 4-5: Sub-domain conditions for the 8 electrodes 

4.4.2 Simulation process 
 
Before the model begins simulation it must be “meshed” by clicking the mesh button. 

When the mesh operation is run successfully, the model will be ready to “solve” the 

given problem. This process is begun by pressing the solve button as shown in Figure 

4-6, below. 

 

Figure 4-6: Mesh and Solve commands 
 
To get a mesh that satisfactorily balances accuracy and computing resources depends 

on the problem description, the geometry and what the solution is for. The general 

approach is to use a technique known as mesh convergence. Here the mesh is 

incrementally refined and the results obtained are compared with the results obtained 

for the previous mesh. If the change is greater than a specified percentage value the 

process is repeated. This technique can fail if the initial mesh size is set too large or 

too fine.  

 
The mesh size can be adjusted using the mesh menu in FEMLAB. In this particular 

case, setting the mesh to 7147 elements caused the computation process to fail due to 

the limited available computer memory. The mesh chosen was “fine” (7040 

elements) and this took approximately 3 minutes to arrive at a solution. The FE mesh 
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is shown in Figure 4-7 together with the numbering of the electrodes in the array.  

 

 
 

Figure 4-7: Computer display of co-ordinates and electrodes showing finite element 
mesh 

 
In the following Sections (4.5 and 4.6) the sensitivity distribution is investigated using 

a simulated nylon rod of external diameter 15mm. The results of this simulation will 

be compared with the results of corresponding experimental bench tests using a real 

system and a real nylon rod (see Chapter 5). The simulation results are also used to 

calculate the position of the CoA of a given electrode configuration.  

4.5 Sensitivity distribution and effect of adding a simulated nylon rod 
 
The local sensitivity of the sensing field, that is the change in the measured voltage 

when a simulated 15mm diameter nylon rod is inserted at a given location, was 

calculated at twelve positions (denoted „holes‟ 1 to 12 in Figure 4-8) within the flow 

cross-section for the given electrode configuration under investigation. In these 

simulations, the cross-section was assumed to be filled with water (the conducting 

medium) and the nylon rod was assumed to be inserted longitudinally at different 

spatial locations in the flow cross-section to simulate the presence of a non-

conducting particle of the dispersed phase. For array B, a sensitivity parameter 

i6B,
įV  (see Figure 3-9) is defined as 
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6B,0
V

i6B,
V

i6B,
įV                                                       4-2 

 
where: 

i6B,
V  is the value of the output voltage from the detection circuitry 

associated with array B when the nylon rod is inserted into the ith  hole and 
6B,0

V  is 

the value of this output voltage when the nylon rod was absent.  

 

 
 

Figure 4-8: The 12 positions at which the sensitivity of the sensing field was 
calculated 

 
 

 

Figure 4-9: Simulated effects on the current flow between electrodes of inserting a 
nylon rod into hole 12 the ICC when electrodes 5, 6, 7 and 8 are excitation electrodes 

and remainder are measuring electrodes 
 
COMSOL enables the current density distribution for the model to be predicted. 

Figure 4-9 shows how the simulated electrical current is distributed in the flowing 
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media in the presence of a nylon rod. The material surrounding the nylon rod is water 

of conductivity ( wı ) of 0.01S/m and the conductivity for the nylon rod (
r

ı ) is 

effectively zero. The simulated nylon rod was introduced into each „hole‟ in turn (see 

Figure 4-8) and the total or integrated current though all the measurement electrodes 

(Ve) was calculated. Introducing the nylon rod into the simulated sensing field results 

in a change in the current density distribution, see Figure 4-9.  From this, an effective 

system resistance, fR , can be calculated using the equation: 

                                         
I
 V

fR
                                                                         4-3 

 
where: I is the total, or integrated, current through all of the measuring electrodes, and 

V+ is the voltage between the source electrodes and the measurement electrodes. Once 

fR  is calculated then, provided that the feedback resistance Ra in the inverting 

amplifier conductance measurement circuit and V+ are known (see Figure 4-10), the 

output voltage V1,B,  for the circuit in Figure 3-9 and 4-10 may be predicted. 

 

 

Figure 4-10: Fluid conductance circuit 
 

Once  V1,B is known, and the conductance circuit gain k  (see Equation 3-2) has been 

found, the output voltage V6,B (see Figure 3-9) can be found.   

4.6 Sensitivity distribution results using nylon rod 
 
This section describes the electrode arrangements used to investigate the sensitivity 

distribution within the test section to the presence of a nylon rod. The electrode 

configurations used in the experimental procedures are listed in Tables 4-2, 4-3 and 4-
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4 and, as can be seen, the initial electrode arrangements were cyclic – that is, within a 

given configuration one moves from one rotational position to the next by a simple 

rotation of 45o. Because there were eight electrodes there were eight possible 

rotational positions. Thus, in each of the three cases, it was necessary to test only one 

rotational position. However, in this section, the results presented are for two 

rotational positions for each electrode arrangement.  

 
From Tables 4-2, 4-3 and 4-4 it can be seen that the simple cyclic arrangements of the 

electrodes can take any one of eight rotational positions. For convenience, and as a 

form of shorthand, the three given arrangements have been labelled Config-I, II and 

III , respectively. These will be used in both simulation and bench tests. The CoA, see 

Section 4.9, for these configurations will be calculated since they will be used in the 

practical work of the present study. 

  
However, for completeness sake, a number of other, more complex, configurations 

were initially selected to investigate the proposed technique (see Table 4-1). The 

electrode configuration, Config- , was chosen to be investigated for both simulation 

and bench tests, while three electrode configurations, Config- , Config-  and 

Config-  were used in the bench tests alone (see Chapter 5).  

 
Table 4-1 contains four different electrode configurations; Config-  , Config-  , 

Config-  and  Config- . 

  
 In  Config-  the four adjacent electrodes 3, 4, 5 and 6 are excitation 

electrodes (V+) and the all remaining electrodes (1,2,7,8) are used as 

measurement electrodes (Ve).  

 
 In Config-  the three adjacent electrodes 4, 5 and 6 are excitation electrodes 

(V+), electrodes 1, 2, 7 and 8 are the measurement electrodes (Ve) and 

electrode 3 is earthed (E).  

 
 In Config-  only electrode 5 is an excitation electrode (V+), electrode 1 is set 

as the measurement electrode (Ve) and the remaining electrodes are earthed 

(E).  
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 In Config-  electrodes 1 and 3 are excitation electrodes (V+), electrodes 5, 6, 

7 and 8 are the measurement electrodes (Ve) and electrodes 2 and 4 are earthed 

(E).  

 
Config-I, contains eight rotational positions (see Table 4-2). In this configuration one 

electrode is excitation electrode (V+), and its adjacent electrode is the measurement 

electrode (Ve). The other six electrodes are earthed (E). For example, in rotational 

position-1, the electrode 1 is an excitation electrode (V+) and electrode 2 is the 

measurement electrode (Ve), and electrodes 3,4,5,6,7 and 8 are connected to ground 

(E). Seven similar arrangements are possible by simply rotation of the first 

arrangement, as can be seen from Table 4-2.   

 
Config-II, contains eight rotational positions (see Table 4-3). In this configuration 

one electrode is an excitation electrode (V+), and both adjacent electrodes are the 

measurement electrodes (Ve). The other five electrodes are earthed (E). For example, 

in rotational position-1, electrode 1 is an excitation electrode, electrodes 8 and 2 are 

the measurement electrodes and the other five electrodes are connected to ground. 

Again, seven similar arrangements are possible by simply rotation of the first 

arrangement, as can be seen from Table 4-3. 

 
Config-III, also contains eight rotational positions (see Table 4-4). In this 

configuration two adjacent electrodes are the excitation electrodes (V+), the adjacent 

electrodes are the measurement electrodes (Ve). The other four electrodes are earthed 

(E). For example, in rotational position-1 electrodes 1 and 2 are the excitation 

electrodes, electrodes 3 and 8 are the measurement electrodes and the other four 

electrodes are connected to the earth (E). Once again, seven similar rotational 

positions are possible by simply rotation of the first arrangement, as can be seen from 

Table 4-4.  
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Table 4-1μ Electrode configurations ξ, Ȝ, ω and   
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Table 4-2: Electrode configurations (Config-I) 
 

Electrode  
Configuration 

Electrode 
Rotational 
Positions 

Excitation 
Electrodes 

(V+) 

Measurement 
(Virtual Earth) 

Electrodes  

(Ve) 

Earth 
Electrodes 

(E) 

Config - I 

Rotational position-1 1 2 3,4,5,6,7,8 

Rotational position -2 2 3 1,4,5,6,7,8 

Rotational position -3 3 4 1,2,5,6,7,8 

Rotational position -4 4 5 1,2,3,6,7,8 

Rotational position -5 5 6 1,2,3,4,7,8 

Rotational position -6 6 7 1,2,3,4,5,8 

Rotational position -7 7 8 1,2,3,4,5,6 

Rotational position -8 8 1 2,3,4,5,6,7 

 
 
 

 
 
 
 

Electrode 
Configuration 

Excitation 
Electrodes 

(V+) 

Measurement 
(Virtual Earth) 

Electrodes  

(Ve) 

Earth 
Electrodes 

(E) 

Config-  3,4,5,6 1,2,7,8 none 

Config-  4,5,6 1,2,7,8 3 

Config-  5 1 2,3,4,6,7,8 

Config-  1,3 5,6,7,8 2,4 
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Table 4-3: Electrode configurations (Config-II) 

 

 
 

Table 4-4: Electrode configurations (Config-III) 
 

Electrode  
Configuration 

Electrode 
Rotational 
Positions 

Excitation 
Electrodes 

(V+) 

Measurement 
(Virtual Earth) 

Electrodes  

(Ve) 

Earth 
Electrode

s (E) 

Config - III 

Rotational position-1 1,2 3,8 4,5,6,7 

Rotational position -2 2,3 1,4 5,6,7,8 

Rotational position -3 3,4 2,5 1,6,7,8 

Rotational position -4 4,5 3,6 1,2,7,8 

Rotational position -5 5,6 4,7 1,2,3,8 

Rotational position -6 6,7 5,8 1,2,3,4 

Rotational position -7 7,8 6,1 2,3,4,5 

Rotational position -8 8,1 2,7 3,4,5,6 

Electrode  
Configuration 

Electrode 
Rotational 
Positions 

Excitation 
Electrodes 

(V+) 

Measurement 
(Virtual Earth) 

Electrodes  

(Ve) 

Earth 
Electrodes 

(E) 

Config - II 

Rotational position-1 1 8,2 3,4,5,6,7 

Rotational position -2 2 1,3 4,5,6,7,8 

Rotational position -3 3 2,4 1,5,6,7,8 

Rotational position -4 4 3,5 1,2,6,7,8 

Rotational position -5 5 4,6 1,2,3,7,8 

Rotational position -6 6 5,7 1,2,3,4,8 

Rotational position -7 7 6,8 1,2,3,4,5 

Rotational position -8 
8 1,7 2,3,4,5,6 
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4.7 Sensitivity distribution results for Config- : 
 
The predicted system sensitivity distribution for Config-  is shown in Figure 4-11 

where the vertical axis represents the sensitivity parameter įV6,B  in volt, which is 

also represented by the colour scale to the right of the diagram. Where the red colour 

in the colour scale represents the maximum value of sensitivity distribution inside the 

flow cross-section and the blue colour represents the minimum value of the sensitivity 

distribution on the flow cross-section. The 12 holes indicated in Figure 4-11, indicate 

the positions of the simulated holes shown in Figure 4-8.  

 

Figure 4-11: Sensitivity distribution for Config-  

 
For Config- , Figure 4-11 shows that the calculated system sensitivity to the 

simulated insertion of the 15mm OD nylon rod is greater when the rod is inserted in 

the vicinity of the excitation electrodes (3,4,5,6) than in the vicinity of measurement 

electrodes (1,2,7,8). The lowest sensitivity was at the middle of the pipe.  

 

4.8 Sensitivity distribution results for Config. I, II and III: 
 
Because of the cyclic symmetry of the electrode arrangements listed in Tables 4-2, 4-

3 and 4-4 it is necessary only to calculate the sensitivity distribution for one electrode 

rotational position for each of Config-I, Config-II and Config-III. Strictly speaking, 

the sensitivity distribution for each of the other 7 electrode rotational positions could 
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then be found by simply rotating in steps of 45 degrees the calculated sensitivity 

distribution. However, to confirm that this is true, the sensitivity distribution for two 

electrode rotational positions were calculated for each of Configs I,II and III as shown 

in Figures 4-12 to 4-13.  

4.8.1 Sensitivity distribution for Config-I: 
 
The sensitivity distribution profiles shown in Figure 4-12 (a) and (b) are for rotational 

positions-5 and 8 of Config-I respectively. The vertical axis represents the sensitivity 

parameter in volt. Also there is a colour scale on the right hand side representing the 

sensitivity parameter scale. The colour red represents the maximum value of the 

sensitivity parameter and blue represents the minimum value of the sensitivity 

parameter. As expected the sensitivity distribution in Figure 4-12 (b) (rotational 

position-8) is the same as for (a) (rotational position-5) except that it is rotated by 

135o (3 x 45o). From the results shown in Figure 4-12 (a) and (b) the sensitivity to the 

simulated inserted nylon rod is higher when the rod is inserted near the excitation 

electrodes and lower when the rod is inserted near the measuring electrodes. Also, as 

expected the lowest sensitivity was in the vicinity of the grounded electrodes. In 

addition, for the results shown in Figures 4-12 (a), (b) it is apparent that if we set one 

electrode as V+, an adjacent electrode as Ve and all of the other electrodes as E, then 

we will interrogate the flow in a relatively „local‟ region adjacent to the excitation 

electrode.  

 

(a)  (b) 
Figure 4-12: Config-I sensitivity distribution for rotational positions-5 and 8 
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4.8.2   Sensitivity distribution for Config-II: 
 
The sensitivity distribution profiles shown in Figure 4-13 (a) and (b) are for rotational 

positions 1 and 3 of Config-II respectively. Again, the vertical axis represents the 

sensitivity parameter in volt and there is the same colour scale on the right hand side 

to represent the sensitivity parameter scale. As expected the sensitivity distribution in 

Figure 4-13 (b) (rotational position-3) is the same as for (a) (rotational position-1) 

except that it is rotated by 180o (4 x 45o). It can be seen from Figure 4-13 (a) and (b)  

the sensitivity of the system to the simulated insertion of the nylon rod is greatest in 

the vicinity of the excitation electrode. It should be noted that the sensitivity 

distribution is different from that obtained using Config-I, as can be seen by 

comparing Figures 4-12 and 4-13. Also it can be seen from Figures 4-12 and 4-13 that 

the effective sensing region is larger than for Config-I. 

 

 
(a)  (b) 

Figure 4-13: Config-II sensitivity distribution for rotational positions-1 and 3 
 

4.8.3 Sensitivity distribution for Config-III: 
 
The sensitivity distribution profiles of Config-III shown in Figure 4-14 (a) and (b) are 

for rotational positions 1 and 7 respectively. There is the same colour scale on the 

right hand side as in Figure 4-14 to represent the sensitivity parameter scale.  As 

expected the sensitivity distribution in Figure 4-14 (a) (rotational position-1)   is the 

same as for (b) (rotational position-7) except that it is rotated by 315o (7 x 45o). Again 

it was found that the sensitivity is highest close to the excitation electrodes and lowest 

close to the earthed electrodes. It can be seen from Figure 4-14 that the Config-III 
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effective sensing region is larger than for Config-I and II. Also it should be noted that 

sensitivity is higher than for either Config-I or II. 

 

                               (a)                                                                (b) 
Figure 4-14: Config-III sensitivity distribution for position-1 and position-7 

 
It can be seen that the sensitivities obtained for Config-I, II and III, were a clear 

maximum confined to the region of the excitation electrode(s), although this could be 

broadened somewhat by having more than one measurement electrode. However, it is 

clear that for these limited number of electrodes the system is sensitive at the 

circumference and lacks sensitivity in the centre of the pipe. With Config ξ there were 

four excitation and measuring electrodes and it can be seen that the sensitivity was 

more uniform over the cross-section, but did not reach the same maximum value. 

Here, then, the electrode arrangement was more sensitive to phenomena in the centre 

of the pipe but somewhat less sensitive at the periphery. 

4.9 Centre of Action  
 
From the sensitivity distribution results obtained in Section 4.6 a boundary can be 

defined where the sensitivity is 10% of the maximum sensitivity for a given electrode 

configuration. This enables to define an „effective sensing region‟ for each electrode 

configuration presented in Tables 4-2, 4-3 and 4-4. Also the spatial location of a 

„Centre of Action‟ for each effective sensing region can be defined. For example, for 

electrode configuration „j‟ the x and y co-ordinates of the centre of action are given by 

the following Equations (4-5) and (4-6): 
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


N

1i is ia

N

1i is ia ix

jx,C                                                                        4-5 

where: jx,C  is the x co-ordinate of the CoA for configuration j, ix  is the distance 

from the origin to the ith element in the COMSOL model, ia  is the area of the ith 

element, is  is the sensitivity parameter for the ith element which is equivalent to 

įV6B,i and N is the total number of elements in the flow cross-section. Similarly the y 

co-ordinate of the Centre of Action for configuration j may be calculated from: 

                                




N

1i is ia

N

1i is ia iy

jy,C                                                                      4-6 

where: jy,C  is the y co-ordinate of the CoA for configuration j, iy  is the ith  element  

in the COMSOL model, ia  is the area of the ith element, is  is the sensitivity 

parameter for the ith element which is equivalent to įV6B,i and N is the total number 

of elements in the flow cross-section.  

 
The equations defining the CoA are identical in form to the equations defining the 

centre of mass in a two-dimensional system, with the product is ia  for the ith element 

replacing the mass mi for that element. Thus, for example, it can be taken as a 

measure of how far into the fluid the sensing field extends. For example, if the CoA is 

close to the perimeter, then the field will not be sensitive to the presence of particles 

in the centre of the pipe. Conversely, for the sensitivity of the measurement system to 

extend well into the pipe, the CoA should be near the centre. 

 
In each rotational position the sensitivity parameter for ith element in each pixel a 

cross the section can be defined. This was done by a MATLAB code which enables 

the user to define the required sensitivity parameter. The MATLAB code will provide 

the matrix of x, y and z parameters. For example, to find the coordinate of the CoA, 

Equations 4-5 and 4-6 can be easily implemented. To find the CoA for other 
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rotational positions of the electrodes simply rotate in steps of 45o. The same procedure 

can be adopted for the effective sensing region boundary. 

4.9.1 Effective sensing regions and Centre of Action for Config-I, 
Config-II and Config-III  

 
Figure 4-15, shows calculated effective sensing regions and CoA for electrode 

rotational positions-5 and 8 for Config-I. Figure 4-16 shows the calculated effective 

sensing regions and CoA for electrode rotational positions-1 and 3 for Config-II. 

Figure 4-17 shows the calculated effective sensing regions and CoA for electrode 

rotational positions-1 and 7 for Config-III . The square mesh elements used to 

calculate the CoA had a side of length 2mm. The limit of the effective sensing region 

is shown in red and the position of the CoA in blue. As expected, in every case 

rotational symmetry was preserved. 

4.10 Conclusions 
 
Figure 4-18 combines information from Figures 4-15 to 4-17 and shows the predicted 

CoAs for each of the three electrode configurations listed in Tables 4-2, 4-3 and 4-4 

for all eight electrode rotational positions for each configuration. Obviously different 

electrode configurations and electrode rotational positions interrogate different 

regions of the cross-section of the pipe. This is important because the velocity of 

dispersed phase will vary from top to the lower side of the pipe in inclined flow.  

 
Table 4-5 shows the x and y co-ordinates of the Centre of Action of each effective 

sensing region for each electrode rotational position for each of Config-I, II and III.  

 
It can be seen that as the electrode arrangement moves from Config-I to Config-II and 

Config-III the CoA moves deeper into the pipe and the depth of interrogation 

increases. That is, the average calculated distance of the CoA from the centre of the 

pipe is about 34mm for Config-I, about 25mm for config-II and about 18mm for 

Config-III. This is because the electrode arrangement changes from a single excitation 

and measurement electrode, to one excitation and two measurement and then to two 

excitation and two measurement electrodes. This suggests that with more advanced 

and more complex electrode arrangements it should be possible to interrogate deep 

into the pipe.  
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(a) 

 

 (b) 
Figure 4-15: Effective sensing regions associated with electrode position-5 and 

position-8, Config-I 
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      (a)    

 
(b) 

Figure 4-16: Effective sensing regions associated with electrode position-1 and 
position-3, Config-II  
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(a) 

 
 (b) 

Figure 4-17: Effective sensing regions associated with electrode position-1 and 
position-7, Config-III  
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Figure 4-18: Location of CoA for Config-I, II and III for each of the eight possible 
electrode rotational positions per configuration. 

 
 
 

Table 4-5: CoA coordinates for Config-I, II and III for each of the eight possible 
electrode rotational positions per configuration. 

 Electrode 
Configuration 

CoA 
x-coordinate 

(mm) 

CoA 
y-coordinate 

(mm) 

Config-I 

rotational position-1 -23 -24.9 

rotational position-2 1.5 -35.6 

rotational position-3 25 -21.1 

rotational position-4 33 3.7 

rotational position-5 24 24 

rotational position-6 -0.1 34.1 

rotational position-7 -24 23 

rotational position-8 -33 -0.8 

Config-II  

rotational position-1 -22 -12 

rotational position-2 -8 -26 

rotational position-3 14 -20 

rotational position-4 26 -8 

rotational position-5 24 12 
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 rotational position-6 8 26 

rotational position-7 -12 24 

rotational position-8 -24 8 

Config-III 

rotational position-1 -10 -12 

rotational position-2 2 -15 

rotational position-3 12 -12 

rotational position-4 0.8 18 

rotational position-5 14 12 

rotational position-6 2 20 

rotational position-7 -12.1 14 

rotational position-8 -18 2 
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Chapter 5 STATIC AND DYNAMIC BENCH TESTS  

 
 
 

 

 

In this chapter, static and dynamic experimental bench tests are described. The 

chapter begins by giving reasons for carrying out these tests. After that it describes 

the experimental apparatus and procedures for the static tests. Next it gives the 

results obtained. Section 5.6 shows the comparison of results obtained from the 

static bench tests and the finite element model (COMSOL). The experimental 

procedure for the dynamic tests is shown in Section 5.8. The last section gives the 

conclusion drawn from these tests. 
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5.1  Reasons for carrying static and dynamic bench tests 
 
Before the ICC flow measuring device was used in the flow loop a number of 

preliminary experimental static and dynamic bench tests were carried out. These are 

detailed in this chapter.  

 
The static testing and dynamic tests were carried out to achieve the following 

objectives: 

 
 To calibrate the electronic circuits and to select an appropriate excitation 

signal to be used.  

 
 To experimentally investigate spatial variations in the sensitivity of the electric 

„sensing‟ field for different electrode configurations. 

 
 To check that the conductance circuit and electrode selection switches were 

working as they should, and to make sure that both arrays were excited 

alternately to prevent cross-talk between the two signals (see Section 3.6). 

 
 To ensure the correct functioning of the cross-correlation software developed 

in MATLAB to calculate time delays between the signals V7,A and V7,B from 

the two electrode  arrays A and B. 

5.2  Static test experimental apparatus  
 
The aim of the static bench tests was to investigate spatial variations in the sensitivity 

of the electric sensing field for different electrode configurations. These tests were 

designed to provide the necessary information when, at a later stage, the device is 

used in the real flows to identify which electrode configuration is most suitable for 

interrogating a particular area or segment of the flow cross-section. The experimental 

apparatus consisted of the impedance cross-correlation (ICC) flow meter (see Section 

5.3), electronic circuits, a 15mm nylon rod for simulating the presence of a particle of 

the dispersed phase and a data acquisition system. Two plastic plates, each with 12 

holes of equal diameter (15mm) were placed one at each end of the pipe forming the 

ICC flow meter, see Figure 5.1. The holes in the top plate were through holes while 

the holes in the bottom plate were “blind” holes. This meant that the ICC could be 
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filled with water from the top without it leaking.  The reason why 15mm was chosen 

as the diameter of the nylon rod was because this was found to give a measurable 

change in the output voltage V6,B when inserted anywhere in the cross section. After 

the ICC was filled with tap water the nylon rod was inserted through one of the holes 

in the top plate as shown in Figure 5-1. To ensure the rod was vertical and parallel to 

the walls of the pipe, its lower end sat in the corresponding blind hole of the nylon 

plate at the bottom of the ICC.  The inside surfaces if the two plates were a distance of 

470mm apart. 

 

Figure 5-1: ICC flow meter with nylon rod 
 

The holes in the plates were arranged as shown in Figure 5-2 (also shown as Figure 

4.8). Since the geometry of the plates and their holes is known accurately, the position 

of the nylon rod in the flow cross-section is also known. For convenience the 

numbering of the electrodes is such that the eight outer holes in each plate have the 

same number as the nearest electrode (see Figure 5-2). The geometry of the system is 

identical to that used in the COMSOL simulations in Chapter 4. 

 

Figure 5-2: Positions of the 12 holes through which the nylon rod was inserted 
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5.3 Static test experimental setup  
 
Figure 5-3 shows a block diagram of the ICC set-up for both static and dynamic 

bench tests, with the ICC flow meter connected to two electrode selection circuits 

which were separately connected to electrode arrays A and B. The two signals from 

the  electrodes (e.g. V7,A  and V7,B) were fed to the LABJACK which was connected to 

the PC through a USB port. 

   
Three programmes using the εATδAB‟s software were developed (see Appendix 

Codes 1, 2 and 3). The first was to acquire data from each electrode selection circuit, 

CH-A and CH-B, for 60 seconds, the second and third were used to control the 

electrode selection circuits for each of arrays A and B so that the desired electrode 

configuration was selected. From CH-B two measurement were required (e.g. V6,B  

and V7,B, see Figure 3-9) where V6,B  was used for volume fraction measurement and 

V7,B for cross-correlation. From CH-A the corresponding measurement was V7,A 

which was used for cross-correlation to determine particle velocity. Each of the V6,B, 

V7,B and V7,A  measurements were taken over 60 seconds. As explained in Chapter 3 

(Section 3.8.3) the LED array for each switching circuit shows the user which 

electrodes in each array are V+, Ve or earth potential.  

 

 
 

Figure 5-3: Hardware set up of the static and dynamic bench tests 
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Both conductance circuit and electrode selection circuits were powered by ±15V 

using a laboratory power supply (with an accuracy of ±0.1V), and the 10kHz sine 

wave excitation signal, 2V peak to peak, was provided by a laboratory signal 

generator (again with an accuracy of  ±0.1V).  

5.4 Static testing procedure 
 
In the static tests, the flow meter was filled with water and a nylon rod was inserted 

into holes 1 to 12 in turn (see Figures 5-1 and 5-2) in the flow cross-section to 

simulate the presence of a non-conducting particle of the dispersed phase.  The effect 

on the circuit output voltage V6,B was investigated.  

 
For array B, for all electrode configurations used, twelve sets of data were collected 

with the nylon rod inserted and one set of data when the nylon rode was absent. For 

array B, a sensitivity parameter was defined by Equation 4-1 as the change in 

measured voltage when the nylon rod is inserted: 

6B,0Vi6B,Vi6B,įV                                                          4-1 

where: i6B,V  is the value of the output voltage from the detection circuitry associated 

with array B when the nylon rod is inserted into the ith hole and where 6B,0V  is the 

value of this output voltage when the nylon rod was absent. When the sensitivity 

parameter is relatively large the nylon rod is located at a position in the cross-section 

enclosed by array B where the field sensitivity is high. Note that, the COMSOL 

results were adjusted to take into account the gain of the conductance circuit to give 

the correct values of i6B,įV by using different mesh by iteration. 

5.5 Results of the static bench test 
 
As stated in Section 4.6 the present results refer only to two rotational positions for 

Config-I, II and III, see Tables 4-2, 4-3 and 4-4. However, as shown in Table 4-1, four 

more complicated electrode configurations Config- , Config- , Config-  and 

Config- were also used to investigate the proposed technique.   
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5.5.1 Electrode Configurations, Config- , Config- , Config-  and 
Config-  

 
The measured sensitivity distributions of Config- , Config- , Config-  and 

Config-  are shown in Figures 5-4 and Figure 5-5. The vertical axis in each figure 

represents the sensitivity parameter i6B,įV , which is also represented by the colour 

scale to the right of the diagram. The colour red in each figure represents the 

maximum value of sensitivity parameter inside the flow cross section and the colour 

blue represents the minimum value of the sensitivity parameter in the flow cross 

section.  

 
                             (a)  Config-                                   (b) Config-  

 
Figure 5-4: Measured sensitivity distributions for Config-  and Config-   

 
   (a)  Config-                                     (b) Config-  

 
Figure 5-5: Measured sensitivity distributions for Config-  and Config-  
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It is clear from Figure 5-4 (a) that for Config-  the system sensitivity in the vicinity 

of the excitation electrodes (3,4,5 and 6) is marginally higher than the sensitivity in 

the vicinity of measurement electrodes (1,2,7 and 8). The lowest sensitivity was in the 

middle of the pipe. Figure 5-4 (b) shows the sensitivity distribution for Config- . In 

the vicinity of the excitation electrodes (4,5 and 6) the sensitivity is high compared 

with the sensitivity in the vicinity of the measurement electrodes (1,2,7 and 8). 

However, the sensitivity dipped in the vicinity of earthed electrode (3) but did not 

appear as low in the centre of the pipe as with Config- .  

 
It is clear that for Config-ω, Figure 5-5 (a), that the system sensitivity in the vicinity 

of the excitation electrodes (1 and 3) is higher than in the vicinity of measurement 

electrodes (5,6,7 and 8). On other hand, the sensitivity in the vicinity of the earth 

electrodes (2 and 4) was lowest with the sensitivity in the region of electrode 2 lowest 

of all. The results shown for Config- in Figure 5-5 (b) indicate that the system 

sensitivity in the vicinity of the excitation electrode (5) is again higher than for the 

other electrodes while the sensitivity at the grounded electrodes was low.  

5.5.2 Electrode Configuration Config-I (rotational position-5 and 8) 
 
The measured sensitivity distributions of Config-I, (rotational positions-5 and 8) are 

shown in Figure 5-6. Again, the vertical axis in each figure represents the sensitivity 

parameter i6B,įV , which is also represented by the colour scale to the right of the 

diagram in the usual way.  

 

             (a)  Rotational position-5                             (b) Rotational position-8                             
 

Figure 5-6: Measured sensitivity distributions for Config-I 
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It is clear from Figure 5-6 (a) that the system sensitivity in the vicinity of electrode (8) 

is much higher than elsewhere in the flow cross section. The lowest sensitivity was in 

the vicinity of grounded electrodes (2,3,4,5,6 and 7). The sensitivity distribution 

associated with electrode rotational position-8 is expected to be the same as that for 

electrode rotational position-5 except that it is rotated clockwise by 135o. The 

experimental results shown in Figure 5-6 (a) and (b) confirm this expectation. Thus, 

from Figure 5-6 (a) and (b) it is apparent that if we set one electrode as V+, an 

adjacent electrode as Ve and all of the other electrodes as E, then we will interrogate 

the flow in a relatively „local‟ region adjacent to the V+ electrode.  

5.5.3 Electrode Configuration Config-II (rotational position-1 and 5) 
 
The system sensitivity distributions for rotational position-1 and rotational position-5 

of Config-II  are shown in Figure 5-7 (a) and (b) respectively. The vertical axis 

represents the sensitivity parameter i6B,įV , which is also represented by the colour 

scale to the right of the diagram in the usual way. 

 

 

    (a) Rotational position-1                              (b) Rotational position-3 

Figure 5-7: Measured sensitivity distributions for Config-II  
 

From Figure 5-7 (a), for rotational position-1 the lowest system sensitivity was in the 

vicinity of the ground electrodes (3,4,5,6 and 7). It can be seen that the system 

sensitivity is much higher in the vicinity of excitation electrode 1 than measurement 
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electrodes 2 and 8. The sensitivity distribution associated with electrode rotational 

position-5 is expected to be the same as that for electrode rotational position-1 except 

that it is rotated clockwise by 180o. The experimental results shown in figure 5-7 (a) 

and (b) confirm this expectation. 

5.5.4 Electrode Configuration Config-III (rotational position-1and 7) 
 
The system sensitivity distributions for rotational position-1 and rotational position-7 

of Config-III  are shown in Figure 5-8 (a) and (b) respectively. The vertical axis 

represents the sensitivity parameter i6B,įV , which is also represented by the colour 

scale to the right of the diagram in the usual way.  

 

    (a)  Rotational position-1                             (b) Rotational Position-7 

Figure 5-8: Measured sensitivity distributions for Config-III  
 

It is clear from Figure 5-8 (a) and 5-8 (b) that the system sensitivity in the vicinity of 

the excitation electrodes is higher than in the vicinity of the measurement electrodes, 

and the sensitivity in the vicinity of the earth electrodes was lowest.  

5.6 Comparison between modelling and static test results 
 
In this section, the static test results are compared with the modelled results from 

COMSOL. This involves comparisons for Config-I, Config-II, and Config-III for the 

selected rotational positions and configuration Config- . 
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                  Config-  (Static test)                      Config-  (COMSOL simulation)  

Figure 5-9: Comparison of predicted and measured results for Config-  
 
 

 
Config-I Rotational position-5                           Config-I Rotational position-5                                                                                                                            

(Static test)                                                     (COMSOL simulation) 
 

Figure 5-10: Comparison of predicted and measured results for Config-I 
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Config-II Rotational position-1                    Config-II Rotational position-1 
        (Static test)                                           (COMSOL simulation) 

 
Figure 5-11: Comparison of predicted and measured results for Config-II 

 

 

Config-III Rotational position-1             Config-III Rotational position-1 
(Static test)                                   (COMSOL simulation) 

 
Figure 5-12: Comparison of predicted and measured results for Config-III  

 
 
As an explanatory example, consider Config-  (see Table 4-1 and Figure 5-9), the 

excitation electrodes are (3,4,5 and 6) and the measurement electrodes are (1,2,7 and 
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8).  The predicted and measured values at points corresponding to the twelve holes 

shown in Figure 5-2 can be determined and the accuracy of the model can be 

evaluated, see Figure 5-12.   

 

 

Figure 5-13: Comparison of predicted (COMSOL) and experimental result for 
Config-  

Comparing the measured and predicted sensitivities for Config- , it can be concluded 

that the differences in the sensitivity parameter i6B,įV  between the theoretical 

predictions from COMSOL and from the experimental static bench test is small. 

Figure 5-13 shows a comparison of the two sensitivity distributions.  A percentage 

error can be calculated using Equation 4-2: 

100*
model

ΔV
modeli6B,įVstai,6B,įV

İ 


                                           4-2 

where: stai,6B,įV and 
modeli6B,įV are the voltage difference obtained from static 

test and the voltage difference obtained using COMSOL respectively. The percentage 

error is shown in Figure 5-14. The differences between the COMSOL predictions and 

experimental results are within a range of less than 2%. 
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Figure 5-14: The relative percentage error between COMSOL predictions and 
experimental results for Config-  

 

In Figure 5-14 the horizontal green dotted line represents the mean value of the 

percentage error, İ, for all 12 data nylon rod positions for Config- . The error 

between measured and predicted sensitivities for Config-II and III can be evaluated 

similarly and Table 5-1, shows the electrode configuration and its corresponding 

mean relative percentage error. 

Table 5-1: Mean relative percentage error for differences between measured and 
predicted sensitivities for Config-I, II and III 

 

5.7 Dynamic test experimental apparatus 
 
The dynamic tests were to check the performance of the ICC flow meter and to test 

how well the electronic circuit prevented cross-talk between the two electrode arrays. 

For the dynamic tests the hardware used was the same as that for the static tests 

Electrode Configuration 
Mean value of the  percentage error 

between measured and predicted 
sensitivities  

Config-I Rational position 5 
1.21% 

 

Config-II Rational position 1 
1.24% 

 

Config-III Rational position 1 
1.65% 
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described in Section 5.4 (see Figure 5-3). Cross-correlation software to obtain the 

time it took for particles in the flow to pass from one electrode array to the other was 

developed (see Appendix Code-4).  

5.8 Experimental procedure and results for the Dynamic test 
 
In this experiment two balls  P and Q were used which have the same diameter of 

29mm but slightly different densities (1200kg/m3, 1164.7kg/m3 for balls P and Q 

respectively). The balls were dropped vertically so that they passed between the two 

electrode arrays and their velocities determined using the ICC flow meter. Firstly, we 

set the electrode configuration (Config-I) for arrays A and B to rotational position-8 

(see Table 4-2). The choice of Config-I (rotational positions 5 and 8) were to ensure 

minimum or no interference between the two sensing regions. The balls were dropped 

at the same time but in different parts of the pipe; ball P was dropped between 

electrodes 1 and 8 and ball Q was dropped between electrodes 5 and 6 as shown in 

Figure 5-15. Then, the signals V7,A  (blue) and V7,B  (red) from the two arrays were 

measured and cross-correlated as shown in Figure 5-17. 

 

 
 

Figure 5-15: Arrangement of electrode array on the pipe 
 

 
Figure 5-16 shows the output signals from the two arrays (V7,A and V7,B, see also 

Figure 3-9). The signal from array A is coloured blue, while the red signal is from 

array B. The presence of only one peak in each of the red and blue signals makes it 

clear that this system was only sensing ball P, and ball Q produced no noticeable 
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effect on the output voltages V7,A and V7,B. This is because (see Figure 5-6 (a)), for 

electrode rotational position-8 , the sensitivity of the electric sensing field close to 

electrodes 1 and 8 (the location of ball P) is much higher than the sensitivity close to 

electrodes 5 and 6 (the location of ball Q). Thus, we see that for electrode rotational 

position-5 (see Table 4-2) the ICC system preferentially detects velocities in that part 

of the flow cross section close to electrodes 1 and 8.  

 
Cross-correlating V7,A and V7,B gives rise to the single peaked correlogram shown in 

Figure 5-17 with the peak value at a time delay of 0.042 seconds. Given that the axial 

separation of the arrays is 0.05m, this corresponds to a measured velocity of 1.19ms-1. 

The velocities for the balls were assumed to be their terminal velocities  TV  given by 

the expression (Govier G et.al. 1972): 

0.5

D
C

g

wρ
wρBρ

d
3

4
TV 









                                                4-3 

 
Where DC  is a drag coefficient for the ball, and depends upon its shape and surface 

roughness properties, wρ  is the density of the water, Bρ  is the ball density and g  is 

the acceleration of gravity. It can be seen from Equation (4-3) that  TV  is dependent 

upon the ball diameter, d . A good discussion of the terminal settling velocity of a 

spherical particle is given by Govier G et.al. 1972, who suggest that DC  = 0.059. 

Thus: 

0.5

0.059

9.81

1000

200
)31029(*

3

4
TV 


 


 =1.28m/s 

This is in reasonably good agreement to the measured velocity of 1.19ms-1. The 

measured value is less than the predicted value but agreement is good enough to 

confirm the effectiveness of the cross-correlation method for the detection of velocity 

of particles travelling within the fluid.  

 
This is summarised in this section. The terminal settling velocity VT of the particles is 

defined as the velocity at which a single particle will settle due to gravity alone. This 

requires that no other particles interact with it and that no external force is applied. 
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The theory applied in this section (Govier G et.al. 1972) also assumes that the 

particles are smooth, regular, rigid spheres. Whilst this is not strictly the case in this 

investigation it is a reasonable assumption. Under these conditions two forces act on 

the particles. These are a downward gravitational force, gF , given by Equation 4-4 

and the drag force resisting the motion of the particles, DF , which is given by 

Equation 4-5.  

)gwρp(ρ
6

3πd
gF                                                              4-4 

4

2πd
2

2
puwρ

DCDF                                                           4-5 

In Equation (4-4) and Equation (4-5) pρ  and wρ are the densities of the particles and 

the water respectively. DC  is the drag coefficient; d is the particle diameter and pu is 

the particle velocity with respect to the fluid. At the terminal settling velocity these 

forces become equal so that no acceleration takes place. At this point  TVpu  . In 

order to calculate  TV  it is necessary to calculate DC , the drag coefficient. The 

value of DC  is a function of the particle Reynolds number, pRe . This is given by 

Equation 4-6 where wμ  is the viscosity of the water. 

wμ
wρ pu d

pRe                                                                       4-6 

In the current investigation a value of DC  equal to 0.059 was employed for both balls 

P and Q (Govier G et.al. 1972). Equation (4-3) is obtained by combining and re-

arranging Equations (4-4) and (4-5) for the special case  TVpu   . 
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Figure 5-16: The output signals from arrays A and B(V7,A  - blue and V7,B – red) for 
ball P. 

 
 

Figure 5-17: Cross-correlation of the two signals (V7,A and V7,B) for ball P 
Next the electrodes in arrays A and B were set to Config-I rotational position-5 (see 

Table 4-2) and here the sensitivity of the electric field was much higher in the vicinity 

of ball Q than in the vicinity of ball P (see Figure 5-6 (b)). The test was repeated as 

above and again a single peaked correlogram was produced with the peak value at a 

time delay of 0.0505 seconds (see Figure 5-19) giving a measured velocity for ball Q 

of 0.99 ms-1. For this test the density of the ball was 1164.7kg/m3, so the theoretical 

velocity of ball Q is: 

0.5
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Again this is in reasonable agreement with the velocity predicted by Equation (4-3), 

1.02 ms-1. The single peak also confirms, as expected, that for electrode rotational 

position-5, the ICC system only senses flow velocities in the vicinity of electrodes 5 

and 6 (see Figure 5-18). 

 

 

Figure 5-18: The output signals from arrays A and B (V7,A  - red and V7,B - blue) for 
ball Q 

 

 

Figure 5-19: Cross-correlation for the two signals (V7,A and V7,B ) for ball Q 
 

Finally, the electrode configuration for arrays A and B was set to Config-   (Table 4-

1), which gives rise to a relatively uniform sensing field (see Figure 5-4). Again, the 

balls were dropped at the same time, with ball P dropped between electrodes 1 and 8 
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and ball Q dropped between electrodes 5 and 6. Voltages V7,A  (blue) and V7,B (red) 

were obtained from arrays A and B respectively as shown in Figure 5-20. 

 

 
 

Figure 5-20: The output signals from arrays A and B V7,A  (blue) and V7,B (red) for 
balls P and Q 

Here it can be seen from Figure 5-20 that two spikes occur in both V7,A and V7,B 

traces. The peak was first associated with ball P and the second associated with ball 

Q. By zooming in, the time taken by each of the two balls to travel between the two 

electrode arrays (A and B) can be found. The balls were dropped close to the pipe 

wall, where this configuration is most sensitive. 

 

Table 5-2: Delay time obtained from cross-correlation function for simultaneaous 
measurements of velocities for balls P and Q using Config-    

 
 Time (s) Velocity (m/s) 

Ball P 0.042 1.19 

Ball Q 0.051 0.99 

 
The simultaneous velocities in Table 5-2 correspond closely to the velocities for P and 

Q when they were sensed individually. It is therefore apparent that, for Config- , the 

electric field is sensitive to the presence of the balls in all parts of the flow cross-

section. 
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5.9 Conclusions 
 
 Config ξ, Config Ȝ, Config ω, Config-  and Config-I, II and III have been tested 

to find the configurations which best interrogate different part of the cross-section 

of the pipe. The likely sensitivity distributions were predicted using the COMSOL 

software, see Section 4.7. Experimental tests were then carried out which showed 

that the experimental and predicted results were very close, within 2% of each 

other for all tests and all configurations, see Figures 5-9 to 5-12 and Table 5-1. 

  
 Config ξ, with four excitation and four measurement electrodes had a sensitivity 

distribution that was fairly uniform around the periphery of the pipe but less 

sensitive in the centre, see Figure 5-21 (a). Nevertheless this electrode arrangement 

was capable of detecting the passage of two balls dropped simultaneously through 

the ICC flow meter, see Figure 5-20.  

 
 Config-I, II and III, because of the limited number of electrodes used for excitation 

and measurement, and also because the electrodes were adjacent to each other, 

tended to interrogate the flow close to the boundary of the pipe where the 

excitation and measurement electrodes were located. As the number of excitation 

and measurement electrodes increased the CoA moved closer to the centre of the 

pipe. With two excitation and two measurement electrodes, Config-III interrogated 

a section of the pipe that covered about half the cross-section and extended close to 

the centre, see Figures 4-17 and 5-12. By suitable rotation of the electrode 

arrangement Config-III could be used to interrogate almost the full cross-section of 

the pipe.   

 
 Config ξ, was chosen for dynamic testing of the ICC system as this was the 

electrode arrangement that gave best coverage of the pipe cross-section. It was 

found experimentally that the ICC flow meter, with this electrode arrangement, 

could detect and differentiate between two balls with slightly different densities 

dropped simultaneously through the ICC system. It was also found that both 

velocities determined by the meter were close to the predicted values. It can be 

concluded that that particles flowing in one part of the pipe do not adversely affect 

the measured cross-correlation velocity determined for particles flowing in another 

part of the pipe. 
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Chapter 6 EXPERIMENTAL APPARATUS 
 
 
 

 

This chapter begins by describing the multiphase flow loop on which all the 

experiments were carried out. Following this is a description of the instruments 

used  for making reference measurements; including a Hoppers and load cells used 

in the process of making reference measurement of the flow rates of both solids and 

water, a differential pressure transmitter for measuring the mean solids volume 

fraction and a turbine meter for measuring the liquid flow rate. The Chapter also 

covers the range of solids-liquid flow conditions used for the experimental tests. 

Finally, it gives a description of the experimental procedures that were used. 
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6.1 Multiphase flow loop 
 
To test the performance of the ICC flow meter with an actual multiphase flow through 

it, a flow loop was used. This  is a facility capable of carrying solids-water flows of a 

type relevant to the present research investigation at different flow rates (for both 

solids and water) and different solids volume fractions. In addition, the working 

section of the flow loop could be positioned at varying inclinations to the vertical 

including, o0 , o15 and o30 , to enable the non-uniform flows described in Section 1.2 

to be established. The loop was also instrumented for providing reference 

measurements of the following flow parameters: 

1. Mean solids volume fraction in the working section, refs,α   

2. Mean solids velocity in the working section, refs,u . 

3. Solids volumetric flow rate, refs,Q . 

4. Water volumetric flow rate, refw,Q .  

 
The equipment used to make these reference measurements, to which the 

measurements taken with the ICC will be related, is described in Section 6.3. The  

flow loop system used in this study was already in existence at the University of 

Huddersfield. This system was taken and enhanced for the present project, extending 

its capabilities to multi-phase flows which included solids in water flows, and flows at 

different angles to the vertical. Also the devices for making reference measurement 

were incorporated into the new system, see Figures 6-1 and 6-2 for a schematic 

diagram and photograph of the flow loop system respectively.
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Figure 6-1: Schematic diagram of the University of Huddersfield flow loop system for multiphase flow (the working section is shown at two 
angles of inclination)
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Figure 6-2: Photograph of the University of Huddersfield flow loop system for 
multiphase flow. 
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6.2 Flow capabilities of the multiphase flow loop 
 
The flow loop is designed to provide flows with water as the continuous phase. In this 

work the dispersed phase consisted of solid plastic spheres of 5mm diameter and 

density of 1340.8 kg m-3. The working section is so arranged that it can be positioned 

to give upward flows which are either vertical or inclined at an angle to the vertical. 

For the current investigation inclinations of o30 , o15 and o0 degrees to the vertical 

were used. However, it is possible to set the system for other inclinations if required. 

 
For the current investigation the total length of the working section in which the ICC 

was installed was1.68m distance from inlet. The working section had an 80 mm inside 

diameter. The ratio of pipe length to pipe diameter meant that fully developed flow 

were not established at the ICC. However fully developed inclined solids-water flow 

is not well define in the literature. The flow never actually stabilizes because of the 

presence of intermittent K-H structures. The average flow properties at any point in 

the cross section were averaged over a period of about 1 minute without varying the 

position of the ICC. But this is not important because the intention is for the ICC 

device to be able to accurately meter whatever solids-liquid flow passes through it. 

The ICC section was attached near to the top of the pipe as shown in Figure 6-2. The 

electrode assembly was configured as shown in Figures 3-1 and 3-2 so that the axial 

separation of the electrode arrays, was 50 mm. 

 
A Honeywell ST-3000 differential pressure (∆P) sensor was included in the flow loop 

working section to provide a reference measurement of the solids volume fraction 

refs,α . The device measures the differential pressure across a 1m length of the 

working section (see Section 6.3.3).based on the pressure difference across a 

piezoelectric membrane, and is shown in Figure 6-1. A flushing system ensures that 

no air can become trapped in either the transducer or the measurement lines. 

  
The solids particles are pumped from a reservoir, containing water and solids, using a 

multiphase pump which pumps the required mixture of solids and water through the 

system. The solids-water mixture in the solids reservoir is maintained in a 

homogeneous condition by a mixer which was switched on whenever the multiphase 

solids-liquid flow was circulating. After flowing upwards through the working 
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section, the multiphase mixture is conveyed to a separator where the water and solids 

are separated. The solids pass, via a conical hopper, to the solids holding tank, and the 

water passes via a second conical hopper, to the water tank. Each of the hoppers has a 

pneumatically actuated ball valve at its base. Each hopper was suspended by a load 

cell which measured the mass of the hopper and its contents. The load cells and the 

valve control system are interfaced to a PC. By closing the valves at the base of the 

hoppers and recording the time taken for a given mass of material to collect in the 

hopper the mass flow rate of that material can be calculated. Provided the solids and 

water densities are known, reference values refs,Q   and refw,Q    of the volumetric 

flow rates of the solids and the water respectively are readily calculated from the mass 

flow rates of solids and water. The grey shaded pipe section (see Figure 6-1) between 

the two reservoirs is to ensure the water level is the same in both reservoirs, thus 

ensuring that the water from the water hopper could flow into the solids-water 

reservoir. Separation grilles prevented solid particles from passing into the water 

reservoir. 

 
In order to increase the range of water volumetric flow rates that can be used, and also 

to vary the solids volume fraction in the flow loop working section, water could also 

be pumped separately through the working section using a vertical multistage in-line 

centrifugal pump from a second reservoir containing water only. This water flow 

passes through a turbine meter to give the additional water flow rate. By using the two 

pumps together both the solids flow rate s,refQ and the water flow rate w,refQ  can 

be independently set in the working section. Note that when both pumps and both 

reservoirs are used together reference values of the water and solids volumetric flow 

rates are obtained from the hopper valve/load cell systems described above. 

6.3 Reference measurement devices 
 
On this flow loop reference measurement devices were used including hopper/load 

cells for measuring the solids and water volumetric flow rates, a differential pressure 

sensor for measuring the global dispersed phase volume fraction and a turbine meter 

for measuring volumetric liquid flow rate from the “water only” reservoir. The turbine 

meter was used to calculate the working section fraction factor (see Section 6.3.2). 
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These reference measurement devices had to be calibrated. The following sections 

describe in detail the calibration procedure.  

6.3.1 Hopper load cell system 
 

refs,Q  and refw,Q  are measured gravimetrically. The multiphase flow passes 

through a separator, see Figure 6-1, which separates the different phases into conical 

stainless steel hoppers, each with a pneumatic ball valve at the bottom. Each hopper is 

suspended by a load cell which measures the total mass of the hopper and its contents. 

Both the load cells and the valves at the base of each hopper are interfaced with a PC. 

At suitable times the valves in the bases of the hoppers are shut and the load cell 

readings taken to obtain the weight of each hopper and its contents. After a convenient 

time, the weight of each hopper was measured again and, by simple subtraction, the 

mass of material which had flowed into each hopper could be calculated. For a given 

hopper the volumetric flow rate Q  of the material into that hopper is given by: 

Tρ
M

Q                                                                                    6-1 

where: M  is the mass of material flowing into hopper in time T, and ρ  is the density 

of the material.  

 
For the water hopper the water volumetric flow rate is given by: 

wρ T
wM

refw,Q                                                                      6-2 

 
For the solids hoper the volumetric flow rate is given by: 

sρ T
sM

refs,Q                                                                          6-3 

 
where: wM and sM is the mass water flow rate and mass solids flow rate respectively. 

 
A control program was used to control the pneumatic valves at the bases of the 

hoppers, to automatically obtain readings from the load cells, and to calculate s,refQ  

and w,refQ  at intervals during the experimental testing. After time T had elapsed, the 
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valves at the bases of the hoppers were opened again to release the material into the 

appropriate reservoirs. 

 
The load cells were calibrated twice during this project, firstly before the experimental 

testing began and secondly after the experimental testing was complete. This gave a 

check on drift in the calibration. The calibration procedure was to incrementally add 

known masses of water to each of the hoppers, and to record the resulting output from 

each hopper load cell. For each hopper the mass was added in equal increments for 

the full range of the load cells, 0kg to 40kg. To ensure better accuracy the procedure 

was carried out three times for each hopper and the results averaged.  

 

 

Figure 6-3: Solids and water hoppers calibration 
 
Figure 6-3 shows the hopper calibration curves obtained (note that the output voltage 

from each load cell decreased as the hopper mass increased). Both load cells showed 

excellent linearity with minimal differences between the three tests. Simple linear 

regression using MATLAB gave the first order relationships between the mass in each 

hopper and the recorded voltages from the appropriate load cell. These equations were 

integrated into the gravimetric flow measurement control program procedures used 

during the flow loop tests (see Section 6.3.2). 
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Calibration was checked at intervals by adding a known mass of water to each hopper 

and checking that the response of the load cell fell on the calibration curve in Figure 

6-3. Equation 6-4 shows the relationship between the mass sM  of material in the 

solids hopper and the load cell output voltage sV . Whilst Equation 6-5 shows the 

relationship between the mass of material wM  in the water hopper and the load cell 

output voltage wV  from the water hopper load cell.  

sV 12.92150.464sM                                                         6-4 

wV 12.55349.974wM                                                      6-5 

The load cell systems were set up in such a way that Equations 6-4 and 6-5 enabled 

the masses sM  and wM  of material inside the solids and water hoppers to be 

determined independent of the mass of each hopper and the mass of the valve at the 

base. 

6.3.2 Turbine meter 
 
The turbine meter is installed in the liquid line of the flow loop (see Figure 6-1). It can 

be used to give the reference volumetric water flow rate measurement, t,refw,Q , 

delivered by the centrifugal pump from the “water only” reservoir and this was used 

to calculate the pipe friction factor (see Section 6.3.4). The readings of the turbine 

meter itself were checked by comparing them to measurements taken using the water 

gravimetric hopper (when water only was flowing). The purpose of measuring the 

pipe fraction factor is to compensate the reference measurement of the solids volume 

fraction from the dp cell, see section 6.3.3. 

 
The water volumetric flow rate, t,refw,Q , from the turbine meter was obtained by 

determining the speed of rotation of the turbine. With turbine meters, the rotational 

frequency  f is directly proportional to the water flow rate over a specified range of 

operation  see Equation 6-6. 

Kft,refw,Q                                                                          6-6 

where t,refw,Q  is the water volumetric flow rate, f  is the rotational frequency of the 

turbine meter, and K  is the turbine meter factor. K  is known to vary over the life of 

the meter, for example if the meter begins to wear. However, it can be said that over 
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the duration of this project there was no detectable change in K  due to wear. It is also 

known that the meter factor is specified constant over only a specified range of flow 

rates, but the device was always used within this specified flow rate range. 

 
The method used for the calibration of the turbine meter was a simple comparison 

with the mean reference water flow rate refw,Q  recorded by the gravimetric flow 

measurement system. The turbine meter was calibrated at both the start and end of the 

project and no noticeable change in K  was found. The calibration curve for the full 

range of flow rates used in the flow loop system is shown in Figure 6-4. This curve 

gave good agreement with the factory supplied meter factor over the specified range 

for the turbine meter.  

 

 

Figure 6-4: Turbine meter calibration 
 

In determining the best straight line for the measured points the observed physical 

reality must be the important consideration. It was quite clear from the measurement 

procedure that when no flow passed through the meter (f = 0) the reading on the meter 

was zero. That is there was no “zero error”. Thus the best fit straight line had to pass 

through the point (0,0). This is quite easy to achieve and there are any number of 

software packages readily available that can achieve this. Using [www.savetman.com 

(accessed 21/01/10)] it was shown that the best fit straight line passing through the 

measurement points and (0,0) had K= 0.0455m3h-1Hz-1.  The equation for the line is: 
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f 0455.0w,refQ  m3h-1Hz-1 

 

Figure 6-4 shows a clear linear relationship between f  and refw,Q , as the flow rate 

increased. The factory supplied meter factor for this meter was 0.0455m3h-1Hz-1 over 

a design range of 3.41m3h-1 to 40.88m3h-1. The best fit line calculated from the 

calibration experiments gave a meter factor of 0.0455m3h-1Hz-1. Then the calculated 

turbine meter factor from the calibration experiment agreed with the factory 

calibration to four decimal places.  

6.3.3 Differential pressure sensor 
 
A schematic representation of the differential pressure cell (dp cell) is shown in 

Figure 6-5. 

 

Figure 6-5: Schematic of the differential pressure cell installation 
 

With reference to Figure 6-5, if the time averaged properties of the multiphase flow in 

the pipe are steady then it is possible to write;  

FLcosθ gmρ2P1P                                                         6-7 

where:  1P  and 2P  are the upstream pressure and downstream pressures respectively, 

L  is the length of pipe under consideration, F  is the frictional pressure loss along the 

length of pipe, mρ  is the mean density of the flowing fluid (which is assumed 
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constant) and  g is 9.81ms-2. Since the pipe is inclined at an angle θ  to the vertical, 

and the length of the pipe is L  the corresponding vertical height between the pressure 

tapping is Lcosθh   

 

Consider the case where only water flows; we have Equation 6-7 

 

Lcosθ gwρ2P1PΔP                                                      6-8 

where:ΔP is the differential pressure drop along the length of the pipe due to frictional 

losses in the water flow measured by the dp cell, and wρ  is the water density. 

 
The density of the mixture can be expressed as: 

 

wρ )
refs,

α(1sρ 
refs,

αmρ                                             6-9 

where:  
refs,

α is the mean solids volume fraction obtained by the dp cell.  

Combining Equations 6-7 and 6-8 , gives: 

 

FLcosθ gmρLcosθ gwρΔP                                        6-10                                

Equation 6-10 can be re-arranged to give Equation 6-11: 

Lcosθ g 
F-ΔP

wρmρ                                                              6-11    

From 6-9 and 6-11 

                       
Lcosθ g 

F-ΔP
wρ wρ 

refs,
αwρsρ 

refs,
α                                   6-12 

Equation 6-12 can be re-arranged to give Equation 6-13: 

                                      
)wρs(ρ Lcosθ g

FΔP
 refs,α 

                                               6-13 
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Before discussing frictional losses in multiphase flows it is necessary to discuss 

frictional losses in single-phase liquid flow. For the well-known case of viscous 

laminar flow shear resistance is the cause of frictional pressure losses. Of course, the 

higher the viscosity the greater the shear forces (Benedict, 1980; Massey, 1990). 

   
In a turbulent flow the energy needed to create eddies and vortices results in a so-

called eddy viscosity which causes the frictional pressure losses in turbulent flow to 

be much greater than for laminar flow. These eddies interact with the surface of the 

pipe causing additional pressure losses. In a solids-liquid flow other interactions such 

as particle-particle, particle-fluid, and particle-wall interactions occur (Roco, et. al., 

1983). With upward vertical flow the turbulent eddy patterns will be modified which, 

in turn modifies the shear stresses in the flow.  

 
There is a wide range of opinion on the effect of the addition of solids to the flow. 

Govier and Aziz (1972) have reported that for vertical flow the addition of small 

particles of diameter of less than one hundredth of a mm has minimal effect. They 

claim that in such circumstances a reasonable approximation of the pressure losses 

can be obtained the friction factor for the carrier fluid alone. Mizukami, et. al., (1992) 

reported the same findings for solids-gas flow. Durand and Newitt (see Govier and 

Aziz, 1972) found the same effect with inclined flows provided the particles did not 

settle out, but remained suspended in the flow. Interestingly, it has been found for 

two-phase flow of gas in liquid and fine particles in liquid that frictional pressure 

losses are lower than in a single-phase flow, Serizawa, et, al., (1975). Roco and Shook 

(1983) have reported that the settlement of solid particles onto the pipe wall in 

inclined flow will decrease the pressure drop in the flow.  

 
However, a number of authors have reported that frictional pressure losses in two-

phase flow as higher than for single-phase flows provided the solids volume fraction 

>0.15 (Chen and Kadambi, 1994; Turian and Yuan 1977; Akagawa, et. al., 1989). 

Beggs and Brill (1973) reported that such frictional pressure losses could be up to 

three times those in single-phase flow but that that the pressure loss decreased as the 

mixture velocity increased. It was generally agreed that the pressure drop due to 

frictional losses is much less than pressure losses due to the change in potential 

energy of the flow see Akagawa, et. al., (1989).  
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On the basis of the brief literature review above it was decided that, to a first 

approximation, it would be acceptable to assume that a single-phase friction factor 

could be used to represent the frictional losses in the present investigation. The 

frictional losses in both laminar and turbulent single-phase flow were quantified by 

Darcy, and the Darcy-Weisbach equation is now considered the best empirical 

relation for pipe-flow resistance. The pressure loss according to the Darcy-Weisbach 

as reported by Massey (1990) for a circular pipe carrying only water is: 

D

2
w

u R Lw2ρ
F                                                                 6-14 

Here R  is an empirical friction factor which will depend largely on whether the flow 

is turbulent or not and the surface roughness of the wall of the pipe,  wu is the mean 

flow velocity, D  is the pipe diameter (80mm), wρ  is the density of the fluid 

( waterρ =  1000kgm-3), L is the length of the pipe and θ is the angle the pipe makes 

with the vertical. A number of practical methods have been developed to estimate R, 

see Massey (1990). But these are not easy to use because it is difficult to quantify 

such factors as the pipe roughness. It is usually advisable to determine the friction 

factor experimentally for each flow condition and each application. This is what was 

done in the current investigation. 

 
Here R  is an empiric friction factor which will depend largely on whether the flow is 

turbulent or not and the surface roughness of the wall of the pipe, u is the mean flow 

velocity, D is the pipe diameter (80mm), and wρ  is the density of the fluid (waterρ =  

1000kgm-3). A number of practical methods have been developed to estimate R, see 

Massey (1990). But these are not easy to use because it is difficult to quantify such 

factors as the pipe roughness. It is usually advisable to determine the friction factor 

experimentally for each flow condition and each application. This is what was done in 

the current investigation. 

 
In a single-phase liquid flow: 

 

FΔP                                                                                    6-15 
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Rearranging Equation 6-14 and using Equation 6-15 gives: 

)2
w

u ( Lw2ρ

ΔP D 
R                                                              6-16 

Using Equation 6-16 it is now possible to experimentally determine the relationship 

between R and wu  for the flow loop working section in the present investigation. 

Single-phase water flows were set up with known t,refw,Q  measured using the 

turbine meter described in Section 6.3.2. From t,refw,Q it is possible to calculate wu  

the mean water velocity in the pipe using Equation 6-17 where A  is the cross-

sectional area of the working section. The value of R was calculated using Equation 

6-16 and using the  measured differential pressure  ΔP  from the dp cell. 

 

A
reft,w,

Q

wu                                                                     6-17 

 

Equation 6-16 enables the relationship between R  and w
u  to be determined 

experimentally for the flow loop working section. The first step was to use only water 

in the system and to measure a volume flow rate, t,refw,Q , using the turbine meter. 

wu , the mean water velocity in the pipe could be calculated immediately. 

 
By combining the measured pressure difference in the working section, ∆P, with 

Equation 6-16 it was possible to calculate the value of R  for these flow conditions. 

The resulting curve is shown in Figure 6-6. A least squares fit sixth order polynomial 

approximation, Equation 6-16, was used to relate R  to w
u .  

 0.0976  0.7912  2.86453  5.39114  5.49955  2.87086  0.597R
w

u
w

u
w

u
w

u
w

u
w

u     

                                                                                                                                   6-18 



EXPERIMENTAL APPARATUS 
 

 209 

 

Figure 6-6: Variation of friction factor, R, with w
u  

 

Figure 6-6 shows the experimentally determined values of R . The shape of the curve 

shows the accepted increase in friction factor R  as the flow velocity decreases w
u , 

see Massey (1990)  and Cory, PhD thesis (1999). 

 
For two phase solids water flows F  was obtained using  

D

2
h

u R L w2ρ 
F                                                                6-19 

where;  

A
refs,

Q
refw,

Q

h
u

                                                         6-20 

And the value of R that was used was obtained from Equation 6-18 by subtitling hu  

for  w
u . The value of F  obtained from Equations 6-19 and 6-20 above was used in 

Equation 6-13 to enable 
refs,

α  to be calculated in two phase solids liquid flows. 
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6.4 Experimental procedure 
 
The experimental procedure used in the present investigation can be divided into three 

sections. These are the initial data acquisition, followed by initial and secondary data 

analysis. 

6.4.1 Experimental data acquisition 
 
The ICC device was installed in the solids-water multiphase flow loop at the 

University of Huddersfield as shown in Figure 6-2. In the current investigation 

measurements were acquired from the ICC using appropriate electrode configurations 

(see Tables 4-2, 4-3 and 4-4). This operation was carried out using the ICC control 

switching circuits and data acquisition software described in Chapter 3. The spatial 

locations of the centre of action for each rotational position for Config-I, II and III are 

listed in Tables 4-5 and were arranged as shown in Figure 4-17.  In this study, data 

were collected for many different flow conditions. These flow conditions were based 

on various water and solids flow rates (see Table 6-1). Nine flow conditions were 

used for each of three different pipe inclination (o0 , o15 and o30 ). Table 6-1 shows 

the range of solids-liquid flow conditions for the three inclination angles. Each of 

these flow conditions were applied for each rotational position of each of electrode 

configurations I,II and III as listed in Tables 4-2, 4-3 and 4-4.  

 

Table 6-1: Flow rates used in the current investigation 

Flow 
condition 

no: 

Angle of 
inclination 
of test pipe 

Solids 
volumetric flow 

rate, 

refs,Q (m3h-1) 

Water 
volumetric flow 

rate, 

refw,Q (m3h-1) 

1 0o 0.696 4.25 

2 0o 0.750 5.49 

3 0o 0.724 6.12 

4 0o 1.188 6.18 

5 0o 1.225 6.45 

6 0o 1.183 6.51 

7 0o 2.229 5.87 

8 0o 1.998 7.98 

9 0o 1.974 9.35 

10 15o 0.613 9.45 
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The ICC device was configured as a dual-plane system. Measurements were 

simultaneously acquired from the two electrode arrays. After analysis the 

measurements gave profiles of the conductivity distribution within the flow cross-

section. Variations in conductivity recorded for a given electrode arrangement in the 

first array were cross-correlated with variations in conductivity recorded for the same 

electrode arrangement at the second array. This allowed a profile of the solids velocity 

to be calculated for each flow condition. Selection of the region of flow to be 

interrogated was performed by an electrode selection mechanism for both electrode 

arrays A and B (see Section 3.7). 

 
In order to obtain a profile of the solids volume fraction the conductivity 

measurements acquired from one array of electrodes were reconstructed using the 

technique described in sections 3.10 and 6.4.3.2. 

6.4.2 Initial data analysis 
 
As described in Section 3.7 the ICC flow meter is controlled by an electrode selection 

switch circuit which allow selection of each rotational position listed in Tables 4-2, 4-

3 and 4-4.  For each rotational positions selected (for Configs-I, II and III), a data set 

11 15o 0.731 10.91 

12 15o 0.704 12.43 

13 15o 1.187 12.82 

14 15o 1.104 13.94 

15 15o 1.010 15.43 

16 15o 1.631 14.05 

17 15o 1.587 15.26 

18 15o 1.623 16.94 

19 30o 0.360 7.218 

20 30o 0.591 10.79 

21 30o 0.549 12.13 

22 30o 0.951 12.47 

23 30o 1.010 14.06 

24 30o 0.959 15.66 

25 30o 1.410 14.10 

26 30o 1.651 15.96 

27 30o 1.623 17.12 
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was collected for 60 seconds. These data sets were then written to a text file in 

MATLAB. This text file contain two sets of data,  the first set was the data obtained 

from the first array and in the second set the data obtained from second array (see 

Section 3-9).  A series of MATLAB codes were written to carry out some initial 

analysis on this data (see Appendix Code-1). 

 
The measurement signals obtained by the ICC using the eight rotational positions for 

each electrode configuration listed in Tables 4-2, 4-3 and 4-4 were then cross-

correlated using a cross-correlation function in MATLAB. The time delay, pt , of the 

peak of the resulting cross correlation function of the signals obtained from the sensor 

arrays at A and B, was then written to a text file. This procedure was repeated for each 

different rotational position listed in Tables 4-2, 4-3 and 4-4 during the experimental 

testing. 

 

6.4.3 Secondary data analysis 
 

6.4.3.1 Local solids axial velocity 
 
In order to calculate the local axial solids velocity,su , it is necessary to measure the 

time taken for the particles to pass between array A and array B of the ICC. su  can be 

obtained by Equation 6-21 where L  is the distance between the two arrays. 

pt

L
su                                                                                  6-21 

The local axial solids velocity profiles results obtained by ICC are presented for the 

test pipe inclined angles at o0 , o15  and o30  to the vertical, eight different rotational 

positions were set individually for both arrays A and B using Config-I,II and III as 

listed in Tables 4-2, 4-3 and 4-4. For each rotational position data were collected for 

60 seconds. This process was repeated for twenty seven flow conditions (see Table 6-

1).  

6.4.3.2 Local solids volume fraction 
 
In order to calculate the local solids volume fraction sα  using εaxwell‟s relationship 

(Maxwell, J.C. (1873)) it is necessary to use the measured values of the local solids-
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water mixture conductivity obtained from the ICC device mı the water 

conductivity wı  as shown in Equation 6-22 which is reproduced here. 





 




w
ı

m
ı

10.5

wı
mı

1

sα                                                                 6-22 

In the current investigation, the solids volume fraction profiles were obtained from 

one electrodes array only (Array B) see Figure 3-9. The technique presented in 

Section 3-10 was performed for each configuration listed in Tables 4-2, 4-3 and 4-4, 

eight different rotational positions for each Config-I, II and II were defined and data 

were collected for 60 seconds for each rotational position.  

6.4.3.3 Integrated global measurements of solids volume fraction, solids 
axial velocity and solids volumetric flow rate from the local probe 

 
The distributions of the local solids volume fraction and local axial velocity obtained 

by the ICC device can be used to estimate meass,α , meass,u  and meass,Q : the 

mean solids volume fraction, the mean solids axial velocity and the solids volumetric 

flow rate respectively. In order to calculate the mean global values of these flow 

parameters it is necessary to integrate the local values determined in the previous two 

sections. This is done using Equations 6-23, 6-24 and 6-25: 

dA
A

sα
A

1
meass,α                                                            6-23  

                                                     





A

dA
s

α
A

dA
s

u
s

α

meass,u                                                           6-24 

 

dAsu
A

sαmeass,Q                                                            6-25 

where: A represents the cross section area of the pipe.  
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6.4.3.4 Reference measurement 
 

Reference measurements of refs,Q   and refw,Q  were obtained as described in 

Section 6.3.1. To calculate reference measurements of 
refs,

α   see Section 6.3.3 it 

was necessary to use the differential pressure data. It is also now possible to calculate 

the reference solids axial velocity, s,refu .  

refs,
αA

refs,
Q

refs,u                                                                 6-26 

It should be noted at this point that these reference measurements of 
refs,

α , 

refs,u and refs,Q  are global values and can only be compared with the integrated 

values of the ICC device measurements as shown in Section 6.4.3.3.
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Chapter 7 EXPERIMENTAL RESULTS 

 
 
 
 

 

This chapter reports the test results obtained using the ICC flow meter and the 

experimental methodology described in Section 6.4. The ICC was used to measure 

the velocity of the solids volume fraction using cross-correlation over the ‘effective 

sensing regions’ associated with the different electrode configurations described in 

Tables 4-2, 4-3 and 4-4. The range of solids-liquid flow measurement conditions are 

described in Section 7.1.  Section 7.2.2 presents the local axial solids velocity 

profiles obtained by the ICC meter. Sections 7.2.3 and 7.2.4 show the 3D profiles of 

the local axial solids velocity and discuss the local axial solids velocity obtained by 

the ICC respectively. Section 7.2.5 shows the results of the local axial solids volume 

fraction results obtained by the ICC system. Sections 7.2.6 and 7.2.7 show the 3D 

profiles of the local axial solids volume fraction obtained by the ICC and discuss 

the local axial solids volume fraction profiles respectively. Finally, In Section 7.3, 

the results have been compared with the values obtained from the reference 

measurement devices.  
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7.1 Flow conditions tested with the ICC meter 
 
For each flow condition tested with the ICC meter, the time averaged reference values 

obtained ( refs,Q , refw,Q , refs,α  and refs,u ), their definitions and the methods of 

measurement are shown in Table 7-1. 

 
Table 7-1: Measured parameters and measurement nomenclature 

 

 

Table 7-2 shows the reference flow conditions that were used in the experimental 

tests. Each experimental test took place on a separate occasion. Table 7-2 also shows 

the reference solids and water volumetric flow rates obtained from the reference 

devices (see Table 7-1) and the reference value of the mean solids volume fraction 

refs,α , obtained using the differential pressure measurement technique described in 

Section 6.3.3. 

 
Table 7-2: Flow conditions used in the experimental study 

 

Parameter Definition Method of measurement 

refs,Q  

Reference solids 
volumetric flow 

rate 

The time average solids volumetric flow over the 
experimental test run measured using the gravimetric 
hopper system as described in Sections 6.3.1. 

refw,Q  

Reference water 
volumetric flow 

rate 

The time average water volumetric flow rate over the 
experimental test run measured using the gravimetric 
hopper system as described in Section 6.3.1. 

refs,α  

Reference  
solids volume 

fraction 

The time average solids volume fraction over the 
experimental test run measured using pressure 
gradient method corrected for frictional pressure loss 
as described in Section 6.3.3. 

refs,u  
Reference solids 

velocity 

The time average solids velocity over the experimental 
test run measured by combining the solids volumetric 
flow rate and solids volume fraction measurements as 
described in Section 6.4.3.4. 

Flow 
condition 

no: 

Angle of 
inclination 
of test pipe 

Solids 
volumetric flow 

rate, refs,Q  

(m3h-1) 

Water 
volumetric flow 

rate, refw,Q  

(m3h-1) 

Solids 
volume 
fraction

refs,α  

(ms-1) 

Solids 
velocity 

refs,u  

(ms-1) 

1 0o 0.696 4.25 0.16 0.244 
2 0o 0.750 5.49 0.132 0.289 

3 0o 0.724 6.12 0.121 0.33 
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7.2 Experimental results using the ICC meter 
 
This section presents the local axial solids velocity and local solids volume fraction 

profiles results of the solids water flows as determined using the ICC meter, see 

Sections 7.2.1 and 7.2.2. The profiles are shown for vertical upward flows and upward 

flows inclined at 
o15 and 

o30 to the vertical. These profiles are presented for each of 

the twenty-seven flow conditions shown above in Table 7-2, using each of the eight 

different rotational positions of Configs-I, II and III, listed in Tables 4-2, 4-3 and 4-4. 

The profiles obtained of the local solids velocity and the solids volume fraction will 

be discussed in Sections 7.2.2 and 7.2.4 respectively. 

4 0o 1.188 6.18 0.181 0.37 

5 0o 1.225 6.45 0.171 0.4 

6 0o 1.183 6.51 0.162 0.41 

7 0o 2.229 5.87 0.29 0.43 

8 0o 1.998 7.98 0.211 0.53 

9 0o 1.974 9.35 0.18 0.61 

10 15o 0.613 9.45 0.12 0.29 

11 15o 0.731 10.91 0.13 0.31 

12 15o 0.704 12.43 0.12 0.33 

13 15o 1.187 12.82 0.19 0.35 

14 15o 1.104 13.94 0.16 0.39 

15 15o 1.010 15.43 0.15 0.41 

16 15o 1.631 14.05 0.21 0.42 

17 15o 1.587 15.26 0.20 0.44 

18 15o 1.623 16.94 0.22 0.34 

19 30o 0.360 7.218 0.09 0.22 

20 30o 0.591 10.79 0.15 0.21 

21 30o 0.549 12.13 0.09 0.34 

22 30o 0.951 12.47 0.19 0.28 

23 30o 1.010 14.06 0.15 0.37 

24 30o 0.959 15.66 0.17 0.32 

25 30o 1.410 14.10 0.19 0.41 

26 30o 1.651 15.96 0.21 0.46 

27 30o 1.623 17.12 0.18 0.51 
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7.2.1 Experimental procedure 
 
The ICC flow meter was used in the solids-water multiphase loop, see Figures 6.1 and 

6.2. In chapter 4, three electrode configurations are described: Config-I, Config–II and 

Config-III, see Tables 4-2, 4-3 and 4-4.  The experimental procedure was as follows: 

Config-I, see Table 4-2, is the electrode arrangement where one electrode is excited, 

an adjacent electrode is the measurement electrode and the other six electrodes are 

earthed. There are thus eight different rotational positions that can be used to 

interrogate the flow for each of arrays A and B, see Figure 7-1. This configuration 

was used to measure the local solids velocity distribution by cross-correlating 

fluctuations in the measured conductivity at corresponding regions of the flow cross-

section. The local solids volume fraction was measured using the conductivity of the 

mixture as measured by the ICC using the Maxwell equation (Maxwell, J.C. (1873)). 

The region of flow to be interrogated was selected by the choice of electrodes, which 

were the same for both array A and B. For example, to measure the solids velocity in 

the top of an inclined pipe, area H in Figure 7-1, electrode 6 was set as excitation, 

electrode 7 as measurement and the remaining electrodes were connected to ground. 

Similarly, to measure the solids velocity on the lower side, area A, electrode 2 was set 

as excitation and electrode 3 as measurement, and the remaining electrodes were set 

to ground. To be precise it is the areas of A and H near the circumference which 

would be interrogated, see Figure 4-15. By cyclic rotation of the excitation and 

measurement electrodes, eight rotational position were produced which interrogated 

the eight areas of the pipe in order. For each rotational positional in Config-I the 

measured solids velocity or volume fraction is plotted against the location of the 

centre of action (CoA) for that rotational position see Figures 7-3 to 7-29.   
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Figure 7-1: Single 8 electrodes array 
 
Config-II, see Table 4-3 is where one electrode is excited, both adjacent electrodes are 

set as the measurement electrodes and the other five electrodes are earthed. Again 

there are thus eight different rotational positions that can be used to interrogate the 

flow for each of arrays A and B. With Config–II, the experimental procedure was 

similar to that for Config-I except that this electrode configuration increases the area 

of the region being interrogated (see Figure 4-16 (a) and (b)). Note the area being 

interrogated is twice that with Config-I. If we wanted to measure the local solids 

velocity in the lower side of the pipe electrode 2 was set as excitation and electrodes 1 

and 3 as measurement, with all other electrodes set to ground for both arrays A and B. 

Here areas the outer portions of areas A and C will be interrogated, see Figure 4-16 (a 

and b). Once again by cyclic rotation of the excitation and measurement electrodes 8 

rotational positions were produced which interrogated eight areas of the pipe in order. 

 
Config-III, see Table 4-4 is where two adjacent electrodes are excited, the adjacent 

electrodes are set as the measurement electrodes and the other four electrodes were 

earthed. To measure the local solids velocity and local solids volume fraction in the 

lower side of the pipe electrodes 2 and 3 were set as excitation, and electrodes 1 and 4 

as a measurement, and the remaining four electrodes were set to ground for both 

arrays A and B. Here those portions of the areas A, B and C nearest the circumference 

will be interrogated, see Figure 4-17 (a and b). Again there are 8 rotational positions. 

 
Config-ψ  represents a combination of Configs-I, II and III with the aim of 

overcoming the problem of insufficient definition of the flow in the cross-section. As 

explained earlier in Section 4.7, the CoA was calculated for Config-I, II and III for 
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each rotational position using the sensitivity distribution described in Chapter four. 

For each of Configs-I,II and III local solids velocity  and local volume fraction at 

eight spatial locations, corresponding to the CoA of the eight rotational positions for 

the given configuration were determined. For Config-ψ  we determine the solids 

velocity and the volume fraction at twenty four spatial locations corresponding to the 

CoA of the eight rotational positions for each of Config-I, II and III. 

7.2.2 Local axial solids velocity profiles from the ICC 
 
In this section the results measured using the ICC meter are presented for the test pipe 

inclined at 0o, 15o and 30o to the vertical.  For all these results the y-coordinate lies 

along the longitudinal axis of the pipe from the lowest point on the pipe a cross a 

diameter to the opposite side (see Figure 7-2) and the x-axis is horizontal. A study of 

previous literature showed that the both local velocity and local volume fraction are 

principally a function of the y co-ordinate (and are essentially constant as the x co-

ordinate varies for a fixed value of y).  For this reason it was decided to plot volume 

fraction and velocity profiles against the y-coordinate of the Centre of Action. Figures 

7-3 to 7-29 show the distribution of the measured solids velocity obtained from the 

ICC against the y-coordinate of the Centre of Action.  

 

 

Figure 7-2: The position of the y axis relative to the pipe cross-section. 
 

Figures 7-3 to 7-11 show the results obtained for flows in a vertical pipe.  Figures 7-

12 to 7-20 show the results for flows obtained when the pipe is inclined at an angle of 

o15  to the vertical. Finally, Figures 7-21 to 7-29 show the results for flows obtained 

when the pipe is inclined at an angle of o30  to the vertical. These results presented in 

this section show the measured local axial solids velocity plotted against Centre of 
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Action y-coordinate. Note that, for every flow condition reference values are given of 

(i) the mean solids volume fraction obtained by the differential pressure measurement 

technique (see section 6.3.3) (ii) the solids and water volumetric flow rates obtain by 

hoppers load cell (see section 6.3.1) (iii) the mean solids velocity(see section 6.4.3.4). 

  
For each rotational position data were collected for 60 seconds. Data from both arrays 

were cross correlated to obtain the local axial solids velocity for a defined rotational 

position using the MATLAB code listed in Appendix (Code-6). This process was 

repeated for the twenty seven flow conditions listed in Table 7-1. 

7.2.2.1 Local solids velocity profiles for upward flow in a vertical pipe 
 
In each figure three sets of data are presented for Configs-I, II and III.  Note that, in 

the vertical flow results (Figures 7-3 to 7-11) the plots also include the calculated 

reference solids velocity and reference water flow velocity,s,refu and w,refu  

respectively, and which are given by:  

refs,αA
refs,Q

s,refu                   (7-1) 




refs,α-1A

refw,Q

w,refu                                                       (7-2) 

The vertical red dotted line represents s,refu  and the vertical brown dotted 

line w,refu . It can be seen from Figure 7-3 to 7-11 that the local axial solids velocity 

profiles appear flat across the pipe cross-section. Lucas et.al (1999, 2000) and Cory 

PhD thesis 1999 show a similar finding, that the local axial solids velocity profiles in 

vertical solids and water flows is flat across the cross the pipe section. This is an 

acceptable result because in the vertical flow the solids distribution over the pipe 

cross-section would be expected to be uniform, and this is what was visually 

observed. There is a small variation between the three defined configurations 

(Configs-I, II and III), however, the variation is within an acceptable range. 

Obviously, there are differences in the results obtained for Configs-I, II and III as 

indicated in Figures 7-3 to 7-11 for the vertical flow. This is due to the following 

reasons: 
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 Random variations in the liquid/solid flows, which are likely to be small. 

 
 Experimental errors inherent in the system, which are investigated and 

reported in this chapter.  

 
 The interrogated area being investigated is different for each configuration, but 

this would not be expected to be significant here as the solids velocity profile 

would be expected to be uniform.  
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Figure 7-3: Local solids velocity profiles for vertical flow, flow condition 

1( refs,Q =0.696 m3h-1, refw,Q  = 4.25 m3h-1) 
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Figure 7-4: Local solids velocity profiles for vertical flow, flow condition 2 

( refs,Q =0.750 m3h-1, refw,Q = 5.49 m3h-1)  
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Figure 7-5: Local solids velocity profiles for vertical flow, flow condition 3(refs,Q  

=0.724 m3h-1, refw,Q  = 6.12 m3h-1) 
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Figure 7-6: Local solids velocity profiles for vertical flow, flow condition 4(refs,Q  

=1.188 m3h-1, refw,Q = 6.18 m3h-1)  
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Figure 7-7: Local solids velocity profiles for vertical flow, flow condition 5 

( refs,Q =1.225 m3h-1, refw,Q  = 6.45 m3h-1) 
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Figure 7-8: Local solids velocity profiles for vertical flow, flow condition 6 (refs,Q  

=1.183 m3h-1, refw,Q = 6.51 m3h-1) 
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Figure 7-9: Local solids velocity profiles for vertical flow, flow condition 

7( refs,Q =2.229 m3h-1, refw,Q  = 5.87 m3h-1) 
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Figure 7-10: Local solids velocity profiles for vertical flow, flow condition 8(refs,Q = 

1.998 m3h-1, refw,Q  = 7.98 m3h-1) 
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Figure 7-11: Local solids velocity profiles for vertical flow, flow condition 9(refs,Q  

=1.974 m3h-1, refw,Q = 9.35 m3h-1) 

 

refs,u  

refs,u  

refw,u  

refw,u  



EXPERIMENTAL RESULTS 
 

 227 

7.2.2.2 Local solids velocity profiles for flow inclined 15° from vertical 
 
It should be remembered that the area of the pipe being interrogated is different for 

each electrode configuration, so for inclined pipes where the flows are non-

symmetrical and the solids velocity varies rapidly with spatial locations in the pipe, 

the results will show consistent differences. This is the major cause of the different 

results obtained for Configs-I, II and III.  

 
The results for Config-I refer to an electrode configuration where one electrode is 

excited, an adjacent electrode is the measurement electrode and the other six 

electrodes are earthed. The CoA for each rotational position for Config-I is about 

6mm from the pipe wall, see Figure 4-15. Config-II is where one electrode is excited 

and both adjacent electrodes are set as the measurement electrodes and the other five 

electrodes are earthed. The CoA for for each rotational position for Config-II is about 

15mm from the pipe wall, see Figure 4-16. The electrode configuration for Config-III 

is where two adjacent electrodes are excited, the adjacent electrodes are set as the 

measurement electrodes and the other four electrodes were earthed. The CoA for each 

rotational position for Config-III is about 20mm from the pipe wall, see Figure 4-17.  

 
The sensitivity distribution profiles and effective sensing regions presented and 

defined in Sections 4.8 and 4.9,  are different for Configs-I,II and III, see Figures 4-

15, 4-16 and 4-17.  For Config-I the sensing region covers just the two electrodes 

concerned and extends about seven squares (14mm) into the pipe. For Config-II the 

sensing region expands to cover three electrodes and extends about eight squares 

(16mm) into the pipe. For Config-III the sensing region expands further to include 

four electrodes and extends about thirteen squares (26mm) into the pipe. It can be 

seen that the effective area over which the measurement is made is different for each 

configuration. 

 
Obviously that there are differences in the results obtained for Configs-I, II and III as 

indicated in Figures 7-12 to 7-20 and Figure 7-21 to 7-29  when the pipe is inclined at 

an angle to the vertical and the flow velocity varies with spatial location in the flow 

cross section. For instance, for the rotational position where Config-I measures the 

velocity at the top of the pipe, because the effective area over which the measurement 

is taken is small, the measurement corresponds closely to the maximum value of the 
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solids velocity. Config-II will measure the velocity averaged over a greater area, but 

because the maximum value is at the top and decreases as you move diametrically 

across the pipe, Config-II will measure a slightly smaller velocity. Config-III will 

measure the velocity over an even greater area and so the value measured should be 

smaller than for either Config-I or II. Thus Config-I should consistently gives the 

highest velocity at the top of the pipe for all flow conditions, and consistently give the 

lowest value (possibly even negative for backward flow) at the lower side of the 

inclined pipe. Config-III should consistently give the lowest velocity at the top of the 

pipe and is very unlikely to give a negative velocity at the lower side of the pipe. It is 

also predictable that the measured velocity from each of Configs-I, II and III should 

be approximately equal towards the centre of the pipe (CoA = 0). These predictions 

are confirmed by the measurement of flows shown in Figures 7-12 to 7-29 (Figure 7-

18 does not conform to this trend and is discussed in more detail later). 

 
Figures 7-12 to 7-20 present results for the pipe inclined at o15 . It is clear from the 

results obtained that the local axial solids velocity is significantly greater at the upper 

side of the inclined pipe than at the lower side. Also, for inclined upward flow, the 

distribution of the measured local solids velocity su  is highly non-uniform. Once 

again Lucas et al (1999, 2000) and Cory (1999) reported similar findings using six 

local probes and ERT.  

 
Figure 7-12 shows there is an evidence of a negative local solids velocity on the lower 

side of the inclined pipe of about -0.19ms-1 for Config-I, flow condition number 10. 

This means that, in this region, the solids particles were actually flowing backwards 

down the pipe and this agreed with the visual observation of the flow. The local axial 

solids velocity on the upper side of the inclined pipe for the same flow condition was 

0.8ms-1. Similarly, for Config-II, there was a negative local axial solids velocity at the 

lower side of the inclined pipe, about -0.045 ms-1 (see Figure 7-12). Here, at the upper 

side of the inclined pipe there was a local axial velocity of about 0.75 ms-1. For 

Config-III, the local axial solids velocity was about 0.01 ms-1 at the lower side of the 

inclined pipe and about 0.71 ms-1 at the upper side of the inclined pipe (see Figure 7-

12). A somewhat similar pattern of results can be seen in Figure 7-13 for flow 

condition number 11. 
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For flow conditions numbered 12 to 18, none of Configs-I, II or III detected negative 

local axial solids velocities at the lower side of the inclined pipe, see Figures 7-14 to 

7-20. However, all three electrode arrangements detected higher local solids velocity 

at the upper side of the inclined pipe than the lower side. These results agree with 

visual observations of the flow. In Figure 7-18 (flow condition 25), Config-I shows a 

negative local axial solids velocity in the centre of the pipe. The author did observe 

this phenomenon at other times and attributed it to some unsettled solid particles in 

the cross-section associated with the behaviour of the solids pump when it had being 

running for a long time. 
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Figure 7-12: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 10 ( refs,Q = 0.613 m3h-1, refw,Q  = 9.45 m3h-1) 
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Figure 7-13: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 11( refs,Q =0.731 m3h-1, refw,Q  = 10.91 m3h-1) 
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Figure 7-14: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 12( refs,Q =0.704 m3h-1, refw,Q = 12.43 m3h-1) 
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Figure 7-15: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 13( refs,Q  =1.187 m3h-1, refw,Q  = 12.82 m3h-1) 
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Figure 7-16: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 14( refs,Q  =1.104 m3h-1, refw,Q  = 13.94 m3h-1) 
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Figure 7-17: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 15( refs,Q  =1.010 m3h-1, refw,Q = 15.43 m3h-1) 
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Figure 7-18: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 16( refs,Q  =1.631 m3h-1, refw,Q  = 14.05 m3h-1) 
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Figure 7-19: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 17( refs,Q  =1.587 m3h-1, refw,Q = 15.26 m3h-1) 
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Figure 7-20: Local solids velocity profiles for flow inclined o15  from vertical, flow 

condition 18( refs,Q  =1.623 m3h-1, refw,Q  = 16.94m3h-1) 
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7.2.2.3 Local solids velocity profiles for flow inclined 30° from vertical 
 
In Figures 7-21, 7-22, 7-24 and 7-25 (corresponding to flow conditions 19, 20, 22 and 

23) Configs-I and II show negative local axial solids velocities at the lower side of the 

inclined pipe. For all four flows conditions the rotational position for Config-I 

corresponding to where the effective sensing region is closest to the lower side of the 

inclined pipe consistently measured the most negative local axial solids velocity 

(compared to the Configs-I and II). There “most negative” axial velocities for Config-

I about -0.17ms-1, -0.3 ms-1, -0.25 ms-1 and -0.25 ms-1 respectively.  

 
For Figure 7-21, at the upper side of the inclined pipe Configs-I and II show local 

solids velocities of about 0.98ms-1 and 0.85ms-1 respectively while Config-III shows 

0.80ms-1. The differences between these values are attributed to the averaging effects 

of the different rotational position, see discussion above. Similar results are observed 

in Figures 7-22, 7-24 and 7-25.  

 
In Figures 7-23 and 7-26 to 7-29 Configs-I, II and III all show positive local solids 

velocity at both upper and lower side of the inclined pipe. However, as expected for 

all flows there was a higher local solids axial velocities at the upper side of inclined 

pipe than the lower side of the inclined pipe. Visual observations were consistent with 

this finding.  
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Figure 7-21: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 19( refs,Q  =0.360 m3h-1, refw,Q = 7.218 m3h-1) 
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Figure 7-22: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 20( refs,Q =0.591 m3h-1, refw,Q  = 10.79  m3h-1) 
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Figure 7-23: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 21( refs,Q  =0.549 m3h-1, refw,Q = 12.13 m3h-1) 
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Figure 7-24: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 22( refs,Q =0.951 m3h-1, refw,Q  = 12.47 m3h-1) 
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Figure 7-25: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 23( refs,Q  =1.010 m3h-1, refw,Q = 14.06 m3h-1) 
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Figure 7-26: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 24( refs,Q =0.959 m3h-1, refw,Q  = 15.66 m3h-1) 
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Figure 7-27: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 25( refs,Q  =1.41 m3h-1, refw,Q = 14.10 m3h-1) 
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Figure 7-28: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 26( refs,Q =1.651 m3h-1, refw,Q = 15.96  m3h-1) 
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Figure 7-29: Local solids velocity profiles for flow inclined o30  from vertical, flow 

condition 27( refs,Q  =1.623 m3h-1, refw,Q  = 17.12 m3h-1) 
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7.2.3 3D Profiles of the local axial solids velocity from ICC 
 
The local axial solids velocity profiles (o0 , o15 and o30 ) were plotted in 3D using an 

interpolation routine within MATLAB to show these profiles as a function of spatial 

location in the flow cross-section as defined by the x and y coordinates of the CoA see 

Table 4-5. The author developed software listed in Appendix (Code 6) in MATLAB 

to obtain the 3D plot profiles. Also, the results have been integrated to give overall 

measurement values as described in Section 6.4.3.3. In each of the 3D figures, there is 

a colour scale which represents the value of the local solids velocity (su ) at particular 

measuring point. The red colour represents maximum value of the solids velocity and 

colour blue represent the minimum value of (su ) at particular flow conditions. 

Config-ψ  represents a combination of Configs-I, II, III which is used to overcome 

the problem of the insufficient number of points in the flow cross section (see Section 

7.2.1).  

7.2.3.1 3-D Local solids velocity profiles for upward flow in a vertical 
pipe 

 

Figure 7-30: Local solids velocity profiles for flow in vertical pipe, flow condition 

1( refs,Q  =0.696 m3h-1, refw,Q = 4.25m3h-1) 
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Figure 7-31: Local solids velocity profiles for flow in vertical pipe, flow condition 

2( refs,Q  =0.750 m3h-1, refw,Q  = 5.49 m3h-1) 

 
Figure 7-32: Local solids velocity profiles for flow in vertical pipe, flow condition3 

( refs,Q =0.724 m3h-1, refw,Q = 6.12 m3h-1) 
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Figure 7-33: Local solids velocity profiles for flow in vertical pipe, flow condition 

4( refs,Q  =1.188 m3h-1, refw,Q = 6.18 m3h-1) 

 
Figure 7-34: Local solids velocity profiles for flow in vertical pipe, flow condition 

5( refs,Q  =1.225 m3h-1, refw,Q = 6.45 m3h-1). 



EXPERIMENTAL RESULTS 
 

 242 

 
Figure 7-35: Local solids velocity profiles for flow in vertical pipe, flow condition 

6( refs,Q =1.183 m3h-1, refw,Q = 6.51 m3h-1) 

 
Figure 7-36: Local solids velocity profiles for flow in vertical pipe, flow condition 

7( refs,Q =2.229 m3h-1, refw,Q  = 5.87 m3h-1) 
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Figure 7-37: Local solids velocity profiles for flow in vertical pipe, flow condition 

8( refs,Q  = 1.998 m3h-1, refw,Q = 7.98 m3h-1) 

 
Figure 7-38:  Local solids velocity profiles for flow in vertical pipe, flow condition 

9( refs,Q  =1.974 m3h-1, refw,Q = 9.35 m3h-1) 
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7.2.3.2 3-D Local solids velocity profiles for upward flow in a pipe 
inclined at 15° to the vertical 

 

 
Figure 7-39: Local solids velocity profiles for flow in pipe inclined at o15   to the 

vertical, flow condition 10( refs,Q = 0.613 m3h-1, refw,Q  = 9.45 m3h-1) 

 
Figure 7-40:  Local solids velocity profiles for flow in pipe inclined at o15  to the 

vertical, flow condition 11( refs,Q  =0.731 m3h-1, refw,Q  = 10.91 m3h-1) 
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Figure 7-41: Local solids velocity profiles for flow in pipe inclined at o15  to the 

vertical, flow condition 12( refs,Q  =0.704 m3h-1, refw,Q  = 12.43 m3h-1) 

 
Figure 7-42: Local solids velocity profiles for flow in pipe inclined at o15  to the 

vertical, flow condition 13( refs,Q  =1.187 m3h-1, refw,Q = 12.82 m3h-1) 
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Figure 7-43: Local solids velocity profiles for flow in pipe inclined at o15  to the 

vertical, flow condition 14( refs,Q =1.104 m3h-1, refw,Q = 13.94 m3h-1) 

 
Figure 7-44: Local solids velocity profiles for flow in pipe inclined at o15  to the 

vertical, flow condition 15( refs,Q =1.010 m3h-1, refw,Q = 15.43 m3h-1) 
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Figure 7-45: Local solids velocity profiles for flow in pipe inclined at  to the vertical, 

flow condition 16( refs,Q =1.010 m3h-1, refw,Q = 15.43 m3h-1) 

7.2.3.3 3-D Local solids velocity profiles for upward flow in a pipe 
inclined at 30° to the vertical 

 

 
Figure 7-46: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 19( refs,Q  =0.360 m3h-1, refw,Q  = 7.218 m3h-1) 
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Figure 7-47: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 20( refs,Q =0.591 m3h-1, refw,Q = 10.79  m3h-1) 

 
Figure 7-48: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 21( refs,Q =0.549 m3h-1, refw,Q = 12.13 m3h-1) 
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Figure 7-49: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 22( refs,Q  =0.951 m3h-1, refw,Q = 12.47 m3h-1) 

 
Figure 7-50: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 23( refs,Q =1.010 m3h-1, refw,Q = 14.06 m3h-1) 
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Figure 7-51: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 24( refs,Q =0.959 m3h-1, refw,Q = 15.66 m3h-1) 

 
Figure 7-52: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 25( refs,Q  =1.41 m3h-1, refw,Q  = 14.10 m3h-1) 
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Figure 7-53: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 26( refs,Q =1.651 m3h-1, refw,Q = 15.96  m3h-1) 

 
Figure 7-54: Local solids velocity profiles for flow in a pipe inclined at o30  to the 

vertical, flow condition 27( refs,Q  =1.623 m3h-1, refw,Q  = 17.12 m3h-1) 
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7.2.4 Discussion of the local axial solids velocity profiles 
 
3D profiles of the local solids velocity obtained using Configs-I, II and III for vertical 

flow (see Figures 7-30 to 7-38) show only small variations of the velocity profiles 

between the different configurations. The velocity profiles are concave, which may 

seem to imply that the solids velocity is lower in the centre of the pipe and greater 

nearer the pipe wall.  However, this effect is due the fact that the figures for Configs-I, 

II and III show the measurements made for the eight separate electrode arrangements. 

Thus, individually, they have an inbuilt sensitivity bias for solids close to the pipe 

wall. It could be said that there are an insufficient number of measuring points in the 

flow cross-section. Thus, as explained in Section 7.2.1 the separate measurements are 

combined so that, in effect, instead of eight separate measurements in each figure we 

obtain a measure of the local solids velocity profile corresponding to twenty-four 

simultaneous measurements. This has been named Config-ψ . Consider Figure 7-30, 

when the 24 data points are combined the velocity profile becomes flatter over the 

entire pipe cross-section. This is welcome because the profiles obtained for turbulent 

flow in a vertical pipe correspond well with accepted flow patterns. 

 
It is clear from Figures 7-39 to 7-45 that, for inclined upward flow, the distribution of 

the measured local axial solids velocity su  is highly non-uniform. At the lower side 

of the pipe, due to the higher local solids volume fraction (the solids accumulate due 

to gravitational effects) the axial velocity of the solids was lowest.  

 
When the pipe was inclined at o15 to the vertical the four flows with lowest values of 

the mean solids velocity produced a value of the local solids velocity su  which was 

negative at the lower side of the pipe (see Figure 7-39, 7-40 and 7-45). Figure 7-39 

(Configs-I, II andψ ) which show evidence of negative local axial solids velocity on 

the lower side of the inclined pipe indicate that, in this region, the solid particles were 

actually flowing backwards down the pipe Towards the upper side of the inclined 

pipe, the local axial velocity of the solid particles was relatively high and positive, 

indicating that the particles were flowing upwards through the working section. 

  
Figure 7-40 shows that for flow condition 11 there is a negative local axial solids 

velocity at the lower side of the inclined pipe. Figure 7-42 shows that for flow with 
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the pipe inclined at o15 , su  had a maximum value of 0.85ms-1 for flow condition 13. 

Note that, for flows inclined at o15  from the vertical the profiles all show qualitative 

agreement except for flow condition 16 (see Figure 7-45). Figure 7-45 shows a 

negative value of solids velocity su at the lower side of the pipe. It should be noted 

that Config-ψ  also shows a clear and distinct reversal of flow at the lower side of the 

pipe, which agreed with visual observation of the flow. 

 

During experimental testing both refs,Q and w,refQ  varied slightly but these small 

variations were not the cause of the substantial fluctuations to be seen in Figure 7-18 

for flow condition 16 ( refs,Q  = 1.631 m3h-1, w,refQ = 14.05 m3h-1) with the pipe at 

o15  to the vertical. It is more likely that for flow condition 16 in some parts of the 

pipe the presence of the solids caused fluctuation which occasionally caused wu  to 

fall below the critical velocity, cu , and the liquid was unable to suspend the solids. 

This caused significant fluctuations and in some cases flow reversal as shown in 

Figure 7-45. Secondly, it was observed that at low values of us, e.g at flow condition 

16, as some solid particles settled out their motion had a radial component which was 

sufficient to corrupt the cross-correlation function. In order to achieve an accurate 

measurement of us the peak of the cross-correlation function must be accurately 

located and any degradation of the function results in errors in the velocity 

measurement.  

 
Figures 7-46 to 7-54 present results when the pipe was inclined angle at o30  to the 

vertical.  Figure 7-46, flow condition 19, shows that at the lower side of the pipe 

(where the mean density of the solids–water mixture was relatively high due to the 

high local solids volume fraction) the axial velocity of the solids was low. Indeed, 

there is evidence of a negative local axial solids velocity on the lower side of the 

inclined pipe, indicating that, in this region, the solid particles were again flowing 

backwards down the pipe (this result agrees with visual observation of the flow). 

Towards the upper side of the inclined pipe, the local axial velocity of the solid 

particles was relatively high and positive, indicating that the particles were flowing 
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rapidly upwards through the working section in this region. In all cases for the pipe 

inclined at 30o to the vertical, where Config-I detected reversal of flow this was also 

found in Config-ψ , and was confirmed by visual observation. 

  
Figure 7-47, flow condition 20, shows that there is a negative local axial solids 

velocity of about -0.23ms-1 at the lower side of the inclined pipe and the local axial 

velocity reached 1.1ms-1 at the upper side of the inclined pipe. Also, Figure 7-49, flow 

condition 22, shows that there is a negative local axial velocity of about -0.20ms-1 at 

the lower side of the inclined pipe and the local axial solids velocity reached 1.2ms-1.  

 
Figure 7-50, flow condition 23, shows that there is a negative local axial solids 

velocity of about -0.20ms-1 at the lower side of the pipe, which agrees with the visual 

observation through the cross section of the pipe, and the maximum at the upper side 

of the inclined pipe is 1.3 ms-1. Figures 7-51 to 7-54 shows that there is no negative 

local solids velocity at the lower side of the inclined pipe, but that solids moved more 

slowly in the upward direction at the bottom of the pipe than at the top and this again 

agreed with visual observation. Figure 7-53 shows that at the top of the pipe us 

reached 1.2ms-1 for flow condition 17. However, on the lower side of the inclined pipe 

the local axial solids velocity was 0.1ms-1. The results obtained using the ICC meter 

agreed with Lucas et.al (1999, 2000) and Cory (1999) who measured solids in water 

flows using six electrode local probe and an ERT system.  

 

A search of the literature found no profiles for the local solids velocity, us, in inclined 

solids-liquid flow. However, Tabeling, et al., (1991) and Lucas (1995) have reported 

that for liquid-liquid flow in an inclined pipe, a steep gradient can occur in the 

velocity of the more dense phase with possible negative flow at the lower side of the 

pipe. Lucas et.al (1999, 2000) reported a negative flow for solids in solids-water flow 

in an inclined pipe. Scarlett and Grimley (1974) and Hsu, et al., (1989) have published 

complete cross-sectional profiles of us for horizontal solids-liquid flow but since the 

pipe was horizontal no reverse flow was observed. Both Scarlett and Grimley (1974) 

and Hsu, et al., (1989) reported a steep gradient of us as a function of the y-coordinate 

which can be attributed to gravitational effects. This suggests that the profile shapes 



EXPERIMENTAL RESULTS 
 

 255 

obtained during the current investigation are reliable. The profiles obtained from the 

ICC system also show good qualitative agreement with Lucas, et al., (1999, 2000). 

7.2.5 Local solids volume fraction profiles from ICC 
 
Solids volume fraction profiles were obtained using one electrodes array only (Array 

B) see Figure 3-9. The technique presented in Section 3-10 was used for each 

configuration listed in Tables 4-2, 4-3 and 4-4. Eight different rotational positions 

were again used for each of Configs-I, II and III. Data were collected for 60 seconds 

for each rotational position. The profiles are shown for vertical upward flows and 

upward flows inclined at o15 and o30 from the vertical, using the flow condition given 

in Table 7-2. 

 
The available literature shows that the local volume fraction profiles are principally a 

function of the y co-ordinate (and are essentially constant as the x co-ordinate varies 

for a fixed value of y), see Section 7.2.2. It was initially decided to plot solids volume 

fraction against the y-coordinate of the CoA (see Figure 7-2). Figures 7-55 to 7-81 

show the distribution of the measured solids volume fraction obtained from the ICC 

against the y-coordinate of the CoA.  

7.2.5.1 Local solids volume fraction profiles for upward flow in a vertical 
pipe. 

 
Figures 7-55 to 7-81 show the local axial solids volume fraction for upward flow in 

the pipe for three angles of inclination (o0 , o15  and o30 ). In each figure the y-axis 

represent the y-coordinate of the CoA and the x-axis represents the local axial solids 

volume fraction measured at each of the eight rotational positions for Configs-I, II and 

III, as listed in Tables 4-2, 4-3 and 4-4. Thus in each figure there are eight data points 

for each of Configs-I, II and III. In Figures 7-55 to 7-63, for vertical flow, the plots 

also include the measured volume fraction reference values obtained from the dp cell, 

refs,α , and is shown as a red dotted red line. 

 
As has been discussed in Sections 7.2.2.1 and 7.2.2.2 for inclined flows, there were 

consistent differences in the measurements made of the volume fraction as obtained 

from Configs-I,II and III. This is because they represent different electrode 

configurations so that the CoA of each rotational position is a different distance from 
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the pipe wall and the effective sensing region covers a different area. The resulting 

differences in the measured values are more pronounced the more the pipe carrying 

the flow is inclined to the vertical.  

 
It can be seen from Figures 7-55 to 7-63 that for vertical flow, the local axial solids 

volume fraction appears more-or-less constant across the pipe cross-section. Lucas, et 

al., (1999, 2000) and Cory (1999) found similar results using the six-electrode local 

probe and ERT system for the local axial solids volume profiles in vertical flows. As 

mentioned in Section 7.2.2.1 this is an acceptable result because in the vertical flow 

the solids distribution would be expected to be uniform across the pipe section and the 

result agreed with visual observation of the flow pattern. 
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Figure 7-55: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 1( refs,Q  =0.696 m3h-1, refw,Q = 4.25 m3h1). 

refs,α
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Figure 7-56: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 2( refs,Q  =0.750 m3h-1, refw,Q  = 5.49 m3h-1) 
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Figure 7-57: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 3( refs,Q =0.724 m3h-1, refw,Q  = 6.12 m3h-1) 
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Figure 7-58: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 4( refs,Q =1.188 m3h-1, refw,Q  = 6.18 m3h-1) 
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Figure 7-59: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 5( refs,Q  =1.225 m3h-1, refw,Q  = 6.45 m3h-1) 
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Figure 7-60: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 6( refs,Q  =1.183 m3h-1, refw,Q  = 6.51 m3h-1) 
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 Figure 7-61: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 7( refs,Q  =2.229 m3h-1, refw,Q  = 5.87 m3h-1) 
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Figure 7-62: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 8( refs,Q =1.998 m3h-1, refw,Q  = 7.98 m3h-1) 

-40

-30

-20

-10

0

10

20

30

40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Local axial solids volume fraction

C
e
n
tr

e
 o

f 
a
c
ti
o
n
 y

-c
o
rd

 (
m

m
)

Config-I Config-II

Config III

 
Figure 7-63: Local solids volume fraction profiles for flow in vertical pipe, flow 

condition 9( refs,Q  =1.974 m3h-1, refw,Q  = 9.35 m3h-1) 
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7.2.5.2 Local solids volume fraction profiles for upward flow in a pipe 
inclined at 15° to the vertical 

  
For o15  inclined flow there are some consistent differences in the readings obtained 

for Configs-I, II II and III as indicated in Figures 7-64 to 7-72 when the pipe is 

inclined at an angle to the vertical and the local solids volume fractions varies rapidly 

with spatial location in the flow cross section. The area over which Config-I measures 

the axial solids volume fraction is small so for the rotational position of Config-I 

where the is CoA closest to the wall of the pipe it is expected that Config-I will give 

an accurate measurement of the local solids volume fraction at the wall of the pipe. 

Config-II will measure the axial solids volume fraction averaged over a greater area 

and Config-III will measure the axial solids volume fraction over an even greater area. 

Since the CoA is closest to the wall for Config-I and furthest from the wall in Config-

III it is to be expected that for flow in inclined pipes, the values of solids volume 

fraction obtained for Config-I will have a steeper negative average gradient than those 

obtained using Config-II or III. And Config-II will have a steeper gradient than 

Config-III.  

 
General speaking, for inclined upward flow, the distribution of the measured local 

solids volume fraction sα  is highly non-uniform. It is clear from the results obtained 

for 15o inclination from the vertical that the local axial solids volume fraction is 

significantly greater at the lower side of the inclined pipe than at the upper side. This 

is confirmed by visual observation. Once again Lucas, et al., (1999, 2000) and Cory 

(1999) showed a similar finding using six local probe and ERT.   

 
Figures 7-64 to 7-72 show results for pipe inclination of o15 . In all cases there was an 

increase in the local axial solids volume fraction the nearer to the bottom of the pipe. 

However, the rate of increase was not uniform and Figure 7-64, for example, shows 

variations in the rate of increase as the point of observation moved from the upper to 

lower side of the pipe, for each of the defined configurations Configs-I, II and III. For 

Config-I the maximum measured local volume fraction was 0.24, while for Config-II 

and Config-III it was 0.23 and 0.21 respectively. The minimum measured local solids 

volume fraction at the upper side of the inclined pipe was 0.05 for Config-I, while for 

Config-II and Config-III it was 0.047 and 0.04 respectively. Generally, except for the 
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slightly anomalous case of Config-II in Figure 7-66, Figures 7-64 to 7-72 show that 

the three electrode configurations listed in Tables 4-2, 4-3 and 4-4 (Configs-I,II and 

III) gives a nearly monotonic line where the local axial solids volume fraction 

increases the lower the point of observation within the pipe cross-section. This agreed 

with the author‟s visual observation of the solids water distribution during the 

experimental tests. 
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Figure 7-64: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 10( refs,Q  =0.613 m3h-1, refw,Q  = 9.45 m3h-1) 
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Figure 7-65: Local solids volume fraction profiles for pipe inclined at 

o15 to the 

vertical, flow condition 11( refs,Q  =0.731 m3h-1, refw,Q  = 10.91 m3h-1) 
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Figure 7-66: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 12( refs,Q  = 0.704 m3h-1, refw,Q  = 12.43 m3h-1) 
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Figure 7-67: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 13.( refs,Q  =1.187 m3h-1, refw,Q  = 12.82 m3h-1) 
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Figure 7-68: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 14( refs,Q =1.104 m3h-1, refw,Q  = 13.94 m3h-1) 
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Figure 7-69: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 15( refs,Q  =1.010 m3h-1, refw,Q  = 15.43 m3h-1) 
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Figure 7-70: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 16( refs,Q  =1.631 m3h-1, refw,Q = 14.05 m3h-1) 
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Figure 7-71: Local solids volume fraction profiles for pipe inclined at 

o15 to the 

vertical, flow condition 17( refs,Q  =1.587 m3h-1, refw,Q = 15.26 m3h-1) 
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Figure 7-72: Local solids volume fraction profiles for pipe inclined at o15 to the 

vertical, flow condition 18( refs,Q =1.623 m3h-1, refw,Q  = 16.94 m3h-1) 
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7.2.5.3 Local solids volume fraction profiles for upward flow in a pipe 
inclined at 30° to the vertical 

 
Figures 7-73 to 7-81 present the results obtained for local solids volume fraction 

profiles for upward flow in a pipe inclined at o30  to the vertical. The results obtained 

show similar trends for each of the electrode configurations (Configs-I, II and III). At 

the lower side of the inclined pipe the local solids volume fraction is higher than at the 

upper side of the inclined pipe and this was confirmed by the author‟s visual 

observations during the experiments. The results show the same monotonic trend as 

for Figures 7-64 to 7-72. In Figure 7-73, for example, the maximum measured local 

solids volume fraction at the bottom of the inclined pipe was 0.25 and the minimum 

measured value at the top was 0.01 as measured by electrode configuration Config-I. 

For Config-II and Config-III, the maximum and minimum measured local solids 

volume fractions were 0.23 and 0.215, and 0.0015 and 0.0014 respectively. 
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Figure 7-73: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 19( refs,Q  =0.360 m3h-1, refw,Q  = 7.218 m3h-

1)
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Figure 7-74 Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 20( refs,Q  = 0.591 m3h-1, refw,Q  = 10.79 m3h-1) 
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Figure 7-75: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 21( refs,Q =0.549 m3h-1, refw,Q = 12.13 m3h-1) 
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Figure 7-76: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 22( refs,Q  =0.951 m3h-1, refw,Q  = 12.47 m3h-1) 
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Figure 7-77: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 23( refs,Q  =1.010 m3h-1, refw,Q  = 14.06 m3h-1) 
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Figure 7-78: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 24( refs,Q  =0.959 m3h-1, refw,Q  = 15.66 m3h-1) 
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Figure 7-79: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 25( refs,Q  =1.410 m3h-1, refw,Q  = 14.10 m3h-1) 
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Figure 7-80: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 26( refs,Q =1.651 m3h-1, refw,Q  = 15.96 m3h-1) 
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Figure 7-81: Local solids volume fraction profiles for pipe inclined at o30 to the 

vertical, flow condition 27( refs,Q =1.623 m3h-1, refw,Q  = 17.12 m3h-1) 
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7.2.6 3D Profiles of the local solids volume fraction from ICC 
 
In this section 3D plots of the solids volume fraction profiles are presented. These 3D 

volume fraction profiles were plotted using an interpolation routine within MATLAB 

to show these profiles as a function of spatial location of the CoA in the flow cross-

section as defined by x and y coordinates (see Table 4-5). The author developed 

software in MATLAB in order to obtain the 3D plots profiles (see appendix (Code-

7)). In each of the 3D Figures, again there is a colour scale which represents the value 

of the local solids volume fraction (sα ) at particular measuring point. The red colour 

represents maximum value of the local solids volume fraction and colour blue 

represent the minimum value of sα  at particular flow conditions. Config-ψ  

represents a combination of Configs-I, II, III. Again Config-ψ  represents a 

combination of Configs-I, II, III and determines the local solids volume fraction for 

24 electrode arrangements. That this was again successful is used to overcome the 

problem of the insufficient number of points in the flow cross section (see Section 

7.2.1) 

7.2.6.1 3-D profiles of local solids volume fraction for upward flow in a 
vertical pipe 

 
Figure 7-82: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 1( refs,Q =0.696 m3h-1, refw,Q = 4.25 m3h-1). 



EXPERIMENTAL RESULTS 
 

 273 

 
Figure 7-83: Local solids volume fraction profiles for flow in a vertical pipe,, flow 

condition 2( refs,Q =0.750 m3h-1, refw,Q = 5.49 m3h-1) 

 
Figure 7-84: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 3( refs,Q =0.724 m3h-1, refw,Q = 6.12 m3h-1) 
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Figure 7-85: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 4( refs,Q =1.188 m3h-1, refw,Q = 6.18 m3h-1) 

 
Figure 7-86: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 5( refs,Q =1.225 m3h-1, refw,Q = 6.45 m3h-1) 
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Figure 7-87: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 6( refs,Q =1.183 m3h-1, refw,Q = 6.51 m3h-1) 

 
Figure 7-88: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 7( refs,Q =2.229 m3h-1, refw,Q = 5.87 m3h-1) 
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Figure 7-89: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 8( refs,Q =1.974 m3h-1, refw,Q = 7.98 m3h-1) 

 
Figure 7-90: Local solids volume fraction profiles for flow in a vertical pipe, flow 

condition 9( refs,Q =1.974 m3h-1, refw,Q = 9.35 m3h-1) 
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7.2.6.2 3-D profiles of local solids volume fraction for upward flow in a 
pipe inclined at 15° to the vertical 

 

 
Figure 7-91: Local solids volume fraction profiles for flow inclined o15  from vertical, 

flow condition 10( refs,Q =0.613 m3h-1, refw,Q = 9.45 m3h-1) 

 
Figure 7-92: Local solids volume fraction profiles for flow inclined o15 from vertical, 

flow condition 11( refs,Q =0.731 m3h-1, refw,Q = 10.91 m3h-1) 
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Figure 7-93: Local solids volume fraction profiles for flow inclined o15 from vertical, 

flow condition 12. ( refs,Q = 0.704 m3h-1, refw,Q = 12.43 m3h-1) 

 
Figure 7-94: Local solids volume fraction profiles for flow inclined o15 from vertical, 

flow condition 13. ( refs,Q =1.187 m3h-1, refw,Q = 12.82 m3h-1) 
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Figure 7-95: Local solids volume fraction profiles for flow inclined o15 from vertical, 

flow condition 14. ( refs,Q =1.104 m3h-1, refw,Q = 13.94 m3h-1) 

 
Figure 7-96:  local Solids volume fraction profiles for flow inclined o15 from vertical, 

flow condition 15. ( refs,Q =1.010 m3h-1, refw,Q = 15.43 m3h-1) 
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7.2.6.3 3-D profiles of local solids volume fraction for upward flow in a 
pipe inclined at 30° to the vertical 

 

 
Figure 7-97: Local solids volume fraction profiles for flow in a pipe inclined at o30 to 

the vertical, flow condition 19( refs,Q =0.360 m3h-1, refw,Q = 7.218 m3h-1) 

 
Figure 7-98: Local solids volume fraction profiles for flow in a pipe inclined at o30 to 

the vertical, flow condition 20( refs,Q = 0.591 m3h-1, refw,Q = 10.79 m3h-1) 
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Figure 7-99: Local solids volume fraction profiles for flow in a pipe inclined at o30 to 

the vertical, flow condition 21( refs,Q =0.549 m3h-1, refw,Q = 12.13 m3h-1) 

 
Figure 7-100: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 22( refs,Q =0.951 m3h-1, refw,Q = 12.47 m3h-1) 
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Figure 7-101: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 23( refs,Q =1.010 m3h-1, refw,Q = 14.06 m3h-1) 

 
Figure 7-102: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 24( refs,Q =0.959 m3h-1, refw,Q = 15.66 m3h-1) 
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Figure 7-103: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 25( refs,Q =1.410 m3h-1, refw,Q = 14.10 m3h-1) 

 
Figure 7-104: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 26( refs,Q =1.651 m3h-1, refw,Q = 15.96 m3h-1) 
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Figure 7-105: Local solids volume fraction profiles for flow in a pipe inclined at 

o30 to the vertical, flow condition 27. ( refs,Q =1.623 m3h-1, refw,Q = 17.12 m3h-1) 

7.2.7 Discussion of the local solids volume fraction profiles 
 
It can be seen that profiles obtained using Configs-I, II and III of local solids volume 

fraction for vertical flow (see Figures 7-82 to 7-90) show only small variations of the 

solids volume fraction between the different configurations (Configs-I,II,and III). The 

solids volume fraction profiles are concave, which may seem to imply that the solids 

volume fraction is lower in the centre of the pipe and greater nearer the pipe wall.  

However, when the 24 measurements are combined the solids volume fraction profile 

becomes flatter over the whole cross-section as shown in Config-ψ  (Figures 7-82 to 

7-90). The results obtained by the ICC agree with results from Lucas, et al., (1999, 

2000) and Cory (1999).   

  
No complete cross-sectional profiles of sα  in vertical upward flow were found in the 

literature see Cory (1999). However, a number of researchers have claimed to show 

sα  as relatively constant across the pipe, see Lucas, e al., (1999 2000), Cory (1999), 
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Akagawa, et al., (1989), Asakura, et al., (1992), Alajbegovic, et al., (1994) and 

Bartosik and Shook (1995).  

 
Profiles of the local solids fraction for upward flows in inclined pipes (see Figures 7-

91 to 7-105) all show a clear decrease in sα  as one moves from the low point on the 

pipe across the diameter to the other side. At the low point of the pipe sα  is high, 

reaching close to sα  = 0.55, see Figure 7-102 for flow condition 15 (solids and water 

flow rates of 0.959m3s-1 and 15.66m3s-1, respectively). This would appear a high 

value, since largest proportion of a volume that uniform spheres can occupy is 74% 

(Steinhaus, H. (1999). 

  
At the higher side of the pipe sα  has its lowest value, sometimes reducing to zero, as 

shown in Figures 7-103 and 7-105. A similar variation of sα  was also reported by 

Matousek (1996). Similar profile shapes have been reported by Lucas (1995) and 

Tabeling, et al., (1991) for the water volume fraction in oil-water flows in inclined 

pipes.  

 
The most significant aspect of the data shown in Figures 7-91 to 7-105, that the local 

solids volume fraction is significantly higher at the lower side of the inclined pipe 

than at the upper side, is due to the simple fact that the solids particles have a higher 

density than water and preferentially accumulate on the lower side of the inclined 

pipe. This result agrees with visual observation of the flow through the Perspex 

working section of the flow loop. The solids volume fraction profiles obtained by the 

ICC show qualitative agreement with cross-sectional profiles in vertical and inclined 

angles from vertical ( o15  and o30 ) agreed with Lucas, et al., (1999, 2000) and Cory 

(1999). Also, the flow profiles reported here also show qualitative agreement with 

cross-sectional profiles of horizontal solids-liquid flow reported by Scarlett and 

Grimley (1974), Chen and  Kadambi (1994), Roco and Shook (1983) and Hsu et al. 

(1989) for horizontal solids-liquid flow. The causes of this profile shape are described 

in Section 1.3. 

 
For the upward vertical flows investigated, the local solids volume fraction and axial 

velocity distributions were axi-symmetric. As the angle of inclination angle of the 
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pipe away from the vertical was increased, the solids tended to migrate towards the 

lower side of the inclined pipe, but symmetry about the y-axis was maintained. The 

lower density of the solids-liquid mixture at the upper side of the inclined pipe gave 

rise to relatively high axial velocities in this part of the flow cross section. The effect 

of pipe inclination on the maximum axial solids velocity must be taken into 

consideration, when designing pipelines which hydraulically convey solids - because 

the maximum solids velocity can greatly exceed the mean solids velocity. 

7.3 Comparison of experimental results acquired by the ICC device 
with reference measurements 

 

The aim of this section is to compare the values of meass,α  and meass,u  obtained by 

integration with reference data. The data acquired using the ICC device was integrated 

using the methods described in Section 6.4.3.3 to give global average values of 

meass,α , meass,u  and meass,Q  . The reference data was acquired using the 

reference data devices as described in chapter 6. 

 
It should be noted at this point that the data integrated was the actual data acquired by 

the ICC device. In the profiles presented in Section 7.2 data was interpolated and 

plotted as profiles to allow a better qualitative comparison to be made between the 

profiles acquired by the ICC device and different systems reported in the literature 

(ERT and six local probe obtained by Lucas, et al., (1999; 2000) and Cory (1999)). 

 
For the purposes of quantitative comparison a percentage error term, ICCİ  was 

evaluated from the difference between the reference value obtained from the hopper 

cell and the value obtained from integrated ICC measurements is defined in Equation 

7-1: 

100
ref

Y
ref

Y
meas

Y

ICC
İ                                                  7-1 

where: meas
Y  and ref

Y  represents the values obtained from integrated local 

measurements obtained by the ICC and the reference measurement obtained from the 

reference devices respectively. 
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7.3.1 Mean solids velocity from integrated local measurements from the 
ICC device 

 
The integrated solids axial velocity values obtained from the ICC device for each pipe 

inclination angle ( o0 , o15  and o30 ), and the relevant reference data, are presented in 

Tables 7-3 to 7-6 (where Table 7-3 is for Config-I, Table 7-5 is for Config-II and 

Table 7-6 is for Config-III).    

 

 

Table 7-3: Integrated solids axial velocity data from the ICC device and reference for 
Config-I 

Electrodes 
Configuration 

Angle of 
inclination 
of test pipe 

Solids velocity 

s,refu  

(ms-1) 

Solids velocity 

meass,u  

(ms-1) 

Percentage error 
 

ICCİ  

Config-I 

 
 

0o 

0.244 0.257 5.3 

0.31 0.324 4.5 

0.33 0.342 3.6 

0.37 0.357 -3.5 

0.4 0.416 4.0 

0.41 0.428 4.4 

0.43 0.453 5.3 

0.53 0.534 0.8 

0.61 0.635 4.1 

15o 

0.29 0.305 5.2 

0.31 0.289 -6.8 

0.33 0.348 5.5 

0.35 0.331 -5.4 

0.39 0.411 5.4 

0.41 0.426 3.9 

0.42 0.398 -5.2 

0.44 0.459 4.3 

0.34 0.354 4.1 

 
30o 

0.22 0.23 4.5 

0.21 0.2 -4.8 

0.34 0.323 -5.0 

0.28 0.264 -5.7 

0.37 0.353 -4.6 

0.32 0.299 -6.6 
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It is important to note the method used to integrate the local measurements of ICC 

device us over the pipe cross-section to obtain an estimate of meass,u  (see Section 

6.4.3.3).  meass,u is given by Equation 7-2. 

meass,
αA

refs,
Q

A
dA

s
α

A
dA

s
u

s
α

s,measu 


                                                 7-2     

It is clear from Equation 7-2 that the value of meass,u is dependent upon the value of 

meass,
α  . Any errors in the value of 

meass,
α  will have an effect on the value of 

meass,u .  

 
Figures 7-106, 7-108 and 7-110 represent the relationship between the reference 

solids velocity  s,refu  and the measured solids velocity meass,u as measured by the 

ICC, for Config-I, II and III respectively. Each figure contains data for the pipe 

vertical, and inclined at 15o and 30o to the vertical. Each of the three figures shows a 

good linear relationship between the two quantities. The best fit straight lines have 

gradients of 1.07, 1.1 and 1.03 respectively. There are 27 sets of data (points) on each 

of the figures and their respective Pearson correlation coefficients are R=0.98, 0.99 

and 0.98 which implies that for all three configurations the linear relation between 

s,refu  and meass,u  is highly significant. 

 
Figure 7-107, 7-109 and 7-111 shows the relationship between the percentage error 

( ICCİ ) and the reference solids velocitys,refu  for Config-I,II and III respectively. 

Each figure contains data for the pipe vertical and inclined at 15o and 30o to the 

vertical.  Comparative data is shown in Table 7-4. 

 

 

 

0.41 0.433 5.6 

0.46 0.484 5.2 

0.51 0.534 4.7 
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Table 7-4: Comparison of the relative % error between reference solids velocity 

s,refu and the measured solids velocity meass,u  

 
 

Mean % error Range of % error 
Standard 

deviation of % 
error 

 
Angle of inclination Angle of inclination 

Angle of 

inclination 

Config 0o 15o 30o 0o 15o 30o 0o 15o 30o 

I (Table 7-3) 3.2 2.2 -2.7 5.5 to -3.5 5.5 to -6.8 5.6 to -6.6 2.8 5.3 5.5 
II (Table 7-5) 2.8 3.8 3.5 6.7 to -4.3 7.2 to -7.1 5.9 to -6.6 4.1 5.8 5.8 
III(Table7-6) 3.5 4.5 3.6 5.1 to -7.0 6.0 to -6.7 6.4 to -5.2 4.9 5.7 5.2 

 

The data presented in Table 7.4 shows no significant differences in the measurement 

errors between the three configurations (whether mean, range or standard deviation) 

for any of the angles of inclination.  

 

 

Figure 7-106: The relationship between  meass,u   and s,refu    for Config-I 
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Figure 7-107: Percentage error versus  s,refu    for Config-I for different inclined 

angles o0 , o15 and o30  

 
Table 7-5: Integrated solids axial velocity data from the ICC device and reference for 

Config-II  
 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids velocity 

s,refu  

(ms-1) 

Solids velocity 

meass,u  

(ms-1) 

Percentage 
error 

 

ICCİ  

Config-II  

 
 

0o 
 

0.24 0.26 5.3 

0.31 0.32 4.5 

0.33 0.32 -4.2 

0.37 0.38 3.5 

0.40 0.38 -4.3 

0.41 0.43 4.6 

0.43 0.45 5.4 

0.55 0.56 3.5 

0.61 0.65 6.7 

15o 

0.29 0.31 5.5 

0.31 0.29 -7.1 

0.33 0.31 -5.8 

0.35 0.37 5.7 

0.39 0.42 7.2 

0.41 0.39 -4.6 

0.42 0.45 6.0 
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Figure 7-108: The relationship betweenmeass,u   and s,refu    for Config-II  

 

0.44 0.46 5.2 

0.34 0.36 4.4 

 
30o 

0.22 0.21 -4.6 

0.21 0.22 5.7 

0.34 0.32 -4.7 

0.28 0.26 -5.7 

0.37 0.39 4.6 

0.32 0.30 -6.6 

0.41 0.43 5.9 

0.66 0.70 6.4 

0.51 0.54 5.3 
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Figure 7-109: Percentage error versus  s,refu    for Config-II  for different inclined 

angles o0 , o15 and o30 for all flow conditions listed in Table 7-2 
 
 
Table 7-6: Integrated solids axial velocity data from the ICC device and reference for 

Config-III  
 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids velocity 

s,refu  

(ms-1) 

Solids velocity 

meass,u  

(ms-1) 

Percentage 
error 

 

ICCİ  

Config-III  

 
 

0o 
 

0.244 0.252 3.3 

0.228 0.217 -4.8 

0.471 0.438 -7.0 

0.37 0.382 3.2 

0.4 0.381 -4.8 

0.41 0.429 4.6 

0.43 0.452 5.1 

0.53 0.551 4.0 

0.61 0.634 3.9 

15o 

0.29 0.272 -6.2 

0.31 0.325 4.8 

0.33 0.348 5.5 

0.35 0.371 6.0 

0.39 0.41 5.1 

0.41 0.394 -3.9 
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Figure 7-110: The relationship between  meass,u   and s,refu   for Config-III  

 

0.493 0.46 -6.7 

0.44 0.417 -5.2 

0.34 0.356 4.7 

 
30o 

0.22 0.234 6.4 

0.21 0.199 -5.2 

0.34 0.356 4.7 

0.277 0.265 -4.3 

0.37 0.353 -4.6 

0.32 0.34 6.3 

0.41 0.432 5.4 

0.46 0.482 4.8 

0.51 0.541 6.1 
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Figure 7-111: Percentage error versus  s,refu    for Config-III  for different inclined 

angles o0 , o15 and o30 for all flow conditions listed in Table 7-2  
 

7.3.2 Comparison of reference measurements of solids volume fraction 
with integrated measurements from the ICC device 

 
The integrated solids volume fraction meass,α obtained from the ICC device using 

Equation 6-22, for the three pipe inclinations, o0 , o15  and o30  the relevant reference 

data, are presented in Tables 7-7, 7-9 and 7-10 (where Table 7-7 is for Config-I, Table 

7-9 is for Config-II and Table 7-10 is for Config-III).    

 
Table 7-7: Integrated solids volume fraction data from the volume fraction and 

reference for Config-I 
 

Electrodes 
Configurations 

Angle of 
inclination 
of test pipe 

Solids volume 
fraction 

s,refα  

Solids volume 
fraction 

s,measα  

Percentage 
error 

ICCİ  

Config-I 

 
 

0o 
 

0.16 0.17 6.3 

0.13 0.135 3.9 

0.12 0.124 3.3 

0.18 0.19 5.6 

0.17 0.16 -5.9 

0.16 0.17 6.3 
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0.29 0.28 -3.5 

0.21 0.22 4.8 

0.18 0.19 5.6 

15o 

0.12 0.127 5.8 

0.1313 0.138 5.1 

0.12 0.13 -5.3 

0.19 0.195 2.6 

0.16 0.17 6.3 

0.15 0.155 3.3 

0.21 0.22 4.8 

0.2 0.21 5.0 

0.22 0.21 -4.6 

 
30o 

0.09 0.093 3.3 

0.15 0.155 3.3 

0.09 0.098 8.9 

0.19 0.18 -5.3 

0.15 0.159 6.0 

0.17 0.16 -5.9 

0.19 0.2 5.3 

0.21 0.22 4.8 

0.18 0.174 -3.3 
 

 

Figures 7-112, 7-114 and 7-116 show the relationship between the reference solids 

volume fraction  s,refα  and the solids volume fraction meass,α  measured by the ICC 

device, for Configs-I, II and III respectively, for the pipe vertical, and inclined at o15  

and o30  to the vertical. Each of the three figures shows a good linear relationship 

between the two quantities. The best fit straight lines have gradients of 0.95, 1.05 and 

1.05 respectively. The Pearson correlation coefficient for the 27 sets of data (points) 

on each of the figures are R=0.98, 0.99 and 0.98 respectively which implies that for 

all three configurations the linear relation between s,refα  and meass,α  is highly 

significant. 

 
Figures 7-113, 7-115 and 7-117 shows the relationship between the percentage error 

( ICCİ ) and the reference solids volume fraction s,refα for Config-I,II and III 
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respectively. Each figure contains data for the pipe vertical and inclined at 15o and 30o 

to the vertical.  Comparative data is shown in Table 7-8. 

 

 

Table 7-8: Comparison of the relative % error between reference solids volume 

fraction s,refα and the measured solids volume fraction meass,α  

 

Mean % error Range of % error 
Standard 

deviation of % 
error 

 
Angle of inclination Angle of inclination 

Angle of 

inclination 

Config 0o 15o 30o 0o 15o 30o 0o 15o 30o 

I (Table 7-7) 2.9 2.6 1.9 6.3 to -5.9 6.3 to -4.6 8.9 to -5.6 4.5 4.4 5.4 
II (Table 7-9) 3.6 1.3 1.9 7.0 to -3.4 3.4 to -5.3 6.3 to -4.7 3.0 2.7 3.5 
III(Table7-10) 0.6 1.6 1.1 6.3 to -6.7 7.9 to -7.5 8.2 to -6.7 5.5 6.2 6.0 

 

 

The data presented in Table 7.8 shows no differences at any meaningful level of 

significance in the measurement errors between the three configurations (whether 

mean, range or standard deviation) for any of the angles of inclination. Using the 

Fisher T-test the difference between mean errors for Config-I and Config-III at 0o 

inclination (0.6% as compared to 2.9%) has a significance of less than 70%. This is 

well below the accepted standard of 95%, and the hypothesis that there is a real 

difference between the mean errors of Config-I and Config-III is rejected. 
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Figure 7-112: The relationship between s,measα   and s,refα    for Config-I 

 

 
Figure 7-113: Percentage error versus  s,refα   for Config-I for different inclined 

angles o0 , o15  and o30 for all flow conditions listed in Table 7-2. 
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Table 7-9: Integrated solids volume fraction data from the local probe and reference 
for Config-II  

 

 

 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids volume 
fraction 

s,refα  

Solids volume 
fraction 

s,measα  

Percentage 
error 

ICCİ  

Config-II  

 
 

0o 
 

0.16 0.172 7.0 

0.13 0.135 3.7 

0.12 0.128 6.3 

0.18 0.174 -3.4 

0.17 0.178 4.5 

0.16 0.164 2.4 

0.29 0.305 4.9 

0.21 0.22 4.5 

0.18 0.185 2.7 

15o 

0.12 0.125 4.0 

0.1313 0.133 1.3 

0.12 0.114 -5.3 

0.19 0.191 0.5 

0.16 0.163 1.8 

0.15 0.154 2.6 

0.21 0.214 1.7 

0.2 0.207 3.4 

0.22 0.223 1.3 

 
30o 

0.09 0.086 -4.7 

0.15 0.148 -1.4 

0.09 0.096 6.3 

0.19 0.193 1.6 

0.15 0.151 0.7 

0.17 0.176 3.4 

0.19 0.202 5.9 

0.21 0.214 1.9 

0.18 0.186 3.2 
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Figure 7-114: The relationship between s,measα   and s,refα     for Config-II  

 
 

 
Figure 7-115: Percentage error versus  s,refα   for Config-II for different inclined 

angles o0 , o15  and o30  for all flow conditions listed in Table 7-2 
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Table 7-10: Integrated solids volume fraction data from the local probe and reference 
for Config-III  

 

 

 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids volume 
fraction 

s,refα  

 

Solids volume 
fraction 

s,measα  

Percentage 
error 

 

ICCİ  

Config-III  

 
 

0o 
 

0.16 0.17 6.3 

0.13 0.134 3.1 

0.12 0.114 -5.0 

0.18 0.168 -6.7 

0.17 0.167 -1.8 

0.16 0.15 -6.3 

0.29 0.305 5.2 

0.21 0.221 5.2 

0.18 0.19 5.6 

15o 

0.12 0.111 -7.5 

0.13 0.136 4.6 

0.12 0.129 7.5 

0.19 0.205 7.9 

0.16 0.165 3.1 

0.15 0.159 6.0 

0.21 0.219 4.3 

0.2 0.19 -5.0 

0.22 0.205 -6.8 

 
30o 

0.09 0.085 -5.6 

0.15 0.14 -6.7 

0.09 0.094 4.4 

0.19 0.18 -5.3 

0.15 0.147 -2.0 

0.17 0.184 8.2 

0.19 0.198 4.2 

0.21 0.22 4.8 

0.18 0.194 7.8 
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Figure 7-116: The relationship between   s,measα   and s,refα for Config-III  

 

 
Figure 7-117: Percentage error versus  s,refα   for Config-III  for different inclined 

angles o0 , o15  and o30 for all flow conditions listed in Table 7-2. 
 

7.3.3 Comparison of reference measurements of solids volumetric flow 
rate with integrated measurements from the ICC device 

 
Section 6.4.3.3 explains the measurement of the integrated solids volumetric flow rate 

meass,Q and how it is determined using Equation 6-24. Tables 7-12, 7-13 and 7-14 

show the solids volumetric flow rates measured by the ICC device for the three 
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inclination angles ( o0 , o15  and o30 from vertical) and the Solids reference volumetric 

flow rates, refs,Q for each electrode configurations,  Config-I, Config-II and Config-

III. The percentage error in values obtained for the ICC device are also shown. 

 
Figures 7-118, 7-120 and 7-122 show the relationship between the reference solids 

volumetric flow rate refs,Q  and the solids volumetric flow rate meass,Q  measured 

by the ICC device, for Config-I, II and III respectively, for the pipe vertical, and 

inclined at 15o and 30o to the vertical. Each of the three figures shows a good linear 

relationship between the two quantities. The best fit straight lines in each case had a 

gradient of 1.02, and the Pearson correlation coefficient for each line was 0.99, which 

implies that for all three configurations the linear relation between meass,Q and 

refs,Q  is highly significant. 

 
Figures 7-119, 7-121 and 7-123 show the relationship between the percentage error 

( ICCİ ) and the reference solids volumetric flow rate refs,Q for Configs-I,II and III 

respectively.  Comparative data is shown in Table 7-11. 

 

Table 7-11: Comparison of the relative% error between reference solids volumetric 

flow rate refs,Q  and the measured solids volumetric flow rate meass,Q  

 
 

Mean % error Range of % error 
Standard 

deviation of % 
error 

 
Angle of inclination Angle of inclination 

Angle of 

inclination 

Config- 0o 15o 30o 0o 15o 30o 0o 15o 30o 

I (Table 7-12) 2.2 1.4 -3.7 4.0 to -2.4 5.7 to -3.1 -2.1 to -6.9 1.8 3.1 1.7 
II (Table 7-13) 1.1 2.0 -2.6 3.3 to -2.8 6.0 to -3.0 -1.8 to -4.9 2.6 3.2 1.2 
III(Table 7-14) 1.1 -2.1 -0.2 4.0 to -3.3 7.4 to -6.6 4.8 to-3.1 2.9 4.7 3.6 

 

Examination of Table 7-11 shows that for solids volumetric flow rate a significant 

difference arises within Config-I and within Config-II. When the pipe inclination 

moves from o15  and o30 , the measured values from these configurations, meass,Q , 
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fall slightly but significantly below refs,Q . There is a hint that the same phenomenon 

is beginning to occur in Config-III, but it is not statistically significant at 30o. This 

difference between meass,Q , and refs,Q  at these angles could be due to beginning 

of the deposition of particles on the lower side of the pipe and Config-I and II are 

more sensitive than Config-III to flow patters at the wall of the pipe. 

 
There are no significant differences between any of the means for pipe inclinations of 

o0  and o15 . However, the difference between Config-I and ConfigIII for the pipe 

inclined at o30  is significant at a 95% level of confidence. It is possible to say for this 

one reading that the mean error for Config-III is significantly less than the mean error 

for Config-I. Unfortunately, it is not possible to be so definite for Config-II and 

Config-III.  

Table 7-12: Integrated solids volumetric flow rate data from the ICC device and 
reference devices for vertical upward flow for Config-I 

 

Electrodes 
Configuration

s 

Angle of 
inclination 
of test pipe 

Solids 
volumetric 
flow rate, 

refs,Q  

(m3h-1) 

Solids volumetric  
flow rate, 

meass,Q  

(m3h-1) 

Percentage 
error 

 

ICCİ  

Config-I 

0o 
 

0.696 0.72 2.85 

0.75 0.779 4 

0.73 0.748 2.73 

1.188 1.213 1.68 

1.225 1.2 -2.44 

1.183 1.218 3.38 

2.229 2.276 2.24 

1.998 2.05 2.49 

1.974 2.022 2.53 

15o 

0.613 0.626 3.27 

0.731 0.713 -2.74 

0.704 0.74 5.71 

1.187 1.211 1.68 

1.104 1.141 3.63 

1.096 1.076 -1.82 

1.587 1.636 3.14 



EXPERIMENTAL RESULTS 
 

 304 

 

 

 

 

Figure 7-118: The relationship between refs,Q  and meass,Q for Config-I 

 

1.631 1.58 -3.07 

1.623 1.66 2.46 

 
30o 

0.36 0.346 -2.78 

0.591 0.561 -5.09 

0.549 0.526 -3.64 

0.951 0.924 -3.16 

1.01 0.941 -6.94 

0.959 0.94 -2.09 

1.41 1.372 -2.84 

1.651 1.624 -1.82 

1.395 1.332 -5 
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Figure 7-119: Percentage error versus Qs (m3h-1) reference for Config-I for different 

inclined angles o0 , o15  and o30 for all flow conditions listed in Table 7-2. 
 
 
 

Table 7-13: Integrated solids volumetric flow rate data from the ICC device and 
reference devices for vertical upward flow for Config-II  

 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids 
volumetric 
flow rate, 

refs,Q  

(m3h-1) 

Solids volumetric  
flow rate, 

meass,Q  

(m3h-1) 

Percentage 
error 

 

ICCİ  

Config-II  

 
 

0o 
 

0.696 0.721 2.85 

0.75 0.774 2.66 

0.73 0.754 2.73 

1.188 1.158 -2.36 

1.225 1.198 -2.05 

1.183 1.153 -2.79 

2.229 2.283 2.28 

1.998 2.062 3.10 

1.974 2.039 3.34 

15o 

0.613 0.647 6.03 

0.731 0.716 -1.51 

0.704 0.685 -1.99 

1.187 1.224 2.78 
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Figure 7-120: The relationship between refs,Q  and meass,Q for Config-II  

1.104 1.154 4.16 

1.096 1.144 4.01 

1.587 1.538 -2.97 

1.631 1.675 3.00 

1.623 1.694 4.12 

 
30o 

0.36 0.352 -2.78 

0.591 0.577 -1.87 

0.549 0.538 -1.64 

0.951 0.906 -4.32 

1.01 0.987 -1.99 

0.959 0.941 -1.99 

1.41 1.383 -2.13 

1.651 1.567 -4.91 

1.395 1.368 -1.80 
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Figure 7-121: Percentage error versus Qs (m3h-1) reference for Config-II for different 

inclined angles o0 , o15  and o30 for all flow conditions listed in Table 7-2. 
 
 
 

Table 7-14: Integrated solids volumetric flow rate data from the ICC device and 
reference devices for vertical upward flow for Config-III  

 

Electrodes 
Configuratio

ns 

Angle of 
inclination 
of test pipe 

Solids 
volumetric 
flow rate, 

refs,Q  

(m3h-1) 

Solids volumetric  
flow rate, 

meass,Q  

(m3h-1) 

Percentage 
error 

 

ICCİ  

Config-III  

 
 

0o 
 

0.696 0.724 2.85 

0.75 0.773 2.66 

0.73 0.709 -2.74 

1.188 1.22 2.52 

1.225 1.185 -3.26 

1.183 1.221 3.38 

2.229 2.276 2.24 

1.998 2.08 4.00 

1.974 1.931 -2.04 

15o 

0.613 0.573 -6.56 

0.731 0.695 -4.11 

0.704 0.731 4.28 
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Figure 7-122: The relationship between refs,Q and meass,Q  for Config-III  

 

1.187 1.143 -4.21 

1.104 1.051 -4.55 

1.096 1.051 -4.55 

1.587 1.533 -3.78 

1.631 1.577 -3.07 

1.623 1.737 7.40 

 
30o 

0.36 0.349 -2.78 

0.632 0.656 4.76 

0.549 0.538 -1.82 

0.951 0.928 -2.11 

1.01 1.052 3.96 

0.959 0.928 -3.13 

1.41 1.373 -2.84 

1.651 1.605 -2.43 

1.395 1.467 5.00 
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Figure 7-123 : Percentage error versus Qs (m
3h-1) reference for Config-II I for different 

inclined angles o0 , o15  and o30 for all flow conditions listed in Table 7-2. 
 

7.3.4 Comparison of percentage error with other researchers  
 
This section compares the percentage error between the measurements obtained using 

the ICC meter and the error obtained by Balasubrammaniam (2008/2009). 

Balasubrammaniam used an EIT system with a cross-correlation technique to study 

the mean velocity of oil-water mixtures at five different angles of inclination from the 

vertical ( o0 , o15 , o30 , o45  and o60 ).  Balasubrammaniam also found the volume 

fraction distributions for particular flow conditions for different inclination angles and 

compared the mean oil volume fraction from EIT with the oil volume fraction 

obtained from reference measurements. 

 
Balasubrammaniam found a large error between the mean oil volume fraction 

obtained from EIT and by reference measurements particularly when the pipe carrying 

the oil-water flow was inclined. The mean volume fraction value obtained using the 

EIT system and the reference values obtained using a dp cell are substantially 

different. The average percentage, or error in the oil volume fraction measurement 

using EIT was around 55 %, see Table 7-15 below. 
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Table 7-15: Volume Fraction Values at Different inclinations obtained by 
Balasubrammaniam(2008/2009) 

 

θ 0 (angle of inclination 
to vertical) 

Mean volume 
fraction of oil using 

EIT, 
EIT

α  

Mean volume 
fraction of oil using 

DP cell, refα  
% error 

0 0.0568 0.1837 -69% 

15 0.0517 0.1134 -54% 

30 0.0408 0.0978 -58% 

45 0.0489 0.0771 -36% 

60 0.0858 0.0473 81% 

 
According to Balasubrammaniam the errors in the EIT system were to be expected 

because of an improper image reconstruction algorithm. This demonstrates a real 

disadvantage of the EIT, not only is it expensive but even after paying out large sums 

there can still be substantial errors in the software which are difficult to remedy. 

Indeed, from the experience of Balasubrammaniam these are not only difficult to 

remedy but time consuming. On the other hand, as things stand, the ICC meter 

presented in this thesis had a maximum error (8.9% at angle of inclination o30  see 

Table 7-8) which was substantially less than the mean error reported by 

Balasubrammaniam (58%).  
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Chapter 8 MATHEMATICAL MODEL FOR 

PREDICTING THE VELOCITY PROFILE IN 

INCLINED TWO PHASE FLOW  

 
 
 
 

 

In this Chapter a mathematical model is described which was developed to 

understand the behaviour of two phase flow in an inclined pipe. In section 8.3 a 

comprehensive velocity profile model review is presented. This model goes on to 

describe how the volume fraction data can be used to obtain the velocity profile 

measurements. The mathematical model can also be used to provide an on-line 

validation of velocity profile measurements.  
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8.1 General Concept 
 
To develop a mathematical model for the velocity profile of an inclined two phase 

flow the important simplifying assumption is that the continuous phase and dispersed 

phase are well-mixed and have the same local axial velocity i.e there is no local slip 

between the phases. Most research into inclined dispersed phase flows has had a 

strong experimental bias with little attempt to model the underlying fluid mechanics 

(see, for example, Vigneaux, et al., 1988). Lucas (1995) developed a mathematical 

model for dispersed phase flow in an inclined pipe which predicted the velocity 

distribution from the volume fraction distribution data. According to Lucas the 

velocity profile in inclined oil-water flows can be obtained from knowledge of the 

local volume fraction distribution of the flowing components and a measurement of 

either the axial pressure gradient or of the total flow rate. The author of this thesis has 

extended δucas‟ model and used that model to investigate solids-water flow in 

inclined pipes.  

8.2 Model aim and objectives 
 
Two-phase flow measurement can be achieved by simultaneously using two different 

devices: a device sensitive to the flow of phase A to measure the velocity of phase A, 

and a second device to measure the velocity of phase B, see below. One or other or 

both of these devices is used also to provide the volume fraction of each phase. In a 

flow consisting of non-conducting solids dispersed in a conducting liquid, (e.g. water) 

appropriate devices could be a conductivity measurement device, and an 

electromagnetic flow meter (EFM). The conductivity measurement device could be 

used to measure solids volume fraction and solids velocity. Meanwhile an 

electromagnetic flow meter, such as reported by Wang, et al., (2006) could be used to 

measure the water velocity. Combining the measurements would give full two-phase 

flow measurement.  

 
However, in order to calculate accurate total volumetric flow rates, accurate values for 

both the local volume fraction distribution and the axial velocity distribution are 

required (see Equation 1-3). The former have been successfully obtained using 

tomography and the ICC flow meter developed by the author of this thesis (see 

Chapter 7) but relatively few results have been published concerning axial velocity 
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distribution profile measurements such as the results obtained by the author of this 

thesis. This chapter describes a model developed for validating the measured solids 

velocity profiles data using the measured solids volume fraction distribution from 

experimental work obtaining by the ICC flow meter.  

8.3 Predicting the solids velocity profiles from the volume fraction 
profiles 

 
Velocity profiles measured by cross-correlation between two axially separated planes 

are becoming increasingly common in multiphase flow systems. At present, because 

little or no use is made of the constraints imposed by the physics of the flow, high 

powered computers are required to implement this technique. In the oil industry, it is 

frequently required to measure volumetric flow rates of different components in 

liquid-liquid flows in both horizontal and inclined pipes. This thesis will investigate a 

mathematical model to ascertain if it can be used to predict the velocity profiles 

obtained using the ICC flow meter, i.e. to validate the measured solids velocity profile 

data using the measured solids volume fraction distribution. 

  

 

Figure 8-1: Model of flow of molecules in an inclined pipe 

8.4 Background 
 
Lucas (1995) has developed a model to predict velocity profiles of oil-water flow in 

inclined pipes. Figure 8-1 shows a small region of the flow assumed to consist of a 
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mixture of both flowing components in an inclined pipe. The following assumptions 

have been made and the experimental data obtained indicated that the resulting model 

was accurate enough to predict 1-D velocity profiles in oil-water flows. 

 
 The mean local flow velocity in the x-direction does not vary with time. 

 
 The mean properties of the flow are steady. 

 
 The influence of the “two-phase eddy viscosity” (see Lucas, 1995) is much 

more important than the molecular viscosity of the flow. 

 
 As this is a 1-D flow model, the flow velocity is determined only by the 

distance from one wall of the pipe, and the velocity at the walls is assumed be 

zero.  

 
From Sabersky, et.al., (1989), we may write down the Navier-Stokes equation as: 




 


  vu ρ
dy

duμ
dy

d

ρ(y)
1

u ρ
dx

duμ
dx

d

ρ(y)
1

dx

dp

ρ(y)
1

dz

du
w

dy

du
v

dx

du
u

dt

du

 gcosθwu ρ
dz

du
μ

dz

d

ρ(y)

1  



                                                               8-1 

 
where: u  is the mixture velocity in x direction, v is the mixture velocity in y direction 

and w  is the mixture velocity in z direction, μ  is the laminar viscosity, 
dx

dp
 is the 

axial pressure gradient and ρ(y) is the mixture density which is assumed to vary in the 

y direction due to stratification of the inclined two phase flow. 

 
For steady flow which is fully developed, the left hand side of Equation (8-1) reduces 

to zero, and the right hand side of Equation (8-1) can be simplified to give; 

gcosθvu ρ
dy

duμ
dy

d

ρ(y)
1

dx

dp

ρ(y)
1

0 


                                8-2 

 

Let us now consider the term, 


  vu ρ
dy

duμ  in Equation (8-2). From Sabersky, et 

al., (1989), we have: 
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dy

du
 ρvu ρ

T
                                      

 

where; 
T

  is a kinematic „„eddy viscosity‟‟ term.  

 
We know that in turbulent flows, particularly multiphase turbulent flows that we are 

attempting to model here, the laminar viscosity terms, 
dy

duμ  is much smaller than the 

eddy viscosity term (see Lucas, 1995)  and may be ignored, and Equation (8-2) can be 

written; 

gcosθ
dy

du
 ρ

dy

d

ρ(y)
1

dx

dp

ρ(y)
1

0 



T

                                              8-3 

 
Multiplying both sides by  yρ  gives  

 

cosθ g ρ(y)
dy

du
 

m
ρ

dy

d

dx

dp
0 




T
                                                 8-4 

 
Based on the given assumptions, the simplified form of the Navier-Stokes equation 

can be expressed as follows for a well-mixed two phase flow in an inclined pipe: 

 

ρ(y)gcosθ
dx

dp

dy

du(y)

dy

d
mρ 





T
                             8-5 

 

where: mρ is a weighted mean density of the dispersed phase mixture in the pipe and 

the term ρ(y)  denotes the density of the dispersed phase expressed by: 

 

C(y))(1cρC(y)dρρ(y)                                          8-6 

 
where: C(y) represents the dispersed phase volume fraction in the y direction obtained 

from the experimental work, that is C(y) is a function of the distance from the wall of 

the pipe.  dρ  and cρ  are the dispersed and continuous phases densities respectively. 
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The weighted mean fluid density,mρ , for a circular pipe with cross-sectional area A, 

is given by (see Lucas, 1995):    

   D

0

y)-y(D2 )C(y)(1
c

ρC(y)
d

ρ  
A

1
mρ                            8-7 

 
where: D is diameter of the pipe cross-section. 

   
The dispersed phase volume fraction C(y), which can be obtained experimentally, (for 

example by using the ICC device described in this thesis) is the most significant 

element in determining the local density of the dispersed phase mixture as well as the 

two-phase eddy viscosity. Unfortunately, however, the experimental data are usually 

not enough to cover the entire distance from the upper side to the lower side of the 

inclined pipe. To overcome this problem a curve fitting technique is introduced. Such 

an approach simplifies the integration calculation because the expression of the 

dispersed phase volume fraction is known. In this model, the curve used is a third 

order polynomial obtained using a MATLAB least squares technique. This fitting 

method is applied to generate a monotonic curve based on the eight real experimental 

data points obtained from the ICC device.  

 
To solve the simplified Navier Stokes equation (Equation 8.5), it is first necessary to 

know the two-phase kinematic eddy viscosity
T

 . Unfortunately no “correct” answer 

has been found so far to fit the dispersed phase model. Consequently, two expressions 

of 
T

  have been introduced for use in the model. These are (a) a constant;
1

   
T

, 

and (b) a linear function of the dispersed phase volume fraction; kC(y)
2

   
T

. 

Lucas (1995) suggested values for 
1
 , 

2
 and k which were successfully used to 

obtain the velocity profiles for inclined oil-water flows. Lucas also suggested that the 

values 
2

 and k  might be applied to other inclined two phase flows. What is being 

suggested however is that there is a relatively small range of values which these 

parameters take for most inclined two phase flows of practical interest.  
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Case 1   
1

   
T

 

 
In this case, 

T
  is constant, and can be taken outside the bracket in Equation (8-5). 

This reduces the simplified form of Navier-Stokes into an ordinary partial differential 

equation. The analytical expression of the 1-D velocity profiles can now be obtained.  

 

The procedure for solving the equation is as follows. Integrate both two sides of 

equation (8-5) from the bottom to the upper wall of the pipe y =0 to y =D 

 
1

Cdy  
D

0
ρ(y) 

cosθ g
y

dx

dp1

dy

du(y)
 mρ 





TT
                8-8 

 
where: C1 is the constant of integration and will be found from the boundary 

conditions that the velocity at the pipe wall is zero; that is u(0) = 0 and u(D) = 0.  

Integrating Equation (8-8) again gives 

 



 


 D

0
yd

y

0
ρ(y)dy 

 

gcosθ
  2

2y

dx

dp

 

(y)
1

C

2
Cu(y)

m
ρ

TTT
                      8-9 

 
where: C2 is a second constant of integration which will also be found from the 

boundary conditions u(0) = 0 and u(D) = 0. u(y) is the axial fluid velocity at 

coordinate y.      

Substituting the boundary conditions into Equation 8-9 gives: 

0
2

C                   8-10 

 

0
D

0
yd

y

0
ρ(y)dy 

 

gcosθ
  2

2y

dx

dp

 

(y)
1

C  



 




TTT
                                         8-11 

 
Substitute the boundary condition into Equation (8-5) and if the axial pressure 

gradient 
dx

dp
 is known, the constants of integration can be found by solving two 

equations simultaneously (Equations 8-11 and 8-13). The analytical expression of the 

velocity profile can now be solved. However, the usual measured variable is the total 
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flow rate TQ  rather than the axial pressure gradient
dx

dp
, we therefore need to 

establish the relationship between TQ  and the integration constants as well as
dx

dp
. 

 

Figure 8-2: (a) Diagram of inclined slot; (b) coordinate system for inclined pipe 
  

The distanceW(y)  in Figure 8-2 is given by  

                            
0.5

y))-2(y(DW(y)    

 

The total flow rate through the pipe cross-section is defined as  

 D

0
y)dy-(Dy u(y)2TQ                                          8-12 

Where u(y) the axial fluid velocity is at coordinate y. D is the pipe diameter. 

Substituting for u(y)
m

ρ  from Equation (8-9) and using the value of, 0
2

C   gives: 

 



 


 



 D

0
dyy)-(Dy 2

2

2y

dx

dp
dy y)-(Dy 2

D

0

y
1

C

TQmρ
TT

  

 dyy)-(Dy 2
D

0

y

0
yd

y

0
ρ(y)dygcosθ  




 



 

T
                                                     8-13 
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Solving Equations (8-11) and (8-13) together, allows the axial pressure gradient 
dx

dp
 

and the constant of integration to be found. Substituting those parameters back into 

Equation (8-9), the analytical solution of velocity profile can be obtained. 

 

Case 2   kC(y)
2


T
  

 

Generally speaking, if  the two-phase kinematic eddy viscosity 
T

  is considered as a 

constant, then the consequent output from the 1-D model may not predict the mixture 

velocity profile accurately. Consequently an alternative expression was introduced 

whereby 
T

  is a linear function of the dispersed phase volume fraction. 

kC(y)
2


T
                                                                  8-14 

Where 
2

  and k  are constants, and C(y) represents the dispersed phase volume 

fraction. By simply re-arranging Equation 8-5 we obtain:  

 

ρ(y)gcosθ
dx

dp
2dy

u(y)2d
 

T
υ

dy

du(y)

dy
T

dυ
mρ 


                                                      8-15 

Further re-arranging gives: 

dy

du(y)

dy
T

dυ
mρ-ρ(y)gcosθ

dx

dp
2dy

u(y)2d
 

T
υmρ                                                     8-16 

Dividing both sides of equation 8-16 by 
T

υmρ  :   

dy

du(y)

dy
T

dυ

T
υ
1

-gcosθ ρ(y)
mρ
1

T
υ
1

dx

dP

mρ
1

T
υ
1

2dy

u(y)2d 


                                8-17 

8.5 Comparison of MATLAB model predictions with those of Lucas 
 
In the first part of this section the results obtained from the MATLAB model, as 

represented by Equations 8.1 to 8.17, are compared with the results obtained by Lucas 

(1995) where the continuous phase was water and the dispersed phase was oil. It is 

now possible to predict the velocity profile of multiphase flow in an inclined tube 

using MATLAB to solve the differential Equations 8-9, 8-12 and 8-17. 
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The first task was to produce a MATLAB code for the solution of these equations (see 

the code in Appendix-Code8-9). The predictions of this MATLAB model were then 

compared to the results of Lucas. It was thus necessary to have the same flow 

conditions as Lucas, and the relevant parameters are listed in Table 8-1. 

 
Table 8-1: Flow condition parameters 

 
Diameter of the pipe D=200mm 

Density of the oil 33
oil kg/m100.78ρ   

Density of the water 33
water kg/m101.00ρ   

Inclination of tube to the vertical 25θ   

Total flow rate 13
T h26.5mQ   

 

 

Two expressions of the two-phase eddy viscosity have been used in the model:  

(a) 
1

   
T

 and  (b) kC(y)
2


T
.  

 

Case 1  
1

   
T

 

 
First a curve fitting technique is applied to obtain an expression for the measured 

water volume fraction data obtained from Lucas‟ work and given in Table 8-2. 

 

Table 8-2: Volume fraction data from Lucas (1995) 
 
y 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

C(y) 0.30 0.35 0.375 0.40 0.425 0.45 0.50 0.55 0.58 0.67 0.813 

 

Using a least squares fit, the 3rd order polynomial expression for the water volume 

fraction data is: 

0.302.7y223y3108yC(y)                                       8-17 

 

The local fluid density is expressed as: 

C(y))(1ρC(y)ρρ(y) oilwater   
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oiloilwater ρ)C(y) -ρ(ρ(y)     

0.850.57y24.8y323yρ(y)                                         8-18 

 
The weighted mean fluid density of the inclined tube with a circular cross-sectional 

area A, can be found from: 

 

   D

0
y)dy-y(D2 C(y))(1oilρC(y)waterρ 

A

1
mρ  

=0.89 kg/m3 

In order to obtain the axial pressure gradient, 
dx

dp
, and the integration constant, 

Equations (8-9), (8-10) and (8-12) are solved simultaneously using the MATLAB 

function Solve:- 

7.92
x

dp

0.0131C




d

                  8-19 

 
Substituting these values into Equation (8-9) and the expression obtained for the 

velocity gives: 

  23452 0.43y0.095y0.40y1.1y91004000y13yu(y)                   8-20 

 

Case 2  kC(y)
2


T
 

 
When considering two-phase eddy viscosity as a first order equation in terms of water 

volume concentration, the resulting form of the Navier-Stokes equation is much more 

complicated than when considering the two-phase eddy viscosity as constant.  

 
In MATLAB the function used to solve two-point boundary value problems for 

ordinary differential equations is called „bvp4c‟. This integrates a system of first order 

ordinary differential equations on the interval [a, b] subject to general two-point 

boundary conditions. „bvp4c‟ is a finite difference code that implements the 3-stage 

Lobatto formula (www.matlab.com, accessed on 05/07/09).  

http://www.matlab.com/
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The collocation technique uses a mesh of points to divide the interval of integration 

into sub-intervals. The solver determines a numerical solution by solving a global 

system of algebraic equations resulting from the boundary conditions, and the 

collocation conditions are imposed on all the sub-intervals. The solver then estimates 

the error of the numerical solution on each sub-interval. If the solution does not satisfy 

the tolerance criteria, the solver adapts the mesh and repeats the process. The user 

must provide the points of the initial mesh as well as an initial approximation of the 

solution at the mesh points. 

 
The numerical output of Equation (8-14) will change when different values of 

2
  and 

k are input, and will produce different velocity profiles. Compared with the first case 

in which only one parameter could be changed, we have more choices to adjust the 

simulation result. The experimental data below also shows it would be more suitable 

for the solid-water velocity profiles prediction in the inclined pipe, while the two-

phase eddy viscosity is considered as a function of the solid volume fraction.  

 
A comparison has been produced of the velocity profiles obtained by Lucas (1995) 

and the predictions of the author‟s MATLAB model. It can be seen, Figures 8-3 and 

8-5, that a trend similar to δucas‟s results are obtained (see Figures 8-4 and 8-6).  

 

Figure 8-3:  Predicted velocity profiles for the two phase oil water flow using 
MATLAB model devloped in this project. 

T
 = constant, (

T
 = 0.0011m2s-1 )  



MATHEMATICAL MODEL 
 

 323 

 

(b) 

Figure 8-4: Predicted and measured velocity profiles for the two phase oil water flow 
results from Lucas model  (1995) 

T
 = constant, (

T
 = 0.0011m2s-1 )  

 

 
Figure 8-5:Predicted velocity profiles for the two phase oil water flow using 

MATLAB model devloped in this project. kC(y)
2


T
, (

2
 =0.00005m2s-1 , 

k =0.0023m2s-1 ) 
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(b) 

Figure 8-6: Predicted and measured velocity profiles for the two phase oil water flow 
results from Lucas model  (1995) kC(y)

2


T
, (

2
 =0.00005m2s-1 , 

k =0.0023m2s-1 ) 
 

8.6 Velocity profile prediction of solid-water flow in inclined pipe  
 
In this section, the model is extended to predict the velocity profile of solids-water 

flows in an inclined pipe, based on the flow model and the method of solving the 

differential equation already mentioned in Sections 8.3.1 and 8.4. In this section the 

dispraise phase is solids and the continuous phase is water. It is assumed that the 

solids and water will mix and travel with the same axial velocity. The relevant flow 

parameters are shown in Table 8-3; Flow condition 22 was used, see Table 7.2, 

refs,Q  =0.95m3h-1, refw,Q  = 12.47 m3h-1 and angle of inclination 30o.  

 

 

 

 

 



MATHEMATICAL MODEL 
 

 325 

Table 8-3: Solids water flow condition parameters 
 

Diameter of the pipe D=80mm 

Inclination of the pipe to the vertical 30  

Density of the solid 33
solid kg/m101.34ρ   

Reference solids volume velocity refs,Q  0.95m3h-1 

Density of the water 33
water kg/m101.00ρ   

Reference water volume velocity refw,Q  12.47 m3h-1 

Total flow rate QT = 13.42 m3h-1 

 

The local solids-volume fraction measurements are for Config-I. As mentioned above, 

a curve fitting method was used to describe the relationship. Figure 8-5 also shows the 

local solids volume fraction distribution obtained from the experimental test flow 

condition-22. It can be seen from Figure 8-7 that for Config-I the solids volume 

fraction decreases with distance from the lower side of the inclined pipe. 

  

Figure 8-7: Measured local solids volume fraction profiles using Config-I for pipe 

inclined at 30° to the vertical, flow condition 22 ( refs,Q  =0.95 m3h-1, refw,Q  = 

12.47 m3h-1)  
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For consistency the y-coordinate of the bottom of the pipe is set to zero and the top is 

set to 80mm. The best fit expression for the solid volume fraction in terms of the y-

coordinate is: 

10.0046.43y65.6y829yC(y) 23                             8-21 

 

Thus the local fluid density for the solids-water mixture in can be expressed as: 

00.12.19y22.3y278.yρ(y)

C(y))(1ρC(y)ρρ(y)
23

watersolid




                         8-22 

 

The weighted mean fluid density of the inclined pipe is:  

   D

0
y)dy-(Dy 2 C(y))(1waterρC(y)solidρ 

A

1
mρ  

 =1.07 kg/m3 

 

where: A represent the cross-sectional area of the pipe.  

 
As discussed above the approach to solving the simplified Navier-Stokes equation is 

determined by the expression representing the two-phase eddy viscosity, 
T

 . Once 

again 
T

  was initially considered constant and Figure 8-8 show the simulation 

velocity profiles with 
T

  = 0.00011 m2s-1. The range of values of 
T

  used to predict 

the velocity profile changes were found by trial and error. When 
T

  =0.00011, the 

predicted velocity best matches the experimental data. Once 
T

   exceeds about 

0.00017, the negative velocity at the lower side of the inclined pipe is no longer 

predicted, which differs significantly from the observed results.  
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Figure 8-8: A comparison of predicted (-) and measured data (o) using Config-I for 
two-phase eddy viscosity 

T
 =0.00011 m2s-1 for pipe inclined at 30° to the vertical, 

and flow condition 22 ( refs,Q = 0.95m3h-1, w,refQ = 12.47 m3h-1) 

 
 
 
For the second case being considered, kC(y)

2


T
.  The parameters 

2
  and k 

both affect the shape of the simulated curve. A numerical approach is applied to solve 

the Navier-Stokes equation with the boundary conditions of zero velocity at the 

bottom and top of the inclined pipe.  

 
Figure 8-9 shows the simulation results when 

T
 = 5x10-6 + 9x10-4 C(y) and it can be 

seen that the simulation results are generally close to the experimental velocity data 

obtained from the ICC using Config-I (flow condition 22 see Table 7-2).  
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Figure 8-9: A comparison of predicted (-) and experimental data (o) using Config-I 
for  

T
 = 5x10-6 + 9x10-4 C(y), for pipe inclined at 30° to the vertical, and flow 

condition 22 ( refs,Q = 0.95m3h-1, w,refQ = 12.47 m3h-1) 

 
From the comparison between the simulation results and experimental data, it can be 

concluded that when 
T

  is considered as a function of the solid volume fraction, 

( kC(y)
2


T
), the predicted values of the 1-D solid-water velocity profiles in the 

inclined pipe more accurately represent the measured data than when 
T

  is viewed as 

a constant. Strictly these curves and the values of 
T

  and k used cannot be compared 

to those of Lucas because the curves are for solids liquids while those of Lucas are for 

liquids-liquids. Also the values of 
T

  and k used here were obtained by trial and error 

to give the best fit.  

 
The results shown in Figure 8-9 are considered to agree with iteration the predicted 

local axial solids velocity profiles for the solids volume fraction distribution in an 

inclined pipe. In the author‟s opinion, the causes of the differences between the output 

from the model and the experiments include: 

 
 The initial simplifying assumptions might mean that some parameters which 
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have an effect on the measured results are ignored; for example molecular 

viscosity and forces that might exist between particles. 

 
 The assumption of zero fluid of velocity at the wall is key, but solids maybe in 

contact with wall and be moving. 

 
 The precision of the numerical approach may not predict accurately enough. 

Alternative numerical methods need to be found to check these results and to 

solve the equations. 

 
 The expression of the two-phase eddy viscosity needs to be refined. The 

expression used for 
T

  greatly influences the simulation results and other, 

better representations of the distribution of the two-phase eddy viscosity 

would lead to better predicted values. 
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Chapter 9 CONCLUSIONS AND FUTURE WORK 

 
 
 
 
 
 
This chapter contains the main conclusions of the research. It starts by stating the 

main findings of the current study. Then a summary of the contribution to 

knowledge made by this research is provided. Finally, the author makes 

recommendations for future work. 
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9.1  Conclusions  
 
This section describes how well this research project has met its original aims and 

objectives, and the new contributions to knowledge that it has made. The major 

achievements of this research are explained and linked with the original aims and 

objectives set out in Section 1.5. 

 
A major aim of this thesis was to design a novel non-intrusive Impedance Cross-

correlation (ICC) flow meter which is able to accurately measure the mean solids 

volume fraction, the mean solids velocity and the solids volumetric flow rate in 

inclined solids in water flows where the local solids volume fraction and velocity 

distributions are highly non-uniform. This aim has been met with the design, 

development and successful testing of a non-intrusive ICC flow meter consisting of 

two electrode arrays separated by an axial distance of 50mm. For this ICC flow meter, 

the mean percentage errors (for all flow conditions investigated) for the mean solids 

velocity, the mean solids volume fraction and the solids volumetric flow rate  are 

shown in Tables 9-1, 9-2 and 9-3 respectively.  

 

Table 9-1: The mean percentage errors for the mean solids velocity at different angles 
of inclination and electrode configurations 

 
 Angle of inclination 

Config o0  o15  o30  

I (Table 7.3) 3.2 2.2 -2.7 
II (Table 7.4) 2.8 3.8 3.5 

III(Table 7.5) 3.5 4.5 3.6 

 

Table 9-2: The mean percentage errors for the mean solids volume fraction at 
different angles of inclination and electrode configurations 

 
 Angle of inclination 

Config o0  o15  o30  

I (Table 7.6) 2.9 2.6 1.9 
II (Table 7.7) 3.6 1.3 1.9 

III (Table 7.8) 0.6 1.6 1.1 
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Table 9-3: The mean percentage errors for the solids volumetric flow rate  at different 
angles of inclination and electrode configurations 

 

 Angle of inclination 

Config- o0  o15  o30  

I (Table 7-12) 2.2 1.4 -3.7 
II (Table 7-13) 1.1 2.0 -2.6 

III (Table 7-14) 1.1 -2.1 -0.2 

 

This compares very favourably with quoted errors of up to plus or minus 10% for 

these measurements using multiphase flow meters which are currently commercially 

available ( Al-Yarubi, 2010). The non-intrusive ICC flow meter has also shown itself 

capable of measuring the local solids volume fraction (sα ) and the local solids axial 

velocity ( su ) distributions with good accuracy in vertical and inclined solids-liquid 

flows. 

  
The electronic measurement hardware of the ICC includes a working conductance 

circuit (see Section3.6) with two electrode selection circuits for arrays A and B (see 

Section 3.9) and a data acquisition system and software (see Section 3.8). The author 

developed software code in MATLAB to select the desired electrode configuration 

and included LED circuits to check the continuity of the selected electrode circuits 

and to make sure that the signal going to each electrode was the required signal (as 

selected from the MATLAB/LABJACK control system). The LEDs gave a visual 

indication of which electrodes were excited, which electrodes were the measurement 

electrodes and which electrodes were connected to ground. Cross-talk between the 

two sensor arrays was eliminated by energizing array A when array B was de-

energized, and vice-versa as described in Section 3.6. 

 
A successful 2D COMSOL computational model of the ICC flow meter was achieved 

to investigate which electrode configurations interrogated deepest into the flow cross-

section. The model was a great help in terms of providing comparison data for the 

bench test results. The model was used to calculate the sensitivity distribution for 

different electrode configurations (Configs-I, II and III) and to find electrode 

configurations which can best cover the cross-section of the pipe. For each of the 

three electrode configuration the 10%, „effective sensing region‟ was calculated and a 
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„Centre of Action‟ (CoA) for each sensing region was found. The importance of the 

CoA was that it provided a spatial location for the local volume fraction measurement 

and the local velocity measurement associated with each rotational position of a 

particular electrode configuration. The CoA was found for each of the eight different 

rotational positions for a given electrode configuration using Equations 4-6 and 4-7. 

The differences in position of the CoA between Configs-I, II and III are due to each of 

the configurations interrogating different parts of the cross-sectional area of the test 

pipe. 

 
Config-I one electrode is excitation electrode (V+), and its adjacent electrode is the 

measurement electrode (Ve). The other six electrodes are earthed (E). For example, in 

rotational position-1, the electrode 1 is an excitation electrode (V+) and electrode 2 is 

the measurement electrode (Ve), and electrodes 3,4,5,6,7 and 8 are connected to 

ground (E). Seven similar arrangements are possible by simply rotation of the first 

arrangement, as can be seen from Table 4-2. For Config-I the CoA is about 6mm from 

the pipe wall, see Figure 4-15. 

 
Config-II, one electrode is an excitation electrode (V+), and both adjacent electrodes 

are measurement electrodes (Ve). The other five electrodes are earthed (E). For 

example, in rotational position-1, electrode 1 is an excitation electrode, electrodes 8 

and 2 are the measurement electrodes and the other five electrodes are connected to 

ground. Again, seven similar arrangements are possible by simply rotation of the first 

arrangement, as can be seen from Table 4-3. For Config-II the CoA is about 12mm 

from the pipe wall. 

 
Config-III, two adjacent electrodes are the excitation electrodes (V+), the 

immediately adjacent electrodes are the measurement electrodes (Ve). The other four 

electrodes are earthed (E). For example, in rotational position-1 electrodes 1 and 2 are 

the excitation electrodes, electrodes 3 and 8 are the measurement electrodes and the 

other four electrodes are connected to the earth (E). Once again, seven similar 

rotational positions are possible by simply rotation of the first arrangement, as can be 

seen from Table 4-4. For Config-III the CoA is about 22mm from the pipe wall. 

 
A series of static bench tests were performed in order to investigate spatial variations 

in the sensitivity of the electric „sensing‟ field for different electrode configurations 
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(Configs-I, II and III) and to help determine the regions of flow being interrogated. 

The tests were carried out and the results showed that the area of the flow cross-

section interrogated by the ICC device is highly dependent upon the electrode 

configuration and that it is possible to have some configurations which interrogate 

specific localized regions of the flow whilst other configurations interrogate the entire 

flow cross-section. The spatial resolution of the solids mapping will be the same order 

of size as the „effective sensing region‟ for a given electrode configuration as shown 

in Figure 5-4(a). 

 
Sensitivity distributions were obtained for the initial electrode configurations Configs-

I, II and III (see Tables 4-2, 4-3 and 4-4). From the sensitivity distribution results 

obtained it is clear that sensitivity is highest near the V+ electrode(s), lower near the 

measurement electrode(s) and lowest near the earth electrode(s). The results obtained 

show that the sensing regions for the three electrode configurations Configs-I, II and 

III are different. 

 
The static bench test results were compared with the predictions of the COMSOL 

model (see Section 5.6). The mean relative percentage differences for Configs-I, II 

and III between the experimental bench tests and the corresponding COMSOL models 

were 1.21%, 1.24% and 1.65%, respectively (see Figures 5-13 and 5-14) which gave 

confidence that the device was working as it should. 

 
The ICC meter was successfully installed in the Huddersfield University multiphase 

flow test rig and experiments were performed at three inclinations of the test pipe 

( o0 , o15 and o30 to the vertical). For the vertical solids in water flows the local solids 

velocities obtained from the ICC show the well-known flat profile over the cross-

section of the pipe for Config-ψ  (see discussion below). As expected there was not 

much difference between the results obtained for Configs-I, II or III (see Chapter 7) 

for the vertical flow. The local solids velocity profiles were plotted in 3D graphic. The 

results for Configs-I, II and III showed a drop in velocity in the middle of the cross 

section pipe (see Figures 7-30 to 7-38) which was entirely due to way in which the 

results were plotted, with insufficient measurement data at the centre of the cross-

section. To overcome this problem, Config-ψ  was defined (see below and Section 

7.2.1) which gave flat local solids velocity profiles which were nearly identical to 
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those found by previous researchers such as Lucas et al., (1999, 2000) and Cory 

(1999), using intrusive local conductance probes, see Sections 7.2.5. [Note that 

Config- ψ  was simply used to determine the local solids velocity and local solids 

volume fraction at twenty four spatial location corresponding to the CoA of the eight 

rotational positions for each of Configs-I,II and III in order to overcome the problem 

of insufficient measurement data in the flow cross-section]. 

 
For inclined pipes where the flows are non-symmetrical and the solids velocity varies 

rapidly with spatial locations in the pipe, the results were expected to show consistent 

differences for Configs-I, II and III (see Figure7-12 to 7-29). For the inclined solids-

water flows when the pipe was inclined at o15 and o30 from vertical, the local axial 

solids velocity is highest on the upper side of the inclined pipe and lowest at the lower 

side of the pipe for both angles of inclination. This agreed with visual observation of 

the flow through the transparent pipe forming the working section of the flow loop. 

However, on the lower side of the inclined pipe in some flow conditions there was a 

negative local axial solids velocity, see Figure 7-12 and Figures 7-21, 7-22, 7-24 and 

7-25. Under the given conditions, the solids particles were actually flowing backwards 

down the pipe and this agreed with visual observation. 

  
The accuracy of the local solids velocities obtained using the ICC meter at a given 

flow condition were investigated by calculating the mean solids velocity meass,u  

using integration and comparing the result with a reference measurement s,refu  of 

this parameter (obtained from Equation 6-28). No statistically significant differences 

could be detected between the mean errors in meass,u  for any of the electrode 

configurations ( see Table 9-2).  

 
For vertical solids in water flow the local axial solids volume fraction obtained from 

the ICC shows a flat profile over the cross-section of the pipe for Config-ψ . There 

were not many differences in the results obtained for Config-I, II and III (see Figures 

7-55 to 7-63) for the vertical flow as the solids volume fraction profile would be 

expected to be uniform. The local solids volume fractions were plotted in 3D graphic. 

Figures 7-82 to 7-90 show a drop towards the middle of the pipe, this is due to the 

manner of plotting the results as described above. As mentioned earlier, to overcome 
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this problem, Config-ψ  was defined. It gave flat local solids velocity profiles in the 

cross section area of the pipe which agrees with results from Lucas et al., (1999, 

2000) and Cory (1999). 

 

For the solids-water flows when the pipe was inclined at o15 and o30 from vertical, the 

distribution of the local solids volume fraction is non uniform, see Figures 7-91 to 7-

105. Gravitational effects mean that for the solids, which are more dense than the 

liquid, the mean density of the solids-water mixture is higher on the lower side of the 

inclined pipe. Of course, the more horizontal the test pipe the greater this effect, and 

at the lowest layers the solids can become „close packed‟. Similar volume fraction 

profiles to those reported for inclined flows in this thesis have been observed by 

Lucas et al., (1999, 2000) and Tabeling et al., (1991) for the water volume fraction in 

oil-water flows in inclined pipes.  

 
For the upward vertical flows investigated, the local solids volume fraction and local 

axial velocity distributions were axi-symmetric. As the angle of inclination angle of 

the pipe away from the vertical was increased, the solids tended to migrate towards 

the lower side of the inclined pipe, but symmetry about the y-axis was maintained. 

The lower density of the solids-liquid mixture at the upper side of the inclined pipe 

gave rise to relatively high axial velocities in this part of the flow cross-section.  

 
Measured values of the mean solids volume fraction obtained by integrating the ICC 

local volume fraction data in the cross section, were compared to reference 

measurements of the mean solids volume fraction obtained using a Honeywell ST-

3000 dp cell. Once again, no statistically significant differences could be detected 

between the errors in the mean solids volume fraction obtained, for all of the electrode 

configurations investigated.  

 
The ICC measuring system was used to measure the local solids volumetric flow rate 

for solids liquid flows in vertical and inclined pipes. The ICC measures the local 

solids volume fraction distribution using array B, and then measures the local solids 

velocity distribution by cross correlating conductance variations between arrays A and 

B. The measured solids volumetric flow rate meass,Q  obtained by the ICC is then 

obtained using Equation 6-2 .The reference solids volumetric flow rate  refs,Q  was 
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determined from the hopper system. Again, no statistically significant differences 

could be detected between the mean error in meass,Q  for any of the electrode 

configurations investigated ( see Table 9-3).  

 
The profiles of local axial solids volume fraction, sα , and local axial solids velocity, 

su , as measured by the ICC have a lower spatial resolutions than that of a typical 

dual-plane Electrical Resistance Tomography (ERT) system such as the system used 

by Balasubrammaniam (2008/2009) for oil and water flows. However the results 

obtained by the ICC device were compared with the a dual-plane Electrical Resistance 

Tomography system and Six-electrode local probes developed by Lucas et al., (1999, 

2000) and Cory (1999) for solids and water flows and have shown good general 

agreement. 

 
Due to the high cost of ERT systems, it may be preferable, in some applications, to 

use the low cost ICC flow meter for online monitoring of solids-in-water flows and 

other water continuous multiphase flows. The author believes that the ICC flow meter 

presented in this thesis can be used to measure the local velocity of the solids and the 

local solids volume fraction in a wide variety of solids water pipe flows, including 

horizontal flows. Although the solids particles used in the present investigation were 

of 4 mm diameter, it is likely that the ICC system can also be used to make local 

volume fraction and the local velocity measurements in solids and water flows with 

much smaller particles. 

 
A mathematical model was developed for the numerical simulation of the behaviour 

of inclined flows of solids in water, see Chapter 8. The main conclusion to be drawn 

from this model is that the Navier-Stokes equation can be solved, given suitable 

simplifying assumptions, to give a reasonably good, one-dimensional velocity profile 

of inclined solids-water flows, provided that the local volume fraction distribution in 

the flow is known.  For the given assumptions there was very close agreement 

between model predictions and those of δucas‟ (1λλ5) model; and quite good 

agreement with δucas‟ experimental results, see Figures 8-3 to 8-6. The model 

appeared more successful in predicting the local solids velocity profiles observed in 

the present study. Good agreement was found between the model predictions for 

solids velocity profile and measured local solids velocity obtained by the ICC system, 
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see Figure 8.9, for the test pipe inclined at o30  to the vertical (Config-I, flow 

condition 22). 

 
One of the boundary condition assumptions of the model deserves further 

consideration. It was assumed that the velocity of the water-solids mixture is zero at 

the pipe wall. But it was both visually observed and measured by the ICC that there 

could be solids flow immediately adjacent to the pipe wall - flow which could even be 

in the opposite direction to the mean flow for certain pipe inclinations and specific 

solids and water flow rates. In the model developed to predict velocity profiles from 

the local solids volume fraction profiles obtained by the ICC a number of other 

important assumptions were made. The velocity distribution of the solids particles has 

been mentioned above, but another important assumption made in the application of 

the model was the expressions for the two-phase eddy viscosity. The formulation of 

this expression needs extensive further investigation. Other assumptions such as the 

non-existence of buoyancy forces are probably not so significant as the above two. 

9.2 Novel Features and Contributions to Knowledge 
 
The research project presented in this thesis incorporated a number of important 

features that were novel and not previously implemented by other researchers. These 

are: 

One 
 
The author of this thesis success has developed a non-intrusive low cost Impedance 

Cross-Correlation flow meter to measure the local solids volume fraction distribution 

and the local axial solids velocity distribution for highly non-uniform solids-water 

flows and other water continuous multiphase flows. The device has been tested 

successfully for upward flows in pipes inclined to the vertical.  

Two 
 
A control system has been developed consisting of a micro-controller and analogue 

switches such that, for electrode arrays A and B (each consisting of eight electrodes) 

any number of the electrodes can be configured as excitation electrodes (V+), or as 

virtual earth measurement electrodes (Ve) or earth electrodes (E) enabling different 

regions of the flow cross-section to be interrogated. By changing the electrode 
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configuration the electric field sensitivity distribution can be altered, thus changing 

the region of the flow „interrogated‟ by the system. Cross-correlating the output 

signals from these electrode arrays, in various combinations, measures the velocity of 

the dispersed phase at different regions within the flow.  

Three 
 
The author has developed a switching mechanism to prevent cross-talk between the 

two arrays of electrodes.  

Four 
 
There have been no previous reports on the mathematical model for solids and water 

flow in inclined pipe. 

 

9.3 Recommendations for Future Work 
 
The results of current investigation and the conclusions reached, suggest a number of 

avenues for further work: 

 

 The axial array separation L between the two electrode arrays A and B is 50 

mm (see Chapter 3). The axial separation between the two electrode arrays 

should be varied to see if any greater accuracy in the measured results are 

obtained. 

 
 The use of more than 2 electrode arrays should be investigated. Using, for 

example, five arrays, see Figure 9-1, would be expected to give a better 

analysis of any wave structure of the flow that occurs while measurements are 

being made. It would also be possible to cross-correlate between each pair of 

electrode arrays and compare the results obtained to investigate consistency 

and accuracy of the results.  
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Figure 9-1: Suggested five electrode array flow meter. 

 

 In this investigation eight electrodes were used for each electrodes array. 

Increasing the number of electrode in each array to 16. General speaking, this 

will increase the number of measuring pointes in the flow cross section. For 

example in the current investigation each electrode configuration listed in 

Tables 4-2, 4-3 and 4-4 have 8 different rotational positions.  Since the number 

of electrodes is increased to 16 so a 16 measuring point for each of defined 

configurations (Config-I, II and III). Obviously, this might will overcome the 

problem that the author of this thesis phase while plotting the 3D profiles for 

each defined configuration (Config-I, II and III) and the problem overcome by 

plotting the all the rotational position listed in Tables 4-2, 4-3 and 4-4 together 

see Config-ψ .  

 
 In this investigation the electrodes were rectangular in shape with dimensions 

of 2.3mm circumferentially x 2mm longitudinally x 0.4mm radially. Changes 

the shape of electrodes should be investigated, either by increasing one or 

more of the dimensions while retaining the same shape, or to use different 
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shaped electrodes. Wang J.et.al (2006) for example, used circular shaped 

electrodes. 

 
 An ICC flow meter could be combined with an electromagnetic flow meter 

(EMF) to measure the properties of the multiphase flow. The EMF would be 

used to measure the continuous phase flow and the ICC meter to measure the 

dispersed phase. The EMF using the weight function technique to get the 

continuous phase velocity. For more information about the weight function see 

Wang J.et.al (2006) which give comprehensive information on the use of the 

EMF flow meter. 

 
 Development of a theoretical model of solids in water flow in inclined pipes 

for practical flow conditions to predict the velocity of the dispersed phase 

using the measured volume fraction. 

 
 Commercial development of the ICC meter as a low cost flow meter.
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Appendix 

9.4 Code-1 
 
This code used for to record the data for 60 seconds from array A and array B. It starts 

by selecting the desired electrode configuration.  

 
load('electrode-configuration.mat') 
endtimes  = length(ringset1(:,1)) 
volt1 = zeros(2048,length(ringset1(:,1))); 
volt2 = zeros(2048,length(ringset1(:,1))); 
for  i =1: endtimes 
    a = ringset1(i,1); 
    b = ringset1(i,2); 
    c = ringset1(i,3); 
    d = ringset1(i,4); 
    e = ringset1(i,5); 
    f = ringset1(i,6); 
    g = ringset1(i,7); 
    h = ringset1(i,8); 
 SetRing1(a,b,c,d,e,f,g,h); 
 SetRing2(a,b,c,d,e,f,g,h); 
%  dgfo = 2;                 % input dgfo == DiGital 
Filter Order 
                           % 2 = 2nd Order ,...., 10 = 
10th Order 
 Idnum = -1;               % LabJack number (-1 for first 
LapJack) 
 demo = 0;                 % 0 = Working mode  &   1 = 
Demo mode                        
 stateIO = [0];            % State of I/O lines required 
- Not used  
 updateIO = 0;             % 1 = Wrire I/O states & 0 = 
Don't write 
 ledon = 1;                % LapJack indicator led   1 = 
on & 0 = off 
 numChannels = 2;          % Number of analog chanels 
used 
 channels = [1 2 3];         % Numbers of the chanels 
used 
 gains = [0 0 0];            % Gains of the selected 
chanels  0 = unity gain 
 scanrate = 1000;           % Rate of sampling   
sample/second 
 disablecal = 0;           % Calibration data   0 = use & 
>0 = Don't use 
 triggerIO = 0;            % Triger IO port     0=none, 
1=IO0, ..., 4=IO3 
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 triggerState = 0;         % Trigering state    0=Low   
1=High 
 numscans = 2048;           % Number of scans    form 1 
to 4096 scans 2048 
 timeout = 10;             % Maximum nomber of seconds 
allowed for operation 
 transfermode = 0;         % Always send 0 (LapJack 
instructions)   
 % data                    % The output array 
 % stateIOout              % Array where IO states are 
returned - Not used 
 % scanRate                % Actual scan rate used (might 
be different) 
 % overVoltage             % 1 = Over voltage detected & 
0 = every thing ok 
 % errorcode               % LabJack error codes or 0 for 
no error 
 % idnum                   % Local ID number of LabJack, 
or -1 if no LabJack is found   
 % SampleTime              % Time between any two 
consecutive samples 
 vsum=0;    
  
 % Feedind instructions into LapJack and receiving the 
result array (data) 
 [data stateIOout scanRate overVoltage errorcode idnum] = 
AIBurst(Idnum, demo, stateIO, updateIO, ledon, 
numChannels, channels, gains, scanrate, disablecal, 
triggerIO, triggerState, numscans, timeout,transfermode); 
  
 SampleTime = 1/scanRate;        % Calculate actual 
sampling time  
 for (n=1 : numscans) ; 
 time(n,1)= (n-1)*SampleTime;    % create time array for 
plotting  
 end 
 volt1(:,i)= data(:,1);    % create data array for 
plotting 1st channel 
 volt2(:,i)= data(:,2);    % create data array for 
plotting 2nd channel 
 volt3(:,i)= data(:,2);    % create data array for 
plotting 3rd channel 
 
 vo1=mean(volt1(:,i));           % Average of 1st channel 
data 
 vo2=mean(volt2(:,i));           % Average of 2nd channel 
data 
 vo2=mean(volt3(:,i));           % Average of 2nd channel 
data 
 %--------------------------------- Plot of chn1 & chn2 -
------------------ 
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 subplot(2,2,1) 
 plot (volt1(:,1), volt1(:,2)); 
 title('chn1'); 
 xlabel('Time(sec)'); 
ylabel('volt1'); 
 grid on; 
subplot(2,2,2) 
 plot (volt2(:,1), volt2(:,2)); 
  title('chn2'); 
  xlabel('Time(sec)'); 
  ylabel('volt2'); 
  grid on; 
%  %--------------------------------- Chanel 1 Filter ---
-------------------- 
%  volt1 = zeros(2048,length(ringset1(:,1))); 
% volt2 = zeros(2048,length(ringset1(:,1))); 
%  for (m=1:numscans);          
%      for (j=0:dgfo); 
%          if (m-j>0)  
%          vsum = vsum + volt1(m-j, 2); 
%          else 
%          vsum = vsum + 0; 
%         end 
%      end 
%      volt1f(m,:)=[volt1(i,1) vsum/(dgfo+1)]; 
%      vsum = 0; 
%   end 
%   
% %  %--------------------------------- Chanel 2 Filter -
---------------------- 
%   for (i=1:numscans); 
%      for (j=0:dgfo); 
%          if (i-j>0)  
%          vsum = vsum + volt2(i-j, 2); 
%          else 
%          vsum = vsum + 0; 
%          end 
%      end 
%     volt2f(i,:)=[volt2(i,1) vsum/(dgfo+1)]; 
%      vsum = 0; 
%   end 
%    
%   dataf = [volt1f(:,2) volt2f(:,2)]; 
%   
%  %--------------------------- Plotting of Filtered chn1 
& chn2 ------------ 
%   subplot(2,2,3) 
%   plot (volt1f(:,1), volt1f(:,2)); 
%   title('Filtered chn1'); 
%   xlabel('Time(sec)'); 
%   ylabel('Filtered volt1'); 
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%   grid on; 
%   subplot(2,2,4) 
%   plot (volt2f(:,1), volt2f(:,2)); 
%   title('Filtered chn2'); 
%  xlabel('Time(sec)'); 
%   ylabel('Filtered volt2'); 
%   grid on; 
end 
hold on 

9.5 Code-2 
 
This code is used to select the desired electrode configurations for array A. 
 

 
function SetRing1(a,b,c,d,e,f,g,h); 
  
Ring1=[a,b,c,d,e,f,g,h]; 
Lat1=[0,0,0,0,0,0,0,0]; 
Lat2=[0,0,0,0,0,0,0,0]; 
Lat3=[0,0,0,0,0,0,0,0]; 
%--------------------------------- Setting Latches Values 
--- 
for i = 1:8; 
    if (Ring1(i)==1);  Lat1(i)=0;  Lat2(i)=0;  Lat3(i)=0; 
end      
    if (Ring1(i)==2);  Lat1(i)=1;  Lat2(i)=0;  Lat3(i)=0; 
end 
    if (Ring1(i)==3);  Lat1(i)=0;  Lat2(i)=1;  Lat3(i)=0; 
end 
    if (Ring1(i)==4);  Lat1(i)=0;  Lat2(i)=1;  Lat3(i)=1; 
end 
end 
  
%--------------------------------- Setting Latch 1 ------
---- 
for i = 0:7 
    EDigitalOut(-1,0,i,1,Lat1(i+1)); 
end 
    EDigitalOut(-1,0,8,1,1); 
    EDigitalOut(-1,0,8,1,0); 
%--------------------------------- Setting Latch 2 ------
---- 
for i = 0:7 
    EDigitalOut(-1,0,i,1,Lat2(i+1)); 
end 
    EDigitalOut(-1,0,9,1,1); 
    EDigitalOut(-1,0,9,1,0); 
%--------------------------------- Setting Latch 3 ------
---- 
for i = 0:7 
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    EDigitalOut(-1,0,i,1,Lat3(i+1)); 
end 
    EDigitalOut(-1,0,10,1,1); 
    EDigitalOut(-1,0,10,1,0); 
%--------------------------------- Resetting D0-D15 to 0 
---- 
for i = 0:15 
    EDigitalOut(-1,0,i,1,0); 
end 
%--------------------------------------------------------
------- 
End 
 
 

9.6 Code-3 
This code is used to select the desired electrode configurations for array B. 
 
 
function SetRing2(a,b,c,d,e,f,g,h); 
  
Ring2=[a,b,c,d,e,f,g,h]; 
Lat4=[0,0,0,0,0,0,0,0]; 
Lat5=[0,0,0,0,0,0,0,0]; 
Lat6=[0,0,0,0,0,0,0,0]; 
%--------------------------------- Setting Latches Values 
--- 
for i = 1:8; 
    if (Ring2(i)==1);  Lat4(i)=0;  Lat5(i)=0;  Lat6(i)=0; 
end      
    if (Ring2(i)==2);  Lat4(i)=1;  Lat5(i)=0;  Lat6(i)=0; 
end 
    if (Ring2(i)==3);  Lat4(i)=0;  Lat5(i)=1;  Lat6(i)=0; 
end 
    if (Ring2(i)==4);  Lat4(i)=0;  Lat5(i)=1;  Lat6(i)=1; 
end 
end 
%--------------------------------- Setting Latch 4 ------
---- 
for i = 0:7 
    EDigitalOut(-1,0,i,1,Lat4(i+1)); 
end 
    EDigitalOut(-1,0,11,1,1); 
    EDigitalOut(-1,0,11,1,0); 
%--------------------------------- Setting Latch 5 ------
---- 
for i = 0:7 
    EDigitalOut(-1,0,i,1,Lat5(i+1)); 
end 
    EDigitalOut(-1,0,12,1,1); 
    EDigitalOut(-1,0,12,1,0); 
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%--------------------------------- Setting Latch 6 ------
---- 
for i = 0:7 
    EDigitalOut(-1,0,i,1,Lat6(i+1)); 
end 
    EDigitalOut(-1,0,13,1,1); 
    EDigitalOut(-1,0,13,1,0); 
%--------------------------------- Resetting D0-D15 to 0 
---- 
for i = 0:15 
    EDigitalOut(-1,0,i,1,0); 
end 
%--------------------------------------------------------
------- 
end 
 

9.7 Code-4 
Cross correlation code for ball 

 
 
This code is used to cross-correlate the two signals obtained from both arrays A and B 

to fine the delay time for the two balls crossing arrays A and B. 

 
clear all; 
clc; 
close all; 
  
% this program is meant to measure the time taken by a 
ball between two 
% planes 
%--------------------------------------------------------
------------ 
% the aim is to cross correlate plane 1 with plane2 one , 
% similarly other zones 
format long 
load('test.mat')  % loading the mat file having data 
%tt = 0:0.001:0.255; % time period is 1 secs that is 
every data is measured at every 0.001 secs 
N = length(test(:,1)); 
T = 0.001*length(test(:,1));   
% four zones of plane 1 
p1z1 = test(:,1)-1;  % loading first row into plane 1 
zone 1 
p1z2 = test(:,2)-1;  % loading second row into plane 1 
zone 2 similarly others 
  
[C s1] = min(test(:,1)); 
[C s2] = min(test(:,2)); 
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% four zones of plane 2 
  
%plotting p1z1 
figure(1); 
plot(p1z1,'r') 
hold on 
%plotting p2z1 
plot(p1z2) 
  
cor1 = xcorr(p1z1,p1z2); % cross corelating plane 1 zone 
1 and plane 2 zone 1 
t=linspace(-T,T,2*N-1);  % here just time period is 
splitted into 1997 as there is 1997 data (2*999 -1) 
figure(2) 
plot(t,cor1)  %plotted with t with cor1 
[c I] =max(cor1); 
I 
I_1 = I-999 
 
 

9.8 Code-5 
 
Is used to cross-correlate the two signals obtained from both arrays A and B for each 

rotational positions for Config-I,II and III in order to find the axial solids velocity. 

 
Clear all; % clearing all the previous files opened 
clc;       % clearing the screen  
close all; % closing all the opened files  
  
load('ch1.mat')   %loading the mat file which has the 
measurement data 
set = 0;          %initializing an array for storing time 
delays 
N=4096;           %defining the number of values 
T = 0.00223*N;    % defining the total time for taking 
the measurements 
tt = linspace(0,T,N); %dividing the time scale into equal 
intervals 
p1 = ch1(:,1)-mean(ch1(:,1)); %storing the plane 1 and 
plane 2 values  
p2 = ch1(:,2)-mean(ch1(:,2)); %and removing the DC offset 
values 
cor1 = xcorr(p2,p1); %cross correlating two plane values  
t=linspace(-T,T,2*N-1);% defining time interval to plot 
cross correlated graph 
plot(t,cor1)    % plotting cross correlation graph 
title('solids velocity m/s') 
[c I] = max(cor1); %storing peak value 
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set(1) = t(I);   % storing time of the peak value  
  
% same process as above for second set 
p1 = ch1(:,3)-mean(ch1(:,3)); 
p2 = ch1(:,4)-mean(ch1(:,4)); 
cor2 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor2) 
title('solids velocity m/s') 
[c I] = max(cor2); 
set(2) = t(I); 
  
%same process as above for third set 
p1 = ch1(:,5)-mean(ch1(:,5)); 
p2 = ch1(:,6)-mean(ch1(:,6)); 
cor3 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor3) 
%axis([-0.5,0.5,-3,8]) 
title('solids velocity m/s') 
[c I] = max(cor3); 
set(3) = t(I); 
  
% forth set 
p1 = ch1(:,7)-mean(ch1(:,7)); 
p2 = ch1(:,8)-mean(ch1(:,8)); 
cor4 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor4) 
title('solids velocity m/s') 
[c I] = max(cor4); 
set(4) = t(I); 
  
%fifth set 
p1 = ch1(:,9)-mean(ch1(:,9)); 
p2 = ch1(:,10)-mean(ch1(:,10)); 
cor5 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor5) 
title(' solids velocity m/s') 
[c I] = max(cor5); 
set(5) = t(I); 
  
%sixth set 
p1 = ch1(:,11)-mean(ch1(:,11)); 
p2 = ch1(:,12)-mean(ch1(:,12)); 
cor6 = xcorr(p2,p1); 
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t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor6) 
title('solids velocity m/s') 
[c I] = max(cor6); 
set(6) = t(I); 
  
%seventh set 
p1 = ch1(:,13)-mean(ch1(:,13)); 
p2 = ch1(:,14)-mean(ch1(:,14)); 
cor7 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor7) 
title('solids velocity m/s') 
[c I] = max(cor7); 
set(7) = t(I); 
  
%eighth set 
p1 = ch1(:,15)-mean(ch1(:,15)); 
p2 = ch1(:,16)-mean(ch1(:,16)); 
cor8 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor8) 
title(''solids velocity m/s'') 
[c I] = max(cor8); 
set(8) = t(I); 
  
%ninth set 
p1 = ch1(:,17)-mean(ch1(:,17)); 
p2 = ch1(:,18)-mean(ch1(:,18)); 
cor9 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor9) 
title(''solids velocity m/s') 
[c I] = max(cor9); 
set(9) = t(I); 
  
%tenth set 
p1 = ch1(:,19)-mean(ch1(:,19)); 
p2 = ch1(:,20)-mean(ch1(:,20)); 
cor10 = xcorr(p2,p1); 
t=linspace(-T,T,2*N-1); 
figure 
plot(t,cor10) 
title('solids velocity m/s') 
[c I] = max(cor10); 
set(10) = t(I); 
set 
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%finding the averaged cross corelation of all the ten 
sets 
cor = (cor1 + cor2 + cor3 + cor5 + cor4 + cor6 + cor7 + 
cor8 + cor9 + cor10)/10; 
  
%plotting the average chronogram 
figure 
plot(t,cor) 
title(''solids velocity m/s') 
[c I] = max(cor); 
Avged = t(I)  
 

9.9 Code-6 
 
Plot the 3D profile for local axial solids velocity for Config-I,II,III and Config ψ  

 
close all; 
clear all; 
clc; 
 
load('x-cord.mat')   %loading the mat file which has the 
x-coordinate of the centre of action. 
 
load('eight-rotational position-solids-velocity-Config-
I.mat') %loading the mat file which has the solids 
velocity profile for Config-I. 
 
load('eight-rotational position-solids-velocity-Config-
II.mat') %loading the mat file which has the solids 
velocity profile for Config-II. 
load('eight-rotational position-solids-velocity-Config-
III.mat') %loading the mat file which has the solids 
velocity profile for Config-III. 
[xx,yy]=meshgrid(min(-40):2:max(40),min(-40):2:max(40)); 
zz=griddata(x,y,z,xx,yy,'v4'); 
zz(xx.^2 + yy.^2>= 1600) = 0; 
% surfc(xx,yy,zz,'FaceColor','red','EdgeColor','none')z\ 
 surf(xx,yy,zz) 
%camlight left; lighting phong 
%%%%%%%%%%%%%%%% 
xlabel('x-cord of centre of action'); 
ylabel('y-cord of centre of action'); 
zlabel('Solids Velocity (m/s)'); 
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9.10 Code-7 
 
Plot the 3D profile for local solids volume fraction for Config-I,II,III and Config- ψ . 

 
close all; 
clear all; 
clc; 
 
load('volume_fraction.mat')   %loading the mat file which 
has the x-coordinate of the centre of action. 
 
load('eight-rotational position-solids-volume fraction -
Config-I.mat') %loading the mat file which has the solids 
velocity profile for Config-I. 
 
load('eight-rotational position-solids- volume fraction -
Config-II.mat') %loading the mat file which has the 
solids velocity profile for Config-II. 
load('eight-rotational position-solids- volume fraction -
Config-III.mat') %loading the mat file which has the 
solids velocity profile for Config-III. 
[xx,yy]=meshgrid(min(-40):2:max(40),min(-40):2:max(40)); 
zz=griddata(x,y,z,xx,yy,'v4'); 
zz(xx.^2 + yy.^2>= 1600) = 0; 
% surfc(xx,yy,zz,'FaceColor','red','EdgeColor','none')z\ 
 surf(xx,yy,zz) 
%camlight left; lighting phong 
%%%%%%%%%%%%%%%% 
xlabel('x-cord of centre of action'); 
ylabel('y-cord of centre of 
 

9.11 Code-8 
 
To solve Equation 8-5 to obtained the local solids velocity profile. 

 
v=0.00012; 
S=solve('0.08*x+0.0032*y+0.2844e-
1=0','1.0732*13.2209*1/3600=(0.201e-3)*x/v+(0.503e-
5)*y/v+(0.4406e-4)/v','v=0.0001'); 
A=double(S.x); 
Py=double(S.y); 
  
t=0:0.0001:0.08; 
plot(t,(1/1.0732)*A/v*t+(1/1.0732)*Py/(2*v)*t.^2+(1/1.073
2)*9.8*0.866/v*(14.1686*t.^5-
1.9134*t.^4+0.3684*t.^3+0.4992*t.^2)); 
grid; 
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9.12 Code-9 
 
To solve Equation 8-12 to obtained the local solids velocity profile. 

 
function Velocity 
  
solinit=bvpinit(linspace(0,0.2,1000),[1 0]); 
sol=bvp4c(@twoode,@twobc,solinit); 
x=linspace(0,0.2,1000); 
y=deval(sol,x); 
  
plot(x,y(1,:)); 
grid; 
ylim([-0.3,0.5]); 
end 
  
  
function dydx = twoode(x,y) 
  
    Py=-7.93; 
    k=0.0023; 
    v2=0.00005; 
  dydx = [ y(2)  
      -1/(k*(107.9303*x^3-
22.6836*x^2+2.7269*x+0.2995)+v2)*(k*(323.7909*x^2-
45.3672*x+2.7269))*y(2)+1/(k*(107.9303*x^3-
22.6836*x^2+2.7269*x+0.2995)+v2)*1.1227*Py+1/(k*(107.9303
*x^3-
22.6836*x^2+2.7269*x+0.2995)+v2)*1.1227*(22.6654*x^3-
4.7636*x^2+0.5726*x+0.8529)*9.8*0.9063]; 
        
end 
    
   function res = twobc(ya,yb) 
  res = [ ya(1) 
          yb(1)]; 
 end 
 
 
 
 
 


