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Abstract

ANY environmental flows are turbulent flows. Depending on phgsical as-

pects of the wind and the urban topology, turbulence mightilteinto un-
favourable or even dangerous conditions for the pedestrikurbulence can also play
a very important role in the transport of toxic pollutantsnr accidental or intentional
releases. Thus, it is vital to understand its complex charatics so that its features
are accurately predicted when computational methods &@. UReal urban environ-
ment involving separation and reattachment regions pesvah excellent testcase for
investigating such complex flows.

This thesis is focused on analysing the physics involvedindlaround building mod-
els pertinent to environmental flows in urban areas and ttuatethe applicability

of Implicit Large-Eddy Simulation in simulating the specifiype of flows. For this
purpose, a number of high resolution schemes in the confdricit Large-Eddy
Simulation (each representingidrent degrees of spatial discretisation accuracy) was
assessed.

The evaluation of the schemes involved direct validatioairag} experimental data as
well as comparisons with DNS and LES data regarding flowsiwitbughness ele-
ment arrays in staggered arrangements. Initially, the flothiavan uniform height
cubical matrix was simulated. Four numerical schemes wested in three dier-
ent grid resolutions. The results were found in very goocagnent with the Laser
Doppler Anemometry data and they even exhibit DNS-like abgaristics in specific
locations of comparisons. Thus, it was concluded that higlerospatial discretisation
schemes allow the accurate representation of reality eveslatively coarse compu-
tational meshes.

The second case under investigation involved flows withiroeemealistic representa-
tion of urban topology. Results obtained within an array sfesn elements with five
different heights reveal that although the roughness of thesneereased, the wind’s
velocity profile above the obstacles shares almost the skope as in the case of the
array of the four cubical element.

It is believed that this thesis has expanded the range oicapipihs in the context
of Implicit Large Eddy Simulation using high resolution sohes and contributed in
persuading the scientific community for its potentials.
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CHAPTER 1

Introduction

HIS thesis focuses on turbulent flows in urban environmerdmriRhe earlier Ne-

olithic and Bronze Age up to modern period, the design of lngjdtructures was,
most of the times, influenced by the need to withstand unfalde wind and weather
conditions. Nearly all of the mostficult phenomena to predict in the field of fluid dy-
namics are encountered in flows around stationary obste&®tgsaration, reattachment
and vortical structures are just a few of the flow featurestdulee complex interaction
of wind and buildings. Depending on the wind’s speed andctiva, the local topol-
ogy and the building characteristics, turbulence occudifiierent scales contributing
in various ways to the pedestrian comfort and safety. Addilly, in cases of acciden-
tal or intentional release of high concentrations of toxiemicals, turbulence plays
an important role in the dispersion and transport of theypatit in the urban environ-
ment. Thus, itis of vital importance to understand and teas accurately as possible
the complex features of turbulence in order to determineablgienvironment for the
populace.

The subject of building aerodynamics has attracted enosnmaarest during the last
decades and because of its complexity it is far from beingedo Important infor-

mation about the flow characteristics around single andiphelbuilding configura-

tions has been provided by experiments. However, full segberiments may become
relatively expensive and time consuming. Therefore, sgadf the model and inves-
tigation of individual physical parameters is essentiabtmaf the times. During the
last decades, Computational Fluid Dynamics (hereafter CEB)developed rapidly
as a new analysis tool in many engineering applicationsjrgiting to overcome the
experimental drawbacks. Nonetheless, CFD has to face itschathenges. Higher
numerical accuracy without increasing the requiremen@RiJ time is one of them.

In this chapter, the description of environmental flows ibaur areas will be given,
followed by a brief description of the basic ideas of the tlelhce. Moving from single
isolated elements to arrays of roughness elements (a malistierepresentation of
urban areas), the flow structure will be discussed based blispad experimental
results. In addition, a review of state of the art numericathods for simulating
turbulence in wind engineering will be included. Finallgetchapter will close with
an outline of the aims and objectives of the thesis.



2 Introduction

1.1 Atmospheric Flows

In this section, the features of atmospheric flows will becdssed. Specifically, the
definition and concepts of the Atmospheric Boundary Layelrhvelgiven, followed by
a description of the flow mechanisms observed in buildingdaramics.

1.1.1 Urban Aerodynamics

One of the most important environmental factors with a giregact on people’s daily
activities is wind. Wind is the consequence of the air movnogn areas of higher to
lower pressure due to the pressure gradient force. As sothreasr sets into motion,
the Coriolis force occurs as a result of the Earth’s rotatAsthe air moves from high
to low pressure its speed increases, so does its Coriolisctdefleuntil the Coriolis
and pressure gradient force are in geostrophic equilibriumthat ideal situation the
air flows along the isobars. However, due to the friction ribarEarth’s surface, this
equilibrium breaks and the air moves slightly across thebass

The lowest part of the atmosphere directijeated by the Earth’s surface is called
Atmospheric Boundary Layer (hereafter ABL). The ABL extendsrirground level

to Gradient Height which is considered as the minimum height at which the wind
speed is equal to th&/ind Gradient speedAbove this point the wind velocity remains
constant. The actual thickness of the ABL can vary from huiglte a few thousands
of meters.

Two regions can be identified within the ABL depending on thieas of surface fric-
tion. Theouterand theinner region. In the outer region, also knownBkman layey
the dfects of surface friction are negligible and the wind is nearidisturbed. In the
inner region, air circulates closer to the Earth’s surfaweng rise to frictional forces
which cause sudden changes in wind speed and direction. tiHudence is gener-
ated. Significant exchange of momentum, heat and mass betiveatmosphere and
the surface takes place in the ABL due to the presence of embal[4]. These phe-
nomena appear more intense as the roughness of Earth’'sesigfiacreased because
of mankind activities such as growth of urbanisation.

The inner region can be divided further: the urban canopgrlayhich is directly

affected by the presence of the roughness elements, the rasgtutdayer still adjust-
ing to the dfects of the urban surface and finally the inertial sublayat tlas already
adapted and can be described with standard Atmospheric Bouhdyer formulas. A
schematic representation of the inner region is given iniféid..1.

Three types of flow can be identified in the ABL, mean wind, waaeg turbulence.
Those types exist either on their own or in combination witle @r both of the re-
maining types. Mean wind corresponds to the streamwiseigloomponent and its
magnitude ranges between 2 andr0s in the outer region, whereas its minimum
value (zero) is reached on the surface. The other two vglooinponents are consid-
ered generally negligible.
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Figure 1.1: Schematic representation of flow over an urban area [9] .

When the suitability of a building structure and its envir@mhare under investigation,
a mathematical expression of the wind profile in the vicimfythe ground and over
rough obstacles is required. Therefore, measurements tidindary layer are essen-
tial in order to identify consistent and repeatable paransghat characterise the flow.
Once the parameters are found, they can be combined intaieatpelationships to
describe the wind profile.

In the boundary layer, important key parameters are fmctelocity (,) due to surface
shear stress, zero plane displacemeitafid surface roughness parametg).(The
zero plane displacement)(expresses the height above ground (in meters) at which
the mean wind velocity is zero due to the presence of roughglesnents, whereas the
surface roughness paramets)) (s a measure of theffiect of the obstacle’s roughness.

By taking the above parameters into account, the wind spesdepcan be approxi-
mated as a logarithmic profile given by

u= u—k*(ln (?) + 0z, L)) , (1.1.1)

wherek is the Von Karman constant (approximately equal to Q43 stability term
andL is the Monin-Obukhov length as described in the similatiydry [24].

Due to diurnal heating and cooling of Earth, atmosphericdd@mns alter between

thermally unstable and stable states [55]. More precisklying the day, temperature
changes with height above the Earth’s surface leading tgdnay production. Con-

vective turbulence is then dominant and instabilitieseawiich are controlled using a
stability term as in Equation 1.1.1.

During the night, however, when little heating or coolingors at the surface, temper-
ature stays approximately constant with height. Hencesliear production of turbu-
lent kinetic energy is much larger than the buoyant productin situations where the
mechanical shear influences in a greater extent the turtellproduction and buoy-
ancy remains negligible, atmosphere tends to neutral tondi[3]. Under neutral
conditions the stability term drops out and Equation 1.kddmes
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u= E|n(?) . (1.1.2)

This thesis will only be focusing in flows under neutral cdiwhis.

Parametergy andd can be determined using several methods. Land-use methods
provide tables with values o corresponding to dierent types of land. The land-
use categories are widely defined in order to cover as mar/tigres as possible.
Therefore, there are times where the suggested categoriast dlake into account ur-
bariindustrial areas as in the work of Stull [75]. The relatiorzpivith five urban areas
is detailed in the study of Davenport et al. [15] (see Tall¢. However, it is noted that
further analysis is required in order to determine the zésogdisplacemendy. In
Grimmond and Oke [26], twelve land use types are proposesbbas extensive wind
velocity profile measurements in many urban areas. Accgridirtheir conclusiong]
ranges from 2 to 5 m in residential and industrial sites, wasz, varies between 0.2
and 1.3 m.

Category Z Description of urbafindustrial areas
Roughly open 0.1 m Moderately open country with occasionataiites
such as low height buildings at relative
separations of at least twenty obstacles heights.
Rough 0.25m Scattered buildings amdindustrial obstacles
at relative separations of
eight to twelve obstacle heights.
Very rough 0.5m Area moderately covered by low building
andor industrial tanks at relative
separations of three to seven obstacle heights.

Skimming 1.0m Densely built-up area without
much obstacle height variation.
Chaotic 20m City centers with mixture

of low- and high-rise buildings.

Table 1.1: Summary of the surface roughness leng) based on the work of Davenport
et al. [15]. The table has been cited originally in the work of Britter and tdd8h

A more precise method of estimatirzgg andd is through the calculation of the
(the non-dimensional frontal area) amgl(the non-dimensional plan area) parameters
using information regarding the size and spacing of bugdinTheA parameters are
calculated as

Af = — = 113
f AT, P AT ’ ( )

whereA, is the total building plan views; is the total building frontal area ar&k is
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Figure 1.2: Areas of interest in determination of tieparameters.

the building lot area as shown in Figure 1.2. An evaluatiomafhy techniques using
the A parameters was performed by Grimmond and Oke [26]. Theyddliree types
of flows within urban areas: for small values.f, the buildings act in isolation; for
larger values oft; the wakes of the buildings interfere with each other whilenfmich
larger values ofis, the skimming flow over the buildings has limited access ® th
empty areas between the buildings.

Based on field and laboratory measurementst;ond 1, parameters, Britter and
Hanna [9] proposed the set of mathematical formulagzf@andd as given below

L As for A5 <0.15
o {0.15 for Ay > 015 (1.1.4)
d 345 for A; < 0.05
2 _l015+55(1; ~005) for Q05< .1 <0.15 (1.1.5)
"~ 07+035(1; -0.15) for Q15< ;< 10,

whereH, represents the mean building height.

All the above discussion was made on the basis that there wassgble way to esti-
mate the key parameters in order to obtain the logarithmnovprofile. Nonetheless,
in cases where it is not possible to defigeandd the wind profile is approximated
with the power law as follows

4. (E)a . (1.1.6)

According to Equation 1.1.6, the wind speed u at a height beasxpressed through a
known reference velocity, at a a reference height When the conditions are neutral,
the value ofa is approximately 17.
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1.1.2 Building Aerodynamics

As mentioned before, when rough elements such as buildiegglaced in the ABL,
they submerge in an already turbulent and three dimensanasphere. Hence, the
interaction with the airflow results in a modification of thasting turbulent structure
and transfer procedure [67]. Proper understanding of the id@chanisms in urban
areas is vital for preserving pedestrian safety and comfidrerefore, the features of
three dimensional flows around buildings will be discusgeceview of experimental
studies, concerned with both the fundamental case of flowraran individual obsta-
cle and the more complex flow fields around multiple builditrg&ure is presented.

Major contribution in the field of building aerodynamics Hasen made by experi-
mental studies whose main aim was to represent the fundahpntsics in the most
accurate way possible. Most of the times, experiments wenelucted in environ-
mental wind tunnels using scale models. However, a few tidlesexperiments have
been reported in the literature. Parametdfscing the flow pattern such as building
geometry, wind speed and direction, dependency on Reynaluber, scaling of the
model and the extent of boundary layers, were the main afeatecest.

The most comprehensive experimental study that can be foutite literature, de-
scribing in detail the aerodynamics around an isolated csittiee one performed by
Martinuzzi and Tropea [53]. A typical flow field around a cutba@bstacle is given
in Figure 1.3. According to Martinuzzi and Tropea [53], whanreaches the solid

Figure 1.3: Schematic representation of the flow field around a cube [53] .

boundaries (walls) of the cube, a rapid change in its divecticcurs leading to the
presence of vortices (recirculation areas) in front of tbbecclose to ground level,
after the upstream leading edge of the roof and in the wakee tDuhe redirected
flow around the sides of the cubes a system of vortices isartedt horseshoe vortex
and side vortices are formulated, whereas an arc vortexaappethe lee of the cube.
Separation and reattachment of the flow are observed at #np Eading edge of the
roof of the cube. From the above, it can be noted that just glesisnapshot of the
field pattern around a simplified geometry such as a cube Ieetleacomplexity and
unsteadiness of the flow.

Very limited early studies were reported in the literatuealthg with the wake behind
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the cube due to its highly turbulent nature. However, CastdoRobins [10] conducted
an experiment focusing mainly on this specific region as tangit to understand the
way it is dfected by the upstream turbulence and shear. In particudar,dtound a
single cube placed either normal to the flow direction or aamagle of 48 was inves-
tigated. An indication for the total flow was extracted usmgasurements of surface
pressure on the front and back face of the cube as well as nmelaftuatuating veloc-
ities in the wake. A visualisation of the flow structure in theke showed that when
the flow was normal to the front face of the cube, the additiompstream turbulence
and shear resulted into reduced cavity zone. Regarding toede&ase where the cube
was placed at an angle of 43he wake was dominated by strong vortices very similar
to the ones observed in delta wings.

An oil visualisation technique for highly turbulent reaitation flows around cuboids
with various shapes was conducted by Hunt et al. [38]. Séparand reattachment
locations were shown by identifying the nodal and saddlatgoiThe mean flow pat-
terns were sketched using mean flow streamlines and sutti@ss $ines, leading to
the conclusion that in flows around surface mounted obstattesed surface stream-
lines did not exist. This conclusion contradicts an easteidy of Halitsky [32] that
supported the exact opposite assumption.

A comprehensive study of flow around a three dimensionahregtlar prism was con-
ducted by Schofield [68]. Although the geometry under ingasion was diferent, the
conclusions drawn were similar to the case of single cubeo main regions of in-
terest were identified around the obstacle: the pertunbatiol recovery region. Here,
three major features of the flow were outlined in conjuncteth previous studies on
the same subject. Firstly, it was stated that formulationlo$ed bubbles did not ex-
ist on the wall around the three dimensional obstacle; @stnt that confirmed the
conclusions drawn by Hunt et al. [38]. Secondly, four vaasiavere traced near the
frontal face of the prism despite the fact that it was stalbed it was often diicult to
visualise the vortices by using mean surface streamlines tfird feature involved the
reattachment of the mean flow at the top of the obstacle atestgireamwise lengths
than for flows around two dimensional obstacles.

A very recent wind tunnel experiment regarding the flow atbarmedium rise rect-
angular building was conducted by Bartoli and Ricciardel)i [Fhe aim of the study
was to investigate the features of pressure fluctuationeeleeward and side faces of
buildings and to assess the accuracy of calculating the adlusing the quasi-steady
method. A number of wind tunnel tests were performed sirmgatows around two
scale models, two flow regimes (open land and urban exposm)}wo directions
of incoming flow (perpendicular to the wide and narrow facethe building respec-
tively). Based on the results, it was concluded that the mapan of pressure fluc-
tuations in the wake is related to the length of the wake amakis longer than the
time it takes for a particle to travel along the depth of thiégding with the flow veloc-
ity. Finally, regarding the evaluation of the quasi-steagproach, it was found that it
was indeed a valid method for estimating the pressure bligioins on the faces of a
building.
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A more realistic representation of urban areas is given Ipgemental studies inves-
tigating flows within arrays of rough elements resemblingdogs. The studies were
focusing on examining theffects of the building height, building configuration and
spatial density of the buildings, as well as the directiothefwind. A number of the
above parameters was investigated by Stathopoulos anth$S[é2] and Stathopoulos
and Wu [73]. More precisely, results were obtained from anolauy layer wind tunnel
experiment simulating flows around two rectangular baséldibgs [72]. The study
was focusing on the ramifications of a number of parametenis as building height,
passage width (distance between the buildings) and wirettiins (imposed along
the centreline of the building passage). Comparisons ingeriramplification and
reduction ratios of velocities and turbulent intensite&h and without the presence
of the buildings, led to the following conclusions. When tlesgage width remained
constant and the buildings were of equal heights, it wasddhat for a wind direc-
tion ranging between 0 and 30 degrees, thiEedence of velocity amplification ratios
was very small and the highest velocity was noticed at 30ed=yrHowever, a reduc-
tion of velocity occurred when the wind direction belongedhe range from 60 to
90 degrees. For the latter range, the turbulent intensiteze drastically increased.
By choosing to keep the wind azimuth constant and modify thghtend passage
width, it was found that any increase of the passage widthtezsin a decrease of the
velocity amplification, where buildings of flierent heights arefiected the most.

A similar study can be found in Stathopoulos and Wu [73]. Thedxunnel experi-
ment was examining the flow conditions in a street block iimg) of eight uniform
low rise buildings and one high rise placed in the center efgtoup. The fects of
height diference were investigated by modifying the height of thebtailding. Firstly,

it was deduced that, when buildings were uniformly disti@ol) the wind speed could
be defined as a function of the blockage r&p The blockage ratio is given by

Rg = % ,As = Wh, Ar = (W + La)?. (1.1.7)
F

A schematic representation of the areas of interest is givéigure 1.4.

Therefore, any increase & (resulting from increased building height or decreased
passage width) would lead to a reduction in velocity maglatuSecondly, the wind
speed variation within the given building configuration walsited to the height tfeer-
ence between the high and low rise buildings, the passagdh aidl the blockage ratio
by using linear regression analysis. Based on the abovéorglé@twas stated that the
wind reached its maximum value at the leading edge of thétgllling. An observa-
tion like that could be explained by stating that with in@ieg height diference, the
air flow of the upper levels is drifting sideways around théding rather than moving
vertically to the street level.

An early study is the one found in Murakami et al. [60]. The m@aurpose of the study
was to specify the extent to which a high rise buildirfipets the flow pattern when
the surrounding area consists of lower height blocks. fayartant conclusions were
drawn using field observations before and after the actuatoaction of a high rise
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Figure 1.4: Areas of interest in determination of tRg [73] .

building in the city of Tokyo; as well as by conducting winehtiel experiments investi-
gating the connection between buildings shapes, buildéngitis and wind conditions.
According to field measurements, the existence of the hggbuilding changed the
direction of the wind dramatically. Specifically, at a lacatwhere the most frequent
wind directions were North-West and South originally, thegence of the building
redirected the wind to North-West and East. The amplificatactor of wind speed
almost got double in some cases, whereas the gust factoratibeof gust speed to
mean wind speed) was reduced. Important information wdsegad from the experi-
mental study by using a surface film of pigmented oil for flowualisation at the tall
building, at first on its own and then with the surroundinddiing. The presence of the
surrounding buildings altered the flow pattern significamtith the adverse flow at the
upstream face of the building appearing more intense dugetmteraction of the cir-
culation areas generated from the high building and theosading ones. Regarding
the flow over the top of the building, it appeared reinforcetthwtrong recirculation at
the back of the building resulting in a strong upward revéise at ground level. An
approximately 2.5 times higher amplification factor wasestsed when the surround-
ing buildings were present when comparing with only oneding. By examining the
effects of the height of the building, it was noticed that anyéase in the height of
the building with the building area being constant led torarease in amplification
factor and velocity magnitude. However, the rate of inceestarted reducing when the
height of the building reached 6 times the height of the surding ones. Furthermore,
a very strong wind area was developed at the front of the imgjldnd the sideways
when the height of the tall building was 2 to 3 times the heaftthe small ones.

Meinders and Hanjalic [54] also performed a wind tunnel expent investigating the
flow around a cubical matrix consisting of 25x10 elementsglthe streamwise and



10 Introduction

spanwise direction, respectively. The experimental sfudyides very useful infor-
mation about the flow characteristics within the array. Sjweadly, it was found that
the flow appeared to be highly turbulent in the immediateniigiof the buildings,
whereas above them and in the passage between them the flaimeest undistorted.
Flow separation took place as soon as the flow reached the&dmb edge by creat-
ing a recirculation bubble whereas additional vorticesesiermed at the side edges.
A horseshoe vortex, detected at the upstream face of the wasediverted towards
the wake where it started weakening due to its interactiah #ie vortices of the
neighbour cubes. The wake of the cube was dominated by teeage of an arch vor-
tex. The presence of vortex shedding in the wake of the mgldaused high velocity
gradients which were believed to be resulting in high tughtkinetic energy.

One of the latest wind tunnel experiment that provides aildetalescription of flow
around arrays of roughness elements is the one performed daygGind Castro [12].
The high Reynolds number flow around groups of buildings fiedent configuration
(staggered or aligned) and offidirent heights (cases with uniform heights or random
heights) was measured. The existence of three dimensianrnilént flow within the
building envelope has been confirmed by the results. Fromethéts, it was concluded
that the depth of the roughness sublayer is a function of tildibg height and that
the staggered building alignment produces a greater deaxttie aligned configuration
for the same building array. The spatially averaged meawcitgl profile within both
sublayers, roughness and inertial, was fitted in a log laviilprat a given friction
velocity. Finally, it was found that the upper limits of theertial sublayer for the cases
of random and uniform building heights were very similartwibe only diference
being the thicker roughness sublayer in case of the randaghthtauilding array. The
work of Cheng and Castro [12] was discussed further in Castro [@tl3.

A wind tunnel study aiming in revealing the relationshipveeén the building density
and the mean wind speed in residential areas was performiédiimta et al. [47]. Two
measures of building density were used in the present stinelgross building cover-
age ratio and the gross floor area of the neighborhood. Twentiest cases (under the
same wind conditions) were performed each one correspgialia diterent Japanese
residential area. The results revealed the strong commeositween the gross building
coverage ratio and wind speed. Any increase in the coveggewill consequently
lead to a decrease of the mean velocity magnitude. It wada@lsal that for areas with
the same percentage of coverage, favorable or unfavorabkesgrian conditions were
created depending on current climatic conditions.

The flow feature of lateral channeling within two arrays ofaéd cubes was discov-
ered during the water channel experiment conducted by &racet al. [63]. The
definition of lateral channeling was given as followed: Asflenters the three dimen-
sional array, it gets redirected at the sideways after teerfv of building elements.
If the second row of elements is considered as "one blocki géps, then this block
will still produce a longitudinal resistance leading to flaw conditions for the first
row; thus lateral channeling. Based on a detailed investigddr a range of Reynolds
numbers, it was concluded that the specific flow feature wableiin all diferent flow
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conditions and that it was the result of streamlines beiriigdied by the array and low
pressures regions at the sides of the array.

Boundary layer wind tunnel experiments investigating tieat of urban design in
flows within city street models were performed by Hang et aB][ Two forms of
cities were assessed; a round and a rectangular city withoomeore intersecting
streets. From the results obtained it was concluded thagttbheture of the city model
had a great influence on the generated flow pattern around iéimd Wihne model. More
precisely, for a single street city model, it was found thatround city model produced
smaller separation flow and fewer vertical structures thansguare city model. The
flow pattern became more complex when two intersecting tstri@eprimary and a
secondary) were included. The most important flow featueesned to be present
in the secondary street and their characteristics depemaldide city model. On one
hand, helical inflow was formed in the square city model wasren the other hand,
a helical outflow was generated in the round city model. Bn&lwas shown that
the wind within a round city model with more than two interseg streets was much
stronger than in the similar structure of a square city model

By summing up all the above observations, it can be statedbthialing aerodynamics
are very complex with highly turbulent features and with avfkeeld being dfected
by any change of the outdoor environment regarding the sisaggeeand orientation of
the building elements. Important information has beeneyaithfrom the experimental
studies conducted over the decades. However, the simptj@edetries and the re-
quirements for model scaling due to limited physical spaitenaver allow full scale
investigation of the flow physics neither around very comideilding structures nor
in real modern urban areas such as the ones shown in Figure 1.5
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Introduction

(c) Tokyo city

Figure 1.5: Modern Building Construction [1].
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1.2 Characteristics of Turbulence

In the chapter so far, atmospheric flows were always refeiweab turbulent flows.
Before continuing further, it is important to provide a degion of this complex phe-
nomenon called turbulence. In the section that followsctieacteristics of turbulence
will be outlined as part of completing the understandinghefphysics behind it.

1.2.1 The History of Turbulence

Turbulence manifests itself in nature in various ways: senakming out of a chimney,
waterfalls and strong wind. In 1937, Taylor and Von Karmaarekterised turbulence
asan irregular motion which in general makes its appearance urdfl, gaseous or
liquid, when they flow past solid surfaces or even when the hergig streams of the
same fluid flow past or over one anotl{85]. The distorted fluid motion in whirlpools
seemed to fascinate Leonardo da Vinci who was the first oneriogive the idea of
turbulence and imprint it into his sketches. However, th& fiepresentation of turbu-
lence using the physical properties of a fluid is attribu@®sborne Reynolds [50].
Reynolds used a flow visualization technique in order to itigate the conditions un-
der which a flow is laminar or turbulent. His investigatiosuited in the establishment
of a parameter that indicates the ratio of inertial to viscéarces and distinguishes
the two states of a flow. The parameter was named after himsatie iwell known
Reynolds number

During the period between the two World Wars, important ades in the field of
turbulence were made by von Karman, Prandtl and Taylor. Tiysipal behaviour of
various sized eddies composing turbulence was describdidinardson [64] in the
concept ofenergy cascadeAccording toRichardson’s hypothesenergy transfer oc-
curs from the large scales to the smaller, following a mstiige procedure until energy
is dissipated into heat. The smallest scales in turbulezs@insible for dissipating en-
ergy were determined by Kolmogorov [45]. A more detailedodigsion of the energy
transfer procedure and the scales of turbulence will fallow

Despite all these important studies through the centutfiese is no complete defini-
tion of turbulence to date. Nevertheless, in typical freeastflows, the three dimen-
sional motion of the fluid can be described as random, chaoticunsteady with the
velocities varying significantly in time and space.

1.2.2 The Scales of Turbulence

Turbulence consists of vortical structures in variouses#hat coexist. The dynamics
of turbulence involved can be described throughehergy cascadeoncept as given
in Richardson’s hypothesis.
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Richardson’s Hypothesis

According to Richardson’s hypothesis, turbulence is coragas vortical structures
(also callededdie$ of different sizes. Eddies with a length comparable to the char-
acteristic lengtH exhibit a velocity equal to the characteristic veloaditff) and the
timescale=u(l)/l. Thus, the Reynolds number of the large eddies is compam@bie t
global Reynolds numbdRe = u(l)I/v. In high Reynolds numbers, where the viscous
effects are negligible and dissipation does not take placéiuigdeaccumulates kinetic
energy in the large scales that has to be transferred to thkesrscales. The shape of
the eddies gets distorted and finally they break down intdlsnmgcales. In the same
fashion, smaller eddies break down into even smaller ongistlud Reynolds number
is suficiently small enough so that the smallest eddies are disslpato heat. At
that point, the multi stage energy transferring procedoltewing a hierarchy order of
eddy scales comes to an end and energy is dissipated intdue &t viscous stresses.

The rate of energy transfer can be calculated as
—=— (1.2.1)

whereu? the energy contained in a large scale ans the eddy turnover time = |/u
denoting the lifetime of a large eddy.

Kolmogorov’s Hypotheses

Kolmogorov’s hypotheses answered fundamental questegading the scales of tur-
bulent flows and the assessment of energy transfer. In Hiffipethesis, Kolmogorov
states that large eddies are anisotropic and their geonsedfiected by the boundary
and mean flow conditions. Due to the energy cascade anigosdpst, resulting in
locally isotropic small eddies.

Kolmogorov’s hypothesis of local isotropy:At syficiently high Reynolds number, the
small scale turbulent motions are statistically isotrof8@].

Apart from losing anisotropy, information regarding thegetry of large scales is lost
as well. Since the small eddies are nfieated by the boundaries, Kolmogorov argued
that the small eddies have a universal character for aluterth flows of a similar
Reynolds number. Because of their relatively short lifespargller scales are directly
influenced by molecular interactions and have the abilitgdapt quickly in order to
obtain an equilibrium with the rate of energy transfer frdme targer scales. Based
on the above characteristics of small eddies, it can be adedl that their universal
character depends on two parameters: the kinematic vigeaamnd the heat dissipation
ratee.

Kolmogorov’s first similarity hypothesis: In every turbulent flow at gficiently high
Reynolds number, the statistics of the small scale motiame kA universal form that
is uniquely determined byande [62].
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By using the above, the following definitions of the Kolmogotength, velocity and
time scales can be given

n = (Fle)*,
u, = (v,
T, = (v/e)l/z.

These scales are known Eelmogorov scalesThe Reynolds number using the Kol-
mogorov scales is equal to unity, a fact that shows consigteith Richardson’s hy-
pothesis, according to which dissipation occurs for thellesigpossible eddies.

The ratios of the Kolmogorov scales over the charactesstdes present in the mean
flow, are related to the global Reynolds number and are given by

n/t = Re¥*,
u,/u = Re'*,
T,/T = Rel/? .

Since the largest and the smallest scales of turbulencelde®re defined, that leaves
out a range containing scales which are smaller thiaunt higher tham. In this in-
termediate range, only energy transfer occurs from theefrtp the smallest scales.
Thus, the region can be characterised by only one paraniateneat dissipation rate
€.

Kolmogorov’s second similarity hypothesis: In every turbulent flow at gficiently
high Reynolds number, the statistics of scales ranging letWand, have a universal
form that is uniquely determined layindependent of [62].

The length scale of turbulence that belongs to the specifigeras calledTaylor's
microscaledr. The ratios ofit over the global length scale and over Kolmogorov’s
length scale verifies that is indeed smaller thak but higher thamy

A/t = ReY?,
Ar/n = Ré™ .

1.2.3 Energy Spectrum Analysis

The typical distribution of kinetic energy of homogeneousbtilence among eddies
of different sizes is given in Figure 1.6. The motion of th&edent length scales
corresponds to a wavenumbseand the velocity profilel(k)is decomposed into Fourier
series. The amount of ener§yk) that each length scale contains is then calculated by
multiplying the velocity with its complex conjugate.
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Figure 1.6: Schematic of a typical turbulent kinetic energy spectrum [62].

According to Figure 1.6, the energy spectrum can be dividealthree ranges on the
basis of the corresponding length scales; the energy ciamgaiange, the inertial sub-
range and the dissipation range.

In the energy containing range, the large scales are aomotand their geometry is
influenced by the mean flow and the boundary conditions. Theylaaracterised by
small wavenumbers. Kinetic energy is piled up at largeresalp to the point where
breakdown of the large scales takes place and energy i$dradgo the smaller scales.
The parameters that dominate this range are the shearatre$ise dissipation rate.

In the inertial subrange, the viscouexts are negligible and kinetic energy is trans-
fered to progressively smaller scales. Kolmogorov’s szdion of the energy spectrum
within the inertial sublayer is given by

E(k) = Ce?*k3,

whereC is a universal constant.

Finally, the last range of the energy spectrum is the dissipaange. This region is
characterised by the smallest possible scales (high wavieers). The viscoudiects
are present and dissipate energy into heat. The dominaatneaers are the kinematic
viscosity and the dissipation rate.

1.3 Numerical Models

Experimental studies provide essential information alooet of the most complicated
flow fields. However, they can be relatively expensive, timmastiming and produce
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limited data. In order to overcome the experimental drakbaCFD has gained pop-
ularity as a new analysis tool during the last decades. CFiwalfor combinations of
solution parameters in one single case without beingfargable in CPU requirements
and without any scaling of the model.

Numerical modelling in the field of building aerodynamicssha face several chal-
lenges. Firstly, an accurate representation of the wind@llerio an urban area and any
effects that the building structures have upon it requires domviedge of the fea-
tures of the ABL and mean speed and turbulent data. Often thatig not possible to
extract this information from the available meteorologatata. Additionally, modern
urban areas involve complex geometries and topologieséisatt into a challenging
domain discretisation.

As mentioned in Section 1.2.2, turbulence consists of eddppearing in dierent
sizes. Depending on the scales of the vortical structurasdte resolved or mod-
elled, there are three main numerical approaches: Diregtéigal Simulation (DNS),
Large Eddy Simulation (LES) and Reynolds Averaged NumeS8aallation (RANS).
More precisely, all scales are modelled in RANS, whereasdtgeIscales are resolved
and the smallest are modelled in LES. Finally, the complatge of scales, even the
smallest ones, are captured by the DNS. A fourth approadddcimhplicit Large Eddy
Simulation (ILES) has also been introduced. Although ILEfohgs to the family
of LES, it is considered simpler and more computatiorétient than classical LES.
In order to provide the reader with an insight into the adesnof each approach, a
description of all the available numerical approachesfailow.

Direct Numerical Simulation (DNS)

DNS is considered the most accurate approach to simuldtalénce. The Navier-
Stokes equations are solved directly without any addititurdulence model. Thus,
DNS is free from any modelling errors. Since all motions aptared, excessive grid
refinement is required in order to resolve all scales evenrtialest ones including the
Kolmogorov microscales. To meet this requirement, thd tatenber of grid points (in
one dimension) is proportional to the ratio of characterigingth over Kolmogorov
length scalel/n = Re¥4. Therefore, for a three dimensional case the number of grid
points reaches the value Bf¢’4. Additionally, the time step is limited by the short
lifetime of Kolmogorov microscales which leads to a totahther of time steps of
order of Re¥/4.

The cost of DNS is calculated from the product of the total hanof grid points and
time steps, according to which the total cost is estimateReés Based on the last
remark, it can be said that the computational cost of DNSez®es rapidly with an
increasing Reynolds number. It becomes clear that DNS isddrib simulate flows
on low Reynolds numbers due to its prohibitive computatiast. The restriction
is the reason why DNS cannot be used as a design tool for nalugpplications,

but only as a research tool for understanding the mechare$msbulence. In the
future, the rapid technological progress might allow cotemiwith sdficient speed
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and memory to resolve turbulent flows at high Reynolds numbers

Very few DNS studies of flows around solid obstacles are ttegoin the literature.
Therefore only three conducted by Hwang and Yang [39], Yakhal. [89] and Coceal
et al. [14] as validation studies against experimentalisgidre mentioned here.

A very detailed description of the vortical structure ardansingle element located in
a channel was provided in the work of Hwang and Yang [39]. Tienges in flow
structure at the front and the rear of the building were dised in cases where the
Reynolds number was ranging from 5 to 3500. Specifically, is feund that the
horseshoe vortex became visible only when the Reynolds nuwwdseincreased above
300. Any further increase in Reynolds number led to an iner@athe number of vor-
tices appearing in pairs. An equation defining the relahgmbetween the Reynolds
number and the distance between the saddle point and threaipstace of the build-
ing was defined as well. Finally, it was stated that despiefdiat that the windward
region was steady, the leeward region was turbulent evexwaRk.

A DNS study of flows around a cube in a fully developed chanwel fvas performed
by Yakhot et al. [89] as part of investigating the appliciéypibf the immersed boundary
method to turbulent flows. The study involved flows at Reynaldmber of 5610.
From the results, it was noticed that the flow reattachedeatdp of the cube and that
the recirculation region in the wake of the cube appearedehihan the one described
in the experimental study of flows at Reynolds numbers of 4080Martinuzzi and
Tropea [53]. However, comparisons with existing experitakstudies were found to
be in good agreement with the DNS data when mean and turlsidrstics were used.

Finally, a recent DNS study by Coceal et al. [14] is reportethm literature involv-
ing flows within cubic obstacles representing urbanlikeaareThe results revealed
that the flow features between aligned and staggered arragscempletely dierent,
indicating the high dependency of the vortical structurerughe building configura-
tion. Comparisons with experimental data in terms of mean 8tatistics showed
very good agreement. The importance of the specific DNS dtadyn the fact that
through the detailed resolution of the flow, essential imfation was gathered for the
characteristics of turbulence around roughness elements.

Reynolds Averaged Navier Stokes (RANS)

The most popular approach for engineering applicationsiegsReynolds Averaged
Navier Stokes (hereafter RANS). RANS was named after OsborpedRis, accord-
ing to whom the instantaneous flow properties can be decosdposo an averaged
and a fluctuating part. Consequently, the instantaneouablas in Navier Stokes
equations are replaced by the sum of these two componentseudq this transfor-
mation results in additional unknowns, the so-called Reysmstresses. For the sake of
system closure, a turbulence model has to be introduced,oht®e time in the form
of additional PDEs. It becomes clear, due to the complexigach turbulent flow, that
it is unlikely that they can be represented by one single mode
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A review of the most representative studies using the StanidaRANS model will be
discussed here. The robustness and reduced requireme®irime of the RANS
model was presented in the work of Ehrhard and Moussiopd@Rls However, it
overpredicts the turbulent kinetic energy near stagnagiants and specifically at the
leeward face of a single cube. Studies testing the abilitRANS in predicting the
complex flow around cubical models for moderate and high Riegnoumbers are
reported in Tutar and Oguz [81]. In Tutar and Oguz [81], theggenance of two
RANS models, the Standard and the RNG, kwas investigated for three test cases
involving flows around one, two and nine building structurélse results showed that
the accurate prediction of the basic flow features dependéideochoice of turbulence
model and grid resolution. It was found that RNG model produtata that was in
better agreement with available experimental data wherpeoed with the Standard
k-e model, which failed in predicting the anisotropy of turbute. Regarding the
channeling &ect, it was observed that an increase of the width of the gadsatween
buildings resulted in an increase of the length of the retatoon region. Therefore,
the strength of the vortical structures and the velocity mitage within the passage
were reduced.

In Murakami [58, 59], it is stated that RANS appears to be ing&i@ in the near wall
region. Specifically, it is noted that it fails to accuratggedict the complex flow
pattern around a surface mounted obstacle representingdinu The reason lies
in the oveprediction of kinetic energy near the stagnatiomfs due to inability to
accurately calculate the adverse pressure gradient atthif face of a cube.

Large Eddy Simulation (LES)

Although great advances have been made in the field of nuatenadelling, dificul-
ties still remain due to the high complexity of the flow field.ittMthe rapid increase
in computer technology, Large Eddy Simulation (hereafteS). has been developed
in order to bridge the gap of computational expense betwe¢8 Bnd RANS. LES,
derived from the pioneering work of Smagorinsky [71], canused for simulating
three dimensional time dependent problems at higher Regmuichber. LES exhibits
superior performance in comparison with RANS without reiggirthe high refined
computational grids of DNS.

According to Kolmogorov's theory, large eddies depend anrtlean flow conditions

whereas the small eddies have an universal character fgpal of turbulence. Hence,
large eddies can be calculated explicitly while the smadiofalso referred as sub grid
scales) are modelled, using most of the times, a sub-grid swadel (hereafter SGS).
In classical LES, the separation of the large from the sntalles is obtained by using
filters. Filters associated with both spatial and tempantdf€ scales can be employed.
However, the spatial filters, written &x, A) whereA is the filter width, are the most
commonly applied ones in the context of LES.

Assume the incompressible Euler set of equations as givewbe
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V.u=0, (1.3.1)

ou

+V-(U®u)+}Vp:0 (1.3.2)
ot 0

whereu, t, p and p are the velocity vector, time, density and pressure, resghe
Once the filtering operation has been performed, varidblehich stands for any of
the variables appearing in the equations above, is decadpo f = f + f” where

f = G(x,A) - f is the resolved and’ is the sub grid part. Therefore, the filtered form
of Equation 1.3.1 and 1.3.2 is

V.-G=0, (1.3.3)

au

1
+V-U®U)+=-Vp=-V-75°-_m; (1.3.4)
ot 0

wherer®9%is the subgrid scale stress tensor amés the commutation error term.

Commutation errors occur in near wall regions and on stretcnenon uniform grids

where the diterential operators do not commute with the filtering promed%L # g—;

It is possible that commutations errors may not arise inca#gere uniform grids
are used and tha is constant [18]. Truncation errors are also originateanfithe
discretisation of the above equations. Generally, ffeceon the solution of this type
of errors is assumed negligible and it is omitted. HoweMeis assumption is not
always valid [25].

The subgrid stress tensef?s, in Equation 1.3.4 is defined as

¥ =uu-uuU. (1.3.5)
From the filtering procedureis equal tau + U, thus Equation 1.3.5 can be written as

= (TeU-Tel)+(lew+uwel)+(ew), (1.3.6)

wherelL;; = (U®U - U ® U) is the Leonard stresses (representing the interactions

between the resolved stresseS), = U® U’ + U’ ®@ U is the Cross stress tensor (cor-
responding to the interactions between the unresolvedtandesolved stresses) and
finally Rj; = v ®u’ is the Reynolds stresses (standing for the interactionsesetw
the unsolved stresses). Despite the above decomposttismreferred that the®®®is
directly modelled as a single unit [18].

Consider now the following equation, which corresponds éorttodified form of N-S
in respect to only one dimension,
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U + V- EU) = V- 759U) (1.3.7)

whereU stands for the array of the dependent variablestaistthe non-linear inviscid
flux vector which will be discussed further in Chapter 2.

For Equation 1.3.7, the most widely applied sudgrid stresgdehin the context of LES
is the Smagorinsky model [71] and it is given by Equation&..3.

7995= _CA?|VU|VU , (1.3.8)

whereC is a constant and is the width of the cell. In order to derive the formulation
of the change of global kinetic energy [18]%°in Equation 1.3.9 is substituted with
the one given in Equation 1.3.8

ézfg_gfsgw. (1.3.9)

Consequently, Equation 1.3.10 is obtained according towthie global kinetic energy
is always decreasing in time. Thus the Smagorinsky modélictlg dissipative.

= ou
= —CA? '—
& f oXx

Apart from its dissipative characteristics, the Smagdymaodel does not take into ac-
count any interactions between the largest unresolvedseald the smallest resolved
scales. In order to overcome these drawbacks, the scallsiynmodels were de-
veloped. Specifically, Bardina et al. [6] introduced a modekhich the subgrid scale
tensor represents the erroftdrence between procedures using twtedent filter sizes
(2A and 4\). The subgrid stress is then defined as

3
dx <0. (1.3.10)

7995 = _CA?VUVU (1.3.11)

where as in Equation 1.3.8,is a constant and is the width of the cell.

Following the same procedure as above and substitutingtibguia3.11 into Equation
1.3.9, the change of kinetic energy now becomes

3
&= —CAZI(@) dx. (1.3.12)

O0X
Based on Equation 1.3.12, it is concluded that the scaleasiityilmodels are hardly
dissipative.

Finally, due their non dissipative character and the feat tthey encounter for outscat-
ter and backscatter, the scale similarity models are mdkedimes used in conjuction
with the Smagorinsky model forming the mixed subgrid scatelets [18].
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The popularity of the LES method is evident in the literatuf@e collection of con-
ducted studies include flows around single and multiple wallnted obstacles. The
first application of LES to meteorological flows was reporiedhe work of Dear-
dorff [16]. Since then, many researchers used LES in their stediesr for validation
against existing experimental data or as a reference mgdeist RANS models. Im-
portant reviews of LES and comparison studies showing a geog agreement with
experiments can be found in Rodi et al. [66] and Rodi [65].

Validation studies against existing experimental dataeperted in the literature, with
some of them being conducted by Shah and Ferziger [70], Bieaingl Farhadi [69],
Krajnovic and Davidson [46] and He and Song [36]. More pragisin Shah and
Ferziger [70], the flow pattern around a surface mounted gudsecalculated at high
Reynolds number. It was concluded that, despite sortierdnces regarding the tur-
bulence kinetic energy profiles, the numerical solutiomssetto present a reasonable
agreement with the experiment conducted by Martinuzzi amghda [53]. A simi-
lar study investigating thefiect of Reynolds number was performed by Sedighi and
Farhadi [69]. The results revealed the presence of moredharhorseshoe vortex at
low Reynolds number, whereas with increasing Reynolds numhigevortices merge,
forming only one as shown in the study of Martinuzzi and Tepfi&3]. It was found
that the higher the Reynolds number, the shorter the lengteatfachment and the
higher the values of turbulent intensities and Reynoldssé® at the core of the vor-
tices and the sideways of the cube.

A range of diferent visualisation techniques were used by Krajnovic aadid3on
[46] in order to illustrate the flow field around an individualbe. Regardless of the
visualisation method, the main features of the flow as desdrin Martinuzzi and
Tropea [53] were captured, an outcome that verified LES agipility to complex
flows. Finally, in the work of He and Song [36], the performaint LES was tested for
three practical test cases involvindfdrent building geometries and wind directions.

Flows around arrays of buildings have been simulated witls a8 well. A recent
validation study of Xie and Castro [87] and Xie and Castro [86Hpniced a comparison
between RANS and LES model. The performance of each modedaigting the flow
in arrays of buildings, consisting of elements with unifoomnon uniform height, in
staggered or aligned configurations, was investigated RS approach was found
to be unable to predict the flow in the canopies between thdibgs, whereas LES
was more accurate in estimating the unsteadiness of therregiherefore, RANS
was deemed as inappropriate for simulating these specifit & flows. Analogous
studies verifying the applicability of LES in building aelynamics are described in
the investigations of Stoesser et al. [74], Kanda et al. 2] Cheng et al. [13].

Stoesser et al. [74] examined the applicability of LES to H#awithin clusters of cubes
at relatively low Reynolds number. More precisely, aligned ataggered cubical
arrays were placed in channels of small and large depth. @goeement with ex-
perimental and DNS data in terms of mean and fluctuating giemtvere obtained
and an accurate representation of the flow structure was\athi Kanda et al. [42]
investigated the channelingfects between the aligned buildings. Turbulent organised
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structures (TOS) and turbulent statistics were considienggredicting the dierences
between urban canopy and vegetation flows. Simulations ethdkae resemblance of
urban canopy flows to flows within the surface layer. Flowsuatbvegetation were
found analogous to those in mixing layers. Numerical data imagood agreement
with the experimental data especially for the regions alibeecanopy. However, the
velocity magnitude was underestimated within the buildiagopy and the velocity
profile depends significantly on the area density betweehuhéings. Finally, a com-
parison between the Standdtd ¢ RANS model and LES involving flows around a
matrix of cubes at high Reynolds numbers can be found in Cheadj ft3]. LES
was able to predict all the important flow features and qtetite data was in good
agreement with experimental data. RANS results, howevewsti an overestimation
of the length of the recirculation zones in the wake of theecuBonsequently, the
mean streamwise velocity profiles were underestimatedegst at the frontal part.
Although LES seemed to be the most appropriate approachniaing the com-
plexity of the flows around bl bodies it was found approximately 100 times more
expensive in CPU time than the Standlrd e RANS model.

So far, it has been proven that LES is reliable in simulatirmgnynengineering applica-
tions. However, drawbacks exist associated with the agpregotential in the field

of wall bounded flows. With the scales becoming smaller anallemin the near wall

region, two options are available: either to modify the SG&let or to use wall mod-
els. However, both options could increase the complexitthefSGS model rapidly
and become urtordable in high Reynolds numbers [27].

Implicit Large Eddy Simulation (ILES)

Based on the idea of Von Neumann and Richtmyer [84] for shoctudag, back in
the 50’s, a trend of abandoning the conventional LES andmgéadit instead of ex-
plicit SGS models was first introduced by Boris et al. [8]. Tleeeimethod was named
Implicit Large Eddy Simulation (hereafter ILES). The ILESpmoach comprised high
resolution methods for solving the non linear inviscid pafrthe equations and fi-
nite volume diterencing. In Drikakis and Rider [18], it was shown that thecspe
combination naturally generated a truncation error thabnty appeared in the same
divergence form as the sub grid scale stress tensor incé$$tS but also had similar
effects on the solution. In this section the similarities arftedences between LES and
ILES will be discussed as well as presenting the ILES fieldppliaations.

Since no explicit filter is required, the subgrid scale sttesisor and the commutation
error are emitted. Their place is taken by the truncatioarery and Equation 1.3.4 is
now written as below

_ 1 -
a—u+V~(u®G)+—Vp:—V~r. (1.3.13)
ot o
The over-bars appearing in Equation 1.3.13 corresponddarages obtained from the
finite volume formulation (which can be considered as impfittering) in contrast
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with LES where they denote the filtered grid scales. High odiscretisation and
fine grid resolution ensure that the leading truncationregmains small and provides
adequate dissipation in order to satisfy the SGS propetidgproduce physical results
[21, 28].

In order to demonstrate the similarities between the sdlxiress tensor in LES?95,
and the truncation error term in ILES, Drikakis and Rider [18] focused on investi-
gating the spatial errors in one dimensional equation ofahewing formulation

Ut = U0 - %( |Ejsr2 = Ejape| (1.3.14)
whereU stands for the array of the dependent variablestarsthe non-linear inviscid
flux vector as mentioned above in Section 1.3. The supetstdpnotes the current
time level and the subscriptrepresents the position in space. When the flow field is
approximated via piecewise constant discretisation, épeddent variables are double
valued at the cell interface. To determine the fluxes usimegléfft and right values
of the conserved variables a reconstruction step and a Rresamer are used (a
more detailed description of high resolution methods iggiin Section 2.3). The
transported fluxes at the cell boundary are then given by

1

1=
Ejr12 = > [Ej+1/2,R + Ej+1/2,L] -

2

[Uj+1/2,R - Uj+1/2,L] ) (2.3.15)

with E’ being equal t@E/oU.

As found in Drikakis and Rider [18], the general form of the nified Equation 1.3.14,
produced a truncation term at second order of accuracy tyen

T = —GA’E’'V2U — G,A’E” (VUVU) |, (1.3.16)

wherec; andc, are two constants depending on the discretisation scheoh@ &
the cell width. Clearly, the leading term of the truncatioroeiis identical to scale-
similarity subgrid model in conventional LES (see Equatio8.11). Therefore, the
SGS properties are satisfied without the need for an exglibgrid model thus the
ILES approach is proven simpler and more computationaligient.

A limited number of studies using ILES for simulating incoragsible flows around
bluff bodies can be found in Fureby et al. [23]. The first study de#lt the flow past
a circular cylinder at Reynolds numbers of 3900 and 140000ulResbtained with
various models including two variants of LES models, ILES@ed with FTC limiter
and a wall model, two RANS models, the Reynolds stress equataatel and finally
DNS were compared against experimental data. Mean stresemwelocity profiles
at cross sections revealed very good agreement with theimemal data and there
was no obvious dierence in the results when the LES and the ILES models are used
Nevertheless, RANS was the least accurate among all. Coraparddong the center-
line showed that the LES models were underpredicting thecitgl profile to a small
extent, whereas the ILES maintained its accuracy in preadict
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Flow around a surface mounted cube representing a protéyfpews around build-

ings, was used in order to investigate the performance oSI[Z3]. Data produced
from this study was compared against the experimental sitishartinuzzi and Tropea
[53] and the LES study found in Rodi [65].The simulated flowtfeas were found to
show accurate representation of the flow physics apart fhentacation of the horse-
shoe vortex which was expected to be closer to the upstrezarofahe cube and the
size of the recirculation zone at the wake. However, the timezaged velocity profiles
provide reasonable agreement with the experimental data.

Regarding the limited number of cases dealing with envirartaidlows, it becomes
clear that the field of modelling urban areas using ILES ha$een explored yet.

1.4 Aims and Objectives

Many environmental flows are inherently turbulent, but isesawhere wall mounted
obstacles are interfering, the complexity of the flow fieldapidly increased. The
accurate representation of this type of flow is of great egein many engineering
applications involving pedestrian comfort, pollutantpission and urban design. Im-
portant experimental work has been conducted, providisgrégl information about
the physics of the flows. With the rapid technological pregreComputational Fluid
Dynamics became a new analysis tool promising accurategbi@dof the flows with
reduced expense. However, increased accuracy may resallt@amplex numerical
formulation and unfiordable CPU time requirements. The challenge in CFD is to de-
velop a universal model able to be applied in every turbulent with the same degree
of accuracy and with the simplest possible formulation.

To date, the most promising approach in simulating turlbiulews is the Large Eddy
Simulation. However, the requirements of a subgrid modpédding on the flow un-
der investigation and grid resolution places LES in thegiatgof relatively expensive
numerical methods. In the same family of approaches, litjplarge Eddy Simula-
tion is gaining popularity due to its implicit treatment ofbulence. However, in the
field of ILES there are still many unexplored regions regagdts mechanisms and its
applicability to all turbulent flows.

The aim of this thesis is to evaluate the applicability of licipLarge Eddy Simulation
to flows around model-buildings pertinent to environmefials in urban areas. The
choice of simulating flows within arrays of obstacles liestbha fact that the case
specific boundary conditions (fully periodic conditionghove the need for setting
appropriate inlet conditions as it would have been requioedlows around a single
obstacle. Additionally, the flow pattern within a matrix obaels shares some of the
key features found around a single isolated model, howéverflow in an obstacle’s
wake is always fliected by the presence of its neighboring ones.

The specific objectives are:

e Evaluate the performance of ILES and analyse the physicdvied in flows
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around uniform height urban-like roughness elements alidiata against avail-
able experimental, DNS and LES data,

¢ Evaluate the flow topology in a more complex case regardimgumiform height
elements.

The content of this thesis is outlined as follows:

Chapter 1. Introduction to the basic ideas of atmospheric boundargrlayuilding
aerodynamics and turbulence.

Chapter 2. Description of the governing equations and the numerieahéwork.

Chapter 3. ILES of flows around arrays of uniform height wall roughnelgsreents in
staggered configuration.

Chapter 4. ILES of flows around arrays of non uniform height roughnessnents in
staggered configuration.

Chapter 5. A summary of this thesis, conclusions extracted and recamdatens for
future work.

Additional detailed information complementing the maimpof the thesis is provided
in the appendices.



CHAPTER 2

Numerical Approach

three dimensional unsteady compressible solver is usatiédanumerical simu-

lations of this study. Although the flows under investigatare incompressible,
it was decided to proceed with the compressible solver basdtie fact that initial
attempts to simulate high order schemes with an incompimlessode at moderate to
high Reynolds numbers produced results with le&giency than the compressible
code. Therefore, throughout the description of the nuraéfiamework, the flow will
be denoted as compressible with low Mach number features.

A finite volume method is applied by using a curvilinear cooate system and the
fluid’s governing equations are solved by employing a nunabepace and time dis-
cretization schemes. More preciselyffdient approaches are used for the spatial
discretisation of the inviscid and viscous fluxes. For themir, a high-resolution
Godunov-type method, whereas for the latter a centf@mince scheme are used.
The time integration is obtained by explicit Runge Kutta noetth Finally, the code
allows for parallel computing and domain decomposition.

2.1 Governing Equations

The motion of a fluid is described by a set of fundamental egustthe Navier Stokes
equations (hereafter N-S), for continuity, momentum andrgyn These equations
are the mathematical expressions for the three fundameonagkervation laws (Mass
Conservation, Newton’s Second Law, First Law of Thermodyicajrupon which all
fluid dynamics is founded [2].

The set of N-S for an unsteady three dimensional compressgibtous fluid flow in
conservation form is displayed below:

Continuity Equation
%+V-(pu):0, (2.1.1)
Momentum Equation
a/Lu+V-(,ou®u):+V-S, (2.1.2)

ot
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Energy Equation

e
%+V-(eu):+v-(s-u)—v-q, (2.1.3)
whereu represents the velocity components along all three doesip the densitye
the total energy per unit volume andhe heat flux. The stress tensddenotes fluid’s
stress in terms of thermodynamic pressprand the viscous stresses [18, 83]. The

stress tensd® can be written as

S=-pl+T, (2.1.4)
wherel is the unity tensor
100
=0 1 0], (2.1.5)
0 01

Txx Txy Txz
T = Tyx Tyy Tyz (216)

Tzx Tzy Tzz

A complete description of is given in Appendix A.

The heat fluxg expresses the net rates of heat transfer across the boesdédra
volume due to temperature gradients. Their mathematitloa is given by Fourier’s
heat conduction law

q=-«VT, (2.1.7)

wherex is the thermal conductivity cdiécient andT is the temperature.

When counting the number of equations and unknown variablései N-S equations
as described above, it is noticed that the number of equaisoless than the number
of variables; five equations whereas six variables. In oci@etose the set of N-S, the
gas is assumed to be a perfect gas (negligible inter molefarizes) and thehermal
equation of statés used,

p=pRT, (2.1.8)

where the gas constant of air is typicaRy= 287.05 Nmy/ (kg - K).

Based on the above assumption, an unknown T is introducecwédmacls to a second
assumption that the perfect gas is calorically perfect §tzomt specific heats). Tem-
perature T is then related to internal eneggyyaccording to thecaloric equation of
state

e=cT. (2.1.9)

Additional relations specifying the constant specific B&atandc, and the ratio of
specific heaty are given as
R YR Cp

c,-G =R, ¢g=——, C=—01, y=-—12. 2.1.10
P y_1 p Y c ( )
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The typical value o for air is equal to 4.

The total energy per unit volume is often defined as the suromat internal energy
per unit volume and kinetic energy per unit volume. Thusehergy equation can be
written as

_ b P2
e_yTl+§(u +V2+W2). (2.1.11)
Complementary equations indicating the fluid’s propertiesutd be introduced as
well. The relation between the dynamic viscosity ffiméentu and absolute tempera-
tureT of an ideal gas is expressed in Sutherland’s law

T\2 T, + 1104K
) o+ 110 (2.1.12)

“:“%?5 T +1104K °
whereT is in Kelvin and the reference viscosityyis = 1.7894x 10-°kg/(m-s) at the
reference temperatuiie = 28816 K.

The last co#ficient to be defined is the thermal conductivity fiaentx. In Anderson
[2] it is stated that when the fluid is assumed to be a perfest Beandtl number (Pr)
Is constant (approximately equal to 0.71) anchn be obtained by solving:

C
pr= " (2.1.13)

K
Before closing this section, it should be mentioned that Hr&bles in the N-S are of-
ten replaced by their dimensionless counterparts. Nonmbiogalisation of the flow
field parameters simplifies the physical system by removiegunits of the variables,
a very useful transformation especially when numericalation techniques are ap-
plied and validated against experiments.

Non-dimensionalisation is attained by scaling all vagatthat appear in the N-S with
basic reference quantities for the densjiy), flow velocity (U.), dynamic viscosity
(us) and lengthl(,). The scaled dimensionless variables are the following

. t X oy z
fF = 5 X* = —, = —, Z* = —,
u \" w
o= U= —, V= —, W= —,  (2.1.14)
Poo Uoo Uso Uoo
* € * p ® M
e = s p = . M =—.
PooliZ, PooliZ, Moo

Specifically,l, corresponds to the reference length sgaleto the free stream density
whereas the values of, andu., are derived from Equation 2.1.15.The calculation of
U IS determined in such way that the numerical Reynolds nunmietlze reference
Reynolds number provided by the experiment are consistent.
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U
Uo=M [T == (2.1.15)
P Ur

where M is the Mach numberp the pressurep the density and finallyJ, the free
stream velocity.

All variables in the N-S can now be replaced by their dimenigiss counterparts and
therefore the new set of N-S is written in the following form

‘2‘; FV-('U) = 0, (2.1.16)
dp"uf V. (o' @ UY) =
DV preu) = VS, (2.1.17)
gi+v.(e*ui*) = -V-(§-u)-V-q°, (2.1.18)

whereu’ is the non dimensional velocity vectar; is the non dimensional heat flux
defined as

= LVT*, 2.1.19
q=g (2.1.19)
andS is the non-dimensional stress tensor given by

1
S =—pl+—T 2.1.20
P+ e ( )

whereReis the Reynolds number given by

_ poouooloo
Ho o

Re

(2.1.21)

Hereatfter, all variables will be considered dimensionkess the superscriptwill be
omitted for clarity.

2.1.1 Cartesian And Curvilinear Equations in Matrix Form

The set of N-S for compressible flows, Equations 2.1.16 td8,kcan be handled as a
single equation. The equation consists of vectors reptiegetne unknown variables
as well as the inviscid and viscous fluxes. The usefulnesawhf only one equation
lies on the fact that the number of algebraic operationsmsmsed, thus the complex-
ity of developing CFD codes is reduced. The conservativeirfirm of the N-S in
Cartesian coordinates is given by:
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U OE OF 4G oL oM oN
A EEE T 21.22
ot "ox "oy ez ox oy oz’ (2.1.22)

whereU is the unknown solution vectoE, F, G andL, M, N correspond to the inviscid
and viscous Cartesian fluxes respectively,

P pu PV pW
pu pU +p puv pUW
U=| pv |[,E=| pw |, F=| pV®’+p |,G=| pw [,
PW pWU PWV PW2 + p
e (e+ p)u (e+ pv (e+ pw
0 0
1 Txx 1 Tyx
L = Re Tyy , M= Re Tyy ,
Txz Tyz
UTxx + VTxy + Wz — O UTyx + VTyy + Wy, — Oy
0
1 Tzx
N=2o Tay , (2.1.23)
Tzz

UTZX + Vsz + VVTZZ - qz

In Equation 2.1.230y,, represent the net rates of heat transfer along x-, y- and z-
direction andr;; stand for the viscous stress as described in Appendix A.

Most CFD applications do not deal with simple geometries arthot be represented
by Cartesian coordinates. A transformation of the Cartessandinates to curvilinear
coordinates is required. The transformation is obtainedguthe Jacobian [18, 31].
Equation 2.1.22 is multiplied with the Jacobian determirfhareafter J) and the Carte-
sian Y, 2) coordinates are replaced with the curviline&rn( ) counterparts. The
Jacobian determinant can be written as

oy, 2)|
laEn ol

whereé = £(x,Y,zt),n = n(Xy,z1), = {(XY,zt)andr =t

The independent variables appear in the form of derivativéise equations therefore
the derivatives should be transformed froxny z) space to4, n, ¢) space. The deriva-
tive transformation will be achieved by following the chaire of differential calculus

Xe (YoZe = Yez) + Ve (2% = 20%)) + Ze (XY = Xe¥) - (2.1.24)
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as shown below

o () ()i (o)

ox \o&)ox \on)ox \oc)ox’
2_2)%+£@ 919¢

oy \og)ay \on)oy \o¢)aoy’ (2.1.25)
O (2)E (L) ()

0z \o&)oz \on)oz \oc) oz’

o _ 8

ot or

As a result, the fluxes in curvilinear coordinates using gmbian matrix are written
as

_ 0é 0é 0é
= J(Eg—x + Fg—y + Gg—z ),
= J(EZ] + Fa_;]/ +G3L),

_ oL ol ol
= J(Ea—x + FW + Gz, ).

Inviscid fluxes= (2.1.26)

G)z TR [T

— 30 % % | N
—J(Lg—x+Mg—y+Ng—z),
:J(La—?(+Ma—’)7/+Na—’;),
0 0 0
=J(L5%+M5 +N3),

Viscousfluxes (2.1.27)

2t M

Finally, the new system of compressible N-S in curvilineaordinates is given by
Equation 2.1.28:

8u o oF 9G_4L M N (2.1.28)
ot o0& on A 9E  Oop A
where
U=Ju (2.1.29)

In the sections that follow, any reference to the set of N{bagsume Equation 2.1.28.

2.2 The Finite Volume Concept

The governing equations are solved using a Finite VoluméatktAccording to this
specific concept the domain under investigation is divided a number of control
volumes (or finite volumes).They can be of any shape thezdfos method is suitable
for unstructured grids and complex geometries. The dévesin space are discretised
at the centre of the control volume |, k) using the inter-cell flux values across the
faces. A schematic representation of the discretisatibarse is given in Figure 2.1.
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Figure 2.1: Three-dimensional notation for a finite volume [30]

Consequently, for piecewise constant fluxes, Equation 2 da be written as

U _ Eipjk—Eapik  Fiaek=Fijaek - Gijkez = Gijk-12
ot A A7 A 221)
N Lir1/2jk — Lic1/2,jk N Mi 12k — Mij—1/2k N Nijk12 = Nijk-1/2
A& An A ’
or ouU
— = RHS 2.2.2
ot ( )

All the discretised fluxes comprising the right-hand side SR laf the equation are
calculated independently and once obtained they are adue@ihe complete system
Is then integrated in time.

The inviscid fluxesk, F andG, are non-linear and their spatial discretisation involes
Riemann solver and high resolution reconstruction methehkereas the linear viscous
fluxesL, M andN, are simply given by a centralftierence scheme.

2.3 High-Resolution Methods

High-resolution methods are non-linear methods even wieeaquations they approx-
imate are linear. They are designed to eliminate or reduclai®ns in areas where
shock waves occur and the variables are discontinuous. dlkellow higher thanst
order of accuracy when the solution is smooth. To achievabiowe, they introduce
non-linear diterencing methods where the computational stencil is ailmof space
and time. The stencil adapts itself depending on the lodatisa in order to produce
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physical results even in areas characterised by high gradighese are the main dif-
ferences between high-resolution methods and non-lindegpteve methods (such as
the non-linear combination of two®lorder methods) and yet not high-resolution.

According to Harten’s definition [34], high-resolution rhetls have the following
properties:

1. Provide at least second order of accuracy in smooth afehs tow.
2. Produce numerical solutions relatively free from spusioscillations,

3. In the case of discontinuities, the number of grid pointshie transition zone
containing the shock wave is smaller in comparison withdhétst order mono-
tone methods.

In numerical approaches where the flow field is approximatagiecewise constant
discretisation, which represents the volumetric averafjdse exact problem, the con-
served variables are double valued at cell edges. In ordexdiace those disconti-

nuities, high-resolution methods introduce an interpofastep that reconstructs the
variables in such way that they are a more accurate repeggandf the exact solu-

tion. With the reconstructed left and right cell values afed, the next step to be taken
Is to apply a Riemann solver.

During the last decades, a number of high-resolution scheveee introduced with the
most popular being the Monotonic Upwind Scheme for Consiemvataws, the essen-
tially nonoscillatory and the weighted essentially noriésiory. Some of the schemes
are also utilising the so callexdlope limiters The limiters are correction mechanisms
that ensure that the reconstructed values satisfy at lessbbthe three properties
of high resolution methods (Monotonicity Preserving, T&ariation Diminishing or
Monotone) and that the generation of oscillations is awbitlear discontinuities.

As part of this thesis, two reconstruction schemes were fmsdtie interpolation step
with different orders of accuracy. These areMmnotonic Upwind Scheme for Scalar
Conservation LawgMUSCL) by van Leer [82] and th&Veighted Essentially Non-
Oscillatory (WENO) scheme by Liu et al. [51].

2.3.1 MUSCL Schemes

The interpolation formula for calculating the left and rigitates of the conservative
variables using the MUSCL schemes according to Toro [80] is

1
Uiy =Ui  + Z

(100U - U+ @R o) Ga- )
- (2.3.1)

Uris1/2 =Ujs1 — %—r [(1 - K ¢ (rr) (Uiz2 = Uis) + (L +K) ¢ (é) Uiz - Ui)] ,
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where-1 < k < 1 and¢ is a limiter function based on the slopes of the conserved
variables. Diferent variants of the MUSCL scheme are produced dependingeon t
value of k from fully upwind fork = -1, centrered scheme f&r= 0.

Second-order limiters.  The definition of second-order accurate limiter mechanism
Is given by the left and the right ratio of the slopes of thd egkraged conserved
variables ati(— 1), (i), (i + 1) and ( + 2),

- Uiz — U
U -U’
2.3.2
o= Ui = Ui ( )
Uisz = Uipr

The most popular second-order limiters, satisfying monioity and reducing to a
piecewise linear method near local extrema in order to amojghysical oscillations,
are the MinMod, Van Leer and Van Albada limiters. They can denfl in Laney
[48], LeVeque [49], Toro [80].

The Van Albada limiter (hereafter VA) is employed in thisdseand it is defined as

0 ifr<O
= = 2.3.3
Pun {rﬁt? ifr >0 (233)

Fifth-order limiter .

A fifth-order accurate MUSCL scheme proposed by Kim and Kinj (#2s a six-point
stencil { —2), (i —1), (), (i+1) (i +2) and { + 3). The slope ratios are calculated as

= Uiz — U
I — s
U= Uig
2.3.4
o _Ui-Ui ( )
MU -G,
and the limiterp is calculated by
o2+ 104 24r i - 3r il
Pvs = 30 ’ 235
" _ —2/rRi+2 +11+ 24rRi+l - 3rRi+1rRi ( e )
¢R,M5 - 30 .

To ensure monotonicity the functighis limited and its final form is given by
PLms = max0, min(2, ZrE’i,¢;’MS)) (2.3.6)

2.3.2 WENO Schemes

WENO schemes were introduced in order to overcome any drdslihat occurred
in ENO schemes while preserving their robustness and hidéraf accuracy. ENO
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schemes were first proposed by Harten et al. [35]. They doummat any limiter
function, instead they choose the smoothest candidateilstieat is possible to cover

a zone in the computational domain. The stencil adapts tachagge of the solution
(for example round b perturbations near zeroes of the solution) and even in dmoot
regions where adaptation is not necessary [41].

As new improved schemes, WENO schemes were introduced byrBalsd Shu [5]
and Jiang and Shu [41]. WENO schemes use a convex combin&adirifee available
stencils instead of using only one in order to interpolaténsgrface value. A weight
Is assigned to each candidate stencil, indicating the itomiton to the final result.
The weights are chosen in such a way that smooth regions hgiverlcontributions,
whereas regions near discontinuities have no contribuiBNO schemes can obtain
an accuracy of 2— 1, with sbeing the size of the stencil.

The WENO schemes employed in this thesis dtebd 9" order accurate. However,
only the 5th order WENO scheme will be presented as an exampleis section
[56, 57].

Any WENO scheme can be defined by the following general fortrana
S
Uj+1/2 = Z wkulj(+1/2a (2.3.7)
k=1

whereUY, , , is the interpolated value for each stencil at the interfaed /2, w is the
weight for each stencil ankl= 1...s. Equation 2.3.7 can be used for either the left or
right extrapolated variable.

In Titarev and Toro [79], the weightsy are calculated as

C()k - Zis::L a’i s (238)
o
W= gy (2.3.9)

wherewy are the optimal weights; is a small positive number used in order to avoid
division by zero in case of smooth floW, are the smoothness indicators for each
stencil andp is a free parameter.

For the specific case of the,5order accurate WENO scheme three stencils are re-
quired. The three available stencils for reconstructi@n ar

Si=(,j+Lj+2),
S:=(j-1j,j+1), (2.3.10)
Ss=(j-2j-1,])).

Fors = 3, Equation 2.3.7 is written as

3
Uiz = ) axU%y (2.3.11)
k=1
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The smoothness indicators are given by
13 1
B1 =1—Z(Uj —2Uj 1+ Uj0)* + Z(3Uj —4Uj1 + Uj0)?,
13 1
ﬁz :1_2(Uj—l - 2U] + Uj+1)2 + Z(Uj_l - Uj+1)2 ) (2312)

13 1
B3 :1_2(Uj—2 —2Uj1 + Uj)2 + Z(UJ—Z —4Uj1 + 3Ui)2

and the optimal weights for the left reconstructed variablg , are

1+

-3 - 3 _ 1
wo = E , W1 = g , W2 = R) (2313)

Since the optiomal weights and the smoothness indicaterreown,U;, ; , can be
calculated using Equation 2.3.7.

In a similar way the right extrapolated variattle , , can be found by using the same
smoothness indicators and the following optimal weightsinied by symmetry
_ 1 3 3

W1=75°@275,@W3= 75 (2.3.14)

However, in the work of Henrick et al. [37] it is mentioned tiiae above formulation
does not attain maximum accuracy around critical pointsov@come the problem
and improve the order of accuracy, mapping of the weightshessn suggested in
Mosedale [57]. The amended weights are:

*

J p— (2.3.15)
i=1
@i = G(wi) (2.3.16)

a)k((ﬂk + (;E — 3(3ka)k + wﬁ)

Ok(wy) = (2.3.17)

(;E + wk(l - ZJk)

2.4 Low Mach Number Modification

The Finite Volume (FV) high-resolution schemes have beegessful in simulating
a variety of applications in the context of compressible §¢Wr]. However, they ex-
hibit poor performance due to excessive numerical diseipavhen simulating low
Mach number features. Specifically, Guillard [29] foundttivhen artificial viscosity
is added to stabilise the solution in areas with steep diguaities, the calculated pres-
sure at the cell interface contained an undesirable scilotgr with respect to Mach
number which led to one order higher pressure. There wagxootesl analytical study
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in the literature in which the link between the generatiotogtl entropy and kinetic
energy dissipation rate had been investigated. An exterssiwdy was performed by
Thornber et al. [78] on the specific study. Based on the stuaysngs, it was stated
that the increase of dissipation in Low Mach numbers was pestg of the discrete
system arising from the interaction between the governogagons and the recon-
struction process. Specifically, it was proven that in Eimblume Godunov method,
the local increase of entropy was proportional to f-gtzewhereu is the velocity nor-
mal to the cell interface and is the speed of sound. Therefore, the rate of kinetic
energy was rapidly decreased with decreasing Mach numipexgefsible dissipation

of kinetic energy under the assumption of low local producf entropy).

In order to improve the scheme so that both compressible razairipressible flows
can simulated accurately, a modification was proposed bynfeo et al. [77]. The
modified numerical approach locally adapts the reconstdugairiable in such way
that minimum dissipation is allowed, shock waves are cagtand, most importantly,
there is no need for modifying the governing equations. Huw®mstructed left and
right interface values combined with thew Mach Correction(hereafter as LM) are
defined as

UM = 201+ MU+ (1~ Mes)Ug). (2.4.1)
UIF_%M = %((1 + Mmin)UR + (1 - Mmin)UL) (2.4.2)

whereMy,in = min(1, M).

2.5 Riemann Solver

The reconstructed left and right values at the cell faces tealiscontinuities equiva-
lent to the discontinuous states in the shock tube problemrder to achieve only one
flux transported through the cell boundary, local Riemanmlgms need to be solved.

Due to the cost of this procedure, even under the best ofrastances, and the rela-
tively small practical value of an exact Riemann solutior, ¢éxact Riemann solvers
have been replaced by approximated Riemann solvers in tlienagsrity of cases.
The approximate Riemann solvers give a direct approximatfahe intercell fluxes.
A wave configuration (distinguishing the constant statethefsolution) is assumed
and, given the fact that the wave speeds can be obtained Hgauittam, an approx-
imated expression of the fluxes is produced by applying ttegmal form of the con-
servation laws. In this thesis, the HLLC solver was applie@dsolving the inviscid
fluxes as described in Toro [80]. A more detailed descriptibthe solver is given in
the following section.
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2.5.1 HLLC Riemann solver

As mentioned above, the approximate Riemann solver assumaseaconfiguration
that separates the constant states of the solution. In theddlver, there were two
waves G, andSg) distinguishing three constant statés ( Ug and theStar interme-
diate region), whereas in the HLLC solver there are threeewawnd four regions. The
third wave in the HLLC solver represents the missing contamste. TheStar Region
Is now split into two regions by the third additional wave.

Once the wave speeds are obtained, they are combined witotis¢éant states of the
variables in order to calculate the fluxes.

According to Toro [80], the fluxes are calculated in the failog sequence:

1. Calculate the left and right states of the primitive vaealusing high-resolution
reconstruction as described in Section 2.3.

2. Estimate the pressure in the star region using the leftrayd states of the
primitive variables

1 1
p. = E(pL + Pr) — E(UR —u.)(0d) ,
wherep anda are the averaged density and speed of sound respectively

(oL + pR), (2.5.1)

= NIl

)
a= E(aL + aR). (2.5.2)
3. Proceed with the calculation of ti&¢ andSg speeds using

St=u -a0, Sr=Ur-ar0Rr,

with
L+ /- D i po>

where K indicates the left or right states.

4. Determine the star wave speed

S - Pr— PL + o UL (SL — UL) — prUR(SR — UR)
' p(SL—u) = pr(Sr - UR) .

5. Calculate théJ,, andU.R states given by

1

S.

UK:pK(SK_UK) Vk
' Sk - S. Wi

E Pk
P_: + (S = k) [S* + PK(SK—UK)]
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6. Obtain the flux by applying the Rankine-Hugoniot condision

FL |f OS SL
price _ JFu+Su(Ua -Uy) if S <0<S,
#1/2 = \Fr+Sp(U.r —Ur) if S,<0<Sgq
FR if 0> SR

2.6 Time Marching

The time derivatives appearing in the N-S described in tlegipus sections indicate
unsteady problems whose solution can be obtained by timemmgr methods. Ac-

cording to the explicit time marching concept, the depehdarnable under investiga-
tion is calculated at all grid points at time-fh from all the known values at time n. In
this fashion, the solution is progressively obtained byahing in steps of time.

The time integration approach that will be used in this thésithe explicit Runge-
Kutta method. The Runge-Kutta approaches are directly ngtetd from a Taylor
series expansions. One of the key advantages is their sitgpivhen dealing with
time step changes. That can be explained based on the fatti¢lare self-contained
methods within a time step and they do not require storagesaenore than one time
step [17, 18]. Higher accuracy is achieved when the numbstagfes (intermediate
steps on which the current solution will be based on) is ased.

When rearranging Equation 2.1.28, the time derivative camdbi@ed as a summation
of the spatial derivatives

U _ o d9F 9G dL oM  IN

In this thesis, only a'8 order Runge-Kutta was used as time integration method. For
the sake of completeness, however, the simplest form of #thad (F' order Runge-
Kutta) will be described as well.

2.6.1 First-Order Runge-Kutta

This is the most basic formulation of the Runge-Kutta methddsly one previous
time step is required in order to obtain the solution for thetiime step according to

Un+l —yn

— = (). (2.6.2)

with At being the time steg)™?! = U(t + At) andU" = U(t). The method is first order
accurate in time. Theslorder Runge-Kutta algorithm is also knowntag forward
Euler method
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2.6.2 Third-Order Runge Kutta

There are several Runge-Kutta algorithms 'df@der accuracy.

The standard'8 accurate Runge-Kutta method is a modification of th&linge-Kutta
algorithm and it is given by

ut-u" 1

= —f(U"
At 3 Sk
uz-u" 2,
_ < 2.6.3
= 3f(U), ( )
Un+1_un 1 . )
T_Z[f(U)+3f(U )| -

The 3¢ TVD Runge-Kutta is being commonly used and its formulatisgaven in
Drikakis and Rider [18], consists of the following sequence

Ul_un N
A - U,
2_|n
v AtU = %[f(u”)+ f(uy . (2.6.4)
%;Un = é[f(u”)+4f(u2)+ fuy .

2.6.3 CFL Condition

When hyperbolic PDEs are solved numerically using explitietintegration schemes,
the Courant-Friedrichs-Lewy number (hereafter CFL) is usegtability condition.
The CFL number ensures that the global computational tingerstest be less or equal
than the time it takes for the fastest acoustic wave to triavtie adjacent grid point.
Hence, CFL is defined as

At = min(JCFL) , (2.6.5)

max

whereJ represents the local cell Jacobian determinant.aace the associated local
eigenvalues related to the inviscid fluXesF, G.

Depending on the time integration scheme, the value of CFh@g#sin order to reach
a stable solution in time.
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2.7 Parallel Computing

Simulating three dimensional turbulent flows demands higmary storage and high
computational time. The solution to these problems is gwiarparallel computing.
The physical domain is split into a number of individual Ieevhich are then assigned
to a number of processors. The governing equations aredgsoiveach one of these
blocks separately, thus, instead of solving one global lprolithat would have high
requirements in time, several smaller local problems ahgeedoand run in parallel.
A decomposition of a two dimensional grid into four equalizesl blocks which are
assigned to four processes is presented in Figure 2.2.

-~ PROCESS 1 ~"--_ .-~ PROCESS 2 T~

———» DECOMPOSITION

O GLOBAL DATA GRID e

! 1 LOCAL DATA GRID

Figure 2.2: Decomposition of a two-dimensional global data domain over four prosesse
[301].

For each process to be able to produce a solution to the lmat bequires communi-

cation and exchange of information among all the adjacetidsl This communication
is achieved by the MPI-1 standard. Further details on hoviBéprocedure operates
can be found in MacDonald et al. [52], Pacheco [61].

2.8 Case Specific Methodology

Two cases investigating the applicability of a number ofhhigsolution schemes in
the context of Implicit Large Eddy Simulation in flows witharrays of roughness
elements will be presented in this thesis. The first casesaa#i flows within an array
of four cubical elements in staggered configuration, whetlkea second one simulates
a more realistic representation of urban areas regarding #wound sixteen buildings
of five different heights in the same alignment as in the first case.

The cases under investigation were simulated using the Gxssipte Navier Stokes
Solver (hereafter CNS3D), a three dimensional compressillieer implemented in
Fortran 77. The origins of the specific computational cogefaund in the works of
Drikakis and Tsangaris [20], Drikakis and S. Tsangaris A8 Zoltak and Drikakis



2.8 Case Specific Methodology 43

[90]. All geometries were meshed in the commercial softw@relgenV15 using
multi-block configurations.

The numerical studies had similar set up. To allow directgansons with the exper-
imental data specific pre- and post- process proceduregddede implemented in
the CNS3D solver. The pre- processing procedure compristtee@fddition of a con-
stant pressure gradient term in the set of N-S equations aitgr the reconstruction
step discussed in Section 2.3. Depending on the case unastigation a dferent
value of the pressure gradient was added. The post- pragegsicedures involved
the averaging of the numerical flow field ad hoc and also thiectdn of mean flow
statistics (velocity and turbulent statistics) at a prepecified locations within each
one of the two geometries under investigation.

2.8.1 Numerical Settings

The flows under consideration were simulated in near incesgible condition at
Mach number of 0.2 using a compressible solver. The speafigevof M=0.2 was
based on recommendations found in Kokkinakis [44] whereeffext of the choice
of the Mach number for a channel flow was investigated. Froerdsults, it was
noticed that the flow at M0.2 preserved a steady mean value and the variations of
density were below the acceptable maximum incompressihie df 4%. Therefore,
the above acted as an indication that the solution remaihgsligally sensible when
a compressible solver is used to simulate incompressibiesfldn the same extend,
the density variations were also checked for all of the casdgr investigation in this
thesis. It was found that they remained at approximately @alf cases verifying the
right choice of Mach number.

Fully periodic boundary conditions were imposed along theasnwise and the span-
wise directions simulating infinite building arrays whitee upper boundary was set
to symmetry. Symmetry condition is an artificial conditidrat diters from the flow
in the boundary layer. However, this has rfteet on the results since the main area
of interest in this thesis is the vicinity of the roughnessmatnts and it was shown in
previous studies [87] that flow above the elements remamest undisturbed. The
lower boundary of the domain was considered wall, as welhaddces of the rough-
ness elements, thus the no slip condition was chosen. Whigrptriodic boundary
conditions are imposed to the N-S, a constant pressureggrtaali mass flux has to be
added as a forcing term. In Xie and Castro [87], it was conautiat both methods
provide nearly identical results hence choosing a fixedsuresgradient as a driving
force was considered a valid method. The derivation of tmstamt pressure gradient
was obtained by

op _ puz

= 2.8.1
ox Ly’ ( )

wherelL, is the height of the computational domain amdis the total wall friction
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velocity extracted from the definition of roughness Reynoldsber

Re = “\T/h , (2.8.2)

whereh is the height of the cube ands the kinematic viscosity of the fluid.

Non-dimensionalisation of the pressure gradient was éssém order to be imple-
mented in CNS3D. Although M does not correspond to the exparial free stream
conditions, the solver preserves the same flow conditionsSS@INsimulates the same
Reynolds number as in the experiment) by adapting the vigcbsough Sutherland’s
Law. Therefore, the non dimensional experimental preggadient should be equal to
the non dimensional numerical one. Non-dimensionalisadiothe pressure gradient
using the reference values of the wind tunnel experimendyie

op” _ h dp
X pu? ox’

(2.8.3)

Where% denotes the non-dimensional pressure gradjens, the densityh is the
height of the cube and finallyis the free stream velocity.

All flow parameters and dimensions presented from onwarla@n-dimensionalised
unless it is stated fferently.

2.8.2 Flow Statistics

In order to be able to quantify the flow dynamics a number of fiogicators were
calculated in conjuction with the main flow variables.

Mean Velocities and Turbulence Stresses

Mean profiles of all velocity components were obtained atgpdocations indicated
in the experiments. These locations refer to constantrairése and lateral coordinates
and the profiles were extracted from all the available grithtsoalong the vertical
dimension. Additional flow characteristics such as fluetupvelocities and Reynolds
stresses were calculated at the specific locations as wetiore detailed description
of the averaging procedure is given for the streamwise gloomponent U. The rest
of the velocity components are calculated in a similar wayl the mean flow and
turbulent statistics are non-dimensional.

Before proceeding, it is important to specify the time windowvhich the mean statis-
tics were collected. The starting point was specified bytifigng the end of the tran-
sitional state, using the instantaneous velocity timeaigihthe locations of interest.
A representative example of the signal of the streamwisecuglin the cavity between
two cubes is given in Figure 2.3. As seen, the numerical woldtarts to develop at
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tewr = 120; wheret,, is the current non-dimensional computational time. Thhs, t
averaging procedure beginstat;; = t., and all data up to that point is discarded.

05 . Starting Averaging Point
04 »
03 —
0.2 —

01 f

01

0'20 50 100 150 200

Time

Figure 2.3: Computational starting point.

Mean flow statistics are gathered at every time step alony tienension at given
constant x- and z-coordinates. The averaged velocity prafithe specific location is
then extracted from all the available grid points along a.liMore precisely, assume
a line that consists of n number of grid points so each grishipcan be denoted as
p = 1,..n On each grid point the primitive variables are calculatéd.order to
proceed with time averaging, variables keeping the sunumaif the instantaneous
values at each grid point for every time step need to be defifdée accumulated
variable U is calculated as

Upim=U "™ + U, At (2.8.4)

whereU, is the instantaneous U velocity at each grid point alongitieedt each time
step,U;""is the summation of all instantaneous U velocities at eachpgint p over
time and finallyAt is the current time step.

The mean velocity over a time windoWwis defined as

USLIm
Up = =, (2.8.5)

whereT = tea — tstart aNdtieq IS the computational time since the beginning of the
simulation.
The fluctuating velocities can now be obtained by

’

Finally, the Reynolds stresses are calculated based onrtieecacept

(U)2m = (U2)2ma + (U ) A (2.8.7)

sum — sum-
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(2.8.8)

To ensure solution convergence, the velocity profiles wibeeked at regular time win-
dows. The solution was considered converged when the changkee magnitude of
the profiles were small relative to the increase in compuortalitime. A representative
example of a converged solution is given in Figure 2.4. Asxshdhe diference be-

tween the velocity profiles is significantly reduced as theutation progressed in time
and finally reaches the point where the profiles almost aallid

4r t=270
- t=1100

L t=1200
B3E t=1400

Figure 2.4: Effect of the computational time window.

Kinetic Energy Spectrum

Important information for the existence of fully developedbulence can be derived
from the evolution of eddies in time and space. However, duled irregular character
of turbulence it is not always possible to obtain informatfoom a large area at any
time instant. Even individual spatial snapshots can fecdlt and expensive.

The solution to the problem was given by the Taylor's hypsikef frozen turbulence.
According to his hypothesis, under certain conditions etike turbulence is assumed
stationary and homogeneous, the required time for an eddy foast a fixed point
in space is so small that its change in size is not noticeableus, the turbulence
is considered frozen. Therefore, it is expected that theggngpectrum in time will
exhibit the same behaviour as the energy spectrum in spatee kections that follow
the distribution of turbulent kinetic energy will be obtathby using the time signal of
instantaneous fluctuating velocity components at fixedtpagnspace.

The fluctuating velocity profiles are decomposed using feoamalysis, where the en-
ergy spectrum analysis is based on the wavenumber (k) argkettenposed velocity
component. The Fast Fourier Transform (hereafter FFT) urstids thesis is obtained
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by splitting the discrete Fourier transform of N points itk discrete Fourier trans-
forms of N2 points. One is formed from the even-numbered points andge¢bend

formed from the odd numbered points. The FFT is describedhéydllowing equa-

tion

%_1 2nikj %_1 2rikj
Fu=> e ¥ B+ WY e ¥ o = FE+ WHRY, (2.8.9)
=0 =0

whereN is the number of pointk = 1...N, F? andF; stand for thek;, component of
the Fourier transform of ]2 points formed from the odd- and even-numbered points.
Finally, W is defined as the complex number

W =e¥. (2.8.10)
Once the Fourier transformation is complete, the turbuterdtic energy is calculated
by multiplying the decomposed velocity with its complex gajate;
E(k) = Uk)U*(k), (2.8.11)
where K is the frequency in the rangel@fi, = % andkmay = zim’ T is the sampling

time andAt the sampling interval. HeréJ(Kk) is the decomposed velocity component
andU*(k) is the complex conjugate.

The Q-criterion

Visualisation of the flow topology can be obtained by usirg@xcriterion, the second
invariant of the velocity gradient, as given by Jeong andddims[40].

Q= %(Ilﬂll2 ~ ISP . (2.8.12)

The shear strain rate and vorticity magnitude are defined as
ISI?=tr(SS'), and |Q|? = tr(QQ") , respectively (2.8.13)

whereS is the symmetric component &u defined as

1 du  Ou;
S = (= 4+ 2.8.14
b 2(8xj " X ( )

andQ is the anti-symmetric component Bl defined as

1 0y 3Uj
Qj==z(—-—). 2.8.15
> 2 axj ax|) ( )

This specific method enables the comparison between theriaainrechemes in terms
of accurate prediction of the smallest possible lengthescal
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CHAPTER 3

Uniform Height Building Array

N this chapter, the performance of four high-resolutioneseés in the context of

Implicit Large Eddy Simulation and their sensitivity to IdMach number features
is assessed for flow in an array of four uniform height cub&aments in staggered
configuration. The systematic evaluation of the schemeslviag direct validation
against wind tunnel data available in Cheng and Castro [12],camparisons with
DNS and LES studies conducted by Coceal et al. [14] and Xie astt@i@87], respec-
tively. To facilitate direct comparisons, the numericabgand settings were based on
information extracted from both the experimental and thaerical studies.

3.1 Numerical Details and Settings

Real urban environment is characterised by randomness lfifrmiheight, shape,
alignment and area density. Therefore, it is rather impds$or a wind tunnel model
to combine and investigate such a large number of charatitevariables. In Cheng
and Castro [12], only thefiects of building height and alignment were investigated,
whereas the rest of the parameters remained constant. Qeamghy the size of a
repeating unit was determined in order to permit variabiit building height while
preventing significant flow development at the same time.

Two cases described in Cheng and Castro [12] were chosen af ffaig thesis. The
first case deals with flow within a matrix of four uniform heigiubical elements in
staggered alignment whereas the second case concerns mitheacomplex case of
flow around sixteen buildings of non-uniform heights in aifamarrangement. The
latter will be the subject of Chapter 4.

Domain Decomposition

The three dimensional computational domain consists afrgpeating units arranged
in regular staggered manner. Each unit consists of a onewiibea 25% covering
area as shown in Figure 3.1(a).



50 Uniform Height Building Array

Y
Z/gi\x

(a) One cube repeating unit.

(b) Infinite cube matrix. (c) Computational domain.

Figure 3.1: Three dimensional illustration of the domain.

The size of the domain isx X Ly X L, = 4h x 4h x 4h, whereh = 0.02mis the cube

height as described in the LES study of Xie and Castro [87]. pkegentation of the
computational domain is given in Figure 3.1(c). The domaipears relative small to
be able to capture all the scales of turbulence. HoweveharDINS study of Coceal
et al. [14], it is stated that the mean velocity and turbuéesiatistics almost identical
to those obtained with larger size domains, apart from tea aear the top boundary.

Grid Resolution

The computational domain was meshed using structurediiadk grids of three dif-
ferent resolutions. The first computational mesh consisépproximately 0.2 million
cells with 16 x 16 x 16 grid points per cube height (ILES16,rseagrid ). The sec-
ond grid comprises approximately 0.6 million cells with 224 x 24 grid points per
cube height ( ILES24, medium grid ) whereas the third gricbissiderably finer with
approximately 1 million cells and 32 x 32 x 32 grid points pebe ( ILES32, fine
grid ), see Figure 3.2. All grids are clustered around thedauf the cubes in order
to increase the accuracy in the near wall region. The coarddime grids were con-
structed in reference to the work of Xie and Castro [87], wthike medium grid was
constructed as an intermediate resolution between the wahes. A summary of the
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grid characteristics is provided in Table 3.1.

Grid LyxLyxL, Gridpointspeh y*
ILES16 4x4x4 16x 16x 16 ~ 23
ILES24 4x4x4 24x24x24 =~ 19
ILES32 4x4x4 32x32x32 =10

Table 3.1: Summary of ILES grid characteristics.

In Table 3.1y* stands for the distance in wall units of the centre of the &editfrom
the wall and it is determined using Equation 3.1.1 and 3.1.2

y = Y (3.1.1)

)4

(%)
u = |-, (3.1.2)
14
whereu, is the local friction velocityy is the distance of the first cell from the wall
andyv is the kinematic viscosity.

Results obtained using all three grids will be compared agaither numerical studies
available in the literature using grid resolutions as shawhable 3.2. By comparing
the two tables, two remarks can be made; the coarser grides Ihas the same grid
resolution as the medium grid in LES and the valuegofire not similar in both
numerical methods. To increase the grid resolution in apéaserest, standard wall
models were used in LES whereas, despite the high valugs, afo turbulent wall
model was included in ILES. The decision was based on a prs\study conducted
by Thornber [76] in which the flow within an open cavity was siated using the
5th order MUSCL scheme combined with the Low Mach Correcticeaiment. The
values ofy* were ranging between 20 and 55 and no wall model was used-.eithe
Although the boundary layer was considered greatly undswslved, the mean and
turbulent statistics were in very good agreement with theeerental data and all the
important flow physics were accurately predicted.

Grid LyxLyxL, Gridpoints peh vy

LESS 4x 4x 4 8x8x8 ~ 12
LES16 4x 4x 4 16x 16x 16 ~9
LES32 4x 4 x 4 32x32x 32 ~ 6

DNS64 4x 4 x 4 64x 64 x 64

Table 3.2: Summary of the grid resolutions of referenced numerical studies [84], [1



Uniform Height Building Array

52

(a) Block structured grid.

(c) Medium grid.

(b) Coarse grid.

(d) Fine grid.

Figure 3.2: Computational grids.
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Numerical Settings

As mentioned in Chapter 2, fully periodic boundary condisiavere imposed along
the x- and the z- direction for simulating an infinite cubiealay as in Figure 3.1(b).
The top boundary (along the y- direction) was set to symméing lower boundary of
the domain was considered as wall, as well as the faces oluthescthus the no-slip
condition was chosen. A constant pressure gradient of -R&8* was imposed as
described in 2.8.1.

The case is simulated at a Reynold number o500 based on free stream velocity
and cube height.

As part of this thesis, the second-order MUSCL scheme cordbuiil the Van Albada
limiter, the fifth-order MUSCL scheme, the fifth- and the niattder WENO scheme
have been employed. In the following sections, the aboversek will be referred
to as 2ndVA, 5thM, 5thWN and 9thWN, respectively. During thengliations, the
schemes were used either in their original form or includivggLow Mach Correction
Treatment.

Finally, time integration was performed by the third-ord&D Runge-Kutta scheme.
The value of CFL was set to 0.5 in all simulations apart fromdases investigating
effects of the computational time step where its value was 0.3.

3.2 Flow topology

A three dimensional impression of the flow field is given inu¥ig 3.3. Volume lines
coloured with velocity magnitude were used for the flow vimaion with the particle
lines starting from XY planes attached to the faces of theesulivhen the flow enters
the computational domain, it gets redirected by the preseft¢he buildings. As a
result, strong vortical structures are created at the sidesf of the cubes, revealing
the turbulent character of the flow in the cavity between thiédings. The presence
of vortices close to the end of the computational domaincatds a near wall region
ahead which verifies the periodic boundary conditions iredoalong the spanwise
direction.

Information regarding the structure of the flow field was alssived by means of
velocity contours and vectors at constant z and y positiensh@wn in Figure 3.4
and Figure 3.5, respectively. The results presented heme otained using the 5thM
scheme on the ILES16 computational mesh.

In Figure 3.4(a), the flow field is illustrated using veloattyntours. As expected, the
near wall region is dominated by low velocities or zero on\al, whereas the ve-
locity magnitude increases as the flow approaches the tapdaoy By using velocity
vectors in all planes, the vortical structures become lasibthe vicinity of the cubes
whilst above the obstacles the flow seems to be nearly umtdidto A typical flow
pattern around an isolated obstacle [53] consists of thé fiexirculation region, side
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Flow ‘

(b) View from the front of the domain

Figure 3.3: Three dimensional impression of the flow.

recirculation zones, detached wake and a separation attdale@ent on the top of
the building leading to a vortical structure above the ro&$. seen in Figures 3.4(b)
- 3.4(e), as soon as the oncoming flow strikes the windware edgeparates and
moves over the obstacle resulting into a small circulatr@aaery close to the leading

edge. Another important flow structure is the formulatiomofupstream vortex at the
vicinity of the frontal face of each cube.

Similarly, the recirculation areas at the sides and the voékige cubes have been iden-
tified in Figure 3.5 in terms of velocity contours and vectdeaie to flow separation
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at the upstream face of the cube, a complex vortical stragsuiormulated around the
sides and wake. The flow is redirected along the left and rigtls and wraps around

each cube until it starts weakening further downstreamalfyinthe presence of two

vortices in very close proximity to the leeward face of theeindicates the existence
of legs of the arc-type vortex.

As described in 2.8.2, the Q-criterion of Jeong and Hussébh ¢an be used as an
additional means of flow visualisation. Instantaneousuienit scales, predicted with

the four numerical schemes on identical grids, can be seéigure 3.6 and Figure

3.7. Depending on the scheme’s order of accura¢igmint range of length scales was
captured. More precisely, ftierences in the range of scales are seen between schemes
of the same family. The fifth-order MUSCL (5thM) resolves sieratcales than the
second-order MUSCL (2ndVA), whilst in the same manner thehrorder WENO
(9thWN) scheme predicts a wider range of scales than fiftetoVdENO (5thWN).

The clearest distinction is shown when comparing the 2ndvAtae 9thWN scheme.

Based on the above observations regarding the flow field witl@rcube array, it can
be stated that the flow characteristics resemble those sabe fundamental case of
flow around a single cube in Martinuzzi and Tropea [53]; a psomg indication of the
capabilities of ILES in accurately predicting environmnedritows.
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Velocity Magnitude

(c) Slice at z1.5 (d) Slice at 2.5

(e) Slice at 23.5

Figure 3.4: Time averaged velocity contours and vectors in XY planes.
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Velocity Magnitude
0.28
0.24
0.20
0.16
0.12
0.08
0.04
0.00

(a) Location of the XZ slice

(b) Slice at 0.5

Figure 3.5: Time averaged velocity contours and vectors=a0.5.
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FIOV/

(a) 2nd Order MUSCL with Van Albada limiter

FIOV\/

(b) 5th Order MUSCL

Figure 3.6: Q-criterion in MUSCL schemes - Isosurfaces of instantanect®.8



3.2 Flow topology

F|OV\/

(a) 5th Order WENO
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(b) 9th Order WENO

Figure 3.7: Q-criterion in WENO schemes - Isosurfaces of instantanect& &
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3.3 Results

In order to evaluate the performance and applicability &3Lin flows characterised by
complex turbulent features, the results are validatechagavailable experimental data
[12]. Additional comparisons with existing numerical seslwill also be included.
The dfects of the choice of grid resolution, numerical scheme, Mach Correction
Treatment and computational time step on the numericakisalwill be the main
focus of this investigation.

All quantities presented hereafter are non dimensiorahiigth the reference variables
described in Chapter 2, unless it is stateffedently. The statistics of the flow field
have been averaged over distient time window for the larger scales to converge.

3.3.1 Grid Resolution Dependency

The sensitivity of the results on the spatial discretisatM@s assessed by comparing
results obtained on the three grids (as described in 3.Instgaxperimental data. The
comparisons in terms of vertical profiles of mean streamwedecity and turbulent
intensities were made at four distinct locations above aitdinvthe cube cavity as
shown in Figure 3.8. In Castro et al. [11], it is stated thapdeghe fact that the four
locations were originally chosen to represent th€edent regions of the flow, purely
based on intuition, it has been proven that they are indgedsentative of the specific
type of the geometry. In the comparisons that follow, reswiere obtained using the
5thM scheme coupled with the Low Mach Correction Treatment.

L

0 1
Flow A
— -

RS K2

Figure 3.8: Highlighted locations of comparison.

Figure 3.9 shows comparisons between the ILES data obtawtedthree diferent

grid resolutions and experimental data. From the resulis,avident that solutions
obtained on either the ILES16 or ILES24 grid exhibit a verypdagreement with
the experiment for most of the locations. However, a clefiedince in magnitude
Is noticeable when the solution is obtained on the finest gfite extracted vertical
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velocity profiles indicate that the numerical simulatioads to an overpredicted free
stream velocity. This observation was verified further bigwaiating the mass flow rate
on the coarse and the finest grid by integrating over the sdane jpf the domain. As
expected, the mass flow rate on the finest grid was overestilnatth the discrepancy
reaching~ 16%. Although all three cases have been set up in the sameemann
seems that dlierent flow conditions are developing when the finest grid eduOne
possible reason could be that the combination of increasddgsolution and high
order spatial discretisation scheme, coupled with Low M&ahmrection Treatment,
does not produce adequate numerical dissipation [44].

The picture changes in Figure 3.10. Comparisons in termsedsds show that the
peaks of the shear layer are well captured with all three peshowever, the best
agreement with the LDA data is seen with the finest grid in tlaevand in front of
the cube. The ILES16 and ILES24 results seem to predict theatoshape of the
stresses but they lack in magnitude independent of theitocal he stresses appear
overpredicted in the cavity between the two cubes when tlES82 is used. This
specific behaviour can be explained in the same way as staweediately above.
When the solution is lacking dissipation, then the turbuksiaies are over resolved.
The dfect of the imposed symmetry condition at the top boundarysis dustrated
in Figure 3.10. As discussed in Section 2.8.1, the symmaetnglition is an artificial
condition that does not correspond to the real urban enviemt where there is no
wall as an upper boundary. This explains, the sudden dexabie normal stress
(Vims Stress) as the flow approaches the top boundary. Finally,believed that the
poor grid resolution near the upper boundary of the comjmurtak domain (the grid
has been clustered only around the faces of the cubes) iBnsbje for the kinkedJ
andU,ns profiles at the specific area.

Based on the above remarks, it can be stated that when higinsidemes are coupled
with Low Mach Correction Treatment, it could be possible tbantba more accurate
flow estimation on a coarser grid. Therefore, it was decidgaésent comparisons on
the ILES16 computational mesh in order to investigate wératideed Low Mach Cor-
rection treatment leads to accurate results while redutiaghumerical requirements
at the same time.
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Figure 3.9: Grid resolution dependency of mean velocity profiles.
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Figure 3.10: Grid resolution dependency of mean stress profiles.
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3.3.2 Numerical Scheme Dependency

The dtects of the numerical schemes on the solution will be preskntthis part of the
thesis. The four schemes in their original form will be comgabagainst experimental
and numerical data using vertical profiles of mean statisttdthe same four locations
as described in the Section 3.3.1. For simplicity, the L&x@ppler Anemometry ex-
perimental data will be referred to as LDA data in the congzars that follow.

O

- — — - 5thM
——— - 5thWN

LDA
2ndVA

9thWN

(a) Location p0

(b) Location p1

Figure 3.11: Scheme dependency investigation at locations p0 and p1.

Comparisons above the height of the cube are given in Figadd&. The 5thM and
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(a) Location p2

(b) Location p3

Figure 3.12: Scheme dependency investigation at locations p2 and p3.

the 5thWN scheme show very good agreement with the LDA datoudh slight
undeprediction and overprediction are noticed, respelgtil he two schemes seem to
share approximately the same value at the top boundary. dé2scheme appears to
be less accurate but still close to the experiment wher&a8ttWN is able to predict
the shape of the velocity profile. However, it shows a clefiedBnce in magnitude.

Comparisons in the wake of the cube are illustrated in Figuté(B). All schemes
exhibit a similar behaviour below the height of the cube et density of the grid
is increased. However, the picture changes above the cuhehe schemes acting the
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same way as in Figure 3.11(a). The LDA data continues to liedsen the 5thM and
5thWN scheme. The 2ndVA overpredicts the velocity magnitupléo 35h (whereh
is the height of the cube), whereas after that point, thecigi@rofile is in between
the profiles of 5thM and 5thWN scheme. The 9thWN scheme corgitaibe lacking
in magnitude.

Velocity profiles in the cavity between the two cubes aremine=igure 3.12(b). Since
the 5thWN scheme appears to possess slightly more negativesviian the 5thM in
Figure 3.11(b), as the flow develops, the 5thM velocity peosihould be higher than
the 5thWN. This is verified in Figure 3.12(b). Also, the 2nd\Wheme gives a higher
velocity profile than the the 5thWN. Regarding the 9thWN, it canshid that this
specific scheme develops smoother than the rest of the seHmnause of the smaller
velocity difference in the shear layer, shown in Figure 3.11(a) and FRjadgb).

Finally, all profiles have smoothed out as the flow develomsraaches location p3 in
Figure 3.12(a). The specific location can be considered tindend of the domain
since periodic boundary conditions are imposed. By summmagliuthe observations
from all the previous locations, it can be stated that indéat 9thwWN had a quicker
transition to a smoother velocity profile. Despite the fhettt among all schemes, the
2ndVA had to overcome a higher velocity gradient, it managguroduce results with
very good agreement with the LDA data. Thé&eience between the 5thM and 5thWN
in location p3 seem to be bridged, with the profiles being nimoat identical above
the height of the cube.

Based on the comparisons presented, it can be concludedchthaehaviour of the
schemes depends on the location. At location pO where thedtarts to develop
within the computational domain, theffirence among the schemes is more obvious.
However, as the flow develops and moves towards the end ofotinaid, the profiles
seem to converge and only smallfdrences in magnitude are seen. Depending on
the velocity gradient that has to be overcome at the shear,l#lye schemes reach
the smooth velocity profile in a flerent manner. Nonetheless, the ILES results are
comparable to the LDA data at all four locations.
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3.3.3 Low Mach Correction Treatment Dependency

The aim of this section is to establish whether there is dfgceon the solution when
the Low Mach Correction Treatment is chosen as means of nsmgiany exces-
sive dissipation. A same procedure will be followed as inghevious section, with
the schemes incorporating the Low Mach Correction Treatreimgy now compared
against the original schemes and LDA data. In the compasitiwat follow, the stlix
‘LM’ will be added to the schemes names when the Low Mach Caoedreatment
IS used.

Comparisons over the top of the cube are presented in Figii8e Bery good agree-
ment with the LDA data is seen when the mean velocity profijgragluced using the
2ndVA scheme combined with the Low Mach Correction Treatm&atme shape of
velocity profile is predicted with the 2ndVA scheme in itsganial form, but the ve-
locity magnitude is higher. However, both cases seem toergevto the same mean
velocity at the top boundary. Regarding the 5thM schentféerdint shapes of profiles
are seen between the original form of the scheme and its raddiunterpart. Specif-
ically, although the two profiles are almost identical néaa toof of the cube, they
start to diverge slightly until they cross each other andlfir@btain dissimilar values
at the upper boundary. Ndfect is seen in the case of the 5thWN scheme until the
flow reaches the height of approximatelyp 2imes the height of the cube. In a same
way as in the case of 5thM, crossing velocity profiles are Segfrthey tend to a com-
mon value at the end of the domain. Finally, a clear divergenthe velocity profiles

is shown in the case of the 9thWN. Among all profiles, the 9thWwahse the most
strongly dfected when coupled with the Low Mach Correction Treatmentaiever-

all conclusion, regarding position p0, it can be said thegeétout of the four schemes
appear to produce better results when using the Low Mach GamneTreatment.

Mean velocity profiles in the wake of the cube are given in FegB.14. Below the
height of the cube where the computational grid is clustéoedncreased accuracy,
all schemes even the 9thWN scheme demonstrate similargesutieir counterparts.
The best comparison with the experimental data is the 2naV#&m®me in both forms.
As the flow develops further, the velocity profiles exhibmgar behaviour to the one
in Figure 3.13. The gap remains between the two profiles irctise of the 9thWN.
However, it is slightly reduced.

Comparisons at location p2 are illustrated in Figure 3.15th&sprofiles approach a
smoother shape, even the slightestatences between the 2ndVA and 5thWN with
their counterparts are eliminated, whereas the 5thWN and/Btlschemes seem to
predict the streamwise velocity accurately without thedneeLow Mach Correction
Treatment. On one hand, the Low Mach Correction Treatmenisléa an under-
predicted velocity profile when applied to the 5thM scheme. tile other hand, the
velocity gets overpredicted when the 9thWN scheme is used.

Comparisons in the cavity between the two cubes are illestrat Figure 3.16. The
effect of the Low Mach Correction seems reduced for the 2ndVArsehia compari-
son to the profiles at locations p0 and pl. Better results amgrwa with the 2ndVA
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Figure 3.13: Low Mach Correction fiect at location pO.

when the treatment is used. Nonetheless, tifferdinces in the velocity magnitudes
can be considered negligible. Unlike locations pO and phesshapes of the velocity
profiles are seen at location p3 when the 5thM scheme is udeel.ofiginal formu-
lation of the scheme provides a higher velocity magnitu@é tompares better with
the experimental data. The 5thWN scheme remains lésstad with almost identical
velocity profiles. Finally, the 9thWN profiles have come clog®n at locations p0
and pl. However, the profiles do not share the same shapetleyceross each other
at approximately b times the height of the cube.

Figure 3.17 shows comparisons of Reynolds stresses belaraibe. All schemes in
their original formulation seem to capture the peaks of thesses in the shear layer
with reasonable accuracy. As the order of the scheme inesetige turbulent statistics
become more comparable with the LDA data. Hence, the 9thWirselhproduces
a more accurate prediction of the Reynolds stresses thanntiiéA2 Although the
mean velocity profiles, calculated with 5thWN and 2ndVA, anpendfected by the
Low Mach Correction Treatment, a dependency is noticed hehetlae stresses being
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Figure 3.14: Low Mach Correction ffect at location p1.

underpredicted above the height of the cube.

Reynolds stresses in front of a cube are presented in Figle Bs at location p1, the
9thWN scheme seems to follow the shape of the streamwise Rixysinesses closely.
The 5thWN scheme, in both forms, appears comparable to the lePits as well.
However, the stresses are underpredicted above the hdigjit gube. Finally, the
2ndVA scheme produces better turbulent statistics thagoitsiterpart. As at location
pl, the Reynolds stresses calculated with the 5thM are lgékimagnitude above the
height of the cube.

Finally, comparisons in terms of turbulent statistics areeig in Figure 3.19. The

5thM scheme continues to produce less accurate resultsiis & Reynolds stresses.
The dtect of the Low Mach Correction Treatment is more evident indhges of the

2ndVA and 9thWN, especially above the cube. Nonetheles$, sdiemes in their

original form provide better prediction of the stresses. wieer, below the cube,

the 9thWNLM resembles the 2ndVA profile and vice versa. Regarding thgVit
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Figure 3.15: Low Mach Correction fiect at location p2.

scheme, the stress profiles are alike up to middle of the ctatipnal domain and
in good agreement with the experiment. Further comparisdri®eynolds stresses
regarding the above locations in terms\pf,s andW,,s can be found in Appendix B.

By taking into account all the comparisons presented so danesinitial conclusions
can be drawn regarding thé&ect of the Low Mach Correction Treatment. Almost all
schemes appear to be able to predict the shape of the vesicalty profiles and the
Reynolds stresses of all locations with or without the Low M&worrection Treatment
being employed. Furthermore, the leageated scheme, exhibiting very good agree-
ment between experimental and numerical data, is the 5th\Widwied by the 2ndVA.
The 5thM scheme seems able to predict to a reasonable ex¢éemneian flow and turbu-
lent statistics, but its performance i§ected mainly by the location of the comparison
point. The most fiected scheme is the 9thWN scheme whose performance is gctuall
reduced when the Low Mach Correction Treatment is chosen.

The reason behind the overprediction of the velocity prdids in the fact that the
9thWN scheme (using a five node computational stencil) resitieenumerical dissi-
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Figure 3.16: Low Mach Correction fiect at location p3.

pation via higher order of spatial discretisation. Henoegonjunction with the Low
Mach Correction Treatment, the scheme becomes unable tage@diequate dissipa-
tion and eventually results into an overwhelmed solutiothwnphysical behaviour as
also seen in the work of Kokkinakis [44]. It should be noteat the Low Mach Correc-
tion Treatment was mainly proposed for the 5thM scheme [M8jvever, the turbulent
statistics overall appear sensitive to the choice of LowIMaorrection Treatment with
the 9thWN scheme providing the best comparison with LDA data.
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(c) 5th Order WENO

Figure 3.17

rms

(d) 9th Order WENO

: Reynolds stresses at location p1.
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Figure 3.19: Reynolds stresses at location p3.
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Comparison with DNS data

Comparisons between the available DNS study of Coceal et 4].9dd the ILES
simulations (with and without the Low Mach Correction Treatt) will be presented
in this section of the thesis. The size of the computationatain and the arrangement
of the cubes are identical for both numerical approachesvader, the DNS results
were produced on a much finer computational grid (64x64xéd gpints per cube
height) than the ILES simulations (16x16x16 grid points paioe height), see Table
3.1 and Table 3.2. Comparisons in terms of mean velocity psobetween DNS and
ILES16 will follow.

4r 4r
e} LDA [ e} LDA !
[ —=—— DNS 5 [ ——s=— DNS 1
35F — - — - sthwN_LM 35F — — — - othwN_Lm l
r 5thWN / i 9thWN I

%0 02 04 06 08 1

(c) 5th Order WENO (d) 9th Order WENO

Figure 3.20: ILES against DNS data at location pO.

At location p0, the best agreement between DNS and ILES dasaen when the
5thWN scheme is used, see Figure 3.20. Both formulations o§¢heme are very
close to DNS until the flow reaches a height dl2where the profiles separate. After
that point the DNS lies between the two 5thWN profiles. Low M&dhmrection seems

to have a positive féect on the 2ndVA and 5thM schemes, where the results are in
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very good agreement with the DNS, especially in case of 2nHMA However, as the
flow approaches the upper boundary, the 5thM profiles aresicrgeach other and as
a result the 5thM profile becomes now closer to DNS. FinaljSds placed between
the 9thWN profiles.
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Figure 3.21: ILES against DNS data at location p1.

Comparisons in the wake of the cube are illustrated in Figuzé&.3The 2ndVALM
profile continues to be in very good agreement with the DN&,dahereas the 5thM
performs better now. Both forms of 5thWN overpredict to a srezient the velocity
profile in comparison with DNS. Since the DNS and LDA data Hasen in very good
agreement so far, it was expected that the DNS would be foetwlden the 9thWN
results.

Regarding location p2, the best agreement between the twentahmethods is seen
in Figure 3.22(c). Both forms of 5thWN and DNS produce the saglecity profile
which is slightly underpredicted when compared to the LDAadaThe 5thMLM
seems to resemble the DNS profile up to three times the helighé @ube. However,
the 5thM profile starts to diverge from the DNS results at aliegdocation. An almost
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Figure 3.22: ILES against DNS data at location p2.

negligible overprediction is seen between the 2ndVA prefilied DNS up to B times
the height of the cube. As the flow develops, the profiles cgacas if they almost
collide. Finally, the LDA data lies between the DNS and 9thWhdfite. After the
point where there is no available experimental data, DNSs&a® 9thWN.

Comparisons at the last location are given in Figure 3.23. Adetprediction is seen
between the ILES results and the DNS data when the 2ndVA seireuased. However,
the ILES exhibits better comparison with the LDA data than@iNS. Below and above
the cube, the 5thM scheme produces very good agreementh@ittitA data. The best
comparison, though, is seen when the 5thWN is compared agav above the cube
height. Comparisons between the 9thWN scheme and DNS sho®tth&iN is now
closer to the LDA than the DNS, although it was originallyetiging from both DNS
and LDA profiles at locations p0O and p1.

By summing up all the above remarks, the results reveal the s@md is seen as in the
comparisons with LDA data with most of the schemes exhigitin similar behaviour
to the DNS simulations. Results obtained with ILES16 actdexery good agreement
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Figure 3.23: ILES against DNS data at location p3.

with DNS and even better comparison with the LDA data at sooeations. The
ability of ILES to produce DNS-like characteristics on aatelely coarse grid, which
consequently means reduced CPU requirements, is a very ragaogl indication for
the applicability of ILES.

Comparison with LES data

Further assessment of ILES involved comparisons betwee816 and LES data. The
LES data presented in this section was obtained using thfiegeht grid resolutions,
see Table 3.2. For simplicity, the LES results will be reddras LES8, LES16 and
LES32, each one representing the number of grid points e baight.

Comparisons between ILES16 and LES at location p0O are showigure 3.24. The
2ndVA coupled with the Low Mach Correction Treatment givesuits directly com-
parable with LES8 whereas the 2ndVA lies between LES16 arsl32E However, the
velocity values at the top of the boundary are closer to theegaobtained with LESS.
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Regarding the 5thM, LESS is in good agreement with the 5ttt until the flow
reaches 3 times the height of the cube. A similar picturegmssitself for 5thWN.
Comparisons indicate agreement of the_bM with the LES8, whereas 5thM gives
results between the LES16 and LES32. Discrepancies in tbeityeemagnitude are
seen with the 9thWN.

1 0 0.2 04 06 0.8 1
u
(a) 2ndVA scheme (b) 5thM scheme
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I —e— LES8 I —e— LES8

35F — — — - LES16 ] 35F — — — - LES16
o= - LES32 ! o= - LES32

— — — - 5thWN_LM i/ F - 9thwN_LM

(c) 5thWN scheme (d) 9thwN scheme

Figure 3.24: ILES against LES data at location pO.

Comparisons at location pl can be found in Figure 3.25. Th&Rretheme pro-
duced results comparable to LES16 which was obtained ubegame grid reso-
lution. However, when the Low Mach Correction Treatment waplemented, the
results appeared closer to LES32. Regarding the 5thM scheseems to be in good
agreement with the LES8. The 5thWN scheme (either blendedtawith Low Mach
Correction Treatment) gives results that resemble thos&8f2. For the first time the
9thWN_LM appears to be comparable with other numerical data atitotpl. Specif-
ically, 9thWN_LM slightly underpredicts the velocity profile in companmswith LES
on the same grid size.

Regarding location p2, shown in Figure 3.26, the LES profites\sa general tendency
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Figure 3.25: ILES against LES data at location p1.

of diverting from the ILES profiles when the two numerical egaches are compared
at the same grid resolution. Almost all high-resolutionesules, either in their original
form or coupled with Low Mach Correction Treatment, appeaselto LES8. Only
the 9thWNLM scheme seems to overpredict the velocity magnitude.

Finally, comparisons at location p3 are seen in Figure 3% numerical methods
follow the same behaviour as in Figure 3.26 over the top bagnaf the cube, whereas
below the height of the obstacle ILES seems to be closer thiifedata. The most
accurate results among all ILES and LES data are given bytHWN scheme.

Summing up, it can be said that although increased griduealwould be expected
to result into higher accuracy on the contrary LESS8 provitiedbest comparison with
the LDA data. It should also be noted that the same behaviasrsgen in the ILES
results when obtained on the threéelient grids as shown in Section 3.3.1.
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Figure 3.26: ILES against LES data at location p2.
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Figure 3.27: ILES against LES data at location p3.
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3.3.4 Spatial Averaged Velocity Profile

Under neutral conditions, the vertical wind variation witthe inertial sublayer can be
described by the logarithmic law given in Equation 1.1.1Cheng and Castro [12], it
is stated that, in order to obtain a representative wind lprcfpatial averaging of the
mean velocity data over afiicient number of individual locations is required. An area
of 40 x 40 mm containing one cube was chosen as the area unt&demtion, see
Figure 3.28. Initially, 25 measurement points (represbiethe black dots in Figure
3.28) were identified within the specific area. For each pbi@imean vertical velocity
profiles were gathered and they were averaged at each fixghtlggving a 25-point
spatial averaged velocity profile. The spatial averagedmebocities were calculated
according to

1 n
Usg = ﬁ § Ui, (3.3.1)
i=1

wheren is the number of individual measurement points within theeeging unit and
Usa IS the spatial mean velocity. Considering the method asivelgttime-consuming
for an experiment, it was decided to investigated whetheuahnsmaller number of
locations would be dficient to represent the logarithmic wind profile [12]. Conse-
guently, the same procedure was followed using data gattiene only four locations
illustrated by the red squares in Figure 3.3.1. Finallyadddtained using each method
separately was fitted within a logarithmic curve and the twaihrads were compared
against each other. Comparisons showed that both methaaseagiy similar results, a
fact that simplifies the calculation procedure significartdowever, it should be noted
that such a simplification may not be appropriate for moremercases.

In Equation 1.1.1, the friction velocity. is used as the slope fit in the logarithmic
law profile. Therefore, its value needs to be calculated mtrest with the zero plane
displacementd) and surface roughness parametg) hich can be obtained through
the fitting of velocity data into a logarithmic curve. When thiscous contribution

is assumed negligibley, can be determined by calculating the drag force from the
pressure distribution on the front and back faces on thecub® shown in Equations
3.3.2 to 3.3.4, the friction velocity can then be determifredh the wall shear stress
which is obtained from the drag force.

D= f (P - po)dA (33.2)

= (3.3.3)

u.(p) = \/? (3.3.4)
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wherep; andp, are the pressures over the front and back face of the culjectesly,
D is the drag forcer, stands for the shear stress due to the dfagds the plan area
equal to 472, p is the density of the fluid and finally,(p) is the friction velocity.

Nonetheless, there are cases where a direct measurembatdrfg force is not pos-
sible, so theu, is deduced from turbulence shear stress measurements radgion
above the roughness surfaces [12]. Depending on whetherftrenation is obtained
from the inertial, roughness or even both sublayers conabines defined as.(1S),
u.(RS) andu.(IS&RS), respectively. Dferent values of zero-plane displacemet)t (
and roughness lengtly] were found when the logarithmic law was fitted using various
u.. A summary of the surface characteristics of the staggeubatal array extracted
from the four locations only, is shown in Table 3.3 as presgim the work of Cheng
and Castro [12].

Roughness Parametersu.(p) | u.(IS&RS) | u.(RS) | u.(IS)

u./U; 0.0724| 0.0635 | 0.0631| 0.0639
d 0.725 0.835 0975 | 0.74
7 0.0665| 0.0405 | 0.0475| 0.0345

Table 3.3: LDA surface characteristics [12].

As part of the numerical scheme dependency investigatieapmelocity profiles have
been obtained with all schemes (either in their originahf@mr modified) at specific
locations consistent with the methodology presented in Glard Castro [12]. The
profiles were then spatially averaged and fitted into theridgaic Equation 1.1.1 us-
ing linear regression analysis along with least squaradittiGiven the fact that the
wind logarithmic profile contains three unknowins, d andz,, two curve fitting pro-
cedures were followed each one involving &elient degree of freedom. Specifically,
the first one considered the third constant, the roughnessmederz,, as a known
variable whereas the remaining two variables were obtaifirdz, was chosen on the
basis that the computational array is identical to the oserleed in the experimental
study of Cheng and Castro [12] hence the two arrays have the sargbness. The
experimental surface parameters which were obtained asedormation gathered
from both the inertial and roughness sublayer, providedtbgt, thus the value of
Zp was set to 0.0405 accordingly. In the second procedurehr@étvariablesl., z
andd, which introduce three degrees of freedom, were attaired the curve fitting.
For simplicity, the surface characteristics obtained whihtwo and three-parameter fit
will be referred as ILESJUH2 and ILESUH3 respectively.

Results obtained with the two parameters fitting proceduregusformation gathered
from the 25 and 4 points are given in Table 3.4 and Table 3spedively. The ILES
surface parameters exhibit very good agreement with thererpnt parameters using
the valueu.(IS&RS) as slope fit. All numerical velocity profiles seem to folloet
logarithmic profile. Very small dierences are seen in the surface parameters between
the schemes however all values look reasonable. More phgcibe 2ndVALM and

the 5thM.LM gave very close results to the LDA data. Despite the faat the 9thWN
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Figure 3.28: Highlighted locations of spatial averaging.

seemed to diverge in magnitude when predicting the mearciglprofiles, it was

proven that it is capable for providing results that folldve togarithmic profile. It is

also verified that the 25-point and the 4-point spatial ayedgprofiles show very small
differences in magnitude. Therefore, spatial averaging usihgfour locations it is

indeed a valid method for the specific case.

Table 3.6 presents results found using the three paramietdrei the velocity profiles
are spatially averaged among the four locations. By comgdible 3.6 and Table 3.5,
the three parameter fit shows discrepancies with the LDA, datsix out of the eight
schemes used in this thesis, due to the highly overpredictka of the roughness
factorz,. However, the 2ndVALM and the 5thMLM maintain their good agreement
with the experimental data. Specifically, the percentafferdince in terms of ranges
between 3%- 4% as given in Table 3.7.

Roughness Parameter@ndVA LM | 2ndVA | 5thM_LM | 5thM | 5thwN.LM | 5thWN | 9thwN.LM | 9thwN
u./U, 0.0657 0.0719| 0.0657 | 0.0701 0.0712 0.0719 0.0774 0.0690
d 0.8280 0.8746| 0.8280 | 0.9174 0.8545 0.9099 0.8868 0.7805

Table 3.4: ILES surface parameters using the 2-parameter fit over 25 points.

Roughness Parameter@ndVA LM | 2ndVA | 5thM_LM | 5thM | 5thwN.LM | 5thWN | 9thwN.LM | 9thwN
u,/U, 0.0650 0.0715| 0.0652 | 0.0702 0.0705 0.0718 0.0776 0.0692
d 0.8011 0.8612| 0.8203 | 0.9065 0.8275 0.9000 0.8841 0.6976

Table 3.5: ILES surface parameters using the 3-parameter fit over 4 points.

In addition to the tables presented so far, the logarithraeloaity profiles using LDA
roughness parameters within the IS&RS regions and ILES uba&thM LM were

plotted against each other. The LDA data is compared aghiesinfitted spatially av-
eraged ILES profile and against the profiles obtained withvleefitting procedures.
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Roughness Parameter@ndVA LM | 2ndVA | SthM.LM | 5thM | SthwWN.LM | 5thwN | SthwWN.LM | 9thwN

u./U; 0.0655 | 0.1028| 0.0655 | 0.0924| 0.0921 0.1000 0.0892 0.0542
d 0.7944 | 0.5110| 0.7946 | 0.6919| 0.5694 0.6221 0.7816 0.9007
7 0.0420 | 0.1570| 0.0419 | 0.1144| 0.1147 0.1386 0.0704 0.0121

Table 3.6: ILES surface parameters using the 3-parameter fit.

Roughness Parametgr@ndVA LM | 5thM_LM | 9thWN

u./U; 3.1% 3.1% 14.6%
d 4.8% 4.8% 8%
Zy 3.7% 3.4% 70%

Table 3.7: Percentage flierence between ILES and LDA surface parameters using
3-parameter curve fitting.

Although the roughness parameters were directly detearfnoen the mean velocity
profiles using statistical methods, Figure 3.29 clearlynshtinat ILES data is compa-
rable to LDA data.

LDA un

-~ NonFitted u_,
3 parameters fitted u_
o 2 parameters fitted u_,

Figure 3.29: LDA against ILES in terms of spatial averaged velocity profiles.

3.3.5 Computational Time Step Dependency

According to the CFL definition, a smaller computational ssepuld result in more
accurate prediction. However, high order spatial dissagiton schemes allow accurate
results to be computed for higher values of CFL. Thereforwai decided to investi-
gate the computational time step dependency by reducinGfhenumber when the
ninth-order accurate WENO scheme is used for spatial disatin. It should be
noted that the current CFL value already produced resultpacable to experimental
data.
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Roughness Parameter€FL=0.5 | CFL=0.3

u./U, 0.0875 0.087
d 0.7979 | 0.7978
2y 0.0663 0.066

Table 3.8: Surface parameters obtained from 25 points for evaluating the CFL canditio

Roughness Parameter€FL=0.5 | CFL=0.3

u./U, 0.0892 0.089
d 0.7816 | 0.7817
2y 0.0704 0.07

Table 3.9: Surface parameters obtained from 4 points for evaluating the CFL condition

Comparisons between two CFL numbers are presented in terroggtimess element
parameters in Table 3.8 and Table 3.9 using the 25 points @oithts spatial averag-
ing procedure, respectively. The results show very smatirdpancies, verifying that
higher order discretisation scheme are capable of usirfgehiplues of CFL without
affecting their accuracy.

3.3.6 Energy Spectral Analysis

In order to obtain information about the characteristicghefflow topology, the three
dimensional energy spectra was employed using the timalsggrihe instantaneous
streamwise velocity. The existence of fully developed tighce can be proven based
on Kolmogorov's theory that the energy spectra for homogasend isotropic tur-
bulence is proportional to tHe>23 where k is the wavenumber. To assess the perfor-
mance of ILES, the energy spectra (using a Fourier seriasfoanation as described

in Chapter 2) was calculated for the five distinctive pointsvahin Figure 3.30. Each
location refers to a recirculation area around one cubéarfront, at the sides and in
the wake of the cube.

oD

eE

0e

Figure 3.30: Highlighted locations for calculating the energy spectrum.
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Schemes Position A | Position B| Position C| Position D| Position E
2ndVA -1.78 -1.79 -1.76 -1.76 -1.79
5thM -1.67 -1.67 -1.76 -1.76 -1.79
5thWN -1.75 -1.77 -1.77 -1.79 -1.76
9thWN -1.78 -1.79 -1.79 -1.76 -1.79

Table 3.10: Energy spectra slopes for schemes in their original form.

Schemes Position A | Position B| Position C| Position D| Position E
2ndVA -1.78 -1.79 -1.76 -1.76 -1.78
5thM -1.81 -1.79 -1.81 -1.77 -1.81
5thWN -1.78 -1.80 -1.79 -1.77 -1.81
9thWN -1.78 -1.74 -1.75 -1.76 -1.74

Table 3.11: Energy spectra slopes for schemes using Low Mach Correction Treatmen

In Figure 3.31, the energy spectra obtained at all locatisimgy the 5thMLM scheme
is given as an example. The results were compared againstdgolrov’s theory of
k=>/® and the slopes of energy spectra were calculated by fittirmpvaplaw curve, see
Table 3.10 and Table 3.11. From the results, it can be staggdblmogorov’s theory
Is approached in the wake of the cube and specifically atitotét. It should be noted
that the fitted curve slopes were compared against the refestope 0f-5/3 ~ —1.67.
The peaks atk10 is just noise.

Based on the results, it can be said that the energy spedpdsshre similar for all
schemes however smallftérences are present. Thus, when the schemes are used
in their original form, Kolmogorov’s theory is reached éarlwith the 3" MUSCL
scheme almost in all locations. However, the 9thWN schemeoappes the slope
k=52 when the schemes are modified using the Low Mach Correcticatfient.
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Figure 3.31: Energy spectra.



90 Uniform Height Building Array

3.4 Summary

Implicit Large Eddy Simulation using high-resolution medls was applied to flows
around a staggered array of four cubical elements repiegebtildings. Real ur-
ban environment involving separation and reattachmeassatae to wind’s interaction
with buildings or other roughness elements, provides aplkt test case for assess-
ing the accuracy of ILES in predicting such highly complexvo The investigation
was performed in stages focusing on thieets of numerical parameters on the so-
lution. Three computational grids referring tafdrent resolution depending on the
number of grid points per cube height were used in the sinaugt Therefore ILES16,
ILES24 and ILES32 correspond to 16, 24 and 32 grid pointpaes/ely.

Initially, the efects of grid resolution were assessed using results obtaiméhe three
different computational grids. The results were then compagathst experimental
data in terms of mean and turbulent statistics at four distocations within the do-
main. It was concluded that, in cases where the ILES16 or B458id was used, the
comparisons between the numerical and experimental da& iweery good agree-
ment. Surprisingly however, the numerical solution detated when the grid resolu-
tion was increased. More precisely, a higher mass flow rasedetected in the ILES32
case, indicating that the value of the imposed constanirfgrterm does not preserve
a constant mass flow throughout the domain.

The dependency on the numerical scheme was examined byirappdyr high res-
olution schemes in their original form on the ILES16 grid. eTéchemes were the
2" order accurate MUSCL scheme coupled with the Van Albadadimthe §' or-
der accurate MUSCL scheme, th& Brder accurate WENO scheme and finally the
9™ order accurate WENO scheme. As a second stage of investjgagnumerical
scheme dependency, all the above schemes were combinetheitlow Mach Cor-
rection Treatment in order to further examine the sengjtimn the same computational
mesh. From the results obtained, it is clear that almosthkmes, with exception of
the 9thWN scheme, exhibit similar behaviour and reasonajrkeanent with the LDA
data. For the specific case of the 9thWN scheme, a dependeanythup location of
the comparison point is observed. Here, the best perforensnachieved when pre-
dicting the streamwise velocity profile within the cube ¢gand in front of a cube.
In a similar manner, the 9thWN scheme seems to be stroffiiggtad when combined
with the Low Mach Correction Treatment.

By comparing the velocity profiles obtained with the 9thWN subkeand the grid re-
finement procedure, it could have been said that the regdtaed to be in the opposite
direction. However, this observation is not valid due toftnet that an asymptotic be-
haviour would have been observed only if the results in 82@&i3.1 have indicated a
fully grid converged solution.

As an additional measure of the schemes performance, tlaeittomic wind profile
above the cube height was fitted to the spatially averaged melacity data using
the least squares method. According to the calculated resghparameters, the best
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agreement with the experimental data is given by the 5tiWland the 2ndVALM
scheme followed by the 9thWN scheme. Combining all the statésmaade during
the first two stages, it can be said that the most accuratecpoedof the mean flow
and turbulent statistics is shown when the 5thM and 9thWN scheme are used with
low grid resolution.

Based on the conclusions drawn from all the previous stagpespést performing
schemes were chosen in order to proceed with the compuahtiore step dependency.
The value of CFL was reduced by 60% of its original value in orndeinvestigate
the computational time steffect. As expected, for high-order spatial discretisation
schemes such ag"@VENO scheme, it is possible to obtain accurate results ingnigh
CFL numbers.

As part of this chapter, the energy spectra was calculatdveatistinct locations
around the cube, each referring to an identified recircutesrea. The 9thWN scheme
was compared against Kolmogorov’s theoryko?? and it was found that the slope
of —5/3 is approached when the scheme was coupled with the Low Mariedion
Treatment. However, based on comparisons among the schetiesr original for-
mulation, the 5thM scheme was able to approactktfé@ in the most accurate way.

In this chapter, an extensive investigation of the perfaroesof the numerical schemes
was presented in terms of mean and turbulent statistics.eMenyvbefore closing this
part of the thesis, a comparison in terms of CPU requiremantgdch scheme is
provided for simulations performed on the computationasimef approximately 0.2
million cells with 16 x 16 x 16 grid points per cube height. CR&fjuirements are
given in Table 3.12 and correspond to the equivalent of desimgpcessing time. The
simulations were performed using 16 processors (Intel EM&don 51xx (Woodcrest)
3000 MHz (12 GFlops)) at the same CED.5. All the comparisons given below refer
to the same number of iterations (200000). As seen, the hitjeescheme’s order
of accuracy, the longer the time window that ensures theeargewce of the solution.
Nonetheless, it can be stated that the requirements in CR¥aise in a reasonable
manner without becoming uffardable. However, an inconsistency is noticed between
the CPU hours for the 2ndVA scheme. Although, cases incotipgréhe Low Mach
Correction treatment would have been expected to requirgi@ual CPU time, the
exact opposite case is seen. One potential reason couldebavénloading of the
system.

Schemes Original formulation| With Low Mach Correction Treatment
2ndVA 964.8 9584
5thM 10064 10096
5thWN 1408 14192
9thWN 1432 16528

Table 3.12: CPU requirements in hours.
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CHAPTER 4

Random Height Building Array

LOWS over a more realistic representation of urban areaseisulbject of this

chapter. More precisely, high resolution schemes in theéesoof ILES will be
assessed for simulating flows around sixteen buildings ef different heights in a
staggered alignment. The aim of this chapter is to inveitee performance of high
resolution schemes in a more complex geometry and to enllaaémowledge of the
flow structure. The results were obtained by applying thefler accurate MUSCL
scheme coupled with the Low Mach Correction Treatment. Corspas with exper-
imental data provided in Cheng and Castro [12] and numeridal fdand in Xie and
Castro [87] will be presented in terms of mean statistics.

4.1 Numerical Details and Settings

In a similar way as for the case of four cubes discussed in @h&ptthe numerical
set up of the case under investigation was based upon inflemfaund in the wind
tunnel experiment of Cheng and Castro [12] and the LES studyeodXd Castro [87].
More details will be given in the section that follows.

Domain Decomposition

The computational domain consists of sixteen rough elesn@piresenting buildings.
Each three dimensional element has a square footprimteafx hmean With hyeanbeing
the mean building height equal to 0.01 m. The height of th&dimgs is ranging from
0.0028 m to 0.0172 m based on a normal distribution with a ndearation of 0.01 m
and a standard deviation of 0.003 m. The size of the domdip ¥sLy X L, = 8Nmean
X 10hmeanX 8hmean The width of the passage between the buildings is 0.01 mreaise
the density of the area remains 25%. An illustration of thenpotational domain is
given in Figure 4.1.
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(a) Computational domain (b) Grid resolution along plane=4.5

Figure 4.2: Computational grid.

Grid Resolution

The computational grid is blocked structured with the caetgldomain being split
into 64 individual blocks as shown in Figure 4.2(a). Only gniel resolution was used
for this case consisted of approximately 2 million cellshwi6 x 16 grid points per
PmeanX hmean Figure 4.2(b) shows the grid resolution along a YZ planee ighest
element along the specific slice is also the highest obsiathe domain. As seen, the
grid density is increased near the wall region for betteueay.

Numerical Settings

The exact same boundary conditions were imposed as in thectines case. Fully
periodic conditions along the streamwise and spanwisetthre symmetry at the top
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boundary, whereas the lower boundary and the faces of tidiriys were considered
as walls thus the non slip condition was chosen. In ordervesitigate the féect of
the source term (pressure gradient), twiedent constant pressure gradienté%‘@f:

-1.59Pant? and% = —5.14Pant?! were simulated at the same Reynolds number of
6100. In the same extent, the physical dependency of théi@olan the choice of
the Reynolds number was examined using twiedent Reynolds numbers of 5000
and 6100 at a constant pressure gradient. The set up of the w@&s based on the
experimental studies of Cheng and Castro [12]. Both Reynoldetsnwere based
on the free stream velocity and mean height of the buildir®j. [Einally, the %' order
accurate MUSCL scheme with the Low Mach Correction Treatmexst wsed for the
spatial discretisation whereas, the time integration veafopmed with the third order
TVD Runge-Kutta scheme. The value of CFL was set to 0.5 in allktons.

All dimensions, flow parameters and comparisons of mearsstatare presented in
their non-dimensional form.

4.2 Flow Topology

As part of this thesis, a description the flow within the norfarm height building
array will be attempted. Visualisation of the flow field wikk Immade in terms of mean
and instantaneous flow parameters. The flow structure iscéegh¢o maintain some
of the basic flow characteristics as described in the cadeeasolated cube [53] and
the four cube array [12]. To facilitate the flow descriptiarplan view of the array is
given in Figure 4.3(a) showing the element height and thentaition of the faces as
front (F), back (B), left (L) and right (R). Additionally, theuddings were numbered
as shown in Figure 4.3(b) and hereafter they will be refezdry their number.

4 4

: L. : L.

Flow Flow

R R

(a) Orientation of the flow and indications of (b) Numbering of the elements
the element height

Figure 4.3: Plan view of the building array.

A three dimensional impression of the flow field within theagris given in Figure 4.4.
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The flow is visualised using volume ribbons coloured withoegly magnitude. The
flow appears highly complex and irregular with intense tigbtistructure at the sides
of the buildings.

Figure 4.4: Flow structure within the domain.

In order to be more descriptive and obtain a clearer view efflbw structure, the
computational domain was split into four areas. Each unitaios four elements of
which at least two have flerent heights. Since the blocks have the same arrangement
as in the case of four cubes the intention here is to invastighether the flow pattern
changes with ranging building height. The flow was visualigeing velocity vectors

at XZ planes. Specifically, two planes were extracted of Wipiane y0.14 was used

for describing the flow structure in unit A ané@.5 for all remaining units.

Scenario A consists of blocks Bh & 0.28), B2 h = 1.0), B5 (h = 0.64) and B6(

h = 1.0) as shown in Figure 4.5(a). The incoming flow, through B1 and d&2s
redirected towards their wakes but also towards B5; see &iya(b). Since, Bl is the
shortest block in the whole array, its blockadgteet seems to be very small with the
flow appearing to be mostlyff@cted by the presence of B2. Thus, the side vortices of
B1 look weak whereas a relatively big vortex is formulatedatrieighbouring face of
B2. The flow that gets through the gaps of the buildings, retback to B1, due to the
presence of B5, and takes part into the formulation of a vergllsvortex at the left
back side of B1. Although, vortices should have been seeredities of B5 and B6,
one big vortex is created instead. The vortex covers alrhestvhole area between B5
and B6 and seems to be closer to B6. Unfortunately, the wak&egsrare not visible
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(b) Time-averaged velocity vectors in unit A

Figure 4.5: Flow structure in Unit A (¥0.14).

for all four elements, possibly due to the chosen XZ planectviis very close to the
ground.

In both rows of Unit B, the highest block (= 1.36) is followed by a shorter block
(h = 1.0), see Figure 4.6(a). In Figure 4.6, the velocity vectoxdréeted in plane
y=0.5) show that whenever blocks offldirent height are adjacent, the side vortices
between the neighboring faces tend to be shifted towardfateeof the tallest block.
The same behaviour was seen between B5 and B6 in Unit A. Thesogehi flow
between B3 and B4 moves towards the wakes of the blocks unéitstgjopped by B7.
The only clear formulation of wake vortices can be seen lzeBih

In Unit C, all blocks are of dferent height as shown in Figure 4.7. A clear view of all
side and wake vortices can be seen around B10 and B13, the himgllelsngs of the
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(b) Time-averaged velocity vectors in unit B

Figure 4.6: Flow structure in Unit B (0.5).

unit, whereas the flow topology around the shortest elemedat(B%x 0.64) is barely
visible; Figure 4.7(b). Finally, regarding Unit D, the inésting flow characteristic,is
noticed in the wake of B12, see Figure 4.8(b). Although twdiges should have been
present, there is only one and yet it is diagonal with its douad almost at the center
of the wake. Before closing, it should be noted that the rataton areas at the side
and in the wake of the buildings are visible depending on tieesen plane, indicating
that the location of the vortices vary with ranging height.

Visualisation of the flow structures around the buildinggiven in Figure 4.9 using iso
surfaces of the Q-criterion. The instantaneous flow fielddarty turbulent, exhibiting

more intense vorticity around the buildings. As expecteakedl on the typical flow
around an isolated obstacle, the vortical structures aiblgiin front, at the sides and
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(b) Time-averaged velocity vectors in unit C

Figure 4.7: Flow structure in Unit C (0.5).

in the wake of the element. It must be noted that larger teriidtructures are seen in
the vicinity of the highest building (element coloured indye
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(b) Time-averaged velocity vectors in unit D
Figure 4.8: Flow structure in Unit D (%0.5).
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Figure 4.9: Instantaneous flow field visualisation using the Q-criterion - Isosurfatces
Q=0.2.
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4.3 Results

The applicability of high-resolution methods in flows ardunugh elements has been
discussed extensively in Chapter 3. In the sections thaivipthe dependency of the
solution on the Reynolds number and the validity of imposieg@stant pressure gra-
dient as a driving force under periodic conditions will bgastigated in flows over
a non uniform height building array. Additionally, commons between similar lo-
cations in the uniform and non uniform building matrix wik lpresented in order to
investigate any significant fierences in the flow features.

Six comparison points were identified as shown in Figure 4Ebir out of the six lo-
cations around and above Blg; = 1.0, corresponding to the mean building height),
were chosen in the same way as in the case of four cubes. AsrsEajure 4.10(b),
vertical velocity profiles were extracted at positions J4(3,4), (3,3) and (3,4) repre-
senting locations above B6, in the wake, in the cavity andantfof B10, respectively.
The last two locations in the wake of B2 and B9 = Hgg = Hgs = 1.0) were chosen
in order to investigate whether similar positions exhiltiér@d velocity profiles due to
the presence of non uniform height neighbouring obstacles.

Col 1 e Col8 Col1 .- Col8

Row 8 BS B16 Row 8

B4 B12

Flow B7 B1§ Flow

B3 B11

BS B16 “4.3) | @4.4)

B2 B10 32 |33 |64

Row 1 B1 B9 Row 1 (1,6)

(a) Plan view indicating the block configuration (b) Comparison points

Figure 4.10: Highlighted locations of comparisons.

The ILES results were compared against Hot Wire Anemomeitier @HWA hereafter)
[12] and available LES studies [87, 88] in terms of mean waltvelocity profiles.
Additionally, a number of mean velocity profiles was gatldeard, after being spatially
averaged, they were fitted into a logarithmic curve. The dedwsurface parameters
were compared with HWA data, but also with the parametersdan the case of four
cubes.

As mentioned before, all mean and turbulent statistics ezsgmted in their non di-
mensional form and have been averaged oveffacgnt time window (approximately
140 flow-through-times) to ensure convergence of the lacgkes as shown in Section
2.8.2.
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4.3.1 Constant Pressure Gradient Dependency

In Xie and Castro [87], it was stated that the choice of impgpsirconstant pressure
gradient as a driving force for fully periodic boundary caimhs was a valid method.
However, in Chapter 3 of this thesis discrepancies in thecitglprofiles were seen
when the same value of pressure gradient was used witrett grid resolutions. To
assess the dependency of the results on the choice of thesbpsessure gradient,
two simulations referring to a fierent value O%’ were performed. The first pressure

gradient was equal to the one used in the four (:ubes?ﬁase—l.SQParrr1 whereas
the second one was set #®.14PanT?! in accordance to the LES study of Xie et al.
[88] of flows in a similar non uniform height array. In the coanigon that follows,
the diferent values o%’ will be referred asPyaq1 and Pyagz. The flow conditions
within the element array corresponded to a Reynolds numbBes6100 based on
mean building height and free-stream velocity [12].

for o HWA o o o HWA Oy
I Pgrad, o I Pgrad, o
| - - — - Pgrad, S | - - — - Pgrad, ;
8 /
i /
/
6 4
> > :
4
2k
00 0‘2 0‘4 ‘0?6 ‘ 0‘8 1I 1I2 0 0 ‘ 0‘2 0‘4 0‘6 0‘8 1I 1I2
u u
(a) Location (4,3) (b) Location (4,4)
o o HWA o - o o HWA o,
| Pgrad, O | Pgrad, oy
|l - - - - Pgrad, o/ |l - - - - Pgrad, o,
D/ sl ,
| /
/
6 /4
> > F
4
2k
1 ] 0 L 1 | 1 1 1 ]
1 1.2 0 0.2 04 0.6 0.8 1 1.2
u u
(c) Location (3,4) (d) Location (3,3)

Figure 4.11: Pressure gradient dependency in terms of mean statistics.

Figure 4.11 illustrates results obtained at the four laretiaround B6. Specifically,
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at locations (4,3) and (4,4), the profiles attained with the pressure gradients seem
identical at the region below,..,= 1.0. However, above B6 their slopes change and
as a consequence they cross each other at approximatelinfe® thehean Results
calculated withPy,q are in very good agreement with the HWA data up to the crossing
point where the behaviour changes and the experimentaisiaba closer to the ILES
usingPgragi. The mean velocity profiles at positions (3,4) and (3,3),igufe 4.11(c)
and Figure 4.11(d) respectively, are smoother than thaequsuwo locations. They
still develop in a diferent way but they both compare better with the HWA data until
they diverge at a higher point of approximately six tingg,, After that point, the
velocity magnitude is overpredicted in comparison to theAtWwhen Py« is used.
Nonetheless, results usifiy.: seem to follow the HWA profile in a better way and
to reach a slightly underpredicted velocity value at theanggmundary.

Regardless of the position, it is evident that there is a adegfedependency on the
choice of the pressure gradient. Based on the fact that isiagthe absolute value of
‘;—2 led to an overpredicted velocity magnitude at the top bogndtawvas decided that

further investigations will be conducted using oéﬁ/: —-1.59Pant?,

4.3.2 Reynolds Number Dependency

In the LES study of Xie and Castro [87], it was stated that thenRkls number depen-
dency is very weak when flows over uniform and non uniform heapstacle arrays
are simulated within the range &e = 5000 andRe = 50000. The conclusion was
based on the fact that the surface drag was mainly pressageadd that the dominant
turbulent scales were comparable to the roughness eleroaleiss Thus, when the
flow within the variable height array was simulated at Reyaaldmbers of 5000 and
6100 (in the LES study Xie et al. [88] and experimental studgleeng and Castro [12]

respectively), the results were in very good agreementrdardo investigate whether
the specific remark could apply to the ILES study, it was dedith proceed with two

simulations each one corresponding to the Reynolds numbensioned above at a
constant pressure gradiegﬁt: —-1.59PanTt?.

Vertical velocity profiles were extracted at locations §4/&,4), (3,3) and (3,4) and
compared against HWA data. As shown in Figures 4.12(a) at@{d), both simula-
tions underpredict the velocity profile apart from the adeae&to the top boundary. At
the specific location, the velocity magnitude seems to bdigted well in both cases.
However, the simulation performed at 00 gave better results. Slightlyfidir-
ent picture can be seen in Figures 4.12(d) and 4.12(c) wheredlocity shape and
magnitude are predicted accurately when the flow condittonsespond to Re6100.
Nonetheless, at the top boundary, the flow recovers valusgicto the ones obtained
at Re=5000.

By using information from both sections examining tHeeets of constant pressure
gradient and Reynolds number, it can be concluded that flohirwibhe non uniform
height obstacles should be simulated with an imposed pregsadient of-1.59Pant?
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at Re=6100.

o HWA f
I Re=5000
|- — — — Re=6100

(a) Location (4,3)

r 0 HWA /
I Re=5000 )

|- — — — Re=6100

o

(c) Location (3,4)

Figure 4.12: Reynolds number dependency in terms of mean statistics.

[ O  HWA ‘
I Re=5000
- — — — Re=6100

[ O  HWA
I Re=5000
- — — — Re=6100

(d) Location (3,3)
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4.3.3 Obstacle Configuration Dependency

In this section, theféect of the randomness in obstacle height will be presentestims
of mean and spatial averaged velocity profiles. Specificalan vertical velocity pro-
files were extracted in the wake of two buildingshata, = 1.0. The obtained results
were compared against HWA and LES data at the same locatimhalso against the
mean velocity profile found in the wake of a cube as descrinedhapter 3. Addi-
tionally, the spatial mean averaged profile was fitted in tigatithmic law curve and
it was plotted against the fitted logarithmic profile foundhe four cubes array.

Mean Velocity Profile

Locations (3,2) and (1,6) can be found in Figure 4.10(b). Basethe fact that peri-
odic boundary conditions are imposed along the streamwidespanwise directions,
obstacle B2lf = 1) is considered to be placed in the wake of obstacles B131.36)
and B14 b = 0.64) and in front of B51§ = 0.64) and B6 [f = 1.36). Furthermore,
its adjacent obstacles are B1£ 0.28) and B3 [ = 1.36). Element B2 also seems to
be surrounded by obstacles offdrent height ranging between B2 + 0.36, with the
only exception of B1 which is the lowest obstacle. Element Bfyéver, is adjacent
to obstacles of four dlierent heights, with the biggestfiirence in height noticed to
the B10 = 1.72).

O HWA .
(@]
I - 2 - iEs
ILES o
e}
(o]

(a) Location (3,2) (b) Location (1,6)

Figure 4.13: Obstacle configuration dependency in terms of mean statistics.

As seen in Figure 4.13(a), the numerical simulations (ILEBS BES) seem to pre-
dict a similar velocity magnitude up to a certain height, vaéas both profiles diverge
from the HWA data as the flow approaches the top boundary.ifg@#ly, ILES is in
good agreement with the HWA data up to approximately eighéshnea,While LES
produces slightly better results, but diverges earlierpgraximately 6 time$inean
Nonetheless, it can be stated that ILES captured the shape wélocity profile in an
appropriate manner. A fiierent picture is seen in the wake of B6 in Figure 4.13(b).
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Both numerical simulations appear to diverge from the HWAadstan even earlier
point. Up to four times the mean obstacle height, ILES app&afollow the shape
of the HWA profile while after that height the profile become=eper. LES and ILES
seem to achieve the same velocity value at the top of the domai

O  HwA O  HWA
ILES
— — — LES

Lo IN
0 0.05 0.1 0.15 02 0.25 03

NI R
0.15 02 0.25 03

ms ms

(a) Streamwise Reynolds stresses (b) Crosswise Reynolds stresses

Figure 4.14: Reynolds stresses at location (3,2) - Station A.

Reynolds stresses at Station A are given in Figure 4.14. Taarstvise and crosswise
stresses are compared against available experimentalE®dlata. In Figure 4.14(a),
ILES appears to follow the LES profile below the height of tighlest building how-
ever it is lacking in magnitude. The shear layer is underipted as well. Above
approximately three times tH®,ean the ILESU,s profile seems to diverge from the
HWA and LES data. One possible explanation could be the estitesolution above
the highest element of the array. Figure 4.14(b) presemigadsons in terms of cross-
wise Reynolds stresses. fiirent behaviour is seen here, with the ILES profile having
the same shape as LES but relatively less in magnitude. Nelest, both numerical
methods seem to underpredict the Reynolds stresses whemarggainst the HWA
data.

Figure 4.15 shows comparisons in terms of Reynolds stressatson B. In Figure
4.15(a), the streamwise profile appears to be captured lattbe specific location.
The shape of the profile is predicted correctly up to four §img,, Past that point and
for approximately two times thknea, the ILES stresses deviate. However the shape
of profile is recovered and retained until the top boundaigute 4.15(b) shows cross-
wise Reynolds stresses at Station B. The magnitude of thessr@ppears reduced in
comparison to the LES and HWA data. The shear layer is petietta higher location
than expected (near the top boundary of the tallest elenie¢hé@rray). As at Station

A (Figure 4.14(b)), both LES and ILES are below the HWA data.

Figure 4.16 shows the comparison between the two profilesirest over the non
uniform obstacle array and the velocity profile behind thbecas found in Chapter
3. To facilitate the comparison, the velocity profiles arevsh only up to four times
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(a) Streamwise Reynolds stresses (b) Crosswise Reynolds stresses

Figure 4.15: Reynolds stresses at location (1,6) - Station B.

4 - Location P1 o
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Figure 4.16: Comparison between random and uniform element array.

hmean Which corresponds to the top boundary of the four cubes CHsere is a clear
discrepancy of the velocity profiles in magnitude. The pesfiire sharper for the non
uniform block array and the velocity values are smaller ttheenones seen in the case
of the four cubes. Since the top boundary has been loweregttwo times the height
of the highest building for the sake of comparison, it can &€ she flow has not

recovered yet and it is still developing. Thus the velocitggmitude is lower than in
the case of the four cubes.
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Spatially Averaged Velocity Profile

In this section, the spatially averaged mean velocity gafill be fitted to a logarith-
mic law curve. Taking the given random and complex geomeitiy account, it was
decided to investigate whether the specific unit could pced@nough information so
that the logarithmic law wind profile is obtained in the samanmer as in the case of
the four cubes. Therefore, sixty four locations at heiglitsva the highest element
were identified as shown in Figure (4.17).

For simplicity, the acronyms diDA_.UH andHW A RH will be used when referring
to the experimental surface parameters of uniform heigttrandom height array, re-
spectively. Acronyms will also be used for the ILES ddtesES_RH2 andILES_RH3
represent the parameters obtained using the two and tareeapter fit respectively.
Since, both fitting procedures produced similar resultgtiercase of uniform height
element array, the cases will be referredla8S_UH hereatfter.

The information gathered was fitted into a logarithmic cuol®wing two procedures.
The first procedure concerns the fit of the spatial averagedie profiles using linear
regression analysis with least square fitting of two unknparameters,./U, andd,
while zy was set equal to 0.064 as in the experimental study of Chen@asito [12].
The second one involved a fit where all three parameters wdaeown. The surface
parameters were compared against those found in the exgreahstudy of Cheng and
Castro [12], but also against the parameters found in thedolbes case. A summary
of the surface characteristics obtained from the HWA expent and ILES, for both
uniform and variable obstacle height, is given in Table 4.1.

As seen in Table 4.1, experimental data collected withinitieetial and roughness
sublayer show that the slope of the velocity profile (giverth®y ratiou, /U,) remains
almost identical in the case of the uniform and non uniformaarThis is an indication
that the shape of the profile is preserved despite the vareeiment height. However,
the values ofl andz, are higher, stating that the random surface is rougher tan t
one in uniform height array.

Comparisons between the HWA and ILES data showed that, ddhpitliferent linear
regression approaches, the values of the surface paranaeéereasonable and com-
parable to the experiment. Specifically, the ratios.gtJ, are slightly higher than the
HWA ratio. The value ofl is underpredicted wher is known, wheread is overpre-
dicted wherg, is deduced as well. Theftierence in both cases is approximate;2
which corresponds to an approximate averagel% as seen in Table 4.2. Finally,
the fitted value of, seems to be in very good agreement with the HWA data; an indi-
cation that the curve fit with three degrees of freedom is abf@oduce valid results
for the case of random height element array.

Comparisons between the ILES surface parameters withinrttieron and non uni-
form array are shown in Table 4.1. All parameters are highan in the case of four
cubes. However, the slope of the curve does not seem to clsegngécantly within

the two arrays. Specifically, it was noted that, when the migakdata is fitted using
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Row 1

Figure 4.17: Locations of spatial averaged mean velocity profiles.

linear regression with two degrees of freedom, the ratia 0, is higher than the one

in the four cubes case but also higher than the three parafite@onsiderably higher
are the values ofl andz,. However, this remark is consistent with the idea that the
array consists of more elements with ranging heights (thagased roughness).

Roughness paramet@riDAUH ‘ HWARH ‘ ILES_.UH2 ‘ ILES_.UH3 ‘ ILES_.RH2 ‘ ILES_.RH3

u./U; 0.0635 0.0644 0.0652 0.0655 0.06835 0.0675
d 0.835 124 0.8203 0.7946 1.065 147
7 0.0405 0.064 0.0405 0.0419 0.064 0.0675

Table 4.1: Surface parameters obtained from ILES data.

Roughness parametef$iWA RHvsILESRH2 | HWA RHvsSILESRH3

u./U, 6.1% 5%
d 14% 18%
Z 0% 5.4%

Table 4.2: Percentage flierence between ILES and HWA surface parameters.

4.3.4 Energy Spectral Analysis

As described in Chapter 2, the existence of fully developéoidence can be proven
based on Kolmogorov’s theory &f>3 assuming the turbulence as isotropic and ho-
mogeneous. To obtain this information, the time signal efantaneous streamwise
velocity was gathered in the wake of five elements, each septang one of the five
different block heights. The signal was then transformed usiRguaier series (for
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more details revisit Chapter 2) and the results were compagathst Kolmogorov’s
theory as seen in Figure 4.18.

Based on the results, it can be stated that the slope of theityesignal approaches
Kolmogorov’s (-33) in the wake of the highest building, B10, and not behind B% Th
observation is verified by the summary of the energy spestogles given in Table
4.3. As seen in Figure 4.10(a), the wake of B5 is dominated bytahest elements.
Thus, the flow requires additional time to reach the fullybtuent stage due to the
blockage &ect of B10. Using the same argument for the wake of B10, it caralok s
that the flow adapts quicker to changes due to the present®xésbuildings, hence
Kolmogorov’s (-33) is finally reached. As mentioned before in Section 3.36, t
peaks at k10 is noise.

Schemes| wake of B1| wake of B5| wake of B6| wake of B7| wake of B10
5thM_LM | -167 | -175 | -168 | -167 | -165

Table 4.3: Energy spectral slopes for random height array.



112 Random Height Building Array

KD
5thM scheme

KD
5thM scheme

T T A T/ T L B T A T/ T L
K K
(a) Inthe wake of B1 (b) In the wake of B5
me K«s/ab
5thM scheme 5thM scheme
10"
10" -
107
107
S <
i i 10¢f
10°
107
107
10°
sl Ll Ll Ll sl i ol Ll Ll sl Ll L
10° 10° 107 10" 107 10? 107 10 107 10" 107 10°
K K
(c) In the wake of B6 (d) In the wake of B7
.

5thM scheme

L L] Ll ol il
107 10° 107 10" 10" 10’

(e) In the wake of B10

Figure 4.18: Energy spectral in non uniform obstacle array.
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4.4 Summary

Flows within an array of variable height roughness elemespsesenting real urban
environment was investigated in the context of Implicitg@Eddy Simulation. The
prediction of such complex flows was examined using th@&ler MUSCL scheme
combined with the Low Mach Correction Treatment. The simarest were performed
on only one computational grid of 16x16x16 grid points peambuilding height.

The dfect of the imposed constant pressure gradient was invesdidpy performing
two simulations, with dierent value o%’. Results obtained in terms of mean velocity
statistics showed a dependency on the choice of the pregrade&nt. The fect of
Reynolds number was also examined at a given constant peegdient. Based on
the results, it was concluded thafférent flow conditions producedftiérent magni-
tude of the velocity profiles, a statement that contradiedindings of the experimen-
tal and LES studies. Detailed information regarding the thay the pressure gradient
was imposed in the LES study is not available, therefore, fitat possible to proceed
with an explanation regarding those opposite findings.

Mean velocity profiles were extracted in the wake of buildimgth the same height in
order to investigate theiect of the neighbouring obstacles. The results were cordpare
against HWA and LES data at the same stations, and also vétivetocity profile
behind a cube as described in Chapter 3. The profiles were flaube steeper and
lower in magnitude. To progress it further, the profiles wigted to a logarithmic
curve and the roughness parameters were calculated. Thediiged parameters that
were in good agreement with the HWA data. Additionally, ttoge of the fitted curve
was comparable with the one found in the case of the four cubemlly, from the
energy spectral analysis, it was found that Kolmogoroveotly of k->/2 is reached
slower behind the highest building of the array due to itdtehag dfect.
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CHAPTER 5

Conclusions and Future Work

N this thesis, a range of subjects related to the numeriealigtion of flow around

wall mounted obstacles was covered in the context of Intdlaige Eddy Simula-
tion. The findings of the specific investigation will be pretesl here. Additionally,
suggestions for future work will be given that would incredise reliability of the nu-
merical simulations so that a more accurate representatiogality is produced at a
reasonable computational cost.

5.1 Conclusions

Flows in real urban environment are characterised by separand reattachment due
to the wind’s interaction with any roughness element, froeks and trees to building
structures. Thus, it produces an excellent testcase fesssisg the applicability of
Implicit Large Eddy Simulation to the specific type of flows the first case under
investigation, the performance of high-resolution schegmamely the ? order Van
Albada, the & order MUSCL, the % order WENO and the'8order WENO, has been
assessed for the flow within a uniform height obstacle amag staggered arrange-
ment. The schemes were used either on the original form quledwith the Low
Mach Correction Treatment which was mainly designed to redlne excessive dissi-
pation produced by the 5th order MUSCL scheme. In the samexipitihe éects of
the choice of numerical parameters such as grid resolutidrieanporal discretisation
were also investigated. Simulations were performed oretbmanputational meshes
with different number of grid points per cube side. The results wargaced against
available experimental data produced by the Laser Aneneamnetthod and against
other numerical studies DNS and LES studies. It was conditiokt simulations per-
formed either on the coarse or medium grid produced restiishwwere in very good
agreement with the experimental and the numerical data.eiMervthe mean velocity
statistics were deteriorating with increasing grid regolu One possible explanation
could be that the production of dissipation could not be adézenough when high
grid resolution grids and high order numerical schemes angmed. The latter ob-
servation gave rise to the interest of investigating the enical scheme dependency in
combination with the Low Mach Correction Treatment.



116 Conclusions and Future Work

Almost all numerical schemes exhibit similar behaviour eggllt in very good agree-
ment with the experimental data without beinfjeated by the Low Mach Correc-
tion Treatment. However, strondgfects were seen when the 9th WENO scheme was
used. It appears that the combination of high-order schevhe&ly could be consid-
ered similar to producing results in a very fine grid) and Lowadd Correction Treat-
ment produces over-turbulent results. The specific findergfied the initial thought
that high-resolution schemes and Low Mach Correction Treatmay not be always
compatible.

As an additional measure of the schemes applicability, teemvertical velocity pro-
files were fitted to a logarithmic curve and the roughnessmpeters characterising the
flows were obtained. According to calculations, the 2ndVA #dre 5th order MUSCL
scheme with Low Mach Correction produced results with the bgseement with
LDA data based on shear stresses calculation within théiahand roughness sub-
layer. Hence, it was concluded that it is possible to prodameurate results on a
relatively coarse grid, given that a high order spatial dissation scheme is used.

The dfect of temporal discretisation was examined as well by rieduthe value of
CFL in a case using the 9th order WENO scheme. As expected,aea@sults can
be calculated at high CFL numbers when high order spatiatetisation schemes
are used. Finally, energy spectral were calculated fronddoemposed instantaneous
streamwise velocity signal at specific locations aroundk@ecirom the comparisons
with Kolmogorov's theory ok=>3, it was found that the slope ef5/3 was approached
quicker in the wake of the cube.

In summary, it can be said that ILES was successfully vadidlaigainst the LDA data
for flow over a uniform height obstacles array. The most ggéng finding was the

part that ILES was proven able to produce results with DN $asttaristics on a coarser
grid when high order spatial discretisation schemes werngl@rad. This is a very

important conclusion because this proves that apart frevstmpler formulation of

ILES in comparison with the conventional LES, ILES usingtrgsolution methods
is capable of producing results at a reasonable compuédttost.

The second case under examination considers flow within & neatistic representa-
tion of urban areas. Results were obtained by using th®18SCL scheme coupled
with the Low Mach Correction Treatment on one only grid regolusince grid res-
olution and numerical scheme dependency were extensimedsiigated in the four
cubes case. The areas under investigation involved validat the method of impos-
Ing a constant pressure gradient as a driving force in evahas well as the Reynolds
number &ects. More specifically, the ILES results revealed that tleamvelocity
profiles are overpredicted when the case specific pressadéegt is used. Hence, it is
believed that presumably the preservation of a constaet vmass flow rate could
lead to more consistent results.

Regarding the Reynolds number dependency, it was found teed th indeed a de-
gree of sensitivity that producesfidirent shapes of profiles, a point that contradicts
the statement of Cheng and Castro [12] and Xie et al. [88] that ¢londitions that
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correspond to the Reynolds number range of 5000 to 50000 peadean and turbu-
lent statistics with insignificant fierences. Finally, the mean vertical velocity profiles
were spatially averaged and fitted into a curve assumingdgatithmic wind profile

Is present. The roughness parameters were then obtaingdeindalues were found
comparable with the HWA data.

As it was stated in Grinstein et al. [27], although ILES haerbproven accurate in
simulating classical cases of turbulence such as shocksnave mixing materials,
it has not been enough to persuade the scientific communiitg @fpplicability for
simulating complex flows. With this thesis, it is believedttkthe point has been made
that Implicit Large Eddy Simulation using high-resolutiorethods is indeed able to
accurately reproduce the flow conditions in obstacle arrapgsesenting urban areas
without any model modifications.

5.2 Future Work

A considerable amount of work has been produced in thisghddowever, there is
always space for improvement. For the case of the staggemegat four cubical ele-
ments, further investigation of the discrepancies seersults obtained with fierent
grid resolutions might be required. The fact that the mass ffiae was found higher
than expected on the finer grid leads to the suggestion of @siralternative approach.
It might be worth investigating whether maintaining a cansimass flow rate through
a variable pressure gradient could be a more appropriateathetThe specific sug-
gestion requires additional experimental informationakhat the present study was
not available. Further investigation of the boundary ctods might also be required.
The symmetry condition imposed on the top boundary of theprdational domain is
artificial and does not correspond to the flow conditions tbimthe boundary layer.
The reason for choosing the specific condition was basedtlysmefacilitating direct
comparison with DNS and LES studies found in the literattd@wever, it is proposed
to progress the case further and impose conditions thamkdeeopen air conditions
such as the farfield condition.

A number of additional investigations is also proposed fowf over variable height
roughness elements. Firstly, further investigation isppsed in the direction of in-
creasing the size of the computational domain. Accordinfpédour cubical element
case, the domain consisted of four times a repeating ungistimy of one element.
Therefore, it is suggested to create a larger computataerakin which will include
four times the existing domain of the non uniform height abk array. The intention
here is to examine whether the size of the domdiects the outcome of the simula-
tions despite the imposed periodic boundary conditionsodly, it would be useful
to perform additional simulations with fiierent grid resolutions in order to examine
whether the solution deterioration with increasing grisolation was case specific or
it is also present in the non uniform height element array.

Finally, regarding both studies presented in this thesis,uggested to proceed with
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cases which do not deal exclusively with the height varigbiReal urban flow condi-

tions are &ected by a number of other parameters such as variabilityitefibg shape,

alignment and area density (distance between the buildifidsis, it is believed that
combinations of the above parameters will be one of the rnepisgo be taken in the
context of Implicit Large Eddy Simulation of Building Aerodgmics.
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APPENDIX A

Viscous Stress Tensor

According to Stoke’s hypothesis the summation of the norstr@sses is zero in or-
der to maintain equilibrium in a control volume [83]. Theyed the second viscosity

codficient is given by

A= -2
= 3’u

(A.0.1)

whereA represents the second viscosity fméent andu is the dynamic viscosity of

the fluid.

Based on the above hypothesis, the viscous stress compafi@mssotropic Newto-

nian fluid can be written as
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Viscous Stress Tensor
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Reynolds Stresses Comparisons With LDA
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Figure B.1: Time-averaged crosswise stresses at location p1.
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Figure B.2: Time-averaged spanwise Stresses at location p1.
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Figure B.3: Time-averaged crosswise stresses compared against LDA data atriqgetio
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APPENDIX C

Reynolds Stresses Comparisons With DNS
and LES Data
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Figure C.1: Time-averaged turbulent intensities obtained with 2ndVA scheme at location p1
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Figure C.2: Time-averaged turbulent intensities obtained with 5thM scheme at location p1.
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Figure C.3: Time-averaged turbulent intensities obtained with 5thWN scheme at location p1.
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Figure C.4: Time-averaged turbulent intensities obtained with 9thWN scheme at location p1.



