
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/2243

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40033553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPETITIVE OPTIMISATION ON TIMED AUTOMATA

BY

ASHUTOSH TRIVEDI

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE

OF
DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

UNIVERSITY OF WARWICK, DEPARTMENT OF COMPUTER SCIENCE

APRIL 2009

To Tiziana, for maximising happiness and minimising troubles, and
to Miralisa, for playing two-player zero-sum games with me.

Contents

List of Figures iv

List of Tables v

Acknowledgement vi

Declaration vii

Abstract viii

Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Preliminaries: Dynamic Programming and Game Theory 3
1.3. Literature Review 9
1.4. Contributions of the Thesis 15
1.5. Organisation of the Thesis 17

Part 1. Background 19

Chapter 2. Competitive Optimisation on Finite Graphs 20
2.1. Formal Definition 20
2.2. Noncompetitive Optimisation on Finite Graphs 22
2.3. Games on Finite Graphs 37
2.4. Discussion 46

Chapter 3. Timed Automata 48
3.1. Examples 49
3.2. Formal Definition 50
3.3. Some Properties of Regions 53
3.4. Extensions of Timed Automata 55
3.5. Competitive Optimisation on Timed Automata 59
3.6. A Note on Zeno Runs 63
3.7. Abstractions of Timed Automata 64

Part 2. Competitive Optimisation on Timed Automata 71

Chapter 4. Noncompetitive Optimisation 72
ii

CONTENTS iii

4.1. Concavely-Priced Timed Automata 72
4.2. Optimisation Problems on Priced Timed Automata 73
4.3. Region Graphs 74
4.4. Correctness of the Boundary Region Graph Abstraction 77
4.5. Concave-Regularity of Cost Functions 82

Chapter 5. Reachability-Time Games 88
5.1. Introduction 88
5.2. Simple Functions 91
5.3. Reachability-Time Games on Boundary Region Automata 92
5.4. Solving Optimality Equations by Strategy Improvement 96
5.5. Complexity 102

Chapter 6. Average-Time Games 105
6.1. Introduction 105
6.2. Abstractions of Timed Automata 107
6.3. Strategies in Region Graphs 110
6.4. Average-Time Games on Region Graphs 118
6.5. Complexity 122

Part 3. Conclusion 124

Chapter 7. Summary and Future Work 125
7.1. Summary 125
7.2. Future Work 126

Part 4. Appendix 129

Appendix A. Notations and Acronyms 130

Appendix B. Results From Real Analysis 136
B.1. Lipschitz-Continuous Functions 136
B.2. Concave and Quasiconcave Functions 137
B.3. Fixed Point Theorems 139

Appendix C. Some Determinacy Results 140
C.1. Matrix Games 140
C.2. Stopping Stochastic Games 142

Appendix D. Implementation Details 144
D.1. Lexer 144
D.2. Parser 145

Bibliography 148

Index 152

List of Figures

1.1 An artificial heart-pacemaker. 3

1.2 Pseudocode of a Value Iteration Method. 6

1.3 Pseudocode of a Policy Iteration Method. 6

1.4 Value Iteration Algorithm to Solve Opt√(S). 7

2.1 A priced finite graph with final vertices. 21

2.2 Strategy improvement algorithm to solve OERP
Min(G). 27

2.3 Strategy improvement algorithm to solve OEDP
Min(G, λ). 31

2.4 A finite price-reward graph. 34

2.5 Strategy improvement algorithm to solve OEPRAvg
Min (G) . 35

2.6 Strategy improvement algorithm to solve OERP
MinMax(G). 42

2.7 Strategy improvement algorithm to solve OEDP
MinMax(G, λ) . 44

2.8 Strategy improvement algorithm to solve OEPRAvg
MinMax(G). 46

3.1 A light-bulb modelled using a timed automaton. 49

3.2 A timed automaton with more than one clock. 49

3.3 Clock regions of a timed automaton. 51

3.4 A Zeno Timed Automaton. 63

3.5 Evolution of regions in a corner-point abstraction of a timed automaton (the idea of
this figure is from Bouyer [Bou06]). 66

3.6 Evolution of regions in a boundary region graph of a timed automaton. 69

5.1 Strategy improvement algorithm for OERT
Max(ΓBR). 99

5.2 Strategy improvement algorithm for solving OERT
MinMax(ΓBR). 102

5.3 A Reduction from a Countdown Game to a Reachability Game. 103

6.1 A Reduction from a Countdown Game to an Average-Time Game. 123

iv

List of Tables

1 General Notations 131

2 Standard Notations related to minmum, infimum, and argmin. 131

3 Non-standard notations related to minimum, infimum, and argmin 132

4 Notations specific to timed automata 134

5 Acronyms 135

v

Acknowledgement

First of all, I wish to express my gratitude to my supervisor Dr. Marcin Jurdziński. His
passion for mathematical rigour and elegance is the inspiration behind every significant
discovery made during the research presented in this thesis. His patience, his timely advice,
his encouragements, his belief in my abilities, and his continuous support through some of
the difficult moments of my life, helped me and this thesis in uncountably infinite ways.

I am thankful to my adviser Dr. Ranko Lazić for ensuring safety, liveness, and fairness
properties of my Ph.D. programme.

I would like to acknowledge my Ph.D. examiners Dr. Joel Ouaknine and Dr. Ranko Lazić
for insightful comments on my thesis.

Sincere gratitude is extended to Prof. Doron Peled for his invaluable time and guidance
during my first year at Warwick. I also thank him for his help during the admission process
and for the financial support for my Ph.D. studies.

I would like to thank the support staff at the department of computer science and at the
library services of the University of Warwick.

I wish to thank Prof. Marta Kwiatkowska for her help and support during my transition
from a Ph.D. student to a postdoc researcher.

Special thanks to my friend Nick Papanikolaou for his constructive criticism of my
ideas, and for various other discussions on some undecidable problems. I thank following
colleagues for providing a stimulating and enjoyable atmosphere in the department of
computer science: Haris Aziz, Timothy Davidson, Alexander Dimovski, John Fearnly, Antony
Holmes, Ritesh Krishna, Hongyang Qu, Michał Rutkowski, and Daniel Valdes-Amaro.

I would like to thank all my friends for such an enjoyable time at Warwick. I would
particularly like to mention: Diana Apiyo, Rajesh S. Balakrishnan, Massoumeh Dashti, Estelle
Guyez/Picard, Samuel Lelièvre, Eleftheria Papoulia, Serena Pattaro, Tina Philip, Jothi Philip, Cyril
Picard, Leslie Robinson, and Agnieszka Rutkowska. Also, thanks to my friends, Amol Patil and
Monica Mantri, for some great time at Oxford.

I am fortunate to have a loving, caring, and ever supporting family. This acknowledge-
ment is incomplete without thanking all of them: papa (Suresh Chandra Trivedi), mummy
(Bharti Trivedi), didi (Bhawana Katyayan), jijaji (Amogh Katyayan), dada (Vibhor Vibhu Trivedi),
bhabhiji (Anjali Trivedi), and Richa (Richa Trivedi). Special thanks to my mother-in-law
Franca Beatrice Girardi for her love and support.

Finally I would like to dedicate this thesis to my wife Tiziana, for maximising happiness
and minimising troubles, and to my daughter Miralisa, for playing two-player zero-sum
games with me.

vi

Declaration

This thesis is presented in accordance with the regulations for the degree of Doctor of
Philosophy. It has been composed by myself and has not been submitted in any previous
application for any degree. The work in this thesis has been undertaken by myself under
the supervision of Dr. Marcin Jurdziński.

Although the key results of the thesis have been announced in proceedings of some
international conferences, this thesis presents the results with complete proofs and comple-
ments them with illustrations.

Chapter 4 (Noncompetitive Optimisation) is an extended version of the paper Concavely-
Priced Timed Automata [JT08b], which appeared in the proceedings of the conference on
formal modelling and analysis of timed systems (FORMATS) 2008.

Chapter 5 (Reachability-Time Games) is an extended version of the paper Reachability-
Time Games on Timed Automata [JT07], which appeared in the proceedings of international
colloquium on automata, languages and programming (ICALP) 2007.

Chapter 6 (Average-Time Games) is an extended version of the paper Average-Time
Games [JT08a], which appeared in the proceedings of the IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS) 2008.

vii

Abstract

Timed automata are finite automata accompanied by a finite set of real-valued variables
called clocks. Optimisation problems on timed automata are fundamental to the verification
of properties of real-time systems modelled as timed automata, while the control-program
synthesis problem of such systems can be modelled as a two-player game. This thesis
presents a study of optimisation problems and two-player games on timed automata under
a general heading of competitive optimisation on timed automata.

This thesis views competitive optimisation on timed automata as a multi-stage decision
process, where one or two players are confronted with the problem of choosing a sequence
of timed moves—a time delay and an action—in order to optimise their objectives. A
solution of such problems consists of the “optimal” value of the objective and an “optimal”
strategy for each player. This thesis introduces a novel class of strategies, called boundary
strategies, that suggest to a player a symbolic timed move of the form (b, c, a)— “wait until
the value of the clock c is in very close proximity of the integer b, and then execute a
transition labelled with the action a”. A distinctive feature of the competitive optimisation
problems discussed in this thesis is the existence of optimal boundary strategies. Surprisingly
perhaps, many competitive optimisation problems on timed automata of practical interest
admit optimal boundary strategies. For example, optimisation problems with reachability
price, discounted price, and average-price objectives, and two-player turn-based games
with reachability time and average time objectives.

The existence of optimal boundary strategies allows one to work with a novel abstrac-
tion of timed automata, called a boundary region graph, where players can use only boundary
strategies. An interesting property of a boundary region graph is that, for every state, the
set of reachable states is finite. Hence, the existence of optimal boundary strategies permits
us to reduce competitive optimisation problem on a timed automaton to the corresponding
competitive optimisation problem on a finite graph.

viii

1
Introduction

Pessimism is, in brief, playing
the sure game. You cannot lose
at it; you may gain. It is the only
view of life in which you can
never be disappointed. Having
reckoned what to do in the
worst possible circumstances,
when better arise, as they may,
life becomes child’s play.

Thomas Hardy

Timed automata are finite automata accompanied by a finite set of real-valued vari-
ables. Optimisation problems on timed automata are fundamental to the verification of
(quantitative timing) properties of systems modelled as timed automata. On the other
hand, the problem of control-program synthesis of systems modelled as timed automata
can be cast as a two-player game—where the two players correspond to the “controller”
and the “environment”—and the control-program synthesis corresponds to computing
winning (or optimal) strategies for the controller. We study optimisation problems and
two-player games on timed automata under a general heading of competitive optimisation
on timed automata. The theory of dynamic programming provides concepts and algorithms
to analyse optimisation problems on multi-stage decision processes. We argue that
dynamic programming is an effective tool to design and analyse algorithms for competitive
optimisation on timed automata.

1.1. Motivation
This research has theoretical as well as practical motivations: algorithms for the competitive
optimisation on timed automata provide upper bounds on the computational complexity
of such problems. On the practical side, these algorithms are useful for the verification and
controller synthesis of real-time open systems. In this section, with the help of a simple
example, we demonstrate how certain two-player games on timed automata can be used to
model some controller-synthesis problems of real-time systems.

1

1.1. MOTIVATION 2

By a real-time open system, we mean a computer system which interacts with its
environment (open), and whose correctness depends critically on the time (real time) in
which it performs some of its actions. Real-time open systems are prevalent parts of safety-
critical systems, where a bug in their design can be catastrophic. Some examples [Wik09] of
safety-critical real-time systems are artificial pacemaker, robotic surgery machine, nuclear
reactor system, railway signalling and control system, aircraft-landing scheduling system,
air-bag control system and satellite-launching system.

Given the safety-critical nature of the applications of real-time open systems, it is of
paramount importance to ensure their correctness.

As an example of a safety-critical real-time open system, let us consider the following
description of an artificial pacemaker.

The pacemaker leads detect the heart’s own electrical activity (in the right atrium and right ventricle,) and
transmit that information to the pacemaker generator. The generator—which, again, is a computer—analyses
the heart’s electrical signals, and uses that information to decide whether, when, and where to pace. If the heart
rate becomes too slow, the generator transmits a tiny electrical signal to the heart, thus stimulating the heart
muscle to contract. (This is called pacing.)

Pacemakers that have two leads not only keep the heart rate from dropping too low, they can also maintain
the optimal coordination between the atria and the ventricles (by pacing the atrium and the ventricle in
sequence.)

Thus, pacemakers do not take over the work of the heart—the heart still does its own beating—but instead,
pacemakers merely help to regulate the timing of the heart beat. (Richard N. Fogoros, M.D., Cardiology,
Pittsburgh, PA)

Observe that the main function of a pacemaker is to maintain the rate of heart beats
when the natural pacemaker of the heart is either too slow or not working due to some
problem. Artificial pacemaker is an example of real-time open systems as it interacts with its
environment (heart’s own electrical activity) and the correctness of its operations critically
depends on the timing of its actions.

An elementary model of the working of an artificial pacemaker is shown in Figure 1.1 as
a timed automaton: a finite state transition system with a finite set of continuous variables.
These continuous variables are called clocks in timed automata parlance. Clocks can appear
as guards on the transitions where they can be compared against rational numbers and
after taking a transition it is possible to reset them to 0. In the figure, we have annotated
a transition with the triplet: (clock guard, action name, set of clocks to be reset). All the
clock variables evolve continuously with uniform rate. Since it is possible to reset clock
variables after taking a transition, timed automata can express complex timing behaviours
of the real-time systems (e.g., a clock can remember the time since a particular action was
fired).

Let us read the timed automaton in Figure 1.1. According to this model, the pacemaker
system can be in one of the two states 1 : `1, where artificial pacemaker is giving the pace
signals to the heart; or `2, where heart’s natural pacemaker is functioning normally. Let us
say that the artificial pacemaker is controlling the state `1 and the environment is controlling
the state `2. Notice that in this model every transition is associated with a heart beat. The

1As we shall see later, in the context of timed automata, these states are called locations, while the noun
“state” commonly refer to a valid configuration—a location and a value assignment to the clocks—of the system.

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 3

x ≥ 2, artificial beat, {x, y}

x ≥ 1, artificial beat, {x, y}

y ≤ 2, artificial beat, {x, y} y ≤ 1, natural beat, {y}

`1 `2

FIGURE 1.1. An artificial heart-pacemaker.

clock x measures the time since the last artificial heart beat and the clock y measures the
time since last heart beat (both natural and artificial). When the system is in state `1, the
controller can either choose to induce the artificial beats every 2 time units, or after 1 time
unit from the previous artificial beat, it can induce another beat and choose to sense whether
the natural pacemaker is working correctly, by changing the state of the system to `2. When
the system is in state `2 (controlled by environment), the heart beats can be 1 time units
apart, if the heart if working normally. However, if there is no heart beat for more than 2
time units, the state of the system is changed to `1 (controlled by pacemaker) and artificial
pacemaker sends a pace signal.

Suppose that we wish to design an optimal controller for artificial pacemaker using this
timed automaton as specification. Also suppose that optimisation objective of the controller
is to ensure minimum time between the heart beats irrespective of the condition of the
heart. Since in this example every transition is associated with a heart beat, minimising
time between heart beats is same as minimising time per transition of the timed automaton.
Hence the problem of designing an optimal controller can be reduced to the problem of
finding a strategy of the controller (minimiser, player Min) which ensures minimum time
per transition, assuming an adversarial environment (maximiser, player Max) which tries
to maximise time per transition.

1.2. Preliminaries: Dynamic Programming and Game Theory

Before we delve into the discussion on competitive optimisation on timed automata, we
present two concepts central to the study of competitive optimisation: dynamic programming
and game theory. Dynamic programming provides theoretical tools and algorithms to
analyse problems concerning optimal decision making. On the other hand, game theory
is the study of optimal decision making problems of interacting rational agents with
conflicting interests. In this section we present a few relevant concepts from these two
domains.

1.2.1. Dynamic Programming

In the early 1950’s, Richard Bellman [Bel57] systematically studied and developed a
mathematical theory of multi-stage decision processes which, for historical reasons [Bel84],
is known as dynamic programming. We begin the introduction to the theory by defining a
multi-stage decision process.

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 4

1.2.1.1. Multi-stage Decision Processes

Multi-stage decision processes [Bel57, How60, Ber95] are the systems where a decision
maker or a player is confronted with a problem of making sequential decisions of choosing
actions in order to optimise a certain objective. We assume that every action is associated
with a fixed price—a real number. Starting with the initial state of the system, at the first
stage the player chooses an action as a result of which the state of the system is modified.
In the next stage, the player makes the decision from the resulting state and the state of the
system is modified accordingly. The total number of stages, also called the horizon, can be
finite or infinite. The total cost of the sequence of actions over the horizon is a function of the
prices of the individual actions. We refer to this function as the cost function. The goal of the
player is to make decisions in such a way that it minimises (or maximises) the cost function.
An important characteristic of such processes is that the decision made at any stage not only
affects the immediate price, but also affects the future states and hence individual decisions
can not be viewed in isolation.

Various multi-stage decision processes can succinctly be specified as optimisation
problems on mathematical formalisms such as graphs, Markov decision processes [Put94],
timed automata [AD90, CY92, BBL04, BBBR07], etc.

1.2.1.2. Strategies and Value

The optimisation problem for a multi-stage decision processes is to suggest a rule of making
“allowable decisions” to the player so that no other sequence of allowable decisions yields a
better value of the cost function. Such rule often takes the form of a function from the set of
histories of decisions (sequence of visited states and executed actions) to the set of actions,
and we call such a function a policy or a strategy.

Let S be the set of states and let A be the set of actions of a multi-stage decision
process M. For a state s, let A(s) be the set of allowable actions from the state s. Let
π : S× A → R be the price function such that for every state s ∈ S and action a ∈ A(s),
π(s, a) gives the fixed-price of taking action a from the state s.

A strategy σ is then a function (S × A)∗ × S → A such that for every history h =
〈s1, a2, s2, . . . , an, sn〉 ∈ (S × A)∗ × S we have σ(h) ∈ A(sn). Let us write Σ for the set of
strategies. For a given strategy σ, we define its value Val(σ) : S → R such that Val(σ)(s) is
the value of the cost function if the initial state is s and the decisions are made according to
the strategy σ.

We say that a strategy σ∗ is optimal if for every strategy σ ∈ Σ we have that Val(σ∗)(s) ≤
Val(σ)(s), for every state s. We define the optimum value as the value of the optimal strategy.

Given a multi-stage decision process, the optimisation problem is to find an optimal
policy and the optimum value. The main tool in dynamic programming is to characterise
the optimum value by a set of functional equation called optimality equations.

1.2.1.3. Optimality Equations

Bellman observed [Bel57] that optimal policies (strategies) for a number of multi-stage
decision processes follow the following principle.

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 5

The Principle of Optimality: An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.

This principle states that the global optimality has certain local behaviour. This fact
is mathematically captured by designing a set of functional equations which connect the
optimum value of a state with the optimum values of its successor states. We call these
equations optimality equations [Ber95, Bel57]. Other popular names for these equations are
Bellman equations, functional equations, and dynamic programming equations.

To solve an optimisation problem of multi-stage decision processes using dynamic
programming [Put94] we need to: a) design a set of optimality equations, b) formally prove
that given a solution of such equations one can easily compute an optimal policy and the
optimum value, and c) design an algorithm to solve these equations.

Once we have the right optimality equations, the next step is to prove the existence
theorem (i.e., that there exists a solution of these equations). A constructive proof of the
existence theorem can be given by writing an algorithm to solve optimality equations.
Sometimes it is also possible to prove the uniqueness theorem (i.e., that the solution of the
optimality equations is unique).

1.2.1.4. Solving Optimality Equations

The optimality equations for a multi-stage decision process can be solved using iterative
methods yielding a solution (or an approximation) of the multi-stage decision process.
The iterative methods employed to solve optimality equations fall broadly into two cate-
gories: value iteration (or approximation in value space) and policy iteration (or approximation
in policy space). To demonstrate the structure of value iteration and policy iteration
methods we need to introduce some notations. We call a function of the type F : S → R a
value function and we write Sval for the set of value functions. Let F1, F2 ∈ Sval be two value
functions. We say that F1 � F2 if for all s ∈ S, we have F1(s) ≤ F2(s). We say that F1 ≡ F2 if
for all s ∈ S, we have F1(s) = F2(s). A value improvement function Improveval : Sval → Sval
is such that Improve(F) � F for every F ∈ Sval.

Similarly we call a function of the type F : (S × A)∗ × S → A a policy function if
for all h = 〈s0, a1, s1, . . . , sn〉 ∈ (S × A)∗ × S we have F(h) ∈ A(sn). We further define
the policy space Spol as the set of all policy functions. Let Val : Spol → Sval be a function
which gives the value of a policy. Let F1, F2 ∈ Spol be two policy functions. We say that
F1 � F2 if Val(F1) � Val(F2). Similarly we say that F1 ≡ F2 if Val(F1) ≡ Val(F2). Let
Improvepol : Spol → Spol be a function such that Improve(F) � F, for all F ∈ Spol.

The pseudocode of a value iteration method and a policy iteration method is presented
as Algorithm 1.2 and Algorithm 1.3, respectively.

Remark. We sometimes write strategy improvement instead of “policy iteration” to emphasise
the fact that every iteration of the method gives an improved strategy.

EXAMPLE 1.2.1 (Babylonians’ method). The problem of computing square root of a positive
integer is, as such, not an optimisation problem. However, the solution approach using
Babylonians’ method has certain flavour of the dynamic programming paradigm: the solution

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 6

Input: Optimality equations
Output: A solution of the optimality equations
begin1

Let V0 ∈ Sval be an arbitrary value function;2

Set i to 0;3

repeat4

Set i := i + 1;5

Vi := Improveval(Vi−1);6

until Vi ≡ Vi−1 ;7

return Vi;8

end9

FIGURE 1.2. Pseudocode of a Value Iteration Method.

Input: Optimality equations
Output: A solution of the optimality equations
begin1

Let P0 ∈ Spol be an arbitrary policy;2

Set i to 0;3

repeat4

Set i := i + 1;5

Pi := Improvepol(Pi−1);6

until Pi ≡ Pi−1 ;7

return Val(Pi);8

end9

FIGURE 1.3. Pseudocode of a Policy Iteration Method.

is characterised using equations and then a value iteration algorithm is used to give an
approximation of the solution.

Given a positive integer S ∈ R⊕ we wish to compute its square root to some precision
ε > 0. Let us consider the following equation Opt√(S) involving the variable V :

V =
1
2

(
V +

S
V

)
.

We say that a number s ∈ [1, ∞) is a solution to Opt√(S), and we write s |= Opt√(S), if the
previous equation holds for the valuation V 7→ s. The following, easy to verify, proposition
shows that a solution of this equation gives the positive square root of S.

PROPOSITION 1.2.2. If s ∈ [1, ∞) is such that s |= Opt√(S) then s =
√

S.

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 7

Based on the equation Opt√(S) we can write a straightforward value improvement

function Improve : R → R defined as v 7→ (v + S/v)/2. Since it is not always possible to
compute the square root of every number, for any given ε > 0 the value iteration algorithm
(see, Algorithm 1.4) returns an ε-approximation of

√
S. The following, easy to verify,

proposition implies quadratic convergence of the Algorithm 1.4.

PROPOSITION 1.2.3 (Quadratic convergence [Roh99]). Let 〈v0, v1, v2, . . .〉 be a sequence
such that v0 = 1 and for every n ≥ 1 we have vn = Improve(vn−1) then the following
hold:

|vn+1 −
√

S| ≤ (vn −
√

S)2

2

Input: The number S and an acceptable precision ε > 0
Output: ε-approximation of

√
S.

begin1

Let v0 = 1;2

Set i to 0;3

repeat4

Set i := i + 1;5

vi := Improve(vi−1);6

until |vi − vi−1| ≤ ε ;7

return vi;8

end9

FIGURE 1.4. Value Iteration Algorithm to Solve Opt√(S).

So far, we gave a short introduction to the theory of dynamic programming to solve
multi-stage decision processes in the presence of one player. Dynamic programming is
also useful in analysing games (multi-stage decision processes in presence of more than one
player with conflicting interests). In the next subsection we give an introduction to game
theory, and comment on their connections with dynamic programming.

1.2.2. Game Theory

Game theory is a mathematical theory that studies the interaction among several rational
agents (players) in competitive or co-operative environments. We focus our attention to
a subclass of games known as two-player zero-sum games, that are competitive games
between two players—we call them Min and Max—such that the sum of their winnings
is zero, i.e., a player wins whatever his opponent loses. Often we specify the payoff of the
game as the winnings of player Max. Hence the goal of player Max is to maximise the
payoff, while the goal of player Min is to minimise the payoff.

To formally introduce the two-player zero-sum games, let us consider players Max and
Min along with their pure strategy (action) sets ΣMax and ΣMin, and a real-valued payoff

1.2. PRELIMINARIES: DYNAMIC PROGRAMMING AND GAME THEORY 8

function P : ΣMin × ΣMax → R. If player Max chooses the action χ ∈ ΣMax and player
Min chooses the action µ ∈ ΣMin then we say that the player Max wins the value P(µ, χ)
and player Min looses the value P(µ, χ). The goal of player Max is to choose his actions to
maximise his winnings and the goal of the player Min is to choose her actions to minimise
her losses.

Observe that player Max can choose his actions to win at least an amount arbitrarily
close to supχ∈ΣMax

infµ∈ΣMin P(µ, χ). This is called the lower value Val of the game:

Val= sup
χ∈ΣMax

inf
µ∈ΣMin

P(µ, χ). (1.2.1)

Similarly, player Min can choose her actions to lose at most an amount arbitrarily close to
infµ∈ΣMin supχ∈ΣMax

P(µ, χ). This is called the upper value Val of the game:

Val= inf
µ∈ΣMin

sup
χ∈ΣMax

P(µ, χ). (1.2.2)

The following proposition states that the lower value is not more than the upper value.

PROPOSITION 1.2.4. For every two-player zero-sum game, it is always the case that Val ≤
Val.

PROOF. Observe that for every µ′ ∈ ΣMin and χ′ ∈ ΣMax we have

P(µ′, χ′) ≤ sup
χ∈ΣMax

P(µ′, χ).

Taking infimum over all strategies of Min we get that for every χ′ ∈ ΣMax we have

inf
µ∈ΣMin

P(µ, χ′) ≤ inf
µ∈ΣMin

sup
χ∈ΣMax

P(µ, χ).

It easily follows that

sup
χ∈ΣMax

inf
µ∈ΣMin

P(µ, χ) ≤ inf
µ∈ΣMin

sup
χ∈ΣMax

P(µ, χ),

which by definition of Val and Val implies that Val ≤ Val.

We say that a game is determined if Val = Val. If a game is determined then we say that
the value of the game Val exists and Val = Val = Val.

If the game is determined and the suprema and infima are attained in (1.2.1) and (1.2.2)
then optimal strategies χ∗ for player Max and µ∗ player Min are such that the following
holds:

inf
µ∈ΣMin

P(µ, χ∗) = Val = sup
χ∈ΣMax

P(µ∗, χ).

However, if Val = Val but the suprema and infima are not attained in (1.2.1) and (1.2.2) then
for every ε > 0 both players have the so-called ε-optimal strategies. For a given ε > 0, a
strategy χε of player Max is called ε-optimal if infµ∈ΣMin P(µ, χε) ≥ Val− ε. Similarly for a
given ε > 0, a strategy µε of player Min is called ε-optimal if supχ∈ΣMax

P(µε, χ) ≤ Val + ε.
Observe that not all games are determined. The following example presents a game

that is not determined.

1.3. LITERATURE REVIEW 9

EXAMPLE 1.2.5. Let us consider a continuous payoff function f : [0, 1] × [0, 1] → [0, ∞)
given by f (a, b) = (a− b)2. A play of the game is as follows: at the same time players Max
and Min pick the first argument a and the second argument b, resp., and as a result player
Max wins the amount f (a, b) from player Min.

Let us analyse what the minimum win player Max can secure. Notice that whatever
player Max plays, player Min can play the same and pay nothing to Max. Hence the lower
value Val of this game is supa∈[0,1] infb∈[0,1] f (a, b) = 0.

Now let us analyse the maximum loss that player Min can guarantee. Notice that if
0 ≤ b ≤ 1/2 then supa∈[0,1] f (a, b) = (1− b)2, and if 1/2 ≤ b ≤ 1 then supa∈[0,1] f (a, b) = b2.
Hence the upper value of the game is infb∈[0,1] supa∈[0,1] f (a, b) = 1/4.

It shall be clear that this game is not determined as Val 6= Val. In other words this
game cannot be solved up to the satisfaction of both players: for any suggestion (a, b) ∈
[0, 1]× [0, 1] made to them, both players find it advantageous to change their strategy.

In Appendix C, we review the classic results of von Neumann (on the determinacy
of matrix games [vN28]) and Shapley (on the determinacy of stochastic games [Sha53]) to
show that classic proofs of determinacy of these games use concepts central to dynamic
programming. We hope that such connections help the reader to digest the rest of the thesis,
where we apply dynamic programming techniques to prove determinacy of several two-
player zero-sum games on finite graphs and timed automata.

1.3. Literature Review
Competitive optimisation on timed automata has been studied since the introduction of
timed automata in the late 1980’s. In this section, we review some of the important results
in this area. The review of results presented in this section is by no means exhaustive, and
is biased towards the relevancy of the results to the ones solved in this thesis. Some good
references related to timed automata are [AM04], [Bou06],and [UPP].

1.3.1. Timed Automata

Timed automata were originally introduced by Alur and Dill [AD90, Alu91] as a formalism
to model asynchronous real-time systems. A timed automaton is a finite automaton—
a finite set of locations and transitions—coupled with a finite set of real-valued variables
called clocks. Clock variables evolve continuously at unit rate, and may appear in guards of
transitions in timed automata. The syntax of timed automata also allows clock values to be
reset after executing a transition. A state of timed automaton is a pair of location and clock
valuation. A state is called a corner state if its clock valuation assigns integer values to all
clock variables. The formal definition of timed automata allows one to specify a special set
of states called the set of final states. Throughout this section, we write S for the set of states,
A for the set of actions, and F for the set of final states.

A timed move is a pair (t, a) which represents the action: wait for the time duration t
before executing the transition with label a. A run of a timed automaton is an alternating
sequence of states and timed moves 〈s0, (t1, a1), s1, . . . , sn〉 such that for every positive
integer i ≤ n, the timed move (ti, ai) is enabled in the state si−1 and the state si is reached

1.3. LITERATURE REVIEW 10

after executing the timed move (ti, ai). An infinite run r = 〈s0, (t1, a1), . . .〉 is defined
analogously. We say that a run 〈s0, (t1, a1), s1, . . . , sn〉 is accepting if the state sn ∈ F. The
language recognised by a timed automaton is the set of accepting runs. In their seminal
paper, Alur and Dill [AD90] showed that languages recognised by timed automata are
closed under union and intersection, but not under complementation.

1.3.2. Noncompetitive Optimisation Problems

1.3.2.1. Reachability Problem

The reachability problem of a timed automaton is: given an initial state s ∈ S, decide whether
a final state is reachable from the initial state, i.e., whether there exists an accepting run
starting from s.

Alur and Dill [AD90] showed that the reachability problem for timed automata is
decidable and that it is PSPACE-complete. They established PSPACE-membership of the
reachability problem using a finitary abstraction—the so-called region graph—of timed
automata, whose size is exponential in the size of the timed automaton. For the PSPACE-
hardness result they showed that for a linear-space Turing machine M and an input word
w of length n, there exists a timed automaton T with 2n + 1 clocks, such that the language
of T is nonempty iff the machine M accepts w. Courcoubetis and Yannakakis [CY92] later
tightened the PSPACE-hardness result by showing a reduction from the acceptance problem
for linear-space Turing machine to the reachability problem of timed automata with only
three clocks.

THEOREM 1.3.1 ([AD94, CY92]). The reachability problem is PSPACE-complete for timed
automata with at least three clocks.

Laroussinie, Markey and Schnoebelen [LMS04] proposed a succinct “region” graph
abstraction for one-clock timed automata, and using that they proved that the reachability
problem for one-clock timed automata is NLOGSPACE-complete.

THEOREM 1.3.2 ([LMS04]). The reachability problem is NLOGSPACE-complete for timed
automata with one clock.

The exact complexity of the reachability problem for timed automata with two clocks
remains an open question.

1.3.2.2. Optimal Reachability-Time Problem

A natural optimisation problem on the timed automata is to optimise (minimise or
maximise) reachability time, i.e., total time to reach a final state. Given a timed automaton
T , an initial state s, and a number D ∈ R⊕, the minimum reachability time problem is
to decide whether there exists an accepting run starting from s with total time at most D.
Maximum reachability-time problem is defined analogously.

Minimum and maximum reachability-time problems were shown to be decidable by
Courcoubetis and Yannakakis [CY92]. It was shown to be PSPACE-complete by Alur,
Courcoubetis, and Henzinger [ACH97] and Kesten et al. [KPSS99]. An efficient algorithm

1.3. LITERATURE REVIEW 11

to solve the minimum reachability-time problem on timed automata appeared in [NTY00],
where the initial state was restricted to corner states.

1.3.2.3. Optimal Reachability-Price Problem

A generalisation of timed automata to priced timed automata [Bou06]—also known as
weighted timed automata—allows a rich variety of applications, e.g., to optimal schedul-
ing [BFH+01, AM01]. Priced timed automata are timed automata with a price function
π : S × R⊕ × A → R such that π(s, (t, a)) gives the price of taking a timed move (t, a)
from a state s. The price function can be extended to give the reachability-price RP(r) of an
infinite run r = 〈s0, (t1, a1), s1, . . .〉, the sum of the prices of the timed moves before reaching
a final state, in the following manner:

RP(r) =

{
∑Stop(r)

i=1 π(si−1, (ti, ai)), if Stop(r) < +∞,

∞, otherwise,

where Stop(r) denotes the index of the first final state in the run r.
Linearly-priced timed automata, a sub-class of priced timed automata, augment the

timed automata with price information, such that the price of waiting in a state is directly
proportional to the waiting time. A natural generalisation of the minimum reachability-time
problem for the timed automata is the minimum reachability-price problem for the priced
timed automata.

Given a priced timed automaton T , an initial state s, and a number D, the minimum
reachability-price problem is to decide whether there exists an infinite run r starting from s
such that RP(r) ≤ D.

For a linearly-priced timed automaton, Larsen et al. [LBB+01, BFH+01, LBB+04] pro-
posed symbolic algorithms to solve the reachability-price problem, with some restrictions
on the initial state (corner state with all clocks set to zero). These symbolic algorithms are
also implemented as a part of UPPAAL [BFHL01] (a toolkit for the verification of real-time
systems).

In [ALTP04] Alur et al. proposed an EXPTIME algorithm to solve the reachability-
price problem for linearly-priced timed automata using a non-trivial extension of the region
graph.

Bouyer et al. [BBBR07] showed that the reachability-price problem for the linearly-
priced timed automata is PSPACE-complete, given the initial state is a corner state. The
PSPACE-hardness result for this problem comes from a straightforward reduction from
the reachability problem for timed automata. To show PSPACE-membership, Bouyer et
al. argued that the minimum reachability-price for a linearly-priced timed automaton can
be computed using a finitary abstraction of the timed automata, if the initial state is a
corner state. The abstraction used by them is called the corner-point abstraction. Their
main observation was that if the initial state is a corner state, then optimal (nearly optimal)
reachability-price runs go through (or very close to) corner states.

Remark. Notice that PSPACE-completeness result of Bouyer et al. [BBBR07] for the
optimum reachability-price problem is restricted to linearly-priced timed automata and
initial states that are corner states.

1.3. LITERATURE REVIEW 12

Observe that PSPACE-completeness results, for reachability-time and reachability-price
problems, hold for timed automata with at least three clocks. For timed automata with
one clock, reachability-time and reachability-price problems are known to be NLOGSPACE-
complete [LMS04]; while the complexity of these problems for two-clock timed automata
remains an open problem.

1.3.2.4. Optimal Average-Price Problem

Bouyer, Brinksma, and Larsen [BBL04] considered the problem of finding optimal infinite
runs in so-called doubly-priced timed automata. Doubly-priced timed automata are
linearly-priced timed automata with two functions: price (called cost in [BBL04]) and reward.
Let π : S ×R⊕ × A → R and $: S ×R⊕ × A → R be the price and reward functions.
Optimality criteria considered in [BBL04] is the price-per-reward average (called ratio price
in [BBL04]), i.e., limit ratio of accumulated prices and rewards. The price-per-reward
average of a run r = 〈s0, (t1, a1), s1, . . .〉 is defined in the following way:

PRAvg(r) = lim inf
n→∞

∑n
i=1 π(si−1, (ti, ai))

∑n
i=1 $(si−1, (ti, ai))

.

The minimum price-per-reward average problem can be described as follows: given a
priced timed automaton T , an initial state s, and a number D ∈ R⊕, decide whether there
exists an infinite run r starting from s such that PRAvg(r) ≤ D.

Using the corner-point abstraction, Bouyer, Brinksma, and Larsen [BBL04] showed
that the minimum price-per-reward average problem for linearly priced timed automata
is PSPACE-complete, if the initial state is a corner state. Again, their main observation
was that if the initial state is a corner state then optimal price-per-reward average runs go
through corner states.

Remark. Notice that PSPACE-completeness result of Bouyer et al. [BBL04] for the optimum
price-per-reward average problem is restricted to linearly-priced (doubly priced) timed
automata and initial states that are corner states.

1.3.3. Two-Player Games

1.3.3.1. Two-Player Games for Controller Synthesis

Computer scientists [Tho95, GTW02, dA03] and control theoreticians [RW89, FV97] have
been interested in two-player zero-sum games as a model for synthesising optimal con-
trollers. In these games the two players correspond to the controller and the (adversarial)
environment 2 and, given some optimality criterion, controller synthesis corresponds to
computing optimal strategies for the controller. Two player games on finite automata as a
mechanism for supervisory controller synthesis of discrete event systems were introduced
by Ramadge and Wonham [RW89].

Games considered by Ramadge and Wonham are played on finite automata whose set
of actions (alphabets) is partitioned into the sets of controllable actions and uncontrollable

2“CS people call environment everything that lies outside the computer” — a control theoretician [AMP95].

1.3. LITERATURE REVIEW 13

actions. The objective considered by them is safety (or equivalently reachability), i.e., “to
avoid bad states”. A strategy of the controller is a function from the set of runs to the set
of controllable actions, which—based on the history of the run—suggests the controller to
select a controllable event in order to optimise the objective, i.e., to avoid reaching a bad
state. The solution proposed by Ramadge and Wonham is based on computing greatest
fixed point of certain controllable predecessor functions.

1.3.3.2. Reachability Games

Hoffman and Wong-Toi [WTH92, HWT92] were the first ones to define and solve optimal
controller synthesis problem for timed automata. They proved the decidability of reacha-
bility games on timed automata by extending the method of Ramadge and Wonham to the
finitary region graph abstraction of timed automata.

Asarin, Maler and Pnueli [AMP95] give a symbolic algorithm for optimal controller
synthesis of timed automata. Their work is closely related to the work by Hoffman and
Wong-Toi. However, instead of explicitly constructing the region graph, they use symbolic
methods, representing the set of states using arbitrary linear inequalities, to solve the
reachability game on timed automata.

Henzinger and Kopke [HK99] show that the complexity of solving reachability games
on timed automata is EXPTIME-complete. Jurdziński and I [JT07] improved their results by
showing that reachability games are EXPTIME-complete for timed automata with at least
two clocks.

For a detailed introduction to the topic of qualitative games on timed automata, we
recommend papers by Asarin et al. [AMPS98, AMP95].

1.3.3.3. Reachability-Time Games

Asarin and Maler [AM99] initiated the study of quantitative competitive optimisation
on timed automata. They considered reachability-time games where controller (player
Min in our terminology) is interested in reaching a final state as soon as possible. The
symbolic algorithm presented in [AM99] is a value iteration algorithm, which solves a set of
optimality equations characterising minimum time to reach a final state. They give a uniform
solution, i.e., their algorithm computes a function which, given an initial state, returns the
upper-value of the reachability-time game starting from that state. The result of Asarin
and Maler does not give any upper complexity bounds and is restricted to a subclass: the
structurally non-Zeno timed automata.

Brihaye et al. [BHPR07] and Jurdziński and I [JT07] studied reachability-time games
for slightly different models of timed games, and showed that the decision version of the
reachability-time game is EXPTIME-complete for timed automata with at least two clocks.

Brihaye et al. [BHPR07] studied the problem on the “element-of-surprise” timed game
model introduced in [dAFH+03]. In these models players can take each other by surprise
as both players suggest a timed move concurrently, and the timed move with shorter time
delay is executed. They also introduced a nice concept of a receptive strategy—a strategy
which does not recommend players to execute infinitely many actions in a finite amount

1.3. LITERATURE REVIEW 14

of time—and to win a game a player must use a receptive strategy. Analysis using only
receptive strategies is arguably more meaningful, because strategies of the controller that
are not receptive are not physically implementable. Unfortunately, receptiveness is not a
sufficient condition for a strategy to be implementable, e.g., consider the strategy in which
controller needs to act in the following time sequence: 〈0, 1

2 , 1, 1 1
4 , 2, 2 1

8 , 3, 3 1
16 , . . .〉 [CHR02].

Moreover, reachability-time games studied by Brihaye et al. are not known to be determined
and they compute the upper value of the game.

Jurdziński and I [JT07] studied a turn-based model of timed games where the locations
of the timed automata are partitioned between two players. For these models of timed
game, we proved that reachability-time games are positionally determined. Our algorithm
gives a uniform solution, and by analysing our algorithm we show that reachability-time
games are EXPTIME-complete for timed automata with at least two clocks. However, unlike
Brihaye et al. [BHPR07], we do not require players to play only receptive strategies.

1.3.3.4. Rechability-Price Games

A natural extension of reachability-time games for timed automata is reachability-price
games for priced timed automata.

La Torre, Mukhopadhyay, and Murano [LTMM02] studied reachability-price games on
a restricted class, the so-called acyclic timed automata, of linearly-priced timed automata.
They gave a doubly-exponential time algorithm to solve the reachability-price games on
timed automata, given that the timed automaton is acyclic, i.e., control graph does not have
any cycles.

Alur, Bernadsky, and Madhusudan [ABM04] and Bouyer et al. [BCFL04] studied,
independently, the reachability-price games on arbitrary linearly-priced priced timed
automata, and gave semi-algorithms to compute its upper value of the reachability-price
games. Their algorithms are guaranteed to terminate for linearly-priced timed automata
with non-Zeno prices, i.e., every cycle of the automaton has a bounded positive price.
The elegant paper of Alur et al. [ABM04] presents a value-iteration algorithm to uniformly
compute the upper value of a reachability-price game. The authors also present a detailed
understanding of the value iteration method in which, at every iteration, the regions are
split into sub-regions such that the approximation of the upper value in a sub-region
is a linear function. Alur et al. also showed that for certain examples regions get split
into exponentially many such sub-regions. The solution of Bouyer et al. [BCFL04], on
the other hand, is based on a reduction to games on linear hybrid automata. They also
presented [BCFL05] techniques to implement the solution using the HyTech tool.

Brihaye, Bruyere, and Raskin [BBR05] proved a somewhat unexpected result that
checking the existence of optimal strategies in a reachability-price game is undecidable
for a priced timed automaton with at least five clocks. They showed a reduction from
the halting problem for two-counter machines to the problem of finding reachability-price
optimal strategies in priced timed automata with five clocks and with stopwatch prices (i.e.,
with either 0 or 1 price rates of the locations).

Bouyer, Brihaye, and Markey [BBM06] later improved this undecidability result by
reducing the halting problem for two-counter machine to finding optimal strategies in a

1.4. CONTRIBUTIONS OF THE THESIS 15

reachability-price game on a priced timed automaton with three clocks and with stopwatch
prices. The problem of finding reachability-price optimal strategies for linearly-priced timed
automata with one clock is known to be decidable, and Bouyer et al. [BLMR06] give a
3EXPTIME algorithm to solve this problem. The decidability of finding optimal strategies
in a reachability-price game on timed automata with two clocks is unknown.

Finally, notice that the decidability of finding the value of a state in a reachability-price
game remains an open problem.

1.4. Contributions of the Thesis
1.4.1. Boundary Strategies and Boundary Region Graphs

We view a competitive optimisation problem on timed automata as a multi-stage decision
process where one or two players are confronted with the problem of choosing a sequence
of timed moves—each consisting of a time delay and an action—in order to optimise their
objectives given as a cost function. A solution of such problems consists of the “optimum”
value of the cost function and an “optimal” strategy for each player. We highlight a useful
class of strategies, called boundary strategies, that suggest to a player a symbolic timed move
of the form (b, c, a)— “wait until the value of the clock c is in very close proximity of the
integer b, and then execute a transition labelled with the action a”. A distinctive feature of
the competitive optimisation problems discussed in this thesis is the existence of optimal
boundary strategies.

The existence of optimal boundary strategies allows us to work with a novel abstraction
of the timed automata, called a boundary region graph, where players can use only boundary
strategies. An important property of a boundary region graph is that for every state the
set of reachable states is finite (exponential in the size of the timed automaton). Hence,
the existence of optimal boundary strategies allows us to reduce a competitive optimisation
problem on a timed automaton to the corresponding competitive optimisation problem on
a finite graph.

Boundary region graphs generalise corner-point abstractions of timed automata in-
troduced by Bouyer et al. Corner-point abstractions are useful in analysing various
optimisation problems on timed automata, given that the initial state is a corner-state (a
state with integral valuation to every clock). On the other hand, our boundary region graph
permits the analysis of a number of competitive optimisation problems on timed automata
with arbitrary initial states, including non-corner states.

1.4.2. Non-competitive Optimisation

To cover a large class of optimisation problems we introduce concavely-priced timed automata,
that are generalisations of timed automata with price information given by certain concave
functions. We identify a useful property, called concave-regularity, of the cost function: if
a cost function is concave-regular then there exists an optimal boundary strategy for the
corresponding optimisation problem. We show that a number of cost functions of practical
interest, including reachability price, discounted price, average time-per-transition, average
price-per-transition, and average price-per-time-unit, are concave-regular. We further show

1.4. CONTRIBUTIONS OF THE THESIS 16

that the complexity of solving optimisation problems for concave-regular cost functions is
PSPACE-complete on timed automata with three or more clocks.

THEOREM. The minimisation problems for reachability price, discounted price, average
price, price-per-time average, and price-per-reward average cost functions, for concavely-
priced and concave price-reward timed automata, as appropriate, are PSPACE-complete.

We generalise some previously known complexity results (e.g., the results of Bouyer et
al. on optimum reachability price problem [BBBR07] and on optimum price-per-reward
average problem[BBL04]) in two directions: a) our results are valid for arbitrary initial
states, and b) we consider more general concavely-priced timed automata.

1.4.3. Reachability-Time Games

A reachability-time game is played between two players Min and Max on the infinite
graph of configurations of a timed automaton. The goals of player Min and player Max
are to minimise and maximise, respectively, the time to reach a designated set of final
configurations. We show that the exact values of reachability-time games on arbitrary
timed automata are uniformly computable (here uniformity means that the output of our
algorithm allows us, for every starting state, to compute in constant time the value of the
game starting from this state). In particular, unlike the paper of Asarin and Maler [AM99],
we do not require timed automata to be strongly non-Zeno. We also establish the exact
complexity of reachability-time games: they are EXPTIME-complete and two clocks are
sufficient for EXPTIME-hardness. For the latter result, we reduce from a recently discovered
EXPTIME-complete problem of countdown games [JLS07].

THEOREM. The problem of solving reachability-time games is EXPTIME-complete on
timed automata with at least two clocks.

We believe that an important contribution of our work on reachability-time games is the
novel proof techniques used. We characterise the values of the game by optimality equations
and then we use strategy improvement to solve them. This allows us to obtain an elementary
and constructive proof of the fundamental determinacy result for reachability-time games,
which at the same time yields an efficient algorithm matching the EXPTIME lower bound
for the problem. Those techniques were known for finite state systems [Put94, VJ00], but we
are not aware of any earlier algorithmic results based on optimality equations and strategy
improvement for real-time systems such as timed automata.

1.4.4. Average-Time Games

An average time game is played on the infinite graph of configurations of a finite timed
automaton. The two players, Min and Max, construct an infinite run of the automaton by
taking turns to perform a timed transition. Player Min wants to minimise the average time
per transition and player Max wants to maximise it. We give a solution of the average-
time games using a reduction to the average-price game on the finite graph of reachable
configurations of the boundary region graph. A direct consequence is an elementary

1.5. ORGANISATION OF THE THESIS 17

proof of determinacy for average-time games. Our solution allows computing the value
of average-time games for an arbitrary starting state (i.e., including non-corner states). We
also establish the exact complexity of average-time games: they are EXPTIME-complete and
two clocks are sufficient for EXPTIME-hardness. For the hardness result we reduce from
EXPTIME-complete problem of countdown games [JLS07].

THEOREM. The problem of solving average-time games is EXPTIME-complete on timed
automata with at least two clocks.

1.5. Organisation of the Thesis
The rest of the thesis is organised in four parts.

1.5.1. Part 1: Background

Part 1 (Background) consists of two chapters: Chapter 2 (Competitive Optimisation on Finite
Graphs) and Chapter 3 (Timed Automata).

In Chapter 2 we present algorithms to solve optimisation problems and two-player
games on finite graphs. We demonstrate that dynamic programming techniques are not
only instrumental in designing algorithms, but also quite helpful in proving theorems
(proof of existence of positional strategy and determinacy proofs, for example). Although
the results discussed in Chapter 2 are not new, the chapter is quite useful as it shows the
techniques and algorithms used in the rest of the thesis in a simpler setting.

In Chapter 3 we introduce concepts, notations, and mathematical shorthands related
timed automata. After introducing the syntax of timed automata, we present two extensions
(priced timed automata and timed game automata) of timed automata and some abstrac-
tions of timed automata (including region graph and boundary region graph) which are
useful in solving competitive optimisation problems on timed automata.

1.5.2. Part 2: Competitive Optimisation on Timed Automata

Part 2 (Competitive Optimisation on Timed Automata) of the thesis presents our main
contributions, and is organised in three chapters: Chapter 4 (Noncompetitive Optimisation),
Chapter 5 (Reachability-Time Games), and Chapter 6 (Average-Time Games).

Chapter 4 considers noncompetitive optimisation on timed automata, which in game-
theoretical terminology is equivalent of one-player games. In this chapter we introduce
concavely-priced automata, an extension of linearly-priced timed automata. We prove
that several noncompetitive optimisation problems satisfying certain concave-regularity
condition are PSPACE-complete.

Chapter 5 presents reachability-time games on the infinite graph of configurations of
timed automata. Using optimality equations we show that a solution of reachability-time
games on timed automata can be obtained by solving a reachability-price game on a finite
graph (the boundary region graph).

Chapter 6 presents average-time games on timed automata. We introduce a new
abstraction of timed automata, called the closed region graph, and we use it to show that the

1.5. ORGANISATION OF THE THESIS 18

value of the average-time game on a timed automaton is equal to the value of the average-
price game on a finite graph (the boundary region graph).

1.5.3. Part 3: Conclusion

Part 3 (Conclusion) consists of the final chapter Chapter 7 (Summary and Future Work)
where we summarise the thesis and discuss some possible extensions of the work presented
in this thesis.

1.5.4. Part 4: Appendix

Part 4 (Appendix) is partitioned into four units: Appendix A (Notations and Acronyms),
Appendix B (Results from Real Analysis), Appendix C (Some Determinacy Results), and
Appendix D (Implementation).

In Appendix A we present some notations and acronyms used across the chapters
in this thesis. Therefore, we suggest the reader to skim through Tables 1, 2, and 3 before
reading the rest of the thesis.

In Appendix B we give a primer on concave functions and Lipschitz continuity. We also
present some results from real analysis which are referenced in this thesis.

In Appendix C we present matrix games and stochastic games, and discuss determi-
nacy result by von Neumann and Shapley.

Finally, in Appendix D we present the details of a lexical grammar and parser grammar
for the specification of the timed automata.

Part 1

Background

2
Competitive Optimisation on
Finite Graphs

If you keep proving stuff that
others have done, getting
confidence, increasing the
complexities of your solutions -
for the fun of it - then one day
you’ll turn around and discover
that nobody actually did that
one! And that’s the way to
become a computer scientist.

Richard Feynmann

In this chapter we provide an introduction to competitive optimisation on finite
graphs 1. We discuss optimisation problems and two-player games on finite graphs, and
present dynamic programming based algorithms to solve them. Competitive optimisation
for the following cost functions are discussed: reachability price, discounted price, average
price, and price-per-reward average. This chapter lays the foundations that are essential in
the development of algorithms to solve competitive optimisation problems on the infinite
graph of configurations of timed automata.

2.1. Formal Definition
DEFINITION 2.1.1 (Finite Graph). A (directed) finite graph is a pair G = (V, E), where:

– V is a finite set whose elements are called vertices, and
– E ⊆ V ×V is a set of ordered pairs of vertices whose elements are called (directed)

edges.

1 Disclaimer: the concepts, theorems, and their proofs presented in this chapter are standard. Similar
treatment can be found in an advanced setting of Markov Decision Processes in the excellent books of
Puterman [Put94], and Filar and Vrieze [FV97].

20

2.1. FORMAL DEFINITION 21

v1v2 v3
20

0

0

0

FIGURE 2.1. A priced finite graph with final vertices.

ASSUMPTION 2.1.2. For technical convenience we assume that every vertex has at least one
outgoing edge, i.e., for every vertex v ∈ V there exists a vertex v′ ∈ V such that (v, v′) ∈ E.

A run (path) in a graph G is a sequence of vertices 〈v0, v1, v2, . . .〉 ∈ Vω, such that
for every positive integer i we have (vi−1, vi) ∈ E. A finite run in a graph G is a finite
sequence of vertices 〈v0, v1, v2, . . . , vn〉 ∈ V∗, such that for every positive integer i ≤ n
we have (vi−1, vi) ∈ E. We write Runs and Runsfin for the sets of infinite and finite runs,
respectively; we write Runs(v) and Runsfin(v) for the sets of infinite and finite runs starting
from the vertex v ∈ V, respectively.

DEFINITION 2.1.3 (Priced Graph and Price-Reward Graph). A priced graph (V, E, π) consists
of a finite graph (V, E) and a price function π : E → R; a price-reward graph (V, E, π, $)
consists of a graph (V, E) and price and reward functions π, $: E→ R, respectively.

ASSUMPTION 2.1.4 (Reward Divergence). We assume that a price-reward graph (V, E, π, $)
is reward-diverging, that is for all runs r ∈ Runs we have limn→∞ |$n(r)| = ∞.

For every run r = 〈v0, v1, v2, . . .〉 ∈ Runs, price and reward functions π, $: E→ R, and
for every positive integer n we define the following shorthands:

πn(r) =
n

∑
i=1

π(vi−1, vi) and $n(r) =
n

∑
i=1

$(vi−1, vi).

A finite run r = 〈v0, v1, . . . , vn〉 ∈ Runsfin of a graph G is called a cycle if we have that
vn = v0. We say that a cycle r = 〈v0, v1, . . . , vn〉 ∈ Runsfin is a zero cycle if we have that
πn(r) = 0.

A finite graph with final vertices is a tuple (V, E, F), where (V, E) is a finite graph and
F ⊆ V is the set of final vertices. Priced graphs and price-reward graphs with final vertices
are defined in straightforward manner. For a run r = 〈v0, v1, v2, . . .〉 in a graph with final
vertices G = (V, E, F), we define Stop(r) = infi≥0{i : vi ∈ F}.
EXAMPLE 2.1.5. A finite priced graph with final vertices (V, E, F, π) is shown in Figure 2.1,
whose set of vertices is V = {v1, v2, v3}, set of edges is {(v1, v2), (v2, v2), (v1, v3), (v3, v1)}, set
of final vertices is {v2}, and the price function is as follows: π(v1, v2) = 20 and π(v2, v2) =
π(v2, v3) = π(v3, v2) = 0.

Let us fix a set of vertices V, a set of edges E, a set of final vertices F ⊆ V, a price
function π : E → R and a reward function ρ : E → R for the rest of this chapter. In the
rest of this chapter, when it is clear from the context, we use the term “graph” for every
kind of graph—finite graph (V, E), priced graph (V, E, π), price-reward graph (V, E, π, ρ),

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 22

finite graph with final vertices (V, E, F), priced graph with final vertices (V, E, F, π) and
price-reward graph with final vertices (V, E, F, π, ρ).

2.2. Noncompetitive Optimisation on Finite Graphs
Let Cost : Runs → R be a cost function that for every run r ∈ Runs determines its
cost Cost(r). We then define the minimum cost function Cost∗ : V → R, by Cost∗(v) =
infr∈Runs(v) Cost(r). The minimisation problem for a cost function Cost is: “given a graph G, a
vertex v ∈ V and a number D ∈ Q, determine whether Cost∗(v) ≤ D.”

The following list of cost functions gives rise to a number of corresponding minimisa-
tion problems.

(1) Reachability price. The cost function reachability price RP : Runs→ R is defined as
follows: for every run r ∈ Runs we have

RP(r) =

{
πN(r) if N = Stop(r) < ∞
∞ otherwise.

(2) Discounted price. For a discount factor λ ∈ (0, 1), the cost function discounted price
DP(λ) : Runs→ R is defined as follows: for every run r ∈ Runs we have

DP(λ)(r) = (1− λ)
∞

∑
i=1

λi−1π(vi−1, vi).

(3) Average price. The cost function average price AP : Runs → R is defined as
follows: for every run r ∈ Runs we have

AP(r) = lim sup
n→∞

πn(r)
n

.

(4) Price-per-reward average. Finally, we define price-per-reward average cost function
PRAvg : Runs→ R as follows: for every run r ∈ Runs we have

PRAvg(r) = lim sup
n→∞

πn(r)
$n(r)

.

A positional strategy is a function µ : V → V such that for every vertex v ∈ V, we have
(v, µ(v)) ∈ E. We write Π for the set of positional strategies. A run from a vertex v ∈ V
according to strategy µ is the unique run Run(v, µ) = 〈v0, v1, v2, . . .〉, such that v0 = v, and
for every positive integer i we have µ(vi−1) = vi.

A positional strategy µ∗ is optimal for a cost function Cost : Runs → R, if for every
vertex v ∈ V we have Cost∗(v) = Cost(Run(v, µ∗)). Observe that existence of an optimal
positional strategy for a cost function means that, from every starting vertex, there is a
run that minimises the cost, and that is a simple path leading to a simple cycle repeated
infinite many times. The following is a well known result (see, for example, [Put94]) for
finite graphs.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 23

THEOREM 2.2.1 (Existence of optimal positional strategies). For every finite graph, and
for each of the reachability, discounted, average price, and price-per-reward average cost
functions, there is an optimal positional strategy.

The rest of this section is devoted to the proof of this theorem. For each of the cost
functions defined above, we design a set of optimality equations such that the existence of
a solution of those equations implies the existence of a positional strategy. A solution of
optimality equations also characterises the minimum cost function. We give a constructive
proof of the existence of a solution by giving a strategy improvement algorithm, which
returns a solution of the optimality equations.

2.2.1. Solving Reachability-Price Minimisation Problem

2.2.1.1. Optimality Equations

Let G = (V, E, F, π) be a finite graph with final vertices. To keep the discussion simple, we
assume that the graph G satisfy the following assumption:

ASSUMPTION 2.2.2. For every vertex v ∈ V we have that minimum reachability-price is
finite.

Before we consider the problem in full generality, we try to solve a simpler problem
and assume the following:

ASSUMPTION 2.2.3. The graph G does not have any zero cycles.

For the finite price graph G = (V, E, F, π) let us consider the following set of equations:

P(v) =

{
0, if v ∈ F,

min(v,w)∈E
{

π(v, w) + P(w)
}

, otherwise.

We denote these equations byOERP
Min(G). We say that a function p : V → R is a solution

of the optimality equations OERP
Min(G), and we write p |= OERP

Min(G), if all equations in
OERP

Min(G) hold for the valuations P(v) 7→ p(v).
The following proposition states the relation between optimality equations OERP

Min(G)
and a solution of minimum reachability-price problem.

PROPOSITION 2.2.4 (A solution of optimality equations gives optimal reachability-price).
Let G be a finite priced graph. Under Assumptions 2.2.2 and 2.2.3 we have that p |=
OERP

Min(G) implies RP∗(v) = p(v) for all v ∈ V.

PROOF. We prove the lemma in two parts. First we show that for every strategy µ ∈ Σ, we
have p(v) ≤ RP(Run(v, µ)) for every v ∈ V. In the second part, we show that there exists a
positional strategy µ′ ∈ Π such that for every vertex v ∈ V we have RP(Run(v, µ′)) = p(v).

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 24

– Let Run(v, µ) = 〈v = v0, v1, . . .〉 be the run from the vertex v according to the
strategy µ. Since p |= OERP

Min(G), for all i ≥ 0, we have the following.

p(vi) = 0 if vi ∈ F

p(vi) ≤ π(vi, vi+1) + p(vi+1), otherwise . (2.2.1)

Under Assumptions 2.2.2 and 2.2.3 we have that there is an index n ∈ N such
that Stop(Run(v, µ)) = n. Summing (2.2.1) side-wise for 0 ≤ i < n, we get the
following.

p(v) ≤
n

∑
i=1

π(vi, vi−1) + p(vn).

Since vn ∈ F, we have p(vn) = 0 and we get the desired inequality.

p(v) ≤ RP(Run(v, µ)).

– For a set W the function Choose : 2W → W is defined such that for every set
X ⊆ W we have Choose(X) ∈ X. In other words, Choose is a choice function
which for every non-empty set selects an element of this set. We fix an arbitrary
choice function for technical reasons, so that we have a way to canonically choose
an arbitrary element from every non-empty set.

Let µ′ ∈ Π be the following positional strategy:

µ′(v) = Choose(argmin
w∈V

{
π(v, w) + p(w) : (v, w) ∈ E

}
).

Since p |= OERP
Min(G), for such strategy µ′ it is straightforward to notice that for

all v ∈ V \ F we have:

p(v) = π(v, µ′(v)) + p(µ′(v)) . (2.2.2)

Let the run Run(v, µ′) be 〈v = v0, v1, v2, . . .〉. Again under Assumptions 2.2.2
and 2.2.3 we have that there is an index n ∈ N such that Stop(Run(v, µ′)) = n.
Summing (2.2.2) for all i, 0 ≤ i < n, we get the following.

p(v) =
n

∑
i=1

π(vi, vi−1) + p(vn).

Since vn ∈ F, we have p(vn) = 0 and we get the desired equality.

p(v) = RP(Run(v, µ′)).

We have thus shown that: for every strategy µ ∈ Σ, we have p(v) ≤ RP(Run(v, µ)) for
every v ∈ V; and there exists a positional strategy µ′ ∈ Π such that RP(Run(v, µ′)) = p(v)
for every vertex v ∈ V. Hence it follows that p(v) = RP∗(v) for every vertex v ∈ V.

From the second part of the proof of the previous proposition, the following proposition
follows:

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 25

PROPOSITION 2.2.5 (A solution of optimality equations gives positional optimal strategy).
Let G be a priced finite graph. Under Assumptions 2.2.2 and 2.2.3 we have that if there exists
a solution of optimality equations OERP

Min(G) then there exists a positional optimal strategy
for minimum reachability-price problem.

The following example shows that a solution of the optimality equations OERP
Min(G)

does not give the correct reachability-price, if the graph G contains a zero cycle.

EXAMPLE 2.2.6 (Problems with zero cycles). Consider the graph shown in Figure 2.1. Notice
that the graph contains zero cycles. For example the price of the cycle 〈v1, v3, v1〉 is 0.
Optimality equations OERP

Min(G) are as follows:

P(v2) = 0

P(v1) = min
{

20 + P(v2),P(v3)
}

P(v3) = min
{
P(v1)

}
.

In this case infinitely many solutions of optimality equations exist; as all the functions
p : V → R such that p(v1) = k, p(v2) = 0 and p(v3) = k, for any k ≤ 20, satisfy the
optimality equations. However only one (i.e., when k = 20) of these functions gives correct
minimum reachability-price.

To solve the reachability-price problem for general graphs, we propose the following
optimality equations:

(P(v),D(v)) =

{
(0, 0) , if v ∈ F,

minlex
(v,w)∈E

{
(π(v, w) + P(w), 1 +D(w))

}
, otherwise.

For the sake of notational convenience we reuse the name OERP
Min(G) for these set of

equations as well. We say that the functions p : V → R and d : V →N satisfy the optimality
equations OERP

Min(G) and we write (p, d) |= OERP
Min(G), if all equations in OERP

Min(G) hold
for the valuations P(v) 7→ p(v) and D(v) 7→ d(v).

The introduction of D variables solves the problem due to zero cycles. The proof of
the following proposition is similar to the proof of Proposition 2.2.4 and hence we skip the
proof here. We provide a complete proof of a lemma similar to this proposition, but in the
context of timed automata (see Proposition 5.1.3).

PROPOSITION 2.2.7 (A solution of optimality equations gives optimal reachability-price).
Under the Assumption 2.2.2 we have that if (p, d) |= OERP

Min(G) then we have p(v) =
RP∗(v) for all v ∈ V.

PROPOSITION 2.2.8 (A solution of optimality equations gives positional optimal strategy).
Under the Assumption 2.2.2 we have that if there exists a solution (p, d) of the optimality
equations OERP

Min(G) then there exists a positional optimal strategy for reachability-price
problem.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 26

In the rest of this subsection, we give a constructive proof of the following proposition
by giving a strategy improvement algorithm which yields a solution of the optimality
equations OERP

Min(G).

PROPOSITION 2.2.9 (Existence of a solution). If the Assumption 2.2.2 holds then there exists
a solution of the optimality equations OERP

Min(G).

2.2.1.2. Solving 0-player Optimality Equations

For a graph G = (V, E, F) and a positional strategy µ ∈ ΠMin, we define the graph G�µ =
(V, E′, F) such that E′ = {(v, µ(v)) : v ∈ V}.

If the graph G = (V, E, F) is such that every vertex has a unique successor, i.e., for every
v ∈ V we have that the set E(v) = {w : (v, w) ∈ E} is a singleton, then we call such a graph
a 0-player graph. Observe that for an arbitrary graph G and a positional strategy µ ∈ ΠMin
the graph G�µ is a 0-player graph. A 0-player priced graph is defined in straightforward
manner.

For a 0-player priced graph G = (V, E, F, π), the optimality equations OERP
Min(G) can

be rewritten in the following manner:

(P(v),D(v)) =

{
(0, 0) , if v ∈ F,

(π(v, E(v)) + P(E(v)), 1 +D(E(v))) , otherwise.

Remark. For brevity we have abused the notation to denote the unique vertex w such that
(v, w) ∈ E by the singleton set E(v) containing w.

For a 0-player priced graph G, we write OERP(G) for these set of equations. The optimality
equations for 0-player reachability problem can be solved in time O(|V|).

2.2.1.3. Solving 1-player Optimality Equations

For given functions p : V → R and d : V → N, for every vertex v ∈ V, let us define the set
M∗(v, p, d) as follows:

M∗(v, p, d) = argminlex

w∈V
{(π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E}.

Consider the strategy improvement function ImproveMin : Π× [V → R]× [V →N] → Π
defined by:

ImproveMin(σ, p, d)(v) =

{
σ(v) if σ(v) ∈ M∗(v, p, d)
Choose(M∗(v, p, d)) otherwise,

where p : V → R, d : V → N, and v ∈ V. From the definition of the function ImproveMin,
the following proposition is immediate.

PROPOSITION 2.2.10 (Fixed point of ImproveMin are solutions of OERP
Min(G)). Let µ ∈ ΠMin

and let (pµ, dµ) |= OERP(G�µ). If ImproveMin(µ, pµ, dµ) = µ then (pµ, dµ) |= OERP
Min(G).

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 27

Input: A graph G = (V, E, F, π)

Output: A solution of OERP
Min(G)

begin1

(Initialisation). Choose an arbitrary positional strategy µ0 ∈ ΠMin;2

Set i = 0;3

repeat4

(Value Computation). Compute the solution (pi, di) of OERP(G�µi);5

(Strategy Improvement). Compute µi+1 = ImproveMin(µi, pi, di);6

Set i := i + 1;7

until µi+1 ≡ µi ;8

return (pi, di);9

end10

FIGURE 2.2. Strategy improvement algorithm to solve OERP
Min(G).

A pseudocode of the strategy improvement algorithm to solve the optimality equations
OERP

Min(G) is shown as Algorithm 2.2. Before we prove the correctness and termination
properties of the algorithm, we would like to introduce a few notations and their properties.

We say that functions p : V → R and d : V → N satisfy the set of optimality equations
OERP

≥ (G), and we write (p, d) |= OERP
≥ (G), if

(p(v), d(v)) ≥lex

{
(0, 0) , if v ∈ F,

maxlex { (π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E
}

, otherwise.

The following proposition summarise a useful relation between a solution ofOERP
Min(G)

and OERP
≥ (G).

PROPOSITION 2.2.11. Let p, p≥ : V → R and d, d≥ : V → N be such that (p, d) |=
OERP

Min(G) and (p≥, d≥) |= OERP
≥ (G). Then we have (p≥, d≥)≥lex(p, d), and if (p≥, d≥) 6|=

OERP
Min(G) then (p≥, d≥)>lex(p, d).

PROOF. First we establish by induction on d(v) that (p≥, d≥)≥lex(p, d). The base case,
d(v) = 0, is trivial because, since v ∈ F, we have that (p(v), d(v)) = (0, 0) and (p≥, d≥) ≥
(0, 0).

Let v ∈ V \ F be such that d(v) = n + 1 and let (v, w) ∈ E be such that (p(v), d(v)) =
(π(v, w) + p(w), 1 + d(w)). Notice that it implies that d(w) = n and hence by induction
hypothesis we have (p≥(w), d≥(w))≥lex (p(w), d(w)). Since (p≥, d≥) |= OERP

≥ (G), we have

(p≥(v), d≥(v)) ≥lex (π(v, w) + p≥(w), 1 + d≥(w)) (2.2.3)

≥lex (π(v, w) + p(w), 1 + d(w))

= (p(v), d(v)) .

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 28

The second inequality follows from (p≥(w), d≥(w))≥lex (p(w), d(w)). This concludes the
proof that (p≥, d≥)≥lex(p, d).

Now we prove that if (p≥, d≥) 6|= OERP
Min(G) then there is a vertex v ∈ V such that

(p≥(v), d≥(v))>lex(p(v), d(v)). Indeed, if (p≥, d≥) 6|= OERP
Min(G) then either we have that

(p≥(v), d≥(v))<lex(0, 0) for some vertex v ∈ F, or there is some vertex v ∈ V \ F such that
the inequality (2.2.3) is strict and hence we get (p≥(v), d≥(v))>lex(p(v), d(v)).

The following lemma states that every step of strategy improvement algorithm im-
proves the strategy.

LEMMA 2.2.12 (Strict strategy improvement). Let µ, µ′ ∈ ΠMin, let (p, d) |= OERP(G�µ)
and (p′, d′) |= OERP(G�µ′), and let µ′ = ImproveMin(µ, p, d). Then (p, d)≥lex(p′, d′) and if
µ 6= µ′ then (p, d)>lex(p′, d′).

PROOF. First we argue that (p, d) |= OERP
≥ (G�µ′), which by Proposition 2.2.11 implies

that (p, d)≤lex(p′, d′). Indeed, for every v ∈ V \ F if µ(v) = w and µ′(v) = w′ then we have

(p(v), d(v)) = (π(v, w) + p(w), 1 + d(w)) , as (p, d) |= OERP(G�µ)

≥lex (
π(v, w′) + p(w′), 1 + d(w′)

)
, by definition of ImproveMin.

Moreover, if µ 6= µ′ then there is a v ∈ V \ F for which the above inequality is strict.
Then (p, d) 6|= OERP

Min(G�µ′), because every vertex in G�µ′ has a unique successor, and hence
by Proposition 2.2.11 we conclude that (p, d)>lex(p′, d′).

LEMMA 2.2.13 (Correctness and termination of the strategy improvement algorithm). The
strategy improvement algorithm for OERP

Min(G) terminates in finitely many steps and
returns a solution (p, d) of OERP

Min(G).

PROOF. Since the total number of positional strategies in a finite priced graph is finite
(bounded from above by |V||V|), this lemma follows directly from Lemma 2.2.12 and
Proposition 2.2.10.

2.2.2. Solving Discounted-Price Minimisation Problem

For a priced graph G and a discount factor λ ∈ (0, 1), a solution of minimisation problem
for discounted-price function can be characterised by the following equations:

D(v) = min
(v,w)∈E

{
(1− λ) · π(v, w) + λ · D(w)

}
, for all v ∈ V.

We denote these equations by OEDP
Min(G, λ). We say that a function d : V → R is a solution

of the set of equations OEDP
Min(G, λ), and we write d |= OEDP

Min(G, λ), if for all v ∈ V the
equations in OEDP

Min(G, λ) holds for the valuation D(v) 7→ d(v).
The following proposition shows that a solution of optimality equations OEDP

Min(G, λ)
gives a solution of minimum discounted-price problem.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 29

PROPOSITION 2.2.14 (A solution of optimality equations gives optimal discounted price).
For a priced graph G and a discount factor λ ∈ (0, 1), if d |= OEDP

Min(G, λ) then for all v ∈ V
we have that d(v) = DP(λ)∗(v).

PROOF. Let d |= OEDP
Min(G, λ). There are two parts of the proof of this lemma. First we

show that for every strategy µ ∈ ΣMin we have that d(v) ≤ DP(λ)(Run(v, µ)) for every
v ∈ V. In the second part we show that there exists a positional strategy µ′ ∈ ΠMin such
that for every vertex v ∈ V we have that d(v) = DP(λ)(Run(v, µ′)).

– Let µ be an arbitrary strategy and let Run(v, µ) be the sequence 〈v0 = v, v1, v2, . . .〉.
Since d |= OEDP

Min(G, λ), for all i ≥ 0 we have that

d(vi) ≤ (1− λ) · π(vi, vi+1) + λ · d(vi+1).

For all 0 ≤ i < n multiplying both sides of this equation by λi and summing side-
wise we get the following inequality:

d(v0) ≤ (1− λ)
n−1

∑
i=0

λi · π(vi, vi+1) + λn · d(vn).

Taking limit of both sides we get the desired inequality:

d(v) = d(v0) ≤ DP(λ)(Run(v, µ)).

– Let µ′ ∈ ΠMin be the following positional strategy: for all v ∈ V we have that

µ′(v) = Choose(argmin
w∈V

{
(1− λ) · π(v, w) + λ · d(w) : (v, w) ∈ E

}
).

Since d : V → R is a solution of optimality equations OEDP
Min(G, λ), from previous

equation it follows that for all v ∈ V we have

d(v) = (1− λ) · π(v, µ′(v)) + λ · d(µ′(v)).

By doing a similar analysis to that in the previous part of this proof, it can be shown
that:

d(v) = DP(λ)(Run(v, µ′)).

From the second part of the proof of the previous proposition, the following proposition
is immediate.

PROPOSITION 2.2.15 (A solution of optimality equations gives positional optimal strategy).
If there exists a solution of optimality equations OEDP

Min(G, λ) then there exists a positional
optimal strategy for minimum discounted-price problem.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 30

2.2.2.1. Existence of a solution

PROPOSITION 2.2.16 (Existence of a solution). For every priced graph G and every discount
factor λ ∈ (0, 1), there exists a solution of the optimality equations OEDP

Min(G, λ).

Again, the proof of existence of a solution of optimality equation is via strategy
improvement algorithm. The rest of this subsection is devoted to the strategy improvement
algorithm to solve OEDP

Min(G, λ).

2.2.2.2. Solving 0-player Optimality Equations

For a 0-player graph G = (V, E, F, π) the optimality equationsOEDP
Min(G, λ) can be rewritten

as follows:

D(v) = (1− λ) · π(v, E(v)) + λ · D(E(v)), for all v ∈ V.

For a 0-player priced graph G we denote this set of equations by OEDP(G, λ).
The runs of a 0-player priced graph are simple paths leading to a simple cycle repeated

infinitely many times. Let us suppose that the run starting from a vertex v ∈ V is the
sequence 〈v = v0, v1, . . . , (vk, vk+1, . . . , vk+n−1, vk+n = vk)

ω〉. The solution of the optimality
equation d |= OEDP(G, λ) can be computed in polynomial time:

d(v0) = (1− λ)

(
k−1

∑
i=0

λi · π(vi, vi+1) +
k+n−1

∑
i=k

λi

(1− λn)
π(vi, vi+1)

)
.

2.2.2.3. Solving 1-player Optimality Equations

For given function d : V → R and for every vertex v ∈ V, let us define the set M∗(v, d) as
follows:

M∗(v, d) = argmin
w∈V

{(1− λ) · π(v, w) + λ · p(w) : (v, w) ∈ E}.

Consider the following strategy improvement function ImproveMin : Π× [V → R]→ Π
defined as

ImproveMin(σ, d)(v) =

{
σ(v) if σ(v) ∈ M∗(v, d)
Choose(M∗(v, d)) otherwise,

where d : V → R and v ∈ V.

PROPOSITION 2.2.17 (Fixed point of ImproveMin are solutions ofOEDP
Min(G, λ)). Let µ ∈ ΠMin

and let dµ |= OEDP(G�µ, λ). If ImproveMin(µ, dµ) = µ then dµ |= OEDP
Min(G, λ).

Strategy improvement algorithm to solve OEDP
Min(G, λ) is shown in Algorithm 2.3. The

correctness of the algorithm is immediate from the following lemmas.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 31

Input: A graph G = (V, E, F, π) and λ ∈ (0, 1)
Output: A solution of OEDP

Min(G, λ)
begin1

(Initialisation). Choose an arbitrary positional strategy µ0 ∈ ΠMin;2

Set i = 0;3

repeat4

(Value Computation). Compute the solution di of OEDP(G�µi, λ);5

(Strategy Improvement). Compute µi+1 = ImproveMin(µi, di);6

Set i := i + 1;7

until µi+1 ≡ µi ;8

return di;9

end10

FIGURE 2.3. Strategy improvement algorithm to solve OEDP
Min(G, λ).

LEMMA 2.2.18 (Strict strategy improvement for Min). Let strategies µ, µ′ ∈ ΠMin, let d |=
OEDP(G�µ, λ) and d′ |= OEDP(G�µ′, λ), and let µ′ = ImproveMin(µ, d). Then d ≥ d′ and if
µ 6= µ′ then d > d′.

LEMMA 2.2.19 (Correctness and termination of the strategy improvement algorithm). The
strategy improvement algorithm for OEDP

Min(G, λ) terminates in finitely many steps and
returns a solution of OEDP

Min(G, λ).

2.2.3. Solving Average-price and Price-per-reward Average Minimisation Prob-
lems

It is easy to see that average-price minimisation problems are special cases of price-per-
reward average minimisation problems, where the reward function $: E → R is such that
$(e) = 1, for every edge e ∈ E. Hence we shall not discuss the average-price minimisation
problem separately.

Given a graph G = (V, E, F, π, $) the following equations capture the optimal price-
per-reward average cost:

G(v) = min
(v,w)∈E

{
G(w)

}
, for all v ∈ V, and

B(v) = min
(v,w)∈E

{
π(v, w)− $(v, w) · G(v) + B(w) : G(v) = G(w)

}
for all v ∈ V.

Sometimes we write these equations in the following compact form. It is routine to verify
that the two sets of equations are equivalent.

(G(v),B(v)) = minlex

(v,w)∈E

{
(G(w), π(v, w)− $(v, w) · G(v) + B(w))

}
for all v ∈ V.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 32

We denote these equations by OEPRAvg
Min (G), and we write (g, b) |= OEPRAvg

Min (G) to denote
the fact that functions g : V → R and b : V → R are a solution of OEPRAvg

Min (G). For a
solution (g, b) ofOEPRAvg

Min (G) and a vertex v ∈ V, we say that g(v) is the gain and b(v) is the
bias of the vertex v.

PROPOSITION 2.2.20 (A solution of optimality equations gives optimal price-per-reward
average). For a finite price-reward graph G, if (g, b) |= OEPRAvg

Min (G) then for all v ∈ V we
have that g(v) = PRAvg∗(v).

PROOF. We prove the proposition in two parts. First we show that for every strategy
µ ∈ Σ, we have G(v) ≤ PRAvg(Run(v, µ)) for every vertex v ∈ V. In the second part, we
show that there exists a positional strategy µ′ ∈ Π such that PRAvg(Run(v, µ′)) = G(v) for
every vertex v ∈ V.

– Let Run(v, µ) = 〈v = v0, v1, . . .〉 be the run from the vertex v according to the
strategy µ. Since g and b are a solution of optimality equations OEPRAvg

Min (G), for all
i ≥ 0, we have g(vi) ≤ g(vi+1). Since there are finitely many vertices, for all i ≥ |V|
we have that g(vi) = g(vi+1) = g. Note that g(v) ≤ g.

Now from the optimality equation it follows that for all i ≥ |V|, we have

b(vi) ≤ π(vi, vi+1)− $(vi, vi+1) · g + b(vi+1).

Summing the above bias equation for n terms, we get:

b(v|V|) ≤
|V|+n

∑
i=|V|

π(vi, vi+1)− g ·
|V|+n

∑
i=|V|

$(vi, vi+1) + b(v|V|+n),

and hence:

b(v|V|)− b(v|V|+n) ≤
|V|+n

∑
i=|V|

π(vi, vi+1)− g ·
|V|+n

∑
i=|V|

$(vi, vi+1).

Let κ = ∑|V|−1
i=0 (π(vi, vi+1)− g · $(vi, vi+1)) and N = |V| + n. We can rewrite the

previous inequality as:

b(v|V|)− b(vN) ≤
N

∑
i=0

π(vi, vi+1)− g ·
N

∑
i=0

$(vi, vi+1)− κ.

Adding κ both sides and then dividing both sides by ∑N
i=0 $(vi, vi+1) we get:

b(v|V|)− b(vN) + κ

∑N
i=0 $(vi, vi+1)

≤ ∑N
i=0 π(vi, vi+1)

∑N
i=0 $(vi, vi+1)

− g.

Notice that the expression b(v|V|) − b(vN) + κ is bounded and the price-reward
graph is strongly reward-diverging, i.e., limn→∞ ∑N

i=0 $(vi, vi+1) = ∞. It follows
from these observations that:

g ≤ PRAvg(Run(v, µ)),

and since g(v) ≤ g we get the desired inequality.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 33

– Let us compute the positional strategy µ′ ∈ Π from a solution (g, b) of optimality
equations in the following manner: for all v ∈ V we have that

µ′(v) ∈ argminlex

w∈V

{
(g(w), π(v, w)− $(v, w) · g(v) + b(w)) : (v, w) ∈ E

}
).

Since (g, b) |= OEPRAvg
Min (G), it is easy to verify that for all v ∈ V we have:

g(v) = g(µ′(v)), and

b(v) = π(v, µ′(v))− g(v) · $(v, µ′(v)) + b(µ′(v)).

Let Run(v, µ′) = 〈v = v0, v1, v2, . . .〉. For 0 ≤ i ≤ n, summing the bias equation
side-wise, we get the following:

b(v) =
n

∑
i=0

π(vi, vi+1)− g(v) ·
n

∑
i=0

$(vi, vi+1) + b(vn).

Using a similar analysis to the first part, we get that

g(v) = PRAvg(Run(v, µ′)),

as required.

From the second part of the proof of the previous proposition, the following proposition
follows easily:

PROPOSITION 2.2.21 (A solution of optimality equations gives positional optimal strategy).
For a finite price-reward graph G, if there exists a solution of OEPRAvg

Min (G) then there exists
a positional optimal strategy for the minimum price-per-reward average problem.

2.2.3.1. Existence of a solution

PROPOSITION 2.2.22 (Existence of a solution). For every finite price-reward graph G, there
exists a solution to the optimality equations OEPRAvg

Min (G).

In the rest of this subsection, we give a constructive proof of the Proposition 2.2.22
by giving a strategy improvement algorithm which yields a solution of the optimality
equations.

2.2.3.2. Solving 0-player Optimality Equations

For a 0-player price-reward graph G, the optimality equationsOEPRAvg
Min (G) can be rewritten

as follows:

(G(v),B(v)) = (G(E(v)), π(v, E(v))− $(v, E(v)) · G(v) + B(E(v))) for all v ∈ V.

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 34

v1 v2 v3
2/1 1/1

−1/1

FIGURE 2.4. A finite price-reward graph.

For a 0-player price-reward graph G, we denote this set of equations by OEPRAvg(G). The
following example shows that a solution of optimality equationsOEPRAvg(G) is not unique.

EXAMPLE 2.2.23 (Biases are not unique). Consider a 0-player graph G = (V, E, π, $) (see
Figure 2.4), where V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v2)}. The price function
π : V → R is such that π(v1, v2) = 2, π(v2, v3) = 1 and π(v3, v2) = −1. The reward
function ρ : V → R is such that $(v, v′) = 1 for all (v, v′) ∈ E. Optimality equations
OEPRAvg(G) are as follows:

(G(v1),B(v1)) = (G(v2), 2− 1 · G(v1) + B(v2))

(G(v2),B(v2)) = (G(v3), 1− 1 · G(v2) + B(v3))

(G(v3),B(v3)) = (G(v2),−1− 1 · G(v3) + B(v2))

It is easy to verify that for any value k ∈ R the functions g : V → R and bk : V → R such
that g(v1) = g(v2) = g(v3) = 0; bk(v1) = k + 3, bk(v2) = k + 1 and bk(v3) = k satisfy the set
of optimality equations.

However for a 0-player price-reward graph G, biases can be made “unique” by
applying one of the following heuristics [Put94]:

(1) For every cycle of the 0-player price-reward graph, choose a vertex in that cycle
and assign its bias to some number k ∈ R.

(2) For every cycle of the 0-player price-reward graph, add an extra constraint that the
sum of the biases of the vertices on the cycle is 0.

The gain of every vertex and the biases (now unique) of the rest of the vertices can be
computed in polynomial time.

Remark. For an arbitrary price-reward graph the following optimality equations—with
an extra set of H variables, one for every vertex—can also make the biases of the vertices
unique:

(G(v),B(v)) = minlex

(v,w)∈E

{
(G(w), π(v, w)− $(v, w) · G(v) + B(w))

}
for all v ∈ V, and

H(v) = min
(v,w)∈E

{
−B(v) +H(w) : (G(v),B(v)) = (G(w,B(w))

}
for all v ∈ V.

A careful analysis of these optimality equations shows that the biases of the vertices in a
solution of these equations are the same as the biases of the vertices in a solution of the

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 35

original optimality equations OEPRAvg
Min (G), with the second heuristic of assigning biases in

a 0-player graph.

2.2.3.3. Solving 1-player Optimality Equations

Given functions g : V → R, b : V → R, and a vertex v ∈ V, let us define the set M∗(v, g, b)
as follows:

M∗(v, g, b) = argminlex

w∈V
{(G(w), π(v, w)− $(v, w) · G(v) + B(w)) : (v, w) ∈ E}.

Consider the strategy improvement function ImproveMin : Π× [V → R]× [V → R] → Π,
defined as

ImproveMin(µ, g, b)(v) =

{
µ(v) if µ(v) ∈ M∗(v, g, b)
Choose(M∗(v, g, b)) otherwise,

where g : V → R, b : V → R, and v ∈ V.

PROPOSITION 2.2.24 (Fixed point of ImproveMin are solutions of OEPRAvg
Min (G)). Let µ ∈

ΠMin and let (gµ, bµ) |= OEPRAvg(G�µ). If ImproveMin(µ, gµ, bµ) = µ then (gµ, bµ) |=
OEPRAvg

Min (G).

Input: A graph G = (V, E, F, π, $)

Output: A solution of OEPRAvg
Min (G)

begin1

(Initialisation). Choose an arbitrary positional strategy µ0 ∈ ΠMin;2

Set i = 0;3

repeat4

(Value Computation). Compute the solution (gi, bi) of OEPRAvg(G�µi);5

(Strategy Improvement). Compute µi+1 = ImproveMin(µi, gi, bi);6

Set i := i + 1;7

until µi+1 ≡ µi ;8

return (gi, bi);9

end10

FIGURE 2.5. Strategy improvement algorithm to solve OEPRAvg
Min (G) .

A pseudocode for the strategy improvement algorithm to solve OEPRAvg
Min (G) is shown

in Algorithm 2.5. The proof of the following lemma is similar to the proof of Lemma 2.2.12
and hence we omit the proof.

LEMMA 2.2.25 (Strict strategy improvement for player Min). Let strategies µ, µ′ ∈ ΠMin,
let (g, b) |= OEPRAvg(G�µ) and (g′, b′) |= OEPRAvg(G�µ′), and let µ′ = ImproveMin(µ, g, b).
Then (g, b)≥lex(g′, b′) and if µ 6= µ′ then (g, b)>lex(g′, b′).

2.2. NONCOMPETITIVE OPTIMISATION ON FINITE GRAPHS 36

LEMMA 2.2.26 (Correctness and termination of the strategy improvement algorithm). The
strategy improvement algorithm for OEPRAvg

Min (G) terminates in finitely many steps and
returns a solution (g, b) of OEPRAvg

Min (G).

PROOF. Since the total number of positional strategies of player Min in a finite graph
is finite (less than or equal to |V||V|), the lemma follows directly from Lemma 2.2.25 and
Proposition 2.2.24.

2.2.4. A Note on Value Iteration Algorithm

So far, we have presented strategy improvement algorithms to solve optimality equations
for reachability price, discounted price, average price, and price-per-reward average cost
functions. In this subsection we present some results related to these cost functions which
allow us to write value iteration algorithm to solve noncompetitive optimisation problems.

For a graph G, let Runsn be the set of runs of length n. For a cost function
Cost : Runs→ R, we say that a sequence 〈Costn : Runsn → R〉n∈N approximates the cost
function Cost if for all runs r ∈ Runs we have that

Cost(r) = lim sup
n→∞

Costn(r).

For a sequence 〈Costn : Runsn → R〉n∈N, we define the n-step minimum cost function
Costn,∗ : V → R, by:

Costn,∗(v) = inf
r∈Runsn(v)

Costn(r).

DEFINITION 2.2.27 (Uniform Convergence). A cost function Cost : Runs → R is uniform
convergent if for every vertex v ∈ V we have:

Cost∗(v) = lim sup
n→∞

Costn,∗(v).

For the reachability price, discounted price, average price, and price-per-reward aver-
age cost functions, we define the following sequences that approximate the corresponding
cost functions.

(1) Reachability price. For every n ∈N we define RPn : Runsn → R by

RPn(r) =

{
πN(r) if N = Stop(r) ≤ n
n otherwise,

for every run r ∈ Runsn.
(2) Discounted price. For every n ∈N and discount factor λ ∈ (0, 1), we define DPn(λ) :

Runsn → R by

DPn(λ)(r) = (1− λ)
n

∑
i=1

λi−1π(vi−1, vi),

for every run r ∈ Runsn.

2.3. GAMES ON FINITE GRAPHS 37

(3) Average price. For every n ∈N we define APn : Runsn → R by

APn(r) =
πn(r)

n
,

for every run r ∈ Runsn.
(4) Price-per-reward average. Finally, for every n ∈ N we define PRAvgn : Runsn → R

by

PRAvgn(r) =
πn(r)
$n(r)

,

for every run r ∈ Runsn.

Notice that if the cost functions RP, DP, AP, and PRAvg are uniform convergent, then
the value iteration method for these problems is immediate: at every iteration n, generate
successively the corresponding n-step minimum cost Costn(v) for every vertex v ∈ V.

THEOREM 2.2.28 (Uniform convergence). For a finite graph, the following cost functions
are uniform convergent: reachability price (Proposition 2.1.2 in [Ber01]), discounted price
(Proposition 1.2 in [Ber01]), average price (Section 7.4 in [Ber95]), and price-per-reward
average (Section 7.4 in [Ber95]).

2.3. Games on Finite Graphs
DEFINITION 2.3.1 (Game Graph). A finite game graph is a tuple Γ = (V, E, VMin, VMax),
where:

– (V, E) is a finite graph,
– VMin ⊆ V is the set of vertices controlled by player Min, and
– VMax ⊆ V is the set of vertices controlled by player Max.

We require that the sets VMax and VMin form a partition of the set of vertices V.

Let us fix a finite game automaton Γ = (G, VMin, VMax) for the rest of this section.
In the context of games we sometimes refer to a run as a play of the game. A play starts

at a vertex v0 ∈ V. If v0 ∈ Vp, for p ∈ {Max, Min }, then player p chooses a successor of the
current vertex v0, i.e., a vertex v1, such that (v0, v1) ∈ E, and v1 becomes the new current
vertex. When this happens then we say that player p has made a move from the current
vertex. Players keep making moves in this fashion indefinitely thus forming an infinite run
〈v0, v1, v2, . . .〉 in the game graph.

DEFINITION 2.3.2 (Cost Game on a Finite Game Graph). A cost game on a finite game graph
is a tuple (Γ, CostMin, CostMax), where:

– Γ = (V, E, VMin, VMax) is a game graph,
– CostMin : Runs→ R is a payoff function for player Min, that gives the amount Min

loses in a play, and
– CostMax : Runs → R is the payoff function for player Max, that gives the amount

Max wins in a play.

2.3. GAMES ON FINITE GRAPHS 38

A cost game is called zero-sum if we have that CostMin(r) = CostMax(r) for every play r
of the game.

A strategy for the player Min is a (partial) function µ : Runsfin → V such that for every
run r = 〈v0, v1, . . . , vn〉 if vn ∈ VMin then µ(r) is defined and it is such that (vn, µ(r)) ∈ E.
Similarly we define a strategy for the player Max. We write ΣMin for the set of strategies of
player Min and ΣMax for the set of strategies of player Max. For strategies µ ∈ ΣMin and
χ ∈ ΣMax, and for an initial vertex v ∈ V, we write Run(v, µ, χ) for the unique path formed
if the game starts in the vertex v and then players use strategies µ and χ, respectively.

The upper value Val(v) of a vertex v ∈ V is defined by:

Val(v) = inf
µ∈ΣMin

sup
χ∈ΣMax

CostMin(Run(v, µ, χ)),

and the lower value Val(v) of a vertex v ∈ V is defined by:

Val(v) = sup
χ∈ΣMax

inf
µ∈ΣMin

CostMax(Run(v, µ, χ)).

We say that the game is determined if for all v ∈ V we have Val(v) = Val(v). In this case we
say that the value Val(v) exists and it is Val(v) = Val(v) = Val(v). We say that the strategies
µ∗ ∈ ΣMin and χ∗ ∈ ΣMax are optimal for the respective players if for all v ∈ V we have that

inf
µ∈ΣMin

CostMax(Run(v, µ, χ∗)) = Val(v) = sup
χ∈ΣMax

CostMin(Run(v, µ∗, χ)).

Let ΠMin and ΠMax be the set of positional strategies of player Min and player Max,
respectively. We say that a game is positionally determined if players have positional optimal
strategies.

If a cost game is determined, then the competitive optimisation problem for a cost game
(Γ, CostMin, CostMax) is: “given a graph graph Γ, a vertex v ∈ V and a number D ∈ Q,
determine whether Val(v) ≤ D.”

We consider the following cost games in this chapter:
(1) Reachability-price game. A reachability-price game (Γ, RPMin, RPMax) has the follow-

ing payoff functions:

RPMin(r) = RPMax(r) =

{
πN(r) if N = Stop(r) < ∞
∞ otherwise.

(2) Discounted-price game. For a given discount factor λ ∈ (0, 1), a discounted-price
game (Γ, DPMin(λ), DPMax(λ)) has the following payoff functions:

DPMin(λ)(r) = DPMax(λ)(r) = (1− λ)
∞

∑
i=1

λi−1π(vi−1, vi).

(3) Average-price game. An average-price game (Γ, APMin, APMax) has the following
payoff functions:

APMin(r) = lim sup
n→∞

πn(r)
n

and APMax(r) = lim inf
n→∞

πn(r)
n

.

2.3. GAMES ON FINITE GRAPHS 39

(4) Price-per-reward-average game. In a similar manner, a price-per-reward average game
(Γ, PRAvgMin, PRAvgMax) has the following payoff functions:

PRAvgMin(r) = lim sup
n→∞

πn(r)
$n(r)

and PRAvgMax(r) = lim inf
n→∞

πn(r)
$n(r)

.

The following is a well known (see, for example, [FV97]) result about games on finite graphs:

THEOREM 2.3.3. Reachability-price games, discounted-price games, average-price games,
and price-per-reward-average games on finite game graphs are positionally determined.

The rest of this section is devoted to the proof of this theorem. Like the noncompetitive
case, we solve these games by designing a set of optimality equations such that existence of
a solution of the equations implies positional determinacy of the game. Moreover, a solution
also characterises the value of the game at every vertex. We give a constructive proof of the
existence of a solution by giving a strategy improvement algorithm, which terminates with
a solution of the optimality equations.

2.3.1. Solving Reachability-price Games

Again, to keep the discussion simple, we assume the following restriction on the game
graph that we consider:

ASSUMPTION 2.3.4. For every vertex v ∈ V, we have that:

(1) player Min has a strategy to reach F, and
(2) player Min does not have a strategy to have a negative average while avoiding F.

2.3.1.1. Optimality Equations

To solve reachability-price game (Γ, RPMin, RPMax), let us consider the following set of
optimality equations:

(P(v),D(v)) =


(0, 0) , if v ∈ F,

minlex
(v,w)∈E

{
(π(v, w) + P(w), 1 +D(w))

}
, if v ∈ VMin \ F,

maxlex
(v,w)∈E

{
(π(v, w) + P(w), 1 +D(w))

}
, if v ∈ VMax \ F.

We denote these equations by OERP
MinMax(G). We say that the functions p : V → R and

d : V → N are a solution of optimality equations OERP
MinMax(G), and we write (p, d) |=

OERP
MinMax(G), if all equations in OERP

MinMax(G) hold for the valuations P(v) 7→ p(v) and
D(v) 7→ d(v).

The following lemma states the relation between a solution of optimality equations and
value of the reachability-price game on a priced graph.

LEMMA 2.3.5 (A solution of optimality equations gives value of the game). Under Assump-
tion 2.3.4 we have that if (p, d) |= OERP

MinMax(G) implies p(v) = Val(v), for all v ∈ V.

2.3. GAMES ON FINITE GRAPHS 40

PROOF. Let (p, d) |= OERP
MinMax(G). Using this solution of the optimality equation, let us

define the positional strategy µ∗ of player Min as follows: for every vertex v ∈ VMin, we
have:

µ∗(v) ∈ argminlex

w∈V

{
(π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E

}
.

Similarly we define the positional strategy χ∗ as follows: for every vertex v ∈ VMax, we have:

χ∗(v) ∈ argmaxlex

w∈V

{
(π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E

}
.

Note that the strategies µ∗ and χ∗ are defined in such a way that for all v ∈ VMin, we have
p(v) = π(v, µ∗(v)) + p(µ∗(v)), and for all v ∈ VMax, we have that p(v) = π(v, χ∗(v)) +
p(χ∗(v)). It is easy to verify that p(v) = RP(Run(v, µ∗, χ∗). Now to prove the lemma, what
remains to be shown is that µ∗ ∈ ΣMin and χ∗ ∈ ΣMax are optimal strategies.

The rest of the proof is in two parts. In first part we show that p(v) ≥ Val(v) and in the
second part we show that p(v) ≤ Val(v).

– Let µ ∈ ΣMin be a strategy (not necessarily positional) of player Min and let us
consider the initial vertex v ∈ V. Let the run Run(v, µ, χ∗) be 〈v0 = v, v1, v2, . . .〉.
For all i ≥ 0, if vi ∈ VMin then we have the following inequality:

(p(vi), d(vi))≤lex (π(vi, vi+1) + p(vi+1), 1 + d(vi+1) ,

as (p, d) is a solution of optimality equations OERP
MinMax(G). Moreover for all i ≥ 0,

if vi ∈ VMax then from the definition of χ∗ we get the equality:

(p(vi), d(vi)) = (π(vi, vi+1) + p(vi+1), 1 + d(vi+1) .

Hence it implies that for all i ≥ 0 we have

p(vi) ≤ π(vi, vi+1) + p(vi+1). (2.3.1)

If Stop(Run(v, µ, χ∗)) = ∞ then by definition we have that RP(Run(v, µ, χ∗)) = ∞,
and then is inequality p(vi) ≤ RP(Run(v, µ, χ∗)) is trivial. Let us assume that
Stop(Run(v, µ, χ∗)) = n < ∞. Summing the inequalities (2.3.1) for 0 ≤ i < n,
side-wise we get:

p(v0) ≤
Stop(Run(v,µ,χ∗))−1

∑
i=0

π(vi, vi+1) + p(vn).

Since vn ∈ F, we have that p(vn) = 0; also note that v0 = v. It follows that for every
strategy µ ∈ ΣMin we have that p(v) ≤ RP(Run(v, µ, χ∗). Since µ∗ ∈ ΣMin we have
that

p(v) ≤ RP(Run(v, µ∗, χ∗)) = Val(v).

– Let χ ∈ ΣMax be an arbitrary strategy of player Max and let us consider the initial
vertex v ∈ V. Let the run Run(v, µ∗, χ) be 〈v0 = v, v1, v2, . . .〉. For all i ≥ 0, if
vi ∈ VMax then we have the following inequality:

(p(vi), d(vi))≥lex (π(vi, vi+1) + p(vi+1), 1 + d(vi+1) ,

2.3. GAMES ON FINITE GRAPHS 41

as (p, d) is a solution of optimality equations OERP
MinMax(G). Moreover for all i ≥ 0,

if vi ∈ VMin then from the definition of µ∗ we get the equality:

(p(vi), d(vi)) = (π(vi, vi+1) + p(vi+1), 1 + d(vi+1) .

Hence it implies that for all i ≥ 0 we have

p(vi) ≥ π(vi, vi+1) + p(vi+1).

If Stop(Run(v, µ∗, χ)) = ∞ then it is easy to verify that either the player Min does
not have a strategy to reach F, or the strategy µ∗ have negative average while
avoiding F. Since both cases are not possible due to Assumption 2.3.4, we know
that Stop(Run(v, µ∗, χ)) = n < ∞ Now using a similar analysis to the first part, it
is straightforward to verify that

p(v) ≥ Val(v).

From the second part of the proof of the previous lemma, the following proposition is
immediate.

PROPOSITION 2.3.6 (A solution of optimality equations gives positional optimal strategies
for both players). For a priced graph G, if there exists a solution of OERP

MinMax(G) then both
players have positional optimal strategies.

We prove the following lemma using a strategy improvement algorithm, which upon
termination gives a solution of the optimality equations.

LEMMA 2.3.7 (Existence of a solution). For every priced graph G, there exists a solution of
the optimality equations OERP

MinMax(G).

2.3.1.2. Solving 2-player Optimality Equations

For given functions p : V → R and d : V → N, let us define the set M∗(v, p, d) for every
vertex v ∈ V as follows:

M∗(v, p, d) = argmaxlex

w∈V
{(π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E}.

Consider the strategy improvement function ImproveMax : ΠMax × [V → R]× [V →N] →
ΠMax defined by:

ImproveMax(χ, p, d)(v) =

{
χ(v) if χ(v) ∈ M∗(v, p, d)
Choose(M∗(v, p, d)) otherwise,

where p : V → R, d : V →N, and v ∈ V.

PROPOSITION 2.3.8 (Fixed points of ImproveMax are solutions of OERP
MinMax). Let χ ∈

ΠMax and let (pχ, dχ) |= OERP
Min(G�χ). If ImproveMax(χ, pχ, dχ) = χ then (pχ, dχ) |=

OERP
MinMax(G).

2.3. GAMES ON FINITE GRAPHS 42

Input: Priced Graph G = ((V, E, F), π)

Output: A solution of OERP
MinMax(G)

begin1

(Initialisation). Choose an arbitrary positional strategy χ0 ∈ ΠMax;2

Set i := 0;3

repeat4

(Value Computation). Compute the solution (pi, di) of OERP
Min(G�χi).;5

(Strategy Improvement). Compute χi+1 = ImproveMax(χi, pi, di);6

Set i := i + 1;7

until χi+1 ≡ χi ;8

return (pi, di);9

end10

FIGURE 2.6. Strategy improvement algorithm to solve OERP
MinMax(G).

Notice that for every positional strategy χ ∈ ΠMax of player Max, in the graph G�χi
player Max does not have any choice and hence for the sake of notational simplicity we can
assume that all the vertices in the graph G�χ belong to player Min and hence Algorithm 2.2
can be used to solve OERP

Min(G�χ).
We say that (p, d) |= OERP

≤ (G), if

(p(v), d(v))≤lex

{
(0, 0), if v ∈ F,

minlex
w∈V

{
(π(v, w) + p(w), 1 + d(w)) : (v, w) ∈ E

}
, otherwise.

PROPOSITION 2.3.9. Let p, p≤ : V → R and d, d≤ : V →N be such that (p, d) |= OERP
Min(G)

and (p≤, d≤) |= OERP
≤ (G). Then we have (p≤, d≤)≤lex(p, d), and if (p≤, d≤) 6|= OERP

Min(G)

then (p≤, d≤)<lex(p, d).

PROOF. The proof is similar to that of Proposition 2.2.11.

LEMMA 2.3.10 (Strict strategy improvement for player Max). Let strategies χ, χ′ ∈ ΠMax, let
(p, d) |= OERP

Min(G�χ) and (p′, d′) |= OERP
Min(G�χ′), and let χ′ = ImproveMax(χ, p, d). Then

we have that (p, d)≤lex(p′, d′) and if χ′ 6= χ then (p, d)<lex(p′, d′).

PROOF. First we argue that (p, d) |= OERP
≤ (G�χ′), which by Proposition 2.3.9 implies that

(p, d)≥lex(p′, d′). Indeed, for every v ∈ V \ F if χ(v) = w and χ′(v) = w′ then we have

(p(v), d(v)) = (π(v, w) + p(w), 1 + d(w)) , as (p, d) |= OERP
Min(G�χ)

≤lex (
π(v, w′) + p(w′), 1 + d(w′)

)
, by the definition of ImproveMax.

Moreover, if χ 6= χ′ then there is a v ∈ V \ F for which the above inequality is strict.
Then (p, d) 6|= OERP

Min(G�χ′), because every vertex in G�χ′ has a unique successor, and hence
by Proposition 2.3.9 we conclude that (p, d)<lex(p′, d′).

2.3. GAMES ON FINITE GRAPHS 43

LEMMA 2.3.11 (Correctness and termination of strategy improvement algorithm). The
strategy improvement algorithm forOERP

MinMax terminates in finitely many steps and returns
a solution (p, d) of OERP

MinMax.

2.3.2. Solving Discounted-price Games

2.3.2.1. Optimality Equations

To solve a discounted-price game (Γ, DPMin(λ), DPMax(λ)) with a discount factor λ ∈ (0, 1),
let us consider the following set of optimality equations.

D(v) =
{

min(v,w)∈E
{
(1− λ) · π(v, w) + λ · D(w)

}
, if v ∈ VMin,

max(v,w)∈E
{
(1− λ) · π(v, w) + λ · D(w)

}
, if v ∈ VMax.

We denote these equations by OEDP
MinMax(G, λ). We say that a functions d : V → R is a

solution of optimality equations OEDP
MinMax(G, λ), and we write d |= OEDP

MinMax(G, λ), if all
equations in OEDP

MinMax(G, λ) hold for the valuations D(v) 7→ d(v).
The following lemma states the relation between a solution of optimality equations and

the value of the discounted-price game on a priced graph.

LEMMA 2.3.12 (A solution of optimality equations gives value of the game). If d : V → R is
a solution of OEDP

MinMax(G, λ) then for all v ∈ V we have that d(v) = Val(v).

PROPOSITION 2.3.13 (A solution of optimality equations gives positional optimal strategies
for both players). For a priced graph G and discount factor λ ∈ (0, 1), if there exists a
solution of OEDP

MinMax(G, λ) then both players have positional optimal strategies.

2.3.2.2. Existence of a solution

LEMMA 2.3.14 (Existence of a solution). For every priced graph G and discount factor λ ∈
(0, 1), there exists a solution of the optimality equations OEDP

MinMax(G, λ).

We prove this lemma using the following strategy improvement algorithm, which
terminates with a solution of the optimality equations.

2.3.2.3. Solving 2-player Optimality Equations

For given function d : V → R, let us define the set M∗(v, d) for every vertex v ∈ V as
follows:

M∗(v, d) = argmax
w∈V

{(1− λ) · π(v, w) + λ · d(w) : (v, w) ∈ E}.

Consider the strategy improvement function ImproveMax : ΠMax × [V → R] → ΠMax
defined by:

ImproveMax(χ, d)(v) =

{
χ(v) if χ(v) ∈ M∗(v, d)
Choose(M∗(v, d)) otherwise.

2.3. GAMES ON FINITE GRAPHS 44

where d : V → R and v ∈ V.

PROPOSITION 2.3.15 (Fixed point of ImproveMax are solutions of OEDP
MinMax(G, λ)). Let χ ∈

ΠMax and let (pχ, dχ) |= OEDP
Min(G�χ, λ). If ImproveMax(χ, dχ) = χ then we have (pχ, dχ) |=

OEDP
MinMax(G, λ).

A strategy improvement algorithm to solve OEDP
MinMax(G, λ) is given as Algorithm 2.7.

Input: Priced graph G = ((V, E, F), π) and λ ∈ (0, 1)
Output: A solution of OEDP

MinMax(G, λ)
begin1

(Initialisation). Choose an arbitrary positional strategy χ0 ∈ ΠMax;2

Set i := 0;3

repeat4

(Value Computation). Compute the solution di of OEDP
Min(G�χi, λ).;5

(Strategy Improvement). Compute χi+1 = ImproveMax(χi, di);6

Set i := i + 1;7

until χi+1 ≡ χi ;8

return di;9

end10

FIGURE 2.7. Strategy improvement algorithm to solve OEDP
MinMax(G, λ) .

Proofs of the following lemmas concerning the correctness of the algorithm are routine, and
omitted.

LEMMA 2.3.16 (Strict strategy improvement for player Max). Let χ, χ′ ∈ ΠMax, let d |=
OEDP

Min(G�χ, λ) and d′ |= OEDP
Min(G�χ′, λ), and let χ′ = ImproveMax(χ, d). Then d ≤ d′ and

if χ′ 6= χ then d < d′.

LEMMA 2.3.17 (Correctness and termination of strategy improvement algorithm). The
strategy improvement algorithm for OEDP

MinMax(G, λ) terminates in finitely many steps and
returns a solution d : V → R of OEDP

MinMax(G, λ).

2.3.3. Solving Average-price and Price-per-reward Average Games

2.3.3.1. Optimality Equations

To solve price-per-reward average game (Γ, PRAvgMin, PRAvgMax) on a price-reward game
graph, let us consider the following set of optimality equations.

2.3. GAMES ON FINITE GRAPHS 45

(G(v),B(v)) ={
minlex

(v,w)∈E
{
(G(w), π(v, w)− $(v, w) · G(v) + B(w))

}
, if v ∈ VMin,

maxlex
(v,w)∈E

{
(G(w), π(v, w)− $(v, w) · G(v) + B(w))

}
, if v ∈ VMax.

We denote these equations by OEPRAvg
MinMax(G). We say that the functions g : V → R

and b : V → R are a solution of optimality equations OEPRAvg
MinMax(G), and we write (g, b) |=

OEPRAvg
MinMax(G), if all equations in OEPRAvg

MinMax(G) hold for the valuations G(v) 7→ g(v) and
B(v) 7→ b(v).

The following lemma states the relation between a solution of optimality equations and
value of the price-per-reward average game on a price-reward graph.

LEMMA 2.3.18 (A solution of optimality equations gives value of the game). If (g, b) |=
OEPRAvg

MinMax(G) then for all v ∈ V we have that g(v) = Val(v).

PROPOSITION 2.3.19 (A solution of optimality equations gives positional optimal strategies
for both players). For a price-reward graph G, if there exists a solution ofOEPRAvg

MinMax(G) then
both players have positional optimal strategies.

2.3.3.2. Existence of a solution

LEMMA 2.3.20 (Existence of a solution). For every price-reward graph G, there exists a
solution of the optimality equations OEPRAvg

MinMax(G).

We prove this lemma using the following strategy improvement algorithm, which
terminates with a solution of the optimality equations.

2.3.3.3. Solving 2-player Optimality Equations

For given functions g : V → R and b : V → R, let us define the set M∗(v, g, b) for every
vertex v ∈ V as follows:

M∗(v, g, b) = argmaxlex

w∈V
{(g(w), π(v, w)− $(v, w) · g(v) + b(w)) : (v, w) ∈ E}.

Consider the strategy improvement function ImproveMax : ΠMax × [V → R]× [V → R] →
ΠMax defines by:

ImproveMax(χ, g, b)(v) =

{
χ(v) if χ(v) ∈ M∗(v, g, b)
Choose(M∗(v, g, b)) otherwise.

where g : V → R, b : V → R, and v ∈ V.

PROPOSITION 2.3.21 (Fixed point of ImproveMax are solutions of OEPRAvg
MinMax). Let χ ∈

ΠMax and let (gχ, bχ) |= OEPRAvg
Min (G�χ). If ImproveMax(χ, gχ, bχ) = χ then (gχ, bχ) |=

OEPRAvg
MinMax(G).

2.4. DISCUSSION 46

The strategy improvement algorithm to solve OEPRAvg
MinMax(G) is shown as Algorithm 2.8

and its correctness follows from the following lemmas.

Input: Price-reward Graph G = ((V, E, F), π, $)

Output: A solution of OEPRAvg
MinMax(G)

begin1

(Initialisation). Choose an arbitrary positional strategy χ0 ∈ ΠMax;2

Set i := 0;3

repeat4

(Value Computation). Compute the solution (gi, bi) of OEPRAvg
Min (G�χi).;5

(Strategy Improvement). Compute χi+1 = ImproveMax(χi, gi, bi);6

Set i := i + 1;7

until χi+1 ≡ χi ;8

return (gi, bi);9

end10

FIGURE 2.8. Strategy improvement algorithm to solve OEPRAvg
MinMax(G).

LEMMA 2.3.22 (Strict strategy improvement for Max). Let the strategies χ, χ′ ∈ ΠMax, let
(g, b) |= OEPRAvg

Min (G�χ) and (g′, b′) |= OEPRAvg
Min (G�χ′), and let χ′ = ImproveMax(χ, g, b).

Then (g, b)≤lex(g′, b′) and if χ′ 6= χ then (g, b)<lex(g′, b′).

LEMMA 2.3.23 (Correctness and termination of strategy improvement algorithm). The
strategy improvement algorithm forOEPRAvg

MinMax terminates in finitely many steps and returns
a solution (g, b) of OEPRAvg

MinMax.

2.4. Discussion
In this chapter we presented algorithms to solve optimisation problems and two-player
games on finite graphs. We demonstrated that dynamic programming techniques are not
only instrumental in designing algorithms, but also quite helpful in proving theorems (for
example, proofs of positional determinacy).

The central theme of this thesis is competitive optimisation problems on timed
automata. There are two natural ways in which we can attempt to extend the solution
techniques introduced in this chapter—for competitive problems on finite graphs—to solve
competitive optimisation problems on infinite graph of configurations of timed automata.

The First approach is to design optimality equations for the infinite graph of configu-
rations of timed automata, and then use iterative algorithms to solve those equations. As
we shall see later in Chapter 5, we took this approach to solve reachability-time games on
timed automata.

The second approach is to reduce the competitive optimisation problem on timed
automata to the competitive optimisation problem on certain finite graph, and then use
the algorithms presented in this chapter to solve those problems. In the next chapter we

2.4. DISCUSSION 47

introduce boundary region graph, an abstraction of timed automata, which is quite useful
for this purpose. In Chapter 4 we show that a number of optimisation problems on timed
automata can be reduced to corresponding optimisation problems on a finitary sub-graph
of their boundary region graph. In Chapter 6 we show that the problem of solving average-
time games on timed automata can be reduced to the problem of solving average price
games on a finitary sub-graph of their boundary region graph.

3
Timed Automata

For compositional reasoning, we
should be able to define the
semantics of a component and
prove its properties without
knowing the details of the other
parts of the system. Shifting to
dense-time semantics offers a
natural and mathematically
clean way to this effect.

Rajeev Alur

Mathematical formalisms to model real-time systems can broadly be divided in two
categories: discrete-time models and dense-timed models. In discrete-time models the
variables measuring time are (non-negative) integer-valued, while in dense-time models
the variables measuring time are (non-negative) real-valued. To model a real-time system
with discrete-time models we are forced to fix a time-unit in advance and to ignore the
relative order of two events within a unit of time. If we choose a small enough time-unit
then meaningful results can be obtained using discrete-time models. However, probably, the
strongest case against discrete-time models is that if a system is to be composed of several
components, the semantics of each component can not be given independently. Dense-time
models handles this issue elegantly as we are not required to fix a unit of time in advance.
Timed automata [AD90] are dense-time computational models for real-time systems.

This chapter introduces timed automata and some of its extensions and sets notations
and mathematical shorthands that are used consistently in the rest of the thesis. This chapter
also introduces some abstractions—including a novel boundary region graph abstraction—
of timed automata, which are useful in solving competitive optimisation problems on the
infinite graphs of configurations of timed automata. Before we present formal definitions of
timed automata, let us give two short examples of modelling real-time systems using timed
automata.

48

3.1. EXAMPLES 49

3.1. Examples
Let us consider a light bulb [UPP] with a press-button switch which has two modes of
operation: dim and bright. If the bulb is in the off mode and we press the switch, the light
bulb lights with a dim light. If we press the switch again within a pre-specified unit of time,
say one second, the light bulb lights with bright light. However, if the bulb is dimly lit and
we press the switch after one second the light-bulb turns off. Once the light-bulb is brightly
lit and switch is pressed the light-bulb turns off.

`1`0 `2
true, press, {x} x ≤ 1, press, {x}

true, press, {x}

x ≥ 1, press, {x}

OFF
DIM

BRIGHT

FIGURE 3.1. A light-bulb modelled using a timed automaton.

A straightforward model of such a light bulb is shown in Figure 3.1 as a timed
automaton: a finite state transition system with a finite set of continuous variables called
clocks. Clocks can appear as guards on the transitions where they can be compared against
integers and after taking a transition it is possible to reset them to 0. When drawing a timed
automaton we annotate a transition with the triple : (clock guard, action name, set of clocks
to be reset). All the clock variables evolve continuously at uniform rate. Since it is possible
to reset clock variables after taking a transition, timed automata can express complex timing
behaviours of the real-time systems (e.g., a clock can remember the time since a particular
action was fired).

Let us explain the timed automaton shown in Figure 3.1. According to this model,
the light bulb system can be in one of the three locations: `0 where the light bulb is off, `1
where the light bulb is dimly lit, and `2 where the light bulb is brightly lit. The variable x
appearing in the figure is the only clock used in this example and it measures the time spent
in the location `1. The explanations for the rest of the example is straightforward.

`1`0 `2 `3

true, a, {xa} true, b, {xb} xa ≤ 1, c, {}

xb ≥ 2, d, {}

FIGURE 3.2. A timed automaton with more than one clock.

The light bulb example used only one clock, but there are systems whose modelling
requires multiple clocks. As an example consider the timed automaton in Figure 3.2 [AD94].
This automaton models a system that repeatedly executes a sequence of actions a, b, c, and d,
and in that order. The timing constraint on the events is such that the action c must follow

3.2. FORMAL DEFINITION 50

the action a within one time unit and the action d must be executed after more than 2 time-
units from the previous action b. Notice that such system can not be modelled using a single
clock.

3.2. Formal Definition

In this section we formally introduce timed automata and related concepts. This section is
organised as follows. In the first subsection we introduce clocks, clock valuations, regions
and zones. In Subsection 3.2.2 we give the definition of timed automata and introduce some
key notations. Our definition of a timed automaton may appear to differ from the usual
ones [AD94, Bou06]. The differences are, however, superficial and mostly syntactic. Finally,
in Subsection 3.2.3, we introduce the concept of runs and strategies in the context of a timed
automaton.

3.2.1. Clocks, Valuations, Regions, and Zones

Fix a constant K ∈N for the rest of the thesis. Let C be a finite set of clocks. Clocks in timed
automata are usually allowed to take arbitrary non-negative real values. For the sake of
simplicity, we restrict clocks to be bounded by some constant K ∈ N, that is we consider
only bounded timed automata models.

A (K-bounded) clock valuation is a function ν : C → JKKR; we write VC for the set
[C → JKKR] of clock valuations over C. If ν ∈ VC and t ∈ R⊕ then we write ν + t : C → R⊕
for the function defined by (ν + t)(c) = ν(c) + t, for all c ∈ C. Notice that (ν + t) may
not be in the set VC of bounded clock valuation if ν(c) + t > K for some c ∈ C. For a set
C′ ⊆ C of clocks and a clock valuation ν ∈ VC, we define Reset(ν, C′)(c) = 0 if c ∈ C′, and
Reset(ν, C′)(c) = ν(c) if c 6∈ C′. A corner is an integer clock valuation, i.e., α is a corner if
α(c) ∈ JKKN for every clock c ∈ C. If ν ∈ VC is a clock valuation then we write bνc for the
corner defined by bνc(c) = bν(c)c.
EXAMPLE 3.2.1 (Clock valuations and reset functions). Let us consider a timed automaton
with three clocks x, y, z, i.e., C = {x, y, z}. Let us assume that for some valuation ν the value
of clock x, y, and z are 1.2, 2.3, and 1.333, respectively, then we display this clock valuation
as ν = {x = 1.2, y = 2.3, z = 1.333}. The corner valuation bνc of the valuation ν is the
clock valuation {x = 1, y = 2, z = 1}. For the clock valuation ν and a set of clocks C′ = {y}
the function Reset(ν, C′) returns the clock valuation ν′ = {x = 1.2, y = 0, z = 1.333}.

The set of clock constraints over the set of clocks C is the set of conjunctions of simple clock
constraints , which are constraints of the form c ./ i or c− c′ ./ i, where c, c′ ∈ C, i ∈ JKKN,
and ./ ∈ {<,>,=,≤,≥}. There are finitely many simple clock constraints. For every clock
valuation ν ∈ VC, let SCC(ν) be the set of simple clock constraints which hold in ν ∈ VC.

A clock region is a maximal set P ⊆ VC, such that for all ν, ν′ ∈ P, SCC(ν) = SCC(ν′).
In other words, every clock region is an equivalence class of the indistinguishability-by-
clock-constraints relation, and vice versa. Note that ν and ν′ are in the same clock region
iff all clocks have the same integer parts in ν and ν′, and if the partial orders of the clocks,

3.2. FORMAL DEFINITION 51

Clock x

C
lo
ck

y

0 1 2

0

1

2

P1 : {0 = y < x < 1}

P2 : {0 < y < x < 1}

P3 : {0 < y < x = 1}

P0 : {x = y = 0}

FIGURE 3.3. Clock regions of a timed automaton.

determined by their fractional parts in ν and ν′, are the same. For all ν ∈ VC, we write [ν]
for the clock region of ν.

EXAMPLE 3.2.2 (Clock regions). The set of the clock valuation with two clocks, x and y,
and bound K = 2 is illustrated in Figure 3.3. Notice that all the intersection points (e.g.,
clock region P0), open line segments (e.g., clock region P1 and P3), and open areas (e.g.,
clock region P2) are different clock regions. Total number of regions in this example is 33 (9
intersection points, 16 open line segments and 8 triangular open areas).

A clock zone is a convex set of clock valuations, which is a union of a set of clock regions.
We write Z for the set of clock zones. Note that a set of clock valuations is a zone iff it is
definable by a clock constraint. For W ⊆ VC, we write clos(W) for the smallest closed set
in VC which contains W. Observe that for every clock zone W, the set clos(W) is also a clock
zone.

Let L be a finite set of locations . A configuration is a pair (`, ν), where ` ∈ L is a location
and ν ∈ VC is a clock valuation; we write Q for the set of configurations. If s = (`, ν) ∈ Q
and c ∈ C, then we write s(c) for ν(c).

A region is a pair (`, P), where ` is a location and P is a clock region. If s = (`, ν) is a
configuration then we write [s] for the region (`, [ν]). A region R = (`, P) corresponds to a
set of configurations {(`, ν) : [ν] = P}, hence sometimes we write s ∈ R as a shorthand for
[s] = R. We write R for the set of regions. A set Z ⊆ Q is a zone if for every ` ∈ L, there is
a clock zone W` (possibly empty), such that Z = {(`, ν) : ` ∈ L and ν ∈ W`}. For a region
R = (`, P) ∈ R, we write clos(R) for the zone {(`, ν) : ν ∈ clos(P)}.

3.2.2. Timed Automata

We are now in a position to introduce a timed automaton.

3.2. FORMAL DEFINITION 52

DEFINITION 3.2.3 (Timed Automata). A timed automaton is a tuple T = (L, C, S, A, E, δ, ξ, F),
where:

– L is a finite set of locations,
– C is a finite set of clocks,
– S ⊆ L× VC is a set of states 1,
– A is a finite set of actions,
– E : A→ 2S is an action enabledness function,
– δ : L× A→ L is a transition function,
– ξ : A→ 2C is a clock reset function, and
– F ⊆ S is a set of final states.

It is required that S, F, and E(a) for all a ∈ A, are zones.

Clock zones, from which zones S, F, and E(a), for all a ∈ A, are built, are typically
specified by clock constraints. Therefore, when we consider a timed automaton as an input
of an algorithm, its size should be understood as the sum of sizes of encodings of L, C, A, δ,
and ξ, and the sizes of encodings of clock constraints defining zones S, F, and E(a), for all
a ∈ A.

Remark. In standard definitions [Alu91, Bou09] of timed automata, transitions are allowed
to be non-deterministic, i.e., the transition function has the form δ : L× A → 2L. However,
in our work timed automata are not used as formal language acceptors, but rather as
generators of (classes of) transition systems. It is the game structure (i.e., the partition of
states for the two players) that is in fact introducing two forms of non-deterministic choices,
sometimes referred to, e.g., as “angelic” and “demonic” non-determinism. In this context
working with “deterministic” automata is more meaningful because it does not introduce
an unnecessary “third” form of non-determinism. Since we never interpret automata as
formal language acceptors, restriction to “deterministic” automata is hence without loss of
generality and avoids unnecessary confusion.

For a configuration s = (`, ν) ∈ Q and t ∈ R⊕, we define s + t to be the configuration
s′ = (`, ν + t) if ν + t ∈ VC, and we then write s −⇀t s′. We write s −→t s′ if s −⇀t s′ and for
all t′ ∈ [0, t], we have (`, ν + t′) ∈ S. For an action a ∈ A, we define Succ(s, a) to be the
configuration s′ = (`′, ν′), where `′ = δ(`, a) and ν′ = Reset(ν, ξ(a)), and we then write
s a−⇀ s′. We write s a−→ s′ if s a−⇀ s′; s, s′ ∈ S; and s ∈ E(a).

ASSUMPTION 3.2.4. For technical convenience, and without loss of generality, we will
assume throughout that for every s ∈ S, there exists a ∈ A, such that s a−→ s′.

For s, s′ ∈ S, we say that s′ is in the future of s, or equivalently, that s is in the past of s′,
if there is t ∈ R⊕, such that s −→t s′; we then write s −→∗ s′.

1The set of states is usually specified as an invariant function [HNSY92] I : L → Z on the locations such
that S =

{
(`, ν) : ν ∈ I(`)

}
.

3.3. SOME PROPERTIES OF REGIONS 53

3.2.3. Timed Actions, Runs, and Strategies

A timed action is a pair τ = (t, a) ∈ R⊕× A. For s ∈ Q, we define Succ(s, τ) = Succ(s, (t, a))
to be the configuration s′ = Succ(s + t, a), i.e., such that s −⇀t s′′ a−⇀ s′, and we then write
s a−⇀t s′. We write s a−→t s′ if s −→t s′′ a−→ s′, and we then say that (s, (t, a), s′) is a transition
of the timed automaton. If τ = (t, a) then we write s τ−⇀ s′ instead of s a−⇀t s′, and s τ−→ s′

instead of s a−→t s′.
A finite run of a timed automaton T is a sequence

〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ S× ((R⊕ × A)× S)∗,

such that for every positive integer i ≤ n we have that (si−1, τi, si) is a transition, i.e.,
si−1

τi−→ si. For a finite run r = 〈s0, τ1, s1, τ2, . . . , τn, sn〉 we define Length(r) = n and we
define Last(r) = sn to be the state in which the run ends. We write Runsfin for the set of
finite runs, and Runsfin(s) for the set of finite runs starting from state s ∈ S.

An infinite run of a timed automaton T is a sequence

〈s0, τ1, s1, τ2, . . .〉 ∈ S× ((R⊕ × A)× S)ω,

such that for all i ≥ 1, we have si−1
τi−→ si. For an infinite run r, we define Length(r) = ∞.

For a run r = 〈s0, τ1, s1, τ2, . . .〉, we define Stop(r) = inf{i : si ∈ F}. We write Runs for the
set of infinite runs, and Runs(s) for the set of infinite runs starting from state s ∈ S. For a
run r = 〈s0, τ1, s1, τ2, . . .〉, we define time of the run as Time(r) = ∑Length(r)

i=1 ti.
A strategy is a function σ : Runsfin → R⊕× A, such that if Last(r) = s ∈ S and σ(r) = τ

then s τ−→ s′. We write Σ for the set of strategies. A run according to a strategy σ from a state
s ∈ S is the unique run Run(s, σ) = 〈s0, τ1, s1, τ2, . . .〉, such that s0 = s, and for every i ≥ 1,
we have σ(Runi(s, σ)) = τi+1, where Runi(s, σ) = 〈s0, τ1, s1, . . . , si−1, τi, si〉.

We say that a strategy σ is positional if for all finite runs r, r′ ∈ Runsfin, we have that
Last(r) = Last(r′) implies σ(r) = σ(r′). A positional strategy can be then represented
as a function σ : S → R⊕ × A, which uniquely determines the strategy σ∞ ∈ Σ as
follows: σ∞(r) = σ(Last(r)), for all finite runs r ∈ Runsfin. We write Π for the sets of
positional strategies.

3.3. Some Properties of Regions
Let us recall that a clock region is an equivalence class of the indistinguishability-by-clock-
constraints relation, while a region is a pair of a location and a clock region. We write R
for the set of regions of a timed automaton T . In this section we discuss some properties
of regions and we begin by defining fractional signature and cellular signature of a clock
valuation.

3.3.1. Fractional Signature and Cellular Signature

For a clock valuation ν we define its fractional signature HνI to be the sequence (f0, f1, . . . , fm),
such that f0 = 0, fi < f j if i < j, for all i, j ≤ m, and f1, f2, . . . , fm are all the non-zero

3.3. SOME PROPERTIES OF REGIONS 54

fractional parts of clock values in the clock valuation ν. In other words, for every i ≥ 1,
there is a clock c, such that *ν(c)+ = fi, and for every clock c ∈ C, there is i ≤ m, such that
*ν(c)+ = fi. Let (f0, f1, . . . , fm) be the fractional signature HνI. Then the cellular signature LνM
of a clock valuation ν is defined to be the partition (D0, D1, . . . , Dm) of the set C of clocks,
such that Di = {c ∈ C : *ν(c)+ = fi}, for all i ≤ m. We then define Cell(ν, c) to be the
number i such that c ∈ Di.

EXAMPLE 3.3.1 (fractional and cellular signatures). Let us consider clock valuations ν =
{x = 1.2, y = 2.3, z = 1.333} and ν′ = {x = 1.2, y = 0, z = 1.333} from Example 3.2.1.
The fractional signature of ν is HνI = (0, 0.2, 0.3, 0.333), and the fractional signature of ν′

is HνI = (0, 0.2, 0.333). The cellular signature of ν is LνM = (∅, {x}, {y}, {z}), while the
cellular signature of ν′ is Lν′M = ({y}, {x}, {z}).

An equivalent definition of a clock region is given in terms of cellular signature: a clock
region is a pair (α, D), where α is a corner and D is a cellular signature. For a clock valuation
ν ∈ VC, we write [ν] for the clock region (bνc, LνM).

EXAMPLE 3.3.2. We can write the clock region of the clock valuation ν = {x = 1.2, y =
2.3, z = 1.333} as ({x = 1, y = 2, z = 1}, (∅, {x}, {y}, {z})). Clock region P2 from
Figure 3.3 can be written as ({x = 0, y = 0}, (∅, {y}, {x})), while the clock region P3 can be
written as ({x = 1, y = 0}, ({x}, {y})).

3.3.2. Thick and Thin Regions

For R, R′ ∈ R, we say that R′ is in the future of R, or that R is in the past of R′, if for all s ∈ R,
there is s′ ∈ R′, such that s′ is in the future of s; we then write R −→∗ R′. We say that R′ is the
time successor of R if R −→∗ R′, R 6= R′, and for every R′′ ∈ R, we have that R −→∗ R′′ −→∗ R′

implies R′′ = R or R′′ = R′; we then write R −→+1 R′ or R′ ←−+1 R. Similarly, for R, R′ ∈ R,
we write R a−→ R′ if there is s ∈ R, and there is s′ ∈ R′, such that s a−→ s′.

We say that a region R ∈ R is thin if for every s ∈ R and every ε > 0, we have that
[s] 6= [s + ε]; other regions are called thick. We writeRThin andRThick for the sets of thin and
thick regions, respectively. Note that if R ∈ RThick then for every s ∈ R, there is an ε > 0,
such that [s] = [s + ε]. Observe also, that the time successor of a thin region is thick, and
vice versa.

Another noteworthy property of a thin region is that for every thin region R ∈ RThin
there is a clock c ∈ C and a nonnegative integer b ∈ N+ such that for every state s ∈ R
we have that s(c) = b. In other words if (D0, D1, . . . , Dm) is the cellular signature of a thin
region then D0 is nonempty.

EXAMPLE 3.3.3. Let ` be a location of a timed automaton with two clocks x and y and bound
K = 2. The clock regions of this timed automaton are shown in Figure 3.3. The region
(`, P2) and the region (`, P3) are in the future of the region (`, P1). The region (`, P2) is the
time successor of the region (`, P1), and the region (`, P3) is the time successor of the region
(`, P2). The regions (`, P0), (`, P1) and (`, P3) are thin regions, while the region (`, P2) is a
thick region. Let us consider the regions (`, P1), (`, P2), and (`, P3) in their cellular signature

3.4. EXTENSIONS OF TIMED AUTOMATA 55

form:
(`, P1) = (`, ({x = 0, y = 0}, ({y}, {x}))),

(`, P2) = (`, ({x = 0, y = 0}, (∅, {y}, {x}))), and

(`, P3) = (`, ({x = 1, y = 0}, ({x}, {y}))).

Notice how the corner and the cellular signature of a region changes as it evolves in time.

3.3.3. Time-Abstract Bisimulation

DEFINITION 3.3.4 (Time-Abstract Bisimulation [Bou09]). A relation B ⊆ S× S defined over
the set of states of a timed automata is a time-abstract bisimulation if for every pair of states
s1, s2 ∈ S such that (s1, s2) ∈ B, for every nonnegative real number t1 ∈ R⊕, and every
action a ∈ A such that s1

a−→t1 s′1, there exists a nonnegative real number t2 ∈ R⊕ such that
s2

a−→t2 s′2 and (s′1, s′2) ∈ B.

Alur and Dill proved the following fact about the region equivalence relation.

LEMMA 3.3.5. [AD90] Region equivalence relation is a time-abstract bisimulation.

3.4. Extensions of Timed Automata
The extensions of timed automata which are relevant to this thesis are priced timed
automata and timed game automata.

3.4.1. Priced Timed Automata

Priced timed automata are extensions of timed automata and are useful in modelling opti-
mal budgeting and scheduling problems [BFH+01, BBL08, AM01] for real-time systems.

DEFINITION 3.4.1 (Priced Timed Automata). A priced timed automaton (T , π) consists of
a timed automaton T and a price function π : S × R⊕ × A → R. For every state
s ∈ S and every timed move (t, a) ∈ R⊕ × A, the price function π determines the
price π(s, t, a) of taking the timed move (t, a) from state s, i.e., the price of the transition
(s, (t, a), Succ(s, (t, a))).

Linearly-priced timed automata [BFH+01], also known in the literature as weighted
timed automata [ALTP01, BBBR07, ABM04], augment timed automata with price informa-
tion, such that the price of waiting in a location is proportional to the waiting time, hence
the name linearly-priced timed automata.

DEFINITION 3.4.2 (Linearly-Priced TA). A linearly-priced timed automaton (T , p) consists of
timed automaton T , and a price labelling function p : L ∪ A → R that assigns a price rate
p(`) to every location ` ∈ L, and a price p(a) to every action a. A linearly-priced timed
automaton (T , p) is a priced timed automaton (T , π) such that for every state s = (`, ν)
and every timed move (t, a) we have π(s, (t, a)) = p(`) · t + p(a).

3.4. EXTENSIONS OF TIMED AUTOMATA 56

Linearly-priced timed automata are useful in modelling scheduling problems of real-
time systems where the price-per-time-unit curve of every resource in the system is linear,
i.e., the price-rate of every resource is constant. In practice, however, price-per-time-unit
curve of resources can be non-linear—in particular convex or concave. Convex price-per-
time-unit functions arise in the situations where price-rate of a resource is non-decreasing
with time (e.g. overtime labour), while concave price-per-time-unit functions arise if the
price-rate is non-increasing (e.g. price of hiring an equipment for a short duration). For a
detailed discussion on the importance of convex and concave price functions in scheduling
problems, we refer the reader to Falk and Horowitz [FH72].

Since linearly-priced timed automata are inadequate to model such systems, we pro-
pose generalisations of linearly-priced timed automata to concavely-priced and convexly-
priced timed automata. Unlike for linearly-priced timed automata, we do not specify
explicitly how the price function π : S×R⊕ × A is represented; for conceptual simplicity
it is convenient to think of it as an oracle or a computational black box. For the definitions
and properties of concave functions and K-continuity (or Lipschitz-continuity with constant
K), we refer the reader to Appendix B.

DEFINITION 3.4.3 (Concavely-Priced Timed Automata). A concavely-priced timed automaton
(T , π, K) is a priced timed automaton (T , π) with a constant K > 0, such that for all actions
a ∈ A and for all regions R, R′ ∈ R, the function πa

R,R′ : (s, t) 7→ π(s, t, a) is concave and
K-continuous2 on DR,R′ = {(s, t) ∈ S×R⊕ : s ∈ R and (s + t) ∈ R′}.

A convexly-priced timed automaton is defined in an analogous manner. Notice that
every linearly-priced timed automaton is both a concavely-priced timed automaton and
a convexly-priced timed automaton. To study price-per-reward optimisation, we need a
dual-priced timed automata, and for this purpose we define concave price-reward timed
automata.

DEFINITION 3.4.4 (Concave Price-Reward Timed Automata). A concave price-reward timed
automaton (T , π, $, K) is a timed automaton T with price and reward functions π, $: S ×
R⊕ × A → R, and a constant K > 0 such that for all actions a ∈ A and for all regions
R, R′ ∈ R, the functions (s, t) 7→ π(s, t, a) and (s, t) 7→ $(s, t, a) are K-continuous, and
concave and convex, respectively, on {(s, t) ∈ S×R⊕ : s ∈ R and (s + t) ∈ R′}.

We require the following assumption regarding the divergence of reward in a price-
reward timed automaton.

ASSUMPTION 3.4.5 (Regional Non-Zenoness Assumption on Reward). A timed automaton
is regionally non-Zeno 3 with respect to $, i.e., there exists a positive real number k such that
for every run r = 〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ Runsfin, with [s0] = [sn], (i.e., such that the
run r forms a cycle in the finite region graph of the the timed automaton), we have that
∑n

i=1 $(si−1, τi) ≥ k.

2If the timed automaton is bounded and πa
R,R′ is concave, then such a K exists without loss of generality.

3This assumption is similar to the structural non-Zenoness assumption [Tri99]. While structural non-Zeno
assumption concerns cycles of control graph of locations and transitions, regional non-Zeno assumption is less
restrictive and requires non-Zeno rewards in cycles of region graph.

3.4. EXTENSIONS OF TIMED AUTOMATA 57

Such assumptions are standard for price-per-reward optimisation problems on finite
graphs (see Assumption 2.1.4) and timed automata (Bouyer et al. [BBL04]).

A convex price-reward timed automaton is defined in an analogous manner.
In Chapter 4 we discuss minimisation problems on concavely-priced timed automata

and concave price-reward timed automata. The treatment for maximisation problems on
convexly-priced timed automaton and convex price-reward timed automata is similar and
hence omitted.

3.4.2. Games on Timed Automata

Optimal controller synthesis of real-time open system (assuming adversarial environment)
can be specified as two-player zero-sum games on timed automata. Broadly speaking, there
are two different ways to specify a game arena on a timed automaton: turn based games—
specified by a partition of the set of locations between the two players, and concurrent
games—specified by a partition of the set of actions between the two players.

3.4.2.1. Turn Based Games

DEFINITION 3.4.6 (Timed Game Automata—Turn Based). A timed game automaton is a tuple
Γ = (T , LMin, LMax), where:

– T = (L, C, S, A, E, δ, ξ, F) is a timed automaton,
– LMin ⊆ L is the set of locations controlled by player Min, and
– LMax ⊆ L is the set of locations controlled by player Max.

We require that the sets LMax and LMin form a partition of the set of locations L.

A play starts at a state s0 ∈ S. If s0 ∈ Lp, for p ∈ {Max, Min }, then player p chooses a
valid timed move (t1, a1) and s1 = Succ(s0, (t1, a1)) becomes the new current state. When
this happens then we say that player p has made a timed move from the current state.
Players keep making timed moves in this way indefinitely, thus forming an infinite run
r = 〈s0, τ1s1, τ2, . . .〉 of the timed automaton.

A strategy for Min is a function µ : Runsfin → A×R⊕, such that if Last(r) = s ∈ SMin

and µ(r) = τ then s τ−→ s′, where s′ = Succ(s, τ). Similarly, a strategy for player Max is a
function χ : Runsfin → A×R⊕, such that if Last(r) = s ∈ SMax and χ(r) = τ then s τ−→ s′,
where s′ = Succ(s, τ). We write ΣMin for the set of strategies for player Min, and we write
ΣMax for the set of strategies for player Max.

If players Min and Max use strategies µ and χ, resp., then the (µ, χ)-run from a state s
is the unique run Run(s, µ, χ) = 〈s0, τ1, s1, τ2, . . .〉, such that s0 = s, and for every i ≥ 1, if
si ∈ SMin, or si ∈ SMax, then µ(Runi(s, µ, χ)) = τi+1, or χ(Runi(s, µ, χ)) = τi+1, resp., where
Runi(s, µ, χ) = 〈s0, τ1, s1, . . . , si−1, τi, si〉.

We say that a strategy µ for Min is positional if for all finite runs r, r′ ∈ Runsfin, we
have that Last(r) = Last(r′) implies µ(r) = µ(r′). A positional strategy for player Min
can be then represented as a function µ : SMin → A×R⊕, which uniquely determines the
strategy µ∞ ∈ ΣMin as follows: µ∞(r) = µ(Last(r)), for all finite runs r ∈ Runsfin. Positional

3.4. EXTENSIONS OF TIMED AUTOMATA 58

strategies for player Max are defined and represented in the analogous way. We write ΠMin
and ΠMax for the sets of positional strategies for player Min and for player Max, respectively.

3.4.2.2. Concurrent Games

Minor variants of the following timed game automata are considered in literature [AM99,
BHPR07, ABM04].

DEFINITION 3.4.7 (Timed Game Automata [AM99]—Concurrent Games). A timed game
automaton is a tuple (L, C, S, AMin, AMax, ε, E, δ, ξ, F), where

– L is a finite set of locations,
– C is a finite set of clocks,
– S ⊆ L× VC is a set of states,
– AMin is a finite set actions controlled by player Min,
– AMax is a finite set actions controlled by player Max,
– ε is a special empty action,
– E : AMin ∪ AMax → 2S is an action enabledness function,
– δ : L× Aε

Min × Aε
Max → L is a transition function,

– ξ : Aε
Min × Aε

Max → 2C is a clock reset function, and
– F ⊆ S is a set of final states.

Here Aε
Min and Aε

Max stand for AMin ∪ {ε} and AMax ∪ {ε}, respectively. It is required that
S, F, and E(a) for all a ∈ A, are zones.

Starting from some state s0 ∈ S both players choose timed moves τn ∈ R⊕ × AMin and
τx ∈ R⊕ × AMax simultaneously; the next state of the system is determined by their joint
action and is given by the successor function Succ : S×R⊕ × AMin ×R⊕ × AMax → S in
the following manner:

Succ((`, ν), (tn, an), (tx, ax)) =


(δ(`, an, ε), Reset(ν + tn, ξ(an, ε))) if tn < tx

(δ(`, ε, ax), Reset(ν + tx, ξ(ε, ax))) if tx < tn

(δ(`, an, ax), Reset(ν + t, ξ(an, ax))) if t = tx = tn.

The play then evolves to the resulting state and the players continue to play indefinitely
to form an infinite run of the timed automaton. The strategies for the players can be defined
in a straightforward manner.

3.4.2.3. A Case for Turn-based Games

Arguably, concurrent games can be used to model a larger class of open real-time systems
than turn based games. However, in this thesis, we focus our attention to turn-based games.
Turn based games are simple to analyse using dynamic programming techniques, and are
a good first step in establishing effective techniques for solving competitive optimisation
on timed automata. Another reason for choosing the turn-based model is that concurrent
games on timed automata often lack determinacy (see, e.g., de Alfaro et al. [dAFH+03]).

3.5. COMPETITIVE OPTIMISATION ON TIMED AUTOMATA 59

3.5. Competitive Optimisation on Timed Automata
In this section we define competitive optimisation problems on timed automata which are
of interest in this thesis. Since some of these problems are known by different names in the
literature, in this section we set a uniform terminology for these problems.

3.5.1. The Noncompetitive Case

In this thesis we consider minimisation problems for various cost functions on concavely-
priced timed automata. Henceforth we reserve the term optimisation, optimum, and
optimal to refer to minimisation, minimum, and minimal, respectively. Fix a timed
automaton T , price and reward functions π, $: S × R⊕ × A → R, and an initial state
s ∈ S.

A cost function is a function which takes an infinite run and returns its cost. Given a
cost function Cost : Runs → R we define the optimal cost function Cost∗ : S → R in the
following way:

Cost∗(s) = inf
r∈Runs(s)

{
Cost(r)

}
= inf

σ∈Σ

{
Cost(Run(s, σ))

}
.

The optimisation problem for the cost function Cost is to compute the optimum cost Cost∗(s)
of a given state s ∈ S. The decision version of the optimisation problem is as follows: “given
a timed automaton T , a state s ∈ S and a number D ∈ Q, determine whether Cost∗(s) ≤ D.”

We say that a strategy σ∗ ∈ Σ is optimal for the cost function Cost if we have that
Cost(Run(s, σ∗)) = Cost∗(s). For a given ε > 0, we say that a strategy σ ∈ Σ is ε-optimal if
we have that Cost(Run(s, σ)) ≤ Cost∗(s) + ε.

Let r = 〈s0, τ1, s1, τ2, . . .〉 ∈ Runs be a run of the timed automaton T , where τi = (ti, ai)
for every positive integer i. Moreover, for π and $, the price and reward functions,
respectively, of a priced (or price-reward) timed automaton, and for every positive integer n,
we define: Tn(r) = ∑n

i=1 ti, πn(r) = ∑n
i=1 π(si−1, τi), and $n(r) = ∑n

i=1 $(si−1, τi).
The following list of cost functions gives rise to a number of corresponding optimisa-

tion problems.
(1) Reachability time. The reachability-time cost function is defined in the following

way: for every run r ∈ Runs we have

RT(r) =

{
TN(r), if N = Stop(r) < ∞,

∞, otherwise.

(2) Reachability price. The reachability-price cost function is defined in the following
way: for every run r ∈ Runs we have

RP(r) =

{
πN(r), if N = Stop(r) < ∞,

∞, otherwise.

(3) Discounted time. The discounted-time cost function is defined in the following
way: for every run r ∈ Runs and every discount factor λ ∈ (0, 1) we have

DT(λ)(r) = (1− λ)
∞

∑
i=1

λi−1ti.

3.5. COMPETITIVE OPTIMISATION ON TIMED AUTOMATA 60

(4) Discounted price. The discounted-price cost function is defined in the following
way: for every run r ∈ Runs and every discount factor λ ∈ (0, 1) we have

DP(λ)(r) = (1− λ)
∞

∑
i=1

λi−1π(si−1, τi).

(5) Average time. The average-time cost function is defined in the following way: for
every run r ∈ Runs we have

AT(r) = lim sup
n→∞

Tn

n
.

(6) Average price. The average-price cost function is defined in the following way: for
every run r ∈ Runs we have

AP(r) = lim sup
n→∞

πn(r)
n

.

(7) Price-per-time average. The price-per-time average cost function is defined in the
following way: for every run r ∈ Runs we have

PTAvg(r) = lim sup
n→∞

πn(r)
Tn(r)

.

(8) Price-per-reward average. The price-per-reward average cost function is defined in
the following way: for every run r ∈ Runs we have

PRAvg(r) = lim sup
n→∞

πn(r)
$n(r)

.

In Chapter 4 we show (Theorem 4.2.1) that for arbitrary initial state s ∈ S, the
optimisation problem for all these cost functions on a concavely-price timed automata or
concave price-reward timed automata, as appropriate, is PSPACE-complete.

3.5.2. Competitive Optimisation

Fix a timed game automaton Γ = (T , LMin, LMax), price and reward functions π, $: S ×
R⊕ × A→ R, and an initial state s ∈ S. Let ΣMin and ΣMax be the set of strategies for player
Min and player Max, respectively. In the context of games we sometimes refer to a run as a
play of the game.

DEFINITION 3.5.1 (Cost Game on a Timed Game Automaton). A cost game on a timed game
automaton is a tuple (Γ, CostMin, CostMax), where:

– Γ = (T , LMin, LMax) is a timed game automaton,
– CostMin : Runs → R is a payoff function for player Min which gives the amount

Min loses in a play, and
– CostMax : Runs→ R is the payoff function for player Max, which gives the amount

Max wins in a play.

3.5. COMPETITIVE OPTIMISATION ON TIMED AUTOMATA 61

A cost game is called zero-sum if we have that CostMin(r) = CostMax(r) for every play r
of the game.

Payoff functions CostMax : Runs → R and CostMin : Runs → R naturally gives rise to
the payoff functions CostMax : S× ΣMin × ΣMax → R and CostMin : S× ΣMin × ΣMax → R

in the following way: for strategies µ ∈ ΣMin and χ ∈ ΣMax of respective players and
a state s ∈ S we have CostMin(s, µ, χ) = CostMin(Run(s, µ, χ)) and CostMax(s, µ, χ) =
CostMax(Run(s, µ, χ)).

The upper value of a cost game at the state s is defined as the maximum loss that player
Min can secure, in a play starting at the state s, irrespective of the strategies used by player
Max. Similarly the lower value of a cost game at the state s is defined as the minimum win
that player Max can secure, in a play starting at the state s, irrespective of the strategies used
by player Min. Formally we define the upper value Val

Γ
(s) and the lower-value ValΓ(s) of

the game at the state s by as follows:

Val
Γ
(s) = inf

µ∈ΣMin
sup

χ∈ΣMax

CostMin(s, µ, χ), and ValΓ(s) = sup
χ∈ΣMax

inf
µ∈ΣMin

CostMax(s, µ, χ).

From Proposition 1.2.4 we know that the lower value of a game at a state is always
less than the upper value of the game at that state, i.e., for every state s ∈ S the inequality
ValΓ(s) ≤ Val

Γ
(s) always holds.

A cost game is determined if for every state s ∈ S, we have ValΓ(s) = Val
Γ
(s). We then

say that the value of the game exists. We write ValΓ(s) for this number and we call it the
value of the game at the state s.

The strategies µ∗ ∈ ΣMin and χ∗ ∈ ΣMax are optimal for the respective players, if for
every state s ∈ S we have that

sup
χ∈ΣMax

CostMin(s, µ∗, χ) = Val
Γ
(s), and inf

µ∈ΣMin
CostMin(s, µ∗, χ) = ValΓ(s).

We say that a game is positionally determined if players have positional optimal strate-
gies.

If the game is determined then the competitive optimisation problem is to compute
value of the game Val(s) for a give state s ∈ S. The corresponding decision problem is given
a cost game (Γ, CostMin, CostMax), a state s ∈ S and a number D ∈ Q, determine whether
ValΓ(s) ≤ D.

The following cost games on timed automata are of interest.
(1) Reachability game. A reachability game (Γ, ReachMin, ReachMax) has the following

payoff functions:

ReachMin(r) = ReachMax(r) =

{
N if N = Stop(r) < ∞
∞ otherwise.

(2) Reachability-time game. A reachability-time game (Γ, RTMin, RTMax) has the follow-
ing payoff functions:

RTMin(r) = RTMax(r) =

{
TN(r) if N = Stop(r) < ∞
∞ otherwise.

3.5. COMPETITIVE OPTIMISATION ON TIMED AUTOMATA 62

(3) Reachability-price game. A reachability-price game (Γ, RPMin, RPMax) has the follow-
ing payoff functions:

RPMin(r) = RPMax(r) =

{
πN(r) if N = Stop(r) < ∞
∞ otherwise.

(4) Discounted-time game. For a given discount factor λ ∈ (0, 1), a discounted-time
game (Γ, DTMin(λ), DTMax(λ)) has the following payoff functions:

DTMin(λ)(r) = DTMax(λ)(r) = (1− λ)
∞

∑
i=1

λi−1ti.

(5) Discounted-price game. For a given discount factor λ ∈ (0, 1), a discounted-price
game (Γ, DPMin(λ), DPMax(λ)) has the following payoff functions:

DPMin(λ)(r) = DPMax(λ)(r) = (1− λ)
∞

∑
i=1

λi−1π(si−1, τi).

(6) Average-time game. An average-time game (Γ, APMin, APMax) has the following
payoff functions:

ATMin(r) = lim sup
n→∞

Tn(r)
n

and ATMax(r) = lim inf
n→∞

Tn(r)
n

.

(7) Average-price game. An average-price game (Γ, APMin, APMax) has the following
payoff functions:

APMin(r) = lim sup
n→∞

πn(r)
n

and APMax(r) = lim inf
n→∞

πn(r)
n

.

(8) Price-per-time average game. In a similar manner, a price-per-time average game
(Γ, PTAvgMin, PTAvgMax) has the following payoff functions:

PTAvgMin(r) = lim sup
n→∞

πn(r)
Tn(r)

and PTAvgMax(r) = lim inf
n→∞

πn(r)
Tn(r)

.

(9) Price-per-reward average game. In a similar manner, a price-per-reward average game
(Γ, PRAvgMin, PRAvgMax) has the following payoff functions:

PRAvgMin(r) = lim sup
n→∞

πn(r)
$n(r)

and PRAvgMax(r) = lim inf
n→∞

πn(r)
$n(r)

.

In this thesis we study reachability-time games and average-time games in Chapter 5
and Chapter 6, respectively, and show that these game are determined (Theorem 5.1.2
and Theorem 6.4.2). We also prove that decision problems corresponding to these games
are EXPTIME-complete for timed automata with at least two clocks (Theorem 5.5.4 and
Theorem 6.5.1).

Reachability games were shown to be EXPTIME-complete for timed automata by
Henzinger and Kopke [HK99]. In Chapter 5 we strengthen this results by showing
that reachability games are EXPTIME-hard for timed automata with at least two clocks
(Theorem 5.5.3).

3.6. A NOTE ON ZENO RUNS 63

`1 `2

x ≤ 1, b, {}

true, a, {}

Safe Unsafe

FIGURE 3.4. A Zeno Timed Automaton.

3.6. A Note on Zeno Runs
The syntax of timed automata permits the specification of physically impossible behaviours
of a real-time system. For instance, it is possible that a run of a timed automaton performs
infinitely many actions in a finite amount of time. Such runs are called Zeno runs. A run
r = 〈s0, (t1, a1), s1, (t2, a2), s2, . . .〉 ∈ Runs of a timed automaton T is called a Zeno run if
Time(r) = ∑∞

i=1 ti is finite. We say that a timed automaton is Zeno if some of its runs are
Zeno. For a given initial state s ∈ S we say that a strategy σ ∈ Σ is Zeno is Run(s, σ) is a
Zeno run.

The practical applications of competitive optimisation on timed automata are in
optimal scheduling and optimal controller synthesis. If, for some competitive optimisation
problem, the optimal strategy for player Min (controller) is a Zeno strategy then it is
impossible to implement such a controller in practice.

For example, let us consider the timed automaton in Figure 3.4. The timed automaton
has two location `1, where the system is safe and `2, where system is unsafe. Notice that this
automaton is Zeno, as from location `1 the action a may be executed infinitely many times
within a unit of time. In particular, starting from the state s0 = (`1, 0) the timed automaton
allows the following Zeno run:

r = 〈(`1, 0), (1/2, b), (`1, 1/2), (1/4, b), (`1, 3/4), . . . , (`1, 1− (1/2i)), (1/2i+1, b), . . .〉.

This run is Zeno since Time(r) = ∑∞
i=1 1/2i = 1. Let us consider the following verification

problem: decide whether this automaton is “safe” with respect to the start state s0, i.e.,
decide whether there exists a strategy such that we avoid ever reaching the unsafe state `2?
The answer to this question is both yes and no! Yes, because we can avoid reaching the
unsafe state `2 by following the run r; and no, because executing such a run is tantamount
to executing infinitely many actions in a finite amount of time (one time unit), which is
generally considered to be physically impossible.

3.6.1. Avoiding Zeno Strategies

One way of avoiding problems with Zeno strategies is to put syntactical constraints on
timed automata. For example, if we restrict the timed automata so that for every run r =
〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ Runsfin, such that s0 = (`0, ν0), sn = (`n, νn), and `0 = `n (i.e., such
that the run r forms a cycle in the finite graph of the locations and transitions of the timed
automaton), we have that ∑n

i=1 ti ≥ 1. Compliance to such a restriction can be insured
by assuming that the timed automaton under consideration satisfies the following, easily
verifiable, property:

3.7. ABSTRACTIONS OF TIMED AUTOMATA 64

DEFINITION 3.6.1 (Structural Non-Zenoness Assumption [BGS00]). A timed automaton is
structurally non-Zeno if in every cycle in the finite graph of locations and transitions at least
one clock is reset, and it is tested against some positive lower bound.

Asarin and Maler [AM99] used this assumption to solve reachability-time games on
timed automata. Another related assumption that appears in some publications [Tri99] is
strong non-Zenoness assumption, which states that every cycle in the control graph of timed
automata “spends” time. Note that structural non-Zenoness implies strong non-Zenoness.

Another way to avoid implementation issues with Zeno strategies is to forbid [MPS95]
the controller (or the player Min) to use Zeno strategies, while the environment (or player
Max) can use Zeno strategies to its advantage. Such restrictions, however, may result in
sub-optimal strategies.

Henzinger et al. [dAFH+03, BHPR07] proposed an elegant way to handle the problems
of Zeno strategies by introducing timed games where players are penalised if they use Zeno
strategies. In their work a player can win a game only by using the so-called receptive
strategies—strategies where the player is not responsible for a Zeno run. Unfortunately
receptive strategies can also be physically unimplementable. For instance consider a
strategy which suggest to a player to take actions in the following time sequence (example
taken from [CHR02]):

〈1, 1
1
2

, 2, 2
1
4

, 3, 3
1
8

, 4, 4
1

16
, ...〉.

Notice that although this strategy is non-Zeno, it can be implemented only if the soft-
ware/hardware with infinite precision is available. However, one can argue that if such
hardware/software is indeed available, even Zeno strategies are implementable.

In this thesis we do not require the timed automata to be non-Zeno. As a consequence,
given a Zeno timed automaton as input, our algorithms may return unrealistic Zeno optimal
strategies for players. One related restriction (Assumption 3.4.5) is on the divergence of
reward function in price-reward timed automata. However, note that such an assumption
(Assumption 2.1.4) on reward is required even for the weighted finite graphs.

3.7. Abstractions of Timed Automata
In this section we review some abstractions of timed automata, and comment on their
suitability to solve competitive optimisation problems.

3.7.1. Region Automata and Region Graphs

DEFINITION 3.7.1 (Region Automata [AD90]). The region automaton TRA = (R,M,RF) of
a timed automaton T is an edge-labelled finite graph with final vertices, where:

– the setR of regions of T is the set of vertices;
– the labelled edge relationM⊆ R×R× A×R is defined by

M = {(R, R′′, a, R′) : R −→∗ R′′ a−→ R′}; and

– the set of final vertices RF ⊆ R is such that for every R ∈ RF we have that R ⊆ F
and for every R ∈ R \RF we have R ∩ F = ∅.

3.7. ABSTRACTIONS OF TIMED AUTOMATA 65

By counting the total number of cellular signatures we get an upper bound on the
number of regions in a (K-bounded) timed automaton as |L| · d! · (2K + 2)d, where d is
the number of clocks.

PROPOSITION 3.7.2 (Size of the region automata [AD94]). The size—number of vertices
and edges—of the region automaton TRA of a timed automaton T is exponential in the size
of the timed automaton.

Region automata are useful abstractions to solve, among others, the (qualitative) reach-
ability problems and (qualitative) reachability games on timed automata. The following
proposition is immediate thanks to the time-abstract bisimulation property (Lemma 3.3.5)
of the region equivalence relation.

PROPOSITION 3.7.3. In a timed automaton T a final state is reachable from a state s if and
only if a final vertex is reachable from the vertex [s] in the corresponding region automaton
TRA.

The semantics of a region automaton TRA is given by the region graph T̃ .

DEFINITION 3.7.4 (Region Graph). The region graph of a timed automaton T is a labelled
transition system T̃ = (S̃, Ẽ, S̃F), where:

– S̃ is the set of states defined as S̃ = {(s, R) ∈ S×R : s ∈ R};
– Ẽ is the labelled transition relation defined as

Ẽ = {((s, R), (t, R′′, a), (s′, R′)) ∈ S̃× (R⊕ ×R× A)× S̃

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ R′′}; and

– S̃F ⊆ S̃ is the set of final states defined as S̃F = {(s, R) ∈ S̃ : R ⊆ F}.

The timed automaton T and the corresponding region graph T̃ are equivalent in the
following sense.

PROPOSITION 3.7.5. Let T be a timed automaton and T̃ = (S̃, Ẽ, S̃F) be its region graph.
For every s, s′ ∈ S and timed action (t, a) ∈ R⊕ × A, we have s a−→t s′ if and only if
((s, [s]), (t, [s + t], a), (s′, [s′])) ∈ Ẽ.

Region automata abstract away the timing information and hence they are not suitable
for solving quantitative optimisation problems. While investigating the average price-per-
reward problem on timed automata, Bouyer et. al [BBL04] introduced a refinement of the
region automaton abstraction, which they called the corner-point abstraction.

3.7.2. Corner-Point Abstraction

The main idea behind the corner-point abstraction is as follows: if the initial state is a corner
state then nearly optimal runs for average price-per-reward problem consist of time delays
very close to integers. A corner-point abstraction is a finite edge-labelled graph whose
vertices are corner states lying in the topological closure of the regions. Since corner-point

3.7. ABSTRACTIONS OF TIMED AUTOMATA 66

(0, 0) (1, 1) (1, 1)

(1, 0)

(1, 1)

t = 1 t = 0 t = 0

a

reset clock y

time delay

FIGURE 3.5. Evolution of regions in a corner-point abstraction of a timed
automaton (the idea of this figure is from Bouyer [Bou06]).

abstraction ignores all time delays except the integer ones, it coincides with digital clock
semantics considered by Henzinger et al. [HMP92].

Before we formally define corner-point abstraction we need to introduce the concept of
boundary of a region. We say that s ∈ Q is in the boundary of the region 4 R, and we write
s ∈ bd(R), if one of the following conditions hold:

– R ∈ RThin and s ∈ R; or
– R ∈ RThick and there exists a region R′ such that R′ −→+1 R and s ∈ R′; or
– R ∈ RThick and there exists a region R′ such that R′ ←−+1 R and s ∈ R′;

We are now in position to define corner-point abstraction.

DEFINITION 3.7.6 (Corner-point Abstraction [Bou09]). A corner-point abstraction TCP =
(V, E, VF) of a timed automaton T is a finite edge-labelled graph, where:

– V is a finite set of vertices defined as

V = {(s, R) ∈ Q×R : s = (`, ν) ∈ clos(R) and bνc = ν}
(by bνc = ν we mean that ν is a corner);

– E is the labelled edge relation defined as

E = {((s, R), (t, R′′, a), (s′, R′)) ∈ V ×R⊕ ×R× A×V

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ bd(R′′)};
– VF is the set of final vertices defined as VF = {(s, R) ∈ V : R ⊆ F};

Observe that ((s, R), (t, R′′, a), (s′, R′)) ∈ E implies that t is a nonnegative integer and
(s + t, R′′) is a vertex of TCP. An example run of a corner-point abstraction is shown in
Figure 3.5.

Using the corner-point abstraction, Bouyer et al. [BBL04] showed that the price-per-
reward average optimisation problem for a linearly-priced timed automaton is in PSPACE
if the initial state is a corner state. Recently, Bouyer et al. [BBBR07] also used corner-point
abstraction to solve the reachability-price optimisation problem for linearly-priced timed
automata, again with the restriction that the initial state is a corner state.

4Observe that it is not the boundary of R in topological sense.

3.7. ABSTRACTIONS OF TIMED AUTOMATA 67

3.7.3. Boundary Region Automaton and Boundary Region Graph

Our original motivation for introducing the boundary region automaton was to solve the
reachability price and price-per-reward average optimisation problems on linearly-priced
timed automata with arbitrary initial states, i.e., including non-corner states. The assump-
tion that nearly optimal runs for these two optimisation problems consist of time delays very
close to nonnegative integers is incorrect if the initial state is a non-corner state. We observed
that if the initial state is an arbitrary state, a more general invariant holds— nearly optimal
runs for these two optimisation problems consist of waiting until very close to the boundary
of some region before taking an action. We call such timed actions boundary timed actions and
we denote them by a triple (b, c, a) ∈ JKKN×C× A which represents the following symbolic
timed action: take the action a when the value of clock c is “very close” to b.

DEFINITION 3.7.7 (Boundary Timed Actions). Define the finite set of boundary timed actions
A = JKKN × C× A. For s ∈ Q and α = (b, c, a) ∈ A, we define t(s, α) = b− s(c) if s(c) ≤ b,
and t(s, α) = 0 if s(c) > b; and we define Succ(s, α) to be the state s′ = Succ(s, τ(α)), where

τ(α) = (t(s, α), a); we then write s α−⇀ s′. We also write s α−→ s′ if s
τ(α)−−→ s′.

Note that if α ∈ A and s α−→ s′ then [s′] ∈ RThin. Observe that for every thin region
R′ ∈ RThin, there is a number b ∈ JKKN and a clock c ∈ C, such that for every R ∈ R in the
past of R′, we have that s ∈ R implies (s + (b− s(c)) ∈ R′; we then write R −→b,c R′. For
α = (a, b, c) ∈ A and R, R′ ∈ R, we write R α−→ R′ or R a−→b,c R′, if R −→b,c R′′ a−→ R′, for some
R′′ ∈ RThin.

Boundary Region Automata. The motivation for the boundary region automata is the
following. Let a ∈ A, s = (`, ν) ∈ R and R→∗ R′ a−→ R′′.

– If R′ ∈ RThick, then there are infinitely many t ∈ R⊕ such that s+t ∈ R′. For all
competitive optimisation problems solved in this thesis, one of the main results that
we establish is that in the state s, amongst all such t’s, for one of the boundaries of
R′, the closer ν+t is to this boundary, the ‘better’ the timed action (t, a) becomes
for that problem. However, since R′ is a thick region, the set {t ∈ R⊕ | s+t ∈ R′}
is an open interval, and hence does not contain its boundary values. Observe that
the infimum equals binf−ν(cinf) where R →binf,cinf Rinf −→+1 R′ and the supremum
equals bsup−ν(csup) where R →bsup,csup Rsup ←−+1 R′. In the boundary region
automata, we include these ‘best’ timed action through the actions ((binf, cinf, a), R′)
and ((bsup, csup, a), R′).

– If R′ ∈ RThin, then there exists a unique t ∈ R⊕ such that (`, ν+t) ∈ R′. Moreover
since R′ is a thin region there exists a clock c ∈ C and a number b ∈ N such that
R →b,c R′ and t = b−ν(c). In the boundary region automata we summarise this
‘best’ timed action from region R via region R′ through the action ((b, c, a), R′).

With this intuition in mind, let us present the definition of a boundary region automata.

3.7. ABSTRACTIONS OF TIMED AUTOMATA 68

DEFINITION 3.7.8 (Boundary Region Automaton). The boundary region automaton TBR =

(R,M̂,RF) of a timed automaton T is a finite edge-labelled graph with final vertices,
where:

– the setR of regions of T is the set of vertices;
– the labelled edge relation M̂ ⊆ R×R×A×R is such that for every boundary timed

action α = (b, c, a) ∈ A and for all R, R′, R′′ ∈ R we have that (R, R′′, α, R′) ∈ M̂, if
and only if one of the following conditions holds—
• R −→b,c R′′ a−→ R′, or
• there is region R′′′ ∈ RThin such that R −→b,c R′′′ −→+1 R′′ a−→ R′, or
• there is a region R′′′ ∈ RThin such that R −→b,c R′′′ ←−+1 R′′ a−→ R′;

– the set of final vertices RF ⊆ R is such that for every R ∈ RF we have that R ⊆ F
and for every R ∈ R \RF we have that R ∩ F = ∅.

The semantics of a boundary region automaton is given by the boundary region graph.

DEFINITION 3.7.9 (Boundary Region Graph). The boundary region graph T̂ = (Ŝ, Ê, ŜF) of a
timed automaton T is a labelled transition system, where:

– Ŝ is the set of states defined as

Ŝ = {(s, R) ∈ Q×R : s ∈ clos(R)};

– Ê is the labelled transition relation defined as

Ê = {((s, R), (t, R′′, a), (s′, R′)) ∈ Ŝ× (R⊕ ×R× A)× Ŝ

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ bd(R′′)}; and

– ŜF is the set of final vertices defined as ŜF = {(s, R) ∈ Ŝ : R ⊆ F}.
Boundary region graphs have the following property.

PROPOSITION 3.7.10. For every state in a boundary region graph T̂ = (Ŝ, Ê, ŜF), the set of
reachable states is finite.

We prove Proposition 3.7.10 by constructing such reachable subgraph of a boundary
region graph (Definition 3.7.12). Before we formally define the reachable subgraph of a
boundary region graph from a certain state (s, R), we need to introduce some concepts.

The fractional signature of a state (s, R) ∈ Ŝ of a boundary region graph is defined
as *(s, R)+ = *ν+ where s = (`, ν). A state (s = (`, ν), R) of a boundary region graph
is called a corner if its clock valuation ν is a corner. For a nonnegative integer k ≤ m
we define the k-shift of a fractional signature (f0, f1, . . . , fm) as the fractional signature
(f ′k, f ′k+1, . . . , f ′m, f ′0, . . . , f ′k−1) such that for all nonnegative integers i ≤ m we have f ′i =
* fi + 1− fk+. We say that a fractional signature (f ′0, f ′1, . . . , f ′n) is a subsequence of another
fractional signature (f0, f1, . . . , fm) if n ≤ m and for all nonnegative integers i < n we have
f ′i ≤ f ′i+1; and for every nonnegative integer i ≤ n there exists a nonnegative integer j ≤ m
such that f ′i = f j.

3.7. ABSTRACTIONS OF TIMED AUTOMATA 69

(0.3, 0) (1, 0.7) (1, 0.7)

(1, 0)

(1, 0.7)

t = 0.7 t = 0 t = 0

a

reset clock y

time delay

FIGURE 3.6. Evolution of regions in a boundary region graph of a timed automaton.

The following proposition is straightforward (see Example 3.7.14) from the definition
of fractional signatures and boundary region graphs.

PROPOSITION 3.7.11. In a boundary region graph T̂ = (Ŝ, Ê, ŜF) if a state q′ ∈ Ŝ is
reachable from a state q ∈ Ŝ then fractional signature of q′ is k-shift of a subsequence of
the fractional signature of q.

DEFINITION 3.7.12 (Reachable Sub-Graph of Boundary Region Graph). The reachable sub-
graph of a boundary region graph T̂ = (Ŝ, Ê, ŜF) from a state q ∈ Ŝ is the finite graph
T̂ q = (Ŝq, Ê, Ŝq

F), where Ŝq is the finite set of states such that q′ ∈ Ŝq if *q′+ is a k-shift of a
subsequence of *q+, and Ŝq

F = ŜF ∩ Ŝq.

From the definitions of the corner-point abstraction and the boundary region graph the
following proposition is easy to verify.

PROPOSITION 3.7.13. Let T be a timed automaton. For every corner state q ∈ Ŝ of the
boundary region graph T̂ = (Ŝ, Ê, ŜF) the reachable subgraph T̂ q is same as the corner-
point abstraction TCP.

EXAMPLE 3.7.14. A run of a boundary region graph with the initial state (`, ν0 = (0.3, 0)) is
shown in Figure 3.6. Some clock valuations reachable from this state are ν1 = (1, 0.7) and
ν4 = (1, 0). Fractional signatures of these valuations are *ν0+ = (0, 0.3), *ν1+ = (0, 0.7) and
*ν4+ = (0). Notice that *ν1+ is 1-shift of *ν0+, while *ν4+ is a subsequence of *ν0+. Compare
this figure with Figure 3.5 and you may notice that the run in Figure 3.5 is a run of boundary
region graph whose initial state is a corner state.

Boundary region automata and boundary region graphs have turned out to be useful
in solving a number of competitive optimisation problems on timed automata.

Using the boundary region graph abstraction, in Chapter 4, we show that a number
of optimisation problems, including reachability-price and price-per-reward average opti-
misation problems, for more general concavely-priced timed automata and arbitrary initial
states are decidable and PSPACE-complete.

3.7. ABSTRACTIONS OF TIMED AUTOMATA 70

In Chapter 5 we use boundary region automata to prove positional determinacy of
reachability-time games and we give an algorithm to solve reachability-time games by
solving reachability-time games on the corresponding boundary region automata.

In Chapter 6 we introduce another abstraction, called the closed region graph, whose
set of states is same as the set of states of corresponding boundary region graph, while the
transition relation is the union of the transition relations of the corresponding region graph
and boundary region graph. We use closed region graphs to argue that, at every state of a
timed automaton, the value of the average-time game is equal to the value of the average-
time game, at a corresponding state, in its boundary region graph.

The definition of the boundary region automata and the boundary region graphs
in these chapters are slightly modified to suit the problem under consideration. The
differences, however, are superficial.

Part 2

Competitive Optimisation on Timed
Automata

4
Noncompetitive Optimisation

There is no opponent.

Bruce Lee

This chapter is dedicated to the study of noncompetitive optimisation problems on
timed automata. To cover a larger class of optimisation problems we work with concavely-
priced timed automata, which are a generalisation of timed automata with price information.
We consider minimisation problems for a variety of cost functions on concavely-priced
timed automata in a uniform manner. For this purpose, we define the concept of concave-
regularity of cost functions and show that minimisation problems for concave-regular cost
functions are PSPACE-complete for timed automata with at least three clocks. Finally, we
show that reachability time, reachability price, discounted time, discounted price, average
time, average price, price-per-time average, and price-per-reward average cost functions are
concave-regular.

This chapter assumes familiarity with Lipschitz-continuous functions and their prop-
erties, convex sets, concave and convex functions, quasiconcave and quasiconvex functions,
and their properties. In Appendix B we give a short introduction to these concepts.

4.1. Concavely-Priced Timed Automata
Linearly-priced timed automata are extensions of timed automata with price information,
and optimisation problems on linearly-priced timed automata are shown to be useful in
modelling optimal scheduling and budgeting problems [AM01, Bou06, BBL08] of real-
time systems. For instance, consider a situation where we have to model an optimal
scheduling problem using a timed automaton whose different locations correspond to
different resources being consumed. If the price-per-time-unit of every resource is constant
then price function at every location is a linear function, and such a system can easily be
modelled using a linearly-priced timed automata. However, if the price-per-time-unit is
increasing or decreasing then linear prices are not adequate. To model such systems we
propose concavely-priced timed automata and convexly-priced timed automata; both are
generalisations of linearly-priced timed automata.

A concavely-priced timed automaton (T , π, K) is a priced timed automaton (T , π) with
a constant K > 0, such that for all actions a ∈ A and for all regions R, R′ ∈ R, the

72

4.2. OPTIMISATION PROBLEMS ON PRICED TIMED AUTOMATA 73

function πa
R,R′ : (s, t) 7→ π(s, t, a) is concave and K-continuous on DR,R′ = {(s, t) ∈

S × R⊕ : s ∈ R and (s + t) ∈ R′}. A convexly-priced timed automaton is defined in an
analogous manner.

A concave price-reward timed automaton (T , π, $, K) is a timed automaton T with price
and reward functions π, $: S × R⊕ × A → R, and a constant K > 0, such that for
all actions a ∈ A and for all regions R, R′ ∈ R, the functions (s, t) 7→ π(s, t, a) and
(s, t) 7→ $(s, t, a) are K-continuous, and concave and convex, respectively, on {(s, t) ∈
S × R⊕ : s ∈ R and (s + t) ∈ R′}. A convex price-reward timed automaton is defined in
an analogous manner. For technical convenience, we assume that the reward function is
regionally non-Zeno (see Assumption 3.4.5).

In this chapter we only discuss minimisation problems on concavely-priced timed
automata and concave price-reward timed automata. The discussion on maximisation
problems on convexly-priced timed automata and convex price-reward timed automata is
analogous and has been omitted. Fix a timed automaton T (L, C, S, A, E, δ, ξ, F), price and
reward functions π, $: S×R⊕ × A→ R, and a constant K > 0.

4.2. Optimisation Problems on Priced Timed Automata

Let Cost : Runs → R be a cost function that for every run r ∈ Runs determines its
cost Cost(r). We then define the minimum cost function Cost∗ : S→ R, by:

Cost∗(s) = inf
r∈Runs(s)

{
Cost(r)

}
= inf

σ∈Σ

{
Cost(Run(s, σ))

}
.

The minimisation problem for the cost function Cost is to compute the minimum cost Cost∗(s)
for a given state s ∈ S. The decision version of the optimisation problem is as follows:
“given a timed automaton T , a state s ∈ S and a number D ∈ Q, determine whether
Cost∗(s) ≤ D.”

We say that a strategy σ∗ ∈ Σ is optimal for the cost function Cost if we have that
Cost(Run(s, σ∗)) = Cost∗(s). For a given ε > 0, we say that a strategy σ ∈ Σ is ε-optimal if
we have that Cost(Run(s, σ)) ≤ Cost∗(s) + ε.

Let r = 〈s0, τ1, s1, τ2, . . .〉 ∈ Runs be a run of the timed automaton T , where τi = (ti, ai)
for every positive integer i. Moreover, for π and $, the price and reward functions,
respectively, of a priced (or price-reward) timed automaton, and for every positive integer n,
we define: Tn(r) = ∑n

i=1 ti, πn(r) = ∑n
i=1 π(si−1, τi), and $n(r) = ∑n

i=1 $(si−1, τi).
The following list of cost functions gives rise to a number of corresponding optimisa-

tion problems.

(1) Reachability price. The reachability-price cost function is defined in the following
way: for every run r ∈ Runs we have

RP(r) =

{
πN(r), if N = Stop(r) < ∞,

∞, otherwise.

4.3. REGION GRAPHS 74

(2) Discounted price. The discounted-price cost function is defined in the following
way: for every run r ∈ Runs and every discount factor λ ∈ (0, 1) we have

DP(λ)(r) = (1− λ)
∞

∑
i=1

λi−1π(si−1, τi).

(3) Average price. The average-price cost function is defined in the following way: for
every run r ∈ Runs we have

AP(r) = lim sup
n→∞

πn(r)
n

.

(4) Price-per-time average. The price-per-time average cost function is defined in the
following way: for every run r ∈ Runs we have

PTAvg(r) = lim sup
n→∞

πn(r)
Tn(r)

.

(5) Price-per-reward average. The price-per-reward average cost function is defined in
the following way: for every run r ∈ Runs we have

PRAvg(r) = lim sup
n→∞

πn(r)
$n(r)

.

The following is the main result of the chapter:

THEOREM 4.2.1. The minimisation problems for reachability price, discounted price,
average price, price-per-time average, and price-per-reward average cost functions, for
concavely-priced and concave price-reward timed automata, as appropriate, are PSPACE-
complete.

The reachability problem for timed automata can be easily reduced, in logarithmic
space, to the minimisation problems discussed above so, by Theorem 1.3.1, they are all
PSPACE-hard. In the following sections we prove that they are all in PSPACE, and hence
we establish the main Theorem 4.2.1.

The following sections are organised as follows. In Section 4.3 we revisit region graph
T̃ and boundary region graph T̂ of a timed automaton T , and introduce a few notations.
In Section 4.4 we introduce the concept of concave-regular cost functions, and prove that
minimisation problems on T for such cost functions can be reduced to corresponding
minimisation problems on T̂ . In Section 4.5 we show that reachability price, discounted
price, average price, price-per-time average, and price-per-reward average cost functions
are concave-regular.

4.3. Region Graphs
For the purpose of this chapter, we collectively refer to region graph and boundary
region graph as region graphs. In Subsections 4.3.1 and 4.3.2 we introduce region graph
and boundary region graph, respectively, of a concavely-priced timed automaton. In
Subsection 4.3.3 we define reachability price, discounted price, average price, price-per-time
average, and price-per-reward average minimisation problems on these graph.

4.3. REGION GRAPHS 75

4.3.1. Region Graph

Let us recall the definition of the region graph of a timed automaton introduced in Chapter 3.
The region graph of a timed automaton T = (L, C, S, A, E, δ, ξ, F) is a labelled transition
system T̃ = (S̃, Ẽ, S̃F), where:

– S̃ is the set of states defined as S̃ = {(s, R) ∈ S×R : s ∈ R};
– Ẽ is the labelled transition relation defined as

Ẽ = {((s, R), (t, R′′, a), (s′, R′)) ∈ S̃× (R⊕ ×R× A)× S̃

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ R′′}; and

– S̃F ⊆ S̃ is the set of final states defined as S̃F = {(s, R) ∈ S̃ : R ⊆ F}.
We say that

(
(s, R), (t, R′′, a), (s′, R′)

)
is a transition in T̃ = (S̃, Ẽ, S̃F) if we have that(

(s, R), (t, R′′, a), (s′, R′)
)
∈ Ẽ. We then also say that there is an (t, R′′, a)-transition from

state (s, R) in T̃ .
A run of T̃ is a sequence 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), (s2, R2), . . .〉, such that

for every i ∈ N we have that
(
(si, Ri), (ti+1, R′′i+1, ai+1), (s′i+1, R′i+1)

)
is a transition in T̃ . We

write RunsT̃ for the set of runs of T̃ , and for (s, R) ∈ S̃, we write RunsT̃ (s, R) for the set of
runs of T̃ whose initial state is (s, R).

The timed automaton T and the region graph T̃ are equivalent in the following sense.

PROPOSITION 4.3.1. For every s ∈ S and (t, a) ∈ R⊕ × A, there is a (t, a)-transition from s
in T if and only if there is a (t, [s + t], a)-transition from (s, [s]) in T̃ .

Let (T , π, K) be a concavely-priced timed automaton. We define the price function
π̃ : S̃× (R⊕ ×R× A)→ R in the following way. For (s, R) ∈ S̃ and (t, R′′, a) ∈ R⊕ ×R×
A, such that there is a (t, R′′, a)-transition from (s, R) in T̃ , we define π̃

(
(s, R), (t, R′′, a)

)
=

π(s, t, a). For a concave price-reward automaton (T , π, $, K), we define functions π̃ and $̃

in an analogous way.

4.3.2. Boundary Region Graph

Let us recall the definition of a boundary region graph from Chapter 3. The boundary region
graph T̂ = (Ŝ, Ê, ŜF) of a timed automaton T = (L, C, S, A, E, δ, ξ, F) is a labelled transition
system, where:

– Ŝ is the set of states defined as

Ŝ = {(s, R) ∈ Q×R : s ∈ clos(R)};

– Ê is the labelled transition relation defined as

Ê = {((s, R), (t, R′′, a), (s′, R′)) ∈ Ŝ× (R⊕ ×R× A)× Ŝ

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ bd(R′′)}; and

4.3. REGION GRAPHS 76

– ŜF is the set of final vertices defined as ŜF = {(s, R) ∈ Ŝ : R ⊆ F}.
For (s, R), (s′, R′) ∈ Ŝ and (t, R′′, a) ∈ R⊕×R×A, we say that

(
(s, R), (t, R′′, a), (s′, R′)

)
is a transition in T̂ = (Ŝ, Ê, ŜF) if

(
(s, R), (t, R′′, a), (s′, R′)

)
∈ Ê.

A run of T̂ is a sequence 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉, such that for
every i ∈ N, we have that

(
(si, Ri), (ti+1, R′′i+1, ai+1), (s′i+1, R′i+1)

)
is a transition in T̂ . We

write RunsT̂ for the set of runs of T̂ , and for (s, R) ∈ Ŝ, we write RunsT̂ (s, R) for the set of
runs of T̂ whose initial state is (s, R).

Let (T , π, K) be a concavely-priced timed automaton. We define the price function
π̂ : Ŝ × (R⊕ × R × A) → R in the following way. Recall that for a ∈ A and
R, R′′ ∈ R, the function πa

R,R′′ : (s, t) 7→ π(s, a, t) defined on the set DR,R′′ = {(s, t) :
s ∈ R and (s + t) ∈ R′′} is continuous. We write πa

R,R′′ for the unique continuous extension
of πa

R,R′′ to the closure DR,R′′ of the set DR,R′′ . For (s, R) ∈ Ŝ and (t, R′′, a) ∈ R⊕ ×R× A,
such that there is an (t, R′′, a)-transition from (s, R) in T̂ , we define

π̂
(
(s, R), (t, R′′, a)

)
= πa

R,R′′(s, t).

Thanks to the following proposition we can, and sometimes will, abuse notation by
writing π

(
(s, R), (t, R, a)

)
instead of π̃

(
(s, R), (t, R, a)

)
or π̂

(
(s, R), (t, R, a)

)
.

PROPOSITION 4.3.2. If (t, R, a) is a transition from the state (s, R) in both the region graph
and the boundary region graph then π̃

(
(s, R), (t, R, a)

)
= π̂

(
(s, R), (t, R, a)

)
.

For a concave price-reward automaton (T , π, $, K), we define functions π̂ and $̂ in an
analogous way.

4.3.3. Optimisation Problems on the Region Graphs

Before we discuss optimisation problems on region graph and boundary region graph, we
define pre-runs of a timed automaton. The concept of pre-runs is a generalisation of the
runs of T̃ and T̂ , and it allows us to define cost functions on region graphs in a general
setting.

DEFINITION 4.3.3 (Pre-Run). A pre-run of T is a sequence

〈(s0, R0), (t1, R′1, a1), (s1, R1), (t1, R′2, a2), . . .〉 ∈ (Q×R)× ((R⊕ ×R× A)× (Q×R))ω,

such that si+1 = Succ(si, (ti+1, ai+1)) and Ri −→∗ R′i+1
ai+1−−→ Ri+1 for every i ∈N.

Observe that a pre-run follows the wait, the action, and the clock reset discipline, but
not necessarily the guards. To be more precise, in a pre-run 〈(s0, R0), (t1, R′1, a1), (s1, R1), . . .〉,
for every index i, we do not require that the action ai+1 is enabled in the state si + ti+1, or
that the state si is in the closure of region Ri.

We write PreRuns for the set of pre-runs and PreRuns(s, R) for the set of pre-runs
starting from (s, R). We have the following relations among the sets of runs of region graphs
and the set of pre-runs:

4.4. CORRECTNESS OF THE BOUNDARY REGION GRAPH ABSTRACTION 77

RunsT̂ ⊆ PreRuns, and RunsT̂ (s, R) ⊆ PreRuns(s, R) for all(s, R) ∈ Ŝ;

RunsT̃ ⊆ PreRuns, and RunsT̃ (s, R) ⊆ PreRuns(s, R) for all(s, R) ∈ S̃.

For a cost function Cost : PreRuns → R, the minimum cost functions CostT̃∗ : S̃ → R

and CostT̂∗ : Ŝ → R for region graph T̃ and boundary region graph T̂ , respectively, are
defined by:

CostT̃∗ (s, R) = inf
r∈RunsT̃ (s,R)

Cost(r), and CostT̂∗ (s, R) = inf
r∈RunsT̂ (s,R)

Cost(r).

The corresponding minimisation problems for T̃ and T̂ are: given a state s ∈ S and a number
D ∈ Q, determine whether CostT̃∗ (s, [s]) ≤ D and CostT̂∗ (s, [s]) ≤ D, respectively.

Let r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 be a run of T̃ or T̂ . We de-
fine Stop(r) = inf{i : Ri ⊆ F}. Also, for all n ∈ N we define Tn(r) = ∑n

i=1 ti,
πn(r) = ∑n

i=1 π((si−1, Ri−1), (R′i, ti, ai)), and $n(r) = ∑n
i=1 $((si−1, Ri−1), (R′i, ti, ai)). With

those notations, we define the reachability price, discounted price, average price, price-per-
time average, and price-per-reward average cost functions, on the sets of runs of T̃ and T̂ ,
in exactly the same way as for runs of the timed automaton T ; see Section 4.2.

The following is an easy corollary of Proposition 4.3.1.

PROPOSITION 4.3.4. If Cost is any of the reachability price, discounted price, average price,
price-per-time average, or price-per-reward average cost functions, then for all s ∈ S, we
have CostT∗ (s) = CostT̃∗ (s, [s]).

The following theorem is one of the main technical results of the chapter.

THEOREM 4.3.5. If Cost is any of the reachability price, discounted price, average time,
average price, price-per-time average, or price-per-reward average cost functions, then for
all s ∈ S, we have CostT̃∗ (s, [s]) = CostT̂∗ (s, [s]).

From Proposition 3.7.10 we know that for every state s ∈ S, the number of states
reachable from s in the boundary region graph T̂ is finite. By Theorem 2.2.1, it follows
that optimal positional strategies exist in T̂ for all the above-mentioned cost functions.
Therefore, and since a run from a state according to a positional strategy in T̂ can be
guessed, and its cost computed, in PSPACE (with respect to the size of the input, i.e., a timed
automaton T), it suffices to prove Theorem 4.3.5 in order to obtain the main Theorem 4.2.1.
We dedicate the remaining two sections to the proof of Theorem 4.3.5.

4.4. Correctness of the Boundary Region Graph Abstraction
In this section we define concave-regular cost functions and show that optimisation problems
for concave-regular cost functions on concavely-priced timed automaton can be reduced to
similar optimisation problem on boundary region graph.

4.4. CORRECTNESS OF THE BOUNDARY REGION GRAPH ABSTRACTION 78

4.4.1. Approximations of Cost Functions

For a run r ∈ PreRuns and n ∈ N, we write Prefix(r, n) for the finite pre-run consisting of
the first n transitions of r. We write PreRunsn for the set of pre-runs of length n ∈ N, and
we write RunsT̃n and RunsT̂n for the sets of runs of T̃ and T̂ , respectively, of length n ∈N.

DEFINITION 4.4.1 (Approximation of Cost Function). We say that a sequence of functions
〈Costn : PreRunsn → R〉n∈N approximates a cost function Cost : RunsT̃ → R or
Cost : RunsT̂ → R, respectively, if for all r ∈ RunsT̃ , or for all r ∈ RunsT̂ , respectively, we
have that Cost(r) = lim supn→∞ Costn(Prefix(r, n)).

For a run r ∈ RunsT̃ we sometimes abuse notation—for the sake of brevity—by writing
Costn(r) instead of Costn(Prefix(r, n)); the same applies to runs in RunsT̂ .

For a sequence of functions 〈Costn : PreRunsn → R〉n∈N and for every n ∈ N, we
define the n-step-minimum-cost functions CostT̃n,∗ : S̃→ R and CostT̂n,∗ : Ŝ→ R, by:

CostT̃n,∗(s, R) = inf
r∈RunsT̃ (s,R)

Costn(r), and CostT̂n,∗(s, R) = inf
r∈RunsT̂ (s,R)

Costn(r).

4.4.2. Run Types and Related Concepts

In the next subsection we show that if approximation of a cost function is quasiconcave (for
definition, see Chapter B) in certain sense, then there exists N ∈ N such that for all n ≥ N,
we have that for every run r in T̃ , there exists a run r′ in T̂ with Costn(r′) ≤ Costn(r). To
prove that result we need to introduce the concept of run types.

DEFINITION 4.4.2 (Run Types). A run type is a sequence

〈R0, (R′1, a1), R1, (R′2, a2), . . .〉 ∈ R× ((R× A)×R)ω

such that for every i ∈N we have that Ri −→∗ R′i+1
a−→ Ri+1.

We say that a pre-run r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t1, R′2, a2), (s2, R2), . . .〉 is of type
〈R0, (R′1, a1), R1, (R′2, a2), . . .〉. Also, we define the type of a run r = 〈s0, (t1, a1), s1, (t2, a2), . . .〉
of a timed automaton T as the run type 〈R0, (R′1, a1), R1, (R′2, a2), . . .〉, where Ri = [si] and
R′i+1 = [si + ti+1] for all i ∈N.

We write Types for the set of run types, and we write Types(R) for the set of run types
starting from region R ∈ R. We say that a run type Λ = 〈R0, (R′1, a1), R1, (R′2, a2), . . .〉 is
positional if for every index i, j ∈N we have that Ri = Rj implies (R′i+1, ai+1) = (R′j+1, aj+1).

Given a run type Λ ∈ Types(R), a state s ∈ R, and a sequence of timing delays t =

〈t1, t2, . . .〉, we write PreRunΛ
s (t) for the pre-run of type Λ which starts in state s and whose

successive time delays follow the sequence t = 〈t1, t2, . . .〉. Formally, given a run type Λ =
〈R0, (R′1, a1), R1, (R′2, a2), . . .〉 ∈ Types, a starting state s ∈ R0, and a tuple t = 〈t1, t2, . . .〉 ∈
Rω
⊕, we define

PreRunΛ
s (t) = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t1, R′2, a2), . . .〉,

4.4. CORRECTNESS OF THE BOUNDARY REGION GRAPH ABSTRACTION 79

where s0 = s and si+1 = Succ(si, (ti+1, ai+1)) for every i ∈N.
Given a run type Λ ∈ Types(R), a state s ∈ R, and a finite sequence of timing delays t =

〈t1, t2, . . . , tn〉, we write PreRunΛ
n,s(t) for the finite pre-run of type Λ which starts in state s

and whose successive time delays follow the sequence 〈t1, t2, . . . , tn〉. Formally, given a run
type Λ = 〈R0, (R′1, a1), R1, (R′2, a2), R2, . . .〉, a state s ∈ R0, and a tuple (t1, t2, . . . , tn) ∈ Rn

⊕,
we define

PreRunΛ
n,s(t1, t2, . . . , tn) = Prefix(PreRunΛ

s (t), n),

where the first n elements of t ∈ Rω
⊕ are t1, t2, . . . , tn.

4.4.3. Runs in T̃ and T̂ of same Type

We compare the runs in region graph T̃ and in boundary region graph T̂ and prove two key
results: Lemma 4.4.6 and Proposition 4.4.7. Lemma 4.4.6 states that if Costn is quasiconcave
in certain sense then for every run r ∈ RunsT̃ (s, [s]), there exists a run r′ ∈ RunsT̂ (s, [s])
of same type such that Costn(r′) ≤ Costn(r). On the other hand, Proposition 4.4.7 states
that for every r = 〈(s0, R0), (t1, R′1a1), . . .〉 ∈ RunsT̂ (s, [s]) and number ε > 0, there exists
r′ = 〈(s′0, R0), (t′1, R′1, a1), . . .〉 ∈ RunsT̃ (s, [s]) of same type such that for all i ≥ 1, we have
|ti − t′i| < ε and ‖si − s′i‖∞ < ε.

To prove Lemma 4.4.6 we need to show that all the finite runs (or length n) in region
graph T̃ of type Λ form a convex polytope ∆Λ

n,s, whose vertices correspond to finite runs
in boundary region graph T̂ of same type. We then invoke a well-known result from non-
linear programming to prove the desired result.

We define ∆Λ
n,s ⊆ Rn

⊕ to consist of the tuples (t1, t2, . . . , tn) ∈ Rn
⊕, such that the pre-run

PreRunΛ
n,s(t1, t2, . . . , tn) is a finite run in the region graph T̃ , i.e., PreRunΛ

n,s(t1, t2, . . . , tn) ∈
RunsT̃n .

CLAIM 4.4.3. For every state s ∈ S, a run type Λ ∈ Types([s]), and n ∈ N, the set ∆Λ
n,s is a

convex polytope.

PROOF. Let Λ = 〈R0, (R′1, a1), R1, (R′2, a2), R2, . . .〉 be a run type. By definition, we have
that the tuple (t1, t2, . . . , tn) ∈ ∆Λ

n,s if the pre-run

PreRunΛ
n,s(t1, t2, . . . , tn) = 〈(s0, R0), (t1, R′1, a1), (s1, R1), . . . , (tn, R′n, an), (sn, Rn)〉,

is a finite run in the region graph T̃ . It implies that if (t1, t2, . . . , tn) ∈ ∆Λ
n,s then the tuple

(t1, t2, . . . , tn) satisfy the following system of linear inequalities.
– For every positive integer i ≤ n, if R′i ∈ RThin then we have one linear equality of

the form ti = bi − si−1(ci), where bi ∈ N and ci ∈ C are such that for every s′ ∈ R′i
we have s′(ci) = bi.

– For every positive integer i ≤ n, if R′i ∈ RThick then we have two inequalities of the
form ti < bi − si−1(ci) and ti > b′i − si−1(c′i), where bi, b′i ∈N and ci, c′i ∈ C are such
that for every s′ ∈ R←−+1 R′i we have s′(ci) = bi, and every s′ ∈ R −→+1 R′i we have
s′(c′i) = b′i .

– For every nonnegative integer i ≤ n we have ti ≥ 0.

4.4. CORRECTNESS OF THE BOUNDARY REGION GRAPH ABSTRACTION 80

– For every nonnegative integer i ≤ n and for every c ∈ C, the variable si(c) is the
following linear function of the initial state s and variables t1, t2, . . . , tn:

si(c) =


s(c), if i = 0,

0, if i 6= 0 and c ∈ ξ(ai),

si−1(c) + ti, if i 6= 0 and c 6∈ ξ(ai).

PROPOSITION 4.4.4. Let R ∈ R, Λ ∈ Types(R), s ∈ R, and n ∈ N. There is a 1-to-
1 correspondence between runs—starting from s, of type Λ, and of length n—in T̂ , and
vertices of the convex polytope ∆Λ

n,s.
More precisely, r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), . . . , (tn, R′n, an), (sn, Rn)〉 is a run (of type Λ)
in T̂ if and only if there is a vertex (t1, t2, . . . , tn) of ∆Λ

n,s, such that r = PreRunΛ
n,s(t1, t2, . . . , tn).

The following is a well-known result (e.g., Martos [Mar65], Bertsekas et al. [BNO03]).

PROPOSITION 4.4.5. Let f : ∆ → R be a continuous quasiconcave function, where ∆ ⊆ Rn

is a polytope. Let f be the unique continuous extension of f to the closure ∆ of ∆.
– There exists a vertex v of ∆, such that f (v) = infx∈∆ f (x).
– For every ε > 0, there exists x ∈ ∆, such that f (x) ≤ f (v) + ε.

Let a sequence 〈Costn〉n∈N approximate a cost function Cost. We define the function
CostΛn,s : ∆Λ

n,s → R by CostΛn,s(t1, t2, . . . , tn) = Costn(PreRunΛ
n,s(t1, t2, . . . , tn)). The following

lemma can be derived from Propositions 4.4.4 and 4.4.5.

LEMMA 4.4.6. Let CostΛn,s be quasiconcave on ∆Λ
n,s.

(1) For every run r̃ ∈ RunsT̃ (s, [s]) of type Λ, and for every n ∈ N, there is a run
r̂ ∈ RunsT̂ (s, [s]) of type Λ, such that Costn(r̂) ≤ Costn(r̃).

(2) For every run r̂ ∈ RunsT̂ (s, [s]), and for every ε > 0, there is a run r̃ ∈ RunsT̃ (s, [s])
of type Λ, such that Costn(r̃) ≤ Costn(r̂) + ε.

Let us consider two pre-runs r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 and
r′ = 〈(s′0, R0), (t′1, R′1, a1), (s′1, R1), (t′2, R′2, a2), . . .〉 of the same type. We define r − r′ =
(s0 − s′0, t1 − t′1, s1 − s′1, t2 − t′2, . . .), where for all i ∈ N, the expression (si − s′i) stands for
the finite sequence 〈si(c)− s′i(c)〉c∈C. For a sequence x = 〈xi〉i∈N ∈ Rω of reals, we define
‖x‖∞ = supi∈N |xi|.

PROPOSITION 4.4.7. For every run r̂ ∈ RunsT̂ (s, [s]), and for every ε > 0, and there is a run
r̃ ∈ RunsT̃ (s, [s]), of the same type as r̂, such that ‖r̂− r̃‖∞ ≤ ε.

PROOF. Let r̂ = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 ∈ RunsT̂ . Note that since
r̂ ∈ RunsT̂ , for every i ∈ N, there are bi ∈ JKKN and ci ∈ C, such that ti = bi − si−1(ci). Let
ε′ > 0 and r̃ = 〈(s′0 = s0, R0), (t′1, R′1, a1), (s′1, R1), (t′2, R′2, a2), . . .〉 ∈ RunsT̃ (of the same type
as r̂) be such that for all i ∈N, we choose t′i ∈ R⊕ so that |t′i − (bi − s′i−1(ci))| < ε′. We claim

4.4. CORRECTNESS OF THE BOUNDARY REGION GRAPH ABSTRACTION 81

that for every ε > 0 there exists a choice of ε′ > 0 such that ‖r̂− r̃‖∞ ≤ ε. The claim is based
on the following facts:

– For every transition ((s, R), (t, R′′, a), (s′, R′)) ∈ Ê, state (sr, R) ∈ S̃, and positive
real δ > 0, there exists tr ∈ R⊕ such that ((sr, R), (tr, R′′, a), (s′r, R′)) ∈ Ẽ and
|(b− sr(c))− tr| < δ, where b ∈ JKKN and c ∈ C are such that b − s(c) = t.
Moreover, for all c′ ∈ C, if c′ ∈ Reset(a) then we have s′(c′) = s′r(c′) = 0, else we
have |s′(c′)− s′r(c′)| < 2 · ‖s− sr‖∞ + δ.

– In a boundary region graph every clock is reset at least once in every |R| transitions.

Hence if we chose ε′ < ε/(2|R|− 1) then it follows that for all i ∈N, we have ‖si− s′i‖∞ < ε,
and hence ‖r̂− r̃‖∞ ≤ ε.

4.4.4. Concave-Regular Cost Functions

We are now in a position to define concave-regular cost functions.

DEFINITION 4.4.8 (Concave-Regular Cost Functions). A cost function Cost : PreRuns→ R

is concave-regular if it satisfies the following properties.

(1) (Quasiconcavity). For every region R ∈ R and for every run type Λ ∈ Types(R),
there is N ∈ N, such that for every state s ∈ R and for every n ≥ N, the function
CostΛn,s is quasiconcave on ∆Λ

n,s.
(2) (Regular Lipschitz-continuity). There is a constant κ ≥ 0, such that for every region

R ∈ R and for every positional run type Λ ∈ Types(R), there is N ∈N, such that for
every state s ∈ R and for every n ≥ N, the function CostΛn,s is κ-continuous on ∆Λ

n,s.
(3) (Positional optimality). There is a positional optimal strategy for Cost in T̂ .
(4) (Uniform convergence). For every s ∈ S we have that

CostT̂∗ (s, [s]) = lim sup
n→∞

CostT̂n,∗(s, [s]).

Notice that properties 3 and 4 refer to the properties of Cost function in the boundary region
graph.

THEOREM 4.4.9. If Cost : PreRuns → R is concave-regular then for all states s ∈ S, we
have CostT̃∗ (s, [s]) = CostT̂∗ (s, [s]).

PROOF. Let Cost : PreRuns→ R is concave-regular. This proof is in two parts.

– First we prove that for all s ∈ S, we have CostT̂∗ (s, [s]) ≤ CostT̃∗ (s, [s]). It suffices to
show that for every run r̃ ∈ RunsT̃ (s, [s]), we have CostT̂∗ (s, [s]) ≤ Cost(r̃).

Let r̃ ∈ RunsT̃ (s, [s]) be a run in T̃ of type Λ. By the quasiconcavity property of
Cost, there is N ∈ N, such that for all n ≥ N, the function CostΛn,s is quasiconcave
on ∆Λ

n,s. Hence—by the first part of Lemma 4.4.6—for every n ≥ N, there is

a run r̂n ∈ RunsT̂ (s, [s]) of type Λ, such that Costn(r̂n) ≤ Costn(r̃). Since
r̂n ∈ RunsT̂ (s, [s]) and by definition CostT̂n,∗(s, [s]) = inf

r∈RunsT̂ (s,[s])
Costn(r) , we

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 82

get
CostT̂n,∗(s, [s]) ≤ Costn(r̃).

Taking the limit supremum of both sides of the last inequality yields:

lim sup
n→∞

CostT̂n,∗(s, [s]) ≤ lim sup
n→∞

Costn(r̃) = Cost(r̃).

By the uniform convergence property of Cost and the previous inequality, it
follows that CostT̂∗ (s, [s]) ≤ Cost(r̃).

– Next we prove that for all s ∈ S, we have CostT̃∗ (s, [s]) ≤ CostT̂∗ (s, [s]). It suffices
to argue that for every s ∈ S and ε > 0, there is a run r̃ ∈ RunsT̃ (s, [s]), such that
|Cost(r̃)−CostT̂∗ (s, [s])| ≤ ε.

Let r̂ ∈ RunsT̂ (s, [s]) be such that Cost(r̂) = CostT̂∗ (s, [s]) and the type Λ of r
is positional. The existence of such a run r ∈ RunsT̂ (s, [s]) follows from positional
optimality property of Cost.

Let ε > 0 and let r̃ ∈ RunsT̃ (s, [s]) be a run—of the same type, Λ, as the run
r̂ ∈ RunsT̂ (s, [s])—such that ‖r̃ − r̂‖∞ ≤ ε′, for some ε′ > 0 to be chosen later;
existence of such r̃ ∈ RunsT̃ (s, [s]) follows from Proposition 4.4.7.

Since the run type Λ of the runs r̂ and r̃ is positional, by the regular Lipschitz-
continuity property of Cost, there is κ ≥ 0 and N ∈ N, such that for all n ≥ N, we
have:

|Costn(r̃)−Costn(r̂)| ≤ κ‖r̃− r̂‖∞ ≤ κε′.

Hence—by choosing ε′ > 0 so that ε′ ≤ ε/κ—we obtain that:

|Costn(r̃)−Costn(r̂)| ≤ ε,

for every n ≥ N. Recall, however, that we have chosen r̂ ∈ RunsT̂ (s, [s])
such that Cost(r̂) = CostT̂∗ (s, [s]). From the last two inequalities it follows that
|Cost(r̃)−CostT̂∗ (s, [s])| ≤ ε.

The proof is now complete.

4.5. Concave-Regularity of Cost Functions
So far we have shown that, for concave-regular cost functions, the optimal value of the cost
function in T is equal to the optimal value in T̂ . To complete the proof of Theorem 4.3.5, we
prove the following result.

THEOREM 4.5.1. Reachability price, discounted price, average price, price-per-time aver-
age, and price-per-reward average cost functions are concave-regular for the concavely-
priced (or the concave price-reward, as appropriate) timed automata.

This section is dedicated to the proof of Theorem 4.5.1. We begin by showing
quasiconcavity and Lipschitz-continuity properties of the above-mentioned cost functions,

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 83

and then in Subsection 4.5.2 we comment on their positional optimality and uniform
convergence.

4.5.1. Quasiconcavity and Regular Lipschitz-Continuity

We begin this subsection by showing the quasiconcavity and Lipschitz-continuity of total
accumulated price in n steps, and using that we prove quasiconcavity and Lipschitz-
continuity of reachability-price, discounted-price, and price-per-reward average cost func-
tions.

4.5.1.1. Total Accumulated Price in Finite Steps

Let Λ = 〈R0, (R′1, a1), R1, . . .〉 be a run type. For a state s ∈ R0 and t = (t1, t2, . . . , tn) ∈ Rn
⊕,

we define πΛ
n : S×Rn

⊕ → R and πΛ
n,s : Rn

⊕ → R in the following manner:

πΛ
n (s, t) = πn(PreRunΛ

s (t)), and πΛ
n,s(t) = πn(PreRunΛ

s (t)).

The shorthands $Λ
n and $Λ

n,s are defined analogously. We define ∆Λ
n ⊆ Q×Rn

⊕ to consist of
the tuples (s, t1, t2, . . . , tn) ∈ Q×Rn

⊕, such that the pre-run PreRunΛ
n,s(t1, t2, . . . , tn) is a finite

run in the region graph T̃ , i.e., PreRunΛ
n,s(t1, t2, . . . , tn) ∈ RunsT̃n .

PROPOSITION 4.5.2. Let (T , π, K) be a concavely-priced timed automaton and (T , π, $, K)
be a concave price-reward timed automaton. For region R ∈ R, run type Λ ∈ Types(R),
state s ∈ S, and n ≥ 1 we have that πΛ

n and $Λ
n are concave and convex, respectively, on ∆Λ

n .

PROOF. We show, by induction, that πΛ
n is concave on ∆Λ

n for every n ∈ N. The proof of
convexity of $Λ

n on ∆Λ
n is similar and hence omitted.

Let Λ = 〈R0, (R′1, a1), R1, . . .〉 be a run type. For the base case we need to show
that πΛ

1 : (s, t) → π
(
(s, R0)(t, R′1, a1)

)
is concave on ∆Λ

1 = {(s, t) ∈ S × R⊕ :
s ∈ R0 and (s + t) ∈ R′1}. Recall the function πa

R,R′ and its domain DR,R′ that we introduced
while defining concavely-priced timed automata. The concavity of πΛ

1 on ∆Λ
1 follows from

the concavity of πa1
R0,R′1

on DR0,R′1
.

Now we show that πΛ
n+1 is concave on ∆Λ

n+1 if πΛ
n is concave on ∆Λ

n . Let Λ′ be the run
type 〈R1, (R′2, a2), R2, . . .〉. We have that

πΛ
n+1(s, t1, t2, . . . , tn+1) = π

(
(s, R0), (t1, R′1, a1)

)
+ πΛ′

n (Succ(s, (t1, a1)), t2, . . . , tn+1).

By definition Succ(s, (t1, a1)) is affine on ∆Λ
1 (and hence on ∆Λ

n+1) and from inductive
hypothesis πΛ′

n is concave on ∆Λ′
n ; from the property of concave functions being closed under

affine composition (Lemma B.2.3) we get that πΛ′
n (Succ(s, (t1, a1)), t2, . . . , tn+1) is concave

on ∆Λ
n+1. Since π(s, (t1, a1)) is concave on ∆Λ

1 (and hence on ∆Λ
n+1) and the sum of two

concave functions is concave (Lemma B.2.2), we get that πΛ
n+1 is concave on ∆Λ

n+1.

COROLLARY 4.5.3. Let (T , π, K) be a concavely-priced timed automaton and (T , π, $, K)
be a concave price-reward timed automaton. For every region R ∈ R, for every run type

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 84

Λ ∈ Types(R), for every s ∈ S, and for every n ≥ 0 we have that πΛ
n,s and $Λ

n,s are concave
and convex, respectively, on ∆Λ

n,s.

PROPOSITION 4.5.4. Let (T , π, K) be a concavely-priced timed automaton and (T , π, $, K)
be a concave price-reward timed automaton. For every region R ∈ R, for every run type
Λ ∈ Types(R), for every s ∈ S, and for every n ≥ 0 we have that πn and $n are κ-continuous
on ∆Λ

n , where κ = n · K.

PROOF. We prove by induction that πΛ
n is Lipschitz-continuous on ∆Λ

n with con-
stant (n · K) for every n ∈ N. The proof of Lipschitz-continuity of $Λ

n on ∆Λ
n is similar

and hence omitted.
Let Λ = 〈R0, (R′1, a1), R1, . . .〉 be a run type. The base case, that the function

πΛ
1 : (s, t)→ π

(
(s, R0)(t, R′1, a1)

)
is K-continuous on the domain ∆Λ

1 = {(s, t) ∈ S×R⊕ :
s ∈ R0 and (s + t) ∈ R′1}, follows from the Lipschitz-continuity assumption of the price
functions in the definition of concavely-priced timed automata.

Now we show that πΛ
n+1 is Lipschitz-continuous on ∆Λ

n+1 with constant (n + 1) · K
given πΛ

n is Lipschitz-continuous on ∆Λ
n with constant (n · K). Let Λ′ be the run type

〈R1, (R′2, a2), R2, . . .〉. We have that

πΛ
n+1(s, t1, t2, . . . , tn+1) = π

(
(s, R0), (t1, R′1, a1)

)
+ πΛ′

n (Succ(s, (t1, a1)), t2, . . . , tn+1).

The function Succ(s, (t1, a1)) is Lipschitz-continuous on ∆Λ
1 (and hence on ∆Λ

n+1) with
constant 1 and from inductive hypothesis πΛ′

n is Lipschitz-continuous on ∆Λ′
n with constant

(n · K). From the Lemma B.1.2 (composition of Lipschitz-continuous functions), we get
that πΛ′

n (Succ(s, (t1, a1)), t2, . . . , tn+1) is Lipschitz-continuous on ∆Λ
n+1 with constant (n · K).

Since π(s, (t1, a1)) is K-continuous on ∆Λ
1 (and hence on ∆Λ

n+1), from Lemma B.1.1 (weighted
sum of Lipschitz-continuous functions) we get that πΛ

n+1 is Lipschitz-continuous on ∆Λ
n+1

with constant ((n + 1) · K).

COROLLARY 4.5.5. Let (T , π, K) be a concavely-priced timed automaton and (T , π, $, K)
be a concave price-reward timed automaton. For every region R ∈ R, for every run type
Λ ∈ Types(R), for every s ∈ S, and for every n ≥ 0 we have that πn,s and $n,s are κ-
continuous on ∆Λ

n,s, where κ = n · K.

4.5.1.2. Reachability Price Cost Function

We define the sequence of functions 〈RPn : PreRunsn → R〉n∈N in the following way: for a
run r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 we have that

RPn(r) =

{
πN(r) if N = Stop(r) < n
n otherwise.

It is easy to see that 〈RPn〉n∈N approximates RP.
The following proposition follows from the definition of RPn and the Corollary 4.5.3.

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 85

PROPOSITION 4.5.6 (Quasiconcavity of reachability price). Let (T , π, K) be a concavely-
priced timed automaton. For every region R ∈ R, for every run type Λ ∈ Types(R), for
every s ∈ S, and for every n ≥ 0 we have that RPΛ

n,s is concave on ∆Λ
n,s.

For a positional run type Λ notice either Stop(r) = ∞ or Stop(r) ≤ |R|, for every run r
of type Λ. In both cases it is straightforward to verify that for every n ≥ |R|+ 1 the function
RPΛ

n,s is Lipschitz-continuous on ∆Λ
n,s with constant ((|R|+ 1) · K).

PROPOSITION 4.5.7. [L-continuity of reachability price] Let (T , π, K) be a concavely-priced
timed automaton. For every region R ∈ R, for every run type Λ ∈ Types(R), for every
s ∈ S, and for every n ≥ |R|+ 1 we have that RPΛ

n,s is Lipschitz-continuous on ∆Λ
n,s with

constant (|R|+ 1) · K.

4.5.1.3. Discounted Price Cost Function

We define the sequence of functions 〈DPn(λ) : PreRunsn → R〉n∈N in the following way: for
a run r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 we have that

DPn(λ)(r) = (1− λ)
n

∑
i=1

λi−1π((si−1, Ri−1), (R′i, ti, ai)).

It is straightforward to verify that 〈DPn(λ)〉n∈N approximates DP(λ).
The proof of the following proposition is along the same lines as the proof of

Proposition 4.5.2. The only difference, however, is that the proof uses the property of
concave functions being closed under nonnegative weighted sum (Lemma B.2.2). Notice
that λi is nonnegative for all i ∈N.

PROPOSITION 4.5.8 (Quasiconcavity of discounted price). Let (T , π, K) be a concavely-
priced timed automaton. For every region R ∈ R, for every run type Λ ∈ Types(R), for
every s ∈ S, and for every n ≥ 0 we have that DPΛ

n,s(λ) is concave on ∆Λ
n,s.

The proof of the following proposition is similar to the proof of Proposition 4.5.4.

PROPOSITION 4.5.9. Let (T , π, K) be a concavely-priced timed automaton. For every
region R ∈ R, for every run type Λ ∈ Types(R), for every s ∈ S, for every λ ∈ (0, 1),
and for every n ≥ 0 we have that DPΛ

n,s(λ) is Lipschitz-continuous on ∆Λ
n,s with constant

(1− λn)K.

4.5.1.4. Price-per-Reward Average Cost Function

We define the sequence of functions 〈PRAvgn : PreRunsn → R〉n∈N in the following way:
for a run r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t2, R′2, a2), . . .〉 we have that

PRAvgn(r) =
πn(r)
$n(r)

.

It is straightforward to verify that 〈PRAvgn〉n∈N approximates PRAvg.

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 86

PROPOSITION 4.5.10 (Quasiconcavity of price-per-reward average). Let (T , π, $, K) be a
concave price-reward timed automaton. For every region R ∈ R, for every run type
Λ ∈ Types(R), for every s ∈ S, and for every n ≥ (|R| + 1) we have that PRAvgΛ

n,s(r)
is quasiconcave on ∆Λ

n,s if the functions πΛ
n,s and $Λ

n,s on the domain ∆Λ
n,s satisfy one of the

following properties:

(1) πΛ
n,s is nonnegative and $Λ

n,s is positive; or
(2) $Λ

n,s is positive and affine.

PROOF. The function PRAvgΛ
n,s is the ratio of the functions πΛ

n,s and $Λ
n,s. Since the reward

function is regionally non-Zeno (Assumption 3.4.5), it follows that for all n ≥ (|R|+ 1), we
have that $Λ

n,s is nonzero and hence PRAvgΛ
n,s is well defined for all n ≥ (|R| + 1). From

Lemma B.2.7 we know that PRAvgΛ
n,s is quasiconcave if the functions πΛ

n,s and $Λ
n,s on the

domain ∆Λ
n,s satisfy one of the following properties:

(1) πΛ
n,s is nonnegative and concave, and $Λ

n,s is positive and convex; or
(2) πΛ

n,s is concave, and $Λ
n,s is positive and affine.

The current proposition, now, follows from Proposition 4.5.2 (πΛ
n,s and $Λ

n,s are concave and
convex, respectively).

Observe that the average time, average price, price-per-time average cost functions
satisfy the second requirement on reward function (i.e., $Λ

n,s is positive and affine) stated
in Proposition 4.5.10.

PROPOSITION 4.5.11. Let (T , π, $, K) be a concave price-reward timed automaton. For
every region R ∈ R, for every run type Λ ∈ Types(R), for every s ∈ S, and for every
n ≥ 0 we have that PRAvgΛ

n,s is Lipschitz-continuous on ∆Λ
n,s.

PROOF. The function PRAvgΛ
n,s is the ratio of the functions πΛ

n,s and $Λ
n,s. From

Proposition 4.5.4 we have that πΛ
n,s and $Λ

n,s are Lipschitz-continuous on ∆Λ
n,s with constant

(n · K). From Lemma B.1.3 (ratio of two Lipschitz-continuous functions) we have that
if πΛ

n,s and $Λ
n,s are bounded from above by a constant M and $Λ

n,s is bounded from
below by constant N then their ratio function is Lipschitz-continuous with constant
(N + M) · (n · K)/N2.

Because we consider K-bounded timed automata, we have that each ti (for 1 ≤ i ≤ n)
in the tuple (t1, t2, . . . , tn) ∈ ∆Λ

n,s is bounded from above byK. As πΛ
n,s and $Λ

n,s are Lipschitz-
continuous on ∆Λ

n,s with constant (n ·K), it follows that πΛ
n,s and $Λ

n,s are bounded from above
by M = nγ, where γ = K · K.

Set β = |R|+ 1. Since the reward function is regionally non-Zeno (Assumption 3.4.5),
we have that for every n ≥ β the reward function $Λ

n,s is bounded from below by N = n
β .

Hence it follows that for every n ≥ β the function PRAvgΛ
n,s is Lipschitz-continuous

with constant (N+M)·(n·K)
N2 = (1 + βγ) · K · β.

4.5. CONCAVE-REGULARITY OF COST FUNCTIONS 87

4.5.2. Positional Optimality and Uniform Convergence

The positional optimality and the uniform convergence properties of a cost function need
only be verified with boundary region graph.

From Proposition 3.7.10 we know that for every boundary region graph T̂ and for every
state (s, R) ∈ Ŝ, the set of reachable states in T̂ from (s, R) is finite. Hence to prove positional
optimality and uniform convergence properties for reachability price, discounted price, and
price-per-reward average cost function in a boundary region graph, it is sufficient to show
that these cost functions satisfy positional optimality and uniform convergence properties
in finite graphs.

From Theorems 2.2.1 and 2.2.28, we have that for every finite graph, and hence for
every boundary region graph, the cost functions reachability price, discounted price, and
price-per-reward average satisfy positional optimality and uniform convergence properties.

5
Reachability-Time Games

If you must play, decide on
three things at the start: the
rules of the game, the stakes,
and the quitting time.

Chinese Proverb

In a reachability-time game, players Min and Max choose moves so that the time to
reach a final state in a timed automaton is minimised or maximised, respectively. Asarin
and Maler [AM99] showed decidability of reachability-time games on strongly non-Zeno
timed automata using a value iteration algorithm. This chapter complements their work
by providing a strategy improvement algorithm for the problem. It also generalises
their decidability result because the proposed strategy improvement algorithm solves
reachability-time games on all timed automata. The exact computational complexity of
solving reachability-time games is also established: the problem is EXPTIME-complete for
timed automata with at least two clocks.

5.1. Introduction
5.1.1. Definition

DEFINITION 5.1.1 (Reachability-Time Games). A reachability-time game on a timed automa-
ton is a tuple (Γ, RTMin, RTMax), where:

– Γ = (T , LMin, LMax) is a timed game automaton such that T = (L, C, S, A, E, δ, ξ, F)
is a timed automaton, LMin is the set of locations controlled by player Min, and LMax
is the set of locations controlled by player Max;

– RTMin : Runs → R and RTMax : Runs → R are payoff functions, which for every
run of the timed automaton return the amount the player Min loses and the player
Max wins, respectively. The functions RTMin and RTMax are defined in the following
way: for a run r = 〈s0, (t1, a1), s1, (t2, a2), . . .〉 ∈ Runs we have

RTMin(r) = RTMax(r) =

{
∑Stop(r)

i=1 ti if Stop(r) < ∞
∞ otherwise.

88

5.1. INTRODUCTION 89

Since the functions RTMin and RTMax are equal, we write RT : Runs → R for this
function.

We define QMin = {(`, ν) ∈ Q : ` ∈ LMin}, QMax = Q \ QMin, SMin = S ∩ QMin,
SMax = S \ SMin,RMin = {[s] : s ∈ QMin}, andRMax = R \RMin.

The strategies of player Min and player Max are defined as usual (see Section 3.4.2). We
write ΣMin for the set of strategies for player Min, and we write ΣMax for the set of strategies
for player Max. We write ΠMin and ΠMax for the sets of positional strategies for player
Min and for player Max, respectively. Reachability-time payoff function RT : Runs→ R

naturally gives rise to the function RT : S × ΣMin × ΣMax → R in the following way.
For strategies µ ∈ ΣMin and χ ∈ ΣMax of respective players and a state s ∈ S we have
RT(s, µ, χ) = RT(Run(s, µ, χ)).

5.1.2. Value of Reachability-Time Game

If player Min uses the strategy µ ∈ ΣMin and player Max uses the strategy χ ∈ ΣMax then
player Min loses the value RT(s, µ, χ) and player Max wins the value RT(s, µ, χ). In a
reachability-time game player Min is interested in minimising the value she loses and player
Max is interested in maximising the value he wins. We define the upper value Val(s) and the
lower value Val(s) of the reachability-time game at the state s ∈ S by

Val(s) = inf
µ∈ΣMin

sup
χ∈ΣMax

RT(Run(s, µ, χ)), and Val(s) = sup
χ∈ΣMax

inf
µ∈ΣMin

RT(Run(s, µ, χ)).

From Proposition 1.2.4 the inequality Val(s) ≤ Val(s) always holds. A reachability-time
game is determined if for every s ∈ S, the lower and upper values at s are equal to each other;
then we say that the value Val(s) exists and Val(s) = Val(s) = Val(s).

For strategies µ ∈ ΣMin and χ ∈ ΣMax, we define

Valµ(s) = sup
χ∈ΣMin

RT(Run(s, µ, χ)), and Valχ(s) = inf
µ∈ΣMin

RT(Run(s, µ, χ)).

We say that a strategy µ ∈ ΣMin or χ ∈ ΣMax, respectively, is optimal if for every s ∈ S,
we have Valµ(s) = Val(s) or Valχ(s) = Val(s), respectively. For an ε > 0, we say that a
strategy µ ∈ ΣMin or χ ∈ ΣMax is ε-optimal if for every s ∈ S, we have Valµ(s) ≤ Val(s) + ε

or Valχ(s) ≥ Val(s)− ε, respectively. Note that if a game is determined then for every ε > 0,
both players have ε-optimal strategies.

For an ε > 0, we say that a strategy µ ∈ ΣMin for Min is ε-optimal if for every s ∈ S, we
have Valµ(s) ≤ Val(s) + ε. For an ε > 0, we say that a strategy χ ∈ ΣMax for Max is ε-optimal
if for every s ∈ S, we have Valχ(s) ≥ Val(s)− ε. Optimal and ε-optimal strategies for player
Max are defined analogously.

We say that a reachability-time game is positionally determined if for every s ∈ S, we
have

sup
µ∈ΠMin

inf
χ∈ΣMax

RT(Run(s, µ, χ)) = Val(s) = inf
χ∈ΠMax

sup
µ∈ΣMin

RT(Run(s, µ, χ)).

Note that if the reachability-time game is positionally determined then for every ε > 0,
both players have positional ε-optimal strategies. Our results (Lemma 5.1.3, Theorem 5.3.3,

5.1. INTRODUCTION 90

and Theorem 5.4.12) yield a constructive proof of the following fundamental result for
reachability-time games.

THEOREM 5.1.2 (Positional determinacy). Reachability-time games are positionally deter-
mined.

5.1.3. Optimality Equations

Let Γ be a timed game automaton, and let T : S→ R and D : S→N.
We write (T, D) |= OERT

MinMax(Γ), and we say that (T, D) is a solution of optimality
equations OERT

MinMax(Γ), if for all s ∈ S, we have:
– if D(s) = ∞ then T(s) = ∞; and
– if s ∈ F then (T(s), D(s)) = (0, 0); and
– if s ∈ SMin \ F then

T(s) = inf
a,t
{t + T(s′) : s a−→t s′}, and

D(s) = min
{

1 + d′ : T(s) = inf
a,t
{t + T(s′) : s a−→t s′ and D(s′) = d′}

}
;

– if s ∈ SMax \ F then

T(s) = sup
a,t
{t + T(s′) : s a−→t s′}, and

D(s) = max
{

1 + d′ : T(s) = sup
a,t
{t + T(s′) : s a−→t s′ and D(s′) = d′}

}
;

LEMMA 5.1.3 (ε-Optimal strategies from optimality equations). If (T, D) |= OERT
MinMax(Γ),

then for all s ∈ S, we have Val(s) = T(s) and for every ε > 0, both players have positional
ε-optimal strategies.

PROOF. We show that for every ε > 0, there exists a positional strategy µε : SMin →
A×R⊕ for player Min, such that for every strategy χ for player Max, if s ∈ S is such that
D(s) < ∞, then we have RT(Run(s, µε, χ)) ≤ T(s) + ε. The proof, that for every ε > 0, there
exists a positional strategy χε : SMax → A×R⊕ for player Max, such that for every strategy
µ for player Min, if s ∈ S is such that D(s) < ∞ then we have RT(Run(s, µ, χε)) ≥ T(s)− ε,
is similar and omitted. The proof, that if D(s) = ∞ then player Max has a strategy to prevent
ever reaching a final state, is routine and omitted as well. Together, these facts imply that T
is equal to the value function of the reachability-time game, and the positional strategies µε

and χε, defined in the proof below for all ε > 0, are ε-optimal.
For ε′ > 0, T : S → R, and s ∈ SMin \ F, we say that a timed action (a, t) ∈ A×R⊕ is

ε′-optimal for (T, D) in s if s a−→t s′, and

D(s′) ≤ D(s)− 1, and (5.1.1)

t + T(s′) ≤ T(s) + ε′. (5.1.2)

Observe that for every state s ∈ SMin and for every ε′ > 0, there is a ε′-optimal timed action
for (T, D) in s because (T, D) |= OERT

MinMax(Γ). Moreover, again by (T, D) |= OERT
MinMax(Γ)

5.2. SIMPLE FUNCTIONS 91

we have that for every s ∈ SMax \ F and timed action (a, t), such that s a−→t s′, we have

D(s′) ≤ D(s)− 1, and (5.1.3)

t + T(s′) ≤ T(s). (5.1.4)

Let ε > 0; we define µε : SMin → A×R⊕ by setting µε(s), for every s ∈ SMin, to be a
timed action which is ε′(s)-optimal for (T, D) in s, where ε′(s) > 0 is sufficiently small (to be
determined later). Let χ be an arbitrary strategy for player Max and let r = Run(s, µε, χ) =
〈s0, (a1, t1), s1, (a2, t2), . . .〉. Let N = Stop(r). Our goal is to prove that RT(r) ≤ T(s) + ε, i.e.,
that T(s) ≥ ∑N

k=1 tk − ε.
For every state s ∈ S, such that D(s) < ∞, define ε′(s) = ε · 2−D(s). Note that if we add

left- and right-hand sides of the inequalities (5.1.2) or (5.1.4), respectively, for all states si,
and ε′(si)-optimal timed actions µε(si) if si ∈ SMin, where i = 0, 1, . . . , N − 1, then we get

T(s) = T(s0) ≥
N

∑
k=1

tk −
N−1

∑
k=0

ε′(sk) ≥
N−1

∑
k=0

tk − ε.

The first inequality holds by T(sN) = T(sStop(r)) = 0, and the second inequality holds
because

N−1

∑
k=0

ε′(sk) =
N−1

∑
k=0

(ε · 2−D(sk)) ≤ ε ·
∞

∑
d=1

2−d ≤ ε,

where the first inequality follows by (5.1.1) and (5.1.3).
It may be worth noting that if the finite values of the function D are bounded, i.e., if

B < ∞, where B = sups∈S{D(s) : D(s) < ∞}, then in the above proof it is sufficient
to define ε′(s) = ε/B, for all s ∈ S, which gives arguably more realistically “physically
implementable” ε-optimal strategies.

5.2. Simple Functions
Asarin and Maler [AM99] presented a value-iteration algorithm to compute upper-value
in a reachability-time game. They observed that all the functions used in their algorithm
belong to a special class that can be finitely represented, which they called simple functions.
Simple functions play an important role in our work as we show the value of a reachability-
time game restricted to a region is a simple function.

DEFINITION 5.2.1 (Simple Functions [AM99]). Let X ⊆ Q. A function F : X → R is a simple
function if either: there is e ∈ Z, such that for every s ∈ X, we have F(s) = e; or there are
e ∈ Z and c ∈ C, such that for every s ∈ X, we have F(s) = e− s(c).

Let X ⊆ Q be convex and let F : X → R be a continuous function. We write F for
the unique continuous function F′ : X → R, such that for all s ∈ X, we have F′(s) = F(s).
Observe that if F is simple, then F is simple. For functions F, F′ : X → R we define functions
max(F, F′), min(F, F′) : X → R by max(F, F′)(s) = max{ F(s), F′(s) } and min(F, F′)(s) =
min{ F(s), F′(s) }, for every s ∈ X.

5.3. REACHABILITY-TIME GAMES ON BOUNDARY REGION AUTOMATA 92

LEMMA 5.2.2. Let F, F′ : R→ R be simple functions defined on a region R ∈ R. Then either
min(F, F′) = F and max(F, F′) = F′, or min(F, F′) = F′ and max(F, F′) = F. In particular,
both min(F, F′) and max(F, F′) are simple functions.

PROOF. We prove the lemma for functions min(F, F′) and max(F, F′) instead of min(F, F′)
and max(F, F′), respectively. Extending the result to the unique continuous extensions to X
is routine. The case when both F and F′ are constant functions is straightforward. Hence it
suffices to consider the following two cases.

Case 1. Let F(s) = e − s(c) and let F′(s) = e′, for some e, e′ ∈ Z and a clock c ∈ C.
Note that for every state s ∈ R, we have bF′(s) − F(s)c = (e′ − e) + bs(c)c and hence
bF′ − Fc is a constant function in region R. Therefore either F′(s)− F(s) ≥ 0 for all s ∈ R, or
F′(s)− F(s) ≤ 0 for all s ∈ R, i.e., either min(F, F′) = F and max(F, F′) = F′, or min(F, F′) =
F′ and max(F, F′) = F.

Case 2. Let F(s) = e− s(c) and F′(s) = e′− s(c′), for some e, e′ ∈ Z and clocks c, c′ ∈ C.
Note that for every state s ∈ R, we have bF′(s)− F(s)c = (e′ − e) + bs(c′)− s(c)c and

bs(c′)− s(c)c =
{
bs(c′)c − bs(c)c if *s(c′)+ ≥ *s(c)+,

bs(c′)c − bs(c)c − 1 if *s(c′)+ < *s(c)+.

In particular, as in the previous case we have that bF′ − Fc is a constant function in region R
and hence one of the functions F or F′ is equal to max(F, F′) and the other is equal to
min(F, F′).

5.3. Reachability-Time Games on Boundary Region Automata
In this section we introduce boundary region (game) automaton ΓBR of a timed game au-
tomaton Γ, and define the set of optimality equationsOERT

MinMax(ΓBR) for a boundary region
automaton ΓBR. We further show that a solution of optimality equations OERT

MinMax(ΓBR) of
ΓBR gives a solution of optimality equations OERT

MinMax(Γ) for the timed game automaton Γ.

5.3.1. Boundary Region (Game) Automata

Let Γ = (T , LMin, LMax) be timed game automaton. Recall from Definition 3.7.7 that
A = A× JKKN × C is the finite set of boundary timed actions. The boundary region (game)
automaton ΓBR to be the finite edge-labelled graph (R,M), where the set R of regions of
timed automaton T is the set of vertices, and the labelled edge relationM⊆ R×A×R is
defined in the following way. For α = (a, b, c) ∈ A and R, R′ ∈ R we have (R, α, R′) ∈ M,
sometimes denoted by R α

 R′, if and only if one of the following conditions holds:

– there is an R′′ ∈ R, such that R −→b,c R′′ a−→ R′; or
– R ∈ RMin, and there are R′′, R′′′ ∈ R, such that R −→b,c R′′ −→+1 R′′′ a−→ R′; or
– R ∈ RMax, and there are R′′, R′′′ ∈ R, such that R −→b,c R′′ ←−+1 R′′′ a−→ R′.

Remark. Note that this definition of the boundary region automata has been slightly
modified (compare with Definition 3.7.8) to take advantage of the fact that, in a reachability-
time game, timed moves which wait till the farthest (closest) boundary of a region are

5.3. REACHABILITY-TIME GAMES ON BOUNDARY REGION AUTOMATA 93

sub-optimal for player Min (Max). Also observe that the set of edges, of the boundary
region automata introduced here, are of the form R×A×R instead of R×R×A ×R
as introduced in Chapter 3. In doing so there is no loss of information in the case of
reachability-time games, as the time of two different moves with the same boundary actions
and same initial region, e.g., (R, R1, α, R′1) and (R, R2, α, R′2) is the same, while in a priced
timed automaton (e.g., concavely-priced timed automaton) prices of these moves may differ.

5.3.2. Optimality Equations

Recall, from Section 5.1.3, that a solution of equations OERT
MinMax(Γ) for a reachability-time

game Γ is a pair of functions (T, D), such that T : S → R and D : S → N. Our
goal is to define analogous optimality equations OERT

MinMax(ΓBR) for the boundary region
automaton ΓBR.

If R α
 R′, where R, R′ ∈ R and α ∈ A, then s ∈ R does not in general imply that

Succ(s, α) ∈ R′; it is however the case that s ∈ R implies Succ(s, α) ∈ R′. In order to
correctly capture the constraints for successor states which fall out of the “target” region
R′ of a move of the form R α

 R′, we consider, as solutions of optimality equations
OERT

MinMax(ΓBR), regional functions of types T : R → [S ⇁ R] and D : R → [S ⇁ N],
where for every R ∈ R, the domain of partial functions T(R) and D(R) is R. Sometimes,
when defining a regional function F : R → [S ⇁ R], it will only be natural to define F(R)
for all s ∈ R, instead of all s ∈ R. This is not a problem, however, because as discussed
in Section 5.2 defining F(R) on the region R uniquely determines the continuous extension
of F(R) to R. For a function F : R → [S ⇁ R], we define the function F̃ : S → R by
F̃(s) = F([s])(s).

Optimality equations. Let T : R → [S → R] and let D : R → [S → N]. We write
(T, D) |= OERT

MinMax(ΓBR) if for all s ∈ S, we have the following:

– if s ∈ F then
(
T̃(s), D̃(s)

)
= (0, 0);

– if s ∈ SMin \ F then(
T̃(s), D̃(s)

)
= minlex

m∈M

{(
T(R′)⊕α (s), D(R′)�α (s)

)
: m = ([s], α, R′)

}
;

– if s ∈ SMax \ F then(
T̃(s), D̃(s)

)
= maxlex

m∈M

{(
T(R′)⊕α (s), D(R′)�α (s)

)
: m = ([s], α, R′)

}
.

5.3.3. Optimality Equations of Timed Automata vs Boundary Region Automata

In this subsection we show that the function (T, D) 7→ (T̃, D̃) translates solutions of the
reachability-time optimality equations OERT

MinMax(ΓBR) for the boundary region automaton
ΓBR to solutions of optimality equations OERT

MinMax(Γ) for the reachability-time game Γ. In
other words, we establish that the function Γ 7→ ΓBR is a reduction from the problem of
computing values in reachability-time games to the problem of solving optimality equations

5.3. REACHABILITY-TIME GAMES ON BOUNDARY REGION AUTOMATA 94

for boundary region automata. Then in Section 5.4 we give an algorithm to solve optimality
equations for OERT

MinMax(ΓBR).
Before we state and prove the main result (Theorem 5.3.3) of this subsection we need

to introduce some mathematical shorthands and their properties. For α ∈ A and R, R′ ∈ R,
if R α−→ R′ and F : R′ → R then we define the functions F⊕α : R → R and F�α : R → R by
F⊕α (s) = t(s, α) + F(Succ(s, α)), and F�α (s) = 1 + F(Succ(s, α)), for all s ∈ R.

PROPOSITION 5.3.1. Let α ∈ A and R, R′ ∈ R. If R α−→ R′ and F : R′ → R is simple, then
F⊕α is simple.

PROOF. Let α = (a, b, c). If F is a constant function, i.e., if there is some e ∈ Z, such that
for all s′ ∈ R′, we have F(s′) = e, then F⊕α (s) = t(s, α) + e. If s(c) > b for all s ∈ R, then
t(s, α) = 0 for all s ∈ R, and hence F⊕α (s) = e and F⊕α is simple. If instead s(c) ≤ b for all
s ∈ R, then F⊕α (s) = (b− s(c)) + e = (b + e)− s(c) and hence it is a simple function.

The other case is when F is not a constant function, i.e., if there are a constant e ∈ Z

and a clock c′ ∈ C, such that for all s′ ∈ R′, we have F(s′) = e− s′(c′). We consider two sub
cases.

– If c′ ∈ ξ(a) then F⊕α (s) = t(s, a) + (e − s′(c′)) = t(s, α) + e, because by the
assumption that c′ ∈ ξ(a) we have that s′(c′) = 0. If s(c) > b for all s ∈ R,
then t(s, α) = 0 for all s ∈ R, and hence F⊕α (s) = e which is a simple function. If
instead s(c) ≤ b for all s ∈ R, then F⊕α (s) = (b + e)− s(c) which is also a simple
function.

– If instead c′ 6∈ ξ(a) then F⊕α (s) = t(s, α) + (e− (s(c′) + t(s, α))) = e− s(c′), because
by the assumption that c′ 6∈ ξ(a) we have that s′(c′) = s(c′) + t(s, α), and hence F⊕α
is a simple function.

The proof is now complete.

For a ∈ A and R, R′, R′′ ∈ R, if R −→∗ R′′ a−→ R′, s ∈ R, and F : R′ → R, then we define
the partial function F⊕s,a : R⊕ ⇁ R by F⊕s,a(t) = t + F(Succ(s, (a, t))), for all t ∈ R⊕, such
that (s + t) ∈ R′′. Note that the domain {t ∈ R⊕ : (s + t) ∈ R′′} of F⊕s,a is an interval.

PROPOSITION 5.3.2. Let a ∈ A and R, R′, R′′ ∈ R. If R −→∗ R′′ a−→ R′, s ∈ R, and F : R′ → R

is simple, then F⊕s,a : I → R, where I = {t ∈ R⊕ : (s + t) ∈ R′′}, is continuous and
nondecreasing.

PROOF. We consider two cases. If F is a constant function, i.e., if there is e ∈ Z, such that
for all s′ ∈ R′ we have F(s′) = e, then F⊕s,a(t) = t + F(Succ(s, (a, t))) = t + e, which is a
continuous and nondecreasing function of t.

The other case is when F is not a constant function, i.e., if there are a constant e ∈ Z

and a clock c′ ∈ C, such that for all s′ ∈ R′, we have F(s′) = e − s′(c′). We consider two
sub cases. If c′ ∈ ξ(a) then F⊕s,a(t) = t + e which is continuous and nondecreasing. If instead
c′ 6∈ ξ(a) then F⊕s,a(t) = t + (e − (s + t)(c′)) = t + e − (s(c′) + t) = e − s(c′), i.e., F⊕s,a is a
constant function and hence continuous and nondecreasing.

5.3. REACHABILITY-TIME GAMES ON BOUNDARY REGION AUTOMATA 95

7 We say that a function F : R → [S ⇁ R] is regionally simple or regionally constant,
respectively, if for every region R ∈ R, the function F(R) : R → R is simple or constant,
respectively.

THEOREM 5.3.3 (Correctness of the reduction). If (T, D) |= OERT
MinMax(ΓBR), T is regionally

simple, and D is regionally constant, then (T̃, D̃) |= OERT
MinMax(Γ).

PROOF. We need to show that for every state s ∈ SMin \ F, we have

T̃(s) = inf
a,t
{t + T̃(s′) : s a−→t s′}, and (5.3.1)

D̃(s) = min
d′∈N

{
1 + d′ : T̃(s) = inf

a,t
{t + T̃(s′) : s a−→t s′ and D̃(s′) = d′}

}
. (5.3.2)

The proof of the corresponding equalities for states s ∈ SMax \ F is similar and omitted.
First we prove the equality (5.3.1).

T̃(s) = min
m∈M

{
T(R′)⊕α (s) : m = ([s], α, R′)

}
= min

{
min

R′′,a,R′

{
T(R′)⊕s,a(b− s(c)) : [s] −→b,c R′′ a−→ R′

}
,

min
R′′,a,R′

{
T(R′)⊕s,a(b− s(c)) : [s] −→b,c R′′′ −→+1 R′′ a−→ R′

}}
= min

R′′,a,R′

{
inf

t
{T(R′)⊕s,a(t) : [s + t] = R′′} : [s] −→∗ R′′ a−→ R′

}
= min

R′′,a,R′

{
inf

t
{t + T̃(Succ(s, (a, t))) : [s + t] = R′′} : [s] −→∗ R′′ a−→ R′

}
= inf

a,t
{t + T̃(s′) : s a−→t s′}

The first equality holds by the assumption that T |= OERT
MinMax(ΓBR). The second

equality holds by the definition of the move relationM of the boundary region automaton
ΓBR, and because if α = (a, b, c) then

T(R′)⊕α (s) = b− s(c) + T(R′)(Succ(s, (a, b− s(c)))

= T(R′)⊕s,a(b− s(c)).

For the third equality we invoke regional simplicity of T which by Proposition 5.3.2 im-
plies that the function T(R′)⊕s,a is continuous and nondecreasing. If either [s] −→b,c R′′ a−→ R′,
or [s] −→b,c R′′′ −→+1 R′′ a−→ R′, then we have that inf{t : [s + t] = R′′} = b− s(c), and hence

inf
t
{T(R′)⊕s,a(t) : [s + t] = R′′} = T(R′)⊕s,a(b− s(c)),

because T(R′)⊕s,a is continuous and nondecreasing. The fourth equality holds as [s + t] = R′′

and R′′ a−→ R′ imply that [Succ(s, (a, t))] = R′, and hence we have T(R′)(Succ(s, (a, t))) =
T̃(Succ(s, (a, t))).

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 96

Now we prove the equality (b).

D̃(s) = min
m∈M

{
D(R′)�α (s) : T̃(s) = T(R′)⊕α (s) and m = ([s], α, R′)

}
= min

d′∈N

{
1 + d′ : T̃(s) = T(R′)⊕α (s) and ([s], α, R′) ∈ M and D(R′) ≡ d′

}
= min

d′∈N

{
1 + d′ : T̃(s) = inf

a,t
{t + T̃(s′) : s a−→t s′ and D̃(s′) = d′}

}
The first equality holds by the assumption that (T, D) |= OERT

MinMax(ΓBR). The second
equality holds because of the assumption that D is regionally constant, and we write
D(R′) ≡ d′, where d′ ∈ N, to express that for all s ∈ R′, we have D(R′)(s) = d′. Finally,
to establish the third equality it is sufficient to perform a calculation analogous to the above
proof of (a), in order to show that T̃(s) = T(R′)⊕α (s) and ([s], α, R′) ∈ M and D(R′) ≡ d′ if
and only if T̃(s) = infa,t{t + T̃(s′) : s a−→t s′ and D̃(s′) = d′}.

5.4. Solving Optimality Equations by Strategy Improvement
So far, we showed that if there exists a solution (T, D) of OERT

MinMax(ΓBR) such that T is
regionally simple and D is regionally constant, then (T̃, D̃) is a solution of OERT

MinMax(Γ).
In this section, using a strategy improvement algorithm, we give a constructive proof of
the fact that for every boundary region automaton TBR there exists a solution (T, D) |=
OERT

MinMax(ΓBR) such that T is regionally simple and D is regionally constant.
We begin by defining a special class of strategies in boundary region automata

which we call regionally constant positional strategies. These strategies are of interest as
all strategies appearing in our strategy improvement algorithm are regionally constant
positional strategies. In Subsection 5.4.2 we define optimality equations OERT

Max(ΓBR) and
OERT

Min(ΓBR) characterising maximum and minimum, respectively, reachability-price in a
boundary region automata. In Subsection 5.4.3 we present strategy improvement algorithm
to solveOERT

Max(ΓBR), which is called as a subroutine in the strategy improvement algorithm
presented in Subsection 5.4.4 to solve OERT

MinMax(ΓBR).

5.4.1. Positional Strategies in Boundary Region Automata

A positional strategy for player Max in a boundary region automaton ΓBR is a function
χ : SMax → M, such that for every s ∈ SMax, we have χ(s) = ([s], α, R), for some α ∈ A
and R ∈ R. A strategy χ : SMax → M is regionally constant if for all s, s′ ∈ SMax, we have
that [s] = [s′] implies χ(s) = χ(s′); we can then write χ([s]) for χ(s). Positional strategies
for player Min are defined analogously. We write ∆Max and ∆Min for the sets of positional
strategies for players Max and Min, respectively.

If χ ∈ ∆Max is regionally constant then we define the strategy subgraph ΓBR�χ to be
the subgraph (R,Mχ) where Mχ ⊆ M consists of: all moves (R, α, R′) ∈ M, such that
R ∈ RMin; and of all moves m = (R, α, R′), such that R ∈ RMax and χ(R) = m. The strategy
subgraph ΓBR�µ for a regionally constant positional strategy µ ∈ ∆Min for player Min is
defined analogously.

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 97

We say that R ∈ R is choiceless in a boundary region automaton ΓBR if R has a unique
successor in ΓBR. We say that ΓBR is 0-player if all R ∈ R are choiceless in ΓBR; we say that
ΓBR is 1-player if either all R ∈ RMin or all R ∈ RMax are choiceless in ΓBR; every boundary
region automaton ΓBR is 2-player. Note that if χ and µ are positional strategies in ΓBR for
players Max and Min, respectively, then ΓBR�χ and ΓBR�µ are 1-player and (ΓBR�χ)�µ is
0-player.

For functions T : R → [S → R] and D : R → [S → R], and s ∈ SMax, we
define sets M∗(s, (T, D)) and M∗(s, (T, D)), respectively, of moves enabled in s which are
(lexicographically) (T, D)-optimal for player Max and Min, respectively:

M∗(s, (T, D)) = argmaxlex

m∈M

{(
T(R′)⊕α (s), D(R′)�α (s)

)
: m = ([s], α, R′)

}
, and

M∗(s, (T, D)) = argminlex

m∈M

{(
T(R′)⊕α (s), D(R′)�α (s)

)
: m = ([s], α, R′)

}
.

Let Choose : 2M →M be a function such that for every non-empty set of moves M ⊆ M,
we have Choose(M) ∈ M. For regional functions T : R → [S ⇁ R] and D : R →
[S ⇁ N], the canonical (T, D)-optimal strategies χ(T,D) and µ(T,D) for player Max and Min,
respectively, are defined by: χ(T,D)(s) = Choose(M∗(s, (T, D))), for every s ∈ SMax; and
µ(T,D)(s) = Choose(M∗(s, (T, D))), for every s ∈ SMin.

5.4.2. Optimality Equations OERT
Max(ΓBR), OERT

Max(ΓBR), and OERT(ΓBR)

Optimality equations sets OERT
Max(ΓBR), OERT

Max(ΓBR), and OERT(ΓBR) are introduced.
Intuitively,OERT

Max(ΓBR) (OERT
Max(ΓBR)) characterises optimal reachability-price when player

Min (Max) is choiceless, while OERT(ΓBR) characterises optimal reachability-price when
both players are choiceless. We also define the sets OERT

≥ (ΓBR) and OERT
≤ (ΓBR) that

are useful technical tools in showing strict improvement in every iteration of strategy
improvement algorithm.

Let T : R → [S → R] and D : R → [S → N]. We write (T, D) |= OERT
Max(ΓBR) if for all

s ∈ S we have the following:

(
T̃(s), D̃(s)

)
=

{(
0, 0
)

if s ∈ F
maxlex

m∈M
{(

T(R′)⊕α (s), D(R′)�α (s)
)

: m = ([s], α, R′)
}

, otherwise.

Similarly we write (T, D) |= OERT
Min(ΓBR), if for all s ∈ F, we have the following:

(
T̃(s), D̃(s)

)
=

{(
0, 0
)

if s ∈ F
minlex

m∈M
{(

T(R′)⊕α (s), D(R′)�α (s)
)

: m = ([s], α, R′)
}

, otherwise.

If ΓBR is 0-player then OERT
Max(ΓBR) and OERT

Min(ΓBR) are equivalent to each other and
denoted by OERT(ΓBR).

We write (T, D) |= OERT
≥ (ΓBR) if for all s ∈ S we have:

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 98

(
T̃(s), D̃(s)

)
≥lex

{(
0, 0
)

if s ∈ F
maxlex

m∈M
{(

T(R′)⊕α (s), D(R′)�α (s)
)

: m = ([s], α, R′)
}

, otherwise.

Similarly we write (T, D) |= OERT
≤ (ΓBR) if for all s ∈ S, we have:

(
T̃(s), D̃(s)

)
≤lex

{(
0, 0
)

if s ∈ F
minlex

m∈M
{(

T(R′)⊕α (s), D(R′)�α (s)
)

: m = ([s], α, R′)
}

, otherwise.

PROPOSITION 5.4.1 (Relaxations of optimality equations). If (T, D) |= OERT
Max(ΓBR) then

(T, D) |= OERT
≥ (ΓBR), and if (T, D) |= OERT

Min(ΓBR) then (T, D) |= OERT
≤ (ΓBR).

LEMMA 5.4.2 (Solution ofOERT(ΓBR) is regionally simple). Let ΓBR be a 0-player boundary
region automaton. If (T, D) |= OERT(ΓBR) then T is regionally simple and D is regionally
constant.

PROOF. In a 0-player boundary region automaton ΓBR, for every region R, there is at most
one outgoing labelled edge (R, α, R′) ∈ M, and hence for every region R, there is a unique
M-path from R in ΓBR. For every region R ∈ R, we define the distance d(R) ∈ N to be
the smallest number of edges in the uniqueM-path from R, that one needs to reach a final
region. It is easy to show that for every state s ∈ S, we have that D([s])(s) = d([s]), and
hence D is regionally constant.

We prove that for every region R ∈ R, the function T(R) : R → R is simple, by
induction on d(R). If d(R) = 0 then T(R)(s) = 0 for all s ∈ R, and hence T(R) is simple on
R.

Let d(R) = n + 1 and let (R, α, R′) ∈ M be the unique edge going out of R in ΓBR.
Observe that T(R) = T(R′)⊕α because for every s ∈ R, we have T(R)(s) = T([s])(s) =

T(R′)⊕α (s), where the second equality follows from (T, D) |= OERT(ΓBR). Moreover, by the
induction hypothesis the function T(R′) : R′ → R is simple, and hence by Proposition 5.3.1
we get that T(R′)⊕α = T(R) is simple.

If d(R) = ∞, i.e., if the uniqueM-path from R in ΓBR never reaches a final region, then
we set T(R′)(s) = ∞, for all s ∈ R. Therefore T(R′) : R → R is a constant function and
hence it is simple.

5.4.3. Solving 1-Player Reachability-Time Optimality Equations OERT
Max(ΓBR)

In this section we give a strategy improvement algorithm for solving maximum reachability-
time optimality equations OERT

Max(ΓBR) for a 1-player boundary region automaton ΓBR.
We define the following strategy improvement operator ImproveMax:

ImproveMax(χ, (T, D))(s) =

{
χ(s) if χ(s) ∈ M∗(s, (T, D)),

Choose(M∗(s, T)) if χ(s) 6∈ M∗(s, (T, D)).

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 99

Note that ImproveMax(χ, (T, D))(s) may differ from the canonical (T, D)-optimal choice
χ(T,D)(s) only if χ(s) is itself (T, D)-optimal in state s, i.e., if χ(s) ∈ M∗(s, (T, D)).

LEMMA 5.4.3 (Improvement preserves regional constancy of strategies). If χ ∈ ∆Max is
regionally constant, T : R → [S → R] is regionally simple, and D : R → [S → N] is
regionally constant, then ImproveMax(χ, (T, D)) is regionally constant.

PROOF. We need to prove that for s, s′ ∈ S, if [s] = [s′] then χ′(s) = χ′(s′), where χ′ =
ImproveMax(χ, (T, D)). By regionality of χ it is sufficient to prove that M∗(s, (T, D)) =
M∗(s′, (T, D)). By regional simplicity of T, and by Proposition 5.3.1, we have that functions
T(R)⊕α : [s]→ R, for all m = ([s], α, R) ∈ M, are simple. Then we have

M∗(s, (T, D)) = argmaxlex

m∈M

{(
T(R)⊕α (s), D(R)�α (s)

)
: m = ([s], α, R)

}
= argmaxlex

m∈M

{(
T(R)⊕α (s

′), D(R)�α (s
′)
)

: m = ([s′], α, R)
}

= M∗(s′, (T, D)),

where the second equality follows from [s] = [s′], regional constancy of D, and by the
application of Lemma 5.2.2 to the (finite) set of functions {T(R)⊕α : ([s], α, R) ∈ M}.

Input: Boundary Region Automaton ΓBR

Output: A solution of OERT
Max(ΓBR)

begin1

(Initialisation). Choose a regionally constant positional strategy χ0 ∈ ∆Max for2

player Max in ΓBR;
Set i := 0;3

repeat4

(Value Computation). Compute the solution (Ti, Di) of OERT(ΓBR�χi);5

(Strategy Improvement). Compute χi+1 = ImproveMax(χi, (Ti, Di));6

Set i := i + 1;7

until χi+1 ≡ χi ;8

return (Ti, Di);9

end10

FIGURE 5.1. Strategy improvement algorithm for OERT
Max(ΓBR).

PROPOSITION 5.4.4 (Fixpoints of ImproveMax are solutions of OERT
Max(ΓBR)). Let χ ∈ ∆Max

and let (Tχ, Dχ) |= OERT(ΓBR�χ). If ImproveMax(χ, (Tχ, Dχ)) = χ then we have that
(Tχ, Dχ) |= OERT

Max(ΓBR).

If F, F′ : R → [S ⇁ R] then we write F ≤ F′ if for all R ∈ R, and for all s ∈ R, we have
F(R)(s) ≤ F′(R)(s). Moreover, F < F′ if F ≤ F′ and there is R ∈ R and s ∈ R, such that
F(R)(s) < F′(R)(s). If F, G, F′, G′ : R → [S ⇁ R] then (F, G) ≤lex (F′, G′) if F < F′, or if
F = F′ and G ≤ G′.

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 100

The following proposition characterises the solution of optimality equationsOERT(ΓBR)
for a 0-player boundary region automaton ΓBR, as the lexicographically maximum solution
of the system of inequalities OERT

≤ (ΓBR).

PROPOSITION 5.4.5 (Solution of OERT(ΓBR) is the maximum solution of OERT
≤ (ΓBR)). Let

T, T≤ : R → [S → R] and D, D≤ : R → [S → N] be such that (T, D) |= OERT(ΓBR) and
(T≤, D≤) |= OERT

≤ (ΓBR). Then we have (T≤, D≤) ≤lex (T, D), and if (T≤, D≤) 6|= OERT(ΓBR)

then the inequality is strict, i.e., we have (T≤, D≤) <lex (T, D).

PROOF. Our first goal is to establish that for every s ∈ S, we have (T̃≤(s), D̃≤(s)) ≤lex

(T̃(s), D̃(s)). We proceed by induction on D̃(s), i.e., on the length of the χ(T,D)-path in ΓBR

from [s] to a final region. The trivial base case is when [s] is a final region, because then
(T̃(s), D̃(s)) = (0, 0) and (T̃≤(s), D̃≤(s)) ≤lex (0, 0). Let s ∈ S \ F be such that D̃(s) = n + 1.
Then D̃(Succ(s, χ(T,D)(s))) = n and if χ(T,D)(s) = ([s], α, R′) then we have the following:(

T̃≤(s), D̃≤(s)
)
≤lex

(
T≤(R′)⊕α (s), D≤(R′)�α (s)

)
(5.4.1)

≤lex
(
T(R′)⊕α (s), D(R′)�α (s)

)
=

(
T̃(s), D̃(s)

)
,

where the first inequality follows from (T≤, D≤) |= OERT
≤ (ΓBR), the second inequality

follows from the induction hypothesis, and the last equality follows from (T, D) |=
OERT(ΓBR) and χ(T,D)(s) = ([s], α, R′). This concludes the proof that (T≤, D≤) ≤lex (T, D).

We prove that if (T≤, D≤) 6|= OERT(ΓBR) then there is s ∈ S, such that (T̃≤(s), D̃≤(s)) <lex

(T̃(s), D̃(s)). Indeed, if (T≤, D≤) 6|= OERT(ΓBR) then either (T̃≤(s), D̃≤(s)) <lex (0, 0) for
some s ∈ F, or there is s ∈ S \ F, for which the inequality in (5.4.1) is strict and hence we get
(T̃≤(s), D̃≤(s)) <lex (T̃(s), D̃(s)).

LEMMA 5.4.6 (Strict strategy improvement for player Max). Let χ, χ′ ∈ ∆Max, let (T, D) |=
OERT

Min(ΓBR�χ) and (T′, D′) |= OERT
Min(ΓBR�χ′), and let χ′ = ImproveMax(χ, (T, D)). Then

we have that (T, D) ≤lex (T′, D′) and if χ 6= χ′ then (T, D) <lex (T′, D′).

PROOF. First we argue that (T, D) |= OERT
≤ (ΓBR�χ′) which by Proposition 5.4.5 implies

that (T, D) ≤ (T′, D′). Indeed for every s ∈ S \ F, if χ(s) = ([s], α, R) and χ′(s) = ([s], α′, R′)
then we have (

T̃(s), D̃(s)
)

=
(
T(R)⊕α (s), D(R)�α (s)

)
≤lex (

T(R′)⊕α′(s), D(R′)�α′(s)
)
,

where the equality follows from (T, D) |= OERT
Min(ΓBR�χ), and the inequality follows from

the definition of ImproveMax. Moreover, if χ 6= χ′ then there is s ∈ SMax \ F for which the
above inequality is strict. Then (T, D) 6|= OERT

Min(ΓBR�χ′) because every vertex in ΓBR�χ′

has a unique successor, and hence again by Proposition 5.4.5 we conclude that (T, D) <lex

(T′, D′).

The following theorem is an immediate corollary of Lemmas 5.4.2 and 5.4.3 (the
algorithm considers only regionally constant strategies), of Lemma 5.4.6 and finiteness of

5.4. SOLVING OPTIMALITY EQUATIONS BY STRATEGY IMPROVEMENT 101

the number of regionally constant positional strategies for Max (the algorithm terminates),
and of Proposition 5.4.4 (the algorithm returns a solution of optimality equations).

THEOREM 5.4.7 (Correctness and termination of strategy improvement for OERT
Max(ΓBR)).

The strategy improvement algorithm for OERT
Max(ΓBR) terminates in finitely many steps and

returns a solution (T, D) ofOERT
Max(ΓBR), such that T is regionally simple and D is regionally

constant.

5.4.4. Solving 2-Player Reachability-Time Optimality Equations OERT
MinMax(ΓBR)

In this section we give a strategy improvement algorithm for solving optimality equations
OERT

MinMax(ΓBR) for a 2-player boundary region automaton ΓBR. The structure of the
algorithm is very similar to that of Algorithm 5.1. The only difference is that in step 2. of
every iteration we solve 1-player optimality equations OERT

Max(ΓBR�µ) instead of 0-player
optimality equations OERT(ΓBR�χ). Note that we can perform step 2. of Algorithm 5.2
below by using Algorithm 5.1.

We define the following strategy improvement operator ImproveMin:

ImproveMin(µ, (T, D))(s) =

{
µ(s) if µ(s) ∈ M∗(s, (T, D)),

Choose(M∗(s, (T, D))) if µ(s) 6∈ M∗(s, (T, D)).

Note that ImproveMin(µ, (T, D))(s) may differ from the canonical (T, D)-optimal choice
µ(T,D)(s) = Choose(M∗(s, (T, D))) only if µ(s) is itself (T, D)-optimal in state s, i.e., if
µ(s) ∈ M∗(s, (T, D)).

The proof of the following lemma is the same as for Lemma 5.4.3.

LEMMA 5.4.8 (Improvement preserves regional constancy of strategies). If µ ∈ ∆Min is
regionally constant, T : R → [S → R] is regionally simple, and D : R → [S → R] is
regionally constant, then ImproveMin(µ, (T, D)) is regionally constant.

PROPOSITION 5.4.9 (Fixpoints of ImproveMin are solutions of OERT
MinMax(ΓBR)). Let µ ∈

∆Min and (Tµ, Dµ) |= OERT
Max(ΓBR�µ). If ImproveMin(µ, (Tµ, Dµ)) = µ then we have that

(Tµ, Dµ) |= OERT
MinMax(ΓBR).

The following proposition is proved in the same way as Proposition 5.4.5.

PROPOSITION 5.4.10 (Solution ofOERT
Max(ΓBR) is the minimum solution ofOERT

≥ (ΓBR)). Let
T, T≥ : R → [S → R] and D, D≥ : R → [S → R] be such that (T, D) |= OERT

Max(ΓBR) and
(T≥, D≥) |= OERT

≥ (ΓBR). Then (T≥, D≥) ≥lex (T, D), and if (T≥, D≥) 6|= OERT
Max(ΓBR) then

(T≥, D≥) >lex (T, D).

LEMMA 5.4.11 (Strict strategy improvement for player Min). Let strategies µ, µ′ ∈ ∆Min, let
(T, D) |= OERT

Max(ΓBR�µ) and (T′, D′) |= OERT
Max(ΓBR�µ′), and let µ′ = ImproveMin(µ, (T, D)).

Then we have (T, D) ≥lex (T′, D′), and if µ 6= µ′ then (T, D) >lex (T′, D′).

PROOF. First we argue that (T, D) |= OERT
≥ (ΓBR�µ′) which by Proposition 5.4.10 implies

that (T, D) ≥lex (T′, D′). Indeed for every s ∈ S \ F, if µ(s) = ([s], α, R) and µ′(s) =

5.5. COMPLEXITY 102

Input: Boundary Region Automaton ΓBR

Output: A solution of OERT
MinMax(ΓBR)

begin1

(Initialisation). Choose a regionally constant positional strategy µ0 ∈ ∆Min for2

player Min in ΓBR;
Set i := 0;3

repeat4

(Value Computation). Compute the solution (Ti, Di) of OEMax(ΓBR�µi);5

(Strategy Improvement). Compute µi+1 = ImproveMin(µi, (Ti, Di));6

Set i := i + 1;7

until µi+1 ≡ µi ;8

return (Ti, Di);9

end10

FIGURE 5.2. Strategy improvement algorithm for solving OERT
MinMax(ΓBR).

([s], α′, R′) then we have(
T̃(s), D̃(s)

)
=

(
T(R)⊕α (s), D(R)�α (s)

)
≥lex (

T(R′)⊕α′(s), D(R′)�α′(s)
)
,

where the equality follows from (T, D) |= OERT
Max(ΓBR�µ), and the inequality follows from

the definition of ImproveMin. Moreover, if µ 6= µ′ then there is s ∈ SMin \ F for which the
above inequality is strict. Then (T, D) 6|= OERT

Max(ΓBR�µ′) because every vertex R ∈ RMin
in ΓBR�µ′ has a unique successor, and hence again by Proposition 5.4.10 we conclude that
(T, D) >lex (T′, D′).

The following theorem is an immediate corollary of Theorem 5.4.7 and Lemma 5.4.8, of
Lemma 5.4.11 and finiteness of the number of regionally constant positional strategies for
Min, and of Proposition 5.4.9.

THEOREM 5.4.12 (Correctness and termination of strategy improvement forOERT
MinMax(ΓBR)).

The strategy improvement algorithm for OERT
MinMax(ΓBR) terminates in finitely many steps

and returns a solution (T, D) of OERT
MinMax(ΓBR), such that T is regionally simple and D is

regionally constant.

5.5. Complexity
LEMMA 5.5.1 (Complexity of strategy improvement). Let Γ0

BR, Γ1
BR, and Γ2

BR be 0-player, 1-
player, and 2-player boundary region automata, respectively. A solution of OERT(Γ0

BR) can
be computed in time O(|R|). The strategy improvement algorithms for OERT

Max(Γ1
BR) and

OERT
MinMax(Γ2

BR) terminate in O(|R|) iterations and hence run in O(|R|2) and O(|R|3) time,
respectively.

5.5. COMPLEXITY 103

PROOF. An O(|R|) algorithm to solve OERT(Γ0
BR) is implicit in the proof of Lemma 5.4.2.

Let (T, D) |= OERT
Max(Γ1

BR); and for all i ≥ 0, let χi ∈ ∆Max be the strategy in the i-th
iteration of Algorithm 5.1, and let (Ti, Di) |= OERT(Γ1

BR�χi). We claim that for every i ≥ 0, if
D(R) ≡ i then for all j ≥ i, we have (Tj(R), Dj(R)) = (T(R), D(R)). This can be established
by a routine induction on the values of the regionally constant function D. Observe that
the finite values of the function D are bounded by |R|, because in the proof of Lemma 5.4.2
they are set to be the length of a simple path in a boundary region automaton. Algorithm 5.1
must therefore terminate no later than after |R|+ 1 iterations, because for every i ≥ 0, in
the i-th iteration there must be R ∈ R whose value D(R) is set to i.

An analogous routine proof by induction on the value of D can be used to prove that
Algorithm 5.2 terminates in O(|R|) iterations.

Since the number |R| of regions is at most exponential in the size of a timed automa-
ton [AD94], we conclude that the strategy improvement algorithm solves reachability-time
games in exponential time.

COROLLARY 5.5.2. The problem of solving reachability-time games is in EXPTIME.

In order to prove EXPTIME-hardness of solving reachability-time games on timed
automata with two clocks, we reduce the EXPTIME-complete countdown games to reacha-
bility games on timed automata.

THEOREM 5.5.3. The problem of solving reachability games is EXPTIME-complete on timed
automata with at least two clocks.

PROOF. In order to solve a reachability game on a timed automaton it is sufficient to
solve the reachability game on the finite region graph of the automaton. Observe that every
region, and hence also every configuration of the game, can be written down in polynomial
space, and that every move of the game can be simulated in polynomial time. Therefore, the
winner in the game can be determined by a straightforward alternating PSPACE algorithm,
and hence the problem is in EXPTIME because APSPACE = EXPTIME. In order to prove

n0 n1
2 3 2

A Countdown Game ((n0, B0) is the initial configuration)

(n0, 2) n0 (n0, 3) n1 (n1, 2)

*

c = 0, 2, {c} c = 0, 3, {c} c = 0, 2, {c}

c = 2, (n0, n0), {c} c = 3, (n0, n0), {c} c = 2, (n1, n1), {c}

b = B0, ∗, {c} b = B0, ∗, {c}

c = 3, (n0, n1), {c}

FIGURE 5.3. A Reduction from a Countdown Game to a Reachability Game.

5.5. COMPLEXITY 104

EXPTIME-hardness of solving reachability games on timed automata with two clocks, we
reduce the EXPTIME-complete problem of solving countdown games [JLS07] to it.

Let G = (N, M, π, n0, B0) be a countdown game, where N is a finite set of nodes, M ⊆
N × N is a set of moves, π : M → N+ assigns a positive integer number to every move,
and (n0, B0) ∈ N ×N+ is the initial configuration. In every move of the game from a
configuration (n, B) ∈ N ×N+, first player 1 chooses a number p ∈ N+, such that p ≤ B
and π(n, n′) = p for some move (n, n′) ∈ M, and then player 2 chooses a move (n, n′′) ∈ M,
such that π(n, n′′) = p; the new configuration is then (n′′, B− p). Player 1 wins a play of
the game when a configuration (n, 0) is reached, and he loses (i.e., player 2 wins) when a
configuration (n, B) is reached in which player 1 is stuck, i.e., for all moves (n, n′) ∈ M, we
have π(n, n′) > B.

We define the timed automaton TG = (L, C, S, A, E, δ, ξ, F) by setting C = { b, c }; S =
L× (JB0KR)

2; A = { ∗ } ∪ P ∪M, where P = π(M), the image of the function π : M→N+;

L = { ∗ } ∪ N ∪
{
(n, p) : there is (n, n′) ∈ M, s.t. π(n, n′) = p

}
;

E(a) =


{(n, ν) : n ∈ N and ν(b) = B0} if a = ∗,{
(n, ν) : there is (n, n′) ∈ M, s.t. π(n, n′) = p and ν(c) = 0

}
if a = p ∈ P,{(

(n, p), ν
)

: π(n, n′) = p and ν(c) = p
}

if a = (n, n′) ∈ M,

δ(`, a) =


∗ if ` = n ∈ N and a = ∗,
(n, p) if ` = n ∈ N and a = p ∈ P,

n′ if ` = (n, p) ∈ N × P and a = (n, n′) ∈ M;

ξ(a) = { c }, for every a ∈ A; and F = { ∗ } × VC. Note that the timed automaton TG has
only two clocks and that the clock b is never reset.

Finally, we define the reachability game on timed game automaton ΓG = (TG, L1, L2)
by setting L1 = N and L2 = L \ L1. It is routine to verify that player 1 has a winning strategy
from state (n0, (0, 0)) ∈ S in the reachability game ΓG if and only if player 1 has a winning
strategy (from the initial configuration (n0, B0)) in the countdown game G. An example of
such reduction is shown in Figure 5.3.

The reachability games for timed automata can be easily reduced, in logarithmic space,
to the reachability-time games so, by Theorem 5.5.3, reachability-time games are EXPTIME-
hard. The following theorem follows from this observation and Corollary 5.5.2.

THEOREM 5.5.4 (Complexity of reachability-time games on timed automata). The problem
of solving reachability-time games is EXPTIME-complete on timed automata with at least
two clocks.

6
Average-Time Games

The truth is, you can’t go
forever.

Tony Blair

An average-time game is played on the infinite graph of configurations of a finite timed
automaton. The two players, Min and Max, construct an infinite run of the automaton by
taking turns to perform a timed transition. Player Min wants to minimise the average time
per transition and player Max wants to maximise it. A solution of average-time games is
presented using a reduction to average-price games on finite graphs. A direct consequence
is an elementary proof of determinacy for average-time games. This complements our
results for reachability-time games and partially solves a problem posed by Bouyer et
al. [BBL04], to design an algorithm for solving average-price games on priced timed
automata. The exact computational complexity of solving average-time games is also
established: the problem is EXPTIME-complete for timed automata with at least two clocks.

6.1. Introduction
6.1.1. Definition

DEFINITION 6.1.1 (Average-Time Games). An average-time game on a timed automaton is a
tuple (Γ, ATMin, ATMax), where:

– Γ = (T , LMin, LMax) is a timed game automaton such that T = (L, C, S, A, E, δ, ξ, F)
is a timed automaton, LMin is the set of locations controlled by player Min, and LMax
is the set of locations controlled by player Max;

– ATMin : Runs → R and ATMax : Runs → R are payoff functions, which for every
run of the timed automaton return the amount the player Min loses and the player
Max wins, respectively. The functions ATMin and ATMax are defined as follows: for
a run r = 〈s0, (t1, a1), s1, (t2, a2), . . .〉 ∈ Runs we have

ATMin(r) = lim sup
n→∞

1
n

n

∑
i=1

ti and ATMax(r) = lim inf
n→∞

1
n

n

∑
i=1

ti.

105

6.1. INTRODUCTION 106

We define QMin = {(`, ν) ∈ Q : ` ∈ LMin}, QMax = Q \ QMin, SMin = S ∩ QMin,
SMax = S \ SMin,RMin = {[s] : s ∈ QMin}, andRMax = R \RMin.

The strategies of player Min and player Max are defined as usual (see Section 3.4.2). We
write ΣMin for the set of strategies for player Min, and we write ΣMax for the set of strategies
for player Max. We write ΠMin and ΠMax for the sets of positional strategies for player Min
and for player Max, respectively. Average-time payoff functions naturally give rise to the
functions ATMin : S× ΣMin × ΣMax → R and ATMax : S× ΣMin × ΣMax → R in the following
way. For strategies µ ∈ ΣMin and χ ∈ ΣMax of respective players and a state s ∈ S we have
ATMin(s, µ, χ) = ATMin(Run(s, µ, χ)) and ATMax(s, µ, χ) = ATMax(Run(s, µ, χ)).

6.1.2. Value of Average-Time Game

If player Min uses the strategy µ ∈ ΣMin and player Max uses the strategy χ ∈ ΣMax then
player Min loses the value ATMin(s, µ, χ) and player Max wins the value ATMax(s, µ, χ). In
an average-time game player Min is interested in minimising the value she loses and player
Max is interested in maximising the value he wins. We define the upper value Val(s) and the
lower value Val(s) of the average-time game at the state s ∈ S by

Val(s) = inf
µ∈ΣMin

sup
χ∈ΣMax

ATMin(s, µ, χ), and Val(s) = sup
χ∈ΣMax

inf
µ∈ΣMin

ATMax(s, µ, χ).

By Proposition 1.2.4 the inequality Val(s) ≤ Val(s) always holds. An average-time game is
determined if for every s ∈ S, the lower and upper values at s are equal to each other; then
we say that the value Val(s) exists and Val(s) = Val(s) = Val(s).

We give an elementary proof for the determinacy of the average-time games without
recourse to general results like Martin’s determinacy theorem [Mar75, Mar98].

THEOREM 6.1.2 (Determinacy). Average-time games are determined.

For strategies µ ∈ ΣMin and χ ∈ ΣMax, we define

Valµ(s) = sup
χ∈ΣMax

ATMin(s, µ, χ), and Valχ(s) = inf
µ∈ΣMin

ATMax(s, µ, χ).

For an ε > 0, we say that a strategy µ ∈ ΣMin or χ ∈ ΣMax is ε-optimal if for every s ∈ S we
have that Valµ(s) ≤ Val(s) + ε or Valχ(s) ≥ Val(s)− ε, respectively. Note that if a game is
determined then for every ε > 0, both players have ε-optimal strategies.

We say that a strategy χ ∈ ΣMax of player Max is a best response to a strategy µ ∈ ΣMin of
player Min if for all s ∈ S we have that ATMin(s, µ, χ) = supχ′∈ΣMax

ATMin(s, µ, χ′). Similarly
we say that a strategy µ ∈ ΣMin of player Min is a best response to a strategy χ ∈ ΣMax of
player Max if for all s ∈ S we have that ATMax(s, µ, χ) = infµ′∈ΣMin ATMax(s, µ′, χ).

In the next section we introduce some region-based abstractions of timed automata,
including the closed region graph, and its subgraphs: the boundary region graph, and the
region graph. While the region graph is semantically equivalent to the corresponding timed
automaton, the boundary region graph has the property that for every starting state, the
reachable state space is finite. In Section 6.4 we introduce average-time games on these
graphs and show that if we have the solution of the average-time game for any of these

6.2. ABSTRACTIONS OF TIMED AUTOMATA 107

graphs, then we get the solution of the average-time game for the corresponding timed
automaton. The key Theorem 6.1.2 follows immediately from Theorem 6.4.2.

6.2. Abstractions of Timed Automata
The corner-point abstraction, introduced by Bouyer et al. [BBL04], is a refinement of a region
automaton which preserves some timing information. The corner-point abstraction TCP =
(V, E) of a timed automaton T is a finite edge-labelled graph, where: V is a finite set of
vertices defined as

V = {(s, R) ∈ Q×R : s = (`, ν) ∈ clos(R) and bνc = ν},
and E is the labelled edge relation defined as

E = {((s, R), (t, R′′, a), (s′, R′)) ∈ V ×R⊕ ×R× A×V

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ bd(R′′)}.
From Proposition 3.7.13 we know that boundary region graphs are a generalisation of the
corner-point abstraction. We prove that the value of the average-time game on a timed
automaton is equal to the value of the average-time game on the corresponding boundary
region graph for all starting states. In the process, we introduce two other related
abstractions, which we call the closed region graph and the region graph. We collectively refer
to these three graphs as region graphs.

The analysis of average-time games on region graphs allows us to establish equivalence
of average-time games on the original timed automaton and the boundary region graph. We
also show (Lemma 6.4.3) that the value of an average-time game is constant over a region.
A side-effect of this result is that the corner-point abstractions can be used to solve average-
time games on timed automata for arbitrary starting states.

6.2.1. Region Graphs

A configuration in region graphs is a is a pair (s, R), where s ∈ Q is a configuration of the
timed automaton and R ∈ R is a region; We write Ω for the set of configurations of the
region graphs. For a set X ⊆ Ω and a region R0 ∈ R, we define the set X restricted to
the region R0 as the set {(s, R) ∈ X : R = R0}, and we denote this set by X(R0). For a
configuration q = (s, R) ∈ Ω we write write [q] for its region R.

DEFINITION 6.2.1 (Closed Region Graph). The closed region graph T = (S, E) of a timed
automaton T is a labelled transition system, where:

– S is the set of states defined as

S = {(s, R) ∈ Ω : s ∈ clos(R)} and

– E is the labelled transition relation defined as

E = {((s, R), (t, R′′, a), (s′, R′)) ∈ S× (R⊕ ×R× A)× S

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ clos(R′′)}.

6.2. ABSTRACTIONS OF TIMED AUTOMATA 108

DEFINITION 6.2.2 (Boundary Region Graph). The boundary region graph T̂ = (Ŝ, Ê) of a
timed automaton T is a labelled transition system, where:

– Ŝ is the set of states defined as

Ŝ = {(s, R) ∈ Ω : s ∈ clos(R)} and

– Ê is the labelled transition relation defined as

Ê = {((s, R), (t, R′′, a), (s′, R′)) ∈ Ŝ× (R⊕ ×R× A)× Ŝ

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ bd(R′′)}.

DEFINITION 6.2.3 (Region Graph). A region graph of a timed automaton T is a labelled
transition system T̃ = (S̃, Ẽ), where:

– S̃ is the set of states defined as

S̃ = {(s, R) ∈ Ω : s ∈ R} and

– Ẽ is the labelled transition relation defined as

Ẽ = {((s, R), (t, R′′, a), (s′, R′)) ∈ S̃× (R⊕ ×R× A)× S̃

: R −→∗ R′′ a−→ R′ and s′ = Succ(s, t, a) and s + t ∈ R′′}.

Notice that there are no significant differences between the definitions of the boundary
region graph and the region graph presented above and those from Chapter 3. We
reproduce these definition to help the reader compare the three region graphs.

For configuration q = (s, R) ∈ Ω, real number t ∈ R⊕, region R′′ ∈ R, and action
a ∈ A, we write Succ(q, (t, R′′, a)) for the configuration

(
Succ(s, t, a), R′

)
where R′′ a−→ R′.

Recall from Definition 3.7.7 that A = A × JKKN × C is the finite set of boundary timed
actions. For configuration q = (s, R) ∈ Ω, boundary timed action α = (b, c, a) ∈ A, and
region R′′ ∈ R we write Succ(q, (α, R′′)) for the configuration Succ(q, (t(s, α), R′′, a)).

6.2.2. Region Game Graphs

For Γ = (T , LMin, LMax) we define the sets ΩMin = {(s, R) ∈ Ω : R ∈ RMin} and
ΩMax = Ω \ΩMin. Similarly we define sets SMin, SMax, ŜMin, ŜMax, S̃Min, and S̃Max. The timed
game automaton Γ naturally gives rise to the closed region game graph Γ = (T , SMin, SMax),
the boundary region game graph Γ̂ = (T̂ , ŜMin, ŜMax), and the region game graph Γ̃ =

(T̃ , S̃Min, S̃Max). When it is clear from context, we use the terms region graphs and region
game graphs interchangeably. Also, sometimes, we write T , T , T̂ , and T̃ for Γ, Γ, Γ̂, and Γ̃,
respectively.

6.2.3. Runs of Region Graphs

An infinite run of the closed region graph T = (S, E) is an infinite sequence

〈q0, τ1, q1, τ1, . . .〉 ∈ S×
(
(R⊕ ×R× A)× S

)ω,

6.2. ABSTRACTIONS OF TIMED AUTOMATA 109

such that for every positive integer i we have (qi−1, τi, qi) ∈ E. A finite run of the closed
region graph T is a finite sequence

〈q0, τ1, q1, τ1, . . . , qn〉 ∈ S×
(
(R⊕ ×R× A)× S

)∗,
such that for every positive integer i ≤ n we have (qi−1, τi, qi) ∈ E. Runs of the boundary
region graph and the region graph are defined analogously.

For a graph G ∈ {T , T̂ , T̃ } we write RunsG for the set of its runs and RunsG(q) for the
set of its runs from a state q ∈ Q. We write RunsGfin for the set of finite runs and RunsGfin(q)
for the set of finite runs starting from a state q ∈ S.

6.2.4. Pre-Runs and Run Types Revisited

Pre-runs, first introduce in Subsection 4.3.3, generalise runs of T , T̃ , and T̂ , and allow us
to compare the runs in T , T̃ , and T̂ in a uniform manner. On the other hand, the concept
of the type of a run allows us to compare pre-runs passing through the same sequence of
regions.

A pre-run is a sequence 〈(s0, R0), (t1, R′1, a1), (s1, R1), . . .〉 ∈ Ω× ((R⊕ ×R× A)×Ω)ω,

such that si+1 = Succ(si, (ti+1, ai+1)) and Ri −→∗ R′i+1
ai+1−−→ Ri+1 for every i ∈ N. We

write PreRuns for the set of pre-runs and PreRuns(s, R) for the set of pre-runs starting from
(s, R) ∈ Ω. The relation between various sets of runs is as follows: for all q ∈ Q we have

RunsT̂ (q) ⊆ RunsT (q) ⊆ PreRuns(q) and

RunsT̃ (q) ⊆ RunsT (q) ⊆ PreRuns(q).

Similarly, a finite pre-run is a finite sequence 〈(s0, R0), (t1, R′1, a1), (s1, R1), . . . , (sn, Rn)〉 ∈
(Q×R)× ((R⊕ ×R× A)× (Q×R))∗ such that for every nonnegative integer i < n we
have that si+1 = Succ(si, (ti+1, ai+1)) and Ri −→∗ R′i

ai+1−−→ Ri. We write PreRunsfin for the set
of finite pre-runs and PreRunsfin(s, R) for the set of finite pre-runs starting from (s, R) ∈ Ω.
For a finite run r = 〈q0, (t1, R1, a1), q1, (t2, R2, a2), . . . , qn〉 ∈ PreRunsfin we define its total
time as Time(r) = ∑n

i=1 ti, and we denote the last state of the run by Last(r) = qn.
A run type is a sequence 〈R0, (R′1, a1), R1, (R′2, a2), . . .〉 ∈ R × ((R × A) × R)ω such

that for every i ∈ N we have that Ri −→∗ R′i+1
a−→ Ri+1. We say that a pre-run

r = 〈(s0, R0), (t1, R′1, a1), (s1, R1), (t1, R′2, a2), . . .〉 is of the type 〈R0, (R′1, a1), R1, (R′2, a2), . . .〉.
Also, we say that a run r = 〈s0, (t1, a1), s1, (t2, a2), . . .〉 of a timed automaton T is of the type
〈R0, (R′1, a1), R1, (R′2, a2), . . .〉, where Ri = [si] and R′i+1 = [si + ti+1] for all i ∈ N. We also
define the type of a finite runs analogously.

For a (finite or infinite) run or pre-run r, we write JrKR for its type. We write Types for
the set of run types, and we write Types(R) for the set of run types starting from region
R ∈ R. Similarly we write Typesfin for the set of finite run types, and we write Typesfin(R)
for the set of finite run types starting from region R ∈ R.

6.3. STRATEGIES IN REGION GRAPHS 110

6.3. Strategies in Region Graphs

In this section we define strategies of players in region graphs T , T̃ , and T̂ , and study
some of their properties. Strategies in T̃ are called admissible strategies, while strategies in T̂
are called boundary strategies. We also introduce so-called type-preserving boundary strategies
which are a key tool in proving the correctness of game reduction from timed automata
to boundary region graph. In Section 6.4 we show that there are optimal type-preserving
boundary strategies in T and T̂ .

6.3.1. Pre-strategies and Strategies in T , T̂ , T̃
Pre-strategies generalise the concept of strategies in region graphs, and allows us to discuss
the strategies in T , T̂ , and T̃ in a uniform manner. We first define pre-strategies for players
in T , and then using that we define strategies for players in closed region graph, boundary
region graph, and region graph.

DEFINITION 6.3.1 (Pre-strategies). A pre-strategy of player Min µ is a (partial) function
µ : PreRunsfin → R⊕ ×R× A, such that for a run r ∈ PreRunsfin, if Last(r) = (s, R) ∈
ΩMin then µ(r) = (t, R′′, a) is defined, and it is such that R −→∗ R′′ a−→ R′ for some R′ ∈ R.
Pre-strategies of player Max are defined analogously. We write Σpre

Min and Σpre
Max for the set of

pre-strategies of player Min and player Max, respectively.

We say that a strategy of player Min µ ∈ Σpre
Min is positional if for all runs r1, r2 ∈

PreRunsfin we have that Last(r1) = Last(r2) implies µ(r1) = µ(r2). Similarly we define
positional strategy of player Max.

We define the run starting from configuration q ∈ Ω where player Min and player Max
use the strategies µ ∈ Σpre

Min and χ ∈ Σpre
Max, respectively, in a straightforward manner and we

write Run(q, µ, χ) for this run. For every positive integer n we write Runn(q, µ, χ) for the
prefix of the run Run(q, µ, χ) of length n.

Now we are in a position to introduce strategies in closed region graph, region graph,
and boundary region graph.

DEFINITION 6.3.2 (Strategies in Closed Region Graph). A pre-strategy of player Min
µ ∈ Σpre

Min is a strategy in a closed region graph T = (S, E) if for every run r ∈ PreRunsfin
such that µ(r) = (t, R′, a), we have that (s + t) ∈ clos(R′) where (s, R) = Last(r). Strategies
of player Max in a closed region graph are defined analogously. We write ΣMin and ΣMax for
the set of strategies of player Min and player Max, respectively.

DEFINITION 6.3.3 (Strategies in Region Graphs). A pre-strategy of player Min µ ∈ Σpre
Min is a

strategy in a region graph T̃ = (S̃, Ẽ) if for every run r ∈ RunsT̃fin such that µ(r) = (t, R′′, a),
we have that (s + t) ∈ R′′ where (s, R) = Last(r). Strategies of player Max in a region
graph are defined analogously. We call such strategies admissible strategies. We write Σ̃Min

and Σ̃Max for the set of admissible strategies of player Min and player Max, respectively.

DEFINITION 6.3.4 (Strategies in Boundary Region Graph). A pre-strategy of player Min
µ ∈ Σpre

Min is a strategy in a boundary region graph T̂ = (Ŝ, Ê) if for every run r ∈ PreRunsfin

6.3. STRATEGIES IN REGION GRAPHS 111

such that µ(r) = (t, R′, a), we have that

t = inf{t : s + t ∈ clos(R′)}, (6.3.1)

where (s, R) = Last(r).
A pre-strategy of player Max χ ∈ Σpre

Max is a strategy in a boundary region graph T̂ if for
every run r ∈ PreRunsfin such that µ(r) = (t, R′, a), we have that

t = sup{t : s + t ∈ clos(R′)}, (6.3.2)

where (s, R) = Last(r). We call such strategies boundary strategies. We write Σ̂Min and Σ̂Max
for the set of boundary strategies of player Min and player Max, respectively.

For notational convenience and w.l.o.g., in the definition of boundary strategies, we do
not consider those timed moves of player Min (Max) which suggest waiting till the farther
(nearer) boundary of a thick region.

FACT 6.3.5. For every state s ∈ S of timed automata T and every strategy µ ∈ Σpre
Min and

χ ∈ Σpre
Max of respective players, we have that :

– Run((s, [s]), µ, χ) ∈ RunsT (s, [s]) if µ ∈ ΣMin and χ ∈ ΣMax;
– Run((s, [s]), µ, χ) ∈ RunsT̂ (s, [s]) if µ ∈ Σ̂Min and χ ∈ Σ̂Max;
– Run((s, [s]), µ, χ) ∈ RunsT̃ (s, [s]) if µ ∈ Σ̃Min and χ ∈ Σ̃Max.

Boundary Strategies and Boundary Timed Actions. Timed actions suggested by a bound-
ary strategies are precisely boundary timed actions as defined in Definition 3.7.7. The
following proposition formalises this notion.

PROPOSITION 6.3.6. For every boundary strategy σ ∈ Σ̂Min(Σ̂Max) of player Min (Max) and
for every run r ∈ PreRunsfin, if σ(r) = (t, R′, a) then there exists a boundary timed action
α = (b, c, a) ∈ A such that t(s, α) = t, where (s, R) = Last(r).

PROOF. Let run r ∈ PreRunsfin be such that Last(r) = (s, R). Let σ ∈ Σ̂Min be a boundary
strategy of player Min such that σ(r) = (t, R′, a). From the definition of the boundary
strategies, we have that t = inf{t : s + t ∈ clos(R′)}. To prove the proposition, all we need
to show is that there exists an integer b ∈ Z and a clock c ∈ C, such that b− s(c) = t.

If R′ ∈ RThin then there exists a clock c′ ∈ C such that for all states s′ ∈ clos(R′) we
have that *s′(c′)+ = 0. In this case the clock c = c′ and the integer b = (s + t)(c).

If R ∈ RThick and let R′ ←−+1 R be the thin region immediately before R. Let clock
c′ ∈ C be such that for all states s′ ∈ clos(R′) we have that *s′(c′)+ = 0. Again, in this case
the desired clock c = c′ and the integer b = (s + t)(c).

The case, where σ is a strategy of Max is similar, and hence omitted.

Sometimes, in our proofs we need to use boundary timed action suggested by a
boundary strategy. For this purpose we define the notation σbta(r) that gives the boundary
timed action and region pair that corresponds to σ(r). The definition of this function is
formalised in the following definition.

6.3. STRATEGIES IN REGION GRAPHS 112

DEFINITION 6.3.7. For a boundary strategy σ ∈ Σ̂Max(Σ̂Max) of player Min (Max), we define
the function σbta : PreRunsfin → (A×R) as follows: if for a run r ∈ PreRunsfin we have
σ(r) = (t, R′, a), then σbta(r) = ((b, c, a), R′) such that b− s(c) = t, where (s, R) = Last(r).

6.3.2. Type-Preserving Boundary Strategies

We now introduce an important class of boundary strategies called type-preserving boundary
strategies. Broadly speaking, these strategies suggest to players a unique boundary timed
action and region pair for all the finite runs of the same type.

DEFINITION 6.3.8 (Type-Preserving Boundary Strategies). A boundary strategy σ ∈ Σ̂Min
of player Min is type-preserving if Jr1KR = Jr2KR implies σbta(r1) = σbta(r2) for all r1, r2 ∈
PreRunsfin. Type-preserving boundary strategies of player Max are defined analogously.
We write ΞMin and ΞMax for the sets of type-preserving boundary strategies of players Min
and Max, respectively.

The rationale behind the name type-preserving is that if µ ∈ ΞMin and χ ∈ ΞMax, then for
every R ∈ R and for q, q′ ∈ Ω(R), the run types of the resulting runs from q and q′ are the
same, i.e., JRun(q, µ, χ)KR = JRun(q′, µ, χ)KR.

6.3.2.1. Simple Functions Revisited

Let us redefine simple functions in the context of region graphs. Let X ⊆ Ω. A function
F : X → R is a simple function if either: there is e ∈ Z, such that for every q = (s, R) ∈ X, we
have F(q) = e; or there are e ∈ Z and c ∈ C, such that for every q = (s, R) ∈ X, we have
F(q) = e− s(c). We say that a function F : X → R is regionally simple or regionally constant,
respectively, if for every region R ∈ R, the function F, over domain X(R), is simple or
constant, respectively.

For regions R, R′, R′′ ∈ R and boundary timed action α = (b, c, a) ∈ A, we write

R R′′−→α R′ if one of the following holds:

– R −→b,c R′′ a−→ R′, or
– there is region R′′′ ∈ RThin such that R −→b,c R′′′ −→+1 R′′ a−→ R′, or
– there is a region R′′′ ∈ RThin such that R −→b,c R′′′ ←−+1 R′′ a−→ R′.

The proof of the following proposition is along the lines of the proof of Proposition 5.3.1.

PROPOSITION 6.3.9. Let α ∈ A and regions R, R′, R′′ ∈ R be such that R R′′−→α R′. If
a function F : Ω(R′) → R is simple then the function F⊕

(α,R′′) : Ω(R) → R, defined as
(s, R) 7→ t(s, α) + F(Succ(q, (α, R′′))), is simple.

The proof of the following proposition is analogous to the proof of Proposition 5.3.2.

PROPOSITION 6.3.10. Let a ∈ A and regions R, R′, R′′ ∈ R be such that R −→∗ R′′ a−→ R′.
If a function F : Ω(R′) → R is simple then for every q = (s, R) ∈ Ω(R), the function
F⊕
(q,R′′,a) : I → R, defined as t 7→ t + F(Succ(q, (t, R′′, a))), is continuous and nondecreasing,

where I = {t ∈ R⊕ : (s + t) ∈ clos(R′′)}.

6.3. STRATEGIES IN REGION GRAPHS 113

6.3.2.2. Properties of Type-preserving Boundary Strategies

The next two proposition state that if both players play with type-preserving boundary
strategies then for every n ∈ N the total time spent in n transitions is regionally
simple (Proposition 6.3.11), and the average time of the infinite run is regionally constant
(Proposition 6.3.12).

PROPOSITION 6.3.11 (Type-preserving strategy pairs yield regionally simple time for finite
runs). If µ ∈ ΞMin, χ ∈ ΞMax, and n ∈ N, then Time(Runn(·, µ, χ)) : Q → R⊕ is regionally
simple.

PROOF. Let µ ∈ ΞMin and χ ∈ ΞMax. We prove this lemma by induction on the value of n.
The base case for n = 0 is trivial. Assume that for every µ ∈ ΞMin and χ ∈ ΞMax the function
Time(Runk(·, µ, χ)) : Q → R⊕ is regionally simple. To prove this proposition we now need
to show that for µ ∈ ΞMin and χ ∈ ΞMax the function Time(Runk+1(·, µ, χ)) is regionally
simple.

Let the strategies µ′ ∈ ΞMin and χ′ ∈ ΞMax be such that for every q ∈ Q the run
Runk(Succ(q, µ, χ), µ′, χ′) be the length k suffix of the run Runk+1(q, µ, χ). From inductive
hypothesis we have that Runk(·, µ′, χ′) is regionally simple. Assume that R ∈ RMin and
let µbta(〈q〉) = (α, R′′) for every q ∈ Q(R). The treatment for the case where R ∈ RMax is
similar. Now for every q = (s, R) ∈ Q(R) we have that Time(Runk+1(q, µ, χ)) = t(s, α) +

Runk(Succ(q, (α, R′′)), µ′, χ′), which from Proposition 6.3.9 is a simple function.

PROPOSITION 6.3.12 (Type-preserving strategy pairs yield regionally constant average
time). If µ ∈ ΞMin and χ ∈ ΞMax then ATMin(·, µ, χ) : Q → R⊕ and ATMax(·, µ, χ) : Q → R⊕
are regionally constant.

PROOF. Let µ ∈ ΞMin, χ ∈ ΞMax and q = (s, R), q′ = (s′, R) ∈ Q(R). We have

ATMin(q, µ, χ)− ATMin(q′, µ, χ)

= lim inf
n→∞

(1/n) · Time(Runn(q, µ, χ))− lim inf
n→∞

(1/n) · Time(Runn(q′, µ, χ))

= lim inf
n→∞

(1/n) ·
(
b− s(c)− b + s′(c)

)
= lim inf

n→∞
(1/n) ·

(
s′(c)− s(c)

)
= 0.

The first equality is by definition, the second follows from Proposition 6.3.11, and the last
two equalities are trivial. Similarly we show that ATMax(q, µ, χ) = ATMax(q′, µ, χ).

6.3.2.3. Type-preserving Boundary Strategy that Agrees with a Boundary Strategy

Given an arbitrary boundary strategy σ and a configuration q ∈ Q, sometimes we are
interested in a type-preserving boundary strategy that agrees with σ for all the runs starting
from q. We denote such a strategy by σ↓q. The following definition formalises such strategy.

DEFINITION 6.3.13. For a boundary strategy µ ∈ Σ̂Min of player Min and q ∈ Q we
define µ↓q ∈ ΞMin to be a type-preserving boundary strategy which satisfy the following
conditions:

6.3. STRATEGIES IN REGION GRAPHS 114

(1) µ
↓q
bta(r) = µbta(r) for every r ∈ PreRunsfin(q), and

(2) JrKR = Jr′KR implies µ
↓q
bta(r) = µ

↓q
bta(r

′) for all runs r, r′ ∈ PreRunsfin.

For χ ∈ Σ̂Max and q ∈ Q we define χ↓q ∈ ΞMax analogously.

Given an arbitrary strategy µ ∈ ΣMin of player Min, a type-preserving boundary
strategy χ ∈ ΞMax of player Max, and a configuration q ∈ Q sometimes we require to
specify a type-preserving strategy µ(q,χ) ∈ ΞMin which has the property that types of runs
Run(q, µ, χ) and Run(q, µ(q,χ), χ) are the same. We then argue that from configuration q ∈ Q
if player Max plays according to χ ∈ ΞMax then player Min can achieve better average-time
if she plays according to µ(q,χ) (see Proposition 6.3.15 and Corollary 6.3.16). The motivation
for the definition of χ(q,µ) is similar.

DEFINITION 6.3.14. For an arbitrary strategy µ ∈ ΣMin of player Min, a type-preserving
boundary strategy χ ∈ ΞMax of player Max, and a configuration q = (s, R) ∈ Q, we
define µ(q,χ) ∈ ΞMin to be a type-preserving boundary strategy which satisfy the following
conditions:

(1) JRun(q, µ(q,χ), χ)KR = JRun(q, µ, χ)KR, and
(2) JrKR = Jr′KR implies µ

(q,χ)
bta (r) = µ

(q,χ)
bta (r′) for all runs r, r′ ∈ PreRunsfin.

For χ ∈ ΣMax, µ ∈ ΞMin, and q ∈ Q the strategy χ(q,µ) ∈ ΞMax is defined analogously.

The following proposition and its corollary shows that starting from a configuration q
player Min (Max) prefers µ(q,χ) (χ(q,µ)) to µ (χ) against a type-preserving strategy χ ∈ ΞMax
(µ ∈ ΞMin) of its opponent.

PROPOSITION 6.3.15. For every χ ∈ ΞMax, µ ∈ ΣMin and q ∈ Q we have that

Time(Runn(q, µ, χ)) ≥ Time(Runn(q, µ(q,χ), χ)),

for every n ∈N. Similarly, for every µ ∈ ΞMin, χ ∈ ΣMax and q ∈ Q we have that

Time(Runn(q, µ, χ)) ≤ Time(Runn(q, µ, χ(q,µ))),

for every n ∈N.

PROOF. The proof is by induction on n. The base case, when n = 0, is trivial. In the rest
of the proof we show that for χ ∈ ΞMax, µ ∈ ΣMin, and a configuration q = (s, R) ∈ Q, we
have that Time(Runk+1(q, µ, χ)) ≥ Time(Runk+1(q, µ(q,χ), χ)) assuming that the proposition
holds for n = k. The proof for the case where q ∈ QMax is trivial. In the rest of the proof we
assume that q ∈ QMin.

Let us fix χ ∈ ΞMax and µ ∈ ΣMin. Let the runs Runk+1(q, µ, χ) and Runk+1(q, µ(q,χ), χ)
be 〈q0, τ1, q1, . . . , qk+1〉 and 〈q′0, τ′1, q′1, . . . , q′k+1〉, respectively, where q0 = q′0 = q. Notice that
by definition the run types of both runs are the same. Hence for every index i ≤ k + 1 we
have qi = (si, Ri) and q′i = (s′i, Ri), and for every index i ≤ k + 1 we have τi = (ti, R′i, ai) and
τ′i = (t′i, R′i, ai).

Let X ∈ ΞMax and M ∈ ΣMin be such that the run Runk(q1, M, X) be length k suffix of
the run Runk+1(q, µ, χ). Notice that we assume that X is type-preserving. It is easy to see

6.3. STRATEGIES IN REGION GRAPHS 115

that
Time(Runk+1(q, µ, χ)) = t1 + Time(Runk(q1, M, X)).

From inductive hypothesis, we get that

Time(Runk+1(q, µ, χ)) ≥ t1 + Time(Runk(q1, M(q1,X), X)). (6.3.3)

Since the strategies M(q1,X) ∈ ΞMin and X ∈ ΞMax are type-preserving, from Proposi-
tion 6.3.11 we get that Time(Runk(·, M(q1,X), X)) is regionally simple. Let us denote the
restriction of this function on domain Q(R1) by F : Q(R1) → R. Let us define the partial
function F⊕

(q,R′1,a) : R⊕ ⇁ R as t 7→ t + F (Succ(q, (t, R′′, a))), for all t ∈ R⊕, such that
(s + t) ∈ clos(R′1). The following inequality follows from (6.3.3):

Time(Runk+1(q, µ, χ)) ≥ t1 +F (q1) ≥ inf
t

{
F⊕

(q,R′1,a)(t) : s + t ∈ clos(R′1)
}

.

Since µ(q,χ) is a type-preserving boundary strategy of player Min, from equation (6.3.1), we
know that t′1 = inf{t : s + t ∈ clos(R′1)}. Moreover from Proposition 6.3.10 we have that
F⊕

(q,R′1,a) is continuous and nondecreasing on the domain {t ∈ R⊕ : (s + t) ∈ clos(R′′)}.
Hence F⊕

(q,R′1,a)(t
′
1) = inft

{
F⊕

(q,R′1,a)(t) : s + t ∈ clos(R′1)
}

. Combining these facts, we get
the following inequalities:

Time(Runk+1(q, µ, χ)) ≥ F⊕
(q,R′1,a)(t

′
1) = t′1 + Time(Runk(q′1, M(q1,X), X))

Since the run Runk(q′1, M(q1,X), X) is length k suffix of the run Runk+1(q, µ(q,χ), χ), we
get the desired inequality.

An easy corollary of this proposition is as follows:

COROLLARY 6.3.16. For every χ ∈ ΞMax, µ ∈ ΣMin and for all configurations q ∈ Q we have
that

ATMin(q, µ, χ)) ≥ ATMin(q, µ(q,χ), χ)).

Similarly for every µ ∈ ΞMin, χ ∈ ΣMax and for all configurations q ∈ Q we have that

ATMax(q, µ, χ)) ≤ ATMax(q, µ, χ(q,µ))).

6.3.2.4. Admissible Strategies ε-Close to a Type-Preserving Boundary Strategy

DEFINITION 6.3.17 (Set of Admissible Strategies ε-close to a Type-Preserving Boundary
Strategy). For µ ∈ ΞMin and a real number ε > 0, we define the set of admissible strategy
Σ̃(µ,ε)

Min ⊆ Σ̃Min as follows. For every µε ∈ Σ̃(µ,ε)
Min we have that for all runs r ∈ PreRunsfin if

µbta(r) = ((b, c, a), R′) then µε(r) = (t, R′, a) is such that

s + t ∈ R′ and t ≤ b− s(c) + ε,

where (s, R) = Last(r). Notice that (see Equation 6.3.1) such a value of t always exists.
Similarly for χ ∈ ΞMax and a real number ε > 0 we define the set Σ̃(χ,ε)

Max ⊆ Σ̃Max as follows.

6.3. STRATEGIES IN REGION GRAPHS 116

For every χε ∈ Σ̃(χ,ε)
Max we have that for all runs r ∈ PreRunsfin if χbta(r) = ((b, c, a), R′) then

χε(r) = (t, R′, a) is such that

s + t ∈ R′ and t ≥ b− s(c)− ε,

where (s, R) = Last(r).

Given an arbitrary strategy µ ∈ ΣMin of player Min, a positive real ε > 0, a type-
preserving boundary strategy χ ∈ ΞMax of player Max, an ε-close strategy χε ∈ Σ̃(χ,ε)

Max ,
and a configuration q ∈ Q sometimes we require to specify a type-preserving strategy
µ(q,χε) ∈ ΞMin which has the property that types of runs Run(q, µ, χε) and Run(q, µ(q,χε), χε)
are the same.

DEFINITION 6.3.18. For an arbitrary strategy µ ∈ ΣMin of player Min, a positive real ε > 0,
a type-preserving boundary strategy χ ∈ ΞMax of player Max, an ε-close strategy χε ∈ Σ̃(χ,ε)

Max ,
and a configuration q = (s, R) ∈ Q, we define µ(q,χε) ∈ ΞMin to be a type-preserving
boundary strategy which satisfy the following conditions:

(1) JRun(q, µ(q,χε), χε)KR = JRun(q, µ, χε)KR, and
(2) JrKR = Jr′KR implies µ

(q,χε)
bta (r) = µ

(q,χε)
bta (r′) for all runs r, r′ ∈ PreRunsfin.

Combining it with Definition 6.3.17 we get that JRun(q, µ(q,χε), χ)KR = JRun(q, µ, χε)KR.
For χ ∈ ΣMax, χε ∈ Σ̃(χ,ε)

Max , µ ∈ ΞMin, and q ∈ Q the strategy χ(q,µε) ∈ ΞMax is defined
analogously.

We need the following property of µ(q,χε) and χ(q,µε) strategies.

PROPOSITION 6.3.19. For every arbitrary strategy µ ∈ ΣMin, positive real ε > 0, type-
preserving boundary strategy χ ∈ ΞMax of player Max, ε-close strategy χε ∈ Σ̃(χ,ε)

Max of player
Max, and q ∈ Q we have

Time(Runn(q, µ, χε)) ≥ Time(Runn(q, µ(q,χε), χ))− n · ε,

for every n ∈ N. Similarly for every arbitrary strategy χ ∈ ΣMax, positive real ε > 0, type-
preserving boundary strategy µ ∈ ΞMin of player Max, ε-close strategy µε ∈ Σ̃(µ,ε)

Min of player
Min, and q ∈ Q we have

Time(Runn(q, µε, χ)) ≤ Time(Runn(q, µε, χ(q,µε))) + n · ε,

for every n ∈N.

PROOF. The proof is by induction on n. The base case, when n = 0, is trivial. In the rest
of the proof we show that for χ ∈ ΞMax, µ ∈ ΣMin, ε > 0, χε ∈ Σ̃(χ,ε)

Max , and a configuration
q = (s, R) ∈ Q, we have that Time(Runk+1(q, µ, χε)) ≥ Time(Runk+1(q, µ(q,χε), χ)) − k · ε,
assuming that the proposition holds for n = k.

Let us fix χ ∈ ΞMax, µ ∈ ΣMin, ε > 0, and χε ∈ Σ̃(χ,ε)
Max . Let the run Runk+1(q, µ, χε)

and the run Runk+1(q, µ(q,χε), χ) be 〈q0, τ1, q1, . . . , qk+1〉 and 〈q′0, τ′1, q′1, . . . , q′k+1〉, respectively,

6.3. STRATEGIES IN REGION GRAPHS 117

where q0 = q′0 = q. Notice that by definition the run types of both runs are the same. Hence
for every index i ≤ k + 1 we have qi = (si, Ri) and q′i = (s′i, Ri), and for every index i ≤ k + 1
we have τi = (ti, R′i, ai) and τ′i = (t′i, R′i, ai).

Let X ∈ ΞMax and M ∈ ΣMin be such that the run Runk(q1, M, Xε) be length k suffix of
the run Runk+1(q, µ, χε). Notice that we assume that X is type-preserving. It is easy to see
that

Time(Runk+1(q, µ, χε)) = t1 + Time(Runk(q1, M, Xε)).

From inductive hypothesis, we get that

Time(Runk+1(q, µ, χε)) ≥ t1 + Time(Runk(q1, M(q1,Xε), X))− k · ε. (6.3.4)

Since the strategies M(q1,Xε) ∈ ΞMin and X ∈ ΞMax are type-preserving boundary strategies,
from Proposition 6.3.11 we get that Time(Runk(·, M(q1,Xε), X)) is regionally simple. Let us
denote the restriction of this function on domain Q(R1) by F : Q(R1) → R. Let us define
the partial function F⊕

(q,R′1,a) : R⊕ ⇁ R as t 7→ t +F (Succ(q, (t, R′′, a))), for all t ∈ R⊕, such
that (s + t) ∈ clos(R′1). The following inequality follows from (6.3.4):

Time(Runk+1(q, µ, χε)) ≥ t1 +F (q1)− k · ε ≥ inf
t

{
F⊕

(q,R′1,a)(t) : s + t ∈ clos(R′1)
}
− k · ε.

We need to consider two cases: q ∈ QMin and q ∈ QMax.
– Assume that q ∈ QMin. Since µ(q,χε) is a type-preserving boundary strategy of

player Min, from equation (6.3.1), we know that t′1 = inf{t : s + t ∈ clos(R′1)}.
Moreover from Proposition 6.3.10 we have that F⊕

(q,R′1,a) is continuous and non-

decreasing on the domain {t ∈ R⊕ : (s + t) ∈ clos(R′′)}. Hence F⊕
(q,R′1,a)(t

′
1) =

inft
{
F⊕

(q,R′1,a)(t) : s + t ∈ clos(R′1)
}

. Combining these facts, we get the following
inequalities:

Time(Runk+1(q, µ, χε)) ≥ t′1 + Time(Runk(q′1, M(q1,Xε), X))− k · ε.

Since the run Runk(q′1, M(q1,Xε), X) is length k suffix of the run Runk+1(q, µ(q,χε), χ),
we get the following inequality:

Time(Runk+1(q, µ, χε)) ≥ Time(Runk+1(q, µ(q1,χε), χ))− k · ε
≥ Time(Runk+1(q, µ(q1,χε), χ))− (k + 1) · ε,

as required.
– Assume that q ∈ QMax. So far we have shown that

Time(Runk+1(q, µ, χε)) ≥ t1 +F (q1)− k · ε. (6.3.5)

Since F is a simple function let F ((s1, R1)) = b− s1(c) for all (s1, R1) ∈ Q(R1). For
all t ∈ R⊕ such that s + t ∈ R′1 we have the following observation.

t +F ((Succ(s, (t, a1))) =

{
t + b if c ∈ ξ(a1)

b− s(c) otherwise.
(6.3.6)

6.4. AVERAGE-TIME GAMES ON REGION GRAPHS 118

By Definition 6.3.17 we know that t1 ≥ t′1 − ε. Combining this with (6.3.6) we get
that

t1 +F (q1) ≥ t′1 +F (q′1)− ε.

We can then rewrite (6.3.5) as the following:

Time(Runk+1(q, µ, χε)) ≥ t′1 +F (q′1)− (k + 1) · ε.

The term F (q′1) represents the sum of the times of the run Runk(q′1, M(q1,Xε), X).
Since the run Runk(q′1, M(q1,Xε), X) is length k suffix of the run Runk+1(q, µ(q,χε), χ),
we get the inequality

Time(Runk+1(q, µ, χε)) ≥ Time(Runk+1(q, µ(q,χε), χ))− (k + 1) · ε,

as required.

The following result is an easy corollary of Proposition 6.3.19.

COROLLARY 6.3.20. For every χ ∈ ΞMax, µ ∈ ΣMin, ε > 0, χε ∈ Σ̃(χ,ε)
Max , and q ∈ Q we have

that
ATMax(q, µ, χε)) ≥ ATMax(q, µ(q,χε), χ))− ε.

Similarly for every µ ∈ ΞMin, χ ∈ ΣMax, ε > 0, µε ∈ Σ̃(µ,ε)
Min , and q ∈ Q we have that

ATMin(q, µε, χ) ≤ ATMin(q, µ, χ(q,µε)) + ε.

To summarise the relations between various strategies, note that the following inclu-
sions hold:

ΞMin ⊆ Σ̂Min ⊆ ΣMin ⊆ Σpre
Min and Σ̃Min ⊆ ΣMin ⊆ Σpre

Min, and

ΞMax ⊆ Σ̂Max ⊆ ΣMax ⊆ Σpre
Max and Σ̃Max ⊆ ΣMax ⊆ Σpre

Max.

6.4. Average-Time Games on Region Graphs
We define the functions ATMin : Ω×Σpre

Min×Σpre
Max → R⊕ and ATMax : Ω×Σpre

Min×Σpre
Max → R⊕

in the following manner:

ATMin(q, µ, χ) = lim sup
n→∞

1
n
· Time(Runn(q, µ, χ)), and

ATMax(q, µ, χ) = lim inf
n→∞

1
n
· Time(Runn(q, µ, χ)),

where µ ∈ Σpre
Min, χ ∈ Σpre

Max and q ∈ Ω. For average-time games on a graph G ∈ {T , T̂ , T̃ }
we define the lower-value ValG(q), the upper-value Val

G
(q) and the value ValG(q) of a

configuration q ∈ Q in a straightforward manner (for details, see Subsection 6.1.2).

6.4. AVERAGE-TIME GAMES ON REGION GRAPHS 119

From Proposition 3.7.5 it is clear that the difference between an average-time game on
a timed automaton and the average-time game on corresponding region graph is purely
syntactical. Hence if the average-time game on region graph T̃ is determined then average-
time game on timed automaton T is determined as well.

PROPOSITION 6.4.1. An average-time game on timed automaton T is determined, if the
corresponding average-time game on region graph T̃ is determined. Moreover for all s ∈ S
we have that Val(s) = ValT̃ (s, [s]).

The following is the main result of this section.

THEOREM 6.4.2. Let T be a timed automaton. Average-time games on the timed automa-
ton T , the closed region graph T , the region graph T̃ , and the boundary region graph T̂ are
determined. Moreover for every s ∈ S in a timed automaton T , we have:

ValT (s) = ValT̃ (s, [s]) = ValT (s, [s]) = ValT̂ (s, [s]).

This theorem follows from Theorem 6.4.4, Theorem 6.4.8, Theorem 6.4.10, and Proposi-
tion 6.4.1.

Moreover Theorem 6.4.2 and Proposition 6.3.12 let us conclude the following lemma
about the value of average-time games on timed automata.

LEMMA 6.4.3. The value of every average-time game is regionally constant.

An interesting implication of Lemma 6.4.3 is that corner-point abstraction is sufficient
to solve average-time games with an arbitrary initial state.

6.4.1. Determinacy of Average-Time Games on the Boundary Region Graph

Positional determinacy of average-time games on the boundary region graph is immediate
from Proposition 3.7.10 and Theorem 2.3.3.

THEOREM 6.4.4. The average-time game on T̂ is determined, and there are optimal
positional strategies in T̂ , i.e., for every q ∈ Q, we have:

ValT̂ (q) = inf
µ∈Π̂Min

sup
χ∈Σ̂Max

ATMin(q, µ, χ) = sup
χ∈Π̂Max

inf
µ∈Σ̂Min

ATMax(q, µ, χ).

LEMMA 6.4.5. In T̂ , if µ ∈ Σ̂Min and χ ∈ Σ̂Max are mutual best responses from q ∈ Q, then
µ↓q ∈ ΞMin and χ↓q ∈ ΞMax are mutual best responses from every q′ ∈ Q([q]).

PROOF. We argue that χ↓q is a best response to µ↓q from q′ ∈ Q([q]) in T̂ ; the other case is
analogous. For all X ∈ Σ̂Max, we have the following:

ATMin(q′, µ↓q, χ↓q) = ATMin(q, µ↓q, χ↓q) ≥ ATMin(q, µ↓q, X↓q
′
) =

ATMin(q′, µ↓q, X↓q
′
) = ATMin(q′, µ↓q, X).

6.4. AVERAGE-TIME GAMES ON REGION GRAPHS 120

The first equality follows from Proposition 6.3.12; the inequality follows because χ is a best
response to µ from q; the second equality follows from Proposition 6.3.12 again; and the last
equality is straightforward.

THEOREM 6.4.6. There are optimal type-preserving boundary strategies in T̂ , i.e., for every
q ∈ Q, we have:

ValT̂ (q) = inf
µ∈ΞMin

sup
χ∈Σ̂Max

ATMin(q, µ, χ) = sup
χ∈ΞMax

inf
µ∈Σ̂Min

ATMax(q, µ, χ).

PROOF. Let µ∗ ∈ ΞMin and χ∗ ∈ ΞMax be mutual best responses in T̂ ; existence of such
strategies follows from Lemma 6.4.5. Moreover, we can assume that the strategies µ∗ and
χ∗ have finite memory; this can be achieved by taking positional strategies µ ∈ Σ̂Min and
χ ∈ Σ̂Max in Lemma 6.4.5. We then have the following:

inf
µ∈ΞMin

sup
χ∈Σ̂Max

ATMin(q, µ, χ) ≤ sup
χ∈Σ̂Max

ATMin(q, µ∗, χ) = ATMin(q, µ∗, χ∗) =

ATMax(q, µ∗, χ∗) = inf
µ∈Σ̂Min

ATMax(q, µ, χ∗) ≤ sup
χ∈ΞMax

inf
µ∈Σ̂Min

ATMax(q, µ, χ).

The first and last inequalities are straightforward because µ∗ ∈ ΞMin and χ∗ ∈ ΞMax.
The first equality holds because χ∗ is a best response to µ∗ in T̂ , and the third equality
holds because µ∗ is a best response to χ∗ in T̂ . Finally, the second equality holds because
strategies µ∗ and χ∗ have finite memory.

6.4.2. Determinacy of Average-Time Games on the Closed Region Graph

LEMMA 6.4.7. In T , for every strategy in ΞMin there is a best response in ΞMax, and for every
strategy in ΞMax there is a best response in ΞMin.

PROOF. We argue that if µ ∈ ΣMin is best-response to χ ∈ ΞMax from q ∈ Q then the
strategy µ(q,χ) is best-response to χ from every q′ ∈ Q([q]). For all M ∈ ΣMin we have the
following:

ATMin(q′, µ(q,χ), χ) = ATMin(q, µ(q,χ), χ) ≤ ATMin(q, µ, χ) ≤ ATMin(q, M(q′,χ), χ) =

ATMin(q′, M(q′,χ), χ) ≤ ATMin(q′, µ′, χ).

The first and the second equalities follow from Proposition 6.3.12; the second inequality
follows because µ is a best response to χ from q; and the first and the third inequalities
follow from the the Corollary 6.3.16. It follows that in T for every strategy χ ∈ ΞMax there
is a best response in ΞMin. Similarly we prove that in T for every strategy µ ∈ ΞMin there is
a best response in ΞMax.

6.4. AVERAGE-TIME GAMES ON REGION GRAPHS 121

THEOREM 6.4.8. The average-time game on T is determined, and there are optimal type-
preserving boundary strategies in T , i.e., for every q ∈ Q, we have:

ValT (q) = inf
µ∈ΞMin

sup
χ∈ΣMax

ATMin(q, µ, χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

ATMax(q, µ, χ) = ValT̂ (q).

PROOF. We have the following:

inf
µ∈ΞMin

sup
χ∈ΣMax

ATMin(q, µ, χ) = inf
µ∈ΞMin

sup
χ∈ΞMax

ATMin(q, µ, χ) =

sup
χ∈ΞMax

inf
µ∈ΞMin

ATMax(q, µ, χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

ATMax(q, µ, χ),

where the first and last equalities follow from Lemma 6.4.7, and the second equality follows
from Theorem 6.4.6.

Now we show that ValT (q) ≥ ValT̂ (q). The proof that Val
T
(q) ≤ Val

T̂
(q) is similar and

hence omitted.

ValT (q) = sup
χ∈ΣMax

inf
µ∈ΣMin

ATMax(q, µ, χ) ≥ sup
χ∈ΞMax

inf
µ∈ΣMin

ATMax(q, µ, χ)

= sup
χ∈ΞMax

inf
µ∈ΞMin

ATMax(q, µ, χ) = ValT̂ (q).

The first inequality follows as ΞMax ⊆ ΣMax. The first equality holds by definition, the
second equality is proved in the first paragraph of this proof, and the third equality follows

from Theorem 6.4.6. From Lemma 6.4.4 we know that ValT̂ (q) = Val
T̂
(q). It follows that the

average-time game on T is determined, and there are optimal type-preserving boundary
strategies in T .

6.4.3. Determinacy of Average-Time Games on the Region Graph

LEMMA 6.4.9. If the strategies µ∗ ∈ ΞMin and χ∗ ∈ ΞMax are optimal for respective players
in T then for every ε > 0, we have that

sup
χ∈ΣMax

ATMin(q, µ∗ε , χ) ≤ ValT (q) + ε and inf
µ∈ΣMin

ATMax(q, µ, χ∗ε) ≥ ValT (q)− ε,

for all µ∗ε ∈ Σ̃(µ∗,ε)
Min and χ∗ε ∈ Σ̃(χ∗,ε)

Max .

PROOF. Let µ∗ ∈ ΞMin and χ∗ ∈ ΞMax are optimal for respective players in T . For all
χ ∈ ΣMax, ε > 0, and µ∗ε ∈ Σ̃(µ∗,ε)

Min , we have the following:

ATMin(q, µ∗ε , χ) ≤ ATMin(q, µ∗, χ(q,µ∗ε)) + ε ≤ ATMin(q, µ∗, χ∗) + ε = ValT (q) + ε.

The first inequality is by Corollary 6.3.20. The second inequality holds because χ∗ is an
optimal strategy and the equality is due to the fact that µ∗ and χ∗ are optimal.

6.5. COMPLEXITY 122

THEOREM 6.4.10. The average-time game on T̃ is determined, and for every q ∈ Q, we
have ValT̃ (q) = ValT (q).

PROOF. Let µ∗ ∈ ΞMin be an optimal strategy of player Min in T . Let us fix an ε > 0 and
µ∗ε ∈ Σ̃(µ∗,ε)

Min .

Val
T̃
(q) = inf

µ∈Σ̃Min

sup
χ∈Σ̃Max

ATMin(q, µ, χ) ≤ sup
χ∈Σ̃Max

ATMin(q, µ∗ε , χ) ≤

sup
χ∈ΣMax

ATMin(q, µ∗ε , χ) ≤ ValT (q) + ε.

The second inequality follows because µ∗ε ∈ Σ̃Min and the third inequality follows because
Σ̃Max ⊆ ΣMax. The last inequality follows from Lemma 6.4.9 because µ∗ ∈ ΞMin is an optimal
strategy in T . Similarly we show that for every ε > 0 we have that ValT̃ (q) ≥ ValT (q)− ε.
Hence it follows that ValT̃ (q) exists and its value is equal to ValT (q).

6.5. Complexity
The main decision problem for average-time game is as follows: given an average-time
game Γ = (T , LMin, LMax), a state s ∈ S, and a number B ∈ R⊕, decide whether Val(s) ≤ B.

THEOREM 6.5.1. Average-time games are EXPTIME-complete on timed automata with at
least two clocks.

PROOF. From Theorem 6.4.2 we know that in order to solve an average-time game starting
from an initial state of a timed automaton, it is sufficient to solve the average-time game on
the set of states of the boundary region graph of the automaton that are reachable from the
initial state. Observe that every region, and hence also every configuration of the game, can
be represented in space polynomial in the size of the encoding of the timed automaton and
of the encoding of the initial state, and that every move of the game can be simulated in
polynomial time. Therefore, the value of the game can be computed by a straightforward
alternating PSPACE algorithm, and hence the problem is in EXPTIME because APSPACE =
EXPTIME.

In order to prove EXPTIME-hardness of solving average-time games on timed au-
tomata with two clocks, we reduce the EXPTIME-complete problem of solving countdown
games [JLS07] to it. Let G = (N, M, π, n0, B0) be a countdown game, where N is a finite set
of nodes, M ⊆ N × N is a set of moves, π : M → N+ assigns a positive integer number to
every move, and (n0, B0) ∈ N ×N+ is the initial configuration.

Remark. W.l.o.g we assume that there is an integer W such that π(n1, n2) ≥ W for every
move (n1, n2) ∈ M.

In every move of the game from a configuration (n, B) ∈ N×N+, first player 1 chooses
a number p ∈ N+, such that p ≤ B and π(n, n′) = p for some move (n, n′) ∈ M, and then
player 2 chooses a move (n, n′′) ∈ M, such that π(n, n′′) = p; the new configuration is then

6.5. COMPLEXITY 123

n0 n1
2 3 2

A Countdown Game ((n0, B0) is the initial configuration)

(n0, 2) n0 (n0, 3) n1 (n1, 2)

*

c = 0, 2, {c} c = 0, 3, {c} c = 0, 2, {c}

c = 2, (n0, n0), {c} c = 3, (n0, n0), {c} c = 2, (n1, n1), {c}

b = B0, ∗, {b, c} b = B0, ∗, {b, c}

c = 3, (n0, n1), {c}

c = W, ∗, {b, c}

FIGURE 6.1. A Reduction from a Countdown Game to an Average-Time Game.

(n′′, B− p). Player 1 wins a play of the game when a configuration (n, 0) is reached, and he
loses (i.e., player 2 wins) when a configuration (n, B) is reached in which player 1 is stuck,
i.e., for all moves (n, n′) ∈ M, we have π(n, n′) > B.

We define the timed automaton TG = (L, C, S, A, E, δ, ξ, F) by setting C = { b, c }; S =
L× (JB0KR)

2; A = { ∗ } ∪ P ∪M, where P = π(M), the image of the function π : M→N+;

L = { ∗ } ∪ N ∪
{
(n, p) : there is (n, n′) ∈ M, s.t. π(n, n′) = p

}
;

E(a) =


{(n, ν) : n ∈ N and ν(b) = B0} if a = ∗,
{(∗, ν) : ν(c) = W} if a = ∗,{
(n, ν) : there is (n, n′) ∈ M, s.t. π(n, n′) = p and ν(c) = 0

}
if a = p ∈ P,{(

(n, p), ν
)

: π(n, n′) = p and ν(c) = p
}

if a = (n, n′) ∈ M,

δ(`, a) =


∗ if ` = n ∈ N and a = ∗,
∗ if ` = ∗ and a = ∗,
(n, p) if ` = n ∈ N and a = p ∈ P,

n′ if ` = (n, p) ∈ N × P and a = (n, n′) ∈ M;

ξ(a) = { c }, for every a ∈ A \ { ∗ } and ξ(∗) = { b, c }. Note that the timed automaton TG
has only two clocks and that the clock b is reset only in the special location ∗.

Finally, we define the average-time game on timed game automaton ΓG = (TG, L1, L2)
by setting L1 = N and L2 = L \ L1. It is routine to verify that value of the average-time
game at the state (n0, (0, 0)) ∈ S is W in the average-time game on ΓG if and only if player 1
has a winning strategy (from the initial configuration (n0, B0)) in the countdown game G.
An example of such reduction is shown in Figure 6.1.

Part 3

Conclusion

7
Summary and Future Work

7.1. Summary

In this thesis we presented a study of competitive optimisation on timed automata. We
introduced an important class of strategies, boundary strategies, that suggest to a player
a symbolic timed move of the form (b, c, a)— “wait until the value of the clock c is in very
close proximity of the integer b, and then execute a transition labelled with the action a”. The
existence of optimal boundary strategies for a competitive optimisation problem allows us
to work with the boundary region graph abstraction of the timed automata, which—for a
fixed initial state—is a finite graph. Hence, to solve competitive optimisation problems on
timed automata, it is sufficient to prove that there exist optimal boundary strategies for both
players, and to then solve the corresponding optimisation problems on finite subgraphs of
reachable states of the boundary region graph.

We showed that for a number of non-competitive optimisation problems and for
competitive optimisation problems with reachability time and average time objectives there
exist optimal boundary strategies.

For a noncompetitive optimisation problem on concavely-priced timed automata opti-
mal boundary strategies exists if the corresponding cost function is a concave-regular func-
tion. Concave-regularity is satisfied by a number of cost functions including reachability-
price, average-time, average-price, and average price-per-time-unit. The decision version
of optimisation problems for a concave-regular cost function is PSPACE-complete on timed
automata with at least three clocks.

Using Bellman’s optimality equations, we showed that reachability-time games are
positionally determined, and that in reachability-time games optimal boundary strategies
exist for both players. We presented a strategy improvement algorithm to solve these
optimality equations. We showed that the complexity of solving reachability-time games
is EXPTIME-complete for timed automata with at least two clocks.

Using closed region graph, an abstraction of timed automata, we showed that average-
time games are determined, and that in average-time games optimal boundary strategies
exist for both players. We showed that the complexity of solving average-time games is
EXPTIME-complete for timed automata with at least two clocks.

125

7.2. FUTURE WORK 126

7.2. Future Work

7.2.1. Implementation

We have implemented the algorithm proposed in Chapter 5 for computing the optimal
reachability-time of a timed automaton. The Flex code (lexical grammar) and the Bison
code (parser grammar) for the specification of a timed game automaton is given in the
Appendix D. A self-explanatory example of our specification language for timed (game)
automata is given below.

EXAMPLE 7.2.1 (Lightbulb example). The following is a specification of a light bulb from
the Example 3.1. The bound of this timed automaton is 2.

system light Bulb
begin

automaton light
begin
locations_n : {off, bright, dim}; /* locations of Min */
locations_x : {}; /* locations of Max */
clocks : x[2]; /* Declaration of clock variables, the number

* in square brackets denote the bound for

* that clock.*/
actions : {press, unpress}; /* set of actions */

invar(off, {x<=2}); /* Invariant for location off */
invar(dim, {x<=2}); /* Invariant for location dim */
invar(bright, {x<=2});/* Invariant for location bright */

trans(off, dim, press, {x >= 0}, {x});

/* specification of a guarded transition.

* e.g., trans(l1, l2, a, g, rl) denotes a

* transition from locations l1 to l2,

* labelled with the action a, the guard of

* the transition is g and the set of clocks

* to be reset after the transition is rl.*/

trans(dim, bright, press, {x <= 1}, {x});
trans(dim, off, press, {x >= 1}, {x});
trans(bright, off, press, {x >= 0}, {x});

init(dim, {x=0}); /* Set of initial states */
final(bright, {x>0}); /* Set of final states */

end
end

7.2. FUTURE WORK 127

The computational complexity of reachability-time games (EXPTIME-complete) indi-
cates that it is unlikely to have an efficient algorithm for this problem. Our implementation
of the strategy improvement algorithm for the reachability-time games is inefficient: it
constructs and stores the whole boundary region graph of the timed automaton under
consideration. More work is needed to make this implementation of practical interest.

A possible future direction of research work is to investigate symbolic zone-based
algorithms [UPP] for competitive optimisation problems studied in this thesis.

7.2.2. Complexity of Competitive Optimisation Problems for Timed Automata
with Two Clocks

The exact complexity of the reachability problem on timed automata with two clocks is
unknown. By the time-abstract bisimulation property of region equivalence relation, it
follows that the problem is in PSPACE. Laroussinie, Markey, and Schnoebelen [LMS04]
proved the NP-hardness by giving a reduction from NP-complete subset-sum problem to
reachability problem on timed automata with two clocks.

Using countdown games [JLS07], we proved that reachability games on timed au-
tomata with two clocks are EXPTIME-hard. Our initial guess was to use a similar
approach—first prove that one-player countdown games are PSPACE-complete and then
give a reduction from one-player countdown games to reachability problem on timed
automata with two clocks—to prove PSPACE-hardness of this problem. However, one
player countdown games turned out to be NP-complete.

The question of the exact complexity of the reachability problem, and hence of all
the other one-player optimisation problems (reachability price, discounted price, average
price, price-per-reward average, etc.) on concavely-priced timed automata with two clocks
remains open.

However, for timed automata with one clock we can generalise the construction of
Laroussinie, Markey, and Schnoebelen [LMS04]—which they used to show NLOGSPACE-
membership of the reachability problem for one clock timed automata—to obtain an
abstraction similar to the boundary region graph whose size is polynomial in the size of
timed automata. Using such abstraction and the techniques presented in this thesis, it
can be shown that for one clock timed automata noncompetitive optimisation problems
for concave-regular cost functions are in NLOGSPACE. Similarly it is easy to show that for
one-clock timed automata reachability-time games are in PTIME, and average-time games
are in NP ∩ co-NP.

7.2.3. Maximisation Problem on Concave-Priced Timed Automata

In Chapter 4 we showed that minimisation problems on concavely-priced timed automata
for concave-regular cost functions are PSPACE-complete. Using similar arguments it can be
shown that maximisation problems on convexly-priced timed automata for convex-regular
cost functions are PSPACE-complete.

We do not know much about maximisation problem on concavely-priced timed
automata. However, for the following class of cost functions, it can easily be shown that

7.2. FUTURE WORK 128

both maximisation and minimisation problems on concavely-priced timed automata are
PSPACE-complete, as a monotonic function is both quasiconcave and quasiconvex [BV04].

DEFINITION 7.2.2 (Monotonic-Regular Cost Function). A cost function Cost : PreRuns→ R

is monotonic-regular if it satisfies the following properties.
(1) (Monotonicity). For every region R ∈ R and for every run type Λ ∈ Types(R), there

is N ∈ N, such that for every state s ∈ R and for every n ≥ N, the function CostΛn,s
is monotonic on ∆Λ

n,s.
(2) (Regular Lipschitz-continuity). There is a constant κ ≥ 0, such that for every region

R ∈ R and for every positional run type Λ ∈ Types(R), there is N ∈N, such that for
every state s ∈ R and for every n ≥ N, the function CostΛn,s is κ-continuous on ∆Λ

n,s.
(3) (Positional optimality). There is a positional optimal strategy for Cost in T̂ .
(4) (Uniform convergence). For every s ∈ S we have that

CostT̂∗ (s, [s]) = lim
n→∞

CostT̂n,∗(s, [s]).

7.2.4. Optimisation on Probabilistic Timed Automata

In this thesis, we considered competitive optimisation problem for the systems having time-
critical behaviours modelled using timed automata. One possible direction for the future
work in this line of research is to extend these techniques to solve competitive optimisation
problems for systems having both time-critical and probabilistic behaviours.

Markov decision processes (MDPs) extend finite automata by providing a probability
distribution on the successor states for every transition. Timed automata, as we discussed
in this thesis, extend finite automata by providing a mechanism to constrain the transitions
with continuous time. Probabilistic timed automata—a hybrid between MDPs and timed
automata—were suggested by Kwiatkowska et al. [KNSS99] as a modelling formalism
for system exhibiting both timed and probabilistic characteristics. We propose the study
of optimisation problems (expected reachability-price, expected discounted-price, and
expected average-price) on concavely-priced probabilistic timed automata which, arguably,
can be used to model a larger class of scheduling problems than MDPs, concavely-priced
timed automata and probabilistic timed automata.

We conjecture that optimisation problems for these three objectives are decidable. We
claim that an abstraction—let us call it boundary region MDP—similar to boundary region
graph extended with probability distribution on the edges may be suitable to solve these
optimisation problems on probabilistic timed automata.

Part 4

Appendix

A
Notations and Acronyms

It strikes me that mathematical
writing is similar to using a
language. To be understood you
have to follow some
grammatical rules. However, in
our case, nobody has taken the
trouble of writing down the
grammar; we get it as a baby
does from parents, by imitation
of others. Some mathematicians
have a good ear; some not.
That’s life.

Jean-Pierre Serre

A.1 General Notations
Throughout the thesis we assume that the reader has some background in set theory and
real analysis. However to keep the thesis self-contained, in Table 1, we provide some
explanation of the notations used.

General Notations
Z set of Integers
N set of nonnegative Integers
N+ set of positive Integers
Q set of rational numbers, that is the set {m

n : m ∈ Z, n ∈ Z, n 6= 0}
R set of Reals containing a maximal elemet ∞
R⊕ set of non-negative Reals
JnKN set {i ∈N : i ≤ n}
JnKR set {r ∈ R : 0 ≤ r ≤ n}

continued on next page

130

A. NOTATIONS AND ACRONYMS 131

continued from previous page
x ∈ X x is an element of the set X
x 6∈ X x is not an element of the set X
{x ∈ X : P(x)} the set of all x ∈ X for which the predicate P(x) is true
X ⊆ Y the set X is a subset of the set Y
X ∪Y the union of the sets X and Y
X ∩Y the intersection of the sets X and Y
X×Y Cartesian product of the sets X and Y
X \Y subset of elements of X which are not contained in Y
f : X → Y f is a function from the set X to the set Y
f : X ⇁ Y f is a partial function from the set X to the set Y
[X → Y] set of functions f : X → Y
[X ⇁ Y] set of partial functions f : X ⇁ Y
dom(f) domain of the function f
ε a small quantity
Choose(X) an arbitrary element of the set X
|r| absolute value of r
brc floor of r, i.e., largest Integer n ∈N such that n ≤ r
*r+ fractional part of r, i.e. r− brc
Rn n-dimensional Euclidean space
‖x‖∞ ‖x‖∞ = max{|xi|}, where x = (x1, x2, . . . , xn) ∈ Rn

‖x‖∞ ‖x‖∞ = supi∈N{|xi|}, where x = (x1, x2, . . . ,) ∈ Rω

clos(D) topological closure of the set D, i.e., the set Rn \ int(Rn \ D)
D set clos(D)

completion of a proof

TABLE 1. General Notations
In Table 2 we explain notations related to the minimum and the infimum of a set or

a function. For a function we also define the operator “argmin” which returns the set of
arguments that minimise a function. For the sake of succinctness of technical presentation,
we sometimes use certain non-standard versions of minimum, infimum, and argmin and
they are defined in Table 3. For Tables 2 and 3, let Y be a subset of a partially ordered set
(Z,≤) and let f : X → Y. The operators max, sup, and argmax are defined in an analogous
manner.

Minimum, Infimum, and Argmin
y∗ = min Y y∗ ∈ Y and y∗ ≤ y for all y ∈ Y
y∗ = inf Y y∗ ≤ y for all y ∈ Y, and for all z ∈ Z if z ≤ y for all y ∈ Y, then z ≤ y∗
y∗ = minx∈X f (x) y∗ = min

{
f (x) : x ∈ X

}
y∗ = infx∈X f (x) y∗ = inf

{
f (x) : x ∈ X

}
argminx∈X f (x) set

{
x∗ ∈ X : f (x∗) = minx∈X f (x)

}
TABLE 2. Standard Notations related to minmum, infimum, and argmin.

A. NOTATIONS AND ACRONYMS 132

Minimum, Infimum, and Argmin (non-standard notations)
y∗ = minx∈X

{
f (x) : P(x)

}
y∗ = min

{
f (y) : y ∈

{
x ∈ X : P(x)

}}
argminx∈X

{
f (x) : P(x)

}
set
{

x∗ ∈ X : f (x∗) = minx∈X
{

f (x) : P(x)
}}

minx
{

f (x) : P(x)
}

minx∈X
{

f (x) : P(x)
}

, when X is clear from context
argminx

{
f (x) : P(x)

}
argminx∈X

{
f (x) : P(x)

}
, when X is clear from context

TABLE 3. Non-standard notations related to minimum, infimum, and argmin
Given two partially ordered sets (Y1,≤) and (Y2,≤) we define lexicographic ordering

≤lex on Y1 × Y2 as (y1, y2)≤lex(y′1, y′2) if y1 < y′1, or y1 = y′1 and y2 ≤ y′2. We write
(y1, y2)<lex(y′1, y′2) if we have that y1 < y′1, or y1 = y′1 and y2 < y′2. The operators >lex

and ≥lex are defined analogously. For a function f : X → Y, where Y is a subset of partially
ordered set (Y1 × Y2,≤lex), we write minlex and argminlex for min and argmin, respectively.
The notations for maxlex and argmaxlex are defined analogously.

A.2 Timed Automata Specific Notations
For easy reference we present the notations related to timed automata in Table 4.

timed Automata
T a timed automaton
Γ a timed game automaton
C finite set of clocks
VC set of clock valuations [C → JkKR] over C
ν, ν′ etc. denote clock valuations
ν′ = ν + t if ν′(c) = ν(c) for all c ∈ C
ν′ = Reset(ν, C′) if ν′(c) = ν(c), for all c 6∈ C′; and ν′(c) = 0, for all c ∈ C′.
ν′ = bνc if ν′(c) = bν(c)c, for every clock c ∈ C
HνI fractional signature (see index) of ν

LνM cellular signature (see index) of ν

SCC(ν) simple clock constraints (see index) which hold in ν

[ν] clock region (see index) of ν

L finite set of locations
LMin set of locations controlled by player Min
LMax set of locations controlled by player Max
Q set of configurations Q = L× VC
S the set of states of a timed automaton
s, s′ etc. denote a configuration or a state
A finite set of actions
E : A→ 2S action enabledness function
δ : L× A→ L transition function

continued on next page

A. NOTATIONS AND ACRONYMS 133

continued from previous page
ξ : A→ 2C clock reset function
F ⊆ S set of final states
s′ = s + t if s = (`, ν) then s′ = (`, ν + t)
s −⇀t s′ same as s′ = s + t
s −→t s′ s −⇀t s′ and s + t′ ∈ S for all t′ ∈ [0, t]
s′ = Succ(s, a) if s = (`, ν) then s′ = (δ(`, a), Reset(ν, ξ(a)))
s a−⇀ s′ same as s′ = Succ(s, a)
s a−→ s′ if s a−⇀ s′; s, s′ ∈ S; and s ∈ E(a)
s −→∗ s′ if there exists t ∈ R⊕ s.t. s −→t s′

s′ = Succ(s, (t, a)) if s′ = Reset(s + t, a), i.e. s −⇀t s′′ a−⇀ s′

s a−⇀t s′ same as s′ = Succ(s, (t, a))
s a−→t s′ if s −→t s′′ a−→ s′

r, r′ etc. runs, i.e., sequence of valid state and transition pairs
Runs set of runs of T
Runs(s) set of runs of T starting from s
Last(r) last state of the finite run r
Stop(r) the index of first final state in the run r
Time(r) ∑n

i=1 ti where r = 〈s0, (t1, a1), . . . , (tn, an), sn+1〉
R, R′ etc. denote a region (see index)
Z set of clock zones(see index)
R set of regions
s ∈ clos(R) see index, closure of the region
s ∈ bd(R) see index, boundary of the region
R −→∗ R′ if for all s ∈ R there is s′ ∈ R′ s.t. s −→∗ s′

R −→+1 R′ R′ is time successor of R (see index, region)
R′ ←−+1 R same as R −→+1 R′

R a−→ R′ if there is s ∈ R and s′ ∈ R′, such that s a−→ s′

R −→b,c R′ b ∈N and c ∈ C are s.t. for all s ∈ R we have s + b− s(c) ∈ R′

RThin set of thin regions (see index, region)
RThick set of thick regions (see index, region)
A set JKKN × C× A of boundary timed actions (see index)
α = (b, c, a) a boundary timed action
R α−→ R′ there is R′′ ∈ R s.t. R −→b,c R′′ a−→ R′

R α
 R′ R α−→ R’; or R −→b,c R′′ −→+1 R′′ a−→ R′; or R −→b,c R′′ ←−+1 R′′ a−→ R′

π : S×R⊕ × A→ R π(s, (t, a)) is the price for the timed action (t, a) from s
$: S×R⊕ × A→ R $(s, (t, a)) is the reward for the timed action (t, a) from s
Σ set of strategies
ΣMax set of strategies of player Max
ΣMin set of strategies of player Min

continued on next page

A. NOTATIONS AND ACRONYMS 134

continued from previous page
Π set of positional strategies
ΠMax set of positional strategies of player Max
ΠMin set of positional strategies of player Min
µ, µ′ etc. denote a strategy of player Min
χ, χ′ etc. denote a strategy of player Max
TRA region automaton (see index) of T
TCP corner-point abstraction (see index) of T
TBR boundary region automaton (see index) of T
T̃ region graph (see index) of T
T̂ boundary region graph (see index) of T
T closed region graph (see index) of T
RunsG set of runs of G ∈

{
T̃ , T̂ , T

}
RunsG(s, R) set of runs of G ∈

{
T̃ , T̂ , T

}
starting from (s, R)

JrKR type (see index) of the run r
PreRuns set of pre-runs (see index) of T
PreRunsfin set of finite pre-runs (see index) of T
PreRuns(s, R) set of pre-runs starting from (s, R)
PreRunsfin(s, R) set of finite pre-runs starting from (s, R)
Σpre

Min set of pre-strategies (see index) of player Min in T
Σpre

Max set of pre-strategies of player Max in T
Σ̃Min set of strategies of player Min in T̃
Σ̃Max set of strategies of player Max in T̃
ΣMin set of strategies of player Min in T
ΣMax set of strategies of player Max in T
Σ̂Min set of strategies of player Min in T̂
Σ̂Max set of strategies of player Max in T̂
ΞMin set of type-preserving boundary strategies (see index) of player Min
ΞMax set of type-preserving boundary strategies (see index) of player Max
µ↓q, χ↓q, etc. see Definition 6.3.13
χ(q,µ), µ(q,χ), etc. see Definition 6.3.14
Σ̃(µ,ε)

Min , Σ̃(χ,ε)
Max , etc. see Definition 6.3.17

p |= Opt the function p satisfies the optimality equations Opt
OECost

Min (G) optimality eqns. for minimisation of cost function Cost on G
OECost

Max (G) optimality eqns. for maximisation of cost function Cost on G
OECost

MinMax(G) optimality eqns. for cost game of payoff function Cost on G

TABLE 4. Notations specific to timed automata

A.3 Acronyms
List of commonly used acronyms is given in Table 5.

A. NOTATIONS AND ACRONYMS 135

Acronyms
w.l.o.g without loss of generality
s.t. such that
eqns. equations
iff if and only if
RT Reachability time
RP Reachability price
DP Discounted price
AT Average time per transition
AP Average price per transition
PTAvg Average price per time-unit
PRAvg Price-per-reward average

TABLE 5. Acronyms

B
Results From Real Analysis

Indeed, I have found a very nice
way of expressing continuity . . .

Rudolph Lipschitz

B.1. Lipschitz-Continuous Functions
A function f : Rn → Rm is Lipschitz-continuous [EEJ04] on its domain dom(f), if there
exists a constant K ≥ 0, called a Lipschitz constant of f , such that ‖ f (x)− f (y)‖ ≤ K‖x− y‖
for all x, y ∈ dom(f); we then also say that f is K-continuous. A K-continuous function is
contraction if K < 1.

The following properties [EEJ04] of Lipschitz-continuous functions are of interest in
this thesis.

LEMMA B.1.1. If for every i = 1, 2, . . . , k, the function fi : Rn → Rm is Ki-continuous and
wi ∈ R, then the function Rn 3 x 7→ ∑n

i=1 wi fi(x) is K-continuous for K = ∑k
i=1 |wi|Ki.

PROOF. Let x, y ∈ Rn and assume that for every i = 1, 2, . . . , k, the function fi : Rn → Rm

is Ki-continuous.

| f (x)− f (y)| =
∣∣∣∣∣ k

∑
i=0

wi · fi(x)−
k

∑
i=0

wi · fi(y)

∣∣∣∣∣ =
∣∣∣∣∣ k

∑
i=0

(wi · (fi(x)− fi(y)))

∣∣∣∣∣
≤

k

∑
i=0

(|wi · (fi(x)− fi(y)))| ≤
k

∑
i=0

(|wi| · Ki · |x− y|) =
k

∑
i=0

(|wi| · Ki) · |x− y|

The first, the second, and the last equalities are straightforward. The first inequality follows
as |a + b| ≤ |a|+ |b|, and the last inequality holds as the function fi is Ki-continuous for all
i = 1, 2, . . . , k.

LEMMA B.1.2. If f1 : Rn → Rm and f2 : Rm → Rk are K1-continuous and K2-continuous,
respectively, then their composition, Rn 3 x 7→ f2(f1(x)), is K-continuous for K = K1K2.

PROOF. Let x, y ∈ Rn, and assume that f1 and f2 are K1-continuous and K2-continuous,
respectively.

| f (x)− f (y)| = | f2(f1(x))− f2(f1(y))| ≤ K2 · | f1(x)− f1(y)| ≤ K2 · K1 · |x− y|
136

B.2. CONCAVE AND QUASICONCAVE FUNCTIONS 137

The first inequality follows from K2-continuity of f2 and the last inequality follows from
K1-continuity of f1.

LEMMA B.1.3. Let f1, f2 : Rn → R be K1-continuous and K2-continuous, respectively; let
f1 and f2 be bounded, i.e., there is a constant M ≥ 0, such that for all x ∈ dom(f1) ∩
dom(f2), we have | f1(x)|, | f2(x)| ≤ M; and let f2 be bounded from below, i.e., there is a
constant N > 0, such that for all x ∈ dom(f2), we have f2(x) ≥ N. Then the function
Rn 3 x 7→ f1(x)/ f2(x) is K-continuous for K = (NK1 + MK2)/N2.

PROOF. Let x, y ∈ Rn, and assume that f1 and f2 are K1-continuous and K2-continuous,
respectively. Further assume that f1 and f2 are bounded by M, and that f2 is bounded from
below by N > 0.

| f (x)− f (y)| =
∣∣∣∣ f1(x)

f2(x)
− f1(y)

f2(y)

∣∣∣∣ = ∣∣∣∣ f1(x) f2(y)− f1(y) f2(x)
f2(x) f2(y)

∣∣∣∣
=

∣∣∣∣ f1(x) f2(y)− f2(y) f1(y) + f2(y) f1(y)− f1(y) f2(x)
f2(x) f2(y)

∣∣∣∣
=

∣∣∣∣ f2(y)(f1(x)− f1(y)) + f1(y)(f2(y)− f2(x))
f2(x) f2(y)

∣∣∣∣
≤
∣∣∣∣ 1

f2(x)

∣∣∣∣ · K1 · |x− y|+
∣∣∣∣ f1(y)

f2(x) f2(y)

∣∣∣∣ · K2 · |x− y|

≤ K1

N
· |x− y|+ K2 ·M

N2 · |x− y| =
(

K1 · N + K2 ·M
N2

)
· |x− y|

The first inequality follows from Lipschitz-continuity of f1 and f2 and the second inequality
follows from boundedness assumptions. All the equalities are trivial.

B.2. Concave and Quasiconcave Functions

B.2.1. Concave Functions

A set D ⊆ Rn is convex if for all x, y ∈ D and λ ∈ [0, 1], we have λx + (1− λ)y ∈ D. A
function f : Rn → R is concave (on its domain dom(f) ⊆ Rn), if dom(f) ⊆ Rn is a convex
set, and for all x, y ∈ Rn and λ ∈ [0, 1], we have f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y).
A function f is convex if the function − f is concave. A function is affine if it is both convex
and concave.

The α-superlevel set of a function f : Rn → R is defined as Sα(f) = {x ∈ dom(f) :
f (x) ≥ α}, and the α-sublevel set of f is defined as Sα(f) = {x ∈ dom(f) : f (x) ≤ α}.
PROPOSITION B.2.1 ([BV04]). If a function is concave then its superlevel sets are convex;
and if it is convex then its sublevel sets are convex.

The following properties [BV04] of concave functions are of interest in this thesis.

B.2. CONCAVE AND QUASICONCAVE FUNCTIONS 138

LEMMA B.2.2 (Non-negative weighted sum). If f1, f2, . . . , fk : Rn → R are concave and
w1, w2, . . . , wk ≥ 0, then their weighted sum Rn 3 x 7→ ∑k

i=1 wi · fi is concave on its domain⋂k
i=1 dom(fi).

PROOF. Let x, y ∈ Rn, λ ∈ [0, 1], and f1, f2, . . . , fk are concave.

f (λx + (1− λ)y)) =
n

∑
i=1

wi · fi(λx + (1− λ)y) ≥
n

∑
i=1

wi · (λ fi(x) + (1− λ) fi(y))

= λ
n

∑
i=1

wi · fi(x) + (1− λ)
n

∑
i=1

wi · fi(y) = λ f (x) + (1− λ) f (y).

The inequality follows from the concavity assumption, and the equalities are straight-
forward.

LEMMA B.2.3 (Composition with affine function). If f : Rn → R is concave and g : Rm →
Rn is affine, then their composition Rn 3 x 7→ f (g(x)) if concave.

PROOF. Let x, y ∈ Rn and λ ∈ [0, 1]. Also, assume that f is concave and g is affine.

f (g(λx + (1 − λ)y)) = f (λg(x) + (1 − λ)g(y)) ≥ λ f (g(x)) + (1 − λ) f (g(y)).

The equality follows as g is affine, and the inequality is by concavity of f .

LEMMA B.2.4 (Pointwise minimum). If functions f1, f2, . . . fk : Rn → R are concave, then
their pointwise minimum Rn 3 x 7→ mink

i=1 fi(x) is concave (on its domain
⋂k

i=1 dom(fi)).

PROOF. Let us assume that f1, f2, . . . , fk are concave. Let x, y ∈ Rn and λ ∈ [0, 1].

f (λx + (1− λ)y)) =
n

min
i=1

fi(λx + (1− λ)y)) ≥
n

min
i=1

(λ fi(x) + (1− λ) fi(y))

≥ λ
n

min
i=1

fi(x) + (1− λ)
n

min
i=1

fi(y) = λ f (x) + (1− λ) f (y)

The first inequality holds since, for all i = 1, 2, . . . , k, the function fi is concave, and the
second inequality follows from that fact that for arbitrary sequences 〈ai〉ni=1 and 〈bi〉ni=1 we
have mini≤n(ai + bi) ≥ mini≤n ai + mini≤n bi.

The proof of the following lemma is similar to the proof of Lemma B.2.4, and hence
omitted.

LEMMA B.2.5 (Pointwise infimum). Let f : Rn × Z → R, where Z is an arbitrary
(infinite) set. If for all z ∈ Z, the function Rn 3 x 7→ f (x, z) is concave, then the function
Rn 3 x 7→ infz∈Z f (x, z) is concave (on its domain

⋂
z∈Z dom(f (·, z))).

B.3. FIXED POINT THEOREMS 139

B.2.2. Quasiconcave Functions

A function f : Rn → R is quasiconcave (on its domain dom(f) ⊆ Rn), if dom(f) is a convex
set, and for all x, y ∈ dom(f) and λ ∈ [0, 1], we have f (λx + (1− λ)y) ≥ min{ f (x), f (y)}.
A function f is quasiconvex if the function − f is quasiconcave.

PROPOSITION B.2.6 ([BV04]). A function is quasiconcave if and only if its superlevel sets
are convex; and it is quasiconvex if and only if its sublevel sets are convex.

The following properties (see, Mangasarian [Man69]) of quasiconcave functions are of
interest in this thesis.

LEMMA B.2.7 (Quasiconcavity of ratio functions). For h1, h2 : Rn → R, the function
Rn 3 x 7→ h1(x)/h2(x) is quasiconcave (on its domain dom(h1) ∩ dom(h2)) if at least one
of the following holds:

(1) h1 is nonnegative and concave, h2 is positive and convex.
(2) h1 is nonpositive and concave, h2 is positive and concave
(3) h1 is nonnegative and convex, h2 is negative and convex.
(4) h1 is nonpositive and convex, h2 is negative and concave.
(5) h1 is affine and h2 is non-zero and affine;
(6) h1 is concave, and h2 is positive and affine;
(7) h1 is convex, and h2 is negative and affine.

PROOF. To prove that the function f is quasiconcave, it is sufficient to show that the
superlevel sets of f are convex, i.e. for all α ∈ R we have that the set {x : h1(x)

h2(x) ≥ α} or
equivalently the set {x : h1(x)− α · h2(x) ≥ 0} is convex. It is easy to see that is the case
when either of the above assumptions hold.

B.3. Fixed Point Theorems
We say that x ∈ X is a fixed point of a function F : X → X if F(x) = x. Before we state two
important fixed point theorems, we need to define some concepts.

A metric space is an order pair (X, d) where X is a set and d is a metric on X. Given a
metric space (X, d), a sequence 〈x0, x1, . . .〉 is called Cauchy, if for every positive real number
ε > 0, there exists N ∈N such that for all natural numbers m, n > N we have d(xm, xn) < ε.
A metric space (X, d) in which every Cauchy sequence has a limit in X is called complete.

The following well-known fixed point theorems [KK01] are used in this thesis.

THEOREM B.3.1 (Banach Fixed Point Theorem). Let the function f : X → X be a contraction
over a complete metric space (X, d). Then f has a unique fixed-point x0 ∈ X. Moreover, for
an y ∈ X, d(f n(y), x0)→ 0 as n→ ∞.

THEOREM B.3.2 (Brouwer’s Fixed Point Theorem). Let X be an nonempty, compact (closed
and bounded), convex set in a finite dimensional Euclidean space. Then a continuous
mapping f : X → X has at least one fixed point.

C
Some Determinacy Results

It’s not hard to make decisions
when you know what your
values are.

Roy Disney

C.1. Matrix Games
A Matrix game Γ = (M) is played on an (m× n) matrix M between two players Max and
Min. In this game, player Max chooses a row i of the matrix and player Min chooses a
column j of the matrix and thus player Max wins 1 M(i, j) from player Min.

Let the set of pure strategies of the player Max be {1, 2, . . . , m} and the set of pure
strategies set of player Min is {1, 2, . . . , n}. The set ΣMax ⊆ Rm of mixed strategies of player
Max as the set of probability distributions over the set of pure strategies. Hence we have
(p1, p2, . . . , pm) ∈ ΣMax if and only if ∑m

i=1 pi = 1 and pi ≥ 0 for all 1 ≤ i ≤ m. We define the
set ΣMin of mixed strategies of the player Min in an analogous manner.

PROPOSITION C.1.1. In a matrix game the product set ΣMin × ΣMax of the mixed strategy
sets of players Min and Max is nonempty, compact and convex.

For every index 1 ≤ i ≤ m, we define the strategy χi ∈ ΣMax such that for every index
1 ≤ j ≤ m, we have χi(j) = 1 if j = i, and χi(j) = 0 otherwise. The strategies µi for player
Min, for every 1 ≤ i ≤ n, are defined analogously.

If player Max plays according to mixed strategy χ ∈ ΣMax and the player Min plays
according to mixed strategy µ ∈ ΣMin, then the expected win of player Max is given by the
following payoff function P : ΣMin × ΣMax → R:

P(µ, χ) =
m

∑
i=1

n

∑
j=1

χ(i) ·M(i, j) · µ(j).

The following fundamental result about the determinacy of Matrix games is due to John
von Neumann [vN28]:

1We always say that player Max wins the amount M(i, j) from player Min upon the selection of (i, j)th entry
of the matrix. However, in practice, if M(i, j) is positive then player Max wins that amount from Min; and if
M(i, j) is negative player Min wins |M(i, j)| from player Max.

140

C.1. MATRIX GAMES 141

THEOREM C.1.2 (Determinacy theorem for matrix games [vN28]). Every Matrix game with
mixed strategies is determined.

John von Neumann’s 1928 proof of determinacy is quite sophisticated, and makes
use of Brouwer’s fixed point theorem. We present an alternative, conceptually simpler,
proof due to John Nash [Nas51]. Although the this proof predates the theory of dynamic
programming [Bel57], it is interesting to notice that the proof uses a strategy improvement
function and its properties. Before we present this strategy improvement function, we need
to define a few concepts.

For all 1 ≤ i ≤ m, let us define the function Advi
Max : ΣMin× ΣMax → R in the following

way:

Advi
Max(µ, χ) =

{
P(µ, χi)−P(µ, χ) if this quantity is positive,

0 otherwise.

Intuitively, the function Advi
Max gives the the advantage to player Max if he chooses to play

pure strategy χi against player Min’s strategy µ instead of playing strategy χ. Similarly we
define Advi

Min for 1 ≤ i ≤ n as

Advi
Min(µ, χ) =

{
P(µ, χ)−P(µi, χ) if this quantity is positive,

0 otherwise.

Let us define a mapping Improve : ΣMin × ΣMax → ΣMin × ΣMax in the following manner. If
(µ′, χ′) = Improve(µ, χ) then for all 1 ≤ i ≤ m we have that

χ′(i) =
χ(i) + Advi

Max(µ, χ)

1 + ∑m
i=1 Advi

Max(µ, χ)
;

and for all 1 ≤ i ≤ n we have that

µ′(i) =
µ(i) + Advi

Min(µ, χ)

1 + ∑n
i=1 Advi

Min(µ, χ)
.

The following proposition together with Lemma C.1.4 proves the determinacy of
Matrix games.

PROPOSITION C.1.3. Matrix games are determined if and only if there exists a fixed point
for the strategy improvement function Improve.

PROOF. For the “if” part, suppose that (µ∗, χ∗) is a fixed point for function Improve. We
first show that there exists a positive integer i ≤ n such that µ∗(i) ≥ 0 and Advi

Min(µ∗, χ∗) =
0. By definition, we have that P(µ∗, χ∗) = ∑n

i=1 µ∗(i) · P(µi
∗, χ∗). It is easy to see that

P(µ∗, χ∗) < P(µi
∗, χ∗) can not be true for all i having µ∗(i) > 0.

Now let us assume that i ≤ n is such that µ∗(i) ≥ 0 and P(µi
∗, χ∗) ≥ P(µ∗, χ∗), i.e.

Advi
Min(µ∗, χ∗) = 0. Since (µ∗, χ∗) is a fixed point, we have the following:

µ∗(i) =
µ∗(i) + Advi

Min(µ∗, χ∗)

1 + ∑n
i=1 Advi

Min(µ∗, χ∗)
=

µ∗(i)
1 + ∑n

i=1 Advi
Min(µ∗, χ∗)

C.2. STOPPING STOCHASTIC GAMES 142

It implies that ∑n
i=1 Advi

Min(µ∗, χ∗) = 0, and since by definition Advi
Min(µ∗, χ∗) can not

be negative, it implies that for all 1 ≤ i ≤ n we have that Advi
Min(µ∗, χ∗) = 0. Thus no

positional strategy of Min player is better than µ∗ against χ∗. Similarly we can prove that no
positional strategy of Max is better than χ∗ against µ∗. Hence (µ∗, χ∗) are optimal strategies.

For the “only if” part suppose that matrix games are determined, it means that
there exists a pair of strategies (µ∗, χ∗) with the property that no positional strategy
of Min is better than µ∗ against χ∗, and vice-versa. Hence for all 1 ≤ i ≤ n we
have Advi

Min(µ∗, χ∗) = 0. Similarly we can show that for all 1 ≤ i ≤ m we have
Advi

Max(µ∗, χ∗) = 0. By definition of Improve function, it is clear that (µ∗, χ∗) is a fixed
point.

LEMMA C.1.4. There exists a fixed point of the function Improve.

PROOF. From Proposition C.1.1 the set ΣMin × ΣMax is a nonempty, compact (closed and
bounded), and convex set, and Improve is a continuous function, the existence of a fixed
point for follows from Theorem B.3.2 (Brouwer’s fixed point theorem).

In a later result, von Neumann generalised the result of determinacy of Matrix games
to the following minimax theorem.

THEOREM C.1.5 (von Neumann’s minimax theorem [vN37]). Let X and Y be nonempty,
convex subsets of Euclidean spaces, and P : X × Y → R be a continuous function. If P is
quasiconcave on X and quasiconvex on Y then

sup
x∈X

inf
y∈Y

P(x, y) = inf
y∈Y

sup
x∈X

P(x, y).

C.2. Stopping Stochastic Games
Stochastic games, introduced by Lloyd Shapley [Sha53], are a generalisation of repeated
matrix games. A stochastic game Γ is played, by two players Max and Min, on a finite
graph with vertices V = {v1, v2, . . . , vN , vN+1 = s}, where s is a special vertex called the stop
vertex. A matrix game Mk is associated with each vertex v ∈ V \ {s}.

The game start with a token in some vertex vk other than s. Players Max and Min choose
a row i and a column j, respectively, of the matrix Mk. As a result player Max wins M(i, j)
from player Min, and the token is moved to the vertex v` with probability P(v`|vk, i, j). Note
that the following restrictions are imposed on the probabilistic transition function P.

P(s|vk, i, j) > 0, for all i, j, and 1 ≤ k ≤ N, (C.2.1)
N+1

∑
`=1

P(v`|vk, i, j) = 1 for every 1 ≤ k ≤ N, and

P(s|s, i, j) = 1, for all i, j.

If the token is moved to the stop vertex then the game terminates. Otherwise players
play the Matrix game associated with the new vertex, player Max receives the payoff
and token is moved to a new vertex according to the probabilistic transition function P.

C.2. STOPPING STOCHASTIC GAMES 143

The game continues in this fashion until the token reaches the stop vertex. Note that
restriction (C.2.1) ensures that the game reaches the stop vertex in finitely many steps. We
denote the game starting from vertex vk by Γk, for all 1 ≤ k ≤ N. To solve a stochastic game
Γk, we need to compute the optimal strategies for the players and value of the game Val(Γk),
if exists. Shapley showed that the value of every stochastic game always exists.

THEOREM C.2.1 (Determinacy theorem for stochastic games [Sha53]). Every stochastic
game is determined.

To prove determinacy of the stochastic games, Shapley designed the following set of
optimality equations Opt(Γ), whose solution, if exists, gives a solution of the stochastic
games (Lemma C.2.2). For all 1 ≤ k ≤ N we have:

Vk = Val

(
Mk(i, j) +

N

∑
`=1

P(v`|vk, i, j) · V`
)

, (C.2.2)

where Val(Mk(i, j)+∑N
`=1 P(v`|vk, i, j) · V`) denotes the value of a matrix game whose matrix

has (i, j)th entry as Mk(i, j) + ∑N
`=1 P(v`|vk, i, j) · V`. In our terminology, we say that a

function F : V → R satisfies the optimality equations and we write F |= Opt(Γ) if
substituting Vk by F(vk) gives equality in all of the equations.

The following lemma states that a solution of optimality equations Opt(Γ) gives value
of the game for all starting states, in a uniform manner, and optimal positional strategies for
both players.
LEMMA C.2.2. [Sha53] If F |= Opt(Γ) then for all 1 ≤ i ≤ N the value of the game Γk exists
and is equal to F(k). Moreover there exist optimal positional (mixed) strategies.

The value improvement function Improve : RN → RN is defined as follows:

Improve(F)(k) = Val

(
Mk(i, j) +

N

∑
`=1

P(v`|vk, i, j) · F(`)
)

, for all 1 ≤ k ≤ N.

PROPOSITION C.2.3 ([Sha53]). The value improvement function Improve : RN → RN is a
contraction.

The proof of Theorem C.2.1 follows from Lemma C.2.2 and the following lemma.

LEMMA C.2.4. For every stochastic game Γ a solution of Opt(Γ) always exists.

PROOF. It is straightforward to verify that a fixed point of the Improve function gives the
solution of the optimality equations Opt(Γ). From Proposition C.2.3 we know that Improve
is a contraction over the metric space (RN , ‖ · ‖∞). It follows from the Banach’s fixed point
theorem B.3.1 that fixed point of Improve function exists, and can be approximated using a
straightforward value iteration algorithm.

D
Implementation Details

D.1. Lexer
%{
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "parser.hh"
%}
alpha [a-zA-Z]
alphanum [a-zA-Z0-9_]
white [\t]+
digit [0-9]
integer {digit}+
iden {alpha}{alphanum}*
%%
{white} { /* We ignore white characters */ }
system return SYSTEM;
begin return IBEGIN;
end return END;
automaton return AUTOMATON;
locations_x return LOC_X;
locations_n return LOC_N;
clocks return CLOCKS;
actions return ACTIONS;
invar return INVAR;
trans return TRANS;
init return INIT;
final return FINAL;
"(" return LEFT;
")" return RIGHT;
"[" return SLEFT;
"]" return SRIGHT;
"{" return CLEFT;
"}" return CRIGHT;
";" return SEMI;

144

D.2. PARSER 145

":" return COLON;
"," return COMMA;
"-" return MINUS;
"=" return EQ;
"<" return LT;
">" return GT;
"<=" return LE;
">=" return GE;
{iden} {

yylval.id = strdup(yytext);
return(IDENT);

}
{integer} {

yylval.num=atoi(yytext);
return(INT);

}

D.2. Parser
In the following Bison code, we have removed all the C++ programming lines of code to
build a model of the timed game automata.

%{
%token <num>INT
%token <id>IDENT
%token SYSTEM IBEGIN END AUTOMATON LOC_X LOC_N CLOCKS
%token ACTIONS INVAR TRANS INIT FINAL LEFT RIGHT
%token SLEFT SRIGHT CLEFT CRIGHT SEMI COLON
%token COMMA MINUS EQ LT GT LE GE

top : SYSTEM IDENT IBEGIN automata END
;

automata : automata automaton
| automaton
;

automaton : AUTOMATON IDENT IBEGIN automaton_body END
;

automaton_body : declarations invar_transition_list init_final_list
| declarations invar_transition_list
;

D.2. PARSER 146

declarations : declarations locations
| declarations clocks
| declarations actions
|
;

locations : LOC_X COLON CLEFT loc_x_list CRIGHT SEMI
| LOC_N COLON CLEFT loc_n_list CRIGHT SEMI
;

loc_x_list : IDENT COMMA loc_x_list
| IDENT
;

loc_n_list : IDENT COMMA loc_n_list
| IDENT
;

actions : ACTIONS COLON CLEFT act_list CRIGHT SEMI
;

act_list : IDENT COMMA act_list
| IDENT
;

clocks : CLOCKS COLON clock_list SEMI
;

clock_list : IDENT SLEFT INT SRIGHT COMMA clock_list
| IDENT SLEFT INT SRIGHT
;

invar_transition_list : transition invar_transition_list
| invars invar_transition_list
| transition
| invars
;

transition : TRANS LEFT IDENT COMMA IDENT COMMA IDENT COMMA
CLEFT cons_list CRIGHT COMMA
CLEFT reset_list CRIGHT RIGHT SEMI

;

D.2. PARSER 147

invars : INVAR LEFT IDENT COMMA
CLEFT cons_list CRIGHT RIGHT SEMI

;

cons_list : cons_list COMMA cons
| cons
|
;

cons : IDENT GT INT
| IDENT LT INT
| IDENT EQ INT
| IDENT LE INT
| IDENT GE INT
| IDENT MINUS IDENT GT INT
| IDENT MINUS IDENT LT INT
| IDENT MINUS IDENT EQ INT
| IDENT MINUS IDENT LE INT
| IDENT MINUS IDENT GE INT
;

reset_list :IDENT COMMA reset_list
| IDENT
|
;

init_final_list : init init_final_list
| final init_final_list
|
;

init : INIT LEFT IDENT COMMA
CLEFT cons_list CRIGHT RIGHT SEMI

;

final : FINAL LEFT IDENT COMMA
CLEFT cons_list CRIGHT RIGHT SEMI

;

Bibliography
[ABM04] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed games. In

International Colloquium on Automata, Languages and Programming (ICALP), volume 3142 of LNCS,
pages 122–133. Springer, 2004.

[ACH97] R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays in real-time
systems. Formal Methods in System Design, 11(2):137–155, 1997.

[AD90] R. Alur and D. Dill. Automata for modeling real-time systems. In International Colloquium on
Automata, Languages and Programming (ICALP), volume 443 of LNCS, pages 322 – 335. Springer,
1990.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.
[ALTP01] R. Alur, S. La Torre, and G. J Pappas. Optimal paths in weighted timed automata. In International

Workshop on Hybrid Systems: Computation and Control (HSCC), pages 49 – 62. Springer-Verlag, 2001.
[ALTP04] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. Theoretical

Computer Science, 318(3):297–322, 2004.
[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis, Standford University,

August 1991.
[AM99] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In F. W.

Vaandrager and J. H. van Schuppen, editors, International Workshop on Hybrid Systems: Computation
and Control (HSCC), volume 1569 of LNCS, pages 19–30. Springer-Verlag, 1999.

[AM01] Y. Abdeddaı̈m and O. Maler. Job-shop scheduling using timed automata. In G. Berry, H. Comon,
and A. Finkel, editors, International Conference on Computer Aided Verification (CAV), volume 2102 of
LNCS, pages 478–492, Heidelberg, 2001. Springer.

[AM04] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. Formal Methods for
the Design of Real-Time Systems, 3185:1–24, 2004.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and timed systems.
In P. Antsaklis, W. Kohn, A. Nerode, and Sastry S., editors, Hybrid Systems II, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
P. Antsaklis, W. Kohn, A. Nerode, and Sastry S., editors, IFAC Symposium on System Structure and
Control, 1998.

[BBBR07] P. Bouyer, T. Brihaye, V. Bruyère, and J. Raskin. On the optimal reachability problem on weighted
timed automata. Formal Methods in System Design, 31(2):135–175, 2007.

[BBL04] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible. In International
Workshop on Hybrid Systems: Computation and Control (HSCC), volume 2993 of LNCS, pages 203–
218. Springer, 2004.

[BBL08] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-priced timed
automata. Formal Methods in System Design, 32(1):3–23, 2008.

[BBM06] P. Bouyer, T. Brihaye, and N. Markey. Improved undecidability results on weighted timed
automata. Information Processing Letters, 98:188–194, 2006.

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies. In
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), volume 3829
of LNCS, pages 49–64. Springer, 2005.

[BCFL04] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed game automata.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 3328 of LNCS, pages 148–160. Springer, 2004.

[BCFL05] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Synthesis of optimal strategies using hytech.
In Workshop on Games in Design and Verification (GDV), volume 119 of Electronic Notes Theoretical
Computer Science, pages 11–31. Elsevier, 2005.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.
[Bel84] R. Bellman. Eye of the Hurricane: an Autobiography. World Scientific, Singapore, 1984.

148

BIBLIOGRAPHY 149

[Ber95] D. P. Bertsekas. Dynamic Programming and Optimal Control (Volume 1). Athena Scientific, Belmont,
MA, 1995.

[Ber01] D. P. Bertsekas. Dynamic Programming and Optimal Control (Volume 2). Athena Scientific, Belmont,
MA, second edition, 2001. First edition was published in 1995.

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and F. W. Vaandrager.
Minimum-cost reachability for priced timed automata. In M. D. Di Benedetto and A. L.
Sangiovanni-Vincentelli, editors, International Workshop on Hybrid Systems: Computation and Control
(HSCC), volume 2034 of LNCS, pages 147–161, Heidelberg, 2001. Springer.

[BFHL01] G. Behrmann, A. Fehnker, T. Hune, and K. G. Larsen. Efficient guiding towards cost-optimality in
UPPAAL. In International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 2031 of LNCS, pages 174–188. Springer, 2001.

[BGS00] S. Bornot, G. Gössler, and J. Sifakis. On the construction of live timed systems. In International
Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS), volume 1785 of
LNCS, pages 109 – 126. Springer-Verlag, 2000.

[BHPR07] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J. Raskin. Minimum-time reachability in timed games.
In International Colloquium on Automata, Languages and Programming (ICALP), volume 4596 of LNCS,
pages 825–837. Springer, 2007.

[BLMR06] P. Bouyer, K. L. Larsen, N. Markey, and J. L. Rasmussen. Almost optimal strategies in one
clock priced timed games. In S. Arun-Kumar and N. Garg, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 4337 of LNCS,
pages 345 –356. Springer, 2006.

[BNO03] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimization. Athena Scientific,
Belmont, MA, 2003.

[Bou06] P. Bouyer. Weighted timed automata: Model-checking and games. In Annual Conference on
Mathematical Foundations of Programming Semantics (MFPS), volume 158 of Electronic Notes
Theoretical Computer Science, pages 3–17, 2006.

[Bou09] P. Bouyer. From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation,
Université Paris 7, Paris, France, January 2009.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.
[CHR02] F. Cassez, T. Henzinger, and J. F. Raskin. A comparison of control problems for timed and hybrid

systems. In International Workshop on Hybrid Systems: Computation and Control (HSCC), volume 2289
of LNCS, pages 134–148. Springer-Verlag, 2002.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. In Formal Methods in Computer Science, volume 1, pages 385–415, Dordrecht, 1992. Kluwer.

[dA03] L. de Alfaro. Quantitative verification and control via the mu-calculus. In International Conference
on Concurrency Theory (CONCUR), volume 2761 of LNCS, pages 102–126. Springer, 2003.

[dAFH+03] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in
timed games. In International Conference on Concurrency Theory (CONCUR), volume 2761 of LNCS,
pages 144–158, 2003.

[EEJ04] K. Eriksson, D. Estep, and C. Johnson. Applied Mathematics: Body and Soul Volume 1: Derivatives and
Geometry in R3. Springer, 2004.

[FH72] J. E. Falk and J. L. Horowitz. Critical path problems with concave cost-time curves. Management
Science, 19(4):446–455, 1972.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games. A Guide to Current

Research, volume 2500 of LNCS. Springer, 2002.
[HK99] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid automata. Theoretical

Computer Science, 221(1-2):369–392, 1999.
[HMP92] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In International Colloquium

on Automata, Languages and Programming (ICALP), volume 623 of Lecture Notes in Computer Science,
pages 545–558, London, UK, 1992. Springer-Verlag.

[HNSY92] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111:394–406, 1992.

[How60] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
[HWT92] G. Hoffmann and H Wong-Toi. The input-output control of real-time discrete event systems. In

IEEE Real-Time Systems Symposium (RTSS), pages 256–265, 1992.

BIBLIOGRAPHY 150

[JLS07] M. Jurdziński, F. Laroussinie, and J. Sproston. Model checking probabilistic timed automata with
one or two clocks. In International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 4424 of LNCS, pages 170 –184. Springer, 2007.

[JT07] M. Jurdziński and A. Trivedi. Reachability-time games on timed automata. In L. Arge, C. Cachin,
T. Jurdziński, and A. Tarlecki, editors, International Colloquium on Automata, Languages and
Programming (ICALP), volume 4596 of LNCS, pages 838–849. Springer, 2007.

[JT08a] M. Jurdziński and A. Trivedi. Average-time games. In R. Hariharan, M. Mukund, and
V. Vinay, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 08004 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.
http://drops.dagstuhl.de/opus/volltexte/2008/1765.

[JT08b] M. Jurdziński and A. Trivedi. Concavely-priced timed automata. In F. Cassez and C. Jard, editors,
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), volume 5215
of LNCS, pages 48–62. Springer, 2008.

[KK01] M. A. Khamsi and W. A. Kirk. An introduction to metric spaces and fixed point theory. Wiley-IEEE,
2001.

[KNSS99] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. In AMAST Workshop on Real-time Systems (ARTS),
pages 75–95, 1999.

[KPSS99] Y. Kesten, A. Pnueli, J. Sifakis, and Yovine. S. Decidable integration graphs. Information and
Computation, 150(2):209–243, 1999.

[LBB+01] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn. As cheap
as possible: Efficient cost-optimal reachability for priced timed automata. In G. Berry, H. Comon,
and A. Finkel, editors, International Conference on Computer Aided Verification (CAV), volume 2102 of
LNCS, pages 493–505, Heidelberg, 2001. Springer.

[LBB+04] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn. As cheap
as possible: Efficient cost-optimal reachability for priced timed automata. In International Workshop
on Hybrid Systems: Computation and Control (HSCC), volume 2993 of LNCS, pages 203–218. Springer,
2004.

[LMS04] F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or two
clocks. In Philippa Gardner and Nobuko Yoshida, editors, International Conference on Concurrency
Theory (CONCUR), volume 3170 of LNCS, pages 387–401, London, UK, August 2004. Springer.

[LTMM02] S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control for acyclic
weighted timed automata. Theoretical Computer Science, 223:485–497, 2002. IFIP Conference
Proceedings.

[Man69] O. L. Mangasarian. Nonlinear Programming. McGraw-Hill Series in Systems Science. McGraw-Hill,
New York, 1969.

[Mar65] B. Martos. The direct power of adjacent vertex programming methods. Management Science,
12(3):241–252, 1965.

[Mar75] D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
[Mar98] D. A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):1565–1581, 1998.
[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems. In

Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 900 of LNCS, pages
229–242. Springer-Verlag, 1995.

[Nas51] J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.
[NTY00] P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed automata. In IEEE

Mediteranean Control Conference (MED), Los Alamitos, 2000. IEEE Comp. Soc. Press.
[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, 1994.
[Roh99] C. H. Rohwer. The babylonian method and higher order approximation to square roots. In The

Delta 99 Symposium on undergraduate Mathematics, pages 183–188, Queensland, Australia, 1999.
[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. In IEEE, volume 77, pages

81–98, 1989.
[Sha53] L. S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. U.S.A., 39:1095–1100, 1953.
[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Annual Symposium on Theoretical

Aspects of Computer Science (STACS), volume 900 of LNCS, pages 1–13. Springer, 1995.
[Tri99] S. Tripakis. Verifying progress in timed systems. In AMAST Workshop on Real-time Systems (ARTS),

pages 299 – 314. Springer-Verlag, 1999.

BIBLIOGRAPHY 151

[UPP] Uppaal. http://www.uppaal.com/.
[VJ00] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving

parity games (Extended abstract). In International Conference on Computer Aided Verification
(CAV), volume 1855 of LNCS, pages 202–215. Springer, 2000.

[vN28] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100(1):295–
320, 1928.

[vN37] J. von Neumann. Über ein ökonomisches gleichungssystem und eine verallgemeinerung
des brouwerschen fixpunktsatzes. Ergebn. Math. Koloq. Wein, 8:73–83, 1937.

[Wik09] Wikipedia. Life-critical system — wikipedia, the free encyclopedia, 2009. [Online;
accessed 19-April-2009].

[WTH92] H Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.
Technical report, Stanford University, 1992.

Index

admissible strategies, 110
affine functions, 137
average-time game, 105

Babylonians’ method, 5
Bellman equations, 5
best response, 106
bias, 32
boundary of the region, 66
boundary region (game) automaton, 92
boundary region automaton, 68
boundary region graph, 68

reachable sub-graph, 69
strategy, 111

boundary strategies, 111
type preserving, 112

boundary timed actions, 67

Cauchy sequence, 139
cellular signature, 54
clock constraints, 50
clock region, 50
clock valuation, 50
clock zone, 51
closed region graph

strategy, 110
closed region graph, 107
closure of a region, 51
concave functions, 137
concave price-reward timed automaton, 56
concave-regular, 81
concavely-priced timed automaton, 56
configuration, 51, 107
contraction, 136
convex functions, 137
convex price-reward timed automaton, 57
convex set, 137
convexly-priced timed automaton, 56
corner, 50
corner-point abstraction, 66
cost function, 4
cost game, 37, 60

lower value, 61

upper value, 61
zero-sum, 38, 61

finite graph, 20
final vertices, 21
positional strategy, 22
price-reward, 21

reward divergence, 21
priced, 21
run, 21

fractional signature, 53
k-shift, 68
subsequence, 68

gain, 32
games

average price
finite graph, 38
timed automata, 62

discounted price
finite graph, 38
timed automata, 62

price-per-reward average
finite graph, 39
timed automata, 62

reachability price
finite graph, 38
timed automata, 62

horizon, 4

linearly-priced timed automaton, 55
Lipschitz continuity, 136

contraction, 136
locations, 51
lower value, 8

average-time games, 106
finite graph, 38
reachability-time games, 89
timed automaton, 61

minimax theorem, 142
minimisation problems

152

INDEX 153

average price
finite graph, 22
timed automaton, 60, 74

average time
timed automaton, 60

discounted price
finite graph, 22
timed automaton, 60, 74

discounted time
timed automaton, 59

price-per-reward average
finite graph, 22
timed automaton, 60, 74

price-per-time average
timed automaton, 60, 74

reachability price
finite graph, 22
timed automaton, 59, 73

reachability time
timed automaton, 59

monotonic-regular, 128
multi-stage decision processes, 4

optimality equations, 5

player, 4
policy, 4
policy iteration, 5
pre-run, 76, 109

finite, 109
pre-strategy, 110

positional, 110
priced timed automaton, 55

quasiconcave function, 139
quasiconvex function, 139

reachability-time game, 88
region, 51

thick, 54
thin, 54
time successor, 54

region automaton, 64
region graph, 65

strategy, 110
region graphs

configuration, 107
regional functions, 93
run type, 78, 109

finite, 109
positional, 78

simple clock constraints, 50
simple function, 91, 112
Stochastic games, 142
stopwatch prices, 14

strategy, 4
structural non-Zenoness, 64

the principle of optimality, 5
thick region, 54
thin region, 54
time-abstract bisimulation, 55
timed automaton

Zeno, 63
timed action, 53
timed automaton, 52

concavely-priced, 56
convexly-priced, 56
finite run, 53
infinite run, 53
price-reward

concave, 56
convex, 57

size, 52
strategy, 53

positional, 53
timed game automaton

concurrent, 58
strategy

player Max, 57
player Min, 57

turn based, 57
timed moves

boundary, 67
type-preserving, 112

uniform convergent, 36
upper value, 8

average-time games, 106
finite graph, 38
reachability-time games, 89
timed automaton, 61

value iteration, 5

Zeno
runs, 63
strategy, 63
timed automata, 63

zero cycle, 21
zone, 51

	List of Figures
	List of Tables
	Acknowledgement
	Declaration
	Abstract
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Preliminaries: Dynamic Programming and Game Theory
	1.3. Literature Review
	1.4. Contributions of the Thesis
	1.5. Organisation of the Thesis

	Part 1. Background
	Chapter 2. Competitive Optimisation on Finite Graphs
	2.1. Formal Definition
	2.2. Noncompetitive Optimisation on Finite Graphs
	2.3. Games on Finite Graphs
	2.4. Discussion

	Chapter 3. Timed Automata
	3.1. Examples
	3.2. Formal Definition
	3.3. Some Properties of Regions
	3.4. Extensions of Timed Automata
	3.5. Competitive Optimisation on Timed Automata
	3.6. A Note on Zeno Runs
	3.7. Abstractions of Timed Automata

	Part 2. Competitive Optimisation on Timed Automata
	Chapter 4. Noncompetitive Optimisation
	4.1. Concavely-Priced Timed Automata
	4.2. Optimisation Problems on Priced Timed Automata
	4.3. Region Graphs
	4.4. Correctness of the Boundary Region Graph Abstraction
	4.5. Concave-Regularity of Cost Functions

	Chapter 5. Reachability-Time Games
	5.1. Introduction
	5.2. Simple Functions
	5.3. Reachability-Time Games on Boundary Region Automata
	5.4. Solving Optimality Equations by Strategy Improvement
	5.5. Complexity

	Chapter 6. Average-Time Games
	6.1. Introduction
	6.2. Abstractions of Timed Automata
	6.3. Strategies in Region Graphs
	6.4. Average-Time Games on Region Graphs
	6.5. Complexity

	Part 3. Conclusion
	Chapter 7. Summary and Future Work
	7.1. Summary
	7.2. Future Work

	Part 4. Appendix
	Appendix A. Notations and Acronyms
	Appendix B. Results From Real Analysis
	B.1. Lipschitz-Continuous Functions
	B.2. Concave and Quasiconcave Functions
	B.3. Fixed Point Theorems

	Appendix C. Some Determinacy Results
	C.1. Matrix Games
	C.2. Stopping Stochastic Games

	Appendix D. Implementation Details
	D.1. Lexer
	D.2. Parser

	Bibliography
	Index

	Insert from: "WRAP_THESIS_Trivedi_2009__.pdf"
	List of Figures
	List of Tables
	Acknowledgement
	Declaration
	Abstract
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Preliminaries: Dynamic Programming and Game Theory
	1.3. Literature Review
	1.4. Contributions of the Thesis
	1.5. Organisation of the Thesis

	Part 1. Background
	Chapter 2. Competitive Optimisation on Finite Graphs
	2.1. Formal Definition
	2.2. Noncompetitive Optimisation on Finite Graphs
	2.3. Games on Finite Graphs
	2.4. Discussion

	Chapter 3. Timed Automata
	3.1. Examples
	3.2. Formal Definition
	3.3. Some Properties of Regions
	3.4. Extensions of Timed Automata
	3.5. Competitive Optimisation on Timed Automata
	3.6. A Note on Zeno Runs
	3.7. Abstractions of Timed Automata

	Part 2. Competitive Optimisation on Timed Automata
	Chapter 4. Noncompetitive Optimisation
	4.1. Concavely-Priced Timed Automata
	4.2. Optimisation Problems on Priced Timed Automata
	4.3. Region Graphs
	4.4. Correctness of the Boundary Region Graph Abstraction
	4.5. Concave-Regularity of Cost Functions

	Chapter 5. Reachability-Time Games
	5.1. Introduction
	5.2. Simple Functions
	5.3. Reachability-Time Games on Boundary Region Automata
	5.4. Solving Optimality Equations by Strategy Improvement
	5.5. Complexity

	Chapter 6. Average-Time Games
	6.1. Introduction
	6.2. Abstractions of Timed Automata
	6.3. Strategies in Region Graphs
	6.4. Average-Time Games on Region Graphs
	6.5. Complexity

	Part 3. Conclusion
	Chapter 7. Summary and Future Work
	7.1. Summary
	7.2. Future Work

	Part 4. Appendix
	Appendix A. Notations and Acronyms
	Appendix B. Results From Real Analysis
	B.1. Lipschitz-Continuous Functions
	B.2. Concave and Quasiconcave Functions
	B.3. Fixed Point Theorems

	Appendix C. Some Determinacy Results
	C.1. Matrix Games
	C.2. Stopping Stochastic Games

	Appendix D. Implementation Details
	D.1. Lexer
	D.2. Parser

	Bibliography
	Index

