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Abstract.

This thesis studies the reasoning behaviour of successful mathematicians.
It is based on the philosophy that, if the goal of an advanced education in
mathematics is to develop talented mathematicians, it is important to have a
thorough understanding of their reasoning behaviour. In particular, one needs
to know the processes which mathematicians use to accomplish mathematical
tasks. However, Rav (1999) has noted that there is currently no adequate theory
of the role that logic plays in informal mathematical reasoning. The goal of this
thesis is to begin to answer this specific criticism of the literature by developing
a model of how conditional “if...then” statements are evaluated by successful
mathematics students.

T'wo stages of empirical work are reported. In the first the various theories
of reasoning are empirically evaluated to see how they account for mathemati-
clans’ responses to the Wason Selection Task, an apparently straightforward
logic problem (Wason, 1968). Mathematics undergraduates are shown to have
a diflerent range of responses to the task than the general well-educated popu-
lation. This finding is followed up by an eye-tracker inspection time experiment
which measured which parts of the task participants attended to. It is argued
that Evans’s (1984, 1989, 1996, 2006) heuristic-analytic theory provides the best
account of these data.

In the second stage of empirical work an in-depth qualitative interview study
1s reported. Mathematics research students were asked to evaluate and prove
(or disprove) a series of conjectures in a realistic mathematical context. It
iIs argued that preconscious heuristics play an important role in determining
where participants allocate their attention whilst working with mathematical
conditionals. Participants’ arguments are modelled using Toulmin’s (1958) ar-
gumentation scheme, and it 1s suggested that to accurately account for their
reasoning it is necessary to use Toulmin’s full scheme, contrary to the prac-
tice of earlier researchers. The importance of recognising that arguments may
sometimes only reduce uncertainty in the conditional statement’s truth/falsity,
rather than remove uncertainty, is emphasised.

In the final section of the thesis, these two stages are brought together. A
model is developed which attempts to account for how mathematicians evaluate
conditional statements. The model proposes that when encountering a math-
ematical conditional “if P then ()”, the mathematician hypothetically adds P
to their stock of knowledge and looks for a warrant with which to conclude Q.
The level of belief that the reasoner has in the conditional statement is given
by the modal qualifier which they are prepared to pair with their warrant. It is
argued that this level of belief is fixed by conducting a modified version of the
so-called Ramsey Test (Evans & Over, 2004). Finally the differences between
the proposed model and both formal logic and everyday reasoning are discussed.
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Chapter 1

Plan of the Thesis

This thesis 1s about mathematical reasoning, concentrating particularly on the
types of reasoning involved in evaluating mathematical conditionals. This topic
1s Interdisciplinary. During the course of this thesis, papers are referred to, and
ideas adapted from, several different disciplines: the mathematics education,
psybhology of reasoning and informal logic literatures are all heavily cited. De-
spite these disparate influences, the goal from the outset is clear: an integrated
theory of the evaluation of mathematical conditionals.

The thesis falls into several distinct parts.

1.1 Literature.

The thesis begins by situating itself within the mathematics education field.
Chapter 2 briefly reviews previous work which has looked at the cognitive skills
required for mathematics students in order to understand proof. It is argued
that the role of logic in proof is not sufhiciently understood, and that, in partic-
ular, there is currently no satisfactory theory of logic in informal mathematical
argumentation.

Chapter 3 looks in detail at the various models which have been proposed
for understanding conditional statements. The chapter concludes by discussing
three influential tasks from the psychology and mathematics education litera-
tures which have been used to produce these models: the Maze Task, the Truth
Table Task and the Conditional Inference Task.

A fourth task, the Wason Selection Task, is by far the most influential in-
strument in the history of reasoning research, and this forms the subject of
Chapter 4. The task is described, the main empirical results reviewed and each
of the major theories of reasoning that have been proposed in relation to it are

introduced. Although these theories of reasoning are discussed with particular



reference to the Selection Task, they are all intended to be general theories of
reasoning, and claim domains of applicability far wider than merely the Selec-

tion Task alone.

1.2 Methodology.

Chapter 5 discusses the methodologies available to conduct an investigation into
mathematical reasoning. The validity and reliability of both quantitative and
qualitative studies, in the form of interviews and standardised tasks, are dis-
cussed and compared. Finally the philosophy behind the methodology adopted
In later sections of the thesis — the so-called quasi-judicial approach to case

study analyses - is discussed.

1.3 Empirical research.

The empirical research reported in this thesis falls into two parts. Firstly, in
Chapter 6, the various theories of reasoning discussed in Chapter 4 are critically
evaluated by comparing the performance of mathematics students with the gen-
eral well-educated population on the Wason Selection Task. Using an inspection
time eye-tracker based methodology, it is argued that only the heuristic-analytic
dual process theory of reasoning can successfully account for the behaviour of
successful mathematicians on the Selection Task.

Having demonstrated that the heuristic-analytic dual process theory of rea-
soning is the most suitable framework within which to study mathematical
reasoning, Chapter 7 reviews the theory in greater detail. The heuristics and
biases research programme in Decision Making is brieﬂy reviewed, and the in-
tuitive/analytical distinction introduced by earlier mathematics education re-
searchers 1s compared and contrasted with the dual process framework.

Chapter 8 reports an qualitative interview study which attempts to apply
the dual process framework to the specific research question that this thesis
set out to answer: how do mathematicians evaluate conditional statements?
There are two parts to this study. Firstly, the role of preconscious heuristics
in realistic mathematical contexts are examined; and secondly, the conscious

processes involved in the evaluation of mathematical conditionals are discussed

with reference to Toulmin’s (1958) argumentation scheme.



1.4 'The theory.

Finally, in Chapter 9, the strands of the thesis are drawn together and syn-

thesised to form one coherent evaluative model of mathematical conditionals.

This evaluative model is compared with both formal logic, and models that seek

to explain how day-to-day non-mathematical indicative conditionals are evalu-

ated. The thesis concludes by discussing the open research questions which the

empirical work reported here has raised.

The full structure of the thesis is shown in Figure 1.1.
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Chapter 2

Proof and the Role of Logic

I'he concept of proof is one which leads to notorious difficulties for students.
A wide *range of literature has found that students (from primary school up to
undergraduate level) have difficulty constructing arguments and proofs, often
fail to understand what proofs are and have difficulty in judging whether an
argument is a proof or not (e.g. R. Moore, 1994; Recio & Godino, 2001; Selden &
Selden, 2003). This chapter reviews various discussions about what constitutes
prooi, and provides a summary of the research that has been conducted on

students’ difficulties with the concept.

2.1 What is a mathematical proof?

According to popular conceptions of the subject, mathematics is held together
by the notion of formal proof. Mathematicians prove theorems using logically
correct arguments; once proven the theorems are true, and cannot be challenged.
In his popular science book ‘Fermat’s Last Theorem’, Simon Singh summed up
this idea:

“Mathematical proof is far more powerful and rigorous than the
concept of proof we casually use in our everyday language ...once
proven [theorems| are true until the end of time. Mathematical
proofs are absolute” (Singh, 1997, p.21).

This essential quality of proofs — that they are the final arbiter of truth —
has a long history. John Locke believed that mathematics (along with ethics)
was one of only two disciplines where truth can be firmly and indisputably
established; he noted that “mathematical proofs, like diamonds, are hard as well
as clear” (cited in Dunham, 1994). This view of proof has been characterised as

“rightwing” (Devlin, 2004), and is supported by some mathematics educators.



Selden and Selden (2003), for example, claimed that “one neither examines the
lite and times of a proof’s author nor the sophistication of its readers in judging
the truth of a theorem” (p.7).

Although it is possible to provide an explicit formal definition of a “rightwing”
proof (e.g. Nagel & Newman, 2001), Thurston (1994) argued that it is impor-
tant to recognise that few mathematicians actually construct such entities. In
practice, much of the formal logic and trivial deductions are omitted. Some
might argue that any mathematical proof could be translated into a complete
formal sequence of logical deductions, but it is clear that this would be a non-
trivial task, and may even be impossible. It has even been argued, however,
that not only might it not be possible to do such a thing, but also that it would
be undesirable (Fallis, 2003).

Contrary to Selden and Selden’s (2003) view, many mathematicians, math-
ematics educators and philosophers believe that what constitutes a proof is, to
a large extent, dependent on the community within which you are operating.
The notoriously non-rightwing Bertrand Russell, for example, noted that you
can never hope to write down the entire reasoning process behind a mathemat-
ical result. Instead, he believed, you must write what “is sufficient to convince
a properly instructed mind” (Russell, 1961, p.163). This so-called “leftwing”
conception of proof (Devlin, 2004) relies upon an agreed standard of what con-
stitutes a “properly instructed mind”. It is people-centric; far from being an
absolute guarantor of the truth of a mathematical statement, a proof is whatever
the mathematical community agrees a proof is (Balacheff, 1987).

The mathematics education literature has a lot to say on the nature of proof.
Mason believed that in order to justify a conjectui‘e, there are three stages you
have to go through: convincing yourself, convincing a friend and convincing
an enemy (Mason, Burton, & Stacey, 1982). Tall agreed with this analysis, but
noted that mathematical proof was something more. In order for an argument to
be a proof, not only does it need to convince both iriends and enemies, it needs
to do so in a certain agreed manner involving mutually acceptable procedures
that transmit the truth of one statement to another (Tall, 1989).

As with Russell and Devlin, Tall placed the emphasis on the mathematical
community agreeing on what steps can be used in a proof. The mathematical
community, however, is a diverse thing, and the agreed conception of what
- constitutes a proof in topology, say, may not be the same as in fluid dynamics
(P. Davis & Hersh, 1983; Thurston, 1994). Suggesting that it is difficult to
precisely pin down exactly what a proof is, Tall aligned himself with Carroll’s
Humpty Dumpty who famously noted that “when I use a word it means just

what I choose it to mean — neither more nor less” (Carroll, 1988; Tall, 1989).



Although the mathematical community seems unable to come up with a bet-
ter definition of a proof than “it is what we say it is”, there have been numerous

attempts in the maths education literature to describe the characteristics of

proof.

Justification. Variously described as ‘verifying’ (Bell, 1976) or ‘convincing’
(Hersh, 1993; Mason et al., 1982), the primary purpose of a proof is to

justify (either to yourself or others) that a theorem is correct.

Explanation. Some mathematicians and mathematics educators argue that a
proof should provide some idea to the reader why the theorem is true.
Hanna (1991, p.55) claimed that a proof that fails to accomplish this “is
likely to add very little to an understanding of its subject and ironically

may not even be very convincing”.

Communication. The ‘language’ of proof is the way the mathematicians com-

municate their ideas to each other, allowing new research to be built on
old (Knuth, 2002).

Systemisation. Proof may be used to organize the results into a coherent
theory of axioms and theorems (Bell, 1976; de Villiers, 1990).

Given that it is so hard to pin down exactly what the role and nature of
proof is, it is perhaps not surprising to discover that many students have serious
difficulties coming to terms with it. In the next section some of the research

findings regarding the difficulties of teaching proof are discussed.

2.2 Students’ difficulties with proof.

There has been plenty of research on how exactly students go about trying to
convince themselves of a statement’s truth. Note that this question is related
to proof validation! and conviction, as opposed to proof production, although
these two types of student interaction with the notion of proof have often been
confused in the mathematics education literature. Harel and Sowder (1998,
p.275) defined a ‘proof scheme’ as referring to “what convinces a person, and
to what the person offers to convince others”. In an exhaustive article they
classified some of the common proof schemes that students may use into three
general areas: external, empirical and analytical/deductive. In this section
these proof schemes are discussed in turn, together with an overview of Tall and

Vinner’s (1981) influential concept image/concept definition framework.

1 Proof validation is process of checking that a purported proof is correct (Selden & Selden,
2003; Weber & Alcock, 2004).



It is worth noting that since Harel and Sowder’s (1998) original article their
proof scheme taxonomy has been further developed and refined based mainly
on epistemological, philosophical and historical analyses (Harel & Sowder, 2005;
Harel, 2001, in press). The following summary of the different proof schemes

uses the more recent terminology:
e External proof schemes (§2.2.1).

— Ritual.
— Authoritarian.

— Symbolic.
¢ Empirical proof schemes (§2.2.2).

— Inductive.

— Perceptual.
e Deductive proof schemes (§2.2.4).

— Transformational.

— Modern axiomatic.

2.2.1 External proof schemes.

Harel and Sowder (1998) noted that some students can be convinced and per-
suaded by some other aspect of the proof other than its contents. They labelled
the first such method ‘ritual’: the actual structure or presentation of the proof
may be sufficient to convince a student of its correctness.

Another plausible way of being convinced of the veracity of a proof is by
some external authority. Some students can be convinced of the correctness of
a proof simply by virtue of who presents it to them. If a proof is in a book
or is being presented in a lecture, then it has been checked and verified by a
mathematician of greater powers than yourself and this, perhaps, immediately
boosts its credibility:.

In the third of Harel and Sowder’s external proof schemes, conviction is
derived from the routine manipulation of symbols without meaning. They de-
scribed this as “approaching the solution of a problem without first comprehend-
ing its meaning” (p.251). This way of doing mathematics has a long history;
mathematicians of the eighteenth and nineteenth centuries often manipulated
algebraic symbols in bizarre and (from a modern perspective) illegitimate ways,
and in doing so derived some of the more important results in calculus. It is

worth questioning why Harel and Sowder included this scheme in the ‘external’



category. Where is the external source that is providing the authority? They
appear to be suggesting the symbols in the proof are external to the proof itself,

leaving us wondering what exactly they consider the proof to be.

2.2.2 Empirical proof schemes.

The next category of proof scheme that Harel and Sowder (1998) identified is
the so-called ‘empirical’ scheme. Here, the student becomes convinced of the
truth of a conjecture by appealing to observations and experiences. For Harel
and Sowder, this can be done in one of two ways: inductively and perceptually.

In a perceptual proof scheme, conviction is obtained by reference to obser-
vations of static mental (or physical) imagery. Some authors have noted that
this form of reasoning is important when investigating new problems (Dreyfus,
1991). But others have pointed out that using diagrams in formal proof is dan-
gerous; Tall (1995) cautioned us that a diagrammatic proof may only be valid

for a range of situations where the diagram is prototypical.

' When using an inductive proof scheme students attain conviction by testing
one or more specific instances of the conjecture. Chazan (1993) characterised
this sort of reasoning as confusing evidence with proof. Balacheff (1988) further
subdivided this scheme into “naive empiricism” (randomly picking a few exam-
ple cases to test), using a “crucial experiment” (picking carefully an example
to test) and a “generic example” (where an example is chosen to be represen-
tative of the general case). Tall (1979) found that significantly more students
preferred a generic proof of the irrationality of \/g to the standard proof by
contradiction. It should be noted here that a generic example based proof is not
necessarily considered illegitimate by the mathematical community and that ex-
amples of such arguments can be found in certain advanced mathematical texts
(e.g. Aigner & Ziegler, 2000). Indeed, it could be argued that proof by generic
example should be considered under the deductive proof scheme.

Although mathematicians agree that a (non-generic) inductive argument
isn’'t suflicient to prove a theorem, the importance of inductive thought in cre-
ating mathematics has been commented on before. Bickley (1966) suggested
that in “creative mathematics” deductive thought plays a subsidiary role to
“the dominance of the inductive” (p.7). Tall (1997) wrote that in order to
succeed at university level mathematics, “the individual must make an almost
schizophrenic separation between the intuitive appeal to the concept image that
senses mathematical truth and the formal deduction processes that establishes
it.” (p.16) Thus, for Tall, the process involved in producing the mathematics is
significantly different from that involved in proving it.

The inductive-empirical proof scheme has been found to be widespread.



Across a wide range of mathematical topics, it has been found amongst sec-
ondary school pupils (Porteous, 1990; Coe & Ruthven, 1994; Edwards, 1998;
Healy & Hoyles, 2000; Kiichemann & Hoyles, 2004), secondary school teachers
(Knuth, 2002) and undergraduates (R. Moore, 1994; Goetting, 1995; Recio &
Godino, 2001).

Given that inductive reasoning appears to be so widespread, some researchers
have tried to suggest reasons why. Recio and Godino (2001) drew (slightly su-
perficial) parallels between such inductive proof schemes in mathematics and
the kind of reasoning that are the norm in scientific subjects. Drawing on work
In cognitive science, Alcock and Simpson (2002) noted that reasoning using
prototypical examples is commonplace in day-to-day thought. When it comes
to formal mathematics however, they argued that the student must develop
“the rigour prefix” to emphasise the importance of working with the formal
definition rather than their prototypical examples (Alcock & Simpson, 1999).
This idea drew upon Tall and Vinner’s (1981) important distinction between an

individual’s concept 1image and their concept definition.

2.2.3 Concept image and concept definition.

The idea that an individual has both a concept image and a concept definition

has been an influential theoretical framework in mathematics education. It 1s a

simple yet powerful idea:

“We shall use the term concept 1mage to describe the total cognitive
structure that is associated with the concept, which includes all the

mental pictures and associated properties and processes.” (Tall &
Vinner, 1981, p.152) '

An individual’s concept image then, is a potentially huge collection of struc-
tures, properties, pictures or processes that are associated with the particular
concept. A concept image might be cOmpletely informal, it might not be coher-
ent. Parts of the concept image might not agree with other parts. This won't
cause problems, however, unless the conflicting parts of the concept 1mage are
evoked simultaneously.

In contrast the concept dehnition is

“We shall regard the concept definition to be a form of words used
to specify that concept.” (Tall & Vinner, 1981, p.152)

A further subdivision was made between a personal concept definition and a
formal concept definition, the latter being “a concept definition that is accepted

by the mathematical community at large.”



Tall and Vinner discussed some common problems that can arise with un-
dergraduate mathematics. For example, a first year undergraduate may have
a very strong concept image of a ‘familiar’ concept that was introduced at A-
Level, but a weak understanding of the concept definition that they have only

' just met. This can cause problems for the student:

“the difficulty of forming an appropriate concept image, and the
coercive effects of an inappropriate one having potential conflicts,

can seriously hinder the development of the formal theory in the
mind of the individual student.” (Tall & Vinner, 1981, p.169)

In Alcock and Simpson’s (1999) terms, in order to be successful, the student
must develop the ability to ‘turn on’ the rigour prefix. That is to say that
they must learn to reason with the concept definition and not their, possibly

misleading, concept image.

2.2.4 Analytical /deductive proof schemes.

The last category of proof scheme that Harel and Sowder discussed is known
as ‘analytic’. However, in a later revision of the proof scheme taxonomy, Harel
(in press) renamed the scheme, referring to it as the ‘deductive’ proof scheme.

Either way, the scheme is

“one that validates conjectures by means of logical deductions” (Harel
& Sowder, 1998, p.258).

It is the proof scheme that would result in what most mathematicians would
regard as a standard mathematical proof. They further subdivided this cate-
gory into two: transformational schemes (those that use arguments based upon
dynamic imagery rooted in the real world) and modern-axiomatic schemes.

Harel and Sowder (1998) noted that an axiomatic proof scheme relies heavily
upon mathematical logic. A proof’s starting point is certain undefined terms
and axioms, and it proceeds by making logical deductions until the conjecture
has been reached. For some students the axioms must be linked to their intuitive
understanding of the situation (Harel and Sowder referred to this as an intuitive-
axiomatic scheme), for others they may be able to study the axiomatic structure
itself (a structural proof scheme). A yet deeper understanding of mathematics
may lead to an axiomatising scheme, here the student is able to reflect on the
consequences of varying the axioms.

Even when students have an analytic/deductive proof scheme, the process
of producing proofs is far from straightforward. It has been noted that students

who understand what is required of them in a proof have great difficulty in
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‘getting started’ (R. Moore, 1994). It has been suggested that one reason why
is that students haven’t operationalised the definitions of the concepts they are
dealing with (Bills & Tall, 1998).

Some authors have disputed Harel and Sowder’s (1998) understanding of
what a analytic/deductive proof actually is. Rav (1999), for example, pointed
out that formal logic is not a fundamental part of constructing mathematical

proofs at all. Rav wrote:

“One does not even think about rules of logic in writing or reading
a proof [...] A proof in mainstream mathematics is set forth as a
sequence of claims, where the passage from one claim to another is
based on drawing consequences on the basis of meanings or through

accepted symbol manipulation, not by citing rules of predicate logic”
(Rav, 1999, p.13).

Arbib (1990, p.55) suggested that one statement in a mathematical proof fol-
lowed from another not through formal logic but through “formal technique and
intuitions about the subject matter at hand”.

So instead of agreeing with Harel and Sowder (1998) that mathematicians
validate conjectures “by means of logical deductions”, Arbib (1990) and Rav
(1999) suggested that some kind of poorly understood “informal” logic is the
dominant force (related arguments were made by Thurston, 1994).

Rav (1999, p.14) summarised his view of the situation:

“As things stand now, we have remarkable mathematical theories of
formal logic, but inadequate logical theories of informal mathemat-

bR

1CS.

The meaning here is clear. Whereas the formal understanding of the branch
of mathematics known as ‘proof theory’ is well developed, this has little or
nothing to do with how mathematicians actually create proofs. What is needed
is a theory of how logic is used in “informal” mathematics.*

In terms of Tall and Vinner’s (1981) .distinction, Rav (1999) was suggesting
that whereas the formal concept definition of argumentation — formal logic — is
well understood, there is currently no adequate understanding of mathemati-
cians’ concept images of argumentation. This thesis seeks to address this gap in
the literature by mvestigating in detail the role that logic plays in mathematics.
Specifically, the goal of this thesis is to investigate the manner in which success-

ful mathematics students reason with conditional “if...then” statements.

2Here, of course, Rav (1999) is using “informal” to mean normal day-to-day mathematics
as done by algebraists, topologists etc. Not that done by formal logicians or proof theorists.
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2.3 Summary of Chapter 2.

e Proof is recognised to be one of the most vital components of ‘coming to

know’ advanced mathematics.
e Students from all levels of education have difhiculty in dealing with proofs.

e The role of logic in proof construction and proof evaluation is uncertain.
Some researchers argue that formal logical deductions are vital to develop
a sophisticated ‘proof scheme’; whereas others suggest that whilst formal
logic has little or no role in mathematical proofs, informal logic does have

an important, but not currently well understood, role.

e The goal of this thesis is to fill this gap in the research literature. Specifi-
cally, to investigate the manner in which successful mathematics students

reason with conditional “if...then” statements.

The next chapter begins to look in detail at literature which explores how con-

ditionals are understood by the general population, and by mathematicians.
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Chapter 3
Logical Implication

Logical thinking has long been assumed to be a vital part of mathematical rea-
soning. This chapter summarises various different models of how conditional
statements are understood in mathematics (and elsewhere) and introduces sev-
eral important research tools that have been used to investigate this subject.

The idea that learning mathematics develops clear and logical thinking has
a long history. In the early part of the 18th century, the liberal philosopher
John Locke wrote that mathematics ought to be taught to “all those who have
time and opportunity, not so much to make them mathematicians as to make
them reasonable creatures” (Locke, 1706/1971, p.20).

This sort of belief was once the rationale for placing mathematics at the heart

of the school curriculum. When discussing the utility of studying mathematics,
C. Davis (1850/1970) wrote that it was important to

“point out and illustrate the value of mathematical studies, as a
means of mental improvement and development... [studying math-
ematics| aids the memory at the same time that it strengthens and

improves reasoning powers.” (pp.60-61).

Oakley (1946) took this idea further:

“The study of mathematics cannot be replaced by any other activity

that will train and develop man’s purely logical faculties to the same

level of rationality.” (p.19).

Similar beliefs still pervade the mathematical world today. For example, the

QAA, the UK quality assurance agency for higher education, states that

“Mathematics| graduates are rightly seen as possessing considerable

skill in abstract reasoning, logical deduction and problem solving,
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and for this reason they find employment in a great variety of careers
and professions.” (QAA, 2002).

There is a widespread belief then, that studying mathematics improves your
reasoning skills, teaches you how to think, and makes you more rational. But
is this really correct? Although research has been conducted that has looked
at whether subject specific knowledge can be transferred across domains (Lave,
1988), there has been surprisingly little that has looked at whether mathematics
actually does develop these kinds of reasoning skills at all.

Some of the popular mathematics literature takes a clear stand on the issue

of role of logic in mathematical thinking:

“the ability to construct and follow fairly long causal chains [and]

a step by step logical argument. . .is fundamental to mathematics.”
(Devlin, 2001, p.15).

Mathematical textbooks take a similar view:

“Everyday language is full of generalities which are vaguely true in
most cases, but perhaps not all. Mathematical proof is made of
sterner stuff. No such generalities are allowed: all the statements
involved must be clearly true or false...|we must| be sure that our
mathematical logic is flawless.” (Stewart & Tall, 1977, p.110).

Whilst philosophers have discussed the question (Arbib, 1990; Rav, 1999) there
has, apparently, been little empirical research on how successful mathematicians
behave when they are doing mathematics; and on to what extent logic is a part
" of a mathematician’s thinking. Of particular interest within the field of logic is
the role of logical implication.

In mathematics education circles, it has been argued that an understanding
of logical implication is one of the most important prerequisites for understand-
ing and constructing proofs. Rodd (2000), for example, suggested that modus
ponens reasoning is crucial to establishing mathematical truth, and Kichemann
and Hoyles (2002, p.242) emphasised logical implication’s “importance for suc-
cess” in mathematics. '

However, it has also been recognised that logical implication is a topic that
causes difficulties for students (e.g. Deloustal-Jorrand, 2002; Hoyles & Kiiche-
mann, 2002; O’Brien, 1973). One of hypothesised reasons for this apparent
difficulty is the different models of implication! that are common in different

IThere is a subtle philosophical distinction (described further below) between an implica-
tion and a conditional. However, this thesis argues that, for the current purposes at least, the
distinction is not psychologically important. For this reason the words are used interchange-

ably.
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Material Conditional Def_ective Conditional

P @

t  t t N
t f f
f  t 1
f f i

f
t
t

Table 3.1: Truth tables for ‘P = @’ in the cases (a) the material conditional
and (b) the defective conditional. Here t = true, f = false and i = irrelevant.

contexts. In this section several distinct models that are mentioned in the
mathematics education, psychology and philosophy literatures are described,
and comparisons are drawn between them. Note that some of these models of
the conditional have been described by different authors, and several of them

overlap. These issues will be discussed further in a later section (§3.1.9).

3.1 Diffterent models of the conditional.

3.1.1 The material conditional (T1).

The material conditional? model comes from the formal definition that is com-
monly taught in first year undergraduate courses. A material conditional “if P,
then ()” is true if and only if either =P or @ is true. It is often introduced via.

a truth table (see Table 3.1), from which the equivalence
P=Q=-PVQ

can be deduced.
In their undergraduate textbook, Stewart and Tall (1977) introduce the ma-

terial conditional using the example ‘if £ > 5, then = > 2’. Arguing that ‘if
x > 9 then £ > 2’ is obviously correct, they consider the case of £ = 4. For this
value of z, ‘x > 5’ is false, but ‘x > 2’ is true. Strictly speaking, of course, this
sentence is actually a generalised conditional (see §3.1.3) as neither ‘c > 5’ or
‘z > 2’ have truth values unless z is specified.

Here it is worth pointing out the contrast that some logicians emphasise
between the material conditional and the (material) implication. Quine (1966)
draws a philosophical distinction between the implication ‘P implies ()’ and the
conditional ‘P = ’. For Quine the latter is a mathematical statement in its
own right whereas the former is a sentence that talks about the two statements

- P and @ using only their names. ‘P implies @)’ is not, in itself, a mathematical

2Also known as the ‘propositional connective’.
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statement. However it is valid “when and only when the conditional is valid”

(p.37). Quine writes:

“|We may| write: ‘dreary’ rhymes with ‘weary’, but here again we are
using names of the rhyming words in question — the names being in
this case formed by adding single quotation marks. It would not be
merely untrue but ungrammatical and meaningless to write: Dreary

rhymes with weary.” (Quine, 1966, p.37)

This distinction is also hinted at in some undergraduate textbooks (e.g. D. L.
Johnson, 1998), and is mentioned by Durand-Guerrier (2003) as one of her four
“notions of the conditional”, although she uses the term “logically valid condi-
tional”. Although this distinction is important from the philosophical position
adopted by Quine (1966), it is largely irrelevant from the psychological stand-
point that this thesis takes; namely a position that is attempting to empirically
analyse how mathematicians use conditionals in their work.

There are four common ways of using a material implication, two legitimate

and two fallacious. Given P = Q)

Modus Ponens is the deduction of () from the assumption P.
Modus Tollens is the deduction of =P from the assumption —Q).

Affirming the consequent is the incorrect deduction of P from the assump-
tion Q.

Denying the antecedent is the incorrect deduction of =) from the assump-

tion —P.

Modus ponens appears to be an easier deduction to make than modus tollens,
despite the potentially serious results of failing to deduce =P from —(Q, although
the reasons why this might be so are controversial (see Chapter 4). Incredibly,
1t 1s possible that the Chernobyl disaster can be attributed to the failure of a
workman to make this deduction (Johnson-Laird, 1999).3

Many studies have found that use of affirming the consequent and deny-
ing the antecedent are widespread, even amongst highly educated populations.
O’Brien (1973) denoted consistent use of affirming the consequent and denying
the antecedent deductions as ‘child logic’, as opposed to ‘maths logic’. Using in-
ference tasks (such as that in Figure 3.1), he found that between 40 and 50% of

undergraduate mathematics students*® consistently used child logic as opposed

3The Chernobyl plant had the safety regulation “if the test is to continue, then the turbine
must be rotating fast enough”, but despite the fact that the turbine wasn’t rotating fast

enough, no one deduced that the test should be stopped.
40’Brien’s participants had all just completed an ‘introduction to mathematics’ course. It

is not at all clear whether maths was their major subject.
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I Here 1s a rule:

“1f the car is shiny, then it is fast”.

For each of the following answer yes, no or can’t tell

1. The car is shiny. Is the car fast?

2. The car is fast. Is the car shiny?
3. The car is slow. Is the car shiny?

4. The car 1s not shiny. Is the car fast?

Figure 3.1: A standard inference task.

to only 5% who consistently used maths logic. This compared to a previous
experiment that gave similar tasks to seconda,fy school children which found
that around 70% used child logic (O’Brien, Shapiro, & Reali, 1971). In both ex-
periments O’Brien found that using familiar content in the questions facilitated
modus tollens deductions.

The claim that the conditionals in natural language can be successfully mod-
elled using the material conditional has been referred to as Theory 1, or T1,
by Edgington (2003) and Evans and Over (2004). T1, whilst believed by the
likes of Boole (1854/1958) and Inhelder and Piaget (1958), has been subject to
serious challenge by modern philosophers and psychologists alike (see Chapter
4).

3.1.2 | The defective conditional.

The defective conditional® occurs when “if P, then Q” is considered irrelevant
if P takes the value false (Wason, 1966). This model’s truth table is shown in
Table 3.1 (see p'.15). Quine (1966) anecdotally noted that this is the form of the
conditional that is general used in day-to-day life. He wrote that “‘if P then
()’ is commonly felt less of an aflirmation of a conditional than as a conditional
affirmation of the consequent” (p.12).

Quine’s observation has been experimentally investigated by psychologists.
The so-called ‘truth table task’ involves asking participants to decide whether

certain given information makes a conditional true, false or whether the infor-

°D. Mitchell (1962) and Durand-Guerrier (2003) use the terms “hypothetical proposition”
and “the common understanding” respectively.
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Which of the following situations (a) supports, (b)
contradicts or (c) tells us nothing about the rule:

“if the shape is a square, then it is green”.

l 1. A green square.

2. A red square.
3. A blue circle.

4. A green circle.

I

Figure 3.2: A standard truth table task.

P () Material Equivalence Defective Equivalence
t t t t

t f f f

f t f 1

f f t 1

Table 3.2: Truth tables for ‘P = @)’ in the cases (a) material equivalence and
(b) defective equivalence. As before, t = true, f = false and i = irrelevant.

mation is irrelevant to the truth or falsity of the rule (see Figure 3.2). Wason
and Johnson-Laird (1969), for example, used a conditional with abstract con-
tent and found that subjects often regarded that the information that P was
false made the rule irrelevant. At the time this finding was used to dispute the
Piagetian claim that children reached the stage of formal operations by the age
of 12 (see also §4.1).

Wason and Johnson-Laird (1969) and Evans, Newstead, and Byrne (1993)
noted that along with the material conditional and defective conditional inter-
pretations of implication, the closely related ‘material equivalence’ and ‘defective
equivalence’ interpretations are also common. These occur when “P = @7 is
mixed up with “P < Q7 (see Table 3.2 for truth tables).

Hoyles and Kiichemann (2002) have argued that the defective conditional is

a “more appropriate” interpretation than the material conditional because

“in school mathematics, students have to appreciate the consequence

of an implication when the antecedent is taken to be true.” (p.196)

This is a rather peculiar claim, as both the defective conditional and the material
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conditional allow one to “appreciate the consequences” of “if P then Q” when
P 1s true. The difference occurs when P is not true.

Durand-Guerrier (2003) criticised Hoyles and Kiichemann by pointing out
that knowing the truth value of a conditional when P is false is vital to under-

standing definitions such as, for example, that of a diagonal matrix:

A n X n square matrix |a;;] is diagonal if and only if V4,5 € N such
that 1 < 1,5 < n, if i # 7, then a;; = 0.

But this argument is surely fallacious. Such a definition is perfectly under-
standable with a defective conditional interpretation: when 7 # 4§, “if 1 = 7,
then a;; = 0”1s irrelevant. That is to say, nothing can be concluded about the
truth of a;; = 0. Such an interpretation does not prevent one from fully under-
standing, and making operable (in the sense of Bills & Tall, 1998), the definition

of a diagonal matrix.

3.1.3 The generalised conditional.

A generalised conditional is found in the domain of predicate rather than propo-
sitional logic. Such a conditional has the form “Vx € X, if P(x), then Q(z)”,
where X is the set that we are working in. Here, neither P(x) nor Q(z) have a
truth value until z is specified. This is the form that most mathematical the-
orems are written in, albeit sometimes deceptively. For example, the theorem
“if the diagonals of a quadrilateral bisect one another, then the quadrilateral is
a parallelogram” is a generalised conditional of the form “for all quadrilaterals
@, if ) has diagonals that bisect one another, then () is a parallelogram”. One
might argue that most of the examples of conditionals discussed so far have

implicitly been generalised.

3.1.4 The causal/temporal conditional.

Deloustal-Jorrand (2002) explained that she

“understands by ‘causal conception of the implication’ all the rules,
practices and knowledges [sic] related to the interpretation of the
sentence ‘A implies B’ by ‘A is the cause of B’.” (p.284)

She went on to point out that this causality need not be a temporal relationship,
although in many day-to-day cases it is. Here the word “cause” 1s problematic.
Is it reasonable to say that event P can cause event () even though it doesn’t
precede it? The word “cause” seems to carry with it implications of some kind
of temporal order. The notion of causality is a hugely complex subject that

has associated with it a vast research programme in philosophical and cognitive
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science areas (e.g. Sperber, Premack, & Premack, 1995). Whilst noting that
this research programme exists, it is of minor relevance to this thesis. Instead
it suflices to remark that the question of what causality means in mathematics
1S even more problematic than in other settings. In the mathematical domain,
temporal order is something of a meaningless notion. In no sense can “7 is
locally connected” be said to have occurred either before or after “7 is con-
nected”, so it seems to be slightly odd to suggest that one is a cause and one
1s an eflect. Later it is argued that a better way of characterising the notion
of causality in mathematics is in terms of belief rather than truth (see §3.1.6).
This naturally leads us to consider Toulmin’s (1958) notion of the warrant and

backing of an argument.

3.1.5 Informal logic.

Informal logic is an attempt by philosophers to accurately describe the structure
of arguments (R. H. Johnson, 1999), and is largely based upon the work of the
philosopher Stephen Toulmin. Writing in the fifties he suggested, against the
prevalling orthodoxies of the time, that the best way to study argumentation
was not to use the material conditional of formal logic (Toulmin, 1958; Toul-
min, Rieke, & Janik, 1984). Toulmin’s The Use of Arquments was very poorly
received, with one of his colleagues branding it “Toulmin’s anti-logic book”
(Toulmin, 2001, p.11). Since it’s publication, however, Toulmin’s work has be-
come an important idea within of many academic disciplines, include rhetoric
thedry, linguistics and perhaps mathematics education.

For Toulmin, contrary to the formal logician’s beliefs, the purpose of an
argument is to convince an audience of the conclusion’s veracity. He suggested
that an argument consists of several parts, all designed to convince the audience.
The arguer starts by putting forward the data (D) and showing, via the warrant
(W), that the conclusion (C) follows. A warrant tends to be a statement of the
form “given D, one can take it that C” (Toulmin, 1958, p.99). If the warrant is
not immediately obvious the some justification, or backing (B), for it is required.
The qualifier (Q) gives an indication of the level of certainty contained in the
argument (of course, in mathematics arguments are traditionally seen as aiming
to establish the full certainty of claims rather than a level of probability in
them). The final part, the rebuttal (R), occurs when the conviction in the
argument is non-absolute. Toulmin’s scheme is illustrated in Figure 3.3.

An example of an argument expressed in this form is given in Figure 3.4.
Here, the arguer is suggesting that Hislop was at fault for the goal (C), a close
range header scored whilst he was the goalkeeper (D), because he ought to

have caught the cross from which the goal was scored (W). This is because
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Figure 3.3: Toulmin’s model of a general argument.

goalkeepers are expected to be able to catch crosses that are close to them (B).
However, the arguer accepts that the argument could be rebutted if Hislop was
fouled as the ball was crossed (R). Note that the backing in this argument, as
In most arguments, is a general statement of “if...then” form; that is to say,
the backing is “if a cross is close to a goalkeeper then he should catch it”.
Toulmin’s (1958) argumentation scheme, and how it has been applied to
mathematical arguments, will be discussed in greater detail in §8.6.1. For now,
however, it suffices to note that Toulmin’s work has been used by some mathe-

matics education researchers to put forward a model of the conditional.

3.1.6 The warranted conditional.

Using Toulmin’s (1958) scheme, Weber and Alcock (2005) introduced the notion

of a warranted conditional.® They wrote:

“When one evaluates whether the implication ‘if P, then ()’ is war-
ranted, P is seen as the data and @) as the conclusion. ...In de-
termining whether ‘if P, then ()’ is warranted, the reader must not
only evaluate the truth of P and Q, but also judge the soundness of
this possibly inferred warrant.” (p.36).

An implication is warranted in the sense of Weber and Alcock if it allows you
to deduce the conclusion () from the data P, i.e. it justifies the modus ponens

inference. Modus tollens plays, at most, a subsidiary role.

 Actually, they used the word ‘implication’ instead of ‘conditional’ throughout.
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l‘ unless Hislop

was fouled as
the ball was
crossed

The goal came ‘ |‘
from a close range ‘ Hislop was
header when Hislop | | ‘ 50, presumably at fault

was goalkeeper L

Hislop ought to have |

caught the cross from
which the goal was scored

—

goalkeepers should be
capable of catching crosses |
that are close to them

Figure 3.4: An argument expressed using Toulmin’s structure.

Weber and Alcock argued that warranted implications are vital for validating
proofs (in the sense of Selden & Selden, 2003). They pointed out that if a
conditional is materially true but unwarranted, it cannot be used in a proof.
They gave the example of a student who, when asked to prove that 1007 is
prime writes “if 7 is prime, then 1007 is prime”. When seen as a material
conditional, this statement is true. However, it is not warranted. The implicit
warrant (although, really this should be called a backing), that “if n is prime,
1000 + n is prime”, is not justified (for a relevance theoretic explanation as to
why this particular warrant is inferred, see Inglis, 2004).

Specifically then, a person interprets “if P, then ()” as a warranted impli-
cation if they infer (or look for, but fail to find) a warrant that allows them to
conclude ) from the data P. Notice that this use is subtly different to that
adopted by both Toulmin and Weber and Alcock. For Weber and Alcock, a
conditional is warranted only if there exists a valid warrant (although it is very
hard to be precise about what ‘valid’ means in this context). In this thesis the
term warranted conditional is used to refer a particular model of the conditional
—~ in which, when evaluating the truth of a conditional sentence, one is directed

towards looking for a warrant which may or may not be found.
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Weber and Alcock not only argued that the warranted implication is vital

for proof validation, but that it is not taught sufficiently in class. They wrote:

“for students to gain conviction and understanding from ... proofs,
they must consider the implicit warrants used to justify the asser-

tations in the proof. However, it is not clear that students will
naturally do this.” (Weber & Alcock, 2005, p.38)

However, Inglis (2004) argued that in fact it is clear that students will naturally
do this. That is to say that the warranted implication is an entirely natural way

of understanding “if...then” statements: it requires no special training (Inglis,
2004; Reid & Inglis, 2005).

3.1.7 The Stalnaker conditional (T2).

The Stalnaker (1968) conditional, a terminology adopted by Evans and Over
(2004), is subtly different to the conditionals described in the previous sections.
When P is false the Stalnaker conditional ‘P = @’ may be either true or false.
Edgington (2003, p.383) gave the following example:

If you touch that wire, then you will get an electric shock.

She points out that if you don’t touch the wire the conditional might still be true
or false. It would depend, for example, on whether the wire was insulated or not.
In this situation, Stalnaker (1968) argued, we must make the minimal changes
necessary to ensure our beliefs are consistent after P has been hypothetically
added to them. That is to say, suppose we know that we didn’t touch the wire,
but also that the wire was not insulated and we were not wearing gloves. The
conditional in this case would be true: P has been hypothetically added to our
beliefs and, as a consequence, we have evaluated () to be true.

Evans and Over (2004) summed up the situation by explaining that a Stal-
naker conditional P = () is true in the case where P is false and ) is true
(denoted FT) “if and only if TT is a closer possibility to FT than TF is” (p.26).
Note that because of this complication, modus tollens is not a valid deduction
from a Stalnaker conditional. The hypothesis that the Stalnaker model of the
conditional best represents day-to-day conditionals has been called Theory 2, or
T2 as opposed to T1 discussed in §3.1.1 (Edgington, 2003; Evans & Over, 2004).
The Stalnaker conditional model 1s not the same as the warranted conditional
model in the case when both P and () are true. The Stalnaker conditional is

true in this case, but the warranted conditional will not be if there is no warrant.
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3.1.8 The suppositional conditional (T3).

The suppositional conditional is an altogether different beast to the previous
models of the conditional mentioned. It has no outward truth values at all, but
instead is evaluated in terms of the so-called Ramsey Test. This test, proposed
by Ramsey (1931/1990), suggests that the probability that a conditional is true
1s equal to the conditional probability of the consequent given the antecedent.
That 1s to say that people judge the probability of P = @ by “adding hypo-
thetically P to their stock of knowledge and arguing on that basis about Q”
(Ramsey, 1931/1990, p.247). Probability here should be taken to mean the
degree of belief one has in the conditional. This relationship can be expressed
symbolically: _
P(P = Q) = P(Q| P).

Specifically, the suppositional conditional approach (as presented by Edging-
ton, 2003; Over & Evans, 2003; and Evans & Over, 2004) suggests that people
fix their degree of belief in a conditional statement by performing a two-stage
Ramsey test: The probabilities of P A Q and P A () are evaluated and then
compared. If P(P A Q) is high compared to P(P A =Q), then P(Q | P) is high
and so P(P = @) is judged to be high. Similarly, if P(P A Q) is low compared
to P(P A =Q), then P(Q | P) is low and so P(P = ) is judged to be low.

Over and Evans (2003) point out that the manner in which the probabilities
of PAQ and PA—(Q are evaluated is highly varied. Sometimes these evaluations
are implicit (highly influence by System 1 processes) and sometimes they are

explicit (highly influenced by System 2 processes). Over and Evans write:

“There are a number of ways in which people can |evaluate these
two probabilities|. Sometimes they will know relevant frequency
information, and they can use that to make an explicit comparison.
[...] More widely, heuristics [such as the availability heuristic| will

sometimes be engaged.” (p.346)

Evidence for the role of probability judgements in evaluating conditionals was
presented by Evans, Handley, and Over (2003). They concocted a situation
where P(Q | P), P(P A Q) and P(—P V Q) were all radically different. They then
asked participants to judge “how likely” the rule P = () was. The correlation
between participants’ evaluations of P(P = @) and P(—P V Q) was found to
be low. In a further experiment it was found that participants’ evaluations of
P(P = @) were much closer to P(Q | P) than their evaluations of P(P A Q).
The suppositional conditional is different to the Stalnaker conditional. Sup-
pose, on the conditional ‘P = ’, you have managed to rule out the case PA-Q.

Is the conditional true or false? T2 cannot say. The conditional may fail in the
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warrant
exists

Figure 3.5: The warranted conditional in terms of Toulmin’s scheme, the con-
ditional asserts the existence of a warrant/backing.

-

if P
then @

Figure 3.6: The material conditional in terms of Toulmin’s scheme, here the
conditional s the warrant.

cases where P is the case. T3, however, says that the conditional is true. P
is hypothetically added to your stock of knowledge and the probability of @ is
assessed, this is certain as we have ruled out —(). Interestingly, when he de-
veloped the Stalnaker conditional, Stalnaker (1968) was attempting to combine
the intuitive correctness of T3 with the advantages of a conditional determined
entirely by truth values. This has since been shown to be impossible (Lewis,
1986).

3.1.9 Comparing the different conditionals.

There are many similarities worth noting between the these differing models.
Firstly, it is worth pointing out explicitly the differences between the material
and warranted conditionals. They both allow you to deduce ) from P. Phrasing
both explanations in terms of (a reduced version of) Toulmin’s (1958) scheme
sheds some light on the matter. The warranted conditional understanding is
shown in Figure 3.5. With this view, the sentence “if P, then }” is making
the claim that there exists a warrant that allows you to deduce () from P; you
are left to infer what the warrant might be. This is different from the material
understanding (see Figure 3.6). Here, the conditional itself is the warrant that
allows you to deduce Q) from P; and, for that matter, =P from —Q).

However, this is not to say that all the conditionals mentioned above are
different. Weber and Alcock’s (2005) warranted conditional and Deloustal-
Jorrand’s (2002) causal conditional are different names for similar underlying

concepts. As discussed in §3.1.4, there are difficulties with the linguistic sub-
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tleties of claiming that one mathematical fact causes another. However there
are no such difficulties in saying that believing P is true causes you to believe
that () is true. In other words, the causal conditional acts as a warrant. It
1s a warranted conditional. Conversely, a warranted conditional causes to you
to believe @) if you believe P: it is a causal conditional. Given the similarity
between these views, and the difficulties with the word ‘causal’, this thesis uses
‘'warranted’ throughout.

Notice that although the warranted and the generalised views of the condi-
tional are not identical, in virtually all practical mathematical situations they
coincide. After all, if something having property P allows you deduce that it
also has property (), then the same better be true for all things which have
property P (i.e. all warranted conditionals are generalised). It is not the case
that “for all z, P(z) = Q(x)” means there must be a warrant that links P and
(2, but in the vast majority of cases a mathematician meets there is. Indeed, one
might see most direct proofs as chains of warrants that indicate how having one
property leads to having another. Without such links the only way of proving
a statement such as “for all z, P(z) = Q(z)” would be to exhaustively test all
the x’s — a procedure that is very rarely seen in advanced mathematics.

So, to summarise, six apparently different models of the conditional have
been identified: I '

The material conditional (T1). “If P, then Q)" (or P = Q) is true if ~PVQ

1S true.

The defective conditional. “If P, then ()7 is irrelevant whenever P is false.

The generalised conditional. “If P(z), then Q(z)” is true if ‘P(z) = Q(z)’

i1s true for all instances of z.

The warranted conditional, also known as the causal conditional, “If P,

then Q7 asserts the existence of a warrant that allows you to conclude ¢
from the data P.

The Stalnaker conditional (T2). Agrees with T1 for when P is true, but

differs where @ is false.

The suppositional conditional (T3). The degree of belief in “if P, then Q”
is given by P(Q|P). A world where P is true is imagined, and the likelihood

of () is evaluated.

Given these different models of the conditional, it is natural to ask which ver-
sions, if any, best match the way people understand and use conditionals, and

what methods are there to measure this?
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A person named X managed to pass through a maze and never used the same
door twice. We can write down sentences about the situation. For each of the
sentences you must decide whether it is true, false, or whether there are not
enough clues to tell. For example, the sentence ‘X crossed C’ is a true sentence,
as C is the only entrance to the maze.

C

T Entrance

Place each of the following into the categories: true (T), false (F) or not enough

clues (N).

e X crossed P. e if X crossed O, then X crossed F.

e X crossed N. e if X crossed K, then X crossed L.

e X crossed M. e if X crossed L, then X crossed K.

Figure 3.7: The maze task.

3.2 Standard logic tasks.

There are several standard logical tasks that have been used in the literature.

The most famous and widely researched is the so-called Wason Selection Task,
and this will be discussed at length in Chapter 4, together with the various

theories of reasoning that have been developed to explain it, and other results

from the literature. In this section, however, other common but less widely used

logic tasks are briefly introduced and discussed.

3.2.1 The maze task.

The maze, or labyrinth, task was first given to 15-16 year old French schoolchil-

dren, they were presented with the task shown in Figure 3.7 (APMEP, 1
Durand-Guerrier, 2003).
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The last sentence, “if X crossed L, then X crossed K”, is the most interest-
ing. Durand-Guerrier (1996) reported that 71% of the pupils answered “can’t
tell”, which she argues is the correct answer.” For some routes (e.g. CDIJKLM-
NQR) the material conditional is true, and for some (e.g. CDILMNQR) it is
false. Thus, suggested Durand-Guerrier, we cannot be sure which it is.

However, the teachers who administered the task thought that the answer
to be “false”. They explained that “the important matter is the link between
the two sentences and not the particular truth value of each one” (Durand-
Guerrier, 2003, p.9). Durand-Guerrier suggested that the teachers were viewing
the sentence as a generalised conditional — they were inferring an illicit “for
all” at the front of the sentence. When the sentence is seen like this, it is
indeed false. However, in the teacher’s quote, they speak of the link between
the statements being of primary importance. This sounds more like a warranted
conditional interpretation than the generalised conditional that is suggested by
Durand-Guerrier. '

Durand-Guerrier went further by concluding that all analyses of logical rea-
soning using propositional, rather than predicate, logic is bound to fail. She
argued that such an approach (including that adopted by, for example, Toul-
min, 1958) ignores the possibility of contingent sentences, and thus is neces-
sarily inaccurate. Inglis and Simpson (2006) found that posing the maze task
In a mathematical context biases participants away from responding with what
Durand-Guerrier considered to be the mathematical correct answer, and sug-
gested that Durand-Guerrier’s focus on such narrow logical concerns missed

some of the psychological subtleties of the task.

3.2.2 The truth table task.

The truth table task has been used by many experimenters. It comes in two
flavours: evaluative and constructive. A standard evaluative version is given
in Figure 3.2 (p. 18). Participants are given a rule “if P, then Q” (often with
rotated negatives®) and are asked to identify which combinations of P, =P, Q and
—() support the rule, contradict the rule or are irrelevant to the rule (Wason
& Johnson-Laird, 1969). In the constructive version, participants are asked to
construct combinations that support or contradict the rule themselves (Evans,
1972). Wason and Johnson-Laird’s (1969) findings regarding the defective truth

table (see §3.1.2) were found in both versions of the task.

"Durand-Guerrier (2003) indicates that the “can’t tell” answer was given more frequently
by “those deemed good at mathematics” (p.9), although she offers no data to support this.

8Rotating the negatives here refers to using four different versions of each rule: instead of
just using “if P, then Q”, the rules “if P, then -Q”, “if ~P, then Q” and “if -P, then -Q”

would also be used.
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The vast majority of experiments with the truth table task have used ab-
stract content (like that shown in Figure 3.2). But Newstead, Charles Ellis,
Evans, and Dennis (1997) asked participants to solve the task with thematic
content. They used rules that were classified as either promises, threats, tips,
warnings, temporals, causals, and universals.” They found that the type of
content had a significant effect upon the response. For example, promises and
threats seemed to increase the frequency of the material equivalence interpre-
tation. The effect of thematic content on the participants’ responses to logical
tasks is discussed further, with reference to the Wason Selection Task, in Chap-
ter 4.

There are no examples of mathematics education researchers who have used
the truth table task. However, another classic logical problem, the so-called

inference task, has been used with various mathematical populations.

3.2.3 The inference task.

T'he inference task involves participants being asked to judge the validity of
deductions from a conditional. O’Brien’s (1973) version is shown in Figure
3.1.19

Typically almost all Ipa,rticipants succeed in making the modus ponens, far
fewer successfully use modus tollens (between 40-80%), and the numbers that
incorrectly deny the antecedent and confirm the consequent varies considerably
between studies. Evans, Newstead, and Byrne (1993) summarised the research
in the fheld and noted that the percentage of participants found in different
studies to deny the antecedent varied between 17 and 73%. Newstead et al.
(1997) attributed this variation to subtle differences in the way the task was
presented. In any case, they note that the irequency of denying the antecedent
and confirming the consequent deductions is roughly equal. As with the truth
table task, Newstead et al. (1997) found that the type of thematic content
makes a significant difference to the results.

Hoyles and Kiichemann (2002) gave a mathematically based inference task to
schoolchildren in years 8 and 9. They were given the rule “if the product of two
whole numbers 1s odd then their sum is even” and were told that the product of
two numbers is 1271. 47% correctly made the modus ponens deduction, whereas

47% suggested that they needed to know what the numbers were before they

would know.

I9For example, one of the ‘warning’ rules was “if you wear Everton’s colours to the match
you’ll be beaten up on the train”. Options included: “Sandy didn’t wear Everton’s colours to
the match; he wasn’t beaten up on the train” and “Sandy did wear Everton’s colours to the

match; he wasn’t beaten up on the train”.
100)’Brien’s version is slightly unusual in that it has neither abstract nor realistic-thematic

content.

29



A slightly modified non-mathematical, thematic content inference task!! was
given to two mathematical populations, maths students and maths education
students, by Stylianedes, Stylianedes, and Philippou (2004). They only tested
the modus tollens deduction and the denial of the antecedent fallacy. 67% of
maths education students and 76% of maths students successfully identified
the modus tollens deduction as correct. Surprisingly the figures for identifying
the incorrect nature of denying the antecedent were 76% and 60% respectively.
These figures are only moderately higher than for the closest equivalent question
given by Newstead et al. (1997), who found that 60% and 48% respectively cor-
rectly answered the denial of the antecedent and modus tollens questions (with
causal content). Barring the (seemingly inconclusive) differences between the
two groups 1t 1s difficult to see what can be concluded from Stylianedes et al.’s
(2004) work, as they failed to have either a control group of non-mathematicians,
or an isomorphic task with mathematical content.

Although, as discussed here, several mathematics education researchers have
studied logical implication using the inference, truth table and maze tasks, few
have used by far the most famous deductive reasoning instrument: the Wason
Selection Task. The long history and literature surrounding this task forms the

subject of the next chapter.

3.3 Summary of Chapter 3.

¢ Many researchers, philosophers and curriculum bodies have assumed that
studying mathematics develops logical reasoning skills (C. Davis, 1850/1970;
Locke, 1706/1971; Oakley, 1946; QAA, 2002).

e Conditional ‘if...then’ statements form one of the most important parts

of logic.

e Several different models for how conditional statements are understood

have been proposed by researchers from various communities. Many of

these models overlap with one another.

e Several different ‘standard’ tasks has been used to investigate the issue of
how conditional statements are used and understood. The most famous
of these, the Wason Selection Task, is the subject of the next Chapter.

11The rules were “if Costas suffered from pneumonia, he would have high fever” and “if the
car doesn’t have fuel, it will not move”, both would seem to fall into Newstead et al.’s (1997)

‘causal’ category.
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Chapter 4

The Wason Selection Task

and Theories of Reasoning

The Wason Selection Task has been consistently used by reasoning researchers
for the last forty years. Over this time it has influenced the development of
many competing theories of reasoning, and led to the rejection of many oth-
ers. The goal of this chapter is to set out the context in which the task was
introduced, to describe the main empirical findings, and to review the major
theories of reasoning that attempt to account for these findings. It is important
to emphasise, however, that the reasoning theories discussed in this chapter are

not intended to apply only to the selection task, their proponents would claim

far wider domains of applicability.

4.1 The brain-computer metaphor.

Boolean logic was first described in detail by the British mathematician George
Boole in the middle of the nineteenth century. His work is often considered as
forming the basis of logic and computing. But at the time, following Aristotle,
Boole believed that his logical laws were an accurate description of the thought
processes of human beings. The title of his book — ‘An Investigation into the
Laws of Thought’ (Boole, 1854/ 1958) — provides a succinct summary of his
thesis. Although, of course, people sometimes make mistakes in their reasoning,
Boole saw these as an aberration. On the whole, for him, the brain worked
along the same lines as correct Boolean logic.

This view, that the brain was a some kind of logical machine, was widespread
throughout much of the first half of the twentieth century. It was significantly
boosted by the development of the first computers in the post-war years. In 1943
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McCulloch and Pitts managed to prove mathematically that a sufficiently large
network of formal neurons (equivalent to the base logical units of the brain)
formed a Turing machine. That is to say that anything a computer could do,
could, in theory, also be done by a network of neurons, in other words a brain
(McCulloch & Pitts, 1943).

Piaget agreed with Boole, claiming that by the age of twelve children would

have reached the stage of ‘formal operations’ and that their thinking would be

abstract, formal and logical. He wrote:

“reasoning is nothing more than the propositional calculus itself.”
(Inhelder & Piaget, 1958, p.305)

S0, at the beginning of the sixties many cognitive scientists were convinced
that the human brain reasoned along the lines described by Boole; in effect it
was Just a complicated logical machine. It took the work of psychologists such
as Peter Wason to cast doubt upon this claim.

The Selection Task, one of the most widely studied experiments in psycholog-
ical research, was piloted, and then reported, by Wason (1966, 1968). According
to Johnson-Laird (2003), the Selection Task “has launched more investigations
than any other cognitive puzzle”. There have been literally thousands of papers
written using data from various different versions of the task. By necessity then,

the following review can only begin to give a broad overview.

4.2 The task.

Participants in the standard abstract version of the task are shown a selection

of cards each of which have a letter on one side and a number on the other.

The participants can see:

They are given the following instructions:

Here is a rule:
“if a card has a D on one side, then it has a 3 on the other.”

Your task is to select all those cards, but only those cards, which

you would have to turn over in order to discover whether the rule is

true or false.
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selection %

P 33

P, () 46
P, =0) 4
P,Q,~Q 7
others 10

Table 4.1: Wason’s initial results for the rule “if P, then QQ” (Wason & Johnson-
Laird, 1972, p.182).

The correct answer is to pick the D card and the 7 card, but across a wide
range of published literature less than 10% of the general population do. Instead
most choose D and 3 (denoted P, () in Table 4.1).

Wason’s results came as something of a surprise.!

As noted above, Piaget
had claimed that adult humans reason in ways that are abstract, formal and
logical. If this were true, one would expect adults to perform nearly flawlessly

on the Selection Task. Instead the ‘failure’ rate was over 90%. Wason wrote:

“Some of the highly intelligent subjects tested in [my| experiments

took a considerable time before they saw [the answer| was correct,
and a few continued to dispute its correctness. And yet a computer
could readily be programmed to solve the problem, as some sub-

jects have been quick to point out after they had failed to solve it.”
(Wason & Johnson-Laird, 1972, p.173)

Wason was concerned that his results were due to some methodological prob-
lem. To counter this he began to tinker with the details of the task. To demon-
strate that the task was sufficiently simple to be understood by the popula-
tion he was dealing with, he reversed the experiment. Participants were given
the question and the answer, and were asked to explain why the solution was
correct. All twenty participants managed this successfully. From this result
Wason concluded that the task is “deceptive rather than complex” (Wason &
Johnson-Laird, 1972, p.174). Indeed it has since been found that participants
will readily justify any answer given to them by the experimenter: correct or
incorrect (Evans & Over, 1996a).

In another experiment the wording and symbols used in the question was
tweaked. Instead of presenting the rule as “if a card has a D on one side then

it has a 3 on the other”, it was phrased “every card which has a red triangle

1In Wason’s (1968) original experiment, participants (all psychology undergraduates) were
interviewed in person. The instructor pointed to each of the four cards in turn and asked the
participant whether knowing what was on the other side would enable him or her to find out
whether the sentence was true or false. Administering the task on paper rather than verbally
has been found not to affect the results and is now the norm in Selection Task research.
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on one side has a blue circle on the other”. The options were then red triangle,
red circle, blue triangle and blue circle. No change in performance was detected
(Wason, 1969).

Wason and Johnson-Laird (1970) modified the task so that all the informa-
tion was included on one side of the cards, but so that some of it was covered
up by a mask. Again, no improvement in performance was detected.?

Clearly then, Wason’s worries about methodological flaws were unfounded.

His abstract version of the Selection Task has been found to be highly robust.

4.3 Accepted results from the Selection Task.

The Selection Task is controversial, as some interpret the finding that partic-
ipants fail to find the logically correct answer as being an attack on human
rationality (see §4.5). Over the years, however, there have been several stable
hindings that are not in dispute, and in this section four of the most important

are described.

4.3.1 Matching bias.

First noted by Evans and Lynch (1973), matching bias is the tendency to select
cards that are mentioned in the rule, regardless of the presence of negatives. So
with a rule “if P then (Q”, participants tend to select P and (. However, if the
rule is “if P then —()” they also tend to select P and (), which is in this case the
correct answer. Evans and Lynch found, for example, that 61% of respondents
answered correctly on the rule “S = —9”° compared to only 13% on the rule
“S = 9”. Extraordinarily, the standard mistake, that of selecting P and (), was
made by nobody when confronted by a S = —9 rule.

Evans, Clibbens, and Rood (1995) used three different types of rule, together
with rotated negatives: “if P, then (7, “P only if Q7 and “Q if P”. All three
showed significant matching bias effects. Evans et al. also found that instructing
participants to verify or falsify the rule does not appear to reduce the eflect of
matching bias, and that the eflect is more pronounced on abstract versions
of the task (as opposed to thematic versions, see §4.3.2). Evans, Ellis, and

Newstead (1996) found that varying the instruction type does not limit the

2Curiously, this experiment appears to have anticipated and dealt with Durand-Guerrier’s
(1996) later criticism. Durand-Guerrier argued that the reason why participants perform
poorly on the task is that dealing with “hidden sides” complicates the logic involved. However,
as we have seen, Wason and Johnson-Laird (1970) showed that placing all the information on
one side does not improve performance.

3The implication symbol here is used to save space, in fact Evans and Lynch used the rule
“if there is an ‘S’ on one side of the card then there will be a ‘9’ on the other”. A similar
convention is adopted throughout this thesis.
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effect of matching bias. Both instructing participants to verify the rule and to
falsify the rule results in significant matching bias effects.

The logical structure of the rule used in the task appears to be important
In determining whether matching bias is an important effect or not. Ormerod,
Manktelow, and Jones (1993) found that matching bias was present on rules
such as “P only if Q7 and “@Q if P”. Roberts (2002) compared the effect be-
tween conditional rules (“if P then @)”) and disjunctive rules (“P or Q”), both
with rotated negatives. He found that although, in line with Evans’s work, the
conditional rules resulted in a large matching bias effect, the disjunctive rule
appeared to produce a reverse matching bias effect. Roberts concluded that
matching bias is not always generalisable beyond conditionals and that existing
theories do not account for it.

Evans (1998b) noted that not all the existing theories of conditional rea-
soning can begin to offer an explanation of matching bias. As we shall see,
pragmatic reasoning schemas (§4.4.3) and social contract theory (§4.4.5) do not
even attempt to offer an explanation for Evans and Lynch’s (1973) findings in
their abstract contexts. In short, matching bias is an extremely robust finding
when applied to abstract conditionals, and many theories have trouble explain-

Ing 1t.

4.3.2 The thematic effect.

Wason and Shapiro (1971) found that performance on the Selection Task could
be improved by phrasing the task using thematic materials. Instead of using
an abstract rule that refers to letters and numbers, Wason and Shapiro used
the rule “every time I travel to Manchester I travel by train”, with the cards
‘Manchester’, ‘Leeds’, ‘train’ and ‘car’. On this task 10 out of 16 participants
selected the correct answer: Manchester and car. A similar result was found
by Johnson-Laird, Legrenzi, and Legrénzi (1972), who asked participants- to
pretend they were postal workers and gave them rules such as “a letter is sealed
only if it has a 5d stamp on it”. This rule elicited a correct response rate ot
81%.

The naive assumption in the 1970s was that any thematic materials im-
proved performance. However, later studies threw doubt upon this belief when
they failed to find such an effect despite using identical materials to Wason and
Shapiro (e.g. Griggs & Cox, 1982; Manktelow & Evans, 1979). It has since
become clear that only certain types of materials robustly facilitate: in par-
ticular it seems that only rules which are deontic (those which convey rules,
permissions, duties or obligations) produce higher success rates. Conversely,

indicative rules (those which merely describe the world) seem not to facilitate
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Rule: “If a person is drinking alcohol then they must
be aged 18 or over.”

You may check how old people are and what they are
drinking. Which people in the bar would you need
to check? There is a beer drinker, a coke drinker, a
14 year-old and a 22 year-old.

Figure 4.1: The drinking age version of the task.

performance.

The first robust finding of thematic facilitation came from Griggs and Cox
(1982) and is shown in Figure 4.1. They found that many more people answered
correctly on this version (= 70%) than on the original abstract task. Griggs and
Cox also looked at a transportation problem but found little facilitation. They
concluded that when the rule was not familiar to the subjects it did not improve
performance.*

Since Griggs and Cox (1982), thematic effects have been observed in many
studies. However, as we shall see, the precise nature of the thematic content re-

quired for facilitation, and the reason why it occurs, remains highly controversial
(see §4.4.3-4.4.5).

4.3.3 The training/education non-effect.

Cheng, Holyoak, Nisbett, and Oliver (1986) compared the performance of their
participants on the task before and after six different types of training, including
a full term’s course in logic. Intriguingly, they found that only two of their
training types made a difference: training in abstract logic coupled with explicit
examples of selection problems, and training in the nature of obligations and the
procedures needed to check whether violations of these obligations had taken
place. The full term’s course in logic had no significant effect upon performance.

In another experiment, the Selection Task was given to two groups of par-
ticipants, those with Bachelor degrees and those with doctorates (from four
different subject areas). No difference in performance was found between the
two groups (Jackson & Griggs, 1988).

Of particular interest for the current study is the subject areas used by Jack-

son and Griggs. Twenty participants were mathematicians (10 with bachelor

1The large effect found by Wason and Shapiro (1971) can perhaps be put down to a small
sample size. Interestingly, the rule used by Johnson-Laird et al. (1972) was actually a postal
regulation in Britain prior to 1968. Griggs and Cox, therefore, argue that the effect was down
to the familiarity with the rule rather than the thematic materials.
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degrees and 10 with doctorates). On this very small sample, they found that
o participants with bachelors and 7 participants with doctorates found the cor-
rect answer, significantly higher percentages than those found in other subject
areas. There was no significant difference between the two levels of education
for mathematicians. As the difference between mathematics and other subjects
wasn’t their research question, Jackson and Griggs failed to follow up on this
finding, merely commenting that it is “probable that mathematics subjects are
more familiar with the material conditional and the other rules in propositional
logic” (p.329). -

The lack of an education effect was questioned somewhat by Stanovich and
West (2000) who found that there is a correlation between performance on the
abstract Selection Task and SAT scores. They claimed that this showed that
performance on the Selection Task was linked with ‘cognitive abilities’. On an
abstract prOblem, they found that those who found the correct answer (12%
of their sample) had an average SAT score of 1159, compared to an average
SAT score of 1098 for those answering incorrectly. This difference is significant
(p < 0.05) and gives a surprisingly large effect size (d = 0.558) (Stanovich &
West, 1998, p.210). Others, however, have noted that SAT scores are not a
particularly good indicator of cognitive ability, and that a correlation is not
surprising since SAT's often contain similar reasoning tasks (Sternberg, 2000).

Although no research has set out to look at the differences in performance
on the Selection Task between mathematicians and non-mathematicians, there
have been several studies that did just this for scientists. None has found that
they periorm significantly better than the general population on an abstract
version of the task (Kern, Mirels, & Hinshaw, 1983; Griggs & Randell, 1986).

Other researchers have investigated whether exposure to thematic versions of
the Selection Task can facilitate performance on the abstract version. Very little
transfer between the task types has been found (Evans et al., 1996; Johnson-
Laird et al., 1972; Wason & Shapiro, 1971). However, it has been found that
giving participants feedback regarding their answers can improve performance.
Klaczynski, Gelfand, and Reese (1989) found that explaining the task to partic-
ipants improved performance on the abstract version. Intriguingly, explaining

the task to participants appeared to actually decrease their performance on

thematic versions.

4.3.4 Changes in the wording of the task.

There is some evidence that performance on thematic versions of the Selection
Task can be affected considerably by small changes on the wording of the task.
For example, Griggs and Cox (1982) found that when participants were given

37



thematic materials and were asked to pick the cards that might be “violating
the rule” — as opposed to picking the cards that would help determine “where
the rule is true or false” — performance increased. Interestingly, the same change
in wording on the abstract task had no effect (Manktelow, 1999). Jackson and
Griggs (1990) had similar findings. On thematic versions of the task, instruc-
tions to pick out violators facilitated performance when compared to “true or
false” instructions. However, the same was not the case on abstract versions of
the task. As mentioned above, Wason (1969) found that changing the rule on
the abstract task from “if a card has a D on one side then it has a 3 on the

other side” to “every card with a D on one side has a 3 on the other” had no

effect on performance.

4.3.5 Summary of §4.3.

Although there are many highly controversial results from Selection Task re-
search, several robust findings stand out. Any theory that attempts to account

for people’s performance on the task must provide an account for these findings.

e On the standard task typically less than 10% of the well educated popu-

lation select the normatively correct answer.

e Matching bias — the tendency for people to select the cards mentioned in
the rule, regardless of the normatively correct answer — is a widespread

phenomena on the Selection Task.

e The thematic effect: participants tend to select the normatively correct
answer in significantly higher numbers when the task is phrased in realistic

contexts, with thematic content.

e The training/education non-effect: there appears to be no correlation be-
tween level of education and performance on the Selection Task. However,
it has been found that there is a correlation between solving the task cor-

rectly and achieving high SAT's scores.

In the next section seven theoretical frameworks that try to account for these

results are discussed.

4.4 Theories of reasoning.

There have been many theories proposed to explain the Selection Task. Most
have been discredited since they were first proposed. However, there are several
that still attract supporters. In this section the most important theories are

described, in rough chronological order. It is important to note that all of these
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theories are attempts to explain general reasoning, they do not simply apply to
the Selection Task. However, since the task has become so ubiquitous in the
literature the review particularly concentrates on explaining how each theory

accounts for the surprising results the task has uncovered.

4.4.1 Mental models theory.

Mental models theory (e.g. Johnson-Laird & Byrne, 1991; Johnson-Laird, 2001)
proposes that instead of following logical rules during reasoning, people con-
struct models in their minds which they modify and reason from. When a new

situation is encountered, the reasoner goes through three stages:

e They look at the premises (“world knowledge”) and create a mental model

of the possible situation they find themselves in.

e They form a non-trivial conclusion that is based upon the premises of

their model.

e They look for counterexamples to their model and conclusion. If they

cannot find any, then they accept the conclusion.

To explain the different models reasoners may construct, Johnson-Laird and
Byrne (1991) use the so-called ‘mental models notation’. In this notation, each
line represents a different modelled case, and each item is represented in a
column. The absence of an item simply means that it does not feature in
that particular model. For example, the statement “there is A and B” would

probably be modelled as:

A B

Whereas the statement “there is A, or there is B” might be represented with

two alternative models:

A
B

To represent that an item has been exhaustively modelled, Johnson-Laird and
Byrne’s (1991) use square brackets. Thus, a model of “either there is A or there
is B, but not both” might be initially modelled:

4]
|B]

But since B is exhaustively represented in the second model, the first model

could be “Heshed out” to become:
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4] [-B]

and similarly for the second model.

Johnson-Laird and Byrne (1991) explain that the rule “if P then Q” can
result in several different models, and that, in the Selection Task, participants
will consider selecting “only those cards that are explicitly represented in their
models of the rule” (p.79). They explain that this is a consequence of the

so-called principle of truth, a fundamental assumption of the mental models

theory:

“Individuals minimize the load on working memory by tending to

construct mental models that represent explicitly only what is true,
and not what is false.” (Johnson-Laird, 1999, p.116).

S0, from cards explicitly represented in the model, only the cards that have a
hidden value which might effect the truth/falsity of the rule will be selected.®

S0, for example, the rule “if P then Q” often results in this model:

Pl @

Here the “...” represents a model with no explicit content. Note that this
model is, in the terminology adopted in §3.1.9, a version of T1. The mental
models theory argues that the material model of the conditional is correct, and
that the problems with it discussed earlier can be explained away by which
aspects of the reasoner’s model have been ‘fleshed out’ (Over, 2004).

As a consequence of the model above, the reasoner considers the P and @
cards, but picks only the P card. The majority of participants who interpret the

rule as a biconditional form the following model, and pick the P and () cards:

Pl Q]

The =) card will only be picked if the reasoner has fleshed out their original

model sufficiently so as to represent it explicitly:
Pl @
—Q

Since P is represented exhaustively in the first model, it is tacit that the situa-

tion must be:

Pl @Q

°This explanation is an adaptation of the no/partial /complete insight explanation detailed
by Wason and Johnson-Laird (1970).
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Thus, the mental model theory attributes poor performance on the task
to the rarity of participants fleshing out their model of the implication. The
frequency of the P and @ selection can be explained by the large proportion of
participants who initially model “if P then Q” as the bi-conditional “P if and
only if @”. Exactly why so many people misinterpret the conditional like this
1s left unexplained.

Mental models theory accounts for the matching bias effect by suggesting

that when a negated sentence is involved in the rule the model is expanded to in-

clude the non-negated sentence. So, for example, P = —(Q might be represented
by:

Pl —Q
Q

Here the second model is incomplete, meaning that the reasoner is thinking
about the situation that @ is true, but is not considering whether P or —P is
true in this case. Thus, by some creative application of the theory, the matching
bias effect can be accounted for. However, the mental models theory has been
criticised by Evans and Over (1996a) for its inability to parsimoniously explain
biases.

As a consequence of their theory Johnson-Laird and Byrne made several
predictions of facilitative changes that could be made to the Selection Task.
The most striking was that changing the rule to an “only if” structure should
improve performance, as it has a different typical initial representation. However
it doesn’t. Instead, both Evans et al. (1996) and Evans, Legrenzi, and Girotto
(1999) found that it increased the frequency of =P and @ selections, and slightly
depressed performance overall. The theory has also been criticised for not being
specific about how reasoners translate “world knowledge” into mental models.

It should be noted that mental models theory has been applied to a vast
array of reasoning tasks, not just the Selection Task. In general it accounts for

most of the effects reported on these tasks successfully.

4.4.2 Mental logic (mental rules) theory.

An alternative to Johnson-Laird and Byrne’s (1991) mental models theory is
the mental logic theory® (e.g. Rips, 1989, 1994) which claims that there is an

inbuilt logical system that guides human’s reasoning. He explained that

“a person faced with a task involving deduction attempts to carry

it out through a series of steps that take him or her from an initial

6The mental logic theory is also sometimes referred to as ‘natural deduction theory’, ‘in-
ference rule theory’ or ‘mental rules theory’.
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Given that:

It the letter is a K then the number is a 7.

The number is not a 7.
Therefore?

T . —

Figure 4.2: A standard modus tollens inference task.

description of the problem to its solution. These intermediate steps
are licensed by mental inference rules, such as modus ponens, whose

output people find intuitively obvious.” (Rips, 1994, p.x)

50, a person constructs a sort of mental proof and then verifies it. That many
people answer non-normatively to reasoning tasks is because they are not flaw-
less at their proof construction.

Rips developed this theory using the “knights and knaves” puzzle.” He ar-
gued that the logical system was formed of abstract inference rules and schemas
that are used across all domains, for all reasoning problems. Evidence for this
theory came from qualitative ‘think aloud’ interviews that Rips conducted with
participants on knights and knaves tasks.® By constructing a computer model
of the supposed natural deduction system, he was able to accurately predict
how long participants would take to solve problems based upon how many steps
his computer program required.

The mental logic theory argues that the modus ponens rule is universal — it is
one of the rules that can be applied directly. Modus tollens, however, requires a
complicated argument to justify it. For example, consider a standard inference
task such as that shown in Figure 4.2. Here, according to the theory, the
question can only be answered by using a complicated contradiction argument
as follows: “Suppose the letter is a K. It follows (by modus ponens) that the
number is a 7. The number is not a 7 (by assumption). Therefore the letter
cannot be a K.” Naturally, the success rate at completing this argument is lower
than for the straight forward modus ponens question. _

Rips (1994) explained data from the Selection Task by pointing out that his
theory suggests people should only pick the P card. As there is no conclusion to

test, only forward rules can be used to solve the task. In particular, he claimed,

"This puzzle, beloved of recreational mathematics books, involves an island populated
solely by knights and knaves. Knights always tell the truth, and knaves always lie. A vast
array of problems such as the following can be posed: “We have three inhabitants, A, B, and
C, each of whom is a knight or a knave. Two people are said to be of the same type if they
are both knights or both knaves. A and B make the following statements: A: ‘B is a knave’.
B: ‘A and C are of the same type.” What is C?” (Rips, 1989, p.86).

8Interestingly, Rips is one of the few psychologists to have used a clinical interview method-
ology in the area of logical reasoning (see also Stenning & van Lambalgen, 2001).
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only the fundamental ‘if-elimination’ rule is used, and only with reference to
the P card. The modal selection, that of the P and Q cards, is explained in
Rips’ scheme by suggesting people who answer this read the “if P then Q” rule
as a biconditional. In this respect, the theory is similar to the mental models

account. Indeed Oaksford and Chater (1995b) have argued that the two theories

are, on a fundamental level, the same.

However there are problems with the mental logic account. Evans et al.
(1995), for example, noted that because of the structure of the natural deduc-
tion system, mental logic theory suggests that participants in the Selection Task
should make the mistakes of denying the antecedent and of affirming the con-
sequent in roughly the same frequency. This does not happen. Participants
afhrm the consequent (select the 3 card) much more frequently than they deny
the antecedent (select the K).

Chao and Cheng (2000) argued against the mental logic theory by showing
that, for young children, modus tollens and modus ponens inferences were much
more likely to be made on a permission based thematic task than on the abstract
version. They used this result to argue that pragmatic rules (see §4.4.3) develop
before generalised logical rules. This finding would appear to contradict Rips’

claim that his natural deduction system is innate.

4.4.3 Pragmatic reasoning schemas theory.

According to the pragmatic reasoning schemas theory (Cheng et al., 1986),
rather than reason according to logic rules, individuals use pragmatic reasoning
schemas: abstract structures of knowledge derived from day-to-day life experi-
ences. Examples of important experiences that give rise to prominent schemas
would be permissions, obligations and causations.

Cheng and Holyoak (1989) propose four rules that they claim participants
have as part of a conditional permission pragmatic reasoning schema that may

be used when tackling a thematic version of the Selection Task, such as the

drinking age problem:
1. If the action is to be taken, then the precondition must be satisfied.
2. If the action is not to be taken, then the precondition need not be satisfied.

3. If the precondition is satisfied, then the action may be taken.

4. If the precondition is not satisfied, the the action must not be taken.
(Cheng & Holyoak, 1989, p.287)

They note that this conditional permission schema maps successfully onto

the material conditional, but write:

43



“When an ‘if-then’ statement evokes a schema that does not map
onto the material conditional, or when no schema is evoked at all,
then performance will be less likely to conform to the specification
of formal logic.” (Cheng & Holyoak, 1989, p.287)

Thus the reason why participants fare so poorly on the traditional abstract ver-
sion of the task is that they do not evoke a pragmatic reasoning schema; the
question 1s simply too far removed from their everyday lives. Conversely, how-
ever, if the task involves a permission or obligation conditional then performance
will be facilitated. One of the predictions of the theory, that as long as partici-
pants have had experience of permission and obligation rules, performance will
be facilitated, was tested by Chao and Cheng (2000) (mentioned above). They
found that young children, who have had experience with these rules had their
performance facilitated.

Another important prediction of the theory is that facilitation should result
from permission and obligation rules rather than just from cost-benefit rules
(see §4.4.5). Cheng and Holyoak (1989) tested this prediction by using so-called
precautionary rules of the form “If one is to engage in hazardous activity P, then
one must have protection (). Despite having no obvious cost-benefit structure,
these rules resulted in significant facilitation.

Despite this finding, Cosmides (1989) and Gigerenzer and Hug (1992) both
é,rgue the opposite case, that cost-benefit (or deontic) materials are necessary
for facilitation. For proponents of this idea, precautionary rules are a special
form of a more general cost-benefit rule structure (Fiddick, Cosmides, & Tooby,
2000). This so-called social contract theory will be described in more detail in
84.4.5. _

The other two main criticisms that are levelled against the pragmatic rea-
soning schemas theory can also be deployed against all domain specific theories
(including social contract theory, §4.4.5). Firstly, by concentrating entirely on
the context the task is set in, the theory cannot hope to be a complete account
of reasoning. When the task is given in an abstract context, reasoning is still
going on, but no domain specific theory can explain it. Furthermore, no such
theory can account for matching bias in an abstract context. Given the dra-
matic level of facilitation that results from rotating the negatives in the rule,
this is a serious omission for any theory that attempts to explain the Selection
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