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Abstract 

This research interprets and develops the 'conformal model of space' in a way 

appropriate for a graphics developer interested in the design of interactive 

software for exploring 2-dimensional non-Euclidean spaces. 

The conformal model of space extends the standard projective model - instead 

of adding just one extra dimension to standard Euclidean space, a second one is 

added that results in a Minkowski space similar to that of relativistic spacetime. 
Also, standard matrix algebra is replaced by geometric (i. e. Clifford) algebra. 

The key advantage of the conformal model is that both Euclidean and non- 
Euclidean spaces are accommodated within it. Transformations in conformal 

space are generated by bivectors which are special elements of the geometric 
algebra. These induce geometric transformations in the embedded non- 
Euclidean spaces. However, the relationship between the bivector generated 
transformations of the Minkowski modelling space and the geometric 
transformations they induce is extremely obscure. 

This thesis provides new analytical tools for determining the nature of this 

relationship. Their derivation was motivated by the need to successfully solve 
key implementation problems relating to navigation and in-scene mouse 
interaction. 

The analytic approaches developed not only successfully solved these problems 
but pointed the way to implementing other unplanned features. These include 

facilities for dynamically altering on-screen geometry as well as using multiple 

viewports to allow the user to interact with the same objects embedded in 

different geometries. These new analytical approaches could be powerful tools 
for solving future and as yet unforeseen implementation problems. 
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Introduction 

The classical homogeneous model of space 

Existing computer packages for exploring aspects of geometry tend to use a 

standard matrix-based approach to computer graphics. Generally, they are 

therefore limited to standard linear projective space. This research is motivated 
by growing research into the 'conformal model of space' which enables non- 

Euclidean geometries to be represented on screen. The model uses geometric 

algebra rather than matrix algebra. 

The standard matrix-based approach effectively adds an extra dimension to a 
base space. The use of 4D matrices to implement 3D graphics is a well 

established technique. Theoretically, the way that the 3D space is modelled in 

4D means that 3D non-linear maps such as translations and perspective 

scalings are 'linearised' in the 4D model. Equally, any linear map in the 4D 

'homogeneous' model has its possibly non-linear 'real world! equivalent map in 

the 3D base space. The relationship between 'canonical' linear transformations 
in the 4D 'homogeneous' model and actual transformations in the 3D base 

space are generally well understood. 

The conformal model of space 

In contrast, the conformal model of space adds two extra dimensions to the 
base space to turn it into a Minkowski space similar to that of relativistic 

spacetime. The geometric algebra associated with this Minkowski space 

provides the transformations, loosely corresponding to the way that matrix 

algebra provides the transformations for the standard model. The key 

advantage of the conformal model is that both Euclidean and non-Euclidean 

spaces are accommodated within it, again rather in the way that the standard 
4D homogeneous model accommodates the Euclidean geometry of standard 3D 

space. How this is achieved is explored in Chapter 1. 
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A disadvantage of the conformal model is that the relationship between 

transformations of the higher dimensional Minkowski modelling space and 

their equivalent geometric transformations induced in the various embedded 
Euclidean and non-Euclidean geometries is extremely obscure. The second half 

of this thesis develops new tools for analysing this relationship and uses them 

to solve various implementation problems. 

Geometric algebra 

Geometric algebra seems to be the new name for Clifford algebra. In the 1870's 

the English mathematician William Kingdon Clifford (1845-1879) translated 
Hermann Grassmann's work on linear algebra for English speaking audiences. 
As well, he developed his own abstract 'Clifford algebra! and applied it to the 

study of geometry. Currently, this algebra has important applications in many 

aspects of theoretical physics including cosmology and quantum theory. 

Geometric or Clifford algebra has the ability to unify apparently disparate 

topics in a geometric-oriented way. That is its strength in physics, and is a 
feature when used in a computational context. For example, classical complex 
numbers, quarternions and the 'motor algebra! used in robotics are all Clifford 

algebras. Clifford algebras are also beginning to play a role in new approaches 
to computer visualisation, signal processing and quantum computing. 

A Clifford algebra is built up from a vector space by introducing an extra 
'geometric' or Clifford product into the vector space. This gives rise to new 
'abstract' elements which extend the original vector space, similar to the way 
that the imaginary number i extends the real numbers. Generally, the extra 
added elements are more numerous and are 'graded' into grade 2 elements 
(bivectors), grade 3 elements (trivectors) and so on. Standard vectors are grade 
I and scalars are grade zero. Differently graded elements can be additively 
combined to form so called multivectors, rather in the way that real and 
imaginary numbers can be added to form complex numbers. 
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From the geometric product it is possible to derive two further products, the 

inner or 'dot' and outer or 'wedge' product. For vectors, the former is loosely 

analogous to the familiar dot product and yields a real number result. It is used 

to determine the 'signature' of a vector - the sign of its square, formed from the 

dot product. Vectors may have negative, positive or zero signature - 
interpreting the dot product geometrically can therefore be problematic. 

The other derived product, the wedge product, when applied to a series of 

vectors (grade I elements), effectively represents the linear subspace spanned 
by them. Such a product is called a 'blade', as opposed to the wedge product 
formed from more generic multivectors. 

The base-vectors of the original vector space may be of any signature and the 

number of positive, negative and zero signature base-vectors uniquely 
determine the associated Clifford algebra. This gives rise to a succinct notation 
to describe a Clifford algebra: CI(p, q, r) means the Clifford algebra built on a 

vector space of dimension p+q+r with p base-vectors having positive 

signature, q having negative signature and r with zero signature. In this 

notation, trailing zero values may be omitted, for example Cl(p, q) = CI(p, q, O) 

and CI(p) = CI(p, 0,0). 

The quarternions are the even sub-algebra of the Clifford algebra CI(3). (Tbe 

even sub-algebra is the subset of elements of even grade. ) The 'motor algebra' 

of robotics is the 'degenerate' even sub-algebra of CI(3,0,1), degenerate because 

one of the base-vectors has zero signature. The complex numbers are the even 

sub-algebra of CI(2). 

Appendix D contains a further informal review of other key geometric algebra 

concepts used in this research. 
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The role of the null cone in the conformal model 

The Conformal Model uses CI(n+1,1) to model standard n-dimensional space, 

which is denoted by R. The extra two dimensions added to the original 

standard n-dimensional vector space have opposite signature. The resulting 

space, with its n+1 positive-signature base-vectors and a single negative- 

signature base-vector is known as a Minkowski space. Following the same 
indexing convention as that used for Clifford algebras, it is denoted W+1,1. The 

Clifford algebra CI(n+1,1) of the conformal. model extends the Minkowski 

space W+1-1. 

A Minkowski space has a'cone'of zero-signature vectors. This'null cone'plays 

a key role in the conformal model - points in any of the embedded geometries 

are represented by vectors lying on this null cone. 

Transformations in the conformal model 

As indicated, canonical transformations in the Minkowski modelling space are 

achieved using the extended geometric algebra. In fact, the geometric product 
is used in a 2-sided 'sandwich! transformation using either a positive signature 

grade- I vector s as follows 

x 
-> sxs-l 

or the exponential of a grade-2 bivector B 

B12X -B/2. X -> ee (0.2) 

The first is loosely analogous to a reflection, the second to a rotation, though 

any analogy is fraught with difficulties, as the thesis will demonstrate. 

Canonical transformations like these, implemented in the higher dimensional 

Minkowski space of the conformal model, induce transformations in the 
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embedded non-Euclidean geometries. As indicated, finding tools to analyse the 

relation between these turned out to be the main thrust of this research. 

The research falls naturally into two halves. The first 4 chapters interpret the 

model, explore interactive design ideas, develop software tools for validation 

and identify key implementation challenges. These turned out to be the 
implementation of non-Euclidean navigation controls, centralised mouse- 
dragging and viewport transformations. 

To implement navigation controls, a new computational approach was 
developed in Chapter 5 that utilised. retained mode graphics and extended the 

notion of quarternions. This was used to implement navigation controls in 2D 

geometries, using CI(2+1,1), as well as in 3D geometries, using CI(3+1,1). 

The remaining chapters consider the problems of centralised mouse dragging 

and viewport transformations. The new analytic tools that are developed are 
based on the notion of pencils (families) of circles. Remarkably, the resulting 

analysis has yet more historical resonance, linking the work of Poncelet (1788- 

1867 ) to the null or light cone of relativistic spacetime. 

The nature of the Induced non-Euclidean geometry 

Finally, it should be pointed out that the use of the conformal model forces a 

certain interpretation of non-Euclidean geometry where non-Euclidean points 
are still points, but non-Euclidean lines may be lines or arcs of circles. The 

non-Euclidean line (i. e. line or arc) of shortest distance been two points is 
known as a d-line or geodesic. 

The conformal model embeds a non-Euclidean geometry in two senses. For 

example, in the case of spherical geometry, the 4D Minkowski space contains a 
3D sphere. However, the model also contains the means of stereographically 

projecting the surface of the sphere onto a flat screen. This projection is 

conformal - it preserves angles and therefore circles map to circles, and arcs to 
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arcs. In other words non-Euclidean lines and angles are preserved. Thus what 

appears on the screen is a stereographic projection of a sphere's surface - the 

screen shows a flat 'model' of spherical space. In the same way, for hyperbolic 

space, what is seen on the screen is a flat 'model' -a stereographic projection of 

a 'Minkowski' sphere of negative unit radius. This is none other than the 

familiar Poincard disc in which non-Euclidean geodesic lines always meet the 

circular horizon orthogonally. 

In these conformal models (i. e. stereographic projections) of non-Euclidean 

spaces, the fundamental transformation is inversion/reflection in a non- 

Euclidean line (i. e. line or arc). Rotations, translations and dilations can be 

constructed by combining an even number of inversions. 'Me conformal model 

of space seems to lead naturally to viewing non-Euclidean geometries as being 

essentially inversive geometries. This is very different from the way that 

notions of non-Euclidean geometry arose historically. 

In the higher dimensional Minkowski space, in so called 'conformal space', the 

vector generated 'reflection' expressed by the map 0.1 above induces an 
inversion in any embedded non-Euclidean geometry. The bivector generated 
transformation 0.2 above may induce a translation, rotation or dilation. It may 

even generate more exotic transformations. The thesis concentrates on bivector 

generated transformation. 

Summary 

This thesis provides new analytical tools for determining the nature of non- 
Euclidean geometric transformations induced by bivector generated 

transformations in conformal space. Their derivation was motivated by the 

need to successfully solve key implementation problems. It is felt that the 

analytic approach developed will be a powerful tool for solving future and as 

yet unforeseen implementation problems. 
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1 Picturing the Conformal Model of Space 

1.1 Introduction 

The conformal model of space requires at least four dimensions. To picture it 

in our 3D space means adopting dimension reducing conventions. A possible 

approach is described here based loosely on a selective synthesis and recasting 

of ideas expressed in various sources but particularly in [1], [2], [3] and [4]. 

The conformal model of space extends the standard projective model - instead 

of adding just one extra dimension to standard n-dimensional Euclidean space, 

a second one is added that results in a Minkowski space similar to that of 

relativistic spacetime. As if that were not radical enough, standard matrix 

algebra is replaced by geometric (i. e. Clifford) algebra. 

The journal IEEE Computer Graphics and Applications has recently carried 
articles on geometric algebra by Stephen Mann and Leo Dorst where the model 
is referred to as the 'double homogeneous model' [5]. Daniel Fontijne and Leo 
Dorst have also reported comparative ray-tracing bench-mark tests based on 
the standard projective and conformal models [6]. Elsewhere, Eckhard Hitzer 
has described the development of an interactive 3D sketching package based on 
the model [7]. 

In the classical model of projective space, 'climbing in and out' of the extra 
fourth dimension is through the maps 

(X, Y, Z) ---> (X, Y, Z, 1) 
(X'2Y', z', U/) --)- (X'/%/, Y'/W'9z'/W) 

Unfortunately the various ways to explain or visualise these established 
transfon, nations do not extend easily to the conformal model, though 

perspective projection does play a role. 
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The way that the extra two dimensions are added to project points into the 

higher dimensional Minkowski space can seem bizarre, especially when 

considered purely algebraically. Fortunately, there are a number of ways to 

view this'dimension climbine, and the model as a whole, geometrically. 

One way into the conformal model is to utilise the fact that it echoes familiar 

ideas associated with classical conic sections. In essence, the model provides 

representations of Euclidean, spherical and hyperbolic space as sections of the 

null cone of a Minkowski space, see figure 1.1 (A brief introduction to 

Minkowski space will be given later. ) 

hyperbolic space H" 

Euclidean space F; r 

..: ...... . .... ........... . spherical space S' 
R_ 

Figure 1.1 Euclidean and non-Euclidean spaces 

depicted as sections of the null cone. 

However, the picture can be misleading since the three dimensions available to 

us for visualisation are usually insufficient, and such pictures attempt to 

visualise Minkowski space in a 2D drawing-space that is essentially Euclidean. 

Despite this, visualisation can provide a feel for how the model works - it is a 

question of interpretation. 

The idea (and the original significance of the name 'conformal model') seems to 

have emerged from spacetime physics that predates the re-emergence of 

Clifford algebra. The latter gives it its power, yet can get in the way of 

understanding the geometry. This was one motivation for presenting the ideas 

visually. The other was to reconcile and make sense of current geometric 

algebra based literature. 

Euclidean space Fr 

........... spherical space S' 



9 

To illustrate the computational side of the model, a short example shows how 

the same 5-step core algorithm can be used to generate grids of circles in the 

various models of non-Euclidean space. To implement it, all that is needed is 

software to handle vector dot products and to draw circles. 

However, the subsequent example needs a very basic 'Clifford processor' or 

geometric algebra 'engine'. The one developed will generate the Cayley table 
(i. e. multiplication table) for the geometric algebra of any signature and handle 

all the key associated products. It also includes simple routines for drawing 

arcs and circles. It is described in chapter 3 and is used in both examples. 

1.2 Visualising spherical space 

One way to describe the conformal model makes use of stereographic 

projections between flat and spherical space. This dictates the starting point - 
the standard model of n-dimensional spherical space, the unit sphere 

x r= R"' I X2 =1 
) 

The 'dot' or inner product x-x= x2 is constructed in the ambient space R"". 

Our drawing-space is sufficient to faithfully represent the sphere S2, the circle 
S' and the two-point 'circle' So embedded respectively in their ambient spaces 
W, Rý and R1, see figure 1.2. 

/c/. 
S2 e R' Sl ER 2 So ER' 

Figure 1.2 Spheres of 2,1 and zero dimension depicted 

in their respective ambient spaces. 
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Because of symmetry, the same drawings can represent S' in IV" for any n. In 

particular figure 1.3 shows three depictions of S2 in its ambient space W 

P, P2 

Ap 

s2 R3 S2 GR3 S2 G R3 

Figure 1.3 A2 dimensional sphere and its ambient space 
depicted In 31), 2D and 1D drawing space. 

Only the first picture is a one-to-one representation. In relation to the second, 

and using the Earth as an analogy, the single point P on the circle represents all 

the points on the earth-sphere S2 with the same longitude (for example P1, P2 

and P3)- In other words, the position of P on the drawn plane conveys 

information about longitude but says nothing about latitude. In a similar way 

the single point Q in the third one-dimensional depiction of S2 represents all 

the points on the right half of the earth-sphere. The other point represents the 

other hemisphere. 

The second and third drawings in figure 1.3 'claw back' drawing dimensions 

but at the price of lost information. However, this lost information can be 

conceptualised and re-introduced locally in interesting dynamic ways. 

For example, figure 1.4 shows a 'control lever' attached locally to point P for 

setting the missing latitude angle read off against the attached 'protractor'. 

Dragging point P around the circle sets the longitude and also drags the lever 

and protractor with it so that they remain attached to P. Rotating the end of the 

lever sets the latitude. 
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IZZ: 

s2 ER 3 S2 ER 3 s2 CE R3 

Figure 1.4 A2 -sphere depicted in 3,2 and 1D drawing space. 
To compensate for lost information, the point P in the 
2D drawing space has a'latitude lever attached. 
The point Q in the 1D drawing space has a 'joystick! 

attached to set both latitude and longitude. 

Each point P on the circle has its own potential latitude-lever for selecting the 

value of missing information caused by the loss of a global dimension - the 

lever locally represents the missing dimension. Put another way, although the 

picture depicts P as being a zero-dimensional point, it is actually I 

dimensional. In the same way, point Q is actually 2 dimensional and its 

equivalent embedded 'control lever' would be a 'joy stick' capable of setting 
both latitude and longitude for the selected hemisphere, see figure 1.4. 

Dimension saving techniques like these allow S' in Rý+' to be depicted as a 

circle on a plane, allowing one extra dimension for depicting the added 
Minkowski dimension. However, each point on the drawn 2D circle 

representation of Sn represents an n-I dimensional hemisphere, or semicircle 

when n7-2. The situation is similar with points not on the circle. For example, 
a single point P, drawn inside the 2D circle representing Sn' which is at a 
distance r<l from the centre of the circle, could represent actual points Pit P23. 
P3 in el which are at the same distance r from the origin. In the case n=2, 
these points would lie on a semicircle with the same longitude angle as P. 
Similar comments would apply to a point Q drawn outside the 2D circle 
representing S', see figure 1.5. 
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so 

P, 
02 -S, n 

Figure 1.5 Points inside and outside an n-sphere depicted 

in 3D and 2D dravving space. 

The process of turning the 3D picture into 2D can be viewed as follows: if the 

3D drawing space is thought of as consisting of lines through the centre, then 

the 2D representation is obtained by rotating each line in a vertical plane so 
that it becomes horizontal. This 'fanning out' of the rays so they all become flat 

effectively removes the vertical dimension, but does so in a way that preserves 

the distance of a point from the centre. The process is of course very different 

from standard parallel projection. 

1.3 Visuallsing Minkowski space 

Minkowski space is closely associated with Einstehfs Special Theory of 
Relativity which combines 3D Euclidean space with time into a four 

dimensional 'spacetime' of 'events'. Two observers moving at different speeds 

relative to each other do not necessarily produce identical measurements for the 

same event, though the measurements are related through the Lorentz 

transformation. However, when measuring the speed of a photon, different 

observers will always produce the same value for the speed of light c- the 

speed of light is the same for all observers. 

If a photon of light is observed to be emitted at time 0 from the origin then after 
time t its observed position (xyz) is related to t by 

x2+. V2 +Z2 = C2t2 . 
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Traditionally, units of space and time are chosen so that c has unit value, in 

which case the relationship becomes 

x2 +y2 +Z2 _t2 = (). 

There are a number of ways of viewing this equation. In one sense, it 

represents the expanding wave front of photons emitted from the origin at the 

same time. On the other hand, if the spacetime of the observer is given co- 

ordinates (x, y, z, it), where i=-, F- T, then this equation states that the modulus 

of the 4D vector representing the path of the photon is null - the time co- 

ordinate is made imaginary for this interpretation to work. 

The null vectors representing radiating photons emitted from the origin at the 

same time form a cone in the observer's sPacetime known as the null cone or 
light cone. By restricting motion to the plane Rý, this can be visually depicted, 

see figure 1.6. 

wave front photon null cons 

t im 
ti 

e 

R2 
_:, 

41 

I--, 
' 

::: 
ý R2 

Figure 1.6 Null cone asthe locus of awavefrontof light. 

Minkowski space bypasses the need for an imaginary time co-ordinate by the 

simple expedient of decreeing that the extra time dimension has negative 

signature, i. e. that spacetime has an orthogonal bases {ej, e2, e3, e4) where ei 2 

= e2 2= e3 2= +1 and e42 = -1. These values are used in the calculation of dot 

products. To reflect the signatures of the basis set, this interpretation of 

spacetime is denoted by W, l. Other approaches to spacetime use Rl 3. 



14 

1.4 Lifting Sn onto the null cone of the Minkowskl space W 41" 

The Minkowski space el" can be constructed by augmenting an orthonormal 
basis set of Rý+' with an extra unit vector e of negative signature (e2 = -1) 

orthogonal to each of the basis vectors W". By linearity, this extra 

'Minkowski' base vector will be normal to any vector x constructed in IV+', i. e. 

x. e=O. 

The null cone N' of W+"' is the set of null vectors 

N"=Ixc=R"', ' IX2 = 01, 

see figure 1.7a. 

null cone h scalin 

a 
A 

h/(h. 9) 

T, ý //7 /(h. e) -9 

(a) (b) 

Figure 1.7 (a) A vector x on an n-sphere Sn (depicted as a circle on 
R" drawn as a plane). The vector x=x+e is its 

lifting onto the set Nne (depicted as a circle on the null 
cone). 

(b) A vector h on the null cone. The scaled vector -h/(h. e) 
lies on the'cirde' Nne. Subtracting e drops the vector 
onto the 'circle' S". 

Any point x in S" can then be mapped or 'lifted' onto the null cone Nn by the 

mapping 

i: x -). x+e=x. 
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The mapping is shown in figure 1.7a. That the result x lies on the null cone is 

easily verified since 

x2= (X + e) 
2= 

x2+2x. e+e2= 1 +0-1 =O. 

If x is a point on the null cone obtained in this way then 

x. e= (x+e) e= x. e+e 
2 

=0-1 =-1. 

Thus j maps S' ER! '-+' into the set 

N,. R =IxE R"'*' I X2 =0, 

Here bold typeface is used for vectors in S' and for the special Minkowski base 

vector e. Nonnal typeface is used for all other 'Minkowski vectors', i. e. those 

with a non-zero e component. 

The set N, " provides a representation of the spherical space S" in the conformal 

model. In a certain sense the representation is projective since any vector h on 

the null cone which does not lie in Na can be scaled so that it does. The scaling 

transformation is 

h -ý -h/(h. e). 

The result lies in N. ' since 

(-h/(h. e)). e=-(h. e)/(h. e)=-l . 

Figure 1.7b shows this scaling diagrammatically. 
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This 'null cone scaling' is highly significant. Figure 1.1 at the beginning of the 

chapter hints at the fact that other spaces embedded in el, l could also be 

mapped to the null cone. Thus, by using suitable null cone scaling, a single 

projective vector on the null cone could represent a different vector in each of 

these spaces. Or, a vector in one of these spaces could be mapped to the null 

cone, then scaled so that it represented another vector in another space, thus 

providing mappings between spaces. In particular, stereographic projections 
between spaces of various types, or their models, can be represented as simple 

scalings of the null cone in conformal space. This theme will be returned to in 

section 1.7. 

The dot product in conformal space can be used to create expressions for the 

metrics in the base space. Identical conformal points have zero dot product, 

reflecting the fact that the distance between them in the base space is zero. In 

the present case, the dot product of two different conformal null vectors 

representing points in S2 reducesto, 

X. Y=(x+e)-ý+e)=x-y- I =cos(o)- I, 

where 0 is the spherical distance between x and y. Thus the dot product formed 

on vectors in conformal space encodes the spherical distance between the 

points in the base space. 

1.5 The conformal representation of circles In S2 

Vectors in conformal space that do not lie on the null cone can also be 

significant. For example, if c is a point on S2, then the conformal vector 

s= c+ke O<k<l 

represents a circle in S2 centred at the point c, see figure 1.8. 
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Figure 1.8 A spherical circle with centre c on the sphere S2 and 
its representation as a vector s in conformal space. 

Points of the circle are represented in confort-nal space by null vectors x which 
are also 'perpendicular' to the given vector s, i. e. that satisfy 

x- s=O. 

If Xe S2 is the vector corresponding to xe W", then the condition translates 

as 

X. s=O 

(X + e) - (C + ke) =0 

x- c+e. c+kx. e+ke- e=O 

x-c+0+O-k=O 

x. c=k. 

Thus the vectors x in S2 form a circle with centre c where k is the component of 

x in the direction c. If k is close to 0, this component is small implying that the 

x vectors are nearly perpendicular to c, so the circle is nearly a great circle. In 

the extreme, when k=0, the circle is a great circle. On the other hand, if k is 

approximately 1, the x vectors are close to c and so define a small circle that 
becomes a single point as k approaches 1. 
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(a) (b) (c) 

Figure 11.9 Controlling (a) the longitude, (b)thesize 

and (c) the latitude of a spherical circle. 

The effect on the circle of altering the conformal vector s in the Minkowski 

space is depicted in figure 1-9: 

(a) Rotating the conformal point c about the vertical axis, or equivalently 
its projection c onto the W plane, changes the longitude of the centre 

of the circle. 
(b) Moving the conformal point s vertically changes the value of k and 

therefore the size of the circle. 
(c) Rotating the 'latitude-lever' attached to s changes the latitude of the 

circle. 

The single conformal vector s encodes information about the spherical circle - 
the scalar k is the Minkowski component and is directly related to the radius of 

the spherical circle. The remaining part c exists in spherical space and is the 

centre of the circle. 

In fact, vectors in the Minkowski space W, ' perpendicular to s (i. e. that satisfy 

the condition x-s= 0) constitute a 3D hyperplane perpendicular to s. Thus the 

actual circle can also be represented in conformal space by the intersection of 

this hyperplane with the null cone. If the circle is a great circle, its 

representative vector s is perpendicular to e, so the alternative representation, 

the hyperplane perpendicular to s, contains e. However, this is best approached 

through the algebra of blades where, in W-1, the hyperplane is seen as being the 

dual of the vectors. 
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All this is illustrative of a common feature of the model - single entities in 

conformal space, or its associated geometric algebra, can often encode complex 

geometric entities in the base space, often in such a way that algebraic 

operations are geometrically meaningful. Also, there are sometimes significant 
dual representations with interesting interactions, for example a circle can be 

represented conformally by either a vector or its dual, a trivector blade, see 

section 1.13. This thesis uses mainly the former representation. 

1.6 Stereographic projection of spherical space Sn to Euclidean space Rn 

Angle preserving stereographic projections play a key role in the conformal 

model. 

Figure 1.10 Stereographic projection of the northem hemisphere 

onto the equatorial plane using the south pole as the 

point of projection. 

Figure 1.10a shows a spherical circle and triangle being projected via the south 

pole to the equatorial plane. Since both shapes are in the northern hemisphere, 

their projections lie inside the equatorial circle. Points in the southern 
hemisphere would project outside the circle and, as a point approached the 

south pole, its projection would lie progressively further from the centre. In this 

sense, the south pole could be thought of as representing infinity. 

Figure 1.10b shows the shortest path between two spherical points P, and P2 

which is a segment of the great circle through them. The latter meets the 

equator at diametrically opposed antipodal points, so the shortest path between 

the projection Q, and Q2 on the plane lies on a circle that also meets the 
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equator at antipodal points. The assumption here is that geodesics map to 

geodesics. 

The interior of the equatorial circle can therefore provide a flat, potentially 

screen-based model of the north hemisphere of spherical space that is 

sometimes referred to as the 'hemisphere' model. The way that triangles and 

circles appear on this disc or 2D 'ball' is what the eye would see if it were 
looking at the shapes from the south pole, assuming they were painted on a 

transparent globe. Straight lines in this disc model would correspond to the 

circles that passed through the south pole. Unless they were also great circles, 

their straight-line projections onto the disc would not represent shortest path 

routes. On this flat model of spherical space, the shortest distance between two 

points would only be a straight line if the points lay on the same diameter. 

1.7 The projection of Rn onto the null cone of the Minkowski space Rn+1.1 

The reverse of the stereographic projection provides a way of embedding R7 

onto the null cone of el-1 by first projecting it onto S'. The process can be 

pictured provided that a dimension is freed up to allow for the representation of 
the Minkowski dimension. 

Stereographic 
R3 projection R2 

from R2 to S2 

S2 R2 

drawn drawn 
in 3D in2D 

Figure 1.11 Stereographic projection of R2 to S2 
depicted in 3D and 2D drawing space. 
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For example, figure 1.11 shows the stereographic projection from Rý to S2 

depicted in both 3D and 2D. As before, the projected point Q in the second 

picture represents all points with the same longitude angle (e. g. Q1, Q29 Q3)- 

Equally, the point P represents the points in Rý that map into the points 

represented by Q. As the latter lie on a great circle, the former lie on a circle 

that meets the unit circle in Rý at antipodal points. The convention used here to 

regain a drawing dimension is therefore different from that used in figure 1.5. 

However, this does not undermine the intentions of the pictures. 

As stated, the reverse stereographic projection of W to S" can be used to 

project R7 onto the null cone. Generalising the drawing conventions above to 

higher dimensions, the process is depicted in figure 1.12. 

project Rn to Sn 
stereographically 

lift Sn onto 
the null cone 

Figure 1.12 Projecting Euclidean space Rn onto the 

n+m null cone of the Minkowski space R 

/ R" 

scale on 
the null cone 

The last step of null cone scaling is necessary to ensure the representation 'has 

an appropriate metric' in the sense of wanting dot products formed in 

conformal space to represent the standard Euclidean metric in the base space in 

a simple way. 

The mapping can be represented algebraically through dot products. 
Suppose xe Rý is mapped to ve S' via the polar projection point a, see figure 
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a 

Rn 

Figure 1.13 Stereographic projection of a spherical point 

v in Sn to a Euclidean point x in Rn using the 

spherical point a as the point of projection. 

Then for some scalar k#0, 

v= a+k(x-a). 

Squaring and utilising the fact that v2 = a2 =I and x-a=0 

v2 =a2+ 2ka - (x - a) + k2(x 2- 2x -a+a 
2) 

I=I- 2k + O(x2 + 

k= 2/(x2 + 1). 

Hence 
V= {(x 2_ I)a + 2x) /(x 2+ 1). 

This is lifted onto the null cone by adding e to get 

{(x2 
- I)a + 2x)/(x2 + 1) + e. 

Scaling by (x2 + 1) finally produces the mapping 

x -> x= (x2 
- 1)a + 2x + (x2 + 1)e. 

The dot product of two confortnal vectors scaled in this way is then given by 
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XPX2 

` RX 1) * AX2) 

= *1 2_ I)a + 2xi + (X12 + 1)e) - 
((X2 2_I )a + 2X2 + (X2 2+ I)e) 

-2(xi _ X2)2 since a2 = 1, e2 = -1 and xi -a= xi -e=0. 

Thus the chosen null cone scaling not only simplifies the final mapping by 

removing denominators, it ensures that the resulting conformal dot product 

produces a result closely linked to the Euclidean metric in the base space. 

It is easily verified that all conformal vectors x produced in this way satisfy the 

relation 

x. (e+a)=-2. 

Thus any vector h on the null cone can be scaled or nonnalised to the 
Euclidean representation by the mapping 

-2h/(h - n), where n=e+a. 

The conformal vector n lies on the null cone and represents the Euclidean point 

at infinity. This can be shown informally by considering the map 

f: x -+ (x2 
- I)a + 2x + (x2 + I)e. 

As x2 becomes very large, the coefficients of a and e dominate and approach 
each other, leaving a result that approximates to a large scalar multiple of a+e. 
The result follows since a+e=n and the representation is homogeneous. On 
the other hand, f(O) =e-a, so the origin is represented conformally by the null 
vector e-a, see figure 1.14. 
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R""' 

conformal model 
of R' 

or/ point at 
conlonnal /'0 

origin 
n : 

ýý 
infinity 

4 0, 

R 

Figure 1.14 Conformal model of R" showing vectors 

representing the origin and the point at infinity. 

The vectors e+a and e-a can be derived from a and -a by lifting the latter 

from S' onto the null cone. In Sn, a is the point of projection between Rý and S' 

so is naturally associated with the point at infinity. Similarly, -a is the point 

of Sn that is associated with the origin of R7, see figure 1.14. 

If the conformal models of R7 and Sn are viewed as intersections of the null 

cone with the hyperplanes x-e= -1 and x-n= -2, then the null scone scaling 

corresponding to the stereographic projection of S2 to W has the appearance of 
being a rotation of the intersecting hyperplane, see figure 1.15. 

p3 

stereogra hic projection 
of S' to R? 

[R 21 

Rý' 

IS21 

a 
ýVn TFO. 

a 

null cone scaling 
representation of the 
stereograihic projection 
of S2 to R 

IS21 

, 

V, 

ýna'S2' 

Figure 1.15 Stereographic projection between S2 and R2 
depicted as a scaling on the null cone. 
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Figure 1.15 also shows that the orientations of the hyperplanes relative to the 

vector defining them appear to be inconsistent. In the picture, the hyperplane 

defined by x-e= -1 is perpendicular to e, whereas the hyperplane x-n= -2 is 

parallel to n. This is the price paid for attempting to draw Minkowski space in 

a Euclidean drawing space. 

1.8 The conformal representation of circles In R 

The representations of the two spaces S' and Rý is substantially determined by 

the vectors e and n=e+a respectively. These vectors also play a detennining 

role in the representation of circles in the two respective spaces. As discussed, 

circles in S2 are represented by vectors of the form 

s=c+ ke. 

It is convenient to write this in the fonn 

s =c-e + ke 

s =c-(l -k)e 
s =c-re where k= I -r2. 

If s is perpendicular to e, i. e. the hyperplane perpendicular to s contains e, then 
the circle is a geodesic great circle. 

Similarly, circles in R7 are represented by vectors of the form 

s=c- rn. 

The verification is similar to that for the spherical space, though the algebra is 

more complicated. Assuming the conformal point x lies on the hyperplane 

perpendicular to the vector s that conformally defines the circle, then 

x. s=O 
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=* x- (c - r2n) = 

«x2 - 1)a + 2x + (x 2+ 1)e) - 

((c 2_ I)a + 2c + (c 2+ 1)e - r2(a + e)) = 

=: «x2 
- 1)a + 2x + (x 2+ 1)e) * 

((e -I- r2)a + 2c + (c 2+ I- r2)e )=0. 

The multiplication table for the vectors in this product is 

x c 

x2 x. c 

X. C c2 

0 0 
0 0 

Applying the table gives 

4x. c+(x 
2- 1)(c 2 

-1 - r2) - (x 2+ 1)(c 2 +1 - r2)=O, 

which reduces to (x - cý = r2, defining a circle with centre c and radius r. 

If s is perpendicular to n, the hyperplane perpendicular to s contains n, so the 

6circle' represented by s contains the point at infinity and is therefore a 

geodesic straight line. If not, the (Euclidean) radius can be extracted from s 

with the formula 

r2 =s 
2/(S 

- n)2 . 

This is readily verified using the multiplication table above. 
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1.9 Computational example 

The following example is an illustration of how the conformal model can work 
in practice. It entails drawing spherical circles of equal specified spherical 

radius about a series of points on the screen. Assuming that the screen is 

depicting the hemisphere model of spherical space, the expectation is that the 

circles should appear larger and more off-centre toward the equatorial circle. 

We start with a row of equally spaced screen points and stereographically 

project them onto spherical space S2, see figure 1.1 6a. Around each point in S2 

we construct a small spherical circle of spherical radius r (figure l6b). These 

circles are then stereographically projected back onto the screen (figure 16c). 

The aim is to draw the row of final circles on the screen, noting that they will 

no longer be of the same size nor centred round the original points. We 

therefore need to calculate the actual centre and radius of each final circle 

given the original start point p and the spherical radius r. This is shown in 

figure 1.16d where the stereographic projection of p is denoted by q. 

e 
'iý 

C-i 

Ile 
il 

(C) 
Figure 1.16 Constructing a row of spherical circles in the hemisphere model of 

sphefical space by 

(a) projecting points in R2 onto S2, 

(b) construcUng equal radius circles around the projected points , 
(c) projecting the circles back onto R2. 
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The calculation proceeds as follows: 

Project the Euclidean point p onto the null cone to get 

p= (p2 - I)a + 2p +&+ 1)e, step 1. 

Because q in S2 is obtained from p in Rý by stereographic projection, the 

conformal vector representing q is obtained by the null cone scaling of p 

q= -p/(p - e) , step Z 

Since q is the spherical centre of a spherical circle of spherical radius r it 

is represented by the conformal vector 

step 3. 

This confonnal vector also represents the projected Euclidean circle. Its 

Euclidean radius p can be extracted using 

2=S2 /(S - n) 
2, 

step 

The conformal representation of its Euclidean centre is then given by 

C= S+P 
2n, 

step 

This follows from the fact that the spherical circle and its inverse 

stereographic projection have the same conformal representation in 

conformal space, hence s is also given by 

S= C_P2 n. 
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The actual Euclidean centre c can then be extracted from c by null cone scaling 

by a factor of -2n then ignoring a and e components. (Geometric algebra 

provides a more elegant approach using 'projection' operators. ) 

Figure 1.17a shows the result of repeatedly applying this calculation to a 

regular grid rather than to a row of points. The point of projection is taken to be 

the 3D point (0,0, -I). The Euclidean horizontal and vertical distance between 

the grid points is 0.2 and the spherical radius of all circles is 0.1. Circles nearer 

the north pole appear smaller as they are further from the eye point. The 

Euclidean centres of the circles are not shown but their position can be easily 
judged. The points that are shown represent the spherical centres of the circles. 
The discrepancy between them is more pronounced for circles nearer the 

equator that are more steeply inclined. 

000000 
000 000 
0 (2) 0 (D 00 

000 (Doo 
000 000 
00 010 G* 

Figure 1.17 Spherical and hyperbolic circles of equal radius 
constructed around points that form a square 
grid when viewed as Euclidean points. 

The projection of the spherical circles onto the plane faithfully reproduces the 
intersection properties among them. As evident from the planar projection, the 

circles do not overlap equally on the sphere even though they are of the same 

spherical radius. This is simply because the spherical centres, which are the 

projections of the original planar points onto the sphere, are not equally spaced 

on the sphere. 
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This computational example is chosen to highlight certain points: geometric 

entities such as points and circles have generic representations in Minkowski 

space which, in a sense, are free of any metric properties, other than the 
intrinsic dot product. By performing certain operations that entail either e or n, 

these entities can be given metric properties related to Sn or Rý respectively. In 

the case of points, the operation is the appropriate null cone scaling, using 

either e or n, followed by the operation that maps the scaled conformal point 
back into Sn or W. In the case of a conformal vector s representing a circle, it 

can be constructed from the centre and radius in either Euclidean or spherical 

space. 

As another possible interpretation an internet-based metaphor springs to mind. 
A Minkowski 'server' delivers geometric information that the local clients 
interpret according to their own local geometry by providing the missing 'key' 

of either e or n. Also, a geometry-specific client can post data on the server 
that can be interpreted by other clients with possibly different geometries. 
Posting data to the Minkowski server effectively removes (or generalises) the 
local geometry. 

Another way to look at this is related to how projective planes can be 

constructed from projective space modelled as 3D vectors radiating from a 

point. The choice of a plane determines a planar realisation, see figure 1.18. 

projective space projective planes 

Figure 1.18 Projective planes as intersections of projective Space. 

In a similar way, the choice and application of either e or n to determine a 

section of the null cone provides a relative geometry -a view of how generic 
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geometric entities in Minkowski space would appear for 'spherical' and 

'Euclidean' observers respectively. 

The fact that local geometry is determined by a single vector in the Minkowski 

space has powerful computational consequences. With this in mind, we will 
identify a single vector that can detennine a hyperbolic space and then apply 

simple substitutions to the above computational example to generate a flat 

image of a grid of hyperbolic circles - this will be the Poincard disc model. 
We will then apply the same ideas to quickly generate a grid of hyperbolic 

circles in the half-space model. 

1.10 Embedding hyperbolic space onto the null cone of Minkowski space 

The standard model of hyperbolic space is the surface H' of a unit 'sphere' of 

negative radius in Minkowski space. This surface is asymptotic to the null cone 
and appears as two hyperboloids, see figure 1.19a. 

R"1 

(a) 

R", ' Rn*l-i 

'\, A Hn 7 /A 
Rn 

R"I 

(b) 

Figure 1.19 Projecting hyperbolic space H" onto the 
n, n+i null cone of the Minkowski space R 

Figure 1.19b shows H' in a drawing space of one less dimension. The 

dimension reducing convention being used here differs from the previous two 

and is based on axial symmetry. As before, the extra available drawing 

dimension is used in figure 1.19c to depict the null cone of 

As figure 1.19 suggests, H' can be embedded on the null cone using a unit 
Euclidean vector a perpendicular to W-1 via the map 
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x =x-a. 

The vector x is null since 

(x - a)2 = X2 -2a. x+a 
2 

=-1 -o+ 1 =O. 

Most results obtained for S' carry over to H', but in this case the key vector 
defining the geometry is a rather than e. For example, if the conformal model 

of H" is viewed as a 'planar' section of the null cone of Rý`-% the intersecting 

hyperplane has equation x-a= -I and the model is described by 

N'. '= (x 
E R"'l" 1 X2 = 0, x. a = -1 

1. 

This isvalidsincex. a=(x-a). a=x. a-a 2=0_I= -1. Normalisation of a 

conformal vector h is achieved through the null cone scaling -h/(h - a) rather 

than by -h/(h - e). Similarly, a hyperbolic circle with hyperbolic centre c and 

hyperbolic radius r is defined by the conformal vector s=c- r2a. In general, 

results for the spherical case carry over to the hyperbolic case by simply 
interchanging e with a. 

1.11 Stereographic projection of H 2to R2 : The Poincar6 disc 

The stereographic projection of H2 to Rý is the Minkowski equivalent of the 

stereographic projection of S2 to Rý. The projection is via the Minkowski 

vector -e rather than the Euclidean vector -a, see figure 1.20. 
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p2l 3.1 

R 

Figure 1.20 The stereographic projection of H2 to 
depicted as a scaling on the null cone. 

Projecting H' to IV through -e provides a 'flat' model of hyperbolic space 
known as the 'conformal ball model', a generalisation of the Poincar6 disc. 

If the original computational example is repeated with a replacing e in steps 2 

and 3, a picture of the equal-radius hyperbolic circles appear on the Poincard 

disc, see figure 1.17b. The fact that the circles are of equal hyperbolic radius 

gives some idea of how the metric changes on the Poincard disc - as the 

bounding 'horizon' circle is approached, the circles shrink indefinitely as they 

"recede into the distance'. On H2 the circles are moving up the hyperboloid 

asymptotically toward the null cone. 

1.12 The half-space model of H 

The half-space model can be obtained by stereographic projections from H2 to 

Rý to S2 then back to Rý using different points of projection, see figure 1.21. 

projection of H2 to R2 projection of R2 to S2 projection of S2 to R2 

Figure 1.21 The three projections used in the construction 

of the half-space model of hyperbolic space. 
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Each successive projection is represented respectively by the null-cone scaling 

depicted in figure 1.22. 

standard representation of R2 alternate representation of R2 
(used for Poincare Disc model of 1-12) (used for half-space model of 1-12) 

2 

_7[R L-I 

p3 

a 

projection of H2 to R2 

FF 

Figure 1.22 The three projections used in the construction of the half-space 

model of hyperbolic space depicted as null cone scalings. 

The null cone section representing the W plane of the half-space model is 

derived from a stereographic projection of S2 using the vector b= (0,1,0,0). 

The standard null cone representation of W is derived in a similar way using 
the vector a. The vectors a and b relate to the way that W is assumed to be 

embedded in W. Each defines a different null cone scaling to a different 

representation of W. 

if the original computational example is repeated with b now replacing e in 

steps 2 and 3, a picture of the equal-radius hyperbolic circles appears on the 
half-space model, see figure 1.23. In the figure the range of the original point 

grid has been changed so that they are within the unit circle and have positive 

second co-ordinate. 

projection of RI to S' projection of S2 to R2 
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Figure 1.23 The half-space model of hyperbolic space showing circles of 

equal hyperbolic radius constructed around points that form 

a regular grid when viewed as Euclidean points. 

in the half-space model, the metric changes so that the circles of equal 

hyperbolic radius appear smaller as they move down toward the horizontal 

'horizon'. 

1.13 Blades and the wedge or external product. 

The idea that a formula derived for Euclidean geometry, and which therefore 

entails n, can be adapted for other geometries by simply swapping n seems 
both powerful and pervasive. This final section shows the idea being used to 
draw triangles in four different geometries. The geodesic sides of the triangles 

are arcs of circles represented by blades rather than vectors. 

A blade is the wedge product of one or more vectors and it represents the linear 

subspaces spanned by them. The grade of the blade corresponds to the number 

of vectors in the wedge product so that, for example, if V19 V2 and V3 are 

vectors, vj- v2 is a grade-2 bivector and vj, v2 - v3 is a grade-3 trivector, and so 

on. Generally, every grade-2 blade is a bivector, but not every bivector can be 

factored into the wedge product of 2 vectors. The latter is particularly true in 

higher dimension spaces. The same applies to grade-3 blades and so on. 

In our conformal model a circle through p, q and r is represented by the 
intersection of the blade p,, q-r with the null cone. In particular, if x and y are 
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Euclidean points in W, then the blade x,, y-n contains n, the point at infinity, 

and therefore the 'circle' is a geodesic straight line. In the same way, if x and y 

are points in S2, then the blade x-y-e contains e and so represents a geodesic 

great circle. This vector swapping extends to models of hyperbolic space; the 

blade x,, y,, a represents a geodesic in the Poincard disc model, and x-y-b 

represents one in the half-space model. 

It is thus possible to easily draw triangles in any of the spaces by joining the 

points in pairs with geodesic arcs. However, formulae are needed for extracting 

the Euclidean centre c and radius r from the blade representation L of an arc. 
Geometric algebra provides two generic formulae, [4, p363-364], 

r2 =- 0/(L,, n)2 and c= LnL. 

The implied product here is the 'geometric' product. Since Euclidean 

information is being extracted from the blade (for drawing purposes), the 
forniulae entail n as expected. 

Figure 1.24 shows a triangle drawn in four different spaces. The calculation of 
the Euclidean triangle entails creating blades x-y-n, y-z,, n and z,, x-n and 

extracting Euclidean drawing data from each. For the remaining images, the 

process is then repeated with n replaced respectively by e, a and b. 
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Eudidean triangle spherical triangle 
(hemisphere model) 

ýZý17-7 7---- 

hyperbolic triangle 
(Poincar6 disc model) 

hyperbolic triangle 
(half-space model) 

Figure 1.24 Euclidean and non-Euclidean Wangles. 

Though incomplete in its explanation, this example does again show how the 

underlying approach of swapping geometry-defining vectors still applies. 

1.14 Conclusion 

This chapter has shown that the conformal model can be adequately explained 

and visualised without recourse to geometric algebra - the dot product being 

used was applied to vectors only, there being no other 'external' elements. This 

was possible because points and circles were represented solely by vectors. 

However, the last section introduced the alternate trivector blade representation 

of circles, since it provides the most efficient way to derive a circle through 
three specified points. The blade exists in the 'external' geometric algebra, 
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though the 3D hyper-plane it represents does not. In the blade interpretation, 

the circle is the collection of points where the 3D hyper-plane meets the null 

cone. The dimension reducing techniques developed here are simply not suited 

for visualising this intersection. 

This chapter also successfully reconciled two profoundly different viewpoints 

about the relationship between the geometries embedded in the conformal 

model. That of Hongbo, Li et at [11, [2] and [3] is primarily focused on 

stereographic projection, whereas that of Doran and Lasenby [4] is more 
focused toward null cone scaling. This reconciliation was tested with the half- 

space model of hyperbolic space. The description given by Hongbo Li et at, 

which is entirely in terms of stereographic projection, was successfully 

reinterpreted and implemented as a series of null cone scalings. 

By deriving a 5-step implementation algorithm, the chapter successfully started 

the process of turning 'theory into practice'. The algorithm constructed a non- 

Euclidean circle of a given non-Euclidean radius around a specified screen 

point. The challenge in constructing the algorithm lay in the fact that its start 

and end point, of necessity, needed to be Euclidean. The original point was 

specified in screen/viewport co-ordinates and, in order to draw the final circle, 

its centre and radius needed to be specified in the same way. The software 

developed for producing the screen shots of this chapter is discussed in 

chapters 3 and 4. 

This chapter lays the foundation for much of the later work in the way that it 

provides a visualisation of the conformal representation of circles, especially in 

relation to the null cone. This concentration on the conformal vector 

representation of circles takes the work in new directions as described in 

chapters 6 to 9. 

The chapter also represents a start to the consideration of implementation 
issues. It highlights the fact that for most non-Euclidean interactive graphic 

processes, the starting and ending geometry will always be Euclidean. For 
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example, a new mouse co-ordinate may give rise to a repositioned circle which, 

in order to be drawn, needs to have its screen centre and radius re-calculated. 

Algorithms entail first projecting out of the starting Euclidean geometry of the 

screen onto the null cone of conformal space. Once there, various operations 

may take place. The final step is invariably projection from the null cone back 

to the screen, but before doing so, null cone scaling may be necessary to ensure 
that Euclidean geometry is the end product. 
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2 Visions of Interaction 

2.1 Introduction 

This chapter describes interactive ideas that emerged when examining how 

concepts associated with transformations could be communicated. The 

examples given show the variety and nature of the interaction and do not 

represent a coherent curricular programme in any way. 
Emergent design principles and influences are discussed at the end of the 

chapter. 

A central aim was to build a Java 'package' (i. e. a class library) which would 
hide complexity allowing experimental scenes to be built quickly and easily 

using basic Java. The examples in this chapter are implemented as applets on a 

web page with two including the source code used to generate them. 

The accompanying CD contains. the example web pages discussed in this 

chapter, together with other example web pages. It also contains the Java 

source code for the package, which is called transformax. 

2.2 Controlling turtles and sprites 

An appropriate place to start the description of the environment seems to be 

with a classical dart-shaped 'turtle'. However, in this case it is driven by a 
small console or 'controller' rather than by a sequence of commands which 
form part of a wider programming language, see figure 2.1. 
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controls 

Figure 2.1 Applet showing paths traced out by different sets of locus 

points attached to five turfles driven by one turtle controller. 

In the figure, the controller is driving all live turtles each with ditlCrent sets of' 

'locus points' attached. Though each locus point is associated with a particular 

turtle, it can be dragged relative to that turtle to reposition it. The l'ourth turtle 

has been enlarged and the fifth has been flipped about its axis by clicking on 

the 'reflector' positioned on its axis. It therellore turns lelt \Nhcn the right-turn 
button is pressed, and vice versa, thus tracing out a reflected path. 

The 'turtle' controller, which rotates an ob 
. 
lect left or right, can be applied to 

any scene object. The same applies to a 'sprite' controller that moves its target 

olýjects left or right rather than rotate them. A third 'perspective' controller 

'leans' an object into the third dimension. Figure 2.2 shows a web page 

activity based on these. 
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!ý reset 

($0 O0 
0 

spñte Non. Jota. 

ý Jll the ftiird controlier to introduce 
: ýt-rspective and drive ttie spnte sorne more 

'lutice that ttiv cornpasb alw, 'ýryb poirrL north 
,- fag the. ron)Paýs around th, 

_1 scon-2 I Jute 
that even if its sh'ape appoars to change, it 

, north -, rivays poiW 
your bý, avrq,; from thr- -i i 

view Jaya source code 

Figure 2.2 Web page: navigating a sprite through a perspective maze. 

The animation is generated by the following Java SOUrce code: 

import. transformax. *; 

public class Applet03 extends GApplet 

public void starto 

I 

scene. add(new Mazeo); 

scene. add(new Compass(-18,8)); 

Sprite sammy = new Sprite(); 

sammy. add(new TrackerPoint-(5)); 

scene. add(sammy); 

Controller sc = new SpriteControllei (3,3, "spr it 

sc. target(sammy); 

panel. add(sc, 0,0); 

Controller tc = new TurtIoCont rol ler 

tc. target(scene); 

panel. add(tc, 100,0); 

Intl oduclnq tt le "pt ite 

sprite around Ervoiding Me maze obsta, -Ips 

U5e the second (untrollet to rotat. tne cýene 
so that noilh no longer points, dir;, rtly up tho 

screen Try (imAng the ýpnte viht,, n the scene 
cornpýetOy upsi de down Avoid the 

, ), Aacleý, ' 

Controller pc = new Perspective-Control 1(ý, 

pc. target(scene); 

panel. add(pc, 200, O); 
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scene. rendero; 

I 

The code builds the scene graph then renders it, so object creation and 

attachment order is unimportant. The class library that defines the behaviour of 
the various new scene objects is made accessible through the import statement 

at the head of the program. 

2.3 In-scene transformers 

'Me three controllers above transform objects (or the whole scene) but they are 

not part of the scene. In contrast, there are transformer objects that can be 

placed in the scene so that, when clicked, they transform a target object. These 

can also be attached directly to the object being transformed so that they move 

with the object. 

For example, the 'translator' is a simple transformer in the shape of an arrow. 
The arrow has drag points at either end - the point at its base drags the arrow as 

a whole while the other is used for reshaping the arrow to change the 

parameters of the translation. 

A translator can also be created without dmg points so that it is fixed in size 

and orientation. A group of such translators can be made to target a single 

object to precisely define its allowed transformations, see figure 2.3. 
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6 reset 
Intt oclucing the tr an,, kitor 

LAI 

demo 

if You cllcý thelf rcý,, anow rlea(j. z; ý 
uoý wlte mil 

move in that dim, tion If you nOht-(IwI,, or ýhift- 
CIICIK thk a[TOVV h0ad it will rnove in the 
opposite directi on 

Try moving the bpTile about If you If), P- it, 
pre3s the rr set button 

When you have got used to using the 
translators, keep pressing the derno button 
until the ýprjte. finishe-5 drawing and the 
, Aevvport goe-s oorhite aqdin 

v try using the translators to trace out tho 
- shape it you go astTay. prebs the resot 

, Tc, n and try again 

Figure 2.3 Web page: path tracing exercise using a multi-translator 

The idea underlying the translator was readily extendible, as depIctcd M tile 

hierarchy of newly developed transformer types depicted in I igure 2.4. 

I-viod'i 
............. .......... ............ ... ............... ... 

ran 
=sfot 

rmner tor transformer 
scene-objects 

-lideReflector FC NldtiTransforrrier . ......... ....... . 

-4 
Mulffranslato, ýr 

MultiReflector J-ý SymmetryTransformer 

Figure 2.4 Transformer and MultiTransformer class hierarchies. 

One of these types, the multi -translator, can be used to create tessellations. For 

example, figure 2.5 shows a tessellation built From a hexagon to which a 6401d 

multi-translator has been attached. The size of its constituent translators are 

chosen to create the star-shaped gaps in tile pattern, and a *trace' option is set 

to ensure old images remain. 



45 

9 reset 

ý) demo 

Introducing the mulli-translator 

', ."ý1, 
-,! 1 ', 'ý II, j(ý, Ij1 4- t ujd -. -ý 0 1ý ýý 11, it, 

tramlator on either hesa(lon, it mll mow. in that 
drpctiori while also stamping its old poý, itv)n 
-)n tht; --iine 

tN making pattwns by lranclating thc, I 
hexagons 

I rj runnimij the cjý., mcj, tliý. -n tta, -e out the 
pattern wan either hexagon Try to -ýcntinue the 
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a, jain 

,I v-f . 
1, r., I .,, 

ij F,,,. "I,. 

Figure 2.5 Web page: tessellation building using the multi-translator- 

A second transformer type, the symmetry transformer, combines rellectors and 

a central rotator into a single entity using an icon sometimes adopted ill 

crystallography. The symmetry ofthe icon reflects the underlying symmetry ol, 

the transformer. To illustrate, the more challenging task slio%An in figure 2.6 is 

implemented by inserting symmetry transtlornicrs at diff'ercnt appropriate levels 

in the scene graph, i. e. the tree-graph that represents the ownership 

organisation of scene objects. 

0 reset 
The symme" transtot met 

i1 11.1- 1; 1, j ý- I bi ý, 
I 

It i sa r. ýd cyrni nulrV it ai rto(t tic, r' at tho 
centre of each square If yý-u (lick on arry of V-, 
lin(,,. the , quare oil r-Il,,, ( I or Tip' ab, kiii that 
line if you click on it ký ned kit irn, nfl the 
square will rotatcý 91) degi ects Try it 

rhere are also extra synirrietry transfolmets 
betteyoen thp squafps Click on tht,, m to work 
out which group of squares each controls 

flow try this Use the syrrinri(mtTy irin,, torrners to 

arrange the sqijare so that the patlern as a 

whole has horizontal and vertical symmetry 

('You can check if it has syrnmetry by cli( Ping 

the horizontal an(j vRrli, at line-, on the ( fritiji 

symmetry transformer It it doti thon flipping 

the pattern stic, uld produce tlýý the S'ime. 

panr-rn. , c) you ýýniildri't , ke j, r,, 

Yiew Jaya source --ode 

Figure 2.6 Web page: puzzle based on the symmetry transformer. 
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2.4 Click and drag tools 

Scene objects can also be made responsive to a range of click and drag tools 

which, when applied, effect all ob . Jects lower in the scene hierarchy. The 

introduction of interactive robotic behaviour out ofcontext can be the basis ot' 

novel activities, see figure 2.7. 

'I reset click tools. tj L; I.. 

li 

Qf drry Ut 001 Idl-k? [; dltýD IIJ bkJtý ltýl 

. -Mý-ct (ffy(-, u tight ot shitt dick i I, iI w1l 
:,,; r. the opposite offect ) 

ij mil 1,66 that thr, mouth rrr)ye,; in thc- 
pl usite wdy to the othof shapeý Th, jl 
hpcause it is an up5id- dc, wn 

uyobrow. painted in red 

Try the other c-lick tOr"' Dfjeý the moutri 
b kit iave diffeiý3nty in oddi k-asd ? 

Try the drag tools - select on, ý then click 
on a shape and dracl the mouse Witle 
the button ic, hi; l, I down 

ff the fare gets too weird, pre,, s the 
re, P. t Nittori I Or bettor -A I I, try to the 

1, put it back loq. Ahýr i.;, wi 

. 
1"Ti J", . "Jo 

Figure 2.7 Web page: using a robot-like structure to 

introduce the transformer toolbar click tools. 

In this case the underlying scene graph structure is depicted in ligurc 2.8. 

Inttodtirinq ttw toolbor 
cirag loois JUL! 

Figure 2.8 Face scene graph. 
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This particular scene is built using a single addo function: 

scene. add(face); 

face. add(eyeL); 
face. add(eyeR); 

eyeL. add(eyeBalll, ); 

eyeR. add(eyeBalIR); 

eyeBallL. add(pupiiL); 

eyeBalIR. add(pupilR); 

eyeL. add(eyeBrowL); 

eyeR. add(eyeBrowR); 

face. add(mouth); 

2.5 The transformation toolbar 

The click and drag tools are labelled in figure 2.9 

horizontal 
& vertical 

translate stretch 

V. 1 11.1 1-11 . 1, , 11 1 11-1 P', reset click toolsý L"j, 11--'. 
4 

VV 

rotate horizontal 
& scale & vertical 

shear 

translate 
in any rotate 

direction & scale 

drag toolsý: ] týýj 

rotate 

/ 

stretch 
scale in any 

direction 

Figure 2.9 The transformer toolbar showing click and drag tools. 

Each click tool is activated by the IcIlt-button and the inverse ctl'cct by tile right 

button. Holding a button down duplicates the action continuousiv. Rotations, 

stretches and shears are done relative to tile origin ofthe object's modelling co- 

ordinates. 
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2.6 Grids and co-ordinates 

If a rectangular or polar grid is attached to an object it partly obscures it. 
Consequently, visible objects have a selection of' background grids and axes 

that can be selectively shown. As these are part of the object, they transform 

when the obýject is transformed and therel'ore show local modelling co- 

ordinates which, in turn, are the basis upon which any furthcr trans format 1 on is 

applied. The net effect is that when an object's grid is shown, trans florniat ions 

are perceived as being totally localised, to such a degree that 31) perception 

may intervene. For example, the sprite and turtle in figure 2.10 have 

undergone different trans formations so that their grids show conflicting 

perspective. 

4. 

WA 

MIMX 2 
axes axes 

- grid grid 
polar grid polar grid 

sprite tu rti e 

Figure 2.10 Sprite and turtle with rectangular and polar grids attached. 

This example was genereted by the source code: 

import transformax. *; 

public class Appletll extends GApplet 

f 

public void starto 

Sprite sl = new Spriteo; 
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scene. add(sl); 

sl. add(new AffineTransformero); 

Turtle s2 - new Turtleo; 

scene. add(s2); 

s2. add(new AffineTransfomero); 

GridSelector gl - new GridSelector(I'sprite"); 

panel. add(gl, 0,0); 

gl. target(sl); 

GridSelector g2 - new GridSelector("turtlell); 

panel. add(g2,100, O); 

g2. target(s2); 

scene. rendero; 

2.7 Local and parental co-ordinates 

To help distinguish between local and parental co-ordinate systems, a clickable 
6math' point can be added to an object which, when clicked, shows the point's 

co-ordinates against the local modelling grid. If clicked again, it does the same 
in the parent frame, right up to viewport co-ordinates. However, the degree of 
backtracking can be set appropriately. 

2.8 Affine transformations and local geometry 

The draggable 'affine transformer' consists of two base vectors with draggable 

end points, see figure 2.10. When an end point is dragged, an incremental 

affinc transformation is applied to the object to which the transformer is 

attached. This transform is therefore also applied to the base vectors which 

consequently update themselves so that the end point that is being dragged 

follows the mouse pointer. Unlike the earlier transformers, the affine 
transformer causes a continuous change, giving that the impression that the 

object (or scene) is being smoothly reshaped. If a grid is on display, the 
impression is that its changing geometry effects everything that is dependent 
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upon it - the local frame describes local geometry. This theme is echoed at a 

lower level by allowing mathematical 'instruments, a protractor, ruler and 

(magnetic) compass to be dragged through the 2D space to gauge local 

geometry. The use of grids (or instruments) and gradual comparative change, 

implemented through mouse dragging, could provide a means of refocusing 

attention from the object to the space in which it exists. 

2.9 Multiple viewports and avatam 

Because the architecture is scene-graph based it supports multiple viewports - 
the same scene can be looked at, and interacted with, from different 

viewpoints. Tbus it is possible to place an avatar in the scene and to view what 
the avatar sees in a separate viewport. Interactivity applies to both viewports 

making it possible to drag the avatar while at the same time seeing what the 

avatar sees. 

2.10 Conclusion 

The experimental system developed here uses a classical scene-graph 

architecture, but in a 2D context. The architecture supports a 'matrices only' 

approach where all calculations are implemented by composing matrices, some 

of which may have been inverted. The significance of this lies in the converse, 

i. e. that once the composition and inversion rules for transformations are 
known, a scene graph architecture can be readily implemented. 

Fortunately, the composition and inversion rules for geometric algebra based 

bivector generated transformations are fairly straightforward which makes the 
building of an equivalent scene-graph based system feasible. However, this 

thesis concentrates instead on exploring the nature of transformations generated 
by bivectors. This is because transformations that seemed straightforward to 

implement with matrices in the Euclidean context proved to be far from 

straightforward when using geometric algebra in a non-Euclidean context. 
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The question arose as to which types of transformations should form the core 

of an equivalent geometric algebra based system. Translations seemed an 

obvious first choice - they would form the basis of any navigation controls and 

would also play a role in mouse dragging. Chapter 5 considers bivector 

generated navigation controls. 

Because the in-scene transformers and multi-transformers described in this 

chapter are major new innovations, it was felt that the transformations at their 

core, rotation about a fixed point and reflection in a line, should also be central 
to any new geometric algebra based system. Reflections are relatively easy to 
implement so are not discussed in this thesis (see introduction). However, this 
is not true of rotations. Chapters 6 to 8 explore the nature of bivector generated 

rotations and dilations since, as these chapters show, these transformations are 

naturally linked. 

The chapter showed how the in-scene transformers could be used to support a 

range of geometric activities, including path tracing, tessellation building and 

puzzles based on rotations and reflections. These innovations resulted from 

using the scene graph architecture. Other ideas resulting from the choice of 

architecture included facilities for attaching locus points and co-ordinate grids 
to objects, and directional compass, ruler and protractor to the scene. In 

addition, multiple viewports (with one possibly showing an avatar view) were 
also made feasible. This was in addition to the potential for the architecture to 

support the construction of robot-like structures. Provided that any new 
geometric algebra based system was scene graph based, most of these ideas 

would carry over quite naturally. 

Finally, the chapter briefly alluded to facilities for an in-scene 'affine 

transformee that continuously transforms the shape of an object (section 2.8). 
If the transformer is attached to the scene, it continuously transforms the 

underlying geometry, giving the appearance of a viewport transformation. The 
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implied relationship between geometry and viewport transformation is 

explored in a non-Euclidean context in chapter 9. 
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3A Simple Clifford Processor 

3.1 Introduction 

This chapter gives a brief account of Java software that was designed to 

generate the main products of a Clifford algebra of any signature. The design 

assumes the base space has a set of base vectors orthogonal in the sense that 

they anti-commute. These are denoted by el, e2, e3, etc. Bases of the higher 

grade spaces are generated from these and denoted by e12, e13, e23, etc. The 

pseudoscalar is denoted by 1. The adopted view of geometric algebra broadly 

follows that of [8] and [9]. 

Various Clifford algebra software systems have been developed. A key issue in 

their design has been the construction of a scripting language in which the user 
'types in the algebra! (the user interface) and the kernel or 'engine' 'does the 

processing'. Final designs reflect the focus (interface versus kernel) as well as 

the programming environment, particularly whether mathematically or 

symbolically oriented, and the degree of support for the construction of a 

scripting language. For these, and other historical reasons, implementations 

vary considerably. Object orientation seems to be a minor issue relevant to 

those implementations based on or aimed at C++. 

One of the earliest systems seems to be 'Clical' (Clifford Calculator), a DOS 

based system with command-line input [101. Josep M Parr and Llorenq RoseI16 
described early developments based on Mathernatica [111. More recently 
'Clifford! and 'GlypW used the symbolic processing language Mable V[ 12,13 ]. 

The system 'Gable' uses Matlab [14,15] and a derivative 'Caigen' generates 
C++ source code [16]. Arvind Raja describes object oriented approaches 
developed directly in C++ [ 17]. 
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Most of the more powerful systems are dimension and/or signature specific to 

various degrees. Partly because of that, this work is a deliberate 'fresh start' 

aimed at handling any dimension and any signature. 

The resulting source code is included in a single class called GA, listed in full 

in appendix B. Extracts discussed in this chapter are listed as appropriate. 

3.2 Computational background 

As indicated, this section cites results drawn from various sources but 

particularly [8, chapters 1 and 2] and [9, chapters 1,2 and 4]. There is no 

attempt to provide algebraic justifications since these invariably depend on the 

adopted axiomatic approach which is not a key issue. 

For any two vectors vj and v2, the geometric, inner (dot) and outer (wedge) 

products are related by 

VIV2 ý VI - V2 + VI" V2 (3.1) 

Using the fact that the dot product is commutative and the wedge product anti- 

commutative, this is equivalent to describing the dot and wedge products as 

Vl- V2 = 1/2(VIV2 + V2VO (3.2) 
VI^V2= V2(VIV2 - V2VO (3.3) 

Tbus, for vectors, it is possible to describe these 'derived' products in terms of 
the geometric product. This notion can be extended - the derived products for 

two homogeneous (single grade) multivectors A, and Bs of grade r and s are 
given by 

A, Bs=<A, %>j,, j 
< A, B, >, +ý 

(3.4) 

(3.5) 



55 

Where (m), is the k-grade part of M. 

In fact, the decomposition (3.1) generalises to 

A, Bs= <ArBs>l, -sl+<ArBs>lr-sl+2+--- ... + < Ar Bs > r+s 

The lowest and highest grade parts are the dot and wedge products 

respectively, though these and other grade parts may evaluate to zero. 

By linearity, the result (3.4) and (3.5) generalises to two not necessarily 

homogenous multivectors M and N as 

M-N=2: (M), -(N)j 
I. j 

MAN=E(M), A(N)j 
I, j . 

This is used to construct the corresponding dot- and wedge-product functions 

dpo and wpo. 

3.3 Generating the Cayley table 

The software generates a Cayley table and uses it for internal look-up. The 

table can also be printed for validation. Two examples follow: 

Example I: Generating the quarternion algebra 

The quarternions are the even algebra of CI(3) with suitable name changes. The 

following code generates the Cayley table for Cl(3). 

GA ga = new GA(3); 

ga. printTableo; 

The output is shown in table 3.1. 
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1 

el 

e2 

e3 

e12 

e13 

e23 

I 

< ------ vectors ---- > 

el e2 e3 

<---- bi-vectors --4 

e12 e13 e23 

1 e12 e13 e2 e3 I e23 

-e12 1 e23 -el -I e3 -e13 

-e13 -e23 1 1 -el -e2 e12 

-e2 el 1 -1 -e23 e13 -e3 

-e3 -I el e23 -1 -e12 e2 

I -e3 e2 -e13 e12 -1 -el 

e23 -e13 e12 -e3 e2 -el -1 

Table 3.1 The Cayley Table for CI(3). 

The even sub-algebra is generated by adding an extra '+' parameter to the GA 

constructor: 
GA ga - new GA(3,1+1); 

ga. printTableo; 

This produces table 3.2. 

1 e12 e13 e23 

e12 -1 -e23 e13 

e13 e23 -1 -e12 

e23 -e13 e12 -1 

Table 3.2 The Cayley Table for the even sub-algebra of CI(3). 

To match the classical form of the quarternions, names of the grade-2 base 

vectors are changed respectively to p, -q and r. These bivectors are the fourth, 

fifth and sixth elements of the base element set 

1, ei, e2, e3, e12, ell, e23, e123 

The table is generated and the names changed using 
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GA ga = new GA(3,1+1); 

ga. changeName(4, lfp", true); 

ga. changeName(5, "q", false); 

ga. changeName(6, "r", true); 

ga. printTableo; 

The last boolean parameter in the changeNameo function accounts for the sign 

change - traditionally q corresponds to e3l = -e13- 

This produces the classical table for quarternions shown in table 3.3. 

1 pqr 

p -1 -r q 

q r -1 -p 

r -q p -1 

Table 3.3 The Cayley Table for the quartemions. 

Example 2: Generating the complex numbers 

Complex numbers are isomorphic to the even algebra of CI(2). Their Cayley 

table is generated by the code 

GA ga = new GA(2,1+1); 

ga. changeName(3, "i", true); 

ga. printTableo; 

which produces table 3.4. 

1. i 

i -1 

Table 3.4 The Cayley Table for the complex numbers. 
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3.4 Internal representation of base vectors and multivectors 

Base vectors are represented internally by byte arrays with values of 0 or 1, 

with the first position being reserved for sign. (Java does not support bit- 

arrays. ) Multivectors are represented by double-precision floating point arrays. 

Figure 3.1 shows these arrays for CI(3). 

base vectors 
el 

of e2 
base-space 

e3 

extra 
sign 

vector byte 
modulus dimension of 

(signature) base space I 
m=3 

0123 

base vectors 
of 

Clifford algebra 

*, 0,0,0 1 scalar 
.... ................... .... !. --. 

vectors 

..... ....... ...... ............... 

bWectors 

..................... ..... ........... 
pseudoscalar 

array 
representation 

0 

I 

2- 

32 

4 -5 
5- 

dimension of 
3 Clifford algebra 

4 

F' 

51 
d= 2n' =8 

6 

7 

typical 
multivector 

3+ 2e3 - 5e, 2 -61 

Figure 3.1 Internal representation of base elements of 
the 8-dimensional Clifford algebra CI(3). 

3.5 Filling the base vector array 

The software uses a non-recursive algorithm to fill the basis[] array. The 

example of figure 3.2 shows the filling sequence for the grade-3 base elements 
of CI(6): 
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basis[] [] kE I 

123456210 
e, 23 

e124 

e125 

e, 2, 

e, 34 

e, 35 

e, 36 

e, 45 

el,,,, 
e234 

e235 

e236 

e245 

e24, 

e256 

e345 

e34s 

e356 

e, 5s 

Figure 3.2 Algorithm for filling the array k[ I which, when filled, 

contains the index set of all base trivectors of CI(6). 

The array k[] stores the grade-3 index set which initially hold the values 1,2,3. 

The final values are 4,5,6. These represent the maximum values for each array 

position and are stored as a separate array kMax[]. The algorithm increments 

the right-most index until it reaches its maximum value whereupon the one on 
its left is incremented. If that in turn reaches its maximum value, the one on its 

kMax [11 41 51 61 
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left is incremented, and so on. The indices to the right of the last index to be 

incremented are then set to have sequential values. 

Assuming space parameters are defined as 

int m=6; // base-space dimension 

int d= (int) Math. pow(2, m); // dimension of Clifford algebra 

byte[][] basis - new byte[d)[m+l]; 

byte[] grades = new byte[d]; 

the code for this algorithm is 

static void createBasisVectorso 

for (int i=O; i<d; i++) basis[i][0] - +1; // set sign 

int count 0; 

byte grade 1; 

while (grade<--m) 

I 

byte n- grade; 

int[] k= new int[n]; 

int[] kMax = new int[n]; 

for (int i=O; i<n; i++) k[il - i+l; 
for Unt i=O; i<n; i++) kMax[il -m-n+1 +1 

count++; 
for (int i=O; i<n; i++) basis(count](k[ill 

grades[countl = n; 

while (k[01< kMax[Ol) 

k[n-ll++; 

int i= n-1; 

while (i>=O) 

if (k[il>kMax[il) 

I 
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int j=i; 

while( j<n) 

I 

k[j] = k[j-11+1; 

j ++; 

count++; 
for Unt J=O; j<n; j++) basis[count][k[jll 

grades[countl = n; 

grade++; 

3.6 Calculation of Cayley table products: multiplying base vectors 

The algorithm for evaluating products in the Cayley table utilises the fact that 
indexes in all base vectors are in numerical order. 

To illustrate, the calculation below evaluates the product of e1245 and e135 in 

CI(4, I) where, because of the nature of the signature, el 
2= 

e2 
2= 

e3 
2= 

e4 
2 

and e5 2= 
-i; 
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el245el35 

(ele2e4e5) (ele3e5) 

(e2ele4e5) (ele3e5) 

+ (e2e4ele5) (ele3e5) 

(e2e4e., el) (ele3e5) 
v 

(e2e4e5) (+I) (e3e5) 

=- (e2ee5) (e3e5) 

= (e2e4e<) (e5) 

(e2e. e, e. ) (e5) 
v 

(e2e. e4) (-1) 

=+ (e 2e3e4) 

= +e234 

3 sign 
changing 
swaps 

2 sign 
changing 
swaps 

Starting with subscript 1, the el vector in the left bracket also appears in the 

right bracket, so is ýwapped past the remaining vectors in its bracket which 
induces three sign changes. 

3 swaps 

4 
ell, (ele3e5) 

It is then adjacent to the ei vector in the right bracket and so annihilates, 
leaving +1. 

Considering subscript 2 vectors, the e2 vector in the left bracket is not repeated 

in the right hand bracket and is therefore left unaltered. 

The situation with the subscript 3 vectors is different - an e3 vector appears 

only in the right bracket. To bring it into the correct overall Position it is 

swapped past the higher subscript vectors in the left bracket: 
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2 swaps 

(e *ee1: ) (e e) -245: 3 

In this case, the even number of swaps do not induce a sign change. 

When a vector appears in the left bracket only, it remains where it is. When it 

appears in both brackets, orjust the right bracket, swaps have to be counted. In 

both cases, the number of swaps (i. e. sign changes) correspond to the number 

of remaining vectors in the left bracket. 

Put another way, if a vector does not appear in the second bracket then no 

swapping is required. If the same vector appears in the first bracket then it 

remains where it is. On the other hand, if a vector does appear in the second 

bracket then swaps need to be counted. If the same vector also appears in the 

first bracket then they ultimately annihilate and induce an overall sign change 

according to the value of the square of the vector. This occurs only if the 

vector appears in both brackets so this can be handled separately. 

The algorithm uses arrays to represent the bracketed factors and the resulting 

product: 

012345 

First factor PH 211 111011 11 ele2e4e5 

Second factor q[1 
21 

11 0111011e, ee. 

Resulting product r[I F+-, ] Lo 111- -11 1 10 1 +e2e3e4 

These arrays are part of the table multiplyo function where table elements are 

passed by index value: 

byte[] multiply(int i, int j) // table multiplication 
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byte[] p= basislil; 

byte[] q= basislil; 

byte[] r= new byte[m+ll; 

byte sign = +1; 

for (int k=l; k<--m; k++) 

I 

if (ptkl==l && q[kl==l) sign = (byte) (sign*vectorModulus(k]); 

if (q[kl==O) r(k] = p[k]; 

else 

r[k] = (byte) (1 - p[kl); 

if (sign != 0) 

for (int j=k+l; j<=m; J++) count swaps 
if (p[j]==l) sign = (byte) (-sign); 

if (p[O]ý-l && q[01==+l) sign - (byte) -sign; 
if (p[O]-=+l && q[01-1) sign - (byte) -sign; 

r[Ol = sign; 

return r; 

3.7 Calculating the geometric product 

The geometric product function gpo uses the table multiplyo function to 

multiply basis vectors and a findBasisVectorIndexo function to calculate the 

index of the result so that products can be accumulated: 

double(] gp(double(I ml, double[] m2) // geometric product 
f 

double[] r- new double[d); 

byte[] p; 

int dl - Math. min(d, ml. length); 

int d2 - Math. min(d, m2. length); 

for (int i=O; i<dl; J++) 
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for (int j=O; j<d2; j++) 

if (ml[il! =O && m2[j]! =O) 

p= multiply(i, j); 

int k= findBasisVectorIndex(p); 

if ( p[O]==+l) r[k] = r[k] + ml[il*m2[j]; 

if ( p[01==-l) r1k] = r[k] - mllil*m2[j]; 

I 

return r; 

I 

3.8 Calculating the dot and wedge products 

The functions for calculating the wedge and dot products, wpo and dpo, use 

the gpo function. For homogeneous arguments, the functions are titled wpHO 

and dpHO and are: 

double[] wpH(double[I ml, double[] m2) // wedge product 

I 

if ( ! isHomogeneous(ml)) return null; 

if ( UsHomogeneous(m2)) return null; 

return gradePart(gp(ml, m2), grade(ml) + grade(m2)); 

doubleH dpH(double(] ml, double[] m2) // dot product 
I 

if ( ! isHomogeneous(ml)) return null; 

if ( ! isHomogeneous(m2)) return null; 

return gradePart(gp(ml, m2), 
Math. abs(grade(ml)-grade(m2))); 

These return 'null' if either of the arguments is not homogeneous. The 

operation of these functions can be seen in the following example code which 

constructs all three products for two grade-2 multivectors mv I and mv2: 

GA ga = new GAM; 

// el e2 e3 e4 e12 e13 e14 e23 e24 e34 
double[] mvl - (0,0,0,0,0,0,0,1,0,5,4 ); 
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doubleH mv2 = 10 

ga. show("mvl = 

ga. show("mv2 = 

ga. show("mvl^mv2 

ga. show("mvl. mv2 

ga. show("mvlmv2 

This produces the output: 

0 0,0,0,0,2,3,0,0,0,0 ); 

mvl, false); 

mv2, false); 

ga. wpH(mvl, mv2), false); 

ga. dpH(mvl, mv2), false); 

ga. gp(mvl, mv2), false); 

mvl =+1.0 e14 + 5.0 e24 + 4.0 e34 

mv2 =+2.0 e12 + 3.0 e13 

mvl^mv2 --7.0 1 

mvl. mv2 =0 

mvlmv2 =- 22.0 e14 + 2.0 e24 + 3.0 e34 - 7.0 1 

The dot and wedge products are manifested in the geometric product as the 0- 

grade and 4-grade parts, namely 0 and -7.0 1. If the data were changed to 

// el e2 e3 e4 e12 e13 e14 e23 e24 e34 
double[] mvl = {O, 0, 0, 0, 0, 0, 0, 1, 3, 5, 0 

double[] mv2 = {O, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1 

the results become: 

mvl =+1.0 e14 + 3.0 e23 + 5.0 e24 

mv2 =+2.0 e12 + 1.0 e34 

mvl'ýmv2 =0 

mvl. mv2 =0 

mvlmv2 =-7.0 e13 - 10.0 e14 - 5.0 e23 + 5.0 e24 

In this case, the dot and cross products are both zero, reflected in the fact that 
the geometric product has no grade-O or grade-4 term. (Geometrically, the 
linear spaces represented by mv I and mv2 intersect in more than just the origin 

yet are 'perpendicular'). 

The generalised non-homogeneous versions of these functions use the 
homogeneous versions, for example 
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doubleH wp(double[I ml, double[] m2) // wedge or outer product 

f 

doubleH r= new double[d]; 

for (int i=O; i<---m; i++) 

for Unt j=O; j<---m; j++) 

r= add(r, wPH(gradePart(ml, i), gradePart(m2, j))); 

return r; 
I 

This uses the addo function to accumulate the results obtained from forming 

the products on the homogeneous grade parts. 

3.9 Constructing blades 

To construct blades, i. e. the wedge product of many vectors, the software 

makes use of the associativity of the wedge product: 

VIA V2 A V3 ` ((VI" V2 
)A 

V3 ) 

VIAV2^ V3 A V4 -ý (((VIAV2) 4 V3 
)A 

V4)- 

The corresponding function is called createBladeo: 

double[] createBlade(double[][] v) 

I 

for (int i=O; i<v. length; i++) 

if (! isVector(v[il)) return null; 

doubleH r= v[01; 

for (int i=l; i<v. length; i++) 

r= wp(v[il, r); 

return r; 
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Vectors are passed to the fimetion as arrays of multivectors. The result T is 

seeded with the initial vector so that progressive wedge product can be 

calculated. 
To partially validate this function, an alternative approach uses the fonnulation 

cited in [9, page 91], 

aA(a, Aa2 Aa3 A .... Aa, )=-I(a(a, Aa, Aa, A .... Aa, )+(-I)r(a, Aa2 Aa3 A .... Aa, )a). 
2 

The corresponding function is: 

double[] createBlade2(double[][] v) 

I 

for (int i=O; i<v. length; i++) 

if (! isVector(v[il)) return null; 

double[] Ar = v[01; 
int sign = -1; 
for (int i-1; i<v. length; i++) 

I 

if (sign==+l) Ar = mul(add(gp(v[i], Ar), gp(Ar, v[i])), 1/2.0); 

if (sign---l) Ar = mul(sub(gp(v[i], Ar), gp(Ar, v[il)), 1/2.0); 

sign = -sign; 

return Ar; 

I 

Addition, subtraction and scalar multiplication (by '/2) are performed with the 
functions mulo, addo and subo. The sign generated by the (-i)" factor 

alternates as r increases. 

The following partial validation routine randomly creates sets of vectors and 

passes them to both versions of the blade creation function for subsequent 

comparison: 

GA ga - new GA(3,2,1); // generates Cl(3,2,1) 
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for Unt i=0; i<100; i++) 

int k- (int) ((ga. m) *Math. randomo) +1; // number of vectors 

double[][] v- new doublelk][ga. m+ll; 

for (int j=O; j<k; j++) v[j] = ga. randomVectoro; 

double[] bladel - ga. createBlade(v); 

double[] blade2 = ga. createBlade2(v); 

if (! ga. isEqual(bladel, blade2)) System. out. println ("error I");; 

This 100 times loop test was run successfully with Cl(ij, k) for 0< ij, k < S. 

3.10 The dot product and square of vectors 

If u and v are vectors then uv is a scalar - being of equal grade, the dot product 

of u and v is the zero grade part of the geometric product. Equally, 

v2 =w=v. v is also a scalar. 

However, if the dpo function is used to calculate the dot product of two 

vectors the result is a multivector representing a scalar, i. e. an army with 

elements all zero except for the first. Rather than have a special vector-specific 
dpo function that return a single scalar, the software utilises the fact that if a 

multivector is a scalar, its value is stored in the first position with array index 

zero. For example, if u and v are vectors, dp(uv) returns an array of doubles 

representing a multivector, whereas dp(u, v)[0] is a pure double. 

3.11 Converting a scalar to a multivector 

The Cl(3, I) implementation includes the multivector 

i= (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). 

An arbitrary scalar k can be converted to a multivector by multiplying it by i. 
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3.12 Conclusion 

The software of this chapter was written as a validation exercise in two senses. 
First, it was used to validate personal conceptual understanding of the 

mathematical language and ideas in which key formulae were expressed. In 

this capacity it succeeded in providing considerable insights into the nature of 

geometric algebra. 

Secondly, it is the basis for the graphics software of the next chapter. This was 

used throughout the remainder of the thesis to generate graphical screen output 

in order to validate theoretical ideas. 
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4 Implementing the Conformal Model CI(3,1) 

4.1 Introduction 

This chapter describes an extension to the GA class of the previous chapter. It 

specifically limits the Clifford algebra to CI(3, l) but adds functionality for 

drawing circles, geodesic arcs and lines using the various 2D models of non- 

Euclidean space described in chapter 1. The geometry is determined by any one 

of the following 'type' vectors all of which, except the last, are described in 

Chapter 1. 

double[] n= {0,0,0,1,1); // R2, standard Euclidean 

double[] e = (0, 0, 0, 0, 11; S2, hemi-sphere model 

double(] a = {0, 0, 0, 1, 01; H2, Poincare Disc model 

doubleH b = [0, 0, 1, 0, 01; H2, half-space model 

doubleH c = 10, 1, 0, 0, 01; H2, half-space model 

The new CM class also adds functions for creating vector and blade-based 

confonnal representations of circles, and for extracting information froln these 

representations. The resulting source code is listed in full in appendix C. 

Extracts discussed in this chapter are listed as appropriate. 

4.2 Functions for mapping points between W and the null cone 

The mapping from W to the null cone is 

f: x --> x= (x2 
- I)a + 2x + (x2 + I)e 

This is implemented by: 

double[] F(double(I p) 
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double(] tl - mul(a, dp(P, P)101-1); 

doubleH t2 - mul(p, 2); 

double(] t3 = mul(e, dp(pp)[01+1); 

return add(add(tl, t2), t3); 

In the case of CI(3,1), the reverse map can be achieved by scaling the 

conformal point X to the representation of Rý, by multiplying by -2/(X. n), then 

ignoring the P and 0a and e components and halving the result. This can be 

achieved with 

double[] f(double[] X) 

I 

double[] d- new double[16]; 

for Unt k-0; k<16; k++) d[k] - scale(X, n)(k]; 

d[31 = 0; d[41 = 0; 

return d; 

This uses the following function for null cone scaling 

double[] scale(double[I P, double[] type) 

I 

return div(P, -dp(P, type)(01); 

However, an alternative more generic approach is to use the projection 
formulae [4, page 380] 

XAN 
N, 

X. n 

where N= ea, = e^a is the bi-vector blade representing the Minkowski plane 

appended to Rý. The formula effectively projects out of this plane. 

This more generic operation is the one that is adopted and implemented as 

double[] f(double[] 
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double k= dp(X, n)[01; 

double[] x= mul(X, -1.0/k); 

double[] N- gp(e, a); 

return gp(wp(x, N), N); 

I 

4.3 Constructing and measuring circles 

Although a circle is represented conformally by a single vector, the centre and 

radius of a particular realisation are dependent on the underlying geometry in 

which it occurs. Thus the functions that measure a circle's properties take a 

second geometry-defining 'type' vector as an extra parameter. These are 

double getRadius(double[] S, double[] type) 

I 

return Math. sqrt(dp(S, S)[01/(dp(S, type)101*dp(S, type)(01)); 

I 

double[] getCentre(double[] S, double[] type) 

I 

double R= getRadius(S, type); 

return add(S,, mul(type, R*R)); 

I 

These two functions reflect the formulae cited in Chapter 1, 

rZ S2/(S ný 

cs+ P2 n. 

The latter function uses the symbol R in place of p. It returns a null vector 

which is the conformal representation of the centre, with respect to the 

geometry in question - the geometry specified by the 'type' vector. 
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Conversely, when constructing the 'abstract' confonnal vector representation 

of a circle from its properties defined in a specific geometry, its 'type' vector is 

needed to ensure the correct construction. The function is 

double[] makeCircle(double[] C, double R, double(] type) 

I 

return sub(C, mul(type, R*R)); 

} 

This assumes that the conformal centre C and radius Rare correctly specified 

with respect to the implied geometry. This may require that the ccntre 

undergoes appropriate null-cone scaling using the 'type' vector before being 

passed to this function. The function is based on the inverse formula 

c=C- nRý. 

4A Computational example 1: Drawing grids of circles 

The following code produces the screen shots shown in figures 1.17, page 29 

and 1.23, page 35: 

double(] type = ga. e; 

double[] origin - (0,0,0,0,01; 

ga. drawCircle(g, origin, 1); 

double R=0.1, r; R- spherical radius of spherical circles 
doubleH P, Q, S, C, c; 

for (int i= -3; i<=3; i++) 

for (int j=-3; j<=3; j++) 

double[] p- (0,0.2*i, 0.2*j, 0,0 ); 

P ga. F(p); 1: project on to null cone 
Q ga. scale(P, type); 2: null cone scaling 
S ga. makeCircle(Q, R, type); 3: construct conformal circle 
r ga. getRadius(S, ga. n); 4: extract Euclidean (E. ) radius 
C ga. getCentre(S, ga. n); 5: get conformal rep of E. centre 
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c= ga. f(C); get actual Euclidean centre 

ga. drawPoint(g, p); 

ga. drawCircle(g, c, r); 

I 

The numbered comments correspond to the 'steps' in the computational 

example of chapter 1. However, upper case letters are being used here to 

represent conformal or non-Euclidean elements. Lower case letters are used for 

Euclidean elements needed by the drawing functions. 

By changing the value of the 'type' vector, different models of spherical and 

hyperbolic space can be easily realised. The code uses point and circle 

drawing functions which are passed to the current graphics context as a first 

parameter. 

4.5 A function to draw circles In non-Euclidean space 

The routine above is encapsulated into the following circle-drawing function 

void drawCircle(Graphics g, double[] centre, 

double radius, double[) type) 

double[] c= F(centre); 

double[] circleBlade = makeCircle(scale(c, type), radius, type); 

double[] C= getCentre(circleBlade, n); 

double R= getRadius(circleBlade, n); 

drawCircle(g, f(C), R); 

drawPoint(g, centre); 

I 

The last vector parameter specifies the underlying geometry. The function 

draws a circle in the specified geometry around a point specified in viewport 

co-ordinates. 
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4.6 Computational example 2: Drawing concentric circles 

To demonstrate the drawCircleo function, the following code draws concentric 

circles of radius 0.1,0.2,0.3... around the point with viewport co-ordinates 
(0.4,0.5) 

double x=0.4; 
double y=0.6; 
double R=0.1; 

double[] centre = (0, x, Y, 0,0); 

ga. drawPoint(g, centre); 

for (int i=O; i<15; i++) 

ga. drawCircle(g, centre, R, type); 

R=R+0.1; 

This produces the output shown in figures 4.1 and 4.2 dependent on the value 
of the type vector. 

Euclidean space 

Figure 4.1 Concentric circles in Euclidean and 
spherical space (hemisphere model). 

sphedcalspace 
(hemi-sphere model) 
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Figure 4.2 Concentric circles in hyperbolic space. 
(Poincar6 disc and half space models. ) 

4.7 Problems of scale 

There appear to be problems of scale in relation to the drawCircleo function - 
in certain cases the radii of the circles are proportionally too large or too small. 
In the Euclidean case, normalising the type vector n appears to remedy the 

problem (a second normalised vector m is provided for this purpose). 

4.8 A function to draw geodesic arcs In non-Euclidean space 

The drawCircleo function is viewport specific so can be used to write a 

mouseDrago function that continuously redraws a non-Euclidean circle around 
the current mouse-pointer position, making it appear as though the circle was 
being dragged through non-Euclidean space. The circle's screen size and 
central-offset would continuously change depending on its position. 

However, this approach is not ideal. To accommodate a scene graph 

architecture it would be preferable to use a transformation-based approach, i. e. 
to determine what transformation represents a mouse-movement and apply it to 

the circle. This will become one of the key themes of chapters 7 and 8. 

Equally, it is possible to draw geodesics without considering (translational) 
transformations. Because geodesics are represented conformally by arcs of 
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circles which pass through the 'point at infinity' it is possible to draw them 

without specifying a metric or considering 'shortest path' routes. In each case, 

the conformal 'point at infinity' is the 'type' vector defining the geometry. 

A circle through three (conformal) points is represented by the blade or tri- 

vector formed from their wedge product. In the case of a geodesic, one of 
these is the conformal 'point at infinity', the geometry-defining 'type' vector. 

To obtain the viewport co-ordinates of the centre and radius of a geodesic arc 
joining points with viewport co-ordinates pi and P2 would entail mapping pi 

and P2 onto the null cone; constructing the appropriate blade using the 

geometry-defining point-at-infinity as the third point; extracting the 
(conformal representation of) the centre and mapping it back to Euclidean 

space of the viewport. This is coded in the dmwArco function: 

double[][] D= JF(pl), F(p2), type); 

double[] B= createBlade(D); 

double[] centre = f(getCentreFromBlade(B, n)); 
double radius = getRadiusFromBlade(B, n); 

The function also extracts the Euclidean (viewport) radius of the circle 
represented by the blade. The centre and radius are then used to draw the arc. 

4.9 Computational example 3: drawing quadrilaterals 

The following example uses the drawArco function to draw the geodesic sides 
of a quadrilateral 

double[][] p= J( 0,0.3,0.1 1, ( 0,0.5,0.3 ), 

( 01 0.3,0.7 1, ( 0,0.1,0.5 

for (int i=O; i<4; i++) 

ga. drawPoint(g, p[il); 
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ga. drawArc(g, p[i], p[(i+l)%4], type, true); 

I 

The final parameter 'true' passed to the drawArco function causes the arc to be 

drawn superimposed on a complete geodesic circle, see figures 4.3 and 4.4 

Figure 4.3 A quadrilateral in Euclidean and 

spherical space (hemisphere model). 

Figure 4.4 Quadrilaterals in hyperbolic space. 
(Poincar6 disc and half space models. ) 

4.10 Implementing mouse dragging 

Because point information for both the drawArco and drawCircleo functions is 

specified in terms of viewport co-ordinates, these functions could be used to 
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implement simple mouse dragging. If the centre of a circle were dragged 

elsewhere, it would simply be a question of redrawing it. Thus it would be 

possible to drag a circle through space (by its centre) and watch its radius 

change accordingly, becoming smaller if it approached an 'horizon'. The same 

applies if one end of a geodesic arc was dragged. The 'line' joining the points 

would change in subtle ways. 

Though expedient, this approach is severely limited. To implement generic 

mouse dragging requires calculating the transformation represented by a mouse 
drag so that, if necessary, it can be applied to all associated objects. This 

requires the implementation of translations defined by two points. 

4.11 Implementing translations in the conformal model 

Classical angle-preserving conformal transformations are often represented in 

conformal space by 'sandwich' transformations of the foun 

B12X -B/2 X-+e e, (4.1) 

where B is a bi-vector referred to in the literature as the 'generator of the 
transformation'. This is the approach adopted in [4] where the exponential (of a 
bivector) is assumed here to be the result of summing a classical Taylor series 

which is assumed to converge. 

It is stated in [4, page 373] that if x and y are conformal representations of 

points in a base space with geometry specified by the type vector t, then the bi- 

vector 

B=( XAYAt )t 

generates a transformation that takes x to y and leaves t, the 'point at infinity', 
invariant. The transformation is therefore a translation. This stated result begs 

many questions, some of which are addressed in chapter 7. At this point, the 
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immediate concern is to test the result in the context of different geometries 

since, in [4], it is elaborated upon only in the context of the hyperbolic 
2, 

Poincard disc model where, it is claimed, B ', 0. In fact, there is a strong hint 

in this and other literature, that the nature of the 'translation' is somehow 

determined by the sign of B2. The indication being that it is the translation, 

rather than the geometry ofthe base space, that carries the epitaph 'hyperbolic', 

relliptic' or 'Euclidean'. At this stage it is difficult to source the roots of this 

differing perspective. This issue is resolved in chapters 8 and 9. 

What seems to be tacitly assumed in [4] is that the generating bi-vector squares 
to a scalar whose sign detennines the nature of the exponential Taylor 

expansion in a fairly straightforward way so that if B=k fi, where fil =I then 

exp(B) = exp(kfi) = cosb(k) +A sinh(k), if B2>0, 

= cos(k) +A sin(k), if B2 ,ý0, 

=1+ kÜ, if B2 =O. 

The following is an implementation of the exponential function as expressed 

above preceded by necessary precursor functions. 

double cosh(double a) ( return (Math. exp(a) + Math. exp(-a))/2; 

double sinh(double a) { return (Math. exp(a) Math. exp(-a))/2; 

double cos(double a) return Math. cos(a); 

double sin(double a) return Math. sin(a); 

double(] exp(double[I b) // use only for bi-vectors 

I 

double b_squared = gp(b, b)[0]; 

if (b_squared>O) // hyperbolic 

double k= Math. sqrt(b_squared); 

double[] bHat = div(b, k); 

return add(mul(i, cosh(k)), mul(bHat, sinh(k))); 
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else if (b_squared<O) // elliptic/spherical 

double k= Math. sqrt(-b_squared); 

double[] bHat = div(b, k); 

return add(mul(i, cos(k)), mul(bHat, sin(k))); 

I 

else return add(i, b); // Euclidean 

} 

The vector i is a multivector representing the scalar value 1. 

Using this exponential function, the following function implements the 

'sandwich' transformation (4.1) with the scaling modification indicated: 

double[] est(double[] X, double[] B) 

t 

return gp(exp(div(B, -4)), X, exp(div(B, 4))); 

I 

4.12 Computational example 4: Translating a triangle 

Using a scaling factor of 4, rather than 2, the preceding function seems to 

correctly translate points for Euclidean and spherical space. The test consisted 

of repeatedly translating a triangle in a direction corresponding to one of its 

sides, then repeating this for each side, see figure 4.5. 
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Figure 4.5 Translating a triangle parallel to its three edges in 

Euclidean and spherical space (hemisphere model). 

In both cases the 'line' formed by the translated touching sides does seem to 

form a geodesic 'curve'. In the Euclidean and spherical cases these geodesic 

curves are respectively straight lines and circles that meet the unit circle at 

antipodal points. 

Inconsistencies in scaling also appear in the hyperbolic cases. Figure 4.6 

depicts the half-space model. 

Figure 4.6 Translating a triangle parallel to its three edges 
in hyperbolic space (Poincar6 disc model). 

Though the scaling is problematic, here again the curves formed by the 

translated sides fonn geodesics, in this case circles perpendicular to the x-axis. 
These screen shots of figures 4.5 and 4.6 were produced by the code 

spherical space Euclidean space 
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type - ga. e; // defines geometry 

double[][] p=1 10, +0.6, +0.51, P[01 

{0, +0.5, +0.21, P[11 

(0, +0.4, +0.4)); p[21 

double[][] q= new double[31[31; 

for (int i-0; i<3; i++) 

// construct generator for transform 

double[][] data - (ga. F(p[il), ga. F(p[(i+l)%31), type 

double[] B= ga. gp(ga. createBlade(data), type); 

for Unt m7--O; m<3; m++) reset q-points 
for (int n=O; n<3; n++) 

q[m][n] = p[m](n]; 

for Unt j=O; j<5; j++) repeatedly transform q-points 

for (int k=O; k<3; k++) 

I 

ga. drawPoint(g, q[kl); 

ga. drawArc(g, q[k], q[(k+l)%31, type); 

I 

for (int k=O; k<3; k++) // transform each q-point 

q[k] - ga. f(ga. est(ga. scale(ga. F(q[k]), type), B)); 

I 

} 

4.13 Computational example 5: Translating circles 

An alternative approach to translations utilising the fact that the (conformal) 

translation can be applied to the blade representation of a circle using exactly 

the same 'sandwich' transformation formulas 4.1 

C -> e"I'Ce-B/2 = Cf. (4.2) 

This transforms the conformal blade representation of the circle from C to C, 
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In the base space, this should cause the (non-Euclidean) centre to move as 
though its centre had undergone the same point translation and, for non- 
Euclidean space, the radius of the circle would also possibly change. 

The following code repeatedly translates a circle by mapping its conformal 

representation. The generator for the transformation is that needed to map the 

point x to y: 

double[] type = ga. e; 

double[] centre - (0, +0.4, +0.51; 

double radius = 0.4; 

// construct blade representation of circle 

double[] circleBlade = 

ga. makeCircle(ga. scale(ga. F(centre), type), radius, type); 

ga. drawCircle(g, circleBlade, type); 

// construct generator of translation from x to y 

double[] x= (0, +0.4, +0.5); 

double[] y= (0, +0.3, +0.41; 

double[][] data - (ga. F(x), ga. F(y), type 

double[] B= ga. gp(ga. createBlade(data), type); 

for Unt i=O; i<10; i++) 

circleBlade = ga. est(circleBlade, B); transform circle blade 

ga. drawCircle(g, circleBlade, type); draw circle 
I 

In the Euclidean and spherical cases this produces the output of figure 4.7 
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Figure 4.7 Translating a circle in Euclidean and 

spherical space (hemisphere model). 

In both cases the circle's centre tracks a geodesic path. This is also true in the 
hyperbolic cases though, once again, problems of scale appear. 

4.14 Conclusion 

Apart from problems of scale, the implementation of Cl(3, l) in this chapter 

seems to support the theory in relation to the conformal representation of 

transformations when applied to points and circles. Though the literature 

suggest ways to represent other conformal transformations (rotations, dilations, 

inversions, etc) these were not attempted as it was felt that the theoretical basis 

of the model needed to be explored and understood at much greater depth 

before proceeding with software design and experimentation. 

For the same reason, it was felt that attempts to implement mouse interaction 

should be postponed, though the ideas tested here could be used to implement 

rudimentary mouse dragging. 

Euclidean space 
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5 Implementing non-Euclidean Navigation Controls 

5.1 Introduction 

This chapter presents a solution to the problem of creating navigation controls 
for moving through non-Euclidean spaces. It uses the bivector-generated map 

B/2 X- B/2 X-*e e (5.1) 

in conjunction with retained-mode graphics which was used to build scene- 

graphs structures in Chapter 2. The approach arose out of extending the idea of 

quartemions. 

The chapter concludes with comments about the nature of the exponential map 

used in 5.1. To put it in its broader context, it is necessary to briefly mention 
Lie transformation groups. 

5.2 Quarternion based rotation 

Quarternions are elements of the even sub-algebm of Cl(3, O). If B is a bivector 

(pure) quarternion, then the map 

X 
__). 

el2X -B/2 e 

induces a rotation in Cl(3, O). The plane of the rotation is the plane of the 

bivector and the magnitude of the bivector is a measure of the degree of the 

rotation. Each bivector can be scaled to make the rotation angle small. In 

particular, the bivectors e12, e23, e13 generate rotations represented by these 

planes. However, because the quarternions relate to 3D space, these 'planar' 

rotations correspond to axial rotations about the principal axes. By restricting 
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vectors of R3 to umt vectors on the sphere S2, unit-nonn quarternions can also 
be thought of as acting on S2. 

Viewing a small area of S2 directly down the e3 axis so that it appears locally 

'flat', small rotations induced by e12, e23 and e13 appear to respectively rotate the 

sphere's surface anti-clockwise, or translate it horizontally or vertically. 
Similarly, small rotations induced by -e12, -e23,, -e13 rotate or translate the 

sphere in opposite directions. Ilius, locally, the bivectors e12, e23, and e13 Can 
be associated with 2D control buttons of the style adopted in chapter 2, see 
figure 5.1. 

e2 

rotate left 
e3 

rotate right 

Ei 
wm- 

Figure 5.1 Left: Rotations of a sphere about the three principal axes 
viewed as (left/right) horizontal and (up/down) vertical 
translations together with a (left/right) rotation. 

Right: Control button interface to implement the rotations. 

These six control buttons could be used to 'nudge' the sphere S2 into any 

position, or equivalently, to move a 'turtle' on a static sphere into any position 

and orientation on the sphere. In fact, classically, the turtle could be driven 

over the surface of the sphere using just the up/down (forward/backward) and 

rotate right/left buttons or, equivalently, the two bivectors e12 and e23. These 

essentially 2D controls could provide movement in 3D in much the way a 
tracker-ball could, except that in this case the tracker ball could only be nudged 
vertically and horizontally. It would also be possible to rotate this 'virtual' 
tracker ball about a vertical axis through its centre. 



89 

5.3 Implementing quarternion rotations in the conformal model CI(3,1) 

The 6-dimensional bivector subspace of the conformal model CI(3, l) is 

spanned by the base bivectors e12, e13, e14, e23, e24 and e34. Through the 2-sided 

map 5.1 their exponentials act on elements of CI(3, I) in general and on 4D null 

vectors in particular. In so doing they induce transformations in the embedded 

space S2 ,H2 and Rý. 

Because the computational approach being used here is specific to a pre-chosen 

orthonormal basis, this embedding takes a rather simple form - it is merely a 

matter of ignoring, or not working with certain components. (Extracting an 

embedded space or structure in a co-ordinate free way often entails some sort 

of algebraic 'splif, for example, the classical 'projective' and 'conformal' splits 

alluded to in the literature. These will not be needed here. ) 

Because of the embedding of S2 in the conformal model CI(3, I), quarternion 

rotations in S2 can be simulated in the model by using only three of the 6D 

bivectors, namely e12, e13 and e23 and applying the exponential transformations 

generated by them to the those 4D conformal points representing points or 

circles lying on the surface S2 in W, or to those 6D blades of CI(3, I) that also 

conformally represent circles on S2. 

To illustrate, figure 5.2 shows the result of successive quarternion rotations of a 

point on S2 that would be induced by successive presses of the control buttons 

associated with e23, e13, -e23, - -ell, e12, namely Up, Right, Down, Left, and 
Rotate (right). 



90 

Figure 5.2 Path traced out by a point on a sphere undergoing a 

sequence of quarternion rotations about fixed axes. 

Figure 5.3 is a screen dump of the same quartemion rotation sequences 
implemented in the conformal model CI(3, I) and applied to a small circle 

viewed in the 2D hemisphere model - i. e. the projection onto the equatorial 

plane via the south pole. 

Figure 5.3 Stereographic projection of a path traced out by a circle 
on a sphere undergoing a sequence of quartemion 
rotations using immediate mode graphics. 

As can be seen from figure 5.3, when horizontal or vertical control buttons of 
the same type are successively applied in the hemisphere model, the object (the 
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small circle) does not necessarily move along a geodesic path. In fact, the paths 

are arcs of projection of the circular paths in S2, see figure 5.2. As these paths 

are not necessarily great-circles, their projections need not be geodesics. 
However, if an object is positioned at the origin, then the motion-control 
buttons do generate geodesic movement - the initial 'up' movements from the 

origin were along a geodesic path. 

5.4 Using retained mode graphics to Implement geodesic navigation 

It is only when the object moves away from the origin that non-geodesic 

movement occurs. This provides a clue to solving the problem of implementing 

geodesic navigation, namely 

to constantly redefine the origin to keep track with the object. 

Coincidentally, this is precisely the strategy used in chapter 2 to implement the 

scene-graph architecture. There each object is effectively defined relative to the 

origin and its subsequent motion history is stored. Any new transformation is 

then applied relative to a new origin defined by its motion history. 

In terms of classic matrix operations the composite transformation is 

x4 prevTransforms. (currentTransform). x 
i. e. 

x4 (prevTransfonns. currentTransform). x 

Looked at in temporal terms, the vector x is first subject to the current 
transform, as though it were still at the origin, and the result is then subject to a 
transformation to compensate for the fact that it is not at the origin but actually 
has a previous history of movement. 
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Stated another way, the motion-history matrix 'prevTransforrns' is updated by 

post-concatenation on the right, instead of the usual pre-concatenation on the 
left, i. e. 

prevTransfonns -) prevTransfomis. currentTransfonn 

New transformations thus no longer transform objects - they update motion 
histories which are used to transform the object from its original position at 
render time. This rendering strategy is sometimes called 'retained mode' as 

opposed to'immediate mode'. 

In terms of the sandwich map of the conformal model, this means changing the 

transformation composition strategy from immediate mode 

4 S2 (S IXS I'l ) S2_1 

to retained mode 
X4 Sl (S2 X S2_1 ) SI'l 

- (SI S2) X (SI S2)'l 

=S XS .1, 

where the evolving motion history multivector s is updated by post- 
concatenation on the right. 

In terms of bivector-generated transformations this could be interpreted as 

x4 exp(B 1/2) exp(B2/2) x exp(-B2/2) exp(-BI/2) 

= tL 1 exp(B2/2) x exp(-B2/2) tR, 

The 'left' and 'right! history multivectors tLi and tRi are updated on the right 
and left by exp(Bi+1/2) and exp(-Bi+1/2) respectively. The updated history 

multivectors tLi+l and tRj+j are used to transform x from its original home 

position. This strategy obviates the need for inverting multivectors. (An 

alternative approach that uses the fact that the history multivectors belong to 
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the Spin+ group, where the inverse corresponds to the reverse, is discussed in 

section 5.10. ) 

Figure 5.4 shows a small circle being moved through the hemisphere model of 
S2 using this new retained-mode strategy. The navigation actions are similar to 

those of the previous example. 

Figure 5.4 

As can be seen, the translations are now geodesic, and the rotation is relative to 
the circle's centre. 

The screen-dump for figures 5.3 was implemented using the transformo 
function 

void transformo immediate mode 
I 

U- ga. exp(ga. div(B, +2)); 

tR - ga. exp(ga. div(B, -2)); 
S- ga. gp (tL, S, tR) ; 

} 

Stereographic projection of a path traced out by a 
circle on a sphere undergoing a sequence of 
quarternion rotations using retained mode graphics. 
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This function used the bivector B to transform a multivector S representing the 

circle. 

To implement retained mode graphics, and hence generate the geodesic 

movement shown in figure 5.4, this function was changed to 

void transformo retained mode 

I 

tL = ga. gp(tL, ga. exp(ga. div(B, +2))); 

tR = ga. gp(ga. exp(ga. div(B, -2)), tR); 

S- ga. gp (tL, T, tR) ; 

I 

In this case, the bivector B was used to update the left and right motion-history 

multivectors tL and tR. These, in turn, were used to transforni the retained 

multivector T representing the circle at its start position centred at the origin. 

5.5 Extension to H 

Geodesic navigation through the hemisphere model of S2 was implemented 

using quarternion rotations in the conformal model. This meant selecting from 

the 6 bivectors of CI(3, I) the 'quarternion! bivectors e12, e13 and e23. As stated, 

these are essentially the 3 bivectors, of the Clifford Algebra of W, the space in 

which S2 is embedded. 

H2 is embedded in W, 1 and, because of the latter is embedded in W, 1, the 

appropriate bivectors for geodesic navigation in the Poincard disc model are e12 

and the Minkowski bivectors e14, e24- Using retained-mode rendering, these 

generate the geodesic motion in the Poincard disc model depicted in figure 5.5. 
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Figure 5.5 Geodesic path traced out by a hyperbolic circle 

undergoing rotations generated by the bivectors 

e12, e14 and e24 using retained mode graphics. 

5.6 Unification 

Because the above technique can be extended to Rý, a single algorithm can be 

constructed to handle navigation in S2, If and W. In each case the bivector 

that generates locally planar rotations (as viewed down the e3 axis) is e12. 

However, locally planar horizontal translations are generated by e13, e14 and ein 

in each case respectively. Vertical translations are generated by e23, e24 and e2n. 

Table 5.1 summarises this: 

s2 H2 Rý 

geometry defining vectort: e4 e3 n=e3+e4 

rotations central Ro e12 e12 e12 

translations horizontal Tx e13 e14 ein 

vertical TY e23 e24 e2n 

Table 5.1 Navigation bivectors for subspaces associated with CI(3, I) 
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In each geometry, the horizontal and vertical translation bivectors, Tx and Ty 

can be calculated from the pre-set geometry-defining-vector t using the 

formula 
Tx = ei e34 t 

and Ty = e2 e34 t. 

Thus it is possible, for example, to write a single routine that will allow a polar 

grid, which is easily generated at the origin, to be translated and rotated about 
its centre at will, in any of the three geometries, see figure 5.6. 

S2 hemi-sphere model 

Figure 5.6 A polar grid in spherical and hyperbolic geometry. 

5.7 Extension to higher dimensions 

disc model 

This geodesic navigation scheme extends quite easily to higher dimensions. 

For example, table 5.2 shows the extensions to the spaces S3 ,H3 and 

embedded in Cl(4, I). 
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s3 

geometry defining vector t: e5 

rotations roll 

pitch 

yaw 

translations TX 

Ty 

TZ 

H3w 

e4 n= e4 + eS 
e12 e12 e12 

e13 e13 e13 

e23 e23 e23 

e14 eu ein 
e24 e25 e2n 

e34 e35 e3n 

Table 5.2 Navigation bivectors for subspaces associated with CI(4, I) 

If the six bivectors that produce navigation in S3 , namely e12, ell) e23, e14, e24 

and e34 are treated as though they were elements of C1(4), rather than CI(4, I),, 

then they effectively rotate the 4-dimensional sphere S3. In that context there is 

nothing to distinguish them, but by stereographically projecting S3 (via the 

vector e5) into the 3-dimensional hemisphere model, the six bivectors split into 

two equal groups - those that produce rotations and those that produce 

translations. 

In this navigation scheme, the translation bivectors for the respective models of 
s3 ,H3 and W are again remarkably similar and given in terms of the geometry- 
defining vector t by 

Tx = ei e45 

Ty ý e2 e45 t 

Ty = e3 e45 t 

Tbus it was once again possible to write successful 'universal' code that 

handled navigation in all three geometries. Figures 5.7 and 5.8 show forward 

(geodesic) flight in 3D spherical and hyperbolic space of a ID turtle' that is 

initially translated vertically, then pitched and rolled before flight begins (these 
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initial movements are not shown). To facilitate faster rendering, the turtle's 

edges are drawn using screen-lines that are straight, not geodesic arcs. In a 

certain sense, the turtle is drawn using its locally flat geometry - the 'curved' 

geometry only manifests itself when it flies. 

Figure 5.7 Geodesic flight path of a 3D turtle in spherical space. 
(rhe curve is due to the curvature of the space. ) 

Figure 5.8 Geodesic flight path of a 3D turtle in hyperbolic space. 
(rhe curve is due to the curvature of the space. ) 
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5.8 The Lie group Spin+(p, q) 

The mixed signature non-degenerate Clifford algebra Cl(p, q) contains a 

transformation group Spin. (p, q) which, in many senses, seems to generalise the 

idea of quarternions. An element s of Spin, (p, q) acts on a vector XE Cl(p, q) 

through the two-sided transformation 

sxs-l (5.2) 

Elements s and -s give rise to the same transformation. 

There are a number of ways of formally defining Spin. (p, q). One approach is to 

consider the group generated by the products of invertible vectors, the so-called 

Lipschitz or Clifford group, then to apply the further restriction that the 

elements should have even grade and 'norm' ssl = 1, in which case s" = sl so 

that the two-sided map 5.2 can also be defined as 

sxs I (5.3) 

where st is the reverse of the multivector s. (A multivector is reversed by 

changing the sign of its elements of grade 2,3,6,7,10,11, and so on. ) 

A more geometrically intuitive approach, used by Hestenes, Li and Rockwood 

in [18, p 16] is to again start with elements of the Clifford group, the so-called 

'versors', but restrict the products to an even numbers of vectors only. In this 

treatment the elements of Spin, (p, q) are sometimes called 'rotors' reflecting the 

fact that two sided transformations by single vectors represent reflections, and 

that generalised rotations are the products of two (or an even number) of such 

reflections. 

The transformation group Spin. (p, q) is a Lie group because it is possible to 

continuously vary transfonnations to gradually change their effect. However, 

the behaviour of such transformations, particularly those that cause small 
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'nudging' changes and that are therefore 'close to the identity', is usually 
described through the Lie algebra associated with the Lie group. 

5.9 The Lie algebra of the spin group Spin, (p, q) 

In relation to the Lie group Spin, (p, q), Lounesto [19, p221] makes two key 

general comments which relate the exponentials of bivectors of CI(p, q) to the 

Lie group 

1. The Lie algebra of Spin, (p, q) is the space of bivectors Aý RP, q; 

2. The exponentials of bivectors generate the group Spln, (p, q). 

This means that if B is a bivector, i. e. an element of the Lie algebra associated 

with a Lie group, then the map 

e 
kB/2 Xe -kB/2 

represents aI -parameter 'continuous' group of transformations in the following 

sense: A given bivector B determines a specific transformation and scalar 

multiples of it magnify or diminish its effect without changing its essential 

nature. If the scalar multiple becomes zero, the transformation 'reduces to 

nothing', i. e. it becomes the identity transformation. 

More formally, the zero bivector generates the identity multivector, i. e. 

eo = 1. 

Also, within the group of transformations generated by B, the inverse 

transformation is achieved by changing the sign of the parameter, i. e. 

e-kB = 
(e*B Y'. 
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The similarity between these transformation group identities and classical 

exponential formulae for real numbers can be misleading, since other classical 

results need not apply. For example, the composite map generated by bivectors 

B, and B2 is not always that generated by B, + B2. However, if B, and B2 

commute then it is true that 

eB le 
B2 

= eB, IB2 
. 

If they do not commute, the equivalent general result is known as the 
Campbell-Baker-Hausdorff formula [20, p58] which can be expressed as 

ex ey = eqx'y) 

where f can be expressed in terms of Lie brackets [X, Y] = XY - YX as 

f(X, Y) =X+Y+ 1/2[X, Yl + I/I2([X, [X, Y]] + [Y, [Y, X]]) +... 

It is not generally true that all elements of a Lie group can be generated by the 

exponentials of its Lie algebra. However, as comment 2 above indicates, this is 

a special property of Cl(p, q). Thus for any element s (: - Spin. (p, q) there exists 
bivectors B I, B,... B6 such that 

s= exp(BI)exp(B2)... exp(Bk) 

Riesz [21, page 172], cited by Lounesto [19, page 223], further shows that the 

bivector B generating a given transformation is generally not unique in the 

sense that it is often possible to find another bivector F such that eB= -e' 

with the consequence that both B and F induce the same sandwich 

B12X -B/2 F12X -F12 transformation, i. e. ee =e e However, Riesz points to 

exceptions in the following cases 
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R1, ' for all B, 

W, 1 and R1,2 for all B#O such that B2->=O 

and W" and R"3 for all B#O such that B 2=0. 

This means, for example, that if SE Spin, (3,1) and there is a null bivector B 

such that exp(B) = s, then it is not possible to find another bivector that induces 

the same mapping as s in the manner described above. In other words, if s is 

the exponential of a null bivector B then B is unique. 

5.10 The meaning of the exponential 

In Lie theory, the exponential is a map for moving from the Lie algebra to the 

Lie group. Its definition is dependent on context and, in some cases, can be 

highly abstract. At the other extreme, there are often contexts when a definition 

based on a Taylor expansion will suffice. 

The cited remarks of the previous section assume a fairly abstract definition. 

Fortunately, for the purposes of this research, the definition given in chapter 4 
based on a Taylor expansion will suffice: 

exp(B) = expo&) = cosh(k) +A sinh(k) if B2>0, 

= cos(k) +B sin(k) , 
if B, <O, 

=1+ kÜ if B, =O. 

This expansion assumes that a bivector squares to a real value. In spaces of 3 

dimensions this is always the case. In higher dimensions, such as in our 

conformal model Cl(3, l), the square of a bivector is real if and only if the 
bivector is 'simple', i. e. a pure blade that can be expressed as the outer product 

of vectors. This condition is fortunately satisfied for the transformation 

bivectors used in the remaining chapters, making the above Taylor expansions 

computationally valid. 
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The fact that the exponential maps bivectors of CI(p, q) to the spin group 

Spin, (p, q) has computational consequences. The bivector generated mapping 

X->e B/2Xe-B/2 

can be written as 
x -), sxs-l 31 where s=e 

B/2 
. 

However, because se Spin, (p, q), the mapping can also be written as 

sxst 

where sl is the reverse of s. This means that instead of having to compute the 

exponential twice in order to obtain e B/2 and e- B/2 
, it is only necessary to 

compute the first exponential and then reverse the result to effectively obtain 
the second. This means swapping the signs of the elements of grade 2 and 3. 

5.11 Conclusion 

This chapter used the familiar notion of quarternion rotations to try to 'make 

sense' of bivector induced transformations in Cl(3, l). In this context, there is a 

remarkable similarity between S2 and H2 which allowed simple extension from 

one to the other. It was as though 112 had an algebra associated with it 

analogous to that of the pure quarternions. The successful extension to Rý 
followed. 

In fact, unit-nonn quartemions correspond to the group Spin, (3, O) = Spin, (3) 

whose Lie algebra is the 3D space of bivectors of Cl(3, O), i. e. the space of pure 

quarternions. The analogous pure 'hyperbolic' quartemions are the Lie Algebra 

of Spin+(2, I), i. e. the 3D space of bivectors of Cl(2, I). 



104 

Thinking in terms of 4-dimensional 'quarternion rotations' then led naturally to 

6 navigation bivectors for S3 . These were drawn from the 6-dimensional Lie 

algebra of Spin+(4). The stereographic projection of S3 to R3 meant that the 

induced transformations in the hemisphere model split into 3 rotations and 3 

translations. It is not clear, at this stage, whether this split is related to the 

group isomorphism. 

Spin(4) - Spin(3) x Spin(3) 

mentioned in [19, p 88 and 21, p 89 ] which suggests that one way to rotate 4D 

space could be to use two 3D tracker balls. 

In fact, there is an extensive theoretical literature on relevant group-related 

structures that can encompass the theory of minimal ideals, group 

representations, spinors and so on. This is not surprising since many of these 
ideas have relevance in theoretical physics, but only rarely do they impinge on 
the conformal model where the focus of interest is non-Euclidean geometry. 

Rather than attempt to go down these theoretical paths, this thesis will take an 

entirely different direction in its search to understand bivector-generated 

transformations. The remaining chapters focus on the nature of families of 

circles (i. e. pencils) generated by repeatedly applying these transformations to 

a single circle. As will be shown, the results obtained have immediate 

computational applicability. 
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6 Bivector based transformations -a picture emerges 

6.1 Introduction 

This chapter describes an analysis of bivector generated transformations arising 
out of a need to implement centralised mouse dragging operations. 

The analysis not only points towards an implementation, but also suggests a 

novel approach to defining non-Euclidean viewport transformations using just 

three control points. These, in turn, raise fundamental questions about the 

nature of geometry and its interactive representation on the computer screen. 
The chapter concludes by identifying some of these issues. 

6.2 Mouse-induced rotations and dilations 

A key aim of this research is to develop centralised mouse dragging operations 

analogous to the classical Euclidean rotation and dilation about a point, see 
diagrams in figure 6.1 where, in both cases, the point P is dragged to 

rotation about C dilation about C 

Figure 6.1 Mouse dragging operations about a fixed point. 

In the figure the radial geodesics through the centre C are represented by arcs 
of circles. Both mappings transform P to Q while leaving the centre C 
invariant. In the case of the rotation, the geodesic circle defined by the 
trivector blade pACAt should map to the circle defined by qA CAt' where t is the 
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'point at infinity. ( Here, the lower case is used to denote the conformal 

representation of points in upper case. ) 

In the case of the dilation, the circle through P with centre C should map to the 

'concentric' circle with the same centre but passing through Q. In both cases 

the transformations induced by the mouse are circle-to-circle mappings. The 

assumption is that such mappings can be effected by standard bivector-based 

'sandwich'maps of the form 

B/2 - B/2 
s -> e se 

where s is the original circle in each case, and B is an appropriate 'simple' 

bivector, i. e. a pure blade. 

6.3 Composing rotations and dilations 

If the bivector blades generating these two mappings commute, then the 

composite mapping can be efficiently generated using their bivector sum. This 

follows from the Cambell-Baker-Hausdorff result mentioned in the previous 

chapter. The converse assumption then is that any centralised mouse-drag, 

where P is dragged to any position Q, while the centre C remains fixed, can be 

decomposed into a rotation and a dilation, and that these commute. At this 

stage these are speculative comments based purely on intuition. However, such 

an elegant solution, if it exists, is worth pursuing. 

The key to implementing this intended approach is to find the bivector blade to 

generate a transformation that maps a given circle onto another. There is a brief 
hint in [23, page 10] that the solution may be to form the wedge product of the 

two circles, though no explanation is given. Even though this approach was 
found to work in special circumstances, the lack of any theoretical justification 

meant looking elsewhere for a suitable perspective. 
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6.4 Pencils of circles generated by two circles 

A clue to understanding bivector generated transformations seems to lie in the 

description of pencils of circles given in [2, pages 50 to 52]. This account 
discusses pencils of higher dimensional 'r-spheres' in the context of the 

conformal model CI(n+1,1) of W. 

The comments below reinterpret these observations in the context of the 
Cl(3, I) model of W where the dual of a bivector happens to be also a bivector. 

This simplifies a duality which is mentioned in [2] but which is somewhat 
obscure in the context of higher dimensional spaces. 

The pencils of circles described in [2] are generated from the conformal vector 

representations si and S2 of two circles by taldng linear combinations of the 
form s= asl + bS2,, with the proviso that s has a non-negative signature. The 

nature of the pencil generated depends on the whether the circles intersect, 

touch or do not intersect. The pencils generated are called respectively 
intersecting, tangent and Poncelet pencils, see figure 6.2. 

intersecting pencil tangent pencil Poncelet pencil 

Figure 6.2 The three types of pencil. 

Two circles are needed to generate a pencil, and any two circles of the pencil 

can be used as substitute generators for the pencil. 
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6.6 Pencil representation in conformal space 

In conformal space, the set of vectors s= as, + bS2 parametrically define a 

plane which can be equally represented by the bivector blade B ý-_ SIA S2- 

The intersection relationship between the circles represented by s, and s2 is 

exactly miffored by the signature of B which, in turn, determines whether the 

plane it defines intersects, touches or does not intersect the null cone in 

confonnal space. 

If B 2.,: ýO' the plane B intersects the null cone and does so exactly twice, 

defining two null vectors that fix two points on the screen viewport, Le. in Rý. 

These are the common points of concurrency of members of the intersecting 

pencil. If B 2=0, the plane touches the null cone along a single null vector. The 

corresponding point on the screen viewport is the common point of tangency of 

the tangent pencil. If B2>0 the blade B does not meet the null cone. In this case 

the blade defines a Poncelet pencil. 

It turns out that in Rý each type of circle-pencil has a 'dual' circle-pencil: a set 

of circles that are orthogonal to all the circles in the original pencil. The dual of 

an intersecting pencil is a Poncelet pencil, and vice versa. The two points of 

concurrency of the original intersecting pencil are the centres of the circles in 

the dual Poncelet pencil. The dual of a tangent pencil is an orthogonal tangent 

pencil with the same point of tangency, see figure 6.3. 
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Intersecting pencil and dual Ponceiet pencil tangent pencil and dual tangent pencH 

Figure 6.3 Pencil and dual pencil superimposed. 

Remarkably, if the bivector B represents a pencil, then its dual B- = BI-', 

represents its dual pencil. 

6.6 Generating pencils using the bivector as a transformation generator 

The following paragraphs extend the description in [2] by relating the results 

presented there to bivector generated transfonnations. 

The conformal vectors representing the circles s, and S2 lie on the plane 
represented by B : -- SIA S2. Any member s of the pencil generated by s, and S2 

lies on this plane, and the mapping 

s -> ek 
B/2 Se -k B/2 

can be viewed as being a rotation in conformal space of the vector s in the 

plane SIAS2. Repeating the transformation on s with different values of k 

generates the pencil of circles. Equally, successive applications of the mapping 

applied to s, with a given value of k, generate a subset of the pencil. 

Thus it is possible to view the bivector B, when applied successively to any 

circle s on B, as being a generator of a pencil of circles. The dual bivector B- 

generates the orthogonal pencil. In other words, a bivector B generates an 
orthogonal co-ordinate system -a co-ordinate 'patch' that spans the whole of 
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Rý. However, to do so, an initial circle s needs to be specified. This 'seed' circle 

can be any member of the pencil. A second orthogonal circle will be needed to 

seed the dual pencil. 

In fact a dual intersecting/Poncelet co-ordinate patch can be generated using 
just three control points, two to specify the points of concurrency of the 
intersecting pencil, and a third to select out a seed circle from the pencil. This 

same point can be used to select a seed circle from the orthogonal pencil, see 
figure 6.4. 

Poncelet 
pencil intersectýýýý 

pencil 

control points generated co-ordinate patch 

Figure 6.4 Co-ordinate patch around a control point P3 generated by control 
points P, and P2 which define an intersecting pencil. 

With reference to figure 6.4, two defining members of the intersecting pencil 
are the circle through PI, P2 and P3. and the 'generalised' circle (i. e. straight 
line) through PI, P2 and the Euclidean 'point at infinity' n. These are given by 

SI ««2 (PIA P2 A P3)- and S2 -*2 (P l'% P2 A ny . 

The generating bivector is therefore B= SIA S2. Either s, or S2 could act as seed 

circle. 

The generating bivector for the dual Poncelet pencil is B- = Bl". A seed circle 
for this pencil can be obtained by using the dual bivector B- to map the point 
P3 repeatedly to obtain the points P4 and P5. The seed circle is then 
S3 ý (P3 A P4 A P5)-, see figure 6.5. 
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ýd circle for 
ncelot pencil 

Figure 6.5 Seed circle through the control point P3 used to 

generate the Poncelet pencil dual to the intersecting 

pencil defined by control points P, and P2. 

6.7 Bivectors and classical transformations 

The signature of a bivector B determines the nature of the pencil it generates. 
Looked at as a transformation, if B 2,,, Co the rotation is classical or 'Euclidearf in 

the sense that the exponential function generates trigonometric functions. If 

132>0 the rotation is 'hyperbolic' in the sense that hyperbolic functions are 

generated. Euclidean rotations are 'circular' whereas hyperbolic rotations are 

asymptotic, see figure 6.6. 

hyperbolic (tidal) rotation Euclidean rotation 
B 2>0 B2 <0 

Figure 6.6 Hyperbolic and Euclidean rotations. 
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In the figure, the two pencils shown are dual, and the transformations are in 

fact generated by a bivector B and its dual bivector B-. 'Mus, for any point on 
the plane, a bivector and its dual define two localised mutually orthogonal 
transformation directions that are directly related to the underlying co-ordinate 

patch realised as two dual pencils. 

This has interactive implications. It means that once the three control points 
have been positioned (in order to define a co-ordinate system), the cursor keys 

can be naturally linked with directions associated with the co-ordinates. 

Because the underlying algebra is taking place in conformal space, with its two 

extra dimensions, it is theoretically possible to allow the control points to 
become 'points at infinity, or to tend toward each other; this is discussed in [2] 
in relation to pencils. 

However, for the end-user, unaware of this underlying algebra, the notions of 
'very far away'or'very close together'can be dealt with at a pragmatic level by 
including simple zoom controls acting on the viewport as a whole. To move 
points far apart, the user would simply zoom-out for a distant view and vice 
versa. 

The rather abstract notions of Euclidean and hyperbolic 'rotations' alluded to 

above can sometimes be realised in very straight forward ways - it is a matter 
of choosing the three control points appropriately, and sometimes also an 
imposed geometry. For example, figure 6.7 shows how polar co-ordinates can 
be generated by moving the control point P, 'far away'to the left. 
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Pl 

P, = 00-0) 
almost polar P2 =A 0) 
co-ordinates p3 = (-0.7,0.6) 

Figure 6.7 Generating polar co-ordinates. 

The associated bivector generated transformations are (nearly) Euclidean 

rotations and dilations. The former is Euclidean (in the rotational sense) and the 

second hyperbolic, reflecting the signature of the generating bivector and its 

dual. Thus successive contractions cause the circles to asymptotically approach 

the centre of the Poncelet pencil. Though essentially polar, the co-ordinates are 

not linear. One pair of opposing cursor keys could induce rotations in either 
direction, the other pair dilations and contractions. 

Cartesian co-ordinates can be generated by moving both control points p, and 

P2 'far away' - for example, one to the left and one to the right, see figure 6.8. 

translate 

4 
P2 

No. 

Figure 6.8 Generating cartesian co-ordinates. 

P, = 00,0) 
almost cartesian P2 = (+10- 0) 
co-ordinates P3 = (-0.7,0.6) 
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In the extreme case, when PI and P2 both become infinite, the associated 

bivector, and its dual, become degenerate with B2= (B -)2 = 0. In this case the 

associated transformations are not rotations (Euclidean or hyperbolic) but 

translations, and the co-ordinate grid comprises two orthogonal dual tangent 

pencils. In this case the cursor keys would adopt their normal role. 

6.8 Imposing a geometry 

Because our models of S2 and H2 are embedded in Rý, bivector generated co- 

ordinate systems and their associated transformations can be given 
interpretations relative to these geometries. For example, figure 6.9 shows the 

co-ordinate system and transformations induced when the control points p, and 

P2 are chosen at (0, I) and (0, -I) respectively. 

Figure 6.9 Wave fronts of hyperbolic and Euclidean rotations. 

If the figures represent the hemisphere model of S2, then the first 

transformation depicted is a tidal transformation with the north-pole as the 

sink. Individual points follow geodesic longitudinal paths. The second 

transformation depicts a rotation - geodesic longitudes form the 'wave fronts. 

Applied to the viewport as a whole, this latter transformation would 'rotate the 

globe' revealing its dark 'hidden! side. The former would have space appearing 

to emerge from the source at the south pole and move northward, disappearing 
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down the sink at the north pole. In fact the transfonnations are hyperbolically 

asymptotic, so no space is created or lost. 

If, on the other hand, the figures represent the Poincard disc model of H2, then 

the first transformation has geodesic wave fronts, but individual points on the 

wave front do not follow geodesic paths. It is also a 'tidal transformation', but 

here the sink and source are both on the infinite circular horizon. If applied to 

the viewport as a whole, this same tidal transformation would take on a 
different geometric meaning. The dual transformation, depicted in the second 
figure, has individual points of the wave front following geodesic paths. 
However, these are not non-Euclidean 'translations' because the rotation is 

actually Euclidean - the bivector generator has negative signature so that each 

point will eventually rotate back to its start position, instead of 'disappearing 

into the infinite circular horizoif. These transformations would have little 

geometric meaning in the context of the Poincard disc model. 

6.9 The decomposition of a central transformation -a first attempt 

An aim of this chapter is to implement centralised mouse dragging. We require 
that the transformation induced by a centralised mouse drag from point P to 

point Q keeps a central point C fixed and maps the geodesic circle s, through P 

and C to the geodesic circle s2 through Q and C. 

The blade B "": SI"'S2 generates an intersecting pencil since sl and S2 meet in two 

points, namely C and the 'point at infinity' t. Hence B generates a rotation about 
C. To create the specific rotation to move P exactly to Q, as shown in figure 

6.10, the bivectors B and B- need to be suitably scaled. 
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Q%A S2 = (qACAt 

dilation 

mouse drag 

rotation 

(pACAt 
centre 

S2 = 

Figure 6.10 The decomposition of a centralised 

mouse-drag into a rotation and dilation. 

The angle between the circles represented by s, and S2 is given by 

Cos-' 
(91 

. 
ý2)31 

where s^, denotes normalisation to unit modulus. The appropriate rotation 

bivector is then 
0 B/2. 

These conclusions draw on well known facts about normal rotations in a plane 
defined by a bivector. 

By twice applying this rotation to P and Q, sets of three points on each of the 
two Poncelet circles ri and r2 through P and Q can be obtained, see figure 6.11. 

Figure 6.11 Constructing circles through P and Q 

concentric about a common centre C. 

r2= (qAq, Aq2)- 
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It is then a matter of applying similar scaling to the bivector 13' = rjAr2. In fact, 

the dilation bivector B' is a scalar multiple of B- and so commutes with B. 

Hence applying the Cambell-Baker-Hausdorff formula, the bivector that 

generates the centralised drag from P to Q is B+ B'. 

However, the exact scaling factor needed to obtain B' proved difficult to 

determine, so an 'ad hoc' scale factor was used to see whether the expected 

results were geometrically generic, i. e. that the same algorithm generated 

rotations and dilations in all relevant geometries. The issue of the exact value 

of the scaling factor is addressed in the chapter 8. 

The suggested approach was tried in four different models of non-Euclidean 

space. Figure 6.12 shows a point P being mapped to Q via a rotation which 

takes it to P2. followed by a contraction taking it to Q. The contraction was 

then repeated several times to show the corresponding Poncelet circles. The 

geodesic circles through P and C, and through Q and C were also shown. The 

figures relate to the hemisphere model of S2 and the Poincar6 disc model of H 2. 

Hemisphere model of S2 Poincar6 disc model of H2 
geometry defining vector: e4 geometry defining vector: e3 

Figure 6.12 A centralised mouse-drag from P to 0 
decomposed into a rotation from P to P2 

and a contraction from P2 to Q. 

aeodesics 
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Figure 6.13 shows a similar decomposition in the horizontal and vertical half- 

space models of If. 

Is 

Half-space model of H2 Half-space model of H2 
geometry defining vector: e2 geometry defining vector: e, 

Figure 6.13 A centralised mouse-drag from P to Q 
decomposed into a rotation from P to P2 and 
a contraction (respectively dilation) from P2 to 0- 

In all cases, the composite bivector B+ B' mapped P to Q directly. 

6.10 Conclusion 

Aesics 

This chapter exploited an apparent connection between the theory of pencils 

and bivector induced rotations. This connection suggested a way of defining 

viewport transformations through just three control points which could give a 
'feel' for the nature of conformal space. It also led to an approach for 
implementing non-Euclidean versions of some of the centralised mouse drag 

operations of Chapter 2. 

The emerging perspective seems to be increasingly bivector-centric. This is 

perhaps not surprising in view of the correspondence between the bivector 
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algebra of CI(4, I) and the Lie algebra of Spin+(4, I). Also, unusually, the Lie 

algebra generates the full Lie group Spin+(4, I). 

Using the Conformal Model CI(4, l) naturally gives bivectors a central role in 

the computational algebra. Bivectors give rise to co-ordinate patches which 
have associated with them fundamental conformal transformations that map 

circles to circles. The various models of non-Euclidean space then super- 
impose another level of geometry. 

This approach seems to effectively place conformal geometry at the foundation 

of the various planar models of non-Euclidean geometry. This is certainly 

algebraically true, but it seems that a suitable interactive environment could 

potentially do the same thing didactically. 

It is perhaps worth observing that in their recent text book, Brannan, Epslen 

and Gray [24] introduce inversive geometry before discussing hyperbolic and 

spherical geometry (the latter two presentations use the complex number plane 

and the Riemann surface). Inversive geometry was seen to underpin hyperbolic 

and spherical geometry. 
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7 Pencils of circles - exploiting the idea 

7.1 Introduction 

This chapter uses pencils of circles to derive needed computational results. 

The chapter also explores how conclusions obtained in a specific geometry can 
be generalised - the key seems to lie in interpreting the nature of the geometry- 
defining-vector appropriately. In the case of spherical geometry in particular, 

this can require consideration of the null cone of the encompassing 4D 

Minkowski space. 

7.2 An alternative approach to determine a circle of a Poncelet pencil 

To implement centralised mouse dragging, the previous chapter suggested a 

method to create two generating circles of the dilation-defining Poncelet pencil 
dual to a rotation-defining intersecting pencil. It entailed successively rotating 

two specified points twice to create two sets of three points from which two 

Poncelet circles could be generated (see fig 6.11 of the previous chapter). 

The analysis presented here arose out of an attempt to find a more 
computationally efficient approach to creating Poncelet circles. 

Geometrically, any two points Pi and P2 define an intersecting and a Poncelet 

pencil. A third point P can be used to select a specific circle from each pencil, 

see figure 7.1. 
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oncelet circle 

nt circle 

Figure 7.1 Intersecting and Poncelet circles passing 
through P and defined by points P, and P2 

Algebraically, the member of the intersecting pencil through P is given simply 

by S -`ý (PIAP2Ap)-. As suggested above, the corresponding Poncelet circle 

through P could be found by constructing a second member of the intersecting 

pencil by creating the line joining P, to PZ, i. e. circle, s' = (PIAP2An)-, then 

forming the bivector sAs'. This bivector could then be used to map P 

progressively to PI then P2. The points P, PI and P2 could then be used to create 

the required Poncelet circle. 

An alternative way to find the Poncelet circle through P is to recognise that 

points are extreme cases of circles and that the (conformal) points p, and P2 are 
in fact members of the Poncelet pencil which can therefore be described 

parametrically as 

s= apl+bP2. 

The required member of the pencil passes through p, so 

(apl+bP2)*P ý0. 

Hence 

a(pl-p)=-b(P2*P)=k, say. 

Solving for a and b 

(7.1) 

a= +k/(pl. p), 
b= -k '(P2 * P)- 
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Substituting in 7.1 

s=k Pl 
-k 

P2 

Pi T P2 *P 

i. e. 

s= K(p, (P2 * P) - P2 (PI * P)) 9 where K= k(p, * P)(P2 ' P)) * 

Ignoring the multiplicative constant K, s is also represented homogeneously by 

(7.2) -': PI(P2*P)-P2(PI*P) * 

7.3 Euclidean circle through P with centre C 

As formula 7.2 relates vectors in conformal space, it is feasible to let p, = n, the 

point at infinity. If P2 is renamed c, then 7.2 becomes 

s= n(c. p) -c (n. p). (7.3) 

In Rý, s is the circle through P with centre C, see figure 7.2. 

ie- geodesic 
n point at infinity radiusýýPoncelet 

circle 

Figure 7.2 Euclidean circle through P with centre C. 
(rhe circle is the Poncelet circle through P 
defined by C and the point at infinity n. ) 

The generalised circle (p^c^n)- is the geodesic diameter through P and C and 
is a member of the intersecting pencil through n and c. 
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7.4 Hyperbolic circle through P with centre C not on the horizon 

In conformal space it turns out that it is also valid to modify 7.3 by letting 

n=t where, for now, t is the geometry-defming-vector of the Poincard disc 

model of hyperbolic space. Formula 7.3 then becomes 

s= t(c. P) -c (t - (7.4) 

In this case, s defines the hyperbolic circle through P with hyperbolic centre C, 

see figure 7.3. 

ýp Poncelet -ý 
drde 

geodesic t 
diameter 

\/ 

Figure 7.3 Hyperbolic circle through P with hyperbolic centre C. 

(The circle is the Poncelet circle through P defined 

by C and the geometry-defining-vector t. ) 

With reference to the original algebra presented, this generalisation works 
because the geometry-defining vector t is in fact the horizon, and the conformal 

vectors t and c still generate a Poncelet pencil. The corresponding member of 

the intersecting pencil through P is still (pAcAt)-. This is the hyperbolic 

diameter through P. 



124 

7.5 Hyperbolic circle through P with centre C on the horizon 

It turns out that the formula 7.4 still applies if the centre C is on the horizon t. 

However, in this case the pencil defined by t and c is a tangent pencil. Also, in 

this case, the circle (p^c^t)- is a member of the dual tangent pencil through C, 

see figure 7.4. 

Figure 7.4 Hyperbolic circle through P with centre C on the horizon. 

(The circle is the tangent circle through P dual to the 
tangent pencil defined by C and the horizon Q 

In conformal space, the bivector B= tAC is null and therefore represents a 
plane touching the null cone along the vector c. The dual bivector B- also 

touches the null cone along c but represents the dual tangent pencil at C. The 

diameter through P passes through C and is a member of this dual tangent 

pencil. 

7.6 Spherical circle through P with centre C 

Remarkably, formula 7.4 also works in the spherical case provided t is now the 

geometry-defining-vector for the hemisphere model. In this case, the vector t, 
having negative signature, has no direct interpretation in the model. 
Nevertheless the conformal vectors t and c parametrically generate a Poncelet 

pencil in the normal way. Figure 7.5 shows the member of the pencil that 

passes through P. 
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oncelet 
cirde 

Figure 7.5 Spherical circle through P with spherical centre C. 

(The circle is the Poncelet circle through P defined 
by C and the geometry-defining-vector t= e4. ) 

In fact, the bivector representing the Poncelet pencil, tAc, has positive signature 

and so cuts the null cone twice, once along the null vector c. The other line of 

intersection with the null cone, a null vector, represents the other centre C' of 

the dual Poncelet pencil, see figure 7.6. 

Figure 7.6 Intersecting pencil of diameters of a spherical circle with 
centre C. The concentric circles form the dual Poncelet pencil. 

This is pictured in conformal space in figure 7.7 where c is on the upper null 

cone, i. e. on the upper hemisphere of S2 , because its stereographic projection C 
lies inside the unit circle, the projection of the equator. In contrast c' lies on the 
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lower hemisphere of S2 so that C' lies outside the unit circle. Note that the 

diagram 'lacks a dimension! as explained in chapter 1. 

S2 

upper 
hemispt 

S2 

lower 
hemisphere 

alet circle through P with centre C 

tAc: Minkowski plane 
representing 
Poncelet pencil 

Figure 7.7 Conformal representation of Poncelet pencil of spherical 

circles concentric to the circle s through P with centre C. 

7.7 Deriving the translation formula for Euclidean space 

Chapter 4 states that if t is the geometry-defining vector, then the bivector 

(pAqAt)t generates a translation from P to Q. This section provides a 

justification for Euclidean space. 

In chapter 6, cartesian co-ordinates were formed from a dual Poncelet- 

intersecting pencil by letting the two centres of the dual pencil both tend to the 

point at infinity n. This is equivalent to forming a dual tangent pencil at n. 
Thus, a Euclidean translation from point P to point Q can be generated by the 
bivector representing the tangent pencil centred at n with circles through P and 

n, and through Q and n, as members, see figure 7.8. 
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tangental 
pencil 

A A-0 

n 

dual tangental pencil 

Figure 7.8 Generating a Euclidean translation from P to Q by 

constructing dual tangent pencils at the point-at-infinity n. 

As extreme cases, the dual tangent pencil contains the point n and the geodesic 

through P and Q, namely (p^q^n)-. Thus the pencil is represented by the 

bivector 
((pAq A 

n)-)^n. 

The dual tangent pencil is represented by 

B= (((plq^n)-)^n) -. (7.5) 

Algebraically, this is equivalent to the bivector cited in [4] and introduced in 

chapter 4, section 4.11, namely 

B= (p^q^n)n. (7.6) 

This equivalence can be shown using the 'deMorgan rules' for a multivector M 
and a vector v [18, p8] 

M-. v= (M,, v) - and M--v = (M.. v)-. 

Letting M=x-y-t it follows that 

(X"Y"t)t =Mt 
=M. t+m. t 

=M. t +XAYAtAt 

=M. t 
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whereas 

(M--t)- 
M. t 

7.8 Translations in hyperbolic geometry 

The experimental work in Chapter 4, together with comments in [4, page 373] 

suggest that 7.5 generalises to 

(pAq At)t 
, (7.7) 

where t is the geometry-defining-vector for any geometry supported by the 

model. If this is written in the form of 7.4, namely 

B= (((pAqAtflAt) -� (7.8) 

then the formulae can once again be interpreted in terms of dual pencils for 

hyperbolic geometries, see figure 7.9 which shows circular and flat horizons. 

Q_k, NýW J] geodesic 
geodesic P 
(I)Aqllt)- 

hodzon t 

Figure 7.9 Poncelet pencils for generating a hyperbolic 
translation from P to Q. (The pencils are dual to the 
intersecting pencils with the horizon t and the 

geodesic through P and Q as members. ) 

In this case ((p^q^t)-)^t represents an intersecting pencil. The two points of 
concurrency are the points where the geodesic through P and Q meets the 
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horizon t. The dual of this bivector represents the dual Poncelet pencil and 

generates a translation from P to 

7.9 Conclusion 

This chapter has shown that analysis in tenns of pencils is a powerful tool for 

visualisation and interpretation, especially when taking account of how the 
bivector plane representing a pencil meets the null cone. 

Three important generic computational formulae were discussed 

geodesic tbrough P and Q pAqAt 

circle through P centre C t(c. P) -c (t. P) 

translation bivector, P to Q (pAqAt)t 

The first was assumed and the second was derived and then generalised. 

The third was cited in chapter 4 but the original citation lacked derivation. 
Though the formula was 'seen to work! in the relevant geometries, this chapter 
has used a pencil based analysis to provide an independent theoretical 
justification. However, in relation to the approach taken here, the formula has a 
more intuitive feel when wTitten in the equivalent form (((pAq At)-)At) -. 



130 

8 Taylor approximations 

8.1 Introduction 

Implementing a pure dilation or rotation entails creating a bivector-generated 

transformation which maps one circle s, to another circle S2. For a rotation 
(about a finite centre) the circles are geodesics through the centre of rotation 

and are therefore members of an intersecting pencil through the centre and the 

point at infinity. The bivector SIA S2 representing the pencil has negative 

signature. For a dilation the circles are concentric about the centre of dilation, 

and they form a Poncelet pencil with the common centre and the point at 
infinity being the two Toncelet' points of the pencil. The bivector SIAS2 has 

positive signature. See figure 8. L 

S2 

dilation 

Figure 8.1 Rotation and dilation about a centre C 

viewed as circle to circle mappings. 

In both cases the scaled bivector B= _(SIAS2)/(SI. S2) seems to generate the 

appropriate mapping. However, on testing, inconsistencies were found, 

suggesting this rather elegant formula is an approximation of some sort. 

The independent analysis presented here elucidates the basis of this 

approximation and then uses the ideas generated to discuss rotations and 
dilations about centres at infinity. 

rotaton 



131 

8.2 Preliminary results and assumptions 

It is assumed that (e kB)-l 
= e-kB, that is to say that an inverse mapping 

corresponding to a particular parameter value k is generated by changing the 

sign of the parameter. 

The algebra in the next sections also needs the following result: 

if B= SIAS2 then s, and S2 anti-commute with B. 

This follows from the fact that s, 2 is always a scalar, since 

(SIA 
siB = si S2) = V2 Sl (SIS2 - S2SI 1 /2 (SI SIS2 - Sl S2SI) V2 2 (St S2 - Sl S2SI) 

B Sl= (SIA S2) Sl 1 = 1/2 
(SIS2 

- S2S1 ) Sl V2 (SI S2SI - S2 SISO V2 2 (SI S2SI - Sl S2)- 

8.3 Analysis of the hyperbolic case, B2>0 

If B=kB generates the transformation that maps circle sI to S2 then 

S2= e 
kh 

s, e -kA 

and s, = e-kh S2e kfl 
. 

If 132>0 then 

e 
kh 

= cosh(k) +A sinh(k) 

e-Ah = cosh(k) -B sinh(k) 

so the first mapping can be written as 

k-k_- 
S2 = 

(cosh 
+B sinh 

(cosh- 
Bsinh 

2 2)s, 2 
12) 
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kk (ASI A 

= 
(cosh' 

+ sinh cosh - st 
(sinh' fis 

IB 2)s' 22 2) 

= 
(cosh 2k- sinh 2+2 sinh 

k 
cosh 

k 
2 2)s, 22 

(As, ) 

A 

hence S2 = coshk s, +sinhk Bs, (8.1 a) 

and inversely s, = coshk S2 -sinhk 
AS2 (8.1b) 

Forming the geometric product gives 

2_ Sinh2 S, S2SI cosh k (SIS2) k (h B S2) + cosh k sinh k (B Sl S2 - s, B S2) 

(cosh 2k+ 
sinh 

2k) Sl S2 + (2 cosh k sinh k) h 
Sl S2) 

therefore S2SI = cosh 2kS, S2+sinh2kfi SIS2 (8.2a) 

and inversely S, S2= cosh 2kS2S, - sinh 2k BS2SI. (8.2b) 

Adding and using the fact that 

Sl 'S2 =-- S2 * Sl = (s 
IS2 +S2SI)12 

and Sl AS2 = -S 2 AS, = (SIS2 - S2SI)12 

gives 2S2 *Sl =2 cosh 2k s, -S2-2sinh2k 
ý(S, 

AS2)* 

Substituting f3 = (S2 AS, ) IIS2 AS, 
I 

where (S2 A SI)2 =IS2 A S112 

yields 2S2 * S1 =2 cosh 2k S1 'S2 -2 sinh 2k IS, 
A S21 

Therefore (I - cosh 2k) S1 'S2 -2 sinh 2k ISI 
A S21 I 

which reduces to 

ISI AS21 
=_ tanh k 

sl . S2 

So that 
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ISI 
AS21) S, AS2 

B=kB= tarih-' 
Sl 'S2 

j ISI A S21 

If lxl<l, the Taylor expansion for tanlf 'x. is 

tanh-' xx+x 
357 

(8.3) 

Applying this to 7.2 above, and ignoring all terms except the first, gives the 

approximation 

Sl AS2 
when 

ISI A S21 / Sl * S2 'S SMall. (8.4) 
St *S2 

8.4 The spherical case, B2<0 

Applying the formula 

kh 
e cos(k) +B sin(k) 

e cos(k) -B sin(k) 

to the transformation formulae 

S2 =e 
kB 

s, e -kB 

s, =e -kh S2e kA 

yields 

S2= cosk s, +sink Bs, (8.5a) 

s, =coskS2 -sink Bs2. (8.5b) 
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Fonning the Clifford products gives 

82SI = cos 2k 3, S2+sin2k B^S, S2 (8.6a) 

-sin 2k BSA, S, S2= cos 2kS2SI (8.6b) 

leading to 

B=kBA= tan-' - 
ISI A S21 S, AS2 

(8.7) 
St 'S2 

IS, A S21 

If lxl<l, the Taylor expansion for tan"x is 

tan-' xx 
35 

once again yielding the approximation 

Sl "*S2 
when IS, A S21 1 Sl * S2 'S SMall. (8.8) 

Sl 'S2 

8.5 The 'Euclidean' case, B2=0 

The Euclidean case (B 2 =0) arises when the centre of rotation or dilation is the 

common point of contact of a tangent pencil, see figure 8.2 which shows 

mutually orthogonal pencils with common point of contact c. Each is 

represented by a null bivector. 
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orthogon 
tangent 

Figure 8.2 Mutually orthogonal mappings induced by dual tangent pencils. 

In fact, in this case, the terms 'dilation! and 'rotation! have no clear meaning 
unless one of the pencils represents geodesics in the imposed geometry. 

Suppose a mapping maps a circle s, in one pencil to another circle S2 in the 

same pencil then, as usual, the pencil is represented by SIAS2 where sj^S2 is 

now null. The exact mapping from s, to S2 is assumed, as before, to be 

generated by a bivector of the form B= kB, where B= SIAS2 /I SIAS2 1. The 

problem, as before, is to find k and hence B. 

In this case the initial Taylor expansions yield 

ekh =I+kfi 
-kh 1-kA. 

Substituting into the transfon-nation equations 

S2= e 
kB 

s, e -W 

s, = e-kBS2C 
kB 

gives 

S2= s, + 2kBs, (8.9a) 

Sl = S2-2kBS2 (8.9b) 
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Clifford multiplication then gives 

(8.1 Oa) S2SI =S IS2 +4k BS, S2 

(8.10b) SIS2 -: S2SI-4k BS2SP 

Subtraction leads to 

S2 AS, =Sj A S2+4k Bs,. s 2 

S2 AS, =Sj AS2 +4k 

(Sl 
A SO 

Si 'S2 IS, A S21 

(Sl 
A S2) 

S, A S2- -2k IS, 
A S21 

I. 2 

k=- 
ISI 

A S21 

2(s, 'S2) 

B=kfi=- 
IS, 

A S21 S, A S2 

2(s, 'S2) 
IS, 

A S21 

Therefore 

S, AS2 

2(s, * SO 

In this case, the formula is exact and not an approximation. 

8.6 Centre at infinity 

If the centre of a drag transformation is either the point at infinity in Euclidean 

space, or a point on the horizon of a hyperbolic space, then the bivectors 
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generating the rotation and dilation are both null and the simplified formula 

8.11 applies. 

8.7 Summary 

The sometimes loosely stated claim that the bivector 

S, AS2 

Sl *S2 
(8.12) 

generates a transformation that maps circle s, to S2 needs to be elaborated. 

It is true (up to a factor of 2) only if the circles touch and thereby define 

a tangent pencil. In this case B2=0. 

If B2ý,. 0 the circles do not intersect and so define a Poncelet pencil and 
the formula 8.12 is a Taylor approximation of the formula 

tanh_l 
-IS, A S21 S, A S2 

B=kB= - Si 'S2 
IS, 

A S21 

If B2<0 the circles intersect and define an intersecting pencil. Formula 

8.12 is then a Taylor approximation to 

^= tan-1 
- 

ISI 
A S21 Sl AS2 

B=kB 
Sl * S2 IS, A S21 

By writing k as 

tank = Sl 'S2 
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it follows that k is the angle between the confonnal vectors sI and S2 and 

therefore also between the intersecting circles. In this case, k is also 

given by 

cosk = il 'S2 

sin k=- I g, A S^2 1* 

This gives rise to the traditional rotational form of the exPonential map 

s'=cosk+Bsink where cosk=i, *ý2, 

8.8 Conclusion 

As in the previous chapter, this chapter has provided an independent analysis of 
bivector generated transformations that map one circle onto another. Once 

again it was necessary to find theoretical underpinnings for what turned out to 
be somewhat unreliable results cited in the literature. 

The analysis has implication when attempting to factor mouse-dragging 

operations into pure rotations and dilations. If the Taylor approximations are 

used it is likely that the object being dragged will not follow the mouse pointer 

exactly. However, a final correction could be made at the end of the cumulative 
drag operation by applying the correct non-approximated formula across the 

cumulative drag. 

However, if the centre of dragging is a point on the horizon of a hyperbolic 

space, or the point at infinity of Euclidean space, then any mouse drag 

automatically factors into transformations represented by tangent pencils so 
formula 8.12 is exact (up to a factor of 2). 
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9 Transforming the Geometry 

9.1 Introduction 

This chapter initially presents two interface designs for transforming the 

geometry. They are developed for hyperbolic space then extended for spherical 

space. The pencil-based analysis used led to a number of theoretical results 

relating to diameters of circles and rotations with respect to various geometries. 
These ideas suggested further interface designs which are briefly outlined. 

Ideas in this chapter have been incorporated into a small working prototype 

described in appendix A. 

9.2 The problem 

The geometry-defining vector t of a space defines the geodesics -a circle s is a 
geodesic if 

s-t = 

For hyperbolic space, t has positive signature and the circle it represents is the 
horizon. Equation 9.1 encodes the fact that geodesics meet the horizon 

orthogonally. 

For Euclidean space, t is null and represents a single 'point at infinity'. Equation 

9.1 encodes the fact that (straight line) geodesics pass through the point at 
infinity. (Other interpretations view t as representing a 'circle at infinity' in 

which case geodesics meet it orthogonally. ) 

For spherical space, the geometry-defining vector t has negative signature so 
there is no visible horizon. In this case, equation 9.1 evidently encodes the fact 
that geodesics meet a certain 'equatorial-circle' at antipodal points. This has 
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been tacitly assumed thus far and seen to work in relevant examples. This 

chapter will examine this notion in more detail. 

These differing interpretations of the geometry-defining vector t, and therefore 

of equation 9.1, have consequences when considering how to change from one 

geometry to another. If both geometries are hyperbolic, it is simply a matter of 

changing from one circular (or straight line) horizon to another. Methods 

developed in the previous three chapters are appropriate for these circle-to- 

circle mappings. 

If the geometries are spherical the situation is somewhat more complicated, as 

will be shown. 

9.3 A first interface for changing hyperbolic geometry 

The circular horizon of the standard Poincar6 disc model of hyperbolic space 
has the unit circle e3 as the horizon. Dilating this circle expands the horizon 

and reduces the effective curvature of the geometry. 

The Poncelet pencil of dilated horizons concentric to e3 has the origin and the 

point at infinity as Poncelet points. However, to paramatise the pencil, any two 

representative circles (including points) can be chosen. Using e3 and n (the 

point or circle at infinity) as representatives the pencil is given by 

Xe3 + gn. 

Values of X and ýL equal to I and 0 give the unit circle e3, values of 0 and I give 

the circle at infinity n. 

A simple slider can change values of % of g and so dilate the horizon from the 

initial unit circle up to the circle at infinity, see figure 9.1. 
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00 

Figure 9.1 Using a slider to dilate the horizon of the 
Poincard disc model of hyperbolic space. 

The geometry-defining vector 

%e3 +p 

detennines the geodesic between two points A and B- it is the circle (aAb At)-. 

As the horizon dilates the geodesic flattens, see figure 9.1. 

In this interface design, conformal geometric objects (i. e. points and circles) 

remain fixed on the screen as the underlying geometry changes. However, 

geometry related objects, e. g. geodesics as well as centres and diameters of 

circles would change as the geometry changed - their values would depend on 
the current value of the geometry-defining vector. 

As the horizon dilates the proportion of the total hyperbolic space seen in the 

viewport decreases. However, the central area remains in view - it is the fixed 

centre of focus. 
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9.4 A second interface for changing hyperbolic geometry 

The centre of focus of the next interface is the southern part of an expanding 

horizon. The variable horizon or geometry-defining vector is defined by 

Xe3 + pe2- 

This defines an intersecting pencil with the unit circle e3 and the x-axis e2 as 

members, see figure 9.2. 

3+ýt e2 

00 

Figure 9.2 Using a slider to dilate and flatten the horizon 

of the Poincar6 disc model of hyperbolic space 
so that it becomes the half space model. 

Moving an equivalent slider would change the horizon from the unit circle of 
the Poincard disc model to the horizontal horizon of the classical half-space 

model. The geometry therefore does not 'flatten out! but remains strongly 
hyperbolic throughout 



143 

In this case, an alternative to the slider would be to use an in-scene vertically- 

moveable control point C which would control where the current horizon cut 
the y-axis, see figure 9.2. 

9.5 Constructing interfaces for changing spherical geometry 

The two interfaces above could also be used to modify spherical space - it is a 

question of re-interpreting the meaning of the transformed unit circle so that it 

represents an equatorial circle r of a spherical space rather than the horizon of a 
hyperbolic space. 

However, to be able to draw geodesics we need to be able to construct the 

geometry-defining vector t from r. To do so, we observe that the set of 

geodesics s that satisfy equation 9.1 defines a trivector orthogonal to t. Thus if 

we can represent the set of geodesics by a trivector, then its (orthogonal) dual 

will be the required vector t. 

To see how this can work, consider the standard spherical model where the 

equatorial circle is the unit circle e3. Any line through the origin is a geodesic 
and is a member of the intersecting pencil with the origin and the point at 
infinity as points of concurrency. This pencil can be represented by the two 
axes el and e2, so the pencil is represented by Xle, + k2e2. This linear subspace 
is the bivector ejAe2 = e12- (In fact, only sub-space vectors ofposilive signature 

represent circles - this necessary condition will be omitted in what follows. ) 

On the other hand the pencil X'jej + %3e3, represented by the bivector eM, is the 
set of geodesics that meet the unit equatorial circle at antipodal points where 
the vertical line el meets the circle e3, see figure 9.3. 
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e1 

e2 

The pencil The pencil The pencil 
%, e, + X2e2 %, e, + X3e3 a, (7,, e, + X2e2) + C12 03 

Figure 9.3 Pencils generated by the vertical axis el, 
the horizontal axis e2 and the unit circle e3- 

The complete 3-parameter family of geodesics is taken by constructing the 

pencil formed from an arbitrary line through the origin, Xlei + %2e2, and the 

unit circle e3 (see figure 9.3) 

(TI(Xie, + X2e2) + (72 e3 

= ýt1 ei + kt2 e2 + ýt3 e3. 

TWs linear subspace is the trivector e, A e2 A e3 = e123. Its dual -e4 
is (a scalar 

multiple of) the expected geometry-defining vector. 

Generalising, possible computational steps for defining the geometry-defining 

vector t from the equatorial circle r are: 

construct diameters m, and m2, 
fonn the trivector ml^m2^r - this represents all the geodesics, 
the geometry-defining vector t is then given by the dual (MIAM2Ar)-. 

X, e, +x 2e2 
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9.6 Modifying the first interface for spherical geometry 

The first interface dilated the unit circle C3 using the pencil Xe3 + pri. Using the 

fact that n= e3 + e4, this circle could be represented homogeneously by 

r=e3+pn= (I +p)e3+pe4. 

For the spherical interface, this circle now represents an equatorial circle rather 

than an (hyperbolic) horizon. The horizontal and vertical diameters of this 

circle are still el and el, so the trivector of geodesics is 

elA e2^((l + p) e3 + pe4) 

= (I p) e123 + P124- 

The geometry-defining vector t is the dual of this trivector 

+ p) e123 + P124)I4'1 

+ p) e123 + P124)(-el234) 

(I + p) e4 + pe3 +P 

e4 + pn. 

In this case, the changes in the original equatorial circle r= e3 and the 

geometry-defining vector t= e4 can be depicted in relation to the null cone, see 
figure 9.4. 
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e4+ pn 

r= e3+ pn 

Figure 9.4 Orientations of the conformal representation of an 

equatorial circle of spherical space defined by r, 

and the corresponding geometry-defining vector t. 

The dilation of the equatorial circle initially represented by e3 is reflected in a 

rotation of e3 toward e4. This agrees with the analysis in chapter 1. The initial 

geometry-defining vector e4 rotates by the same amount toward e3. Both 

vectors remain in the embedded Minkowski plane defined by the bivector e34 
e3 A e4, 

9.7 Modifying the second Interface for spherical geometry 

The second interface altered the original unit circle e3 by effectively adding an 

e2 component to obtain the circle r= e3 + pe2- 

If this is re-interpreted as an equatorial circle of spherical space, the horizontal 

diameter through it is of the form e2 + kn (lines parallel to e2 form a Poncelet 

pencil with the point at infinity n as one of the Poncelet centres). For this line 

to be a diameter of the circle e3 + pe2 it must meet it orthogonally. Hence 

(e3 + PeD - (e2 + Xn) : -- 0 

(e3 + pe2) - (e2 + Xe3 + Xe4) -=- 0 

X+P=O 

p =-X. 
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The horizontal diameter is therefore e2 - pn = e2 - pe3 - pe4,, 

the vertical diameter is still ei. 

The trivector of geodesics is therefore 

(e2 - Pe3 - pe4)/' ei^( e3 + pe2) 
(e2l - pe3l - pe4 

)A( e3 + pe2) 

e213 -P2 e312 - pe413 - 
ý2 e412 

p2 )e123 - pe413 -p2 e412- 

The geometry-defining vector is given by the dual 

+ p2 )e123 - pe413 - p2e4l2)(-el234) 

=(1 p2 )e4 + pe2 - 
P2C3 

- 

If p=0, r= e3 while t= e4 as expected. 

Replacing p by 1/, %, r and t are homogeneously given by 

r= Xe3 + e2, 

and t= (X2 +I )e4 + Xe2 
- e3- 

Thus when X= 0, r=e2 andt=e4-e3- 

The behaviour of the r and t vectors in relation to the null cone is depicted in 
figure 9.5 where, as r rotates from e3 to e2, t rotates from e4 to e4 - e3. 
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e, 

W1 )e. + Xe,, - e.., 

e3 

- Id 
r= %e3 + e2 

Figure 9.5 Left: Rotations in conformal space of the representation of an 

equatorial circle of spherical space defined by r, 

and the corresponding geometry-defining vector t. 

Right: Dilation and flattening of the actual equatorial circle r 
due to the rotation of its representation in conformal space. 

When r rotates from e3 to e2 in the opposite direction of rotation, t rotates from 

e4 to e4 - e3, also in the opposite direction, see figure 9.6. This counter-rotation 

of r generates the other half of the pencil. 

(%2 +1 )e4 + 42 -03 

e4 

e4 - e3 

-e2 r= Xe3 +I 

e3 

Figure 9.6 Left: Opposite rotations in conformal space of the 

representation of an equatorial circle of spherical space 
defined by r and the corresponding geometry-defining vector t. 

Right: Dilation and flattening of the actual equatorial circle r 
due to the rotation of its representation in conformal space. 
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Figures 9.5 and 9.6 depict 4D conformal space with the el dimension omitted. 

The t vector describes a cone tangent to the null cone. 

9.8 Combining interfaces 

The first interfaces for spherical and hyperbolic space could be combined, see 

figure 9.7. 

1 00 1 

hyperbolic geomiWy spherical geometry 
(Poin=6 disc mod( (hemisphere model) 

Euclidean space 

Figure 9.7 Slider to change from hyperbolic to spherical geometry. 

The slider could start with a left-value of 1, corresponding to the Poincar6 disc 

model with the horizon the unit circle. Moving it to the right would expand the 

horizon until it became infinite, which would correspond to Euclidean space. 
Continuing to slide it to the right would cause the circle at infinity to shrink, 
but this time it would represent the equatorial circle of spherical space. 

In effect, the slider would rotate the conformal geometry-defining vector t from 

e3 to e4 using the bivector e34 as a generator. The rotation is hyperbolic, so the 

transition across the null cone would have to be handled carefully. 

In a similar way, figure 9.8 shows a slider for transforming from the horizontal 

to vertical half-space models of hyperbolic space via the Poincard disc model. 

00 1 00 

hyperbolic geometry hyperbolic geometry 
(horizontal half-space model) (vertical half-space model) 

(Poincar6 disc model) 

Figure 9.8 Slider to change from the horizontal to vertical 
half-space models of hyperbolic geometry. 
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In this case the geometry-defining vector would rotate from e2 to e3 along the 

plane e23 and then from e3 to ei along the plane e13. 

9.9 Diameters in spherical and hyperbolic geometries 

The pencil-based approach throws light on the nature of diameters in 

hyperbolic and spherical geometries. It also provides an answer to whether, if 

a circle becomes the horizon of a hyperbolic geometry or the equatorial circle 

of a spherical geometry, its diameters are geodesics of the 'local' geometry 
defined by the circle. 

It is assumed that a diameter of a circle is a geodesic that meets the circle 
orthogonally. (In the spherical case this is easily verified by considering the 

circle as a stereographic projection of a circle in S2. ) 

Figure 9.9 shows the hyperbolic diameters of a circle s defined by the horizon 

circle e3. The diameters are members of the intersecting pencil dual to the 
Poncelet pencil defined by s and e3. The Poncelet and intersecting pencils are 

orthogonal. 

Figure 9.9 Intersecting pencil of hyperbolic diameters of a Circle s. 

Figure 9.10 shows the spherical diameters of the same circle s with e3 taken as 
the equatorial circle. 
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a, 

e2 

Figure 9.10 Intersecting pencil of spherical diameters of a circle s. 

The diameters form a intersecting pencil defined by the horizontal diameter, 

i. e. the axis e2, and the 'vertical' diameter. This latter diameter meets e3 at 

antipodal points where e3 meets the vertical axis el. The circle s is orthogonal 

to this pencil and is therefore a member of the dual Poncelet pencil. 

The fact that any member of the intersecting pencil through the centre of s is a 

spherical diameter can be shown with reference to figure 9.11. 

P. 

e2 

Figure 9.11 Spherical diameters r, d and e2 Of a circle s showing their 

antipodal points of intersection with the equatorial circle e3- 
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Without loss of generality, assuming the centre of s is on the horizontal axis e2, 

the 'vertical' diameter d is a member of the pencil el + Xe3. The horizontal 

diameter of s is the horizontal axis e2. Any member of the intersecting pencil 

through the centre therefore has the form 

r=d+ geZ, 

r= el + ?, e3 + ge2- 

Hence 

re4 ý 

This is equivalent to saying that r meets the equatorial circle e3 at antipodal 

points. The equivalence comes from the fact that any straight line diameter 

through the centre of the equatorial circle is of the form ke, + ge2. By 

definition, such a diameter meets the circle e3 at antipodal points. Any other 

circle that passes through the same two antipodal points has the form 

c= p(?, el + ýLe2) + ae3- 

It follows that 

c-e4 = 0. 

9.10 Families of diameters 

For a hyperbolic space defined by a geometry-defining vector t, the family of 
diameters through a circle s is represented by the bivector 

(tAs)-. (9.2) 

This is an encoding of the fact that the diameters form a intersecting pencil 
dual to the Poncelet pencil formed from the horizon circle t and the circle s. 

Formula 9.2 is evidently generic to other geometries as will now be shown. 
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If t=n, so that it defines Euclidean geometry, the same argument as above 

applies. In this case tAs = es defines a Poncelet pencil of concentric circles, 

and its dual is the family of straight line diameters. 

Finally, suppose t is the geometry-defining vector of a spherical space, i. e. 
e<O. A circle d is a diameter of a circle s if it is a geodesic and it meets s 

orthogonally, i. e. if d-t =0 and d-s = 0. We need to show that d is then 

contained in the linear subspace defined by the bivector (tAs)-. To do this we 

show that d is not in the complementary linear space defined by tAS. Suppose it 

was, then d can be written in the form 

d= Xt + [ts. 

Hence d-s = Xt-s + gs2 =0 

and d-t = Xe + ps-t = 0. 

Thus tes 
2_), 2e 

= 0. 

This is not possible since s2 >0 and e<0. Hence d is in the subspace defined 

by (t^s)-. 

9.11 Horizontal and vertical diameters - pencil based analysis 

The following pencil-based analysis derives the vertical diameter of a circle s 
for a hyperbolic geometry with horizon circle t. 

It is assumed that s is contained in t, so that they generate a Poncelet pencil. 
The axis a of this pencil is perpendicular to both s and t and, being a straight 
line, it follows that a-s = a-t = a-n = 0. Hence a is perpendicular to the linear 

subspace spanned by s, t and n, so a= (sAtn)- 

The vertical diameter d meets this axis at the same angle that the y-axis el 
meets it, see figure 9.12. 



154 

y-axis 

pencil axis a= (tASA n)- 

vertical diameter d 

(tASAa)- 

Figure 9.12 Vertical diameter d of a hyperbolic circle s. 

Hence 

a d=e, -5. (9.3) 

On the other hand, d is a member of the intersecting pencil dual to the Poncelet 

pencil generated by t and s. One of the generators of this pencil is the axis a. 
Another generator is the circle c which has axis a as diameter, see figure 9.12. 

This circle is perpendicular to s, t and a, so it is given by 

C= (tASA 
a)- . 

Thus the required diameter is of the form d= %a + c. Substituting in 9.3 above 
gives 

(a(% 5+E ))-S=e, -S, (9.4) 

were p is a factor to normalise ka +c so that 

a, (% a+z )l =1 
a 

2(%2 +1 
)=1 

since a-c = 0. (9.5) 
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Expanding 9.4 and using the fact that a-c =0 gives 

cr), =ecd 
(el - so that cF =% 

Substituting in 9.5 yields 

1 =± 
(el ä)' 

(e 
1 

ä)2 
_, 

' (9.6) 

where a= 
(SA tAn)- and C= (t^SA 

a) -. ( If it assumed that d #c, then X#0. ) 

This approach was tested computationally in different geometries. The method 

was generically successful but limited because of the ambiguity of sign arising 
from 9.6. It was found that alternating between the plus and minus sign 

generated two circular diameters both of which met the axis a at the same angle 
that the axis met the y-axis, see figure 9.13. 

Figure 9.13 A hyperbolic circle s showing two diameters 

equally inclined to the line joining the centre of 
the circle to the centre of the horizon circle t. 
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9.12 Rotation about a point in any geometry 

In the extreme case, the circle s in 9.2 can be replaced by a point p. Formula 

9.2 then becomes 

B= (t'p). (9.7) 

This represents the pencil of geodesic lines through p and hence B generates a 

rotation about the point p in all geometries. 

This agrees with the conclusion in chapter 5 that in the standard models of H2 91 
S2 and W, a rotation about the origin is generated by the bivector e12. To show 
this, suppose p is the origin e4 - e3, then for the Poincard disc model, t= e3 SO 
that 

B= (t'p)- = ((e3) ̂ (e4 - e3))- = e347 = -el2- 

For the hemisphere model of S2, t= e4 so that 

(tlp)- = ((e4) A (e4 
- e3)Y = e437 =e 12 - 

For W, t= e3 + e4 so that 

(tAp)- = ((e3 + e4 )A (C4 
- e3))- = 2e34- = -2el2- 

Apart from a scalar multiple, which determines the sense and degree of 
rotation, the result is the same in each case. 

This confirms that e12 generates rotations about the origin in all three basic 

geometries and is also an indication of why Euclidean geometry should perhaps 
be better described using n/2 rather then n. 
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Formula 9.7 could also provide an alternative navigation strategy to that 

suggested in chapter 5. Rather than retain the current cumulative 
transformation for each shape, it would be possible to retain its current position 

p, since it is relatively easy to rotate the shape about p using 9.7. However this 

approach would also require a way of defining, retaining and using a shape's 

current orientation. 

On the other hand, if the transformation generated by B is applied to all scene 

elements, the scene will effectively rotate about p while p itself remains fixed. 

Thus 9.7 can also be viewed as generating a global rotational scene- 
transformation. 

9.13 Multiple viewports with parallel geometries 

Ideas emerging from this chapter suggest further possible interface designs. 

One interesting possibility is for a scene, stored in conformal space, to be 

viewed through more than one viewport, each with a different geometry. 
Transformation actions taken in one viewport ultimately effect the scene in 

conformal space and these changes are then projected into the remaining 

viewports. Alternatively, transformations could be applied to multiple 

viewports simultaneously. 

As an example of the latter, a simple scene could be shown in two viewports, 
one with the spherical geometry of the hemisphere model and the other with 
the hyperbolic geometry of the Poincard disc model. A cursor-key based 
interface might use the normal cursor keys to effect normal viewport 
translations, the shifted cursor keys to effect scene translation in the actual 
geometry using the translation bivectors derived in chapter 5, namely 

T. = ele34t 

Ty = e2e34t- 
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A third use of the cursor keys, with the control key held down say, could be to 

use the horizontal keys to rotate the scene (i. e. space) about an axis, and the 

vertical keys to change the orientation of that axis, all relative to the 

appropriate geometry. Figure 9.14 depicts the spherical case showing the 

changing points of concurrency for the intersecting pencil associated with the 

rotation. 

infinitý 

Figure 9.14 Sequence showing a point of rotation of 
spherical space migrating upward. 

family of pencil 
generators 

Representatives of this pencil are the vertical axis el and a geodesic circle 
through the current point of rotation. The latter meets the unit circle at 
antipodal points, i. e. where it meets the horizontal axis e2. These second 
generating circles, in turn, form the pencil Xe2 + ge3 (see figure 9.14). Thus the 
rotational bivector B is given by 

(), e2 + [te3)Ael. 

Using the control-up and control-down cursor keys to simultaneously vary X 

and p between I and 0, and 0 and I respectively changes B so that the centre of 
rotation moves from the centre to the north pole, as shown in figure 9.14. The 
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control-left and control-right cursor keys can then be used to effect a rotation 

about the current centre of rotation using the current value of the bivector B. 

The hyperbolic case is shown in figure 9.15. 

Figure 9.15 Sequence showing a point of rotation of 
hyperbolic space migrating upward.. 

family of pencil 
generators 

As before, generators for the intersecting pencil are the vertical axis el and the 

geodesic through the current centre of rotation. However, in this case these 

second generators form a Poncelet pencil with the north pole e4+e2 and the 

horizontal axis e2 as generators (see figure 9.14). An arbitrary member of the 

pencil is given by ?, (e4 +e2) + ge2- The variable rotational bivector in this case 
is therefore 

13 = (), (e4 +e2) + [te2)A el. 

9.14 Conclusion 

This chapter considered the relationship between the equatorial circle r of a 
spherical space and its geometry-defining vector t. The relationship seems 

complex and was only pursued in relation to two specific geometry-changing 
interfaces. To develop a more general relationship would probably require 

construction of the meet of the trivector of all geodesics (C) and the trivector of 

all straight lines generated by ke, + ge2 + vn. This would contain the straight- 
line geodesics which could be used to obtain the equatorial circle. 
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More significantly, the chapter further supports the idea that the emerging 

pencil-based approach can provide the graphics developer with an intuitive 

way of deriving and analysing powerfid generic formulae such as 9.2. Such 

analyses then led to further suggestions for easy-to-implement prototype 
interfaces, an example of which is described in appendix A. 
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Conclusion 

The main thrust of the research was to interpret and develop the conformal 

model in a way appropriate for a graphics developer interested in the design of 
interactive software for exploring non-Euclidean space. 

There seem to be a number of fundamental conceptual barriers to getting to 

grips with the model. One relates to the fact that the non-Euclidean geometries 

of interest are embedded in a Minkowski space of more than 3 dimensions 

which is difficult to visualise. A second is that points and circles in the 

embedded non-Euclidean geometries are represented homogeneously by 

vectors in the Minkowski space. A third relates to the fact that transformations 

in the embedded geometries are generated by bivector generated 

transformations in the higher dimensional Minkowski space. 

The techniques of visualisation and pencil-based analysis developed here seem 
to hold considerable promise for both aiding conceptual understanding and for 

future implementation research and development. 

For obvious reasons, there seems reluctance in the literature to visually 

represent spaces of more than 3 dimensions, though pared down diagrams do 

sometimes hint at possibilities. Because of the inherent dangers, the 

visualisations developed in Chapter I took great care to identify the nature of 
the dimension reducing technique used so that the 4D Minkowski space could 
be represented as a 3D picture. The intuitive techniques made use of common 
metaphors - latitude lines, fans, joy sticks, and so on. The resulting 
visualisations were successful in showing how, by altering the orientation of a 
conformal vector in relation to the null cone, the circle it represented changed 

accordingly. The visualisation of this notion was key to the later work of 
chapters 6 to 9 where rotating conformal vectors generated pencils (families) of 
circles. 
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Of equal importance, the visualisation successfully reconciled two very 

different approaches to the conformal model: The classical approach based on 

the idea of stereographic projection, and one where the various geometries are 

seen as sections of the null cone. The orientation of a conic section is defined 

by a single geometry-defining-vector'nonnal'to its plane. However, as pointed 

out in that chapter, in the visualisation of Minkowski space, 'normal' does not 

necessarily mean perpendicular. 

In relation to the dimension reducing techniques introduced, it is perhaps worth 

pointing out that although they were largely intuitive they do seem to be 

particular cases of mathematical 'fibrations. In other words, there is a formal 

theory relating to fibre bundles to underpin the intuitive, should that ever be 

required. 

Central to the work was the need to make sense of the two-sided mapping in 

conformal space generated by a bivector B 

B12X -B/2 X 
--> e oe 

The approach in chapter 5 was somewhat serendipitous - it utilised the fact that 

CI(3, I) embeds the 2D sphere, allowing for comparisons with classical 

quarternions. Bivectors of CI(3, I) that do not entail the fourth negative- 

signature component act on the 2D sphere like bivectors, of CI(3), i. e. like pure 

quarternions. This led to the symmetrical discovery that bivectors of CI(3, I) 

that do not entail the third positive-signature component act on the embedded 
Minkowski sphere of negative unit radius is much the way that quartemions 
do. Using these ideas in conjunction with retained-mode graphics led to the 
derivation of navigation controls for 2D non-Euclidean geometries. These ideas 

were extended to 3D geometries. 
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The major challenge of this research was dealing with transformations 

generated by more generic bivectors. The question became more urgent when 

trying to solve the problem of how to implement on-screen mouse-induced 

rotations and dilations about a fixed point. The problem proved surprisingly 
intractable - apparent 'quick fixes' gleaned from the literature proved 

unreliable, with unaccountable errors creeping in. To track down the source of 

the errors it was necessary in Chapter 8 to carry out a new and thorough 

mathematical analysis where it was found that errors were due to the fact that 

some results casually referred to in the literature were in fact Taylor 

approximations. This illustrates a problem frequently faced by this research - 
often results are quoted without explanation or background as though being 

'well knowif. Perhaps they are, but probably only in the context in which the 

authors normally work which is usually advanced theoretical/mathematical 

physics. 

The major breakthroughs in this research began when the role of the conformal 
bivector that generated a transformation was given a dual interpretation. In 

conformal space it defines a plane of rotation and 'on the ground', in the 

geometry of interest, it defines a pencil of circles. Though this dual 
interpretation is not new, it does not seem to have been exploited and 
developed in the way that is here. This is probably because the exploration was 
driven by a need to initially solve the in-scene mouse interaction problems. The 

new approach proved to be surprisingly powerful and was used to solve other 
problems, particularly that of how to implement viewport transformations and 
how to dynamically alter geometry. 

Perhaps another reason why these ideas have not been developed previously is 

that, rather ironically, much of the research in the conformal model ignores the 
fact that it can model non-Euclidean geometry but focuses only on normal 3D 

space. The underlying agenda seems to be the promotion of the conformal 

model as an alternative to the standard homogeneous model. The case for this 
is weakened by the fact that the conformal model seems very good at dealing 

with circles and spheres, and their intersections, but not with other geometric 
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elements. When dealing with such intersections, circles are better represented 

by blades, rather than by vectors. Doing so introduces a confonnity in approach 

since spheres are also represented by blades. 

Thus, most implementation research on the conformal model tends to ignore 

the vector representation of circles. It is precisely here where this work breaks 

new ground. 
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Appendix AA short test program 

This program implements a double viewport system. The cursor keys control the 

view in the mouse-selected viewport as follows: 

Umnodified, the cursor keys effectively translate the viewport. 

Modified with the SHIFT key, they induce non-Euclidean translations using 
the generic formula discussed in chapter 5, namely 

Tx = ei e34 t 
Ty = e2 e34 t 

where t is the geometry-defining vector. 

Modified with the CONTROL key, they induce rotations about a moveable 
point. The left & right cursor keys rotate the scene, the up and down keys 

move the centre of rotation up and down relative to the viewport. 

The technique used is a slight extension to the approach discussed at the end of 

chapter 9 where the rotation bivector was the wedge product of the vertical axis el 
and the current member s of the pencil Xe2 + ge3 or %(e4 +e2) + ge2, depending on 
whether the geometry was spherical or hyperbolic. 

Rather than select the member of the pencil parametrically, it is possible to view 
each selection as a rotation of the e2 vector in conformal space. In spherical space 
the rotation is from e2 to e3 and is Euclidean, see figure A. I. 

V 
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s= Xe2 + ýte3 

e3 

e2 s 

e P- 2 

Euclidean rotation 
in the e23 plane 

Figure A. 1 Rotating s from e2 to e3 on the e23 plane. 
(The rotation is Euclidean. ) 

In the hyperbolic case, the rotation is hyperbolic from e2 to e4, though e4 is never 

reached - the rotation is asymptotic to the null cone value e2 + e4, see figure A. 2. 

A, --ý 
e4 + e2 

e2 

s= X(e4 + e2) + Ile2 

e4 

/Z 

"ze /2 

hyperbolic rotation 
in the e24 plane 

Figure A. 2 Attempting to rotates from e2toe4 on the e24Minkowski plane. 
(The rotation is hyperbolic so s only rotates as far as e2 + e4-) 

In the spherical case where the geometry-defining vector t= e4, the rotation 

bivector for generating s is e23- In the spherical case, when t= e3, the bivector is 

e24- In the spirit of generality, but only in these two cases, the bivector can be 

expressed as Ve234. 
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The program displays three shape types: 

circles, specified by their conformal blade representation, 

points, specified by their position specified conformally and drawn as a 4- 

pixel wide square, 

geodesics arcs, specified by two points conformally specified, and drawn as a 
full circles or as straight line joining the points as appropriate. 

The first two shapes are fully specified by a single multivector, the third requires a 

second 'overfloAV multivector. Conformal shape data is stored in the arrays 

conformalArray and overflowArray. 

The drawing of each shape requires up to four values to specify its bounding box. 

This data are stored in the array shapeArray and held as decimal valued modeling 
0 co-ordinates, appropriately scaled for viewport coordinates on the fly using the 

current viewport parameters. 

When a scene transformation takes place, all stored conformal multivector data are 
transformed identically then the data in the shape array are modified accordingly. 

Rather than passing transformation bivectors as parameters, their exponentials are 

passed instead. These are referred to as 'versors' and often denoted by a V. 

The program generates the original scenes depicted in figure A. 3. 
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hyperbolic geometry spherical geometry 

Figure A. 3 Initial positions of objects. 

After various trarisformations the scenes may appear as in figure A. 4. 

APPM 

hyperbolic geometry spherical geometry 

Figure AA Subsequent positions of objects. 

Applet started 
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The code is listed below. It makes use of the CM class listed in 

appendix C. 

class Viewport 

import java. awt. *; 
import java. awt. event. *; 

public class Viewport extends Canvas 
implements FocusListener, 

KeyListener 

static CM ga - new CMO; 

double[] gdv; // geometry defining vector 

double[][] shapeArray = new double[10][51; 
ColorH colorArray = new Color[101; 
double[M] conformalArray = new double[10][16]; 
double[][] overflowArray = new double[10][16]; 
int[] conformalArrayType = new int[101; 

int n=0; current size of arrays 

int ww, hh; viewport metrics 
int cx, cy, scale = 200; 

double k= Math. PI/20; 

double[] Vrt, Vlt, Vup, Vdn; translation versors 
double[] s= ga. e2; rotation bivector/versor generator 
double(] Vrl; rotation versor generated by s 
double[] cp ga. sub(ga. e4, ga. e3); shows centre of rotation 

initialy the origin: e4 e3 

double[] V generic versor 

boolean hasKeyboardFocus = false; 

final int KEY 
-- 

UP = KeyEvent. VK UP; 
final int KEY DN = KeyEvent. Vk-DOWN; 
final int KEY LT = KeyEvent. VK LEFT; 
final int KEY-RT - KeyEvent. Vk RIGHT; 

public Viewport(int w, int h, double[] gdv) 

this. gdv = gdv; 
inito; 
setTranslationVersorso; 
setRotationVersoro; 
hh = h; 
WW - W; 
cx = ww/2; 
cy = hh/2; 
this. setSize(ww, hh); 
this. setBackground(Color. lightGray); 
this. addFocusListener(this); 
this. addKeyListener(this); 
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void init 0 

double[] pll - ga. F(new double[] 0, +. 4, . 0)); 
double[] p2l - ga. F(new double(] 0, -. 4, . 0)); 
double[] p3l - ga. F(new double[] 0,0, . 4)); 

double [I Bl - ga. createBlade (new double pll, p2l, p3l 
insertCircleIntoArray(Bl, Color. black); 

double[] p12 - ga. F(new double[] 0,0, . 4)); 
double[] p22 - ga. F(new double[] 0,0, . 81); 
double[] p32 - ga. F(new double[] 0,0.2, . 6)); 

double [] B2 = ga. createBlade (new double p12, p22, p32 
insertCircleIntoArray(B2, Color. black); 

double[] q- ga. F(new double[] 1 0,0,01); 
insertPointIntoArray(q, Color. blue); 

double[] p13 - ga. F(new double[] 0, -0.4,0)); 
double[] p23 - ga. F(new double(] 0, +0.4,0)); 
insertGeodesicArcIntoArray(pl3, p23, Color. lightGray); 

double[] p14 = ga. F(new double[] f Ot 0, +0.8 
double[] p24 - ga. F(new double[] ( 0,0, -0.4 
insertGeodesicArcIntoArray(pl4, p24, Color. lightGray); 

I 

void setTranslationVersorso 
I 

Vrt - ga. exp(ga. mul(ga. gp(ga. el, ga. e34, gdv), +k)); 
Vlt - ga. rev(Vrt); 
Vup - ga. exp(ga. mul(ga. gp(ga. e2, ga. e34, gdv), +k)); 
Vdn = ga. rev(Vup); 

void setRotationVersoro 

Vrl - ga. exp(ga. mul(ga. dp(gdv, ga. e234), k)); 

void insertCircleIntoArray(double[I blade, Color c) 

conformalArray[n] - blade; 
confomalArrayType[n] = 2; 

double(] centre - ga. f(ga. getCentreFromBlade(blade, ga. n)); 
double radius - ga. getRadiusFromBlade(blade, ga. n); 

shapeArray[n][01 - 
shapeArray(n][11 - 
shapeArray(n](21 = 
shapeArray[n)(31 - 
shapeArray[n][41 - 
colorArray[n] = c; 
n++; 

1; 
centre(l]; 
centre[21; 
radius; 
radius; 
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void insertPointIntoArray(double[] vector, Color c) 

conformalArray[n] - vector; 
conformalArrayType[n] - 1; 

double[] position - ga. f(vector); 

shapeArray[n1[01 - 0; 
shapeArray[n1[11 - position[ll; 
shapeArray[n1[2] = position[2]; 
colorArray[nl - c; 
n++; 

I 

void insertGeodesicArcIntoArray (double[ I vl, double(] v2, Color c) 

conformalArray[n] - v1; 
overflowArray[n] - v2; 
conformalArrayType[n) = 3; 

double []B- ga. createBlade (new double CICI (vl, v2, gdv 1) ; 
double[] centre - ga. f(ga. getCentreFromBlade(B, ga. n)); 
double radius = ga. getRadiusFromBlade(B, ga. n); 

double[] P1 = ga. f(vl); 
double[] p2 - ga. f(v2); 

double Xl - Pl[l]; 
double Yl - Pl[21; 
double X2 - p2[13; 
double Y2 - P2[2); 

if (radius-1) // circle is a straight line 

shapeArray[n][01 = 2; 
shapeArray[n][11 = Xl; 
shapeArray(n](2] = YI; 
shapeArray[n)(31 = X2 - Xl; 
shapeArray[n)[4] = Y2 - Yl; 

else 

shapeArray[n][0] = 3; 
shapeArray[n][11 = centre[l]; 
shapeArray[n][2] = centre[2]; 
shapeArray(n][31 = radius; 
shapeArray[n][4] = radius; 

colorArray(n] - c; 
n++; 
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void transfomConfomalArrays(double(I V) 

double[] 'ý_rev - ga. rev(V); 
double[] v; 

for Unt i-0; i<n; i++) 

v- conformalArray(i]; 
conformalArray[il = ga. gp(V, v, V_rev); 

if (confomalArrayType[il==3) 
I 

v= overflowArray(i]; 
overflowArray[il = ga. gp(V, v, V_rev); 

I 

I 

void updateShapeArrayo 

int m=n; 
n-0; 
for (int i=O; i<m; i++) 

double[] v confomalArray[i]; 
int type conformalArrayType[i]; 

Color c- colorArray[i); 

switch (type) 

case 1: insertpointIntoArray(v, c); break; 
case 2: insertCircleIntoArray(v, c); break; 
case 3: double[] v2 = overflowArray[i]; 

insertGeodesicArcIntoArray(v, v2, c); 
break; 

public void paint(Graphics g) ( update(g); ) 
public void update(Graphics g) 

g. setColor(Color. lightGray); 
g. fillRect(O, O, ww, hh); 
g. setColor(Color. white); 
g. fillOval(cx-scale, cy-scale, 2*scale, 2*scale); 

for Unt i-0; i<n; i++) 

g. setColor(colorArray[il); 

int shapeType = (int) shapeArray[i][0]; 

int X- (int) (cx + scale*shapeArray[i][1]); 
int Y- (int) (cy - scale*shapeArray[i)[2]); 
int R- (int) (scale*shapeArray[i][31); 
int S- (int) (scale*shapeArray[i][4]); 
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switch (shapeType) 

case 0: g. fillRect(X-2, Y-2,4,4); 
break; 

case I: g. draw0val(X-R, Y-R, 2*R, 2*R); 
break; 

case 2: g. drawLine(X, Y,, X+R, Y-S); 
break; 

case 3: g. draw0val(X-R, Y-R, 2*R, 2*R); 
break; 

int X= cx + (int) (scale*ga. f(cp)[1]); 
int Y= cy - (int) (scale*ga. f(cp)[2]); 
g. setColor(Color. red); 
g. fillRect(X-2, Y-2,4,4); 

if (hasKeyboardFocus) g. setColor(Color. red); 
else g. setColor(Color. lightGray); 

g. draw0val(cx-scale-1, cy-scale-1, 
2*scale+2,2*scale+2); 

// implement interface functionality 

public void focusGained(FocusEvent e) 
I 

hasKeyboardFocus = true; 
repainto; 

public void focusLost(FocusEvent e) 

hasKeyboardFocus = false; 
repainto; 

public void keyTyped(KeyEvent e) 
public void keyReleased(KeyEvent e)j) 
public void keyPressed(KeyEvent e) 

int k=e. getKeyCodeo; 
int m-e. getModifierso; 
if ((m & KeyEvent. SHIFT_MASK)! -O 

switch M 

case KEY 
-- 

UP :V= Vup; break; 
case KEY 

- 
DN :V= Vdn; break; 

case KEY7LT :V- Vlt; break; 
case KEY 

- 
RT :V= Vrt; break; 

default : return; 

transformConformalArrays(V); 
updateShapeArrayo; 
repainto; 
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else if ((m & KeyEvent. CTRL_MASK)! =O 

switch M 
I 

case KEY-UP :s= ga. gp(Vrl, s ga. rev(Vrl)); 
cp = ga. gp(Vrl, cp, ga. rev(Vrl)); 

break; 

case KEY-DN :s= ga. gp(ga. rev(Vrl), s Vrl); 
cp - ga. gp(ga. rev(Vrl), cp, Vrl); 
break; 

case KEY-LT :V- ga. exp(ga. mul(ga. wp(s, ga. el), +k/10)); 
transformConformalArrays(V); 
updateShapeArrayo; 
break; 

case KEY-RT :V= ga. exp(ga. mul(ga. wp(s, ga. el), -k/10)); 
transfomConfomalArrays(V); 
updateShapeArrayo; 
break; 

default : return; 

repaint 
I 
else 

switch M 

case KEY- UP : cy = cy - 10; break; 
case KEY 

- 
DN : cy = cy + 10; break; 

case KEY LT : cx = cx - 10; break; 
case KEY RT : cx = cx + 10; break; 

default : return; 

repainto; 

class TestApplet 

import java. awt. *; 
import java. applet. *; 

public class TestApplet extends Applet 
I 

CM ga = Viewport. ga; 

public void inito 

Viewport vl = new Viewport(480,480, ga. e3); hyperbolic 
Viewport v2 = new Viewport(480,480, ga. e4); spherical 

this. addViewport(vl, 10,10); 
this. addViewport(v2,500,10); 

setLayout(null); 
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void addViewport(Viewport v, int x, int 

this. add(v); 
v. setLocation(x, y); 
v. setVisible(true); 
this. setVisible(true); 
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Appendix B Source code listing of the GA class 

This class provides functionality for a geometric algebra of any dimension and any 
signature, see chapter 3. 

public class GA 

int m; base-space dimension 
int d; dimension of GA 
byte[] signature = new byte[3); signature; 
byte[][] basis; 
byte[] grades; 
String[] names; 
byte[] vectorModulus; 
byte[][][] table; 
boolean[I signModifiedByNameChange; 
boolean evenSubAlgebra; 
double[] I; 

doubleH i (1); 

public GAO 1) 
public GA(int P) 
public GA(int P, 
public GA(int P, 
public GA(int P, 
public GA(int P, 
public GA(int P, 
I 

( this(p, 0,0,1-1); ) 
char sign) ( this(p, 0,0, sign); ) 
int q) ( this(p, q, 0,1-1); ) 
int q, char sign) f this(p, q, O, sign); ) 
int q, int r) ( this(p, q, r, '-'); ) 
int q, int r, char sign) 

if (sign== 1+1) evenSubAlgebra - true; 

signature(O] = (byte) p; 
signature[l] = (byte) q; 
signature[21 = (byte) r; 
mp+q+r; 
d Unt) Math. pow(2, m); 
basis = new byte[d][m+l]; 
grades = new byte[d]; 
names = new String[d]; 
vectorModulus = new byte[m+ll; 
table = new byte[d][d][m+l]; 
signModifiedByNameChange - new boolean(d]; 
I= new double(d]; 
I[d-11 - 1; 

fillVectorModulusArrayo; 
createBasisVectorso; 
createNameso; 
constructTableo; 

void fillVectorModulusArrayo 

for (int i=l; i<---m; i++) 
I 

if (i <= signature[O]) vectorModulus[i) -+1; 
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else if (i <= signature[O]+signature[l]) vectorModulus(i) 
else if (i <---m) vectorModulus(i) = 0; 

void createBasisVectorso 
I 

for (int i=O; i<d; i++) basis[i][0] - +1; 

int count 0; 
byte grade 1; 

while (grade<--m) 

byte n= grade; 

int[I k= new int[n]; 
int[] kMax = new int[n]; 

for (int i=O; i<n; i++) Mil = n-i; 
for (int i=O; i<n; i++) kMax(i] 

count++; 
for (int i=O; i<n; i++) basis[count][k[ij) 
grades(count] = n; 

while (k[n-ll< kMax[n-1]) 
I 

k[01++; 

int i=0; 
while (i<n) 

if (k[i]>kMax[i]) 

k[i+ll++; 

int j=i; 
while( j>=O) 

k[j] = k[j+l]+l; 
j--; 

i++; 

count++; 
for (int ii=O; ii<n; ii++) basis[count][k[ii]] 
grades[countl = n; 

grade++; 
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void createNameso 

for (int i=O; i<d; i++) 
names[i] = convertToInternalName(basis[i]); 

void changeName(int pos, String newName, boolean changeSign) 

names[pos] + newName; 
signModifiedByNameChange(pos] - changeSign; 
if (changeSign) basis[pos](0] - -1; 
constructTableo; 

void constructTableo 

for (int i=O; i<d; i++) 
for (int j=O; J<d; J++) 

table[i](j] = multiply(ij); 

int findBasisVectorIndex(byte[I r) 
I 

boolean matchFound = false; 

int j=0; 
while (! matchFound) 

matchFound = true; 
int i=1; 

while(i<---m) 

if (r[i] != basis[i](i]) matchFound - false; 
i++; 

j ++; 

return j 

String convertToTableName(byte[I r) 

if ( r[01==O) return " 0"; 

String s= null; 
int j= findBasisVectorIndex(r); 
s= names[j]. substring(l); 
if (r[01-=+l s=+S; 
if (r[O]==-l s=+S; 
return s; 

I 



182 

String convertToInternalName(byte[] r) 

String s= "e"; 

boolean allZeros = true; 
boolean allOnes = true; 

for (int i=l; i< r. length; i++) 
I 

if (r[i]==O) allOnes = false; 
if (r[i]==l) allZeros = false; 

if ( r[01==O) return " 0"; 
if (allOnes ) return I"; 
if (allZeros) return 1"; 

for (int i=l; i<--m; i++) if (r[il=-l) s i; 

if (r[O]==+l) s=+s; 
if (r(O]==-l) s=+s; 

return s; 

table multiplication.. 

public byte[] multiply(int a, int b) table multiplication 

byte[] p= basis[a); 
byte[] q= basis[b]; 
byte[] r= new byte[m+l]; 
byte sign = +1; 

for (int k=l; k<=m; k++) 

if (p[kl==l && q[kl==I) sign (byte) (sign*vectorModulus[k]); 

if (q[kl==O) r[k] p[k); 
else 

r[k] = (byte) (1 p[kl); 

if (sign != 0) 
for (int j=k+l; j<--m; j++) 

if (p(j3==1) sign = (byte) (-sign); 

if (p[01==-l && q[01==+l) sign (byte) -sign; 
if (p[O]==+l && q[01-1) sign (byte) -sign; 

r[O] = sign; 
return r; 
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// linear-algebra related functions 

double complete (double ml) // completes a truncated multi-vector 

doubleH r= new doubleld]; 
for (int i=O; i<ml. length; i++) r[i] = ml[i]; 
for (int i=ml. length; i<d; i++) r[i] = 0; 
return r; 

public double(] add(double(I ml, double[] m2) multivector add 

double[] r= new double[d]; 
double[] mml = complete(ml); 
double C] r=2 - complete (m2) ; 

for (int i=O; i<d; i++) r[i] - mml[i] + mm2(i]; 
return r; 

public double[] add(double[] ml, double[] m2, double(] m3) 

double[] r= new double[d]; 
double[] mml = complete(ml); 
double[] r=2 = complete(m2); 
double[] mm3 - complete(m3); 

for (int i=O; i<d; i++) r[i] = mml(i] + mm2[i] + mm3(ij; 
return r; 

} 

public double[] sub(double[] ml, double[] m2) multivector 
subtract 

double[] r= new double[d]; 
double[] nml = complete(ml); 
double[] mm2 = complete(m2); 

for (int i=O; i<d; i++) r[i] - mml[i] - Inm2[i]; 
return r; 

} 

public double mod(double[I ml) 

return Math. sqrt(dp(ml, ml)[01); 

public double[] mul(double[] ml, double k) scalar multiply 
f 

doubleH r= new double[d]; 
double[] mml = complete(ml); 

for Unt i=O; i<d; i++) r[i] = mml[il*k; 
return r; 

I 
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public doubleH div(double[I ml, double k) scalar divide 

double[] r= new double[d]; 
double(] imnl = complete(ml); 

for Unt i=O; i<d; i++) r[il = mml[il/k; 
return r; 

// geometric algebra related products 

public double[] gp(double[I ml, double[] m2) geometric product 
I 

double[] r= new double[d]; 
byte(] p; 

int dl - Math. min(d, ml. length); 
int d2 = Math. min(d, m2. length); 

for (int i=O; i<dl; i++) 
for (int j=O; j<d2; j++) 

if (ml[il! =O && m2ljl! =O) 
I 

p= Multiply(i, j); 
int k= findBasisVectorIndex(p); 
if ( p[01==+l) r[k3 = r[k] + ml[i3*m2[j1; 
if ( p[01==-l) r[k] = r[k] - ml[i]*m2[j]; 

return r; 

public double[] gp(double[I ml, double[] m2, double[] m3) geometric 
product 

return gp(gp(ml, m2), m3); 

public double[] rev(double(I m) //reverse 

int sign; 
double[] iTm = complete(m); 
for (int i=O; i<d; i++) 

if ((grades[i1/2)%2==O) sign +1; 
else sign 

mm[il = sign*mm[i]; 

return mm; 

public double(] copy(double[] m) 

double[] r= new double[m. length); 
for (int i=O; i<m. length; i++) r[i] = m[i]; 
return r; 
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public double[] gradePart(doublell ml, int g) 

double[] r= new double[d]; 
if (g<o 11 g>m ) return r; 
int dd - Math. min(d, ml. length); 
for (int i=O; i<dd; i++) 

if (grades(il-g) 
r[i] 

return r; 

public int grade(double[] mv) 

if (! isHomogeneous(mv)) return -1; 

for (int i=O; i<=m; i++) 
if (! isZero(gradePart(mv, i))) 

return i; 

return 0; 

public boolean isHomogeneous(double[I mm) 
I 

double[] m= complete(mm); 
boolean nonZeroElementFound - false; 
int grade = 0; 

for (int i=O; i<d; i++) 

if (m[i]! -O && ! nonZeroElementFound) 

nonZeroElementFound = true; 
grade = grades[i]; 

I 

if (m[i]! =O && grades[il! =grade) return false; 

return true; 

public double[] wpH(double[] ml, double[] m2) wedge product 
I (homogeneous case) 

if ( ! isHomogeneous(ml)) return null; 
if ( ! isHomogeneous(m2)) return null; 

} 
return gradePart(gp(ml, m2), grade(ml) + grade(m2)); 

public double[] dpH(double[] ml, double[] m2) dot product 
I (homogeneous case) 

if ( ! isHomogeneous(ml)) return null; 
if ( lisHomogeneous(m2)) return null; 

} 
return gradePart(gp(ml, m2), Math. abs(grade(ml) - grade(m2))); 
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public double[] wp(double(I ml, double[] m2) // wedge product 

double(] r- new double(d]; 

for (int i-O; i<---m; i++) 
for Unt j=o; j<--m; j++) 

r- add(r, wpH(gradePart(ml, i), gradePart(m2, j))); 

return r; 

public doubleH dp(double[] ml, double[] m2) // dot product 

double(] r- new double[d]; 

for (int i-O; i<---m; i++) 
for Unt j-O; j<--m; j++) 

r- add(r, dpH(gradePart(ml, i), gradePart(m2, j))); 

return r; 

blade creation.. 

public boolean isVector(double(I mv) 

if (! isHomogeneous(mv)) return false; 
if (grade(mv)! =l) return false; 

return true; 

public double[] forceVector(double[] v) 
I 

V(01 - 0; 
for (int i=5; i<16; i++) v(i) = 0; 

return v; 

public double[] createBlade(double[][] v) 

doubleH r- v[01; 

for (int i-1; i<v. length; i++) 
r- wp(v[il, r); 

return r; 

public double[] createBlade2(double[][] v) 
f 

for Unt i-0; i<v. length; i++) 
if (! isVector(v[il)) return null; 

double[) Ar - v[O]; 
int sign - -1; 
for (int i-1; i<v. length; i++) 
I 

if (sign==+l) Ar - mul(add(gp(v[i], Ar), gp(Ar, v(i1)), 1/2.0); 
if (sign---l) Ar - mul(sub(gp(v[i], Ar), gp(Ar, v[i])), l/2.0); 
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sign = -sign; 

return Ar; 

public doubleH exp(double[] b) // use only for simple bi-vectors 

double b_squared = gp(b, b)[0]; 

if (b_squared>O) // hyperbolic case 

double k= Math. sqrt(b squared); 
double[] bHat = div(Sk); 

double A= Math. exp(k); 
double B= 1/A; 
double coshk = (A + B)/2; 
double sinhk = (A - B)/2; 

return add(mul(i, coshk), mul(bHat, sinhk)); 

else if (b_squared<O) // elliptic/spherical case 

double k= Math. sqrt(-b_squared); 
double[] bHat - div(b, k); 

return add(mul(i, Math. cos(k)), mul(bHat, Math. sin(k))), * 

else return add(i, b); // Euclidean case 

boolean isZero(double[I m) 

boolean b= true; 
for (int i=O; i<m. length; i++) 

if (m[il! =O) b= false; 
return b; 

display functions 

public void printTableo 

String s; 
byte[] r; 
int k=1; 
int m=1; 

for (int i=O; i<d; ii+ m) 

if (! evenSubAlgebra evenSubAlgebra grades[il%2--O)) 
I 

for (int j=O; j<d; jj+ m) 

if (! evenSubAlgebra 
evenSubAlgebra && grades[j]%2--O)) 

r multiply(i, j); 
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s= convertToTableName(r); 
k= findBasisVectorIndex(r); 
if (sigriModifiedByNameChange[k] && r[01-1) 

s= 11 "+s. substring(l); 
if (sigrModifiedByNameChange[k] && r[01--+l) 

s= "-" + s. substring(l); 

system. out. print(s + "\t\tlv); 

} 
I 

} 

System. out. print("\n\r"); 

public void show(double[] m, boolean showArray) show multivector 

int j= Math. min(d, m. length); 
boolean allTermsZero = true; 

for Unt i=O; i<j; i++) 
I 

if (m[il! =O) 

allTemsZero = false; 
if (m[i]>O) System. out. print(Il + 11); 

else System. out. print(" - 11); 
System. out. print(Math. abs(m[i))); 
if (i! =O) System. out. print(names[i]); 

if (allTermsZero) System. out. print("O"); 

if (showArray) 
I 

System. out. print(" 
for (int i=O; i<j; i++) System. out. print(m[i] 
System. out. print(")"); 

I 

System. out. printlno; 
I 

public void show(String label, double[] m show multivector 

System. out. print(label); 
show(m, true); 

I 

public void show(String label, double[] m, boolean b show 
multivector 

System. out. print(label); 
show(m, b); 

public void show(double[I mH show(m, true); I // show multivector 
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public void show(int n) I System. out. println(n); ) 

public void show(double d) I System. out. println(d); ) 

public void show(String label, int n) 
I 

System. out. print(label); 
show(n); 

public void show(String label, double d) 
I 

System. out. print(label); show(d); 
I 
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Appendix C Source code listing of the CM class 

This class extends the GA class of Appendix A. It provides functionality for the 
Clifford algebra C1(3, l) of the Conformal Model and also provides simple 
drawing functionality, see chapter 4. 

import java. awt. *; 
import java. awt. geom. *; 

public class CM extends GA 
f 

doubleH origin = 10,0,0,0,01; 

double a- {O, 0,0,1,0); 
double e- (01 0,0,0,1); 
double n- {O, 0,0,1,1); 
double n2 = (0,0,0,0.5,0.5); 
double[] nBar = {O, 0,0,1, -1); 
double []b= {O, 0,1,0,0); 
double cm {O, 1,0,0,01; 

double el = (0,1,0,0,0); 
double[] e2 = {O, 0,1,0,0); 
double[] e3 = {O, 0,0,1,0); 
double(1 e4 - (01 0,0,0,1); 

double [1 e12 - 10,01 01 01 01 1,01 01 0,0,0); 
double [ e13 = 10,01 01 01 01 01 1,01 01 01 0); 
double [ e14 = (0,01 01 01 01 01 01 1,01 01 0); 
double [ e23 = {O, 01 01 01 01 01 01 01 1,0,0); 
double [ e24 - {O, 01 01 01 01 01 01 01 01 1,0); 
double [ e34 = {O, 01 01 01 01 01 01 01 0,0,1); 

double e234 - 10,0,0,0,0,0,0,0,0,0,0,0,0,0,1); 

double I= {O, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1); 

int scale = 200; 
int W= 800; viewport dimensions 
int H- 600; 
int Ox W/2; screen co-ordinates of centre of viewport 
int Oy H/2; 

public CM() ( super(3,1); ) 
public CM(int Ox, int Oy, int scale) 

super(3,1); 
this. Ox = Ox; this. Oy = Oy; 
this. scale = scale; 
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// funtion for mapping screen point into conformal space 

public double(] F(double[] p) 

double[] tl = mul(a, dp(p, p)[01-1); 
doubleH t2 = mul(p, 2); 
double[] t3 = mul(e, dp(p, p)[O]+l); 

return add(add(tl, t2), t3); 

return sub(add(mul(n, dp(p, p)[0]), mul(p, 2)), nBar); 
(alternate design) 

funtion for mapping conformal point to the screen 
(point undergoes null cone scaling before being mapped) 

public double(] f(double[I X) 
I 

double[] d= new double[161; 
for (int k=O; k<16; k++) d[k] - scale(X, n)[k]; 
dDI = 0; 
d[41 - 0; 

return d; 

function for null cone scaling 

public double[] scale(double[] P, double[] type) 
I 

return div(P, -dp(P, type)[0]); 
J 

// function for calculating the dual 

public double[] dual(double[] mv) I return gp(I, mv); ) 

construction non-Euclidean circle vector representation 
from conformal centre C& radius R 

public double[] makeCircle(double[] C, double R, double(] type) 
f 

return sub(C, mul(type, R*R)); 

functions for extracting non-Euclidean circle properties 
from blade representation L 

public double[] getCentreFromBlade(double[I L, double[] type) 

double[] C= gp(gp(L, type), L); 
return C; 

} 
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public double getRadiusFromBlade(double[] L, double[] type) 
I 

double[] q= wp(L, type); 
if (dp(q, q)[01-0) return -1; 

double r- Math. sqrt(-dp(L, L)[01/dp(q, q)[01); 
return r; 

functions for extracting non-Euclidean circle properties 
from vector representation S 

public double[] getCentreFromVector(double[] S, double[] type) 
I 

double R- squared = getRadiusSquaredFromVector(S, type); 
return add(S, mul(type, R_squared)); 

public double getRadiusSquaredFromVector(double[] S, double[] type) 

return dp(S, S)[01/(dp(S, type)[O]*dp(S, type)[0]); 

public double getRadiusFromVector(double[] S, double[] type) 

return Math. sqrt(dp(S, S)[01/(dp(S, type)[Ol*dp(S, type)[O])); 

drawing functions 
(viewport parameters cx, cy & scale passed as parameters) 
(does not use java. geom package, uses only java. awt) 

public void drawCircle(Graphics g, int cx, int cy, int scale, 
double[] blade, Color c) 

double[] centre f(getCentreFromBlade(blade, n)); 
double radius getRadiusFromBlade(blade, n); 

double x- centre(l]; 
double y= centre[2]; 

int R- Unt) (radius*scale); 
int X- (int) (cx + scale*x) R; 
int Y= (int) (cy - scale*y) R; 

g. setColor(c); 
g. draw0val(X, Y, 2*R, 2*R); 

public void drawPoint(Graphics g, int cx, int cy, int scale, 
doubleH P, Color c) 

double HP= f(p); 

double x- P[11; 
double y- P[21; 
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int X= Unt) (cx + scale*x); 
int Y= Unt) (cy - scale*y); 

g. setColor(c); 
g. fillRect(X-2, Y-2,4,4); 

public void drawArc(Graphics g, int cx, int cy, int scale, 
double[] pl, double[] p2, double[] type, Color c) 

g. setColor(c); 

double[] B- createBlade(new double[1[](pl, p2, type)); 

double[] centre - f(getCentreFromBlade(B, n)); 
double radius - getRadiusFromBlade(B, n); 

int XI - (int) (cx + scale*f(pl)[11); 
int Yl - Unt) (cy - scale*f(pl)[21); 
int X2 - (int) (cx + scale*f(p2)[11); 
int Y2 - (int) (cy - scale*f(p2)[21); 

if ( radius==-l) 
I 

g. drawLine(Xl, Yl, X2, Y2); 
return; 

int CX - Unt) (cx + scale*centre[ll); 
int CY - (int) (cy - scale*centre[21); 

int thetal - (int) (Math. atan2(-(Yl - CY), Xl - CX)*180/Math. PI); 
int theta2 = (int) (Math. atan2(-(Y2 - CY), X2 - CX)*180/Math. PI); 

int deltaTheta - theta2-thetal; 
if (deltaTheta>+180 ) deltaTheta = 360 deltaTheta; 
else if (deltaTheta<-180 ) deltaTheta 360 + deltaTheta; 

int R- (int) (scale*radius); 

g. drawArc(CX-R, CY-R, 2*R, 2*R, thetal, deltaTheta); 

earlier prototype and experimental drawing functions 
(viewport parameters Ox, Oy & scale specified globally) 
(uses java. geom package) 

public void drawCircle(Graphics g, double[] blade, double[] type) 
I 

double(] vector - scale(gp(blade, I), type); 
double[] centre - f(getCentreFromVector(vector, type)); 
drawPoint(g, centre); 
drawCircle(g, blade, Color. red); 
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public void drawCircle(Graphics g, double[] blade, 
double[] type, Color c) 

double[] vector = scale(gp(blade, I), type); 
double[] centre = f(getCentreFromVector(vector, type)); 
drawPoint(g, centre); 
drawCircle(g, blade, c); 

public void drawCircle(Graphics g, double[] blade, Color c) 
f 

g. setColor(c); 

double[] centre = f(getCentreFromBlade(blade, n)); 
double radius = getRadiusFromBlade(blade, n ); // 

drawCircle(g, centre, radius, c); 
I 

// general low level utility drawing functions 

public void drawCircle(Graphics g, double[] centre, 
double radius, Color c) 

Graphics2D g2D = (Graphics2D) g; 
double x- centre[l]; 
double y= centre[21; 
double w- 2*radius; 
double h= 2*radius; 

drawCircle(g, x, y, w, h, c); 
} 

public void drawCircle(Graphics g, double x, double y, 
double w, double h, Color c) 

Graphics2D g2D = (Graphics2D) g; 
g2D. setColor(c); 

g2D. draw(new Ellipse2D. Double(Ox + scale*x - w*scale/2.0, 
Oy - scale*y - h*scale/2.0, 
w*scale, h*scale)); 

I 

public void fillRectangle(Graphics g, double x, double y, 
double w, double h, Color c) 

Graphics2D g2D - (Graphics2D) g; 
g2D. setColor(c); 

g2D. fill(new Rectangle2D. Double(ox + scale*x - w*scale/2.0, 
Oy - scale*y - h*scale/2.0, 
w*scale, h*scale)); 
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public void drawLine(Graphics g, double xl, double yl, 
double x2, double y2) 

I 
Graphics2D g2D - (Graphics2D) g; 
g. setColor(Color. red); 
g2D. draw(new Line2D. Double(Ox + scale*xl, Oy - scale*yl, 

Ox + scale*x2, Oy - scale*y2)); 

public void drawGrid(Graphics g) 
I 

g. setColor(Color. lightGray); 
for (int i= -4; i<=4; i++) drawLine(g, i, -4, i, 4); 
for (int j= -4; j<=4; j++) drawLine(g, -4, j, 4, J); 

public void drawGrid(Graphics g, boolean withCircle) 
I 

drawGrid(g); 
if (withCircle) drawCircle(g, 0,0,2,2, Color. lightGray 

I 

public void drawPoint(Graphics g, double[] p) 

Graphics2D g2D = (Graphics2D) g; 
double x= p[l]; 
double y= p[21; 
drawCircle(g2D, x, y, 0.05,0.05, Color. blue); 

public void drawSquarePoint(Graphics g, double[] p, Color c, int k) 
I 

Graphics2D g2D = (Graphics2D) g; 
double x- P[11; 
double y- p[21; 
fillRectangle(g2D, x, y, k*0.02, k*0.02, c); 
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Appendix D Geometric algebra review 

This selective review of certain aspects of the geometric algebra used in this 

thesis follows on from the introduction. It is not meant to serve as a 

comprehensive introduction. 

Base vectors 

Table DA shows the base vectors for geometric algebras built on base spaces 

of dimension n=2,3 and 4. (The thesis assumes that base spaces admit 

orthonormal basis denoted by el, e2, e3 and so on. ) 

n 
2 

3 
4 

scalar vectors bivectors trivectors 

el, e2 e12 '= I 

el, e2, e3 el2, el3, e23 e, 23 

el, e2, e3, e4 el2, el3, el4ge23, e24, e34 e, 23, el24, el34, e234 el234= 

grade 0 grade 1 grade 2 grade 3 grade 4 

Table DA Base vectors of geometric algebras built 

on base spaces of 2,3 and 4 dimensions. 

Table D. 1 also shows the names and grades of the base vectors. The highest 

grade element in each case is known as the pseudoscalar and is often denoted 
by 1. 

The dimensions of the resulting geometric algebras are shown in table D. 2. 
They result from summing the elements in each grade, equivalent to summing 
the rows of Pascal's triangle. 
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dim of 
base 

space 

1 

2 

3 

Table D. 2 

number of elements 
of each grade 

1 +2 +I 

I+3+3+I 
I+4+6+4 +1 

dimension 

of geometric algebra 

= 4=2 2 

= 8=2 3 

= 16=2 

Number of elements of each grade 
and dimension of each geometric algebra. 

Cayley table 

As an example, table D. 3 shows the Cayley table for the base vectors of the 
geometric algebra CI(3). It gives the geometric product of any two base 
vectors. 

11 el 92 e3 1 e12 e13 e23 II 

I 

el 

e2 

e3 

e12 

e13 

e23 

1 

1 

el e2 e3 e12 e13 e23 I 

el 1 e12 e13 e2 e3 e23 

e2 -e12 1 e23 -el -I e3 e13 

e3 -e13 -e23 1 -el -e2 e12 

e12 -e2 el -1 -e23 e13 -e3 

e13 -e3 -I el e23 -1 -e12 e2 

e23 I -e3 e2 -e13 e12 -1 -el 

I e23 -e13 e12 -e3 e2 -el -1 

Table D. 3 Cayley table for geometric products of CI(3). 

Because all multivectors in CI(3) can be expressed as a linear combination of 
its eight base vectors, the Cayley table can be used to compute the geometric 
product of any number of multivectors. 

The 'Clifford processoediscussed in Chapter 3 builds the Cayley table for a 
geometric algebra of any dimension and signature. This table is then used for 
calculating geometric and other derived products. 
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Other products of vectors 

For two grade-I vectors v, and v2 the dot and wedge products are defined in 
terms of the geometric product as 

Vl- V2 -'ý 
1/2(VIV2 + V2VO 

and Vj- V2 = Y2(VIV2 - V2VO - (D. 1b) 

The dot product is commutative and always yields a scalar. The wedge product 
is anti-commutative and yields a grade-2 bivector blade. (A blade is a 

multivector formed from the wedge product of one or more vectors, see 
below. ) 

Formulae D. Ia and D. Ib lead to 

VIV2 -'ý Vl- V2 + Vl^ V2. (D. 2) 

Thus, in general, the geometric product of two vectors decomposes into a 

scalar part and a bivector part, either ofwhich may have zero component. 

If v, = v2 = v, say, then formula D. 2 becomes 

V. v + V. V, 

so that vv = V. V. 

Thus the square of a vector can be defined in terms of the geometric or dot 

product as v2 = vv = v. v. 

If ei is a non-dcgeneratc base vector then ei 2= ei ej = ci. ei = ±I, depending on 
the signature of the base vector. If it is degenerate ei 2 0. If ei and ej are two 
base vectors with i#j, then ei ei = ei - ei = eij and ei. ej 0. These follow from 

the assumption that the lei) basis is orthonormal. These multiplicative 

relationships among the vectors of the base space can be used for constructing 



199 

the Cayley table of products for the base vectors of the whole geometric 

algebra, see Chapter 3. 

Inverse of a vector 

If a vector is not degenerate so that v2 # 0, then its geometric inverse is given 
by v" = v/v2 since w"' = w/v2 = 1. 

Extending the products 

The dot and wedge products are usually first extended to homogeneous 

multivectors. (A homogeneous multivector has all elements of the same grade 

r, say, and is often denoted by A,, B, and so on. ) The extension to general 

multivectors M and N then follows by applying the earlier extension to the 

various grade parts of M and N, often denoted by <M>i and <N>j. This is 

discussed in more detail in chapter 3. 

Sometimes other extensions are derived to cover special cases, for example 
formula D. 2 can be extended to 

Mv = M. v+M-v 

where M is a multivector and v is a vector. 

Blades 

A blade is the wedge product of one or more vectors. This assumes that the 
definition of the wedge product has been extended for this statement to make 

sense. The extension is surprisingly complex and is discussed in chapter I 

Blades represent the linear subspaces spanned by its vectors. If any two are 
linearly dependent, the space spanned is null so the wedge product has zero 

componcnt. 
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Blades normally represent planes and hyperplanes. However, in the conformal 

model they represent n-spheres in general. In the conformal model Cl(3, I) they 

represent circles. In fact, the circle through the points P1. P2 and P3 can be 

represented by the blade P1 A P2AP3 where p I, p2 and P3 are the representations of 

points P1, P2 and P3 in conformal space. However, there is an alternative 

representation for a circle based on a single vector in conformal space, see 
below. 

Duals 

The concept of a dual is perhaps best understood in the context of blades. The 

dual of a blade A, of grade r, denoted by A, 7, is the blade representing the 
linear subspace complementary to that represented by A, If the dimension of 
the geometric algebra is m, then the grade of the dual is m-r. For example, in 

C1(3) the dual of the grade-2 blade representing a plane is a grade-I blade 

representing a line. In the 4D conformal model Cl(3, l), the dual of a grade-3 

trivector blade is a grade-I vector. The former represent a 3D hyper plane 

normally and a circle conformally. The latter represents aID line normally, or 

a circle conformally. Thus a circle through points Ph, P2 and P3 can be 

represented conformally by the vector (PI A P2AP3)-. However, in this thesis the 

conformal vector representation of circles is approached through another route, 

see Chapter 1. 

T'he dual of a multivector is surprisingly easy to calculate, it is the geometric 

product MI", where I is the pseudoscalar. Calculating the inverse of I is 

relatively simple since 12 =±1, depending on the dimension and signature of 
the geometric algebra, so that 1-1 = =i: 1. 
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The exponential of a bivector 

This thesis uses the following definition of the exponential of a bivector B 

based on the Taylor expansion 

exp(B) = exp(kB) = cosh(k) +B sinh(k), if B'>O, 

= cos(k) +ä sin(k) , 
if B2 <o, 

=I+ kfi, if B2 =0, 

where the scalar k is defined so that B=k6 and 6' = 1. 

This assumes that the bivector B squares to a scalar. Note that in all cases the 

result produces the combination of a scalar and bivector, which is the same as 
that produced by the product of two vectors (see above). This has implications 

when considering the transformation groups discussed briefly in chapter 5, 

sections S. 8 to 5.10. 
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