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Abstract

Cluster analysis is a fundamental research field in Knowledge Discovery and Data Min-

ing (KDD). It aims at partitioning a given dataset into some homogeneous clusters so as

to reflect the natural hidden data structure. Various heuristic or statistical approaches

have been developed for analyzing propositional datasets. Nevertheless, in relational

clustering the existence of multi-type relationships will greatly degrade the performance

of traditional clustering algorithms. This issue motivates us to find more effective al-

gorithms to conduct the cluster analysis upon relational datasets. In this thesis we

comprehensively study the idea of Representative Objects for approximating data dis-

tribution and then design a multi-phase clustering framework for analyzing relational

datasets with high effectiveness and efficiency.

The second task considered in this thesis is to provide some better data models for

people as well as machines to browse and navigate a dataset. The hierarchical taxonomy

is widely used for this purpose. Compared with manually created taxonomies, automat-

ically derived ones are more appealing because of their low creation/maintenance cost

and high scalability. Up to now, the taxonomy generation techniques are mainly used

to organize document corpus. We investigate the possibility of utilizing them upon re-

lational datasets and then propose some algorithmic improvements. Another non-trivial

problem is how to assign suitable labels for the taxonomic nodes so as to credibly sum-

marize the content of each node. Unfortunately, this field has not been investigated

sufficiently to the best of our knowledge, and so we attempt to fill the gap by proposing

some novel approaches.

xii



The final goal of our cluster analysis and taxonomy generation techniques is

to improve the scalability of recommender systems that are developed to tackle the

problem of information overload. Recent research in recommender systems integrates

the exploitation of domain knowledge to improve the recommendation quality, which

however reduces the scalability of the whole system at the same time. We address this

issue by applying the automatically derived taxonomy to preserve the pair-wise similari-

ties between items, and then modeling the user visits by another hierarchical structure.

Experimental results show that the computational complexity of the recommendation

procedure can be greatly reduced and thus the system scalability be improved.

xiii



Chapter 1

Preface

Cluster analysis is an important research field in Knowledge Discovery and Data Mining

(KDD). The aim is to discover the intrinsic structure of the underlying dataset, which

is generally referred to as the unsupervised learning problem. This is different from

the supervised learning tasks (such as classification or regression) in which the data

model is first constructed from the training dataset and then to be applied upon the

test dataset. Many clustering algorithms have been proposed since the 1960s with

the utilization of various ideas in such fields as statistics, combinatorial mathematics,

artificial intelligence, spectral theory etc., but most of them are only suitable for analyzing

propositional datasets. In practice relational datasets that contain different data types

and relationships between them are more common. The existence of these multi-type

relationships greatly degrades the performance of the traditional clustering algorithms if

they are applied to the relational datasets naively. This issue motivates us to find more

effective algorithms to conduct cluster analysis upon the relational datasets.

After the cluster result has been obtained, a hierarchical taxonomy can be gen-

erated that provides a better mechanism for people to browse and navigate the dataset.

Automatically derived taxonomies are more appealing than manually derived ones be-

cause of their low creation/maintenance cost and high scalability. Generally speaking,

taxonomy generation techniques are mainly used to organize a document corpus. We
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investigate the possibility of utilizing them upon relational datasets as well as propose

some algorithmic improvements. Another non-trivial problem is how to assign suitable

labels for the taxonomic nodes so as to help people more easily understand the content

of each node. Unfortunately, this field has not been investigated sufficiently to the best

of our knowledge, and so we attempt to fill the gap by proposing some novel approaches.

To validate their applicability in practice, we utilize our cluster analysis and tax-

onomy generation techniques within recommender systems. Recent research in this field

focuses on the incorporation of domain knowledge: meaningful neighbouring users are

identified based on the similarity of their visiting items, so the quality of user-based

recommendations will hopefully be improved as more relational domain information are

exploited during the item similarity computation. But as the tradeoff, the system scala-

bility is often decreased because exploiting such information needs more computational

effort than that of traditional recommender systems computing based on propositional

data. In this thesis, we propose to use an automatically derived taxonomy to preserve

the pair-wise similarities between items in an offline stage. These item similarities are

then retrieved directly from the taxonomy instead of obtained from the real-time calcu-

lation. By this way, the online computational expense of identifying neighbouring users

can be reduced and the system scalability be improved effectively. In addition, the user

visits are to be grouped within another hierarchical structure for further improving the

system scalability.

Figure 1.1 explains the layers of our research framework and the thesis is orga-

nized accordingly. We study relational clustering algorithms in Part I, which covers the

following chapters:

• Chapter 2 provides a comprehensive review of relational clustering, including some

fundamental definitions and a categorization of different clustering algorithms with

a brief discussion of key algorithms;

• Chapter 3 introduces the concept of Representative Objects, which constitute the

foundation of our research in this thesis. In addition, we provide several typical

2



Figure 1.1: Our Research Framework

strategies of identifying Representative Objects in the dataset;

• Chapter 4 proposes a multi-phase clustering framework that is especially efficient

in analyzing relational datasets. Two implementations of the framework are de-

veloped that are suitable for static and incremental learning tasks respectively.

Then in Part II we turn to the automated taxonomy generation and discuss the following

topics:

• Chapter 5 reviews some important issues and related works in the field of auto-

mated taxonomy generation;

• Chapter 6 explains our taxonomy generation algorithm that is developed from the

relational clustering framework;

• Chapter 7 discusses our approach of assigning labels for taxonomic nodes based

on the idea of Kullback-Liebler Divergence.

After that, in Part III we will investigate the application of our data mining techniques

in practice, i.e. to improve the scalability of recommender systems. After an overview

of recommender systems in Chapter 8, Chapter 9 shows two possible applications of the

3



automatically derived taxonomy in the scenario of recommender systems: either preserve

the pair-wise similarities between items or group the candidate users in order to accelerate

the recommendation procedure. Finally, Chapter 10 summarizes our contributions and

points out some future works.
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Part I

Relational Clustering
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Clustering is an important and active research field in Knowledge Discovery

and Data Mining (KDD). By utilizing various heuristic or statistical approaches, the

whole dataset is partitioned into a certain number of groups (clusters) so that data

objects assigned into the same group share more common traits than those assigned into

different groups [62]. In contrast to the supervised learning tasks such as classification,

the categorical labels of the data are generally unknown beforehand in cluster analysis,

so the target here is to discover the real or “natural” hidden structure within the data

rather than providing an accurate prediction for the unobserved samples.

A large number of clustering algorithms have been proposed since the 1960s.

They can be distinguished roughly as two categories: Partitional algorithms iteratively

assign data objects into disjoint clusters and update the cluster features (e.g., means or

k-prototypes) accordingly. On the contrary, hierarchical algorithms organize data using

a hierarchical structure, in which upper-level clusters contain lower-level clusters. The

hierarchy can be built either by treating each data object as separate clusters and then

gradually merging them in a bottom-up fashion (known as Agglomerative Hierarchical

Clustering), or by starting from a cluster containing all the data objects and recursively

dividing the clusters in a top-down fashion (known as Divisive Hierarchical Clustering).

Traditional clustering algorithms are mainly used to analyze propositional dataset,

in which data objects are of the same type and described using a fixed number of at-

tributes. However, many datasets in practice contain different types of data objects and,

more importantly, relationships between them. Naively applying propositional clustering

algorithms cannot fully exploit information contained in these datasets or leads to inap-

propriate conclusions [64]. To address the challenge of analyzing heterogeneous datasets

with interrelated data objects, some relational clustering algorithms have been developed

in recent years, but their effectiveness and efficiency are not always satisfactory due to

the impact of complexity relationship structure.
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Our key contributions in the field of relational clustering are as follows:

1. We define the concept of Representative Objects and use them to effectively

represent a cluster. Several typical strategies are developed to efficiently identify

these representatives for the given clustering.

2. Using the representative objects as the cluster prototypes, we design a multi-phase

clustering framework for analyzing relational datasets. Two implementations of

the framework are also provided that are suitable for different learning tasks and

both of them have linear complexity with respect to the data size.

3. We provided a state-of-the-art review in this field as the basis of our research,

in which different relational clustering algorithms are systematically studied and

compared with the propositional algorithms. We also evaluate our algorithms with

a selection of these algorithms with respect to accuracy and efficiency.

This part of the thesis is organized as follows: Before presenting our research in

relational clustering, we first provide the state-of-the-art review in Chapter 2. Then the

idea of Representative Objects is introduced in Chapter 3 together with several strategies

of identifying the representatives. Based on that, a novel relational clustering framework

is explained in Chapter 4 with two implementations. Comprehensive experiments were

conducted for evaluating the idea of Representative Objects as well as our clustering

framework. The analysis of the experimental results are arranged in respective sections.

7



Chapter 2

Review of Relational Clustering

Clustering algorithms are generally developed based on the concept of proximity, i.e.

similarity or distance. A set of clusters are constructed so that all data objects assigned

into the same cluster are more similar to each other while data objects in different

clusters are less similar. This criterion is also formulated as “maximizing intra-cluster

similarity and inter-cluster distance”, or “optimizing internal homogeneity and external

separation” [61]. More formally, the clustering problem can be defined as follows [155]:

Definition 2.1. Given a dataset D = {x1, x2, . . . , xN}, xi ∈ S where S is the data

space to be studied. A function f(xi, xj) is defined in S to evaluate the proximity

between xi and xj (1 ≤ i, j ≤ N). The cluster analysis aims at finding the optimal

partitioning C = {Ck} (K < N and 1 ≤ k ≤ K) upon D, given Functions Fintra(Ck)

and Finter(Ck, Ck′) for evaluating the intra- and inter-cluster proximities respectively.

The clusters {Ck} are expected to satifsy the following properties :

1. Ck 6= ∅;

2.
⋃K

k=1 Ck = D;

3. There are two cases in flat partitional clustering: for hard partitioning, Ck
⋂

Ck′ =

∅ when k 6= k′, while for soft partitioning, a data instance might belong to

8



Figure 2.1: Five Steps of Cluster Analysis

more than one clusters. For hierarchical clustering we have either Ck ⊆ Ck′ or

Ck
⋂

Ck′ = ∅;

4. The sum of Fintra(Ck) over k is maximized, while the sum of Finter(Ck, Ck′) over

k and k′ is minimized.

Figure 2.1 shows the different phases in the procedure of cluster analysis that

are discussed in [62][155][55], including:

1. Data Pre-processing covers the operations of removing inconsistent data and noise

data, integrating data from multiple sources, etc.;

2. Feature Extraction and Transformation means to extract existing features or con-

struct new features that are most relevant to the analysis task;

3. Algorithm Selection or Design is the key step where intelligent methods are ap-

plied to discover patterns from the dataset. Since no clustering algorithms are

universally suitable, to solve different problems in specific fields it is necessary to

determine whether to adopt an existing algorithms or develop a new one;

4. Result Validation and Evaluation is to show the credibility of the derived cluster

result. Also some criteria are utilized here to identify the truly useful patterns

among the result;

9
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Figure 2.2: Comparison of Flat and Hierarchical Clustering

5. Knowledge Interpretation presents the learned useful patterns, i.e. the derived

knowledge, in a user-friendly way.

The above five phases are often launched in a cyclic way. In many circumstances, a

series of trials and repetitions are necessary to improve the final result. Additionally the

phases (1), (2) and (5) are heavily dependent on the background knowledge. Usually

the domain experts can easily point out which features are most relevant to the learning

task and how to translate machine-understandable patterns into user-understandable

ones. Hence in this part we mainly focus on the clustering algorithm itself, i.e. the

phases (3) and (4) which are surrounded by the solid line in Figure 2.1.

A large number of clustering algorithms have been proposed since the 1960s.

Comprehensive surveys in this field are provided in [62][14][155]. Roughly speaking,

propositional algorithms can be categorized as flat clustering and hierarchical clustering :

Flat clustering algorithms divide the dataset into a number of disjoint clusters,

assigning each data object to its nearest cluster and updating the cluster’s geomet-
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rical features (e.g. centroid or medoid1 iteratively. Different algorithms differ in the

similarity/distance functions, the strategies of grouping or splitting clusters and their

choice of prototypes (such as mean, medoid, core/border points, etc). In this category

the most well-known and widely applied algorithm is k-means, owing to its advantages

of easy implementation and good scalability. Figure 2.2a shows the cluster result ob-

tained by utilizing k-means upon a 2D dataset2 with the Euclidean distance function

(points labelled as ∗ in the figure are the centroids of the clusters). Other flat clustering

algorithms are based on the assumption that all the data are generated by some mix-

ture of underlying probability models (e.g., the Gaussian Mixture Model is commonly

used), so the clustering problem is transformed into a parameter estimation problem

where the parameters are determined by the underlying probability models. Then the

standard Expectation-Maximization (EM) approach can be applied: in the E-step the

cluster membership of all the data are identified and in the M-step the parameters of

the probabilistic models are optimized. Generally model-based clustering algorithms are

more mathematically understandable and reasonable than the proximity-based ones, but

care must be taken when choosing the functional form of the underlying probability

distributions.

Hierarchical clustering algorithms in contrast use a hierarchical structure to or-

ganize data, in which upper-level clusters contain the lower-level clusters. To generate

the hierarchy, we can either treat each data object as a separate cluster and then grad-

ually merge them in a bottom-up fashion, or start from a cluster containing all the data

objects and recursively divide the clusters in a top-down fashion. In addition to calcu-

lating the similarities between data objects, these algorithms require the definition of

similarity measure between clusters. The single-linkage and complete-linkage methods

are often used for hierarchy generation. Figure 2.2b shows the hierarchical structure

built by utilizing the hierarchical agglomerative clustering (HAC) algorithm upon the

1
Medoid is the data object within a dataset of which the average distance to all the other objects in

the dataset is minimal.
2This dataset contains five groups of normally distributed data points in a 2D space. The flat and

hierarchical cluster results are generated by the functions kmeans and hclust in the GNU software R [40].
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same 2D dataset as in Figure 2.2a. Then an appropriate level in the hierarchy may

be selected as the cutting point to obtain a partitioning of the data (as the subtrees

surrounded by the red boxes in the Figure 2.2b).

Besides the above categorization, the clustering algorithms may also be distin-

guished as incremental or non-incremental, depending on whether or not they are able

to incrementally improve the cluster models when new data become available. Addi-

tionally, modern clustering algorithms can be categorized according to the techniques

they adopt, such as graph theory, spectral theory etc.

Propositional clustering algorithms are mainly proposed for analyzing datasets

in the multi-dimensional vector space, i.e. we have all xi ∈ R
n in Definition 2.1. Based

on this assumption, many algebraic or geometric approaches can be utilized to facilitate

the calculation of the clustering procedure3. For example, BIRCH [162] adopted the

“Clustering Feature” (CF) to summarize the properties of a cluster, which is essentially

the linear sum and the squared sum of data vectors in the cluster. Other algebraic and

geometric features of the cluster such as the centroid, radius/diameter, the intra-/inter-

cluster distances can be computed from the CF vector. Moreover, the CF vector is easy

to be updated when new data are absorbed into the cluster.

However, many datasets in practice cannot be represented as multi-dimensional

numeric or nominal vectors. They are composed of heterogeneous data types and inter-

relationships. We refer to them as the relational datasets to emphasize their substantial

differences from the previous propositional datasets. Obviously, the algebraic and geo-

metric theorems in the vector space R
n are not necessarily correct in the relational data

space, for example the relational data instances are not additive or divisible as numeric

vectors. Naively applying propositional clustering algorithms cannot fully exploit infor-

mation contained in the dataset or leads to inappropriate conclusions about the data

[64], so analyzing relational datasets has become a critical challenge and an active re-

search direction in recent years. In the rest of this chapter, some fundamental concepts

3When processing a categorical dataset, we can use a different boolean dimension to represent each
possible nominal value and thus translate categorical data into numerical data.
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Table 2.1: Propositional Iris Dataset
ID Sepal Sepal Petal Petal Class
(#) Length Width Length Width

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa

. . .
51 7.0 3.2 4.7 1.4 Iris-versicolor
52 6.4 3.2 4.5 1.5 Iris-versicolor
53 6.9 3.1 4.9 1.5 Iris-versicolor
. . .
101 6.3 3.3 6.0 2.5 Iris-virginica
102 5.8 2.7 5.1 1.9 Iris-virginica
103 7.1 3.0 5.9 2.1 Iris-virginica
. . .

of relational clustering are introduced in Section 2.1 and then a state-of-the-art review

of relational clustering algorithms is provided in Section 2.2.

2.1 Fundamentals of Relational Clustering

As follows, Section 2.1.1 explains the properties of relational data and the methodology

of constructing relational data objects. Section 2.1.2 introduces a recursive similarity

measure to compare relational data objects. Section 2.1.3 provides some criteria to

evaluate the cluster quality.

2.1.1 Relational Data

Traditional data mining algorithms assume all data are represented as attribute-value

pairs. With such assumption, each data instance corresponds to a row (or tuple) in a

table and each attribute to a column [121]. In this paper, datasets that can be mapped

into a single table are called propositional. Table 2.1 is an example of propositional

dataset in the UCI Machine Learning Repository [7]. By analyzing these tuples, we can

generate some propositional patterns, e.g. Xiris−setosa = {x|PetalWidth(x) ≤ 0.6}
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Figure 2.3: Schema of a movie dataset

or Xiris−virginica = {x|0.6 < PetalWidth(x) ≤ 1.5 and PetalLength(x) > 4.9} ∪
{x|PetalWidth(x) > 1.7}.

In contrast, relational datasets pertain to domains with different data types and

sets of relationships between them [36]. These data types together with the relationships

constitute a far more sophisticated feature space than those in propositional datasets.

According to the theory of relational database [28], a table stores a set of tuples with

the same attributes and a link between tables means that the referencing tuple has the

referenced tuple as part of its attributes, so we have:

Definition 2.2. A relational dataset contains a set of tables D = {X1, X2, . . . , XM}
and a set of relations (links, associations) between pairs of tables. All the tuples in the

table Xi are of the same type and tuples in different tables Xi and Xj are semantically

associated by the relation(s) between Xi and Xj . To simplify our discussion, we use

Xi.c to denote the concept c of table Xi, where c might be an attribute in Xi or the

name of another table that is associated to Xi.

Consider an example of a relational movie dataset, of which the schema is shown

in Figure 2.3. Each table contains a set of attributes to define an entity type (e.g.

Movie, Actor or Director) or a many-to-many relationship (e.g. director-Direct-movie

or actor-Act-movie). Links between tables indicate a one-to-many relationship (along

the direction of arrows). Based on this database schema, the original data instances

are decomposed before being stored in order to minimize the data redundancy. In the

retrieval procedure all the related tuples in different tables are extracted and combined to

recover the original instance. For example, with the aid of relational algebra operations
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such as join, we can easily retrieve all the information about an actor: his name and all

the movies he acted in as well as all the directors he worked with.

Because tuples in different tables of a relational dataset are semantically as-

sociated by the relationship(s) between these tables, Relational Patterns extends the

Propositional Patterns in the scenario of relational learning [76][121]:

Definition 2.3. Relational learning is “the study of machine learning and data min-

ing within expressive knowledge representation formalisms encompassing relational or

first-order logic. It specifically targets learning problems involving multiple entities and

relationships amongst them.”

From the above definition, we can see that attribute values of tuples as well

as their pairwise linkage information are both important for relational learning. When

searching for patterns in a relational dataset, not only the tuples in the target table but

also those in the associated tables should be considered. Therefore, in the movie dataset

(Figure 2.3) the analysis of any actor should be based on the movies he has acted in

as well as the directors or other actors he cooperated with, so information stored in the

associated tables Movie and Director needs to be exploited. For example, a relational

pattern to strictly identify action movie stars can be described as X̃action = {x | x ∈
XActor, (x.movie).genre = Action}.

Sometimes propositional clustering algorithms are still applicable for processing

relational datasets by means of merging multiple tables into one (this operation is called

“propositionalization” [78]) , but it is not a good choice because [47][100]:

• Transforming relational linkage information as additional attributes in the target

table often leads to a very high dimensional feature space. The derived tuples are

very sparse and thus inevitably degrades the performance of clustering algorithms.

• The linkage structure itself has structural properties (e.g. degree or connectivity)

that can provide important information for the cluster analysis, but such features

might be lost during the procedure of transformation.
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Figure 2.4: Example relational object for Tom Hanks

• The propositional clustering algorithms are originally designed for propositional

datasets, and so they cannot capture the features that are propagated along the

paths of relationships between multiple data types.

The above limitations of applying propositional clustering algorithms to relational datasets

motivate the development of numerous relational clustering algorithms. As the basis of

further discussion, here we will first introduce an approach of constructing relational

data objects to systematically exploit the associated information for a target tuple.

Given a dataset schema represented as a directed graph G = (V, E), in which

vertices V = {ci} stand for the tables (concepts) in the schema and edges E =

{~est| edge ~est : cs → ct; cs, ct ∈ V } for the relationships between concepts. An

edge ~est : cs → ct means that the source concept cs references the target concept ct

as its associated feature. When constructing an object x of concept cs, we find out all

the associated features F(cs) and link any object y of type ct that satisfies the relation

between cs and ct as an associated attribute value of x.ct. Then for each y ∈ x.ct, the

above procedure is iteratively performed until F(ct) = ∅ or a depth bound is reached.
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Table 2.2: Properties of distance functions
Distance Function

Positivity fd(xi, xj) ≥ 0

Reflexivity fd(xi, xj) = 0, iff xi = xj

Symmetry fd(xi, xj) = fd(xj , xi)

Triangle Inequality∗ fd(xi, xk) ≤ fd(xi, xj) + fd(xj , xk)

In the example of the data schema shown in Figure 2.3, according to the rela-

tionship structure, we have F(Movie) = {Title, Genre, YearOfRelease, Duration, Actor,

Director} and F(Actor) = F(Director) = {Name, Movie}. Then all the associated

data objects are recursively linked to the current object. Figure 2.4 shows parts of the

relational data object constructed for Tom Hanks.

2.1.2 Proximity Measures

Many clustering algorithms as well as evaluation criteria are designed based on the

proximity (i.e. similarity or distance) values between pairs of data objects. Before

discussing the proximity measures for relational datasets, we first go through some

classic measures that are widely used in propositional datasets.

For any propositional dataset D = {x1, x2, . . . , xN}, we can either define a

similarity measure fs(·, ·) or a distance measure fd(·, ·). These measures have some

properties listed in Table 2.2 [35]. The property of triangle inequality is not necessary

for a proximity measure. When it is satisfied, the measure is also called a metric. It

is also worth noting that the distance measure fd(·, ·) is generally unbound. In most

cases we can normalize the distance measure to limit its values within the interval [0, 1].

Then the normalized distance measure can be converted into a similarity measure or

vice verse by utilizing the property fs(xi, xj) + fd(xi, xj) = 1.

The attributes of propositional data might be of types nominal, numeric, string-

based, vector-based, etc. A variety of proximity measures are applicable for different

data types to compute similarity or distance between data:
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Table 2.3: Similarity Measure for Categorical dataset
α β Name of Similarity Measure

1 Jaccard Coefficient
0 2 Sokal and Sneath Measure

1/2 Gower and Legendre Measure

1 Simple Matching Coefficient
1 2 Rogers and Tanimoto Measure

1/2 Gower and Legendre Measure

• For nominal datasets, when xi and xj denote single nominal values, a straightfor-

ward similarity function can be defined as:

fsnominal(xi, xj) =





1 if xi = xj

0 otherwise
(2.1)

In some cases, we expect to know the similarity between two sets of nominal values

x̂i and x̂j . If we use n11 to represent the number of nominal values appearing in

both x̂i and x̂j , n00 for nominal values appearing in neither x̂i or x̂j , n10 (resp.

n01) for nominal values that appear in x̂i (resp. x̂j) only, a family of proximity

measures can be defined by [35]:

fs′nominal(x̂i, x̂j) =
n11 + α · n00

n11 + α · n00 + β · (n01 + n10)
(2.2)

Table 2.3 gives some possible combinations for parameters α and β, as well as

their corresponding measures.

• For numeric variables, xi and xj represent single values in the range (a, b) where

b > a. Then the distance can be calculated by:

fdnumeric(xi, xj) =
xi − xj

b− a
(2.3)

• For two strings, Levenshtein Distance [87] counts the minimum number of oper-
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ations needed to transform one string into the other. Transformation operators

include insertion, deletion, or substitution of a single character. Then the normal-

ized distance function can be defined by:

fdstring(xi, xj) =
levenshtein distance(xi, xj)

string length(xi) + string length(xj)
(2.4)

• For two points in the n-dimension Euclidean space, Minkowski metric is widely

used:

fdpoint(xi, xj) =




m∑

p=1

| xip − xjp| q



1/q

, q ≥ 1 (2.5)

Setting q = 1 gives the Manhattan metric while q = 2 is the familiar Euclidean

metric. When q →∞, the metric converges to maxp |xip − xjp|.

• When xi and xj are numeric vectors, the cosine value of the angle between them

can be used as the similarity measure:

fsvector(~xi, ~xj) =

∑
p xip · xjp√∑

p x2
ip ·
√∑

p x2
jp

(2.6)

Such a model has been applied successfully in the fields of Information Re-

trieval(IR) and Collaborative Filtering(CF). Each index term of the document

or each user of the object is taken to be a orthogonal dimension in the vector

space, and so documents or objects are represented as weight vectors. In the IR

domain these weights can be obtained by TF-IDF ranking strategy [9], and in the

CF domain they are the ratings provided by users.

• In statistics, Correlation Coefficient refers to the departure of two random vari-

ables x and y from independence: ρ =
σxy

σxσy
. If ρ = ±1, it means x and y are

maximally positively or maximally negatively correlated. If ρ = 0, then x and y are

completely uncorrelated. Therefore, the absolute value of the correlation between

two variables can be adopted to measure their similarity. Many correlation mea-
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surements have been developed, among which Pearson’s Correlation Coefficient is

the best known:

fsstat(xi, xj) =

∑
p(xip − xi )(xjp − xj )

√∑
p(xip − xi )2 ·

√∑
p(xjp − xj )2

(2.7)

where xi =
1

m

m∑

p=1

xip and xj =
1

m

m∑

p=1

xjp.

The propositional proximity measures introduced above are the foundation for

constructing the relational measures. Given two relational objects associated with mul-

tiple tables of different data types, we can first utilize some appropriate propositional

measures to compare their components and then synthesize the results as the total prox-

imity value for the objects. Horváth et al. proposed the RIBL2 measure in [60] : Given

two relational data objects xi and xj of concept cs constructed as in Section 2.1.1, their

relational similarity is computed as:

fsobject(xi, xj) =
∑

ct∈F(cs)

wst · fsset(xi.ct, xj .ct) (2.8)

where weight wst (wst ≤ 1 and
∑

t wst = 1) represent the importance of member

concept ct when describing the concept cs. In Equation 2.8, fsset(xi.ct, xj .ct) is defined

as:

fs′set(xi.ct, xj .ct) =





1
|xi.ct|

∑

yl∈xj .ct

max
yk∈xi.ct

fsobject(yk, yl), if |xi.ct| ≥ |xj .ct| > 0.

1
|xj .ct|

∑

yk∈xi.ct

max
yl∈xj .ct

fsobject(yk, yl), if |xj .ct| ≥ |xi.ct| > 0.

0, if |xi.ct| = 0 or |xj .ct| = 0.

(2.9)

If F(cj) 6= ∅, the value of fs(yk, yl) in Equation 2.9 is recursively calculated by Equa-

tion 2.8. This measure explores the linkage structure of the relational objects in a

recursive fashion. The procedure continues until F(cj) = ∅ or the depth bound is
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Figure 2.5: Two Example Movie Stars

reached, where the propositional similarity metrics can be applied. Generally, the whole

linkage structure is not necessary to be exploited because the weights wst between the

referencing concept cs and the referenced concept ct make the impact of components

in low levels of linkage structure decreases exponentially.

Here is an example to demonstrate the above recursive similarity measure: in the

movie dataset we have F(Movie) = {Title, Genre, YearOfRelease, Actor, Director} and

F(Actor) = {Name, Movie}. Figure 2.5 shows the relational objects for action movie

stars “Arnold Schwarzenegger” and “Sylvester Stallone”. We compare them with the

actor “Tom Hanks” represented in Figure 2.4. In the scenario of propositional clustering,

actors are compared based on their names since no relational data are considered there.

If we regard the name of actors as a set of enumerated values and then utilize the true-

or-false function, the similarity between every pair of actors will always be zero because

they have different names. An alternative way is to use the Levenshtein distance to

compare the actors, then we have fs(oA2, oA3) = fsstring(“Arnold Schwarzenegger”,

“Sylvester Stallone”) = 0.095 and fs(oA1, oA3) = fsstring(“Tom Hanks”,“Sylvester

Stallone”) = 0.111, which is still unreasonable.
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Table 2.4: Linkage Matrix between Actors and Movies
Name M1 M2 M3 M4 M5 M6

Tom Hanks (A1) 1 1 0 0 0 0
Arnold Schwarzenegger (A2) 0 0 1 1 0 0

Sylvester Stallone (A3) 0 0 0 0 1 1

Figure 2.6: Genre Taxonomy

If we transform the relational information into a high dimensional vector space,

e.g. constructing a binary vector to represent the movies that an actor has acted in,

the pairwise similarity between the actors can be calculated using the cosine value of

their movie vectors or simply using the equivalent Jaccard Coefficient. As shown in

Table 2.4, such a transformation will produce sparse data and hence bias the cluster

analysis. Another issue is that the semantic information about movie genres shown in

Figure 2.6 will be lost when calculating pairwise similarity between actors.

To illustrate the RIBL2 measure, we first calculate the similarity value between

movies “Terminator 2: Judgment Day” and “Rocky” (to simplify our calculation, the

weights wst for different associated concepts are set equally):

fsobject(oM3, oM5)

=
1

3

[
fsstring(oM3.T itle, oM5.T itle) + fstaxonomy(oM3.Genre, oM5.Genre)

+fsnumeric(oM3.Y ear, oM5.Y ear)

]

=
1

3

[
0.077 + 0.5 +

(
1− |1991− 1976|

yearmax − yearmin

)]

= 0.359
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Similarly we have:

fsobject(oM4, oM5) =
1

3

[
0 + 1 +

(
1− |1994− 1976|

30

)]
= 0.467

fsobject(oM3, oM6) =
1

3

[
0.154 + 0.5 +

(
1− |1991− 1982|

30

)]
= 0.451

fsobject(oM4, oM6) =
1

3

[
0.182 + 1 +

(
1− |1994− 1982|

30

)]
= 0.594

Based on the above similarity values between movies, we can calculate the similarities

between actors as follows:

fsobject(oA2, oA3)

=
1

2

[
fsstring(oA2.Name, oA3.Name) + fsset(oA2.Movie, oA3.Movie)

]

=
1

2


0.095 +

1

2

∑

yl∈{M5, M6}

max
yk∈{M3, M4}

fsobject(yk, yl)




=
1

2

[
0.095 +

1

2
(0.467 + 0.594)

]
= 0.313

In the same way, we can get fsobject(oA1, oA3) = 0.171 < fsobject(oA2, oA3), which

means Sylvester Stallone (A3) is more similar to Arnold Schwarzenegger (A2) than

Tom Hanks (A1). Therefore, by utilizing the relational proximity measure to exploit the

linkage structure within the relational dataset, we achieve more credible results about

the object comparison.

The idea of mutual reinforcement has also been utilized recently to iteratively

calculate similarity values between relational data objects. Jeh and Widom [63] stud-

ied the structural-context similarity of relational data objects. Their similarity measure,

named SimRank, is based on the principle “two objects are similar if they are related to

similar objects”. Given the original relational objects represented as a usual graph G,

they construct an ordered node-pair graph G2 in which each node represents a pair of

objects in G and each edge represents the transit between two pairs of objects. Then
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an iterative fixed-point algorithm is used to compute the SimRank scores for the node-

pairs in G2. The authors proved in theory that the solution for the SimRank equation

is existent and unique. They also showed that their SimRank model is mathematically

equivalent to the expected-f meeting distance in a random surfer-pairs model. Fogaras

and Rácz [44] improved the scalability of the original SimRank approach by introduc-

ing the idea of randomized Monte Carlo methods combined with indexing techniques.

Xi et al. [154] proposed a Unified Relationship Matrix (URM) to represent a set of

heterogeneous data objects as well as their interrelationships. Based on that, they de-

veloped a unified similarity-calculating algorithm, SimFusion, by iteratively computing

over the URM until reaching the convergence. The theoretical analysis showed that

the URM can be considered as a single step transition matrix of a Markov Chain and

the iterative similarity reinforcement process of updating the Unified Similarity Matrix

is equivalent to a “two random walker model”. Although the effectiveness of SimRank

and SimFusion are supported by some experimental results, their computational com-

plexities are quadratic with respect to the number of data objects. Xue et al. [156]

developed a Multiple Relationship Similarity Spreading Algorithm (MRSSA) to compute

similarities for multiple object types in an iterative spreading fashion. They first use

a graph-based model to represent the linkage structure within a relational dataset and

define the relational similarity measure as a linear combination of the content similarity

as well as the intra- and inter-type similarities between data objects. Because the intra-

and the inter-type similarity mutually affect each other, an iterative process is used to

improve the precision of pairwise similarities between data objects. White and Smyth

[148] define and evaluate a host of metrics to compute the similarity between a given

object and the other reference objects in a graph. The above reviewed measures do not

always satisfy the property of Triangle Inequality in Table 2.2, which means they are not

metrics. To address this issue, some relational distance metrics like [123] or [122] have

been proposed.
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2.1.3 Evaluation Criteria

In this section we consider another important question: If the proximity measure has

been chosen, which criterion should be used to guide the cluster analysis and evaluate

the derived results? Clustering can be regarded as a search problem with each node

corresponding to a certain partitioning [112], but exhaustively evaluating all possible

partitions to find the optimal one is infeasible in practice due to the high computational

complexity. Therefore some heuristic methods are utilized in the design of clustering

algorithms to accelerate the search. It has been pointed out that the procedure of cluster

analysis is considerably subjective in nature: the target data objects are partitioned into

“a number of more or less homogeneous subgroups on the basis of an often subjectively

chosen measure of similarity (i.e., chosen subjectively based on its ability to create

interesting clusters)” [8]. Hence, the evaluation criterion plays an important role for

the cluster analysis. It guides the search direction in the partitioning space as well as

quantitatively evaluating different partitions derived by clustering algorithms to find the

optimal one.

Some criteria for propositional datasets are outlined in [35]. Among which Sum

of Squared Error (SSE) is the most widely used for clustering. Let K be the number of

derived clusters, Nk be the number of data instances in cluster Ck and xk be the center

of these data. The SSE criterion is defined as:

E =
K∑

k=1

∑

x∈Ck

fd 2(x, xk) (2.10)

The SSE criterion is appropriate when the clusters are compact and well separated

from each other. However, when the number of data objects in the optimal partition

vary greatly, the cluster result with minimum SSE may not reveal the true underlying

data structure, because a partition splitting large clusters is more favorable under such

circumstance. It means those clustering algorithms designed based on the principle of

minimizing the SSE criterion, e.g. k-means, tend to generate the clusters of the equal
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size. To address this issue, another criterion, Related Minimum Variance, might be used:

E =
1

2

K∑

k=1

Nksk (2.11)

where

sk =
1

N2
k

∑

x∈Ck

∑

x′∈Ck

fs(x, x′) or sk = min
x,x∈Ck

fs(x, x′)

The SSE or Related Minimum Variance criterion can be applied in the functions Fintra(Ck)

and Finter(Ck, Ck′) of Definition 2.1 to guide the clustering procedure or evaluate the

derived result. For example, in k-means we iteratively adjust the membership of data

instances in each cluster in order to reduce the SSE value over all the clusters.

The SSE criterion, also named as the Within-cluster Scatter Matrix (denoted as

SW ) in multiple discriminant analysis, can be used to evaluate the intra-cluster distances.

Additionally, the criteria of Between-Cluster Scatter Matrix and Total Scatter Matrix

(denoted as SB and ST respectively) are used to evaluate the inter-cluster distances and

the scattering extent of the whole dataset respectively:

SB =
K∑

k=1

Nk · fd 2(xk, x) and ST =
∑

x∈D

fd 2(x, x) (2.12)

where xk is the center for all data objects in cluster Ck as before, x is the center for

the whole dataset. In propositional clustering, the center of a cluster is the mean of all

data in that cluster: xk = 1
Nk

∑
x∈Ck

x when cluster Ck ⊂ R
m. Similarly we have x =

1
N

∑
x∈D x. However, in relational clustering the center of a cluster is usually determined

by the medoid of all data objects in that cluster, so the constraint ST = SW + SB that

is valid in propositional datasets will be invalid for relational clustering. Additionally,

the operation of determining the medoid within a cluster has quadratic computational

complexity. Such disadvantage heavily restricts the application of relational clustering

algorithms that are designed to minimize the SSE criterion of a partition for a relational

dataset. This issue will be investigated thoroughly in the Section 2.2.1.
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To evaluate the quality of the cluster result, it is possible to examine the homo-

geneity within the clusters and the heterogeneity between the clusters when the class

labels of data objects are available. The Jaccard Coefficient [141] is suitable for this

purpose, which is computed by the number of pairs of objects in same cluster and with

same class label over that of pairs of objects either in same cluster or with same class

label. In Table 2.3 we set the parameters b = 0 and w = 1 to get the Jaccard Coefficient.

Alternatively, we can evaluate the quality of clusters based on the idea of entropy.

Entropy was first introduced in thermodynamics to measure the system’s thermal energy.

Being obtained from the disordered molecular motion, entropy reflects the molecular

disorder in the thermodynamic system [51]. Later, entropy was extended to measure

the uncertainty associated with a random variable in information theory [133]. Recently

the entropy is used to evaluate the disorder or impurity of clusters [145]. Formally, given

the class labels of data objects in a cluster Ck, Ck’s entropy is computed by:

E(Ck) = −
∑

h

Ph,k log2 Ph,k (2.13)

where Ph,k is the proportion of data objects of class h in the cluster Ck. The total

entropy is defined as:

E =
∑

Ck

E(Ck) (2.14)

Generally speaking, smaller entropy values indicate higher accuracy of cluster result.

2.1.4 Determining the Number of Clusters

In this section we will briefly discuss another issue in clustering: how to determine an

appropriate number of clusters that should be generated? Obviously the quality of final

cluster result is heavily dependent on such number: too many derived clusters will break

linkages between similar data instances and thus cause the loss of pattern information;

while too few derived clusters will hide the pattern within noise and make the result

difficult to interpret. Unfortunately, many clustering algorithms ask the number of
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clusters as an input parameter and in most cases such number has to be estimated based

on background knowledge or exclusive analysis on the dataset itself. So determining the

number of clusters is considered as “the fundamental problem in cluster validity” [34].

Xu and Wunsch summarized four approaches in [155] to estimate the appropriate

number of clusters for propositional clustering algorithms:

• Visualizing datasets: When the dataset can be mapped to points in a 2D or

3D space, we will use some graphical tools to visualize the distribution of data

instances and thus estimate the optimal number of clusters. However, the appli-

cability of this approach is restricted because of the complexity data structure in

most real dataset.

• Constructing certain indices (stopping rules): These indices are generally based

on evaluating the compactness of derived clusters, e.g. the squared error, the

intra-cluster similarity and inter-cluster distance or some synthesized criteria, to

determine the optimal value of K. One disadvantage is that the success of these

indices is data dependent, which means the good performance of an index upon

one dataset does not guarantee it works well on other datasets [41].

• Optimizing some criterion function under probabilistic mixture-model framework;

The clustering problem can also be solved using EM algorithm, i.e. using data

to estimate parameters of probabilistic models for a given range of K and then

select the optimal K that maximize some predefined criterion. Many criteria

based on various ideas in statistics, Bayesian theory or information theory have

been proposed [150][117][115].

• Utilizing other heuristic approaches: For example, eigenvalue decomposition on

the kernel matrix in the feature space has been investigated to determine K [49].

Ideally we expect the clustering algorithms can automatically adjust the number of

derived clusters rather than use a pre-specified and fixed parameter. In propositional
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clustering the above goal has been achieved more or less by utilizing the above ap-

proaches. However, in relational clustering the problem is more sophisticated because

cluster results of different data types are inter-related, which means skewed clusters of

one type caused by an inappropriate K will propagate along the linkage structure to

influence partition of other data types and thus deteriorate the global cluster results.

To the best of our knowledge, there are no systematic studies on how to determine the

optimal number of clusters in relational cluster analysis.

2.2 Relational Clustering Algorithms

Relational clustering algorithms can be categorized as proximity-based, reinforcement,

model-based, graph theoretic and constraint-based approaches. Among them the rein-

forcement clustering is the only one not rooted in propositional clustering approaches.

We now discuss each of these categories in turn.

2.2.1 Proximity-based Clustering

As discussed in the previous section, proximity-based approaches can be distinguished

as flat clustering and hierarchical clustering.

Flat clustering approaches assign data into a set of disjoint clusters without hi-

erarchical relationship between each other. Since finding the global optima is usually

infeasible in practice, some heuristic techniques are incorporated to accelerate the pro-

cedure. Based on the proximity measures introduced in Section 2.1.2, the clustering

procedure begins at a random partition and then approximates the optimal solution by

minimizing a specific criterion (Section 2.1.3) in each iteration. When the error falls

under an acceptable threshold or the assignment of data to the clusters no longer change

from one iteration to another, which is regarded as “convergence”, the partition will be

output as the final result. The most well-known partitional clustering algorithms are

k-means and k-medoids. More sophisticated ideas are introduced in recent years to

amend the cluster quality (e.g. PAM, CLARA+ [70] and CLARANS [112]), to achieve
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global search and faster convergence (e.g. genetic k-means algorithm (GKA) [79] and

global k-means algorithm [95]), to find arbitrary cluster shapes (e.g. DBSCAN [39] and

OPTICS [5]), etc.

Hierarchical clustering approaches organize all data using a hierarchical structure,

called a “dendrogram”. The root node represents the whole dataset and each leaf node

is regarded as a data object. Each intermediate node in the dendrogram corresponds

to a subset of the dataset, in which the data are grouped according to their pairwise

proximity. The ultimate cluster result is obtained by cutting the dendrogram at an

appropriate level. Hierarchical clustering approaches can be performed divisively or

agglomeratively. The former methods start by assuming the entire dataset belongs to

the same cluster and successively divides it into sub-clusters. The agglomerative methods

begin with each data object in a distinct (singleton) cluster and successively merges them

together. Various linkage criteria, for example single-linkage, complete linkage, average

linkage, median/centroid linkage or Ward’s method [155], can be used to compute the

pairwise proximity between clusters. The common disadvantages of classic hierarchical

clustering approaches include the high computational complexity and the sensitivity to

outlier data. Hence, new algorithms such as BIRCH [162], CURE [52] and Chameleon

[68] were developed to address these issues.

Since the flat and the hierarchical clustering approaches are both based on prox-

imity measures, they might be extended to process relational datasets by incorporating

the relational proximity measure introduced in Section 2.1.2. Kirten and Wrobel de-

veloped RDBC [72] and FORC [71] as the extensions of propositional hierarchical ag-

glomerative and k-partitional algorithms respectively. Both of them adopt the measure

RIBL2 [73] to evaluate the distance between data objects. However, since objects in the

relational dataset are normally not additive or divisible as numeric vectors, RDBC and

FORC have to use the medoids to represent the center of clusters instead of using the

means. The medoid of a cluster is defined as the data object that has the maximum

average similarity (or minimum average of distance) with the other objects in that clus-
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ter. To achieve this, all pairs of data objects in the given cluster have to be compared.

Therefore, RDBC and FORC are not suitable for clustering very large datasets as they

have quadratic time complexity.

2.2.2 Reinforcement Clustering

The principal of reinforcement clustering approaches comes from the observation that,

since all data objects of different types are inter-related to each other, the cluster result

of one data type might be propagated along the relationship structure to improve that of

other data types. Anthony and desJardins summarized this idea as inter-cluster relation

signature [6]: First, data objects of a certain type, assume ci, are clustered based on

their attributes using some propositional clustering methods; Then for other objects of

type cj referencing (or being referenced by) ci, the inter-cluster relation signature is

constructed as a K-dimensional vector, where K is the number of clusters obtained in

the first step. The value of each dimension in the inter-cluster relation vector vk is the

number of edges that an object of type cj has when being linked to objects of type ci

in cluster k. Hence, the data objects of type cj are clustered based on the above inter-

cluster relation vector in addition to their propositional attributes. The above iterative

procedure continues until the clusters of all data types become stable.

The relational clustering algorithm motivated by the idea of mutual reinforcement

was firstly implemented by Zeng et al. [160] in the scenario of clustering heterogeneous

web objects, such as web-pages/users or queries/documents. They analyzed several

cases of mutual reinforcement in clustering, and concluded that “when the links among

nodes are dense enough and contain mostly correct information”, the cluster results of

one data type will improve that of other related data types. Additionally, they use a

hybrid similarity function, a weighted sum of two similarity measures based on content

features and link features, to compare data objects during the clustering procedure.

The ReCoM framework proposed by Wang et al. [145] further developed this idea by

incorporating the importance of data objects to improve the cluster quality. Besides
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being used to group data objects in an iterative reinforcement fashion, the relationship

structure is also used to differentiate the importance of data objects. More important

objects, just as authoritative and hub nodes as produced by the HITS algorithm [75],

can have more influence on the clustering procedure. When clustering data objects of a

certain type, both of the above frameworks will transform the information of relationship

structure into the link feature vector of the current objects according to the cluster result

of other data types. By this means, the relational clustering task is propositionalized

and thus propositional clustering algorithms could be easily embedded into each iterative

clustering step to improve the efficiency.

Yin et al. [157] proposed another relational clustering approach, LinkClus, which

is also performed by using reinforcement. Instead of using the numeric vectors to rep-

resent the content and linkage features of relational objects, in LinkClus they designed

a hierarchical data structure SimTree to simplify the calculation of similarities between

objects, and then use LinkClus to improve the SimTree iteratively. One drawback in

LinkClus is that they only utilized frequent pattern mining techniques to build the initial

SimTrees and use path-based similarity in one SimTree to adjust the similarity values

and structures of other SimTrees, so information contained in the property attributes

of data objects are not used in their clustering framework. Ignoring such information

would definitely degrade the accuracy of the final clustering result.

2.2.3 Model-based Clustering

From the viewpoint of probability theory, data objects are assumed to be generated by a

set of parametric probability models. The derived clusters, which are expected to reflect

the natural structures hidden in the dataset, should match the underlying models. These

probability distributions might be of different types or have the same density function but

with different parameters. If the distributions are known, finding clusters within a given

data set is equivalent to the problem of estimating parameters for underlying models.

The Expectation-Maximization (EM) algorithm is a popular solution for this kind of
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problem [17]. In propositional datasets, mixtures of multivariate Gaussian distributions

are often used due to its well-developed theoretical foundation [42][45].

To analyze the co-occurrence data and discover the latent relationship between

them, Hofmann and Puzicha developed the Separable Mixture Model (SMM) as a unified

framework for statistical inference and clustering. By following the maximum likelihood

principle, they used an improved EM algorithm to determine the model parameters.

The grouping structure obtained by SMM can be regarded as a soft partitioning of the

data space, in which the conditional probabilities are interpreted as class memberships

of objects to a set of clusters. The basic SMM model might be extended into Asym-

metric Clustering Model (ACM), Symmetric Clustering Model (SCM), and Hierarchical

Clustering Model (HCM) [58]. The original SMM model can only handle one type of

data co-occurrence, Bao et al. addressed this issue by explicitly adding a type variable

into SMM so that their extended Typed Separable Mixture Model (TSMM) can exploit

different types of co-occurrences [12].

Taskar et al. [142] proposed a general class of models for classification and

clustering in relational domains. All relational instances are modeled by the framework

of Probabilistic Relational Models (PRMs), in which the attributes of an instance are,

based on a conditional probability distribution, determined by the related attributes of

its parent instances. The parameters of PRMs are learned from data by utilizing the EM

algorithm. Since the networks would be fairly complex, they have to adopt the strategy

of belief propagation as the approximation scheme.

Liu et al. [97] extended the reinforcement relational clustering framework pro-

posed by Zeng et al. [160]. Different from the numeric vector spaces used in the

previous work, the new approach introduced two latent clustering layers, which serve as

two mixture probabilistic models of the features. The content and the link features of

each data object are generated by a content-specific probabilistic distribution (e.g. the

Näıve Bayes model for web-pages) and a multi-nominal distribution respectively. Given

the prior probabilities of all latent components, the probability of generating a data
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object is determined by the combination of its content and link probability. The EM

algorithm is used to estimate the parameters of the mixture models in each layer. And

since the data are correlated between layers, the cluster result in one layer is propagated

along the links to improve the calculation within the other layer. The algorithm performs

iteratively until it reaches convergence.

2.2.4 Graph-based Clustering

Data clustering and graph partitioning, a sub domain in graph theory [147], share many

common traits, and so we can easily use concepts and techniques of graph partitioning

to define and solve the problem of data clustering: A weighted graph G = {V, E} will

be constructed to describe the target dataset D, where vertices V correspond to all

data objects in D and the weight of edges E reflect the proximities between each pair of

data points. The problem of clustering data objects in D is then equivalent to finding

highly connected sub-graphs in G so that some prescribed properties are optimized, for

example minimizing the sum of edge weights on the cut or maximizing the sum of edges

weights within the partitioned sub-graphs. Actually graph partitioning techniques have

been adopted in many propositional clustering approaches, such as Chameleon [68],

CLICK [134], CAST [13] etc.

In the scenario of relational clustering, Neville et al. [110] provided some prelimi-

nary work of adapting graph-based techniques to incorporate both linkage structure and

attribute information. In their approach, the similarity of a pair of related objects is de-

termined by the number of common attributes they share. Objects that are not directly

related in the linkage structure have zero similarity regardless of their attribute values.

This similarity measure is used to weight edges of the graph G. Then three algorithms,

Karger’s Min-Cut [66], MajorClust [137] and spectral clustering with normalized-cuts

criterion [135], are used to partition the graph G and thus generate the clustering result

for the original dataset D. One disadvantage of this approach is that only the informa-

tion contained in the first degree of linkage structure is exploited in clustering. It does
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not consider the pairwise similarity between data objects that are linked via more than

one intermediate object.

Han et al. [54] proposed a hyper-graph model to represent a relational dataset

D. A hyper-graph extends the concept of a graph in the sense that each hyper-edge

may connect more than two vertices. In their approach, an association rule algorithm

such as Apriori [2] is firstly used to mine the frequent item sets in D. Each frequent

item set is represented by a hyper-edge in the hyper-graph whose weight is equal to the

average confidence of the association rules. Then the HMETIS [67] system is adopted

to partition the hyper-graph and hence generate the cluster results.

In [99], a multi-type relational dataset is first formulated as a k-partitional graph,

from which a Relation Summary Network (RSN) is constructed to find hidden data struc-

tures within the relational dataset. The quality of the derived RSN model is evaluated

by the closeness of its linkage structure to the original k-partitional graph. Given a cer-

tain distance function between two graphs, it turns out to be an optimization problem

of minimizing an objective criterion defined by a set of matrices, which represent the

linkage information in the k-partitional graph and the RSN graph respectively. Since the

above optimization problem is NP-hard, the authors use an iterative algorithm to find

the local optimal RSN graph with the Bregman divergence [11]. Additionally, they pro-

vide a unified view of several different clustering algorithms, including bipartite spectral

graph partitioning and k-means clustering, using their RSN model.

2.2.5 Spectral Clustering

Spectral clustering was proposed in the 1990s [118][53] and flourished very quickly after

that. Rooted in spectral theory [139], spectral clustering approaches need to analyze

the eigenvectors of an affinity matrix (also called as “similarity matrix” or “adjacent

matrix”) derived from the dataset. The problem of optimally partitioning the original

dataset is usually converted into solving a set of algebraic equations [135] or performing

the propositional clustering procedure in a new feature space spanned by the eigenvectors

35



[111]. Finally it is necessary to interpret the cluster indices for the original dataset from

the computational result. Weiss reviewed several typical spectral clustering algorithms

within a unified framework [146]. Zha et al. reformulated k-means clustering as a trace

maximization problem associated with the Gram matrix of the data vectors. Then they

showed that a relaxed trace maximization problem has the global optimal solution that

can be obtained by computing a partial eigen-decomposition of the Gram matrix [161].

Since spectral clustering can handle non-spherical clusters and is easy to implement,

it has been successfully applied in the field of speech separation, image segmentation,

bio-data classification, etc.

Long et al. presented a general framework for multi-type relational clustering

in [100]. Based on the assumption that the hidden structure of a data matrix can be

explored by its factorization, the relational clustering is converted into an optimization

problem: approximate the multiple relation matrices and the feature matrices by their

corresponding collective factorization. Under this model a spectral clustering algorithm

for multi-type relational data is derived, which updates one intermediate cluster indi-

cator matrix as a number of leading eigenvectors at each iterative step until the result

converges. Finally the intermediate matrices have to be post-processed to extract the

meaningful cluster structure.

2.2.6 Fuzzy Clustering

Different from hard (crisp) clustering we introduced above in which each data objects

belongs to only one cluster, soft (fuzzy) clustering specifies the membership degree of

each object to each cluster. One of the most famous propositional fuzzy clustering

algorithm is Fuzzy C-Means (FCM) [15]. It differs from the standard k-means by adding

a fuzzification parameter to control the level of cluster fuzziness. Later, numerous FCM

variants have been proposed to accommodate more proximity measures, optimize the

performance or improve the drawback of FCM [59].

The idea of fuzzy clustering has also been extended to analyze relational datasets.
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Three most popular algorithms are Fuzzy Non-metric Model (FNM) [128], Assignment

Prototype Model (AP) [149] and Relational Fuzzy C-Means (RFCM) [57]. All these

models require the availability of relation matrix that is composed of dissimilarities

between every pair of data instances and RFCM further requires all data are in the

Euclidean space. To ease the latter restriction, β-spread transformation was introduced

to transform non-Euclidean relations into Euclidean ones. Krishnapuram et al. improved

the efficiency of FCM and RFCM in [81] by reducing the number of data objects to be

examined when updating the cluster prototypes. The objective function was designed

based on the idea of Least Trimmed Squares [129] to achieve high robustness. Their

algorithms, FCMdd and RFCMdd, performed well in the application of web mining. A

recent progress was reported by Corsini et al. in [29]: assuming all relationships between

data types are numerical, each data object can be represented as a vector of its relation

strengths with other objects, and then the clustering procedure is similar to that of FCM,

i.e. minimizing the Euclidean distance between each data object and the prototype of

clusters.

2.2.7 Constraint-based Clustering

Until now all the relational clustering approaches we have introduced belong to unsu-

pervised learning, which means they are performed under the assumption that there is

no preliminary knowledge about the categorical information of the dataset and no con-

straints are specified that the discovered patterns should satisfy. In many applications,

the incorporation of constraints can lead to a more efficient learning procedure as well

as guide the search for patterns that are of most interest to users [19].

Železny et al. adopted a propositionalization approach, based on adapting rule

learning and first-order feature construction, to Relational Subgraph Discovery (RSD)

[144][84]. Initially, a set of first-order features are identified within a relational database

by analyzing local variables (structural predicates) and generating new variables (utility

predicates). Those derived features comply with user-defined constraints. In parallel the
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traditional rule learner CN2 is improved by a weighted covering algorithm in which the

weight of each data object is inversely proportional to the number of times it is covered

by multiple rules. The weighted relative accuracy is used as the criterion in the improved

CN2 algorithm to learn rules and thus formulate subgraphs. The syntactic and semantic

constraints are exploited heavily in the pruning mechanism to reduce computational

complexity.

Recently user-guided clustering also attracted research interest, where users can

provide information or opinion to influence the clustering procedure. It is quite different

from classification or semi-supervised learning [74][16], since the user’s knowledge might

be inaccurate or incomplete. Hence, it is necessary that the clustering algorithms have

the capabilities of automatically evaluating the pertinence of the given information and

utilizing it appropriately. Yin et al. developed a user-guided clustering algorithm Cross-

Clus in [158]. If the user knows some features are very informative for the relational

clustering task, he can specify such knowledge as an input of the clustering procedure.

The algorithm will navigate the relationship structure to find other pertinent features

that best match the user’s requirement. All these pertinent features are associated to

the target tuples by the technique of Tuple ID Propagation. When the feature selection

is finished, each target tuple is transformed into a propositional vector that compounds

the set of pertinent features. Hence the originally relational-clustering problem is propo-

sitionalized and propositional approaches, such as CLARANS [112] or k-means, are used

to cluster the derived compound vectors.
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Chapter 3

Representative Objects

The classic k-means algorithm is sensitive to outliers, because “an instance that is

extremely far from others in the same cluster may substantially distort the mean of the

cluster. This effect is particularly exacerbated due to the use of Sum-Of-Squared-Error

criterion” [55]. To tackle this issue the means are replaced by the medoids in k-medoids,

which are the data instances that have the maximum average similarity (or minimum

average of distance) to the others in the same cluster. These medoids can be considered

as a kind of representative objects. Another clustering approach that adopted the idea of

representative objects is CURE (Clustering Using REpresentatives) [52]. The algorithm

uses a set of well-scattered points to represent each cluster. The distances between

these representatives control the clustering procedure and determine which sub-clusters

should be merged into super-clusters.

Representatives are also applied in other data mining fields. In the classic k-NN

method [31], every new instance is classified based on the votes of its k nearest neigh-

bours. For fast nearest neighbour searching, the algorithm known as Approximating

and Eliminating Search (AESA) [143] was introduced, which uses a set of prototypes to

classify the new instance x. Later in [107] the base-prototypes were proposed to further

alleviate the computational cost. Since all the distances from the base-prototypes to

other instances have been pre-computed, the lower bound distance from x to proto-
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types can be estimated using the triangle inequality and thus the k nearest neighbours

are picked out for predicting the category of x. In [124] the author proposed a uni-

fied framework for instance selection, in which prototyping is an important step after

sampling and clustering. Prototypes are assumed to be able to represent information

of an entire subset of tuples. The author also distinguished two types of approaches:

prototype selection and prototype construction.

This chapter is organized as follows: the definition of Representative Objects

together with several basic RO-selection strategies are formulated in Section 3.1. Then

two important extensions of the RO-selection strategies are proposed in Section 3.2.

Some experimental results are provided in both sections.

3.1 Representative Objects

Generally speaking, any data instance that summarizes some features of the whole

dataset can be considered as the Representative Object (RO). Reinartz described this

idea by using word “prototype” in [124], which is regarded as condensed descriptions to

represent information of the entire subset of tuples. According to the above definition,

different sets of ROs might be selected from the same dataset to serve for different

purposes of learning tasks. For example, in k-medoids the medoids can be used to

represent their respective clusters, because a medoid is the data instance that has the

maximum average similarity (or minimum average distance) with the other instances in

the same cluster, or in other words the medoid approximates the mathematical expec-

tation of data distribution in that cluster. In LAESA [107], the set of base-prototypes

are regarded as ROs because they maximally spread in the dataset and are hence used

(together with the triangle inequality) to estimate the lower bound distance between

new data instances to the previously stored prototypes for classification. Formally we

generalize the definition of Representative Objects follows:

Definition 3.1. The Representative Objects (ROs) are a set of instances in the dataset
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D that can together provide a useful surrogate for D with respect to the data mining

problems. For example, it is common for learning algorithms to use a random sample

of data instances as the standard surrogate for the data space.

In the scenario of cluster analysis, we expect that the selected ROs can: (1)

credibly reflect the geometric shape of data instances in the data space S and distinguish

them from other subsets of data in S; (2) be determined with low computational cost;

(3) be helpful for facilitating the cluster analysis. One single RO (e.g. a medoid) does

not satisfy the above requirement, because it cannot reflect the geometric shape of

the dataset and, more importantly, the operation of identifying medoids requires the

calculation of the similarity values between each pair of data instances in the given

cluster, which leads to the quadratic computational complexity for the cluster analysis.

Such computational inefficiency also exists in the agglomerative clustering approaches

when they merge the pair of closest sub-clusters into one super-cluster and then try

to identify the medoid of this new cluster. Similarly, the divisive hierarchical clustering

approaches need to decide whether a cluster should be preserved or divided further.

The criterion for division is usually the diameter of the cluster, which is calculated by

the distance of two data instances in the cluster that are the farthest away from each

other. Obviously using one single medoid to represent a cluster does not satisfy the

requirements of ROs for our cluster analysis.

Before designing our algorithm of identifying ROs, we first consider another issue:

how to measure the spread of a dataset D in the whole data space S? Intuitively it

should be measured by the diameter of D:

Definition 3.2. The diameter of a dataset D is the largest distance between pairs of

data instances in D, i.e.

diam(D) = max
x,y∈D

fd(x,y) (3.1)

However, computing the diameter of D has the quadratic complexity with respect

to the size of D again, because the distances between every possible pair of data
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instances in D have to be evaluated. Instead, assume we have obtained a set of ROs

that well represent the data instances in D, then evaluating the dataset spread based

on these ROs would bring the advantage of great computational efficiency.

Definition 3.3. The variance of a dataset D is the largest distance between pairs of

ROs in D, i.e.

var(D) = max
x,y∈{ROi}

fd(x,y) (3.2)

We use the word “variance” throughout this thesis to denote the largest distance

between ROs, so it has a different meaning from its common usage in statistics. Later

in this chapter we will see that var(D) can approximate diam(D) when the ROs are

identified properly. A small value of diam(D) or var(D) means all the data instances

reside in a certain compact part of S and thus are more close to each other. The

difference between diam(D) and var(D) is that the former requires the comparison

between all the data instances in D while the latter only requires the computation of

proximity between ROs and, because their pairwise distances have been pre-computed,

the total computational complexity will be greatly reduced when the number of ROs is

far less than that of the data instances in D.

Now the problem is: How can a set of ROs {roi} (1 ≤ i ≤ r where r is the

user-specified number of ROs) be determined to best represent the distribution of the

dataset? Basically there are two types of approaches: prototype selection and prototype

construction [124]. We follow the former routine and develop several strategies to

identify ROs based on different concerns of maximal proximity1. They are named as

Max-One, Max-Sum and Max-Min respectively and introduced in the follows.

After a start instance xs is randomly chosen, the first RO is identified by:

ro1 = arg max
x∈D

fd(x,xs) (3.3)

1In this and the following chapters, we assume an appropriate distance (or similarity) function has
been defined for the data space, and so the type of the distance (or similarity) function will not be
specified in the formula.
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Table 3.1: Basic Strategies of RO-Selection

Algorithm Formula (2 ≤ i ≤ r, 1 ≤ j < i )

Max-One roi = arg max
x∈D−{roj}

fd(x, roj)

Max-Sum roi = arg max
x∈D−{roj}



∑

j

fd(x, roj)




Max-Min roi = arg max
x∈D−{roj}

(
min

j
fd(x, roj)

)

The reason we do not use xs as an RO is: xs is randomly selected among all the data

instances and generally does not satisfy the criteria listed in Table 3.1 that maximize

the proximities between ROs.

After ro1 is determined, the other roi (2 ≤ i ≤ r) are identified by using different

criteria to maximize the RO pairwise distances, which are summarized in Table 3.1.

Although the Max-One strategy is simpler than the other two because only the farthest

one from previously-selected ROs is considered in each iteration of the calculation, the

derived ROs will oscillate between the endpoints of the longest direction within the

dataset. In contrast, the Max-Sum and the Max-Min strategies consider all the previous

selected ROs and are able to describe the distribution of the dataset more credibly.

Max-Sum considers the accumulated distances from the current data instance to all the

previously derived ROs, and so all the determined ROs are arranged along the border of

the dataset. In contrast, Max-Min aims at maximizing the minimum distance between

the current data instance to all the previously selected ROs, and so all the derived ROs

will be located more uniformly in the data space.

The whole procedure as well as the computational complexity of each step are

summarized in Table 3.2: The start point xs is randomly selected with the time com-
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Figure 3.1: Comparison of RO-selection strategies
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Table 3.2: Basic Strategies of RO-Selection

Procedure
Complexity

Time Space

Randomly select a start instance xs O(1) 0
Determine ro1 using Equation 3.3 O(N) 0

Determine the other r − 1 ROs using either formula in Table 3.1 O(rN) O(rN)

plexity of O(1). We then determine ro1 by scanning the whole dataset to find the

instance that is farthest away from xs. No extra information needs to be stored at this

stage, and so the time and space complexities are O(N) and 0 respectively. After that,

the other ROs are determined by using either of the formulae in Table 3.1. To determine

ro2, the pair-wise distances between ro1 and all the non-RO instances will be computed

and stored in the memory. Iteratively, to determine roi the pair-wise distances between

roi−1 and all the non-RO instances will be computed and the pair-wise distances be-

tween roj (1 ≤ j ≤ i− 2) and all the non-RO instances are retrieved from the memory,

so the time and space complexities are both O(rN). In conclusion, the total time and

space complexities for all the strategies discussed here are O(rN).

Some empirical studies were conducted to validate our claims of these RO-

selection algorithms. All the strategies were examined using a 2-D point dataset. As a

baseline comparison, the Random strategy that selected a random sample of data in-

stances as the set of ROs was also evaluated. Figure 3.1 show the results. As we expect,

the ROs determined by the Random strategy cannot accurately reflect the distribution

of the dataset when the parameter r is small; the Max-One strategy tends to aggregate

ROs at the endpoints of the longest direction within the dataset. In contrast, the Max-

Min strategy uniformly distributes the ROs in the datasets while Max-Sum prefers to

arrange the ROs along the boundary of the dataset.

3.2 Extension of RO-Selection Strategies

The basic strategies of determining ROs listed in Table 3.1 can be extended by consid-

ering more issues. Here are two possible extensions:
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Figure 3.2: RO-Selection Depending on Other Clusters

Table 3.3: Enhanced Strategies of RO-Selection

Algorithm Formula ( 2 ≤ i ≤ r, 1 ≤ j < i, 1 ≤ j′ ≤ r )

Max-One roi = arg max
x∈D−{roj}

(
α · fd(x, roj) + (1− α) · fs(x, ro′

j′)
)

Max-Sum roi = arg max
x∈D−{roj}


α ·

∑

j

fd(x, roj) + (1− α) ·
∑

j′

fs(x, ro′
j′)




Max-Min roi = arg max
x∈D−{roj}

(
α ·min

j
fd(x, roj) + (1− α) ·max

j′
fs(x, ro′

j′)

)

3.2.1 Discriminate different data clusters

In some scenarios, the procedure of determining the ROs should be impacted by not only

the data instances within the same cluster but also those from other clusters. When

processing two neighbouring clusters, we wish to select ROs along the borders in order

to better discriminate their member instances respectively. As shown in Figure 3.2, the

selected ROs (denoted as letter “R” in the figure) identify the gap between two clusters.

The results are very useful for the classification and clustering analysis because they can

help us to distinguish the membership of data instances for each cluster.

To achieve this, each strategy in Table 3.1 needs to be adjusted by appending a

factor that reflects the influence from other clusters. Such influence is computed based

on the distance between ROs in two clusters: the new derived RO is expected to be
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assigned at a location that maximizes its distance to all the previously selected ROs

in the same cluster and at the same time minimizes its distance to all the ROs from

different clusters. The latter constraint can be reiterated as maximizing the similarity

between the current (candidate) RO and all the ROs from different clusters. Based on

this idea, the strategies listed in Table 3.1 are respectively modified as those in Table 3.3

to process the case of only two clusters in total.

Given {ro′
j′} (1 ≤ j′ ≤ r) are the ROs in the neighbouring cluster, the factor of

distances from the same clusters as well as that of distances from the other cluster are

linearly combined by the parameter α, which is used to adjust the relative importance

between these two factors:

• when α = 1, the ROs from other clusters will not impact the identification of ROs

for the current cluster, so the formulae in Table 3.3 are transformed back to those

in Table 3.1, which means the procedure of determining ROs for each cluster is

completely independent from that of the other clusters;

• when α = 0, the previously selected ROs of a cluster will not impact the identi-

fication of subsequent ROs in the same cluster, so the procedure of determining

ROs for a cluster is completely dependent on the distribution of ROs in the other

clusters;

• when α is between 0 and 1, the procedure of identifying the successive ROs

is impacted by both the previously selected ROs in the same cluster and the

distribution of ROs in the other clusters.

The whole procedure is launched in an iterative fashion: In the first iteration, the RO

set for each cluster is determined independent from the others by utilizing one of the

formulae in Table 3.1. From the second iteration and afterwards, the distribution of ROs

in other clusters will be considered in the identification of ROs for the current cluster.

This procedure continues iteratively until all the ROs in all the clusters become stable

(no changes in the ROs).
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Figure 3.3: Determine ROs to discriminate the clusters

All the equations in Table 3.3 can be generalized to process the case of K

clusters. We define the set {rok,i} as all the ROs of the cluster k, where 1 ≤ k ≤ K.

The Max-Sum strategy is demonstrated in Algorithm 1 2. We also give a brief complexity

analysis for the above algorithm here, because it is very similar to that in Section 3.1.

Assuming cluster k has Nk instances in total, it can be deducted easily that the time

and space complexities are O(rK
∑

k Nk) and (r
∑

k Nk) respectively, or O(rKN) and

(rN) respectively because
∑

k Nk = N .

To show the effectiveness of our new strategies proposed above, some experi-

ments were conducted upon a 2-D dataset with three clusters. The value of parameter

α was decreased from 1.0 to 0.4 (here we ignore the results when α < 0.4 because they

are the same as that when α = 0.4). According to the formulae given in Table 3.3,

the impact of ROs from other clusters will be more and more critical in the procedure

2We can change the lines 5, 7, 13 and 15 in Algorithm 1 to get the other RO-selection strategies in
Table 3.3.
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Algorithm 1: Iterative RO-Selection Procedure Using the Max-Sum Strategy

Input: clusters {Dk}, number of ROs r, variance threshold v, weight α
Output: RO set {rok,i}
begin1

// The first iteration

Set iter ← 1;2

foreach cluster Dk ∈ {Dk} do3

Start point xk,s ← randomly selected an instance in Dk;4

roiter
k,1 ← arg max

x∈Dk

fd(x,xk,s);
5

for i← 2 to r do6

roiter
k,i ← arg max

x∈Dk−{roiter
k,j

}

∑
j fd(x, roj), where 1 ≤ j < i;

7

end8

end9

// Iteratively update the RO set

repeat10

iter ← iter + 1;11

foreach cluster Dk ∈ {Dk} do12

roiter
k,1 ← arg max

x∈Dk

(∑
j fs(x, roiter−1

k′,j )
)
;

13

for i← 2 to r do14

roiter
k,i ←15

arg max
x∈Dk−{roiter

k,j
}

(
α ·∑j fd(x, roiter

k,j ) + (1− α) ·∑j′ fs(x, roiter−1
k′,j′ )

)
;

end16

end17

until {roiter
k,i } = {roiter−1

k,i } ;18

return {roiter
k,i }.19

end20
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of determining ROs for the current cluster as α becomes smaller. At the first phase

of the experiment, the strategy (for example Max-Min) is applied upon each cluster

to generate its own RO set; then each of the derived RO sets is iteratively updated

based on the impacts from other RO sets until they are stable. The results are shown in

Figure 3.3. As we expected, the derived ROs gradually move to identify the boundaries

between clusters as α decreases.

3.2.2 Determine ROs incrementally

All the RO-selection strategies introduced earlier are only suitable for processing static

(non-incremental) datasets. As analyzed in the previous sections, their computational

complexity of determining ROs is linear to the size of the dataset D. However, in the

case that new data objects are incrementally added into D, if we utilize these strategies

in a brute-force manner, i.e. launching them from scratch at each time a new data object

is inserted, the whole computational complexity will become quadratic. Hence, more

efficient RO-selection algorithms are necessary for the incremental learning scenario.

Actually, the search of ROs can be viewed as an optimization problem. Here we

use the Max-Min strategy in Table 3.1 as an example to explain our idea and then extend

the discussion to other strategies. Given the dataset D of which the set {roi} (1 ≤ i ≤
r) have been selected, the max-min criterion for ROs is equivalent to maximizing the

objective function:

L =
r∑

i=1

(
min
1≤j≤r

j 6=i

fd(roi, roj)

)
(3.4)

The existing ROs will be incrementally updated if a new instance x is added: All the

roi (1 ≤ i ≤ r) are in turn examined to see which one of them might be replaced by

x so that the new RO set can maximally increase the function L for the new dataset

D∪{x}. Theoretically there are r possibilities to be examined within the set {roi}. To

reduce duplicated computation, all the pairwise distances between existing ROs could

be stored in the memory. We only need to compare x with roi (1 ≤ i ≤ r) and retrieve
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other distance values from the memory, so the time and space complexities are O(r)

and O(r2) respectively.

Deeper investigation shows that the space complexity can be reduced to O(r)

as well. Without the loss of generality, assume that ro
R

is replaced by x, denoted as

x → ro
R
. We use RO to represent the whole RO set, i.e. RO = {roi} (1 ≤ i ≤ r.

NB(roi) refers to the RO that is nearest to roi: NB(roi) = arg minroj
fd(roi, roj).

Then:

Lx→roR

= min
roi∈RO−{roR}

fd(x, roi) +
∑

roi∈RO−{roR}


 min

ro′∈RO−{roR}

∪{x}

fd(roi, ro
′)




= min
roi∈RO−{roR}

fd(x, roi)

+
∑

roi∈RO−{roR}

NB(roi)=ro
R

min
(
fd(roi, rni,2), fd(roi,x)

)

+
∑

roi∈RO−{roR}

NB(roi) 6=ro
R

min
(
fd(roi, rni,1), fd(roi,x)

)

where rni,1 and rni,2 represent the first and second closest ROs to roi respectively. The

first item in the above result is the minimum distance between x and all the current

ROs except roR. The second item considers those ROs of which the closest RO is roR.

Because roR will be replaced by x, the value of L is determined by the comparison of

fd(roi, rni,2) and fd(roi,x). In contrast, the third item considers the other ROs of

which the closest RO is not roR, so L is determined by the comparison of fd(roi, rni,1)

and fd(roi,x).
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Figure 3.4: Dynamically update ROs

The change of L after ro
R

is replaced by x is:

∆ LR

= Lx→roR
− L

= min
roi∈RO−{roR}

fd(x, roi)− fd
(
ro

R
, NB(roR)

)

+
∑

ro′∈RO−{roR}

NB(roi)=ro
R

[
min

(
fd(roi, rni,2), fd(roi,x)

)
− fd(roi, roR

)
]

+
∑

ro′∈RO−{roR}

NB(roi) 6=ro
R

[
min

(
fd(roi, rni,1), fd(roi,x)

)
− fd(roi, rni,1)

]
(3.5)

If ∆ LR > 0, we select R∗ = arg maxR ∆ LR and replace ro
R∗ by x to form the new

RO set, otherwise no replacement happens. According to Equation 3.5, we can store

the first and second closest ROs for each RO as well as the corresponding distance

values into memory. In order to compute ro
R∗ that is replaced by x, we only need

to calculate the distances between x and existing ROs and retrieve the distance value

from the memory, so the space and time complexities are both O(r). In summary,

the computational complexity is O(r) when only one data instance is added into the

existing dataset. If the incremental strategy is used to process the dataset D, we can

assume that D is empty at first and gradually appended by N data instances, so the

above incremental strategy is iteratively applied as data instances are added, so the total

computational complexity is O(rN).

Figure 3.4 is an example to show the idea of updating ROs: the original ro∗ is

replaced by the new data object x, because x can better represent the shape of the new

dataset, or equivalently ∆ LR > 0 based on the Max-Min criterion.
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Table 3.4: Incremental Strategies of RO-Selection

Algorithm ∆ LR = Lx→ro
R
− L

max
i

fd(x, roi)−max
i

fd(ro
R
, roi)

Max-One +
∑

i
F AR(roi)=ro

R

[
max

(
fd(roi, rf i,2), fd(roi,x)

)
− fd(roi, roR

)
]

+
∑

i
F AR(roi) 6=ro

R

[
max

(
fd(roi, rf i,1), fd(roi,x)

)
− fd(roi, rf i,1)

]

where: roi ∈ RO− {roR}, FAR(roi) represents roi’s farthest RO,
rf i,1 and rf i,2 are the 1st and 2nd farthest ROs to roi respectively.

Max-Sum
∑

roi∈RO−{roR}

[
fd(x, roi)− fd(ro

R
, roi)

]

min
i

fd(x, roi)−min
i

fd(ro
R
, roi)

Max-Min +
∑

i
NB(roi)=ro

R

[
min

(
fd(roi, rni,2), fd(roi,x)

)
− fd(roi, roR

)
]

+
∑

i
NB(roi) 6=ro

R

[
min

(
fd(roi, rni,1), fd(roi,x)

)
− fd(roi, rni,1)

]

where: roi ∈ RO− {roR}, NB(roi) represents roi’s nearest RO, and
rni,1 and rni,2 are the 1st and 2nd closest ROs to roi respectively.
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(h) Max-Min: r = 15

Figure 3.5: Select ROs using incremental Max-Sum and Max-Min strategies

We can also define the function L for the Max-One and Max-Sum strategies as:

Max-One: L =
r∑

i=1

(
max
1≤j≤r

fd(roi, roj)

)
(3.6)

Max-Sum: L =

r∑

i=1

(
∑

1≤j≤r

fd(roi, roj)

)
(3.7)

and then deduce the incremental formula for them in a similar way. Table 3.4 summarizes

all three incremental strategies. They are developed based on the same idea but differ

from the criteria of updating ROs when new data are available. When applying these

strategies to determine the ROs for the dataset D, each data instance is sequentially

scanned. If the total number of scanned data instances is less than the required number

of ROs, the current data instance x is added as the next RO; otherwise x is compared

with all the previously chosen ROs using one of the strategies listed in Table 3.4 to see

whether x can replace one of the existing ROs.
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Table 3.5: Average Distance between ROs
Basic Incremental

Max-Sum 0.4944± 0.0079 0.4965± 0.0091
Max-Min 0.3766± 0.0075 0.3797± 0.0083

The incremental Max-Sum and Max-Min strategies in Table 3.4 were tested and

the experimental results are shown in Figure 3.5. We can see that these incremental

algorithms can obtain similar results as their non-incremental versions (in Figure 3.1).

Finally, we examined the impact of randomness upon our strategies. The ran-

domness comes from two aspects: (1) the dataset itself is input into the algorithm in a

random order; (2) the start instance xs is randomly selected in Equation 3.3. Hence, we

set two random number generators to simulate the above random effects respectively.

Our algorithms were repeated for 100 times with different random seeds and the experi-

mental results are reported in Table 3.5. The first column (with title “Basic”) evaluates

the randomness upon the basic RO-selection strategies in Table 3.1 and the second one

(with title “Incremental”) evaluates the incremental strategies in Table 3.4. We can

see that the average pair-wise distances between ROs are very stable, which means the

impact of both kinds of randomness are effectively eliminated from our algorithms.

3.3 Summary

In this chapter we introduce the idea of Representative Objects and proposed several

strategies to identify the ROs for a given dataset. The ROs are identified based on the

maximization of some proximity measures such as Max-Sum or Max-Min, so they can

reflect the distribution of data instances. More important, our algorithms have linear

computational complexity and are therefore applicable for analyzing very large datasets.

We also extend the basic strategies in cases of discriminating multiple data clusters and

incremental updating ROs. Several datasets, including synthetic and real ones, are used

to evaluate our algorithms. More empirical studied will be performed in the next section

to show the application of ROs in relational clustering.
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Chapter 4

DIVA Clustering Framework

As discussed in Chapter 2, the more domain information is exploited in the cluster

analysis, the more credible the results will be generated, but at the same time the higher

computational cost we have to afford. Since in many cases the similarity/distance

measures are pre-specified by the application requirements, we aim to develop a general

clustering framework that accommodates all kinds of measures and is therefore suitable

for processing propositional as well as relational datasets. The efficiency gain of our

framework is achieved by reducing the total number of similarity/distance computations

between data instances and the cluster prototypes (i.e. representative objects introduced

in Chapter 3) during the cluster analysis.

In this chapter we discuss in details our multi-phase clustering framework named

DIVA (DIVision and Agglomeration), which is based on the idea of Representative Ob-

jects that has been introduced in Chapter 3. The framework is summarized in Al-

gorithm 2, consisting of the divisive step (Section 4.1) and the agglomerative step

(Section 4.2). Their computational complexity are analyzed in Section 4.3. Finally, we

conducted comprehensive experiments to prove the effectiveness and efficiency of our

algorithms. The experimental results are studied Section 4.4 and Section 4.5.

56



Algorithm 2: Main Framework of DIVA

Input: dataset D, number of ROs r, variance threshold v
Output: cluster result
begin1

micro-clusters {Ck} ← call DivStep (D, r, v);2

dendrogram T ← call AggStep ({Ck});3

Construct the cluster result based on T ;4

end5

4.1 Divisive Step

The divisive step is designed to partition the whole dataset D into a number of micro-

clusters so that data instances in each micro-cluster are of high homogeneity. Since

the concept of variance (Definition 3.3) is used to measure the spread of a cluster,

i.e. smaller values of variance means data instances are located closer to each other in

the data space and thus are more homogeneous, we set the variance threshold v as a

parameter of the algorithm to control the homogeneity of the micro-clusters derived by

the divisive step.

Given the non-incremental and the incremental RO-selection strategies intro-

duced in Sections 3.1 and 3.2.2, we propose two implementations for the divisive step:

4.1.1 Recursive Approach

The recursive implementation (summarized in Algorithm 3) starts by assuming all the

data instances belong to the same cluster. We use C0 to denote the initial cluster that

corresponds to the whole dataset D. An appropriate RO-selection strategy1 from Ta-

ble 3.1 is applied to find the RO set for C0 and the variance var(C0) is calculated based

on the Definition 3.3. If var(C0) is greater than the pre-specified variance threshold v,

the division procedure is launched: Two ROs (assumed as ro1 and ro2) that are farthest

away from each other, i.e. the pair of ROs determining the variance of C0, are used

1Since we use the binary partition in our divisive step which only depends on the farthest pair of ROs
in the data, all the RO-selection strategies will generate similar results here.
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Algorithm 3: RecDivStep

Input: dataset D, number of ROs r, variance threshold v
Output: micro-clusters {Ck}
begin1

Initialize the cluster set: C0 = D;2

foreach newly added cluster Ck do3

// Generate the set of ROs {ro(Ck)
i }

begin4

Start object x
(Ck)
s ← randomly select an instance from Ck;5

// Determine ro
(Ck)
i (1 ≤ i ≤ r)

ro
(Ck)
1 ← select the instance x ∈ Ck that is farthest away from6

the start point x
(Ck)
s ;

for i← 2 to r do7

ro
(Ck)
i ← select the instance x ∈ Ck that maximizes the8

accumulated distance from itself to the existing ROs

ro
(Ck)
j (1 ≤ j < i), as described in Section 3.1;

end9

end10

// Assume the farthest pair of ROs in {ro(Ck)
i } are

ro
(Ck)
1 and ro

(Ck)
2

var(Ck)← fd(ro
(Ck)
1 , ro

(Ck)
2 ) ;11

if var(Ck) > v then12

Create two new clusters Ck′ and Ck′′ , using ro
(Ck)
1 and ro

(Ck)
213

as the absorbent objects for Ck′ and Ck′′ respectively;
Allocate the other instances x ∈ Ck into either Ck′ or Ck′′14

based on the comparison of fd(x, ro
(Ck)
1 ) and fd(x, ro

(Ck)
2 );

Use Ck′ and Ck′′ to replace Ck in the cluster set;15

end16

end17

return clusters {Ck}18

end19
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as the absorbent objects for two sub-clusters respectively. Since we have known the

distances between all pairs of ROs, the effort of identifying ro1 and ro2 is trivial. Other

data instances are allocated to their closest sub-cluster based on their distance to the

absorbent objects. Finally, the original cluster C0 is replaced by its derived sub-clusters

in the cluster set. Since the distance (or similarity) values of all the non-RO instances to

all the ROs have been persisted in the memory when determining {ro(C0)
i }, the division

operation for C0 can be performed without extra computational effort.

The above division process is performed recursively on sub-clusters of which

the variance is greater than the threshold v. Finally we obtain a set of micro-clusters

{Ck} (
⋃

k Ck = C0, Ck1

⋂
Ck2 = ∅). The variance of each micro-cluster is less than or

equal to v. These micro-clusters are then used as the input of the agglomerative step

in Section 4.2.

It is worth noting that our cluster results are not sensitive to the value of r

because we use the binary split here to divide clusters and (ro1, ro2) are in general the

largest pair of ROs among the others. According to Algorithm 3, the randomly selected

start object xs is likely to be located at the center region of cluster Ck, then ro1 is

identified along the longest direction that Ck spreads in the data space and ro2 is at the

direction opposite to ro1. Therefore, the distance between ro1 and ro2 approximates

the diameter of Ck, and they are chosen as the absorbent objects to construct Ck′ and

Ck′′ respectively. Other ROs might be utilized if multiple-split instead of binary-split

is adopted in our divisive step, but such discussion is out of our scope in this thesis.

Our above claim is supported by the experimental results shown in Section 4.5. When

generating clusters for a set of sampled data instead of the whole dataset, the cluster

results should not be sensitive to the value of v, if we assume the distribution of any

sampled data is the same as that of the whole dataset.
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Algorithm 4: IncDivaStep

Input: dataset D, number of ROs r, variance threshold v, branching factor
B

Output: micro-clusters {Ck}
begin1

Initialize the Search Tree S = ∅;2

foreach x ∈ D do3

Call IncBuild (S, B, r, v, x).4

end5

Construct the cluster result {Ck} based on the leaf nodes of S;6

return clusters {Ck};7

end8

4.1.2 Incremental Approach

In contrast, the incremental implementation (summarized in Algorithm 4) sequentially

scans the dataset D by comparing each data instance with the current set of micro-

clusters. Given that {ro(C)
i } is the RO set for the micro-cluster C, the distance between

the instance x and the cluster C is defined by:

fd(x, C) = max
1≤i≤r

fd(x, ro
(C)
i ) (4.1)

Similar to the recursive implementation, the variance threshold v is used to

control the homogeneity of the derived micro-clusters, so an instance x is assigned into

the cluster C only when they satisfy the following constraint:

fd(x, C) ≤ v (4.2)

The above constraint together with Eq. 4.1 guarantees the previously assigned data

instances as well as the new instances x, which together constitute the updated cluster

C ′, satisfy the variance requirement. Instead, if we use the minimum or the average

function in Eq. 4.1, a possible case is: the distance between x and its nearest RO is

small than v while the distance between x and its furthest RO is greater than v, which
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Algorithm 5: IncBuild

Input: search tree S, branching factor B, number of ROs r, variance
threshold v, data instance x

begin1

if S = ∅ then2

Create C0 ← {x};3

Set root(S)← C0;4

else5

Find C∗ ∈ S for x based on Eq.4.3 ;6

Set Cp ← parent(C∗);7

// Assume {ro(C∗)
i } is the set of ROs for C∗

if fd(x, C∗) ≤ v then8

Assign x into the cluster C∗;9

if |{ro(C∗)
i }| < r then10

x is added into {ro(C∗)
i } as a new RO;11

else12

ro(C∗)
RM

is replaced by x in {ro(C∗)
i };13

end14

else15

Create new cluster C ′ ← {x};16

Set children(Cp)← children(Cp) ∪ C ′;17

end18

Update the ROs of Cp and its super-nodes recursively;19

// Adjust the structure of S when necessary

if |children(Cp)| > B then20

Find the farthest pair of ROs in Cp. Without loss of generality,21

assume they are ro
(Cp)
1 and ro

(Cp)
2 ;

Divide children(Cp) into two groups based on their distance22

to ro
(Cp)
1 and ro

(Cp)
2 ;

Link these two groups to new parents C̃1, C̃2 respectively;23

Set parent(C̃1)← Cp, parent(C̃2)← Cp and24

children(Cp) = {C̃1, C̃2};
end25

end26

end27
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means var(C ′) > v and C ′ has to be split. It is similar to the unbound problem found in

the First Leader algorithm [56], i.e. with more data assigned into a cluster, the cluster

center might be moved gradually or the cluster shape becomes skewed, which makes

its radius unbounded. Therefore, to make sure the variance of the derived cluster keeps

being less than v, we use the maximum function in Eq. 4.1.

In case that more than one candidate clusters satisfy the constraint, the closest

cluster C∗ is used to absorb x:

C∗ = arg min
C

fd(x, C) (4.3)

To facilitate the search for an appropriate cluster that the new data should be assigned

into, the micro-clusters {Ck} are indexed by a balanced search tree S. The leaf nodes in

S correspond to micro-clusters and the non-leaf nodes are the union of their sub-nodes2.

Each node in S has r ROs. The ROs of a non-leaf node are selected from the union of its

children’s ROs using the strategies introduced in Chapter 3. Additionally the parameter

B is used to control the maximum number of sub-nodes that a non-leaf node may have.

The algorithm for inserting a new instance x into a micro-cluster is as follows:

1. Identify the closest leaf node in S: Starting from the root node, the instance x

traverses S from top to bottom by recursively selecting the closest sub-node at

each level, using Equation 4.1, until the leaf node C∗ is found.

2. Modify the node: If fd(x, C∗) ≤ v, the instance x will be absorbed into the

cluster C∗; Otherwise, a new leaf node C ′ is created as the sibling node of C∗

to contain x. In the latter case, we examine whether the number of C∗’s sibling

nodes is less than B; if not, the parent node will be split by using two farthest ROs

of the parent node as the absorbent seeds and re-distribute all the sub-clusters.

3. Update the ROs of the modified node: if x is absorbed into cluster C∗, we check

whether the size of ROs within C∗ is less than r: if so, x becomes a new RO

2We use the words “cluster” and “node” interchangeable here.
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in C∗; otherwise, each of the existing ROs will be further examined, using the

strategies described in Section 3.2.2, to see whether it can be replaced by x.

Step 3 is performed recursively from bottom to top to update the leaf nodes until the

root node is reached. Algorithm 5 summarizes the incremental-build algorithm.

4.2 Agglomerative Step

Although micro-clusters derived by either the recursive or the incremental divisive step

have sufficient intra-cluster homogeneity, they do not preserve the information of close-

ness (or distance) between clusters [68]. The closeness is in essence a criterion to

evaluate the inter-cluster homogeneity. There are three common techniques to compute

the distance between clusters, defined as follows [35]:

Single-Linkage: fd(C, C ′) = min
i,j

fd(x
(C)
i ,x

(C′)
j ) (4.4)

Complete-Linkage: fd(C, C ′) = max
i,j

fd(x
(C)
i ,x

(C′)
j ) (4.5)

Average-Linkage: fd(C, C ′) =
1

|C||C ′|
∑

i,j

fd(x
(C)
i ,x

(C′)
j ) (4.6)

where data instances x
(C)
i and x

(C′)
j belong to clusters C and C ′ respectively. These

three techniques are based on different focuses: single-linkage relies on the nearest pair

of data instances within two clusters, complete-linkage considers the furthest pair of data

instances within two clusters, and average-linkage that balances the first two techniques.

When being used to merge clusters, they have different effects: single-linkage is capable

of finding elongated clusters while complete-linkage tends to find spherical clusters, and

average-linkage can achieve a good compromise between them [35].

Unfortunately, all the above three techniques have the quadratic computational

complexity because they need to consider every pair of data instances within two clusters.

To reduce the computational burden, because each cluster is represented by a set of ROs
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in our DIVA framework, we re-define the single-linkage, the complete-linkage and the

average-linkage techniques as:

Single-Linkage: f̂d(C, C ′) = min
i,j

fd(ro
(C)
i , ro

(C′)
j ) (4.7)

Complete-Linkage: f̂d(C, C ′) = max
i,j

fd(ro
(C)
i , ro

(C′)
j ) (4.8)

Average-Linkage: f̂d(C, C ′) =
1

r2

∑

i,j

fd(ro
(C)
i , ro

(C′)
j ) (4.9)

where {ro(C)
i } are the set of ROs for cluster C and {ro(C′)

j } are the set of ROs for cluster

C ′. When the RO sets well represent the distribution of their respective clusters, the

RO-based Equations 4.7, 4.8 and 4.9 approximate Equations 4.4, 4.5 and 4.6 respectively

but reduce their complexity to O(r2).

Given the above techniques of evaluating the proximity between clusters, we build

a dendrogram T in a bottom-up fashion using the Hierarchical Agglomerative Clustering

algorithm. The micro-clusters {Ck} obtained from the divisive step constitute the leaf

nodes of the dendrogram. In each iteration, the closest pairwise clusters (sub-nodes)

are merged to form a new super-cluster (parent node). Without loss of generality, we

assume that the super node tp is formed based on two sub-nodes tk and tk′ , then the

top-r maximum-spread ROs in {ro(tk)
i } ∪ {ro(tk′ )

j } are chosen as the ROs for tp.

The agglomerative step is summarized in Algorithm 6. It is worth noting that

constructing the hierarchy in this step is not a reverse reproduction of the divisive

step. Because in the divisive step we use the intra-cluster homogeneity as the criterion

to partition the clusters, while in the agglomerative step we consider the inter-cluster

homogeneity given the clusters are internally homogeneous. It has been proven that

the agglomeration can remedy the inaccurate partitioning derived by the divisive step,

as shown in BIRCH [162]. But in comparison with our DIVA algorithm, BIRCH is only

capable to process propositional datasets because it depends on the linear and squared

sum of data vectors, which are not available within relational datasets.
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Algorithm 6: AggStep

Input: micro-clusters {Ck}
Output: dendrogram T
begin1

// Initialize the dendrogram T
foreach Ck do2

Construct a leaf node tk in T ;3

end4

repeat5

Compute the distance between nodes in T that have no parent6

node, among which the pair (assuming tk and tk′) with the smallest
distance value are chosen;
Construct node tp as the parent node for both tk and tk′ , which7

equals to create a new super-cluster Cp to merge Cl and Cl′ ;
Determine the ROs for tp;8

Store tp into T ;9

until K − 1 times, where K is the size of {Ck} ;10

return T .11

end12

After building the dendrogram T , we need to determine the appropriate level in

T and use the corresponding nodes to construct the cluster result. A common strategy

is to select the level at which the variance of each node equals or is greater than v.

Alternatively, we can record the variance of newly generated node for each level, find

the largest gap between variances of two neighboured levels and use the lower level as

the basis to construct clusters [35]. If the number of clusters is pre-specified, we will

select the level which contains the required number of nodes to construct clusters.

4.3 Complexity Analysis

We now analyze the computational complexities of the recursive and the incremental

implementations of the divisive step, given the size of dataset D is N and the number

of ROs for each cluster is r:

• Recursive division: In each iteration, assuming the number of instances belonging
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to the cluster Ck is Nk, the computational complexity of determining ROs is

O(rNk) (as explained in Section 3.1), and so the total complexity is O(
∑

k rNk) =

O(rN). Then each cluster of which the variance exceeds v will be bi-partitioned

by using the farthest pair of ROs as the absorbent objects and re-allocating all

the instances in that cluster accordingly. Here the distances between pairs of

instances are not required to be calculated again. Therefore, the total complexity

is O(rRN), where R is the number of the recursive iterations.

• Incremental division: All the data instances in D are sequentially scanned and the

micro-clusters {Ck} are created incrementally. In order to insert the data instance

x into the cluster result, x will be compared with all the nodes on the search path

of the search tree S, so the number of comparisons for x is O(r log K), assuming

K is the number of micro-clusters in {Ck}. Therefore, the total complexity for

processing all instances in D is O(rN log K). It is worth noting that the search

tree S utilized during the incremental divisive step is always balanced while the

division tree derived by the recursive implementation does not guarantee such a

balanced structure, so R would be expected to be greater than log K.

In summary, the computational complexities of partitioning D using either the recursive

or the incremental implementation of the divisive step is linear in N , assuming that v is

set appropriately to make sure R≪ N and K ≪ N for them respectively.

For the agglomerative step, the computational complexity of building the den-

drogram is O(r2 ·K2), given K is the number of micro-clusters derived by either the

recursive or the incremental division. The value of K is controlled by the variance

threshold v: smaller value of v leads to the generation of more clusters. When v → 0,

the divisive step will generate many tiny clusters, each of which contains the RO only.

In this extreme case, the agglomerative step will behave like the pure agglomerative

approach RDBC with quadratic complexity. Nevertheless, by choosing moderate values

for r and v to keep rK ≪ N , the computational complexity of our algorithm would

be linear to N . In Section 4.4 and Section 4.5, comprehensive experimental results are
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analyzed to see how to determine appropriate values for r and v.

Generally speaking, the incremental division is more preferred because the whole

dataset will be scanned only once, so it is unnecessary to pre-load the whole dataset

into the memory. In contrast, each data instance might be accessed many times in the

recursive division, resulting in expensive disk I/O operations if the whole dataset cannot

be contained in the memory. Due to this reason, the incremental implementation is

more suitable for processing very large datasets as well as data streams.

Next, we will conduct comprehensive experiments to evaluate the effectiveness

and efficiency of our DIVA framework. After being tested upon some propositional

datasets of sophisticated distributions in Section 4.4, our framework is compared with

several well-known clustering algorithms upon relational datasets in Section 4.5.

4.4 Experiments on Propositional Datasets

Although our DIVA framework is mainly developed for the purpose of clustering relational

datasets, it can also be used upon propositional datasets, because the latter ones may

be regarded as a special case of the former where all the data are of the single type and

without relationships between them. In this section, we evaluate DIVA’s performance in

comparison with several classic propositional clustering algorithms using two datasets.

As explained in Section 2.1.3, if the class labels of data instances are available,

we use an entropy-based measure [145] to evaluate the uniformity or purity of a cluster.

Formally, the entropy E(Ck) is defined by:

E(Ck) =





−∑h Ph,k log2 Ph,k, If each data instance has single class label.

−∑h Ph,k log2
Ph,k

Qh,k
, If each data instance has multiple class labels.

(4.10)

where Ph,k and Qh,k are respectively the proportion of data instances of class h in

cluster Ck. Then the total entropy is the sum of E(Ck) over all clusters. Otherwise,

the Intra-cluster Similarity can be used to measure the average similarity between pairs
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Figure 4.1: Cluster Results Using Different Strategy

of data instances in the same cluster [35]:

Sintra =
1

K

K∑

k=1


 1

N2
k

∑

x∈Ck

∑

x′∈Ck

fs(x, x′)


 (4.11)

where Nk is the number of data instances in cluster Ck. Generally speaking, larger intra-

cluster similarity and smaller entropy values indicate higher quality of cluster results.

4.4.1 Arbitrary-shaped Dataset

Propositional clustering has been thoroughly investigated over years and many algo-

rithms, from the classical PAM, k-Means and HAC to the more recent BIRCH, DBScan

and CLARANS, have been developed (as reviewed in Chapter 2). One great challenge in

propositional clustering is how to effectively discover the data clusters of sophisticated

shapes, which is especially important in spatial or geographical applications. Gener-

ally speaking, in these datasets the shape of the potential clusters might be spherical,

elongated, curved or even arbitrary. Figures 4.1a and 4.1e are two examples of such

sophisticated datasets.
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Table 4.1: Execution Time of HAC, DBScan and DIVA (sec)
k-means HAC DBScan RecDiva IncDiva

Dataset 1 0.320 ± 0.044 2.183 ± 0.038 0.995 ± 0.013 0.203 ± 0.011 0.507 ± 0.014
Dataset 2 0.315 ± 0.062 1.350 ± 0.025 0.700 ± 0.024 0.133 ± 0.005 0.373 ± 0.007

Figure 4.1 also provides the cluster results obtained by our DIVA algorithms,

given the parameters r = 4 and v = 0.9 (that are the number of ROs for each cluster

and the variance threshold respectively). Different digits with different colors in the

figures represent the membership of data instances to different clusters. As shown in

Figures 4.1c and 4.1g, the final cluster results were not correct when the RO sets were

randomly selected. In contrast, the Max-Min strategy used by either the recursive or the

incremental implementation of DIVA (denoted as “RecDiva” and “IncDiva” respectively)

could discover the correct clusters in both datasets. Here we used the single-linkage

strategy in the agglomerative step because it is generally better than the complete-

linkage strategy to find the clusters with arbitrary shapes.

Furthermore, we compare our DIVA algorithm with k-means, HAC and DB-

Scan [39] that has been implemented in the open-source Data Mining software WEKA

[151]. All the algorithms were executed for 10 times with 10 different random seeds to

shuffle the dataset. Unfortunately k-means cannot discover the correct clusters for both

datasets, because it tends to generate spherical clusters. The results derived by k-means

are shown in Figures 4.1b and 4.1f. On the other hands, the correct clusters are obtained

when we utilize HAC, but DIVA is more scalable than HAC because micro-clusters in-

stead of individual data instances are used as the leaf nodes when building dendrogram,

which would greatly accelerate the clustering procedure. This conclusion is supported by

the experimental results in Table 4.1. For DBScan, we tuned the parameter ǫ carefully

and finally set as 0.13 and 0.07 for two datasets respectively, which allowed DBScan

to find the correct clusters in the shortest time. The results in Table 4.1 indicate that

DIVA spent substantially less time than DBScan did for both datasets.
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Table 4.2: Experimental Results on UCI Chess Dataset
k-means HAC DBScan RecDiva IncDiva

Entropy 62.93 ± 0.02 - - 57.70 ± 0.81 61.77 ± 0.28
Time Spent 19.23 ± 8.14 - 374.68 ± 17.00 18.32 ± 0,98 24.72 ± 4.18

4.4.2 UCI Chess Dataset

Another propositional dataset comes from the UCI Machine Learning Repository [7].

We choose the chess (King-Rook vs. King) dataset 3, which has already been cited and

studied in many papers. This dataset has 6 numeric attributes: white king file (column),

white king rank (row), white rook file, white rook rank, black king file and black king

rank. They were used as the input of out clustering algorithms. The attribute used to

evaluate the cluster quality in our experiment is the depth-of-win for white in 0 to 16

moves or draw otherwise.

In total this dataset contains 28056 instances, for which the number of derived

clusters is 18 (based on the cardinality of attribute depth-of-win). Like the experimental

setup in the previous section, all the algorithms were executed for 10 times with 10

different random seeds to shuffle the dataset. We still compare our DIVA algorithms

with k-means, HAC and DBScan. Unfortunately HAC does not work for this dataset

because computing the similarity matrix between every pair of data instances, which in

this case is composed of 280562 ≈ 7.9×108 values, is infeasible. For DBScan, we found

it is very sensitive to the user-specified parameters: When ǫ ≤ 0.142, DBScan generate

lots of unit clusters, i.e. only one data instance in a cluster, which is not useful. On the

other hand, all instances are assigned into the same clusters when ǫ ≥ 0.143, which is

meaningless as well. In addition, DBScan spent too much time to process this dataset.

For DIVA, we set r = 3 and v = 0.1. The experimental results are presented

in Table 4.2. Here RecDiva spent comparable time as k-means but IncDiva spent more

time because it needs to create and maintain the search structure. RecDIVA generated

better results than that of k-means with respect to the entropy criterion, which means

3http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King)
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Figure 4.2: UCI Chess Dataset - Time Spent

the derived clusters are more accordant with the data classes.

We also tested the scalability of our DIVA algorithms by randomly sampling

the whole dataset with a uniform distribution. The sampling percentage was ranged

from 20% to 100% and repeated for 50 times. The experimental results are shown in

Figure 4.2. We can see that time spent by RecDiva and IncDiva keep approximately

linear growth with respect to the increase of data amount, which supports our complexity

analysis in Section 4.3.

4.5 Experiments on Relational Datasets

We now compare RecDiva and IncDiva with the following relational clustering ap-

proaches: (1) FORC [71], which is the natural extension of k-Medoids in the field

of relational clustering by utilizing the relational similarity measure. (2) ReCoM [145],

which exploits the relationships among data instances by an iterative reinforcement

fashion. In our experiments, k-Medoids is utilized as the meta clustering algorithm for

ReCoM. (3) LinkClus [157], which develops a hierarchical structure, named SimTree, to

represent the similarity values between pairwise data instances and hence facilitate the

iterative clustering process. (4) RndDiva, which implements the DIVA framework but

using the random strategy to select the RO set. Our experiments were conducted upon

three datasets:
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Figure 4.3: Ontology of the Synthetic Amazon dataset

4.5.1 Synthetic Amazon Dataset

This dataset simulates the users’ visit to the Amazon website. It is generated by the

following steps, given the data ontology as in Figure 4.3:

1. The product taxonomy was retrieved from Amazon’s website www.amazon.com.

It contained 11 first-level categories, 40 second-level categories and 409 third-level

categories in the taxonomy. We generated 10,000 virtual products and randomly

assigned them to the third-level categories. The category information was the only

content feature defined for these products.

2. We randomly generated 2,000 users and uniformly distributed them into 100

groups. For each group, we constructed a probability distribution to simulate

the users’ preferences on the third-level categories (obtained in Step 1), which

defined the likelihood of a user in that group to browse a product in a certain

category. Each group of users had 4 interest categories: one major interest, two

intermediate interests and one minor interest. Their corresponding probabilities

were assigned as 0.5, 0.2 and 0.1 respectively.

3. Each browsing action of the users was generated according to the information of

users, groups, categories and products: (i) randomly select a user and get his

group; (ii) based on the probabilities of group interests, select an interest and get

the related product category; (iii) randomly select a product that belongs to this

category; (iv) create a browsing action between the user and the product obtained

in step (i) and (iii). In total 100,000 browsing actions were created.

4. In order to test the robustness of different clustering approaches, we also generated

some noise data: for each user, (i) uniformly choose four noise interests; (ii)
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randomly select a product that belongs to one of the four noise interests of the

current user; (iii) create a noise browsing action between the user and the product.

We would examine how these clustering approaches perform in the case of different

noise ratios, which is the percentage of noise data in the whole dataset.

The users were assigned into 100 groups using different clustering algorithms.

LinkClus was executed with a series of c values and the best cluster result was used in

the comparison with other approaches. Since FORC, LinkClus and ReCoM launch an

iterative clustering procedure, we set the maximum number of iterations to be 10, which

appeared to be sufficient for these algorithms to converge in our experiments.

First of all, Figures 4.4a and 4.4b show the change of the cluster quality with

respect to the parameter variance v in DIVA. We ranged v from 0.9 to 0.1 and fix

r = 3. In general, the quality of the cluster result derived by DIVA improved as v

increases. When v ≤ 0.6, RecDiva and IncDiva outperformed all the other algorithms.

The random strategy for RO selection, as we expected, could not derive good cluster

result. We also found that the accuracy of LinkClus was far worse than those of the

other approaches. The reason is that LinkClus builds the initial SimTrees by applying

Frequent Pattern Mining, which only exploits the link structure of the relational dataset.

The content features of the data instances, for example the category information for

product, are completely ignored in the procedure of clustering. Due to such information

loss LinkClus cannot generate clusters of high quality. Hence, we did not test RndDiva

and LinkClus in the future experiments for brevity.

Figure 4.4c shows the execution time of the FORC algorithm is far more than

that of the others. This result is not surprising since its computational complexity is

O(N2). On the other hand, time spent by ReCoM, LinkClus and DIVA are comparable.

Generally, as v decreases, DIVA will spend more time to generate smaller clusters in the

divisive step and combine them again in the agglomerative step. When v < 0.3 in this

case, time spent by DIVA sharply increased because many single-object clusters were

produced. As discussed in Section 4.3, the use of such low variance threshold reduced
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Figure 4.4: Synthetic Amazon Dataset - Clustering users w.r.t. different variance v
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DIVA into RDBC with quadratic complexity. Another fact is that IncDiva generally

spent more time than RecDiva did because it needed some extra effort to maintain the

data structure S used for allocating new instances, and for small value of v it will be

worse than FORC.

Next we examined the parameter r, i.e. the number of ROs for each cluster.

r was varied from 3 to 17 increased by
√

2. Figures 4.5a to 4.5d show cluster results

evaluated by the criteria of intra-cluster similarity and entropy. We found that these

results are not sensitive to different values of r, because the binary split that only depends

on the largest pair of ROs is used in our divisive step, as we claimed in Section 4.1.

Figures 4.5e and 4.5f show that the running time grows while the accuracy are not

substantially improved for both RecDiva and IncDiva. Therefore, a fairly small value

of r is enough for providing high accuracy as well as keeping short running time for

cluster analysis. Based on the above observation, we keep setting r = 3 in our following

experiments.

Figure 4.6 illustrates the robustness of all approaches under different noise ratios

of browsing actions, ranging from 20% to 100%. The parameters for DIVA were set as:

v = 0.5 and r = 3. Generally, the accuracy of all approaches are reduced as the noise

ratio increases. When evaluated by the criterion of intra-cluster similarity, the cluster

results derived by RecDiva, IncDiva and ReCoM were comparable. When evaluated by

the entropy-based criterion, both RecDiva and IncDiva outperformed ReCoM and FORC

when the noise ratio was below 80% and their performance were very close when the

noise ratio was above 80%. Here we think the entropy-based criterion is more meaningful

because it is calculated only based on the class labels of the data instances while the

computation of the intra-cluster similarity is impacted by the noise data.

4.5.2 DBLP Dataset

This dataset was downloaded from the DBLP website, including authors, papers and

venues (i.e. conferences and journals). The database schema is shown in Figure 4.7.
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Figure 4.5: Synthetic Amazon Dataset - Clustering users w.r.t. different number of ROs
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Figure 4.7: Schema of the DBLP Database
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We selected 509 most productive authors and 718 well-known venues for our experi-

ments, which were related to 94,217 papers. The total number of links between authors

and papers is 2,941,276 and the number of papers published by an author individually

or cooperatively ranges from 146 to 526. We can quantitatively evaluate the linkage

sparseness of a dataset by using the ratio of the real and the potential numbers of

links. For the DBLP dataset here, the ratio is 2941276
509×94217 = 0.0613. In comparison, the

linkage sparseness of the Synthetic Amazon dataset is 100000
2000×1000 = 0.005, which mean

the linkage structure in the DBLP dataset is more dense than that of the Synthetic

Amazon dataset. Additionally the linkage structure is more complex here because the

information of venues should also be considered in the clustering procedure. We man-

ually assigned these authors into 15 research areas based on the information retrieved

from their homepages, which were only used to evaluate the cluster quality. As each

author might be related to more than one research field, the entropy measure based on

the Kullback-Leibler Divergence was used to evaluate the relative purity of the clusters.

We use ReCoM, FORC and DIVA to group the authors into 15 clusters.

Figure 4.8 reports our experimental results4. We can see in Figure 4.8a that both

RecDiva and IncDiva outperformed FORC and ReCoM with regard to the intra-cluster

similarity. Figure 4.8b shows that the cluster purity derived by RecDiva and IncDiva

are better than that of FORC when v < 0.9. Furthermore, both DIVA implementations

are more efficient than the other two algorithms, as shown in Figure 4.8c. Because the

number of objects to be clustered in this dataset is far less than that of the Synthetic

Amazon dataset, IncDiva spent comparable time as RecDiva due to the lower cost of

maintaining the SearchTree.

4.5.3 Movie Dataset

The clustering approaches were also evaluated on a real movie dataset defined by the

ontology in Figure 2.3. This dataset was provided by a DVD retailer in UK. The movie

4Because the entropy of cluster result derived by ReCoM is 1.93 and the time spent is more than
104 seconds, they are not included in Figures 4.8b and 4.8c for brevity.
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data were collected by spidering the retailer’s website. All the rating data were derived

from the web server log collected over a period of 3 months. After data pre-processing,

there are 62,955 movies, 40,826 actors and 9,189 directors. The dataset also includes a

genre taxonomy of 186 genres. Additionally, we have 542,738 browsing records included

in 15,741 sessions from 10,151 users. The number of sessions made by different users

ranges from 1 to 814. We use the 5,000 top-rated movies in our experiments for the

cluster analysis.

The entropy-based criterion can not be applied in this case, because no pre-

specified or manually-labelled class information is available for movies. We have to

utilize the visit information from users to evaluate the cluster results indirectly. The

motivation behind this evaluation criterion stems from the research of recommender

systems, which will be investigated thoroughly in Part III. Traditional collaborative

filtering algorithms construct a user’s profile based on all items he/she has browsed

across sessions, then the profile of active user ua is compared with those of other users

to form ua’s neighbourhood and the items visited by the neighbourhoods but not by

ua are returned as the recommendation [77]. Hence, two items are “labelled” into the

same category if they are co-browsed by the same user, which reflects the partitioning of

the dataset from the viewpoint of users. Accordingly, we can construct the evaluation

criterion as in [157]: two objects are said to be correctly clustered if they are co-browsed

by at least one common user. The accuracy of clustering is defined as a variant of

Jaccard Coefficient: the number of objects pairs that are correctly clustered over all

possible object pairs in the same clusters. Another criterion is similar but of higher

granularity, based on the assumption that a user seldom shifts his/her interest within a

session, so two objects are said to be correctly clustered if they are included in at least

one common session. Therefore we have two new criteria for evaluating the accuracy

of clustering: user-based and session-based coefficient. As discussed in [157], higher

accuracy tends to be achieved when the number of clusters increases, so we set to

generate 100 clusters for all approaches.
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The evaluation results based on the intra-cluster similarity are shown in Fig-

ure 4.9a, in which both RecDIVA and IncDiva perform better than ReCoM and FORC.

Figure 4.9b and 4.9c are the experimental results evaluated by the above coefficient

criteria. RecDIVA and IncDiva still outperform ReCoM and FORC when v < 0.7, indi-

cating the clusters generated by both of the DIVA implementations are more accordant

with the user browsing patterns, i.e. the partitioning of the dataset derived by DIVA is

more acceptable by users. It indicates that our DIVA implementations are more valuable

than ReCoM or FORC when being applied to recommender systems. In Part II we will

continue investigating the extension of our DIVA framework to generate hierarchical

taxonomies with more details.

4.6 Summary

This chapter develops the multi-phase relational clustering framework DIVA based on the

idea of Representative Objects. Our approach can obtain highly qualified cluster results

and at the same time achieve high efficiency, because the divisive step partitions the

dataset into micro-clusters of sufficient intra-cluster homogeneity, and the agglomerative

step remedies the inaccurate partitions by considering inter-cluster homogeneity. The

utilization of ROs facilitates the proximity computation for both the divisive step and

the agglomerative step. Additionally we conduct comprehensive experiments covering

propositional and relational datasets to evaluate our approaches. In the next part we will

discuss an advanced topic in data mining, i.e. how to build and optimize the hierarchical

taxonomy based on the cluster analysis in order to facilitate people and computers better

exploiting the dataset.
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Part II

Automated Taxonomy Generation
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A taxonomy provides an efficient mechanism for people to navigate and browse

a large amount of data by organising these data into a hierarchy of clusters [163] [83].

There are many examples of manually constructed taxonomies for describing the real

world: In biology we have the taxonomy composed of seven levels (from general to

specific): kingdom, phylum, class, order, family, genus, species. Each kind of animal

on the earth is uniquely located in this taxonomy to indicate their evolutionary relation-

ships to other animals. On the Internet, some taxonomies such as Yahoo! Directory

(http://dir.yahoo.com) or Open Directory Project (http://www.dmoz.org) have

been created to organize web-pages according to their content based on some global

topical structures.

However, such manually maintained taxonomies are only feasible for small or

static datasets. In contrast, Automated Taxonomy Generation (ATG) techniques have

the ability to process huge and dynamic datasets and so has attracted considerable re-

search interests in recent years. At present ATG techniques are mainly used to organize

a large collection of documents [108] [85] [26] or web-pages/images [22] [86] [83] [23].

These applications usually apply Natural Language Processing or Information Retrieval

techniques to extract a bag of words from the text as the linguistic features of the doc-

uments. Then all the documents are grouped based on these linguistic features using

some hierarchical clustering techniques and a hierarchical taxonomy is created accord-

ingly. Given the derived taxonomy, users can browse the whole document collection

by following the taxonomic structure and then only focus on their interested topics. A

successful application of the ATG technique on the Web is the search engine Clusty

(http://www.clusty.com), which automatically groups the retrieved web-pages into

a topic hierarchy as the response of user queries, so users can more easily find their

interested articles.

We wish to extend these ATG approaches into more general scenarios of or-

ganizing relational datasets. The derived taxonomy is expected to reflect the internal

distribution of the dataset as well as preserve important pairwise similarities between
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data instances. Such generalized ATG approaches are especially valuable because they

can not only facilitate people’s navigation in the dataset but also improve the efficiency

of many information systems. In Part III we will explore the application of an automat-

ically derived taxonomy to improve the efficiency of recommender systems.

To the best of our knowledge the utility of ATG techniques upon relational

datasets has not been investigated to any great extent until now. In order to address

this issue, we propose an effective approach to automate the construction of taxonomies

for representing and organizing relational datasets. Our ATG approach is based on the

two-phase clustering framework DIVA proposed in Part I. The taxonomic structure is

determined based on the homogeneity of the data instances belonging to the same tax-

onomic node as well as the heterogeneity of the data instances belonging to different

nodes. The node labels are assigned by analyzing the divergence of the data attributes.

We also propose a synthesized criterion to quantitatively evaluate the quality of the

derived taxonomy by considering both the intra-node homogeneity and inter-node het-

erogeneity. In addition, we compare the robustness of our algorithm with others under

different noise ratios, which is not studied in previous works.

The rest of this part is organized as follows: Some related research on ATG

algorithms is reviewed in Chapter 5 together with the discussion of how to quantitatively

evaluate the derived taxonomy. In the following chapters, we will focus on the utilization

of the ATG techniques to analyze relational datasets. More specifically, in Chapter 6 we

will develop the ATG algorithm based on the DIVA clustering framework and also discuss

the issue of optimizing the taxonomic structure. Then in Chapter 7 we will explain

our novel strategies of finding labels for the taxonomic nodes based on the Kullback-

Leibler Divergence. Some experiments are conducted to evaluate the effectiveness of

our approaches, and the experimental results together with the analysis are provided in

Chapters 6 and 7 respectively.
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Chapter 5

Review of Taxonomy Generation

Algorithms

The Internet’s open and decentralized nature encourages people to publish various tex-

tual and multimedia data to others, making the Internet as one of our major information

sources today, but at the same time surfing on the web to retrieve useful information

is not easy. To tackle this problem, there have been some attempts to create a static

hierarchical categorization and then use it to organize webpages. For example, the Open

Directory Project (http://www.dmoz.org) is the largest human-edited directory of the

web maintained by more than 80,000 volunteer editors (up to Aug 2009). However, the

ODP directory only covers less than 5% of the entire web. In addition, the categorical

structure cannot be adjusted automatically to track the dynamic changes of the web

and the cost of manually updating the categories is considerably high.

In recent years, Automated Taxonomy Generation (ATG) has gradually become

an attractive research topic because it is very suitable for processing huge and dynamic

datasets. Currently ATG techniques are mainly used to organize, represent and discover

knowledge within a large collection of documents by means of generating the hierarchi-

cal categories. In this chapter, we will review some important issues relating to ATG

algorithms.
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5.1 Fundamentals of the ATG algorithms

The main purpose of building a taxonomy is “to provide a meaningful navigational and

browsing mechanism by organizing large amount of information into a small number of

hierarchical clusters” [163]. Kummamuru et al. suggested in [83] that the taxonomy

built for a document collection should have six desirable properties. In order to process

more general datasets, we reiterate these properties with appropriate extension as follows:

1. Coverage: Ideally each data instance should be contained in at least one node

in the taxonomy. That is to say, for each instance, we can find a path in the

taxonomy which starts from the root node and ends at the node that the instance

belongs to. The derived taxonomy covering more data instances is considered to

be better.

2. Compactness: This property restricts the size of the taxonomy. Since ATG tech-

niques are used for the purpose of summarizing and navigating datasets, tax-

onomies with too many levels or too many branches in each level are not encour-

aged.

3. Sibling Node Distinctiveness: At any level of the hierarchy, the sibling nodes

should be as different as possible from each other.

4. Node Label Predictiveness: Labels are used to summarize the contents or the

characteristics of their corresponding nodes. A taxonomy with good node labels

can help users to find data of their interests with minimum efforts.

5. Reach Time: The average time spent by users to find data of their interests is

important. This criterion can be qualified by the size of the taxonomy, because

both the depth and the width of the taxonomy will impact user’s reach time.

6. General-to-Specific Order : The node labels should be selected to follow the

general-to-specific relationship within the hierarchical taxonomy from top to bot-

tom.
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Krishnapuram and Kummamuru provided an overview in the field of automatic

taxonomy generation and raised three questions [80]:

1. How to identify documents that have similar content;

2. How to discover the hierarchical structure of the topics and subtopics;

3. How to find appropriate labels for each of the topics and subtopics;

We will examine each of these three issues below.

The document similarities are mainly computed based on the keywords occurring

in the documents. Usually, techniques in the fields of Natural Language Processing

(NLP), Text Mining or Information Retrieval (IR) are utilized as the first step to extract

some linguistic features from the content of these documents. Then document i is

represented as the feature vector xi = (xi,1, xi,2, . . . , xi,m), where xi,j is the weight of

term wj in the document i. There are many ways of calculating the value of xi, among

which the TF-IDF measure [9] is the most widely used one because it can effectively

evaluate the importance of a word to a document by considering the term frequency

(TF) as well as the inversed document frequency (IDF), where IDF is used to remove

the bias of the common words in the corpus. Based on the above feature vector model,

the similarity measure between two documents can be computed by the cosine similarity

value or the Pearson’s Correlation Coefficient of their corresponding feature vectors [9].

In addition, our linguistic knowledge can be exploited to facilitate the syntactic and

semantic analysis on the documents.

Given the vector space model of the documents, traditional divisive or agglomer-

ative hierarchical clustering algorithms can be used to build the hierarchical taxonomy.

Steinbach et al. investigated the possibility of using the bisecting k-means clustering

algorithm, a variant of standard k-means, to analyze the document collection [138]. The

bisecting k-means algorithm selects a cluster (based on some criteria such as the largest

size or the least overall similarity) and splits it into exactly two sub-clusters by using the

standard k-means. The algorithm continues iteratively until K clusters are obtained.
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It has been shown that the bisecting k-means often outperforms the standard k-means

and the agglomerative clustering algorithms. Boley developed a divisive partitioning

algorithm PDDP in [18], which conducts binary divisions in each cluster iteratively until

the scatter value of the derived clusters are less than a user-defined threshold. Here

the scatter value is calculated by a linear discriminant function which is dependent on

the first principal component of the covariance matrix. In contrast, Cheng and Chien

extended the agglomerative clustering algorithm in [22] to generate topic hierarchies.

To make the hierarchy more feasible for browsing, they examined the intra-cluster and

the inter-cluster distances at each level in the hierarchy and then merged those levels

of which the clusters are not cohesive. The application of hierarchical clustering to

build query taxonomies can also be found in [25]. In case of semi-automated taxonomy

generation where suggestions from users are available, Kashyap et al. used a series of

thresholds to select nodes and extract a taxonomy from the dendrogram [69].

As opposed to the above approaches that use the dendrogram as the basis

to generate taxonomies, some other approaches directly build the taxonomies from

scratch. Clerkin et al. [27] applied the incremental conceptual clustering algorithm

COBWEB [43] to construct the class hierarchies. COBWEB conducts a hill-climbing

search in the space of possible taxonomies and uses Category Utility [50] to select the

best categorizations. The algorithm is performed in an incremental fashion. When

classifying a new instance, the algorithm evaluates the CU of the derived taxonomy and

then performs one of the following operations: classify the instance into the existing

cluster, create a new cluster, divide or merge the existing clusters. Finally the output of

COBWEB is translated into a class hierarchy. Lawrie and Croft [86] proposed the use

of a set of topical summary terms for taxonomy construction. These topical terms are

selected by maximizing the joint probability of their topicality and predictiveness, which is

estimated by the statistical language models of the document collection. Kummamuru et

al. [83] developed an incremental learning algorithm DisCover to maximize the coverage

as well as the distinctiveness of the taxonomy. The criterion used to pick out concepts
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is the weighted combination of two functions reflecting document coverage and sibling

distinctiveness respectively.

Furthermore, Wnek proposed to use the Latent Semantic Indexing (LSI) tech-

niques to construct taxonomies. The introduction of LSI effectively reduced the mis-

matching of words and thus improved the quality of the derived taxonomy [152]. Sie and

Yeh combined the human-provided knowledge network and ATG techniques to generate

a semantic hierarchy in the digital library environment. They exploited the meta-data

schema of the digital library and considered the path of the knowledge network in the

similarity computation, so the derived hierarchy is more human-readable and semantic-

oriented [136]. Kashyap provided an experimentation framework for automated taxon-

omy construction in [69]. They evaluated some of the NLP and clustering techniques in-

troduced above and identified their parameters. However, none of the above approaches

can easily be extended to process relational datasets. For example, PDDP requires the

availability of covariance matrix and probabilistic models beyond propositional domains,

which are usually undefined in the relational datasets.

The next issue is to assign appropriate labels for the derived taxonomic nodes.

If the taxonomy is built for document collections, the keywords or phrases extracted by

the NLP/IR techniques were usually used as the node labels [25][22]. Krishnapuram and

Kummamuru suggested to use a set of words with a high frequency of occurrence in the

nodes as labels [80]. In the algorithm DisCover [83], meaningful nouns, adjectives or

noun phrases (with necessary pre-processing such as stemming, stop-word elimination

or morphological generalization) extracted from the documents were used as the labels.

Boley proposed the use of the “most significant words” as the node labels. These words

should be the most distinctive ones to the current cluster or distinguish the cluster from

its neighbours, and so they provide good indicators of the cluster topics. The author

used the cosine value between the principal direction vectors (computed by the PDDP

algorithm) of the current node and its parent to select the most significant words. In

[69], the authors proposed to assign some potential labels for the taxonomic nodes and

90



then use the noun phrase replacement and the label propagation techniques to refine

the taxonomy labels. Nevertheless, how to find labels for the taxonomic nodes built for

relational datasets has not been investigated to date.

5.2 Evaluation Criteria

Another non-trivial question is how to evaluate the quality of the derived taxonomy.

Kashyap et al. classified the criteria as the categories of evaluating the taxonomic

contents or evaluating the taxonomic structures [69]. The former measures the overlap

of the assigned labels while the latter measures the structural validity of these labels.

Both types of criteria assume the availability of the standard taxonomy, so the precision

and recall of the assigned labels can be compared with the standard taxonomy. Chuang

and Chien applied the F-measure that combines precision and recall as the evaluation

criterion for their derived taxonomy, because the class information of the data were also

available in their experiments.

Krishnapuram and Kummamuru in [80] summarized three scenarios when eval-

uating the derived taxonomies:

1. When a standard taxonomy with ground truth is available, we can compare the

derived taxonomy with it. Two commonly used criteria are accuracy and mutual

information. The accuracy can be computed by assigning a class label for each

node in the standard taxonomy and then counting how many data instances in

the derived taxonomy are correctly clustered. In contrast, mutual information

[98] considers the probability distribution of all the class/cluster labels within the

standard and derived taxonomies, and then computes their mutual dependence as

follows:

MI(K,K′) =
∑

ki∈K

∑

k′
j∈K

′

p(ki, k
′
j) log

p(ki, k
′
j)

p(ki)p(k′
j)

(5.1)

where K and K′ are the set of class-labels in the standard taxonomy and the

set of cluster-labels in the derived taxonomy respectively, p(ki) and p(ki) are the
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marginal probability distribution of class- and cluster-labels respectively, p(ki, k
′
j)

is their joint probability distribution.

2. When the ground truth is not available, one possible way to evaluate the derived

taxonomy is to see how well the assigned labels in the taxonomy can predict the

content of the documents in each cluster, which can be measured by the Expected

Mutual Information Measure (EMIM) [85]. Given the set of label words asW and

the set of meaningful words in the document collections asW ′, EMIM is computed

as follows:

EMIM(W,W ′) =
∑

w∈W

∑

w′∈W ′

p(w, w′) log
p(w, w′)

p(w)p(w′)
(5.2)

Another useful criterion is reachability, which is determined by the percentage of

documents that are covered by the derived taxonomy and the total number of

nodes we need to navigate before finding all the relevant documents.

3. When comparing two taxonomies that are built by different algorithms, we can

count the total number of parent-child pairs in common between these two tax-

onomies or compute the edit distance between them.

In this thesis we focus on analyzing unlabelled datasets. Since there is no ground

truth available for us to build the standard taxonomy, we examine our derived taxonomy

with respect to six properties reviewed in Section 5.1 and evaluate the labels of our

derived taxonomy using the reachability criterion introduced above. More specifically,

the procedure of user navigation will be simulated and hence the quality of the derived

taxonomy be evaluated based on the success ratio and the path length that relevant

data instances are discovered. More details can be found in Chapters 6 and 7.
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Chapter 6

Taxonomy Generation for

Relational Datasets

In this chapter we will present our general approach of automatically generating tax-

onomies as well as evaluating the derived taxonomy based on the desired properties

introduced in Chapter 5. In essence, taxonomy generation can be understood from the

viewpoint of artificial intelligence as a search through a hypothesis space composed of

all possible hierarchies upon the given dataset, and so in Section 6.1 the search model

is briefly explained. Then our ATG approaches are discussed in Section 6.2 and their

complexities are analyzed in Section 6.3. Finally an empirical evaluation on the proposed

methods is presented in Section 6.4 to show the effectiveness of our approaches.

6.1 Search Model for Learning

From the viewpoint of artificial intelligence, many learning problems can be generalized

as a search through a hypothesis space [104]. For example the algorithm ID3 [119] is

regarded as searching in the space of possible decision trees for the best one that fits the

training examples. ID3 performs a hill-climbing search through this space in a general-

to-special order: From an empty tree, ID3 progressively elaborates the hypothesis by
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appending more constraints into the tree, which is equivalent to moving from one node

to another in the hypothesis space, until all the examples are correctly classified. In each

step the criterion guiding the search is the information gain measure [103].

There are a few dimensions to be considered when a learning problem is charac-

terized as a search [33]. One of them is the control strategy which means the selection

between the exhaustive strategies (like depth-first or width-first search) and the heuris-

tic ones (like hill-climbing or beam-search). A second dimension, the search direction,

means that the nodes in the hypothesis space are ordered by their generality, and so a

learner may use either the generalization or the specialization operation to search the

space. Another important dimension is the search criterion, which determines whether

the current hypothesis fits the data and (if not) which candidate hypothesis should

replace the current one in the next iteration of search.

By viewing learning as a search problems, we can easily examine and compare

different strategies for searching the hypothesis space, especially those algorithms that

are efficiently searching very large or infinite hypothesis spaces, to find the learning

model that best fits the given data [103].

6.2 Taxonomy Construction

The agglomerative step developed in Section 4.2 uses all the micro-clusters generated

by the divisive step as the leaf nodes of the dendrogram and iteratively merges them

using either of the three strategies: single-linkage, complete-linkage or average-linkage.

The obtained dendrogram T is a binary-split hierarchical structure in which each super-

node contains all the data instances belonging to its sub-nodes. Let us evaluate the

agglomerative step using six desired properties introduced in Section 5.1. Since each

data instance is contained in one of the leaf nodes, Property Coverage is always satis-

fied. Properties Node Label Predictiveness and General-to-Specific Order are about the

labels of the taxonomic nodes. They are originally proposed for document collections, in

which the nodes are labeled by parsing the textual content of the documents. Because
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it is difficult to evaluate the goodness of labels for summarizing taxonomic nodes, label-

ing taxonomic nodes is essentially very subjective. We postpone the discussion about

labeling taxonomy until the next chapter. Therefore, we put our focus on optimizing the

hierarchical structure of the derived taxonomy to satisfy Properties Compactness, Sib-

ling Node Distinctiveness and Reach Time in this section together with the analysis of

comprehensive experimental results to evaluate our algorithm. Obvious, the binary-split

structure of the dendrogram T does not satisfy the requirement of Property Compact-

ness. We need to adjust the structure of T by reducing the total number of levels in it.

Moreover, we expect the optimized hierarchy can best reflect the natural distribution of

the dataset, i.e. all the taxonomic nodes located at the same level are approximately of

the same granularity and all the sibling nodes belonging to the same parent node are as

distinctive as possible.

Some heuristic algorithms have been developed for this purpose. Chuang and

Chien developed a top-down algorithm to merge the dendrogram structure for organizing

the query terms. The determination of a cutting level depends on the quality of the

cluster set at that level, which is the product of intra- and inter-cluster similarities as

well as the size of the cluster set [25]. This algorithm is not suitable for other datasets

because it is sensitive to the perceptual terms in the query. Later, Cheng and Chien used

the distance between two adjacent levels, which is the ratio of the change of intra-cluster

distance to that of inter-cluster distance in two levels, as the cutting criterion in [22], but

the merging operation after determining the cutting levels is not clear and the authors

did not conduct experiments to compare their algorithm with other ATG approaches. In

addition, these algorithms are not efficient in processing the relational datasets due to

their high computational complexity in computing pairwise data similarities.

In this section we will investigate the use of our RO-based DIVA clustering

framework to achieve high efficiency gains for the taxonomy generation. As explained in

Section 6.1, the problem of optimizing the taxonomy can be characterized as a search in

the hypothesis space that is composed of possible taxonomic structures upon the given
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dataset. It is easy to see that such hypothesis space is complete because every possible

taxonomy can be represented by a node in the hypothesis space. Now we consider three

dimensions of the search: control strategy, search direction and search criterion. The

basic idea of our approach is to find a set of cutting levels in the dendrogram of which the

corresponding clusters are qualified and other unqualified clusters are removed accord-

ingly. The quality will be evaluated using some measures based on cluster homogeneity.

As the algorithms proposed in [25][22], our approach is in essence a heuristic search since

the hypothesis space is too large for the exhaustive search to be performed. The search

begins from the initial node, i.e. the dendrogram of which the hierarchical structure

is binary split and each leaf node represents a micro-cluster derived by the clustering

procedure. Then in each step some taxonomic nodes are merged, corresponding to a

move from a node to another in the hypothesis space. Based on the criterion of iden-

tifying the cutting levels and the strategy of merging nodes, we develop two algorithms

for optimizing the taxonomic structure, explained in the following sections respectively.

6.2.1 Global-Cut

For a dendrogram built by the HAC algorithm, Duda et al. suggested that the node-pair

similarity used in each agglomerative iteration indicates whether the formed clustering is

natural or forced: an unusually large gap within a series of node-pair similarities means

a natural partitioning of the dataset. They applied this idea to obtain the flat cluster

result from a dendrogram [35]. However, this is only a “rule of thumb” because they

did not provide any formula to quantitatively measure the similarity gap.

We extend their idea to construct the taxonomy based on a dendrogram. Our

approach, named “Global-Cut”, iteratively identifies multiple layers of natural partitions

in the dataset and organizes them as a taxonomy. First of all, we formally define the

intra-node distance gintra(l) and inter-node distance ginter(l) as the basis for the cutting

criterion. Since each node is represented by a set of ROs, gintra(l) and ginter(l) can be

obtained with low computational expense: Assuming all the levels in the dendrogram T
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are numbered as 1, 2, . . . , L from top to bottom, we have:

gintra(l) =
1

|{t(l)k }|
∑

k

var(t
(l)
k ) (6.1)

where {t(l)k } are all nodes located at the l-th level of T and

ginter(l) =
2

|{t(l)k }| × (|{t(l)k }| − 1)

∑

k 6=k′

fdnode(t
(l)
k , t

(l)
k′ ) (6.2)

The function | · | means the cardinality of the set. One special case is the calculation

of ginter(1), because the first level only contains the root node and thus its inter-node

distance is undefined. To solve this problem we simply set ginter(1) = 0.

The changes of intra- and inter-node distances between two neighbouring levels

are combined in:

G(l) = ∆gintra(l)−∆ginter(l)

=
[
gintra(l − 1)− gintra(l)

]
−
[
ginter(l − 1)− ginter(l)

]
(6.3)

where l ≥ 2. Thus, we develop our rule to identify the global cutting levels:

Rule 6.1. Level l is regarded as a cutting level only when G(l) > 0.

Here is an intuitive explanation for this criterion: if the change of intra-cluster

distance between level l − 1 and l is greater than the change of inter-cluster distance

between them, which means the data grouped by the nodes of level l is more cohesive

or “natural” than that of level l− 1, it is reasonable to set a cutting level between l− 1

and l (which is equivalent to preserve the nodes at level l into the final taxonomy);

otherwise, levels l − 1 and l would be merged.

The cutting criterion defined in Equation 6.3 is utilized iteratively: in each itera-

tion the whole dendrogram is scanned to identify one cutting level. Then the hierarchical

structure is re-organized by merging all the nodes between the previously and the cur-
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Algorithm 7: Iterative Optimize the Taxonomic Structure

Input: Dendrogram T
Output: Optimized taxonomy T ′

begin1

Retrieve the root node, calculate gintra(1);2

ginter(1)← 0;3

for l← 2 to l ≤ L do4

Retrieve all nodes in levels l, denoted as {t(l)k } respectively;5

Calculate gintra(l) and ginter(l);6

Calculate G(l) using Equation 6.3;7

if G(l) > 0 then8

// Set a cutting level between l − 1 and l;

Store {t(l)k } as a natural partition of the dataset;9

CONTINUE the For loop;10

else11

// Merge the nodes at level l;

Remove {t(l)k } from T ;12

Link all sub-nodes of t
(l)
k to t

(l)
k ’s parent directly;13

end14

end15

Organize the remaining nodes in T according to their linkage16

relationship to obtain the optimized taxonomy T ′;
end17
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(a) Original dendrogram (b) Structure changed given cutting level (l = 3)

(c) Structure changed given cutting level (l = 6) (d) Final taxonomy

Figure 6.1: Example of generating taxonomy

rently identified cutting levels: when a super-node tp and its sub-node {tk} are together

located between two neighboring cutting levels or below the lowest cutting level, all

tk nodes will be removed and their sub-nodes will be linked to tp directly. The above

iteration continues until no more cutting levels can be found in the dendrogram. The

whole procedure is summarized in Algorithm 7.

A simple example is given here to demonstrate our algorithm: Figure 6.1a is

a binary dendrogram T built by the agglomerative step of the DIVA algorithm, which

is the starting point of our approach for taxonomy generation (for the sake of brevity,

we do not draw any non-leaf nodes in this graph). In the first iteration, we found a

cutting level at l = 3 where G(3) > 0. Therefore the node set L̂3 = {t(3)1 , t
(3)
2 , t

(3)
3 } is

regarded as a natural partition upon the dataset. The dendrogram structure is changed

accordingly by removing the right subnode of the root that is above the cutting level,

resulting in a new hierarchy shown in Figure 6.1b. In the second iteration, we found

another cutting level at l = 6 where G(6) > 0, which means another natural partition

composed of nodes L̂6 = {t(6)1 , t
(6)
2 , t

(6)
3 , t

(6)
4 , t

(6)
5 , t

(6)
6 }, and so we preserve these nodes

and remove other nodes between the node sets L̂3 and L̂6, as in Figure 6.1c. Finally,
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since no more cutting levels can be identified, the remaining nodes are removed from the

hierarchy. In addition, node t
(6)
4 is also removed because it contains the same content

as node t
(3)
2 . The final taxonomy T ′ is shown in Figure 6.1d.

6.2.2 Local-Cut

The Global-Cut approach explained previously identifies the cutting-levels by considering

all the sub-trees in the dendrogram. Another approach, named “Local-Cut”, identifies

the cutting levels in a recursive fashion for each of the sub-trees. Hence, we re-define

the intra- and the inter-node distances as follows:

ĝintra(tk) = var(tk) (6.4)

and

ĝinter(tk) =
1

|{tk′}|
∑

tk′

fdnode(tk, tk′) (6.5)

where the set {tk′} are tk’s sibling nodes. Similar to the Equation 6.3, we combine the

changes of intra- and inter-node distances in:

Ĝ(tk) = ∆ĝintra(tk)−∆ĝinter(tk)

=

[
ĝintra(tk)−

1

|{ts}|
∑

ts

ĝintra(ts)

]

−


 1

|{tk′}|
∑

tk′

ĝinter(tk′)− 1

|{ts}|
∑

ts

ĝinter(ts)


 (6.6)

Then whether node tk should be split into a set of sub-nodes {ts} depends on the

following rule:

Rule 6.2. Taxonomic node tk should be split into a set of sub-nodes {ts} only when

Ĝ(tk) > 0.

Here is an intuitive explanation: when Ĝ(tk) > 0, which means the split of node

100



tk is natural to reflect the distribution of all the data instances belong to tk, and so

tk’s sub-nodes {ts} will be preserved in the resulting taxonomy. Otherwise, {ts} will

be removed and their sub-nodes are linked to tk directly and tk will be re-examined.

The above procedure is summarized in Algorithm 8. We expect such an optimization

strategy can generate taxonomies of higher quality than Global-Cut. The experimental

results discussed in Section 6.4 prove our assumption.

In addition, we can extend the Global-Cut and the Local-Cut formula by com-

bining the intra-node and the inter-node distances with different coefficients, as follows:

G′(l) = α
[
gintra(l − 1)− gintra(l)

]
− (1− α)

[
ginter(l − 1)− ginter(l)

]
(6.7)

and

Ĝ′(tk) = α

[
ĝintra(tk)−

1

|{ts}|
∑

ts

ĝintra(ts)

]

−(1− α)


 1

|{tk′}|
∑

tk′

ĝinter(tk′)− 1

|{ts}|
∑

ts

ĝinter(ts)


 (6.8)

where the user-tuned parameter α (0 ≤ α ≤ 1) is used to adjust the relative impor-

tance of the changes of the intra-node and the inter-node distances to the decision of

merging subtrees. In the following, for the sake of simplicity we do not differentiate the

importance between them, which means α = 0.5.

6.3 Complexity Analysis

Compared with traditional ATG approaches, our approach is far less expensive to deter-

mine the cutting levels.

Since each node in T is represented by a roi (1 ≤ i ≤ r), the complexities of

calculating gintra(l) and ginter(l) are not dependent on the size of the whole dataset

D: Given the number of nodes {tk} that are located at level l is Kl, to compute
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Algorithm 8: Recursively Optimize the Taxonomic Structure

Input: Dendrogram T
Output: Optimized taxonomy T ′

begin1

Initialize the processing queue Q1 and the finished queue Q2;2

Q1 ← root node of T ;3

while Q1 6= ∅ do4

tk ← GetHead(Q1);5

Q1 ← Q1 − {tk};6

if tk is leaf then7

Q2 ← Q2 ∪ {tk};8

CONTINUE the while loop;9

else10

Retrieve tk’s sub-nodes {ts};11

end12

Retrieve tk’s sibling nodes {tk′};13

Calculate ĝintra(tk), ĝintra(ts), ĝinter(tk) and ĝinter(ts);14

Calculate Ĝ(tk) using Equation 6.6;15

if Ĝ(tk) > 0 then16

// Set a cutting level between tk and {ts};
Q2 ← Q2 ∪ {tk};17

Q1 ← Q1 ∪ {ts};18

else19

// Merge the nodes {ts};
Remove {ts} from T ;20

Link ts’s sub-nodes to tk directly;21

Insert tk at the head of Q1 again;22

end23

end24

Organize all the nodes in Q2 according to their linkage relationship to25

obtain the optimized taxonomy T ′;
end26
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gintra(l) we will compare each pair of ROs belonging to the same node, and so the total

number of comparison is O(r2 ·Kl). Similarly the complexity of computing ginter(l) is

O

(
r2 ·

(
Kl

Kl−1

)2
)

in a balanced hierarchy or O
(
r2 ·K2

l

)
in the worst case. When the

number of nodes Kl is far less than the size of D, the time spent by the optimization

step of our approach is approximately constant. For our recursive optimization strategy,

the above discussion is also suitable for the complexity analysis of computing ĝintra(tk)

and ĝinter(tk).

In contrast, traditional ATG approaches usually need to compare each pair of

data instances when determining the cutting levels, and so their computational com-

plexities are quadratic with respect to the size of D. This conclusion is supported by

our experimental results in Section 6.4.

6.4 Experiments

To evaluate our DIVA-based ATG algorithm, we compare it with two well-known tax-

onomy construction approaches that utilize pure binary agglomeration/division: (1)

HAC-based approach [25] and (2) bisecting k-means Partitioning approach [138] (here

we replace k-means by k-medoids as the micro-clustering algorithm because our ex-

periments were conducted on relational datasets instead of numeric vectors) that is

performed iteratively until every leaf node contains only one data instance. Then the

derived binary-split dendrogram is merged by using the taxonomy generation algorithm

proposed in [22]. For the sake of simplicity, in this chapter we use the words “Global-

Cut”, “Local-Cut”, “HAC” and “BKM” to represent the above four approaches respec-

tively. For the BKM approach, the number of iterations within k-medoids is set to 10

when any taxonomic nodes are split and the parameter k is fixed to 2 since the approach

uses binary partitioning. For our DIVA approach, the number of ROs r is set to 3 and

the variance v is 0.5, which are the same as those in Chapter 4. Such parameter settings

guarantee all the leaf nodes in the derived taxonomy are homogeneous enough while the

total number of nodes is far less than the size of the dataset. Both BKM and DIVA
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approaches are repeated 5 times with different random seeds and the final results are

the average value of their respective experimental results obtained in different times.

As outlined at the beginning of this chapter, the optimized taxonomy should

maximize the intra-node-uniformity and the sibling-nodes-distinctiveness. We propose

to use the following distance-based criterion to evaluate the uniformity (purity) of all

nodes in the derived taxonomy. For node tk, the intra-node distance is:

DisIntra(tk) =
1

|{x(tk)
i }|2

∑

i,j

fdobj(x
(tk)
i , x

(tk)
j ) (6.9)

Similarly, the inter-node distance of node tk is:

DisInter(tk) =
1

|{tk′}|
∑

tk′


 1

|{x(tk)
i }| × |{x(tk′ )

j }|

∑

i

∑

j

fdobj(x
(tk)
i , x

(tk′ )
j )


 (6.10)

where {tk′} are tk’s sibling nodes. Generally speaking, lower intra-node distance value

means taxonomical nodes are more homogeneous and higher inter-node distance means

they are more distinctive to each other.

Another important factor is the size of the taxonomy, denoted as |T |. The derived

taxonomies should not be too large or too small, but it is very difficult to appoint the

accurate value for that purpose. As proposed in [25], we user the square root of |T | as
the expected number of the leaf nodes. Then the following criterion considers all the

above factors and thus evaluate the quality of the whole taxonomy:

QualityDis(T ) =

∑
tk

DisInter(tk)∑
tk

DisIntra(tk)
×


1−

∣∣∣ |TL| −
√
|T |

∣∣∣
|T |


 (6.11)

where |TL| is the actual number of leaf nodes in T . According to the definition of

IntraDis(tk) and InterDis(tk), we prefer the derived taxonomy with higher value of

QualityDis(T ).

The experiments were conducted on two relational datasets: (1) the Synthetic
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Amazon dataset introduced in Section 4.5.1 and (2) the real movie dataset in Sec-

tion 4.5.3.

6.4.1 Synthetic Amazon Dataset

Since the class label of each data instance in this dataset is already known, we can also

use the entropy-based criteria to evaluate the quality of the derived taxonomy. For node

tk, its intra-node entropy is:

Eintra(tk) = −
∑

h

Ph,k log2 Ph,k (6.12)

where Ph,k is the proportion of data instances of class h in node tk. Similarly the sibling-

nodes distinctiveness (named as the inter-node entropy) is evaluated by the Kullback-

Leibler Divergence [35]:

Einter(tk) =
∑

h

Ph,k log2

Ph,k

Qh,k
(6.13)

where Qh,k is the default proportion of data instances of class h, which is estimated

based on the data distribution of tk’s parent node. Then Einter(tk) measures the

distinctiveness between the current node tk to its sibling nodes. Generally speaking,

lower intra-node entropy value means taxonomic nodes are more homogeneous and

higher inter-node entropy value means they are more distinctive to each other. We

have:

QualityEntropy(T ) =

∑
tk

Einter(tk)∑
tk

Eintra(tk)
×


1−

∣∣∣ |TL| −
√
|T |

∣∣∣
|T |


 (6.14)

The meanings of |TL| and |T | have been explained above.

Table 6.1 presents our experimental results. The first line records the time spent

by all the ATG approaches we examined. The HAC approach requires to determine the

medoid for each cluster by comparing all the pairs of data instances in that cluster, and
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Table 6.1: Experimental results using the Synthetic Amazon dataset
HAC BKM Global-Cut Local-Cut

Time Spent (sec) 5227.4 7369.9 2127.9 2095.4
Size of Taxonomy 3963 2421 1187 441
Number of Leaves 1998 1291 594 268
Intra-node Distance 0.814 0.813 0.806 0.800
Inter-node Distance 0.818 0.818 0.819 0.821

Quality (based on Distance) 0.023 0.379 0.737 0.912
Intra-node Entropy 0.048 0.493 0.182 0.382
Inter-node Entropy 0.057 0.647 0.193 0.569

Quality (based on Entropy) 0.027 0.495 0.772 1.326

so the algorithm has quadratic computational complexity. The BKM spends even more

time because it launches the k-Medoids algorithm to split every leaf node with more

than one data instance. In contrast, the DIVA approach is very efficient due to the

utilization of ROs to represent the clusters, which guarantees the assignment of non-RO

data to be done in linear time and the operation of optimizing the taxonomic structure

is linear as well.

The second and the third lines in Table 6.1 show that the size of the taxonomies

generated by DIVA are substantially smaller than that of the other two approaches. In

Global-Cut the taxonomy contains approximately 1200 taxonomic nodes, among which

are 600 leaf nodes. In Local-Cut the taxonomy contains less than 500 taxonomic nodes

and 250 leaves. These numbers are far less than those derived by HAC or BKM, which

means the taxonomy generated by DIVA can better satisfy Properties Compactness and

Reach Time proposed at the beginning of this chapter.

The rest of Table 6.1 are the evaluation results using the distance-based and

the entropy-based criteria. We can see the taxonomy derived by HAC is far worse

than the other three approaches. Our Global-Cut approach achieved 94.5% and 56.0%

improvements upon BKM when evaluated by the distance-based and the entropy-based

criteria respectively. Furthermore, Local-Cut is substantially better than Global-Cut

with respect to the size as well as the quality of the derived taxonomy, which proves

our assumption that the local optimization strategy is more effective than the global
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Figure 6.2: Synthetic Amazon Dataset - Evaluate Taxonomy w.r.t noise

Table 6.2: Evaluation results using the movie dataset
HAC BKM Global-Cut Local-Cut

Size of Taxonomy 3411 4509 1184 271
Number of Leaves 2496 2983 593 223
Intra-node Distance 0.770 0.703 0.647 0.648
Inter-node Distance 0.699 0.709 0.649 0.662

Quality (based on Distance) 0.468 0.421 0.897 0.991

optimization.

Finally, Figure 6.2 illustrates the robustness of all approaches under different

noise ratios of browsing actions, ranging from 0% to 80%. In general, the quality of

the taxonomies derived by all approaches are reduced as the noise ratio increases. HAC

performs the worst in all cases. Local-Cut performed the most stable and generated

taxonomies of the highest quality under different noise ratios.

6.4.2 Real Dataset

All the taxonomy construction approaches were also evaluated using the real movie

dataset. Similar to the experimental settings in Section 4.5, we use the top-5000 popular

movies for generating the taxonomies. The other experimental parameters were kept

the same as in the previous section.

Table 6.2 lists the experimental results of all approaches. Again the taxonomies
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built by Global-Cut and Local-Cut are more compact than that of the other two ap-

proaches. Moreover, the taxonomies derived by the Local-Cut strategy is far better than

the HAC- and BKM-derived taxonomies with the improvements of 111.7% and 135.4%

respectively using the criterion of distance-based quality.

Figure 6.3 shows parts of the derived taxonomy. The movies corresponding

to the leaf nodes in the figure are listed in the Table 6.3. We can see the derived

taxonomy organizes these movies in a reasonable order: Node 1177 mainly contains

the horror/thriller and crime movies; Node 1170 contains the movies of science fiction;

Node 1105 is for action movies while its siblings nodes are for comedies and dramas.
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Figure 6.3: Part of the Labeled Movie Taxonomy
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Table 6.3: Taxonomy Nodes in Figure 6.3 with Corresponding Movies

Id Title Id Title

32 Doctor Who 101 Final Fantasy

Star Trek

Star Trek Voyager

Space: 1999

War Of The Worlds, The

190 Star Wars 363 Xena Warrior Princess

Fifth Element, The Right Stuff, The

Solaris Days Of Thunder

Mission To Mars Ghost In The Shell

Men In Black Top Gun

365 Terminator, The 368 American Pie

Eraser Road Trip

True Lies South Park

Rambo - First Blood Born Romantic

Mission Impossible Woman On Top

398 Bridget Jones’s Diary 881 Notting Hill

Dude, Where’s My Car? Puppetry Of The Penis

But I’m A Cheerleader Pretty Woman

As Good As It Gets Four Weddings And A Funeral

Me, Myself And Irene Shakespeare In Love

434 Kalifornia 436 Silence Of The Lambs

Bound Hannibal

Rosemary’s Baby Hitchcock Collection

Apocalypse Now Way Of The Gun, The

Devil’s Advocate Hole, The

438 Fifteen Minutes 445 Blow

Leon 8MM

Continued on next page
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Table 6.3 – continued from previous page

Id Title Id Title

Seven Crash

Gangster No. 1 Casino

Face/Off U-Turn

458 Stanley Kubrick 468 Godfather Trilogy

Twin Peaks: Fire Walk With Me Traffic

Taxi Driver Clockwork Orange

Blood Of Dragon Peril Requiem For A Dream

Way Of The Dragon, The True Crime

To better distinguish the content of these taxonomic nodes, we need to assign

a label for each node. Intuitively, at the top few levels the movie attribute “Genre”

can well distinguish a taxonomy node from its siblings. However, when navigating

deeper levels in the taxonomy, the movie genres of sibling nodes become more and more

homogeneous, and so other attributes such as the keywords in the title or the year of

movie released or the name of actors will be used as the labels. In the next chapter we

will explain our strategy of labeling the taxonomic nodes.

6.5 Summary

In this chapter we propose our automatic taxonomy generation approaches based on the

relational clustering framework DIVA. Compared with the flat cluster result or binary-split

dendrogram of cluster hierarchy, taxonomies are more suitable for people and computers

to navigate and exploit the dataset because data instances are summarized by taxonomic

nodes at different levels, reflecting the underlying data distribution of different homo-

geneity. Here we consider the task of constructing the taxonomic structure as the search

problem in a certain hypothesis space, and develop two strategies to find the optimal
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taxonomy with high efficiency. In the next chapter we will study another important

problem, i.e. how to assign labels for taxonomic nodes so as to best distinguish their

different content.
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Chapter 7

Labeling the Automatically

Generated Taxonomic Nodes

In the previous chapter we demonstrated our approach of optimizing the binary-split

dendrogram to generate a well-structured taxonomy based on the Representative Objects

and the DIVA clustering framework. A non-trivial issue that has not been tackled is how

to label the taxonomic nodes in order to satisfy the Property Node Label Predictiveness

discussed at the beginning of Section 5.1. More specifically, we expect the assigned labels

to best summarize the content of each node and reflect their pairwise distinctiveness.

Actually this issue is rather subjective in nature. There is no widely accepted

criterion to evaluate the goodness of the assigned labels. Current research mainly focuses

on labeling taxonomies built for a large collection of textual documents. In such cases

we can utilize the techniques of Natural Language Processing, Information Retrieval

or Computational Linguistics to pre-process the text and extract keywords or concepts.

Then based on these keywords/concepts the node labels are determined according to

the frequency of keywords or the correlation between concepts [108][25][26].

In this chapter, we try to answer the following question: Given a taxonomy

that has been generated automatically from relational datasets using some unsupervised

learning techniques, how can the taxonomic nodes be labeled appropriately so as to
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summarize the content of each node as well as reflect the distinctiveness between sibling

nodes?

To explain the situation more clearly, we still use the movie dataset as an example.

Given the taxonomy of movies that has been built using the algorithm introduced in

Chapter 6, labels of the taxonomic nodes should now be determined to help users

navigate the taxonomy. For different taxonomic nodes, the movie attributes are usually

of different importance in discriminating the corresponding movie sets: When the nodes

mainly consists of action movies, users often care about the leading Actors (e.g. Arnold

Schwarzenegger, Sylvester Stallone, Jackie Chan); for taxonomic nodes of ethical films,

the Director (e.g. Ingmar Bergman, Federico Fellini, Krzysztof Kieslowski) may better

summarize the movies allocated to these nodes; while the attribute YearOfRelease and

keywords appearing in the Title are two good discriminant indicators for the taxonomic

nodes consisting of documentaries. The values of these attributes or related concepts

constitute the labels of the corresponding taxonomic nodes.

To the best of our knowledge, the problem of automating the label assignment

within the taxonomy built from relational datasets has not been investigated until now.

Hence, we developed an approach to selecting the labels of taxonomic nodes by quan-

titatively evaluating the homogeneity of each node and the heterogeneity of its sibling

nodes. Furthermore, we proved that our approach is mathematically equivalent to the

Decision Tree Induction algorithm in case that the classes of data instances are already

known.

7.1 Labeling Strategies

The aim of labeling taxonomic nodes is to choose some predictive labels that best

summarize the content of each node as well as highlight its distinctiveness from the

siblings. We first consider a simplified case in which the taxonomy is composed of

one parent-node and a set of sub-nodes: Given a set of relational data instances D =

{xi} (1 ≤ i ≤ N) organized by a two-layered taxonomy T , as shown in Figure 7.1. tp
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Figure 7.1: Example Taxonomy Sub-Tree

is the non-leaf node in T with K child nodes {tp,k} (1 ≤ k ≤ K), we try to determine

a label for each child node tp,k based on the attributes of all relational data contained

in tp,k and its sibling nodes. If taxonomy T has multiple layers, we can divide T into a

set of two-layered sub-taxonomies and then launch the algorithm for each sub-taxonomy

independently.

We proposed a novel labeling strategy for solving the above problem. The key

idea is to exploit the divergence of the probability distributions of data instances in

different taxonomic nodes. Our algorithm is based on the following assumption: If a

child node is obtained by randomly picking out data instances from the parent node,

the probability distribution of the child node should be the same as that of the parent

node; otherwise, the divergence between these two probability distributions emphasizes

the difference between the parent and the child nodes. As being used in many research

fields, the Kullback-Leibler Divergence [82] evaluates the divergence of one probability

distribution from another. Hence, in this section we will investigate the applicability

of KL Divergence within a taxonomy built for relational datasets. The bias of KL

Divergence is then analyzed, leading to the development of a new synthesized criterion.

Finally we develop two strategies to determine the node labels using KL Divergence and

provide experimental results to show the effectiveness of our algorithm.

Before considering the taxonomy built for relational datasets, we first discuss

the propositional case where all the data are only defined by a set of attributes {Ar}.
According to our assumption, one or several attributes that best distinguish the data

instances contained in node tp,k from those data contained in tp,k’s sibling nodes are

115



chosen as the label of node tp,k. Given an attribute Ar, assuming pk,r and qr are the

probability distributions defined over the domain of Ar for instances belonging to nodes

tp,k and tp respectively, the KL-divergence of pk,r from qr is defined as:

KLr(pk,r, qr) =
∑

v∈Dom(Ar)

pk,r(v) log
pk,r(v)

qr(v)
(7.1)

where Dom(Ar) is the domain of Ar. Because all instances are assigned to leaf nodes,

the distribution qr is computed as the weighted sum of its child-node distributions:

qr =
K∑

k=1

Nk

N
pk,r (7.2)

where Nk is the number of data instances contained in child-node tp,k and N =
∑

Nk.

Because KLr(pk,r, qr) measures how important the attribute Ar is in distinguishing the

members of node tp,k from the members of its sibling nodes, the attribute that has the

maximum value of KL-divergence provides the basis for naming the node tp,k.

The KL-divergence measure is generally unbounded. From Equation 7.1, we

can estimate its upper bound in the context of the taxonomy labeling task, which is

log N
Nk

. It is interesting that this upper bound is independent of the attribute domain

from which the KL-divergence is computed. More details about the proof are provided

in Appendix 7.4.1.

Now we consider the relational case where data instances are defined by both

attributes and other related instances. The above procedure can be extended to cal-

culate the KL-divergences for relationships as well as attributes. For example, each

movie instance is related to a set of actors via the relationship ActedBy (through the

table Movie-Actor). Given a set of movie instances contained in tp,k, the size of the

related actor instances is Nk.actor, which is usually greater than Nk. Then the range

of KL-divergence for relationship ActedBy will be
[
0, log N.actor

Nk.actor

]
1. Similarly for re-

1The deduction procedure is very similar to that in Appendix 7.4.1, so we ignore it here for brevity.

116



lationship DirectedBy, the corresponding value range is
[
0, log N.director

Nk.director

]
. Since the

KL-divergences for different relationships have different ranges, they should be normal-

ized to the interval [0, 1] before being compared.

When being used as the criterion of determining node labels, the KL-divergence

will be biased towards the preference of attributes with more unique values over those

with fewer values. This phenomenon is similar to the bias in the Information Gain used

in the procedure of Decision Tree induction [103]. To address this problem, we propose

the KL-Ratio (KLR) measure as:

KLRr(pk,r, qr) =
KLr(pk,r, qr)

Er(tp)
(7.3)

where Er(tp) = −∑j

(
nj

N log
nj

N

)
is the entropy of the attribute Ar within the parent

node tp. Experimental results presented in Section 7.2 show that the normalization and

the entropy-based adjustment together can effectively reduce the bias of the original

KL-divergence measure.

In [83] the authors suggested that all the sibling nodes should use the same

attribute to construct their labels, solely differing in the attribute values. To do this, we

utilize the KLR criterion (Equation 7.3) to select the attribute A∗
r that has the maximum

weighted sum of KLR values across all child-nodes:

A∗
r = arg max

Ar

∑

k

Nk

N
KLRr(pk,r, qr) (7.4)

It is interesting that this strategy is mathematically equivalent to the use of Gain Ratio

as the criterion to determine the split attribute in Decision Tree Induction. The detailed

proof is provided in Appendix 7.4.2. However, we must point out the fundamental

difference between Decision Tree Induction and our ATG-based approach: the former

belongs to supervised learning, i.e. the class information for all training data are already

known before the learning procedure; in contrast, our approach is based on the ATG

algorithms, which is in essential unsupervised and hence has no prior knowledge about
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the class information. In summary, Decision Tree Induction and our ATG-based labeling

aim at solving similar problems under different motivations and prerequisites.

After the most discriminative attribute A∗
r is identified by Equation 7.4, the node

label is composed of the attribute name as well as the attribute values owned by the

data instances in this node. Sometimes data instances in the node might contain too

many different values for the attribute A∗
r (in our movie example, when the attribute

“Actor” is considered as the node label, the data instances in a node may refer to tens

or even hundreds of different actors). From the practical viewpoint, enumerating all

possibles attributes in a node label is not a good idea, so we only use the top-10 most

frequent attribute values to construct the node label.

7.2 Experimental Results

Some experiments were conducted to evaluate our algorithm presented above. We first

evaluate the bias within the original KL-divergence measure and show to what extent

KLR can reduce such bias. Then two strategies for labeling nodes are compared through

the simulation of a user locating a given set of movies in the taxonomy. Here the real

movie dataset is again used in our experiments, among which we selected 10,000 most

popular movies as the dataset.

7.2.1 Bias within Kullback-Liebler Divergence

To determine whether the use of the original KL-divergence measure for selecting the

most informative attribute is biased or not, we conducted the experiments upon the

movie dataset as an example: three sets of 100 movies were randomly chosen to form

sibling nodes ts1, ts2 and ts3, which shared the common parent node ts. For each sub-

node composed of sampled movies, we calculate the KL-divergences for all the attributes.

This experiment was repeated 50 times with different random seeds. It is worth noting

that the conclusions drawn in this section can be generalized to any other datasets when

the number of unique attribute values are substantially different.
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Table 7.1: Bias of Different Attributes
Attribute Number of KL-divergence Normalized Entropy KLR

Unique Values KL-divergence

Title 433.320±15.336 1.118 ± 0.084 0.704 ± 0.028 8.424 ± 0.048 0.084 ± 0.003
Year 16.000± 0.941 0.081 ± 0.026 0.051 ± 0.016 3.210 ± 0.065 0.016 ± 0.005

Certificate 9.500± 0.642 0.045 ± 0.020 0.028 ± 0.012 2.597 ± 0.081 0.011 ± 0.005
Genre 31.780± 2.588 0.170 ± 0.033 0.107 ± 0.021 3.883 ± 0.098 0.028 ± 0.005

Director 223.280±16.396 1.026 ± 0.068 0.647 ± 0.035 6.378 ± 0.279 0.101 ± 0.003
Actor 1070.020±67.692 1.323 ± 0.100 0.832 ± 0.021 9.731 ± 0.122 0.086 ± 0.002

Table 7.1 shows the average number of unique values for each attribute con-

tained in the parent node ts as well as the mean and the standard deviation of us-

ing different labeling criteria with respect to each attribute. The movie titles were

processed to extract meaningful nouns, verb and adjectives using WordNet (http:

//wordnet.princeton.edu/). In Tables 7.1, the original KL-divergence values for

attributes Title, Director and Actor are greater than 1 while the others are far less than

1, which proves the necessity for normalizing the KL-Divergence as suggested in Sec-

tion 7.1. Furthermore, the number of unique values for different attributes vary greatly

and the original KL-divergence is proportional to this number. The entropy, which acts

as the penalty factor in the KLR criterion, is also impacted by that because the attributes

with more unique values also have higher entropy. As can be seen from the last column

of Table 7.1, KLR that synthesizes the KL-Divergence and the entropy can effectively

reduce the bias.

7.2.2 Empirical Study

Figure 7.2 shows part of the labelled movie taxonomy using the strategy explained in

Section 7.1. All the sibling nodes in the figure have the same decision attribute with

different values as their labels. It is worth noting that, depending on the utilized tech-

niques of taxonomy generation, some data objects belonging to two different taxonomic

nodes might share the same attribute values, e.g. both Node 368 and Node 398 in

Figure 7.2 use the genre value Comedy in their labels. To handle such overlapped node
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labels, we add the second most discriminative attribute (identified by the Equation 7.4)

into the node labels to better distinguish the node content. In Figure 7.2, the attribute

“Title” is appended together with the first discriminative attribute “Genre” to construct

the labels for Nodes 368, 398 and 881.

To quantitatively evaluate the goodness of these labels, we developed a program

that simulates the procedure of a user navigating the taxonomy to find the movies

satisfying his interests. For some randomly given movies, a robot will navigate the

taxonomy in a top-down fashion to identify the correct leaf nodes that contain the

target movies. When examining a non-leaf node, the robot will use the node label

to determine which sub-node should be explored in the next iteration. If the target

movie matches the labels of more than one sub-node, all the matched sub-nodes will be

explored in a best-match-first order.

Our node labelling approaches are compared with the following methods of label-

ing the taxonomic nodes: 1) RandomAttr : We randomly select an attribute as the label

for each taxonomic node; 2) Fixed-Concept: A unique attribute is used to construct

the labels for all the nodes in the taxonomy. For example, “Fixed-Genre” means the

movie genres are used as the node labels over the taxonomy. All the attributes were

individually evaluated in our experiments.

As we explained previously, not all attribute values are enumerated in the node

labels for the sake of practical brevity. Therefore, some data instances are not covered

by the node label when their values of the most discriminative attribute are not included

in the label. We use the criteria success ratio and path length to measure the search

performance: the former is evaluated by the proportion of the movies (in the given set)

that have been identified successfully in the taxonomy; the latter is the average number

of nodes that the robot have to examine before reaching the correct leaf node. In our

experiment, 100 randomly selected movies were used in each run and the experiment

was repeated 10 times.

Table 7.2 reports our experimental results. We can see here the attributes Title,
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Table 7.2: Results of Simulation Experiment
Success Ratio Path Length

RandomAttr 19.0 ± 4.2 44.2 ± 5.3
Fixed-Title 31.0 ± 3.6 59.2 ± 10.0
Fixed-Year 100.0 ± 0.0 251.7 ± 14.3
Fixed-Genre 93.2 ± 2.7 163.4 ± 13.9

Fixed-Director 10.0 ± 3.1 12.1 ± 2.5
Fixed-Actor 7.7 ± 2.3 15.7 ± 1.6
KLR-Based 88.8 ± 2.9 64.6 ± 3.2

Director and Actor are so specific that it hardly succeeded in finding the expected movies

in the taxonomy if one of these attributes is exclusively used as the node labels. In the

other extreme the attributes Year and Genre are too general: the robot has to explore

nearly the whole taxonomic structure before reaching the target node, considering that

the total number of nodes in the taxonomy is 271 (Table 6.2). Instead, our KLR-

based approach achieves a good balance between them: the robot can identify most

of the target movies (high success ratio) with low exploration cost (short exploration

path). Such advantage will be very useful when the derived taxonomy is used for the

recommender systems in the next part.

7.3 Summary

As the supplement of Chapter 6, we investigate another important problem in automatic

taxonomy generation: how to assign meaningful labels for taxonomic nodes in order to

distinguish the content of different nodes. Here we tackle the problem creatively by

analyzing the probability distribution of data attributes in different taxonomic nodes and

then developing a new synthesized criterion based on the Kullback-Liebler Divergence

to identify the most informative attribute. In addition, we conduct empirical studies as

well as simulation experiments to evaluate our taxonomy labeling approaches.
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Figure 7.2: Labeling Taxonomy for Movie Dataset
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7.4 Appendix

7.4.1 Proof of the KL-divergence Bounds

Proof. Given the symbols N , Nk, Ar, pk,r and qr defined as in Section 7.1, it is easy

to see that the KL-divergence for attribute Ar will be maximized when the distributions

pk,r and q\k,r have non-zero probabilities for disjoint subsets of values in Ar, where

q\k,r =
∑

l 6=k
Nl

N−Nk
plr. The upper bound is then:

max KLr(pk,r, qr) =
∑

vj∈Dom(Ar)

pk,r(vj) log
pk,r(vj)

qr(vj)

=
∑

j

(
nj

Nk
log

nj

Nk
nj

N

)

=
∑

j

(
nj

Nk
log

N

Nk

)

= log
N

Nk

where
nj

Nk

(∑
j

nj

Nk
= 1
)

is the frequency that the j-th value of Ar occurs in the objects

contained in child-node tsk. Therefore, the range of KL-divergence for node tsk is
[
0, log N

Nk

]
, which is not impacted by the pre-specified attribute Ar.
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7.4.2 Proof of the Equivalence between Information Gain and KL-based

Strategy

Proof. The Information Gain used in the Decision Tree Induction is defined as:

InfoGainr(ts)

= E(ts)−
∑

k

(
Nk

N
· E(tsk)

)

= −
∑

j

(nj

N
log

nj

N

)
+
∑

k


Nk

N
·
∑

j

(
nkj

Nk
log

nkj

Nk

)


= −
∑

j

∑

k

(
nkj

N
log

nj

N

)
+
∑

k

∑

j

(
nkj

N
log

nkj

Nk

)

=
∑

k

∑

j

(
−nkj

N
log

nj

N
+

nkj

N
log

nkj

Nk

)

=
∑

k

∑

j

(
nkj

N
log

nkj

Nk
nj

N

)

=
∑

k

∑

j

(
Nk

N
· pk,r(vj) log

pk,r(vj)

qr(vj)

)

=
∑

k

(
Nk

N
·KLr(pk,r, qr)

)

The Gain Ratio is defined as the ratio of Information Gain and the entropy of parent

node with respect to the attribute Ar [103], which gives:

GainRatior(ts) =
InfoGainr(ts)

Er(ts)

=
∑

k

(
Nk

N
· KLr(pk,r, qr)

Er(ts)

)

=
∑

k

Nk

N
KLRr(pk,r, qr)

This completes the proof.
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Part III

Recommender Systems

125



Today’s information technologies allow us to produce, store and transfer a vast

amount of data, but unfortunately in many scenarios it is not easy for us to find useful

information from these data. For example, online retailers such as Amazon or Staples

provide thousands of commodities and various choices for the same type of commodities,

regarding different brands, qualities or packages. A customer has to spend substantial

time and effort on finding the best one to satisfy his requirements. On the web the

number of published documents has exceeded a trillion and is growing by several billions

per day 2. Even the most powerful search engines today cannot index all the web

documents. The incapability of people to digest such huge volumes of data, generally

referred to as the problem of information overload, becomes more and more critical in

many applications.

Although lots of data mining and knowledge discovery algorithms have been

developed, they are not always effective in practice: the standard search engines usually

return a ranked list with thousands of web documents as the response of one query, but

most users only have patience to read the top-20 results and give up the others even if

they contain relevant information. When the search results are not satisfactory, users

have to manually change the keywords in the query or adjust the search strategies, which

means they need to master advanced searching skills or domain-specific knowledge.

On the other hand, some algorithms generate sophisticated data models that are not

intuitive for non-professional users.

Recommender systems are proposed specifically to tackle the problem of infor-

mation overload. They utilize information filtering techniques to find new items that

best match the interests of different users [1]. Traditionally, all the items and users are

represented as numeric vectors, e.g. the keyword vectors (extracted from the content

description by the techniques of text mining or information retrieval) in content-based

filtering or the user rating vectors (explicitly or implicitly collected by the techniques of

Web Usage Mining) in user-based collaborative filtering. Based on such vector models,

2http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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the similarity between items or users, which is the key to discover the neighborhood of

items and thus generate the recommendations, can easily be calculated using standard

metrics, such as cosine similarity or Pearson’s correlation coefficient. A bundle of can-

didate items that best match the active user’s interest, i.e. most similar to the items he

likes and dissimilar to those he dislikes, are returned as the recommendations.

Recent research focuses on exploiting the domain knowledge about items to

improve the recommendation quality and address the problem of data sparseness [30]

[102] [4]. However, dealing with semantic relational knowledge will greatly increase

the complexity of similarity calculation and hence impair the scalability of recommender

systems. Various clustering techniques have been applied as an offline pre-processing

step to address the difficulty. The primary motivation behind these approaches is to

group items or users and then employ traditional collaborative filtering algorithms upon

the group profiles [105] or independently within each group rather than all items/users

[140]. Nevertheless, these approaches are less helpful when the items are defined by

sophisticated domain knowledge. For example, when investigating our movie datasets

used in Chapter 2, calculating the pairwise similarities within a small set of movies is

still time-consuming.

One promising research direction is to construct some compact data model for

preserving the item similarities. Recommender systems can then retrieve these values

directly instead of computing them online when generating recommendations. Pre-

computing pairwise item similarities requires a space complexity of O(n2). Improving

on the memory requirement is hence a useful practical goal to make recommender sys-

tems scale to the real-world applications. In this part we propose an efficient approach

based on the ATG technique to incorporate relational domain knowledge into recom-

mender systems so as to achieve high system scalability and predication accuracy. By

analyzing domain knowledge about items in the offline phase, a hierarchical data model

is synthesized to simulate the pair-wise item similarities. The derived data model is then

used by online recommender systems to facilitate the similarity calculation and at the
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same time keep their recommendation quality comparable to the memory-based systems

that exploit the domain knowledge in real-time.

Another approach is to group the candidate users based on their rated items,

which can then be used to reduce the number of users that have to be examined

when formulating neighbours for the active user. This is akin to indexing users in lazy

learning approaches such as using kd-trees or other case indexing approaches of case-

based reasoning.

This part is organized as follows: In Chapter 8 recommendation algorithms are

reviewed in details. After that, we focus on exploiting the automatically generated tax-

onomy to improve the scalability of recommender systems in Chapter 9. Comprehensive

experiments were conducted to show the effectiveness of our approaches.
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Chapter 8

Review of Recommender Systems

Web personalization aims to provide users with what they want or need without requir-

ing them to ask for it explicitly [109]. Such user-adaptive systems will automatically

tailor the delivered content based on the past/present behaviors of the current user and

inferences from other like-minded users [159]. As an implementation of web personal-

ization, recommender systems utilize information filtering techniques to select items (for

example movies, music or books) that best match the interests of different users [1].

In this chapter we will review the fundamental principles and some important issues in

recommender systems.

8.1 Fundamentals of Recommender Systems

Based on the information employed for generating recommendations, current recom-

mender systems can be classified into two main categories, namely content-based and

collaborative filtering [1] [3]:

Content-based filtering systems [10] [116] describe the items in the form of free

text on a fixed set of attribute-value pairs and make the assumption that user preferences

are captured by the description of items they liked in the past. Therefore, these systems

usually represent each item by a set of textual or numeric attributes extracted from the
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item’s content description. The profile of the current user, being composed of the above

attributes, summarizes all the items he has viewed. Items not previously viewed by the

user are then compared with this profile to see whether they fit the user’s preference so

that the top-k most similar items are recommended to the user. One common problem

in these systems is that the recommended items are too similar to those the user has

been visited, which we call “overspecialization”.

Collaborative filtering systems [125] [114] [131] do not deal with the content of

items. They assume users can be divided into different groups based on their interests

and the current user will prefer those items that are also preferred by other users in

the same group. According to this idea, the user profiles, composed of the user ratings

upon items they have viewed, are used to identify the neighbourhood of the current

user, which are other users with the same taste. Such collaborative-based systems

can effectively avoid the overspecialization problem faced by content-based approaches

and have more chance of recommend unexpected items, which can greatly increase

user satisfaction. However, these collaborative systems need to obtain a considerable

amount of user ratings before producing useful recommendations. Recently, item-based

collaborative filtering techniques [130] [32] were proposed to improve the scalability of

recommender systems, which first analyzes relationships between items and identifies k

similar items rated by different users and then performs the similarity computation as

traditional collaborative filtering but in the data space of items to accelerate the online

recommendation procedure.

Generally speaking, the collaborative-based techniques are more applied in prac-

tice and have achieved some success, for example the GroupLens system used to recom-

mend news on the Usenet [77] and the item-based collaborative filtering system by the

website www.amazon.com. Nevertheless, both of the above techniques have their own

limitations, which lead to the development of hybrid recommendations. Burke com-

pared seven forms of hybrid recommender systems with their respective design models

and performance characteristics [21].
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8.2 Exploitation of Domain Knowledge to Improve the Rec-

ommendation Quality

One of the main challenges in recommender systems is how to improve their recom-

mendation quality. It has been observed that the percentage of items rated by most

users will be very smaller as the number of items increases sharply, which means the

users will not have a large number of common ratings on items, and so their pairwise

similarities will decline to zero. The nearest neighbour computations are hence impaired

because the derived recommendation results based on such skewed similarity values are

likely to be wrong. We call this problem as “data sparseness”, which mainly impacts

the collaborative filtering systems [3].

Recent research has proven that exploiting domain knowledge about items is

valuable for addressing this issue, because the item characteristics as well as the user

preferences will be better understood with the aid of such knowledge. Dai and Mobasher

pointed out in [30] that pure content-based approaches are incapable of capturing com-

plex relationships among objects at the semantic level. They proposed a general frame-

work of integrating domain knowledge within Web Usage Mining for user-based recom-

mendation. Semantic attributes and relations about candidate items are first extracted

from webpages based on the ontology. Then “item-level” user profiles are transformed

into ontology-enhanced “domain-level” aggregate profiles that capture the common in-

terests of user groups at the domain level. Finally, the aggregated profiles together

with the current user profile are used as the input to produce domain-level recommen-

dations, based on which the real web objects are recommended to the user. Later,

Mobasher et al. developed an approach for enhanced item-based collaborative filtering

in [106]. Structured semantic knowledge about items, extracted automatically from the

Web based on the domain-specific ontology, is used for item comparison. The com-

bination of this semantic similarity with the rating similarity provides two advantages:

1) the semantic attributes for items are helpful to infer users’ preferences; 2) in case
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where little rating information is available, the system can still use semantic similarities

to generate reasonable recommendations for users.

Other research achievements of applying domain knowledge in Web Personal-

ization include: Eirinaki et al. applied a concept hierarchy (taxonomy) to semantically

annotate web content in [38]. Because all the documents fall into one or more taxonomy

categories, this classification enables their personalization system SEWep to recommend

documents not only depending on exact keywords matching but also on semantic simi-

larity. Additionally, they utilized the C-logs, a conceptual abstraction of the original Web

usage logs based on the website’s semantics, as the input of the web mining process to

further improve the recommendation quality. Middleton et al. explored the use of an

ontology in a recommender system to solve the cold-start problem as well as discover

user interests dynamically [101] [102]. They applied the k-NN algorithm to predict

the category of candidate papers, track the volatile interests of users by unobtrusively

monitoring their behavior history and use ontology-based network analysis to identify

the communities of users. The final recommendation result synthesizes all these three

factors. Ghani and Faro developed a recommender system based on customer-built

knowledge with product semantics [48]. They analyze the product descriptions as well

as user behaviors, then automatically infer these semantic attributes to build abstract

user models and finally facilitate the personalization by recommending items across cat-

egories. Niu et al. built customer profiles based on the product hierarchy in order to

learn customer preferences [113].

Anand et al. integrated the user rating vectors with an item ontology to generate

more semantic recommendations [4]. The impact factor, implicitly learning from the

web usage logs, is introduced to capture the importance of a given concept within the

domain ontology on the user’s behavior, and so different values of impact factor reflects

the user’s preferences among different ontological concepts. These impact factors are

then utilized within the similarity computation during the procedure of neighbourhood

formulation. We will further discuss their recommendation framework in Section 9.1.
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Ziegler et al. proposed an approach of exploiting the hierarchical background

taxonomy to address the sparseness issue and diversify the recommendation results to

better satisfy the spread of the user interests. The user profiles were composed of their

interest scores upon the topics in the product taxonomy, not their ratings upon products

(as in traditional collaborative filtering). The relationships between super-concepts and

sub-concepts are exploited in the procedure of constructing the user profiles as well

as the identification of a user’s neighbourhood. Finally the topic diversification step

amends the recommendation results to enhance their utility for the user [164] [165].

8.3 Utilization of Data Mining Techniques to Improve the

System Scalability

Various data mining techniques including clustering, similarity indexing, classification

and rule induction have been used to improve recommender systems [159]. A state-of-

the-art survey of this field was provided in [105], in which the author distinguished the

personalization procedure as three phases and explained in detail how the data mining

techniques might be applied for each of these phases. Here we mainly focus on the

application of clustering techniques as it is most relevant to the research presented in

this thesis.

To improve the scalability of recommender systems, Chee et al. developed the

data structure RecTree with a divide-and-conquer approach in [132]. Their method it-

eratively performs the k-means clustering upon users until the number of users in each

partition is smaller than a threshold. Then the recommendation algorithm can be con-

ducted within such reduced data space to achieve high scalability and avoid the dilution

of suggestion from good users by that from a multitude of poor users. Suryavanshi et

al. combined memory-based and model-based collaborative filtering techniques in [140].

They use the k-NN algorithm to identify the neighbours of the current user and gener-

ate recommendations based on such small groups of users instead of the whole dataset.
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In contrast, Mobasher suggested to group items or users and then employ traditional

collaborative filtering algorithms upon these aggregated profiles [105].

Nevertheless, the above approaches are less helpful for improving the system

scalability when the domain knowledge about items are considered in the recommenda-

tion procedure. For example in our movie datasets, calculating the pairwise similarities

within a small set of movies is still time-consuming [4]. A better solution is to construct

some kind of data model for preserving item similarities. Recommender systems can

then retrieve these values directly instead of computing them online when generating

recommendations. Model-based approaches are more suitable for this purpose because

the huge amount of candidate items often prevents the utilization of memory-based

approaches in practice. In [159] the author reviewed the similarity indexing approaches

that can be used to identify users with the same taste or items with the same charac-

teristics. The inverted index (widely used in the community of information retrieval)

provides an efficient index structure by mapping the users or items into state vectors,

but this technique cannot efficiently resolve queries in the recommender systems.

8.4 Proximity Measure based on Taxonomy

When exploiting the taxonomy to compute the item similarities based on domain knowl-

edge in recommender systems, an important issue is how to define an appropriate mea-

sure to evaluate the proximity between nodes (corresponding to concepts or data in-

stances) in the taxonomy. Roughly speaking, there are two categories of proximity

measure based on the taxonomic structure:

Edge-based approaches mainly consider the topological structure of the hierar-

chy. The most intuitive way is to use the length of shortest path between nodes as the

similarity measure, which only depends on their relative location in the hierarchy [120].

Wu and Palmer took into account the absolute locations of both nodes as well as that

of their Lowest Common Ancestor (LCA) to calculate the similarity [153]. Additional

weights for edges might be assigned to reflect the structural characteristics of the hierar-
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chy [65]. For example, the similarity value between two objects in SimTree is calculated

by multiplying all weights along the path that connects both objects [157].

Node-based approaches are based on the idea of Information Content. Each of

the nodes in the hierarchy, i.e. a concept in a taxonomy, contains a certain amount of

information quantified by IC(c) = − log2 p(c), where p(c) is the probability of encoun-

tering an instance of concept c. The root concept has zero information content because

all sub-concepts are derived from it. As one moves down the hierarchy, the probability

of encountering the instances of a concept decreases, and so the concept’s information

content or informativeness increases monotonically. The more abstract a concept, the

lower its information content and vice versa. Hence, the similarity of two concepts is

determined by the information they share, i.e. the information content in their LCA

concept. In a text corpus, the concept probability is calculated by maximum likelihood

estimation(MLE) based on the concept frequency [126] [127].

The above categories of proximity measure evaluate the semantic similarity from

different viewpoints, and so they are suitable for different situations. When an accu-

rate taxonomy is available, the edge-based approaches work better. The node-based

approaches outperform in other cases, because they ignore the topological details of the

hierarchy. To overcome their individual disadvantages, several hybrid approaches have

been proposed to incorporate the information content into the edge-based measure [65]

[96]. In comparison, Li et al. proposed a measure that combines the length of the

shortest path between two concepts and the location of their LCA within the semantic

taxonomy in a non-linear manner [94]. A variant of this measure was later used [24] to

personalize web search. In addition, Ganesan et al. reviewed the evolution of proximity

measures upon the hierarchical domain structure, analyzed and compared these mea-

sures empirically in [46]. They also extended these measures to deal with the multiple

occurrence of elements in the taxonomy.
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Chapter 9

Exploitation of Taxonomy in

Recommender Systems

In this chapter we will first explain a hybrid recommendation framework in Section 9.1.

Two methods for improving the system scalability, i.e. building taxonomies upon items

and user visits, are investigated in Sections 9.2.1 and 9.2.2 respectively. Then experi-

mental results are analyzed in Section 9.3.

9.1 Framework of Recommender System

Given a set of users U = {ui} (1 ≤ i ≤ M) and a set of items X = {xj} (1 ≤ j ≤
N). In the past visits, each user ui ∈ U has rated some items Xui

∈ X based on his

interests. These user ratings can be collected explicitly or implicitly. Explicit rating

means users are required to input explicitly their ratings into the recommender system,

while implicit rating means the system would track the user visits and find out his

preference automatically. We then estimate users’ interests by learning a rating function

fr(ui, xj) ∈ [0, 1] ∪ {NIL} from the training data. The symbol NIL means the value is

undefined, and so fr(ui, xj) = NIL if xj /∈ Xui
. Now let ua ∈ U denote the active user

for whom the recommendations will be generated. The set of items X−Xua are referred
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Algorithm 9: CF-based Recommendation

Input: users U, items X, rating function fr(·, ·)
Output: recommendations R(ua)
begin1

Construct the rating vector ~ui = (ri,1, . . . , ri,j , . . . , ri,N ) for each user ui;2

Initialize B(ua) = ∅;3

foreach ui ∈ U− {ua} do4

if cos(ua, ui) > 0 then5

B(ua)← B(ua) ∪ {ui};6

end7

end8

B′(ua)← sortdesc(B(ua));9

Initialize R(ua) = ∅;10

foreach ui ∈ B′(ua) do11

if xj ∈ Xui
and xj /∈ Xua then12

R(ua)← R(ua) ∪ {xj};13

end14

end15

return R(ua);16

end17

as the candidate items. Our goal is to select a subset of items R(ua) ⊆ X − Xua that

maximally satisfy the interest of user ua.

The basic recommendation algorithm using collaborative filtering is described in

Algorithm 9. Assume the interest of each user ui can be represented by a vector of

his ratings upon items ~ui = (ri,1, . . . , ri,j , . . . , ri,N ), in which ri,j = fr(ui, xj). Then

the formulation of ua’s neighbourhoods B(ua) = {ui|ui ∈ U, ui 6= ua, Xui
∩ Xua 6=

∅} is equivalent to find the set {ui| cos(~ua,~ui) > 0, ui 6= ua} (the NIL values are

ignored in the cosine calculation). Therefore, the final recommendations are achieved

as R(ua) = {x|x ∈ ∪Xui
− Xua , ui ∈ B(ua)}. These recommended items are generally

sorted according to the cosine value of ua and their corresponding neighbourhoods.

In Algorithm 9 the cosine function is used to evaluate the similarity between

users based on their rating vectors. Due to the existence of data sparseness problem,

some users sharing similar interests are not considered as neighbours only because they
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do not visit the same items. Therefore, the basic collaborative filtering approach does

not perform well in practice. To improve recommendation quality, many researchers now

focus on exploiting domain knowledge about items as the supplement of user ratings

when generating recommendations [4] [106] [165]. In their works the pair-wise item

similarities based on their semantic features are combined with the similarities between

user ratings to find the active user’s neighbourhood.

Anand et al. proposed a general framework by using the semantically enriched

user profiles for movie recommendation [4]. With the relational similarity measure be-

tween items defined as Equations 2.8 and 2.9, the pairwise similarities between users are

computed by the Generalized Cosine Max (GCM) measure:

fsuser(ui, ui′) =
∑

(xj ,xj′ )∈P

fr(ui, xj)× fr(ui′ , xj′)× fsitem(xj , xj′) (9.1)

where the candidate set P ⊆ Xui
×Xui′

is computed by the procedure FindPair (shown in

Algorithm 10). Since the number of candidate items are very large, it is not possible to

pre-compute all item similarities and dump them into any storage media. And because

the computational expense of evaluating item similarities in real-time based on domain

knowledge is substantially high (as we discussed in Chapter 2), only the top-n̂ item pairs

are used in the recommendation procedure [4].

In addition, the importance of different attributes/relations might be different

when describing the items. From the perspective of web personalization, such differences

can be interpreted as the personal preference of the users upon the items. Anand et al.

suggested that users with different attribute weights in different visits may reflect the

context of the user visits, and so they should be dynamically computed and stored in the

user profiles [4]. Specifically, set {imp u,v(c)} were used to represent the importance of

attribute/relation c in describing the underlying factors that cause the user u to exhibit

the observed behaviors within the visit v. To calculate the value of impact imp, the

Kullback-Liebler Divergence [35] is applied to measure the divergence of the observed
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Algorithm 10: FindPair

Input: items Xui
, items Xui′

, measure fsitem, number of pairs n̂
Output: set of item pairs P
begin1

Initialize the list P0 ← ∅;2

Initialize the mapM← ∅;3

foreach xj ∈ Xui
do4

foreach xj′ ∈ Xui′
do5

s← fsitem(xj , xj′);6

P0 ← P0 ∪ {s};7

M←M∪ {s→ (xj , xj′)};8

end9

end10

P ′
0 ← sortdesc(P0);11

Initialize P ← ∅, Pui
← ∅, Pui′

← ∅;12

foreach s ∈ P ′
0 do13

Retrieve the corresponding (xj , xj′) from M ;14

if xj /∈ Pui
and xj′ /∈ Pui′

then15

Pui
← Pui

∪ {xj};16

Pui′
← Pui′

∪ {xj′};17

P ← P ∪ {(xj , xj′)};18

end19

end20

return the top-n̂ pairs of items from P;21

end22
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probability distribution p (of data instances in the visit) to an expected distribution q

by assuming if the concept c has no effect upon the user’s preference:

imp =
∑

x∈X

p(x) log
p(x)

q(x)
(9.2)

Three different definitions of the function q(x) were introduced in [4], which lead

to three kinds of impacts:

• If q(x) is assumed to be a uniformed distribution over X, then

imp u = 1− H[ p(x) ]

log J
(9.3)

where H(·) is the entropy measure and J is the cardinality of concept c.

• If q(x) is chosen as the distribution p̂(x) that a virtual user likes all the items in

X, then

imp i =

∑
x p(x) log p(x)

p̂(x)

− log[min p̂(x)]
(9.4)

• If the positive and the negative feedback upon items are available, the weight is

given by:

imp c =
∑

x,y

p(xy) log
p(xy)

p(x) p(y)
(9.5)

where the variable y indicates whether the user likes or dislikes the item.

Anand et al. compared the above three approaches and found that impact imp i performs

the best [4], so in this chapter we keep using imp i for the recommendation generation.

The total weight w(c) for concept c is calculated by the impact values for the target

visit va and for the candidate neighbour visit vc:

w(c) =
2× imp

(a)
i (c)× imp

(c)
i (c)

imp
(a)
i (c) + imp

(c)
i (c)

(9.6)

The obtained weights are used to calculate similarity between items based on Equa-
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tion 2.8, which are in turn used to calculate similarity between users based on Equa-

tion 9.1. The cosine-based similarity function for users in Algorithm 9 is now replaced by

the knowledge-based similarity function Equation 9.1. Because more domain knowledge

are exploited in the computational procedure, the recommendation quality is substan-

tially improved, as shown in [4].

From Equation 9.1 we can see that pairwise similarities between items play an

important role in finding the neighborhood of users. Generally speaking, exploiting more

domain information during the computation of item similarities can improve the quality

of the derived recommendations, but at the same time make the computation more

expensive and thus reduce the scalability of the whole system. To avoid such negative

impact, our solution is to preserve the item similarities in an offline phase so that the

recommender system can retrieve these values directly instead of computing them in the

real time. However, the vast number of candidate items makes the exhaustive storage

of item similarities practically infeasible, and so we try to integrate the hierarchical

taxonomy to simulate the pair-wise item similarities in Section 9.2.1.

9.2 Integration of Taxonomies

In Chapter 6 we have studied how to build a taxonomy to better reflect the data distri-

bution. Taking one step ahead, here we investigate some ways of integrating the derived

taxonomy into the recommender systems. First we will use the taxonomy to preserve

the pairwise item similarities in Section 9.2.1 so as to alleviate the computational com-

plexity of comparing user visits. Then another taxonomy will be built in Section 9.2.2

for modeling user visits to further improve the system scalability.

9.2.1 Preserve Item Similarities

We wish to preserve the similarities between data instances within the taxonomic struc-

ture so as to facilitate the recommendation procedure. Specifically, edges in the taxon-

omy are assigned different weights and then the “real” similarity values between data
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Figure 9.1: Hierarchical taxonomy for preserving similarity values

instances can be estimated by the following path-based similarities:

Definition 9.1. Given a weighted taxonomy T , the shortest path connecting two leaf

nodes t1 and tQ in T is identified by t1 → . . . → tq → tq+1 → . . . → tQ. The path

similarity is calculated by:

fspath(t1, tQ) =

Q∏

q=1

w(tq, tq+1) (9.7)

For example, assume two data instances x1 and x2 are contained in node tl+1
1 and tl+1

4

respectively in Fig. 9.1, the path connecting these two nodes is tl+1
1 → tl1 → tl3 → tl+1

4 .

Accordingly we can use all the edge weights along this path to estimate the original

similarity value between x1 and x2: fspath(x1, x2) = 0.8× 0.4× 0.8 = 0.256.

Now the question becomes: How should we assign weights to the taxonomic

edges so that the above path-based similarities effectively preserve the original item

similarity values computed by Equations 2.8 and 2.9 ? We utilize the average value of

item similarities as the weight of edges between nodes, and so:
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• The weight of an edge connecting a parent node tp and its child node tc is:

w(tp, tc) =
1

|tp| · |tc|
∑

i,j

fsitem(x
(tp)
i , x

(tc)
j ) (9.8)

• The weight of an edge connecting two sibling nodes tc and tc′ is:

w(tc, tc′) =
1

|tc| · |tc′ |
∑

i,j

fsitem(x
(tc)
i , x

(tc′ )
j ) (9.9)

where |tp| and |tc| denote the amount of items in nodes tp and tc respectively. By

utilizing Equation 9.7 based on the derived taxonomy in the recommender systems, the

cost of computing item similarities in real-time will be reduced greatly.

It is worth noting that Yin et al. proposed another data structure, named

SimTree, in [157] for preserving pair-wise similarities between items, but our method

is more appealing because: First, each leaf node in the SimTree corresponds to an item

and each non-leaf node has at most c child nodes, where c is a user-specified parameter,

and so “unnatural” data structures will be generated in practice if the parameter c is

inappropriately specified. Actually finding the optimal value of c is not easy. In contrast,

our approach can automatically generate the taxonomic structure that better reflects

the real distribution of the data objects. Second, the initial SimTrees are built by using

the frequent pattern mining techniques, and then path-based similarities in one SimTree

is used to adjust the structures and edge-weights of other SimTrees. Property features

of the data objects are not exploited, which will definitely degrade the accuracy of the

final result. Our approach is based on the relational similarity measure (Equations 2.8

and 2.9) that exploits the ontological information of items. Therefore, more ontological

information and knowledge are preserved in the derived taxonomy.
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9.2.2 Group User Visits

Another possible way of improving the systems scalability is to pre-group candidate

users in an offline phase based on the visited items. Such user groups can be regarded

as “cliques” with different interests. When recommendations are to be generated online

for the active user ua, it is unnecessary to exhaustively examine all the users. Instead

only those cliques of users that are most similar to ua will be considered by the recom-

mendation algorithm.

Formally we can build a taxonomy to organize all the candidate users by applying

the ATG technique introduced in Chapter 6. A group of users that are most similar to

each other (in the sense of their visiting items) are contained in the same leaf node

and different groups of users are arranged in the hierarchy according to their pairwise

similarity. Given that each node is represented by a set of ROs, we identify the appro-

priate leaf node that is closest to the active user by searching the taxonomy from top to

bottom. When the number of users in the identified node is less than the required num-

ber of neighbours, we recursively exploit the ancestor nodes until accumulating enough

neighbour users. The whole procedure is described in the Algorithm 11.

9.3 Experimental Results

We evaluate the performance of our algorithm in comparison with the following similarity

calculation approaches: (1) baseline (ORG) which purely uses the original similarity

values in the procedure of recommendation generation; (2) cluster model based on real

similarity values (CLUS), which uses the original similarity values between two items if

they belong to the same cluster or otherwise uses 0 instead; (3) SimTree proposed in

[157], which simulates the similarity values based on the synthesized SimTree structure.

Finally, the word “ATG-Item” is used to represent our approach of preserving the item

similarities by the taxonomy. “ATG-User” and “ATG-Session” represent our approach

of grouping users and sessions respectively for the recommendation algorithm.
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Algorithm 11: Neighbourhood Formulation

Input: user taxonomy Tu, active user ua, number of neighbourhoods b
Output: ua’s top-b neighbours
begin1

Initialize the result set UR ← ∅;2

Node t← root(Tu);3

if t is a leaf node in Tu then4

Add all candidate users referenced by t into UR;5

else6

t← arg max
tc∈GetChildren(t)

fsnode(tc, ua);
7

end8

while |UR| < b do9

foreach ts ∈ GetSiblings(t) do10

Append all candidate users referenced by ts into UR;11

end12

t← GetParent(t);13

end14

Order the candidate users in set UR according to their similarity with15

respect to ua;
return the top-b users in UR as the neighbourhood of ua;16

end17
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Two criteria were used to evaluate the accuracy of the recommendations:

1. Mean Absolute Error (MAE): When the actual time spent by a user to visit a

candidate item is known, the MAE between the predicted and the actual time

spent reflects the prediction accuracy of the recommendations.

2. F-Score: This is the harmonic mean of precision and recall that have been used

widely in the field of Information Retrieval [35]. The higher value of F-Score means

a high probability that the items returned by the recommender system will satisfy

the user’s interest and the potentially interesting items will be discovered by the

system at the same time.

Our experiments were conducted on two movie dataset:

9.3.1 Movie Retailer

The first dataset is provided by an online movie retailer, which has been used in Sec-

tion 4.5.3. It contains 62,955 movies, 40,826 actors, 9,189 directors as well as a genre

taxonomy of 186 genres. In addition, there are 923,987 ratings in 15,741 sessions from

10,151 users. Since this dataset is very sparse compared with the previous one, we

randomly select 85% user ratings as the training dataset and the other 15% ones as

the test dataset. The number of sessions made by different users ranges from 1 to 814.

Based on the user visits, we select 10,000 most popular movies for our analysis. The

classic clustering method k-Medoid was adopted in CLUS, given the parameter K = 50.

In SimTree, we set the parameter c, which controls the number of node’s branches,

as 15. In our ATG-based approach, the variance v was set as 0.40 for modeling item

similarities and 0.10 for grouping user visits, which guarantee the items and users are

divided sufficiently for building the taxonomies.

Since the dataset contains multiple visits made by the same user, the recommen-

dations could be generated on the basis of users or visits (sessions). The corresponding

experimental results are reported in Table 9.1. For each user or visit, 100 candidate
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Table 9.1: Time Spent of Recommendations in Movie Dataset (×103 sec)
User-based Session-based

ORG > 250 > 250
CLUS 13.78 18.61

SimTree 15.19 18.95
ATG-Item 14.22 17.53
ATG-User 8.63 12.48
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Figure 9.2: Recommendations for Movie Dataset based on Users

items were returned in total as the recommendations. Data in Table 9.1 prove that

all model-based methods (CLUS, SimTree and ATG-Based) can effectively reduce a

magnitude of time compared with that of computing the original similarity measure in

real-time (ORG).

These approaches were also evaluated with respect to different recommendation

numbers. The curves of MAE and F-Score are shown in Figs. 9.2a and 9.2b respectively.

For the MAE criterion, both SimTree and ATG-Item performance close to the baseline

ORG, but CLUS has 5% loss compared with the other methods. For the F-Score cri-

terion, ATG-Item approach performs almost the same as ORG, but SimTree has 14.0%

and 11.8% loss in the user-based and session-based cases respectively. Again CLUS is

the worst among all the approaches.

When examining the trends of recommendation quality in Figs. 9.2a and 9.2b,

we can see MAEs of different approaches drop as the increase of the recommendation

numbers, but our ATG-Item approach is always better than the others. When evaluated
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Figure 9.3: Recommendations for Movie Dataset based on Sessions

by F-Score, ATG-Item is very close to ORG under different values of recommendation

numbers, while the approaches of CLUS and SimTree have about 30% and 12% loss

respectively. As we expect, ATG-User and ATG-Session approaches perform worse than

ATG-Item because they examine less users and sessions respectively when formulating

the neighbourhood, but they successfully reduced the time spent by the recommender

procedure and thus improved the system scalability.

9.3.2 MovieLens

Our second movie dataset is MovieLens, provided by the GroupLens Research at the

University of Minnesota 1. This dataset contains 3,883 movies, 31,650 actors and

1,903 directors. All the movies are assigned into 18 genre categories. In addition,

there are 1,000,199 browsing records made by 6,040 users. We randomly select 4810

(≈ 6040 × 80%) users as the training data and the other 1230 (≈ 6040 × 20%) users

as the test data, and hence the training and test datasets are composed of 788,136

and 212,063 browsing records respectively. In the test dataset, we again randomly

label 42537 (≈ 212063 × 20%) ones as hidden so that they are invisible from the

recommendation procedure. Finally, we compare the predicted results with the real

(hidden) browsing records.

1http://www.grouplens.org
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Figure 9.4: Recommendations for MovieLens Dataset

We keep most experimental parameters the same as those in the previous section:

the number of clusters in CLUS is K = 50; in SimTree the branch parameter c is 15;

in our ATG-based approach the variance v was set as 0.40, which guarantee movies to

be divided sufficiently for building the taxonomies. One difference is that the number

of recommendations is ranged from 20 to 100, not 50 to 200 as before. It is because

the average number of hidden records per user in this case is 42537
1230 ≈ 35.

Since it is assumed that each user has only one browsing session in the Movie-

Lens dataset, our experiments are based on users only and the results are presented in

Figure 9.4. When evaluated by the MAE criterion, CLUS has approximately 10% loss in

comparison with ORG. SimTree performs very close to ORG when NumRec ≤ 60, but

becomes worse afterwards. On the other hand, our ATG-Item and ATG-User approaches

achieved more than 7% and 12% improvement in comparison with ORG, especially when

NumRec ≤ 60. When evaluated by the F-Score criterion, CLUS still performs the worse

and our ATG-Item and ATG-User approaches again outperform the others in the full

range of NumRec.
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9.4 Summary

In this chapter we utilize our automatic taxonomy generation techniques to facilitate the

item similarity computation and the user neighbourhood formulation in recommender

systems. Because the online exploitation of domain knowledge about items is very time-

consuming, we can build the taxonomy to preserve the pairwise item similarities in an

offline phase and later retrieve them directly for the online computation. The user visits

are also grouped within another derived taxonomy to effectively reduce the number of

candidate users to be considered in the procedure of neighbourhood formulation, which

can further improve the scalability of recommender systems.
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Chapter 10

Conclusion

Cluster analysis and taxonomy generation are important topics in data mining. In this

thesis we introduced some novel ideas to extend them into the analysis of relational

datasets and then applied them in the recommender systems. Our contributions are as

the follows:

• In the first part we provided a comprehensive review of relational clustering, which

reflects the state-of-the-art achievements in this field. The review systematically

studied different ideas adopted in relational clustering algorithms and compared

them with traditional propositional algorithms to show their great advantages.

• We define the concept of Representative Objects and use it to effectively approx-

imate the distribution of the dataset. Furthermore, we develop several typical

strategies to efficiently identify the representative objects in the dataset.

• Based on the representative objects, we design a multi-phase clustering framework

for analyzing relational datasets. Two implementations of the framework are also

provided that are suitable for different learning tasks.

• In the second part we extend our clustering framework to organize a relational

dataset in the form of hierarchical taxonomy so as to help people more easily

understand the intrinsic structure of the underlying data.
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• Labelling the taxonomic nodes is seldom investigated systematically in previous

research. Here we creatively adopt the Kullback-Liebler divergence to quanti-

tatively evaluate the homogeneity of each node and the heterogeneity between

sibling nodes, based on which labels are assigned to best summarize the content

of each node.

• In the final part we use the automatically derived taxonomy to preserve the pair-

wise similarities between items, which is then applied to improve the accuracy and

scalability of recommender systems when they are integrated with the exploitation

of domain knowledge.

• We also use taxonomy generation techniques to analyze user visits and then incor-

porate the obtained data model to further improve the recommendation efficiency.

Relational cluster analysis and taxonomy generation are promising research direc-

tions with great theoretical and practical values. This thesis only addresses the problem

from the proximity respective, and so our approaches have advantages such as uni-

versal applicability, straight-forwarding and ease of being implemented. Nevertheless,

in some cases other clustering algorithms based on more sophisticated ideas might be

more suitable. In addition, we introduced several user-specified parameters to control

the procedures of clustering and taxonomy generation, and so it is interesting if we can

develop some automated mechanisms in the future to find the optimized values for these

parameters, which will make our approaches more robust and smart.
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nearest neighbour algorithm to find the k-nearest neighbours. Lecture Notes in Computer

Science, 2396:718–724, 2002.

[108] Adrian Muller, Jochen Dorre, Peter Gerstl, and Roland Seiffert. The TaxGen framework:

Automating the generation of a taxonomy for a large document collection. In Proceedings

of the 32nd Hawaii International Conference on System Sciences, volume 2, page 2034,

Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0001-3.

[109] Maurice D. Mulvenna, Sarabjot S. Anand, and Alex G. Büchner. Personalization on the
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