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Abstract 

This study examined the hypothesis that natural selection exerts control of the human sex 

ratio via allelic variation in an autosomal gene that is phenotypically expressed in the male 

reproductive system. The hypothesis was supported by results from an analysis of a large 

genealogical dataset, in which inheritance of sex ratio variation by male but not female 

offspring was found. A series of simulations with a population genetic model showed that 

equality of the sex ratio may be maintained in a dynamic equilibrium by frequency dependent 

selection acting on such a gene. These simulations also suggest that long-term oscillations and 

autocorrelation between years in annual human sex ratio data may be explained by the 

hypothesis. A further set of simulations showed that an episode of increased male mortality - 

in a population with a sex ratio determined by the proposed gene - may result in a sudden 

increase in male births, provided the mortality is limited to a narrow cohort of males and that 

families with a greater tendency to have male offspring tend to be larger than those with a 

tendency to produce equal male and female offspring. To explore whether this could provide 

an explanation for significant increases in male births observed during periods of war, military 

service records and genealogical data were examined to determine the age structure of 

recruits to the British Army in the First World War and the typical age of fatherhood at the 

time. It was found that the cohort of men lost to the war were younger than men who typically 

became fathers. It was also found that families with offspring of a single sex tend to be larger 

than those with both sexes. As such, this work supports the hypothesis that the loss of young 

men in war results in a relative increase in male births, due to increased fatherhood by men 

from families with more male offspring (i.e. men with more brothers than sisters), because 

these men are most likely to have inherited a greater tendency to produce male offspring. 
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Chapter 1. General Introduction 

1.1 Sex ratio theory 

1.1.1  History of sex ratio theory 

In the modern scientific literature, the ratio of one sex to the other at birth is described as the 

secondary sex ratio, whilst the ratio of each sex at conception is described as the primary sex 

ratio. The question of whether the primary sex ratio is subject to natural selection, was first 

addressed by Darwin. 

 

1.1.1.1 Darwin on the sex ratio 

In the first edition of The Descent of Man, Darwin asked why population sex ratios tend to be 

equal and offered an explanation: 

 

Quote 1.1:  "Let us now take the case of a species producing, from the unknown causes just alluded to, 

an excess of one sex - we will say of males - these being superfluous and useless, or nearly useless. 

Could the sexes be equalised through natural selection? We may feel sure, from all characters being 

variable, that certain pairs would produce a somewhat less excess of males over females than other 

pairs. The former, supposing the actual number of the offspring to remain constant, would necessarily 

produce more females, and would therefore be more productive. On the doctrine of chances, a greater 

number of the offspring of the more productive pairs would survive; and these would inherit a tendency 

to procreate fewer males and more females. Thus a tendency toward equalisation of the sexes would be 

brought about." 

                                                     Darwin (1871, Chap.8, p.316) 

 

The above quote encapsulates the concept of frequency dependent selection. In the context of 

sex ratios, frequency dependent selection is where the probability of an individual breeding 
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depends on the frequency of its own sex in relation to the opposite sex. Individuals of the rarer 

are more likely to breed, which causes the tendency to produce that sex to increase in the 

population. This is explained by Darwin using a hypothetical scenario, in which unknown 

causes have resulted in a species that produces an excess of males that are described as 

'superfluous and nearly useless', because they will be outnumbered by other males and will 

not breed, or will on average breed less than females. In accordance with his numerous 

observations of variability in heritable traits, he proposes that the sex ratio characteristic, i.e. 

the frequency of offspring of each sex that are produced by breeding pairs, is variable and 

heritable. As such, the pairs that produce an excess of females can be described as 'more 

productive', in the sense that less of their offspring are likely to be superfluous males. 

 

This explanation of how natural selection acts on the sex ratio was later retracted by Darwin 

(Darwin 1874; see Quote 1.2). However, Edwards (1998) writes that the argument seems 

perfect, whilst Bulmer (1994) writes that the argument cannot be faulted; also, Seger and 

Stubblefield (2002) suggest that Darwin came extremely close to solving the sex ratio problem 

here (Quote 1.1), only criticising his failure to explain in what sense the minority sex are more 

productive. The reason for retracting the argument was given by Darwin in the second edition 

of The Descent of Man: 

 

Quote 1.2:  "In no case, as far as we can see, would an inherited tendency to produce both sexes in 

equal numbers or to produce one sex in excess, be a direct advantage or disadvantage to certain 

individuals more than to others; for instance, an individual with a tendency to produce more males than 

females would not succeed better in the battle for life than an individual with an opposite tendency; and 

therefore a tendency of this kind could not be gained through natural selection. ... I formerly thought 

that when a tendency to produce the two sexes in equal numbers was advantageous to the species, it 
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would follow from natural selection, but I now realise that the problem is so intricate that it is safer to 

leave its solution to the future." 

                                                     Darwin (1874, Chap. 8, p.259) 

 

It is frequently argued (e.g. Bulmer 1994; Edwards 1998; Seger and Stubblefield 2002), that the 

passage above is not a decisive clarification of an error with the previous argument, but an 

error in itself. The reason for this supposition is that Darwin's original argument is almost 

identical to the argument later presented by Fisher (1930) (section 1.1.1.2), which is widely 

believed to be correct
1
. It is possible, however, that this point of view fails to properly 

understand why Darwin retracted his original 1871 argument. It may well be necessary to 

consider the alternative possibility that Darwin was correct in 1874. I will examine Fisher's 

argument in more detail, but I first wish to consider whether Darwin had become more or less 

confused on the issue by 1874. 

 

After publication of his original sex ratio argument in 1871, Darwin seems to have noticed a 

paradox, which is that selection on the sex ratio must act through the probability that 

individuals will be able to breed, but the sex ratio is determined by those individuals' parents. 

In modern terminology, we might say that it is a paradox because selection affects one 

phenotype (the sex ratio determining mechanism in parents), via a different phenotype (the 

actual sex of offspring), yet the latter phenotype follows the former phenotype in time. In the 

following quotes (Quote 1.3 - 1.5), it can be seen that Darwin understood natural selection to 

act through the individual, so it must have been perplexing that natural selection seemed to be 

acting on individuals through the mating success of their offspring. It can be argued that this 

                                                 
1
 According to Edwards (1998), who was one of Fisher's students, it is likely that Fisher had not read the 

first edition of The Descent of Man; nonetheless, he did not explicitly claim the sex ratio argument to be 

his own, so it is possible that he may have failed to credit Darwin, due to less rigorous standards of 

referencing at the time. 
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was the reason that Darwin ultimately claimed not to understand how natural selection acts 

on the sex ratio. It was because he simply could not apply the principles of natural selection - 

as he understood them - to the problem.  

 

Quote 1.3:  "Natural selection acts solely through the preservation of variations in some way 

advantageous, which consequently endure." 

                                                     Darwin (1859, Chap.4, p.153) 

 

Quote 1.4:  "Although natural selection can act only through and for the good of each being, yet 

characters and structures, which we are apt to consider as of very trifling importance, may thus be acted 

on.  

                                                     Darwin (1859, Chap.4, p.133) 

 

Quote 1.5:  "And as natural selection works solely by and for the good of each being, all corporeal and 

mental endowments will tend to progress towards perfection." 

                                                     Darwin (1859, Chap.14, p.459)  

 

Sober (1984) argues that Darwin failed to think in terms of the number of grand-offspring that 

would inherit the parental trait and simply did not understand how a trait that did not increase 

the number of a parent's offspring could evolve. However, this analysis is problematic, because 

it either credits Darwin with weak thinking on the sex ratio, despite three years of hindsight or 

credits him with a far simpler theory of evolution than is apparent in his work. In fact, Sober 

even recognises this himself and remarks that he would like to know why Darwin retracted his 

original argument.  
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It has been suggested by some authors (e.g. Shaw and Mohler 1953) that there is a 

'conventional view' of natural selection, in which a trait is only selected when it leads to 

production of a greater number of offspring. It is not clear where this view originated, but it is 

certainly not a view of selection that should be attributed to Darwin or described as 'Darwinian 

selection' (e.g. Sober 1984). It would be better described as a simplified view of natural 

selection, because Darwin clearly understood that although better adapted individuals will 

have a greater chance of reproducing, a better adapted individual does not necessarily 

produce more offspring. The passage below clearly shows this, it follows the 1871 passage 

(Quote 1.1) and explains how increased parental resource investment per offspring may be a 

more successful strategy than producing a lot of offspring. 

 

Quote 1.6:  "From the variability of all characters, we may feel assured that some pairs, inhabiting any 

locality, would produce a rather small excess of superfluous males, but an equal number of productive 

females. When the offspring from the more and the less male-productive parents were all mingled 

together, none would have any direct advantage over the others; but those that produced few 

superfluous males would have one great indirect advantage, namely that their ova or embryos would 

probably be larger and finer, or their young better nurtured in the womb and afterwards. ... Hence the 

offspring of the parents which had wasted least force in producing superfluous males would be the most 

likely to survive, and would inherit the same tendency not to produce superfluous males, whilst 

retaining their full fertility in the production of females. ... Any slight excess, however, of either sex 

could hardly be checked in so indirect a manner." 

                                                     Darwin (1871, Chap.8, p.317) 

 

The above quote is included to illustrate use of the concept of energetics and adaptive 

patterns of investment in Darwin's work, and to provide evidence that his thinking was not 

based simply on the idea that more offspring is more adaptive. Darwin is suggesting that pairs 
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who produce fewer of the superfluous male offspring, but do not produce more female 

offspring to compensate, will have better quality female offspring, due to the reduced size of 

their entire litter and the increased resources devoted per offspring. He concludes, however, 

that '[a]ny slight excess ... of either sex could hardly be checked in so indirect a manner', which 

is an important point that I will return to (section 6.2). This is also a useful point at which to 

start discussing the Fisher (1930) argument on sex ratio evolution, in which the role of 

energetic investment is central. 

 

1.1.1.2 Fisher on the sex ratio 

In the following quote, Fisher (1930) applies the concept of reproductive value to the sex ratio 

problem. This is a calculation of the expected contribution of individuals to the gene pool of 

succeeding generations, as determined by factors such as frequency of the other sex or age 

(see Grafen [2006] for a modern description of the concept) .  

 

Quote 1.7:  "In organisms of all kinds ... there has been, before the offspring is able to lead an 

independent existence, a certain expenditure of nutriment in addition, almost universally, to some 

expenditure of time or activity, which the parents are induced by their instincts to make for the 

advantage of their young. Let us consider the reproductive value of these offspring at the moment when 

this parental expenditure on their behalf has just ceased. If we consider the aggregate of an entire 

generation of such offspring it is clear that the total reproductive value of the males in the group is 

exactly equal to the total value of all the females, because each sex must supply half the ancestry of all 

future generations of the species. From this it follows that the sex ratio will so adjust itself, under the 

influence of Natural Selection, that the total parental expenditure incurred in respect of children of each 

sex, shall be equal; for if this were not so and the total expenditure incurred in producing males, for 

instance, were less than the total expenditure incurred in producing females, then since the total 

reproductive value of the males is equal to that of the females, it would follow that those parents, the 
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innate tendencies of which caused them to produce males in excess, would, for the same expenditure, 

produce a greater amount of reproductive value; and in consequence would be the progenitors of a 

larger fraction of future generations than would parents having a congenital bias towards the 

production of females. Selection would thus raise the sex-ratio until the expenditure upon males 

became equal to that upon females." 

                                                      Fisher (1930, Chap.6, p.142) 

 

In the quote above, the critical idea is investment in each sex, whereby the allocation of 

parental resources toward male or female offspring until the end of the period of parental 

care, is affected by and affects the population sex ratio. Fisher's argument is that population 

sex ratios tend to be equal, because each sex necessarily contributes half of the genetic 

material of all future generations, so that generally the best investment strategy is to produce 

an equal number of male and female offspring. If there is an excess of one sex in the 

population, then that sex will have a lower reproductive value, because they will have less 

chance of reproducing. If, for example, there are more males in the population, then a gene for 

producing more male offspring is deselected because it causes individuals to invest in the sex 

with lower reproductive value; likewise, a gene for producing more females in a female biased 

population will be deselected for the same reason. This concept is understood as frequency 

dependent selection, because the relative frequency of each sex determines how genes that 

affect the sex ratio are transmitted to future generations.  

 

A consequence of the idea that the degree of parental investment in each sex determines the 

reproductive value of that sex, is that there should be an excess of the sex that is least costly to 

produce. Fisher applied this idea to available birth and infant mortality statistics, which 

showed that significantly more males were born, whilst males were also more likely to die 

prematurely. He suggested that the higher incidence of male mortality before the end of the 
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period of parental care lowers the resources expended by parents on males, which causes 

more males to be born in order to compensate. This concept, whereby natural selection acts 

on the sex ratio through the resources expended by parents on offspring of each sex, has been 

described as the 'equal-investment principle' (Seger and Stubblefield 2002). 

 

1.1.2 Frequency dependent selection 

The equal-investment principle has become virtually synonymous with frequency dependent 

selection, but frequency dependent selection as it relates to the sex ratio is actually a more 

general concept, first described by Darwin (1871) (Quote 1.1). It is simply the idea that the 

probability of an individual being able to breed is dependent on the frequency of the opposite 

sex in relation to its own sex. A tendency to produce the rarer sex will be favoured by 

selection, because the rarer sex has more mating opportunities and will have more offspring. It 

is because of this, and because every offspring has one mother and one father, that a 

population sex ratio is typically expected to be 1:1. 

 

It has been demonstrated with experimental populations of the fishes Menidia menidia 

(Conover and Vanvoorhees 1990) and Xiphophorus maculatus (Basolo 1994), and also the fruit 

fly Drosophila mediopunctata (Carvalho et al. 1998), that frequency dependent selection will 

cause a population with a tendency to produce a biased sex ratio to produce an equal sex ratio 

after a number of generations. These experiments have been described as evidence supporting 

the equal-investment principle, but it is not clear that this assumption is correct. The results of 

these studies showed that selection acted to equalise the sex ratio, not specifically that 

selection acted through parental resource investment to equalise the sex ratio. 
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If the equal-investment principle and frequency dependent selection are synonymous, then 

there should be an inverse correlation between the relative resources invested in each sex and 

the primary sex ratio. However, there is considerable difficulty associated with actually 

measuring the relative resources invested in each sex, particularly where there are long 

periods of parental investment, e.g. in humans. In order to measure overall investment, 

different aspects of biological and behavioural investment have to be combined for 

comparison, which is something that has probably never been satisfactorily accomplished 

(Cockburn et al. 2002). Also, in species with sex chromosomes and little deviation from an 

equal sex ratio (due to Mendelian segregation of sex chromosomes), there is little evidence 

that can be gained for adaptive hypotheses (Bull and Charnov 1988).  

 

There are mathematical models that have considered frequency dependent selection 

independently of parental investment (section 3.1.1), though these were not conducted with 

the aim of testing an alternative hypothesis to the equal-investment principle, but simply did 

not incorporate parental investment as a factor in the models. However, in terms of empirical 

research, the equal-investment principle has been used as the primary basis by which to 

interpret and explain the findings of most sex ratio studies, because it is the only coherent 

theory that has been proposed. Although Darwin described the concept of frequency 

dependent selection, he did not offer a coherent theory that can explain why the sexes are 

equal or unequal in number (Frank 1990). As such, there has been no established theoretical 

basis to the idea that frequency dependent selection can occur independently of the resource 

investment made by parents in each sex of offspring, this possibility has simply existed as a null 

hypothesis of the equal-investment principle.  
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1.1.3 Sex-allocation 

The term 'sex-allocation' was coined by Charnov (1982) in The Theory of Sex Allocation. It is the 

idea that adaptive sex ratio variation may be explained in terms of the division of parental 

resources between each sex of offspring, as predicted by Fisher's equal-investment principle. 

In some of the literature, the distinction between the actual numbers of each sex produced 

and parental resource investment per sex is blurred. For example, an author may mention that 

there is a biased allocation toward males, without clarifying whether this refers to increased 

numbers of males or increased parental resource expenditure per male. In order to avoid this 

ambiguity, Frank (1990) uses the term sex ratio to refer to the proportion of offspring that are 

male (or female), whilst using the term sex-allocation to refer to the relative amounts of 

parental resource expenditure dedicated to each sex of offspring. In this work, I will make a 

greater effort to avoid this ambiguity, by avoiding use of the term sex-allocation, except to 

refer specifically to the theory. 

  

Sex-allocation theory has been described as 'one of the most triumphant areas of evolutionary 

theory, with explicit theoretical predictions often anticipating parental investment in male and 

female offspring with great precision' (Cockburn et al. 2002). It has also been described as 'one 

of the most satisfying threads in evolutionary theory' (Maynard Smith 1978), ‘one of the great 

achievements of modern evolutionary biology’ (Trivers 1985) and ‘the jewel in the crown of 

evolutionary ecology’ (West and Herre 2002). In fact, these types of statement are fairly 

common in the literature. 

 

It is clear that sex-allocation theory is a wide and highly regarded body of work. It could, 

nevertheless, be argued that it has a narrow theoretical basis, because it is all fundamentally 

based on the equal-investment principle (West 2009), which is only one theory that explains 
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the important question of how natural selection acts on the sex ratio. It is also a theory that 

has never been challenged by an alternative theory. According to Cockburn et al. (2002), 

eleven adaptive hypotheses (belonging to five classes) have been used to explain the findings 

from studies of bird and mammal sex ratio data. These hypotheses do not comprise any 

alternatives to the equal-investment principle, so are often considered as different aspects, 

applications or branches of sex-allocation theory (e.g. West and Herre 2002), despite 

consisting of a diverse set of hypotheses. 

 

The first class of adaptive hypotheses that have been applied to bird and mammal sex ratios, 

according to Cockburn et al. (2002), are those that explain sex ratios purely in terms of 

frequency dependent selection. The primary example of this is Fisher's theory, which suggests 

that the sex ratio becomes equalised through frequency dependent selection, due to the 

elimination of genes that cause parents to invest their resources unequally in the sexes. The 

other type of frequency dependent selection hypotheses are the homeostasis hypotheses, in 

which parents respond to an unequal sex ratio in the population by producing more of the rare 

sex. An example of this is the James (1995) hypothesis, which explains how the human sex 

ratio is stabilized and why periodic oscillations occur (section 3.1.2.1.1.1). This hypothesis 

suggests that the sex ratio is under facultative control and is adjusted in response to the sex 

ratio in the breeding population, in order to maximise the chance of offspring finding a mate 

and themselves having offspring.  

 

It should be clear straight away, that although the two frequency dependent selection 

hypotheses described above are classed as one adaptive hypothesis by Cockburn et al. (2002), 

they actually differ considerably. Fisher's hypothesis is a genetic selection hypothesis, based on 

the principles described in The Genetical Theory of Natural Selection (Fisher 1930), whereby 
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selection operates on straightforward genetic differences. In contrast, James' homeostasis 

hypothesis relies on the concept of facultative sex ratio adjustment, whereby a physiological or 

behavioural response by individuals, has the effect of altering the sex ratio of their offspring. 

An impartial observer might suppose that there is a stark difference between facultative sex 

ratio adjustment, which occurs within the space of one generation and sex ratio adjustment 

brought about by natural selection over many generations. However, sex-allocation theory 

manages to encompass both genetic and facultative aspects of sex ratio control under the 

umbrella of investment.  

 

In sex-allocation theory, investment in either sex is thought to have a consequence in terms of 

genetic return in future generations (section 1.1.1.2), so whether the relative investment in 

each sex is determined by facultative or genetic means is secondary. It is the concept of 

investment as a proxy for genetic return that explains how Charnov (1982, p.6) could remark 

that he was struck by the 'almost complete absence of the use of natural selection in viewing 

many of the phenomena', when he was reviewing the literature for The Theory of Sex 

Allocation. 

 

I will introduce most of the other hypotheses that relate to bird and mammal sex ratios 

(including the Trivers and Willard [1973] hypothesis) in the following section on facultative sex 

ratio control (section 1.1.4). I have decided to introduce facultative control separately, because 

I want to consider it as a phenomenon in its own right, rather than as a functional aspect of 

sex-allocation. I will only briefly mention the 'local mate competition' hypothesis in this 

section, because it is an important application of sex allocation theory, though it has limited 

relevance in birds and mammals (Cockburn et al. 2002) and almost certainly no application in 

humans. 
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1.1.3.1 Local mate competition 

The observation of female biased sex ratios in many arthropod species led Hamilton (1967) to 

propose the local mate competition hypothesis. It is the concept that localisation of breeding 

in a spatially structured population causes a reduction in the sex ratio, because females can 

increase their fitness by allocating resources toward female offspring. The hypothesis assumes 

that females make decisions on what sex ratio to produce, based on the number of other 

females in the locality. It assumes that females have facultative control of the sex ratio of their 

broods, which may be possible in haplodiploid species, because females control the release of 

sperm from the spermatheca to the eggs, whereupon fertilised eggs become diploid females 

and unfertilised eggs become haploid males. In many haplodiploid species, females must 

disperse to find new hosts or nesting sites for the ubiquitous static phase of their reproductive 

cycle, whereas male dispersal to find mating opportunities is not ‘mandatory’ and therefore 

under variable selection (Hardy and Mayhew 1998). It is possibly because of this variable 

selection that males in various haplodiploid parasitoids do not disperse in search of mates, 

instead mating with female siblings at the natal site. In a freely mixing population, males 

arriving in female biased groups will propagate the genes that caused their own production, 

causing male-producing tendencies to spread and eliminating the female bias, but with 

localisation of mating a female-bias is propagated.   

 

1.1.3.2 The Evolutionarily Stable Strategy (ESS) 

The concept of sex-allocation can be explained in terms of an Evolutionarily Stable Strategy 

[ESS] (Maynard Smith and Price 1973). In fact, is has been described as the first example of an 

ESS (Maynard Smith 1982). An ESS, can be defined as the resultant point in the evolution of a 

certain trait within a population, where selection has resulted in the fixation of one genotype 

that is stable, in the sense that it is immune to invasion by variant genotypes or mutations. In 
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sex allocation theory, the ESS is equal investment in male and female offspring; with the 

exception of instances where there are greater fitness gains derived from investing more in 

one sex, such as under local mate competition (Frank 1990; West and Herre 2002). In complex 

genetic systems, such as where there may be linkage and epistasis among multiple loci, an ESS 

may not be stable in a strict sense (Eshel and Feldman 2001), so it is not possible to say either 

that sex-allocation theory or the ESS concept predicts that there will always be fixation of 

genes for equal investment in offspring. However, it is possible to say that sex-allocation 

theory and the ESS concept provide for this outcome.  

 

1.1.4 Facultative sex ratio control 

In the absence of a theory of natural selection (which would not be published for another 50 

years), Lamarck (1809) proposed that evolution could occur by the inheritance of acquired 

characteristics. The classic example of this concept is the giraffe evolving a long neck, due to 

numerous generations of giraffes stretching to reach foliage higher in the trees. It is, of course, 

not correct that offspring can acquire longer necks due to the efforts of their parents to reach 

higher into the trees. It is now understood that there is heritable genetic variation in traits 

such as neck length, so if individuals with longer necks have an advantage over other 

individuals (e.g. because they can reach the higher foliage and gain better nutrition), they will 

be more able to survive to reproduce and more of the next generation will inherit longer 

necks.  

 

The giraffe neck example is basic evolutionary theory, but now consider facultative control of 

phenotype, where the morphology of a phenotype is altered in response to social, 

developmental or environmental variables, e.g. a plant bending toward sunlight, calluses 

growing on heavily used skin, temperature dependent deposition of pigment in the fur of the 
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Himalayan rabbit (Stern 1968), trimorphism of weaponry in response to developmental 

thresholds in phanaeine dung beetles (Rowland and Emlen 2009), etc. In these cases, there can 

be an alteration to the physical morphology of individuals across the population, without the 

occurrence of natural selection and without any gross change in the genetic structure of the 

population. In a summer with more hours of sunlight, for example, a human population will on 

average have darker skin than years when there were fewer hours of sunlight, due to a 

physiological response in each individual, whereby the pigment melanin is produced in the skin 

to protect against damage caused by ultraviolet light. As far as I am aware, the children born in 

a year with more hours of sunlight do not have darker skin than those born in less sunny years; 

if this was the case then a re-evaluation of Lamarckism might be required
1
. The fundamental 

difference between physiological or facultative responses and Lamarckism, is that the changes 

in the population brought about by physiological or facultative control are not inherited by the 

next generation. 

 

Imagine a hypothetical future in the UK, where climate change has resulted in increased hours 

of sunlight during the summer. As a result, there is a selective pressure for people to have 

darker skin in summer months, to cope with the intensity of the sun. If we assume that there is 

no immigration or emigration from the population, then natural selection could cause a 

darkening of skin colour in two ways: (a) regardless of the ability of individuals to tan, selection 

may favour individuals with a darker baseline skin colour, because they have a survival 

advantage (e.g. they are less prone to skin cancer) and consequently leave more descendents; 

                                                 
1
 Interestingly, Gauthier (1990) suggests that Lamarck's theory may never have been tested. An 

experiment by Weismann (1891) is often cited as the definitive test that disproves the theory, but in fact 

it didn’t. In that experiment, Weismann cut the tails off mice for numerous generations and observed 

that the mice in each new generation were born with full tails. However, this arguably did not test the 

Lamarckian premise that organs which are not used will disappear, because there was no wilful or 

necessary disuse, only accidental disuse. N.b. despite this observation, Gauthier does not suggest that 

there is any place for Lamarckism in modern evolutionary theory.  
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(b) selection could favour individuals that can deposit greater amounts of melanin and become 

darker through tanning,  i.e. individuals with greater physiological plasticity of the skin colour 

trait. In the latter case, the physiological plasticity of the mechanism itself is selected for, 

rather than skin colour per se. It can be envisaged that natural selection would take this route 

if there was a significant enough advantage to being able to revert to lighter skin when 

sunlight was less intense, e.g. because of the higher levels of previtamin D3 synthesis in lighter 

skin (Jablonski and Chaplin 2000). I have given this simple example to illustrate the difference 

between selection for ‘rigid’ phenotypes, and selection for ‘plastic’ phenotypes. In relation to 

sex ratio evolution, the terms ‘genetic’ and ‘facultative’ may be used to mean ‘rigid’ and 

‘plastic’ phenotypes, respectively. It is well understood that plasticity is itself subject to 

selection and evolutionary change (West-Eberhard 2003). 

 

Burley (1982) explains that facultative sex ratio adjustment may be adaptive when populations 

commonly deviate from the equilibrium ratio, when the equilibrium sex ratio changes over 

time, and / or when the ability to produce a given sex ratio varies as a function of several 

circumstances. This description of what may select for facultative control is fairly broad, but it 

encapsulates the point that facultative control of the sex ratio is an adaptation that allows 

individuals to respond to prevailing circumstances by adjusting the sex ratio, which increases 

the probability that their offspring will survive or reproduce. 

 

In a theoretical paper, Werren and Charnov (1978) asked whether selection should favour 

genes that allow individual parents to respond to the loss of a greater number of one sex from 

a population, by increasing their production of that sex of offspring. In other words, should 

selection favour 'genes which result in the temporary overproduction of one or the other sex, 

under certain general conditions', i.e. genes that facilitate facultative control of the sex ratio? 
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It was shown with a simple model that a perturbation to the stable age distribution - with 

variable effect on male and female reproductive success, generates the selective pressure for 

facultative control of the sex ratio to evolve. The authors gave several examples where the 

scarcity of one sex is followed by overproduction in the next generation, e.g. an inverse 

correlation between offspring sex ratio and adult sex ratio in guppies (Lebistes reticulatus) 

(Geodakian et al. 1967); also, an increase in male offspring following delayed reproduction 

observed in a number of species (it may be assumed that delayed reproduction is an indicator 

of a lack of males in the population). West and Godfray (1997) also confirmed, with a 

population genetic model, that there will be selection for facultative adjustment of the sex 

ratio, as a result of episodes of mortality that disturb the stable age distribution.  

 

It is interesting to consider facultative control of the sex ratio between different animals, but 

there are considerable differences between mammals and other classes. In birds, for example, 

females are heterogametic and also invest more heavily in offspring (certainly up to the egg 

laying stage), so the potential for females to evolve a facultative mechanism of sex ratio 

control is probably much greater, but may also evolve via an entirely different mechanism 

(Pike and Petrie 2003). In some reptiles, the sex ratio of offspring is controlled by the 

temperature of the egg laying environment, so it may be hypothesised that mechanisms of sex 

ratio control are behavioural rather than physiological in these species. In haplodiploid insects, 

the evidence for facultative sex ratio control is thought to be strong (West et al. 2000), quite 

possibly because females can exert quite exact control of the sex ratio of their broods, through 

release of stored sperm from the spermatheca to the eggs (fertilised eggs become diploid 

females and unfertilised eggs become haploid males)
1
; and so on. In the interests of focussing 

                                                 
1
 Interestingly, Orzack (1990) and Orzack and Parker (1990) have reported evidence for genetic control 

and heritable variability in the sex ratios of the parasitoid wasp, Nasonia vitripennis. Orzack (2002) has 

made the case for more detailed study of sex ratio control in such species. 
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this study toward the genetics of human sex ratio evolution, only the literature on facultative 

control of the sex ratio in humans and mammals will be examined, because this is likely to give 

the clearest insight into the patterns and causes of sex ratio variation seen in humans. 

 

It is has been argued by various authors, that the evidence for adaptive sex ratio control is 

ambiguous or even completely lacking, in mammals (e.g. Clutton-Brock and Iason 1986; 

Cockburn et al. 2002), primates (e.g. Packer et al. 2000; Brown and Silk 2002; Schino 2004) and 

humans (James 2006). Krackow (2002) examined much of the literature and concluded that 

there is little evidence for sex ratio manipulation in higher vertebrates, arguing from the 

perspective of Bayesian probability that the non-existence of sex ratio manipulation is a more 

plausible a priori hypothesis, especially given chromosomal sex determination.  

 

The lack of evidence for facultative control of the sex ratio in vertebrates may be due to the 

complexity of factors involved, including a longer lifespan and overlapping generations, which 

decreases the selective pressure to adjust the sex ratio in response to any single factor (West 

et al. 2000). Also, the studies that do present evidence for facultative control have to be seen 

in the context of the sampling error expected from small or short-term studies, a bias toward 

publishing significant results and quasireplication (e.g. similar studies conducted with different 

species) rather than true replication of study parameters (e.g. Festa-Bianchet 1996; Palmer 

2000). Another important point, is that the absence of a known mechanism of facultative sex 

ratio adjustment magnifies the problem of interpreting results (Cameron 2004). However, in 

birds, there is increasing evidence for facultative control of sex ratio, particularly in response 

to mate attractiveness and cooperative breeding (e.g. West and Sheldon 2002, Pike and Petrie 

2005). There is also evidence that corticosterone, and perhaps testosterone, are involved (e.g. 

Pike and Petrie 2006, Bonier et al. 2007). 
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Silk and Brown (2008) suggest that the lack of empirical support for sex allocation theory in 

vertebrate taxa, may be due to the focus of most studies on the Trivers-Willard hypothesis 

(section 1.1.4.1), in which facultative adjustment of the sex ratio is predicted to correlate with 

maternal condition. In a meta-analysis of primate studies, the authors reported an association 

between the sex ratio and sex-related dispersal behaviour. In species where males are the 

primary dispersers the sex ratios at birth tended to be male-biased, in species where females 

are the primary dispersers the sex ratios tended to be female-biased, whilst in species where 

both sexes disperse the sex ratios tended to be equal. It was also found that sex ratios did not 

correlate with sexual dimorphism (which may be taken as an indicator of differentials in the 

amount of parental resources invested in each sex). It was suggested that the finding is an 

indication that Local Resource Competition [LRC] and Local Resource Enhancement [LRE] are 

better models to test adaptive sex ratio manipulation. 

 

The concept of LRC was proposed by Clark (1978) to explain the excess of male births observed 

in the prosimian Galago crassicaudatus. In this species, females compete more intensely than 

males for local resources during the birth season, because their movements are restricted by 

the burden of raising offspring. As such, a daughter's fitness varies inversely with the number 

of sisters that require the same resource, whilst daughters may also compete with their 

mother and reduce her future reproductive success. Therefore, when local resources are 

limiting, a female can theoretically increase her reproductive success by facultative adjustment 

of the sex ratio toward male offspring. Hoogland (1981) makes the point that mothers may be 

investing more in daughters that remain at the natal site, in terms of grooming, transfer of 

knowledge and giving up of their own resource bases. If this is the case, then a male-biased sex 

ratio at birth is predicted by Fisher's hypothesis, whereby parents who invest more in one sex 

should produce more of the other sex to compensate. Silk (1983) extended the concept of LRC 
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to include large groups with both related and unrelated individuals, where it can be envisaged 

that greater aggression toward female infants by unrelated females may force mothers to 

invest more heavily in caring for their female offspring. In this case, a male-biased sex ratio 

could also be explained in Fisherian terms, because it would be due to the higher parental 

investment required by female offspring. Notably, Clark (1978) recognised that the philopatric 

sex may enhance the reproductive success of the parent, in which case the parent should 

produce more of that sex - this is known as Local Resource Enhancement (LRE) (e.g. Gowaty 

and Lennartz 1985). 

 

Notably, Silk and Brown (2008) recognised that results from their meta-analysis of primate 

studies could be due to facultative or genetic control, but in support of a facultative 

explanation, the authors refer to a study by Rudran and Fernandez-Duque (2003), in which a 

change in the population sex ratio was observed over a thirty year period, whilst more males 

were born as the population density increased. It is generally assumed that such rapid change 

could not be due to natural selection. Bodmer and Edwards (1960), for example, estimated 

that it would take thousands of years for natural selection to make a relatively minor 

adjustment in the sex ratio (section 3.1.2.1.1).  

 

1.1.4.1 Trivers and Willard hypothesis 

In humans, studies have suggested that when the child is a boy, there are greater problems 

associated with labour (Eogan et al. 2003), greater energy intake during pregnancy (Tamimi et 

al. 2003), greater energetic costs of suckling (Hrdy 1999) and reduced weight and reproductive 

success of subsequent offspring (Rickard et al. 2007; Rickard 2008a). This suggests that the  

risk associated with a male child is greater, because the physiological demands on the parent 

are greater. In some instances, the risk associated with producing a male child may also be 
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greater, because the probability that male offspring will go on to reproduce and thereby pass 

on their parents' genes, is subject to greater variance than female offspring.  

 

The greater variance in male reproductive success is due to the fact that males can potentially 

sire many more offspring than females. As such, males can get greater returns by competing 

more intensely for mating opportunities. In polygynous species, this variance in reproductive 

success is greatest, because some males acquire large harems of females and sire almost all of 

the offspring, whilst other males have to forego reproduction. In human societies, there is a 

greater degree of monogamy, though the degree to which monogamy is actually practised will 

affect the variance in reproductive success, as will the sex ratio in the breeding population, 

because it will be harder for males to breed when there are more males in relation to females.  

 

One of the most important hypotheses in sex ratio research to date, is that proposed by 

Trivers and Willard (1973), which predicts that selection should respond to greater variance in 

reproductive success between the sexes, and consequent differential fitness returns from each 

sex. The hypothesis predicts that selection will favour a mechanism of facultative adjustment, 

whereby females can alter the sex ratio of their offspring toward males when they are in 

better condition and toward females when they are in poor condition. This is because males 

who receive better nutrition from a mother in good condition will be more likely to become 

strong, healthy males, who have the potential to pass on more of the maternal genes than 

similarly strong and healthy females; whereas, males who are malnourished - due to the poor 

condition of their mother - will become weak adults, who cannot outcompete other males for 

mates and will be less able to pass on the maternal genes than similarly weak females, who 

undergo less intense competition for mates.  
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I have chosen to introduce the Trivers-Willard hypothesis in a section on facultative sex ratio 

control, because there is no ambiguity that the hypothesis relies on the concept of facultative, 

rather than genetic control, as the authors explain: 

 

Quote 1.8:  "Since females in good condition are assumed to outreproduce females in poor condition, it 

is not possible for genes producing one sex ratio to accumulate among females in poor condition and 

genes for the complementary sex ratio to accumulate among females in good condition. Instead, natural 

selection must favor one or more genes that adjust the sex ratio produced by an adult female to her 

own condition at the time of [parental investment]."  

                                                    Trivers and Willard (1973, p.91) 

 

The Trivers-Willard hypothesis has stimulated research in numerous species and phyla, 

because the predictions of the hypothesis are applicable whenever there is variable 

reproductive success between the sexes, with the consequence of differential fitness returns 

from parental investment in each sex offspring. However, the intention of this research is not 

to test the Trivers-Willard hypothesis or to explore sex ratio variation in other species. As such, 

consideration of the Trivers-Willard hypothesis will only go so far as its implication in human 

(or mammalian) sex ratio variation, and its potential to explain patterns observed in human sex 

ratio data.   

 

In mammals, Trivers and Willard predicted that females may control the sex ratio through 

some form of sex differential in mortality, either to sperm or offspring, because sex is 

ultimately determined by the different sex chromosomes in sperm. The possibility that females 

may selectively abort offspring to gain reproductive success under the prevailing condition, 

was tested by Gosling (1986). In this study, the age, body condition and embryos of 1,485 

pregnant female Coypu (Myocastor coypus), captured as part of a conservation effort in 
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eastern England, were examined. It was found among this sample, that younger females with 

higher fat reserves, i.e. those in the best condition, tended to abort small predominantly-

female litters at around week 13-14 of the 19 week gestation period, but retain small 

predominantly-male and larger litters. An indication that the abortions were adaptive, rather 

than due to reproductive failure, is that there was no difference in size between females who 

retained male or aborted female embryos, whilst it would be expected that thinner females 

would abort. The data were consistent with the prediction that females in above average 

condition can gain an advantage in terms of long-term reproductive success, by investing in 

males, or more specifically not investing in females. The long-term reproductive success for 

females that reject small predominantly-female litters, may be great enough to outweigh the 

costs already incurred in pregnancy (as well as the risk that the next litter will also be small and 

predominantly female), because Coypu have a polygynous mating system, which means that 

males can outreproduce females.    

 

A long term study of sex ratio variation in Red deer (Cervus elaphus) on the Isle of Rum, 

Scotland, has documented a number of patterns of sex ratio variation. It was initially shown by 

Clutton-Brock et al. (1984) that high-ranking mothers tended to produce sons and low-ranking 

mothers to produce daughters, whilst the birth weight of the offspring of high ranking mothers 

was higher, positively affecting the long-term reproductive success of those offspring. Kruuk et 

al. (1999) later found that this effect disappeared with increasing population density and 

higher winter rainfall, which also saw a decline in the proportion of males born. These authors 

suggested that higher population density and higher winter rainfall may be indicators of 

nutritional stress (this is supported by the decline in fecundity also observed), which may have 

reduced the sex ratio, through higher foetal mortality of males. The authors concluded, 

however, that the effect of maternal dominance on the sex ratio at low densities must have 
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occurred prior to implantation, rather than as a result of foetal mortality - perhaps through 

corpus luteum function.  

 

Lazarus (2002) looked at 54 studies that have tested the Trivers-Willard hypothesis in humans, 

through a comparison of birth sex ratios with status. In total, 26 (48%) of these studies 

supported the hypothesis, which does not amount to a compelling body of evidence; especially 

given that many of the studies did not control for confounding variables, e.g. paternal age or 

birth order, whilst a publication bias in favour of positive results cannot be ruled out. A meta-

analysis of these studies is planned (John Lazarus, personal communication), which may 

provide further insight. 

 

Sheldon and West (2004) conducted a meta-analysis of 37 studies with 18 species of 

ungulates, which found weak, but significant, evidence for a positive correlation between 

maternal condition and the sex ratio (i.e. the Trivers-Willard effect). It was found that the 

correlation was more pronounced in species with a greater male-biased sexual size 

dimorphism, which (in ungulates) tend to be species where many females are monopolised by 

one male.  

 

Cameron (2004) reviewed the extensive literature on tests of the Trivers-Willard hypothesis in 

mammals, and reported significant support for the hypothesis in only 34% of tests of the 

hypothesis, with 8.5% of studies giving contradictory results. A meta-analysis indicated weak, 

but statistically significant support for the Trivers-Willard hypothesis. However, there was 

significant heterogeneity in the data, suggesting that the studies were not measuring the same 

thing. A breakdown of the studies showed that where body condition, weight or food had 

been measured or manipulated at the time of conception, then 74% of studies reported a 
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significant effect, whereas during gestation only 42% reported a significant effect and during 

birth only 5% reported a significant effect. 

 

In humans, Cameron and Dalerum (2009) found a higher than average sex ratio (0.60) among 

the children of 350 male billionaires. It was also found that billionaires had more grandchildren 

through their sons than through their daughters. The authors suggest that this is evidence for a 

Trivers-Willard effect, which is probably facilitated by a physiological mechanism operating in 

females around the time of conception. However, this conclusion is somewhat contradicted by 

a sex ratio of 0.53 among the children of 49 female billionaires, which is not significantly 

different from the human average of 0.51. 

 

If nutritional state is taken as a measure of maternal condition in humans, then a number of 

studies may provide support for the Trivers-Willard hypothesis. Gibson and Mace (2003), for 

example, found a higher incidence of female births associated with low nutritional state of the 

mother in a food-stressed community in rural Ethiopia; though Stein et al. (2004a) failed to 

fully substantiate these results in a much larger sample of Ethiopian births. Stein et al. (2004b) 

also found no evidence that acute and severe maternal undernutrition caused any increase in 

the proportion of female births during the Dutch Hunger Winter of 1944-1945. In a recent 

study, Mathews et al. (2008) asked 740 women to give retrospective information on their 

usual diet before conception and during pregnancy. It was found that the sex ratio among all 

births was close to 50:50, but mothers with a higher nutrient intake had been more likely to 

conceive sons. The results were interpreted as evidence for facultative selection of offspring 

sex, in accordance with maternal condition, as predicted by the Trivers-Willard hypothesis, 

though the method and statistical analyses have been criticised (section 3.4.2.1). In mice, 

Rosenfeld et al. (2003) argue that sex ratio distortions linked to changes in diet are not due to 
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the inadequacy of the diet, but perhaps due to calories. A study by the authors found that a 

diet high in saturated fats, but low in carbohydrate led to more male births, whilst a diet 

higher in carbohydrate than fat resulted in more female births. 

 

A number of other studies have also shown that certain indicators of good health in women 

demonstrate an association with the secondary sex ratio, for example: Cagnacci et al. (2004) 

showed that a low pre-pregnancy weight and a greater weight gain during pregnancy are both 

associated with a reduced secondary sex ratio; Catalano et al. (2005) showed that stress, as 

measured by the doses of antidepressants and anxyolytics administered, resulted in a reduced 

sex ratio among the children of Swedish women, from 1974-1997; Obel et al. (2007) showed 

that increased psychological stress, as measured by a retrospective questionnaire, resulted in a 

reduced number of male births. Also, Andersson and Bergstrom (1998) showed that short 

stature and obesity were associated with a low sex ratio in a rural African population. 

 

The idea that maternal dominance is causally related to the sex of offspring has been tested in 

humans. Using maternal personality questionnaires to determine the dominance of women, 

both before and after conception, Grant (1990, 1992, 1994) found that more dominant women 

were more likely to have sons. In a later study, Grant and France (2001) reported a correlation 

between blood serum testosterone and dominance in women, whilst bovine studies have 

found that raised follicular testosterone is associated with a higher frequency of male 

conceptuses (Grant and Irwin 2005; Grant et al. 2008). In terms of a mechanism, Grant and 

Irwin (2009) suggest that variations in testosterone may affect development of the ovum prior 

to ovulation, which primes it to be more receptive to either X or Y sperm. Interestingly, 

because testosterone rises during stressful events, the role of the hormone in sex 
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determination has also been hypothesised to explain increases in male births during wars 

(Grant and Irwin 2009) (section 5.1.1.1.3).  

 

It has been suggested that the lack of evidence for the Trivers-Willard effect in humans and 

other primates, may potentially be explained by inheritance of traits or acquisition of 

resources by females, rather than males, i.e. Local Resource Competition (section 1.1.4). If 

maternal rank or maternal resources are inherited by daughters, then females in good 

condition may be more likely to produce daughters (Leimar 1996; Wild and West 2007), rather 

than sons - as predicted by the Trivers-Willard hypothesis. However, it ought to be considered 

whether the integration of these separate hypotheses is able to offer any meaningful insight 

into facultative sex ratio variation, when theoretical models combining the effect of maternal 

quality (Trivers-Willard) and LRC may show that: 

 

Quote 1.9:  "(1) the population sex ratio can be either unbiased or biased in either direction (toward 

either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-

quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or 

production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex 

ratio adjustment, with both sons and daughters being produced by both high- and low- quality 

mothers."  

                                                     Wild and West (2007, p.E112) 

 

The quote above seems to imply that almost all outcomes are possible, whilst the authors also 

suggest that there are possibilities for even more complicated interactions between selective 

forces (Wild and West 2007). As such, the possibility of conducting strong empirical tests of the 

predictions of such models is remote, because there is no way of controlling for the many 
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variables, or even accurately measuring variables such as maternal condition or parental 

investment.  

 

James (2006) argues that there are numerous and substantial constraints on primate adaptive 

sex ratio variation, which may explain the lack of evidence for the Trivers-Willard effect in 

humans. In particular, the role of testosterone and gonadotrophin, which the author suggests 

are integral to sex determination (a higher ratio of testosterone to gonadotrophin causing 

more male births), but may also be independently associated with a number of pathological 

conditions and other adverse exposures resulting in sex ratio distortions, e.g. high sex ratios in 

low-condition, stressed females, due to high testosterone levels induced by stress. As such, 

James argues that steroid hormones act as confounders between offspring sex ratio and 

parental condition, because they are causally and independently associated with both. 

Therefore, failures to confirm the Trivers-Willard effect should not be seen as an indication 

that the hypothesis is false, but rather an indication of the constraints that mask it and make it 

difficult to detect. 

 

1.1.4.1.2 Kanazawa's generalized Trivers-Willard hypothesis 

It has recently been argued that the Trivers-Willard hypothesis can be taken as the basis for a 

more general principle, whereby traits that are associated with greater or lesser reproductive 

success of either sex, ought to be correlated with the sex ratio. This generalized Trivers-Willard 

hypothesis (Kanazawa 2005) differs from the actual Trivers-Willard hypothesis, because the 

traits associated with greater or lesser reproductive success may be heritable, unlike maternal 

condition, which is not strictly heritable. In support of this theory, empirical evidence has been 

presented that big and tall parents (Kanazawa 2005), violent men (Kanazawa 2006) and 

sociosexually unrestricted parents (Kanazawa and Apari 2009) have more sons, whilst beautiful 
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parents have more daughters (Kanazawa 2007a). However, the statistical methodology used in 

these papers has been strongly criticised, e.g. for using multiple comparisons with arbitrary 

attractiveness categories, not correctly controlling for total number of children and treating 

correlated predictor variables separately (Gelman 2007). Also, a re-analysis of the Kanazawa 

(2005) data by Denny (2008) found no effect of parental height or BMI on sex of offspring, in 

contrast to Kanazawa's analysis.  

 

A recent contribution, in which Kanazawa and Apari (2009) report that sociosexually 

unrestricted parents have more sons, can also be criticised on the grounds of statistical 

method. In this study, a single 'latent factor', thought to represent sociosexual orientation, was 

derived from principle components analysis [PCA] of questionnaire data, in which participants 

were asked five questions relating to number of sexual partners (same sex and opposite sex) 

and frequency of intercourse over past 12 months, 5 years and their lifetime. The 'sociosexual 

orientation' factor was then treated as an independent variable in a binary logistic regression 

analysis, where the dependent variable was the sex of first-born child. It was reported that the 

sociosexual variable was a significant predictor of offspring sex, and that 'one standard 

deviation increase in unrestrictedness of sociosexual orientation increases the odds of having a 

son by 12-19%'.  

 

It should be clear that there are problems associated with deriving a single variable from a 

questionnaire with five different questions, because it cannot be assumed that all variables 

point to one underlying factor. In fact, principal component analysis makes no assumptions 

about an underlying causal model, it is a variable reduction procedure that narrows down a 

small number of components that account for most of the variance in a set of observed 

variables (O'Rourke et al. 2005). It seems that exploratory factor analysis should instead have 
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been used to determine the number and nature of latent factors. A further compounding 

problem, may also be that the quantitative answers to the questions were converted to 'quasi-

logarithmic' scales in the PCA analysis, e.g., 0 = no partners, 1 = one partner, 2 = two partners, 

3 = three partners, 4 = four partners, 5 = 5-10 partners, 6 = 11-20 partners, etc., further 

eroding any reliable quantitative basis for the result.  

 

It is reasonable to conclude that the evidence for the generalized Trivers-Willard hypothesis is 

not good, given the criticism that it has received. Interestingly, the hypothesis has also been 

criticised on the grounds that it implies that there is heritable variation in the sex ratio (Rickard 

(2008b). The issue of whether there is heritable variation in the human sex ratio is important, 

not only for Kanazawa’s generalized Trivers-Willard hypothesis, but also to the question of 

whether parental sex preferences may affect the primary sex ratio (section 4.1.1) and whether 

births can be considered as independent events in certain statistical tests, e.g. in binary logistic 

regression analysis of the effect of parental age on sex ratio (section 4.4.2). It is also of critical 

importance to the hypothesis of the present study, see following section. 
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1.2 Hypothesis 

1.2.1 Outline 

In this chapter, I have examined the development of modern sex ratio theory, which began 

with Darwin’s consideration of how natural selection may act on the sex ratio. In chapter 3, I 

look at formal models of sex ratio selection, prior to introducing a model used to test the 

following hypothesis:  

 

It is proposed that in humans there is an autosomal gene, which exerts an influence on the sex 

ratio through the male reproductive system. The alleles of the gene exhibit polymorphic 

variation, which results in heritable variation in the primary sex ratio. As a consequence of 

their effect on the sex ratio, the relative frequency of the polymorphic alleles in the population 

will change in response to frequency dependent selection, with alleles that code for the 

production of more sons increasing in frequency when there is an excess of females in the 

breeding population (because there will be a higher probability of sons being able to breed and 

pass on their genes); whilst alleles that code for the production of more daughters will 

increase in frequency when there is an excess of males in the breeding population (due to the 

higher probability of daughters being able to breed and pass on their genes).  

 

It is proposed that frequency dependent selection will stabilise the primary sex ratio in a 

dynamic equilibrium, whereby the population sex ratio oscillates from an excess of one sex to 

the other, in a negative feedback loop. It is thought that this will occur, because the proposed 

genetic sex ratio variation will not be eliminated by selection for and fixation of one allele 

coding for the equilibrium value. All individuals have an equal chance of reproducing when the 

sex ratio is equal (Shaw and Mohler 1953, section 3.1.1.1). As such, it might be expected that 

despite the tendency of frequency dependent selection to draw the sex ratio toward equality, 
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alleles which draw the sex ratio away from equality will not be entirely deselected, because 

selection is too weak when the sex ratio nears equality. This may allow genetic variation, in the 

form of an allele polymorphism, to persist indefinitely. 

 

It is predicted that the existence of this type of polymorphic sex ratio gene can explain 

autocorrelation from one year to the next in annual human sex ratio data, because offspring 

inherit their sex ratio producing tendency from their parents. It is predicted, however, that the 

degree of sex ratio heritability will be low, because a male will inherit an allele from his mother 

as well as his father, though his mother will not have had any influence on the sex ratio of her 

offspring, because she did not express the gene. In effect, inheritance of a maternal allele will 

dilute the inheritance of the sex ratio from father to son, though it should still be possible to 

detect.  

 

It is also proposed that the existence of such a gene may explain how a higher rate of male 

mortality results in an increase in male births, both after wars and during peacetime. If for 

some reason, families with more sons have relatively more sons still alive after wartime or 

peacetime mortality (see Chap. 5 for examples of why this might happen), then this would 

result in more males being born in the next generation, because males with more brothers 

inherit their fathers tendency to produce more sons.  

 

1.2.2 Example 

In a simple example, it is assumed that there are two alleles of the gene, an m allele coding for 

greater production of Y sperm and an f allele coding for greater production of X sperm. In the 

male phenotype, the alleles are expressed with incomplete dominance, so mm males produce 

more Y sperm and have more sons, ff males produce more X sperm and have more daughters, 
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whilst mf males produce equal X:Y sperm and have equal sons and daughters. In more complex 

examples, the alleles might be dominant and recessive or there may be a range of alleles 

coding for different levels of X or Y sperm production, each with various dominances in the 

male phenotype. It can be seen in Fig. 1.1, how different combinations of alleles affect the sex 

ratio in this example. 

 

Figure 1.1. In the first tree (A) the F0 male is mm, causing all F1 offspring to be male. The F1 

offspring have an mm genotype because their father and mother were both mm, causing all F2 

offspring to be male. The F2 offspring have an mf genotype, because they inherited an m allele 

from their father and an f allele from their mother. In the second tree (B) the F0 male is ff, so all 

his offspring are female, they have an ff genotype because their father and mother were ff. The 

F1 female mates with an mf male, resulting in an equal number of male and female offspring, 

with mf and ff genotypes in the F2 generation. 
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1.2.3 In context 

The hypothesis presented here describes a mechanism by which selection can operate on the 

sex ratio without any variation in the survival or longevity of the parental individuals or the 

number, survival or longevity of their offspring. It is proposed that selection requires only that 

there is heritable variation in the sex ratio producing tendencies of males, in order to alter the 

sex ratio in a population. Importantly, this hypothesis predicts that selection can alter the sex 

ratio, irrespective of the degree of parental resource investment received by each sex. It, 

therefore, breaks from the assumption of sex-allocation theory, that the reproductive value of 

each sex (i.e. the calculation of the expected contribution of individuals to the gene pool of 

succeeding generations) is determined not only by the relative frequencies of the sexes, but 

also the degree of parental investment received by each sex. 

 

It is proposed that the degree of parental resource investment in each sex cannot directly 

affect genes which control the sex ratio, but this is not to say that sex differentials in parental 

resource investment cannot indirectly affect the sex ratio, e.g. by causing males to be weaker 

and less fecund. It is to say that the degree of parental investment in an individual does not 

affect the genes that the individual received from their parents, so does not affect the genes 

that the individual may or may not pass on. According to Mendelian rules of inheritance, 

human females pass on the same genes to male and female offspring (i.e. a haploid copy of all 

autosomal and X-chromosome genes); it is, therefore, of no consequence, whether a female 

has sons or daughters, as to which genes she transmits to the next generation
1
. Therefore, the 

degree of parental investment in each sex cannot affect which of a females genes are 

transmitted to future generations. In the case of males there is a difference, because the 

                                                 
1
 It is important to recognise that this is not an argument about the frequency of a female's genes that 

will appear in future generations, it is an argument about which genes she will pass on to her offspring; 

this is an important distinction. 



 35 

autosomal genes plus X-chromosome genes will always be passed to daughters, whilst the 

autosomal genes plus Y-chromosome genes will always be passed to sons.  

 

It is clear that the frequency of sex chromosome genes that will be passed from a male to 

future generations may be affected by sex differences in parental investment, if for example, 

male offspring are more likely to die before reproducing because they receive less parental 

care. In order to address this point, I consider how sex ratio determining genes on the sex 

chromosomes respond to selection, in Chap. 3. It should be pointed out, however, that Fisher 

and subsequent authors (e.g. Shaw and Mohler 1953; Nur 1974; Eshel 1975; Liberman et al. 

1990) have proposed sex ratio selection can occur via autosomal genes and that sex 

differentials in parental investment can affect the sex ratio via such genes. 

 

In reference to Darwin's writing on the matter; it is proposed that Darwin never understood 

how selection acts on the sex ratio, though he astutely recognised the paradox, which is that 

'an individual with a tendency to produce more males than females would not succeed better 

in the battle for life
[1]

 than an individual with an opposite tendency' (Darwin, 1874, see Quote 

1.2). The hypothesis of the present study proposes that selection can act on the population sex 

ratio, purely via heritable variation in the sex ratio among offspring, without any variation in 

the total number of offspring or degree of parental investment in each sex of offspring. In 

other words, an individual may produce a different sex ratio among their offspring than other 

individuals, but leave exactly the same total number of surviving offspring, which in Darwin's 

terminology, means they have not succeeded any better in the battle for life.  

 

                                                 
1
 The term 'battle for life' may be taken to have the same meaning as 'struggle for existence', i.e. 

survivorship and success in leaving surviving offspring. 
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It is proposed that selection can act on the sex ratio without any change in the total number of 

surviving offspring or sex differences in parental investment, because the alleles of the sex 

ratio determining gene are transmitted to offspring at random, i.e. by random segregation of 

alleles into the gametes during meiosis and random union of gametes at conception; whilst 

this process is not affected by any natural act of the individuals which carry the genes. In each 

generation, the only thing that determines which genes are passed on, is the sex of each 

individual and the relative frequency of each sex in the population, because this determines 

which individuals are able to breed and so pass on the genes that caused them to be male or 

female. 

 

In the following chapters, I report a series of theoretical and empirical tests, which were 

carried out to test the hypothesis. 
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Chapter 2. General Methods 

2.1 Population genetic modelling 

2.1.1 Design of the model 

A population genetic model was designed to examine the effect of selection acting on a sex 

ratio determining gene. It was an individual-based model (IBM), in which there was a finite 

number of individuals in each generation, each having a specific genotype and phenotype. In 

contrast to classical equational models, whereby the general genetic contribution to the next 

generation is tracked (e.g. Shaw and Mohler 1953; Verner 1965), this model tracked the actual 

numbers of alleles and genotypes from one generation to the next. In this way, it was possible 

to make exact observations of the effect of selection on different alleles, genotypes and 

phenotypes. The model also incorporated a family structure, which allowed mortality and the 

distribution of the sexes between families to be varied with different simulations. 

 

A MySQL database was used to store the genotype, phenotype and familial relations of each 

individual in each generation. Iteration of each generation was managed by code written with 

the PHP scripting language. It was a discrete generations model and offspring were formed by 

monogamous breeding; polygamy only occurred when there was an excess of females in the 

population, whereupon some males were selected at random to father a second family. All 

randomisation was determined by the PHP rand function, which generates pseudo-random 

integers in a uniform distribution, within a chosen range
1
.  

 

                                                 
1
 A pseudo-random number generator uses an algorithm to output numbers that approximate random 

numbers, but which are not truly random. It is possible to generate true-random numbers, but this 

requires more complex software, and it was not necessary for an application of this type. 
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The carrying capacity of the population was 10,000 breeding pairs and the number of offspring 

produced by each breeding pair varied at random between 1 and 7 (with the exception of Sim. 

9, where family size differed by paternal genotype), so at full carrying capacity approximately 

40,000 offspring were born in each generation. In each iteration, 10,000 males and 10,000 

females were randomly selected from the offspring and randomly paired (unless they were 

brother and sister) to parent the next generation. All males were able to mate up to 10 

females, though polygyny only occurred when there were less than 10,000 males and a greater 

number of females in the population, whereupon males were randomly selected to father a 

second family, then a third family, and so on, until up to 10,000 females were mated, or all 

males had mated with 10 females. 

 

The individuals in the model were sexual diploids, rather than the sexual haploids used in other 

models (e.g. Leigh 1970) (section 5.1.3.1). In the past, diploid individuals have presented a 

problem in genetics modelling, because random segregation of alleles in meiosis and random 

union of alleles by fusion of gametes, determines which alleles are passed to offspring. It is 

clear, that in a large enough population, a lot of computing power is required to simulate this 

randomisation for each offspring conceived. As such, most models have instead used 

population level assumptions about the genotypes that will be formed in each generation, 

based on the frequency of each allele in the parental generation; but, this would not be 

permissible in an individual-based model. In the present model, a method was used which 

simulates random segregation in meiosis and random fusion of gametes, this is described 

below:  

 

In Fig. 2.1, it can be seen that for a single-locus gene, an offspring can inherit one of four 

possible allele combinations from their parents. In each iteration of the model, random 
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segregation in meiosis and random union of gametes through sex was simulated by assigning 

each offspring a randomly generated number between 1 and 4, which determined the alleles 

that an individual would inherit from their parents.  

 

Figure 2.1. The possible allele combinations that can be inherited from the paternal and 

maternal line, for any autosomal, single-locus gene. A paternally inherited allele is either the 

allele that the father inherited from his father or mother (i.e. the paternal grandfather or 

grandmother), whilst the maternally inherited allele is either the allele that the mother inherited 

from her father or mother (i.e. the maternal grandfather or grandmother). If an offspring 

inherits allele combination 2, for example, they effectively inherit an allele from their paternal 

grandfather and an allele from their maternal grandmother. 

Paternally inherited allele  Maternally inherited allele Allele 

combination 
Allele from 

grandfather 

Allele from 

grandmother 

 Allele from 

grandfather 

Allele from 

grandmother 

1 �   �  

2 �  X  � 

3  �  �  

4  �   � 

 

 

In all the simulations (except Sim. 5), the sex ratio was determined by the father of a family. If 

a father's genotype was such that he only produced male offspring, then the next generation 

only contained sons by that man; likewise for daughters. If a father's genotype was such that 

he was equally likely to produce sons and daughters, then random number generation was 

used to determine which of his offspring were sons and daughters. 
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In Sim. 4a-d and 5, the sex ratio determining gene was on the X-chromosome, via which there 

are only two possible combinations of alleles that can be inherited by offspring (Fig. 2.2). 

 

Figure 2.2. The possible allele combinations that can be inherited from the paternal and 

maternal line, for any X-chromosome, single-locus gene. 

Paternally inherited allele  Maternally inherited allele Allele 

combination 
Allele from 

grandmother 

 Allele from 

grandfather 

Allele from 

grandmother 

1 �  �  

2 

 

�   � 

 

A technical explanation of the model design, including a schematic diagram of the database, is 

included in Appendix I. 

 

2.2 Genealogical data analysis 

2.2.1 Design of the genealogical database 

In order to test the predictions about inheritance and variation in the human sex ratio, human 

genealogical data was used. A large number of family trees were collated into a single 

genealogical database, which could then be analysed for sex ratio variation within and 

between generations. 

 

2.2.1.1 GEDCOM files 

The family trees were obtained from GEDCOM [Genealogical Data Communications] files, 

which were downloaded from several genealogy websites. GEDCOM is a widely used file 

format, which was developed by the Family History Department of The Church of Jesus Christ 

of Latter-Day Saints. It is compatible with most currently available genealogy software, 
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because the files are in common text format (ASCII), which can be imported into a computer 

program without having to be decoded. It is an extremely flexible file format, because there 

are no strict rules about what can be entered into the files; which is partly why it has been so 

successful, though this can also be a problem, in terms of the data quality (section 2.2.1.3).  

 

Typically, a GEDCOM file will contain information on the close family and ancestors of the 

author and perhaps the author's spouse. A date of birth, date of death, place of birth, title and 

sex may be recorded for each individual, though any of this information can be missing. 

Importantly, the familial relations between individuals are also stored in the files, which 

connect individuals to their parents and siblings and to their spouse(s) and offspring.  

 

A total of 3,459 GEDCOM files were downloaded from several websites; 27 files were 

downloaded from The Genealogy of Michael Steven Cole and Mary Jean (Johns) Cole 

(http://www.thecolefamily.com); 5 files from The Heine-Barnett Family Tree 

(http://www.mathnmaps.com); 34 files from United Kingdom Genealogy (http://uk-

genealogy.org.uk). Also, a GEDCOM file known as Royal92 was downloaded (from 

http://www.daml.org/2001/01/gedcom/royal92.ged), this is available from several sources 

and contains over 1,400 families of European Royalty. 

 

The majority (3,392) of the GEDCOM files were downloaded from The Genealogy Forum 

(http://www.genealogyforum.com/), which is a website based in the USA that had 3,690 

GEDCOM files in its libraries as of January 2009. The files were mostly uploaded between 1994 

and 1999, when the website was more popular and was advertised on the America Online 

(AOL) website. AOL is a major internet service provider around the world, which may be why 

people from many different countries uploaded GEDCOM files to The Genealogy Forum 
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website. The majority of family trees were of North American families, many with European 

ancestors, whilst the rest of the trees were mostly European - particularly British. It was 

possible to get this information by a quick check of the places in which people were born, and 

by reading the notes posted on the website to accompany each file. However, this information 

was not collated, for three reasons: (a) it was not always possible to discern the nationality of 

the author of the tree; (b) there is no recognised standard for recording place of birth in 

GEDCOM files, so nationality might not be discernible from the information recorded; (c) it 

became clear from looking closely at many of the trees, that the families were descended from 

ancestors with many different nationalities. 

 

2.2.1.2 Importing data into the database 

In order to collate data from GEDCOM files into a single dataset, there were a number of steps. 

The first step involved PhpGedView, which is a computer program that allows the genealogical 

data in GEDCOM files to be viewed and edited. It does this by extracting the text-based data 

from the file and inserting it into database tables. It is only possible to load one GEDCOM file at 

a time into the PhpGedView database tables, otherwise the keys which are used to identify 

each individual and family become duplicated. It was, therefore, necessary to extract the data 

for each family tree from the PhpGedView database tables, into a specifically designed 

genealogical database, which assigned unique keys to each individual and family, as they were 

loaded in. The genealogical database should technically be described as a meta-database, 

because the data from each GEDCOM file was effectively a sub-database that could be added 

or removed. To be able to do this, the data from each GEDCOM file was ascribed a unique ID, 

in order that it could be deleted if problems were identified with it at some point. A schematic 

of the genealogical meta-database is included in Appendix II. 
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2.2.1.3 Data error checking  

It was mentioned that the GEDCOM file format is very flexible, which means that there is little 

constraint in what people can enter into the files. A GEDCOM file can easily contain an 

individual that has 10 mothers, was born on Mars and gave birth to 100 children in the year 

3010, for example. It was decided that files containing errors would not be included in the 

genealogical database, unless these were a few clear-cut typo errors. This decision was based 

on the premise that files without errors were likely to be those representing better quality 

genealogical research. 

 

As mentioned, each GEDCOM file was first imported into PhpGedView, which served to load 

the text-based data into database tables. It also served to filter out corrupt or obscure files, 

because if the file did not display correctly or if any error messages were reported in 

PhpGedView, then the file was deleted. PhpGedView also displays a few summary statistics for 

each file, including the youngest and oldest person in the family tree. If the tree contained a 

person older than 115 or younger than 0, then the tree was deleted, unless this was due to a 

clear-cut typo. If, for example, an individual had parents born in the 1930's and siblings born in 

1961, 1962 and 1963, they were clearly born in 1965 and not 965, meaning that in 2009 they 

were not the oldest person in the family tree at 1,044 years old, but were almost certainly 44 

years old. In these clear-cut cases, the typo was corrected and the family tree was retained. 

 

After the initial checks in PhpGedView, and once the GEDCOM had been loaded into the 

genealogical database, the data from the file was deleted if it contained any of the following 

errors or potential sources of error:  
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• Relationships to individuals not listed in the family tree. In some GEDCOM files, a 

family may contain the ID of offspring or parents, though no record of that person 

exists within the file. It is an error, because the ID should not have been created 

without a record of the person being created, even if no name or other information 

was known about the person.    

 

• Individuals related to more than two parents. In cases where individuals had more 

than one mother and / or father, it was always treated as an error, which also served 

to exclude cases of adoption.  

 

• Incestuous parentage; this was always treated as an error, even though it probably 

occurred in some cases. 

 

• The stated number of offspring in a family not matching the actual number. This could 

occur, for example, if there were a duplicate entry for a child in the family record. 

 

• Individuals listed as offspring of one sex and parents of another sex. A person can be 

recorded as a male in their individual record, but recorded as a wife in a family record, 

for example.  

 

• Time between dates of birth precluding possibility of the stated relationship between 

individuals. If an individual became a parent younger than 11 years old, this was 

considered to be an error and the file was deleted; also, if a woman was older than 70, 

or if a man was older than 80, the file was also deleted. It is recognised that these 
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limits are too broad, and that fatherhood and motherhood at the extremes of these 

age ranges is highly unlikely. It is expected, therefore, that errors will have been 

incorporated into the database as a result. However, erroneous parental ages were 

the most common problem in the family trees and presented a real hindrance in terms 

of gathering enough data for the project. In some instances the error was due to an 

individual being recorded as the parent or offspring of a sibling, or being recorded in 

the wrong family. In other instances, it was due to a typo, e.g. 1937 instead of 1927, 

which makes a mother 11 years old instead of 21. A degree of judgement was used, 

whether to include a file that contained a very young or old parent. If this was the only 

potential error in a large file, that would otherwise have been of value to the database 

as a whole, then the file was kept. If it was one of a number of these errors, or if the 

file was small and thereby of little value to the database as a whole, then it was 

deleted.  Also, this was only the first filter for checking the quality of the data. In the 

analysis stage, data could be selected according to much more conservative age ranges 

and any inaccurate dates could be excluded. 

 

• A low mean number of offspring per family due to inclusion only of the author's direct 

ancestors and not their ancestor's siblings. Another statistic displayed in PhpGedView 

is the average number of offspring in all the families. In some cases, this value would 

be 1, or a number very close to 1. It could then be seen by looking through the tree, 

that it contained a lineage rather than a tree; for example, there were several files 

with the lineage of a US president. However, this was not a very common problem, 

most people are interested in collecting information about the families of their 

ancestors as well as tracing their lineage. It is, of course, likely that some of the files 
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would contain a mix of complete families and lineages, and this issue had to be 

addressed at the analysis stage.  

 

• A family connection to very ancient or fictional persons. The earliest and latest dates 

of birth are displayed on the PhpGedView home page. In terms of the statistical 

analysis, it was not important if the tree contained very ancient data, because this data 

could be excluded when the datasets were extracted for analysis. However, if a family 

tree traced an author's ancestry to before the Early Middle Ages (500-1000 AD), then it 

was presumed to be an indication that the author's methods were not particularly 

rigorous, though in all cases this might not have been true. Also, trees that 

documented biblical or fictional characters were not included and were not 

downloaded in the first place if possible. 

 

2.2.1.4 Removing duplicate individuals and families 

In a number of family trees, duplicate individuals occurred. If an individual occurred as a 

duplicate within the same GEDCOM file, this was considered to be an error and the file was 

deleted from the meta-database. There were also duplicates between different family trees, 

due to common ancestries, which was obviously not an error, so the GEDCOM files were not 

deleted. However, the duplicates had to be removed before analysis, or they may have 

confounded the results. 

 

In all cases, duplicate individuals were identified by their name and date of birth. This was 

done during the process of building the secondary tables, which were the tables that 

contained the data used for statistical analysis (Appendix II). The dates of birth were first 

checked (using the MySQL DATEDIFF function) to remove those that were not accurate to the 
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day or could not have occurred (e.g. 29 Feb. in a non-leap year), full names were then 

converted to lower case and any whitespace and punctuation removed, before a query was 

used to find those individuals with the same name and date of birth. The decision which 

duplicates to keep in the secondary tables was determined at random. 

 

2.3 Military conscription data 

2.3.1 British Army in WWI 

In Chapter 5, I consider how the loss of men from the British population during the First World 

War may have affected the sex ratio at birth. To understand whether the age or cohort 

structure of the males that were removed from the breeding population at the time of the war 

may have been a factor, it was necessary to determine when the soldiers involved in the war 

were born.  

 

A complete and accurate record of the British military personnel that served and died in WWI 

is no longer available. A fire in 1940 at the War Office records repository in Arnside Street, 

London, destroyed or badly damaged many of the records. Nonetheless, a number of records 

retrieved from the Arnside Street fire were conserved and committed to microfilm by the 

National Archives - these are known as the 'burnt' records (WO363). A recent project to make 

these records available online was carried out by the National Archives and the Ancestry.co.uk 

genealogy website, run by The Generations Network, Inc. At the time of writing this, the 

project had completed digitisation of all records with surnames beginning A-N. The records are 

comprised of non-commissioned officers and other ranks who served in WWI and did not re-

enlist in the Army prior to World War II. 
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After the Arnside Street fire, the War Office appealed to other government departments for 

information relating to service personnel in WWI. The Ministry of Pensions returned the 

largest collection (WO364), which comprises records of non-commissioned officers and other 

ranks who were discharged from the Army suffering from either wounds or sickness and who 

claimed disability pensions for service in WWI. Notably, these men did not re-enlist in the 

Army prior to World War II. These records are also available on the Ancestry.co.uk genealogy 

website. 

 

In the digitised Army service and pension records, the date of birth of each individual is 

indexed. Also, the database search facilities available at Ancestry.co.uk make it possible to 

search for records by year of birth and retrieve the total number of individuals that were born 

in a given year. In this way, it was possible to query the Army service and pension record 

datasets to work out how many of the soldiers were born in each of the years prior to the start 

of the conflict, and thereby build up a picture of the age range of the recruits to the Army.  

 

2.4 Statistical tests 

The data satisfied the assumptions of all statistical tests, including the assumptions of 

normality and independence of observations (though notably the question of whether sibling 

observations are independent is an issue that is explored in relation to parental age and sex 

ratio in section 4.3.2, where it is explained that this assumption is broken in the logistic 

regression analysis). In all tests, p-values were 2-tailed. 
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Chapter 3. Sex Ratio Selection and Heritability 

3.1 Introduction 

3.1.1 Models of sex ratio selection 

A number of authors have used population genetic modelling to consider how genes with 

various modes of inheritance and expression might affect the sex ratio.  

 

3.1.1.1 Shaw and Mohler's model 

In the first modern paper known for formally modelling frequency dependent selection of the 

sex ratio, Shaw and Mohler (1953) considered how variants of an autosomal sex ratio 

determining gene are selected into a population
1
. The aim of the paper was to answer the 

question of whether the genetic contribution that an individual makes to future generations is 

a result, not only of the number of progeny, but also the sex ratio among progeny. 

 

In Shaw and Mohler's model, it is assumed that males and females make an equal contribution 

to the sex ratio genes of future generations, which generally occurs when each child has one 

mother and one father. In this sense, the model can apply equally to males or females, but for 

the sake of argument, it focuses on males. An equation is used to calculate the genetic 

contribution that an individual male parent makes to the generation of his grandchildren, 

given the sex ratio among his offspring and the sex ratio in the population (Equation 3.1). 

 

 

 

                                                 
1
 Edwards (2000) has pointed out that the first such mathematical treatment of the sex ratio was by 

Düsing (1883, 1884), which closely resembles the later Shaw and Mohler (1953) mathematical model. 
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Equation 3.1. Cm = male's genetic contribution to grandchildren's generation; x = sex ratio 

among offspring; X = sex ratio in the population (i.e. in the total progeny of all parents); n = 

number of offspring; N = total offspring of all parents. 
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Fig. 3.1. Fig. 2 in Shaw and Mohler (1953), derived from Equation 3.1 above. 

 

 

Shaw and Mohler demonstrate with Equation 3.1 that a male's genetic contribution to the 

grandchildren's generation (Cm) is a function of the sex ratio of his progeny (x) and the sex 

ratio in the population, i.e. the sex ratio among the progeny of all parents (X). Fig 3.1 shows 

the outcome when x = 0.1, 0.5 and 0.9. It is seen that Cm will be the same if X is 0.5, regardless 

of the value of x. If, however, X is less than 0.5, a value of x greater then 0.5 will result in a 

greater genetic contribution (Cm); likewise, if X is greater than 0.5, a value of x less than 0.5 

will result in a higher Cm. This model illustrates the logic that if the sex ratio of the population 

is biased toward either sex, a parent who produces more of the opposite sex will pass on more 

of their genes, because their offspring will be more likely to breed. It should be understood 
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that this is not the same thing as saying that an individual should produce an unbiased sex 

ratio in order to make the maximum genetic contribution to future generations, because it can 

be seen that the progeny sex ratio (x) is irrelevant if the population sex ratio (X) is 0.5 and the 

population is large, as Shaw and Mohler point out: 

 

Quote 3.1:  "Whenever the primary sex ratio of a population is not 0.5, selection favors sex ratio genes 

whose increase in frequency will cause a shift closer to 0.5. When the population sex ratio is already 0.5 

there is no selection for sex ratio genes no matter what the direction or magnitude of their effects ... 

[t]his means that the 1:1 sex ratio may result not out of any immutability of this ratio but because 

selection establishes it as an equilibrium value. A new mutant sex ratio gene occurring in a population 

which has already attained this equilibrium will shift the sex ratio of the population somewhat and bring 

about selection against itself."                                                      

                                                    (Shaw and Mohler 1953, p.341) 

 

Shaw and Mohler's model demonstrates the idea that if a parent's offspring go on to breed in a 

population where there is an equal number of males and females, then because each 

individual will have an equal chance of breeding, it doesn't matter if those offspring are all 

males or all females. If the population sex ratio is biased toward either sex and an individual's 

progeny form a greater fraction of the rarer sex than of the more frequent sex, then they will 

make a greater contribution to future generations, because that contribution is a function of 

the difference between the progeny sex ratio (x) and population sex ratio (X).  

 

In some respects, the Shaw and Mohler model is well designed to demonstrate Fisher's 

predictions about the sex ratio. In particular, the concept of reproductive value that Fisher 

applies to the sex ratio is based on a calculation of the expected contribution of individuals to 

the gene pool of succeeding generations, whilst the equation in the Shaw and Mohler model 
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also calculates the genetic contribution of individuals to a later generation as a fraction of the 

total genetic contribution. However, the Shaw and Mohler model does not factor parental 

expenditure into the equation, so although the model does demonstrate frequency dependent 

selection, it does not demonstrate Fisher's equal-investment principle. This is recognised by 

the authors, who suggest that parental investment may affect the sex ratio, if for example, a 

higher rate of male deaths among progeny relieves the parent of the burden of caring for 

them, which frees up energy for the production of new zygotes. In this way, Cm is increased 

because n is increased, and this results in a primary sex ratio biased toward males. This 

supposition was not tested by Shaw and Mohler, but the implication of their argument is that 

parents who lose male children will conceive more offspring than those that don't. 

  

3.1.1.2 Other models 

The role of autosomal genes that determine the ratio of XX and XY zygotes was modelled by 

Shaw (1958). In a series of algebraic modelling simulations, in which it was assumed that 

parental care is absent or plays a negligible role, it was shown that genes which skew the sex 

ratio are eliminated, in favour of normal genes that result in an equal sex ratio. It was also 

shown that autosomal genes cannot have different frequencies in the sexes, unless there is 

non-random segregation, because both sexes contribute equally to all future generations, so 

genes causing unequal numbers of each sex to be born do not succeed. It was, however, 

shown that the frequency of X-linked genes can differ in frequency between the sexes, 

because the number of sons is irrelevant to the fitness of an X-linked gene (e.g. Carvalho et al. 

1998). A similar conclusion was reached by Eshel (1975), who demonstrated that where there 

is genotypic sex determination, non sex-linked mutations only become established if they draw 

the sex ratio toward 50:50. Once a 1:1 sex ratio becomes established, the author suggests that 

deviations from 1:1 can only occur via mutations on the sex chromosomes. In this study, I use a 
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population genetic model to test whether autosomal alleles that result in an unequal sex ratio 

will indeed be eliminated, as predicted e.g. by Shaw (1958) and Eshel (1975), as the hypothesis 

of this study predicts that selection will be too weak as the sex ratio approaches equality for 

this to happen. I also examine whether sex chromosome genes that code for unequal sex 

ratios will become established, as predicted e.g. by Eshel (1975) and Hamilton (1967). 

 

As mentioned, the Shaw and Mohler model did not factor parental care into the equation, 

which is a critical aspect of Fisher's theory. To address this, Kolman (1960) designed a model in 

which the genetic contribution to future generations is a factor of the expenditure on 

production of males and females in relation to the mean sex ratio of the population. As such, a 

population where half of the parents produce males and the other half produce females, is as 

stable as one where all parents produce male and female offspring equally. The model 

suggests that with equal investment in the sexes, there can be no selection for the degree of 

heterogeneity in the sex ratio producing tendency of the population. This is similar to the point 

made by Shaw and Mohler, that there is no selection when the sex ratio is at equality (section 

3.1.1.1). However, the situation where there is high heterogeneity in sex ratio producing 

tendencies among individuals and also an overall equal investment in the sexes, is unlikely to 

occur, because any further variations would upset the balance and would have to be 

compensated for simultaneously by variations in other individuals, which is statistically 

improbable (Verner 1965). If there is further variation, it is expected that selection will tend to 

reduce the variance (e.g. Verner 1965; Bodmer and Edwards 1960), so that all individuals are 

closer to the optimum or ESS, i.e. equal investment in each sex.  
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3.1.2 Heritability of variation in the human sex ratio 

A large number of studies have examined human sex ratio data to determine the extent of 

variation - either in response to certain events or conditions, or across populations and 

families. A smaller number of studies have tested whether the sex ratio is heritable, by 

examining inter-generational variation. It is possible to split all these studies into three 

categories, based on the type of dataset that was analysed in the study:  

 

• Cohort datasets; these include data on the number of each sex in populations, sub-

populations or groups, which can then be used to determine spatial or temporal 

changes in the sex ratio. A typical example of this would be the number of males and 

females born each year in a national population, this data is available, e.g. in 

Macfarlane and Mugford (2000) for England and Wales. It is data that does not give 

any information on sex ratios within families, only sex ratios across cohorts. 

 

• Single-generation familial datasets; where sex of offspring, birth order, parental age 

and perhaps other information has been collected from a number of families in a 

single generation. This type of dataset has been widely used, for example, to 

determine whether the sex ratio has a binomial distribution. 

 

• Multi-generation familial datasets; where sex ratio and perhaps other information has 

been collected from families over consecutive generations. This type of dataset has 

been used to determine whether there is any inheritance of the tendency to produce 

more of either sex of offspring. 
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Studies based on cohort and single-generation datasets are more common, because large and 

good quality datasets can be collated from national censuses, maternity records or from 

questionnaires given to parents. It is, of course, preferable to use larger datasets in the 

analysis of sex ratios, because there is clearly a high degree of stochasticity involved in the 

determination of sex. It is probably because of the difficulty involved with collating large multi-

generation familial datasets, that studies based on this type of dataset are far less common. In 

the multi-generation family studies that have been carried out, the data have typically been 

acquired from readily available genealogies.  

 

The different types of sex ratio dataset described above have been used to address differing 

questions in sex ratio research and, although there is some overlap, the findings from the 

different types of dataset have highlighted quite separate sex ratio phenomena. In the 

following sections (3.1.2.1 - 3.1.2.3) I cover the research that has been done using the different 

types of dataset, examining what the findings contribute to our understanding of natural 

variation in the human sex ratio. 

 

3.1.2.1 Cohort studies 

There are a huge number of published studies based on cohort type sex ratio data, which focus 

variously on races, national populations, demographic groups, occupations, medical 

conditions, genetic conditions, toxicological exposures, etc. It is not disputed that many of 

these studies are of scientific or anthropological interest, but so many correlates of sex ratio 

variation have been reported, that one can understand why Graffelman and Hoekstra (2000) 

wryly suggested that it will soon be easier to list all the factors that have not been 

hypothesised to affect the sex ratio. An exhaustive review of cohort type sex ratio studies 
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would be of little value here, in terms of the research questions being addressed. Instead, 

James (1987) and Sieff (1990) may be consulted for substantial literature reviews.  

 

A selection of cohort based studies are introduced in this section, on the basis that they may 

offer an insight into whether there is genetic control of the sex ratio in the wider human 

population. It is recognised that a degree of subjectivity was required in selection of these 

studies. For example, it may well be the case that homosexuality and left-handedness (e.g. 

Blanchard and Lippa 2007) or deep sea diving (e.g. Lyster 1982) are truly correlated with the 

sex ratio and that this may be evidence of a mechanism. However, studies such as these are 

not covered, because they are based on small subsets of populations that are less likely to 

identify broad trends than studies based on national childbirth statistics over long periods, for 

example. Also, Johansson (Reply in Sieff 1990) makes the point that studies based on relatively 

small groups over short time periods are liable to record values that appear untypical, because 

of large random fluctuations in the sex ratio, whilst a correlation with factor X, Y or Z may 

occur by chance. Add to this the fact that sex ratio research, like much science, suffers from a 

publication bias for positive results, whilst there is also a lack of data where a full combination 

of potential sex ratio distorting factors are included (Garenne 2002). 

 

It has long been recognised that the sex ratio at birth changes over time and varies between 

human populations (e.g. Gini 1908). Parazzini et al. (1998) analysed livebirth data from 29 

countries, including 20 European counties, Japan, Australia, New Zealand, Canada, USA and 

four South American countries. The data were taken from 1950 - 1994. It was found that there 

was no consistent global trend in the sex ratio at birth, though it has been decreasing in a few 

northern and eastern European countries and increasing in southern Europe and Australia. 

Grech et al. (2003) analysed data on almost 285 million European and North American 
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livebirths, over the second half of the twentieth century. An overall significant decline in sex 

ratio was seen in both continents. However, in Europe, there was a decline in the North, but an 

increase in Mediterranean countries. The authors concluded that no reasonable explanation 

had been offered for the trends. 

 

Garenne (2002) analysed the available survey data from African countries, collected as part of 

the World Fertility Surveys and Demographic and Health Surveys, which date in part back to 

1950. It was found that the sex ratio for Africa as a whole was lower than the average for other 

parts of the world. An indication that this is as a result of genetic rather than environmental 

factors, is that populations of African descent in the US (Khoury et al. 1984) and UK (James 

1984) have lower sex ratios than the white population. However, the sex ratio in African 

countries is not homogenous, there is considerable variation, with countries of primarily Bantu 

origin having the lowest sex ratios, whilst Ethiopia and Nigeria have relatively high sex ratios.   

 

The role of the environment cannot be excluded from a consideration of factors affecting the 

sex ratio at birth. Slatis (1953) analysed livebirth data from the entire US birth registration 

areas, between 1915-1936 and 1942-1948, finding a seasonal trend with a slightly higher 

frequency of male births in spring and summer than autumn and winter.  

 

Lerchl (1998) analysed births across the whole of Germany between 1946-1995, and reported 

a small (<1% of sex ratio) but highly significant seasonal pattern in the sex ratio. The pattern 

was bimodal, with peaks in May and December and nadirs in March and October. Notably, 

there was no correlation between sex ratio and birth rate, though this had been suggested 

previously in a study of US data (Lyster 1971). Also, a previous study of German data reported 

no seasonal pattern in the sex ratio (Gilbert and Danker 1981), but Lerchl (1998) points out 



 58 

that the study was based on less data and there was no compensation for linear trends, in 

particular the fall in the sex ratio after 1946.   

 

In south-western Siberia there is a very large seasonal temperature range. Melnikov and Grech 

(2003) analysed birth data from this region, between 1959-2001, noting a sharp decline in 

male births in the last quarter of the year. It is not clear why the sex ratio of births would be 

affected in this way, or at what stage between conception and birth it happens. 

  

In another example, Lyster and Bishop (1965) demonstrated a correlation between annual 

rainfall and the sex ratio at birth in Perth, Adelaide and Brisbane, between 1911 and 1962. The 

authors hypothesised that this may have been due to trace elements in the drinking water, 

which changed considerably during periods of rainfall. Lyster (1971) also demonstrated a 

seasonal pattern in the sex ratio of births in US data. 

 

A global environmental effect on the sex ratio also cannot be excluded. In a study of sex ratio 

data from 202 countries between 1997-2006, Navara (2009) showed that the sex ratio at birth 

differs by global latitude, with more female than male births occurring in tropical latitudes 

than temperate and subarctic latitudes. There are considerable cultural differences within 

each latitudinal region and a difference in socioeconomic status does not explain the result. 

The author suggests a possible influence of day length, ambient temperature or other latitude-

dependent factors, but also suggests a possible genetic factor. 

 

Lummaa et al. (1998) analysed a dataset from pre-industrial Finland, which contained 

information on the number of males and females of reproductive age, as well as the sex of 

14,420 newborn babies, taken at 15 year intervals between 1775 and 1850. It was shown that 
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the sex ratio at birth was inversely correlated with the operational sex ratio (i.e. sex ratio 

among reproductive age adults) with more sons born when the proportion of reproductive age 

females was higher. The pattern can be described as adaptive, because it seems that parents 

are producing offspring of the rarer sex, which increases the probability of those offspring 

being able to mate and so propagate their parents' genes. Indeed, James (1998a) points to the 

result as evidence of a 'homeostatic' mechanism, by which the sex ratio at birth is adjusted in 

response to the sex ratio in the breeding population (section 3.1.2.1.1.1).    

 

3.1.2.1.1 Autocorrelation and oscillations 

A significant degree of autocorrelation between years has been shown in annual live birth data 

for Austria, Belgium, Denmark, France, Germany, Italy, Netherlands, Spain, UK and US (Gini 

1955; Graffelman and Hoekstra 2000). This is important, because it indicates that the sex ratio 

of a population at any time is not independent or random,  because there is a correlation in 

sex ratio from one year to the next - which is actually something that can be inferred from 

annual plots of sex ratio at birth (Fig. 3.2). It is possible that this is due to extrinsic biological, 

social or environmental factors, e.g. racial composition, age-structure of the population or 

immigration and emigration (Graffelman and Hoekstra 2000). However, it is also possible that 

autocorrelation may be explained by heritability of sex ratio variation, as this would result in 

continuance of the tendency to produce a particular sex ratio from one generation to the next, 

which would be manifested in the annual data on sex ratio of births. It is one of the aims of 

this study to examine the possibility that there is a heritable component in the human sex 

ratio, which may explain autocorrelation in annual livebirth sex ratio data. 
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Figure 3.2 Annual record of the livebirth sex ratio in England and Wales, 1838 – 2006 (1st 

order autocorrelation = 0.898, p < 0.001). Source: Office for National Statistics, UK.  

 

Gini (1955) also found, in US data, that the sex ratio oscillates over cycles of approximately 30 

year amplitude, within statistically significant though remarkably restricted ranges. These 

'unexplained oscillations' were also reported by James (1995) in data from the US between 

1915 and 1988. James suggested that the change is too rapid for it to be purely genetic, partly 

based on calculations by Bodmer and Edwards (1960), who predicted that it would take 

approximately 2,000 years for natural selection to reduce the sex ratio from 0.52 to 0.5074. If 

this prediction is correct, the change in sex ratio in England and Wales between 1900 and 1950 

would have taken 1,000 years, had it been due to natural selection.  

 

It could be speculated that an oscillating sex ratio at birth, of the type described by Gini (1955) 

and James (1995) would result from the 'adaptive' sex ratio variation described by Lummaa et 

al. (1998). In this scenario, an adaptive response of parents to a shortage of one sex would 
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tend to overcompensate each time, so that the sex ratio never becomes completely stable, but 

continually veers from an excess of one sex to the other, causing oscillations in annual sex ratio 

data.  

 

3.1.2.1.1.1 James' homeostasis hypothesis 

James (1995) offers a behavioural hypothesis to explain autocorrelation and periodic 

oscillations in the sex ratio, which stems from the original hypothesis which James offered to 

explain wartime peaks in the sex ratio (James 1971 - section 5.1.1.1). The suggestion is that 

individuals perceiving a bias in the adult sex ratio will regulate their frequency of intercourse 

(which affects the timing of insemination within the menstrual cycle) so as to increase their 

chance of having offspring of the rarer sex, because those offspring have a better chance of 

breeding. This behavioural response - triggered by a cognitive assessment of the frequency of 

each sex in the breeding population - would be a facultative mechanism of sex ratio control, 

based on the variation in probability of a male or female birth over the menstrual cycle. James 

suggests that the sex ratio may be stabilised by this mechanism over time, in the mode of a 

negative feedback process, which would explain apparent homeostatic oscillations and 

autocorrelation in sex ratio data. 

 

 3.1.2.1.2 Declining sex ratios 

It has been established that in the second half of the 20th century, there were significant 

declines in the sex ratio at birth in a number of countries, e.g. Denmark (Møller 1996), 

Netherlands (van der Pal-de Bruin et al. 1997), United States and Canada (Allan et al. 1997), 

England and Wales (Dickinson and Parker 1996) and Japan (Davis et al. 2007). It has been 

suggested that this might be due to toxicity in the environment (Davis et al. 1998) and might, 

therefore, be considered a sentinel health indicator. In particular, Davis et al. (2007) propose 
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that metalloestrogens and other endocrine disrupting chemicals may affect a critical stage of 

foetal development or spermatogenesis.  

 

In reply to the suggestion by Davis et al. (1998) that sex ratio declines are due to 

environmental toxins, James (1998a) suggests that it may instead be due to the sex ratio 

oscillating over time, as first demonstrated by Gini (1955) in data collected prior to the 

widespread use of industrial chemicals. Vartiainen et al. (1999) found a recent decline in sex 

ratio at birth in Finland, but concluded that this was unlikely to be due to overall toxicity in the 

environment, because the start of the decline in male births preceded the period of 

industrialization and the introduction of pesticides and hormonal drugs. It is, of course, 

possible that a single pre-industrial agent could be responsible for the decline.  

 

Tragaki and Lasaridi (2009) analysed births registered in Greece, between 1960-2006, and 

found that there has been a decline in the sex ratio at birth across the country in the last two 

decades. It was also found that there was a significant discrepancy between urban and rural 

sex ratios at birth - with urban areas exhibiting lower sex ratios - but only over the last 25 

years. The authors make the point there has been a decline in births in rural areas in recent 

times, and a subsequent increase in urban births as a share of total births in Greece. As such, 

they suggest that higher exposure to endocrine disrupting chemicals in the urban areas 

(reported by: Arditsoglou and Voutsa 2008; Pothitou and Voutsa 2008; Stasinakis et al. 2008) 

may be associated with reduced sex ratios at birth.  

 

Branum et al. (2009) examined US sex ratio data between 1981-2006. It was found that sex 

ratio differed by plurality (single or twin / multiple birth) for white, but not black births. 

However, this could not explain the decreasing trend in white births and increasing trend in 
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black births. The authors concluded that the lack of a consistent pattern between races, 

suggests that a single mechanism is unlikely to explain the overall decreasing trend in the US 

sex ratio.  

 

3.1.2.2 Single-generation family studies 

The modern approach to analysis of human sex ratio data arguably began with a study by 

Geissler (1889), based on a dataset that has been the subject of extensive analysis since
1
. The 

dataset was collected in Saxony between 1876-1885 from birth certificates, on which the sexes 

of previous children were also recorded by questioning the parents about their other children. 

It contains 4,794,304 births to 998,760 couples and contains information on the order in which 

each sex of offspring was born within each family. It has stimulated interest, particularly from 

statisticians, because the distribution of the sexes between families has been found not to 

conform strictly to a binomial distribution (i.e. the distribution that would be expected if sex is 

determined by random variation).  

 

The conclusion reached by Geissler, through his own analysis, was that the distribution of the 

sexes was in accordance with a random distribution; however, he also suggested, somewhat 

contradictorily, that there is a compensatory tendency observed in families, whereby after 

many male births the probability of a female birth increases, and vice versa. It was first pointed 

out by Gini (1908) that the distribution of the sexes among families in the Geissler data does 

not conform to a simple binomial distribution. This was attributed by Gini to a tendency within 

families to produce one or other sex, which he suggested was 'general' and not limited to the 

same-sex families, on the basis that families who initially produced an excess of males would 

                                                 
1
 Notably, Lorenz (1898), von Lenhossék (1903) and Orschansky (1903) conducted studies of the sex 

ratio using population data. All considered sex to be subject to hereditary influences, though they did 

not present satisfactory statistics to this effect (Woods 1906; Gini 1951). 



 64 

go on to produce an excess of females, and vice versa. Edwards (1958) describes this as Gini's 

'inversion' theory.  

 

Edwards (1958) fitted a beta-binomial distribution individually to each family size in Geissler's 

data, based on the assumption that p (the probability of a male birth) is a beta-variate
1
. In this 

analysis, it was reported that p varies between families of the same size, but that there is no 

evidence for parents producing uni-sexual families. However, using several overdispersion 

models to examine the dataset, Lindsey and Altham (1998) did find some evidence for uni-

sexual families, though they concluded that these are very rare. Lindsey and Altham (1998) 

also confirmed the finding by Harris and Gunstad (1930a, b) that there is a small but significant 

correlation between sexes within families and that p is greater in larger families. 

 

It has been suggested that there are inexplicable irregularities in the distribution of sexes 

between  families in the Geissler dataset, leading to questions about how the data was 

collected and to questions about the value of the data (e.g. Fisher 1958). In particular, it seems 

there is a bias in favour of even sex ratios, particularly 4:4. Lindsey and Altham (1998) provide 

statistical confirmation for the existence of these families, but do not offer a possible 

explanation. It has been postulated that they could be due to sampling errors, because it is 

known that some families were recorded more than once. Also, it is known that the analysis of 

the combinations or sequences of sexes within families, is complicated by parents choosing to 

stop (or not to stop) having children once they reach a certain family size and composition 

(James 2000a), though it is not clear whether this could explain the existence of these families.  

 

                                                 
1
 The beta-binomial distribution is the most commonly used model for overdispersion in binomial data 

(Lindsey and Altham 1998). 
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A large number of datasets have been collated from across the world, which contain 

information on the sexes of offspring born within families, as well as information on birth 

order and parental ages. In general, these studies have sought to understand the extent and 

pattern of natural variation in the human sex ratio; but specifically, the studies can be divided 

into two categories: (a) those that have focussed on the effects of parental age and birth order 

on the probability that children will be male or female; (b) those that have focussed on 

whether parental decisions about whether or not to have further children can affect the sex 

ratio. I deal specifically with the effect of parental age, birth order and parental sex 

preferences in Chap. 4, where I introduce single-generation family studies in more detail. 

 

3.1.2.3 Multi-generation family studies 

As compared with cohort and single-generation type sex ratio datasets, there are far fewer 

studies that have made use of sex ratio data spanning more than one generation. This type of 

inter-generational data is useful and arguably necessary for determining the extent to which 

natural variation in the sex ratio is heritable and genetically determined
1
. It is clear that there 

are added difficulties associated with collecting large multi-generation datasets, which may 

partly explain the comparative lack of such studies. Also, the modern hypotheses for adaptive 

sex ratio variation (e.g. Trivers and Willard 1973; James 1995; Grant 1996), permit for an 

absence of genetic variation in the sex ratio
2
. Moreover, the theory that has underpinned 

almost all modern sex ratio research, i.e. Fisher's theory (section 2.0.1.2), predicts that natural 

selection will tend to eliminate genetic sex ratio variation (e.g. Rickard 2008b). As such, the 

                                                 
1
  Edwards (1958) describes this type of statement as a platitude, and suggests that the lack of evidence 

for heterogeneity in the human sex ratio indicates a lack of heritability (Edwards 1970). 
2
  Actually, James (2004) does suggest that the sex ratio may be a weakly heritable trait, but via the 

proxy of genetically determined hormone levels which affect sex determination, not because it is in 

itself a directly heritable trait. 
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question of heritability in the human sex ratio may have received less attention than it 

deserves. 

 

In an early study of sex ratio heritability, Newcomb (1904) analysed sex ratio data gathered 

from the genealogies of 6,084 American families. It was primarily a statistical study into the 

patterns of sex ratio variation, conducted without the knowledge that sex is determined by the 

existence of an X or Y chromosome. In regard to the question of whether a tendency to 

produce offspring of one or other sex exists in parents, the author concluded that 'all fathers 

and mothers are equally likely to have children of either sex, except for the slight variations 

that may be due to age'. Another early study by Nichols (1905), addressed the question of 

whether there is any heritable component in the sex ratio. The study used 3,000 families, each 

with 6 or more offspring, gathered from published New England genealogies. The genealogies 

were arranged on the male-line into 40 branches, each stemming from a common male 

ancestor, with the total number of each sex born being listed for each branch. It was seen that 

some branches had more sons and some had more daughters, but the data was not subjected 

to any rigorous statistical analysis, so is of very little interest. 

 

In 1906, two studies were published in the journal Biometrika, on the subject of the heritability 

of the sex ratio in humans. In the first of these studies, Woods reported no evidence that the 

sex ratio was heritable, based on analysis of data from two published genealogies: Dr K. von 

Behr's Genealogie der in Europa regierenden Fürstenhäuser, which contained the genealogy of 

every royal family in Europe; also, Burkes Peerage and Baronetage of 1895, which contained 

the genealogies of titled families in the UK, Ireland and US. The data were arranged by the 

number and sex of offspring born in families, so that the sexes of offspring born from one 

generation to the next could be compared. The families were divided into two classes, those 
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with an excess of males and those without an excess of males. It was found that there was no 

association between the parental and filial generation, in terms of the proportion of families 

with or without an excess of males, based on a total 1,465 families. It was also found that 

when both parents were born in sibships with an excess of males or females, there was no bias 

toward either sex among their offspring. Though, notably, the numbers involved in this latter 

analysis were fairly small, i.e. 334 males and 351 females born to parents from male-biased 

sibships, 357 males and 402 females born to parents from female-biased sibships.  

 

The other study published in Biometrika in 1906, was by Heron, who also reported no evidence 

for heritability of the sex ratio in humans. This analysis was based on data drawn from The 

Whitney Family of Connecticut and its Affiliations, 1649-1878, a genealogy centred on an 

extended American Quaker family. The data consisted of 2,197 records of the sex ratios 

produced by parents and those produced by their offspring, where there were > 3 offspring in 

all families. This analysis differed from that by Woods (1906), because it used all of the data 

and dealt with the male and female parentage separately. It looked to see if there was any 

correlation between the sex ratio of the father's sibship and the sex ratio of his offspring 

(1,157 cases), also the mother's sibship and the sex ratio of her offspring (1,040 cases). In 

neither test was a significant correlation found. 

 

Although Woods (1906) and Heron (1906) reported no statistical evidence for heritability of 

the sex ratio in their data, this conclusion was later questioned by Gini (1908), who used a 

different formula for the correlation coefficient and found a significant correlation between 

parent and offspring sibships. Gini argued that Woods and Heron had not eliminated the effect 

of chance in determining the sex combinations of the parent and offspring sibships in their 

analyses (i.e. that they had committed a Type II statistical error). He concluded that sex is 
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inherited in substantially the same measure as other characters, with both parents directly or 

indirectly contributing (also Gini 1955). It is not clear which analyses were correct, as the data 

have not since been reanalysed. 

 

Another way to collect inter-generational data on the sex ratio, other than by looking at 

genealogies, is to ask people about the number and sex of their siblings, parents' siblings, 

cousins' siblings, etc. Slater (1944) collected multi-generational sex ratio data in this way by 

speaking to patients admitted to a psychiatric ward at Sutton Emergency Hospital, between 

1939-1941. In a test for heritability of the sex ratio, individuals with offspring were divided into 

four categories for analysis with χ
2
: male sibs of male families, i.e. men with more brothers; 

females sibs of male families, i.e. women with more brothers; and so on (Table 3.1).  

 

Table 3.1. Table 9 in Slater (1944).  

Male Females  

 Obs. Exp. Obs. Exp. 

 

χ
2
 

Male sibs of male families 590 554.65 517 552.35 4.515 

Female sibs of male families 199 200.42 201 199.58 0.020 

Male sibs of female families 392 395.32 397 393.68 0.056 

Female sibs of female families 504 534.61 563 532.39 3.513 

Totals 1685  1678  8.104 

 

The indication from Slater's data, is that males with more brothers are more likely to have 

male offspring (p < 0.05) and females with more sisters are more likely to have female 

offspring (p < 0.1), although the latter result is not strictly significant. However, this dataset 

has to be treated with caution. It was collected by speaking with 909 males and only 98 

females (because the admissions were mostly male soldiers diagnosed with 'neuroses'). This 

indicates that much of the data on the families of females was acquired by questioning the 
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male patients about their sisters' families, rather than by questioning female patients directly 

about their own families, which may have been subject to greater error than information 

about the males' own families. 

 

Another study, which used interviews to collect inter-generational sex ratio data, was that by 

Trichopoulos (1967), in which medical and dental students were asked about the number of 

their brothers and sisters, as well as the number of their mother's and father's brothers and 

sisters. Information was collected from 1,592 male and 697 female students. It was found that 

a person was more likely to have brothers if their father had more brothers, and also more 

likely to have sisters if their father had more sisters. However, whether their mother had more 

brothers or sisters had no bearing on whether they had brothers or sisters. The stated aim for 

this study was to test whether factors responsible for variability in the sex ratio have any 

connection to the Y-chromosome. Interestingly, however, the author did not make any strong 

conclusions about the results, despite the occurrence of what seems to be some form of 

paternal inheritance. Notably, there are difficulties associated with explaining inheritance of 

the sex ratio via a Y-chromosome gene, namely that the gene will be reduced by producing 

females, so there is no way that an increase in females can be selected for. 

 

A paternal pattern of sex ratio inheritance was also observed by Curtsinger et al. (1983) in 

human data collected for a separate study of ABO blood groups, prenatal mortality and birth 

order from two generations of over 5,000 families in Akita, Japan (Hiraizumi et al. 1973a, b). A 

position-by-position analysis was used, which showed a small degree of inheritance of sex ratio 

variation through the paternal, but not the maternal line. As such, males with more brothers 

were more likely to have sons, whilst males with more sisters were more likely to have 

daughters; again, the sex ratio among a female and her siblings had no bearing on the sex of 
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her offspring. The authors concluded that this result was consistent with modification of the 

segregation of the sex chromosomes in males, without ruling out other possibilities, e.g. social 

or environmental variables. Interestingly, the authors also presume that the variation is of 

such a low order of magnitude, that it would not be subject to adaptive selection, of the type 

argued for, e.g. by Williams (1979). It should also be pointed out that Curtsinger et al. (1983) 

found no effect of birth order or parental age on the sex ratio, but did find that parents with 

offspring of the same sex were more likely to have another child than parents with two 

opposite sex offspring - a finding that can be explained by a parental preference for children of 

both sexes (section 4.1.1).  

 

In a study of over 20,000 births in the Saguenay region of Quebec, between 1850-1880, 

Tremblay et al. (2003) analysed patterns of sex ratio by family name and found that certain 

patronyms exhibit very high proportions of male births. The finding caused the authors to 

question whether there is a hereditary component in the tendency to produce boys or girls. In 

this study, parental age, birth intervals and season were also reported to affect sex ratio (there 

were particularly high sex ratios in January, March, June and July).  

 

The lack of human studies based on multi-generational sex ratio data has meant a lack of 

clarity on whether there is heritable variation in the human sex ratio and whether it is 

transmitted down the paternal and/or maternal line. It was in an effort to add clarity to this 

question that the present study was concerned with the analysis of a substantial genealogical 

dataset for patterns of sex ratio inheritance. 
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3.2 Methods 

3.2.1 Sex ratio gene modelling 

3.2.1.1 Autosomal gene simulations 

In all of these simulations (Sim. 1 - 3), an autosomal gene expressed in the male phenotype 

affected the sex ratio among male's offspring. The design of the model is explained in section 

2.1.1, whilst the parameters for each simulation are described individually below.   

 

3.2.1.1.1 Simulations with an m and f allele 

In these simulations (Sim. 1a - 1c), the m allele coded for production of male offspring and the 

f allele for production of female offspring. All the simulations started with 1,500 individuals of 

each genotype and sex and ran for 500 generations. 

 

Sim. 1a  m = f.  The alleles were expressed with incomplete dominance, so mf males were 

equally likely to produce sons or daughters, whilst mm males produced only sons and ff males 

only daughters. 

 

Sim. 1b  m > f.  The m allele was dominant and f allele recessive, so mf and mm males 

produced only sons and ff males only daughters.  

 

Sim. 1c  m < f.  The f allele was dominant and m allele recessive, so mf and ff males produced 

only daughters and mm males only sons.  

 

3.2.1.1.2 Introduction of a dominant i allele 

In these simulations (Sim. 2 - 3), the m allele coded for production of male offspring and the f 

allele for production of female offspring; the i allele coded for equal production of male and 
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female offspring and was dominant in all genotypes. All the simulations started with 1,500 

individuals of each genotype in each sex. Sim. 2a-b ran for 1,000 generations, Sim. 3a-c ran for 

500 generations. 

 

3.2.1.1.2.1 i in a 2 allele polymorphism 

Sim. 2a  i > m.  The i allele was dominant and the m allele recessive. As such, mi and ii males 

were equally likely to produce sons or daughters, whilst mm males produced only sons.  

 

Sim. 2b  i > f.  The i allele was dominant and the f allele recessive. As such, fi and ii males were 

equally likely to produce sons or daughters, whilst ff males only produced daughters.  

 

3.2.1.1.2.2 i in a 3 allele polymorphism 

Sim. 3a  i > (m = f).  The i allele was dominant in all genotypes, whilst the m and f allele were 

expressed with incomplete dominance. As such, mf, mi, fi and ii males were equally likely to 

produce sons or daughters, mm males only sons and ff males only daughters.  

 

Sim. 3b  i > (m > f).  The i allele was dominant in all genotypes, whilst the m allele was 

dominant over the f allele. As such, mi, fi and ii males were equally likely to produce sons or 

daughters, mm and mf males only produced sons, whilst ff males only produced daughters.  

 

Sim. 3c  i > (m < f).  The i allele was dominant in all genotypes, whilst the f allele was dominant 

over the m allele. As such, mi, fi and ii males were equally likely to produce sons or daughters, 

mm males only produced sons, whilst mf and ff males only produced daughters.  
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3.2.1.2 X-chromosome gene simulations 

In these simulations (Sim. 4 - 5), the parameters were similar to those in Sim. 1 - 3, except that 

males only carried one allele of the sex ratio determining gene, whilst females carried two 

alleles - as would occur if the gene were on the X-chromosome (section 2.1.1.2).  

 

3.2.1.2.1 Sex ratio determined by males 

Sim. 4a  m and f allele.  Males with the m haplotype produced only sons; males with the f  

haplotype produced only daughters.   

 

Sim. 4b  m and i allele.  Males with the m haplotype produced only sons; males with the i 

haplotype were equally likely to produce sons or daughters.   

 

Sim. 4c  f and i allele.  Males with the f haplotype produced only daughters; males with the i 

haplotype were equally likely to produce sons or daughters.  

 

Sim. 4d  m, f and i allele.  Males with the m haplotype produced only sons, males with the f 

haplotype produced only daughters, whilst males with the i haplotype were equally likely to 

produce sons or daughters.  

 

3.2.1.2.2 Sex ratio determined by females 

Sim. 5  m = f.  In this simulation females determined the sex ratio via a gene on the X-

chromosome; alleles were expressed with incomplete dominance, so females with the mf 

genotype were equally likely to produce sons or daughters, whilst mm females produced only 

sons and ff females only daughters. 



 74 

3.2.2 Sex ratio heritability in genealogical data 

In order to test for heritability of sex ratio variation, a number of different statistical methods 

were used with various selections of data. The data were extracted from the z_f0_to_f2_m 

and z_f0_to_f2_f tables (Appendix II). These were secondary tables in the genealogical 

database, in which all duplicate individuals and families had been removed. In these tables, the 

records contain three generations, the grandchildren (F2 generation), which are linked through 

a parent (F1 generation) to their grandparents (F0 generation). In the z_f0_to_f2_m table, the 

grandchildren are linked to their grandparents through their father. In the z_f0_to_f2_f table, 

the grandchildren are linked to their grandparents through their mother. 

 

The design of the tables is such that the data can be aggregated by family connection, in order 

that the sex ratio can be compared between the F1 and F2 sibships. In this way, it is possible to 

determine whether F1 individuals (parents) inherit the sex ratio from the F0 individuals 

(grandparents), depending on whether the F1 individuals are male or female - because these 

individuals are siblings in the F1 sibships and parents of the F2 sibships. 

 

In all subsequent descriptions, the grandparents of a family are referred to as the F0 

generation and their offspring are the F1 generation or the F1 sibship, whilst the proportion of 

the F1 generation that are male is the F1 sex ratio. Likewise, the offspring of the F1 generation 

are the F2 generation or F2 sibship and the proportion of the F2 generation that are male 

constitutes the F2 sex ratio.  

 

In all the analyses, only individuals born from 1600 onwards were used. It is expected this will 

have reduced the amount of bad quality genealogical data, because this is sometime after the 

establishment of parish records for births, marriages and deaths in the 16th century, e.g. in 
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England, Germany and the Netherlands, where many of the older family trees in the database 

originate. It is unusual to be able to trace a reliable ancestry, before the establishment of 

parish records, unless your family joins up with a royal line. Also, only families with more than 

one offspring were included in the analyses, to exclude incidences where the author of the 

family tree has recorded their ancestor, but failed to record the siblings of their ancestor. 

 

3.2.2.1 Crosstabulation 

An important factor that needs to be taken into account with analysis of sex ratio data, is 

family size. A sex ratio measurement based on a small family size is not strictly comparable 

with one based on a large family size. This is because the sex of a single individual has more 

impact on the sex ratio, when the family is smaller (Fig. 3.3).  

 

Figure 3.3 The effect that the sex of one sibling has on the sex ratio among all siblings. The 

effect is greatest when there is only one offspring, because the sex ratio is either 0 or 1 if the 

individual is female or male, respectively. At larger family sizes the effect is greatly reduced. 
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A basic method to control for the effect of family size when plotting sex ratio data, is to 

crosstabulate the data by family size. In this way, only sex ratio data from families with the 

same number of offspring are aggregated to obtain statistics, thereby eliminating any 

confounding effect of family size. 

 

3.2.2.2 Regression 

The purpose of the regression analyses was to test for an association between the sex ratios of 

the F1 and F2 sibships, where these were linked through the F1 individual, who was a sibling in 

the F1 sibship and the father or mother of the F2 sibship. The F1 sex ratio was the independent 

or explanatory variable, whilst the F2 sex ratio was the dependent or response variable. 

 

An important assumption of regression is independence of observations, which requires that 

datapoints are not related. However, the data contains many F1 individuals who are siblings, 

and therefore not independent of each other, because they share the same parents. For this 

reason, the F2 sex ratios produced by F1 male or F1 female siblings were combined to create a 

x̄ F2 sex ratio variable. The values of this variable were all based on >1 F1 siblings, each of 

which had >4 (F2) offspring. In effect, this meant that x̄ F2 sex ratio values were based on 10 or 

more (F2) offspring altogether. 

 

3.2.2.3 Generalized Linear Modelling 

The regression analysis used only families with > 4 offspring, which reduced error (because 

larger family sizes give a better indication of the true sex ratio producing tendency of parents), 

but also reduced the sample size. In order to include a greater proportion of the available data, 

a generalized linear model with quasibinomial errors was used (R statistical package), which 

tested whether the total proportion of F2 males and F2 females (grandchildren) descended 
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from F0 parents (grandparents) was dependent either on F1 no. offspring or F1 sex ratio, 

where the F2 offspring were produced either by F1 males or F1 females.  

 

3.2.2.4 t-Test (brother - sister comparison) 

A paired t-test was carried out to compare the absolute difference from the F1 sex ratio of the 

x̄ F2 sex ratio ( | x̄ F2 sex ratio - F1 sex ratio | ) between F1 male and F1 female siblings from 

the same families. In this way, any difference in inheritance of sex ratio variation between F1 

males and F1 females, could not be due to their origin in different families, because they came 

from the same families.  

 

3.2.2.5 t-Test (twin comparison) 

If males determine the sex ratio via inheritance, then it would be expected that male-male 

twins would tend to have a more similar sex ratio among their offspring, than female-female 

or male-female twins. In order to test this, the absolute difference between the sex ratio of 

offspring produced by male-male twins, was compared with the absolute difference between 

the sex ratio of offspring produced by female-female and male-female twins, using t-tests. It 

was rare to find twins who both had offspring in the database, so pairs of twins were included 

in the analyses if they had >2 offspring.  

 

3.2.2.6 t-Test (first and second family comparison) 

The absolute difference in the sex ratio of offspring between first and second families was 

compared for men and women, to test whether the difference is less for men - as would be 

expected if men have genetic control of the sex ratio. It was rare to find women who had 

second families in the database, so men and women with first and second families were 

included in the analyses if they had >2 offspring. 
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3.3 Results 

3.3.1 Population genetic modelling 

 

3.3.1.1 Autosomal gene simulations 

In these simulations, the F0 generation consisted of 1,500 individuals of each genotype in each 

sex; for clarity the F0 generation is not plotted in the following figures (Fig. 3.4 – 3.11) and the 

plots begin in the F1 generation.     

 

3.3.1.1.1 Simulations with an m and f allele 

 

Fig. 3.4.  Sim. 1a  (m = f); mm males produced only male offspring,  ff males produced only 

female offspring, mf males were equally likely to produce male and female offspring. 

 

In Sim. 1a, the m and f alleles were expressed with incomplete dominance and all possible 

genotypes were stable in both sexes (Fig. 3.4). 
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Fig. 3.5.  Sim. 1b  (m > f); mm and mf males produced only male offspring,  ff males produced 

only female offspring. 

 

In Sim. 1b the m allele was dominant, so any male with an m allele in their genotype produced 

only sons. The result of this was that mm females were never born, because females could not 

inherit the m allele from their fathers. It also meant that mf females disappeared by F18, 

leaving only ff females, which caused mm males to disappear in F19 because sons could not 

inherit an m allele from their mothers (Fig. 3.5). 
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Fig. 3.6.  Sim. 1c  (m < f); mm males produced only male offspring, mf and  ff males produced 

only female offspring. 

 

In Sim. 1c, the f allele was dominant, so ff males were never born, because all males with the 

dominant f allele produced only daughters, though all other genotypes were maintained at 

stable frequencies (Fig. 3.6). 

 

In Sim. 1a - 1c, the combination of m and f alleles resulted in a stable sex ratio, which persisted 

in a dynamic equilibrium, with a x̄ value close to 0.5, over 500 generations. The different 

dominance relationships between the alleles had a significant impact on the genotype and 

allele frequencies in the population (Fig. 3.4 - 3.6 and Table 3.2), but the sex ratio remained 

close to parity in each case. 

 

It can be seen in Sim. 1b and 1c (Fig. 3.5 and 3.6, also Table 3.2) that when an allele was 

dominant, that allele reached a lower frequency in the population. This was because a higher 
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frequency of the opposite allele was required to bring the sex ratio to equality. The difference 

in genotype frequencies between 1a - 1c, demonstrates that frequency dependent selection 

was occurring and that it was acting on the phenotypes of individuals, i.e. the sex of 

individuals, rather than on the genotypes. This was because an individual's sex affected their 

probability of being able to breed, and thereby pass on their genes. If, for example, there was 

an excess of males in the population, then selection for females occurred, because females 

had a higher probability of breeding. This selection for females caused the f allele to be 

transmitted in greater numbers than the m allele, to the next generation, because males with 

the f allele had daughters. The fact that the f allele was recessive in Sim. 1b, simply meant that 

a higher frequency of the f allele was required to cause a sufficient number of females to be 

born. 



 

8
2
 

 

Table 3.2.  Sim. 1a - 1c. The sex ratio gene was autosomal and expressed in males, there were m and f alleles in the population. All simulations ran for 

500 generations. The genotype and allele frequencies are averaged over all generations (excluding F0). 

Genotype frequencies (%) Allele frequencies (%) Sim Allele 

dominance 

Sex ratio 

mf mm ff m f 

1a  

 

m = f 0.501 ��29.34 �

��20.70�

��10.45�

��4.29 �

��10.34 �

��24.88 �

39.76 60.24 

1b 

 

m > f 0.502 ��25.14 �

��0.05�

��0.10�

��0 �

��24.96�

��49.75 �

12.70 87.30 

1c m < f 0.499 ��24.96 �

��25.06 �

��24.90�

��12.50�

��0 �

��12.58 �

62.41 37.59 
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3.3.1.1.2 Inclusion of a dominant i allele 

3.3.1.1.2.1 i in a 2 allele polymorphism 

 

Fig. 3.7.  Sim. 2a  (i > m); mm males produced only male offspring, mi and ii males were 

equally likely to produce male and female offspring. 

 

In Sim. 2a (Fig. 3.7 and Table 3.3), it can be seen that the occurrence of a dominant i allele 

alongside an m allele in the population, resulted in a persisting male bias in the sex ratio. The i 

allele continued to increase in frequency, bringing the sex ratio closer to equality, until about 

the F600 generation. From thereon, frequency dependent selection does not reduce the m 

allele any further and the sex ratio does not reach equality. Although frequency dependent 

selection drives the sex ratio toward equality, it cannot eliminate the m allele and bring about 

an equal sex ratio, because selection does not act on any alleles in females - all alleles are 

passed on indiscriminately by females. Also, the m allele is recessive, so is not expressed in the 
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phenotype of mi males and is therefore passed on indiscriminately by them. In Sim. 2b (Fig. 

3.8, Table 3.4), a similar picture is seen with an f allele and dominant i allele in the population. 

 

Fig. 3.8.  Sim. 2b  (i > f); ff males produced only female offspring, fi and ii males were equally 

likely to produce male and female offspring. 
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3.3.1.1.2.2 i in a 3 allele polymorphism 

It can be seen in Sim. 3a - 3c (Fig. 3.9 - 3.11 and Table 3.3), that the introduction of a dominant 

i allele in the population alongside the m and f alleles, results in a stable sex ratio equilibrium, 

regardless of the dominance relationship between the m and f allele. All possible genotypes 

were also maintained at stable frequencies in both sexes.   

    

Fig. 3.9.  Sim. 3a  (i > (m =  f); mm males produced only male offspring,  ff males produced 

only female offspring, mf, mi, fi and ii males were equally likely to produce male and female 

offspring.  
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Fig. 3.10.  Sim. 3b  (i > (m > f); mm and mf males produced only male offspring,  ff males 

produced only female offspring, mi, fi and ii males were equally likely to produce male and 

female offspring. 
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Fig. 3.11.  Sim. 3c  (i > (m < f); mm males produced only male offspring, mf and  ff males 

produced only female offspring, mi, fi and ii males were equally likely to produce male and 

female offspring. 

 

 



 

8
8
 

 

Table 3.3. Inclusion of an i allele. Sim. 2a and 2b ran for 1000 generations. Sim. 3a - 3c ran for 500 generations. The genotype and allele frequencies 

are averaged over all generations (excluding F0). 

Genotype frequencies (%) Allele frequencies (%) Sim Allele 

dominance 

Sex 

ratio 
mf mm ff mi fi ii m f i 

2a i > m 0.511  � ��1.17 �

��0.78�

� ��12.06 �

��10.20 �

 � ��37.90 �

��37.89 �

13.07  86.93 

2b i > f 0.489 � � ��1.02 �

��1.53 �

� ��10.95 �

��12.59 �

��36.95 �

��36.96 �

 14.31 85.69 

   � � � � � �    

3a i > (m = f) 0.502 ��13.76 �

��11.17 �

��5.72 �

��2.93 �

��5.53 �

��10.64 �

��10.51 �

��7.15 �

��10.28 �

��13.51 �

��4.4 �

��4.4 �

29.94 40.53 29.53 

3b i > (m > f) 0.504 ��7.11 �

��3.41 �

��0.94 �

��0.26 �

��7.65 �

��11.61 �

��7.09 �

��3.17 �

��17.7 �

��21.33 �

��9.86 �

��9.87 �

11.59 44.03 44.38 

3c i > (m < f) 0.498 ��9.79 �

��10.66 �

��10.54 �

��6.47 �

��0.92 �

��4.37 �

��16.35 �

��12.45 �

��6.19 �

��10.24 �

��6.01 �

��6.01 �

41.63 23.74 34.63 
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3.3.1.2 X-chromosome gene simulations 

In these simulations, the F0 generation consisted of 1,000 individuals of each genotype in each 

sex; for clarity the F0 generation is not plotted in the following figures (Fig. 3.12 – 3.16) and 

the plots begin in the F1 generation.    

 

3.3.1.2.1 Sex ratio determined by males 

 

Fig. 3.12. Sim. 4a. An X-chromosome sex ratio gene with m and f alleles - the sex ratio was 

determined by males; m haplotype males produced only male offspring,  f haplotype males 

produced only female offspring. 

   

In Sim. 4a (Fig. 3.12), it was seen that the combination of m and f alleles on the X-chromosome 

was not stable; a rapid increase in females was accompanied by a decline in males, which 

caused the population to go extinct by the F10 generation, because there were no males to 

fertilise the females. The primary reason the population was not stable was that m haplotype 
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males only had sons, which meant that they did not pass on their genes, because sons inherit 

their X-chromosome genes from their mothers. Also, females could not inherit an m allele 

from males, so mm females could not occur. In all, this meant that males had an increasingly 

higher probability of inheriting an f than an m allele from females, because the only female 

genotypes were mf and ff, whilst females could only inherit f alleles from males. Inevitably, the 

increase in females caused the population to go extinct. 

 

Fig. 3.13. Sim. 4b. An X-chromosome sex ratio gene with m and i alleles - the sex ratio was 

determined by males; m haplotype males produced only male offspring, i haplotype males 

produced equal male and female offspring. 

 

In Sim. 4b (Fig. 3.13), the combination of m and i alleles was also not stable, it was seen that all 

genotypes containing the m allele (male m and female mi) were eliminated by the F17 

generation, leaving only genotypes containing the i allele. As with Sim. 4a, sons could not 

inherit from their fathers and females could not inherit an m allele from their fathers. This 
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meant that the mm genotype could not occur in females, which left only females with mi and ii 

genotypes. The i allele increased over the m allele, because it was the only allele that caused 

daughters to be born and the only allele that daughters could inherit, whilst all males inherited 

their genes from their mothers. The simulation was stopped once only the i allele remained in 

the population, because the number of males and females born to i males was a function of 

the method of randomisation used in the model, which was equivalent to tossing a coin to 

determine if each child was male or female. As such, there was no way for selection to operate 

on the sex ratio and it was highly improbable that the population would ever go extinct.  

 

Fig. 3.14. Sim. 4c. An X-chromosome sex ratio gene with f and i alleles - the sex ratio was 

determined by males; f haplotype males produced only female offspring, i haplotype males 

produced equal male and female offspring. 

 

In Sim. 4c (Fig. 3.14), the combination of f and i alleles was not stable, for almost the same 

reason that the combination of m and f alleles was not stable in Sim. 4a. The i haplotype males 
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only passed on the allele through their daughters, which meant that they were passing on less 

of their genes than f haplotype males. This caused the f allele to increase in females, which - 

because males inherited their genotypes from females - caused it to increase in males, causing 

the population to eventually go extinct due to an excess of females.  

 

Fig. 3.15. Sim. 4d. An X-chromosome sex ratio gene with m, f and i alleles - the sex ratio was 

determined by males; m genotype males produced only male offspring, f genotype males 

produced only female offspring, i genotype males produced equal male and female offspring. 

 

Sim. 4d (Fig. 3.15) confirms what could be deduced from the previous X-chromosome 

simulations (Sim 4a - c).  The combination of m, f and i alleles was not stable and the 

population went extinct by generation F23. The cause of the extinction was the f allele, 

because this allele drives an increase in females, which cannot be checked by the m or i alleles, 

as shown in the previous simulations.  
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3.3.1.2.2 Sex ratio determined by females 

 

Fig. 3.16. Sim. 5. An X-chromosome sex ratio gene with m and f alleles - females determined the 

sex ratio; mm genotype females produced only male offspring, ff genotype females produced 

only female offspring, mf genotype females produced equal male and female offspring. 

 

 

In Sim. 5 (Fig. 3.16), females determined the sex ratio, as opposed to males in the previous X-

chromosome simulations. The m and f alleles were expressed with incomplete dominance in 

the females, so mf females produced equal male and female offspring, mm females produced 

only sons and ff females produced only daughters. It was seen that this resulted in a stable sex 

ratio, in which genotype frequencies were altered in response to frequency dependent 

selection, as can be seen by the homeostatic type oscillations in the frequency of males and 

females. The x̄ sex ratio over 500 generations was 0.501. 
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3.3.2 Sex ratio heritability in genealogical data 

The data for these analyses were extracted from the z_f0_to_f2_m and z_f0_to_f2_f tables 

(section 3.2.2, Appendix II). In the z_f0_to_f2_m table, there were 120,894 F2 offspring sired 

by 29,838 F1 fathers (and their 31,347 spouses), which is an average of 4.05 children per 

father, 3.85 children per mother and 1.05 spouses per father. In the z_f0_to_f2_f table, there 

were 92,376 F2 offspring with 25,664 F1 mothers (and their 26,342 spouses), which is an 

average 3.6 children per mother, 3.51 children per father and 1.03 spouses per mother.  

 

3.3.2.1 Crosstab analysis  

In Fig. 3.17, the x̄ F1 sex ratio is plotted against x̄ F2 sex ratio, for records cross-tabulated for 

the same number of offspring in both the F1 and F2 families. All F1 and F2 families consisted of 

> 4 offspring. The data points are in matched pairs, and each is based on > 49 records. The blue 

circles are for F1 individuals that were male and therefore fathers of the F2 offspring. The pink 

circles are for F1 individuals that were females and therefore mothers of the F2 offspring.   

 

Figure 3.17. F1 against F2 sex 

ratio, where datapoints are x̄ 

values and the data is cross-

tabulated by family size; blue 

circles = male F1 individuals; 

pink circles = female F1 

individuals. 
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It can be seen in Fig. 3.17, that the male and female data points occur in distinct clusters 

against the x-axis (F1 sex ratio). The reason this occurs, is because F1 males and F1 females 

were separately selected from the dataset, which - provided there is heterogeneity in the sex 

ratio between families - will always result in males being more likely (on average) to have been 

selected from male-biased sibships, whilst females will always be more likely (on average) to 

have been selected from female-biased sibships. 

 

It is of greater interest whether the male and female data occur in separate clusters against 

the y-axis (F2 sex ratio). It would be expected from a hypothesis of no heritability or no 

difference in heritability of the sex ratio by either sex, that the datapoints would be randomly 

distributed against the y-axis, because there was no separate selection for F2 males or F2 

females - these occur in the dataset because they are the offspring of the F1 males or F1 

females. It does seem, however, that the clusters show some divergence on the x̄ F2 sex ratio 

(y-axis), between the male (x̄  = 0.5217 ± 0.0077, 99% c.i., n = 42)  and female ( x̄  = 0.5069 ± 

0.0086, 99% c.i., n = 42) datapoints (t = 3.158, p = 0.003). In other words, the sex ratio among 

the F2 offspring of F1 males is higher than among the F2 offspring of F1 females. 

 

The crosstab analysis is useful in the sense that it eliminates any confounding effect of family 

size (section 3.2.2.1) and is useful for summarising the data graphically. Also, the non-random 

distribution of the sex ratio against the x̄ F2 sex ratio (y-axis) does indicate that there may be 

some form of inheritance of the sex ratio between generations, but it is not a powerful test of 

any sex difference in inheritance of the sex ratio. 
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3.3.2.2 Regression analyses and h2 estimate 

A multiple regression analysis was first carried out to test whether the sex ratio produced by 

individuals of both sexes was correlated with that produced by their parents. The dependent 

variable was the x̄ F2 sex ratio, where this was produced by > 1 F1 full-siblings of the same sex, 

where each sibling had > 4 offspring. The independent variables were F1 sex ratio and F1 sex. 

The results of this test indicated that together F1 sex and F1 sex ratio are significantly related 

to F2 sex ratio (F2, 1808 = 5.588, p = 0.004), explaining 0.5% of the variation, whilst F1 sex itself is 

a significant predictor of F2 sex ratio (F1, 1809 = 7.076, p = 0.008), explaining 0.3% of the 

variation.  

 

A separate regression analysis was then conducted for each F1 sex using the same data, which 

showed that F2 sex ratio is significantly associated with F1 sex ratio when produced by F1 male 

offspring (n = 1224, t = 2.584, p = 0.01), with F1 sex ratio explaining 0.5% of the variation in F2 

sex ratio. In contrast, no association with F1 sex ratio was detected when the F2 sex ratio was 

produced by F1 females (n = 587, t = 0.269, p = 0.788).  

 

An estimate of heritability (h
2
) can be derived from the value of the partial regression 

coefficient [b] in a mid-offspring on mid-parent regression, in which case heritability of the sex 

ratio by males is 0.057 ± 0.022.  

 

3.3.2.3 Generalized Linear Modelling 

This procedure tested whether the total proportion of F2 males and F2 females (grandchildren) 

descended from F0 parents (grandparents) was dependent either on F1 no. offspring or F1 sex 

ratio, where the F2 offspring were produced either by F1 males or F1 females. The response 

variable was the untransformed proportional data of the F2 males and F2 females, whilst F1 
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sex ratio and F1 no. offspring were included as explanatory variables in separate tests for F1 

males and F1 females. All records included > 1 offspring in each family. The tests indicate that 

F2 sex ratio is significantly associated with the F1 sex ratio when it is sired by F1 males (F1, 13420 

= 4.403, p = 0.035), but not when it is sired by F1 females (F1, 10987 = 0.004, p = 0.947). F1 no. 

offspring was not significant in either case, neither was the interaction between F1 no. 

offspring and F1 sex ratio. 

 

3.3.2.4 t-Test (brother - sister comparison) 

In this test, all F1 and F2 families had > 4 offspring. In each F1 family, there were at least one 

male and one female offspring. The absolute difference between x̄ F2 and F1 sex ratio was less 

for male (0.1704 ± 0.0103, 99% c.i., n = 1098) than female (0.1851 ± 0.0109, 99% c.i., n = 1098) 

siblings (t = 2.738, p = 0.006), indicating that the male siblings produced a sex ratio more 

similar to that produced by their parents, than did their sisters (Fig 3.18). 

  

Figure 3.18. Absolute difference 

between the  x̄ F2 sex ratio 

produced by F1 male siblings 

(hatched bar) and F1 female 

siblings (open bar) of the same 

families, from the F1 sex ratio 

produced by their parents. Error 

bars: 99% c.i. The difference in 

the means is significant (p = 

0.006). 
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3.3.2.5 t-Test (twin comparison) 

The x̄ absolute difference in sex ratio of offspring was 0.273 (n = 36) for male-male twins, 0.254 

(n = 37) for male-female twins and 0.250 (n = 44) for female-female twins. There was no 

significant difference between these means for male-male twins compared with male-female 

twins (t = 0.378, d.f. = 71, p = 0.71), or male-male twins compared with female-female twins (t 

= 0.498, d.f. = 78, p = 0.62). 

 

3.3.2.6 t-Test (first and second family comparison) 

The x̄ absolute difference in sex ratio of offspring in first and second families was 0.258 (n = 

517) for men and 0.286 (n = 82) for women. There was no significant difference between these 

means (t = -1.167, d.f. = 597, p = 0.24). 
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3.4 Discussion 

3.4.1 The evidence for a sex ratio gene 

The genealogical database collated for this study was subjected to several analyses designed to 

detect heritability of sex ratio variation. The results of the regression analyses (section 3.3.2.2), 

showed that there is a positive association between the sex ratio produced by male children 

with the sex ratio produced by their parents, but no association between the sex ratio 

produced by female children with that produced by their parents. A heritability (h
2
) estimate of 

0.057 ± 0.022 inheritance of sex ratio variation by males, was derived from the regression 

analysis. In a general context, a heritability of 5.7% is low, but there are strong reasons to think 

that the result indicates a real phenomenon, as opposed to a Type I statistical error:  

 

1) The regression analysis of male inheritance was significant at the 1% level. It was based on a 

large dataset of 1,224 families, where each family had >4 offspring in the F1 sibship and >9 

offspring in the F2 sibships. The results of the regression analyses were confirmed by 

generalized linear modelling, which controlled for family size and included a greater 

proportion of the data (13,420 records with >1 offspring in the F1 and F2 sibships).  

 

2) The result accords with the results of two previous studies with inter-generational human 

data (Trichopoulos 1967; Curtsinger et al. 1983) (section 3.1.2.3).  

 

3) The result corroborates the findings of Morton et al. (1967) and Khoury et al. (1984) from 

interracial crosses, which showed that the sex ratio of offspring is closer to that which is typical 

of the father's, rather than the mother's race. A paternal pattern of sex ratio inheritance in 

humans would also explain why Tremblay et al. (2003) found a higher incidence of male births 

among certain patronyms, in the Sanguenay region of Quebec. The existence of heritable 
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variation would also explain why some studies (e.g. Lindsey and Altham 1998; Helle 2008) have 

reported that some families are more likely to have sons and others more likely to have 

daughters.  

 

4) The regression and generalized linear model analyses are confirmed by the results of the t-

test analysis (section 3.3.2.4), in which the degree of sex ratio inheritance by brothers and 

sisters was compared. It was seen that the difference between the sex ratio produced by male 

siblings and that produced by their parents, was significantly lower than the difference 

between the sex ratios produced by female siblings and that produced by their parents. It can 

be argued that directly comparing inheritance of sex ratio variation between full brothers and 

sisters was the most powerful test of the data, for two reasons. Firstly, the possible 

confounding effects of inter-family variation were controlled for. Secondly, error due to 

differences in the methodology used by the family tree researcher was reduced, because 

comparisons were being made within families taken from the same family tree file. 

 

There was no indication of a smaller difference between the sex ratio of the offspring of male-

male twins, as compared to female-female or male-female twins. This would be expected if 

heritable sex ratio variation is expressed in males, because both male twins would be expected 

to inherit a similar sex ratio producing tendency from their parents, whilst female-female or 

male-female twins would not. There was also no indication of a smaller difference between 

the sex ratio of offspring in the first and second families of men, as compared to women. 

However, both of these tests of the data suffered from small sample size and it would be 

unwise to infer much from them. In the case of twins, it was rare to find twins who both had 

>2 offspring (there were only 36 male-male pairs), whilst it would have been preferable to 

have twins with larger families, though these were even rarer. In the case of second families, it 
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was not particularly rare for men to have more than one family with >2 children (n = 517), but 

it was rare for women (n = 82), which was the limiting factor in the power of the test. 

 

A possible problem with the genealogical data used in this study, is that much of it was 

collated by amateurs researching their own family trees. It can be argued that family members 

are the best people to research their own trees, whilst the family tree files were also filtered 

for a large number of errors (section 2.2.1.3). However, some of the trees will have contained 

incorrect family connections and incomplete families. It seems that there is an above expected 

excess of males in the database, which is probably due to males being more easily traced 

through the family name. It is unlikely, however, that this could have significantly impacted on 

the findings of the study. In all of the tests of the data, the sex ratio produced in one 

generation was tested for association with the sex ratio produced by sons or daughters in the 

next generation. It was found, not only that males with more brothers had more sons, but 

males with more sisters had more daughters, which would not be expected if the results were 

simply due to excess recording of males. 

 

An unavoidable problem with genealogical data, is that the accuracy of male parentage is hard 

to know. In particular, this has a bearing on the estimate of heritability of the sex ratio by 

males, which may well be higher than the value of 0.057 ± 0.022 reported here. A recent study 

comparing Y-chromosome haplotypes within British family surnames, suggested that 

approximately 1-2% children may be the result of extra-pair paternity (King and Jobling 2009). 

If it is reasonably assumed that female parentage is more accurate in genealogical data, then if 

females do inherit the sex ratio from their parents it will be easier to detect than in males. In 

fact, it was not detected in females, which suggests that females either do not inherit or do 

not express a sex ratio gene. 
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A paternal pattern of sex ratio inheritance has also been shown in experimental populations of 

the crustaceans Branchipus schaefferi (Beladjal et al. 2002) and Tigriopus californicus 

(Voordouw et al. 2005); also, the polychaete worm Ophryotrocha labronica (Premoli et al. 

1996). It has been suggested that a Y-chromosome gene could explain paternal inheritance of 

the sex ratio, but because the human data shows continual variation in heritability, it is clear 

that it cannot be due solely to a Y chromosome gene, because such a gene would be 

diminished by producing daughters. It was pointed out by Beladjal et al. (2002) that the 

existence of continual variation in heritability would suggest a variable factor, e.g. B 

chromosomes. However, supernumerary chromosomes are unusual in humans and often 

associated with malformations (Fuster et al. 2004). It has also been suggested that paternal 

inheritance patterns could be explained by a polygenic system, which gives the father zygotic 

control over sex, so after fertilisation the equal sex ratio imposed by a major sex-determining 

gene in the mother is modified (Premoli et al. 1996). However, this idea has been criticised on 

the basis that the polygenic system would presumably also be transmitted through females 

(Voordouw et al. 2005).  

 

3.4.1.1 A sex chromosome gene 

A possible explanation for paternal sex ratio inheritance, is that X-linked and autosomal genes 

are involved. This was the conclusion of a study by Varandas et al. (1997) with Drosophila 

mediopunctata. This species is known to have males that produce strongly female-biased 

broods, which is commonly attributed to a gene on the X-chromosome, known as 'sex-ratio' or 

'SR'. In one experiment, the authors observed significant paternal inheritance of sex ratio 

variation, in a regression of the sex ratio produced by fathers (F1) on that produced by their 

sons (F2). In a separate experiment, the sex ratio produced by the sons of different mothers 

and the same father, was measured (on the basis that this would control for Y-linked effects) 



 103 

and it was found that mothers had a significant effect on the expression of 'SR' in their sons. 

The authors of this study concluded that autosomal, rather than Y-linked genes were involved, 

because males with the same Y-chromosome and different mothers showed different 

expression of 'SR'. The authors proposed that the autosomal genes evolved as suppressors of 

'SR', because such a gene would otherwise drive a population to extinction.  

 

An X-chromosome gene which results in males that only produce female offspring was 

modelled by Hamilton (1967). It was shown that the gene will propagate at a greater rate than 

an X-chromosome gene which causes equal male and female offspring to be born, ultimately 

driving a population to extinction. In fact, this simulation has the same outcome and 

demonstrates exactly the same principle as Sim. 4c, in which males determined the sex ratio 

via an X-chromosome gene, and the f allele - which caused only females to be born - spread to 

fixation and eliminated the i allele. 

  

The reason the f allele spread to fixation in Sim. 4a, c and d, is that males only inherit X-

chromosome genes from their mothers and only pass X-chromosome genes to their daughters 

(sons inherit Y-chromosomes from their fathers). The f allele increased at a greater rate, 

because females were more likely to inherit an allele that caused more females to be born, 

and subsequently passed the allele to their sons. If, for example, an X-chromosome allele 

causes 7 out of 10 siblings to be female, whilst another causes 5 out of 10 to be female, then 

the former allele will clearly increase at a greater rate, both in females and subsequently in 

their sons
1
. The increase in the f allele could not be checked by an increase in the m or i allele, 

                                                 
1
 In these simulations, males were able to mate up to 10 females. If males had only been able to mate 

one female, then an f allele would still have caused the population to go extinct but more quickly, 

because more males would be required to sustain the population. 
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because males could not inherit these from their fathers; so, even though there was a demand 

for males, the genes for producing males could not increase in frequency via selection. 

 

In the same way that alleles which cause more females to be born will eliminate others when 

the sex ratio is determined via the X-chromosome, an allele that causes more males to be born 

will eliminate other alleles when the sex ratio is determined via the Y-chromosome. Indeed, 

Hamilton (1967) demonstrated that a Y-chromosome with a mutation that caused fathers to 

produce all male offspring would spread toward fixation, causing extinction of the population. 

Hamilton also suggested that this type of Y-chromosome mutation may explain the occurrence 

of all male broods in species such as Aedes aegypti (e.g. Hickey and Craig 1966), and suggested 

that counter mutations may have evolved on the autosomes or X-chromosomes, in order to 

inactivate the Y mutation and prevent extinction. 

 

In the present study, the questions asked about sex ratio determining genes are slightly 

different to those asked by Hamilton (1967). It was the aim of this study to answer the 

question of whether frequency dependent selection could regulate the sex ratio, through 

variation in an autosomal sex ratio determining gene. It was then considered whether this 

could occur via genes on autosomes or sex chromosomes. There was no assumption made 

with regard to what an optimal sex ratio should be, or whether genetic sex ratio variation 

should exist. In contrast, Hamilton was asking how sex ratio distorting mutations may interfere 

with ordinary sex ratio function, which is why this classic paper was called 'Extraordinary Sex 

Ratios'. Implicit in the approach, is the assumption that an ordinary sex ratio is one that is 

equal (the effect of differential parental investment aside). This assumption is derived from the 

Fisherian prediction that genes which code for an unequal sex ratio should be deselected 

(section 1.1.1.2).  
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An X or Y-chromosome with a mutant gene that causes males to produce offspring of a single 

sex (as modelled by Hamilton 1967), is often referred to as a 'driving' X or 'driving' Y-

chromosome. In a theoretical context, it is widely thought that the mutant gene is a ‘selfish 

genetic element’, which propagates to the detriment of the rest of the genome, by killing or 

incapacitating sperm containing rival genes (Presgraves 2008). The general phenomenon is 

described as 'meiotic drive', because the normal 50:50 segregation of the sex chromosomes 

that would be the expected outcome of random segregation in meiosis, becomes altered 

during spermatogenesis. It is thought that these mutations exist in nature, because males that 

produce exclusively female offspring have been observed in numerous species, in particular 

Drosophila spp. and other Dipterans, but also in mammals, plants and fungi (e.g. Hurst and 

Pomiankowski 1991; Lyttle 1991; Taylor and Ingvarsson 2003).  

 

A major difficulty with postulating the existence of meiotic drive genes, is that they drive a 

population to extinction; as such, it would seem more logical to postulate the non-existence of 

these genes in extant species. It is usually hypothesised that the action of 'driving' 

chromosome genes, is counteracted by ‘modifier' genes on the other sex chromosome or 

autosomes (e.g. Presgraves et al. 1997; Pennisi 2003). It has been argued by Pomiankowski and 

Hurst (1999) that the evidence for meiotic drive genes is tentative, because no genetic markers 

have been found and the existence of the genes is inferred from the sex ratios of crosses. 

Indeed, the evidence is mostly circumstantial, though there are recent studies with Drosophila 

simulans, which have characterised both X-linked and autosomal genes that interfere with 

spermatogenesis and cause males to produce female-biased progeny (Tao et al. 2007). It 

would be interesting to explore the meiotic drive literature in more detail, but the focus of this 

study is humans and the literature mostly relates to experimental studies with insects.  
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It is interesting that an f allele on the X-chromosome did not spread to fixation and cause 

extinction of the population in Sim. 5. The only difference in this simulation from Sim. 4a, was 

that the sex ratio was determined by females. In fact, the combination of m and f alleles was 

stable and the sex ratio was maintained near equality over 500 generations. The reason for 

this is that the X-chromosome is diploid in females, so unlike males, female can inherit the 

tendency to produce more male offspring from their fathers on the X-chromosome. It is 

possible, therefore, for the m allele to increase via selection, thereby counteracting the 

increase in the f allele. However, in terms of genetic control of the sex ratio in humans, it 

seems that only males demonstrate heritability of sex ratio variation, which is the opposite of 

what would be expected if the sex ratio were determined by females via a gene on the X-

chromosome. 

 

3.4.1.2 An autosomal gene 

In the simulations where the sex ratio was determined by an autosomal gene, expressed in 

males (Sim 1a - 3c), it was seen that various combinations of m, f and i alleles with various 

dominance relationships between the alleles, resulted in an approximately equal sex ratio over 

500 (Sim. 1a-c and 3a-c) or 1,000 (Sim. 2a-b) generations. In each simulation, the equality of 

the sex ratio was maintained in the long-term by a dynamic equilibrium, which saw the 

frequency of each sex born per generation continually oscillate from an excess of one sex to 

the other. It is a pattern that resembles homeostatic equilibrium, whereby a measurement 

fluctuates around a mean value, due to the action of negative feedback processes. Indeed, the 

regulation of the sex ratio in these simulations can be described as a negative feedback loop, 

because an excess of one sex is what triggers an increase in the opposite sex. It is notable that 

previous authors have described oscillations in the human sex ratio, occurring with 

approximately 30 year amplitude and within remarkably restricted ranges (Gini 1955; James 
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1995)(section 3.1.2.1.1), which according to this result, could be explained by an autosomal 

gene with polymorphic alleles. 

 

It is clear that frequency dependent selection was occurring in these simulations, and that this 

was the reason for the long-term equality of the sex ratio. In generations where there was a 

higher relative frequency of one sex in relation to the other, this created a differential 

between the sexes in the probability of being able to breed. This differential meant that 

individuals with a genetic predisposition to produce more offspring of the rarer sex, were more 

likely to pass on their genes - due to the higher probability of their offspring being able to 

breed. In this way, an excess of either sex brought about the conditions that caused an 

increase in the alleles that caused more of the opposite sex to be born. 

 

In the simulations with an m and f allele, the dominance relationship between the alleles 

primarily determined the number of phenotypes available. If either allele was dominant, then 

there could only be two phenotypes (males who only produced sons or males who only 

produced daughters), whereas when there was incomplete dominance between the two 

alleles, there was also a third (intermediate) phenotype, i.e. males that were equally likely to 

produce sons and daughters. It is interesting that when the m or f  allele was dominant, the sex 

ratio was still maintained near to equality. It shows how brood sex ratios can be exclusively 

male or exclusively female, whilst the population sex ratio can be 1:1. An example of this type 

of sex ratio distribution has been observed in the Apple Snail (Pomacea canaliculata) (Yusa and 

Suzuki 2003). However, Yusa (2007) found maternal and paternal influence on brood sex ratios 

in this species, which indicates a different mechanism, e.g. the author suggests that genes 

expressed in offspring may be responsible. 
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Importantly, the inclusion of a dominant i allele in Sim. 2a - 3c did not result in the elimination 

of the m and f alleles and fixation of the i allele, even though a stable sex ratio equilibrium 

would have been the outcome. It is seen that selection does not cause the sex ratio to level 

out into a stable equilibrium, via fixation of the i allele, but causes it to persist in a dynamic 

equilibrium. There are two important aspects to understanding why this happens. 

 

Firstly, consider the simple sex ratio model of Shaw and Mohler, which showed that 

"[w]henever the primary sex ratio of a population is not 0.5, selection favors sex ratio genes 

whose increase in frequency will cause a shift closer to 0.5 ... [but when] the population sex 

ratio is already 0.5 there is no selection for sex ratio genes no matter what the direction or 

magnitude of their effects" (Shaw and Mohler 1953, p.341). There is no selection occurring 

when the sex ratio is at 0.5, because all individuals have an equal chance of being able to 

breed. This explains why the dominant i allele did not exclude the m and f alleles in Sim. 2a - 

3c. If the sex ratio of the breeding population is biased toward one sex, frequency dependent 

selection will cause individuals who produce offspring of the more frequent sex to pass on 

fewer of their genes. As the population sex ratio gets closer to 0.5, the strength of selection 

gets progressively weaker, until at 0.5 it doesn't matter what sex ratio of offspring is produced, 

because all individuals have an equal chance of breeding, and any sex ratio biasing alleles 

cannot be deselected.  

 

Secondly, it needs to be understood why the sex ratio deviates from equality once selection 

has returned it to equality. Consider an F1 generation where the sex ratio at birth has become 

equal after being male-biased in the F0 generation. Individuals born in the F1 generation have 

inherited their genotype from the F0 generation, in which males were the more frequent sex 

and where females had a greater chance of reproducing. As a consequence, F1 individuals 



 109 

were more likely to inherit the tendency to produce female offspring, which means that when 

the F1 males breed (and every individual has an equal chance of breeding when the sex ratio is 

equal) the sex ratio of the F2 offspring will be female-biased. It is because selection effectively 

acts to reverse biases in the sex ratio, but there is no selection when the sex ratio is equal, that 

the sex ratio perpetually oscillates from an excess of one sex to other. 

 

In all, the results of the autosomal gene modelling suggest that the paternal pattern of 

inheritance observed in human sex ratio data may be explained by polymorphic variation in 

the alleles of an autosomal sex ratio determining gene, which acts through the male 

reproductive system (a potential proximate mechanism is discussed in section 3.4.2). The 

model was restricted to a polymorphism of up to 3 variant alleles, but there is no apparent 

reason why the polymorphism could not consist of many more variant alleles, possibly with 

complex dominance relationships.  

 

The proposed sex ratio gene is capable of explaining the paternal patterns of sex ratio 

inheritance observed in polychaete worms and crustaceans (Premoli et al. 1996; Beladjal et al. 

2002; Voordouw et al. 2005), mentioned earlier. It could potentially also explain the 

experimental results obtained by Varandas et al. (1997) with D. mediopunctata (also 

mentioned earlier), in which a paternal pattern of inheritance was found and it was also found 

that mothers affected the sex ratios produced by their sons. It remains to be clearly 

demonstrated whether the occurrence of very female-biased clutches in various species are 

due to 'driving' X-chromosome genes, but the results of the modelling carried out here raise 

the possibility that this could be due to autosomal variation. It is, of course, unwise to make 

broad generalisations and it must be recognised that there may be a multitude of genetic 

systems controlling the sex ratio in different species. Nonetheless, the autosomal system 
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proposed here is the most parsimonious explanation for the observed phenomena, because it 

involves common inheritance and a single gene, rather than intragenomic conflict and 

polygenic effects.  

 

It is also worth considering whether the proposed gene may explain how a population that 

initially has a biased sex ratio can evolve toward an equal sex ratio over a relatively small 

number of generations, as demonstrated in animal populations (Conover and Vanvoorhees 

1990; Basolo 1994; Carvalho et al. 1998 - section 2.0.2). The authors of these studies assumed 

that the alteration of the sex ratio over a relatively small number of generations must have 

been due to a facultative mechanism, in part because of the assumption that genetic change is 

too slow. However, the idea that relatively rapid change in the sex ratio cannot be due to 

genetic change (e.g. James 1995) needs to be questioned. It was suggested by Bodmer and 

Edwards (1960) that it would take approximately 2,000 years for natural selection to reduce a 

human sex ratio from 0.52 to 0.5074, but this calculation was based on sex ratio change being 

brought about by mutation, rather than selection acting on existing variation. In the modelling, 

it was shown that selection can theoretically alter the sex ratio over a relatively small number 

of generations, even as few as 3 or 4. 

 

It is well established that annual human sex ratio data is positively autocorrelated (Gini 1955; 

Graffelman and Hoekstra 2000). In the autosomal gene modelling, the sex ratio was also 

autocorrelated (e.g. Sim. 1a: first order autocorrelation = 0.708, p < 0.001), because 

inheritance of variation caused gradual and non-random change from one generation to the 

next. It is possible, therefore, that the existence of autocorrelation in annual human sex ratio 

data could be explained by inheritance of genetic variation between generations, rather than 



 111 

the other biological, social or environmental factors that have been suggested (e.g. changes in 

the frequency of intercourse: James 1995 -  section 3.1.2.1.1.1). 

 

It is also worth considering whether the correlation between the sex ratio at birth and the 

operational sex ratio [OSR] observed by Lummaa et al. (1998) in historical Finnish data (section 

3.1.2.1), could be explained by selection acting on genetic variation. The data analysed by 

Lummaa et al. was taken from historical parish records in Finland, between 1775-1850. It was 

found in 14 out of the 21 parishes studied, that a more female-biased OSR led to a more male 

biased sex ratio at birth, which the authors attribute to a facultative mechanism of sex ratio 

control. It is clear, however, that human sex ratio is positively autocorrelated, so as a general 

rule, the sex ratio in one generation should be similar to the previous, rather than opposite. In 

recognition of this, Lummaa et al. suggest that adaptive facultative adjustment of the sex ratio 

does not occur when the OSR has reached a level where the overproduction of either sex no 

longer increases a parent's probability of having grandchildren. In these periods, the 

intergenerational sex ratio would presumably be positively, rather than negatively correlated. 

 

In the autosomal gene modelling, it was seen that an increase in one sex did bring about the 

conditions for an increase in the opposite sex, but there were only certain points in the 

oscillating cycle where the sex ratio of the breeding population might be opposite to the sex 

ratio at birth, i.e. the point at which the sex ratio began to turn. It has been estimated that the 

sex ratio oscillates with approximately 30 year amplitude (Gini 1955), so it is quite conceivable 

that Lummaa et al., who examined data over 75 years, may have observed these turning 

points.   
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3.4.2 Potential proximate mechanism 

3.4.2.1 Spermatogenic mechanism 

An obvious potential proximate mechanism for expression of genetic sex ratio variation in the 

male phenotype is variation in the ratio of X:Y chromosomes in sperm, because this would 

translate into a variation in the ratio of female to male offspring. It was first demonstrated 

experimentally by Johnson et al. (1989) in rabbits and Johnson (1991) in pigs, that semen 

enriched with X or Y sperm by flow cytometry, will cause more females or males to be born. 

The use of flow cytometry to separate X and Y bearing spermatozoa is now routinely used in 

the agricultural industry to pre-determine sex (Holt et al. 2007). In humans, the commercial 

preselection technique ‘MicroSort’ has been shown, using fluorescence in situ hybridization 

(FISH), to enrich semen with X or Y sperm, whilst clinical trials have confirmed an increase of 

the respective sex following intrauterine insemination (IUI), in vitro fertilization (IVF) or 

intracytoplasmic sperm injection (ICSI) (Fugger et al. 1998; Karabinus 2009).  

 

A number of studies have reported that the ratio of X:Y sperm in human semen is 1:1, from 

direct analysis of semen samples taken from volunteers. Wang et al. (1994) used dual colour 

FISH to analyse the sperm of 12 donors and 46 semen samples. The labelling efficiency was 

97.9 ± 0.4, with X and Y labelled sperm differing as a quantity of the labelled sperm by 0.0 - 

2.0%. In two previous studies (Han et al. 1993a,b) the maximum difference between 

frequencies of X and Y labelled sperm was no more than 4.2%, with approximately 1,000 

sperm counted for each donor. Goldman et al. (1993), Spriggs et al. (1995) and Dineen et al. 

(1997) also report a ratio of 1:1 of X:Y sperm, though these studies were arguably too small for 

an adequate conclusion. Dineen et al., for example, used only four donors and a count of 

about 300 sperm per donor, from which the percentage Y sperm reported for each donor was 

47.9, 52.8, 53.0 and 55.2. A t-test was used to determine whether the percentage Y sperm 
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differed from the expected (presumably 50%) and it was found that it didn't, despite a 

difference of 7.3% between the highest and lowest sample. It is clear that with such low 

power, the risk of a Type II statistical error in this test is considerable. 

 

In terms of donors, the largest study of the ratio of X:Y sperm in human semen is perhaps that 

by Graffelman et al. (1999), in which approximately 200 spermatozoa from each of 176 

Caucasian men were screened using dual-colour FISH analysis. An average of 50.3% of sperm 

were Y-bearing, which was a significantly lower proportion than the 51.3% of male births that 

is the modern average, given the ethnicity of the donors. The authors concluded that the 

typical male bias in live births cannot be ascribed to a systematic semen sex ratio bias. It is a 

reasonable conclusion, assuming the sample of men is representative of the population. If, in 

fact, there is a polymorphism in the population, with perhaps 20% of men producing either 

more X or more Y, as predicted by the present hypothesis, then there would have only been 

about 35 males with biased sperm in this sample, more of which may have been X-biased by 

chance; thereby resulting in a lower than average overall frequency of Y sperm in the samples, 

than was true for the population. 

 

The Graffelman et al. (1999) study only counted 200 spermatozoa for each donor, which in 

relation to the tens of millions of sperm that occur in a normal ejaculation, is very small. As a 

result, there is likely to have been a high degree of error in the estimates of the true X:Y sperm 

ratio for each man. An examination of Fig. 1 in Graffelman et al. (1999), which plots the 

proportion of Y bearing sperm for each semen sample, does not give any indication of a 

polymorphism or skewed distribution among the samples. In fact, the distribution looks 

normal, but the high error expected in each donor sample may well give the appearance of a 

normal distribution to one that may be closer to a trimodal distribution. Also, there were 
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several samples with > 0.55% Y sperm and several samples with < 0.45% Y sperm, which may 

be due to random variation, but if not, then it needs to be considered that the probability of 

having a male child would differ significantly between a man with 44% Y sperm and a man with 

56% Y sperm. The authors recognised that the semen sample sizes were too small to 

appreciate any deviation from 51.3%, for any single man, but they considered that the pooled 

data demonstrates a significant deviation from 51.3%. In support, they referred to a study by 

Chevret et al. (1995), with only four men sampled, but a much larger number of sperm 

counted, which gave an estimate of 49.67% Y sperm (also well below the average livebirth sex 

ratio). It is clear, however, that the number of men sampled in this study is insufficient to be 

representative of the population. 

  

In accordance with the supposition that the ratio of X : Y sperm in the human population is 1:1, 

it has been hypothesised that excess of males at birth is due to the greater motility of Y sperm. 

The question of whether Y sperm are more motile is one that has stimulated quite a lot of 

debate, because of the sex preselection method first described by Ericsson et al. (1973), in 

which semen is purported to become enriched with X or Y sperm using albumin gradients. 

There have been a number of studies that  have disputed the idea that there is any difference 

in the motility of X and Y sperm, or that X and Y sperm can be enriched by albumin (e.g. Ross et 

al. 1975; Brandriff et al. 1986; Wang et al. 1994; Chen et al. 1997; De Jonge et al. 1997; Dineen 

et al. 1997; Flaherty et al. 1997), though see Maligaya et al. (2006), who reported that sperm 

velocity was linked to predominantly X or Y biased sperm.  

 

It seems that the method of separating human X and Y sperm using albumin gradients has had 

some clinical success. Rose and Wong (1998), reported increased male births at a clinic in Hong 

Kong, following use of the human serum albumin (HSA) procedure to separate X and Y sperm, 
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though they found, using FISH analysis, that there was no change in X:Y as a result of the HSA 

procedure. The authors tentatively proposed that 'passage through the HSA inactivates X-

bearing spermatozoa more than Y-bearing spermatozoa, even though this is not apparent 

simply on inspection of sperm motility'. Wang et al. (1998) criticise the evidence for an 

increase in males births reported by Rose and Wong, on the basis that the sample size was too 

small and therefore not statistically significant, though they concur with Rose and Wong that 

albumin gradients do not significantly alter the ratio of X:Y sperm. Zarutskie et al. (1989) and 

Beernink et al. (1993) also report success with the method. Beernink et al. (1993), for example, 

reported that of 1,034 births from sperm sorted by albumin separation for couples desiring a 

boy, 749 (72%) of the births were male and 285 (28%) were female. However, these trials were 

uncontrolled and molecular techniques did not confirm that enrichment of either sex of sperm 

had occurred (Reubinoff and Schenker 1996).  

 

James (1998b) has pointed to the contradiction between the clinical success of the method 

and the apparent lack of evidence for enrichment of X or Y sperm, and suggested that 

hormonal manipulation may be responsible for the success of the method (see also Martin 

[1994], who has similarly argued that factors involved in the artificial insemination, rather than 

the passage of sperm through albumin gradients may be responsible). Indeed the use of 

clomiphene citrate to stimulate ovulation during the treatment process, does affect hormone 

levels. Notably, Silverman et al. (2002) reported that clomiphene citrate in itself reduced the 

sex ratio among births, but not to the extent that it did in combination with albumin treated 

sperm; as such, these authors argue that both are essential for increased female births.  

 

A number of studies have indicated that the ratio of X:Y sperm can differ from 1:1. Richards et 

al. (1997) reported that 5 of 7 males in their study, as well as 8 males in two previous studies 
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(Johnson et al. 1993; Vidal et al. 1993) showed significant excess of X sperm. The authors 

speculated that 'certain males may have a natural shift in the sex ratio of ejaculated sperm 

cells or that ejaculates may vary' and that this may result in some families having more 

offspring of one sex. 

 

Lobel et al. (1993) analysed 98 semen samples from 95 donors, using  the polymerase chain 

reaction [PCR] technique. The donors were undergoing an infertility evaluation, and so 

exhibited a non-normal range of sperm morphology and motility parameters. In total, all the 

samples were found to contain an average of 50.3% Y chromosome, with a range of 41.9% to 

56.7% Y chromosome in each sample. All of the samples were tested in triplicate and it was 

found that there was a high precision evaluation of each sample, with a coefficient of variation 

of 2.7% for each sample. Interestingly, the coefficient of variation among the sample means 

was higher at 6.5%, which, as the authors suggest, indicates that the differences between the 

samples cannot be accounted for by random error. However, the 10 highest and 10 lowest 

samples were run through the PCR analysis again and it was found that they regressed toward 

50:50, although not entirely. The authors suggest that most, but not all, of the deviation from 

the mean seen in the outliers was not reproducible. The distribution of %Y among the samples 

(Fig. 2 in Lobel et al. 1993) looks in large part like a normal distribution, though the two tails do 

look slightly different, because there is a slight peak toward the high %Y tail, whereas the low 

%Y tail shows a more gradual decline. 

 

In terms of number of spermatozoa counted per sample, the most comprehensive study may 

be that by Griffin et al. (1996), who used dual-colour FISH to analyse semen samples from 24 

men, in which an average of over 12,000 sperm were counted for each man. It was found that 

the ratio of X:Y sperm was very close to parity (0.996), but there were 5 donors who exhibited 
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a ratio of X:Y in their samples that was significantly different from 1:1 at the 0.05 level; the 

percentage Y sperm in these samples was 47.81, 48.71, 48.74, 48.93 and 51.32. If the 

Bonferroni correction method is used to account for the number of samples tested (i.e. the 

significance level set at 0.05 / 24 = 0.002), then only 2 of the samples are significantly different 

from 1:1. The fact that this study counted many more sperm than other studies (e.g. 

Graffelman et al. 1999), means that there is likely to be less error in measuring the true 

intraspecific variation between donors. As such, this study lends tentative support to the 

possibility that there is polymorphic variation in the frequency of X:Y sperm, albeit a very small 

degree of variation. The men who produced equal X:Y sperm may be men with an mf 

genotype, whilst the four men that produced significantly more X sperm may have the ff 

genotype and the man that produced significantly more Y sperm may have the mm genotype. 

 

It seems quite probable that there is variation in the ratio of X:Y sperm, though the indications 

are that it is very slight, so typically a man with X-biased or Y-biased sperm may have 5-10% 

more X or Y than other men who produce 50:50 X:Y. In order to state with confidence what the 

typical extent of the variation is, a study with 300+ donors and a count of 10,000+ 

spermatozoa per donor might be necessary
1
. If the cause of the variation is a genetic 

polymorphism of the type proposed, then the trimodal distribution that would be expected 

with 2 polymorphic alleles and incomplete dominance (e.g. Sim. 1a), might be difficult to 

distinguish from a normal distribution, without highly accurate sperm counts from a large 

number of donors. It currently seems likely that if any genetic variation in X:Y exists, it is well 

within the range of 40-60% Y sperm, and possibly within the range 45-55% Y sperm. However, 

                                                 
1
 This is in excess of the guidelines provided by Moore and Gledhill (1988) for such studies, which 

requires a count of 400 sperm per donor to detect significant variation. However, the Griffin et al. 

(1996) study, which counted 12,000 sperm per donor, clearly demonstrates the utility of a much larger 

count to detect small deviations from equality. Also, if the number of men with a sex-bias in sperm is as 

low as 10%, a sample of 300+ men may include 30+ men with a bias, which would be sufficient to 

discount the possibility that they were outliers.    
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because the samples of men have been relatively small, it is quite possible that there may be 

men with much greater bias.  

 

It is clear that if a sex bias in sperm is a rare trait in males, then a large random selection of 

males is needed to repeatedly detect the trait. An alternative approach to random sampling, is 

to analyse the sperm of men who have an unusually high number of one sex of offspring, to 

determine whether this can be attributed to their semen. In fact, there are several studies in 

humans that have done this, i.e. tested for a correlation between greater production of X or Y 

sperm and paternity of exclusively or predominantly female or male children. Dmowski et al. 

(1979) compared the sperm from 10 men who had 3 or more daughters, with sperm from 18 

‘normal’ men who had less or no daughters. The percentage of Y sperm in semen from each 

male was determined by staining with quinacrine dihydrochloride, which attaches to Y sperm 

and allows it to be counted with fluorescence microscopy. The ‘normal’ men had a percentage 

Y sperm of 49 ± 5, whilst the men with 3 or more daughters had a percentage Y sperm of 43 ± 

6; the difference is significant (p < 0.02).  

 

Bibbins et al. (1988) conducted a similar study to Dmowski et al. (1979), in which the 

frequency of Y-bearing sperm was also identified through fluorescence microscopy. The 

analysis involved semen samples from 18 men who had fathered three or more daughters and 

no sons, compared with samples from 10 men who had fathered both sons and daughters. It 

was found that there was a significant difference between the samples. The men who had 

fathered three or more daughters had significantly more X than Y sperm. The results were 

consistent over multiple samples from men in the control and test group, and the percentage 

of X sperm (or more precisely sperm without a Y chromosome) reported was as high as 79.2% 

from one donor. The authors discussed the possibility that non-disjunction of the sex 
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chromosomes during meiosis could be responsible for the higher frequency of X sperm in 

some men. Non-disjunction of either the X or Y homologues at meiosis I, or non-disjunction of 

the X chromatids at meiosis II could not have given the observed result, because neither of 

these scenarios would result in increase in sperm without Y chromosomes. However, non-

disjunction of the Y chromatids in meiosis II will result in X (1/2), Y (1/4), YY (1/8), OO (1/8); in 

total, 25% of sperm will have a Y chromosome and 62.5% will not. Bibbins et al. (1988) point 

out that such a percentage of sperm without a Y chromosome is consistent with their findings, 

except for the frequency of sperm with two Y chromosomes, which they detected at a 

frequency of 0.74%, whereas the frequency expected as a consequence of non-disjunction of 

the Y chromatids in meiosis II is 12.5%. Notably, the fluorescent test used in this study is 

known to have problems, Brandriff et al. (1986) make the point that direct chromosomal 

analysis of aneuploidy produces different results to this fluorescent test, whilst quinicrine 

hydrochloride may also bind to other heterochromatic regions, giving false Y signals (Irving et 

al. 1999). The other hypothesis offered by Bibbins et al. (1988) to explain their results, is that 

the donors had a spermatogonial cell mosaicism, with both XX and XY cells, which would cause 

X and Y sperm to be formed at the ratio 2/1, respectively. 

 

Irving et al. (1999) studied the ratio of X:Y sperm from men with three or more sons or 

daughters, using dual-colour FISH, which is an improved technique from that used by Dmowski 

et al. (1979) and Bibbins et al. (1988), because both the X and Y chromosomes can be 

identified through probes that fluoresce different colours. A minimum of 400 sperm were 

counted for each of 12 men with 3 or more sons only, and for each of 7 men with 3 or more 

daughters only. No significant difference was found in the frequency of X and Y bearing sperm 

between the men with daughters and the men with sons. In fact, the men with sons had 3% 
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fewer Y sperm than the men with daughters, whilst the men with daughters had 3.8% fewer X 

sperm than men with sons.  

 

In bulls and boars Chandler et al. (1998, 2007) reported that there was significant variation in 

%Y sperm within ejaculates from the same sires (which resulted in corresponding sex ratios 

among offspring), but not between sires, using PCR analysis. In contrast, Checa et al. (2002) 

reported no significant variation in X-chromosome content within ejaculates from the same 

bulls, but did report significant variation between bulls (38.7-58.2%). The difference between 

the Checa et al. and Chandler et al. studies, was the use of a fluorimeter in the former study, 

which gives a more accurate measurement than a spectrophotometer (Breen et al. 1999). 

However, the overall picture is confusing, because Madrid-Bury et al. (2003) reported no 

variation in %Y within or between sires, using PCR, though only 10 bulls were used in this study 

and the %Y ranged from 46.9 - 52.7%. 

 

Interestingly, Szyda et al. (2000) observed an excess of X-bearing sperm from 35 bulls, and also 

observed that two of three bulls with exceptionally high X sperm were from the same family, 

which may suggest heritable variation. It was also reported that higher X-sperm was correlated 

with a higher recombination rate between X and Y homologues during spermatogenesis. 

However, the total number of spermatozoa analysed in this study was extremely small (n = 

2,122), so despite techniques used to avoid Type I statistical errors, the results need to be 

treated with caution. 

 

It seems there is tentative evidence for heritable variation in X:Y sperm in cattle. If so, the 

question remains why it has not been possible to select for a sustainable sex ratio bias in cattle 

or other species, whilst traits such as milk yield and muscle mass have been so malleable to 
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artificial selection. In fact, the hypothesis of the present study provides a clear possible 

explanation. If the variation is determined via an autosomal gene that affects the relative 

frequency of X:Y in semen, then male offspring inherit an unknowable allele from their 

mothers, which may cause them to produce a different sex ratio from their fathers, thereby 

confounding breeders. A gene such as this may, nonetheless, explain the limited and 

temporary success using inbreeding to gain two lines of rats, one with a high and one with a 

low sex ratio (King 1918). It is possible that inbreeding concentrated the particular allele 

variants of the gene in the separate lines.  

 

3.4.3 Possible non-genetic mechanism 

It must also be considered that the paternal pattern of sex ratio inheritance observed in 

genealogical data may ultimately be explained by a non-genetic factor and proximately 

explained by a non-spermatogenic factor. It has been shown in a number of datasets, for 

example, that the probability of having a son decreases with paternal age (though the 

proximate mechanism for this is not known and maternal age and birth order have also been 

implicated [Chap. 4]). It is conceivable, therefore, that a strong enough correlation between 

age of fatherhood between fathers and sons could result in apparent heritability of sex ratio 

variation. I did not control for age of fatherhood in the sex ratio heritability analyses, but no 

significant effect on the sex ratio of paternal age was detected in separate analyses of the 

genealogical database (section 4.3.2), so it may be assumed that this is not an explanatory 

factor. 

 

3.4.3.1 Hormonal mechanism 

Clutton-Brock and Iason (1986) suggested that the apparent lack of genetic variation in the sex 

ratio indicated that a hormonal mechanism - acting at conception or during development - 
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may be responsible for sex ratio variation. It can be argued that the results of heritability 

studies are evidence for the existence of genetic variation; but, it is also conceivable that sex 

ratio heritability may be explained by some form of hormonal variation, which is transmitted 

from parents to offspring.  

 

Indeed, James (2004) has suggested that the sex ratio should be a weakly heritable trait, due 

to genetic determination of steroid hormone levels which control the sex ratio. However, 

James has not, as far as I am aware, suggested that this heritability is subject to natural 

selection, to the extent that it could explain significant trends in human population sex ratio 

data. Instead, he argues for a facultative mechanism of sex ratio control, in which the timing of 

insemination within the menstrual cycle can alter the probability of a male or female child 

being born, to the extent that the frequency of intercourse among couples affects sex ratio. 

James (1995) proposes that the population may be regulated in a homeostatic manner, if in 

response to a cognitive assessment of the frequency of each sex in the population, the 

frequency of intercourse between couples was duly reduced or increased.  

 

In terms of the female hormones involved, James (1980 a,b,c) suggests that maternal 

gonadotrophin levels around the time of conception may affect the sex of offspring born, with 

higher levels of gonadotrophin being associated with more female births. It seems from the 

correlations identified in many studies (see Table 1 in Cameron 2004), that there is some effect 

of maternal age and maternal condition on the sex ratio, which might point to possible 

hormonal effects. It also seems, however, that there is some degree of paternal control, as 

established by studies of the effect of paternal age on the sex ratio, as well as the mounting 

evidence for paternal heritability. In an effort to explain both maternal and paternal control, 

James (1996, 2004) suggests that sex ratios at birth are partially controlled by the hormone 
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levels of both parents at the time of conception, arguing that artificially high testosterone and 

low gonadotrophin in men, can result in increased male births. There is a tangible ambiguity in 

James’ arguments for a hormonal mechanism of sex ratio control; James (2001) also suggests a 

role for oestrogen and progesterone, but admits that it is not known with any certainty what 

hormones may be involved or how they may be implicated. He postulates that this may be due 

to complex interactions between hormones and other variables, which effectively masks the 

adaptive evidence: 

 

Quote 3.2:  "...the relevant hormones (testosterone and estrogen) also affect health, personality, 

attractiveness and behaviour. For instance, they differentially affect our immune systems and act as 

neurotransmitters … and so partially control our moods, and mental and neurological diseases (e.g. 

chronic depression, schizophrenia, and Parkinson’s and Alzheimer’s diseases). Testosterone levels are in 

causal  loops with our behaviour … Gonadal hormones are causally associated with personality traits and 

emotions, e.g. aggression …; extraversion …; fear, tenacity and emotional bonding …; sensation seeking 

…; and sexual drive and performance in males … and females … In short, myriad circumstances may 

cause constraints on the working of adaptive mechanisms in sex ratio.  

                                                           (James 2004, p.1254) 

  

A molecule that has been implicated in hormonal sex ratio determination (e.g. James 1997a) is 

glycerophosphocholine (GPC), because this occurs in seminal fluid, whilst 

glycerophosphocholine phosphodiesterase (GPCD) occurs in the female genital tract and can 

split GPC to free choline (Mann and Lutwak-Mann 1981). The presence of GPC in mammalian 

reproductive secretions was first identified by Diament et al. (1952), but it was first recognised 

by Dawson and Rowlands (1959) in experimental studies on rats and guinea pigs that GPC is 

not involved in the metabolism of the spermatozoa, also that the presence of spermatozoa is 

not required for secretion of GPC. It also seems to have no role in fertilization (Jeyendran et al. 
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1989) or capacitation (Wallace and White 1965). The role of GPC in the reproductive system 

has remained unclear, despite several hypotheses (James 1997a). It has, however, been found 

to correlate positively with testosterone in humans (Cooper et al. 1988) and to be under 

androgenic control in rats and guinea pigs (Dawson and Rowlands 1959), whilst GPCD has been 

found to become increased by oestrogens and decreased by progesterone (Wallace and White 

1965). 

 

Mitra and Chowdhury (1989) proposed that GPC and GPCD may have a role in sex ratio 

determination, perhaps through an effect on sperm migration. This conclusion was based on a 

study in which low sex ratios were observed in the offspring of rats given diets that resulted in 

the reduction of GPCD activity in the uterine fluid. The rats were fed a minimal diet or a diet 

with Ca2+ and Mg2+ supplements prior to conception, which resulted in a change in sex ratio 

but not a change in litter size. It is not stated in the paper how many offspring were in the 

litters, though the analyses are based on the offspring of 9 females that were fed Ca2+ and 

Mg2+ supplements (sex ratio 0.64 ± 0.06 
1
) compared with the offspring of 9 once-pregnant 

controls (sex ratio 1.6 ± 0.29); also, 8 female rats fed a restricted diet (sex ratio 0.85 ± 0.27) 

compared with 8 nulliparous controls (sex ratio 2.6 ± 0.67). If questions about the high sex 

ratios in the control groups are disregarded, then there may still be an issue with the statistical 

method employed, because use of ANOVA and t-tests on untransformed male / female ratios 

is known to produce spurious results (Wilson and Hardy 2002). Notably, the role of GPC is not 

proven by this study, as other studies have reported that rats fed a diet high in sodium and 

potassium but low in calcium affects the sex ratio (Cluzan 1965; Bird and Contreras 1986).  

 

                                                 
1
 Sex ratio here is calculated as males / females. 
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Interestingly, it has recently been demonstrated that the presence of lyso-GPCs is important 

for immunosuppression in bovine and rat gonadal fluids, suppressing T-cell activity (Foulds et 

al. 2008). Immunosuppression is required in the reproductive system, because the gametes 

are profoundly autoantigenic (Mahi-Brown et al. 1988; Garza et al. 1998), but unlike in other 

sites with known immunological privilege, such as the eye or nervous system, immune cells are 

not restricted from entering the testis (or ovaries). Lyso-GPCs are important intermediates in 

the synthesis and metabolism of GPC lipids (Khaselev and Murphy 2000), though whether their 

presence as an immunosuppressant explains the presence of GPC in seminal fluid needs 

further consideration. It is certainly not clear that GPC has a role in sex determination. 

 

According to the 'maternal dominance' hypothesis proposed by Grant (1990), dominant 

females are more likely to have sons, due to higher levels of testosterone, and specifically 

follicular testosterone (Grant and Irwin 2005; Grant et al. 2008). This is an adaptive hypothesis, 

based on the idea that dominant mothers will be more successful in leaving grandchildren if 

they have sons. It is well known that physiological and psychological determinants affect 

testosterone levels, but Grant (2003) suggests that female testosterone levels may also have a 

variable genetic component, which causes some females to have more male or female 

offspring, or indeed to have equal male and female offspring. If so, a maternal pattern of sex 

ratio inheritance would presumably be expected. However, the results of the present study 

(also Trichopoulos 1967; Curtsinger et al. 1983) suggest the opposite.  

 

3.4.3.2 Conditional mechanism 

It is suggested by Grant and Chamley (2007) that 'atypical' sex ratio data has been associated 

almost entirely with maternal, rather than paternal characteristics. However, this is not the 

case, toxicological effects on sex ratio are often associated with paternal exposure (e.g. 
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Mocarelli et al. 2000; del Rio Gomez et al. 2002; James 2008); also, sex ratio variation by 

parental age has more often been associated with paternal, rather than maternal age (section 

4.1.2). It may be true that numerous studies (mostly in non-humans) have pointed to maternal 

effects on the sex ratio, whilst looking to test the Trivers -Willard hypothesis. However, in 

many of these studies, there was no analysis of paternal variables, simply because the concept 

of paternal control of the sex ratio is not coherent with the hypothesis. In other such studies, 

the interpretation is biased; for example, in a study by Cameron and Dalerum (2009), it was 

found that the sex ratio was significantly elevated among the offspring of 350 male billionaires, 

but not among the offspring of 49 female billionaires. The authors concluded that this was 

probably due to a physiological mechanism operating in females (i.e. the wives of male 

billionaires - who have high status or are in good condition) around the time of conception, 

despite the clear evidence contradicting this interpretation in their own results, i.e. the 

absence of an elevated sex ratio among the offspring of female billionaires. 

 

The most obvious determinant of female condition is diet, and a number of studies have 

looked for an effect of diet on sex ratio. Stolkowski and Choukroun (1981) reported that a 

decrease in the mono : divalent cation ratio in the diet results in a decrease in the human sex 

ratio. In this study, the ratio of K
+
 and Na

+
 to Ca

2+ 
 and Mg

2+
 was altered in the daily diet of 

mothers wanting to conceive a child of a particular sex. If the couple wanted to conceive a boy, 

then the mother had to eat a diet rich in salt and potassium, including 'sausage, meat, 

potatoes, beans, artichokes, bananas, peaches, apricots, etc.', whilst 'dairy products, eggs, 

greens and other foods rich in calcium or in magnesium' were excluded, for one and a half 

menstrual cycles preceding conception, supplemented by [unspecified] drugs to 'help produce 

the indispensable mineral balance'. If a mother wanted to conceive a girl, the diet was the 

opposite. It was reported that the dietary regimes resulted in successful sex pre-selection, 
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based on a total of 47 births, among which only 7 of the births were not the expected sex. In 

total, 22 boys and 17 girls were born the correct sex, i.e. the sex that was requested by the 

parents, whilst one birth was boy-girl twins. The success rate of the diets was reported as 

either 80 or 84%. It should be pointed out that the methodology of this study is not well 

reported, there is very little information about the reproductive history of the women or men, 

e.g. previous children, miscarriages, etc. and also very little information about the attempts to 

conceive. Stolkowski and Lorrain (1980) also reported an 86% success rate with dietary regime 

in a cohort of 36 couples, and 81% with another cohort of 181 couples.  

 

The idea that the pH of the vaginal tract can differentially affect the survivorship of X and Y 

sperm (e.g. Rothschild and Shettles 1960; Stolkowski and Choukroun 1981) was challenged by 

Emmens (1960) and Downing and Black (1976) after negative results in experiments with 

rabbits and human semen, respectively. Also, Cromwell et al. (1989) reported no significant 

decline in the sex ratio of the litters (n 1,020) born to sows fed varying levels of salt, though 

they did report a decline in weight of offspring and a decline in litter size at birth and weaning. 

A decline in weight of offspring and litter size is expected, because of the importance of salt 

in the diet - sodium is a primary electrolyte that is vital for good health. It is possible that the 

results of the Stolkowski and Lorrain (1980) and Stolkowski and Choukroun (1981) studies may 

be explained by the low sodium diet in the women who were attempting to conceive a girl, 

and perhaps also the unspecified drugs that were administered, which resulted in poor health. 

In which case, this study may be an example of the Trivers-Willard effect, whereby females in 

poor condition are more likely to have daughters. 

 

It should be pointed out that there are mixed results from studies that have attempted to 

demonstrate a link between maternal condition or maternal status and the sex ratio (Lazarus 
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2002; Cameron 2004). Also, a correlation does not imply that an adaptive response is occurring 

and it does not necessarily imply a cause. It has been suggested that global differences in sex 

ratios may be explained by the discrepancy in calories available to the different populations in 

their diet and that this may be an adaptive response, mediated through higher mortality of 

male foetuses (Williams and Gloster 1992). Although some of the wealthiest countries do have 

the highest sex ratios and the poorest countries some of the lowest sex ratios, any correlation 

with nutrition may be incidental, as there are so many other differences between populations, 

most obviously genetic differences. A study by Navara (2009) showed that there is a latitudinal 

effect on the sex ratio, with countries in tropical latitudes having significantly fewer boys 

(51.1%) than countries in temperate and subarctic latitudes (51.3%), despite large variations in 

lifestyle and economic status. In response to this finding, the author does not rule out a 

genetic explanation, and provides a pragmatic analysis:  

 

Quote 3.3:  "The results shown here could indicate an adaptive strategy employed by humans, or there 

may be another non-adaptive explanation. More work is needed to tease apart the genetic, socio-

economic and climatic influences on sex ratio adjustment and to determine whether adaptive strategies 

explain latitudinal variation in human natal sex ratios"  

                                                           (Navara 2009, p.526). 

  

The case for an effect of maternal diet on the sex ratio was reinvigorated by a recent study by 

Mathews et al. (2008). This involved 740 women, who gave retrospective information on their 

usual diet before conception and during pregnancy. It was found that the sex ratio among all 

births was close to 50:50, but mothers with a higher nutrient intake had been more likely to 

conceive sons. It was also found that the amount of cereal consumed was a significant factor in 

whether a boy or girl was born. The authors reported the results as 'evidence of facultative 
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selection of offspring sex by individual women according to environmental cues experienced 

around conception', which is in line with the predictions of the Trivers-Willard hypothesis.  

 

The method of statistical analysis used by Mathews et al. (2008) has been criticised by Young 

et al. (2009), who point out that multiple testing will throw up significant results purely by 

chance. Mathews et al. tested for an effect of 133 food types, to find that cereal consumption 

was positively correlated with the sex of offspring. In their re-analysis of the data, using 

multiplicity adjusted p-values, Young et al. reported a p-value of 0.2813 for the effect of cereal 

on offspring sex, as compared to 0.0034 in the Mathews et al. analysis. Also, the p-value for 

the effect of total nutritional intake on sex of offspring was found not to be statistically 

significant. It should also be pointed out that the retrospective questionnaires asked, for 

example, whether cereal was consumed every day, once or twice a week, etc. It is clear that 

this method must result in great imprecision in calculations of nutritional intake, whilst the 

number of extra male offspring born to the third of mothers with the highest energy intake 

compared with the lowest third, was only about 3.5% of total births. They referred to other 

recent studies in defence of their own, which reported similar results (i.e. Bulik et al. 2008; 

Villamor et al. 2008). Notably, Bulik et al. (2008) showed that male births were lower in 

women with anorexia and bulimia, which may indicate that the poor condition of the mother is 

the primary factor. 

 

Mathews et al. (2009) defended their work in response to the criticism of Young et al. (2009) 

on the grounds that they were testing a strong a priori hypothesis, rather than conducting a 

data trawling exercise. This hypothesis was that the internal environment at conception affects 

offspring gender, in part based on the premise that the ratio of X:Y sperm is 50:50, whilst the 

sex ratio at birth is not 50:50. In general, it does seem that there is evidence that conditional 
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factors, e.g. diet, maternal condition, toxins can affect the sex ratio, but there is some 

uncertainty as to whether the ratio of X:Y sperm is always 50:50, which needs to be taken into 

account in study design. 

 

Rosenfeld and Roberts (2004) reviewed the literature relating to nutritional effects on the sex 

ratio in mammals, and concluded that the underlying mechanisms causing skews in the sex 

ratio are complex and not well understood. In laboratory studies with mice, Rosenfeld et al. 

(2003, 2004) sought to control for adequacy of diet, whilst varying the calorific content. It was 

found that a diet high in saturated fats, but low in carbohydrate led to more male births, whilst 

a diet higher in carbohydrate than fat resulted in more female births. In this instance, it should 

perhaps be questioned whether two widely varying diets can both be considered nutritionally 

adequate, especially as Rivers and Crawford (1974) demonstrated that mice fed a low fat diet 

produce a lower sex ratio and also a smaller litter size.  

 

I have included a discussion of the evidence for conditional control of the sex ratio, though the 

literature is almost completely biased toward tests for an effect of female condition on the sex 

ratio, so is unlikely to explain the paternal pattern of sex ratio inheritance observed in this 

study. It can be understood why male condition has received little attention, because the 

physiological investment by males in offspring prior to birth is relatively inconsequential. If 

paternal status or paternal condition does have an effect on the sex ratio, then the tendency 

of high status or good condition males to pair with similar females, could be observed as an 

effect of maternal status or condition.  

 

Grant (2003) makes the point that inconsistent results in human studies of the Trivers-Willard 

effect, may be due to a lack of consensus on what constitutes 'parental investment'. To 
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substantiate this point, Grant cites two contrasting studies, one by Keller et al. (2001), which 

involved ‘time-diaries’ and ‘self-report data’, the other by Koziel and Ulijaszek (2001) which 

involved ‘first birth interval and extent of breastfeeding’; both studies were measuring 

investment. A similar, but more radical argument can be made, that inconsistency in empirical 

studies of the Trivers-Willard hypothesis is due to the inherent ambiguity in the conceptual 

framework of sex-allocation theory, which reduces all sex ratio phenomena to degrees of 

parental investment.  

 

It is argued here that parents cannot effect a genetic change in the sex ratio by the extent to 

which they invest their resources in each sex. If this is correct and we assume that parental 

condition can only affect the sex ratio via facultative means, then there would seem to be little 

justification for comparing (a) a study of the duration of breastfeeding for each sex of offspring 

and maternal condition, with (b) a study of secondary sex ratio variation and maternal 

condition. Irrespective of whether there is correlation with maternal condition in either case, it 

is a considerable and far-reaching assumption that a study of sex-specific parental care and a 

study of male and female birth rates, have enough in common to draw general conclusions 

about directional evolution of the sex ratio. It is argued that the umbrella of sex allocation 

theory is too broad and conflates too many aspects of reproductive biology, by arguing that all 

genetic and facultative aspects of sex ratio control are ultimately determined by sex 

differentials in parental investment. 
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Chapter 4. Sex Preferences, Parental Age, Birth 

Order and Sex Ratio 

 

4.1 Introduction 

4.1.1 Parental sex preferences 

A number of studies have looked at the sex combinations and sex sequences of offspring 

within and between families, to determine whether the distributions are random or otherwise. 

It has often been observed that parental decisions on when to stop having children, are not 

only based on the number of children they wish to have, but also on whether they wish to 

have children of one or both sexes (e.g. Jacobsen et al. 1999a; Andersson et al. 2007). 

 

The earliest scientific study of parental sex preferences may be that carried out by Winston 

(1932) who considered whether some form of birth control, along with a preference for male 

children, might explain the higher frequency of male children born to parents of the 'higher' 

social classes (as reported in Winston [1931]). The study involved 5,466 complete families from 

the Abridged Compendium of American Genealogy, who were considered to be an 

educationally, economically, socially 'superior' subset of the population. The sex ratio at birth 

was 112 males per 100 females, as compared to between 105 to 106 per 100 for the rest of 

the population. Also, the ratio was 117.4 per 100 for the last born children, indicating that the 

last born child was more often a boy. In families with two children, it was found that there 

were 423 families with 2 sons and 0 daughters, as compared to 283 with 2 daughters and 0 

sons. Winston suggested that this was due to families being more likely to stop having children 

when they had 2 sons, rather than when they had 2 daughters, because of a preference for 

sons. 
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The observation that families are less likely to have another child if their first two children are 

a boy and a girl, has been demonstrated in numerous datasets (e.g. Gini  1908; Thomas 1951; 

Renkonen et al. 1961; Edwards 1966; Gray 1972; Maconochie and Roman 1997; Jacobsen et al. 

1999a). In a dataset analysed by Edwards (1966), parents based their decision on whether to 

have more than three children on the sex sequence of the last two children, as families whose 

last two children were the same sex were more likely to have another child than families 

whose last two children were of different sexes. Edwards concluded that sex ratio changes 

with parity of birth, also that there is evidence of a correlation between the sexes of successive 

children in a family. 

 

Jacobsen et al. (1999a) reported a strong preference for a child of each sex in Danish family 

data, as there were higher fertility rates in families where the first two children were of the 

same sex. The authors also concluded that there was a moderate sex preference for girls, 

because families with two boys were the most likely to continue for another child, though this 

preference did not apply to the decision whether to have a second child (parents were not 

more likely to stop having children if the first child was a girl) once paternal age was controlled 

for. The confounding effect of paternal age was attributed by the authors to a negative 

correlation between paternal age and sex ratio (e.g. Ruder 1985; Juntunen et al. 1997), with 

older fathers more likely to have a single child and also more likely to have daughters.  

 

It has been shown that there is a greater likelihood of parents having a second child when the 

first child is a girl, e.g. in Korean (Park 1978), Nigerian (Gray et al. 1983) and US families (Gray 

1982), indicating a preference for male children. In Finnish data, a slightly lower chance of 

having another child was found if the first child was a boy, suggesting a slight preference for 

boys; this was supported by the finding of a lower chance of having a third child if the first two 
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were boys (Andersson et al. 2007). In contrast, the Swedish population demonstrated a 

preference for girls, with parents more likely to continue having children if the first two 

children were boys (Andersson et al. 2007). 

 

Park (1983) analysed data from Korea, which is a society known to have a strong preference 

for sons and a fairly high degree of contraceptive use. It was found that the association 

between sex ratio and family size was highly significant, with an unusually high sex ratio in 

families of 2 and 3 children and a much lower sex ratio in larger families. In each sized family, 

the sex ratio of the last birth was very high, though the sex ratio of the last birth was not 

associated with family size. The findings of this study were consistent with the prediction that 

the families were more likely to cease having children when sons rather than daughters were 

born.  

 

Carlton and Stansfield (2005) looked at sibships of size two in the US National Health Interview 

Survey (NHIS) 1998-2002. They found that the distribution of the combinations of the sexes did 

not conform to a binomial distribution, even taking into account the overall bias of male births. 

The binomial model predicted that more same sex sibships should have occurred than were 

observed. This led the authors to conclude that the sexes of the second born children were not 

independent of the first born. Stansfield and Carlton (2007) followed up the previous study, by 

looking at the first two births in sibships of size 3, from the same dataset. The method used 

was to look at the combinations of the sexes in the first 2 siblings born in sibships of size 3, to 

see if the occurrence of the combinations conformed to a binomial distribution, after taking 

into account the greater number of boys born. It was found that there was a highly significant 

deviation from the binomial distribution (χ
2
 = 73.90, d.f. = 1, p < 0.0001). This was due to over-

representation of same-sex sibships and under-representation of mixed-sex sibships, which 



 135 

would be expected if parents with two boys or two girls were more likely to have another 

child, as compared to parents with a boy and a girl.  

 

Yamaguchi and Ferguson (1995) used data from the 1985 Current Population Survey (CPS), 

which is a monthly survey of about 50,000 households in the United States, conducted by the 

Labor Statistics and Census Bureau. The data contained 30,716 second births and 24,577 third 

births. It was found that women with two children of the same sex were significantly less likely 

to stop having children, as compared to women with two children of the opposite sex. It made 

no difference if the first two children were both boys or both girls. It was also found that the 

probability that women carried on having children when their first two were the same sex, was 

significantly smaller for women in the older age cohort (45-64 in 1985) as compared to the 

younger age cohort (25-44 in 1985), also for women with lower educational attainment (12-15 

years education) as compared to women with higher education (16 years or more education). 

Notably, no effect of sex composition on birth spacing was found. Pollard and Morgan (2002) 

reported similar findings using four cycles of the Current Population Survey (1980, 1985, 1990, 

1995) and 3 cycles of the US National Survey of Family Growth. The authors looked at the 

families of women who were 40+ at the time of the survey, on the assumption that women are 

unlikely to carry on childbearing above this age, and that these represent complete families. It 

was found that parents with two children of the same sex were significantly more likely to 

have another child. It was also found that this effect was strongest for the earlier cohorts, with 

a weakening of the effect starting around 1985.   

 

The question of whether a preference for children of one sex or the other can affect the sex 

ratio was clarified by Weiler (1959) and Goodman (1961). These authors pointed out that 

parents’ decisions about when to stop having children (stopping rules) cannot affect the sex 
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ratio of births in the total population, as long as there is homogeneity in the probability of 

having a male child. Cavalli-Sforza and Bodmer (1971) also make this point, as well as stating 

that stopping rules may affect the distribution of the sequences of births, thereby causing an 

apparent correlation between successive births. If, however, there is heterogeneity in the form 

of variation between couples in the probability of producing a male child, then stopping rules 

can affect the sex ratio (Weiler 1959; Goodman 1961; Yamaguchi 1989). Yamaguchi (1989) 

demonstrated this mathematically, showing that a preference for male children will result in a 

higher mean birth order for girls and a larger mean number of siblings for girls, because 

parents who are more likely to have female children will be more likely to have further 

children. 

 

Garenne (2009) has shown that the sex ratio increases with the number of previous male 

births and decreases with the number of previous female births, suggesting heterogeneity 

between parents in the probability of a male birth. The study used Demographic and Health 

Survey histories from sub-Saharan Africa, between 1936 and 2006, in which time 

contraception use was rare. In a study of over 700,000 Danish families, between 1960-1994, 

Biggar et al. (1999) also reported heterogeneity in the probability of a male birth. It was found 

that families with more boys were more likely to have a boy for their next child, so by the fifth 

birth in families with 4 boys, 52.7% were male, whereas in families with 4 girls, 49.6% of fifth 

births were male. To put this into context, 51.2% of all first births were male
1
. The evidence for 

heterogeneity in the probability of a male birth also comes from studies of heritability of sex 

ratio variation (Chap. 3). 

                                                 
1
 Biggar et al. (1999) also reported from their data, that the sex of a child was significantly affected by 

the sex of the previous child. In a later correction (Biggar et al. 2008), these authors point out that this 

result was due to a programming error, which resulted in twins being recorded as single births. Notably, 

this did not affect the finding that families which already had more boys were more likely to have boys. 
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Chu and Yu (1998) hypothesised that there should be a negative correlation between the birth 

rate and the sex ratio at birth, in countries with stronger parental preferences for male 

children, but no correlation in countries without sex preference or with weak son or daughter 

preference. This hypothesis is based on the notion that parents who have a greater disposition 

toward producing daughters, will produce larger families, because they will continue 

childbearing for longer in their attempts to have a son
1
. As a result, the sex ratio in the 

population will be lowered and the birth rate will rise. An empirical test of this hypothesis was 

carried out, using sex ratio and birth rate data from the United Nations Demographic 

Yearbooks, and information on sex preferences published in Williamson (1976, p.99). There 

were 12 countries included in the analysis, which were divided into a group with strong son 

preference (Korea, Taiwan, Tunisia and Egypt) and a group with weak sex preference (including 

several Latin American and Caribbean countries, USA and Nordic countries). A significant 

difference was found between these two groups, in terms of the relation between sex ratio 

and birth rate, with a stronger negative correlation for countries with a strong son preference. 

 

4.1.2 Parental age and birth order 

There have been numerous studies pointing to some effect of parental age and birth order on 

the sex ratio. A couple of early studies found that first births contained more males than later 

births (Lewis and Lewis 1905; Knibbs 1917), whilst subsequent studies have generally 

confirmed that the sex ratio among offspring tends to decrease with parental age and birth 

order. In the literature, there are more than 30 studies that report various effects of paternal 

age, maternal age and birth order on the sex ratio, using large single-generation familial 

datasets. I have attempted to list most of these studies and their findings in Table 4.1, though 

                                                 
1
 Chu and Yu (1998) argue that factors including follicular phase length, parental hormone level, race, 

parental coital rates and calorific intake may cause variation in the possibility of producing sons or 

daughters, leading to families that produce more of either sex. The existence of genetic variation in the 

sex ratio would also have the same effect.  
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the list is not exhaustive and does not include studies reporting non-significant results, 

although such studies do exist. Maconochie and Roman (1997), for example, concluded that 

the probability of having a child of either sex is purely a result of chance, based on an analysis 

of 549,048 births to 330,088 women, in Scotland between 1975-1988. The authors looked at 

the sex of preceding siblings, maternal age, maternal height, maternal and paternal social 

class, year of delivery and season of birth. The only significant finding was that mothers with 

children of the same sex were more likely to have further births, which can be attributed to a 

preference among parents to have a child of both sexes (section 4.1.1). 

 

A study of 6 million births in England and Wales from 1939-1947, by Lowe and McKeown 

(1950), showed that the sex ratio of livebirths and total births decreases with maternal age, 

but that the sex ratio of stillbirths increases. The authors argued that the change in sex ratio of 

stillbirths could account for the change in sex ratio of livebirths over the period. Macmahon 

and Pugh (1953) challenged this finding, reporting that the stillbirth sex ratio trend was not the 

reverse of the livebirth trend, in birth data from the US. There has been little evidence 

produced since these studies that the sex ratio at birth is correlated with the sex ratio among 

prenatal deaths (section 5.1.2). If we look at whether changes in the sex ratio at birth with 

parental age are due to the sex ratio among prenatal deaths, then it is well known that 

increased maternal age is associated with an increased risk of stillbirths and abortions, whilst it 

is also known that the male foetus is more vulnerable to these risks, e.g. Fretts et al. (1995). 

However, the prevalence of studies showing that paternal age and birth order are correlated 

with the livebirth sex ratio (Table 4.1) suggests that there may be more going on than an 

increase in male prenatal deaths with increased maternal age.  
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It is very difficult to draw a conclusion from the results of all the studies that have looked at 

the effect of birth order and parental age on the sex ratio, because there are so many 

conflicting findings among the results (Jacobsen et al. 1999b). The predominant finding seems 

to be that of a paternal age effect, with older fathers more likely to have daughters than 

younger fathers (Chahnazarian 1988), but the effect of maternal age and birth order on the sex 

ratio has been shown enough times that the possibility of all three variables affecting the sex 

ratio cannot be dismissed. James and Rostron (1985) found a linear decline in the sex ratio 

with paternal age and birth order, but a more complex curvilinear effect of maternal age in 

data from England and Wales between 1968 and 1977, whilst the authors also reported that 

the three effects were independent. Jacobsen et al. (1999b) did not find a maternal age effect 

in data from the Danish Fertility Database between 1980 and 1993, but point out that the 

dataset may have been too small, as a maternal age effect is typically found in datasets of > 2 

million births
1
, which may be an indication that the maternal age effect is weaker than the 

paternal age effect. 

 

The possibility that there is a maternal and paternal age effect on the sex ratio was hinted at 

by Pollard (1969), who found both effects in Australian birth data between 1900 and 1960. The 

analysis excluded twins and extra-marital births and divided parental age into 5 year 

categories. It was found that mothers under 25 had more sons and mothers over 35 more 

daughters than for the population as a whole. A similar effect was found for males, though this 

was not as marked as the female effect. An attempt to disentangle the effect of mother and 

father age on sex of offspring did not get significant results, though the author suggested that 

                                                 
1
 n.b. a maternal age effect has actually been found in datasets smaller than 2 million, although these 

are mostly older studies, with the exception of a recent study of 419,467 births by Tremblay et al. (2003) 

(Table 4.1). 
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a high sex ratio requires both father and mother to be young, but a low sex ratio could occur 

when either or both parents are older.  

 

A glance at Table 4.1 shows that very large and diverse datasets have been used to examine 

the effect of parental age and birth order on the sex ratio. It is clear that the quality of some of 

these datasets is exceptional, e.g. the Danish Fertility Database, analysed by Jacobsen et al. 

(1999b), which contains very detailed information on age, reproduction and family 

connections, for both men and women in Denmark. It is also clear that the application of 

modern and advanced statistical techniques has not yet properly determined the extent of 

causation or interaction between paternal age, maternal age and birth order, in respect of the 

sex ratio. It is interesting that this should be the case, as it may be an indication of one of three 

things:  

 

   (a) The effects of birth order and parental age on the sex ratio are not fixed, but change in 

accordance another variable, e.g. geographical location, pollution, etc. 

   (b) The effects of birth order and parental age on the sex ratio are fixed, but analyses have 

produced incorrect results, because they have not controlled for an important, as yet 

unknown, variable.  

   (c) There is an interaction between the variables that is not understood, and which has not 

yet been tested for. 



 

1
4
1
 

Table 4.1 This table shows studies in which paternal age, maternal age or birth order was found to affect the sex ratio of offspring. It excludes studies 

where no effect was found and reports the multivariate analyses in preference to univariate analyses, where these are available. It is adapted from 

similar tables in Chahnazarian (1988) and Jacobsen et al. (1999b). 

Study Dataset Paternal age Maternal age Birth order Notes 

Wicksell (1926) Netherlands, 1906-1913, 

1.3 million births 

Negative effect in 

young fathers, 

positive effect in 

older fathers 

Negative effect in 

young fathers, 

positive effect in 

older mothers 

 Multivariate 

Russell (1936) US, 1921-1924 Negative effect No effect  Univariate 

 US, 1927-1929   Negative effect Univariate 

Ciocco (1938) US, 1917-1934, 33.7 

million births 

Weak effect Weak effect Negative effect Univariate 

Lowe and McKeown 

(1950) 

England and Wales, 

1939-1947, 6 million 

births 

 Negative effect  Univariate 

 Scotland, 1939-1946, 

700,000 births 

 Negative effect  Univariate 

McMahan (1951) US, 1942-1947, 18 million 

births 

n/a  Negative effect Univariate 

Novitski (1953) US, 1947-1949, 9.3 

million white births 

Negative effect No effect  Multivariate 

Macmahon and Pugh 

(1953) 

US, 1942-1949, 22.7 

million births 

  Negative effect Multivariate 

 



 

1
4
2
 

Table 4.1 Cont. 

Study Dataset Paternal age Maternal age Birth order Notes 

Myers (1954) US, 1942-1950, 24.2 

million white births, 

3.4 million non-white 

births 

 Weak negative 

effect 

Negative effect Multivariate 

Takahashi (1954) Japan, 1937-1943, 14 

million births; 1947-

1950 10 million births;  

 Negative effect until 

age 45 

Negative effect until 

9th birth 

Univariate 

 Japan, 1942, 2.2 

million births 

Negative effect until 

age 50 

  Univariate 

Colombo (1955) Italy, 1930-1952, 21 

million births 

 Negative effect Negative effect Univariate 

Malinvaud (1955) France 1946-1950, 4 

million first births 

  Negative effect Univariate 

Novitski and Sandler 

(1956) 

US, 1947-1952, 21 

million white births 

Negative effect 

(maternal age only is 

controlled) 

No effect Negative effect 

(maternal age only is 

controlled) 

Multivariate 

Novitski and Kimball 

(1958) 

US, 1955, 3.6 million 

births 

Negative effect No effect Negative effect Multivariate. Interaction 

between paternal age and 

birth order. 

 

 

 



 

1
4
3
 

Table 4.1 Cont. 

Study Dataset Paternal age Maternal age Birth order Notes 

Rubin (1967) US, 1964, 4 million 

births 

  Negative effect Univariate 

 Vienna, circa 1900 

23,435 births 

(historical data) 

Negative effect Negative effect  Univariate 

Tarver and Lee (1968) US, 1942-1963 (except 

1945),  

 Bell-shaped effect Negative effect Multivariate 

Pollard (1969) Australia, 1931-1955, 

7 million births 

Negative effect Negative effect n/a Multivariate 

Teitelbaum (1970) US, 1955, 3.6 million 

births 

  Negative effect Multivariate. Teitelbaum 

and Mantel (1971) reported 

no significant effect of birth 

order when socioeconomic 

status was taken into 

account. 

Teitelbaum et al. 

(1971) 

 See notes column   Negative effect Multivariate. This is a 

reanalysis of the Novitski 

and Kimball (1958) data. 

Erickson (1976) US, 1969-1971, 5.3 

million births 

No effect No effect Negative effect Multivariate 

Garfinkel and Selvin 

(1976) 

US, NY state, 1959-

1967, 1.4 million white 

births 

Weak negative 

effect 

No effect Negative effect Multivariate 

 



 

1
4
4
 

Table 4.1 Cont. 

Study Dataset Paternal age Maternal age Birth order Notes 

Imaizumi and Murata 

(1979) 

Japan, 1975-1976, 3.7 

million births 

Bell-shaped effect Bell-shaped effect Negative effect Multivariate 

Schtickzelle (1981) Belgium, 1961-1977, 

2.4 million births 

Negative effect No clear effect  Multivariate 

Imaizumi and Murata 

(1981) 

Japan, 1947-1978, 59 

million births 

 No clear effect Weak negative effect Multivariate 

Ruder (1985) US, 1975, 2 million 

births 

Negative effect No effect Negative effect Multivariate 

James and Rostron 

(1985) 

England and Wales, 

1968-1977, 6 million 

births 

Negative effect Negative effect Negative effect Multivariate 

Ulizzi and Zonta (1995) Italy, 1930 - 1989 

10,614,922 births 

Negative effect  No effect Multivariate. A quadratic 

function of firstborn 

proportion and maternal 

age found to predict sex 

ratio. 

Jacobsen et al. (1999b) Denmark, 1980-1993, 

815,891 births 

Negative effect No effect No effect Multivariate 

Orvos et al. (2001) Hungary, 1995-1999, 

9,060 births 

 Negative effect  Univariate 

Tremblay et al. (2003) Sanguenay, Canada, 

1850-1971,  

419,467 births 

Slight positive effect 

(between 35 - 40) 

Slight negative 

effect (between    

30 - 37) 

No effect Multivariate 
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4.2 Methods 

4.2.1 Sex preference analysis 

The aim of this analysis was to examine how the sex ratio is distributed between families, to 

find out if it differs from a binomial distribution and to determine whether there is any 

discernible influence of parental sex preferences. 

 

4.2.1.1 The full dataset 

The data for these analyses were extracted from the z_all_families table (Appendix II) in the 

genealogical database (section 2.2). It was necessary that the families used in these analyses 

were complete, because the tests tend to highlight parental 'stopping rules', i.e. whether the 

sex of previous children influences the parents' decision whether to have more children. For 

this reason, no families were included with any birth later than 31 Dec. 1985, which is between 

about 8.5 and 12.5 years before most of the family trees were uploaded to The Genealogy 

Forum (the website where most of the family trees were acquired from). This is not 

guaranteed to exclude uncompleted families, because new births may not have been included 

in the GEDCOM files before being posted online, whilst some mothers may wait more than 8.5 

years between births. However, none of the analyses were based on single births, so mothers 

waiting over 8.5 years between the first birth (in or before 1985) and a second birth (after mid-

1994) would not be included. As such, it is thought that there would be very few uncompleted 

families in the datasets.  

 

The full dataset did not include any families if they contained an individual born before the 

year 1000
1
. Also, families with twins were excluded, because the occurrence of same-sex twins 

                                                 
1
 In the heritability and parental age analyses, only individuals born from 1600 were included in the data 

analysis, as a quality control measure (section 3.2.2), but because this dataset would be divided into 
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in a family can give the impression of a correlation between the sexes of successive births, 

when this is not the case. Furthermore, families with children of unknown sex were excluded 

and only families with an accurate date of birth for every child and one or both parents were 

included.  

 

The literature on sex preferences (section 4.1.1) indicates that the distribution of the sex ratio 

between families can vary between populations and in accordance with the social preference 

for children of each sex. Also, there is reason to believe that the period in which people lived 

may have affected the distribution of sexes between families, because the decision of when 

and why to stop having children may be influenced by the availability of contraception and by 

social norms relating to family sizes. To examine whether the period in which the families lived 

had any effect on the distribution of the sexes between families, three sub-datasets were 

extracted from the main dataset: 

 

4.2.1.1.1 'Modern' sub-dataset 

A 'modern' sub-dataset was extracted, containing only families in which all children were born 

between 1970 and 1985. In this period, the oral contraceptive pill was widely available and 

widely used
1
. It is assumed that this sub-dataset represents the modern era of family planning, 

in terms of contraceptive use and family size preferences. 

 

 

 

                                                                                                                                               

sub-datasets by different time periods, it was not necessary to restrict the data in this way. It is only 

restricted to individuals born from 1000 onward for technical reasons related to comparing date 

formats. 
1
 The contraceptive pill was given medical approval and commercially released during the 1960's in 

Europe and North America. It was in wide use by the 1970's. 
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4.2.1.1.2 'WWI' sub-dataset 

A 'World War I' sub-dataset was extracted, containing families where at least one of the 

offspring in the family was born on or after 1 January 1870 and on or before 31 December 

1900. This meant that those offspring would have been between the age of about 18 and 48 in 

1918, so could potentially have been a parent at the end of WWI in 1919, when a sudden peak 

in the sex ratio was observed in a number of countries. This sub-dataset was intended to look 

at the sex combinations of families, whose children would have been old enough to fight in 

WWI - assuming they had lived until then.  

 

4.2.1.1.3 'WWII' sub-dataset 

A 'World War II' sub-dataset was also extracted, in which at least one of the offspring were 

born on or after 1 January 1897 and on or before 31 December 1927. This meant that those 

offspring would have been between the age of about 18 and 48 in 1945, so could potentially 

have fought in WWII and been a parent in 1946, when a peak in the sex ratio was observed in a 

number of countries. 

 

4.2.1.2 Binomial Goodness-of-Fit test 

The expected binomial frequencies of male-male (MM), male-female (MF), etc. combinations 

of sexes among offspring, were calculated by taking into account the proportion of male and 

female offspring in the sample. If, for example, the proportion male among 1st and 2nd born 

offspring was 0.516 among 7,038 families, then the expected frequency of MM sex 

combinations = 1,877.4 (i.e. 7,038 * (0.516 * 0.516)); MF combinations = 3,515.2 (i.e. 7,038 * 

(2*(0.516 * 0.484))); FF combinations = 1,645.4 (i.e. 7,038 * (0.484 * 0.484)). A χ
2
 statistic was 

calculated from the observed and expected values, which was used to evaluate the probability 

that any deviation from the binomial distribution was due to chance. 
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4.2.2 Parental age and birth order analysis 

The aim of these analyses was to examine any correlation between the sex ratio of offspring 

and parental age or birth order. A dataset was extracted from the z_all_families table 

(Appendix II), from which families with twins or children of unknown sex were excluded. All 

parents and offspring included in the dataset had an accurate date of birth, so the age of both 

parents at the birth of each child was known. In all analyses, families with only one offspring 

were excluded for the same reason as in the heritability analyses (section 3.2.2). Also, only 

families where the mother and father were born on or after 1 January 1600 were included. 

 

In recognition that heritability of sex ratio variation has not been factored in to previous 

analyses of the effect of parental age and birth order on sex ratio, I subjected the dataset to 

descriptive analyses, as well as logistic regression and linear regression analyses. I was 

interested in the question of whether increasing paternal age, maternal age or birth order 

affects the sex ratio, but also interested to explore patterns in the data, which might help to 

evaluate which statistical tests are suitable for addressing the question. 
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4.3 Results 

4.3.1 Sex preference analysis 

4.3.1.1 Descriptive statistics 

The full dataset used in these analyses consisted of 28,126 families, after the removal of 

families with twins, families with children of unknown sex and families with any child born 

after 1985. The earliest date of birth for a child was 11 November 1050 (Henry IV, King of 

Germany and Holy Roman Emperor) and the latest date of birth was 31 December 1985. The 

total number of offspring was 85,703, total sex ratio was 0.518 and the average number of 

offspring per family was 3.05 (Min. 1, Max. 18). The total number of male and female children 

is broken down by family size, up to 10 children, in Table 4.2. 

  

Table 4.2. Sex ratio by family size, in the full dataset. 

Family size N Males Females Sex ratio 

1 8611 4539 4072 0.527 

2  7038 7270 6806 0.517 

3 4619 7158 6699 0.517 

4 2603 5342 5070 0.513 

5 1441 3705 3500 0.514 

6 1041 3212 3034 0.514 

7 684 2477 2311 0.517 

8 613 2531 2373 0.516 

9 489 2326 2075 0.529 

10 370 1932 1768 0.522 
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The descriptive statistics for the sub-datasets that were extracted from the full dataset are as 

follows: 

 

The 'Modern' sub-dataset contained 7,847 families, 14,351 offspring, x̄ number of offspring per 

family of 1.83 and a total sex ratio of 0.513.  

 

The 'WWI' sub-dataset contained 3,641 families, 16,310 offspring, x̄ number of offspring per 

family of 4.48 and a total sex ratio of 0.511.   

 

The 'WWII' sub-dataset contained 5,318 families, 20,613 offspring, x̄ number of offspring per 

family of 3.88 and a total sex ratio of 0.511.   

 

4.3.1.2 Binomial distribution analysis 

4.3.1.2.1 Analysis of the full dataset 

In the full dataset, there were 7,038 families who had a total of 2 children. The combination of 

sexes in these families did not conform to a binomial distribution, as  confirmed by a binomial 

goodness-of-fit test (χ
2
 = 22.07, d.f. = 2, p < 0.001,) (Table 4.3). It was seen that the observed 

frequency of the MF and FM combinations was higher than the expected frequency, whilst the 

observed frequency of MM and FF combinations was lower than the expected frequency (Fig. 

4.1). This indicates that parents with two children of the same sex are more likely to continue 

to have children than parents with opposite-sex children, because a less than expected 

number of families whose first and second born children were the same sex, appear among 

families that stopped breeding at 2 children. 
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Table 4.3. Sex combinations, observed and expected counts and χ2 contributions, for a binomial 

goodness-of-fit test in the full dataset. 

Sex combinations among siblings Fam. 

size Excluding last born  Including last born 

 ���� : ���� obs. exp. χ
2
  ���� : ���� obs. exp. χ

2
 

          

2      2 : 0 1779 1877.4 5.16 

      1 : 1 3712 3515.2 11.02 

      0 : 2 1547 1645.4 5.89 

         22.07
***

 

          

3 2 : 0 1291 1230.5 2.98  3 : 0 624 636.7 0.25 

 1 : 1 2186 2307.1 6.36  2 : 1 1816 1787.5 0.45 

 0 : 2 1142 1081.5 3.39  1 : 2 1654 1672.9 0.21 

    12.73
**

  0 : 3 525 521.9 0.02 

         0.94 

          

4 3 : 0 356 335.4 1.27  4 : 0 193 180.4 0.89 

 2 : 1 954 985.9 1.03  3 : 1 675 684.7 0.14 

 1 : 2 968 966.2 0.00  2 : 2 965 974.8 0.10 

 0 : 3 325 315.6 0.28  1 : 3 615 616.8 0.01 

    2.59  0 : 4 155 146.3 0.51 

         1.64 

          

5 4 : 0 105 105.6 0.00  5 : 0 61 51.8 1.63 

 3 : 1 391 389.5 0.01  4 : 1 235 244.7 0.39 

 2 : 2 536 538.6 0.01  3 : 2 465 462.4 0.01 

 1 : 3 334 331.0 0.03  2 : 3 425 436.8 0.32 

 0 : 4 75 76.3 0.02  1 : 4 215 206.3 0.37 

    0.07  0 : 5 40 39.0 0.03 

         2.74 

*** p < 0.001, ** p < 0.01 
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Figure 4.1. The observed 

frequencies (white bars) and 

expected binomial frequencies (grey 

bars) of first born and second born 

siblings in families of size 2. 

 

 

In the full dataset, there were also 4,619 families of size 3. It was seen that the combination of 

sexes in the first and second born offspring in these families did not conform to a binomial 

distribution (χ
2
 = 12.73, d.f. = 2, p < 0.01) (Table 4.3). It can be see in Fig. 4.2, that there is a 

reversal in the difference between the observed and expected frequencies, as compared to 

Fig. 4.1. The observed frequency of MF+FM combinations among the two first born children in 

families of size 3 was lower than the expected frequency, whilst the observed frequency of 

MM and FF combinations was higher than the expected frequency. This confirms the finding 

from the families of size 2, because it shows that there are a higher number of families whose 

first two children are the same sex, who go on to have three children, whereas parents whose 

first two children were the opposite sex were more likely to stop at two children.  
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Figure 4.2. The observed 

frequencies (white bars) and 

expected binomial frequencies (grey 

bars) of each sex combination of 

first born and second born siblings 

in families of size 3. 

 

 

It can be seen from Table 4.3, that the observed frequencies of each sex did not deviate 

significantly from that expected from a binomial distribution, in families of 3 when the last 

born offspring was included, or in families of 4 and 5 when last born offspring was included or 

excluded. 

 

4.3.1.2.2 Analysis of the 'Modern' sub-dataset 

Table 4.4 shows the results of binomial goodness-of-fit analysis in families whose children 

were born between 1970 and 1985. It is seen that the distribution of births in families of size 2 

shows a significant deviation from the binomial (χ
2
 = 7.87, d.f. = 2, p < 0.05). In families of size 

3, the tests were not significant at the 5% level, when last birth was included or excluded. In 

families of size 4, it was seen that the distribution deviated significantly from the binomial 

when the last birth was excluded (χ
2
 = 16.07, d.f. = 3, p < 0.01). This suggests that parents 

whose first three children were the same sex, were more likely to go on to have four children, 

than parents whose first three children were opposite-sex combinations.  
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Table 4.4. Sex combinations, observed and expected counts and χ2 contributions, for a binomial 

goodness-of-fit test in the 'Modern' sub-dataset. 

Fam. 

size 

Sex combinations among siblings 

 Excluding last born   Including last born 

 � : � obs. exp. χ
2
  � : � obs. exp. χ

2
 

          

2      2 : 0 447 477.3 1.92 

      1 : 1 994 933.4 3.94 

      0 : 2 426 456.3 2.01 

         7.87
*
 

          

3 2 : 0 175 161.8 1.08  3 : 0 90 82.8 0.63 

 1 : 1 260 286.4 2.44  2 : 1 217 225.5 0.32 

 0 : 2 140 126.8 1.38  1 : 2 200 204.8 0.11 

    4.90  0 : 3 68 62.0 0.58 

         1.65 

          

4 3 : 0 23 13.3 7.04  4 : 0 13 7.8 3.55 

 2 : 1 33 43.2 2.40  3 : 1 27 30.5 0.40 

 1 : 2 38 46.7 1.61  2 : 2 38 45.0 1.09 

 0 : 3 26 16.8 5.01  1 : 3 33 29.5 0.42 

    16.07
**

  0 : 4 9 7.3 0.42 

         5.88 

** p < 0.01, * p < 0.05 
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4.3.1.2.3 Analysis of the 'WWI' sub-dataset 

In an analysis of the sex distribution in families who had a male child between the ages of 18 

and 48 in 1918, no significant deviation from the binomial was detected. It is worth noting that 

the dataset was relatively small, 447 families with two offspring, 400 with 3 offspring and 309 

with 4 offspring.   

 

4.3.1.2.4 Analysis of the 'WWII' sub-dataset 

In an analysis of the sex distribution in families who had a male child between the ages of 18 

and 48 in 1945, there was no significant deviation from the binomial distribution in families 

with 2 offspring, or among the two first born children in families of three. There was a 

significant deviation in families of three, when the last born child was included (χ
2
 = 11.10, d.f. 

= 3, p < 0.05) (Table 4.5). This result is mostly due to the under-representation of families with 

three boys, which indicates that parents with three boys were more likely to continue to have 

children. It is possible to interpret this as a preference among parents for a female child. This is 

supported by a slight over-representation of families whose first 3 children are boys, among 

families with 4 children (obs. = 79, exp. 70.6) (Table 4.5). Although, in itself, this is not 

statistically significant, it does fit the expected pattern of a preference for female children, 

whereby parents whose first three children are male are more likely to continue to have 

children. Notably, a preference for male or female children is not apparent in the other sub-

datasets or the full dataset, as there is a roughly equal contribution of all-male and all-female 

families to the χ
2
 statistic at each family size. The only apparent preference was for children of 

both sexes. 
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Table 4.5. Sex combinations, observed and expected counts and χ2 contributions, for a binomial 

goodness-of-fit test in the 'WWII' sub-dataset. 

Fam. 

size 

Sex combinations among siblings 

 Excluding last born   Including last born 

 � : � obs. exp. χ
2
  � : � obs. exp. χ

2
 

          

2      2 : 0 250 258.4 0.27 

      1 : 1 482 465.2 0.61 

      0 : 2 201 209.4 0.34 

         1.21 

          

3 2 : 0 221 219.9 0.01  3 : 0 86 110.1 5.28 

 1 : 1 413 415.2 0.01  2 : 1 357 317.6 4.88 

 0 : 2 197 195.9 0.01  1 : 2 299 305.4 0.13 

    0.02  0 : 3 89 97.9 0.80 

         11.10* 

          

4 3 : 0 79 70.6 1.01  4 : 0 39 37.6 0.05 

 2 : 1 207 218.9 0.65  3 : 1 148 149.5 0.02 

 1 : 2 225 226.4 0.01  2 : 2 226 222.7 0.05 

 0 : 3 83 78.1 0.31  1 : 3 140 147.5 0.38 

    1.98  0 : 4 41 36.6 0.52 

         1.02 

** p < 0.01, * p < 0.05 
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4.3.2 Parental age and birth order analysis 

4.3.2.1 Descriptive statistics 

The dataset used in this analysis contained 59,908 births; there were 15,232 families (siblings 

with the same mother and father) with 15,071 fathers and 15,177 mothers. 

 

Figure 4.3. Distribution of parental 

age at birth of children; pink line is 

maternal age, blue line is paternal 

age. It can be seen that women 

reproduced earlier, whereas men 

reproduced later. 

 

Figure 4.4. Distribution of paternal 

age (between 16 and 60) at the birth 

of each sex offspring; the pink line 

is for female children, the blue line 

is for male children. 
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Figure 4.5. Distribution of maternal 

age (between 14 and 48) at the birth 

of each sex offspring; pink line is 

for female children, blue line is for 

male children. 

 

 

 

 

 

 

 

 

Figure 4.6. Sex ratio by parental 

age; pink line is maternal age, blue 

line is paternal age. The sex ratio is 

an aggregated value, i.e. the sex 

ratio among all children born to 

parents at each year of age. 
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4.3.2.2 Regression analyses 

Jacobsen et al. (1999b) used logistic regression to analyse the effect of birth order, paternal 

age and maternal age on the sex ratio, in a contemporary Danish dataset. These authors found 

that the sex ratio decreased with increasing paternal age, though found no independent effect 

of maternal age or birth order on the sex ratio (section 4.1.2). The paternal age categories 

used by Jacobsen et al. were: 13-24, 25-29, 30-34, 35-39, ≥40; and the maternal age categories 

were: 13-19, 20-24, 25-29, 30-34, ≥35. It is shown in Table 4.6a, b and Fig. 4.7, what happens 

when the genealogical dataset described above (section 4.3.2.1) is broken down into the same 

age categories.  

 

Table 4.6a. Division of births into categories defined by paternal age, using the same age 

categories as Jacobsen et al. (1999). 

Father 

age 

No. 

births 

No. 

families 

Births per 

family 

Sex ratio Cumulative sex 

ratio  

13-24 11,157 6,899 1.62 0.518 0.518 

25-29 16,965 10,505 1.59 0.518 0.517 

30-34 14,044 8,971 1.53 0.519 0.521 

35-39 8,936 5,913 1.49 0.516 0.520 

≥40 8800 3,927 2.27 0.508 0.515 

 

Table 4.6b. Division of births into categories defined by maternal age, using the same age 

categories as Jacobsen et al. (1999). 

Mother 

age 

No. 

births 

No. 

families 

Births per 

family 

Sex ratio Cumulative sex 

ratio  

13-19 5,002 3,810 1.31 0.512 0.511 

20-24 17,224 10,402 1.64 0.519 0.517 

25-29 16,918 10,655 1.55 0.516 0.517 

30-34 11,382 7,557 1.48 0.522 0.520 

≥35 9,364 4,832 1.92 0.509 0.516 
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It can be seen in Fig. 4.7, that there are significant differences between the number of births 

per family in the different paternal and maternal age categories. This was confirmed using an 

ANOVA test, in which the age categories were factors and the number of births per family in 

each age category were the dependent variables; Welch's ANOVA was used to adjust for 

heterogeneity in the variance and sample sizes between categories. The results were highly 

significant (paternal age: F4, 8100 = 150.3, p < 0.001; maternal age: F4, 7490 = 231.9, p < 0.001).  

  

Figure 4.7. The number of births per family, where birth data is arranged by paternal age and 

the categories are: 13-24 (1), 25-29 (2), 30-34 (3), 35-39 (4), ≥40 (5) (panel A); or arranged by 

maternal age and the categories are: 13-19 (1), 20-24 (2), 25-29 (3), 30-34 (4), ≥35 (5) (panel 

B). Error bars: 99% c.i.. 

 

 

An assumption of logistic regression is that there is independence of observations (e.g. Field 

2009), which means that data should not be related in any way that may affect the 

independence of the values being tested, thereby confounding the test. It may be argued that 
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a logistic regression analysis, in which sex of offspring is the binary dependent variable and the 

above age categories are explanatory variables (e.g. Jacobsen et al. 1999b), is a suitable test 

for an association between parental age and sex of offspring, because births are independent 

events. However, there is evidence from the heritability analyses (Chap. 3) that parentage is a 

predictor of sex, which implies that births connected by their parentage are not independent 

for sex. Moreover, the difference in number of births per family in each of the parental age 

categories (Fig. 4.7) indicates that the degree of independence of births may differ between 

parental age categories. 

 

Irrespective of the possibility that the data breaks the assumptions of the test, logistic 

regression analysis was carried out, which showed that neither paternal age, maternal age or 

birth order were significant predictors of sex, when the parental age categories were the same 

as those used by Jacobsen et al. (1999b). The results of the univariate analysis are shown 

below (Table 4.7). The inclusion of paternal age, maternal age and birth order in a multivariate 

analysis also produced no statistically significant results (not shown).  
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Table 4.7. The results of univariate logistic regression analysis of sex ratio by parental age, for 

the dataset of the present study and the results reported in Jacobsen et al. (1999), for 

comparison. The p-values are based on tests for a trend over all categories. 

 Present study Jacobsen et al. (1999) 

 S.R. Odds ratio (95% c.i.) S.R. Odds ratio (95% c.i.) 

Paternal age     

13-24 0.518 1.001 (0.954-1.05) 0.516 1.01 (1.00-1.03) 

25-29 
1
 0.518 1.00 0.513 1.00  

30-34 0.519 1.003 (0.959-1.049 0.514 1.01 (1.00-1.02) 

35-39 0.516 0.991 (0.942-1.043) 0.510 0.99 (0.98-1.01) 

≥40 0.508 0.962 (0.914-1.013) 0.510 0.99 (0.97-1.01) 

  p = 0.57  p = 0.02 

Maternal age     

13-19 0.512 0.984 (0.924-1.049) 0.515 1.00 (0.98-1.03) 

20-24 0.519 1.014 (0.972-1.058) 0.514 1.00 (0.99-1.01) 

25-29 
1
 0.516 1.00 0.514 1.00 

30-34 0.522 1.024 (0.977-1.074) 0.513 1.00 (0.99-1.01) 

≥35 0.509 0.973 (0.925-1.023) 0.512 0.99 (0.98-1.01) 

  p = 0.36  p = 0.35 

Birth order     

1 
1
 0.521 1.00 0.514 1.00 

2 0.511 1.011 (0.921-1.008) 0.514 1.00 (0.99-1.01) 

3 0.523 0.998 (0.961-1.064) 0.511 0.99 (0.98-1.00) 

4 0.520 0.949 (0.940-1.059) 0.510 0.99 (0.97-1.02) 

5 0.508 1.029 (0.885-1.018) 0.512 1.01 (0.95-1.06) 

6 0.528 0.940 (0.950-1.114) 0.520 0.99 (0.91-1.09) 

7+ 0.505 1.086 (0.888-0.996) 0.505 0.98 (0.87-1.11) 

  p = 0.09  p = 0.29 

 

1 
reference categories 
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The question of whether logistic regression should be used is important, because a number of 

previous studies have used this method and the literature is notoriously full of contradictory 

results. It can be seen in Table 4.6. and Fig. 4.7 that the number of births per family is highest 

in the older parental age categories, which indicates that there are a small number of parents 

who continue to have children at a greater age than is typical for most parents. It seems clear 

that this result is not due to the division of births into arbitrary age categories, because the 

result is also found when the data is divided into quartiles of parental age, in which each 

parental age category contains the same number of births (Table 4.8a, b). Welch's ANOVA was 

used to test the difference between the mean number of births per family in each parental age 

quartile
1
. The results were highly significant (paternal age: F3, 15921 = 630.8, p < 0.001; maternal 

age: F3, 17317 = 750.5, p < 0.001).  

 

 

 

 

 

 

 

 

                                                 
1
 The sample sizes were approximately the same with these categories, but there was heterogeneity in 

variance between the categories, which required use of Welch's ANOVA, rather than normal ANOVA. 
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Table 4.8a. Division of births into quartiles defined by paternal age.  

Father age (years)      

Quartile x̄  No. 

births 

No. 

families 

Births 

per 

family 

Sex ratio Cumulative 

sex ratio 

(including 

previous 

births) 

1 23.7 14,974 8,458 1.77 0.519 0.519 

2 28.3 14,980 9,983 1.50 0.519 0.518 

3 33.1 14,975 8,988 1.67 0.519 0.520 

4 40.9 14,979 6,010 2.49 0.509 0.516 

 

Table 4.8b. Division of births into quartiles defined by maternal age. 

Mother age (years)      

Quartile x̄  No. 

births 

No. 

families 

Births 

per 

family 

Sex ratio Cumulative 

sex ratio 

(including 

previous 

births) 

1 20.8 14,983 8,628 1.74 0.515 0.515 

2 25.1 14,974 10,414 1.44 0.518 0.518 

3 29.4 14,976 9,526 1.57 0.519 0.519 

4 36.2 14,975 6,794 2.20 0.513 0.517 

 

The higher number of children born to parents in the oldest age categories / quartiles may, in 

part, be explained by shorter birth intervals in the largest families (Fig. 4.8), who are also the 

families where the parents continue to have children when they are older (there is a strong 

positive correlation between family size and the x̄ age of fathers [rs = -0.987, p < 0.001] or 

mothers [rs = -0.987, p < 0.001] at the birth of their last child). 
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Figure 4.8. The x̄ interval between all births (solid line) and interval between 1st and 2nd birth 

(dotted line), in relation to completed family size. 

 

 

It is apparent from this dataset that average family size has decreased over time. There is a 

highly significant correlation between father's date of birth (rs = -0.512, n = 15,232, p < 0.001) 

and family size, also mother's date of birth (rs = -0.509, n = 15,232, p < 0.001) and family size. 

However, there is no association between family size and sex ratio; this was confirmed using a 

generalized linear model and quasibinomial errors, with the untransformed proportions of 

male and female offspring (i.e. sex ratio) as the dependent variable and total number of 

offspring in each family as the independent variable (F1, 15230 = 0.022, p = 0.882). Notably, when 

parental dates of birth are replaced in this model as the independent variables, it is seen that 

sex ratios decrease with an increase in mother's date of birth (F1, 15230 = 4.098, p = 0.043), but 

not father's date of birth (F1, 15230 = 2.689, p = 0.1). This finding was also confirmed using 

multiple regression analysis, in which the sex of each birth was a binary response variable, 

whilst paternal and maternal date of birth were explanatory variables. It was seen that 
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together paternal and maternal date of birth were a statistically significant predictor of sex (F2, 

59905 = 3.343, p = 0.035), though only maternal date of birth was independently significant (n = 

59,908, t = -2.009, p = 0.045). However, this explains very little of the variation in sex of 

offspring (< 1%). The x̄ date of birth for mothers of all daughters in the dataset is 1889, whilst 

the x̄ date of birth for mothers of sons is 1888. Also, there is no obvious chronological trend 

apparent when x̄ sex ratio of families is plotted against mother's decade of birth (Fig. 4.9). 

 

Figure 4.9.  x̄ sex ratio among families by maternal decade of birth. The values for decades 

prior to 1660 (before the dotted line) were based on fewer records (<20), which almost 

certainly accounts for the higher variance of sex ratio in these decades. 

 

 

The negative correlation between maternal date of birth and sex ratio is the opposite to that 

which would be required to explain what appears to be a lower sex ratio among parents in the 

older age categories / quartiles (Table 4.6a,b and Table 4.8a,b). It can be seen that the x̄ date 
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of birth for mothers (and fathers) is earlier in the older parental age categories / quartiles, but 

the sex ratio of their offspring is lower (Table 4.9). 

 

Table 4.9.  x̄ date of birth for fathers and mothers in each parental age quartile (see Table 

4.8a,b for the other statistics). 

Quartile x̄ father d.o.b. Sex ratio x̄ mother d.o.b. Sex ratio 

1 1908 0.519 1906 0.515 

2 1900 0.519 1902 0.518 

3 1891 0.519 1896 0.519 

4 1872 0.509 1882 0.513 

 

It has been shown that the division of parental age into the Jacobsen et al. (1999b) categories 

or into quartiles, may exacerbate the problem of non-independence of observations that 

arises from relatedness between siblings; because there is a significant difference between the 

number of offspring per family in the different age categories. It has been mentioned that 

logistic regression or ANOVA are not suitable tests for any correlation of sex ratio by parental 

age when the data is arranged in this way, because non-independence of observations can give 

inaccurate p-values. In order to gain independence of observations whilst testing for an effect 

of parental age, it was decided to separate the data according to birth order; i.e. test for an 

effect of parental age on sex separately for first borns, second borns, etc. In this way, it was 

possible to ensure the independence of each birth in the analysis, in a way that was not 

possible by simply controlling for birth order in an analysis of the entire dataset.  

 

It was found that paternal age and paternal date of birth had no significant effect on the sex 

ratio at any birth order (see also Fig. 4.10a). A significant effect of maternal age was found at 

birth order 1 and 5 (Table 4.10); however, the direction of the correlation is different in each 

case (Fig. 4.10b), suggesting that these results are significant by chance, rather than due to a 
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real effect of maternal age. The inclusion of maternal date of birth added little explanatory 

power at any birth order, though at birth order 6 and 10, it was independently significant or 

close to significant (Table 4.10). 

 

Table 4.10. The results of regression analyses carried out separately for each birth order. The 

sex of each birth was a binary response variable, whilst maternal age and maternal d.o.b. were 

explanatory variables.  

  Maternal age Maternal age + d.o.b 

Birth 

order 

n t p R  

1 15,232 2.071 0.038* 0.017 F = 2.524, p = 0.080, R = 0.018 

2 15,232 0.429  0.668 0.003 F = 0.144, p = 0.866, R = 0.004 

3 9755 -0.804  0.421 0.008 F = 0.360, p = 0.698, R = 0.009 

4 6035 0.713  0.476 0.009 F = 0.716, p = 0.489, R = 0.015 

5 3995 -2.121  0.034* 0.034 F = 4.798, p = 0.008**, R = 0.049 

6 2909 -0.094  0.925 0.002 F = 1.844, p = 0.158, R = 0.036 
1
 

7 2119 -0.354  0.724 0.008 F = 1.281, p = 0.278, R = 0.035 

8 1600 0.147  0.884 0.004 F = 1.327, p = 0.265, R = 0.041 

9 1159 -0.799  0.424 0.023 F = 0.633, p = 0.531, R = 0.033 

10 787 0.086  0.932 0.003 F = 2.434, p = 0.088*, R = 0.079 
2
 

 
1
 maternal d.o.b. independently close to significance in this test (t = -1.914, p = 0.056, R = 

0.035); the interaction maternal age*maternal d.o.b not significant (t = -0.513, p = 0.608) 
2
 mother d.o.b. independently significant in this test (t = -2.188, p = 0.029, R = 0.078); the 

interaction maternal age*maternal d.o.b not significant (t = -0.678, p = 0.498) 
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Figure 4.10a. The x̄ age of fathers (blue line) and sex ratio of offspring at each birth order (red 

line), plus sex ratio of all current and previous offspring, i.e. cumulative sex ratio (black line); 

births to fathers <16 and >60 not included. 
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Figure 4.10b. The x̄ age of mothers (pink line) and sex ratio of offspring at each birth order 

(red line), plus sex ratio of all current and previous offspring, i.e. cumulative sex ratio (black 

line); births to mothers <16 and >60 not included. 
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4.4 Discussion 

4.4.1 Parental sex preferences and sex ratio 

In an analysis of complete families from 1050 until 1985, it was found that there was a strong 

parental preference for a child of each sex. In the analysis of families with 2 offspring, it was 

found that there was a higher number of families with a boy and a girl than expected in a 

binomial distribution, whilst there was a lower than expected number of families with two girls 

or two boys. This indicates that parents were more likely to continue to have children if their 

first two children were of the same sex (this result was also found in the 'Modern' sub-dataset. 

In the analysis of the first two children in families with 3 offspring, there was a lower than 

expected number of families in which the first two children were the opposite sex, whilst there 

was a higher than expected number of families where the first two children were the same 

sex, which also indicates that parents were more likely to have 3 children if their first two 

children were of the same sex, than if they were the opposite sex. 

 

A preference for children of both sexes has been confirmed in a number of previous datasets 

collected from many different countries and dating back to the early twentieth century 

(section 4.1.1). The most important difference with the present study, compared to previous 

studies, is probably that the dataset spans more than one generation and more than one 

country. 

 

In previous studies, a preference for boys or girls has also been reported (e.g. Park 1983; 

Jacobsen et al. 1999a), because the data has shown that a higher number of families continued 

to have children when either the first child or first two children were girls (male preference) or 

boys (female preference). It has been shown that a boy or girl preference can vary between 
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different countries and national identities (e.g. Jacobsen et al. 1999a; Andersson et al. 2007), 

also that the strength of sex preferences can change over time (Pollard and Morgan 2002).  

 

In the present study, a specific preference for boys or girls could not be discerned from the full 

dataset or the 'Modern' and WWI sub-datasets, though there is some indication of a 

preference for daughters in the 'WWII' sub-dataset. In this dataset, there is an under-

representation of all-male sibships in families of size 3, which suggests that parents with 3 boys 

were more likely to continue to have children (Table 4.5). However, sex preference analyses 

such as this, which are based on the combinations of sex sequences, rather than the 

permutations, must be treated with caution in families of > 2 offspring, because there are 

more permutations than combinations. It may not be possible to know (for the purpose of this 

type of analysis) whether parents consider the overall sex ratio among their offspring or the 

sequence of the sexes, but there is some evidence that parents consider both factors. An 

example of this can be found in a study by Park (1983), who noted that the sex ratio among 

last births in Korea was very high, because parents were more likely to stop breeding once 

they had a boy.  

 

A useful test for parental sex preferences is to look at the probability of families having a 

second child, based on the sex of the first child (e.g. Gray 1982). However, it was not possible 

to carry out this test here, because of uncertainty in the genealogical data about single child 

families (it is not clear that single child families are genuine, because some researchers only 

record their direct ancestors and not their ancestor's siblings - section 2.2.1). As mentioned, a 

preference for boys or girls can vary between people with different national or cultural 

identities (e.g. Andersson et al. 2007), so the indication of a preference for either sex in the 

genealogical data must be treated with caution (in particular the daughter preference in the 
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'WWII' dataset), because it is sourced from a number of different countries, albeit mostly the 

US, and to a lesser extent Canada, UK and some other European countries.  

 

In Korea, there is a clear desire among parents for male children and stopping rules are clearly 

inversely related to sex preference, because parents are more likely to stop breeding after 

having boys (Park 1978, 1983), whilst Chu and Yu (1998) noted an inverse relationship 

between son preference and fertility rate, because families were presumably willing to have 

more children to gain the desired number of male children. It may be worth considering 

whether complex and possibly adaptive factors are involved in sex preferences. It may be that 

families with more sons feel more able to have further children in some societies, because 

men have greater earning potential. It may alternatively be that a desire to have more sons is a 

calculation of risk, because the chance of a male child dying is higher. It is also worth 

considering whether the sex ratio in the population may influence parents' stopping decisions. 

If there is an excess of males, then parents may be more willing to continue breeding, in order 

to have female children, and vice versa. If this does occur, it is a facultative mechanism of sex 

ratio regulation. A similar process was suggested by James (1995), except that parents' 

perceptions of the sex ratio in the breeding population regulate the sex ratio via frequency of 

intercourse, rather than stopping rules. 

 

Interestingly, in the 'WWII' sub-dataset, there was no indication of a deviation from the 

binomial distribution in families with 2 offspring, or among the 2 first born children in families 

of 3, as there was in the full dataset and 'Modern' sub-dataset. It is possible that this is 

because the average family size is 3.88, which is higher than 3.05 in the entire dataset and 1.83 

in the 'Modern' sub-dataset, which means that there were fewer families in the dataset who 

would have made a deliberate decision to stop childbearing after the first 2 children, but 
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would instead have planned to have at least 3 children. It may be expected when the typical 

family size is larger that any sex preference or stopping rules would be detected at a higher 

parity. The problem here is that the binomial test has little power at higher parity, because of 

the higher degrees of freedom required to reject the null hypothesis. It may be noted that the 

average family size in the 'WWI' sub-dataset was 4.88, so the failure to find any deviation from 

a non-binomial distribution may be due to parents being less likely to choose to stop having 

children at lower parity. It may also be because the sample size is relatively small. It would be 

interesting to see results from larger datasets collected from both wartime periods. 

 

Cavalli-Sforza and Bodmer (1971) made the point that if the sex of each birth is independently 

determined (i.e. there is no heterogeneity between couples in the probability of having a male 

child), then sex preferences and stopping rules cannot affect the sex ratio in the overall 

population (this point has also been made by several other authors, e.g. Weiler 1959; 

Goodman 1961; Edwards 1966). Cavalli-Sforza and Bodmer (1971) then made the point that 

sex preferences and stopping rules can affect the distribution of the sequences of births, and 

cause an apparent correlation between successive births. However, it is not clear that this is 

correct, because any correlation between successive births, which might be observed under 

these circumstances, would not be a true correlation. In families of size 3, for example, it might 

be seen that there was a correlation among the two first born children, because of the over-

representation of MM and FF families (e.g. Fig 4.2), but this would be due to selective use of 

the data, because the opposite would be seen in the two first born children in families of two, 

where MM and FF families would be under-represented (e.g. Fig 4.1).  

 

Edwards (1966) took the distribution of the sexes into account, but noted a correlation in the 

data that could not be explained by sex preferences and stopping rules. The author attributed 
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this to a correlation between successive births, rather than a variation between families in the 

probability of having male or female children (i.e. Lexian variation). It is possible that a 

correlation in sex between successive births could be due to changing probability of a male 

birth with increasing parental age. However, the evidence for heritable sex ratio variation 

presented in this study (and also in Trichopoulos 1967; Curtsinger et al. 1983) implies that 

there must be some degree of correlation between successive births and Lexian variation, 

because some families have a greater likelihood of producing either male or female children. 

 

 

4.4.2 Parental age, birth order and sex ratio 

A large number of studies have looked at the effect of parental age and birth order on the sex 

ratio among offspring (section 4.1.1, Table 4.1), from which an inconclusive picture emerges. It 

is possible to conclude, as Chahnazarian (1988) has, that the evidence points predominantly to 

a paternal age effect, but the possibility of a maternal age or birth order effect cannot be 

dismissed.  

 

The analysis conducted in this study found no evidence for an effect of paternal age, maternal 

age or birth order on the sex ratio, using logistic regression analysis to compare the sex ratio of 

offspring born to parents in different age categories. This was the same method used by 

Jacobsen et al. (1999b), who noted a decline in sex ratio with increasing paternal age. It is 

worth noting that the dataset used in this study consisted of 59,908 births, which is a relatively 

small dataset, compared with many other studies, some of which have analysed millions of 

births. The Jacobsen et al. study, for example, consisted of 815,891 births. It is conceivable that 

lack of a significant result from the logistic regression analyses, as compared to other studies, 

is due to the size of the sample, rather than the content. It can be seen that there is a slightly 
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greater deviation in sex ratio between paternal age categories in the present study (Table 4.7) 

as compared to that in the Jacobsen et al. study, which if present in a larger sample, would be 

statistically significant. 

 

It must be considered that the absence of a significant association between paternal age, 

maternal age or birth order and sex ratio, using logistic regression analyses could be 

attributable to the quality of the data. There is no reason to think that the data is equivalent in 

quality to other datasets which have shown these effects, because it is amateur data, whilst 

most other studies have used professionally collected data. In particular, the Danish Fertility 

Database (Jacobsen et al. 1999b) contains data of exceptional quality, due to the unique 

identifiers given to individuals at birth (Knudsen 1998). The dataset used in the present study 

was based on data distributed over more than four centuries and taken from a number of 

different countries, whereas all previous studies have been based on data taken from a single 

generation in one country. It is not clear that this type of multi-generation data confers any 

advantages, with regard to analysis of parental age effects, except perhaps that the data was 

unlikely to be affected by any temporary and localised sex ratio trend.  

 

It may also be considered that null results relating to an effect of paternal age, maternal age 

and birth order are expected. It is rare for null results to be published, so it is difficult support 

this finding with previous research. However, among the studies that report positive results, 

there is great inconsistency, several studies report no maternal age effect (e.g. Garfinkel and 

Selvin 1976; Ruder 1985; Jacobsen et al. 1999b; Maconochie 1997), though this effect is found 

in other studies (e.g. Imaizumi and Murata 1979; James and Rostron 1985; Orvos et al. 2001), 

whilst a birth order effect is also reported in some studies (e.g. Imaizumi and Murata 1981; 

Ruder 1985), but not others (e.g. Ulizzi and Zonta 1995; Jacobsen et al. 1999b). In view of the 
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unpredictability of finding these associations in other studies of human sex ratio data, it should 

come as no surprise that they were not found here.  

 

It is interesting that a paternal age effect on the sex ratio is more commonly found in parental 

age and sex ratio studies, because it has been suggested here that the sex ratio is genetically 

determined via males. It is not clear, however, what biological mechanism could cause older 

males to have more daughters, or why this would have any genetic basis. There also seems to 

be some degree of maternal control. The implication of both paternal and maternal control of 

the sex ratio lends support to the idea that the frequency of intercourse (and subsequent 

timing of insemination within the menstrual cycle) affects the sex ratio (James 1971, 1995), 

assuming that frequency of intercourse between couples declines with age. However, this 

would not explain a birth order effect that is independent of parental age. 

 

The most important finding from the analysis conducted here, may be that births are divided 

between a smaller number of families in the older parental age categories (Table 4.6a, b; Table 

4.8a, b and Fig. 4.7). It is likely that this is due to the parents of larger families being those that 

reproduce for longer, whilst having shorter birth intervals between their offspring (Fig. 4.8). An 

implication of this finding is that binary logistic regression analysis, in which these age 

categories form the independent categorical variables, is not a suitable statistical test, because 

the test requires independence of observations in the data. In fact, the finding of heritability of 

sex ratio variation, in itself, suggests that births cannot be considered independent events, 

when there are any siblings in a dataset. The fact that there is a greater incidence of siblingship 

in the older age categories, suggests that there is variance in independence of the data 

between categories. If a similar pattern occurs in other datasets, it could explain why parental 

age and birth order effects have been observed using logistic regression and why these results 
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are so unpredictable. It would also suggest that the reported effects may be artefactual. It is 

notable that the highest degree of siblingship is in the oldest maternal (≥40) and paternal (≥35) 

age categories, which are also the categories with the lowest sex ratio. It is also notable that 

Tremblay et al. (2003) observed a post 35 paternal age effect and post 30 maternal age effect, 

whilst Takahashi (1954) noted a paternal effect up to 50 and a maternal effect up to 45. 

 

It is not possible to generalise the findings of this study, to other studies. A peculiarity of the 

dataset used here, is that there is a wide variation in family sizes, which is due to the mix of 

families from different centuries, with the older families being much larger (it is well 

documented that the average family size has declined up to the present time, e.g. Biggar et al. 

1999). It may be the case, therefore, that datasets taken from within a single generation do 

not show the asymmetrical distribution in number of births per family by parental age, which is 

seen here. It would be interesting to look at previous datasets in which parental age effects 

have been observed using logistic regression, to see if this is the case, and if so to reanalyse 

them with a method that provides for independence of observations.  

 

Although a majority of previous studies of parental age and sex ratio have used logistic 

regression, some have not. Juntunen et al. (1997), for example, used χ
2
 and linear regression 

analysis, and found that increasing maternal age was the strongest factor in the relative 

increase in female births, among the offspring of Finnish mothers with >10 previous offspring. 

It was also found that interpregnancy interval was not a factor, in contrast to the finding of 

Greenberg and White (1967). Juntunen et al. suggest that the increase in female births with 

parental age is most likely to be explained by the increased probability of male foetuses being 

aborted with advanced parental age, perhaps because of immunological or other reasons. It is 

well documented that the higher vulnerability of the male foetus is magnified by poor 
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maternal condition (section 5.1.2). As such, it may be worth hypothesising that poor maternal 

condition is the predominant parental age effect on the sex ratio, which may be tested with 

statistical analyses that correctly eliminate the confounding effect of non-independent errors 

arising from heritability of sex ratio variation. 

  

In order to overcome the problem of non-independence of observations in the data of the 

present study due to sibling relatedness, separate regression analyses were carried out for 

offspring at each birth order, so as not to include siblings in the same test. In these tests, sex 

was the dependent variable and parental age was the independent variable. A significant 

effect of maternal age was found at birth order 1 (more male children were born to older 

mothers [p = 0.038]) and birth order 5 (more female children were born to older mothers [p = 

0.034]). The contradiction between these two results and their inconsistency with the findings 

from the regression analyses at every other birth order, suggests that the statistical 

significance occurred by chance and is not indicative of a true trend. No significant effect of 

paternal age was found at any birth order. 
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Chapter 5. Impact of Premature Male Mortality on 

Sex Ratio 

 

5.1 Introduction 

In this chapter, I examine how mortality of males, prior to their reproductive years, might 

influence the sex ratio at birth. I focus primarily on the impact of wars, in which males suffer 

much higher mortality than females, but also consider how the prevalence of males among 

prenatal and infant deaths may affect the sex ratio.  

 

5.1.1 Impact of war on sex ratio 

An early mention of the effect of war on the sex ratio is by Newcomb (1904): 

 

Quote 5.1:  "It has sometimes been supposed that the destruction of an important fraction of the male 

population of a country by war, such as has occasionally been known in history, has resulted in a greater 

preponderance of male offspring in the country so affected. ... That a tendency of this sort could be 

produced in one man by the mere death of another is a notion that hardly needs to be refuted. If such 

an effect is real, it would therefore have to be the result of privations and other evils suffered in war, 

and not of the mere destruction of life ..." 

                                                          Newcomb (1904, p.26) 

 

In fact, anecdotal evidence that wars may have resulted in an increase in male births, may date 

back much further than Newcomb's quote. Jöckel and Bromen (2000) mention a book by 

Süßmilch (1741), in which the 18th century demographer claims to have noticed an increase in 

male births following wars, which he duly attributed to a divine intervention. It is interesting 
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that there are anecdotal reports of wartime increases in male births prior to the nineteenth 

century, because the birth statistics from populations afflicted by the World Wars (1914-1918 

and 1939-1945) provide strong evidence that this can happen. In England and Wales, the birth 

statistics clearly show a sudden peak in the sex ratio associated with the period of WWI, 

followed by an increase up to the period of WWII, which is also associated with a further, 

though less dramatic peak (Fig. 3.2). 

 

The wartime peaks need to be seen in the context of a livebirth sex ratio that changed 

considerably over the 20th century, increasing rapidly up to the mid-century then declining 

toward the end. The degree of change was quite considerable, for example, the increase from 

1900 to 1960 resulted in approximately 2.8 extra males per 100 females born. It is unclear 

whether the overall increase in male births over that period was associated with the World 

Wars, but it does seem the wars influenced the sex ratio during and shortly following the 

period in which they occurred.  

 

It is known that over 8 million men and women saw service in the British armed forces 

between 1914 and 1918 (Spencer 2001), whilst over 5.7 million men served (Bourne, In: 

Spencer 2001) but it is very difficult to get specific information on the numbers of men that 

enlisted each year, or the numbers that died or returned. A major obstacle to this, is the fact 

that many of the service records were destroyed by a fire at the War Office records repository 

in Arnside Street, on 8 September 1940. Also, records of deaths are inconsistent and often do 

not exist, but it is estimated that almost 1 million men and women of the British Empire were 

killed and that there were over 2 million casualties (Spencer 2001). A parliamentary report 
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issued 10 March 1921
1
 put the 'final and corrected' casualty figures for the British Army at 

673,375 dead and missing, 1,643,469 wounded. This may be the best estimate of the number 

of men specifically lost from the British Isles. 

 

The number of British soldiers killed in WWII is much better documented. According to a White 

Paper published by the British Government in 1946
2
, 357,116 British persons were killed in the 

war, 264,443 in the armed forces, 60,595 civilians, 30,248 in the Merchant Navy and Fishing 

Fleets, 1,206 in the Home Guard and 624 in the Women's Auxiliary Services. Among the 

civilians that died as a result of enemy action, 26,923 were men, 25,399 were women, and 

7,736 were children under 16. There were also 537 unidentified bodies. 

 

A study by Russell (1936) on the effect of WWI on the sex ratio at birth, showed that there was 

an increase in the period 1919-1920, as compared to the earlier period of 1915-1918 and the 

later period of 1921-1923 for a number of countries engaged in the war (Germany, Austria, 

Belgium, Bulgaria, France, UK, Hungary, Italy, Romania and South Africa) and to a lesser extent 

some neutral countries (Finland
3
, Norway, Sweden, Switzerland and Netherlands). In WWII, 

Vartiainen et al. (1999) found a significant sex ratio increase in Finland, which was heavily 

involved in fighting against the Soviet Union and later against Nazi Germany. In Japan, 

Minakami and Sato (1998) reported a higher sex ratio after 1945. 

 

In the United States, there was no impact of WWI on the sex ratio (MacMahon and Pugh 

1954), but there was a much lower percentage of the population under arms than in the 

                                                 
1
 The Army Council. General Annual Report of the British Army 1912-1919. Parliamentary Paper 1921, 

XX, Cmd.1193 
2
 Cmd. 6832, 6 June 1946 

3
 Although the author refers to Finland as a neutral country, it was part of Russia during WWI and so 

may have lost men fighting for Russia against Germany and Austro-Hungary. 
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warring European countries. A much higher percentage of the population were mobilised in 

WWII, when a small but statistically significant increase in the livebirth sex ratio was observed 

for the whole of the United States in the period 1942-1946, with the peak in 1946 (MacMahon 

and Pugh 1954).  

 

The most comprehensive statistical analysis of the effect of war on the human sex ratio to 

date, is a study by Graffelman and Hoekstra (2000), which employed three different statistical 

methods (linear regression, randomization and time series analysis) using birth data from ten 

different countries (Austria, Belgium, Denmark, France, Italy, Netherlands, West Germany, 

Spain, United Kingdom and United States). The data covered both World Wars, except for 

Denmark, Netherlands, Spain and US, which only covered WWII. The French data also covered 

the Napoleonic and French-German war. The study aimed to test the difference between the 

sex ratio during peacetime and the sex ratio during (and shortly following) wartime. The 

wartime and peacetime sex ratio observations were compared, with the duration of the wars 

arbitrarily extended by 50% to allow for any post-war effect. A median increase of about 0.15% 

in wartime sex ratios was derived from the combined data of all countries, which included 139 

wartime observations and 1,050 peacetime observations. The linear regression and 

randomization analyses showed that all the countries except Italy and Spain showed a 

significant increase in male births associated with war. The time series analysis found 

significant a war effect for Belgium, France, Germany, Italy, Netherlands and UK.  

 

An important point about the Graffelman and Hoekstra (2000) analysis is that an increase in 

the sex ratio is found during and after wars. It was not tested whether the post-war or wartime 

data were independently significant. However, there is evidence that the increase in male 

births is a phenomenon that spans the war and post-war periods. In both World Wars in 
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England and Wales, it can be seen that the sex ratio began to increase before the end of the 

war (Fig. 3.2). In Germany, where the WWI and WWII peaks are more pronounced than in 

England and Wales, it is clear that the WWI increase began during the war and peaked after. It 

seems there was more of a post-war effect after WWII, but some of the data in the war years 

are missing, so it is difficult to be certain (see Figure 1 in: van der Broek 1997). An increase in 

the sex ratio beginning during the war and continuing after also seems to have occurred in 

Belgium and France (see Fig. 2 in Graffelman and Hoekstra 2000). In France, the sex ratio was 

not obviously rising prior to either war, so the year of the onset of the wartime peaks is very 

apparent. 

 

There have been no wars that compare to the World Wars, in terms of the number of men 

mobilised and killed across the world, although there have been many smaller conflicts that 

have been assessed for any impact on the sex ratio. An increase in the sex ratio does not seem 

to be an automatic result of warfare, because there are various cases where the sex ratio has 

remained unaffected by wars. Abu-Musa et al. (2008) reported no significant effect of the 

Lebanese civil war on the sex ratio, in a comparison of the war (1977-1992) and post-war 

(1993-2005) periods, in which the sex ratio averaged 0.515 and 0.513 respectively. Polasek 

(2006) reported no significant change in the livebirth sex ratio for pooled data of the countries 

of the former Yugoslavia (Slovenia, Croatia, Bosnia and Herzegovina, Serbian Republic and 

Montenegro), during the Balkan war (1991-1995). There was, however, a significant increase in 

male births associated with the war in Bosnia and Herzegovina. The author concluded that 

although there were missing data and changes in population structure, the result may indicate 

that higher intensity wars of longer duration are more likely to affect the sex ratio.  
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In contrast to other findings, a decrease in the sex ratio was reported in the Iranian sex ratio as 

a result of the Iran-Iraq war (1980-1988) (Ansari-Lari and Saadat 2002). However, it should be 

pointed out that the sex ratio had declined quite rapidly prior to the war, dropping from 0.517 

in 1976-1977 to 0.500 in 1980-1981 at the start of the war. It had also began to rise by the end 

of the war and continued to rise to 0.510 in 1999-2000. It is difficult to rule out the possibility 

that the lower sex ratio observed during the war was the result of an independent trend, 

rather than the war itself. However, Kemkes (2006) reported  a decline in the sex ratio during 

and after the French Revolutionary Wars (1787-1802), using genealogies of German villages. 

Also, Zorn et al. (2002) reported a decrease in the sex ratio 6-9 months after the 10 day war in 

Slovenia (1991). 

 

The effect of war on the sex ratio is somewhat unpredictable, even during WWII there seems 

to be no explanation why an increase in the sex ratio was not seen in Spain and Italy (Zorn 

2004). It has been suggested that stress in females may result in greater risk of abortion in the 

second and third trimester, which affects male foetuses to a greater degree. This may explain 

one of the lowest sex ratios recorded in California (Catalano et al. 2005) and New York 

(Catalano et al. 2006) five months after major terrorist attacks in the US in 2001.  

 

5.1.1.1 James' hypothesis 

It has been hypothesised that wartime sex ratio peaks are due to exceptionally frequent 

intercourse between returning soldiers and their partners (James 1971), resulting in earlier 

insemination within the menstrual cycle, which (due to hormonal changes over the cycle) may 

increase the probability of a male birth.  
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5.1.1.1.1 Timing of insemination within the menstrual cycle 

There have been mixed results from studies that have attempted to determine whether the 

timing of insemination affects offspring sex in humans, with some studies reporting an effect 

(e.g. Harlap 1979; Perez et al. 1985; James 2000b) and others not (e.g. Wilcox et al. 1995; Gray 

et al. 1998). The effect has also been reported in the white-tailed deer (Odocoileus virginianus) 

(Verme and Ozoga 1981), Norway rat (Rattus norvegicus) (Hedricks and McClintock 1990) and 

golden hamster (Mesocricetus auratus) (Huck et al. 1990). However, the mechanism may be 

related to mortality in rodents, because the time of fertilization exerts significant effects on 

litter size as well (Krackow 1992); see also Bacon and McClintock (1999) who showed in rats 

that male embryos are less successful at implanting in a uterus only recently vacated by a 

previous litter.  

 

It has been reported that artificial insemination within the first 18 hours from the onset of 

oestrus, results in a higher proportion of female calves, than those inseminated later on 

(Martinez et al. 2004). A similar finding was reported by Pursley et al. (1998), with 

insemination at 0 hours and 32 hours resulting in more female calves; notably, those 

inseminated at 0 hours had the lowest pregnancy loss, whilst those at 32 hours had the 

greatest. A higher rate of female births with earlier artificial insemination was also reported 

with sheep (Gutierrez-Adan et al. 1999). However, a number of studies have failed to find any 

effect of the interval between insemination and ovulation, e.g. in pigs (Soede et al. 2000) and 

cattle (Ballinger 1970; Foote 1977; Rorie et al. 1999). 

 

5.1.1.2 Kanazawa's hypothesis 

Another hypothesis for wartime sex ratio increases has been proposed by Kanazawa (2007b), 

based on the finding that big and tall males are more likely to have male offspring (Kanazawa 
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2005) and are more likely to survive wars (Kanazawa 2007b). As with the James (1971) 

hypothesis, it is based on the idea that the sex ratio of the population is affected by the 

returning soldiers. However, the crucial point about this hypothesis, is that it relies on what 

has been described as a generalised Trivers-Willard hypothesis (Kanazawa 2005), in which 

traits associated with greater or lesser reproductive success of either sex are correlated with 

the sex ratio. So, in this case, big and tall males have more male offspring, because they have 

greater reproductive success. I explained the generalised Trivers-Willard hypothesis and its 

criticisms in more detail in section 1.1.4.1.1. 

 

5.1.1.3 Grant's hypothesis 

In a recent model, based on the maternal dominance hypothesis (Grant 1996 - section 1.1.4.1), 

Grant (2009), also Grant and Irwin (2009), propose a hypothesis to explain the wartime sex 

ratio peaks. It involves the idea that testosterone - which may otherwise be an indicator of 

dominance and thereby good condition - will also rise in response to environmental stress. The 

model predicts that times of stress will cause more male foetuses to be lost due to stress 

because male foetuses are more vulnerable to abortion risk factors, but also predicts that 

more males will be conceived and implanted as a result of the rise in female testosterone and 

glucose levels, which has been shown to occur in bovines (Grant and Irwin 2005; Grant et al. 

2008). As such, the timing of a stressful event becomes all important. If, for example, 

conception occurs during a period of stress, but conditions improve during pregnancy, then 

more males will be conceived, but less will be lost; which Grant and Irwin (2009) suggest is 

what happened when conditions improved at the ends of the wars, causing the sex ratio to 

peak after the wars had ended. 
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5.1.1.4 Other hypotheses 

Martin (1943) noticed during WWII that the 1942 livebirth sex ratio in the UK (0.512966) was 

the highest since records began in 1838
1
, also that marriage rates were very high during wars. 

Taking into account a previous study, which had shown that younger mothers tended to have 

sons (Russell 1936), Martin postulated that a sustained increase in marriages resulted in a 

reduction of age at marriage, thereby an increase in births to young mothers, which caused 

the sex ratio at birth to rise. However, MacMahon and Pugh (1954), who provided evidence for 

an increased sex ratio in the United States following WWII, presented evidence that the 

increase in male births was not due to changes in birth order or age of either parent. 

 

It was similarly suggested by Lowe and McKeown (1950), McKeown and Lowe (1951) and Lowe 

and McKeown (1951) that the change in reproductive habits caused by war - e.g. increased 

interval between births, increased illegitimate births, reduced age of marriage, relatively more 

first births -  may have caused a change in the incidence and composition of abortions and 

stillbirths. They suggested that this may have affected the sex ratio of livebirths during war, 

because the sex ratio of still births is higher than the sex ratio of livebirths and varies with 

maternal age and duration of gestation. However, MacMahon and Pugh (1954), noted no 

abrupt change in the stillbirth rate during WWII. 

 

Bernstein (1958) suggested that in wartime, the opportunity for fertilization is reduced 

because husbands are away, so as a result proportionately more children are born to more 

fertile couples when the soldiers return, which would result in an increase in male births if the 

more fertile couples were more likely to have sons. To test this hypothesis, the author 

analysed 2,000 births to wealthy and famous German couples. The couples were categorised 

                                                 
1
 It later turned out that the 1944 sex ratio (0.515834) would be the highest ever recorded, closely 

followed by 1972 (0.515832) 
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as less fertile and others as more fertile, depending on the time between their marriage and 

their first child. The results showed that the more fertile parents had more sons (55.3%) and 

the less fertile couples more daughters (49.8%). It should be clear that the numbers involved in 

this study are far too small for a satisfactory if not statistically significant result. However, the 

hypothesis is of interest, as only a few specific hypotheses have been offered to account for 

the war effect. 

 

An analysis of births among 301 English families by Manning et al. (1997) found a higher 

frequency of male births, when there was a larger age gap between parents. It was reported 

that the effect of parental age difference remained significant when paternal age and maternal 

age were also included as independent variables in a multiple regression. It was also reported, 

using data from the whole of England and Wales, that the mean spouse age difference 

increased during and immediately after the two World Wars. Moreover, the average parental 

age difference was strongly correlated with the sex ratio at birth in the period 1911-1952. 

However, the finding that the parental age gap can affect the sex ratio was immediately 

criticised by Arnold and Rutstein (1997), James (1997b) and Boklage (1997) on the basis that 

the sample size was small enough that the result may have occurred by chance. Also, Arnold 

and Rutstein (1997) and Boklage (1997) were unable to replicate the finding in much larger 

datasets. 

 

Astolfi and Zonta (1999b) reported an effect of parental age difference on the sex ratio in a 

study of 151,124 children born in Lombardy, Italy, between 1990 and 1991. It was found that 

there was a significantly higher sex ratio (0.568) among the first born offspring of parents with 

an age difference of between 16 and 25 years (1,544 children) as compared to parents with a 

lower age difference. However, these parents accounted for only 1% of the data. Across all the 
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data, the father-mother age difference did not affect the sex of offspring born, and no effect of 

parental age or birth order was found. It  is quite possible this and the Manning et al. result are 

false positives, especially as a large number of studies have analysed parental age and sex ratio 

data (section 4.1.2) without reporting this finding, though it is a straightforward matter to test 

for it. It may be assumed that the evidence for an effect of parental age difference on the sex 

ratio is very weak. 

 

5.1.2 Impact of prenatal and infant mortality on sex ratio 

The human sex ratio at birth averages about 107:100 (males:females) according to the 

available data from across the World (CIA 2009), but the sex ratio during pregnancy is much 

higher. This must be the case, because a higher mortality rate of male foetuses
1
 is well 

documented. Kellokumpulehtinen and Pelliniemi (1984) looked at 11 studies, which had 

sought to determine the sex of foetal deaths, 10 of these studies found a male excess, and a 

significant male bias was seen when all of the studies were combined. McMillen (1979) 

provided a conservative estimate of 120:100 (males:females) based on morphological 

estimates of the sex of foetal deaths. However, Lowry (1979) suggested that a range of 110-

170 :100 would be more accurate, given the data used by McMillen (1979).  

 

Byrne and Warburton (1987) counted the sex of 3,469 miscarriages through anatomical 

inspection. The overall sex ratio was 1.25:1, with a sex ratio of 1.3:1 among normally formed 

foetuses, but a sex ratio of 0.92 among malformed foetuses. The authors suggested there is a 

discrete cause, which affects normally formed male foetuses to a greater extent than females, 

whilst obvious anatomical malformations show no dichotomy by sex. A number of other 

studies have also reported high sex ratio among aborted foetuses, e.g. Jakobovits (1991) 

                                                 
1
 the foetal stage is defined as 8 weeks from conception until birth; the embryonic stage is from 

conception up to 8 weeks. 
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reported a sex ratio of 1.36:1 (n 281) in spontaneous and delivered abortions in the second 

trimester. 

 

It is difficult to get an accurate estimate of the primary sex ratio, due to difficulties in detecting 

and sexing early abortuses, particularly when estimates are based on morphological 

differences. Hassold et al. (1983) karyotyped 1,702 spontaneous foetal abortions and 

estimated the primary sex ratio at 132 : 100, based on the number of chromosomally normal 

abortuses (more than half of spontaneous abortions may be chromosomally abnormal [Boue 

et al. 1975; Hassold et al. 1980]). However, Boklage (2005) points out that the majority of 

abortions occur during embryogenesis (within 8 weeks of conception), which is typically before 

the pregnancy is clinically recognised, and therefore means that there are fewer studies that 

have attempted to determine the sexes of these abortuses. Boklage (2005) also points to a lack 

of evidence for an excess of Y-bearing sperm in human semen or Y-bearing chromosome sets 

at fertilisation
1
 (section 3.4.1.2), and suggests that there must be an excess of female abortions 

during embryogenesis. 

 

There is some evidence in mammals that implantation and establishment of a viable 

pregnancy is generally more efficient for male embryos, due a more rapid pace of 

development of the male foetus and consequent signalling between embryo and maternal 

physiology (Krackow 1995; Clarke and Mittwoch 1995; Mittwoch 1996; Kochhar et al. 2003). As 

such, there may be an excess of female abortions during embryogenesis, for which 

Evdokimova et al. (2000) has provided cytogenetic evidence. In an analysis of 342 spontaneous 

abortions, there was a predominance of female karyotypes, particularly in the earliest 

                                                 
1
 The evidence for the ratio of males to females at fertilisation, is based on karyotyping of sperm-derived 

chromosome sets, which are formed through penetration of hamster oocytes by human sperm,  the 

method is described in Martin et al. (1982) and Kamiguchi and Mikamo (1986). 
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abortuses. However, results from earlier studies contradict these findings; Tricomi et al. (1960) 

typed the sex chromatin of early spontaneous abortions and found that male embryos 

appeared to be preferentially aborted (203 out of 242 were XY). Also, Serr and Ismajovich 

(1963) reported that 78 out of 125 planned pregnancy terminations between weeks 5-8 were 

male.  

 

It may not be clear whether there is a male disadvantage during embryogenesis, but there is 

certainly a male disadvantage during foetal development, birth and infancy (e.g. Crawford et 

al. 1987; Synnes et al. 1994; Hall and Carrhill 1982; McGregor et al. 1992; Cooperstock and 

Campbell 1996; Astolfi and Zonta 1999a). It is clear that in countries where children of both 

sexes are equally valued, biological, rather than social factors explain the higher rate of male 

foetal and infant mortality that is typically seen (Waldron 1998; Drevenstedt et al. 2008). 

 

Drevenstedt et al. (2008) analysed historical infant (< 1 year old) mortality data for 15 

countries, which is available in the Human Mortality Database (www.mortality.org). It was 

found that while the overall rate of infant mortality fell between the years 1751 - 2004, there 

was a corresponding increase in the sex ratio among infant deaths, until about 1970 when the 

correlation disappeared. The sex ratio among infant deaths has dropped off since 1970, 

perhaps reflecting improvements in obstetric practices (e.g. increased use of C-section 

deliveries) and neonatal care.  

 

Feitosa and Krieger (1992) looked at 1,886,653 livebirths and 24,818 stillbirths, recorded in 11 

Latin American countries between 1967-1986, as part of a study looking for congenital 

malformations. It was found that there was significant heterogeneity in the sex ratio of births 

among the countries (though all except Peru and Uruguay experienced a decrease from 1978). 
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However, analysis of the aggregated data for the 11 countries showed that the trend for 

livebirths followed a parabolic trend, in which the sex ratio increased up to 1977 and then 

began to decrease until 1986. Notably, the sex ratio trend for stillbirths followed a similar 

trajectory to that of livebirths (between 1978-1986, when both types of birth outcome were 

recorded), which indicates that a change in one did not cause a change in the other.  

 

In an analysis of Italian birth statistics between 1955-84, Parazzini et al. (1987) found no 

evidence that there was any change in the relative frequency of males and females among the 

declining stillbirths. As such, the authors suggest that a change in the sex ratio among 

stillbirths is unlikely to explain global trends in the livebirth sex ratio. However, stillbirths may 

not be the best measure of a change in the prenatal sex ratio, because modern medical care 

has enabled many of the neonates that would previously have been aborted to survive, but 

often only for a short period. This amounts, in some degree, to a postponement of late foetal 

mortality into the early stages of extrauterine life (McMillen 1979; Ulizzi and Novelletto 1984).  

 

Mizuno (2000) looked at the sex ratio of foetal deaths in Japan, since the 1950s, and compared 

this with the sex ratio at birth. It can be seen that since the 1970s, the sex ratio among foetal 

deaths increased, whereas the sex ratio at birth decreased. The author found that changes in 

average birth order and maternal age could not explain the change in sex ratio at birth since 

the 1970s and suggests that the change in sex ratio among foetal deaths may have had an 

effect. Ohmi et al. (2008) attribute the increasing male foetal deaths in Japan to increased 

smoking and reduced bodyweight of women. Davis et al. (2007) suggest the possibility that 

methylmercury pollution, ingested via a diet rich in seafood, could explain the increase in male 

foetal deaths in Japan since the 1970s. Davis et al. (2007) also reported a decline in sex ratio at 

birth alongside an increase in the sex ratio of foetal deaths for the US white population. 
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However, among the US black population, an increase in male foetal deaths has occurred 

alongside an increase in the sex ratio at birth, which suggests that there is not a strict 

association between the sex ratio among foetal deaths and the sex ratio at birth.  

 

Ulizzi and Zonta (1993) compared the sex ratio in stillbirths (from 26 weeks gestation), 

neonatal deaths (death within the first week of life) and total births in the Italian statistics. It 

was found that a decrease in stillbirths occurred alongside an increase in neonatal deaths from 

the 1940s to 1970s, until the rate of both began to plateau. In 1996, the sex ratio for stillbirths 

was 0.531 and for neonates 0.579. This study confirmed that perinatal risk is higher for males. 

It also confirmed previous findings (e.g. Cooperstock and Campbell 1996; Fretts et al. 1995; 

Zonta et al. 1996; Bernstein 1998) that the risk of stillbirth increases for males when conditions 

are unfavourable, particularly when mothers are older, delivery is preterm, or when birth 

order is other than second. These authors did not find any effect of maternal education level 

(also a predictor of socioeconomic status) on the sex of stillbirths or neonatal deaths, though 

Astolfi and Zonta (1999b) did report this finding. 

 

It is possible that human males have an inherent genetic vulnerability compared with females, 

because deleterious genes on the X-chromosome may be expressed in hemizygous males, 

whereas they may be masked by opposing alleles in the heterozygous females (Lejeune and 

Turpin 1957). Cann and Cavalli-Sforza (1968) predicted that older fathers would be more likely 

to transmit lethal recessive X-linked mutations to their daughters, which would affect the sex 

ratio among their grandchildren, through perinatal mortality of males. An analysis of Italian 

birth statistics by Cann and Cavalli-Sforza (1968) failed to find an effect of the maternal 

grandparent age on the sex ratio, though a later study did report this finding (Astolfi and Zei 

1987). Nonetheless, the fact remains that the reason for the greater prenatal and infant 
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vulnerability of males is poorly understood (Ulizzi and Zonta 2002). Wilkinson et al. (1989) 

suggested simply that the larger size of males is the cause of their greater vulnerability in 

utero. Renkonen et al. (1962) proposed that exposure to Y-antigens during pregnancy with a 

first male offspring may cause some mothers to develop antibodies, which harmed subsequent 

male foetuses. Gualtieri and Hicks (1985) suggested that decreases in the sex ratio with birth 

order could be explained by this, as could some proportion of male foetal vulnerability. 

However, the evidence generally does not support the proposition that previous births affect 

subsequent births (e.g. Jacobsen et al. 1999; James 1987; Wilkinson et al. 1989). 

 

In a study of mothers of European and Japanese ancestry in Hawaii, Wilkinson et al. (1989) 

found no evidence of a higher mortality among male pregnancies that followed a previous 

male pregnancy. Interestingly, this study also found no evidence for a Trivers-Willard effect, 

whereby mothers in worse condition will tend to have more females. It was found that 

perinatal mortality was higher with increased age of mother, shorter interval since last birth 

and increased birth order of offspring, so these were presumably good indicators of female 

condition, but neither these variables nor perinatal mortality itself was associated with 

increased female births. 

 

In the modern literature, the possible proximate cause for the higher rate of male mortality in 

early life receives much attention. In terms of natural selection, a well known explanation for 

this trend is based on Fisher's equal-investment principle (section 1.1.1.2). Fisher (1930) 

suggested that because males suffer higher mortality in infancy, they require less parental care 

on average, which leads to a higher rate of male births to equalise parental investment in each 

sex. Lazarus (2002) points out that the validity of this is questionable, because it would not 

work in the case of non-linear returns from greater or lesser investment in each sex. Also, it is 
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apparent that this explanation is based on the premise of facultative sex ratio control, rather 

than genetic (Werren and Charnov 1978; Lazarus 2002). Notably, in the US statistics, the sex 

ratio of foetal deaths is higher among the black population than the white population, which 

might, according to Fisher's theory, indicate that the sex ratio should be higher, though in fact 

it is lower. It is possible that parental care after birth is more skewed toward males in the black 

population, which would compensate for the greater male foetal loss and cause the sex ratio 

at birth to be lower than the white sex ratio at birth. However, it is not clear that the racial 

differences in the secondary sex ratio (e.g. Khoury et al. 1984) can be explained in this way, 

whilst the difficulties associated with quantifying differentials in parental care are a serious 

impediment to testing the theory.  

 

5.1.3 Sex ratio mortality models 

5.1.3.1 Leigh's model 

A genetic sex ratio model that is well known for simulating differential mortality between the 

sexes, is that by Leigh (1970). It has been described as a model that demonstrates how 

differential mortality of either sex after the period of parental care cannot affect the primary 

sex ratio (Clutton-Brock et al. 1985; Hardy 1997), also a mathematical analysis that supports 

Fisher's predictions about the sex ratio (e.g. Nur 1974; West and Godfray 1997). According to 

Leigh, the model demonstrates that selection will favour 'an equal division of effort among the 

sexes, even when a different sex ratio is essential to the population's survival' (Leigh 1970, 

p.206). If males are more likely to die before they are able to breed, then it might be expected 

that selection would favour females who produce more males to compensate, but Leigh 

purportedly showed that selection favours the production of an equal sex ratio, regardless of 

the differential mortality. 

 



 197 

Leigh used a non-overlapping generations model, with a finite population of sexual haploids
1
, 

in which there were two alleles that affected the sex ratio of eggs laid by females. This type of 

model differs from the Shaw and Mohler (1953) type model, because it seeks to track allele 

frequencies in individuals from one generation to the next, rather than calculating the general 

genetic contribution to the next generation
2
. The B allele caused females to lay 150 male : 50 

female eggs, whilst the b allele caused females to lay 100 male : 100 female eggs. The female 

eggs were more likely to survive to maturity, with 1 in 50 female eggs reaching maturity, 

compared with 1 in 150 male eggs (Table 5.1). 

 

Table 5.1. This shows how many eggs survive for mothers of each genotype, in the Leigh (1970) 

model. 

Genotype of mother Male eggs Female eggs 

 No. laid No. maturing No. laid No. maturing 

B allele 150 1 50 1 

b allele 100 0.66 100 2 

 

Assuming that each male mates only once and that mating occurs at random, Leigh argues that 

the b allele will be favoured by selection, based on the fact that there is a higher frequency of 

the b allele in the F15 generation (i.e. b females = 15, B females = 4, b males = 6, B males = 3), 

see Table 5.2. The author makes the point that the b allele is favoured, even though a 

population of b-bearers will be reduced by a third in each generation due to a lack of sufficient 

                                                 
1
 In reality, no species that participates in true sexual reproduction can have haploid males and females. 

A requirement of true sexual reproduction is meiosis, which requires a diploid genome. It is possible for 

males to be haploid, but it is not possible for females also to be haploid. It is purely for the purpose of 

modelling that a sexual population is envisaged that contains haploid males and females. 
2
 Notably, this is still a classical or equational population genetic model, as opposed to an individual-

based model, because allele frequencies among individuals are derived from an equation that calculates  

relative proportion of alleles in the population down to decimal places, rather than calculating the 

number of individuals directly inheriting alleles from their parents.  
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males to fertilise the females. The simulation resulted in the following genotypes occurring in 

each generation (Table 5.2): 

 

Table 5.2. The number of sexual haploids in each generation of Leigh's distinct generations 

model (Table 1 in Leigh 1970).  

Generation Females Males 

 b B b B 

P1 100 100 100 100 

F1 175 125 75 92 

F2 146 96 66 75 

F5 99 52 43 40 

F10 43 16 18 12 

F15 15 4 6 3 

 

In the parental generation, all males and females are able to mate and mating occurs at 

random. The 100 b females mate with the 50 b and 50 B males, resulting in 67 surviving male 

offspring
1
 and 200 surviving female offspring (0.66 out of every 100 male eggs mature, and 2 

out of every 100 female eggs mature, for mothers with the b genotype - Table 5.1). The 100 B 

females mate with 50 b and 50 B males, resulting in 100 surviving male offspring and 100 

surviving female offspring (1 egg of each sex matures for mothers with the B genotype - Table 

5.1).  

 

Fig. 5.1 illustrates how the F1 generation is formed from the P1 crosses. It can be seen that 

there are 100 b X b, 100 B X b, 50 b X B and 50 B X B crosses that result in female offspring, 

which equates to 350 b alleles and 250 B alleles; these are divided by 2, to get the number of 

each sexual haploid in the F1, i.e. 175 female b haploids and 125 female B haploids. There are 

33 b X b, 33 B X b, 50 b X B and 50 B X B crosses that result in male offspring, which equates to 

                                                 
1
 The value is rounded from 66.66

r
, further calculations from this model are also rounded. 
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149 b alleles and 183 B alleles; these are divided by 2, to get the number of each sexual 

haploid, i.e. 75 male b haploids and 92 male B haploids. The frequencies of F1 haploids 

calculated here are the same as those calculated by Leigh (1970) (Table 5.2).  

 

Figure 5.1. The P1 crosses that result in the F1 male and female offspring, in Leigh's distinct 

generations model (Leigh 1970). 

 

Fig. 5.2 illustrates how the F2 generation are formed from the F1 crosses. The simulation of 

random mating among the F1 generation has to take account of the different numbers of 

males and females. There are 175 b females and 125 B females, so the probability of any male 

mating with a b female is 175/300, whilst the probability of any male mating with a B female is 

125/300. As such, these following crosses occur (spreadsheet formula is included in the square 

brackets): 44  b male X b female [ROUND((175/300)*75)]; 31  b male X B female 

[ROUND((125/300)*75)] ; 54  B male X b female [ROUND((175/300)*92)] ; 38  B male X B 

female [ROUND((125/300)*92)]. 
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Figure 5.2. The F1 crosses that result in the F2 male and female offspring, in Leigh's distinct 

generations model (Leigh 1970). 

 

The F1 crosses result in 315 b alleles and 215 B alleles among the female offspring, 125 b 

alleles and 143 B alleles among the male offspring. This equates to 158 female b haploids, 108 

female B haploids, 63 male b haploids, 72 male B haploids. It will be noticed that these 

frequencies are different to those obtained by Leigh (Table 5.2). It is not clear what method 

Leigh used to calculate the gene frequencies, but it seems that errors were made, perhaps 

because the various calculations were done manually rather than with the aid of a 

spreadsheet. Nonetheless, the corrected simulation (Table 5.3) gives roughly similar results, 

except that there is a lower degree of difference between the haplotypes by generation F15 in 

the corrected simulation. 
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Table 5.3. These results are based on Leigh's distinct generations model (Leigh 1970), but are 

corrected for minor errors in the author's calculations. 

Generation Females Males 

 b B b B 

P1 100 100 100 100 

F1 175 125 75 92 

F2 158 108 63 72 

F5 89 54 35 35 

F10 31 16 12 10 

F15 10 5 4 3 

  

The conclusion Leigh drew from this simulation was that selection favours an equal sex ratio 

among the eggs laid, regardless of mortality, because there was a higher frequency of the b 

allele in successive generations, which coded for an equal sex ratio among the eggs, whilst the 

B allele coded for a male biased sex ratio among the eggs. However, it can easily be 

demonstrated that this conclusion is incorrectly drawn from the model. In fact, it is clear that 

the higher frequency of the b allele is due to the higher number of surviving offspring of 

mothers with the b allele, who transmit the allele to the next generation. If the parameters of 

the model are changed, so that mothers with the b allele produce the same number of total 

surviving offspring as mothers with the B allele (Table 5.4), then the B allele actually occurs at a 

higher frequency by the F15 generation (Table 5.5); this is despite the fact that b allele codes 

for an equal sex ratio among the eggs, whilst the B allele does not. In Leigh's simulation each 

mother with the b allele has 2.66 surviving offspring, compared with 2 surviving offspring 

produced by mothers with the B allele (Table 5.1). In the modified simulation shown here, 

both types of mother have 2 surviving offspring (Table 5.4). 
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Table 5.4. This shows how many eggs mature for mothers of each genotype, in a simulation 

based on Leigh's distinct generations model (Leigh 1970), but with parameters altered so that 

mothers with b and B genotypes produce the same total number of surviving offspring. 

Genotype of mother Male eggs Female eggs 

 No. laid No. maturing No. laid No. maturing 

B allele 150 1 50 1 

b allele 75 0.5 75 1.5 

 

Table 5.5. The results of a simulation based on Leigh's distinct generations model (Leigh 1970), 

but with parameters altered so that mothers with b and B genotypes produce the same number 

of surviving offspring. 

Generation Females Males 

 b B b B 

P1 100 100 100 100 

F1 150 125 63 88 

F2 114 103 44 67 

F5 43 47 17 32 

F10 12 15 5 10 

F15 5 6 3 5 

 

The Leigh (1970) model is fairly unique, in the approach it uses to examine the effect of sex 

differential mortality after the period of parental care. I am not aware that any other study has 

looked explicitly at how male mortality may affect selection for alleles with different sex ratio 

effects. There are models which have demonstrated that exceptional mortality (Werren and 

Charnov 1978), recruitment (Werren and Taylor 1984) or perturbation to the stable age 

distribution (West and Godfray 1997) may alter the primary sex ratio, but these models 

assume that the sex ratio will be altered by an unspecified facultative mechanism, so really 

serve to demonstrate a selective pressure for the sex ratio to change, rather than a mechanism 

by which it changes.  
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The errors with the Leigh (1970) model and the lack of comparable studies, mean that there is 

a need for further work on the question of whether sex differential mortality can affect the 

relative frequencies of variant alleles in sex ratio genes.  

 

5.1.3.2 Other models 

Another approach to modelling the effect of sex differential mortality on the sex ratio, is the 

model used by Kumm et al. (1994) to examine the effect of certain cultural practices that may 

skew the sex ratio in the breeding population, such as female infanticide, sex-selective 

abortion, sex-selection and sex-biased parental investment. It is described as gene-culture 

modelling, because cultural practices, as well as genes, are transmitted from one generation to 

the next, albeit with some degree of random probability. It is a method which, unlike the Shaw 

and Mohler (1953) or Leigh (1970) models, factors parental investment into the fitness 

equations, so that the probability of genes being transmitted to the next generation can be 

affected not only by mortality or reproductive success, but also by the degree of parental 

investment.  

 

In their paper, Kumm et al. argue that culturally transmitted practices, which affect the relative 

mortality of each sex, can alter the primary sex ratio, either toward or against the favoured 

sex, as suggested by Nordborg (1992). In their 'fixed adjustment model', a cultural preference 

for one sex had no effect on the overall number of offspring produced by parents and a 

cultural preference for one sex resulted in a sex ratio bias against that sex (e.g. sex-selective 

abortion resulting in an increase in male births). In their 'variable adjustment model', the total 

number of offspring produced by parents was reduced by the cultural practice and a cultural 

preference for one sex resulted in a bias toward that sex. Kumm et al. also demonstrate that 

the dominance of males or females in transmitting the cultural practice will affect whether 
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practices that alter the primary sex ratio (e.g. male or female infanticide) are practiced. Harada 

(1989) also made this argument and demonstrated that a female-biased primary sex ratio 

could result from higher female mortality. Kumm et al. (1994) suggest that this might explain 

why reports of female infanticide are less common in the south of India, where families are 

less patrilineal. 

 

In section 1.2, it was argued that the degree of parental resource investment that each sex 

receives cannot directly affect genes which control the sex ratio. This is because the degree of 

parental investment in an individual does not affect the genes that the individual received 

from their parents, so does not affect the genes that the individual may or may not pass on. It 

is made clear that this is not an argument about the frequency of an individual's genes that will 

appear in future generations, but an argument about which of an individual's genes will appear 

in future generations. This argument also forms the basis for a criticism of gene-culture 

modelling, because the models include cultural influences as factors that can affect the 

transmission of genes from one generation to the next, but the actual mechanism by which 

this occurs is not demonstrated.  

 

In the present study, an individual-based population genetic model is used to examine the 

effect of mortality in a population where the sex ratio is determined by an autosomal gene of 

the type described in section 1.2. It is a model in which the transmission of alleles from parents 

to offspring is via random segregation in meiosis and random union of gametes through sex 

(i.e. Mendelian inheritance). Increased male mortality is modelled by removing pre-

reproductive males from the population, then observing for any effect on the sex ratio. It is not 

a model that explicitly incorporates cultural influences, except to the extent that cultural 

influences may result in increased mortality of pre-reproductive males, e.g. in war. 
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5.2 Methods 

5.2.1 Sex ratio gene modelling with male mortality 

The following simulations were conducted using a model with the same parameters as Sim. 1a, 

i.e. the sex ratio was determined via an autosomal gene with m and f alleles, which were 

expressed with incomplete dominance in males (section 3.2.1.1). In Sim. 6 and 7, the F1 

generation (in which the episode of male mortality occurred) was generation F500 of Sim. 1a. 

In Sim. 8 and 9, the F1 generation (in which the episode of male mortality occurred) was 

generation F501 of two separate simulations, one with a fixed-birth rate (Sim. 8) and one with 

a variable birth-rate (Sim. 9), which had been run for 500 generations without any mortality 

occurring, to test whether a fixed or variable birth-rate, in itself, affected the sex ratio. 

 

5.2.1.1 Random male mortality 

Sim. 6. The effect of a single episode of higher male mortality (as might occur in a war) was 

modelled, by removing 50% of pre-reproductive male offspring from each family in the F1 

generation. The following 9 generations were then iterated without any mortality.  

 

5.2.1.2 Per-family male mortality 

Sim. 7. A single episode of higher male mortality (as might occur in a war), was modelled, by 

removing either 0, 1 or 2 pre-reproductive male offspring from each family in the F1 

generation. The following 9 generations were then iterated without any mortality. 

 

5.2.1.3 Cohort specific male mortality 

As mentioned, the population genetic model used was a discrete generations model, so there 

was no age structure among the offspring. However, each family in the model did have a first 

born child, second born child, etc., up to 7 children, which can be considered cohorts to some 
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extent. In the following simulations (Sim. 8 and 9), male mortality occurred by removing one or 

more of these cohorts. This pattern of mortality differs from the per-family pattern of 

mortality (Sim. 7) because a family only lost a male child if they happened to have a male child 

in the particular cohort from which the male mortality occurred.  

 

Sim 8  fixed birth-rate. As with previous simulations, all families had between 1 and 7 offspring, 

determined at random and there was no difference in family size by genotype of father, i.e. 

the birth-rate was fixed for all families. A single episode of higher male mortality (as might 

occur in a war) was modelled, by removing all first born, all first and second born, or all first, 

second and third born children - if they were male, from the F1 generation. The next 9 

generations were then iterated without any mortality. 

 

Sim 9 variable birth-rate. As in previous simulations, the number of offspring born to each 

father was determined by a random number, except that mf fathers were limited to having 5 

offspring. If the random number of offspring was 6 or 7 mf fathers would in fact only have 5 

offspring, but mm and ff fathers would have 6 or 7 offspring. In this way, the fathers with a 

tendency to have equal male and female offspring (mf fathers) were demonstrating a stopping 

rule, because they stopped breeding earlier than fathers with a tendency to produce offspring 

of only one sex (mm and ff fathers). A single episode of higher male mortality (as might occur 

in a war), was modelled, by removing all first born, all first and second born, or all first, second 

and third born children - if they were male, from the F1 generation. The next 9 generations 

were then iterated without any mortality. 
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5.2.2 Military recruitment in WWI 

The method for acquisition of these records is given in section 2.3. The records consisted of 

frequencies of non-commissioned officers and other ranks who served in WWI and did not re-

enlist in the Army prior to World War II, according to their date of birth. This data was used to 

give an indication of the age structure of army recruits to WWI, in order to compare this with 

the typical age of fatherhood. The aim of this was to determine whether the war affected the 

age structure of fatherhood, which may have affected the population frequencies of alleles of 

a sex ratio gene, via a cohort-specific pattern of mortality (section 5.3.1.3). The typical age of 

fatherhood was estimated by extracting data on age of fatherhood from the genealogical 

database for the years 1900-1913. This was before the outbreak of WWI and therefore would 

have been unaffected by it, whilst providing an idea of the typical age of fatherhood around 

the time of the war. 

 

5.3 Results 

5.3.1 Sex ratio gene modelling with male mortality 

5.3.1.1 Random male mortality 

In Sim. 6, the removal of a random 50% of pre-reproductive males from the F1 generation had 

no effect on the primary sex ratio in the following generations. The sex ratio did not deviate 

from equality in the generation following the mortality (χ
2 

= 0.10, d.f. = 1, p > 0.1) or in any of 

the 8 generations after that (statistics not shown). 

 

5.3.1.2 Per-family male mortality 

In Sim. 7, the removal of 1 or 2 pre-reproductive male offspring from all families in the F1 

generation caused a sudden peak in the sex ratio in F2, which was also followed by a raised sex 

ratio for several more generations when 2 males were removed (Fig. 5.3). The deviation from 
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equality was tested for statistical significance using χ
2
. It was seen that no generations differed 

from equality for 0 males removed; F2 (p < 0.001) and F8 (p < 0.01) differed for 1 male 

removed; F2-F8 (p < 0.001) differed for 2 males removed.  

 

Fig. 5.3. Sim. 7.  The result of removing 0, 1 or 2 pre-reproductive males from every family in 

the F1 generation, on the sex ratio of offspring born in the following 9 generations. 

 

 

5.3.1.3 Cohort specific male mortality 

Sim. 8  fixed birth-rate. This model was run for 500 generations without mortality prior to the 

simulation, this resulted in x̄ primary sex ratio that did not deviate significantly from equality 

(x̄ s.r. = 0.501, χ
2
 = 0.24, d.f. = 1, p > 0.1). The mortality of males in 0, 1, 2 or 3 cohorts in the F1 

generation did not cause the sex ratio at birth to differ significantly from equality in the F2 

generation, or in the following 8 generations (F3 - F10), using χ
2
 to test for any deviation from 

equality (statistics not shown). 
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Sim. 9 variable birth-rate. This model was run for 500 generations without mortality prior to 

the simulation. This demonstrated that a variable birth-rate did not in itself affect the sex ratio, 

because the x̄ primary sex ratio did not deviate significantly from equality (x̄ s.r. = 0.501, χ
2
 = 

0.19, d.f. = 1, p > 0.1). The mortality of males in 0 or 1 cohorts of the F1 generation caused no 

deviation from equality of the sex ratio in the next generation (0 cohorts: s.r. = 0.498, χ
2
 = 0.67, 

d.f. = 1, p > 0.1; 1 cohort: s.r. = 0.498, χ
2
 = 0.22, d.f. = 1, p > 0. 1). However, the removal of 2 or 

3 male cohorts caused an increase in the sex ratio in the following generation (2 cohorts: s.r. = 

0.511, χ
2
 = 17.56, d.f. = 1, p < 0.001; 3 cohorts: s.r. = 0.520, χ

2
 = 58.55, d.f. = 1, p < 0.001). See 

Fig. 5.4. 

 

Fig. 5.4. Sim. 9. The effect of removing 0, 1, 2 or 3 male cohorts (in the F1 generation) on the 

sex ratio at birth in the following generations. The birth-rate was variable for fathers with 

different genotypes - mf fathers produced up to 5 offspring, mm and ff fathers produced up to 7 

offspring. 
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It is worth noting in Sim. 9 that the sex ratio actually declines from F1 - F10 when 0 male 

cohorts are removed. It is clear that this is due to the natural sex ratio oscillations that occur in 

all the simulations, rather than being due to any parameter of this specific simulation. In 

generation F5 and F8 - F10, there was a significant deviation from equality, due to an excess of 

female births: F5 and F10 (p < 0.001), F7 - F9 (p < 0.01). However, from generation F2 - F10 

there was on average no significant deviation from equality (s.r. = 0.495, χ
2
 = 5.28, d.f. = 9, p > 

0.1).  

 

Also, after removal of males from 1 cohort in F1, there were several generations that had a 

significant excess of females: F4 and F6 (p < 0.01), F9 (p < 0.001). However, including all post-

mortality generations (F2 - F10), there was no significant deviation from equality (s.r. = 0.497, 

χ
2
 = 3.73, d.f. = 9, p > 0.1).  

 

After the removal of males from 2 cohorts, there was a significant excess of males rather than 

females in the following generations: F2, F4 and F7 (p < 0.001), F9 (p < 0.01). However, over all 

post-mortality generations (F2 - F10), there was no significant deviation from equality (s.r. = 

0.503, χ
2
 = 6.88, d.f. = 9, p > 0.1). 

 

After removal of males from 3 cohorts, there was a very significant excess of male births in 

several generations F2, F4 - F6 (p < 0.001), F10 (p < 0.05). Over all post-mortality generations 

(F2 - F10), there was also a significant deviation from equality (s.r. = 0.508, χ
2
 = 18.68, d.f. = 9, 

p < 0.05), due to an excess of male births.  
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5.3.2 Military recruitment analyses 

5.3.2.1 Descriptive statistics 

The number of records analysed from the WWI Army Service Records (WO363) was 1,022,889. 

This only included soldiers with names beginning A-N, because only these had been digitised at 

the time, also soldiers born after 1918 or before 1830 were excluded, because these men 

would have been born after the war had finished or were aged 84 at the start of the war. Of 

the records that were included, there are a small number where the soldier was probably too 

young or too old to have been involved in WWI. However, of the records analysed, the soldiers 

born after 1902 and before 1850 only comprise about 0.1% of the dataset. These records 

probably exist due to errors made when the original forms were written out, or when they 

were digitised.   

 

If we arbitrarily define the age of a soldier as their age at the start of WWI, then the x̄ age of a 

soldier in the WO363 dataset is 26.88 (born in 1888), whereas the modal age is 18 (born in 

1896). It can be seen in Fig. 5.5, that the number of soldiers born in 1896 and 1895 is much 

higher than the number of soldiers born in other years, and that generally the dataset is 

skewed heavily toward the younger age cohorts (i.e. those males aged 18 - 29 in 1914). In fact, 

over 50% (53.0%) of the soldiers in the dataset were under 27 in 1914, i.e. born after 1887; 

whilst over 95% (95.4%) of the soldiers in the dataset were aged under 43 in 1914, i.e. born 

after 1871.  

 

The number of records in the Army pension records dataset is approximately 628,000, the 

modal age in 1914 is also 18 (soldiers born in 1896), though the x̄ age is higher at 29.52. The 

dataset contains more older soldiers, which can be seen by the fact that over 50% (52.8%) of 

soldiers were under 30 in 1914, i.e. born after 1887 and 95% (95.9%) of soldiers were under 48 
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in 1914, i.e. born after 1866 (as compared 50.3% being under 27 and 95.4% being under 43 in 

the service records dataset). 

 

The age structure of the pension record dataset (WO364) concurs well with the service records 

dataset (WO363), as can be seen in Fig. 5.5. However, there is a clear difference between the 

two datasets in the right hand tail. Among those personnel born before 1875, there is a higher 

frequency of service pensions than service records, and a lower frequency for those personnel 

born in and after 1875. A possible cause of this is that older soldiers were more likely to 

survive the war and draw a pension, perhaps because they performed less dangerous duties, 

but this is speculation. It may be the case that more of the service records of older soldiers 

were destroyed by fire, when the War Office records repository was bombed during WWII
1
. 

Notably, neither dataset contains records of soldiers who re-enlisted into the army prior to 

WWII, though it is unlikely that this could have caused the disparity between the two datasets. 

It is likely, however, that the younger soldiers may be under-represented in the service records 

dataset, because younger men would have been more likely to re-enlist for WWII.   

 

                                                 
1
It is not known anymore, how the service records at the War Office were laid out (Spencer 2001), so it 

is possible to speculate that the records of older soldiers were stored somewhere that was more 

severely affected by the fire. 
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Figure 5.5. The frequency of army personnel serving in WWI, by date of birth, according to 

surviving service records and pension records.  

 

 

5.3.2.2 Age structure comparisons 

The graph below (Fig. 5.6) shows the age of the fathers of children born from 1900-1913, 

before the outbreak of WWI in 1914. This data is taken from the genealogical database, so is 

not specific to any country, though is mostly drawn from the US, UK and Western Europe. It is 

hoped that this gives an idea of the distribution of paternal age shortly before the outbreak of 

the war in the UK, for the purpose of comparing this with the age distribution of soldiers 

enlisted to the war. The x̄ age of fatherhood is 36.56, whilst the modal age is 25. It is seen that 

over 50% (50.2%) of fathers were under the age of 32, whilst over 95% (95.75%) were under 

48.  
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Figure 5.6 The age range of the fathers of children born from 1900-1913, taken from the 

genealogical database. 

 

It is clear that the age structure of soldiers enlisted to WWI differs from the age structure of 

paternal age, with a much lower x̄ and modal age for soldiers than fathers (Table 5.6). Notably, 

if the comparison is based on the age of soldiers at the end of the war in 1918, then we still 

see that the age distribution of soldiers is skewed further to the left, than the age distribution 

of fatherhood. This is represented graphically in Fig. 5.7, by extrapolating the paternal age data 

so that it contained the same number of individuals, then superimposing it over the age of 

soldiers in 1914, 1916 and 1918 (according to the service records dataset - WO363). 
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Figure 5.7. The age range of fatherhood from 1900-1913 (taken from the genealogical 

database) superimposed on the age of soldiers in WWI (taken from Army service records - 

WO363).  

 

Table 5.6. Summary of age distribution statistics for Army records and paternal age dataset. 

 Age at start of war in 1914 

 x‾  Mode >50% under: >95% under: 

Army service records 26.88 18 27 43 

Army pension records 29.52 18 30 48 

Paternal age 1900-1913 36.56 25 32 48 
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5.4 Discussion 

5.4.1 Impact of war on sex ratio 

To examine how single episodes of increased male mortality (as might occur in wars), may 

affect a population with a genetically determined sex ratio, a set of simulations were carried 

out, in which the sex ratio was determined via an autosomal gene of the type described in 

section 1.2. In each of the simulations, there were m and f alleles in the population, which 

were expressed with incomplete dominance in males, so mm males produced only sons, ff 

males only daughters and mf males equal sons and daughters (section 2.1.1 for methods). 

Three different patterns of mortality were examined: 

 

5.4.1.1 Random mortality pattern 

The first pattern of male mortality tested was a random pattern, in which 50% of pre-

reproductive males were removed at random from one generation, then the following 

generations iterated with no mortality occurring (Sim. 6). The mortality had no significant 

impact on the sex ratio in the following generations, because it did not result in a change to 

the relative frequencies of the sex ratio genotypes in the population. This was because male 

genotypes were removed at the same relative frequencies at which they occurred, so the 

remaining genotypes occurred in the same relative proportions as before. This simulation 

indicates that if wars serve to remove males - who have the potential for becoming fathers - 

from the population in a purely random manner, then wartime sex ratio increases do not have 

a genetic explanation.  

 

5.4.1.2 Per-family mortality pattern 

The second pattern of male mortality tested was a per-family pattern, in which the removal of 

males was distributed evenly between families (Sim. 7). The removal of 1 or 2 pre-reproductive 
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males from each family in one generation, resulted in a sudden peak in the sex ratio in the next 

generation (Fig. 5.3). This occurred because the families with more sons were those most likely 

to have sons still remaining after the mortality, whilst those sons were the males most likely to 

produce male offspring, because they were most likely to have inherited the mm genotype 

(because their fathers were mm males). It is possible to think of this in terms of the percentage 

of males removed from each family - removing a single son from a family with two sons 

removes 50% of their sons, whilst from a family with five sons, this removes 20%. In this 

simulation, the removal of either 1 or 2 males from each family, resulted in a relative increase 

in males from male-biased families (i.e. men with more brothers), which caused there to be an 

increase in the sex ratio in the next generation.  

 

In the second generation after 2 males were removed from each family, the sex ratio dropped 

back (F502), it then rose again in the next generation (F503) and slowly dropped back over the 

following five generations (Fig. 5.3). The reason the sex ratio dropped back after the initial 

peak and then rose again, was because the fathers of the F502 generation (i.e. the F501 males) 

inherited half their alleles from their mothers, who were unaffected by the episode of 

mortality. The sex ratio increased in the F503 generation, because the mortality episode 

caused an overall decline in f alleles, which males also inherited from their mothers by the 

third generation after the mortality. The sex ratio declined after the F503 generation, due to 

frequency dependent selection. 

 

It is noticeable that the pattern of the sex ratio in Sim. 7, following the episode of male 

mortality (Fig. 5.3), is similar in some respects to the pattern observed after WWI in the annual 

sex ratio data from England and Wales (Fig. 3.2): there is a sudden peak, which drops off and is 

then followed by a steady rise and fall. However, Fig. 3.2 is based on annual sex ratio data, 
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whilst Fig. 5.3 is based on inter-generational data taken from a simulation with discrete 

generations. Therefore, although the simulation may explain how a sudden increase in the 

secondary sex ratio occurred as a result of war, it does not explain why the sex ratio in England 

and Wales dropped back by 1926 (this is the trough year, where the sex ratio drops to 0.510, 

after peaking at 0.514 in 1919, see Fig. 3.2). The simulation clearly shows a much longer time 

for the restoration of a normal sex ratio (Grant 2009). I have suggested that the sex ratio 

would have dropped back within the space of a few years, because males who had been too 

young to fight in the wars began to reach sexual maturity and father children in the years after 

the war, whilst these males would have had a 'normal' complement of sex ratio alleles (Gellatly 

2009). 

 

However, a problem with proposing that wartime sex ratio peaks may have occurred as a 

result of a per-family pattern of male mortality, is that male recruitment to the armed forces 

and subsequent mortality is unlikely to have occurred in this way. In WWI, there was no effort 

on the part of the UK government to limit the number of males that could be recruited from a 

single family (John Bourne, personal communication
1
). Therefore, families with more sons may 

have been equally likely to lose any of their sons to the conflict, as families with equal sons and 

daughters or more daughters than sons. According to the UK Military Service Act 1916, which 

was the legislation that initiated conscription to the army, men would not be expected to go to 

war if it was in the national interest for the man to be involved in other work; if serious 

hardship would ensue to their family; if they suffered from ill health; or, if they had a 

conscientious objection to combat. If men with more brothers were less likely to enlist to the 

army, it is unlikely that this would have been a result of government policy. It may have been a 

result of family decisions, whereby parents with sons already in the military would resist 

                                                 
1
Dr. John Bourne is a Senior Lecturer in Modern History and Director of the Centre for First World War 

Studies at the University of Birmingham. He has written extensively about the First World War.  
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sending another son. However, this is speculation and a historical study would be needed to 

determine if this happened at all.  

 

5.4.1.3 Cohort-specific mortality pattern 

If we continue to take the UK population in the First World War as an example, it seems 

unlikely that a per-family pattern of male mortality occurred. However, it is also clear that 

recruitment to the army was not completely random, either in relation to the typical age of 

males (there was a much higher frequency of men who were 18 and 19 years old in 1914, than 

would be expected from a random sample of the population - section 5.3.2.1), or in relation to 

the age of fatherhood (the average age of a soldier was much lower that that of a father - 

section 5.3.2.2). In part, the over-representation of young men in the armed forces would have 

been due to the fact that unmarried men were conscripted from January 1916, whereas 

married men were not conscripted until May 1916, which would have drawn younger males 

from the population earlier and exposed them to greater risk of death. It is suggested, 

however, that this is unlikely to have been the only reason for the young age range of soldiers - 

a combination of bravado, peer pressure and lack of work or family commitments may draw 

young men to volunteer for wars. 

 

The high intake of young men to the UK armed forces in WWI effectively meant that there was 

a higher loss of males from certain annual cohorts, in particular of men born in 1895 and 1896, 

who far exceeded the men born in other years (Fig. 5.5). In order to examine what effect 

removing males from particular cohorts might have on the sex ratio, a cohort-specific pattern 

of mortality was modelled. The model was not age-structured, but each offspring did have a 

specific birth order, so effectively belonged to a cohort defined by birth order (section 2.1.1). 

This pattern of mortality differed from the per-family pattern, because a family could only lose 
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a child if they happened to have a male child in the particular cohort from which the mortality 

occurred.  

 

In Sim. 8, 1, 2 or 3 cohorts of males were removed from the population in a single generation 

and this had no effect on the sex ratio in following generations. However, there was a fixed 

birth-rate in this simulation, so all families had the same number of offspring, irrespective of 

the sex ratio among those offspring. In Sim. 9, there was a variable birth-rate, in which families 

who only had sons or only had daughters could have up to 7 offspring, whilst families who had 

equal sons and daughters were limited to 5 offspring; this resulted in a super-binomial 

distribution of the sex ratio among families. It was seen that the removal of males in 2 or 3 

cohorts, resulted in an increase in the sex ratio in the following generation (Fig. 5.4). This 

occurred, because the male-biased families had a proportionately lower chance of having sons 

within the cohorts of males that were removed, whilst their sons were more likely to inherit 

the m allele and have sons themselves. In other words, because larger families had children in 

more age cohorts, mortality in 2 or 3 cohorts had less impact on those families - in terms of the 

percentage of their children affected.  

 

It can be seen that the pattern observed after males were removed from 3 cohorts (Fig. 5.4), is 

broadly similar to the pattern observed when 2 males were removed from each family in Sim. 

7 (Fig. 5.3), i.e. a sharp increase in the generation after the mortality, then a sharp decline in 

the generation after that, followed by another rise and then a steady decline over the 

following generations. It occurred for the same reason. In the peak generation (i.e. the 

children of the generation that suffered the mortality) the males inherit a 'normal' 

complement of alleles from their mothers, so the sex ratio of their offspring is lower. The 

reduction in f alleles that occurred as a result of the mortality has worked its way into the 
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female line by the second generation, so the alleles that males inherit from both parents have 

been affected, causing another increase in the sex ratio by the third generation after the 

mortality. 

 

The strength of a cohort-specific mortality explanation for wartime sex ratio increases, is that 

there is good empirical evidence that wartime mortality was limited to a specific cohort, rather 

than being distributed evenly with respect to men who were potential fathers. The comparison 

between the age-range of soldiers and age-range of fathers (section 5.3.2.2 and Fig. 5.7) shows 

that males removed from the population as a result of WWI in the UK, were younger than the 

males in the genealogical database that became fathers in the 13 years before the war started. 

This suggests that the age distribution of fatherhood was altered by the war. Indeed, the mean 

spouse age difference increased during and immediately after the two World Wars in the UK, 

due to women marrying older men (Manning et al. 1997). The removal of a narrow cohort of 

males means that if families with more sons are larger than families with fewer sons, these 

families may make an increased contribution to fathering the next generation, as shown in 

Sim. 9. This causes an increase in the sex ratio in the next generation, because the sons of 

families with more sons are more likely to have sons themselves, due to inheritance of sex 

ratio variation. Importantly, the size of families with more daughters and the contribution of 

daughters to the next generation is not important here, because females do not affect the sex 

ratio in the next generation.  

 

It is probable that age of fathers in the genealogical database is fairly close to that in the UK 

between 1900-1913, but the families in the database were drawn from a number of countries, 

so it is not certain. It would have been preferable to directly compare the age of soldiers in the 

UK Army Service records, with official UK statistics on the age of fathers at the birth of their 
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children, but this information was not recorded in national statistics until 1961 (Macfarlane 

and Mugford 2000). Also, there was no way to select only UK fathers from the genealogical 

database, which was a limitation of the database, which I discuss in section 6.1.3.  

 

In support of the cohort-specific male mortality explanation for wartime sex ratio increases, 

there is also good evidence that birth rate varies in accordance with the sex ratio among 

offspring. Sex preference studies have consistently shown that families with both sexes of 

children tend to be smaller than those with children of the same sex, whilst these studies date 

back to early in the last century (Gini 1908; Winston 1932; Thomas 1951; Edwards 1966). There 

is good reason to suppose, therefore, that families with more sons may have been larger than 

families with less sons, both during WWI and WWII; nonetheless, a study focussing on families 

in a specific population around the time of one of the wars would be needed to fully confirm 

this. There is tentative evidence presented in this study that there was a higher than expected 

frequency of male-biased families around the WWII period (section 4.3.1.2.4 and 4.4.1), when 

wartime sex ratio peaks were observed in the US, as well as the UK and other European 

countries. However, because the number of families in the dataset is relatively small and 

because they are taken from a number of different countries, this evidence needs to be 

treated with caution.  

 

The simulation of cohort-specific male mortality (Sim. 9), shows how a sudden increase in the 

secondary sex ratio might occur as a result of war, but it does not inherently explain why the 

sex ratio dropped off by 1926 in the UK. In the simulation, the sex ratio drops off when the 

grandchildren of the wartime cohort of fathers are born, but the grandchildren of the WWI 

cohort would not have been born until about 1930 at the earliest. It is suggested that the sex 

ratio dropped off by 1926, because the men that had been too young to go to war were 



 223 

becoming fathers (perhaps at a greater rate than was typical for men of their age, due to the 

increased availability of females) and they produced a lower sex ratio than the wartime cohort 

of fathers, because their cohort was relatively unaffected by the wartime mortality. 

 

In the England and Wales sex ratio data (Fig. 3.2), it is seen that the sex ratio is on the rise 

again in the 1930's, yet Sim. 9 predicts that the sex ratio will begin to rise again when the 

great-grandchildren of the wartime cohort of fathers are born, which would be mid-1940's at 

the earliest for the WWI cohort. It would seem, therefore, that this increase is not due to the 

wartime mortality. If we look at the effect of WWI in Germany and Netherlands (Bromen and 

Jöckel 1997) or France (Graffelman and Hoekstra 2000), the post-war trend looks much more 

like a continuation of the pre-war trend, than it does in the UK. It is apparent from the material 

discussed in the previous chapters, that the war effect will not have been the only factor 

affecting the sex ratio; there are known to be long-term oscillations in the sex ratio, whilst it is 

also understood that sex preferences can affect the sex ratio (given the existence of heritable 

sex ratio variation [e.g. Yamaguchi 1989], Chap. 4). It would be worth considering as part of a 

future study, whether the difference in the shape of the sex ratio trend around WWI and WWII 

owes as much to these other factors, as it does to the wartime mortality. A study of this type 

might incorporate information about sex distribution, age of fatherhood, age difference 

between couples and also information about immigration and emigration, during post-war 

periods. A more complex age-structured model might also help to establish the extent to 

which the present genetic hypothesis explains the war and post-war sex ratio trends. 

 

In the per-family wartime mortality simulation (Sim. 7), removing a male child from every 

family only caused a change of 0.02 in the sex ratio of the next generation, whilst the removal 

of 3 cohorts of males in Sim. 9, also only caused a 0.02 increase in the sex ratio of the next 
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generation. It is unlikely that these simulations accurately emulate a human population 

affected by war, because the family structure and mortality patterns are too simple, but they 

demonstrate that an episode of mortality may need to involve a considerable proportion of 

the male population to cause an immediate noticeable effect on the sex ratio. Indeed, James 

(2009) and Grant (2009) have suggested that the sex ratio may only be affected when the war 

has had a severe and prolonged impact on the population.  

 

The phenomenon of wartime increases in the secondary sex ratio is often attributed to 

returning soldiers having more sons (e.g. Bernstein 1958; James 1971; Kanazawa 2007b). 

However, there are reasons to think that the phenomenon may not be due to returning 

soldiers. In particular, the sex ratio in the UK began to rise during both of the wars, as can 

clearly be seen from the annual sex ratio data in several countries (section 5.1.1). In WWI, the 

peak year was 1919, the year after the war ended, but the peak year for WWII was 1944, 

which was the year before the war ended. It might be argued that soldiers were returning on 

leave throughout the wars, so the sex ratio may have begun to rise as a result of the children 

born to these soldiers; however, soldiers on leave were likely to have been a very small 

percentage of the total men becoming fathers in the population at the time. 

 

The 'returning soldier' hypothesis proposed by James (1971) attributes the increased sex ratio 

after the wars to an increased rate of intercourse between returning soldiers and their 

spouses. Notably, the evidence of very frequent intercourse after the wars is anecdotal. Also, 

the increase in the birth rate after the war does not indicate that couples had more frequent 

intercourse than during peacetime, only that they were having intercourse at all. Furthermore, 

men would have had many opportunities for sex after the wars, because there were suddenly 

many fewer men compared with women, so they may have had more sexual partners, rather 
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than more frequent intercourse with one partner, though it is possible that the social norms of 

the time would have prevented this. It also needs to be considered that the libido of some 

men may have been adversely affected by the traumatic experiences of the war.  

 

James (1995) proposed an extension to his initial returning soldier hypothesis, suggesting that 

there may be a psychological mechanism active at all times, which compels individuals 

perceiving an excess of either sex in the breeding population to regulate their frequency of 

intercourse, so as to increase their chance of producing offspring of the less frequent sex 

(section 3.1.2.1.1.1). In this context, it may have been irrelevant whether the soldiers were 

traumatised or not, because this psychological mechanism may have taken precedent. This 

could also explain why the sex ratio began to increase during the wars, because the men who 

had stayed at home would have perceived the excess of women in the population and had 

more intercourse, which would have increased their likelihood of having male offspring. This 

hypothesis invokes a facultative mechanism of sex ratio control, facilitated by variation in the 

probability of a male or female conception over the period of the menstrual cycle. However, 

the evidence that the timing of insemination within the menstrual cycle can affect the sex of 

offspring is patchy (section 5.1.1.1.1), also evidence that individuals respond to skews in the 

sex ratio by regulating their rate of copulation is lacking.  

 

The 'returning soldier' hypothesis proposed by Kanazawa (2007b) is based on a finding from 

1,000 records taken from the WWI Army Service Records (WO363), in which 102 soldiers were 

killed and 898 survived. It was found on average, that the surviving soldiers were significantly 

taller (2.37 cm), significantly heavier (3.62 kg) and significantly older (2.3 years). It is clear that 

this is a relatively small sample of soldiers, considering that there are well over 1 million 

soldiers among the WO363 records. Also, the comparisons are limited by the smallest sample, 
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which in the case of height was a sample of 96 soldiers, who were killed and for whom height 

information was available (there were 802 surviving soldiers with height information 

available). An indication that this sample is too small, is the obvious lack of a normal 

distribution in heights of the 96 killed soldiers (as can be seen in Fig. 1 of Kanazawa [2007b]), 

as compared to the surviving soldiers, for which there is a clear normal distribution of heights. 

It would certainly be desirable to see a more robust statistical analysis of the WO363 records, 

in this respect. 

 

The weak statistical proof for a height or weight difference between the soldiers that survived 

the war and those that didn't, is probably not the most striking problem with the Kanazawa 

hypothesis. A serious theoretical problem with the explanation, is that it implies linkage 

disequilibrium between male stature and the sex ratio, which would obviously be a constraint 

on the directional evolution of male size and perhaps also on the maintenance of sex ratio 

equilibrium. This is similarly the case for other applications of the generalised Trivers-Willard 

hypothesis, in which a genetic linkage is postulated between sex ratio genes and genes for 

attractiveness (Kanazawa 2007a), violence (Kanazawa 2006), etc.  

 

An explanation for wartime sex ratio peaks that does not depend on a returning soldier effect, 

has been proposed by Grant (2009) and Grant and Irwin (2009). It stems from the maternal 

dominance hypothesis (Grant 1996), which suggests that dominant women are more likely to 

have sons, due to raised follicular testosterone levels, which prime the ovum to be more 

receptive to Y sperm (Grant and Irwin 2005; Grant et al. 2008). If, as might be expected, the 

stress of war causes testosterone levels to become raised in women, then it may be predicted 

that this would result in an increase in male births in the population. However, an issue with 

this explanation, is that males are more vulnerable to stressors occurring in pregnancy 
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(Kraemer 2000)(section 5.1.2), so a higher abortion rate for embryonic and foetal males may 

be expected as a result of wars. Indeed, this may explain a reduction of the secondary sex ratio 

6-9 months after short wars (e.g. after the 10 day war in Slovenia [Zorn et al. 2002], or terrorist 

attacks in the US [Catalano et al. 2005; Catalano et al. 2006]).  

 

The issue of increased loss of males in utero during stressful episodes, is recognised by Grant 

(2009), who suggests that improving conditions at the end of a long war would result in more 

stress-induced male conceptions reaching term (because of reduced stressors during 

pregnancy), which would cause the characteristic peak observed in male births at the end of 

wars. Again, although this is not a returning soldier hypothesis, it is not clear why the sex ratio 

actually began to rise and even peak before the ends of the wars, because the attrition of the 

war years progressively reduced the quality of life for the UK population, so it ought to be 

presumed that stressors of pregnancy would similarly have increased during the war years, 

thereby reducing male births. 

  

5.4.2 Impact of prenatal and infant mortality on sex ratio 

According to Fisher (1930), the higher rate of infant male mortality in humans is causally 

related to the higher rate of male births, due to the effect it has on parental investment, i.e. 

parents must invest less in males if they more often die in infancy, so the primary sex ratio 

becomes biased toward males to equalise the overall parental investment made in each sex 

(section 1.1.1.2). Parental investment was not factored into the mortality simulations carried 

out here, so we may assume (a) that the simulations are only applicable to mortality occurring 

after the period of parental care, or (b) that parental investment cannot affect the genes that 

are passed from parent to offspring, as argued here (section 1.2.3 and 6.1.1.1).  
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It has been shown that a random pattern of male mortality has no effect on the sex ratio (Sim 

6a), because male genotypes occur in the same relative frequencies before and after the 

mortality, so the sex ratio among the offspring of those males is unaffected by it. It can be 

assumed, therefore, that a random pattern of prenatal and infant mortality would also have no 

genetic effect on the sex ratio. It is somewhat paradoxical that genetic imbalances in the sex 

ratio can be corrected by frequency dependent selection in the long-term (as demonstrated, 

e.g. in Sim. 1a), though an imbalance caused by a random loss of males has no genetic impact; 

but the fact that all males have a greater chance of breeding when a random 50% of males are 

removed in one generation, does not affect the chance of those males passing on more of 

their genes than other males. Imbalances that occur in the long-term as a result of an excess of 

either the mm or ff genotypes (which cause either too many males or too many females to be 

born) can be corrected by selection, because the individuals who produce an excess of the 

more frequent sex will pass on fewer of their genes than other individuals, by virtue of the fact 

that they produced more of the sex with the lowest probability of breeding. 

 

In contrast to the random pattern, it was shown that a per-family pattern of male mortality 

resulted in a male-bias in the sex ratio at birth (Sim. 7), because families with more male 

offspring were more likely to have surviving male offspring after the mortality, who in turn 

propagated the genes that caused more males to be born. It was concluded that this pattern of 

mortality is unlikely to have explained the wartime increase in sex ratio, but is there any 

empirical evidence for a per-family pattern of male mortality during peacetime, which might 

explain the higher rate of male births typically seen in human populations? If we think about 

genetic disorders that result in higher male mortality, then these will tend to be concentrated 

within certain families, rather than being spread evenly between families. However, with 

communicable diseases this might not be the case, despite the close proximity of family 
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members. It seems there are complex immunological patterns in families, which may mean 

that having siblings actually protects against disease. It has been shown that having siblings 

lowers the risk of poor respiratory function (Mattes et al. 1999), asthma and other atopic 

conditions (e.g. Karmaus et al. 2001), to which firstborn children are more vulnerable. It is 

possible that siblings promote early infections in childhood leading to better development of 

the immune response, or perhaps that there are beneficial changes in the uterine environment 

with increasing birth order, though the cause is uncertain (Karmaus et al. 2001). 

 

The difficulty with determining what relative advantages or disadvantages are associated with 

the order of birth among siblings, is that there seems to be a complex mix of biological and 

social factors involved. Social and psychological measures tend to find that firstborns are at an 

advantage, which in some part must be due to receiving greater attention from their parents, 

as they tend to gain more education (e.g. Blake 1989), may be more likely to attend for 

vaccinations and other health care services (e.g. Kaplan et al. 1992; Celik and Hotchkiss 2000) 

and may be less likely to suffer accidents in childhood (Nixon and Pearn 1978; Bijur et al. 

1988). Yet, by certain biological measures, particularly birthweight (which tends to be lower) 

there is a disadvantage for firstborns (e.g. Magnus et al. 1985; Modin 2002). Faurie et al. 

(2009) point out that studies of the effect of birth order on survival and reproductive success 

have provided contradictory findings, with some studies reporting an advantage to earlier born 

children and some to later born children. 

 

In a life-long study of 14,200 children born from 1915-1929 in Uppsala, Sweden, Modin (2002) 

reported that later born siblings, in particular girls, demonstrated a higher mortality risk at 

practically all stages of life. It was concluded that this was primarily due to the influence of 

birth order on adult social class, education and income. In contrast, a study of data from Finish 
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parishes in the 18th and 19th century found that firstborns had a lower chance of survival 

(Faurie et al. 2009). In the latter study, it was also tested whether birth order had an effect on 

lifetime reproductive success (as measured by the number of offspring that an individual 

raised to 15 years old). In sibships as a whole, birth order had no effect, but when siblings of 

the same sex were compared, then surviving firstborn sons had significantly greater 

reproductive success than brothers, whilst middle born sons had significantly lower 

reproductive success than brothers. It would have been useful, from the point of view of the 

present study, to know whether the higher reproductive success of all firstborn sons 

compensated for their overall lower survival prospects, but this information was not available 

in the paper. 

 

It would be interesting to see further historical studies looking at the effect of birth order on 

survival and reproductive success, with an aim to testing whether there is an overall 

disadvantage to firstborn or later born males. It would be important to include illegitimate 

births in such a study, as first born children are over-represented among these births, whilst 

they are historically a highly disadvantaged group. If such studies did establish that survival 

and reproductive success was lower for firstborn males, then this would be an example of a 

per-family pattern of mortality, because each family can only have one firstborn male, so they 

are, by definition, distributed evenly between families. The overall picture is somewhat 

complicated by female mortality, as a higher risk for firstborn females would lower the sex 

ratio in the long-term; nonetheless, male mortality in infancy and childhood is usually higher 

than female mortality. It also needs to be kept in mind that birth intervals - which are an 

important factor in child health and mortality (e.g. Chidambaram et al. 1987), family size, 

social factors and health care have varied considerably over time and between countries, so an 
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inconsistent relationship between birth order and mortality or reproductive success should be 

expected (Modin 2002). 

 

The other non-random pattern of male mortality tested here was a cohort-specific pattern, 

which resulted in an increase in male births, provided there was a super-binomial distribution 

of the sex ratio among families (Sim. 9). An increase in male births occurred, because there 

was an upper limit on the number of sons that a family could lose when mortality was limited 

to cohorts (because a family could only have one son in each cohort, given the absence of 

twins and other multiple births from the model). The mm fathers tended to have larger 

families than mf fathers, so the upper limit of sons that could be lost from their families was a 

smaller percentage of their average total number of male offspring. In other words, the 

mortality had a relatively higher cost - in terms of sons lost - to mf fathers than mm fathers, 

whilst the sons of mm fathers were those that were more likely to inherit m alleles and so have 

sons themselves. There is good current and historical evidence for a birth rate that varies in 

accordance with the sex ratio among offspring, leading to a super-binomial distribution of sex 

ratio among families. The question remains whether there is any evidence for a cohort-specific 

pattern of mortality among pre-reproductive human males. 

 

It is known that there may be annual cycles in the magnitude of infant deaths, with the 

number of deaths higher in certain months. Infant mortality statistics from 46 of the largest 

cities in the United States (between 1917 and 1920) show higher mortality centred around the 

month of August, which was attributable to 'respiratory and digestive' causes, rather than 

'congenital debility' (Crum 1920). Infant mortality rates for London between 1870 and 1914 

were reconstructed by Mooney (1994) using the Quarterly Returns of the Registrar General of 

England and Wales. These show a clear and recurring increase in infant deaths during the third 
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quarter of the year, i.e. during the hottest months of July, August and September. The overall 

level of infant mortality varied widely across London, but the dominance of summer mortality 

was universal. The cause of the increase in infant mortality during summer months was almost 

certainly due to poor sanitation in the urban environment, the problems of which were 

exacerbated during summer months (e.g. by the increase in flies), resulting in high levels of 

diarrhoea and dysentery, particularly in infants aged between 1 and 11 months (Woods et al. 

1988). 

 

In Cuba, Gonzalez Perez et al. (1988) found that infant mortality within the first year of life was 

highest in June, July and August, during two study periods (1965-71 and 1979-85). The overall 

mortality rate declined between the two study periods, presumably due to improvements in 

health care, but there was still excess mortality in the summer months in the later study 

period. The months of May-August are the rainy months, and the authors suggest that 

improvements in hygiene and the environment would help to reduce infant mortality in these 

months. A similar finding was reported for the city of Salvador in Brazil from 1962-71, where 

the highest infant mortality was in the rainy season, between February and July (Guimaraes 

Netto Dias 1975). It was suggested by the author that this may have been due to unsatisfactory 

sanitation during this the rainy period. In rural Senegal, Delaunay et al. (2001) found a seasonal 

trend in infant mortality, also with the highest infant mortality occurring during the rainy 

season, due in large part to a surge in malaria infection during this period.  

 

In itself, the evidence that infant mortality may vary throughout the year, is not evidence of a 

cohort-specific pattern of mortality. If all children between 0 and 12 months are equally 

vulnerable to seasonal mortality risk factors, then it would be irrelevant what month a child 

was born in, in respect of their risk of mortality, and we would say that seasonal mortality is 
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not specific to any monthly or seasonal cohort. However, if children born at certain times of 

the year are at more risk of mortality, then it is possible to say that a specific cohort (e.g. 

children born between July and September) suffers higher mortality than others. In terms of 

the sex ratio, it could then be argued that those families with large numbers of sons will be 

better placed to avoid the cohort-specific mortality and will therefore be more likely to 

propagate their genes through the male line to future generations, resulting in an increase in 

the sex ratio at birth, as seen in Sim. 9. 

 

As far as I am aware, there are no studies that have looked specifically at whether seasonal 

mortality has had a greater effect on children born in different months. However, in national 

statistical reports, a distinction is often made between neonatal mortality (death within 0 - 27 

days from birth) and post-neonatal mortality (death between 28 and 364 days from birth). 

There are typically a higher total number of neonatal than post-neonatal deaths (in the UK, it is 

approximately twice as many), indicating that the infant is at far higher risk of death in the first 

month of life, than at any time during the first year (e.g. NHS Scotland 2009; Sparks et al. 2009; 

ONS 2007). It is clear that neonatal and post-neonatal mortality demonstrate distinct (though 

broadly correlated) trends, see for example Fig. 1 in ONS (2008) which charts the decline in 

mortality for the two groups since 1978. 

 

The causes of neonatal and post-neonatal mortality do differ to some extent, but they also 

overlap. In respect of the present study, the question needs to be asked whether neonatal or 

post-neonatal infants are currently, or were historically, more susceptible to seasonal risk 

factors for infant mortality. A study by Janerich et al. (1971) showed an increase in neonatal 

mortality in summer months in New York state from 1959-1967, but this was not compared 

with post-neonatal mortality. Singh and Kogan (2007) showed that the decline in infant and 
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post-neonatal mortality among higher socioeconomic groups in the US, rather than neonatal 

mortality, has contributed to the widening socioeconomic gap in childhood mortality since 

1985, suggesting that neonatal mortality is less responsive to improvements in environment, 

healthcare, etc. There is also some evidence for this in a study by Sparks et al. (2009), which 

found varying patterns of neonatal and post-neonatal mortality with respect to socioeconomic 

conditions and rurality, using national statistical data from the US. This finding led the authors 

to make a compelling argument for considering data on neonatal and post-neonatal mortality 

separately, because variation in the factors that cause neonatal and post-neonatal mortality 

may be masked by analysing the two groups as one.  

 

It is widely thought that differential mortality of each sex after the period of parental care 

cannot affect the genes that control the primary sex ratio, because selection acts on the sex 

ratio through differentials in the parental resources invested in each sex of offspring - as 

proposed by Fisher (1930). The Leigh (1970) model has frequently been cited as providing 

support for this view. However, it has been shown here that there is a crucial problem with the 

Leigh model, because it does not show that alleles which code for an equal sex ratio will be 

favoured over alleles with a different effect, as the author presumed, because there is a bias in 

the model that causes the carriers of the equal sex ratio allele to produce more surviving 

offspring overall, who in turn transmit that allele to future generations (section 5.1.3.1). In 

light of the error in the Leigh model, it remained to be demonstrated with a population genetic 

model, whether differential mortality could affect the sex ratio. It has been shown with a more 

advanced model that a random pattern of mortality has no effect on a genetically determined 

primary sex ratio, but a per-family or cohort-specific pattern of mortality can affect it. The 

focus must now be on analysis of empirical data to examine whether either or both patterns of 

mortality may actually occur. 
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Although parental care was not specifically factored into the model, it could be argued that the 

simulation of a higher rate of male pre-reproductive mortality was equivalent to lower 

parental investment in males - assuming lower parental investment prevents males from 

breeding. If we make this assumption, then it depends whether lower parental investment in 

males results in a random, per-family or cohort-specific pattern of mortality, as to whether it 

affects the sex ratio. It is not clear that this satisfies the predictions of sex allocation theory, in 

which sex differences in parental resource investment per se, can cause genetic changes in the 

sex ratio (section 1.1.3). However, a strong argument must be made to justify a model in which 

investment of parental resources can directly affect which alleles are transmitted from 

offspring to grand-offspring, perhaps an argument for epigenetic changes induced by parental 

investment (section 6.2).  
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Chapter 6. General Discussion 

6.1 Assessment of the research 

There were two distinct strands of work in this research project, the population genetic 

modelling and the analysis of genealogical data. I look at these separately in the following sub-

sections, in which I discuss the merits of the methodology, whilst also examining the 

difficulties encountered and suggesting potential for further work. 

 

6.1.1 The population genetic modelling 

In most previous models used to study sex ratio genetics and evolution (e.g. Shaw and Mohler 

1953; Verner 1965; Leigh 1970), the frequency of each allele in the population is calculated as 

a proportion relative to other alleles, rather than as a finite number. In these classical 

equational models, there are no diploid individuals, instead the relative frequencies of diploid 

genotypes are derived from the allele frequencies, because the formation of diploid genotypes 

via the chance union of gametes is fairly predictable in a large population. Mayr (1963) 

famously described this modelling approach as 'beanbag genetics', because the alleles exist in 

the gene pool like beans in a bag, deprived of the individuals that they should reside in. 

 

Mayr's description of classical equational models is a useful pointer to their limitations, but it 

would be wrong to argue that these models are too unrealistic to be useful, because all models 

are unrealistic and should only be judged by their contribution to understanding concepts or 

processes. Indeed, Crow (2001) makes a similar point, but also argues that models which track 

individual genotypes are impractical and not very interesting, whilst equational models allow 

distracting details to be avoided. The problem with this view is the untested assumption that 

individual-based models will not provide greater conceptual insights. It is not only a view that 
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population genetics can be explained with mathematical rules, but also a view that the 

mathematical paradigm which has historically been used to study population genetics cannot 

be bettered. In the age of modern computing, the argument that individual-based models are 

impractical does not stand up. There are commercially available computer games that simulate 

complex virtual worlds with a huge amount interaction between characters and objects, so it is 

well within the practical reach of scientists to develop more complex population genetic 

models. 

 

The model used in this study can be defined as an individual-based model, according to three 

of the four criteria suggested by Uchmanski and Grimm (1996) to define such models: (1) the 

simulations were based on changes in real numbers of individuals, rather than relative 

proportions, percentages or population density; (2) the model populations consisted of 

individuals that varied from one another, i.e. by genotype and sex; (3) the model involved a 

dynamic resource, i.e. the availability of the other sex for reproduction. The fourth criteria 

suggested by Uchmanski and Grimm to define an IBM is a high degree of life-cycle complexity, 

which was not true of the model, because life-cycle was limited to birth, reproduction and 

death with no overlap of generations. The lack of an age structure or generational overlap did 

limit the model, particularly when trying to predict an annual, rather than generational pattern 

in the sex ratio after wartime mortality (section 5.4.1). However, the questions asked by the 

study generally did not require individuals to have complex life-cycles. 

 

It was shown that the use of individual-based models can have considerable advantages. In 

particular, it was shown that frequency dependent selection can result in a dynamic 

equilibrium in the primary sex ratio, which is a finding that may explain why the human sex 

ratio changes over time and why it is thought to oscillate over time (section 3.1.2.1.1). A 
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dynamic equilibrium occurred, because selection ceased as the sex ratio reached equality, so 

alleles coding for an unequal sex ratio could not be deselected and the sex ratio continually 

veered from an excess of one sex to the other (section 3.4.1.2). It has been demonstrated with 

equational models that selection cannot act on sex ratio genes when the sex ratio is equal (e.g. 

Shaw and Mohler 1953; Verner 1965). However, these models gave no indication that a 

dynamic equilibrium would be the outcome of this principle. It would theoretically be possible 

to use an equational model to calculate how the strength of selection changes according to the 

sex ratio in the breeding population, but because changes in the strength of selection will 

ultimately affect the probabilities of individuals being able to breed, it is clear that the most 

appropriate way to test this is with an individual-based model, where the effect of changes in 

the strength of selection can actually be observed.  

 

An interesting theoretical outcome of the modelling is that it provides an individual selection 

framework for understanding sex ratio evolution. It was a fact of the design of the model that 

alleles had no other function than to code for phenotypes, they had no self propagating 

capacity and could only be indirectly affected by selection. This is particularly interesting when 

we look at the simulations where males determined the sex ratio via a gene on the X-

chromosome (Sim.  4a-d). In these simulations, the f allele was equivalent to the mutant X-

chromosome gene in Hamilton's model (Hamilton 1967), which caused males to produce only 

female offspring. It similarly spread to fixation and drove the population to extinction. 

Hamilton concluded that the mutant X-chromosome gene was a 'selfish genetic element'. 

However, assuming this implies that the gene was in conflict with other genes or promoting its 

own propagation at the expense of other genes (Burt and Trivers 2006), then this is not a 

suitable description of the f allele. It could only be said in the loosest metaphorical sense that 

the f allele was behaving selfishly, but this would be counter-productive. It is very clear why 
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the f allele spread to fixation in these simulations. It was because the f allele caused more 

females to be born, so females were more likely to inherit this allele and pass it on to their 

sons; at the same time, fathers did not pass X-chromosome genes to their sons, so there was 

no way that an increase in males could be selected for (section 3.4.1.1). It was simply the fact 

that the sex ratio determining gene was located on the X-chromosome, but expressed in the 

male phenotype that caused the f allele to increase and ultimately drive the population to 

extinction. The proof of this is that the allele did not have the same effect when the X-

chromosome gene was instead expressed in the female phenotype. In fact, this resulted in a 

stable sex ratio equilibrium. 

 

It can be argued that the model is a significant improvement on previous genetic sex ratio 

models, but it had limitations. In particular, it could only store information on one generation 

of parents and their offspring at any one time. In each iteration, the parents were deleted, the 

offspring became parents themselves and the next generation of offspring were born. To 

calculate heritability (h
2
) of the sex ratio, a mid-parent on mid-offspring regression has to be 

carried out, which requires that the sex ratio of the F1 sibships is regressed against the sex 

ratio of the F2 sibships, where the F1 siblings are the parents of the F2 sibships. This was not 

possible, because parents had been removed from their sibships when they were selected to 

breed, so the sex ratio in their sibships could not be compared with the sex ratio among their 

offspring. 

 

It would have been useful to gain a measure of heritability from the model, because it would 

have been interesting to compare this with the measure of heritability obtained from the 

human genealogical data in Chap. 3. However, a major reprogramming of the model would 

have been necessary. If this is to be done in future work, then the way to do it would probably 
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be to tag each individual with a unique ID, so that all familial relations between individuals can 

be tracked, in a similar way that occurs in the genealogical database.  

 

6.1.1.1.1 Male mortality modelling 

If we leave aside the issue of parental care, then the findings of the male mortality modelling 

to some extent confirm the view that mortality occurring after the period of parental care 

cannot affect genes controlling the sex ratio. It was demonstrated in Sim. 6a that a random 

pattern of increased male mortality did not affect the sex ratio, because it did not alter the 

relative frequencies of variant sex ratio determining alleles in the population (section 5.4.2.1). 

However, it was shown that two non-random patterns of increased male mortality may affect 

the sex ratio - a per-family and cohort-specific pattern of mortality, for which there is some 

empirical evidence (section 5.4.2.2 and 5.4.2.3).  

 

The simulation of cohort-specific male mortality (Sim. 9) provided the strongest support for 

the idea that wartime sex ratio increases may have had a genetic cause. However, the strength 

of the results is limited by the simplicity of the model. In particular, it was not an age-

structured model, so the comparisons that could be made between the model data and annual 

human sex ratio data were limited. It was shown that the removal of males in one generation 

resulted in a sudden increase in the sex ratio, which dropped off in the following generation; 

but, in the annual data, the sex ratio drops off within a few years. Indeed, Grant (2009) has 

pointed out that the model shows a much longer time period for restoration of normal sex 

ratio than is actually seen after wars. It would be interesting to examine this issue by building 

an age-structure into the model with cohorts of offspring born annually. It would then be 

possible to test whether there would be a quicker restoration of normal sex ratio when males 

that were too young to have fought in the wars began to breed.  
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Another limitation of the mortality modelling was that only pre-reproductive males could be 

removed in the simulations, though many soldiers who fought and died in the World Wars 

would have been fathers. The removal of only pre-reproductive males was justified on the 

basis that fewer of these males would have been fathers than other men in the population, as 

confirmed by a comparison of the age distribution of soldiers in WWI with paternal age 

distribution near the time (section 5.3.2.2). An age-structured model could better reflect the 

true wartime populations, if it had an age distribution for fatherhood, age distribution for 

military conscription and age distribution for pre-war and post-war marriage. The cohort-

specific male mortality hypothesis for wartime increases in the sex ratio could then be more 

accurately tested. 

 

6.1.2 The genealogical data analyses  

The genealogical data analyses provided compelling evidence for the hypothesis that there is 

heritable variation in the sex ratio, which is expressed through the male reproductive system.  

It is clear that there will have been inaccuracies in the database, due to the nature of the data 

(section 2.2.1). However, the heritability results are similar to those obtained from previous 

studies (Trichopoulos 1967; Curtsinger 1983), whilst the analyses involved a greater amount of 

data. It may be worth importing more family trees into the database, because there was a lack 

of data in the twin and second family tests for heritability (section 3.3.2.5 and 3.3.2.6), whilst 

these tests could potentially provide a strong test of the hypothesis.  

 

The results of the sex preference analyses (section 4.3.1) were in agreement with most 

previous studies, because most previous studies have shown a parental preference for children 

of both sexes. This is a good indication that the genealogical data is of good quality, 

particularly with regard to whether it contains complete families, because the sex preference 
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tests require this. In contrast, the results of the parental age analyses (section 4.3.2) do not 

confirm the results of previous studies, which typically report a negative effect of increasing 

paternal age. However, there are several reasons why this should not be seen as an indication 

of problems with the data: (1) most studies of the effect of parental age and birth order on the 

sex ratio have used larger datasets; (2) the results of previous studies are inconclusive, with 

various effects of maternal age, paternal age and birth order having being reported to affect 

the sex ratio, but null results likely to have remained mostly unpublished; (3) the issue of sex 

ratio heritability has not been factored into previous studies, though this potentially confounds 

the assumption that births are independent events when there are siblings in the dataset, 

suggesting that logistic regression (the most widely used test in previous studies) is unsuitable 

and may give confounding results. It would be interesting to reanalyse some of the datasets 

from which an effect of parental age on sex ratio has been reported, but control for genetic 

variability.  

 

The major difficulty associated with using family tree data was related to families with one 

child. It was very difficult to know whether these were actually single child families, or whether 

the individual recorded was simply the ancestor of the family tree's author, or the only sibling 

for which information had been found. To deal with this problem, all the data used in the 

analyses were based on families with >1 offspring. This restricted the analysis of parental age 

data to a greater extent than the other analyses, because there was a large age range among 

the parents of single children, which would have been useful for testing the effect of age on 

the sex of offspring born, but this data had to be excluded from the analyses, because it would 

not be possible to control for birth order. It is unfortunate not to be able to include all of the 

data in the analyses, but it is difficult to see how the single child data can be confidently 

included whilst amateur family trees are used. 
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The method for dealing with duplicate individuals in the genealogical data was described in 

section 2.2.1.4. In order to detect duplicates, database queries were used to select individuals 

with the same name and date of birth. In most cases, dates of birth were correctly recorded in 

GEDCOM files, because most of the programs used to create the files will provide some form 

of checking of the date format. However, names are a different matter, because a computer 

cannot check a name format, except perhaps to check that there is a first name, middle 

name(s) and surname. This means that the same individual can be recorded in separate 

GEDCOM files with a slightly different name. To counter this problem, all whitespace, commas 

and full stops were removed from names and all names were converted to lowercase before 

they were compared, but this was unable to solve the problem entirely. It was still possible 

that a name was not recognised by the computer as a duplicate, because of the inclusion of a 

nickname, title or some other piece of information or punctuation unrelated to the actual 

name of the individual. Also, someone may have been recorded as baby boy SMITH, or 

unnamed SMITH. In all these cases, the possibility of duplicates occurred. It is difficult to see 

how this problem can be overcome entirely, without considerable human input. However, 

there is certainly some scope for more intelligent duplicate checking routines, e.g. to remove 

titles or to flag up potential duplicates based on a percentage match of their names.  

 

6.1.3 Military conscription data analyses 

The important point about using the army service and pension records to examine the age of 

soldiers in WWI, was to compare the age distribution of soldiers against the age distribution of 

fatherhood. The main problem with this, was that there was no recording of paternal age in 

national statistics in the UK until 1961 (Macfarlane and Mugford 2000), so there is no official 

source of information on paternal age around the time of WWI or WWII. In this study, I used 

the paternal age distribution from the genealogical database, between 1900-1913. It is 



 244 

possible that this is a good reflection of the typical age of fatherhood in the UK, but many of 

the families on which this data is based will be from the US and other countries. It would have 

been preferable to make a direct comparison between the age distribution of soldiers and the 

age distribution of fatherhood from one country.  

 

It was considered whether the genealogical database could have been configured to allow 

individuals to be selected by their place of birth, where this information is available in the 

family trees. In this way, it would have been possible to select only families from the UK to 

build up a picture of paternal age distribution around the World Wars. However, there were 

major difficulties associated with doing this, because place of birth was often recorded as a 

village, town or state, rather than a country, so a considerable amount of time would have 

been needed to manually determine which countries individuals were born in. It is clear that 

with some careful work on UK genealogies, it will be possible to estimate the age distribution 

of fatherhood prior to the World Wars and confirm whether or not the distribution reported 

from the database (Fig. 5.6) is a good approximation. 
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6.2 Assessment of the hypothesis 

It was explained in the Introduction how the concepts of energetics and adaptive patterns of 

investment were well understood by Darwin (section 1.1.1.1). In the situation where there is 

an excess of males, he reasoned that parents who produce fewer male offspring but do not 

produce more female offspring to compensate, will have better quality female offspring, due 

to the reduced size of the entire litter and increased resources devoted per offspring. 

However, Darwin also reasoned that an excess of either sex could not be checked in this way 

(Darwin 1871, see Quote 1.6). This is of interest, because it is effectively an argument against 

the sex ratio theory that Fisher would later propose (Fisher 1930). 

 

Fisher's sex ratio theory suggests that in the situation where there is an excess of males, 

parents should invest more in their female offspring. This is thought to increase the 

transmission of the parents' genes to future generations, because they are investing more in 

the sex with the greatest reproductive value (section 1.1.1.2). However, it has been questioned 

in this study whether there is any basis for assuming that increased investment in either sex 

can result in an aggregate change in sex ratio genes across a population. 

 

Fisher's argument is not that genes coding for investment are selected, it is that genes coding 

for the sex ratio are selected because of their effect on the investment that individuals of each 

sex receive. It may seem a subtle point when it is buried in the complexity of the sex ratio 

problem, but investment is really quite a simple concept. If you put fertiliser under the roots of 

a tree, it may produce more seeds and leave more offspring, but those offspring will not as a 

consequence be genetically superior to the offspring of a tree that had no fertiliser put under 

it. There will be more offspring of the fertilised tree in the first filial generation, but in the long 

run it is the inherited genetic quality of the offspring that will ultimately determine whether 
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the fertilised or unfertilised tree leaves more descendents and more gene copies. It is argued 

here that Fisher's theory incorrectly conflates investment with inheritance, by suggesting that 

investment can affect which genes are transmitted from one generation to the next.  

 

An important application of Fisher's sex ratio theory is the explanation it provides for the 

higher rate of male births typically seen in human populations. This suggests that a higher rate 

of male mortality during the period of parental care reduces the overall level of parental 

investment in males, so an increase in male births must occur to equalise parental investment 

in each sex. An explanation for this phenomenon is given by Charnov  (1982, p.30), who 

explains that 'a death during [parental care] frees resources for investment in other offspring 

... [and] a general result [is] that selection favours overproduction of the cheaper sex' to 

substitute for those that die. Werren and Charnov (1978) attribute this explanation for a 

higher rate of male births to a facultative mechanism of control. It is clear, however, that 

Fisher was describing a means of selection by which genetic change occurs. It has already been 

mentioned that the use of sex-allocation theory to encompass genetic and facultative sex ratio 

control is a frustrating ambiguity that is too little addressed in the literature. It is for this 

reason I need to make clear that in the following discussion I address Fisher's proposal that 

higher infant mortality causes genetic changes in the population, which result in an excess of 

male births. 

 

Individuals pass on their genes through their descendents and inherit their genes through 

descent. So, for an individual's genes to increase in frequency in future generations there must 

be a corresponding increase in an individual's descendents. If I have an autosomal gene for 

producing more female offspring and consequently father 3 daughters and 1 son, only random 

chance will determine which of the alleles of the gene are inherited by my sons and daughters. 



 247 

It doesn't matter how much I invest in each sex, because each sex inherits from the same gene. 

I could invest little in my daughters, whilst devoting most resources toward the well-being of 

my son, but I could equally devote all my resources to one of my daughters and invest little in 

the other children. It will make no effective difference, because each of the children has 

inherited from exactly the same gene. In this scenario, investment in either sex cannot change 

the genes that are passed from one generation to the next. However, assuming there is an 

excess of males in the breeding population, I will be more likely to have grandchildren than 

men who had more sons (because women have more mating opportunities), which means that 

my genes will have increased in the population by the second filial generation.   

 

Why then, did Fisher think the sex ratio could be affected by differential investment in each 

sex? It is arguably because he was thinking of genes as independent units under the influence 

of selection, whilst failing to recognise that selection cannot determine which of the alleles in a 

diploid gene are passed to offspring. It would be interesting to hear an alternative argument, 

which addresses the points made here. I can think of only two ways in which parental 

investment might affect the sex ratio: (1) a form of epigenetic inheritance; or (2) the 

expression of the gene in gametes and subsequent preselection of gametes prior to 

fertilisation. 

 

It has been suggested that a mechanism exists by which the ovum can be primed to accept 

spermatozoa of a particular sex (Grant 1994), but this cannot explain how parental investment 

might affect which genes are transmitted from parents to offspring, unless the genes are on 

the sex chromosomes. This study did in fact show that a stable sex ratio equilibrium may be 

maintained via frequency dependent selection, when a sex ratio determining gene is located 

on the X-chromosome and expressed via the female reproductive system (section 3.3.1.2.2). 
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However, the evidence suggests that heritable variation is expressed in males (Chap. 3). Also, it 

has been shown that selection cannot regulate the sex ratio via sex chromosome genes 

expressed in males, because an increase in daughters cannot be selected via a Y-chromosome 

and an increase in sons cannot be selected via an X-chromosome (section 3.3.1.2.1, see also 

section 3.4.1.1).  

 

The concept of the Evolutionarily Stable Strategy [ESS] has been used in the context of the sex 

ratio (section 1.1.3.2). The concept provides for the possibility that an allele coding for an 

equal sex ratio will spread to fixation, even though it may be shown that this will not 

necessarily occur, e.g. if there is linkage or epistasis between genes (Eshel and Feldman 2001). 

In contrast, the genetic hypothesis of the present study provides for the opposite outcome, 

whereby an allele coding for an equal sex ratio cannot spread to fixation. The reason for this is 

that selection becomes too weak to eliminate genetic variation as the sex ratio in the breeding 

population nears equality.  

 

I have specifically presented an argument against the application of sex-allocation theory to 

explain how selection interacts with genes that directly control the sex ratio. I have also argued 

that sex-allocation theory is too ambiguous, because it is an umbrella theory for facultative 

and genetic control of the sex ratio. However, this is in no way an argument against facultative 

sex ratio control, because facultative control does not require any genetic change in a 

population from one generation to the next. The Trivers-Willard hypothesis, for example, is 

based solely on the concept of facultative sex ratio control. In fact, Trivers and Willard (1973) 

even make the point that a permanent change in sex ratio genes would not result from any 

effect of maternal condition, because genes for producing more offspring of one sex could not 

accumulate in females in poor condition, whilst at the same time genes for producing more of 
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the other sex accumulated in females in good condition, because females in good condition 

out-reproduce those in poor condition.  

 

It is argued that facultative mechanisms involve a physiological response, in which the sex ratio 

of offspring is adjusted by a parent in response to the prevailing conditions. This enhances the 

probability that an individual's offspring will survive and reproduce. In contrast, genetic 

mechanisms are fixed from birth and subject to selection over generations. They may also give 

individuals no advantage - in terms of producing the sex with the greatest probability of 

breeding -  except by chance. I have proposed a hypothesis to explain wartime increase in the 

sex ratio that invokes a genetic mechanism of sex ratio control. It suggests that the increased 

male births were not an adaptive response to the loss of adult males, but simply the effect of 

changes in the relative frequencies of genotypes that resulted from the loss of young men in 

war. In contrast, the alternative hypotheses for wartime sex ratio increases (e.g. James 1971, 

Grant and Irwin 2009) are adaptive hypotheses based on facultative sex ratio control. I have 

not criticised these other hypotheses on theoretical grounds, because they are not rooted in 

the Fisherian parental investment concept. It seems there is much scope for further work to 

establish whether a genetic or facultative hypothesis may explain this fascinating but macabre 

phenomenon. 
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Appendix I: Schematic of the population genetic 

model database 

Fig. i(1). Schematic diagram of the population genetic model database, for simulations in which 

the sex ratio determining gene was autosomal. The boxes represent the tables in the database, 

divided into the table columns. The lines between tables represent the relationships between 

data. 

 

 

In all the simulations, the m allele was stored in the database as the number 10,000, the f 

allele as the number 0 and the i allele as the number 2500. In this way the genotype of an 

individual could be identified by summing their alleles, i.e.: mm = 20,000, mf = 10,000, ff = 0, 

mi = 12500, fi = 2500, ii = 5000.  

 

The fathers table, lists the alleles that belong to the males who are the fathers in any iteration 

of the model. In one column of this table are the alleles the fathers inherited from their fathers 

and in another column are the alleles inherited from their mothers. In another column is a key 

called 'sex_key' (a key is unique identifier for each row in a table, which can also exist in other 
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tables to link pieces of data between tables). It will be noticed that this key also exists in other 

tables. In particular, it exists in the mothers table, because the mothers and fathers are linked 

together as spouses. It can also be seen that the sex_key occurs in each of the child_x tables 

and the number_offspring table. The number_offspring table exists to determine how many 

offspring the parents have, if there is a 1, 2, 3, 4, 5, 6 or 7 (determined by random number 

generation) next to the 'sex_key' value that corresponds to the 'sex_key' of the parents, those 

parents will have that many offspring.  

 

It was described in section 2.1.1 how random number generation was used to determine 

which of the four possible allele combinations offspring inherited from their parents. In Fig. 

i(1), it can be seen these allele combinations are stored in the allele_combinations table. The 

allele_combinations table is linked to each child through the 'child_key_1' key. It can be seen 

that the first born children are stored in the child_1 table, second born in the child_2 table, 

and so on.  

 

The purpose of the child_x tables is to determine whether offspring are born male or female. 

In the simulations with only m and f alleles in the population, the probability columns 

contained the number 9,999 or 10,001 at equal frequencies. It was explained earlier that an 

individual's genotype could be determined by summing their alleles, so mm = 20,000, mf = 

10,000 and ff = 0. In order to determine whether an offspring was male or female, it was 

checked whether the father's genotype was lesser or greater than the value in the probability 

column. If the father was mm (20,000), all his offspring would be male, if he was ff (0), all his 

offspring would be female. If he was mf, approximately half his offspring would be male and 

half would be female, because when the value in the probability column was 10,001 the 

father’s genotype would be less than the value in the probability column and the offspring 
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would be female, whilst when probability column was 9,999, the father’s genotype would be 

more than the value in the probability column and the offspring would be male. It was a 

technical decision to use this method of determining the sex of the offspring, because of the 

way the male and female offspring were formed using SQL scripts.  

 

It can be seen from the schematic diagram that the tables of f1_males and f1_females are 

linked to the child tables and the allele_combinations table by the 'child_key'. The purpose of 

the allele_combinations table was to determine which of the four possible combinations of 

the parents' alleles each offspring would inherit. As with the number_offspring table, the 

allele combinations (1-4) were inserted into the table after being generated by the random 

number generator (PHP rand function). The f1_male and f1_female tables are actually query 

tables, which are formed by extracting data from the other tables. A simplified explanation of 

what the queries do in order to generate new offspring, is included below:  

 

a) Find out how many offspring the parents have by looking at the number_offspring table. If 

it is 1, then take an offspring from child_1. If it is 2, then take offspring from child_1 and 

child_2, if it is 3 take offspring from child_1, child_2 and child_3, etc. 

 

b) If the offspring is male then create a new record in f1_males, or if the offspring is female 

create a new record in f1_females.  

 

c) If the allele combination is 1, then copy the 'allele_from_father' from the fathers table and 

insert it into the 'allele_from_father' for the respective F1 offspring (in the f1_males or 

f1_females table); also copy the 'allele_from_father' from the mothers table and insert it into 

the 'allele_from_mother' for the respective F1 offspring. If the allele combination is 2, then 
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copy the 'allele_from_father' from the fathers table and insert it into the 'allele_from_father' 

for the respective F1 offspring; also copy the 'allele_from_mother' from the mothers table and 

insert it into the 'allele_from_mother' for the respective F1 offspring. And so on, for allele 

combinations 3 and 4, according to Fig. 2.1.  
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Appendix II: Schematic of the genealogical database 

Primary tables 

The first section of this schematic covers the primary tables in the genealogical database, 

which form the core structure of the database. The tables were populated by data extracted 

from the GEDCOM files, via PhpGedView. I have included notes on the PHP scripts used to 

extract the data and populate the tables, which would be essential to anyone seeking to use or 

work on the database, but should otherwise be ignored. 

 

Table: gedcom_files 

Notes: this table includes information on each of the GEDCOM files in the database. 

ged_key bigint(7) this key is generated in extract_gedview_02.php, it is the 

basis of all the keys in the database, as it is unique to the 

family tree being loaded into the database. 

file_name varchar(255) entered from form in extract_gedview_01.php 

tree_name varchar(255) entered from form in extract_gedview_01.php 

source varchar(255) entered from form in extract_gedview_01.php 

notes longtext entered from form in extract_gedview_01.php 

 

Table: offspring_sep 

Notes: the primary purpose of this table is to store information on each family, including 

number of males and females and to ascribe a unique key to each family. 
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os_key bigint(11) ged key * 1,000,000 + array key (the array key is the position 

of that family in the list of families from the family tree) . 

created in extract_gedview_03.php 

husb varchar(14) this is the husband id from the gedcom file e.g. I1440 

wife varchar(14) this is the wife id from the gedcom file e.g. I1441 

f_gedcom text the family text from the gedcom file 

numchil tinyint(3) number of children in family 

males smallint(2) number of males, the script that enters this value is in 

extract_gedview_09.php 

females smallint(2) number of females, the script that enters this value is in 

extract_gedview_10.php 

nosex smallint(2) number of unsexed individuals, the script that enters this 

value is in extract_gedview_11.php 

child_1 varchar(14) the gedcom id of the first child, e.g. I1429 

... ... ... 

child_26 varchar(14) the id of each child, up to 26 children is recorded 

 

Table: all_ind 

Notes: this table stores information on every individual in the database, and ascribes a unique 

key to each individual. 

ai_key bigint(11) ged_key * 1,000,000 + array key (the array key is the position 

of that individual in the list of individuals from the family 

tree). created in created in extract_gedview_05.php 

ind_key varchar(14) this is the individual id from the gedcom file 

sex varchar(2) m, f or ns 

dob int(11) this is taken from the datestamp column in pgv_dates, where 

d_fact = BIRT therefore all dates in the format yyyymmdd 

dod int(11) as above where d_fact = DEAT 

full_name varchar(255) as recorded in gedcom file 

surname varchar(255) as recorded in gedcom file 

alive varchar(10) living or deceased individual 

i_gedcom text the raw text of the individual record from the gedcom file 
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Table: offspring_uni 

Notes: this table links each offspring to their mother and / or father. 

ou_key bigint(14) ged_key * 10,000,000,000 + array key (the array key is taken 

from an array of a union query that lists all of the individual 

parents in the offspring_sep table). this table is a list of all the 

offspring in the database, as well as the parents of each 

offspring. it is created in extract_gedview_08.php 

os_key bigint(11) key for the family to which the individual offspring belongs, 

also occurs in the offspring_sep table 

father bigint(11) father, this is the ai_key in the all_ind table 

mother bigint(11) mother, this is the ai_key in the all_ind table 

child bigint(11) the offspring, this is the ai_key in the all_ind table 

 

Table: offspring_uni_m 

Notes: this table is the same as offspring_uni, except it only contains male offspring. it also 

contains the number of siblings of the offspring. It is created by an inner join of offspring_uni 

and all_ind (scripts in extract_gedview_09.php). 

ou_key bigint(14) (see offspring_uni table) 

os_key bigint(11) (see offspring_uni table) 

father bigint(11) (see offspring_uni table) 

mother bigint(11) (see offspring_uni table) 

child bigint(11) (see offspring_uni table) 

sibs smallint(2) this value is calculated in extract_gedview_09.php by 

counting the number of occurrences of the same os_key in 

the table (array_count_values) and recording that value next 

to each child. the siblings in this column, therefore, are the 

number of full brothers in each family, i.e. brothers with the 

same mother and father. 

 

Table: offspring_uni_f 

Notes: as with offspring_uni_m, except this table only includes female offspring  (scripts in 

extract_gedview_10.php). 
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ou_key bigint(14) (see offspring_uni table) 

os_key bigint(11) (see offspring_uni table) 

father bigint(11) (see offspring_uni table) 

mother bigint(11) (see offspring_uni table) 

child bigint(11) (see offspring_uni table) 

sibs smallint(2) this value is calculated in extract_gedview_10.php by 

counting the number of occurrences of the same os_key in 

the table (array_count_values) and recording that value next 

to each child. the siblings in this column, therefore, are the 

number of full sisters in each family, i.e. sisters with the same 

mother and father. 

 

Table: offspring_uni_ns 

Notes: as with offspring_uni_m and offspring_uni_f, except this table only includes offspring 

with no specified sex (scripts in extract_gedview_11.php). 

ou_key bigint(14) (see offspring_uni table) 

os_key bigint(11) (see offspring_uni table) 

father bigint(11) (see offspring_uni table) 

mother bigint(11) (see offspring_uni table) 

child bigint(11) (see offspring_uni table) 

sibs smallint(2) this value is calculated in extract_gedview_11.php by 

counting the number of occurrences of the same os_key in 

the table (array_count_values) and recording that value next 

to each child. the siblings in this column, therefore, are the 

number of full unsexed siblings in each family. 

 

Table: sep_on_uni1 

Notes: the values in this table are selected by a join of offspring_uni on offspring_sep using the 

os_key, which has the purpose of aligning the number of male, female and nosex offspring 

from each family on the ou_key. 
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ou_key bigint(15) selected from offspring_uni 

father bigint(11) selected from offspring_uni 

mother bigint(11) selected from offspring_uni 

numchil smallint(2) selected from offspring_sep 

males smallint(2) selected from offspring_sep 

females smallint(2) selected from offspring_sep 

nosex smallint(2) selected from offspring_sep 

child bigint(11) selected from offspring_uni - 

there should be no duplicates in this column, if there are the 

gedcom file is bad, it is associating each offspring with more 

than one father / mother 

 

Table: sep_on_uni2 

Notes: This table is not shown. It is exactly the same as sep_on_uni1 and filled in exactly the 

same way. 

 

Table: pre_f0_to_f2_m 

Notes: the values in this table are selected from a join of sep_on_uni1 on sep_on_uni2, where 

sep_on_uni1.child = sep_on_uni2.father, which has the result of selecting those individuals 

who occur as fathers and as offspring -this is the f1_ind in the table (extract_gedview_13.php). 

ou_key bigint(15) selected from sep_on_uni1.ou_key 

f0_father bigint(11) selected from sep_on_uni1.father 

f0_mother bigint(11) selected from sep_on_uni1.mother 

f1_num_off smallint(2) selected from sep_on_uni1.numchil 

f1_males smallint(2) selected from sep_on_uni1.males 

f1_females smallint(2) selected from sep_on_uni1.females 

f1_nosex smallint(2) selected from sep_on_uni1.nosex 

f1_ind bigint(11) selected from sep_on_uni1.child  
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Table: pre_f0_to_f2_f 

Notes: the values in this table are selected from a join of sep_on_uni1 on sep_on_uni2, where 

sep_on_uni1.child = sep_on_uni2.mother, which has the result of selecting those individuals 

who occur as mothers and as offspring - this is the f1_ind in the table 

(extract_gedview_13.php). 

ou_key bigint(15) the values in this table are selected from sep_on_uni1 and 

sep_on_uni2, where sep_on_uni1.child = 

sep_on_uni2.mother (f1_ind = f1_mother in this table), which 

has the result of selecting those individuals who occur as 

mothers and as offspring. extract_gedview_13.php 

f0_father bigint(11) selected from sep_on_uni1.father 

f0_mother bigint(11) selected from sep_on_uni1.mother 

f1_num_off smallint(2) selected from sep_on_uni1.numchil 

f1_males smallint(2) selected from sep_on_uni1.males 

f1_females smallint(2) selected from sep_on_uni1.females 

f1_nosex smallint(2) selected from sep_on_uni1.nosex 

f1_ind bigint(11) selected from sep_on_uni1.child 

 

Table: f0_to_f2_m 

Notes: The values in this table are selected from pre_f0_to_f2_m and sep_on_uni2, where 

pre_f0_to_f2_m.f1_ind = sep_on_uni2.father. This has the result of selecting all the offspring 

of the f1 father (f1_ind) as f2_individuals (f2_ind). In this table we see three generations of 

each family, which hinge on the f1_ind / f1_father who is the son of the f0 father and f0 

mother, and the father of the f2 individuals. The primary key of this table is f2_ind, because 

this cannot occur as a duplicate (extract_gedview_14.php). 



 260 

ou_key bigint(15) selected from pre_f0_to_f2_m.ou_key 

f0_father bigint(11) selected from pre_f0_to_f2_m.f0_father 

f0_mother bigint(11) selected from pre_f0_to_f2_m.f0_mother 

f1_num_off smallint(2) selected from pre_f0_to_f2_m.f1_num_off 

f1_males smallint(2) selected from pre_f0_to_f2_m.f1_males 

f1_females smallint(2) selected from pre_f0_to_f2_m.f1_females 

f1_nosex smallint(2) selected from pre_f0_to_f2_m.f1_nosex 

f1_ind bigint(11) selected from pre_f0_to_f2_m.f1_ind  

f1_father bigint(11) selected from sep_on_uni2.father 

f1_mother bigint(11) selected from sep_on_uni2.mother 

f2_num_off smallint(2) selected from sep_on_uni2.numchil 

f2_males smallint(2) selected from sep_on_uni2.males 

f2_females smallint(2) selected from sep_on_uni2.females 

f2_nosex smallint(2) selected from sep_on_uni2.nosex 

f2_ind bigint(11) selected from sep_on_uni2.child 

 

Table: f0_to_f2_m 

Notes: The values in this table are selected from pre_f0_to_f2_f and sep_on_uni2, where 

pre_f0_to_f2_f.f1_ind = sep_on_uni2.mother. This has the result of selecting all the offspring 

of the f1 mother (f1_ind) as f2_individuals (f2_ind). In this table we see three generations of 

each family, which hinge on the f1_ind / f1_mother who is the daughter of the f0 father and f0 

mother, and the mother of the f2 individuals. The primary key of this table is f2_ind, because 

this cannot occur as a duplicate (extract_gedview_14.php). 
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ou_key bigint(15) the values in this table are selected from pre_f0_to_f2_f and 

sep_on_uni2, where pre_f0_to_f2_f.f1_ind = 

sep_on_uni2.mother, which has the result of selecting all the 

offspring of the f1_ind as f2_individuals. 

extract_gedview_14.php 

f0_father bigint(11) selected from pre_f0_to_f2_f.f0_father 

f0_mother bigint(11) selected from pre_f0_to_f2_f.f0_mother 

f1_num_off smallint(2) selected from pre_f0_to_f2_f.f1_num_off 

f1_males smallint(2) selected from pre_f0_to_f2_f.f1_males 

f1_females smallint(2) selected from pre_f0_to_f2_f.f1_females 

f1_nosex smallint(2) selected from pre_f0_to_f2_f.f1_nosex 

f1_ind bigint(11) selected from pre_f0_to_f2_f.f1_ind  

f1_father bigint(11) selected from sep_on_uni2.father 

f1_mother bigint(11) selected from sep_on_uni2.mother 

f2_num_off smallint(2) selected from sep_on_uni2.numchil 

f2_males smallint(2) selected from sep_on_uni2.males 

f2_females smallint(2) selected from sep_on_uni2.females 

f2_nosex smallint(2) selected from sep_on_uni2.nosex 

f2_ind bigint(11) selected from sep_on_uni2.child 

 

 

Secondary tables 

This section covers the secondary tables in the genealogical database, which were the tables 

that data was taken from for further analysis. 

 

Table: z_f0_to_f2_m  

Notes: This table was fundamental for calculating heritability of the sex ratio. It includes 3 

generations of each family, and allows the sex ratio in the f1 and f2 generation to be 

calculated. The f1 individual, who is also the f1 father is the most important individual, 

because the f0 mother and f0 father are his parents, the f1 mother is his wife and the f2 

offspring are his children. In this table, any records that are duplicates from different GEDCOM 
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files are removed, based primarily on name and date of birth of the f1 father. As a 

consequence, all f1 fathers have a name and accurate date of birth, though this information is 

not always available for the other individuals. 

 

The f2 individuals (f2_ind) cannot occur as duplicates (this column is therefore used as the 

primary key). However, the f0 and f1 parents can occur as duplicates, because they can be 

parents and grandparents of more than one f2 individual. In order to get aggregated statistics, 

e.g. to compare the f1 sex ratio with the average f2 sex ratio produced by f1 brothers, it was 

possible to aggregate the f1 brothers on the f0_os_key, which is the key that links siblings to 

their parents. 
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Field Type Description 

z_key bigint(20) primary key for records in this table 

f0_ou_key bigint(20) key from the offspring_uni table, where the f1 

individual is a child 

f0_os_key bigint(20) key from the offspring_sep table, where the f1 

individual is a child 

f0_father bigint(20) key of the f0 father from all_ind table 

f0_father_dob int(11) f0 father date of birth 

f0_father_name varchar(255) f0 father name 

f0_mother bigint(20) key of the f0 mother from all_ind table 

f0_mother_dob int(11) f0 mother date of birth 

f0_mother_name varchar(255) f0 mother name 

f1_num_off smallint(6) number of f1 offspring 

f1_males smallint(6) number of male f1 offspring 

f1_females smallint(6) number of female f1 offspring 

f1_sr decimal(8,7) sex ratio of f1 offspring 

f1_ind bigint(20) key of the f1 individual from all_ind table 

f1_bin_sex int(11) sex of the f1 individual in binary, 0 = male, 1 = 

female. 

f1_ou_key bigint(20) key from the offspring_uni table, where the f1 

individual is a parent 

f1_os_key bigint(20) key from the offspring_sep table, where the f1 

individual is a parent 

f1_father bigint(20) key of the f1 father from all_ind table 

f1_father_dob int(11) f1 father date of birth 

f1_father_name varchar(255) f1 father name 

f1_mother bigint(20) key of the f1 mother from all_ind table 

f1_mother_dob int(11) f1 mother date of birth 

f1_mother_name varchar(255) f1 mother name 

f2_num_off smallint(6) number of f2 offspring 

f2_males smallint(6) number of male f2 offspring 

f2_females smallint(6) number of female f2 offspring 

f2_sr decimal(8,7) sex ratio of f2 offspring 

f2_ind * bigint(20) this is the key for the f2 offspring from the 

all_ind table; all of the f2 offspring of the f1 

individual will occur in separate rows  

f2_ind_sex varchar(2) sex of the f2 individual 
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f2_ind_dob int(11) f2 individual date of birth 

f2_ind_name varchar(255) f2 individual name 

crosstab_key int(11) this key is based on the number of offspring in 

the f1 and f2 progeny, which allows records 

with the same number of offspring in the f1 

and f2 progeny to be grouped for analysis. 

 

 

Table: z_f0_to_f2_f  

This table is not shown. It is exactly the same as z_f0_to_f2_m (above), except that the f1 

individual is the f1 mother. Therefore, in this table, the f0 mother and f0 father are her 

parents, the f1 father is her husband and the f2 offspring are her children. 

 

Table: z_f0_to_f2_all  

This table is not shown. It is simply contains the combined records of the z_f0_to_f2_m and 

z_f0_to_f2_f tables. 

 

Table: z_all_families 

This table lists the offspring in the database, along with their parents and the number of 

offspring of each sex in the family. It differs from the z_f0_to_f2 table, because it does not 

include 3 generations. It is useful for calculating the effect of parental age and birth order on 

the sex ratio, as it contains more records than the z_f0_to_f2 table. It contains no duplicate 

families, i.e. the same families from different GEDCOM files, though it contains different 

offspring from the same families, i.e. parents occur as duplicates. In order to get aggregated 

statistics for each family, e.g. sex ratio or mean child age, the data could simply be aggregated 

on the os_key. 
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Field Type Description 

ou_key bigint(15) key from the offspring_uni table 

os_key bigint(11) key from the offspring_sep table, which is 

unique to each family 

os_key_freq smallint(2) the frequency that each os_key occurs within 

this table 

father bigint(11) individual key in all_ind table 

father_dob int(11) father date of birth 

mother bigint(11) individual key in all_ind table 

mother_dob int(11) mother date of birth 

num_off smallint(2) number of offspring 

males smallint(2) number of male offspring 

females smallint(2) number of female offspring 

nosex smallint(2) number of unsexed offspring 

child bigint(11) individual key in all_ind table 

child_name varchar(255) child name 

child_dob int(11) child date of birth 

sex varchar(2) sex of child 

father_age int(7) age of father at birth of child (in days) 

mother_age int(7) age of mother at birth of child (in days) 
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