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ABSTRACT 
 
Under normal conditions, cathodically protected mild steel in seawater is protected by a 

precipitated film of calcium carbonate and magnesium hydroxide, the so-called 

calcareous film. This study has attempted to investigate the dynamics of calcareous 

deposit formation during cathodic protection and the composition of calcareous deposits 

formed under different applied current densities, and also the role played by the initial 

current density in forming a good quality calcareous deposit. In addition, an under 

protection situation can occur where current demand values are under estimated, or where 

structures are approaching the end of their design lives.  In these conditions, a calcareous 

film might well occur but complete protection is probably not possible. These situations 

have also been studied. At low insufficient current densities where steel corrosion is still 

occurring, a clear correlation exists between the iron containing corrosion product and the 

overlaying magnesium hydroxide layer. Such effects have also been investigated using 

pH titration analysis, where the effect of co-precipitation of the iron and magnesium 

oxides/hydroxides has been shown. At higher current densities a layered precipitate has 

been shown to occur consisting of an inner magnesium containing layer and an outer 

calcium containing layer. At obvious overprotection current densities, the mechanical 

stresses involved in hydrogen evolution are assumed to give rise to film cracking.  

 

To augment and compliment the study on calcareous calcium/magnesium films formed 

during cathodic protection, a calcium-magnesium containing pigment has also been 

investigated in aqueous solutions at open circuit as a possible corrosion inhibitor. 

Another study looked at the same inhibitor in conjunction with a sacrificial zinc anode. 

Very effective inhibition has been shown with the film containing not only magnesium, 

calcium and phosphorous but also zinc. 

 

 In all the investigations electrochemical methods have been used together with various 

surface analytical techniques.  

 
Keywords: marine corrosion, cathodic protection, calcareous deposits, corrosion 

inhibitor, electrochemical methods, surface analytical techniques. 
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Chapter 1. Introduction.  
 

1.1. General background.  
The process of corrosion affects both equipment and structures. This on-going state of 

deterioration in metals adds to the cost of construction and also corrosion protection.  

 

The earliest study on the costs of corrosion to National Economies was the ‘Hoar Report’, 

published in 1971 [1], which stated that the corrosion cost to the U.K. was an estimated 

£1365m per annum or 3-4% of GNP.  More recently, in 2006 a new survey on the cost of 

corrosion in the UK showed that the degradation of infrastructure and loss of product due 

to corrosive processes amounted to around 2 - 3% of GNP [2].  Most boats, ships and even 

ocean liners must be dry-docked every 2 to 5 years for major repair and repainting work. 

This constant process of maintenance and major repair is impossible for massive 

permanent structures such as oil and gas rigs and large bridges.  Similar restrictions 

regarding the regular correction and restoration of deterioration due to corrosion also 

applies to  submarine pipelines, and more recently; offshore wind farms. All such 

structures may have a design life of 20 to 50 years with at best a 10 year maintenance 

period. Efficient and effective protection against corrosion is therefore an absolute 

necessity if the design life of these facilities is to be realized or exceeded in practice, and 

also to justify the enormous initial investment costs that these facilities originally demand.  

 

Not only does corrosion have a deleterious influence on metallic structures but it could 

also impact hugely on the safety of human life and pollution of natural environments. 

Therefore, the process of corrosion requires continuous and reliable methods of 

prevention or control. One of the most common corrosive environments is seawater and 

we will deal with corrosion in marine environments in greater detail later. We will also 

focus on steel as the most widely used material of construction, and will consider some of 

the commonly encountered limitations in using this metal. 

 

Seawater is a conductive electrolyte, containing dissolved salts, gases, suspended organic 

and inorganic matter and live organisms. If these basic original parameters are considered 

collectively, together with the huge number of additional variables that can naturally 

occur, and which need to be taken into account, such as wide variations in external 
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environmental factors like temperature, pressure, hydrodynamic conditions and oxygen 

concentration, one would be tempted to evaluate corrosion in specific marine 

environments or ecosystems, rather than to expect to gain a thorough understanding of all 

possible marine conditions.  However, an all-embracing and comprehensively applicable 

single model would be the ideal.  

 

Steel is still the most common constructional material used in marine conditions. Mild 

steel, be it for ships, drilling platforms, offshore structure, underwater pipelines or cables, 

is an attractive material because of its excellent mechanical properties, its weldability and 

also because it is more abundant and cheaper to produce relative to other materials. 

However its corrosion resistance is certainly not ideal especially in a corrosive medium 

such as seawater which contains 3 - 3.5% sodium chloride.  

 

For marine applications, mild steel must be protected against corrosion either by the 

application of a surface coating, or by using cathodic protection (CP) when under fully 

immersed conditions, or a combination of both of these methods.  Cathodic protection of 

steel in seawater can give rise to the precipitation of a white chalk-like substance, usually 

called the calcareous deposit or calcareous film which forms on the protected metal 

surface, and then subsequently functions to further inhibit the corrosion process. 

Investigations into this type of coating form a major part of this research work. 

 

1.2. Outline of Thesis. 
For the purposes of providing the essential background information to my research work 

outlined here, Chapter 2 gives an account of the basic theory of corrosion, a discussion of 

the cathodic protection process and reviews the literature concerning deposition and 

formation of calcareous deposits and the mechanisms of action of inhibitors in aqueous 

media. In Chapter 3, an account of the experimental procedures and techniques utilised in 

this study will be presented. 

In Chapter 4, my studies were concerned with the calcareous deposits that formed on 

mild steel under conditions of under and full protection in artificial sea water at both 

constant and variable current densities. In real situations, underprotection can occur, for 

example; where current demand values are under estimated, or where structures are 

approaching the end of their design lives and anodes are severely reduced in size and 
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hence current output, or in cold deep water situations where the calcareous film is more 

soluble and reluctant to form.  In these situations, a calcareous film might well occur 

albeit at severely reduced thickness and complete protection is then probably not possible. 

These conditions were studied in the laboratory using artificial seawater and protection 

current densities less than would be normally applied in practice. We also focused  on the 

growth, development and modeling of calcium and magnesium deposits that formed on 

mild steel samples immersed in artificial seawater when subjected to various levels of 

full cathodic protection. From the initial results obtained, we found an optimum level of 

current density to provide full protection. We extended this work by looking at varying 

the current densities with time, starting with a high initial current density for a limited 

time and subsequently reducing the applied current density. Experiments involving 

weight loss, electrochemical impedance spectroscopy (EIS), and surface analysis 

techniques using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray 

Analysis (EDX), together with X-ray diffraction (XRD) and Glow-Discharge Optical-

emission Spectroscopy (GDOES) will be described in order to attempt to clarify the 

situations that exist under these interesting conditions. 

In Chapter 5, to augment the studies on calcium and magnesium deposition during CP in 

seawater, we have investigated a calcium/ magnesium containing anti-corrosion pigment 

and its effect in aqueous solution on the corrosion of iron. This study has provided an 

interesting comparison with our previous work on the calcareous films. 

 

Chapter 6 attempts to bring together and evaluate the overall results from all the 

experimental studies in our previous Chapters by comparing and contrasting the 

calcium/magnesium films generated by cathodic protection with the calcium/magnesium 

films generated from using the new corrosion inhibitor; and also discusses possible     

future work. 
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Chapter 2. Literature Review.  
 

2.1. Introduction. 
Cathodic protection is perhaps the most powerful technique that is routinely utilised for 

the prevention of corrosion on underground or submerged metal structures in various 

environments. By means of an externally applied electric current or coupled with a 

sacrificial anode, corrosion can be reduced to negligible levels. 

         

The British Standards Institution defines cathodic protection as: “a means of rendering a 

metal immune from corrosive attack by causing direct current to flow from its electrolytic 

environment into the metal” [1]. The National Association of Corrosion Engineers defines 

cathodic protection as: “a technique to control corrosion of a metal surface by making 

that surface the cathode in an electrochemical cell, by means of an impressed direct 

current or attachment of sacrificial anodes such as magnesium, aluminum, or zinc” [2].  

 

In the oil and gas industry, one use of cathodic protection is on underground pipelines. 

The guarantee that no leaks will develop on the soil side of a cathodically protected 

buried pipeline has made this means of fluid transport economically feasible. Indeed, this 

method of protection can be a means of directly making significant financial gains, 

through avoiding the use of overdesign as a safety factor and also indirectly paying less 

for compensation or insurance because prevention of leaks into the soil avoids pollution 

of the environment and also possible accidents resulting from fire hazard. A second 

important aspect of protection is for offshore structures. Structures are frequently 

designed for a 30/40 year working life with sacrificial anodes providing sufficient current 

capacity to supply the design current density for the anticipated life of the structure. 

 

In the practical application of cathodic protection to metallic structures, one of the most 

basic primary concerns is to determine whether the applied current being used is actually 

adequate for preventing corrosion of the structure in question. Until recently, there was 

no practical direct method available for evaluating the performance of cathodic protection 

except weight loss testing, and therefore indirect methods have been defined by 

measuring the polarized potential of the structure for this purpose. The present day 

criteria upon which cathodic protection systems are designed are still based on guidelines 
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defined and originally issued by NACE in 1969 with a very recent update in 2007 [2].   

 

2.2. Electrochemical Aspects of Aqueous Corrosion. 
Evans has defined corrosion in his 1946 volume as: “destruction by chemical or 

electrochemical agencies”; in contrast to erosion, which means destruction by mechanical 

agencies [3].  Generally, the corrosion of metals in aqueous environments is caused by 

electrochemical processes. 

 

The electrochemical theory of corrosion is derived from the local model proposed by 

Evans [3] and the concept of mixed corrosion potential first proposed by Wagner and 

Traud [4]. They described metallic corrosion as a combination of an anodic oxidation and 

a cathodic reduction. The anodic dissolution of metal is the same as the oxidation process 

producing metal ions as in the following equation; 

M → M n++ ne −        …………………………………………………………….           (2-1) 

 

According to Faraday’s law, the rate of oxidization of a metal electrode is directly 

proportional to the number of coulombs which have passed.  

M
nFmQ =                …………………………………………………………….             (2-2) 

Where: 

Q = charge passed(C). 

n = number of electrons for each metal atom. 

F = Faraday’s number; 96500 C.mol-1. 

m = the mass of oxidized metal (g). 

M = atomic weight of metal (g/mol). 

 

A diagrammatic representation of the processes involved in the corrosion of iron or steel 

under aqueous conditions is illustrated in Figure 2.1. The region on the metal surface 

where ferrous ions are released by corrosion is called the anode. Electrons flow in the 

metal from these anodic sites to regions on the metal surface where reduction reactions 

take place. These sites are known as cathodes. The energy for this spontaneous corrosion 

reaction comes from the difference in potential between the anodic and cathodic 

reactions. The circuit is completed by ion movement in the electrolyte. 
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Figure 2.1.  Diagram illustrating the mechanism of corrosion in aqueous systems.  

 

In the case of iron or steel the anodic reaction will be: 

 Fe → Fe2+ + 2e−            …………………………………………………………….     (2-3) 
 

The cathodic reaction is a reduction process. There are two main reactions that may occur 

at the cathode during aqueous corrosion. Firstly; a process that consumes dissolved 

oxygen and generates hydroxyl ions,  

O2 + 2 H2O + 4e-→ 4 OH¯……………………………………………………………. (2-4) 

 

and secondly; a process in which hydrogen gas is generated by the reduction of water 

when the potential becomes more negative as can be seen from the Pourbaix diagram 

given in Figure 2.3: 

2H2O+2e-→H2+2 OH¯………………………………………………………….….… (2-5) 

 

Corrosion products may appear in the form of deposits when the compounds that 

comprise these anodic and cathodic products react with each other, and this leads to the 

formation of ferrous hydroxide;  given  by the reaction: 

Fe2+ + 2 OH¯ → 2Fe (OH) 2         …………………………………………………….   (2-6) 

 

The ferrous hydroxide may subsequently by oxidized to ferric oxide [Iron (III) oxide], 

which is the very familiar yellow-brown compound commonly known as rust. This 

reaction is as follows: 

4Fe (OH) 2 + 2O2 → 2H2O+2Fe2O3.H2O …………………………………….…….  (2-7) 

         

ΔV
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Depending on the conditions, rust can take a variety of physical and chemical forms, with 

wide variations in colour, degree of hydration and bulk. A shielding effect caused by a 

thick deposit of rust may influence and alter the corrosion process.  For example; reaction 

(2-7) undergoes modification [5] when the supply of oxygen is limited or restricted. 

Modified corrosion products are then formed, resulting from the following reactions: 

 6Fe (OH)2 +O2 → 4H2O+2Fe3O4.H2O  (green hydrated magnetite)   …………      (2-8) 

Fe3O4.H2O → H2O+Fe3O4                            (black magnetite) ………………………       (2-9) 

 

The deposition of yellow–brown rust by reaction (2-7) frequently restricts the supply of 

oxygen to the layer of Fe (OH)2 subsequently formed beneath it. This suggests that rust 

films might consist of three layers of oxides under different states of oxidation [6, 7]. 

(i). An inner core of black magnetite. 

(ii). A thin layer of its green hydrate. 

(iii). An outer coating of ordinary rust. 

 

Dissolution of metal can occur only at the anodic surfaces, but the anodic and cathodic 

areas may also shift from time to time, so as to give the impression that a uniform rate of 

corrosion is occurring. However, any product appearing on the cathodic sites will 

generally restrict the cathodic process, causing it to slow down, and this slowing down of 

the cathodic reaction is called cathodic polarization. Similarly, anything that directly 

slows down the anodic reaction is called anodic polarisation. 

 

2.3. Corrosion Thermodynamics. 
Thermodynamics provides an understanding of the energy changes involved in the 

electrochemical reactions of corrosion. It is the energy changes that provide the driving 

force and control the spontaneous direction of the chemical reactions. Furthermore, 

thermodynamics provides a basis for expressing relationships between potential and 

composition of the bulk solution and for calculating surface concentrations of various 

species at the metal/solution interface. The Nernst equation is of particular importance for 

computing equilibrium potentials and is used for predicting the domains of corrosion and 

stability used to develop a potential-pH diagram. However, thermodynamics cannot 

predict the actual extent or rate of corrosion, so additional information from the kinetics 

of the reactions involved is required. 
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2.3.1. Electrode Potentials. 

Corrosion occurs because metals have a tendency to return to more oxidized lower 

energy states. The oxidation reactions liberate energy and the propensity for oxidation 

varies from metal to metal depending on its electrode potential. The equilibrium electrode 

potential, E of a metal corresponds to the equilibrium established between its oxidised 

and reduced species. This means that at the equilibrium potential a metal and its ion will 

coexist with no tendency for reactions to proceed in predominantly one direction or the 

other. 

 

A metal in an aqueous environment contains mobile electrons that form a complex 

interface at the metal/solution interface. This causes a build up of an electrical double 

layer that will oppose the expulsion of cations into the solution. An increasing electrical 

force will have the effect of opposing the tendency for chemical ionisation to occur, 

therefore establishing an electrochemical equilibrium. An example of this is an 

asymmetrical, polar water molecule, which will be attracted to the conductive surface. It 

will form an orientated solvent layer, thereby preventing close contact of the ions from 

the bulk solution. The charged ions will also attract their own polar water molecules, 

which will further insulate them from the conducting surface. The electric field of the 

double layer structure inhibits charge transfer, which therefore limits the electrochemical 

reactions at the surface. Figure 2.2 shows a schematic diagram of the formation of an 

electrical double layer at the surface of the metal/solution interface [8]. 

 
Figure 2.2. Diagrammatic representation of an electrode surface 

with an equivalent electric capacitor [8]. 
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The electrical double layer produced due to the separation of charge is similar to a 

charged capacitor. It will have a potential difference between the two layers according to 

equation (2-10). 

CEQ =  ……………………………………………………………………………... (2-10) 

Where: 

 Q = electrical charge.  

             C = capacitance characterising the electrode.  

             E = potential difference in volts.  

The E value in this equation is the electrode potential with respect to a reference 

electrode [9]. 

 

2.3.1.1. Gibbs Free Energy and Cell EMF. 

The relationship between the free energy change and the equilibrium potential is required 

in order to obtain the free energy changes for both the anodic and cathodic reactions, and 

from which the sum of the free energy changes will give the total free energy change for 

the overall corrosion process. The Gibbs free energy change, ΔG, is associated with the 

electrochemical potential, E, at equilibrium, operating under conditions of constant 

temperature and pressure. ΔG can be related to the reversible electrode potential from the 

following equation: 

nFEG −=Δ  …………………………………………………. …………………….   (2-11) 

Where: 

 ΔG = Free energy change for reaction. 

             n = Number of electrons involved in the reaction. 

             F = Faraday Constant (96500 C.mol-1). 

             E = Potential at equilibrium (volts), at constant temperature and pressure. 

 

The free energy change has a sign associated with the direction of the net cell reaction. 

Only an infinitesimal change in the overall cell potential is required to reverse the 

reaction direction. The potential, E, is usually constant and is independent of the direction 

of the reaction. In order to relate the direction sensitive quantity (ΔG) to the direction 

insensitive observable (E) then the electromotive force (EMF) of the electrochemical cell 

reaction is required. 
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The EMF is the maximum potential difference between two electrodes of a galvanic cell. 

This quantity is related to the tendency for an element, a compound or an ion to gain or 

lose electrons. EMF refers to a list of standard half-cell electrode potentials. The 

electrode potentials listed below are those referred to as reduction potentials. The 

electrode potentials are regarded as the potential of the metallic phase of the electrode 

with respect to the potential of the electrolyte solution phase of which it is in contact with. 

Table 2.1 provides a list of standard electromotive force potentials with examples ranging 

from the “noble” metals such as gold and platinum to much more “active” metals such as 

potassium and sodium as the possible extremes in the range of electrode potentials 

observed. 
Table 2.1. Standard EMF Potentials [11]. 

 
 

It is impossible to measure the absolute value of any half-cell electrode potential. For this 

reason only the cell potentials consisting of two half-cell electrode potentials can be 

measured and one must be selected as a primary reference. The zero, reference point for 
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the EMF series and other electrochemical potential measurements were arbitrarily 

selected as the half-cell electrode potential of the hydrogen half-cell at standard state 

(SHE) [8, 9, 10]. 

 

2.3.1.2. Nernst Equation. 

The standard state identifies that all reactants and products be at unit activity. There must 

be some means of calculating half-cell electrode potentials that do not meet these 

standard state conditions. In 1888, Nernst [12] first derived an equation, which linked the 

reversible potential of an electrode (measured in volts), designated E, to the standard 

reversible potential of the electrode couple, designated E0 that is the thermodynamic 

value. This equation was able to predict departures from unit activity. The Nernst 

equation can be written as such: 

[ ]
[ ] )
Re

ln(0 ∏
∏−=

Ox
d

nF
RTEE    ………………………………………………………... (2-12) 

Where: 

E0 = equilibrium potential for unit activies. 

            R = universal gas constant (8.314 Jmol-1K-1). 

            T = absolute temperature in degrees Kelvin. 

n = charge number of the electrode reaction (number of moles of electrons,                   

involved in the reaction).               

            F = Faraday constant (96500 C.mol-1). 

 

Note: Red denotes the chemical activities of the species on the reduced side of the 

electrode reaction, whereas Ox denotes the chemical activities of the species on the 

oxidised side of the electrode reaction. 

 

At 25oC (298.15K) the numerical value of the constants and the conversion of the 

logarithm of base e (ln) to the logarithm of base 10 (log) are combined to simplify the 

Nernst equation: 

[ ]
[ ] )
Re

log(059.0
0 ∏

∏−=
Ox

d
n

EE    ……………………………………………………. (2-13) 
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2.3.1.3. Effect of pH. 

The quantity 2.3RT/F is equal to 0.059 V at 25o C when all constants are substituted. The 

activity of water is defined as the unity in aqueous solutions and the definition of pH is 

pH = -log [H+]. The Nernst equation can be rewritten as: 

pHE
nF

RTEE H 059.0log3.2
00 −=+= +α     ………………………………………… (2-14) 

This implies that the electrode potential for hydrogen evolution changes by 59mV for 

every pH unit when assuming a pressure of 1 atmosphere [9]. 

 

The potential can thus be seen as a measure of oxidising power of the solution. The 

Nernst equation has correctly predicted that increased oxygen activity causes the half-cell 

electrode potential for the reaction to become more positive. 

 

2.3.1.4. E-pH Pourbaix Diagram. 

Pourbaix [13] devised a compact summary of thermodynamic data in the form of potential-

pH diagrams, which relate to the electrochemical and corrosion behaviour of any metal in 

water. Figure 2.3 shows a typical diagram for iron in water at 25oC. The diagram can be 

divided into 3 regions; immunity, corrosion, and passivation. However, there are certain 

limitations on the use of such diagrams. There is very limited information relating to the 

rates of reaction, and furthermore; the information that is presented is derived from pure 

metals and environments [13]. It should therefore be noted, that such potential ─ pH 

diagrams only provide partial information about the reaction rates. The corrosion rates 

are in the domain of electrode kinetics. 

 

However, a very useful advantage of this type of diagram is that it provides a simple 

method of predicting a specific condition of potential and pH under which any particular 

metal either may or may not react with an electrolyte, and it has been shown that use of 

such diagrams as theoretical model-based predictors of pH and potential values gives 

good correlations with actual situations [13]. As an example, the situation can be 

considered when iron is partially covered with its oxide and immersed in a neutral 

solution at pH 7.  If the potential falls to -0.6 V with respect to the standard hydrogen 

electrode (SHE), it is seen from Figure 2.3 that it is in a condition of immunity. Similarly, 

if the conditions are the same as those mentioned above, but with a potential which falls 

to only -0.2 V with respect to saturated calomel electrode (SCE), then the iron will still be 
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in a condition of corrosion. When the pH is <7 the iron is in a zone of corrosion but when 

the pH is >7, iron is in a zone of   passivation. 

 

Therefore, in order to protect iron against corrosion, protection is based on the fact that 

the potential becomes reduced to the point where it enters into the domain of immunity, 

in which region the corrosion of iron is theoretically impossible. For example, when the  

pH is below 10, Ev = -0.62V (SHE) = -0.89 V (SCE) [13]. 

 
Figure 2.3. E-pH diagram for Fe-H2O at 25oC. Hydrogen evolution is possible only at potentials 

below the line b, and only above the line a is oxygen reduction possible [13]. 
 

2.4. Electrochemical kinetics of corrosion- Polarization diagrams.  

Polarization (η) is defined as the potential change, E–E0, derived from the equilibrium 

half-cell electrode potential, E0, due to the net surface reaction rate for the half-cell 

reaction. Under conditions of cathodic polarization (ηc) electrons are supplied to the 

surface. Conversely, under conditions of anodic polarization, electrons will be removed 

from the metal causing a deficiency, therefore resulting in a positive potential change. 
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There are three types of polarization, these are: activation, concentration, and resistance 

polarization [14]. 

 

2.4.1. Activation Polarization. 

2.4.1.1. Introduction. 

The Butler-Volmer equation is one of the most fundamental equations in electrode 

kinetics, and describes the linkages between the current density and the exchange-current 

densities, the overpotential and the transfer coefficients. It is named after chemists John 

Alfred Valentine Butler and Max Volmer, and was developed from an article by Volmer 

in 1930 [15], which was based on an earlier article by Butler [15].  

When utilised to characterise the range of electrochemical reactions that occur during 

corrosion processes, the Butler-Volmer equation describes how the electrical current on 

an electrode depends on the electrode potential, considering that both a cathodic and an 

anodic reaction occur on the same electrode [16]: 

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ −

⋅
−−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

⋅
⋅−

= )(exp)()1(exp0 eqeq EE
RT

FEE
TR

Fii αα   ………………………… (2-15)                        

Where: 
 I = electrode current density, A/m2 
 io = exchange current density, A/m2  
E = electrode potential, V  

         Eeq = equilibrium potential, V  
T = absolute temperature, K  
F = Faraday constant  
R = universal gas constant  
Α = so-called symmetry factor, dimensionless  

 
For an anodic reaction:    0>−= eqa EEη         ……………………………………   (2-16) 
For a cathodic reaction:  0<−= eqc EEη        ……………………………………… (2-17)                       
The terms aη and cη  are called overpotential. 

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ ⋅
−−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⋅
⋅−

= aaa RT
F

TR
Fii ηαηα exp)1(exp0  ………………………………………  (2-18) 



Chapter 2. Literature Review 

29 

⎭
⎬
⎫
⎥⎦
⎤

⎢⎣
⎡ ⋅
−−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⋅
⋅−

= ccc RT
F

TR
Fii ηαηα exp)1(exp0  ………………………… ………….   (2-19)                          

When the overpotential reaches a value > +0.052V [16], in the case of an anodic reaction, 

the latter can be neglected, and therefore equation 2-18 simplifies to:  
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α

TR
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)1(exp0                …………………………………… ………… … (2-20)                        

 

Similarly, for overpotential more negative than -0.052V [16], for the cathode reaction, the 

first term can be neglected, so the equation 2-19 simplifies to: 
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Taking logarithms in equation 2-20, 
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and for an anodic reaction:  
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similarly for the cathode reaction: 

cc i
F

RTi
F

RT lnln 0 αα
η −=                   ………………………………………………….   (2-25) 

cc ii log059.0log059.0
0 αα

η −=       ………………………………………………….    (2-26)                        

                                         

This can then be expressed in following equation: 

iba log+=η                         …………………………………………………….        (2-27)                        

This is known as Tafel's Law, and it was presented by Tafel in 1905 [16], it states that 

there exists a linear relationship between the potential and the log of the current density 

for a given electrochemical reaction. 
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The terms
F

RT
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β
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=  and 
F

RT
c α

β = are defined as Tafel Coefficients, so the equation 

(2-15) could be expressed as follows:  
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According to equation 2-23, for anodic polarization: 
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Similarly, in the case of cathodic polarization: 

0

log
i
ic

cc βη = ……………………………………………………………………….   (2-30) 

 

The overpotential term is frequently used for polarization. The anodic overpotential, ηa, is 

positive and the βa will also be positive.  For the cathodic polarization, βc, is negative as 

ηc is negative as well.  βa and βc are known as the Tafel constants for the half-cell reaction. 

The anodic, ia, and cathodic, ic, current densities flow in opposite directions. The Tafel 

relationships described in equations 2-29 and 2-30 are widely used in experiments for 

activation polarization. 

 

2.4.1.2. Tafel fitting. 

Figure 2.4 depicts experimental polarization curves for which the Tafel behaviour has 

been defined. The slope on a semi-log plot is defined as the Tafel behavior. Figure 2.4 

depicts extrapolation of the Tafel behavior to give the corrosion rate, icorr at Ecorr. This 

allows corrosion rates to be measured from polarization data. From Figure 2.4, the Tafel 

slope can be extrapolated to eH
+

 /H2, and the exchange current densities (i0) obtained from 

the Tafel curves.  

This is the equation of a straight line on a graph of E versus log i (or vice versa), and this 

forms the basis of the graphical approach to the description of corrosion kinetics.  

To calculate the Tafel Coefficients βα and βc, it is a requirement to know the over 

potential and current at two points on the straight lines that have been fitted to the straight 

sections on the Evans diagram. 
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Figure 2.4. Example of an experimental polarisation curve used to determine the Tafel nature [8]. 

 

2.4.1.3. Linear polarization resistance (LPR). 

Linear polarization resistance is a widely used technique; it is the slope of the E-i 

relationship at the open circuit potential, and it provides a method of estimating the 

instantaneous corrosion rate.  

 

Earlier in this Section, we discussed how the Butler Volmer equation can be simplified to 

give the Tafel equation under conditions where the overpotential is very high or very low, 

which are both specific instances where the application of the Butler Volmer equation is 

severely limited. At potentials very close to the corrosion potential another equation can 

be found which the Butler-Volmer equation approximates to. This is the Stern-Geary 

equation [16], and in this Section we will derive this equation. 

 

Considering the Butler-Volmer equation, and the fact that as: 

x → 0 exp(x) →1+ x 

Then equation 2-28 becomes: 
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This equation then becomes: 
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Which can be rearranged for the potential gradient with respect to the current density: 
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c
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α
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+
==     …………………………………………………….   (2-33)                        

RP = polarisation resistance. 

 

If the constant is calculated with values for the Tafel coefficients (βα, βc), η normally 

takes values between 12 and 50 mV and depends on the mechanism of the corrosion [17].  

Linear polarisation resistance can be measured in a number of ways [18]: 

• The potential can be swept through a narrow range either side of the Open Circuit 

Potential (OCP), the current recorded and the slope determined.  

• The current can be swept through a small range about zero and the potential 

measured. 

• The potential can be stepped between OCP-ΔE/2 and OCP+ΔE/2, where ΔE is a 

small potential difference (typically 10 to 20 mV). Then Rp can be determined as 

ΔE/Δi, where Δi is the change in current density.  

• An applied current can be stepped between –Δi/2 and + Δi/2 and the 

corresponding potential step, ΔE, measured. This is the simplest approach for 

corrosion monitoring, as it automatically makes the measurement centered on the 

OCP, and the polarisation resistance is directly proportional to ΔE (since 

Rp=ΔE/Δi and Δi is constant). I performed my linear polarisation resistance 

testing using this method. 

 

2.4.2. Concentration Polarization. 

Concentration polarization refers to an electrochemical reaction in which the velocity of 

the reaction depends on the rate of approach of ions or molecules to the electrode surface 

and on the rate of the electrode processes [16]. 

 

The concentration profile of an ion in solution, for example H+, is schematically 

represented in Figure 2.5. CB is the H+ concentration of the uniform bulk solution and δ is 

the thickness (boundary layer) of the concentration gradient in solution. The half-cell 
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electrode potential, eH
+

 / H 2, of the depleted surface is defined by the Nernst equation as a 

function of the ion (H+) concentration or activity.  

 
Figure 2.5. Schematic representation showing the concentration of an ion, 
i.e. H+, in solution near a surface controlled concentration polarization [8]. 

 

In the case of an electrode in which there is no activation polarization, the decrease 

(potential change) is the concentration polarization, ηconc, given as a function of current 

density in equation 2-34.  
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The limiting current density iL can be calculated from equation (2-35). 

δ
BZ

L
nFCDi =    …………………………………………………………………..      (2-35) 

Where: 

n = number of equivalents exchanged (electrons). 

F = Faraday’s Constant (96500 C.mol-1). 

Dz = Diffusion Coefficient of reacting species (i.e. Z is H+ in this example). 

CB = Concentration of bulk solution species. 

δ = Boundary layer thickness (cm). 

 
The limiting current density (iL) is increased by higher solution concentrations (CB) 

which causes the diffusion coefficient of the reacting species (Dz) to increase. A higher 

temperature also increases Dz  and a higher solution agitation will decrease the boundary 

layer thickness (δ) [see Figure 2.6(b)]. Under conditions where corrosion processes are 

actively occurring, concentration polarisation is significant primarily for the cathodic 

reduction reactions. Concentration polarisation for anodic oxidation during corrosion can 

be ignored, as there is an unlimited supply of metal atoms at the metal/solution interface. 
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Concentration polarisation can be possible for anodic reactions that have very high 

corrosion rates or during intentional anodic dissolution by impressed currents [8]. 

 
Figure 2.6. Schematic representation of cathodic polarisation [8]; 

(a) when plotted against  the reaction rate and, (b) effect of velocity, temperature and concentration. 
 

2.4.3. Resistance Polarization. 

Resistance Polarization causes the potential of both the anode and cathode to differ, due 

to a potential drop across the solution, and hence the corrosion current is reduced. 

 

Resistance overpotential ηR can be expressed in terms of the resistance of the solution as 

the following equation: 

SR IR=η            …………………………………………………………………..     (2-36) 

where Rs is the solution resistance. For sea water this value is very low about 16 ~ 35  

Ω.cm [19] whereas for some paint systems values can be in excess of 108 Ω.cm2 [20]. 
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2.5. Cathodic Protection. 
2.5.1. The Theory of Cathodic Protection.  

The scientific principles of cathodic protection (CP) were first explained by Sir Humphry 

Davy in 1824 and 1825 [21, 22, 23]. A fuller discussion of Davy’s contribution will be given 

in Chapter 4. Subsequently in 1938 Hoar [24], and Mears and Brown [25] used Evans 

diagrams to illustrate cathodic protection, as shown in Figure 2.7. This approach clearly 

shows how the anodic rates and cathodic rates change as the structure potential moves in 

a negative direction and how the net current density applied by the CP system is the 

difference between the local cathode and anode currents.  

 
Figure 2.7. Simplified Evans Diagram [26]. 

 

2.5.2. The Corrosion of Mild Steel in Seawater on Cathodic Protection.       

It will be evident from Figure 2.7, that when a current is applied to the steel surface, the 

cathodic current increases whilst the anodic current reduces and the pH value then 

increases resulting from the generation of hydroxyl ions from the oxygen reduction 

reaction. In the open ocean, pH values are usually within the fairly narrow range from 7.9 

to 8.3 [27]. At potentials less negative than -950mv (SCE), the predominant cathodic 

reaction is diffusion controlled oxygen reduction [28]; and in cases where the potential is 

more negative than -1100mv (SCE), the alternative and additional cathodic reaction is the 

activation controlled hydrogen evolution reaction from the reduction of water as 

indicated in equation 2-5. In either case, the production of hydroxyl ions results in an 

increase in pH of the electrolyte adjacent to the metal surface. In this way, the increase in 

pH in seawater will result in the precipitation of insoluble salts; i.e. CaCO3, Mg(OH) 2, 

and these processes can be described by the following series of reactions: 

OH¯+ HCO3
-→ CO3

2-+ H2O   ……………..……………….. …………………..     (2-37) 

Ca2++ CO3
2-→ Ca CO3              ….. …………………..…….. ………………….     (2-38)                         

Mg2+ + 2OH− → Mg (OH) 2       ... ………………….……….. …………………..     (2-39) 
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These reactions collectively give rise to the formation of a calcareous film or deposit on 

the surface of the steel. 

 

As Davy himself showed, the generation of the necessary cathodic protection current and 

the driving potential may be accomplished in two ways. Attaching the structure to a more 

reactive metal, a sacrificial anode, is one possibility. The current is produced by 

dissolution of the reactive metal and the driving potential arises from the differences in 

the open circuit potentials between the sacrificial anode and the structure to be protected. 

Alternatively a non consumable anode may be attached to the structure via a DC power 

supply, an impressed current system. Current is supplied via an oxidation charge transfer 

reaction at the impressed anode, usually oxidation of the environment. The driving 

voltage is provided by the DC power supply. Extensive and comprehensive references are 

available in the literature that discuss fully this aspect of corrosion prevention [1, 2, 6, 8]. 

 

2.6. Literature Review of Calcareous Deposits. 
Calcareous deposits are white/grey deposits which are known to form on the surfaces of 

metal structures which are cathodically protected whilst immersed in seawater. The 

presence of calcareous deposits is regarded as some indication that a measure of cathodic 

protection is being achieved [29], at least in systems in seawater where it is applied. 

 

Sir Humphry Davy, a Cornishman born in Penzance, presented the very first paper on 

Cathodic Protection in 1824 [21]. He was investigating galvanic effects between iron (and 

zinc) and copper in seawater. In his studies on area ratios he happened to notice a white 

deposit on his copper cathode which on analysis was found to be “carbonated lime, and 

carbonated and hydrate of magnesia”. Again we will be referring to this work in Chapter 

4. 

 

Cox [31, 32] carried out extensive studies in this area, leading to both British and American 

Patents, and in his 1941 British Patent stated: “an invention relating to improved types of 

inorganic coating formed in-situ for protecting metallic surfaces in contact with sea water 

or other water containing both magnesium and calcium salts, in a concentration range 

customarily found in sea or seaport water, and to improved procedures for forming and 

maintaining the desired type of anticorrosive or anti-fouling coating” [32].   
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  Plate 2.1. Portrait of  Sir Humphry Davy [30]    Plate 2.2. Statue of Davy with YuanFeng, in Penzance 

 
The properties of calcareous coatings are generally very largely dependent on the 

chemical composition of the deposited material. Humble [33], states that a current density 

of 50 mA/ft2 (538 mA/m2) is adequate for the complete protection of steel. However,  this 

current density is actually very large and is characteristic of studies on CP of marine 

structures. The same author also points out that these calcareous film deposits consist 

principally of calcium carbonate (CaCO3) and magnesium hydroxide [Mg(OH)2], and the 

ratio between these two compounds in the deposited film is dependent upon the current 

density,  as shown in Figure 2.8. Humble [33] further states that CaCO3 is precipitated first, 

followed by SrCO3, MgCO3 and finally Mg(OH)2. It would therefore be expected that 

films formed at normal current densities would be rich in CaCO3. Table 2.1 shows sets of 

results based on studies by Humble, which gives the range in composition of such 

coatings that occur with different current densities.  
 
 

Elebeik [34] stated that the preferential formation of calcium carbonate rather than 

magnesium carbonate is because of the very much higher solubility of magnesium 

carbonate. 

 

Thirty to forty years ago, it was common practice to apply a current density that was too 

low to give immediate protection. With North Sea structures for example, current 
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densities of 130 - 150 mA/m2 (12 - 14 mA/ft2) were generally quoted for bare steel [35, 36].  
 

 
     Figure 2.8. Graph illustrating plot of the Ca:Mg ratio of a calcareous  

deposit as a function of current density [33]. 
 

Table 2.1. Analysis of calcareous coatings [33]. 
 
Current density (mA/ft2) Element (%) 

50 100 172 400 
Na 0.72 0.85 0.78 1.03 
Fe 3.78 3.46 2.6 2.12 
Si 0.65 1.77 1.3 0.41 
Cl 0.44 0.84 0.76 0.55 

CO3 44.62 32.62 29.66 14.7 
Ca 28.91 20.88 17.54 6.73 
Mg 6.51 13.53 18 29.47 
Sr 0.14 0.06 0.04 0.006 

OH (calculated) 8.37 18.18 23.35 38.52 
Total 94.14 92.19 94.03 93.536 

                                   1 mA/ft2=10.76 mA/m2 

 

These current densities are an order of magnitude lower than those used by Humble [33] 

and Cox [32]. However, it should be noted that Humble used magnesium anodes for 

cathodic protection, which probably explains the very high current densities that had to 

be employed.  

 

Ulanovskiy [37] reports that a current density of 0.03 mA/cm2 (300 mA/m2) shifts the 

potential of steel from -0.4 V to -0.85 V in 36 hours while a current density of 0.1 

mA/cm2 (1000 mA/m2) depresses the potential to about -0.8 V and thereafter maintains it 

constantly at or near this value. Increasing the current density is stated to increase the 

OH- content of the calcareous coating, but at a given current density, increasing the 
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polarisation time reduces the OH- content of the film; however, the protective properties 

of the film were reported to be increased with increasing polarisation time. However this 

work seems to be unaware of the hydrogen evolution reaction and its effect on the degree 

of protection provided by the calcareous film. We will return to this subject matter later 

in this Thesis. 

 

During the process of cathodic protection there is an increase in pH at the steel surface.  

Engell and Forchhammer [38] have calculated that for steel under conditions of complete 

cathodic protection, the pH value at the metal surface is 10.9 at 20°C; CaCO3 and 

Mg(OH)2 are precipitated when their respective solubility products in seawater are 

exceeded. Seawater with a pH of around 8 is regarded as being super saturated with 

CaCO3 and Mg(OH)2. An increase in pH above 8 would be expected to cause 

precipitation of these salts and subsequent deposition on the protected metal surface. 

However, Engell and Forchhammer [38] predict that at 20°C, Mg(OH)2 would be 

precipitated at pH 9.7 and CaCO3 at pH 7.27, the latter value being lower than the pH of 

normal seawater. This result apparently indicates that CaCO3 could be readily 

precipitated in normal seawater without the assistance of cathodic protection. However, 

assuming a different value for activity coefficients, the calculations gave a pH of 8.7 for 

precipitation of CaCO3. This appears to be more consistent with the situation that actually 

occurs in practice.  

 

 
Figure 2.9. Schematic illustration of the pH profile in the electrolyte 

to a cathodically polarized metal surface [39]. 
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Di Gregorio and Fraser [40] report that X-ray analysis of calcareous deposits have shown 

their composition to be principally aragonite and calcite (both forms of CaCO3), brucite 

(Mg(OH)2) and sand (quartz and feldspar). Furthermore, the percentage of brucite 

increases with increasing current density, whilst the amount of sand decreases, but the 

amount of CaCO3 appeared to be unchanged. However, this disagrees with the findings of 

Humble [33] who observed that the amount of Mg(OH)2 increased but the CaCO3  content 

decreased with increasing current density. Later in this Thesis we will be referring to this 

work when we discuss our X-Ray analysis data. 

 

Hartt, et. al., in Florida [39] have been active in the area of marine corrosion and cathodic 

protection since 1981. Their major contribution has been the concept of the so-called 

Slope Parameter and the following Section summarizes this concept. Basically, the slope 

parameter for a cathodic protection system is the product of the structure surface area and 

the total resistance in the cathodic protection system. In subsequent work over two 

decades later, Hartt [41] arrives at this simple linear relationship by manipulating the 

standard parameters for calculating the current output for a sacrificial anode, as follows:  

acctc iAR φφ +∗∗= )(                            ...………………….……….. …………………..     (2-40) 

Where: 

cφ =The structure protection potential.   

Rt = total system resistance. 

Ac = structure surface area. 

ic = structure current density. 

aφ = operating potential of the anode. 

 

Hartt claims that by using this approach, it is possible to provide correlation between 

systems that possess widely differing surface areas, for example; laboratory based studies 

with real offshore structures simply by selecting a suitable choice of resistance in the 

circuit.   

 

Further experiments designed to investigate and extend this aspect of cathodic protection 

will be presented in this Thesis in Chapter 4. 
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Fairhurst [42] uses a schematic diagram shown in Figure 2.10 to describe the time 

dependant nature of an electrochemical polarization curve for steel in seawater. From the 

plot shown in Figure 2.10, it can be observed that a high initial current was required to 

suppress any corrosion of clean bare steel specimens. With time, calcareous deposits then 

formed and thickened, and subsequently, a much lower current density would then be 

required to maintain adequate cathodic protection levels.  

Time

-900

E Corr

Potential (mV v Ag/AgCl/Seawater)

Log [Current Density]

O2 OH-

Fe Fe2+/Fe3+

 
Figure 2.10. Schematic of the Time Dependant Polarization Curve for carbon steel 

(reproduced from Fairhurst article [42]). 
 

Also in Fairhurst’s presentation [43], ““OOffffsshhoorree  CCaatthhooddiicc  PPrrootteeccttiioonn,,  WWhhaatt  WWee  HHaavvee  

LLeeaarrnntt??””,,  hhee  compares current density design figures used on a number of progressively 

deeper water projects in the Gulf of Mexico with those recommended in NACE and DnV 

standards for shallower waters. It also included actual current density data derived from 

the first 7 years of cathodic protection monitoring on the Bullwinkle platform. 

 
Table 2.2. Summary of Offshore Structure Cathodic Protection Design Data Versus Water Depth [43]. 
 

Source/Field Year Depth 
(m) 

Initial CD 
(mA/m2) 

Mean CD 
(mA/m2) 

Final CD 
(mA/m2) 

DnV - <30 150(15) 70(6.5) 90(8.4) 
DnV - >30 130(12) 60(5.6) 80(7.4) 
NACE - <300 110(10) 55(5) 75(7.7) 
MC109 1991 316 123(11.5) 91(8.5) 108(9) 
Cognac 1977 320 116(11) - - 
Bullwinkle 1988 357 194(18) - - 
Bullwinkle * 1988 357 226(21) 32.3(3) - 
Thunderh. 2003 >462 193(18) 97(9) 129(12) 
Pompano 1994 572 127(11.5) 94(8.5) 99(9) 
Troika 1997 880 250(23.2) 114(10.5) 135(12.5) 
* Data from Bullwinkle’s monitoring system 
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The Bullwinkle [43] data is particularly interesting. It shows the original initial design 

current densities and compares them with those actually measured in practice. The initial 

design values of 194 mA/m2 were clearly insufficient to polarize the uncoated bare steel 

structure and measured values of 226 mA/m2 were obtained. Although the design steady 

state values were not quoted, other values quoted in Table 2.2 vary between 55 and 114 

mA/m2 which correlates well with values quoted in our recent publication  of around 20 

mA/m2 [44]. It was obvious from our findings that a high initial current density is capable 

of producing a much more protective calcareous layer [44]. In terms of the structure and 

morphology of this deposited layer; we shall return to this aspect in the Section 4.4 of 

Chapter 4. 

 

Recently, presumably due to the availability of relatively inexpensive potentiostats there 

have been relatively few papers in the literature dealing with the properties of calcareous 

deposits formed under conditions of constant current density. The majority of 

publications in this area deal with calcareous deposits formed on steel at constant 

potentials. /TF practice however a sacrificial anode CP system behaves much more like a 

constant current system. 

Deslouis, et. al., [45] investigated the characteristics of calcium carbonate deposits formed 

under conditions of cathodic protection at various constant potentials by Electrochemical 

Impedance Spectroscopy (EIS) and electrohydrodynamical impedance spectroscopy 

(EHD) without magnesium hydroxide, and details of the equivalent circuits were 

presented. More recently, the same group of workers [46] also presented data from EIS 

measurements in situ as calcareous deposits were formed at various potentials from - 0.9 

to -/1.4 V/SCE, and these calcareous layers were characterized by electrochemical and 

electrohydrodynamical impedance spectroscopy. See also Section 3.6.7 for further 

discussion of the work. 

 

Chung, et. al., [47] looked at anodic coatings on zinc by means of EIS. Equivalent circuits 

were proposed by considering the chemical products and physical structures resulting 

from the corrosion reactions. We will be referring to their equivalent circuit later in this 

Thesis as a possible model for our calcareous films. 

 

The calcareous deposit that forms on steel surfaces may be compared to a layer of paint. 

The circuit resistance is known to increase as the layer forms and the current 
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automatically decreases if the voltage remains the same.  

 

Using Figure 2.11 as a schematic diagram, it is generally believed that calcareous 

deposits provide protection against corrosion in the following ways: 

• They act as a barrier to oxygen. 

• Like paints, they are poor electron conductors and cannot support the oxygen 

reduction reaction on the outer surface. 

• Also like paints, they are thought to have a relatively high ionic resistance and to 

afford some degree of resistance inhibition. 

• There might be an increase in the pH of the water film in immediate contact with 

the metal surface which might provide passivation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11. Schematic of calcareous film on mild steel surface 
during cathodic protection in artificial sea water. 

 

The major difference between paints and the calcareous film is that the calcareous film 

must have the presence of CP albeit not necessarily continuously, in order to maintain 

itself in a satisfactory condition. 

 
 
2.7. The Factors Affecting Cathodic Protection in Sea Water. 
 
Many different factors affect cathodic protection, and the major influences are oxygen 

content, temperature, pH value, velocity of sea water currents, salt content and bacteria. 

In addition, if the structure is coated, the state of the coating will affect the current 

required for polarization. Each of these factors will be considered in turn, as follows: 
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1. Effect of oxygen: oxygen is the principal cathodic reactant in seawater. If the activity 

of oxygen is increased, then the actual corrosion potential (Ecorr) of the reaction is raised 

and the corrosion current will be increased [48].  

 

2. Effect of temperature: Uhlig [49] has pointed out that when corrosion  is controlled by 

diffusion of oxygen, the corrosion rate at any given oxygen concentration approximately 

doubles for every 30oC rise in temperature. Also, CaCO3 becomes more insoluble when 

the temperature increases. 

 

3. Velocity: Laque [50] has shown that an increase in the velocity of the seawater 

surrounding a site of corrosion causes the corrosion products to be removed more rapidly. 

The amount of oxygen arriving at the cathode surface increases and the rate of corrosion 

also then increases. Those combined actions will increase the current demand for 

cathodic protection. Figure 2.12 [51] is based on calculated data and shows that as the 

velocity of the surrounding water increases from stagnant conditions up to 4 m/s, the rate 

of corrosion would increase by around 5 times hence increasing the CP demand. 

Similarly there is an increase in corrosion rate with oxygen content. For example in static 

conditions with the oxygen content of 6 ppm, the CP current demand is 60 mA/m2 

whereas at an oxygen content of 10 ppm moving at 4 m/s requires 350 mA/m2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. Estimated maximum current density required to protect clean steel in North Sea water  
at 7oC [51] (this data taken from Ashworth [52 ] and replotted by Scantlebury [51]).   
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4. Effect of dissolved salts: resistivity decreases with an increase in salinity [50]. 

However; conversely, the oxygen content of the water decreases with increasing 

concentration of dissolved salts. The rate of corrosion first increases with salt 

concentration, then decreases. Seawater is approximately equivalent in ionic strength to a 

3.5% w/v sodium chloride solution, though it is has a much more complex composition; 

see Section 2.10.2. 

 

5. Bacteria: sulfate-reducing bacteria occur widely in most soils and waters, and their 

range of distribution is virtually everywhere. Under aerobic conditions when oxygen is 

present, the bacteria are inactive and they then only become active on their return to an 

anaerobic environment. Sulfate-reducing bacteria easily reduce inorganic sulfates to 

sulfides, and are therefore cathodically active [26]. Many publications have indicated that a 

larger negative potential change in a steel structure in anaerobic soil conditions is 

necessary to achieve effective cathodic protection. For example, BS code CP1021 

suggests that the criterion for steel in an anaerobic environment should be more negative, 

and at least -0.95 V vs. CSE (-0.874 vs. SCE) [1].  

 

2.8. The Criteria of Cathodic Protection. 
2.8.1. Introduction. 

After installing cathodic protection it is important to assess whether the system has been 

successfully protected. Over the years a series of criteria have been put forward, some 

more successful than others. For many years the most popular and widely accepted set of 

Standards utilised by the cathodic protection community has been the NACE 

Recommended Practice RP-01-69 “Control of External Corrosion on Underground or 

Submerged Metallic Piping Systems”. This Code of Practice has been subject to frequent 

revision, the most recent being 2007 [2]. The latest Code of Practice still contains five 

criteria for the cathodic protection of steel structures in natural soil and water 

environments. Each criterion will be stated in turn, together with our personal opinion 

regarding its validity and applicability. 

 

2.8.2. The Criteria of Cathodic Protection. 

1. The -0.85 V criterion: 

“A negative (cathodic) voltage of at least 0.85 V as measured between the structure and a 



Chapter 2. Literature Review 

46 

saturated copper-copper sulfate reference electrode (CSE) contacting the electrolyte. 

Determination of this voltage is to be made with the protective current applied” [53]. 

 

We have shown in this Thesis using weight loss methods that this value of potential is 

insufficient for complete protection of mild steel in artificial sea water.  

 

Page and Sergi [54] have also recently clearly shown by calculation that this value is 

insufficiently negative. Furthermore, an iR drop exists between the reference electrode 

and the structure which will generate a measured voltage more negative than the real 

value. Although recent modifications [2] to RP-01-69 make mention of this fact, there is 

no real discussion of how this iR drop can be eliminated or compensated for. 

 

2. 300mv change in potential: 

“A minimum negative (cathodic) polarization voltage shift of 300 mV, produced by the 

application of a protective current. The voltage shift is measured between the structure 

surface and a stable reference electrode contacting the electrolyte. This criterion of 

voltage shift does not apply to structures in contact with dissimilar metals” [53]. 

 

This is a very old criterion, but has no real scientific basis and furthermore, there is no 

consideration again of the iR drop in the soil.  

     

3. 100mv polarization shift: 

“A minimum negative (cathodic) polarization voltage shift of 100 mV measured between 

the structure surface and a stable reference electrode contacting the electrolyte. This 

polarization voltage shift is to be determined by interrupting the protective current and 

measuring the polarization decay. When the current is initially interrupted, an immediate 

voltage shift will occur. This reading after the immediate shift shall be used as the 

reading from which to measure polarisation decay” [53]. 

 

Readers familiar with the cathodic protection of rebar steel in concrete will immediately 

recognize the similarity between the above and the 100 mV shift criterion for steel in 

concrete. However, omitted from the above criterion is any consideration of time scale. 

Clearly the shift is the amount of depolarization taking place following the switching off 

of the CP system. Clearly the longer the time which has elapsed, the more the value of 
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the shift. Thus, some indication of time of depolarization is essential, and this aspect will 

be mentioned in Chapters 4 and 5. 

 

4. E-logI criterion: 

“A structure-to-electrolyte voltage at least as negative as that originally established at the 

beginning of the Tafel segment of the E-logI curve. This structure-electrolyte voltage 

shall be measured between the sample surface and a stable reference electrode contacting 

the electrolyte at the same location where taken to obtain the E-logI curve” [53]. 

 

This method is extensively discussed by Evans in his 1960 volume [26]. In spite of Evans’ 

support, this method has not been commonly employed. It was felt that a major feature of 

this technique involves identifying the Tafel region and any worker actively involved 

with or familiar with electrochemistry research will be fully aware of the difficulty that 

this involves for simple specimens under laboratory conditions, let alone a full scale 

structure in the field. 

 

5. Net protective current criterion: 

“A net protective current from the electrolyte into the structure surface as measured by an 

earth current technique applied to predetermined current discharge (anode) points of the 

structure” [53]. 

 

In common with the opinion of other workers, this author finds that the above statement 

has either very limited or no real applicability. It is also probable that this criterion will 

be removed from the forthcoming revision of the above Standard.  

 

2.9. Current Density for Cathodic Protection. 
As a general rule,  Ashworth and Booker  [52] have clearly shown by calculation that in a 

situation where the open circuit corrosion process is under full cathodic control, which 

indicates that the cathodic process is under limiting oxygen diffusion conditions, then an 

accurate determination of the corrosion current is immediately translatable into the 

specific current density required for cathodic protection. The data from Ashworth [52] has 

been replotted by Scantlebury [51] and is presented in Figure 2.12 in Section 2.7. There is 

clear and unambiguous equivalence between the corrosion current measured under 
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various conditions and the current density required for effective cathodic protection to be 

achieved.  

 

According to Peabody [55] there are three available methods commonly used to estimate 

the current density. Each of these methods will be discussed in turn.  

 

1. Temporary ground bed method [55]: 

This method involves setting up a temporary ground bed, and then using varying 

currents, the on and off potentials are determined at various locations around the structure 

both close to and remote from the ground bed.  The optimum current required in order to 

achieve full protection for the structure can then be obtained.  

 

This method is still in common use, especially where cathodic protection needs to be 

fitted to an existing structure where design details are either absent or unreliable. 

 

2. E-log I method [56]: 

In this method, varying increments of protection current are applied, and the polarization 

potential (at the point being investigated) is measured for each successive increment. The 

potentials are then plotted against the logarithm of the applied current. The plot is 

continued until a definite break in the curve is noted. The corresponding current at this 

point is then the required current. 

 

As is the case of the Tafel method discussed previously, this technique is rarely used. 

 

3. Mathematical approaches: 

Almost 40 years ago, Uhlig [57] derived a set of equations to calculate the required 

protection current by using Ohms law, and the concept of attenuation along a pipeline. 

Since then, the widespread use of computers with various powerful mathematical 

modeling software packages has facilitated many rapid advances in this area. Previous 

work in this area is contained in Ashworth’s book [52] by MA Warne (Application of 

numerical analysis techniques) with many papers in the on-line corrosion journal [58, 59, 60, 

61]. 
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2.10. Marine Corrosion. 
2.10.1. Chemical Composition of Seawater. 

Water covers 71% of the earth surface, and occurs virtually everywhere. The oceans hold 

97% of the worlds surface water, whilst glaciers and polar ice caps account for 2.4% and 

other land surface water such as rivers, lakes and ponds the remaining 0.6%. Many major 

industries such as shipping, offshore oil and gas production, power plants and coastal 

industrial plants are dependant on seawater systems. Unfortunately, the majority of the 

common metals and alloys (i.e. carbon steel) used to construct the majority of the main 

primary structures used by all these industries are attacked by seawater or seawater spray. 

Similar arguments also apply to large permanent structures such as bridges or offshore 

wind farms. It is therefore obvious that the problems caused by marine corrosion have 

huge financial cost implications to many industries worldwide.  

 

Seawater is composed of a number of major constituents and traces of almost all naturally 

occurring substances. Table 2.3 provides details of the average concentration of the 11 

most abundant ions and molecules in clean seawater (under conditions of 3.5 % salinity, 

density of 1.023 g.cm3 at 25oC).  Six elements and their compounds comprise 

approximately 99% of sea salts, these are: chlorine (Cl-), sodium (Na+), sulfur (as SO4
2-), 

magnesium (Mg2+), calcium (Ca2+), and potassium (K+).  
Table 2.3.  Average concentrations of the 11 most abundant ions 

and molecules in the oceans [62]. 
 

 Concentration 
species mmol-1.kg-1 g.kg-1 

Na+ 468.5 10.77 
K+ 10.21 0.399 

Mg2+ 53.08 1.29 
Ca2+ 10.28 0.4121 
Sr2+ 0.09 0.079 
Cl- 545.9 19.354 
Br- 0.842 0.0673 
F- 0.068 0.0013 

HCO3- 2.3 0.14 
SO42- 28.23 2.712 

B(OH)3 0.416 0.0257 
 

Chlorinity, conductivity and salinity are subjected to an arbitrary definition and do not 

conform simply to the chemical composition. Each of these factors will be discussed 

and/or defined in turn. 
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2.10.1.1. Salinity. 

Salinity is roughly the number of grams of dissolved matter per kilogram of seawater. 

This was the original definition, and at one time salinity was determined by evaporating 

the water and weighing the residual deposit. Salinity is normally derived from chlorinity. 

The definition given by  Roberge [6] is: 

S (o/oo) = 1.80655 Cl (o/oo) ……………………………………………………      (2-41)                          

 Roberge [6] also states the following:   “Generally, salinity of seawater lies between 33 to 

37 parts per thousand. A value of 35 parts per thousand, equivalent to 19.4 parts per 

thousand chlorinity is often taken as the average for ‘open-seas’ water. Local conditions 

may affect the value of salinity. For example, the melting of Arctic ice or dilution due to 

large rivers makes the salinity considerably less. In enclosed seas such as in the 

Mediterranean, Black Sea and Red Sea rapid evaporation causes the salinity to increase to 

40 parts per thousand”. 

 

The same author also gives precise explanations and discussions of conductivity and 

chlorinity, and these are also listed as follows: 

 

2.10.1.2. Conductivity. 

“Conductivity of sea water depends strongly on temperature, somewhat less strongly on 

salinity, and very weakly on pressure. If the temperature is measured, then conductivity 

can be used to determine the salinity. Salinity as computed through conductivity appears 

to be more closely related to the actual dissolved constituents than is chlorinity, and more 

independent of salt composition. Therefore temperature must be measured at the same 

time as conductivity, to remove the temperature effect and obtain salinity. Accuracy of 

salinity determined from conductivity: 0.001 to 0.004. Precision: 0.001. The accuracy 

depends on the accuracy of the seawater standard used to calibrate the conductivity based 

measurement” [6].  

 
2.10.1.3 Chlorinity. 

“Chlorinity refers to the sample of seawater titrated with silver nitrate, to precipitate 

bromides, iodides and chlorides. To calculate chlorinity the total content of halogen is 
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taken as being chloride, and chlorinity is defined as the weight in grams of the chloride-

ion content per 1000 grams of water” [6]. 

 

2.10.1.4. Ions in Seawater. 

“A large part of the dissolved components of seawater is present as ion pairs, or in 

complexes, rather than as simple ions. While the major cations are largely uncomplexed, 

the anions, other than chloride, are to varying degrees present in the form of complexes. 

About 13% of the magnesium and 9% of the calcium in ocean waters exist as magnesium 

sulfate and calcium sulfate respectively. 

More than 90% of the carbonate, 50% of the sulfate, and 30% of the bicarbonate exist as 

complexes. Many minor or trace components occur primarily as complexed ions at the 

pH and the redox potential of seawater. Boron, silicon, vanadium, germanium, and iron 

form hydroxide complexes. Gold, mercury, and silver, and probably calcium and lead, 

form chloride complexes. Magnesium produces complexes with fluorides to a limited 

extent.  

Surface seawater characteristically has pH values higher than 8 owing to the combined 

effects of air-sea exchange and photosynthesis. The carbonate ion concentration is 

consequently relatively high in surface waters. In fact, surface waters are almost always 

supersaturated with respect to the calcium carbonate phases, calcite and aragonite. 

The introduction of molecular carbon dioxide into subsurface waters during the 

decomposition of organic matter decreases the saturation state with respect to carbonates. 

While most surface waters are strongly supersaturated with respect to the carbonate 

species, the opposite is true of deeper waters that are often under saturated in carbonates” 

[6]. 

2.10.2. Chemical Composition of Artificial seawater. 

Artificial seawater (or ASW) is a mixture of dissolved mineral salts (that simulates 

seawater). From a scientific perspective, artificial seawater has the advantage of 

reproducibility over natural seawater. 
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There are several different standards available relating to the precise chemical 

compositions used as a basis to prepare artificial seawater. Tables 2.4 and 2.5 give details 

of the average composition of two artificial sea water formulations. For this research 

project, the 1940 Standard of Lyman and Fleming [63] (s = 3.5%) was selected to prepare 

artificial seawater, with a pH of around 7.5. 

Table 2.4. Chemical composition of artificial seawater based on Lyman and Fleming (s = 3.5%) [63]. 

Composition NaCl MgCl2 NaSO4 CaCl2 K Cl NaHCO3 KBr H3BO3 SrCl2 NaF 

g   (per   1000g  solution) 23.939 5.079 3.994 1.123 0.667 0.196 0.098 0.027 0.024 0.003 

Table 2.5. Chemical composition of artificial seawater based on BS3900-F4:1968 [63]. 

Composition NaCl MgCl2 MgSO4 CaCl2 K Cl NaHCO3 KBr water 

g  (per   1000g  solution) 26.5 2.4 3.3 1.1 0.73 0.2 0.28 1000 

 

2.11. Corrosion inhibition of metals in aqueous environments. 
2.11.1. Introduction.  

In this study, we also looked at a magnesium/calcium containing anti-corrosion pigment 

as a corrosion inhibitor. It is therefore essential that a basic review of the relevant 

literature on corrosion inhibition is given. 

 

There are several different forms of corrosion inhibition, and these are normally grouped 

under the following headings. These are: anodic inhibition, cathodic inhibition and mixed 

inhibition. These terms relate to whether the inhibitor action reduces the rate of the 

anodic reaction, the cathodic reaction or the rate of both reactions simultaneously. See 

Turgoose [64] for a full account of these various modes of inhibition. 

 

As with the terms used to categorise the various modes of corrosion inhibition, and 

described above, corrosion inhibitors can be classified according to their mode of action: 

anodic, like sodium phosphate which retards the anodic reaction; cathodic, like calcium 

bicarbonate which cause interference with the cathodic reaction; or inhibitors that can 

have both actions. i.e. a dual effect. These dual action inhibitors are usually combinations 

of  inhibitors such as zinc or calcium ions with inhibitive anions like phosphates, borates, 

carboxylates and molybdates and are sometimes called mixed inhibitors since in principle, 

the anions can act anodically and the cations can act cathodically. 
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                                                       (a)                                                      (b) 

Figure 2.13. Anodic and cathodic polarization curves. Point D is free corrosion. 
Point F is added anodic inhibitors, Point G is added cathodic inhibitors, 

Point P is an added mixture of cathodic and anodic inhibitors. 
 ∆i1, ∆i2, ∆i3 are the reduced corrosion currents, respectively [65] 

 

Figure 2.13 shows the relationship between corrosion (D), protection given by added 

anodic or cathodic inhibitors (F and G respectively) and inhibition (P). Usually, EaF is 

anodic control by using anodic type inhibitors which raise the potential: EcG is cathodic 

control by using cathodic type inhibitors which will result in a decrease in the potential. 

The intersection point P is mixed, and controlled by using mixed inhibition during which 

the potential is not significantly changed. All of these inhibitors reduce the corrosion 

current [66].  

 

 
Figure 2.14. Effect of concentration of various inhibitors on the corrosion of iron [66]. 
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Figure 2.14  illustrates a graph reproduced from Pryor and Cohen [66], showing the effect 

that solutions of different inhibitor concentrations have on the corrosion of iron. 

 

In naturally-occurring fresh water or seawater, there exists several inhibitors, for 

example, magnesium sulphate and calcium bicarbonate. When water passes through steel 

pipes or metal structures, these inhibitors hinder the cathodic reaction by depositing 

magnesium hydroxide or calcium carbonate on the metal surface and hence reduce the 

process of corrosion [3]. In addition, several of those inhibitors not only have an inhibiting 

action but also have a significant buffering effect; for example, phosphates can control 

the pH environment to close to pH 7 [27]. 

 

2.11.2. The Classification of Corrosion Inhibition. 

2.11.2.1. Anodic inhibition and passivation.  

This type of inhibition is characterized by giving an increase in the corrosion potential 

compared to the uninhibited state [Figure 2.13(b), point F]; passivation may result if the 

effect is strong enough. In the case of iron and steel, corrosion potentials in the range of 0 

to -250mV (SCE) can be observed which are in the same range as passivation potentials. 

Freely corroding iron would typically have a potential of about -700mV (SCE). 

 

Much of the early work reported in the literature regarding the passivating and anodic 

inhibiting properties of anions such as chromates, molybdates, nitrites, phosphates, 

borates, silicates, azelates and benzoates has been reviewed by Thomas [67]. In the case of 

iron and steel, a critical inhibitor concentration for complete protection (Cinh) exists 

which increases with the concentration of aggressive anions (Cagg) such as chloride and 

sulfate according to the logarithmic relation given in equation 2-42: 

logCinh = n logCagg+ K    …………………………………………………………… (2-42)  

Where n and K depend on the nature of the aggressive and inhibitive ions [67-71]. 

 

Thus in the absence of aggressive ions, effective inhibitor concentrations for complete 

inhibition or passivation of iron may only need to be of the order of 5*10-4M for 

chromate anions [69], but this figure increases rapidly as Cagg increases. On iron, at 10-3M 

NaCl (~35ppm chloride), the necessary levels of chromate to ensure protection are 

around 10-2M (~1200ppm).  
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Minimum figures for inhibition of iron in the absence of aggressive ions are around 10-2 

M for phosphate and borate [66], about 10-3M for molybdate [72] and benzoate anions [68] 

and approximately 10-4M to l0-3M again for nitrite [70].  

 

The initial concentration for inhibition of steel by lead azelate was found to be in the 

range of 10-5M to 10-4M at a pH of 4.5 to 5. The efficiency of inhibition was reduced in 

the pH range of 5 ~ 6 [73]. The corresponding calcium and sodium salts were found to be 

less efficient at providing effective inhibition, requiring a minimum concentration of 

about 10-3M and the solution pH appeared to have little effect over the range of 4.5 to 6. 

All solutions were found to corrosive at a pH of 4.  

 

Besides the influence of aggressive ions, there is a minimum pH at which inhibitors are 

effective. This generally decreases with increasing inhibitor concentration and aggressive 

ion concentration. For example, at an anion concentration of 10-1M, the minimum pH for 

preventing the corrosion of iron or steel is about 1.0 for chromate anions, 5.5 for nitrite 

anions and 7.0 for phosphate anions. Hydroxide ions also have a passivating influence on 

iron and steel if present at sufficient concentration and a pH of around 12 is normally 

needed, i.e. 10-2M in hydroxide ions [67]. Steel in concrete is an example of this situation. 

 

Oxidising inhibitors such as chromate and nitrite do not require oxygen in solution to 

inhibit whereas non-oxidising inhibitors such as phosphate, molybdates and carboxylates 

do, this being the basis of one type of inhibitor classification. For non-oxidising 

inhibitors, the required oxidising power of the solution generally decreases as the 

inhibitor concentration increases although some oxygen is still needed [67]. 

 

It has also been observed that many non-oxidising inhibitors are not effective on addition 

to a solution containing aggressive ions in which steel has already begun to corrode, and 

if the potential of the metal has fallen below a certain value dependent on the inhibitor 

and corrosive conditions [70]. On the other hand, immersion of iron already bearing its air-

formed oxide into solutions of inhibitive anions usually results in a thickening of the 

oxide layer except at relatively low values of solution pH’s [67]. 

 

In considering the mechanism of action of anodic inhibitors, an increase in the corrosion 

potential occurs by increasing the polarisability of the anode reaction, but a reduction in 
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the corrosion current will not occur if the rate of corrosion is under diffusion cathodic 

control. This often occurs in the case of iron and steel where the corrosion current is 

controlled by the limiting current density for oxygen reduction [67].  

 

More effective methods of anodic inhibition are associated with maintaining the potential 

in the passive range such that the existing oxide film remains protective to the underlying 

metal. The factor determining this is that the potential remains in the protective region 

between the Flade potential and the breakdown potential if this exists. The current in the 

passive range should also be as low as possible, indicating a low rate of transportation of 

metal ions through the film and a low rate of dissolution of metal ions at the oxide-

solution interface.  

 

2.11.2.2. Cathodic Inhibition. 

This type of inhibition is shown by a decrease in the corrosion potential compared with 

the uninhibited state (Figure 2.13, point G) and is caused by a reduction in the rate of the 

cathodic reaction. Unlike anodic inhibition, there is normally no significant sensitivity to 

the presence of aggressive ions and even small additions of inhibitor can reduce the 

corrosion rate for a system under cathodic control [67]. 

 

There is no critical inhibitor addition below which no inhibition is observed nor is there a 

minimum addition level below which localized regions of corrosion can occur. For this 

reason, inhibitors functioning in this way are often classified as safe. The disadvantage 

compared to anodic inhibition is that corrosion rates are normally only reduced whereas 

anodic inhibition can lead to passivation and effectively prevent corrosion. [67]. 

 

As discussed previously in Section 2.6, in aerated solutions the rate of corrosion of iron 

and steel is controlled by the rate of oxygen transport to the metal surface. The effects on 

the cathodic reaction are in this case believed to be due to the formation of relatively 

thick films of insoluble compounds over cathodic sites which restrict oxygen transport 
[74]. For this to be effective, the films must of course have low electronic conductivity. 

 

Divalent cations like zinc and magnesium can precipitate as insoluble hydroxides on 

ferrous metals due to the local concentration of hydroxide ions produced by the cathodic 

reaction. This topic has already been discussed previously in Section 2.6 dealing with 
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calcareous films.  Soluble calcium salts in waters containing carbon dioxide can also 

precipitate calcium carbonate at cathodic sites where the relatively high pH allows a 

sufficiently high carbonate concentration [74]. Where silica or silicates are present in 

solution, the deposition of calcium silicates at cathodic sites may also contribute to 

cathodic inhibition [74]. 

 

The surface pH on clean metal with oxygen reduction as the cathodic reaction can be 

calculated [75] in terms of bulk pH and will rise to about 10.0 in unbuffered solutions, 

provided that the bulk pH does not become too acidic. In general, the possibility of such 

reactions can be calculated knowing the solution pH, buffering properties, inhibitor 

concentrations and the solubility products for the insoluble compounds involved. 

 

Once such a film has formed, it appears that the surface pH is not particularly sensitive to 

the barrier properties of the film and this is presumably due to the fact that both the 

diffusion of oxygen to the surface and the diffusion of hydroxide ions away from the 

surface are hindered.  

 

Surface analytical studies have frequently demonstrated the presence of iron in the 

surface films that form under cathodic conditions [62], and this could imply the formation 

of insoluble films by reaction of ferrous ions with the inhibitor, but in practice, it is often 

difficult to decide whether this is an aspect of the observed inhibition or just a 

consequence of the corrosion of the metal. This feature is also shown elsewhere in this 

work (Section 5.3.1.2). 

 

Cathodic inhibition is believed to account for the inhibition displayed by polyphosphates 

on iron and steel when calcium or zinc ions are present in solution, although inhibition of 

the anode reaction has been reported [74] and pitting and promotion of corrosion under 

adverse conditions may occur.  

 

Corrosion inhibition is dependent upon appropriate addition levels of polyphosphate, the 

ratio of calcium or zinc ions to polyphosphate and also on pH [74, 76]. Operating solution 

pH’s are normally within the range 5 to 7, for the reasons cited above and addition levels 

calculated as P2O5 range from 10 to 40 ppm or of the order of 10-4M. It has been 

suggested that the Molar ratio of P2O5 to calcium ions should not be greater than 3:1 [74, 
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76]. Corrosion inhibition is found to be better when polyphosphates are employed in 

conjunction with Ca or Sc ions. Inhibition is also reported to be dependent on flow 

conditions and time of exposure [14, 77, 78].  

 

Some studies appear to relate the observed inhibition to films formed directly from 

polyphosphate and the cations present in solution [76], although other studies have 

considered that phosphate anions rather than polyphosphate are involved in film 

formation [14, 77, 78] , in which case, formation of calcium and zinc phosphates at cathode 

sites could occur. Formation of iron phosphates have also been discussed [14]. Small 

residual quantities of phosphate may be present in the polyphosphate, or may arise as a 

result of reversion of the polyphosphate to phosphate. In the former case, inhibitor 

effectiveness could be expected to depend on the residual phosphate concentration [78]. 

 

The behaviour of zinc as an inhibitor in solutions containing tripolyphosphate, zinc and 

calcium ions has been previously investigated by means of impedance, cyclic 

voltammetry and SEM/EDAX techniques [79]. The inhibition appeared to be cathodic in 

nature and removal of calcium from the mixture decreased the effectiveness. It was found 

however, that the formation of the most stable compact films did require the presence of 

zinc ions in solution.  

 

2.11.2.3. Mixed inhibition. 

In the case of mixed inhibition it might be expected that the potential would increase or 

decrease according to which electrode reaction was most affected by an inhibitor 

considered to be capable of reducing both electrode reactions (Figure 2.13, point P). 

However, the potential change does not necessarily reflect whether anodic or cathodic 

inhibition is predominating because the corrosion rate itself is determined by a rate 

determining step. 

 

As previously discussed, some inhibitors like chromate can show both anodic and 

cathodic inhibition where the effects of the latter will predominate at low concentrations. 

Combinations of inhibitors such as zinc or calcium ions with inhibitive anions like 

phosphates, borates, carboxylates and molybdates are sometimes called mixed inhibitors 

since in principle, the anions can act anodically and the cations can act cathodically. 
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Many combinations of inhibitors do in fact lead to corrosion rates which are often lower 

than can be explained on the basis of their individual action in a given environment. Thus  

the addition of polyvalent metal cations to solutions of inhibitive anions often results in a  

large increase in inhibition. It might be speculated that in some cases mixed inhibitors 

were simply very efficient anodic inhibitors bringing the critical current density of 

passivation (icrit) below the available cathodic current density (icath). 

 

However, in the case of mixtures of zinc with phosphate or molybdate and considering 

the observed potentials which were too negative to be associated with passivation, the 

improved effectiveness on ferrous metals was believed to be largely due to cathodic 

inhibition. In these cases, the efficiency was higher than that of zinc ions alone due to the 

precipitation of a basic salt, rather than simply zinc hydroxide [64].  

 

In the case of zinc and molybdate, Qian and Turgoose [80] obtained DC polarisation 

curves and showed that the addition of molybdate to a 0.1M NaCl solution containing 

zinc ions reduced still further the rate of the cathodic reaction. The solution pH was 6.5. 

There was some increase in the corrosion potential indicating anodic inhibition but not 

sufficient to cause passivation. The appearance of a high frequency semi-circle in the AC 

impedance data suggested the presence of a porous film. SEM/EDAX and XPS indicated 

the presence of a film composed of zinc and molybdate (VI) ions. 

 

In a comparison of the inhibitive properties of extracts of zinc potassium chromate 

pigment to those of potassium chromate with respect to mild steel, Mayne and Golden [81] 

found similar levels of inhibition in the absence of aggressive ions. Higher levels of 

inhibition for the extract from zinc potassium chromate were found where chloride and 

sulfate were present at levels sufficient to have prevented passivation. 

 

In the following work reported in this Thesis, we have concentrated mainly on calcium 

and magnesium cations and an innovative modified Ca/Mg  polyphosphate compound 

(the Japanese pigment D5-B). Although the eventual or ultimate aim is to use this latter 

compound as an anti-corrosion pigment in paint, the work described here is mainly 

concerned with the inhibitive properties of this compound dissolved directly into aqueous 

solution. We have employed a variety of electrochemical and non electrochemical 

methods using different solutions of this compound, with the aim of identifying the 
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mechanism of action of inhibition of this product. 

 

2.11.3. Rationale for the study on anticorrosion pigments. 

Mayne’s original concept of Resistance Inhibition [82, 83, 84] applies to intact, pore free, 

paint coatings applied to rust free and soluble contaminant free metal substrates. His 

argument was that although paint coatings were relatively permeable to oxygen and water, 

provided the coatings functioned as a sufficiently effective barrier to the movement of 

ions, then the coatings were good anti corrosion coatings as the ionic return path is forced 

to pass across the intact coating. Values of less than 106 Ω·cm2 were considered as poor 

quality coatings; greater than 108 Ω·cm2 were found to be excellent [20]. This basic 

concept, although published some sixty years ago still holds true today.  

 

 
Figure 2.15. Diagram illustrating the structure of the coating with anti-corrosion pigment 

 in rust plus soluble contamination at the  interface. 

 

The problem arises when the metal substrate is covered by a contaminated corrosion 

product before the paint film is applied. Ionic contaminants include cations such as 

sodium, ammonia and hydrogen ions and anions such as nitrate, chloride and sulfate. In 

this situation since water can get through the film, underfilm osmotic blistering will occur 

and corrosion will proceed. Any underfilm corrosion current will have its ionic return 

path NOT through the coating BUT within the relatively low resistance electrolyte layer 

within the blister. One way of halting this active corrosion cell is to incorporate anti-

corrosion pigment particles within the primer layer of the paint which is adjacent to this 

active blister. Water transporting across the film picks up soluble corrosion inhibitive 

material from this pigment and releases it into the blister and stops the corrosion process 

by inhibiting the electrolyte under the film. See Figure 2.15. However, if the pigment is 
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too soluble it causes lack of adhesion of the paint; if too insoluble, then not enough of it 

dissolves to provide effective inhibition. 

 

So, in order to efficiently evaluate the potential of any new anti-corrosion pigment, we 

need to firstly fully test this material in the absence of a paint film; using electrolytes 

which might mimic the situation under which this film would be expected to perform 

under real conditions. Once some understanding of the effectiveness or otherwise of the 

new pigment is known, tests with real paints can then be undertaken. Therefore, in this 

study, we looked at the behaviour of the new pigment in a range of selected electrolytes 

and also carried out a comparison with other commercial pigments using the same 

electrolytes. This work is described in the later part of this Thesis. 
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2.12. The Aim of this Research. 

The importance of cathodic protection in the context of corrosion in marine environments 

has already been previously discussed. Whilst there is a general consensus and agreement 

on the importance of calcareous deposits formed during cathodic protection in sea water, 

there has not been much detailed information and analysis of such films reported in the 

literature, and as we have already discussed much of what has been reported is 

conflicting.  

In the early part of this project, my studies were concerned primarily with investigating 

the relationship between potential and the level of protection. In this work, different 

current densities (from open circuit, 50, 100, 150, 200, 300 and 400 mA/m2) were applied 

to immersed specimens to examine the relationship between current density and potential, 

and also differences in the calcareous deposit and also corrosion rates were determined 

by using a weight loss technique (from open circuit to 200 mA/m2).  

 

The region between the open circuit potential and the protection potential, which denotes 

a situation where underprotection occurs, is a fascinating one and forms part of this study. 

Due to the many variable factors that can affect cathodic protection, the polarized 

potential cannot directly predict the corrosion rates or corrosion situation. However, 

Ashworth and Booker [52] have suggested that a correlation exists between the dissolution 

of iron and the potential curve and also between potential and the current density curve 

for steel in seawater, as shown in Figure 2.16. But this correlation has never been tested 

or proven.  

 

Since it is obvious that such curves do not accurately represent real data, it was decided 

to explore this region between open circuit and the protection potential. Therefore, we 

used weight loss to test the correlation between the dissolution of iron and the potential 

curve and also between potential and the current density curve for steel in seawater. 

Longer-term weight loss experiments have also been performed using different current 

densities. Weight loss measurements were used to work out corrosion rates in under-

protection cathodic protection situations with current densities at open circuit (zero), 20,  

40, 50, 70,100, 150, and 200 mA/m2. 
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(a)  Relationship between dissolution of Fe and E.

(b)  Relationship between cathodic current and E

(a)  Relationship between dissolution of Fe and E.

(b)  Relationship between cathodic current and E
 

Figure 2.16. Diagrams showing  plots of the variation of potential with current density for steel in 
seawater and the relationship between the dissolution of Fe and  the potential curve  [52]. 

 
 

Another task of the initial study was to attempt to investigate the dynamics of calcareous 

deposit formation that occurred under conditions of cathodic protection during the initial 

stages of immersion in simulated seawater. We aim to show how the composition of 

calcareous deposits varies with different current densities, and also how the initial current 

density plays an important role in forming good quality calcareous deposits. The early 

stages of formation of the calcareous film are important and the structure, composition 

and electrochemical characteristic of deposits were examined, in order to determine 

which chemical compound deposits first, and how the layers form.  Also, studies were 

carried out in the initial phase of this project on the growth, development and modeling of 

calcium and magnesium deposits formed on mild steel immersed in artificial seawater at 

various levels of cathodic protection. The experiments were performed at short 

immersion times and using different current densities. The composition of the resulting 

deposits were analysed and modelled by EIS and also by using a range of analytical 

instruments/techniques, including: Glow-Discharge Optical-emission Spectroscopy 

(GDOES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis 

(EDX) and X-Ray Diffraction (XRD).   
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I also evaluated a novel anti-corrosion pigment (D5-B) containing calcium/magnesium 

and polyphosphate. The initial results on the performance of this product as a corrosion 

inhibitor had already been published [85]. These preliminary results indicated that the 

inhibitor pigment D5-B may be effective as an anti-corrosive inhibitor both in solution or 

when incorporated into an epoxy paint. We continued and extended this work as the 

calcium/ magnesium film produced provided an interesting comparison with our previous 

work on the calcareous films. 

 

The next Chapter will describe in detail the experimental methodologies and analytical 

instruments and techniques utilised in this research work, then  full details of the research 

studies undertaken in this Project will be presented in Chapters 4 and 5 that follow. 

Chapters 4 and 5 will present both the Results and the Discussion Sections. In Chapter 6, 

a general overall discussion of the entire study will be presented, together with 

suggestions for future research work.   
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Chapter 3.  Experimental Procedures and Techniques.  
 

3.1. Introduction. 
This Chapter will explain the experimental procedures and list the materials used 

throughout this research project, and also describe the techniques which were applied to 

analyze the data obtained from the sample testing procedures.  

 

The experimental work described in this Chapter deals firstly with the sample preparation 

methods, then discusses the fundamental aspects and operating principles of the various 

electrochemical procedures employed; and also explains the various microscopical and 

analytical techniques used to evaluate the samples after testing. The detailed structure of 

the experimental work is outlined below in Figure 3.1. 

 

3.2. Materials. 
3.2.1. Working electrode preparation. 

Mild steel is the most commonly employed material utilised for the construction of major 

structures used in aqueous environments. This metal was therefore used throughout this 

study. The mild steel selected for use as test samples was supplied in panels 

50mm*102mm*1mm by Q Panel Ltd (the specific composition of this alloy as provided 

by the supplier is given in Table 3.1) It was cut into different sizes depending on the 

particular requirements of the different experimental design situations. The dimensions of 

the various test specimens used were: 5cm2 (2.0cm*2.5cm), 10cm2 (2.5cm*4cm) and 

16cm2 (4cm*4cm). The surfaces of the test specimens were initially prepared by 

polishing using a series of successively finer grades of silicon carbide abrasive papers. 

Firstly, 120 grade silicon carbide paper was used for the initial grinding, and then a series 

of progressively finer abrasive grades were employed down to 4000 grade, which was 

used to give the final polishing. The specimens were stored in a sealed vessel over silica 

gel prior to the experiment commencing. Just before the experiments started, the test 

samples were rapidly degreased in pure alcohol followed by pure acetone, and then 

finally dried in a stream of cold air. 

 

There were two types of procedures used for final preparation of the working electrodes 

used for this set of experiments. One type of working electrode that was used for the long 
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term experiments was prepared by using a piece of copper wire as the electrical contact. 

The wire was soldered to the top end of the reverse side of each specimen, and the 

remaining exposed lead was insulated by inserting it into a round 20 cm long portion of 

plastic tube, which was sealed and insulated from the specimen using ‘Rapid Araldite’ 

two-component epoxy resin.  

 

The other type of working electrode used for the short term experiments was polished to 

a mirror finish by 4000 grade abrasive paper. These samples were then masked by using 

 “Lacquer 45” to give the required area (5 cm2) of exposed sample, prior to immersion.  

 

 

 

 

 

 
 

 
 

 

 

 

 

             

 

 

Figure 3.1. Overall Outline of Experimental Work. 

 
Table 3.1. Chemical composition of mild steel. 

Element Fe C Mn P S 

Percent BAL 0.08-0.13 % 0.3-0.6 % 0.04 % 0.05 % 

 

For these experiments, the electrical connection was made by simply using a piece of 

copper wire that was temporarily fixed to the sample by using a crocodile clip. Some 

samples used for GDOES measurements were also given an additional final ‘critical’ 
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polishing step by using sub-micron size alumina powder. An Atomic Force Microscope 

(AFM) was used to confirm that the maximum heights of any remaining peaks were ≤1.0 

µm (see Figure 3.26 and Figure 3.27 in Section 3.10). 

 

For inhibitor testing (Chapter 5) samples were prepared by drilling a small hole in the top 

each mild steel sample and an electrical connection was made using a self tapping screw. 

 

3.2.2. Testing solutions. 

In this Thesis, the chemical composition chosen to prepare the artificial seawater 

electrolyte solution was based on the standard formulation given by Lyman and Fleming 

(1940; s=3.5%). This formulation is given in full in Table 2.4 in Section 2.10.2. The pH 

of the testing solution varied between 7.4 and 7.6, but was usually around 7.5.  

The procedures utilised to make artificial sea water were as follows: 

For each set of experiments, 10 kg of artificial seawater solution was prepared. The 

sequence of steps utilised was as follows: 

1. Initially, 339.39 grams of sodium chloride (10X the weight given in Table 2.4) was 

weighed out, and added to 2 litres of deionised water in a beaker using a graduated 

cylinder. A magnetic stirrer and bar was used to ensure that the salt was completely 

dissolved. This initial saline solution was then poured into a 10 litres high density 

polyethylene bottle. This solution was the primary stock salt solution. All further 

solutions prepared were then added in turn to this main stock solution. 

 

2. A similar process was then followed for each of the next three main chemical 

compounds listed in Table 2.4 (magnesium chloride, sodium sulfate, calcium chloride). A 

mass of each chemical exactly ten times the amount stated in Table 2.4 was weighed, 

then added to 1 litre of deionised water in a separate beaker and stirred thoroughly until 

completely dissolved.  Each prepared additional solution was then added to the two litres 

of original stock sodium chloride solution prepared previously, and stirred until totally 

mixed. 
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3. The remaining 6 compounds listed in Table 2.4 were prepared by adding each 

compound in turn, at 10 times the mass given in Table 2.4, to 1 litre of deionised water in 

a separate beaker, whilst continuously mixing using a magnetic stirrer and bar. This final 

solution was then added to the 5 litres of original main stock solution prepared previously, 

in the 10 kg bottle. Finally, sufficient additional deionised water was then added to give a 

final solution weight of exactly 10 kg. The final solution was continuously mixed during 

the entire preparation process, and then used to set up the experiments within several 

hours.  

 

For the corrosion inhibitor testing experiments, four test solutions were utilized, these 

were: deionized water, 3.5% NaCl, 0.025M NaClO4 and a simulated acid rain solution 

which was ten times more concentrated than the normal rain solution. The composition of 

the acid rain solution [1] was determined by measuring the average concentration of 

dissolved salts in 8 sites in Manchester over a one year period in 1986. The pH was 4.5. 

The solution used in these tests was ten times this concentration with a pH of 3.5; the 

composition of the acid rain solution used in this study is shown in Table 3.2.  
 

Table 3.2. Composition of acid rain solution [1]. 
Composition mg/L 

Sulphuric acid (1.84 sg) 31.85 

Ammonium sulphate 46.20 

Sodium sulphate 31.95 

Nitric acid (1.42 sg) 15.75 

Sodium nitrate 21.25 

Sodium chloride 84.85 

                      The pH was adjusted to 3.5 with sodium carbonate or HCl 

The procedures utilised to make acid rain were as follows: 

1. Initially, 318.5 milligrams of concentrated (sg = 1.84) sulphuric acid (10 X the weight 

given in Table 3.2) was weighed out, and slowly added to deionised water in a beaker 

using a graduated cylinder, whilst stirring continuously using a magnetic stirrer and bar. 

Additional deionised water was then added to give a final volume of exactly 1 litre. This 

initial solution was then poured into the 10 litres polyethylene bottle. This solution was 

the primary stock acid rain solution. All further solutions prepared were then added in 

turn to this main solution. 
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2. The rest of the salts and acid which are listed in Table 3.2 (ammonium sulfate, sodium 

sulfate, nitric acid, sodium nitrate and sodium chloride), were then separately weighed 

out at 10 X the amount given in Table 3.2, then added to and dissolved in deionised water. 

The volume of each resulting solution was then made up to precisely 1 litre using 

addition deionised water as required. Each additional 1 litre solution was then added in 

turn to the original main sulphuric acid stock solution prepared previously, in the 10 litre 

plastic stock bottle. The solution was continuously thoroughly stirred during the whole 

preparation and mixing process. Finally, additional deionised water was then added until 

the final volume of the complete solution was exactly 10 litres.  

 

3. The pH of the prepared complete solution was measured to be around 3.35, and was 

then critically adjusted with sodium carbonate solution to precisely 3.5. The pH meter 

used was carefully calibrated prior to use with Standard buffer solutions at pH = 7.0 and 

pH = 4.0 respectively. 

 

For the corrosion inhibitor testing experiment, the pigments evaluated were supplied by 

the DAI NIPPON TORYO (DNT) Company as powders, and were the following: 

 D5-B; calcium polyphosphate, magnesium neutralised (DNT 2008/10/16). 

 Ca650; aluminium tripolyphosphate, calcium neutralised (DNT 2008/06/30). 

 KW105; aluminium tripolyphosphate, zinc neutralised (DNT 2008/06/30). 

 Zinc phosphate; (DNT 2008/06/30). 

 

All four of the above pigments were added at 1.0 Wt. %, in each solution, stirred for 10 

minutes than left to settle. The tests were carried out using unfiltered solutions with the 

pigment residue on the bottom of the beaker.  

 
3.2.3. Auxiliary and reference electrodes. 
 

In this experiment, all potential measurements stated are with respect to a Saturated 

Calomel Electrode (SCE). The saturated calomel electrode was connected with the test 

solution by a solid state poly (acrylamide) salt bridge. The salt bridges were 

manufactured by Labtech. Salt bridges were used to avoid chloride contamination and to 

reduce any possible iR error in the potential measurements especially in the low 

conductivity acid rain solutions. Before the experiments, all the SCE reference electrodes 
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were measured one against another, and only those electrodes whose potentials remained 

stable within a 5 mV range were used. All those whose potential fluctuations were greater 

than 5 mV were discarded. 

 

Two types of auxiliary electrode were used, these were a platinum flat anode and a 

titanium anode coated with iridium-tantalum oxide (Mixed Metal Oxide [MMO]), 

supplied by BAC Anti-Corrosion. 

 

3.3. Galvanostatic Studies. 
3.3.1. Diagram of Experiment. 

Galvanostats made by Corrosion Developments (the late Harvey Turner) were used to 

provide a constant current, and the value of the applied current densities could be 

adjusted using a built-in variable resistance. In this research, two types of galvanostat 

were employed for the vast majority of the electrochemical studies. One is suitable for 

very low current ranges which deliver typically less than 10 µA maximum, whilst the 

other is applicable for high current uses, which have a maximum output of 50 mA.   In 

the external circuit, a measuring resistor was used (usually 10000 Ω, previously 

calibrated) to check the current supplied by the galvanostat. 

 

 

 

 

 

 

   

 

 

 

 
 
 
 

Figure 3.2. Diagram of Experimental set-up used for polarization studies. 
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Figure 3.3. Photograph of experimental galvanostatic set-up in laboratory.  

 

The specimens were immersed separately in still artificial sea water with open access to 

air, and with different polarization current densities. The temperature of the solution was 

determined by the laboratory temperature which during the period of the experiments 

reported here varied between 18 to 22 oC.  The specimens were polarised cathodically at 

constant current densities. Their potentials were measured every six hours for up to seven 

days (6h, 24h, 48h, 72h, 96h, 120h, 144h and 168h). These specimens were also 

subjected to impedance analysis daily at the potentials previously measured, not at open 

circuit. An ACM Gill Impedance Analyser was used and the data was analysed using 

Zview software. In the data presentation in Chapter 4, the quality of the fit can be seen by 

comparing the real data with the data from the model.  

 

3.3.2. Data Acquisition System 

A Data Acquisition System was utilized for recording the potential every 5 minutes. Only 

one potential value could be recorded in one circuit. Therefore, in these experiments, a 

separate power supply was used for each cell. It is capable of recording 6 data (the testing 

samples connected with C1 to C11 and reference connected with GND channels) sets at 

the same time and from different circuits. 
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                                              Figure 3.4.  Data Acquisition. 

 

3.4. Potential monitoring. 
This technique was used to study the potential time behaviour of the steel samples 

subjected to various cathodic protection situations. The measurement of potential is very 

simple – a reference electrode is placed in the same solution (or via a Luggin Probe) as 

the working electrode and a voltmeter with high input impedance is then connected to the 

two electrodes to measure the voltage difference. As a general rule, the negative terminal 

of the voltmeter is connected to the reference electrode [2].  
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3.5. Weight Loss Testing. 
 
Weight loss is probably the most fundamental way to evaluate the effectiveness of any 

particular corrosion control measure.  

 

In this investigation, we had the choice of using constant current or constant potential 

cathodic protection (CP). It was decided to use constant current for a variety of reasons: 

firstly, in a real CP system, the system is designed to supply a constant current to the 

structure and therefore a constant current is closer to reality. Secondly, if a potentiostat is 

employed to obtain a constant potential, this arrangement would produce electrochemical 

chaos at the interface in the event that conditions were to suddenly change. The major 

previous study that utilized constant current to provide cathodic protection was the early 

and seminal work by Humble [3], who performed weight loss experiments in June 1946 at 

Kure Beach with test exposure duration of one year. He describes the techniques that he 

used as follows:  "The cathodes used in these tests were 12 inch by 12 inch by 1/8 inch 

‘killed’ steel plates, which were attached to channeled iron racks using insulated washers. 

These were immediately coupled to magnesium anodes, three plates being operated at the 

following current densities: 0.0, 1.0, 2.0, 3.0, 5.0, 7.5 and 10 mA/sq foot (1 mA/ft2 = 

10.76mA m-2). One plate at each current density was removed after three and twelve 

months exposure. The conditions prevailing at the test site, namely, sea water, which is 

saturated with respect to oxygen, has a salinity range of from 95 to 104 percent of normal 

and a temperature range of from 45 to 85o F. The velocity of the water was zero; its level 

rising and falling with the tides but with no definite flow [3] ״. Corrosion product removal 

was by light sand blasting. 

 

In our study, the data obtained by Humble was replotted and will be presented in Figure 

4.5 in Chapter 4. (Section 4.2.2) 

 

I undertook weight loss experiments under laboratory conditions and using artificial 

seawater. It was decided to mainly explore the particular region between the open circuit 

and the protection potential which constitutes the so-called ‘region of underprotection’.  

Mild steel specimens with an exposed area of 10 cm2 were prepared by polished with 

silicon carbide paper down to 4000 grade. The anodes were titanium coated with iridium-

tantalum oxide (Mixed Metal Oxide [MMO]). 
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The samples were exposed to the immersion solutions without stirring, and with free 

access to air. The samples were polarised cathodically at constant current densities. The 

weight loss specimens were then weighed both before exposure and then again after 30 

days testing. The samples were weighed using an electronic balance to within 0.1 mg, 

and each sample was weighed three times. The balance used was a Mettler (Model 

AE163). A typical weight loss at open circuit on a 10 cm2 specimen was around 60 mg. 

 

The main differences between the series of weight loss experiments performed in this 

Study, and the work undertaken by Humble [3]  in 1946  may be summarized as follows: 

• His timescale was one year whereas mine was 30 days. 

• My experiments were carried out under controlled laboratory conditions, whereas 

Humble used an unpredictable natural marine environment.  

• His medium was real seawater whereas mine was synthetic seawater. 

• His current supply used a sacrificial anode system with manual variable resistance 

to supply the constant current, whereas I used a stabilized constant current power 

supply. 

• He used light sand blasting to remove the films produced on the steel; I used an 

inhibited acid solution; Clarke’s solution; see the following Section. 

 

3.5.1. Cleaning Procedure. 

In order to determine the weight loss, it is essential to remove all corrosion products that 

have formed, but at the same time ensuring that the base metal remains intact. 

Furthermore, it is imperative that a replicate uncorroded, control specimen is cleaned by 

the same method as all the test specimens. The specimens were cleaned according to 

ASTM G1 specification in a Clarks reagent, which was composed of 2.0 % antimony 

trioxide and 5.0 % stannous chloride per litre of hydrochloric acid (sp. gr., 1.19). The 

specimens were placed in the Clarks solution for 10 minutes for cleaning at room 

temperature. Table 4.2 gives real experimental data.  

 

3.5.2. Assessment of Corrosion Damage. 

The average corrosion rate is determined by taking into consideration the initial total 

surface area of the specimen and the mass lost during the test period using the following 

corrosion rate equation [4]: 
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ρρρ nF
Mis

AnF
MIs

A
KsCR ===   ………………………………………………………         (3-1) 

Where: 

CR = corrosion rate (cm/year);   

K = rate of corrosion (g/s); 

A = area in cm2; 

ρ = density in g/cm3 (density of carbon steel = 7.86 g/cm3) (taken from ASTM G1-03 

specification); 

s = seconds in a year (3.15×106); 

F = Faraday’s constant (C/mole); 

I = corrosion current (A); 

n = number of electrons for each metal atom. 
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3.6. Electrochemical Impedance Spectroscopy (EIS). 
3.6.1. Introduction. 

Electrochemical impedance spectroscopy (EIS) or the AC impedance technique is a 

particularly useful method used routinely to investigate corrosion mechanisms and the 

fundamental parameters of electrochemical reactions. EIS techniques have been 

commonly employed for many years in electrochemical research and corrosion science 

investigations. Prior to the 1970’s, the application of EIS techniques was not so common, 

but some excellent work was carried out in Cambridge by Hoar and Wood in 1962 on the 

properties of anodized aluminium [5]. However their equipment was limited to single 

frequency capacitance bridge methods. In the mid 1970’s the advent of the transfer 

function analyser together with the availability of cheap computational software and 

hardware has produced an extensive output on electrochemical and corrosion related 

studies involving AC impedance techniques, which has continued unabated until today.  

The popularity of impedance techniques may be explained as follows; firstly; the 

technique makes use of only very small perturbation signals without disturbing the 

properties of the electrode that is to be measured. Secondly, it can obtain charge transfer 

resistance as well as double layer capacitance data in the same measurement. Thirdly, the 

measurements can be made in solutions with low conductivity whereas, under similar 

such conditions, D.C techniques are subjected to significant errors due to large ohmic 

drops. When electrochemical impedance techniques are used, the solution resistance can 

be easily measured and thus eliminated [6-9].  Fourthly, the equipment is relatively 

inexpensive and it is very easy to obtain large quantities of data rapidly. 

It should always be borne in mind that the system under investigation must fulfill the 

Kramers Kronig criteria [10]. This is simply stated by the following requirements: 

Stability: i.e. the system must not change during the measurement period. 

Linearity: i.e. the system must not exhibit any abrupt discontinuities. 

Causality: i.e. the response must be due to the applied perturbation. 

Finite:  i.e. at very high frequencies and at very low frequencies the system must tend to 

zero. 
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3.6.2. The basic principles of Electrochemical Impedance Spectroscopy (EIS).  

For any electric circuit, which consists of various passive elements (i.e. resistors, 

capacitors and inductors) the behaviour of the whole circuit to an applied ac voltage, is 

dependent upon both the behaviour of individual elements, and also on their arrangement 

in the circuit with respect to each other.  

 

If a dc direct voltage is applied to the elements that comprise the equivalent circuit, the 

resulting current can be measured using Ohms law. 

 

For the case where a low amplitude sine wave Eac, of a particular frequency, is applied 

across a passive element, then: 

)sin(0 tEEac ω=  …………………………………………………………………         (3-2) 

Where: 

Eac = potential at time t; 

E0  = maximum voltage amplitude; 

ω = is the angular frequency, ω = 2πf; 

t  = is the time. 

 

Under these conditions, the resulting current response of a sine wave Iac  will be given by: 

X
EI ac

ac =   …………………………………………………………………………       (3-3) 

Where:  

Iac = current at time t;  

X = the reactance of the particular passive element in the electrical circuit.  

When the applied signal is a sinusoidal voltage wave and the resulting signal is a 

sinusoidal current wave, then X is called the impedance Z; conversely, when the applied 

signal is a sinusoidal current wave, the resulting signal is a sinusoidal voltage wave, X 

which is called the admittance Y. 

 

The value of the reactance of a capacitor or an inductor can be expressed as a complex 

quantity by the complex operator j,  1−=j  [11], and using this notation the reactance of 

the elements are given by [12]:   
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For a resistor:      XR  =  R 

For a capacitor:   XC  = 1/-jωC 

For an inductor:  XL  = jωL  ………………………………………………………       (3-4) 

 
For the impedance, Z(ω), as mentioned above is a complex quantity and can be 

represented in Cartesian as well as polar co-ordinates. In polar co-ordinates the 

impedance of the data is represented by:  
)()()( ωφωω eZZ =        ……………………………………………………………        (3-5) 

Where: 

)(ωZ  = Magnitude of the impedance and ф is the phase shift.  

 

In Cartesian co-ordinates the impedance is given by, 
''' jZZZ +=            ………………………………………………………………         (3-6) 

Where:  

Z׳ = the real part of the impedance; 

Z״ = the imaginary part. 

 

For the admittance, 
''' jYYY +=                       ………………………………………………………           (3-7) 

2''2'
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== …………………………………………… ……          (3-8) 

 

Since the impedance is a vector, it is possible to represent it in a complex plane plot such 

as a Nyquist plot which consists of a set of points each representing the magnitude and 

direction of the impedance vector at a particular frequency [11]. Data obtained by EIS is 

often expressed graphically in a Bode plot or a Nyquist plot together with the Bode plot. 

The Nyquist plot can be used to show the variation in impedance with different 

frequencies and can be considered as an extension of the Argand diagram which uses 

frequency as a parameter variable. The Bode plot can have log(f) or log(ω) as the x axis, 

and the |Z | and ф as the y axis. I used a combination of  Nyquist and Bode plots to 

present my data. 

Z
Z ''

tan =θ         ……………………………………………………………………       (3-9) 
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Figure 3.5.  Argand plot showing impedance vector Z [13]. 

 

3.6.3. The impedance of electrode electrolyte interfaces. 

At the electrode electrolyte interface, the simplest reduction reaction is given by:  

Ox + ne- → Red        ……………………………………………………………        (3-10) 

In the above reaction, the impedance of the electrode electrolyte interface will be due to 

the combination of: (1) the electrochemical double layer, (2) the constant phase element 

(CPE), (3) the Ohmic resistance of the system, (4) the Warburg impedance. Each of these 

components will be discussed further.  

 

(1) The electrochemical double layer Cdl. 

The electrochemical double layer behaves like a parallel plate capacitor due to the 

separation of the charge between each side of the interface, the capacitance exhibited by 

Cdl is dependent on the relative conductivity of the media, the ionic concentration, and 

the thickness of the double layer. It is not a perfect capacitor, i.e. the relationship between 

the charge across the interface and applied potential is not linear. However, by using only 

small voltages that have small perturbations (Eac ≤20mV), the relationship approximates 

to a linear one. 

 

(2) The Constant Phase Element CPE.  

This Section was obtained from the excellent internet articles from Bob Rogers who 

originally worked for Gamry [14].  

 

“The Constant Phase Element (CPE) is an non-intuitive circuit element that was 

discovered (or invented) while looking at the response of actual real-world systems. In 

some systems, the Nyquist plot was expected to be a semicircle with the center on the X -
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axis.  However, the observed plot was indeed the arc of a circle, but with the center some 

distance below the x-axis.” 

“These depressed semicircles have been explained variously by a number of phenomena 

depending on the nature of the system being investigated. However the common thread 

among these explanations is that some property of the system is not homogeneous or that 

there is some distribution (dispersion) of the value of some physical property of the 

system. The CPE is usually represented by two parameters, Q° and n”.  

“It is tempting to simply associate the value of Q° for a CPE with the capacitance value, 

C, for an equivalent capacitor. The value range of n is between 0 and 1. When n = 0, Q° = 

R. When n = 1, Q = C.”   

 

Figure 3.6.    Nyquist Plot of a solitary CPE [14]. 

“In Figure 3.6, a Nyquist Plot is shown with a solitary CPE (symbolized by Q), it is just a 

straight line which makes an angle of (n*90°) with the x-axis as shown in pink. The plot 

for a resistor (symbolized by R) in parallel with a CPE is shown in green. In this case the 

center of the semicircle is depressed by an angle of (1-n)*90°” [14]. 

 “Mathematically, the impedance of a CPE is given by: 

nin e
Q

j
Q

Z 2
000

1)(1 π

ω
ω

−− == ………………………………………………………… (3-11) 

Where: 

 Q° = has the numerical value of the admittance (1/ |Z|) at ω=1 rad/s. The units of Q° are 

F/cm2; 

n = constant, 0<n<1.” 
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There are two parameters are used to describe the CPE in Zview software: these are  

CPE-T  and CPE-P (CPE-T  = Q° and CPE-P = n). We will consider them later in Chapter 5. 

 

(3) Ohmic resistance RΩ. 

The Ohmic resistance of the system consists of a combination of the electrolyte resistance, 

the resistance of the connection leads and the charge transfer resistance of the electrode. 

In general the last two resistances are negligible compared to the solution resistance; 

therefore the Ohmic resistance and the solution resistance may be taken as the same. 

 

The electrode reaction could be represented as impedance due to charge transfer and 

mass transport, and the impedance due to the mass transport is represented by the 

Warburg impedance, the charge transfer resistance can be considered as a simple 

resistance. 

 

(4) Warburg impedance. 

(i) Introduction to the Warburg impedance. 

This Section has been largely transferred from the website of Rogers  and Gamry [14] with 

minor modifications. 

“The Warburg impedance represents the impedance exhibited by the mass transport 

(diffusion) of electroactive species, to and from the from the electrode surface. At high 

frequencies the Warburg impedance is small since diffusing reactants don't have to move 

very far. At low frequencies the reactants have to diffuse further, thereby increasing the 

Warburg impedance.  

The equation for the "infinite" Warburg impedance is: 

)1(2
1

jZW −=
−

σω   …………………………………………………………………   (3-12) 

Where σ is the Warburg coefficient and is defined as: 
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Where: 

ω = radial frequency; 
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DO = diffusion coefficient of the oxidant; 

DR = diffusion coefficient of the reductant; 

A = surface area of the electrode; 

n = number of electrons transferred; 

C* = bulk concentration of the diffusing species (moles/cm3); 

1−=j . 

This relationship assumes that the induced concentration wave diminishes at an infinite 

distance from the surface. However frequently this is not the case and the concentration 

wave vanishes at a finite distance from the surface, normally within the Nernst Diffusion 

Layer. If the diffusion layer is bounded, the impedance at lower frequencies no longer 

obeys the equation above. By re-defining the boundary conditions so that the 

concentration wave is zero at the distance δ from the surface (where δ is the Nernst 

diffusion layer distance), the Warburg impedance is given by the following equation (3-

14): 

))(tanh()1( 2
1

2
1

D
jjZO
ωδσω −=

−
 …………………………………………………     (3-14) 

Where: 

δ = Nernst diffusion layer thickness; 

D = the average value of the diffusion coefficients of the diffusing species” [14]. 

 

(ii) Warburg Impedance as applied to this Thesis. 

In the data obtained in our work on the calcareous films the general shape indicated a 

lack of a 45o slope at low frequencies and thus the appropriate Warburg analysis was 

according to the Finite Warburg Method, not the Infinite. 

The experimental data were analysed by the EIS data fitting computer programs (Zview 

software). For Warburg short WS case, there were three parameters which were given to 

describe the Finite Warburg WS-R, WS-T and WS-P (Actually WS-P is normally 0.5). 

 

 



Chapter 3. Experimental Procedures and Techniques 

89 

The relationship between the impedance and the parameters can be expressed as: 

 ]tanh[)1( ω
ω

jWjWZ TS
RS

−
− −= …………………………………………………    (3-15) 

Where: 

WS-R is equal to the Warburg coefficient; 

 
2

1
D

W TS
δ=− , δ is the Nernst diffusion layer thickness, and D is the average value of 

the diffusion coefficients of the diffusing species; 

 ω = angular frequency of the ac signal. 

We will be examining the parameters WS-R and WS-T  and their variation with current 

density and time in Chapter 4, later in this Thesis. 

(5). Equivalent circuit.  

For a simple electrochemical process, an equivalent circuit refers to the simplest form of 

a circuit that retains all of the electrical characteristics of the original electrochemical 

system. In its most common form, an equivalent circuit is made up of linear elements; the 

system may be represented by a simple electrical circuit including resistors, capacitors, or 

inductors. However, more complex equivalent circuits are sometimes used that 

approximate the nonlinear behavior of the original system as well. 

 

3.6.4. The mathematical approach. 

Considering a corroding metal, an equivalent circuit that represents such a system can be 

illustrated by Figure 3.7 (a metal-solution interface). 

 

 

 

 

 
                             Figure 3.7 An equivalent circuit for corroding metal [4]. 
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Solution
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Solution
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The simplest circuit is a resistor, corresponding to the polarization resistance Rp, 

connected in parallel with a capacitor, corresponding to the double layer capacitance Cdl 
[15]. 

 

The current that may flow through the resistance can be given as follows: 

PR
tVtI )()( =    ………………………………………………………………………    (3-16) 

 

This current is known as the Faradic current and it is related to the oxidation and 

reduction processes of the species involved. The current that flows through the capacitor 

depends not on the applied voltage, but on the rate of voltage change and can be given as 

follows [15]: 

dt
tdVCtI dl
)()( =   …………………………………………………………………     (3-17)               

 

The total current that passes through the circuit is equal to the sum of current that passes 

through the resistor and the current that passes through the capacitor and can be given  by 

the sum of equations 3-16 and 3-17) as follows [15]: 

dt
tdVC

R
tVtI dl
P

)()()( += ……………………………………………………………    (3-18) 

Where: 

I(t)  = the total current. 

 

As mentioned earlier, the current passing through the capacitor depends on the rate of 

voltage change, and if this change is minor, the second part of equation 3-18 can be 

ignored, thus the resulting current can be given by the first term [15]: 

PR
tVtI )()( ≈   …………………………………………………………………………  (3-19)                        

 

The signal applied by any EIS machine is normally very small. The reason for this signal 

being minor is to prevent disturbance to the system being studied, and this is one of the 

important advantages of EIS.  
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As we mentioned above, the small perturbating voltages (Eac ≤20mV) are indeed small. 

In addition, the signal is a sinusoidal signal, and consequently the applied voltage can be 

given by equation 3-20 [15]: 

)sin()( 0 tVtV ω=   ……………………………………………………………………  (3-20) 

Where:  

V(t) = the applied voltage;  

V0  = the maximum amplitude of the voltage; 

ω  = the angular frequency.  

 

The sinusoidal voltage signal can then be plotted as shown in Figure 3.8. 

 
Figure 3.8. Sinusoidal voltage signal [15]. 

 

 The rate of the voltage change in equation (3-20) can be expressed as follows: 

)cos()(
0 tV

dt
tdV ωω=     ……………………………………………………………     (3-21) 

 

Consequently when the voltage is being applied to both the resistor and the capacitor in 

the circuit, the resulting current can be expressed as follows: 

)cos()sin()( 0
0 tCVt

R
VtI dl

P

ωωω += …………………………………………………    (3-22) 

 

The two components of the current can be plotted against time, as in Figure 3.9. The first 

part is called “in phase” with an applied voltage (zero current occurs at the same time as 

zero voltage, and the peak current occurs at the same time as the peak voltage). The 

second part is called “out of phase”, and in this case (zero current occurs at the same time  

as the peak voltage, and the peak current occurs at the same time as the zero voltage), the 

magnitude of both terms (components) is proportional to the applied voltage V0
 [15]. 
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Figure 3.9. The two components of current response of the circuit in Figure 3.8 [15]. 

 

The same two components can be plotted in a different way by dividing the “in phase” 

and “out of phase” components of the current by the applied voltage V0   (see Figure 3.10). 

 
 

 

 

 

 

 

Figure 3.10. In- phase and out-of- phase current components plotted as one frequency [15]. 

 

We can represent this by saying that the in-phase current is proportion to 1/RP, and the 

out-of-phase current is proportion to jwCdl, where the j operator indicates a 90o phase 

shift between the input voltage and resulting current. If the same current components 

were plotted for a wide range of frequencies the resulting plot would be similar to the 

Nyquist plot apart from the labeling on the x and y axes [15] (Figure 3.11). 
 

 

 

 

 

 

 

 

Figure 3.11. In phase and out of phase current components plotted at different frequencies [15]. 
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When any measurements are carried out, the total current is actually measured rather than 

measuring the two components of the current, and it is valuable to have one expression 

for the current as follows [15]: 

]sin)cos(cos)[sin()( 0 φωφω ttItI +=    ……………………………………………    (3-23) 

or: )sin()( 0 φω += tItI   ……………………………………………………………   (3-24) 

Equation 3-24 above describes another sine wave but shifted in phase along the time axis 

compared with the voltage by an angle φ  in equation 3-23. 

P

o

R
VI =φcos0     ………………………………………………………………… …    (3-25)                        

dlCVI ωφ 00 sin =  …………………………………………………………………       (3-26)     

 From equations 3-25 and 3-26, we can then obtain the following equation: 

22
2

0

0 1
dl

p

C
RV

I ω+= …………………………………………………………………   (3-27) 

 dlPCRωφ =tan                    …………………………………………………………   (3-28) 

I0/V0 is known as the admittance modulus which usually written as |Y| and φ  is the phase 

angle.  

By using the symbol Y for the admittance, a similar equation to 3-18 can be written as 

follows: 

dl
P

Cj
R

Y ωω +=
1)(   …………………………………………………………………  (3-29)          

or:    ''')( jYYY +=ω …………………………………………………………………(3-30) 

Where Y´ represents the real component and Y´´ represents the imaginary component. In 

this case, the admittance depends on frequency, which is why it is described as Y(ω). Y´ 

is proportional to the in-phase current component and Y´´ is proportional to the out of 

phase current component and both of them depend on the frequency. In reality the 
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conventional impedance measurements are generated by applying a voltage, and then 

measuring the current response which is given by equation 3-24. However, impedance 

data is normally presented as a modulus Z and phase angle (Bode plot) or the real and 

imaginary parts (Nyquist plot) [15].  

 

 

 

 

 

Figure 3.12. Modulus and phase angle at different frequencies [15]. 

The graph given in Figure 3.12 shows the relationship between the admittance modulus 

(|Y|) and the phase angle at different frequencies. 

3.6.5. Impedance of a simple circuit. 

In standard impedance measurements, the solution resistance Rs should be considered in 

the equivalent circuit, therefore, when the solution resistance is considered, the equivalent 

circuit can then be represented by Figure 3.13. 

Rs
Rp

Cdl

 
 

Figure 3.13. The Randles equivalent circuit for a corroding interface [4]. 

 
In many cases, the Bode plot, (log Z versus log ω and log ω versus θ), as illustrated in 

Figure 3.14, is used to analyze the impedance data. In Bode plots, resistive and capacitive 

regions are clearly distinguished together with information provided by the frequency 

dependence of the phase angle, which is a very sensitive indicator of small changes in 

such spectra [16].  
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Figure 3.14. Example of a Bode Plot for the equivalent circuit given in  Figure 3.13,with  

component values of Rs = 100 Ω, Rp = 1000 Ω, Cdl = 0.0001 F. Note that |Z| tends to  
Rs at high frequency and to Rs + Rp at low frequency [17]. 

On the Bode plot, a resistor produces a horizontal line on the amplitude plot with 

amplitude equal to the resistance and a constant phase of zero on the phase plot. A 

capacitor produces an amplitude that falls with a slope of -1 as the frequency increases 

(the amplitude of the impedance is 1/(2πfC), where f is the frequency and C the 

capacitance), and a constant phase of -90°; because we are normally dealing with 

resistors and capacitors, it is common to invert the phase axis (i.e. plot – phase), so that  a 

useful means of representing this variation with frequency is the Nyquist plot, as 

capacitive circuit elements give data above zero [2].  

A Nyquist Plot is shown in Figure 3.15. This diagram consists of a set of points, each 

representing magnitude and direction of the impedance vector at a particular frequency. 

 

The Nyquist Plot normally plots the imaginary part of the impedance against the real part. 

The Nyquist plot invariably inverts the imaginary axis (i.e. it plots the imaginary 

component of impedance with increasingly negative values on the y-axis), so that 

capacitive circuit elements plot above the x-axis. One weakness of the Nyquist plot 

compared to the Bode plot is that it does not implicitly include the frequency of each 

measurement point, so at least some points should have their frequency indicated [2]. 
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Figure 3.15. Example of a Nyquist Plot [17]. 

According to the equation 3-29, considering the solution resistance RS, the total 

impedance can be expressed by [4]: 
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3.6.6. Disadvantages of the EIS technique. 

We have already explained some advantages of the EIS technique in Section 3.6.1. It is 

useful to mention here some disadvantages. There are a few limitations associated with 

the use of Electrochemical Impedance Spectroscopy (EIS). Firstly, in some instances, an 

appropriate model cannot be found to fit the impedance data and in other cases even 

when the equivalent circuit has known component values, it may not be resolved.  

 

Sometimes, fitting problems may arise because of distorted semi-circles [18]. Therefore, in 

such cases, the interpretation of the impedance data is usually difficult and care must be 

taken when doing so. 
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Finally, the measurements obtained using Electrochemical Impedance Spectroscopy (EIS) 

are sequential; e.g. each frequency point is considered in turn, which means that to obtain 

frequency spectra from, say 10 KHz to 10 mHz, it takes some time depending on how 

powerful the impedance machine is. This can be a long time for rapidly corroding 

systems whose rate of reaction is changing quickly. Also, at low frequencies, the system 

may be subject to noise ‘pick-up’ which can lead to frequency scatter on the impedance 

plot. Despite these drawbacks, Electrochemical Impedance Spectroscopy (EIS) has 

proven to be a valuable technique and can provide important information about the nature 

of corrosion processes in many systems [19]. 

 

3.6.7. EIS for calcareous films. 

The use of electrochemical impedance spectroscopy for corrosion rate estimation and 

also corrosion behavior research studies is well established. The large number of papers 

available in this area is a good indicator of the many studies that have been undertaken in  

the field of determination of coatings [20], inhibitors, rebar steel embedded in concrete, 

properties, evaluation of dissolution and the passivation phenomena, measurement of 

corrosion rate at the corrosion potential and data analysis. The regular series of 

Conferences entitled: “Electrochemical methods in Corrosion Research”, with its 

accompanying published volumes of Proceedings is probably a good starting point to 

obtain reference information on all these research areas [21]. A Google search on this title 

reveals 151000 links to this subject.   

 

There are very few papers available in the literature that deal with the performance of 

mild steel under conditions of cathodic protection and evaluated using EIS techniques. 

Thompson, et. al., recognized that EIS was a useful monitoring tool for detecting 

corrosion on cathodically protected carbon steel structures in soil and concrete [22, 23].  

 

The most recent and extensive studies in this area are from France. Deslouis [24], [25] and 

his collaborators published two fundamental papers in this area. Their first published 

article was entitled: “Characterization of calcareous deposits in artificial seawater by 

impedance techniques-I. deposit of CaCO3 without Mg(OH)2’’[24], and they described 

calcium carbonate deposits grown under conditions of cathodic protection and  

characterized by both EIS and electrohydrodynamical impedance spectroscopy (EHD) 

impedance. They stated “in particular, from the EHD impedance data, it was possible to 
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estimate the average value of crystal size in the first phase to about 30-50 µm and 

covered fraction from the high frequency capacitance”. Subsequently, the same group of 

authors continued and extended this work [25] with the paper entitled: “Characterization of 

calcareous deposits in artificial seawater by impedance techniques-3. Deposit of CaCO3 

in the presence Mg(OH)2”. This later article focused on “calcareous deposits grown under 

cathodic protection which were characterized at various constant potentials from -0.9  to  

 -1.4 V/SCE”, the calcareous layers were characterized by electrochemical and 

electrohydrodynamical impedance spectroscopies.  

   

From the impedance studies, Deslouis [24], was able to conclude that “the continuous 

calcium carbonate film covers the metal and is characterized by a faradaic impedance Zf  

at the pores’ bottom in parallel with the double layer capacitance Cdf  relative to the same 

area. These two elements are in series to a resistance Rf due to finite conductivity of 

electrolyte solution in thin pores and whole arrangement is placed in parallel to 

capacitance Cf  reflecting the dielectric nature of the CaCO3 layer”.  

 

They assumed that the metal becomes covered by calcium carbonate ‘islands’ with inner 

porous defects and macroscopic exposed areas, see Figure 3.16.  

 

As a conclusion to their initial work, the same authors [24] proposed an electrical 

equivalent circuit, which is based on the parallel combination of the characteristic 

impedance of the CaCO3 sites and the parallel association Z/Cd over the uncovered areas. 

In Figure 3.16 the elements have the same physical-chemical meanings but for very 

different area values. One major criticism of the two major studies discussed above, is 

that they seem to have used extremely high current densities (sometimes as much as 5000 

mA/m2), and have ignored the obvious presence of the hydrogen evolution reaction. 

In our study, we had access to two impedance setups. In our study on calcareous films we 

used the growth of calcium/magnesium containing films as anti-corrosion barriers on iron. 

We have investigated two deposition processes; one is a pH driven precipitation reaction 

set up by the cathodic reduction process using CP in seawater. Furthermore, from the 

characteristics of cathodic protection, we wanted to try to find the relationships between 

various different current densities and cathodic polarization in artificial sea water by 

electrochemical impedance spectroscopy (EIS) signals.  
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Figure 3.16. Schematic of partly covered interface with calcium carbonate crystals 

and related electrical equivalent circuit [24]. 

The second deposition process that we investigated was with anti-corrosion pigments. We 

used a conventional open circuit investigation with an anticorrosion pigment D5-B 

containing calcium, magnesium and polyphosphate.  

Both the testing frequencies at the start were 10000 Hz, whilst the final test frequencies 

were 0.1 Hz., and impedance devices were calibrated weekly with a dummy cell 

modeling a simple Randles circuit which consisted of just three basic components; 

namely two resistors and a capacitor  ( R1 = 100 Ω, R2 = 1000Ω, C1 = 1μF).  

 

 

 

 

Figure 3.17. Real  circuit of  dummy cell [4]. 
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3.7. Potentiodynamic polarization study. 
Potentiodynamic polarization is a well known technique in corrosion studies. It requires a 

potentiostat, a linear sweep generator (to produce the potential sweep) and a recording 

device of some kind to record the current and potential. Typical values of sweep rate are 

in the order of 1 mVs-1, which was used in this work. 

 

We used a Solartron 1286 Electrochemical Interface, which controlled by a desk top 

computer running dedicated Corrview 3.0 software. Corrosion rate data was generated 

with this system from Linear Polarisation Resistance and also from Tafel extrapolation 

and will be discussed in Chapter 5. 

 

3.8. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-

Ray Analysis (EDX). 
3.8.1. Introduction.  

The technique of Scanning Electron Microscopy (SEM) was employed extensively 

throughout this study to examine and obtain images of both the surface morphology and 

internal structure of corrosion deposits and films on samples of mild steel. The associated 

analytical facility of Energy Dispersive X-Ray (EDX) analysis was used to identify and 

quantify the elemental composition of the deposited surface films on the sample surfaces, 

formed as a result of immersion in different electrolytes. EDX was also used to determine 

the distribution of selected elements over the surface of the sample. It should be noted, 

that these different techniques are essentially part of one instrument: the EDX facility 

(basically an X-Ray detector and associated software) is incorporated intimately as part 

of the SEM itself, and cannot function without the operation of the SEM, since the 

generation of the analytical X-ray signal is dependant on the interaction between the 

incident electron beam and the sample in the SEM. Note also that the acronyms EDAX 

and EDS (Energy Dispersive Spectrometer) are often used interchangeably in place of 

EDX by different instrument manufacturers but are essentially the same technique. 

Therefore, collectively, these techniques (SEM and EDX) were considered one of the 

major procedures that were used to conduct this research. A brief description and 

discussion of the operating principles and capabilities respectively of these essential 

techniques is given in the following Sections.  Both Goldstein, et. al., [26] and Echlin [27] 
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have recently given a comprehensive account of the theory, operating principles and 

capabilities of SEM and EDX.  

 
3.8.2. Basic Principles of Scanning Electron Microscopy (SEM). 

A microscope is an instrument that allows images to be obtained of a sample at 

magnifications greater than 30 times life-size (the term ‘macro’ is applied to instruments 

that image at magnifications from 5 X to 30 X). Since the recent development of new 

innovative instruments such as the Atomic Force Microscope (AFM) and the acoustic 

microscope,  the older definitions of a microscope as being based on instruments that 

utilize optical systems (either light-rays or electron beams) for imaging at magnification 

above 30X are no longer applicable. The technique of AFM was used briefly in this 

Study, and will be discussed further in Section 3.10. There are three main types of 

Electron Microscope, these are: the Scanning Electron Microscope (SEM), the 

Transmission Electron Microscope (TEM) and instruments that have a dual function 

capability: – the Scanning-Transmission Electron Microscope (STEM). Only the SEM 

will be discussed here. Essentially, in a Scanning Electron Microscope, a beam of 

electrons is generated by an electron gun in a high vacuum column, at an accelerating 

voltage of between 1.0 to 30 kV, but usually within the range 5.0 kV to 20 kV, then 

collimated into a coherent beam, using a system of electromagnetic coils or lenses; then 

passed down through the main electron gun column into the specimen chamber, where it 

is focused into a fine spot, then scanned rapidly over the surface of the sample. Two 

processes then occur simultaneously: secondary electrons are emitted from the sample as  

a result of ionization processes, and in addition, some electrons from the primary beam 

(generated by the electron gun), are reflected or ‘bounced back’ from the sample as a 

result of interactions with the nuclei of the elements of the sample. These latter electrons 

are termed ‘backscattered electrons’ or the BSE signal. Both types of electrons are then 

collected separately by a specific type of electron detector, and the resulting signals are 

then processed, amplified and displayed to give an image which can then either be 

viewed and/or stored digitally. Secondary electron detectors are normally a combined 

scintillator and photo-multiplier system, known as an Everhart-Thornley detector which 

is mounted to one side of the specimen stage; whilst most modern BSE detectors are a 

compact semiconductor design and mounted directly onto the final electron objective of 

the microscope (i.e. immediately above the sample).  
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Generally, secondary electron (SE) images are used to give high resolution images of the 

sample surfaces as three-dimensional surface topography, with good depth of field; whilst 

BSE images can provide useful analytical information about the sample, since the 

electrons from the primary beam that are backscattered have interacted with the atoms of 

the sample. BSE images at 8 kV give good ‘orientation contrast’, whilst BSE images at 

20 kjV give atomic number contrast, since the intensity of the BSE signal is strongly 

related to the atomic number (Z) of the specimen, the BSE images can provide 

information about the elemental composition in the sample surface, or the near-surface 

region (~ 1.0 to 2.0 µm). Figure 3.18 illustrates schematically the main SEM instrument 

that was used throughout this study. 

 

There are several types of SEM instrument available, which vary either in terms of the 

type of electron gun used to produce the primary beam of electrons, or in either/both the 

type of vacuum system and electron detector used to collect the emitted/reflected 

electrons. There are three types of electron gun in common use – two of these are 

‘thermionic’; i.e. where electrons are generated as a result of emission through heat – 

most typically by a heated (to ~ 2000 – 2700 K) thin (~ 100 µm diameter) tungsten wire 

or filament formed into a ‘hairpin’ shape, which emits electrons and these are attracted 

and channeled by a charged anode, then passed through an electron optics system of 

electromagnetic coils to give a coherent beam of electrons. The second type of thermionic 

electron gun is a lanthanum hexaboride (LaB6) type, which also operates on a ‘thermal’ 

principle to emit electrons, but is much more efficient than a basic heated filament. The 

third and most efficient type of electron producing source is a Field Emission Gun (FEG) 

type, which consists of a very sharp tungsten tip situated adjacent to a high electric field 

(a highly charged anode) and electrons then ‘tunnel’ out of the tip. Such a system is not 

‘thermal’ (although most currently available FEG guns also heat the tungsten tip to 

improve efficiency) and is extremely efficient since the energy distribution of a FEG 

system is much narrower than the two ‘thermal’ filament types. Although the filaments in 

thermal electron guns are cheap  to replace (~ £25.00 each), they have low brightness, a 

limited lifetime (~ 150 hours) and large energy spread. In contrast, a FEG tip will last for 

about 2 years of constant operation, but costs around three thousand pounds. Most of the 

SEM investigations in this study were undertaken using a FEI (Phillips) XL-30 FEG 

SEM (Figure 3.19). 
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One disadvantage of most SEM instruments, is that the electron gun (especially a FEG – 

tip) must always operate in an extremely high vacuum, and any specimen being examined 

must be electrically conductive in order to allow electrons from the primary beam to flow 

to earth, and hence avoid the build up of regions of ‘charge’ on the surface of the sample, 

which results in severe degradation of the image. This phenomenon is discussed later (see 

Section 3.8.4) in terms of sample preparation requirements prior to SEM study.  

 

About 15 years ago, a new type of SEM instrument known as an Environmental SEM or 

ESEM became readily available, that allowed non-conductive samples to be directly 

imaged in an SEM, without the need to first coat them with a thin film of sputtered or 

evaporated metal (usually gold or platinum) or carbon. Apart from the fact that sputtered 

metal coatings are approximately 7.0 to 25 nm thick, they severely restrict the use of 

EDX analysis. The ESEM was originally developed with the main aim of being able to 

examine non-conductive biological samples whilst still hydrated, and without the risk of 

producing imaging artifacts caused by critical point drying or other sample preparation 

techniques. A full account of the development of ESEM instruments has been given by 

Danilatos [28].  
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    Figure 3.18. Schematic of FEI XL 30 FEGSEM. 
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Figure 3.19. Photograph of FEI XL 30 FEGSEM. 

 

Both an ESEM, and the more recently available variant of the ESEM known as a 

Variable Pressure SEM or VPSEM are able to eliminate the high vacuum requirements of 

the SEM by separating the vacuum environment in the specimen chamber from the high 

vacuum environment in the main column and electron gun region. In a typical ESEM (or 

VPSEM), two Pressure Limiting Apertures (PLAs) separate the specimen chamber from 

the electron gun column. All the regions are separately pumped, and this gives a 

graduated vacuum from 10 Torr in the specimen chamber, to 10-8 Torr in the column and 

10-10 Torr in the electron gun emission chamber. By using an electrically cooled (Peltier) 

stage, water can be maintained in the liquid state within the specimen chamber. The 

presence of gas in the specimen chamber produces two important effects, these are 

induced intrinsic signal amplification, and charge neutralisation. Secondary electrons 

emitted by the sample accelerate within the detector field as imposed by the detector. 

They then collide with gas molecules. These collisions result in ionization of the gas, 

creating positive ions and also additional secondary electrons called environmental 

secondary electrons. The continuous repetition of this process results in a proportional 

cascade amplification of the original secondary electron signals that are strong enough to 

be detected. The positive ions are attracted to the sample surface as negative charge 
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accumulates from the beam on the (in the case of a non-conductor) insulated specimen 

surface. This is how the positive ions effectively suppress charging artifacts. The 

elimination of charging allows the imaging of non-conductive samples in their natural 

uncoated state, with a free choice of accelerating voltages. A very recent comprehensive 

discussion of the operating principles and capabilities of the ESEM has been given by 

Stokes [29].  

 

Most new dedicated ESEM instruments image using a new type of secondary electron 

detector, known as a Gaseous secondary electron detector or GSED, whose main function 

is to collect secondary electrons for imaging, but eliminate the ’noise’ forming electrons. 

Note that VPSEM instruments are a simpler variant of an ESEM, and sometimes use a 

modified BSE detector for low vacuum imaging. VPSEM instruments have the advantage 

of being ‘dual purpose’, and easily able to switch between low vacuum or high vacuum 

operation, but still with the capability of imaging uncoated non-conductors. A Zeiss 

EVO-55 VPSEM was used for some detailed preliminary studies in the initial stages 

(First Year) of this Project. Goldstein, et. al., [26] have given a detailed description of the 

available types of SEM instruments and their capabilities.  

 

Depending on the type of instrument, SEM instruments are capable of providing images 

of sample surfaces at magnifications up to (realistically) around 250,000 X, and with an 

achievable resolution of around 1.0 nm. However, this would be under ideal operating 

conditions, using a high vacuum FEG instrument, and with an optimum sample type. It 

should be noted, that the term ‘magnification’ has little meaning, since it is possible to 

generate images with ‘false’ magnification, whereby the image of the sample is made 

larger, but with no additional increase in the amount of information contained therein. 

The term ‘resolution’ is now used to describe the main operating capability of any 

microscope, and is defined as the minimum distance between two separate features on the 

specimen, that any instrument is capable of defining/imaging, such that the  image that is 

obtained shows the two features as  being separate. The particular FEG-SEM (FEI XL30) 

mainly used in the latter part of this Study has a resolution of around 1.8 nm.  

 

Two main SEM instruments were used then this research project, these were a Zeiss Evo 

55 VPSEM, and a FEI (Phillips) XL-30 FEGSEM. As stated above, the Zeiss Evo 55 was 

used during the early part (the first year) of this Project, but the FEI XL 30 FEG-SEM 
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and associated RONTEC EDX system (see next Section) was utilised as the primary 

analytical facility for the remainder of the work reported here. 

 

 3.8.3. Energy Dispersive X-Ray Analysis (EDX). 

One of the consequences of the bombardment of any material with a high energy electron 

beam is the production of X-rays, whose wavelength depends on the nature and 

characteristics of the elements that are present in the specimen. In basic terms, the X-rays 

arise when an inner shell electron of an atom within the sample surface region is 

sufficiently excited by the primary electron beam of the SEM, to leave the atom entirely 

or go into a higher un-occupied energy level. The space created by the excited electron is 

filled by another electron which drops from a higher energy level and emits an X-ray 

photon of energy equal to the energy lost by the electron falling between the two atomic 

shells. These X-rays are collected by a detector and separated on the basis of their energy. 

This is the principle of Energy Dispersive X-Ray Analysis (EDX) which is most often 

associated with Scanning Electron Microscopy. Note that some X-ray based analytical 

instruments are capable of separating X-rays on the basis of wavelength, and are hence 

known as Wavelength-Dispersive X-Ray Analysis or WDX systems. The EDX technique 

can be considered as the most versatile system for the analytical micro characterisation of 

materials. It has been applied in this Ph.D study both to give quantitative analyses of the 

elemental composition of deposited corrosion films, and also to obtain elemental maps of 

the distribution of selected elements within sections of such deposits, mainly iron, 

calcium, magnesium and oxygen. 

 

All EDX systems can function in various different operating modes, depending on the 

type of analysis that is required. The first type of operating mode, is known as 

‘spectrometer’ mode, whereby the instruments functions as a basic spectrometer, and 

provides a full spectra and quantitative data regarding ALL the elements that are present 

either over the whole area of the sample being scanned (and imaged) by the SEM 

electron beam, or within a pre-defined small area  or spot. Note that the accelerating 

voltage of the SEM electron beam must be sufficiently high enough to be able to detect 

the elements that it is desired to detect. Usually, the accelerating voltage must be at least 

twice as high as the particular energy of the individual electron shell (i.e. K, L, etc) of the 

atom of the specific element being analysed. For example the ‘K’ shell peak for the 

element iron (Fe) is 6.4 keV, which would require a minimum accelerating voltage of 
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13.0 kV for effective detection.  Note that for some heavier elements, it is impractical to 

use the ‘K’ energy shell peak for analysis, since the accelerating voltage required would 

be far too high, and therefore the EDX system performs the analysis using a peak from a 

lower energy shell (L or M). As an example, the KA (= Kα) peak for gold (Au) is 68.8 

keV, which would require an accelerating voltage of around 140 kV for effective 

detection!, and therefore the ‘L’ shell peak at 9.7 keV (which requires an SEM 

accelerating voltage of 20 kV for effective detection) is used.  However, it should also be 

noted, that since EDX analysis usually requires fairly high accelerating voltages to be 

employed, this creates a minimum ‘interaction volume’ at  the sample surface; i.e. the 

specific region where beam/atom interactions occur that generate X-rays, as a result of 

beam penetration. This is usually a minimum of around 2 – 3 µm3. Care must therefore 

be taken when using the ‘spot’ analysis facility at high magnifications:- even at a 

magnification of  25,000 X, the spot analysis area is actually about  25% of the area of 

the sample being examined.  

 

The other main EDX operating mode is known as ‘imaging mode’ and involves two 

further operating functions:- these are ‘mapping’ mode and ‘line scan’ mode. In Mapping 

Mode, the EDX system shows the distribution of several selected elements as a series of 

coloured dot maps, either singly, or overlaid on the corresponding SE image.  In line scan 

mode, a secondary electron image is first obtained, then a line is drawn on the image, and 

several elements are selected as required. The EDAX system then gives a graph with 

coloured plots corresponding to each selected element, of relative percentages of all the 

elements along the selected line. Once the analysis is completed, it is then possible to 

read off the precise relative percentages of all the elements along the line with an 

accuracy of 2 - 3 µm.  

 

A full account of X-ray analysis in the SEM using EDAX has been given by Lyman, et. 

al., [30] and Goldstein, et. al., [26].  

 

As discussed previously, a Zeiss EVO 55 VPSEM and a FEI XL 30 FEGSEM were used 

in this Project, both of which were fitted with integrated EDX analysis systems.  
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3.8.4. Sample preparation for SEM and EDX. 

As mentioned previously (Section 3.8.2), when a sample is being examined in a high 

vacuum SEM, the surface of the sample receives electrons from the primary beam and 

looses electrons by either secondary emission or backscatter.  Therefore, the specimen 

may have either a net loss or gain of electrons and will charge up positively or negatively. 

Any such charging effects are undesirable, and may cause image brightness, beam 

distortion and loss of resolution. Charging effects can be minimized or eliminated either 

by the use of an electrically conducting specimen that is able to maintain a constant zero 

potential by means of  electron flow through the specimen stub and stage to earth, or by 

coating the sample with a conducting film such as carbon or gold which will prevent the 

build up of charge. A thorough account of sample preparation techniques for SEM has 

recently been given by Echlin [27].  

 

Throughout this study, there were two main types of samples that were examined and 

analysed using SEM and EDX techniques:  either the surface deposits on the flat face of a 

mild steel sample were examined in order to investigate the surface morphology and 

composition of the corrosion or film deposit, or alternatively; the sample was first 

sectioned in order to investigate the internal structure of the deposit, and also to 

determine any variation in the elemental composition of the coating through the Z-

direction.  

 

 After the sample had been immersed in a test solution for a period of time, it was taken 

out, quickly immersed in deionised water for 5 seconds to remove the soluble seawater 

salts from the sample surface, and then rapidly rinsed in pure acetone for 5 seconds, 

before thoroughly drying in cold air for at least 5 minutes. If the surface of a flat sample 

was to be examined, then the flat samples were mounted onto a standard 20 mm diameter 

aluminum SEM pin stub either by using a double-sided adhesive carbon ‘tab’, or double 

sided adhesive copper tape. As stated previously, for imaging in the conventional (high 

vacuum) SEM, specimens must be electrically conductive, at least at the surface.  

 

In the case of samples that were to be examined as cross-sections, the sample was then 

carefully and slowly cut in half using a dry hand saw and the two portions were placed 

into the middle of a polythene mould with a support. An epoxy resin mixture was then 

poured into the mould, to a sufficient depth to completely cover the sample. The samples 
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were then placed into an oven at 60oC for 48 hours, to polymerise the resin. After 

polymerization and cooling, the surfaces of the cured resin blocks with the cross-

sectioned samples were then polished using a series of successively finer grades of 

silicon carbide abrasive paper, ranging from 120 to 4000 grade. Firstly, 120 grade silicon 

carbide papers were used for the initial grinding, and then a series of progressively finer 

abrasive grades was employed down to 4000 grade for the final polishing. Care was taken 

to avoid any contamination by water or organic solvents at this stage. 

 

Some samples were sputter coated with gold, if it was only desired to examine the 

surfaces and obtain good quality images of surface morphology. However, carbon 

coating was used for all samples that were analysed using EDX, since the gold coating 

would have given a significant ‘false’ peak, and would also completely prevent a true 

elemental map being obtained.  

 

An SEM examination and subsequent analysis using EDX was performed for all samples 

at the end of the immersion experiments. Either whole samples (to examine surfaces) or 

resin-embedded sample cross-sections were mounted onto aluminium SEM specimen 

stubs using either adhesive  carbon tabs or double-sided adhesive copper mounting tape, 

then samples were carbon coated using an Edwards Carbon coater. Samples were usually 

coated once, then turned 180 degrees and coated again to avoid shadowing and charging 

effects. However; it was noted, that some samples such as those with calcareous film 

deposits containing a thick layer of aragonite, required carbon coating three times 

(turning the sample through 120º after each coating) in order to minimize charging effects. 

A coating thickness reference chart was used to estimate that samples were coated with 

carbon to a thickness of approximately 5.0 to 8.0 nm. All SEM/EDX results presented in 

the following Chapters were obtained from prepared samples examined using a FEI XL 

30 FEGSEM, with attached RONTEC EDX system running Quantax Esprit 1.8 analytical 

software.  

 

In the Results Sections of the experimental Chapters that follow, the SEM 

photomicrographs of the samples are presented as secondary electron (SE) images, 

recorded digitally (as TIFF files), which give optimum image quality to show surface 

topography with good depth of field (in contrast to backscattered electron [BSE] images). 

The results of the EDX analysis are given either as results from the EDX system 
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operating in Spectra Mode (SM) or Imaging Mode (IM). Data from the Spectra Mode 

results are shown as a series of spectrum peaks, that identify all the elements within a 

sample, and these results are usually shown with the corresponding quantification data, 

usually as an Excel Table, which gives the relative percentages of all the elements present 

at the sample surface, expressed either as Wt% or At No%,  

 

The analyses performed using  the Imaging Mode of the EDX facility were  carried out 

using  the system operating in either Electron Mapping Mode or Line Scan Mode. The 

Electron Mapping Mode indicates the occurrence and distribution of selected elements 

over the sample surface; either singly, or in combination, and/or overlaid over the 

corresponding secondary electron image. The Line Scan Mode shows the quantitative 

variation in the relative percentages of several selected elements over a pre-determined 

line on the sample surface, and is a very sensitive quantitative technique.  

 

EDX analysis was primarily used to determine the presence, relative percentages and 

distribution of the elements carbon, sodium, calcium, magnesium, chlorine, sulfur, 

oxygen, iron and phosphorus within the surface region of the deposited films, and also to 

test for the presence of zinc where appropriate.  

 

To ensure that all results obtained could be directly comparable, the same SEM 

instrument operating parameters (accelerating voltage [20KV], spot size, working 

distance [WD] etc), were maintained for all imaging and EDX studies, for all samples. 

Note that due to occasional problems with the SEM to EDX system communication 

software, the real WD was sometimes not displayed in the EDX images.  

 

In addition, to further maintain consistency in the SEM and EDX results, and to allow 

precise comparisons to be made between SEM micrographs obtained for different 

samples, secondary images were usually recorded for the same selected range of 

instrument magnifications, for each sample, throughout the study. These magnifications 

were mainly: 500 X, 1000 X, 2000 X and 5000X. These magnifications correspond to the 

scale bars given on the SEM images of 50.0 µm, 20.0 µm, 10.0 µm and 5.0 µm 

respectively. Note that for ease of explanation, the magnifications referred to throughout 

the following text and Figure legends refer to the instrument magnification setting only, 

and do not give the actual real magnifications of the images as presented in this Report. 
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As with the previously discussed SEM/EDX examination of sample surfaces, the sample 

sections were then examined and analysed using a FEI XL 30 FEGSEM, equipped with a 

RONTEC EDX system (see Section 3.8.3. for full description). 

 

SEM Images of all samples together with EDAX analyses of corrosion deposits and films 

were recorded, and are presented in Chapters 4 and 5. 

 

3.9. X-Ray Diffraction. 
 
The technique of X-ray diffraction or XRD is now the most commonly employed 

analytical technique for the identification of crystalline substances. This technique has 

many major advantages over other methods of analysis such as EDX, which can only 

indicate which elements are present in a sample, since XRD is capable of precise 

identification of chemical compounds, and in addition, can provide other information 

such as the type of crystal structure present. For example, the compound calcium 

carbonate (CaCO3), which is a major component of calcareous films, can exist in many 

forms, and with many crystal structures which all have quite different physical properties. 

The technique of XRD can give a huge amount of other information about a sample, 

besides just elemental composition, including determining the stress in crystalline 

materials for failure prediction, grain orientation (texture) data which can determine 

physical properties, crystallite size and lattice strain, and crystal structure determination.  

The principles of X-ray diffraction are based on the theory of X-ray crystallography, 

which were first proposed by Max von Laue in 1912, and published in 1913 [31], as a 

result of experiments aimed at studying the interaction of X-rays with single crystals. 

Von Laue was awarded the Nobel prize for physics in 1914 as a result of this work. Note 

that this was only 17 years after the initial discovery of X-rays by Wilhelm Röntgen in 

1895. Based on these early experiments, in 1919, Hull [32] presented a paper entitled “A 

New Method of Chemical Analysis”, in which he described the fundamental concepts of 

modern X-ray diffraction, and was able to state: “….every crystalline substance gives a 

pattern; the same substance always gives the same pattern; and in a mixture of 

substances each produces its pattern independently of the others”. The X-ray diffraction 

pattern of any individual substance is therefore like a precise fingerprint of that substance, 

and also, these precise fingerprints can be readily identified even in complex mixtures of 

compounds. XRD techniques are therefore ideally suited to the identification and 
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characterisation of ‘unknown’ powders. Furthermore, with suitable instruments, since the 

usual sample preparation technique for powder samples involves packing the sample into 

a holder to provide a flat surface, the technique is also directly applicable to the precise 

analysis of thin films and corrosion deposits. Note that about 95% of all solid matter is 

crystalline, so XRD techniques are almost universally applicable. The technique of 

powder/polycrystalline diffraction is now the most widely used analytical method for the 

identification of unknown powder samples, and such methods have been in common use 

for many decades. A comprehensive review of the history of the development of XRD 

techniques and associated instrumentation has been provided by Warren [33].  

 
The operating principles of a modern XRD machine are still based on the fundamental 

experiments reported by von Laue [31] in 1913, and the first practical X-Ray diffraction 

apparatus was described by Davey [34] in 1921. When X-rays interact with any solid 

material, the resultant scattered beams can ‘add together’ in a few directions, and thereby 

reinforce each other to yield diffraction. Diffraction therefore occurs when the scattered 

waves are moving ‘in phase’ with each other. This phenomenon is termed ‘constructive 

interference’,  and therefore the degree of regularity of the material is responsible for the 

diffraction of the beams, and the diffraction pattern generated by any substance is 

therefore absolutely characteristic of; and specific to that compound. The fact that the 

material must possess a regular periodic structure as a fundamental prerequisite in 

causing constructive interference, means that X-ray diffraction only occurs with, and can 

only be applied to,  crystalline substances. A full discussion of the theory of X-ray 

diffraction is beyond the scope of this Section introduction, but a brief summary of the 

essential operating principles and theory will be given. There are several recent 

comprehensive reviews available in the literatures which give a full account of the theory 

and operating principles of X-ray diffraction techniques [33, 35]. In addition, several 

extensive reviews are available that discuss fully the specific applications of XRD 

techniques in the area of materials science, and also to the identification of deposit layers 

and powders [36, 37].  

 

As stated above, XRD techniques are only applicable to crystalline materials. A crystal 

can be defined as comprised of a regular repeated array of identical lattice points which 

can be atoms, ions or molecules. The lattice is effectively infinite. The smallest unit of 

the crystal structure, which reflects the overall shape of the crystal, is called the unit cell. 
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There are only seven basic shapes of unit cell, and these form the seven essential crystal 

systems, which are: cubic, tetragonal, orthorhombic, hexagonal, monoclinic, 

rhombohedral (trigonal) and triclinic. Note that only these seven basic shapes can exist, 

since there are only seven ways in which atoms etc, can be packed together to form a 

space filling lattice.  However, sometimes, extra lattice points occur, for example when 

there may be an atom in the centre of a face or in the centre of the unit cell. When these 

extra lattice points are combined with the seven crystal systems, this results in 14 

possible Bravais lattices. All crystalline materials fall into one of these groups, although 

they can be of different sizes and can have different aspect ratios within the constraints of 

symmetry. The full symmetry of a crystal lattice is described by the space cell, which 

relates the symmetry of the unit cell to those around it. There are 230 space groups.  

 

Since crystals consist of lots of unit cells packed together to form a regular array, it will 

be evident that there will be planes of atoms, called lattice planes that exist at the basic 

structural level. The spacing of these lattice planes are called d-planes, and these spacings 

are measured in Ångstroms (10-10 m). The process of X-ray diffraction actually measures 

these d-spacings, and from this information it is possible to determine the size and shape 

of the crystal, and in turn; the crystal structure is determined by the composition of the 

material. This information therefore allows a precise identification of the material, 

usually by comparing any diffraction pattern that is obtained for a particular substance 

with a library or data-base of known patterns. This aspect will be discussed later in this 

Section.  

 

A coherent beam of monochromatic X-rays of known wavelength is required for XRD 

analysis. Striking a pure anode of a particular metal with high-energy electrons in a 

sealed vacuum tube generates X-rays that may be used for X-ray diffraction. The 

wavelengths of the X-rays produced are dependant on the anode material of the X-ray 

tube. Most X-ray tubes used for X-ray diffraction of inorganic materials use a copper 

anode, although a cobalt anode is used mainly for ferrous samples. The X-ray spectrum 

produced by any tube consists of two parts; these are the continuous radiation, which is 

unwanted, and the characteristic lines. It is the strongest characteristic line, the Kα, which 

is used for X-ray diffraction, and all other unwanted lines and radiation are usually 

removed using filters, or a device known as a monochromator.  The Kα line for X-rays 

generated from a copper anode is 1.54Å.  
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X-Rays are normally characterised by their wavelength or their energy which can be 

connected by the following relation: 

fchE =  …………………………………………………………………………     (3-34)  

Where: 

E = the energy; 

H = the Planck’s constant (6.62559* 10-27erg sec); 

c = the velocity of light (3 * 1010 cm/sec); 

λ = the wavelength.  

 

Following the above discussion and for ease of explanation; X-rays can be considered as 

a beam of particles called photons, and each photon has its particular energy which can 

be calculated according to the following relation: 

 

fhE ×=  …………………………………………………………………………     (3-35) 

Where:  f = the frequency of the wave. 

 

A main components of a typical X-ray diffraction instrument, commonly called a 

Diffractometer, are shown in Figure 3.20. The essential parts of a diffractometer consist 

of only five main parts, these are:  

(1) the X-ray tube used to generate the X-ray beam;  

(2) the ‘primary optics’ between the X-ray tube and the sample, which consists of a tube 

mainly containing a series of slits that regulates the area of the sample being irradiated;  

(3) the sample holder;  

(4) the ‘secondary optics’ between the sample and the detector, which consists primarily 

of a set of receiving slits that control resolution, together with a curved crystal 

monochromator, whose function has already been discussed;  

(5) the detector.  
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                                 Figure 3.20   Diffractometer [34].  

 

During operation, the sample is irradiated by the X-ray beam, and the detector is then 

moved through a specific angle: 2θ, known as the Bragg angle, whilst continuously 

collecting the X-ray diffraction pattern.  

 

The Bragg angle is given by Bragg’s Law, which describes the angle at which a beam of 

X-rays of a particular wavelength diffracts from a crystalline surface. Bragg’s Law is as 

follows: 

θλ sin2d= …………………………………………………………………………  (3-36)       

Where: 

θ = Bragg angle; 

λ = is the incident wavelength; 

d = is the spacing between different planes, as atoms in any crystal materials are arranged 

in a specific way to form various planes and the spacing between such planes can be used 

to calculate the wavelength. 

 

This relationship is illustrated diagrammatically in Figure 3.21. 
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    Figure 3.21.   Diagram illustrating Bragg’s Law [34]. 

 

Based on Bragg’s law (Equation 3-36), we can measure the Bragg angle (2θ). This is the 

position of the Bragg reflection, or peak. Then, since we know the wavelength (λ), of the 

X-rays, we can then calculate the d-spacing (the distance between different planes in the 

crystal) from Bragg’s Law (Equation 3-36). The d-spacing is characteristic of the 

compound under investigation and the calculated values of the d-spacing can be matched 

against a data bank that is stored digitally in the hard-drive of the XRD machine 

(currently approximately 120,000 compounds – this will be discussed later). The 

diffraction results are in the form of a unique series of reflections, which form the 

diffraction pattern. Consequently, the exact composition of any compounds can be 

identified. 

 

A typical X-ray diffraction pattern is in the form of a graph, with a series of peaks (the 

actual diffraction pattern), with the horizontal axis being 2θ, or twice the Bragg angle; 

and the vertical axis is the intensity, or the X-ray count measured by the detector, which 

is a function of the crystal structure and the orientation of the crystallites. Note that in 

reality, although the diffraction pattern is given as a 2-dimentional graph, the radiation 

diffracted by any sample is in the form of cones, known as Debye Cones.  

 

Note that only one of the XRD machines in the Materials Science Centre is suitable for 

performing X-ray diffraction on thin layers, which was obviously applicable to our 

samples. This machine is referred to as the ‘big XRD’, and is a Phillips XPERT Pro- 

MRD X-Ray Diffraction System. Also, it should be noted that a special technique must 

be used to analyse a thin layer. The angle of incidence of the incoming X-radiation must 
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be fixed at a low angle, typically around 3º, sometimes referred to as ω, so that it skims 

through the top layer and does not penetrate into the substrate. Also, different X-ray 

optics must be used, the sample must also be flat, and quite large (ideally > 5.0 mm 

across). Once obtained and stored, diffraction patterns are compared with known patterns 

held in a database known as the Powder Diffraction Data Base (PDF), this currently holds 

over 120,000 entries, gathered over the last 50 years!. 

 

 
Figure 3.22.  Philips ‘Big XRD’ = PPPhhhiii lll lll iiipppsss   XXXPPPEEERRRTTT      PPPrrrooo---MMMRRRDDD   XXX---RRRaaayyy   DDDiii fff fffrrraaacccttt iiiooonnn   SSSyyysssttteeemmm...    
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3.10. Atomic Force Microscopy (AFM). 

3.10.1. Introduction.  

The Atomic Force Microscope (AFM) belongs to a class of instruments known 

collectively as Scanning Probe Microscopes or SPM. Scanning Probe Microscopy has 

been defined as “Microscopy using scanning mechanical tips utilising a variety of 

physical near-field interactions, with an emphasis on the study of materials at a scale or 

resolution better than achievable by other techniques” [38].  The main variants of SPM 

such as Scanning Tunneling Microscopy (STM) and AFM are dependant on the mode of 

interaction of the scanning tip with the surface being scanned. In STM, the interaction is 

electrical, whilst in AFM the interaction is force. 

 

The invention and early development of the scanning probe microscope and its variants 

can really be directly attributed to only one researcher and his co-workers: Binnig and 

Rohrer [39] invented the Scanning Tunneling Microscope (STM) in 1982, and this then led 

to the development of the Atomic Force Microscope (AFM) by Binnig, et. al., in 1986 [40]. 

Binnig and Rohrer were awarded the Noble prize for physics in 1986. 

 

A STM is capable of imaging atoms or sets of atoms, and current instruments are also 

capable of performing precise manipulations of atoms and molecules.  

 

After the invention of the STM, the next major development in the area of SPM, was the 

invention of the Atomic Force Microscope (AFM) by Binnig et al., in 1986 [40]. However, 

the concept of a functional instrument was really developed by Meyer and Amer [41]. The 

AFM operates on the very simple principle of ‘stylus profilometry’, in which a  stylus or 

sharp probe is ‘dragged’ over the surface of a  sample, then the height deflection at each 

point is measured and used to  build up a ‘line profile’ of the surface. By scanning over 

the whole sample surface in a series of lines, a three-dimensional map of the surface 

topography of the specimen can be generated, although with fairly low resolution. In a 

way, Meyer and Amer [41] were ahead of their time in several ways, since they combined 

the basic concept of the AFM produced by Binnig, et. al., [39], which simply used a 

microscale version of a stylus profilometer, but then Meyer and Amer [41] added a laser 

beam as the sensing device to accurately record the deflection in height at each point in 

the scan. In this way, a 3-D map of the surface topography of the specimen is generated, 
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with sub-atomic resolution. This operating principle is now in common use in all AFM 

instruments which have been produced since the first commercial AFM (the Nanoscope 

II, made by Digital Instruments – now Veeco Instruments Inc [42]) became available in 

1991/2. The AFM has a huge advantage over the STM in that the interaction between the 

scanning tip or probe is force, and not electrical, and the AFM is therefore capable of 

imaging the surfaces of non-conductors with sub-nanometre resolution. Note that AFM 

images are in the form of 3-dimensionl maps of surface topography comprised of digital 

sets of X, Y and Z data points, and are fully quantitative. 

 

The basic elements of an AFM as devised conceptually by Meyer and Amer [41] are 

shown in Figure 3.23.  

 
Figure 3.23. Essential component of an AFM [41]. 

 

A sharp tip made of silicon nitride mounted on a spring ‘beam’ or cantilever is scanned 

over the surface of the sample, and the vertical deflections are measured by a laser beam 

reflected off the back surface of the tip and onto a position sensitive detector (thereby 

determining the Z-or height variations at each point in the scan). This design is 

essentially the same as the first commercial instrument, called the Nanoscope II produced 

around 1991, by the Digital Instruments Company, based in California, U.S.A.   

 

The results obtained from early studies using the Nanoscope II showed immediately that 

this technique had huge potential for ultrastructural investigations of surface morphology 

of virtually any material, and in almost any gaseous atmosphere or liquid, with virtually 

no sample preparation required. One of the main disadvantages of the Nanoscope II, was 

the difficulty in identifying the position of the area being scanned on the specimen 
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surface, and this led to the development of the Nanoscope III, which was the instrument 

used in this study.  

 

The Nanoscope III AFM also has the capability of functioning in various sophisticated 

operating modes such as ‘Tapping Mode’ etc, and addition of other facilities such as 

‘Phase Extender Module’ etc. This new operating modes enable the AFM to image 

beyond  beyond simple topographical mapping to detect (and image as contrast changes) 

variations in composition, adhesion, friction, viscoelasticity, micromechanical variations 

and other properties. The Nanoscope III, in common with all modern AFM instruments, 

is capable of imaging sample areas (X – Y plan direction) up to 125 X 125 µm, and 

around 6.0 µm in the Z (height) direction, with sub-nanometre resolution. Figure 3.24 

illustrates diagrammatically the main components of a Nanoscope III AFM facility [42].  

 
Figure 3.24. Schematic of Digital Instruments Nanoscope III AFM [42]. 

 

More recent developments of AFM imaging have been the capability to measure relative 

stiffness of surface features, frictional forces, temperature differences, magnetic force 

gradients and distributions and variation in capacitance [42]. Specialized ‘fluid cells’ are 

also available to allow AFM imaging in any liquid, or to scan and image specimens 

whilst chemical reactions are in progress.  
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3.10.2. AFM examination of polished samples. 

A Nanoscope III AFM with ‘J’ scanner was used in this Study to obtain AFM images of 

mild steel test specimens prior to experiments, in order to investigate the roughness (in 

the Z-direction) of the sample surfaces after preparation of the sample surfaces by 

grinding using a series of progressively finer abrasive grades of silicon carbide abrasive 

papers, followed by final polishing using alumina powder. These micrographs are 

presented in Figures 3.25 and 3.26, and illustrate the effectiveness of the sample 

preparation procedures employed in this Project. 

                

                                         (a)                                                                               (b) 

Figure 3.25. AFM images of sample surfaces polished without alumina: (a) 20µm (b) 10µm scan area. 

                

                                       (a)                                                                                (b) 

Figure 3.26.  AFM images of sample surfaces polished with alumina: (a) 20µm (b) 10µm scan area. 
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3.11 Glow-Discharge Optical-emission Spectroscopy (GDOES). 

The technique of Glow-Discharge Optical Emission Spectroscopy (GDOES) is an 

extremely useful method for the surface analysis of thin films. It is one of the few 

techniques that are capable of providing a depth profile analysis of the quantitative 

composition of a deposit layer on a metal substrate.  

 

The analytical technique of SEM in conjunction with EDX has already been used in this 

Study (Section 3.8) to analyse the composition of a corrosion deposit layer in cross-

sections, but this method, although very effective; involves a time consuming procedure 

requiring several successive processes of resin embedding, cutting and surface polishing, 

before mounting the samples for examination in the SEM/EDX facility.  

 

Although other techniques of analysing thin films by means of determining composition 

during depth profiling are available, these techniques; such as Auger Electron 

Spectroscopy (AES) and X-Ray Photoelectron Spectroscopy (XPS) combined with ion-

sputtering, are only applicable to analysing thin film deposits of less than 1.0 µm in 

thickness. 

 

The technique of GDOES has been developed as a method of optical emission 

spectrometry, combined with glow discharge. It is highly suited to the quantitative 

compositional analysis of depth profiles of deposited surface layers on metals. Suzuki, et. 

al., [43] and references cited therein, have fully described this technique, and discussed the 

application of the method for the quantitative analysis of oxide films on steel. The main 

advantages of GDOES over other techniques, include a high sputtering rate of typically 

10 – 100 nm s-1; analysis of the mean concentration within diameters of several 

millimetres, and simultaneous analysis of a number of elements. In addition, the 

sensitivity of GDOES is relatively high when compared to other surface analysis methods 

such as Auger Electron Spectroscopy (AES) [43]. A typical GDOES apparatus usually 

consists of several integrated instruments, including a Grimm glow lamp and a multi-

channel spectrometer, which provides in-depth quantitative composition analysis of the 

surface film being analysed, by means of argon ion sputtering. The analysis signal being 

collected and evaluated by the spectrometer is therefore a function of the sputtering time, 

assuming the sputtering conditions (and hence rate) are both constant and known. 
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Suzuki, et. al., [43] were able to demonstrate that GDOES is suitable for performing both 

quantitative compositional analysis and determining the depth of thin film deposits on 

steel from 10 nm to 100 µm in thickness. 

 

According to Wikipedia [44] “The simplest type of glow discharge is a direct-current glow 

discharge. In its simplest form, it consists of two electrodes in a cell held at low pressure 

(0.1–10 torr). The cell is typically filled with argon, but other gases can also be used. An 

electric potential of several hundred volts is applied between the two electrodes. A small 

fraction of the population of atoms within the cell is initially ionized through random 

processes (thermal collisions between atoms or with alpha particles, for example). The 

ions (which are positively charged) are driven towards the cathode by the electric 

potential, and the electrons are driven towards the anode by the same potential. The initial 

population of ions and electrons collides with other atoms, ionizing them. As long as the 

potential is maintained, a population of ions and electrons remains. Some of the kinetic 

energy of the ions is transferred to the cathode. This happens partially through the ions 

striking the cathode directly. The primary mechanism, however, is less direct. Ions strike 

the more numerous neutral gas atoms, transferring a portion of their energy to them. 

These neutral atoms then strike the cathode. Whichever species (ions or atoms) strike the 

cathode; collisions within the cathode redistribute this energy until a portion of the 

cathode is ejected, typically in the form of free atoms. This process is known as 

sputtering. Once free of the cathode, atoms move into the bulk of the glow discharge 

through drift and due to the energy they gained from sputtering. The atoms can then be 

collisionally excited. These collisions may be with ions, electrons, or other atoms that 

have been previously excited by collisions with ions, electrons, or atoms. Once excited, 

atoms will lose their energy fairly quickly. Of the various ways that this energy can be 

lost, the most important is radiatively, meaning that a photon is released to carry the 

energy away. In Optical Atomic Spectroscopy, the wavelength of this photon can be used 

to determine the identity of the atom (that is, which chemical element it is) and the 

number of photons is directly proportional to the concentration of that element in the 

sample. Some collisions (those of high enough energy) will cause ionization. In Atomic 

Mass Spectrometry, these ions are detected. Their mass identifies the type of atoms and 

their quantity reveals the amount of that element in the sample.” 
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Figure 3.27 The working principle of GDOES [44] 

Figure 3.27 An electric glow discharge tube featuring its most important characteristics: 

(a) An anode and cathode at each end (b) Aston dark space (c) Cathode glow (d) Cathode 

dark space (also called Crookes dark space, or Hittorf dark space) (e) Negative glow (f) 

Faraday space (g) Positive column (h) Anode glow (i) Anode dark space. 

In the same article under Uses in Analytical Chemistry, they state: 

“Glow discharges can be used to analyze the elemental, and sometimes molecular, 

composition of solids, liquids, and gases, but elemental analysis of solids is by far the 

most common. In this arrangement, the sample is used as the cathode. As mentioned 

earlier, gas ions and atoms striking the sample surface and knock atoms off of it (a 

process known as sputtering). The sputtered atoms, now in the gas phase, can be detected 

by atomic absorption, but this is a comparatively rare strategy. Instead, atomic emission 

and mass spectrometry are usually used. Collisions between the gas-phase sample atoms 

and the plasma gas pass energy to the sample atoms. This energy can excite the atoms, 

after which they can lose their energy through atomic emission. By observing the 

wavelength of the emitted light, the atom's identity can be determined. By observing the 

intensity of the emission, the concentration of atoms of that type can be determined. 

Energy gained through collisions can also ionize the sample atoms. The ions can then be 

detected by mass spectrometry. In this case, it is the mass of the ions that identifies the 

element and the number of ions that reflects the concentration. 

Both bulk and depth analysis of solids may be performed with glow discharge. Bulk 

analysis assumes that the sample is fairly homogeneous and averages the emission or 

mass spectrometric signal over time. Depth analysis relies on the fact that the depth 

increases as time goes by. Tracking the signal in time, therefore, is the same as tracking 

the elemental composition in depth. Depth analysis requires greater control over 
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operational parameters. For example, conditions (current, potential, pressure) need to be 

adjusted so that the crater produced by sputtering is flat bottomed (that is, so that the 

depth analyzed over the crater area is uniform). In bulk measurement, a rough or rounded 

crater bottom would not adversely impact analysis. Under the best conditions, depth 

resolution in the single nanometer range has been achieved (in fact, within-molecule 

resolution has been demonstrated)”  [44]. 

In our investigation, we used a GD PROFILER 2 GDOES machine (Manufactured by 

Horiba Jobin yvon) operating at 700Pa to 35W. Depth analysis was performed using a 

Quanfum XP. 
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Chapter 4.  Cathodic Protection of Mild Steel in Artificial 

Seawater and the Role of the Calcareous Film.  
 

4.1. Introduction. 

4.1.1. General Background. 

As we have already mentioned in Chapter 2 the scientific principles of cathodic 

protection were first explained by Davy in his three classic papers published in 1824 and 

1825 [1], [2], [3]. A copy of the crucial paragraph in his first paper is given below. 

 

 
He also observed and made an intelligent guess at the nature of the calcareous films 

which form during cathodic protection. 
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The next real breakthrough in the understanding of cathodic protection was in 1938 with 

the simultaneous and independent publications by Hoar [4], and Mears and Brown [5]. 

Their arguments were based on the Evans Diagram which had recently been proposed 

and indeed Hoar was working in Evans’ laboratory at the time.  

 

In 1960, U.R. Evans himself explained the general principle of cathodic protection 

referring to both the Hoar and the Mears and Brown publications [6]. Evans made the 

following statement: 

 General Principles: Consider a piece of metal immersed in a corrosive liquid of״

sufficient conductivity to allow the intersection point B to be used as an indication of the 

corrosion-velocity (Figure 4.1). Now apply a current from an external anode. Clearly the 

sum of current from the external anode and the ״corrosion-current״ due to local anodes 

still operating on the surface must exactly balance the cathodic current. Thus if the 

external current is represented by the length DE, the corrosion-current will be CD, and 

the potential will be represented by C. If we depress the potential to F, the corrosion-

current becomes zero, and the specimen is completely protected. Thus to attain cathodic 

protection, the potential of the whole must be brought down to the open-circuit 

potential of most active anodic point; this principle, expressed  in two different ways, 

was published in the same year by T. P. Hoar, and by R. B. Mears and R. H. Brown, who 

arrived at it independently. 

 

 
Figure 4.1. Graphical representation of cathodic protection   (schematic) [6]. 
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Hoar has pointed out that the amount of current needed to bring down the potential to the 

required level depends on the conditions, and particularly on the oxygen-supply; if the 

rate of oxygen-replenishment at the cathodic area is high, the current needed for 

protection becomes considerable. The argument just developed involves several 

assumptions, namely that the specific conductivity in the corroding liquid is so high that 

the potential is defined by the intersection of two polarization curves, and that the 

protecting current is applied in such a way that all parts of the specimen have equal 

chances of benefitting from it”  

 

According to Figure 4.1, this approach clearly expressed by Evans shows how the anodic 

rates and cathodic rates change as the structure potential moves in a negative direction 

and how the net current density applied by the CP system is the difference between the 

local cathode and anode currents (Figures 4.1(II) and (III)).  

 

In this Chapter we will be looking at the situations that occur during conditions of 

underprotection, full protection and overprotection. The state of underprotection exists 

between the open circuit potential, point A in Figure 4.1(I) and point F in the same figure. 

and the protection potential. Within this zone, which is termed the region of 

underprotection, the full protection potential has not been fully attained, and insufficient 

current is being supplied to achieve effective protection. Some corrosion of the partially 

protected steel will therefore take place. Conversely, a region of overprotection exists 

where the potential lies significantly beyond the protection potential. In this state, the 

current that is being applied is more than sufficient to attain full protection, and the 

surface might be covered with a protective calcareous film. 
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4.1.2. Rationale for Carrying Out the Cathodic Protection Experimental 

Programme.   

There are several reasons for undertaking this study and this is an appropriate place to 

explain and justify them. 

 

4.1.2.1. Nature of the corrosion process. 

There is a school of thought based mainly in the US and centered on Uhlig’s book [7].  It 

regards the aqueous corrosion process as consisting of local and clearly defined anodic 

and cathodic areas, and it is illustrated schematically in Figure 4.2. 

   

 

 
Figure 4.2.  Schematic of  Uhlig’s model of different levels of cathodic protection [7]. 

 

According to Uhlig’s model, during cathodic protection, anodic areas are one-by-one 

converted into cathodic areas. At the protection potential, all the anodic areas have 

disappeared. However, at an underprotected potential, some anodic areas exist and are 

still locally corroding at the same rate. This would lead to a corrosion model where 

obviously protected cathodic areas exist and there would be anodic areas corroding at the 

same rate as at open circuit. So during underprotection one would expect well defined 

uncorroded and corroded areas on the same panel, giving rise to a form of pitting 

corrosion.  The visual appearance of an under protected specimen should show these pits 

clearly if the above mechanism holds true. 

 

4.1.2.2. Nature of the film produced. 

The film produced on partially protected steel in seawater has never been investigated 

and furthermore it is unclear whether such a film is uniform across the steel. Indeed one 

might expect the film to differ depending on whether it was growing on a prior anodic or 

cathodic site. We will return to this idea later. Also, if the applied current density is very 

high, and the potential is far beyond the protection potential, this might also affect the 

film. Other aspects of the film growth include time and current density, both of which 

will also be studied. 

 

 

A A A A AC C C C C

open circuit

A A A A AC C C C C

open circuit

CCCCC AAC

Insufficient CP

C C CCCCC AAC

Insufficient CP

C C C C C C C C C C C C

Full CP

C C C C C C C C C C

Full CP
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4.1.2.3. Polarisation behaviour. 

In his introductory section of the text on cathodic protection which he also co-edited, 

Ashworth [8] generated two schematic curves. In Chapter 2, Figure 2.16 is copied from his 

book and is also reproduced later as Figure 4.9(a) in Section 4.2.3. He plots potential 

versus the logarithm of the corrosion rate and potential versus the logarithm of the current 

density. It is probable that Ashworth assumed the logarithmic nature of current density 

because he expected Tafel behaviour. He then made the following assumption with the 

oft repeated but never proven statement that “the first increment of potential fall is more 

effective in preventing dissolution than the next increment” [8]. To our knowledge this 

statement has never been verified experimentally which we will attempt to do. 

 

4.1.2.4. The accurate protection potential for mild steel in seawater.  

We have already seen in Chapter 2 that most texts on corrosion science and corrosion 

engineering assume the protection potential for mild steel in a variety of neutral 

environments (save those involving sulphate reducing bacteria) to be -850 mV (Cu/Sat 

CuSO4), or -774 mV (SCE). The original publication [9] where this value was proposed 

states that this value “is probably in the neighbourhood of -850 V”. A more recent 

publication by Gummow [10],  considers in great detail these protection criteria. The 

protection potential of -850 mV CSE, is -532 NHE which on the Pourbaix diagram 

corresponds to the E0 for the Fe/Fe++ system with a ferrous ion concentration of 10-2 gram 

ions/L (Figure 2.3). Clearly, in seawater the ferrous ion concentration is much lower and 

therefore the thermodynamic protection potential is theoretically significantly lower. 

Occasionally in some more scholarly texts [11], the lack of thermodynamic justification for 

this figure is stated but nowhere to our knowledge has an experimentally justified value 

of the protection potential been produced. 

 

4.1.2.5. Overprotection and film detachment. 

At high current densities, there is always the risk of film detachment due to hydrogen 

evolution. We will be looking at this process in greater detail in this Chapter. 
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4.1.2.6. Current density changes. 

There is some indication from the literature [12], [13], [14], that a high initial current density 

followed by a reduction in current is more successful than a relatively low constant 

current density. We will carry out some initial experiments in this area to assess this 

claim. 

 

4.1.3. The nature of our investigation. 

It was decided to tackle the issues raised above and attempt to clarify the situation. Our 

main set of experiments was a series of constant current density polarization studies 

accompanied by weight loss measurements. In our investigation we had the choice of 

constant current density or constant potential cathodic protection. It was decided to use 

constant current density for a variety of reasons. Firstly in a real cathodic protection 

system, the cathodic protection system is designed to supply a constant current density to 

the structure and therefore a constant current system would be closer to reality. Secondly 

the use of a potentiostat to obtain a constant potential would produce electrochemical 

mayhem at the interface if conditions were to suddenly change. As well as constant 

current density polarization studies, we also used a combination of photography, 

electrochemical impedance spectroscopy (EIS), SEM/EDX, GDOES, XRD analysis and 

pH titrations to further investigate this situation. The precise experimental conditions 

have already been described in Chapter 3, Sections 3.5, 3.6, 3.8, 3.9 and 3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Cathodic Protection of Mild Steel in Artificial Seawater and the Role of the Calcareous Film 

136 

4.2. Weight loss experiments. 
The major previous study using constant current cathodic protection was the early and 

seminal work by Humble [15]. His weight loss data was obtained using sandblasted steel 

plates which were exposed for one year at Kure Beach NC. He also used a light sand 

blast to remove the calcareous films subsequently produced. His data are replotted in 

Figure 2.17 (Chapter 2). 

 

4.2.1. Potential Measurements. 

We carried out a thirty day constant current exposure in the laboratory in artificial 

seawater. The experiments were performed in the region of underprotection at current 

densities between open circuit and the full protection situation. Three specimens were 

exposed for each value of current density and each measurement was plotted separately 

to indicate the variability in the experiment. At the same time, the potentials were 

measured daily. 
 

Table 4.1. Details of sample test conditions listing final potentials and applied current densities. 
 

Final Potential after 30 days testing (mV). Current Density 
(mA/m2) Sample 1 Sample 2 Sample 3 

Open circuit -640 -638 -645 
10 -700 -697 -705 
20 -735 -737 -730 
40 -750 -745 -748 
50 -751 -750 -756 
70 -783 -780 -781 
100 -836 -835 -840 
150 -895 -900 -902 
200 -950 -947 -960 

 

Potentials were measured daily during the 30 day period at the different current densities. 

It shows a very rapid potential change in the negative direction upon initial immersion 

and approaches steady state at around 30 days. These plots are given in Figures 4.3 (a)-(i) 

below. The final potentials were taken at 30 days (Table 4.1) and used to generate a set of 

potential versus corrosion rate and potential versus current density graphs. 
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                 (a) Open circuit                          (b) 10 mA/m2                                                    (c) 20 mA/m2 
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                 (d) 40 mA/m2            (e) 50 mA/m2       (f) 70 mA/m2 
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               (g) 100 mA/m2   (h) 150 mA/m2         (i) 200 mA/m2 

 
Figure 4.3. Set of graphs showing plots of daily potential/time measurements over a 30-day 

test period with different applied current densities in artificial seawater. 
 

4.2.2. Weight loss graphs. 

Table 4.2 provides the complete weight loss data from our studies. Weight loss has been 

converted into penetration rate in mm/y to be able to compare our data (Figure 4.4) with 

that of Humble. Subsequently, as well as our own data, we have included Humble’s data  

(given in Figure 4.5), on the same graph. These comparative plots are shown in the graph 

given in Figure 4.6. 
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Figure 4.4. Graph showing plots of the relationship between corrosion rate 

and applied current densities. 
 

Table 4.2.  Weight loss data and applied current densities. 
 

Weight Loss (mg) Current Density 
(mA/m2) Sample 1 Sample 2 Sample 3 

Open circuit 56.8 56.8 56.2 
10 52.8 52.3 53.9 
20 42,1 49.8 34.2 
40 25.4 28.2 24.6 
50 21.1 23.1 24.4 
70 13.4 14.4 16.9 
100 8.1 8.9 7.7 
150 0 0.7 0.7 
200 0 0 0 
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Figure 4.5. Replotted from Humble [15]. 
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Figure 4.6. Comparison of our data with the data of Humble.  
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Figure 4.7. Graph showing plots of the relationship between corrosion rate (mm/y) 

 and the final potential. 
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 Figure 4.8. Graph showing plots of the relationship between applied current density and sample 

final potential for all samples at the different applied current densities. 
 

From the data presented in Figure 4.4, the open circuit corrosion rate of 0.09 mm/y agrees 

surprisingly well with the data obtained by Humble [15] from experiments undertaken at 

Kure Beach  which gives a figure of 105 g/ft2 (0.067 mm/y) after one year exposure.  

Prior to the work by Humble, an earlier (1940) study at open circuit by Hudson [16] 



Chapter 4. Cathodic Protection of Mild Steel in Artificial Seawater and the Role of the Calcareous Film 

141 

involved securing 60 steel panels to the floating Gosport Ferry pier in Portsmouth 

Harbour for a period of 442 days exposure. The average annual corrosion rate determined 

was found to be 0.13 mm/y. The difference in corrosion rate obtained by Hudson 

compared with the later work (1948) by Humble (around 90% greater) may well reflect 

the enclosed situation in Portsmouth Harbour where the level of pollution would have 

been much higher than in our experiments or in Humble’s work at Kure Beach.  

 

4.2.3. Results and discussion. 

Again, the data contained in Figures 4.4 and 4.6 is comfortingly reassuring and indicates 

what has always been generally assumed, namely the more negative the potential, the 

higher the current density and the lower the corrosion rate. However some unexpected 

behaviour may be observed. Contrary to Ashworth’s [8] schematic, given in Figure 4.9 (a), 

the real graph of potential versus current density given in Figure 4.9 (b) can hardly be 

described as semi logarithmic. The most reasonable curve is probably linear at least until 

a value approximating to the protection current density is attained where the weight loss 

falls to zero. The implication of this response is that it seems to be described not by the 

Tafel equation but by an Ohmic type process, that is; not by an electrochemical activation 

process but by some resistive process. One might speculate as to the origin of this 

resistance; it is tempting to suggest the resistance of the calcareous film might be a prime 

candidate.  
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(a)  Relationship between dissolution of Fe and E.

(b)  Relationship between cathodic current and E

(a)  Relationship between dissolution of Fe and E.

(b)  Relationship between cathodic current and E
   

                                    (a)                                                                              (b) 

Figure 4.9. Schematic diagrams showing plots of the variation of potential with current density for 
steel in seawater and the connection between the dissolution of the potential curve: 

 (a) data from Ashworth  [8], (b) my experimental data. 
 

4.2.4. Protection Potential. 

One interesting point that may be noted from Figure 4.7, is that the potential of -783 mV 

(SCE) which is very close to the accepted protection potential of -774 mV (SCE) still 

gives a finite and measureable corrosion rate of 0.023 mm/y which is still quite a 

significant metal loss, amounting to about 25% of the loss observed at the open circuit 

value. To achieve full protection a further 113 mV of potential shift is necessary to bring 

the potential down to -895 mV (SCE) where corrosion has virtually ceased. This data is 

thought to be highly significant in practice where the -774 mV (SCE) [equivalent to  

-850mV (CSE)] is widely used. 
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4.3. Investigation of the nature of the surface film.  

This study examines the appearance and composition and lateral (Z–direction) 

compositional variation of the surface films formed by applying different levels of 

cathodic protection. 

 

To understand the presence and composition of any surface films formed, the surface 

morphology was investigated using optical (digital) photography, glow-discharge optical-

emission spectroscopy (GDOES), Scanning Electron Microscopy (SEM) in conjunction 

with Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction after the 

experiment. The electrochemical impedance spectroscopy (EIS) measurements were 

performed in situ as deposits were forming on electrodes polarized at current densities 

between 0 (open circuit) and 400 mA/m2 using the polarized potential achieved at that 

particular time.  

4.3.1. Measurement of Potential.   
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Figure 4.10. Graph showing plots of potential – time curves at various current densities 
 over a period of one week. 

 

Figure 4.10 shows the potential vs. time plots obtained for mild steel samples at different 

current densities between open circuit and 400 mA/m2 obtained after one week 

immersion in artificial seawater. The higher applied current densities cause the potential 

of the sample generally to become more negative. The visual appearances of the deposits 

are significantly different. We will consider this further in Section 4.3.2.  
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4.3.2. Optical images. 

Plate 4.1 shows images of the surfaces of the full set of 5 mild steel samples, from open 

circuit conditions, together with applied current densities of 50 mA/m2 to 200 mA/m2 

after 6 hours of immersion. The images were produced by scanning the surface of each 

sample using an Epson DX4850 flat-bed scanner and not with an optical (film) or digital 

camera. The excellent image quality obtained and inherent lack of reflections is a feature 

of these images. Samples were scanned at a resolution of 300 dpi. There is an obvious 

water-line with the immersed region at the top of the photograph. 

 

From Plate 4.1, it was evident that even after 6 hours immersion, significant deposits 

have already appeared on the surfaces of the samples. The results shown in Plate 4.1(a - d) 

show that the specimens immersed in artificial sea water did not appear to suffer localised 

corrosion in the under-protection situation (open circuit to 150 mA/m2) and the yellow-

brown deposits visible were assumed to be Fe2O3·H2O.  X-Ray analysis will confirm this 

later. Plate 4.1(e) shows the sample surface after 6 hours immersion under conditions of 

complete cathodic protection, which was covered by white/grey deposits, which we shall 

show later to consist mainly of a magnesium containing calcareous film. This will be 

proven by GDOES, EDX and XRD studies later in this Chapter, see Sections 4.3.3, 4.3.4 

and 4.3.6. 

 

Similar sets of experiments were also carried out for immersion periods of 1 day, 3 days 

and one week, in order to show the effects of increasing immersion time. A full 

discussion of the results of the SEM/EDX investigation of the samples immersed for 1 

day and 3 days is provided in Section 4.3.4. 
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(1) 6 hours immersion. 

              
                    (a) Open circuit for 6 hours                                   (b) 50 mA/m2 for 6 hours 

           
           (c) 100 mA/m2 for 6 hours                                      (d) 150 mA/m2 for 6 hours    
            

       
                     (e) 200 mA/m2 for 6 hours   

 
Plate 4.1. Images from digital scanner, of surfaces of the five mild steel samples after immersion in 

artificial seawater for 6 hours at various levels of current density. 
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(2) One week immersion  

                                  
                (a) Open circuit for 1 week                              (b) 50 mA/m2 for 1 week     
               

                     
                         
                   (c) 100 mA/m2 for 1 week                                         (d) 150 mA/m2 for 1 week   

          
 Plate  4.2.  Images from digital scanner, of the surfaces of the seven samples after immersion for one 

week in artificial seawater at various levels of current density. 
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                  (e) 200 mA/m2 for 1 week                                          (f) 300 mA/m2 for 1 week   
                                               

                    
                                   (g) 400 mA/m2 for 1 week 

 
Plate  4.2. (continued)  Images from digital scanner, of the surfaces of the seven samples after 

immersion for one week in artificial seawater at various levels of current density. 
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Plate 4.2 shows scanned images of the surfaces of the full set of 7 mild steel samples, 

after being immersed in artificial seawater for one week, and subjected to various applied 

current densities, ranging from open circuit to 400 mA/m2. It was evident that there were 

significant deposits present on the surfaces of the samples after exposure for 7 days to 

artificial seawater. Plates 4.2(a) to (c) show that the surfaces of the samples were covered 

by a visible yellow-brown deposit which is assumed to be Fe2O3·H2O.  These conditions 

where the current density is 100 mA/m2 or less are assumed to be the underprotection 

situation. Plates 4.2(d) and (e) [150 mA/m2 and 200 mA/m2 respectively] show the 

appearance of the specimen surfaces under conditions of almost completely cathodic 

protection and mainly covered by white/grey deposits; which are the calcareous films. 

Plate 4.2(f) [300 mA/m2] shows the sample surface was almost totally covered by a 

white/ grey deposit.  Similarly, Plate 4.2(g) shows a scanned image of the surface of the 

sample that was subjected to an overprotection current density of 400 mA/m2, and it is 

evident that the sample surface is totally covered by a white deposit (a calcareous film). 

 

Points of interest to note are that the 150 mA/m2 and 200 mA/m2 panels show much less 

rust on the surface, than the samples at the lower current densities. In addition, there 

appears to be no visible rust in the samples at 300 mA/m2 and 400 mA/m2, which are 

almost covered by grey/white deposits.  Also,  at open circuit the rust seems more coarse,  

and then gets more compact at the higher current densities and that there appears, at least 

from visual examination, to be no tendency for the anodic and cathodic areas to be 

delineated.  
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4.3.3. Results from GDOES study. 

GDOES was chosen as a method to investigate the formation of calcareous films, because 

this technique can detect compositional changes with depth and time for very thin films. 

Therefore, for our study, it was especially useful for looking at changes in composition of 

the deposited film during the very early stages (6 hours) of film growth at various current 

densities. 

 

The graphs shown in Figures 4.11 and 4.12 are typical GDOES data plots of metal 

surfaces covered by deposits. Figures 4.11 and 4.12 are given as examples of GDOES 

data plots obtained for the deposits formed over 6 hours of immersion, in both the 

underprotected (50 mA/m2) and cathodic protection (200 mA/m2) situations respectively. 

Proceeding from left to right across the graph indicates loss of the film with time due to 

sputtering, and indicates how the composition of the film varies with time. The first 

vertical dotted pink line at the left hand side (earlier time) of the X-axis (Time) represents 

the film surface, whilst the second pink line (later time) represents the film-steel interface.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.11. GDOES plot of deposit obtained using an applied current density of  
50 mA/m2 for 6 hours 
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Figure 4.12.  GDOES plot of deposit obtained using an applied current density  
of  200 mA/m2 for 6 hours. 

 

It should be noted, that in Figures 4.11 and 4.12, the traces for magnesium and calcium 

are expanded by a factor of 20 times compared with oxygen and iron. 

 

For the 2 examples of deposit (50 mA/m2 and 200 mA/m2 for 6 hours) investigated 

during this study using the GDOES technique, the change in composition of the 4 

selected elements investigated (Fe, O, Mg and Ca) within the film at various depths from 

the surface are shown in Figures 4.11 and 4.12. In Figures 4.11 and 4.12, the film 

thickness is represented by 0.15s and 0.85s respectively. It does seem to show that there 

is a significant amount of magnesium in the deposit together with some calcium, and also 

that the magnesium content has increased at the higher current density of 200 mA/m2.  

 

It should be noted, that access to the GDOES facility was fairly restricted, especially 

towards the later stage of the Project, and only a limited number of samples could be 

investigated using this analytical technique. It was not feasible to use this technique to 

complement/corroborate results from later experiments where we analysed the deposits 

formed over 3 days immersion.  
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4.3.4. SEM/EDX. 

The formation, growth and morphology of calcareous deposits, formed under the various 

conditions (different immersion periods and applied current densities) described earlier, 

were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-

Ray Analysis (EDX).  

 

The samples were examined and analysed using a FEI XL 30 FEGSEM, equipped with 

an integrated RONTEC EDX system (see Section 3.8 for full description). SEM imaging 

was performed in both secondary electron (SE) and backscattered electron (BSE) 

operating modes. Results are presented in the following Sections as sets of secondary 

electron (SE) images from digital photomicrographs, together with selected EDX full 

spectrum analyses, and also selected EDX element distribution maps and line scans (both 

obtained using EDX ‘imaging mode’) to show the occurrence and distribution of the 

elements Fe, Ca, Mg and O. 

 

4.3.4.1. Short term immersion. 

In order to investigate the composition of a calcareous deposit formed during only a short 

period of immersion (a few hours), under conditions of cathodic protection, a mild steel 

sample was prepared and immersed for 6 hours in artificial seawater at an applied current 

density of 200 mA/m2. In addition, a subsequent experiment was carried out using a 

group of 5 samples immersed for 1 day in artificial seawater, at current densities ranging 

from open circuit to 300 mA/m2. These five values of current densities were chosen 

because open circuit and 100 mA/m2 are typical of under protection, 150 mA/m2 is just 

fully protected, 200 mA/m2 is well protected, and 300 mA/m2 is possibly over protected. 
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(1) 6 hours immersion.  

   
  (a) Secondary Electron image taken at 500X                (b) Secondary Electron image taken at 
10000X 

 
Plate 4.3. SEM images of deposit formed on mild steel sample immersed in artificial seawater for 6 

hours, using an applied current density of 200 mA/m2. 
 

 
Figure 4.13. EDX spectra of surface deposit obtained after immersion for 6 hours in artificial 

seawater using an applied current density of 200 mA/m2. 
 

 Plate 4.3 shows SEM images of the deposits formed on a mild steel sample during 6 

hours immersion in still artificial sea water with an applied current density of 200 mA/m2. 

It is obvious that some deposits have formed on the sample surface which has the 

appearance at low magnification (X 500) of sparsely distributed aggregates with a 

granular morphology (Plate 4.3(a)), and an image taken at a higher magnification to show 

the fine structure of the deposit in more detail is given in Plate 4.3(b).  Also, according to 

the corresponding results of the EDX analysis of this deposit given in Figure 4.13, a 

significant amount of magnesium was detected, but no indication of the presence of 

calcium. So we could therefore assume it was mainly a magnesium containing compound 

that is deposited during periods of short time immersion in seawater under conditions of 

cathodic protection. 
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(2) 1 day immersion.  

Plate 4.4 shows a set of secondary electron SEM images that illustrate the morphology of 

the various deposits formed on mild steel during a 1 day immersion period in still 

artificial sea water with a range of current densities varying from 0 to 300 mA/m2. The 

relative percentages of various elements obtained using EDX quantification at these 

different applied current densities are presented in Table 4.3. 
 
The set of SEM images presented in Plate 4.4 shows the secondary electron SEM 

micrographs of surface deposits formed on the sample surfaces after immersion in 

seawater for 1 day at applied current densities ranging from 0 (open circuit) to 300 

mA/m2  respectively.  From the SEM image obtained for the open circuit situation, and 

shown in Plate 4.4(a), and the corresponding EDX result given in Table 4.3, it was 

observed that there is mainly deposition of rust, and the percentage of magnesium was 

0.81%, whilst the percentage of calcium was 0.2% which can probably be ignored 

because this value is lower than the normal detection limits of the EDX system (0.3%). 

At the other (higher) applied current densities, both magnesium and calcium were found. 

Also, from Table 4.3, it can be seen that the percentages of magnesium and calcium both 

increase concurrently with increasing applied current density.  
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                                 (a) Open circuit                                                         (b) 100 mA/m2 

 

  
                              
                                 (c) 150 mA/m2                                                                                                    (d) 200 mA/m2 

 

 
                                   (e) 300 mA/m2 

 
Plate 4.4. SEM images of surface deposits formed on mild steel samples after immersion for 1 day in 

artificial seawater at different current densities ranging from 0 to 300 mA/m2 
 (Secondary electron images taken at 500 X). 
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Table 4.3. The relative percentages of various elements in surface film deposits formed  
on steel samples after 1 day immersion in artificial seawater obtained  

using EDX quantification at different applied current densities. 
 

Percentage of Element (%) Applied Current 
Density (mA/m2) 

Carbon Oxygen Sodium Magnesium Silicon Sulfur Chlorine Calcium Iron 

open circuit 8.1 15.47 2.19 0.81 0.05 0.28 2.94 0.2 9.95 

100 9 11.7 8.46 2.31 0.13 0.16 3.17 0.38 64.58 

150 14.2 20.3 0.71 3 0.41 0.40 0.39 0.4 59.88 

200 16.2 20 0.9 5.25 0.44 0.53 1.01 0.54 55.1 

300 19.6 19.9 2.12 6.1 0.36 0.28 0.97 0.57 50.1 

 

4.3.4.2. Intermediate term immersion (3 days immersion).  

 The SEM micrographs shown in Plate 4.5 illustrate the morphologies of the deposits 

formed after immersion in still artificial sea water for 3 days at the different applied 

current densities. From Table 4.4, which gives the relative percentages of the various 

elements obtained using EDX quantification,   it can be observed that  in the open circuit 

situation, the amount of calcium in the deposit is 0.13%, which is below the detection 

limits (~0.3%) of the instrument,  but magnesium was definitely detected (1.53%). Also, 

these observations indicate that the composition of the deposits change significantly with 

immersion time. If the results obtained for the EDX element quantifications for 1 day and 

3 days immersion are compared, it is clearly evident that the percentages of Mg obtained 

after 3 days at all current densities is greater than those seen after 1 day immersion, and 

in addition, in the case of applied current densities of 200 mA/m2 and 300 mA/m2, there 

is a massive increase in the percentage of Ca observed after 3 days compared to the 1 day 

immersion period (0.54/0.57% to 2.52/3.04% respectively).  

 

It was also interesting to note, that; after 3 days immersion, although the percentage of 

Mg found after 3 days immersion was significantly higher than the percentage 

determined after 1 day immersion, in the fully protected and overprotected situation (200 

mA/m2 and 300 mA/m2 respectively) the percentages of Mg observed were less than 

those observed at the underprotected current densities of 100 mA/m2 and 150 mA/m2. 
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In view of these findings, it was felt necessary to undertake a further set of immersion 

experiments over a longer period. A one week experiment was therefore carried out at a 

range of different applied current densities. 
 

  
                                  (a) Open circuit                                                         (b) 100 mA/m2 

 

  
                             (c) 150 mA/m2                                                                                                   (d) 200 mA/m2 

 

 
                          (e) 300 mA/m2 

 
Plate 4.5. SEM micrographs of surface deposits obtained after 3 days immersion in artificial 
seawater using different applied current densities (secondary electron images taken at 500X). 
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Table 4.4. The relative percentages of various elements obtained using EDX quantification 
in surface film deposits formed on steel samples after 3 days immersion in artificial 

seawater at different applied current densities. 
 

Percentage of Element Applied Current 

Density (mA/m2) Carbon Oxygen Sodium Magnesium Silicon Sulfur Chlorine Calcium Iron

open circuit 5.1 45.52 1.49 1.53 0.05 0.26 0.31 0.13 45.58

100 10.46 38.88 0.63 11.07 0.09 0.27 0.26 0.32 38 

150 10.6 37.18 0.92 14.11 0.07 0.29 0.62 0.36 35.8

200 13.5 24.47 0.1 9.83 0.05 0.07 0.12 2.52 49.2

300 16.9 24 0.21 9.64 0.07 0.11 0.17 3.04 45.85

 

4.3.4.3. One week experiment. 

In this part of the study, polished mild steel samples were immersed for a week in 

artificial seawater at various applied current densities. The range of current densities 

chosen were: open circuit, 50 mA/m2, 100 mA/m2, 150 mA/m2, 200 mA/m2, 300 mA/m2 

and 400 mA/m2. The scanned optical images of the sample surfaces after 7 days 

immersion have already been given in Plate 4.2. To investigate the underprotection 

situation, the results of the SEM imaging studies and associated EDX element 

distribution mappings will be presented and discussed for samples at applied current 

densities between 0 to 200 mA/m2. 
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            (a) Secondary image taken at 500x                     (b) EDX element map of distribution of Mg 
 

    
      
              (c) EDX element map of distribution of  O             (d) EDX element map of distribution of Fe 
 

Plate 4.6. Secondary Electron SEM image and corresponding EDX element distribution maps 
 for Mg, O and Fe of deposit obtained at open circuit for one week:  

a. SE image; b - d. EDX maps for Mg, O and Fe respectively.   
 

 
Figure 4.14. EDX spectra of surface of deposit obtained at open circuit for one week. 
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(a) Secondary image taken at 500x                           (b). Single EDX element map of distribution of Mg 

 

    
 (c). Single EDX element map of distribution of Ca  (d). Single EDX element map of distribution of Fe 
 

   
(e). Single EDX element map of distribution of O 
 

Plate 4.7. Secondary Electron SEM image and corresponding EDX element distribution maps of 
deposit obtained using an applied current density of 50 mA/m2 for 7 days:  

a. SE image, b – e. EDX maps for Mg, Ca, Fe and O respectively. 
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       (a) Secondary image taken at 500x                    (b). Single EDX element map of distribution of Mg 
 

   
(c). Single EDX element map of distribution of Ca   (d). Single EDX element map of distribution of Fe 

 
(e). Single EDX element map of distribution of O 
 

Plate 4.8. Secondary Electron SEM image and corresponding EDX element distribution maps of 
deposit obtained using an applied current density of 100 mA/m2 for 7 days: 

 a. SE image; b – e. EDX maps for Mg, Ca, Fe and O respectively. 
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Figure 4.15. EDX  spectra of surface of deposit obtained using  

an applied current density of 50 mA/m2 for 7 days. 
 

 
Figure 4.16. EDX spectra of surface of deposit obtained using  

an applied current density of 100 mA/m2 for 7 days.  
 

 
Figure 4.17. EDX spectra of surface of deposit obtained 

using an applied current density of 150 mA/m2 for 7 days. 
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        (a) Secondary image taken at 500x                   (b). Single EDX element map of distribution of Mg 

   
  (c). Single EDX element map of distribution of Ca (d). Single EDX element map of distribution of Fe 

 
 (e). Single EDX element map of distribution of O 
 

Plate 4.9. Secondary Electron SEM image and corresponding EDX element distribution maps of 
deposit obtained using an applied current density of 150 mA/m2 for 7 days: 

 a. SE image; b – e. EDX maps for Mg, Ca, Fe and O respectively. 
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        (a) Secondary image taken at 500x                  (b). Single EDX element map of distribution of Mg 
 

      
(c). Single EDX element map of distribution of Ca   (d). Single EDX element map of distribution of Fe 
 

 
(e). Single EDX element map of distribution of O 

 
Plate 4.10. Secondary Electron SEM image and corresponding EDX element distribution maps of 

deposit obtained using an applied current density of 200 mA/m2 for 7 days: a. SE image; b – e. EDX 
maps for Mg, Ca, Fe and O respectively. 
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Figure 4.18. EDX spectra of surface of deposit obtained 

using an applied current density of 200 mA/m2 for 7 days. 
 

Table 4.5. The relative percentages of various elements obtained using EDX quantification,  
of surface film deposits on steel samples at different applied current densities  

after 7 days immersion in artificial seawater. 
 

Percentage of Element Applied Current 

Density (mA/m2) Carbon Oxygen Sodium Magnesium Silicon Sulfur Chlorine Calcium Iron 

open circuit 4.82 64 1 0.87 - 0.25 0.39 - 28.68 

50 8.08 63.55 1.41 4.08 0.3 0.7 1.99 1.67 18.22 

100 20.18 53.04 1.25 2.12 - 0.4 0.12 5.95 16.92 

150 17.48 52.35 1.35 3.96 0.25 0.4 1.8 7.74 14.67 

200 20.42 37.33 2.01 6.21 0.87 0.42 0.49 17.8 14.4 

 

Plates 4.6 - 4.10 show the SEM micrographs and corresponding EDX maps of Mg,  Ca, 

Fe and O of the calcareous film deposits formed on the surfaces of the mild steel samples, 

after immersion in artificial seawater for 7 days at the different applied current densities 

ranging from open circuit to 200 mA/m2. For each sample, the SEM images and 

associated EDX maps were recorded at the same magnification to give the same 

equivalent analysis area in each case. Figures 4.14 to 4.18 give the associated full EDX 

spectra of all elements detected from the same region of the surface of the deposits, and 

the quantitative relative percentages of these elements are given in Table 4.5.  
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Plate 4.6 gives a secondary electron SEM image and corresponding EDX element maps 

of the surface of the deposit formed under open circuit conditions, and shows mainly rust 

nodules on the surface and magnesium deposits overlaying the rust, but calcium was not 

detected, being below the detection limits of the EDX system (around 0.3%), this is a 

similar result to that observed after 1 day and 3 days immersion, and discussed previously. 

 

The SEM images and EDX maps of the deposit formed at  50 mA/m2, and  illustrated in 

Plate 4.7,  show even more magnesium and calcium on the surface than the previous 

(open circuit) sample.  The deposits shown in Plate 4.9 and Plate 4.10 which were formed 

at 150 mA/m2 and 200 mA/m2 respectively show an obvious and large calcium 

containing precipitate. This early precipitation of magnesium is certainly contrary to the 

usual account which cites solubility product arguments [13], [15] to support early calcium 

precipitation. It may be however, that the nucleation of magnesium compounds onto/into 

the rust layer is a result of co-precipitation of those hydroxides [17]. This aspect of co-

precipitation will be returned to later in this Chapter and discussed further in the titration 

Section (Section 4.3.5). From Table 4.5, the percentage of calcium in the deposit 

increased as the applied current densities were increased.  

 

The images shown in Plates 4.11 and 4.12 illustrate the microstructure of calcareous 

films formed under conditions of over protection. Samples were immersed for a period of 

one week in artificial seawater, and higher current densities of 300 mA/m2 and 400 

mA/m2 were applied.  
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        (a)   Secondary image taken at 500x              (b) Combined SE image and EDX maps at 500x 

 
Plate 4.11. Secondary Electron SEM image and combined SEM/EDX element map image of deposit 

obtained after 7 days immersion in artificial seawater using an applied current density of 300 mA/m2: 
a. SE image; b. SE image with corresponding overlaid EDX element distribution maps 

for Ca, Mg and Fe. 

      
Figure 4.19. EDX spectra of surface deposit obtained after immersion in artificial seawater for 7 days 

using an applied current density of 300 mA/m2. 
 

      
       (a) Secondary image taken at 500x                    (b) Secondary image taken at 10000x        
 

Plate 4.12. SEM images at various magnifications  of deposit formed after 7 days immersion in 
artificial seawater   using an applied current density of 400mA/m2. 
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Figure 4.20. EDX spectra of surface deposit obtained after 7 days immersion in artificial seawater  

using an applied current density of 400 mA/m2. 
 
Table 4.6. The relative percentages of various elements obtained using EDX quantification, of surface 
film deposits on steel samples after 7 days immersion in artificial seawater at applied current 
densities of 300 mA/m2 and 400 mA/m2. 
 

Percentage of Element Applied Current 

Density (mA/m2) Carbon Oxygen Sodium Magnesium Silicon Sulfur Chlorine Calcium Iron

300 16 49.33 0.29 17.64 0.14 0.19 0.52 15.12 0.34 

400 18 48.09 0.35 17.3 0.24 0.27 0.43 14.9 0.37 

 

From the secondary electron SEM images and corresponding EDX element distribution 

maps shown in Plate 4.11 and the associated EDX spectra given in Figure 4.19, it was 

evident that there are significant deposits of calcium distributed over much of the sample 

surface, while the results presented in Table 4.6 show that the percentages of iron in these 

two cases is extremely low (0.34% and 0.37%) which are both only just over the 

detection limits of the instrument.  The calcium containing regions have the typical 

distinctive microstructure and characteristic surface morphology of aragonite deposits, 

which have also been noted by other workers [13]. Similar calcium containing deposits 

were also found to cover most of the surface of the sample immersed for 7 days in 

artificial seawater at an applied current density of 400 mA/m2, which would also provide 

conditions of overprotection, as illustrated in Plate 4.12 and confirmed by the EDX 

spectra given in Figure 4.20.  
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In addition, another reason why it is probably reasonable to assume that the samples at 

the applied current densities of 300 mA/m2 and 400 mA/m2  are almost certainly over-

protected is because there were some cracks on the surfaces of the samples, which are 

clearly evident in the high magnification image given in Plate 4.12(b), (note that the 

potential of the sample at applied current density of 400 mA/m2 was around -1050 mV in 

Figure 4.10), so the cracking and detachment of the sample surface that is evident in Plate 

4.12(b) was possibly caused by hydrogen evolution.    

 

4.3.4.4. SEM and EDX examination of sample/deposit cross-sections.  

From the results discussed previously in Section 4.3.4.1 and 4.3.4.2, which describes the 

short term immersion experiments of 6 hours, 1 day and 3 days duration, the surface 

topography and composition of the deposits were determined using basic SEM imaging 

and EDX analyses. However, to improve our understanding of the build up of the 

deposition process, some analyses of cross-sections were also carried out. It was 

anticipated that this procedure would provide useful information regarding the structure 

and elemental composition of the films during the formation process, and also show the 

distribution of the various Ca and Mg rich mineral deposits through the Z-direction of the 

film. Due to the fact that the thinner films formed during short periods of immersion (6 

hours and 24 hours) were extremely fragile, this technique was only suitable for thicker 

films formed over several days of immersion, and only four current densities were 

investigated. These were 100 mA/m2, 150mA/m2, 200 mA/m2 and 300 mA/m2 and again 

were for a seven day period of immersion. The experimental procedures used have 

already been described in Chapter 3. As with the previous experiments, four values of 

current densities were chosen because 100 mA/m2 is typical of under protection, 150 

mA/m2 is just fully protected, 200 mA/m2 is well protected, and 300 mA/m2 is possibly 

over protected.  
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(1) Applied current density 100 mA/m2. 

 
Plate 4.13(a). SEM micrograph and overlaid corresponding EDX element distribution maps for Fe, 

Mg and Ca;  of cross-section of calcareous deposit formed after 7 days immersion in seawater. 
 

 

 
Plate 4.13(b). SEM micrograph showing cross-section of deposit formed after 7 days 

 immersion in artificial seawater.   
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Plate 4.13(c). Single EDX element map, showing occurrence and distribution of Mg, over surface of 

sample cross-section illustrated previously in Plate  4.13(a, b). 
 
 

 
Plate 4.13(d). Single EDX element map, showing occurrence and distribution of Fe, over surface of 

sample cross-section illustrated previously in Plate  4.13(a, b). 
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Plate 4.13(e). Single EDX element map, showing occurrence and distribution of Ca, over surface of 

sample cross-section illustrated previously in Plate 4.13(a, b). 
 

Plate 4.13. SEM and EDX analysis of  cross-section of deposit formed at applied current density of 
100 mA/m2 during  7 days immersion in artificial seawater.   

 

 

(2) Applied current density 150 mA/m2. 

 
Plate 4.14(a). SEM micrograph and corresponding EDX element distribution maps for Mg and Ca,  

of cross-section of calcareous deposit formed after 7 days immersion in seawater.   
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Plate 4.14(b). Single EDX element map, showing occurrence and distribution of Mg, over surface of 

sample cross-section illustrated previously in Plate 4.14(a). 
 
 

 
Plate 4.14(c). Single EDX element map, showing occurrence and distribution of Ca, over surface of 

sample cross-section illustrated previously in Plate 4.14(a). 
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Plate 4.14(d). Single EDX element map, showing occurrence and distribution of Fe, over surface of 

sample cross-section illustrated previously in Plate 4.14(a). 
 

Plate 4.14. SEM images and associated EDX mapping results for cross-section of deposit obtained 
using an applied current density of 150 mA/m2 for 7 days immersion. 

 
 

(3) Applied current density 200 mA/m2. 

 
Plate 4.15(a). SEM micrograph and corresponding EDX element distribution maps for Mg and Ca,  

of cross-section of calcareous deposit formed after 7 days immersion in seawater.   
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Plate 4.15(b). SEM micrograph showing cross-section of deposit formed after 7 days immersion 

 in artificial seawater.   
 
 

 
Plate 4.15(c). EDX quantitative line-scan (top graphic) showing variation in relative percentages of 

Ca, Mg and Fe over selected (green) line on sample cross-section (lower micrograph).  
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Plate 4.15(d). Single EDX element map, showing occurrence and distribution of Mg, over surface of 

sample cross-section illustrated previously in Plate  4.15(a, b). 
 

 

 
 Plate 4.15(e). Single EDX element map, showing occurrence and distribution of Ca, over surface of 

sample cross-section illustrated previously in Plate 4.15(a, b). 
 

Plate 4.15. SEM images and associated EDX mapping results for cross-section of deposit obtained 
using an applied current density of 200 mA/m2 for 7 days. 
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(4) Applied current density 300 mA/m2. 

 
Plate 4.16(a). SEM micrograph and overlaid corresponding EDX element distribution maps for Mg 

and Ca, of cross-section of calcareous deposit formed after 7 days immersion in seawater.   
 

 

 
Plate 4.16(b). SEM micrograph showing cross-section of deposit formed  

after 7 days immersion in  artificial seawater.   
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Plate 4.16(c). Single EDX element map, showing occurrence and distribution of Fe, over surface of 

sample cross-section illustrated previously in Plate 4.16(a, b). 
 
 

 
Plate 4.16(d). Single EDX element map, showing occurrence and distribution of Mg, over surface of 

sample cross-section illustrated previously in Plate 4.16(a, b). 
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Plate 4.16(e). Single EDX element map, showing occurrence and distribution of Mg, over surface of 
sample cross-section illustrated previously in Plate  4.16(a, b). 

 
Plate 4.16. SEM images and EDX mapping results for cross-section of deposit obtained using an 

applied current density of 300mA/m2 for 7 days. 
 

The results of the SEM investigation and EDX analyses for all samples studied are 

presented in the preceding Plates 4.13 to 4.16. The selection of SEM micrographs shown, 

together with the corresponding elemental maps and line scans show the occurrence and 

distribution of Mg, Ca and Fe within the sectioned deposits at the end of the 7 day 

immersion period.  

 

Furthermore, from Plates 4.13 to 4.16, it is evident from the integrity of these layers, that 

it appears that at the lower current density of 100 mA/m2 (Plate 4.13) [potentials of 

around -840 mV] the layers formed are well defined, intact and adherent both to the steel 

substrate and to each other.  

 

Plates 4.13(a) and (b) give information regarding the under-protected (100 mA/m2) 

situation, Plates 4.13(a) and (b)  show a clear example of the way the magnesium 

containing deposit is interrelated with the underlying growing iron oxide. The magnesium 

is always found above this iron deposit and the reasons why this is the case may well 
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involve the phenomenon of co-precipitation and hence this provides the justification for 

our further study using acid - base titration (Section 4.3.5).  

 

Plates 4.14 and 4.15 show the elemental distributions for Mg, Ca and Fe over the cross-

section of the deposit obtained with applied current densities of 150 mA/m2 and 200 

mA/m2 respectively. The thinner bottom layer is probably Mg(OH)2 and the thicker top 

layer is CaCO3 (aragonite, see XRD Section 4.3.5). In addition, Plate 4.15(c) shows 

quantitative line scans of a region of the cross-section of the deposit where the ratio of 

Ca, Mg and Fe varies across the Z-direction of the deposit.  There is a  low Ca/Mg ratio 

adjacent to the sample surface, whilst a higher Ca/Mg ratio was observed furthest from 

the metal surface. These observations indicate that the Mg containing compound deposits 

first and the Ca- rich compound deposits later. At the current densities of 200 mA/m2 and 

300 mA/m2 (Plates 4.15 and 4.16), some cracks appear and it is perhaps reasonable to 

suggest that this phenomenon is due to hydrogen evolution from the steel. In this 

condition, the cathodic reaction of water reduction occurs (2H2O + 4e-→ 2OH- + H2). 

This is also in accordance with the SEM photomicrographs presented in Plates  4.11 and 

4.12, which clearly show regions at higher magnification, where the underlying regions 

of the films have cracked and become detached at the higher current densities, as 

discussed  in Section 4.3.4.3. 

 

Overall, the SEM and EDX results obtained of the samples at full cathodic protection 

levels revealed that the deposits were composed of two layers with a clear boundary. In 

Plates 4.14 to 4.16, the inner layer is Mg-rich, whilst the outer layer was Ca-rich. From 

the later XRD results the outer layer was subsequently shown to be aragonite (CaCO3), 

whilst the inner layer was originally thought to be to be brucite (Mg(OH)2)  but the 

subsequent analysis by  X-Ray Diffraction did not provide absolute confirmation of this 

assumption [See Section 4.3.6 for account of the XRD study].  
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4.3.5 Titration experiment. 

The titration experiments were used to establish the pH of possible precipitation from 

seawater. It is well known that the pH of any precipitation process can be predicted from 

calculations based on knowledge of the solubility-product constant and the concentration 

of cations and anions of the particular compound in solution. 

 

For example, the pH of calcium carbonate precipitation can be calculated from following 

equations. The CaCO3 has the solubility-product constant of K = [Ca2+]*[CO3
2-]=3.8*10-9 

[17] at 20oC and as we have seen earlier in Chapter 2 the typical concentration of Ca2+ in 

seawater is 1.123g/1000g solution namely [Ca2+] = 0.01M. With this knowledge, the 

concentration of CO3
2- when CaCO3 precipitates will be:  

M
Ca

KCO CaCO 7
2

32
3 108.3

][
][ −

+
− ∗==   ……………………………………………………   (4-1)                          

The process of CaCO3 precipitation that occurs when CO3
2- formed during the reaction of 

NaHCO3 present in the seawater with an alkaline solution is according to the reaction 4-2, 

NaHCO3+OH-=H2O+2Na++CO3
2-

 ………………………………………………      (4-2)                          

 

Where the concentration of OH- is equal to the concentration of CO3
2- during reaction 4-2. 

Taking into consideration equation 4-1, the concentration of OH- will be:  

MCOOH 72
3 108.3][][ −−− ∗==  ……………………………………………………    (4-3)                           

 

The concentration of  H+ during precipitation of CaCO3 from seawater will be: 

 M
OH

H 8
7

1414

1063.2
108.3

10
][

10][ −
−

−

−

−
+ ∗=

∗
== ………………………………………       (4-4)                         

So the pH for precipitation of CaCO3 is pH = -log [H+] = 7.58. 

Similarly in order to precipitate Mg(OH)2 with the solubility-product constant   

 

K = 6*10-10 [17] and the concentration of [Mg]2+ = 0.053M, which is a typical 

concentration of [Mg]2+ in seawater (5.07g/1000g solution), a significantly higher pH is 

required if we compare this with the pH necessary for CaCO3 precipitation to occur.  

 

The magnesium hydroxide precipitates according to the reaction:  

Mg2+ +2OH- = Mg(OH)2, where K = [Mg2+]*[OH-]2. 
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The concentration  of OH-  when Mg(OH)2  precipitates can be calculated from K and will 

be:  

M
Mg

K
OH OHMg 48

2

10

2
2)( 1006.11013.1

103.5
106

][
][ −−

−

−

+
− ∗=∗=
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== …………………     (4-5)                         

The pH of Mg(OH)2 precipitation will be: 

 10
4

1414
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10*06.1

10
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10][ −
−

−

−

−
+ ≈==

OH
H  M…………………………………………         (4-6)                          

So the pH for precipitation of Mg(OH)2 is around 10. 

 

There is general agreement in the literature that calcium carbonate precipitates at a less 

alkali pH compared with the pH of magnesium hydroxide precipitation [13]. This was 

clearly shown by the calculations and equations given above, and we have confirmed that 

a pH of 7.58 is required for precipitation of CaCO3, whilst a pH of 10 is required for 

precipitation of Mg(OH)2 from seawater. When the steel is under cathodic protection in 

seawater, the pH near the steel surface slowly becomes more alkaline due to undergoing a 

cathodic reaction of oxygen reduction and the deposition of calcium carbonate is 

expected to occur first. The rationale for our titration experiments arises from our studies 

on the deposited films formed during cathodic protection at the conditions when steel was 

underprotected. In every case it was demonstrated that the compound that is initially 

precipitated next to the iron-containing corrosion products is possibly brucite (Mg(OH)2), 

and not calcium-rich aragonite (calcium carbonate, CaCO3). The study of the SEM 

micrographs and X-ray analysis data given in Plate 4.11 (Section 4.3.4.4) indicate that 

there is an association between the iron corrosion product and the overlaying magnesium 

rich compound, which is possibly Mg(OH)2 (brucite). The presence of brucite in the 

vicinity of iron hydroxides might be explained by the co-precipitation of brucite during 

formation of corrosion products when steel corrodes. The possibility of co-precipitation is 

based on the work by Packter and Derby [18] who established and examined the 

mechanisms of co-precipitation of magnesium and iron hydroxides from aqueous solution 

using potentiometric titration.  

 

The Fe(OH)3 precipitates at a significantly lower pH compared to that of CaCO3 and this 

pH can be calculated from the solubility-product constant K = 6.3*10-38 [17] of iron 

hydroxide and the reaction of hydroxide formation Fe3+ + 3OH- = Fe(OH)3. For the 
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reaction of hydroxide formation K = [Fe3+]*[OH-] 3 = 6.3*10-38 and assuming that  the 

concentration of [Fe3+] = 0.01M (the concentration of Fe3+ has been chosen similar to the 

concentration of Ca2+ in seawater), the concentration OH- and H+ during iron hydroxide 

precipitation will be: 
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The pH for precipitation of Fe(OH)3:  pH = -log [H+] = 2.26. 

 

For the underprotected steel situation where iron (III) hydroxides will be formed due to 

corrosion of steel, the Mg(OH)2 might be precipitated together with iron (III) hydroxides 

at a pH = 2.26, and hence well before precipitation of CaCO3. It is therefore necessary to 

prove that Mg(OH)2 will precipitate with iron (III) hydroxides at pH = 2.26, instead of its 

expected  precipitation at pH = 10, and so the titration experiment should verify this fact 

and was conducted in this study. 

 

In our situation, the experiment chosen had the accurately prepared alkali solution in the 

burette which is then slowly added in carefully controlled drop-by-drop increments into a 

beaker containing the solutions under examination, also at exactly known Molar 

concentrations. The course of the reaction was followed by continuous measurements of 

pH. Stocks of the Analar-grade laboratory reagents magnesium chloride (MgCl2) and iron 

(III) chloride (FeCl3), together with a standard sodium hydroxide solution of 1M 

concentration were supplied by the Fisher Company. The required concentration of 

sodium hydroxide solution (0.01M) was prepared by diluting the stock 1M sodium 

hydroxide solution with deionised water. The magnesium chloride solution (0.05M) was 

prepared directly from the Analar-grade reagents, such that the Mg concentration in the 

testing solution was the same as the concentration of magnesium chloride in seawater. 

The 0.01M concentration iron (III) chloride solution was similarly prepared.  

 

The individual solutions of 0.05M MgCl2 and 0.01M FeCl3 together with the mixture of 

0.05M MgCl2 and 0.01M FeCl3 were titrated by 0.01M NaOH. For all the titration 

experiments performed, the volume of the solutions under examination was 20.0 ml, and 
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contained in a 200 ml beaker, and was continuously stirred using a magnetic stirrer and 

bar, at 30 r.p.m.  The sodium hydroxide solution was carefully added in single drops, 

whilst the solution temperature was maintained at 20oC. For all titration experiments, the 

course of both the single precipitation and the co-precipitation reactions were constantly 

monitored using a pH meter (HI2210 pH Meter). Before the testing commenced, the pH 

meter was calibrated by using two standard buffer solutions, firstly at pH 7, then followed 

by pH 4.  

 

In preliminary runs, the sodium hydroxide solution was added in small increments to well 

past the equivalent volume for a complete reaction to occur. 

 

A total of three sets of titration experiments were performed, these were: 

(a) Single titrations for both 0.01M FeCl3 and 0.05M MgCl2.  

(b) A co-precipitation for 0.01M FeCl3 and 0.05M MgCl2 combined. 

(c) A co-precipitation for 0.01M FeCl3 combined with seawater. 

 

Typical pH vs VOH plots for the separate titration of 0.01M iron (III) chloride (FeCl3) and 

0.05M magnesium chloride (MgCl2) solutions with 0.01M sodium hydroxide solution are 

presented in Figure 4.21.  The initial pH of the 0.05M MgCl2 solution was 6.2, which is 

close to the pH of neutral solution (the red MgCl2 line). The first drop of 0.01M NaOH 

increased the pH to 9 and after addition of 15 ml of NaOH the pH was increased to 9.8 

and remained relatively constant during addition of a further 45 ml of NaOH solution. 

The final pH of the solution when titration was stopped was 10.  

 

During titration the total of 60 ml of 0.01M NaOH solution that was used was found to be 

insufficient to complete the reaction: 

MgCl2 + 2NaOH → Mg(OH)2 + 2NaCl……………………………………………    (4-9) 

 

200 ml is required of 0.01M NaOH to react with 20 ml of 0.05 M MgCl2 with an OH/Mg 

ratio of 2. Therefore the titration curve represents the initial formation of Mg(OH)+ with 

the first 15 ml of NaOH solution when the pH had risen to 9.8 and the commencement of 

precipitation of Mg(OH)2 then occurred during pH variation between 9.8 and 10 with the 

addition of a further 45 ml of NaOH solution. At this stage the solution became milky. 
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The precipitation of Mg(OH)2 has not been completed; however, the pH of precipitation, 

10 is confirmed to be similar to the calculated pH.  
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Figure 4.21.  Diagram showing individual pH titration curves of both  iron (III) chloride (FeCl3) and 

magnesium chloride (MgCl2) with 0.01M sodium hydroxide (NaOH) solution. 
 

Analysis of the titration of the 0.01M FeCl3 solution with the 0.01M NaOH solution 

indicated that during titration within the region indicated by Points A and B (the black  

FeCl3 line in Figure 4.21), the pH increased from 2.15 to 2.8, and the solution colour 

changed from orange to slight red, indicating the successful formation of  the Fe(OH)2+ 

cation, and then Fe(OH)2
+,  and finally a colloidal dispersion of iron (III) hydroxide. 

Precipitation of an orange deposit, which was microcrystalline α-FeOOH [18] commenced 

around Point B (pH = 2.8) at OH/Fe = 30/20 = 1.5, and then proceeded to complete 

precipitation of microcrystalline α-FeOOH at OH/Fe = 60/20 = 3, which was at Point C  

(pH = 3.10). Addition of further excess of sodium hydroxide solution resulted in a rapid 

rise in pH to 10.4. The stages of α-FeOOH formation are presented in the reactions: 

FeCl3 + NaOH → Fe(OH)2+ + Na+ + 3Cl-   ……………………………………..       (4 -10)                         

Fe(OH)2+ + NaOH → Fe(OH)2
+ + Na+        ……………………………………....      (4 -11)                          

Fe(OH)2
+ + NaOH → α-FeOOH + Na+ + H2O      ………………………………       (4 -12)       

 

The pH vs VOH plot for the co-precipitation from a mixed solution of 0.01M iron (III) 

chloride (FeCl3) and 0.05M magnesium chloride (MgCl2) [the concentration of 
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magnesium chloride was the  same as that in artificial seawater], by addition of 0.01M 

sodium hydroxide solution, is presented in Figure 4.22.   
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Figure 4.22. Diagram showing  pH titration plots  of iron (III) chloride (FeCl3) and magnesium 

chloride (MgCl2) with 0.01M sodium hydroxide (NaOH) solution. 
 

The pH value of the solution mixture was initially 2.2 (at Point A on the red plot line). 

Then addition of the sodium hydroxide to the solution mixture, the precipitation of α-

FeOOH commenced at Point B (pH around 2.9).  Formation of microcrystalline α-

FeOOH encourages co-precipitation of Mg(OH)2 and promotes the interaction between 

the α-FeOOH and Mg(OH)2 resulting in formation of magnesium iron (III) hydroxides [18]. 

The co-precipitation increases the final pH of the BC region to 3.4,   The sharp pH rise 

after point C (pH around 3.7) indicates completion of the α-FeOOH formation (the 

reactions are described in Equations 4-10, 4-11 and 4-12). 60 ml of 0.01M NaOH solution 

is required to form α-FeOOH from 20 ml of 0.01M FeCl3 solution. On addition of further 

sodium hydroxide, the formation of Mg(OH)+ began at Point D (pH about 9.2). The 

expected precipitation of Mg(OH)2 commenced at Point E (approximate pH 9.8) and 

continued at pH = 10 to the end of titration.  

 

A similar experiment was carried out on the mixed artificial seawater that consisted of 

0.41M NaCl, 0.05M MgCl2, 0.03M Na2SO4, 0.002M NaHCO3, 0.01M CaCl2, 0.009M 

KCl and in the presence of 0.01M iron (III) chloride (FeCl3) solution. The pH vs VOH plot 

for the course of the titration of 0.01M iron (III) chloride (FeCl3) and artificial seawater 

with 0.01M NaOH solution is presented in Figure 4.23. The results shown in Figure 4.23 
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(the line segment B׳C׳) is very similar to the results obtained in Figure 4.22 (also shown 

as the similar line segment B-C). This indicates that a similar reaction has occurred 

leading to the formation of an intimately mixed co-precipitate between α-FeOOH and 

Mg(OH)2. The difference between the titration of MgCl2 and artificial seawater in the 

presence of FeCl3 is the appearance of the small shoulder around a pH of 7.6 on the 

seawater titration curve that is probably associated with formation of CaCO3. In order to 

form calcium carbonate from 0.009M NaHCO3 solution, 4 ml of 0.01M NaOH solution is 

required. 
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Figure 4.23.  Diagram showing pH titration plot of iron (III) chloride (FeCl3) and artificial seawater 

with 0.01M sodium hydroxide (NaOH) solution. 
 

We have therefore shown that the formation of mixed compounds of magnesium and iron 

hydroxides is highly possible during cathodic protection of mild steel with 

underprotected conditions in seawater by a process of co-precipitation of magnesium 

hydroxide from seawater with iron hydroxides formed during corrosion of the steel. 

 

4.3.6. XRD. 

The fundamental operating principle of this powerful analytical technique is based on 

Braggs law. The XRD investigation was conducted to investigate the presence of other 

chemical compounds on the metal surface. The full explanation of how this technique 

works and how data can be generated is well researched, but complex, and the basic 

concepts and introduction have already been summarized and discussed earlier in this 
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Thesis in Chapter 3, Section 3.9.  All the XRD testing reported in this study was carried 

out using a Philips XPERT instrument manufactured by Philips Analytical.  

 

The mild steel testing samples used were produced using our standard  method described 

previously in Chapter 3,  Section 3.2.1, and immersed for  one week in artificial seawater  

at different levels of galvanostatic polarization with applied current densities ranging 

between 0 (open circuit condition) and 400 mA/m2. After polarization, samples were 

rinsed in deionised water for 5 seconds, then washed in ethanol and dried. Glancing angle 

X-Ray Diffraction was carried out by analysis of spectra obtained against a High Score 

plus ICDD PDF4 database with a beam size of 10 mm2 and a test area of 10 mm2. The 

data displays are given after the relevant X-Ray counts/θ plots, and are colour coded. The 

relevant reference databases are quoted and the likely crystal structures are provided. 

(1) Open circuit.  

Position [? Theta] (Copper (Cu))
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Figure 4.24.  XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density was 0 (open circuit)). 
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Table 4.7. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current density was 0 (open circuit)). 
 

Visible Ref. Code Score Compound Name Scale 
Factor Chemical Formula 

* 00-006-0696 45 bainite, ferrite, ledkunite 0.105 Fe 
* 00-044-1415 22 Lepidocrocite, syn 0.061 FeO( OH ) 
* 00-056-1302 2 Iron Oxide 0.219 Fe2 O3 

 

Figure 4.24 and Table 4.7 show the XRD analysis results for the sample at open circuit, 

after immersion for one week in artificial seawater. As expected, the deposit is mainly 

γFeO(OH) and iron oxide. One might expect some magnesium containing compounds in 

view of the results from our previous work. It is possible that the values are below the 

detection limits of the XRD system, or perhaps the magnesium compounds are screened 

by the iron corrosion products. 

 
 
(2) 50 mA/m2 for a week.  
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Figure 4.25. XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density of 50 mA/m2 ). 
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Table 4.8. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current densities of 50 mA/m2 ). 
 
Visible Ref. Code Score Compound Name Scale 

Factor 
Chemical Formula 

* 00-006-0696 50 bainite, ferrite, 
ledkunite 

0.219 Fe 

* 01-088-0236 40 Sodium Sulfide 0.245 Na1.976 S 
* 00-044-1415 46 Lepidocrocite, syn 0.716 FeO(OH) 
* 00-005-0628 18 Halite, syn 0.163 NaCl 
* 04-010-1206 30 eitelite, syn 0.477 Na2

 Mg (CO3)2 
* 00-046-0098 57 Green Rust 0.626 Fe6(OH)12 (CO3) 
 

Figure 4.25 and Table 4.8 show the results of the XRD analysis for the sample at current 

density of 50 mA/m2 after immersion for one week in artificial seawater. There is some 

quantity of a phase of a substance known as eitelite, which is a compound of sodium, 

magnesium and carbonate (CO3). Also, there is also some ferrite and rust. This result is in 

accordance with both previous SEM/EDX results and GDOES data. In the 

underprotection situation, the magnesium has been precipitated with iron which we 

showed previously in Section 4.3.5 using titration. 

 
(3) 100 mA/m2 for one week. 
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Figure 4.26. XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density of 100 mA/m2 ). 



Chapter 4. Cathodic Protection of Mild Steel in Artificial Seawater and the Role of the Calcareous Film 

190 

Table 4.9. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current densities of 100 mA/m2). 
 
Visible Ref. Code Score Compound Name Scale 

Factor 
Chemical Formula 

* 00-041-1475 86 Aragonite 0.923 CaCO3 
* 00-006-0696 53 bainite, ferrite, ledkunite 0.566 Fe 
* 00-046-1436 46 Bernalite 0.257 Fe 3 (OH)3 
* 00-024-1091 48 Sjogrenite 0.840 Mg6 Fe2 CO3 (OH)16 ·4 H2 O 

 

Figure 4.26 and Table 4.9 show the results of the XRD analysis for the sample at current 

density of 100 mA/m2 after immersion for one week in artificial seawater. The deposit 

layer is mostly comprised of CaCO3 as aragonite, with the usual ferrite. The iron 

compounds are an unusual monovalent hydroxide known as bernalie, together with a 

complex iron and magnesium hydroxide/carbonate compound known as sjogrenite. In 

this underprotected situation, this curious compound may well be the result of the 

coprecipitation of Fe and Mg which we also showed in the previous Section using 

titration. 
 

(4) 150 mA/m2 for a week.  

Position [? Theta] (Copper (Cu))
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Figure 4.27. XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density of 150 mA/m2). 
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Table 4.10. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current density of 150 mA/m2). 
 

Visible Ref. Code Score Compound Name Scale Factor Chemical Formula 
* 00-041-1475 86 Aragonite 0.877 CaCO3 
* 00-006-0696 49 bainite, ferrite, ledkunite 0.113 Fe 
* 00-005-0628 44 Halite, syn 0.112 NaCl 
* 01-070-2150 43 Pyroaurite 0.283 (Fe2Mg6(OH)16CO3 

(H2O)4.5 ) 0.375 
 

Figure 4.27 and Table 4.10 show the results of the XRD analysis for the sample at current 

density of 150 mA/m2 after immersion for one week in artificial seawater. The layer is 

mostly composed of CaCO3 as Aragonite. However, there is also a substantial amount of 

a complex iron and magnesium hydroxide/carbonate phase similar to Pyroaruite. This 

pattern is a poor fit at low angle, there are some displaced reflections. However, overall it 

is a reasonable fit particularly as all of the matched reflections are quite broad, and they 

have similar shapes. The layer is quite thick as the ferrite substrate is only just visible; it 

is of similar thickness to the deposit formed on the sample at an applied current density of  

400 mA/m2. Mg(OH)2  alone as Brucite was not present, but Pyroaurite was detected and 

like the previous sample it is probably caused by the coprecipitation  of Fe and Mg.  

 (5) 200 mA/m2 for a week.  
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Figure 4.28. XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density of 200 mA/m2). 
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Table 4.11. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current density of 200 mA/m2). 
 
Visible Ref. Code Score Compound Name Scale Factor Chemical Formula 

* 00-041-1475 71 Aragonite 0.811 CaCO3 
* 00-006-0696 40 ferrite, substrate 0.189 Fe 
* 00-007-0420 20 Magnesium Chloride 

Hydroxide Hydrate 
0.189 Mg3 (OH)5 Cl·4 H2O 

 
Figure 4.28 and Table 4.11 show the results of the XRD analysis for the sample at current 

density of 200 mA/m2 after immersion for one week in artificial seawater. The layer is 

almost all composed of calcium carbonate occurring as aragonite. The XRD pattern from 

the iron substrate is also visible. There is a small reflection at about 11.6 degrees two 

theta which may arise from a compound known as Akaganeite (Fe based) or from a 

complex compound consisting of magnesium chloride hydroxide hydrate.  

 

(6) 300 mA/m2 for a week. 
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Figure 4.29. XRD pattern for sample surface after immersion in artificial seawater for 7 days 

(Applied current density of 300 mA/m2). 
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Table 4.12. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current density of 300 mA/m2). 
 
Visible Ref. Code Score Compound Name Scale 

Factor Chemical Formula 

* 00-041-1475 88 Aragonite 0.438 CaCO3 
* 00-006-0696 54 bainite, ferrite, ledkunite 0.938 Fe 
* 04-007-2834 56 iron(III) oxide chloride 0.280 FeClO 
* 01-086-2336 40 Calcite, magnesian 0.037 ( Mg0.129 Ca0.871 )(CO3) 

 

Figure 4.29 and Table 4.12 show the results of the XRD analysis for the sample at current 

density of 300 mA/m2 after immersion for one week in artificial seawater. The layer 

mainly consists of aragonite and magnesian (the latter compound is a combined 

magnesium and calcium carbonate). The presence of this compound, if true is very 

interesting. Originally, it has always been thought that the calcium and magnesium are 

precipitated as different and separate compounds. This dolomite-like carbonate suggests 

that there may well be co-precipitation at this particular current density and interfacial pH, 

but in this instance between the calcium and the magnesium. The necessary confirmatory 

titration experiments that would be necessary to confirm this are clearly part of future 

work. 

(7) 400 mA/m2 for a week.  
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Figure 4.30. XRD pattern for sample surface after immersion in artificial seawater for 12 days 

(Applied current density of 400 mA/m2). 
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Table 4.13. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 7 days 

(Applied current density of 400 mA/m2 ). 
Visible Ref. Code Score Compound Name Scale Factor Chemical Formula 

* 00-041-1475 88 Aragonite 0.809 CaCO3 
* 00-006-0696 46 bainite, ferrite, ledkunite 0.034 Fe 
* 04-011-5938 28 Brucite, syn 0.265 Mg(OH)2 

 
 

Figure 4.30 and Table 4.13 show the results of the XRD analysis for the sample at current 

density of 400 mA/m2 after immersion for one week in artificial seawater. The layer is 

mostly CaCO3 occurring as aragonite. There may be a very small amount of Mg(OH)2 as 

Brucite, only one very small, broad reflection is visible. The Mg(OH)2 and Fe was 

probably detected because hydrogen evolution caused film detachment causing the under 

layer of Mg(OH)2 and the Fe in the exposed base metal to be detected. In this situation 

there is no evidence of a mixed calcium/magnesium carbonate, presumably because the 

interfacial pH is more alkali. 
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4.3.7. General Discussion based on SEM/EDX and XRD results. 

At this stage some general observations may be made. The open circuit EDX maps 

shown in Plate 4.6 show an obvious deposit on the surface which clearly contains 

magnesium and iron, the magnesium map corresponds to the surface deposits and the iron 

appears to be uniformly dispersed. There was no obvious calcium deposit found either by 

EDX (Figure 4.14) or from the X-Ray Diffraction (XRD) analysis (Figure 4.24). These 

findings are contrary to data obtained by Hudson [16], who found white calcium deposits 

in certain areas. However Hudson suggested that his calcium rich regions were associated 

with cathodic calcium rich areas over mill scale. Clearly there is no mill scale on any of 

our specimens since we used cold rolled panels and the samples were polished prior to 

use. 

 

The 50 mA/m2 case is probably the most interesting current density. The steel is still 

corroding at a rate of between 0.03 and 0.038 mm/y compared with an open circuit rate of 

0.09 mm/y, only a 46% reduction, not an insignificant corrosion rate. Plate 4.7(a) clearly 

shows two different deposits, one containing calcium, the other containing magnesium. 

Interestingly, the EDX elemental distribution mapping for magnesium shown in Plate 

4.7(b) now corresponds clearly with that of the iron, given in Plate 4.7(d), which may be 

explained by the coprecipitation process we have already investigated in this Chapter. 

Conversely, the distribution of the calcium rich precipitates illustrated in Plate 4.7(c) 

correspond to the regions in the iron and magnesium maps where these elements are 

absent. Such features are also observed in the cross-section images given in Plate 4.13, 

which present the SEM images and associated EDX element distribution maps of the 

deposit obtained at an applied current density of 100 mA/m2, and which show 

codeposition of magnesium on top of iron corrosion deposits together with calcium 

deposits that have formed directly onto the uncorroded steel surface. 

 

We have clearly shown that magnesium deposition occurs only in the presence of soluble 

iron in solution. This soluble iron can only have been generated as an anodic specie at 

anodic sites on the iron surface. Therefore our suggestion is that the co-precipitated 

iron/magnesium regions on the surface at least at the early stages (seven days or less) and  

at low current densities, correspond to anodic areas on the steel surface. It follows 

therefore that the calcium containing precipitates must have occurred at cathodic sites. 

We can then gain some idea of the spacial distribution of the anodic and cathodic areas 
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by observing the calcium and magnesium distribution (SEM/EDX maps of cross-section 

of deposit at 7 days, see Plate 4.13), cathodic areas being around 50 µm in diameter and 

100 µm apart. Whether this distribution is a carry over of the situation at open circuit or 

whether this distribution is specific to the polarised state, remains to be determined. 

Looking at the Uhlig model of cathodic protection as described in Section 4.1.2.1 of this 

Chapter, it does seem that this model may be valid and our data provides some indication 

of the relative sizes and distribution of the anodic and cathodic areas, at least in 

conditions of underprotection. 
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4.3.8. Electrochemical Impedance Spectroscopy (EIS) study on films. 

The technique of Electrochemical Impedance Spectroscopy (EIS) was used on the mild 

steel samples at different levels of galvanostatic cathodic polarization with applied 

current densities varying between 0 (the open circuit potential condition) and 400 mA/m2. 

During galvanostatic polarisation the variation in potential of each specimen was 

monitored and the impedance was measured at the potential that the specimen had 

reached at the moment of time prior to commencing impedance measurement. In other 

words, the potential was not allowed to decay back to a natural potential as this would 

have removed the specimen from the specific test conditions that we were attempting to 

study. The measurements were conducted, starting from 6 hours immersion, then at 24 

hour intervals thereafter for 7 days duration, using an ACM Gill potentiostat, with an 

inbuilt frequency response analyser over a frequency range 10000 Hz to 0.1 Hz.  The 

maximum number of data readings per test was 100.  All sets recorded were analysed 

using Zview software.  

 

The model selected to simulate the behaviour of mild steel under conditions of cathodic 

protection with ongoing electrochemical anodic and cathodic processes, together with 

calcareous film formation was described by an equivalent circuit that was not arbitrarily 

chosen as is frequently the case and will be discussed in detail later in the next Section. 

The Nyquist and Bode impedance diagrams of the data with associated fitting curves 

were generated, and are presented in Figures 4.36 to Figures 4.63.  

 

4.3.8.1. Equivalent circuits.  

The equivalent circuit that was used for modelling our system and generating the 

interpretation of our impedance data was based on our SEM experimental observations of 

calcareous deposition and models that were proposed previously. Our model was based 

partly on the models proposed by Deslouis [19], [20]  and Chung [21]. The Deslouis model 

had already been used for interpretation of the corrosion resistance of the mild steel under 

cathodic protection in the presence of calcareous deposition that partially covered the 

surface (Figure 4.31(a)). In this model the properties of the continuous film were 

represented by a parallel combination of film capacitance and resistance, Cf and Rf 

respectively, together with a charge transfer resistance Rct, and a double layer capacitor 

Cdl, and collectively these represent the corrosion processes proceeding at the metal 

interface. The aforementioned workers also introduced an additional parallel combination 
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of Rd and Cd to mimic the uncovered areas (pores) of the surface.  However this model 

does not take into consideration the formation of corrosion products within the film. 

 

The model introduced by Chung [21]  has been used for the description of the corrosion 

resistance of an anodic porous coating formed during spark anodising on zinc in a NaCl 

solution. According to this model the coating film consists of outer and inner layers 

where the pores of the inner layer are filled with corrosion products formed during metal 

dissolution at the interface (Figure 4.31(b)). This model or a modification of it was 

considered as a possibility to explain our data. 

 

The original Deslouis [19, 20] model does not consider the occurrence of cathodic 

electrochemical processes, which clearly should have a significant contribution to the 

impedance of the cathodically protected steel. A second and subsequent model from 

Deslouis and co-workers [22] showed that the corrosion of a filmed mild steel under 

natural immersion conditions in NaCl solutions can be modelled by equivalent circuits 

with anodic and cathodic branches being in parallel with the double layer capacitor Cdl. 

The anodic branch is represented by the anodic charge transfer resistance Rct, and the 

cathodic branch is under mixed control and comprises the resistance of the charge 

transfer reaction  Rc,  together with a diffusion limited Warburg impedance Wc (Figure 

4.31(c)). 

 

 

 

 

 

 

 

 

(a) The original Deslouis equivalent circuit model. 
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(b) The Chung equivalent circuit model. 

 

 

 

 

 

 

 

(c) The Bonnel and Deslouis equivalent circuit model. 

Figure 4.31. Equivalent circuits of the models used previously. 

 

 (1). Choice of model based on SEM data and Nyquist diagrams.  

Analysis of our EIS data revealed that in most cases the impedance spectra consist of 

three semicircles with two semicircles of relatively small diameters probably associated 

with the properties of the calcareous film observed  at higher frequencies and one 

semicircle of large diameter probably associated with dissolution (corrosion of steel) at 

lower frequencies. Figure 4.33 is a typical example and a schematic diagram is given in 

Figure 4.32. 

 

The value of resistance of R (in Figure 4.36) could be calculated by the following 

equation:  

 
aRC RWR

111
+=

−

  …………………………………………………………………… (4-13)                         

Where WC-R is the resistive component of the Warburg Impedance (see Section 3.6.3). 

Ra is the anodic charge transfer resistance.  
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Figure 4.32. Schematic diagram of complex plane plot (Nyquist plot).   
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Figure 4.33.  Real experimental data in higher frequency 

(The Nyquist Graph for a mild steel sample with a current density of 150 mA/m2 

 for 3 days immersion in artificial seawater). 
  

(2). The proposed equivalent circuit 

 
 

 

 

 

 

 

 

 

Cdl = interface reaction; Ra = anodic charge transfer resistance; Wc  = cathodic Warburg 

Figure 4.34. Equivalent circuit for mild steel in artificial seawater 
under cathodic protection. 
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Both from the SEM/EDX results reported earlier in this Chapter, and experimental 

impedance plots, we suggest that the plot given in Figure 4.32 represents calcareous film 

deposition on a mild steel surface. Our film in Figure 4.32, as well as the solution 

resistance Rs, consists of two layers: the outer layer Louter is a calcium rich layer; and the 

inner layer Linner is a magnesium rich layer. These are represented by the high frequency 

region in Figure 4.32. From the equivalent circuit given in Figure 4.34, the outer layer 

Louter is considered to be porous and is characterized by a parallel combination of a 

capacitor Couter that is directly associated with the thickness of the calcium containing 

deposits, and a pore resistance Router that is defined by the resistance of all of the pores. 

The inner compact layer Linner and the corroding interface are introduced into the 

equivalent circuit which is in series with Router. The Linner is also characterized by a 

parallel combination of a capacitor Cinner and a resistance Rinner. The corroding interface is 

characterised by a parallel combination of a double layer capacitor Cdl, charge transfer 

anodic resistance Ra, and a finite length diffusional impedance Wc, which represents the 

cathodic process. To simplify our already complex equivalent circuit the resistance of the 

cathodic charge transfer reaction Rc was small and therefore (see the Bonnel model given 

in Figure 4.31(c)) was not taken into consideration since the system was cathodically 

polarized. The quality of our data fit (Figures 4.36 - 4.63) clearly shows the validity of 

the model chosen. 

 

(3). Schematics of cross-sections of calcareous film deposits on cathodically under-

protected, fully-protected and over-protected steel.  

An alternative and complimentary approach to analysis by equivalent circuits is to 

visualize the situation as a physical model, so schematic diagrams of sections of 

calcareous deposits formed on under-protected, fully protected and over protected steel 

samples are presented in Figure 4.35. These are largely based on previous experimental 

SEM observations (Plates 4.13 to 4.16 in Section 4.3.4.4).  

 

In cathodically under-protected conditions the steel must undergo dissolution. During 

dissolution there will also be some cathodically generated alkali and the iron will be 

deposited as corrosion products in the form of oxides and hydroxides. As shown by other  

workers [18], we have found that magnesium compounds are able to co-precipitate 

together with iron compounds to form the inner layer of the film in Section 4.3.5 and 

deposits on the cross-sections in the Section 4.3.4.4. Precipitation of the protective outer 
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layer enriched with calcium carbonate commences after the pH of the solution near the 

steel surface reaches 7.58 by calculation. However some areas of the underprotected steel 

are still actively dissolving; these areas may be regarded as defects in the protective film 

and filled with a precipitated mixture of magnesium and iron.   

 

 

 

 
   (a). Schematic of cross-section of deposit formed in cathodically under protected situation.  

 

 

 
          (b). Schematic of cross-section of deposit formed in full cathodic protection situation.  

 

 

 
 
 

           (c). Schematic of cross-section of deposit formed in over cathodic protection situation.  

Figure 4.35.  Schematic diagrams of interface impedance models of deposits formed on mild steel in 
artificial seawater under various conditions of cathodic protection: 

(a) under-protection, (b) full protection, (c) over protection.  
 

Under conditions where steel is fully cathodically protected, as illustrated in Figure 

4.35(b) above, and Plates 4.14 and 4.15 in Section 4.3.4.4, the deposit that forms on the 

surface consists of two clearly defined layers: the thin outer layer (L1) is composed of a 

Ca rich layer, whilst the inner layer (L2) is a Mg rich layer. The deposition follows the 

mechanism proposed for the underprotected system except that the defects are now no 

longer present under these new conditions of full cathodic protection. 

 

For the situation of overprotection, as illustrated in Figure 4.35(c) above, and Plate 4.16 

in Section 4.3.4.4, we propose an alternative cathodic process of water reduction giving 

hydrogen. We therefore have the interesting situation where evolution of hydrogen at the 

deposit/metal interface is thought to cause fracture of the brittle films on the iron surface. 

These pores are also represented in our model as Router and/or Rinner.  
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4.3.8.2. The Nyquist and Bode impedance diagrams at different applied current 

densities. 

The Nyquist and Bode graphs generated for mild steel samples under different levels of 

cathodic protection in artificial seawater are presented in the set of graphs given in 

Figures 4.36 to Figure 4.63, and these show both the experimental curves and the fitting 

curves. Not all the impedance data is displayed as graphs in this Thesis but all the values 

that were calculated from the equivalent circuits are given in Tables 4.14 to 4.20. 

 
From Figure 4.36 to Figure 4.63, the high frequency regions are thought to represent the 

porous calcareous film with the low frequencies being ascribed to the charge transfer 

resistance at the film metal interface. The graphs of whole frequency regions (Frequency 

from 10000Hz to 0.1Hz) together with an inset plot of a partial enlargement of the high 

frequency regions will be given in the same Nyquist graphs.                     

 

Explanations for the behaviour of this low frequency region as a function of time and 

current density have been put forward in terms of the specific electrochemical reaction 

taking place and the nature and integrity of the calcareous films produced.  

 

(1) Open circuit. 
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                          (a)  Nyquist graph                                                       (b) Bode graph 

                 
 Figure 4.36. Impedance spectra for open circuit conditions of mild steel sample 

immersed for 6 hours in artificial seawater. 
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Figure 4.37. Impedance spectra for open circuit conditions of mild steel sample 
immersed for 24 hours in artificial seawater.  
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Figure 4.38. Impedance spectra for sample under open circuit conditions  
immersed for 72 hours (3 days) in artificial seawater. 
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(a)  Nyquist graph                                             (b) Bode graph 

 
Figure 4.39. Impedance spectra for sample under open circuit conditions  

                                       immersed for 168 hours (7 days)  in artificial seawater.   
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Table 4.14. Best fit results for equivalent circuit elements for open circuit conditions. 
 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 9.8 10.9 12.7 10.8 11.5 11.5 9.6 11.7 
Couter (F/ cm2) 2.1*10-6 3.3*10-6 5.6*10-6 2.1*10-6 1.9*10-6 1.4*10-6 0.7*10-6 0.9*10-6 
Router(Ω.cm2) 5.5 4.4 5.0 5.5 5.6 7.5 10 8.4 
Cinner(F/ cm2) 51*10-6 39*10-6 51*10-6 47*10-6 52*10-6 54*10-6 51*10-6 60*10-6 
Rinner(Ω.cm2) 19.7 24.3 30.5 30 31 40 26 36.7 
WC-R(Ω.cm2) 2200 2900 3000 3500 2200 3400 3100 3300 

WC-T 3.3 2.1 1.2 1.8 0.9 1.5 1.7 2.1 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 2700 6000 5000 4200 4300 3100 4300 3100 
Cdl(F/ cm2) 27*10-6 27*10-6 37*10-6 33*10-6 34*10-6 35*10-6 30*10-6 39*10-6 

 
 
(2) Applied current density of 50 mA/m2. 
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Figure 4.40. Impedance spectra for mild steel samples with current density of 50 mA/m2  
for 6 hours immersion in artificial seawater. 
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Figure 4.41. Impedance spectra for mild steel samples with current density of 50 mA/m2  
for 24 hours immersion in artificial seawater. 
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Figure 4.42. Impedance spectra for mild steel samples with current density of 50 mA/m2 

 for 72 hours (3 days) immersion in artificial seawater. 
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Figure 4.43. Impedance spectra for mild steel samples with current density of 50 mA/m2 

 for 168 hours (7 days) immersion in artificial seawater.  
 

Table 4.15. Best fit results for equivalent circuit elements at applied current density of 50mA/m2. 
 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 5.5 11.1 8.5 11.6 10.2 11.5       11.8      11.6 
Couter (F/ cm2) 2*10-6 1.7*10-6 3.7*10-6 0.5*10-6 1.0*10-6 4.1*10-6 1.3*10-6 1*10-6 
Router(Ω.cm2) 4.1 6 4.7 15.3 8.7 5.2 9.6 11 
Cinner(F/ cm2) 34*10-6 32*10-6 45*10-6 46*10-6 38*10-6   52*10-6 52*10-6 41*10-6 
Rinner(Ω.cm2) 18.7 16.2 33 35 20 26.3 21 21 
WC-R(Ω.cm2) 3000 5800 4800 4300 4300 3700 2100 3300 

WC-T 1 3 3.3 3.2 3.6 3.3 4 3.2 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 3100 4000 3500 3100 5700 3100 2400 2600 
Cdl(F/ cm2) 54*10-6 34*10-6 23*10-6 28*10-6 19*10-6 25*10-6 19*10-6 27*10-6 
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(3) Applied current density of 100 mA/m2. 
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Figure 4.44. Impedance spectra for mild steel samples with current density of 100 mA/m2  
for 6 hours immersion in artificial seawater. 
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Figure 4.45.  Impedance spectra for mild steel samples with current density of 100 mA/m2  
for 24 hours immersion in artificial seawater. 
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Figure 4.46. Impedance spectra for mild steel samples with current density of 100 mA/m2  
for 72 hours (3 days) immersion in artificial seawater. 
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Figure 4.47. Impedance spectra for mild steel samples with current density of 100 mA/m2  
for 168 hours (7 days) immersion in artificial seawater. 

 
Table 4.16. Best fit results for equivalent circuit elements at applied current density of 100mA/m2. 

 
Immersion 

time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 10.2 7.7 12.9 12.9 8.1 11.8 11 12.4 
Couter (F/ cm2) 1.9*10-6 0.6*10-6 0.7*10-6 0.7*10-6 1 *10-6 1*10-6 3.2*10-6 3.7*10-6 
Router(Ω.cm2) 6.8 11.7 10.9 11.9 8.3 9.1 5 4.5 
Cinner(F/ cm2) 79*10-6 31*10-6 40*10-6 41*10-6 33.2*10-6 36*10-6 33*10-6 33*10-6 
Rinner(Ω.cm2) 20.3 10.1 24.4 38.5 23.8 30 40.7 22.8 
WC-R(Ω.cm2) 3100 5200 6900 8100 6800 7300 7500 7900 

WC-T 3.3 1.7 3.3 2.8 2.3 3 3.7 2.2 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 58700 20000 8000 9600 6600 8800 10000 20000 
Cdl(F/ cm2) 94*10-6 2.6*10-6 15*10-6 15*10-6 19*10-6 17*10-6 32*10-6 11*10-6 

 

(4) Applied current density of 150 mA/m2. 
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Figure 4.48. Impedance spectra for mild steel samples with current density of 150 mA/m2  

for 6 hours immersion in artificial seawater. 
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Figure 4.49. Impedance spectra for mild steel samples with current density of 150 mA/m2  

for 24 hours immersion in artificial seawater. 
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Figure 4.50. Impedance spectra for mild steel samples with current density of 150 mA/m2 

for 72 hours ( 3 days) immersion in artificial seawater. 
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Figure 4.51. Impedance spectra for mild steel samples with current density of 150 mA/m2  

for 168 hours (7 days) immersion in artificial seawater. 
 

 
 
 
 
 



Chapter 4. Cathodic Protection of Mild Steel in Artificial Seawater and the Role of the Calcareous Film 

210 

Table 4.17. Best fit results for equivalent circuit elements at applied current density of 150mA/m2. 
 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 12.3 13.6 12.1 9 10.5 9.8 10.8      11.8 
Couter (F/ cm2) 2.1*10-6 1.1*10-6 0.6*10-6 2.4*10-6 3.4*10-6 2.6*10-6 3.2*10-6 1.3*10-6 
Router(Ω.cm2) 7.4 10.7 14.6 6 5.4 6.8 6.3 9.8 
Cinner(F/ cm2) 43*10-6 52*10-6 45*10-6 43*10-6 35*10-6 37*10-6 34*10-6 36*10-6 
Rinner(Ω.cm2) 58 55 67 28 34 48 41 61 
WC-R(Ω.cm2) 7400 7400 8900 7900 9000 10000 8800 7800 

WC-T 2.8 4.4 4.6 3.6 4.3 5 5 3.5 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 100400 130000 15400 14900 13800 14600 22200 14300 
Cdl(F/ cm2) 26*10-6 36.7*10-6 28*10-6 32*10-6 24*10-6 25*10-6 25*10-6 23*10-6 

 

(5) Applied current density of 200 mA/m2. 

0 1000 2000 3000 4000 5000 6000 7000
0

-1000

-2000

-3000

-4000

-5000

-6000

-7000

15 18 21 24 27 30
-3
-6
-9

-12
-15
-18

 

 

Z'
'(Ω

.c
m

2 )

Z'(Ω.cm2)

 
 

Z'
'(Ω

.c
m

2 )

Z'(Ω.cm2)

 experiment
 fit

  

-1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

ta
n(

th
et

a)
 

Log(f)

 experiment
 fit

 
(a)  Nyquist graph                                        (b) Bode graph 

 
Figure 4.52. Impedance spectra for mild steel samples with current density of  200 mA/m2  

for 6 hours immersion in artificial seawater. 
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Figure 4.53. Impedance spectra for mild steel samples with current density of  200 mA/m2  

for 24 hours immersion in artificial seawater. 
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Figure 4.54. Impedance spectra for mild steel samples with current density of 200 mA/m2  

for 72hours (3days) immersion in artificial seawater. 
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Figure 4.55. Impedance spectra for mild steel samples with current density of 200 mA/m2  

for 168 hours (7 days) immersion in artificial seawater. 
 

Table 4.18. Best fit results for equivalent circuit elements at applied current density of 200mA/m2. 

 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 11 10.7 13.3 13.4 13.3 11.6 13      13.6 
Couter (F/ cm2) 2*10-6 2*10-6 1.1*10-6 1.7*10-6 1.5*10-6 3.1*10-6 2*10-6 2.1*10-6 
Router(Ω.cm2) 7.2 7.4 10.1 7.6 8.5 6.8 8.3 8.1 
Cinner(F/ cm2) 48*10-6 48*10-6 49*10-6 44*10-6 42*10-6 37*10-6 39*10-6 35*10-6 
Rinner(Ω.cm2) 55 65.6 73 52.9 66.1 61.7 73.8 70 
WC-R(Ω.cm2) 6900 10600 8800 7300 8700 11100 10000    9000 

WC-T 2.1 6.96 4.3 3.7 3.6 5.8 7.3 8.6 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 1.15*1015 2.8*1010 34600 10300 23800 12000 25000 30000 
Cdl(F/ cm2) 26*10-6 27*10-6 28*10-6 28*10-6 26*10-6 32*10-6 30*10-6 37*10-6 
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(6) Applied current density of 300 mA/m2. 
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Figure 4.56. Impedance spectra for mild steel samples with current density of  300 mA/m2 

for 6 hours immersion in artificial seawater. 
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Figure 4.57. Impedance spectra for mild steel samples with current density of  300 mA/m2  

for 24 hours immersion in artificial seawater. 
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Figure 4.58. Impedance spectra for mild steel samples with current density of 300 mA/m2 

for 72 hours (3 days)  immersion in artificial seawater. 
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Figure 4.59. Impedance spectra for mild steel samples with current density of 300 mA/m2 

for 168 hours (7 days)  immersion in artificial seawater. 
 

Table 4.19. Best fit results for equivalent circuit elements at applied current density of 300mA/m2. 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 7.7 8. 8 8.7 8.7 9.6       8.8        8.1 
Couter (F/ cm2) 2.3*10-6 2.5*10-6 2.1*10-6 3.1*10-6 3.2*10-6 4.3*10-6 3*10-6 2.3*10-6 
Router(Ω.cm2) 5.8 6.1 6.4 6 6.4 6.8 8.3 8.9 
Cinner(F/ cm2) 41*10-6 46*10-6 37*10-6 33*10-6 34*10-6 26*10-6 20*10-6 16*10-6 
Rinner(Ω.cm2) 26.8 24 21 27 35 54 58 52 
WC-R(Ω.cm2) 4100 4000 3300 2400 2600 2200 2000 1800 

WC-T 1.4 2.2 1.4 0.6 1.1 0.7 0.8 0.8 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 
Cdl(F/ cm2) 27*10-6 41*10-6 39*10-6 38*10-6 38*10-6 36*10-6 28*10-6 19*10-6 

 

(7) Applied current density of 400 mA/m2. 
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Figure 4.60. Impedance spectra for mild steel samples with current density of 400 mA/m2  
for 6 hours immersion in artificial seawater. 
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Figure 4.61. Impedance spectra for mild steel samples with current density of 400 mA/m2  

for 24 hours immersion in artificial seawater. 
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Figure 4.62. Impedance spectra for mild steel samples with current density of 400 mA/m2  

for 72 hours (3 days) immersion in artificial seawater. 
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Figure 4.63. Impedance spectra for mild steel samples with current density of 400 mA/m2 

for 168 hours (7 days) immersion in artificial seawater. 
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Table 4.20. Best fit results for equivalent circuit elements at applied current density of 400mA/m2. 
 

Immersion 
time (h) 6h 24h 48h 72h 96h 120h 144h 168h 

Rs(Ω.cm2) 10.2 12.1 10.1 9.1 12.8 15.4      17.81       15 
Couter (F/ cm2) 3.6*10-6 1*10-6 2.6*10-6 1.6*10-6 0.7*10-6 0.6*10-6 0.5*10-6 0.5*10-6 
Router(Ω.cm2) 5.3 9.2 5.8 7.8 14.9 17.3 17 22.2 
Cinner(F/ cm2) 52*10-6 68*10-6 38*10-6 29*10-6 26*10-6 24*10-6 24*10-6 28*10-6 
Rinner(Ω.cm2) 32.2  29 28 29 38 43 38 43.8 
WC-R(Ω.cm2) 3100 2000 2500 1400 1100 1400 1000 1000 

WC-T 2.2 1.7 1.4 0.64 0.62 0.81 0.62 0.63 
WC-P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ra(Ω.cm2) 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 
Cdl(F/ cm2) 43*10-6   50*10-6 41*10-6 33*10-6 38*10-6 51*10-6 47*10-6 28*10-6 
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4.3.8.3. Comparison and Discussion.  

The cathodic processes on the steel surface are described by the diffusion Warburg 

impedance since diffusion of the electrochemically active species is thought to be a 

limiting stage of the cathodic process. The data which has been extracted from our model 

shows an excellent fit with the Warburg impedance WC-R which is thought to equate to 

the limiting current density of the process.  

 

Another parameter contained within the Warburg impedance and which is a feature of 

Zview, is W-T which equals D
2δ , where D is the diffusion coefficient of the diffusing 

electroactive species and δ is its diffusion layer thickness.  
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Figure 4.64.   Plots of values for the cathodic charge transfer resistance  WC-R with increasing time  

 at different applied current densities. 
 
 

The parameters for the cathodic charge transfer resistance WC-R are given in Figure 4.64, 

and Tables 4.21, and the values of anodic charge transfer resistance Ra are also presented 

in Table 4.22. The anodic charge transfer process is clearly iron corrosion, and as the 

resistance increases so corrosion rate decreases. Referring to the data given in Table 4.22 

the regions of full protection can be seen. Arbitrarily we have highlighted those regions 

where anodic charge transfer resistances (Ra) are over 100,000 Ω.cm2 (highlighted in the 

blue area) this indicates that the anodic reaction has become infinitely small and that the 

cathodic protection is working. 
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Table 4.21. Values of cathodic charge transfer resistance WC-R (Ω.cm2) with increasing immersion 
time at the different applied current densities.  

 
Applied current 

densities (mA/m2) 
6 h 24h 48h 72h 96h 120h 144h   168h 

0  (open circuit) 2200 2900 3000 3500 2200 3400 3100 3300 

50mA/m2 3000 5800 4800 4300 4300 3700 2100 3300 

100mA/m2 3100 5200 6900 8100 6800 7300 7500 7900 

150mA/m2 7400 7400 8900 7900 9000 10000 8800 7800 

200mA/m2 6900 10600 8800 7300 8700 11100 10000 9000 

300mA/m2 4100 4000 3300 2400 2600 2200 2000 1800 

400mA/m2 3100 2000 2500 1400 1100 1400 1000 1000 

 
Table 4.22. Values of anodic charge transfer resistance Ra (Ω.cm2 ) with increasing immersion time  

at the different applied current densities. 
 

Applied current 

densities(mA/m2) 
6 h 24h 48h 72h 96h    120h 144h     168h 

0  (open circuit) 2700 6000 5000 4200 4300 3100 4300 3100 

50mA/m2 3100 4000 3500 3100 5700 3100 2400 2600 

100mA/m2 58700 20000 8000 9600 6600 8800 10000 20000 

150mA/m2 100400 130000 15400 14900 13800 14600 22200 14300 

200mA/m2 1.15*1015 2.8*1010 34600 10300 23800 12000 25000 30000 

300mA/m2    1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 

400mA/m2    1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 1*1020 

 

In the open circuit and 50 mA/m2 cases (Figure 4.64 and Table 4.21), we are obviously 

looking at an unprotected and underprotected surface where the charge transfer processes 

are both the oxygen reduction reaction and the iron corrosion reaction. In these cases, the 

values of cathodic resistance with increasing time at various current densities are given in 

Table 4.21, and these range between 2000 - 6000 Ω.cm2. In addition, the values obtained 

for the anodic resistance Ra were also fairly low, being between 2000 - 6000 Ω.cm2, as 

shown in Table 4.22. Overall, these findings indicate that the oxygen reduction reaction 

and the iron corrosion reaction are both happening at the same time. Both these reactions 

are taking place on an iron surface which is not too well covered by the calcareous film 

and is clearly corroding; as can be seen in the optical images obtained (Plates 4.2(a) and 

(b)).  

 

Considering next the values of cathodic resistance WC-R obtained in the case of using 

applied current densities of 100 mA/m2, 150 mA/m2 and 200 mA/m2. It is evident from 

Table 4.21, that the values of cathodic resistance WC-R obtained at these three applied 

current densities increased concurrently with increasing applied current density.  With the 
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sole exception of the values obtained at 72 hours, all the values of cathodic resistance 

W3-R obtained at a current density of 200 mA/m2 were substantially higher than the 

corresponding values obtained at a current density of 100 mA/m2. This indicates that the 

surfaces were covered by a fairly good calcareous deposit.  

 

The values obtained for WC-R at 100 mA/m2 can be discussed further. There is a slow 

steady increase in WC-R between 3100 to 8100 Ω.cm2 during the first 72 hours of the 

immersion period, then WC-R declines steadily to 6800 Ω.cm2  after a further 24 hours of 

immersion (total 96 h), before increasing again to almost 8000 Ω.cm2  at 168 hours of 

immersion. This pattern of increasing resistance followed by decrease then subsequent 

increase is most likely explained by detachment of regions of the calcareous film after 72 

hours. At this level of current density the visual evidence is that there is still some 

corrosion of the steel (Plate 4.2(d)). Also, the potential data (Figure 4.10) indicates that it 

has reached the nominal accepted protection criterion (-774 mV (SCE)), but our weight 

loss data (Figure 4.4) indicates some corrosion has occurred after 30 days immersion, and 

a similar result can be seen with the Humble data (Figure 4.5) after an experimental 

period of 1 year. The SEM micrographs presented in Plate 4.8 and Plate 4.13 together 

with the EDX spectra given in Figure 4.16 show coherent deposits of magnesium rich 

precipitates underlying iron corrosion products with calcium containing growths 

occurring at adjacent areas. The steady increase is probably a consequence of a decline in 

the oxygen reduction reaction due to the growth and compactness of these mixed iron, 

magnesium and calcium films inhibiting oxygen transport. One would expect from other 

longer term data that at this current density the film would eventually fully protect the 

steel substrate and the potential would then decline to significantly below the protection 

potential. There is some evidence for this from data obtained for real marine structures [14].  

 

The two intermediate current densities of 150 and 200 mA/m2 may be considered 

together. Our weight loss data clearly shows corrosion to have ceased at these values. 

Photographic evidence shows slight browning of the surface at 150 mA/m2 (Plate 4.2(e)). 

An analysis of a cross section of the sample and film deposit using SEM clearly shows 

evidence of the film beginning to fracture especially at 200 mA/m2 (Plate 4.2(f)). A 

tentative explanation of the behaviour of  WC-R with time at these two current densities 

can now be proposed. Initially, after one day of immersion, the value of WC-R rises 

dramatically to around 10000 Ω.cm2. Again it is suggested that a film grows on the steel 
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surface which is an oxygen barrier and we are seeing a reduction in the oxygen charge 

transfer resistance. However, at these current densities, over time, the film eventually 

begins to crack, and subsequently becomes less compact and as a consequence, WC-R 

begins to fall erratically. With further time, the film repairs and WC-R begins to climb 

again. This is our explanation of the longer term behaviour of the films at these two 

current densities. A slight indication of film fracture and repair was observed in the case 

of a current density of 100 mA/m2, but with the next two higher current densities of 150 

and 200 mA/m2, the phenomenon was much more pronounced and obvious. In addition, 

comparing with the open circuit and 50 mA/m2 cases, the values obtained in these 

conditions for the anodic resistance Ra were generally increased significantly at the 

higher applied current densities, which are shown in Table 4.22. Overall, for these 150 

mA/m2 and 200 mA/m2 cases, the data indicates that there were mainly oxygen reduction 

reactions and decreased iron corrosion reactions taking place on the steel surface. 

 

For the 300 mA/m2 and 400 mA/m2 cases, according to the plots presented in Figure 4.64 

and values given in Table 4.21, the values of cathodic resistance WC-R were generally 

very low because of the start of hydrogen evolution which is thought to be responsible for 

the detachment of the calcareous film. This was especially evident in the case of an 

applied current density of 400 mA/m2 where the steel potential was around -1100 mV 

(SCE) in Figure 4.10. The 300 mA/m2 curve looks very similar and the same explanation 

as given for the 400 mA/m2 case is thought to hold, except that the values obtained for 

the 300 mA/m2 situation were noted to be slightly higher than the values obtained with a 

current density of 400 mA/m2, as is evident from the data given in Table 4.21. This means 

that the films present on the surface of the steel provide some resistance to the cathodic 

reaction. The SEM image shown in Plate 4.12(b) clearly gives the appearance of a break-

away process occurring at -1050 mV SCE. At this potential, we would expect hydrogen 

evolution, which would cause intermittent dislodging of the calcareous film and a metal 

surface which would be partially film free. The anodic resistances Ra shown in Table 4.22, 

which were over 100,000 Ω.cm2, indicated that in these cases, the anodic reaction had 

stopped, so there was only the cathodic reaction (the oxygen reduction reaction and 

hydrogen evolution) occurring on the steel surface. 

 

So, overall, the values of WC-R would appear to represent the restricted or unrestricted 

diffusion of active species that support the cathodic reaction on a steel surface that is 
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mainly the oxygen reduction reaction plus a contribution from the water reduction 

process.  

 

According to the data given in Table 4.22, the values of anodic resistance Ra generally 

become higher with the increasing current densities. As can be seen from Table 4.22, the 

anodic reactions slowed down when the structure had been cathodically polarized with 

the higher applied current densities. This also indicates that the anodic reactions ceased at 

the full protected situation (300 mA/m2: -1050 mV(SCE); and 400 mA/m2: -1100 mV 

(SCE)). The surface has been polarized to below the oxidation/reduction potential of the 

reaction 

Fe + 2OH- = Fe(OH)2 

which may be calculated [18] as -877 mV SHE (-1119 mV (SCE)). 
 

Table 4.23. Values of WC-T with increasing time  
at different applied current densities. 

 
Applied current 
densities(mA/m2) 6 h 24h 48h 72h 96h 120h 144h     168h 

0  (open circuit) 3.3 2.1 1.2 1.8 0.9 1.5 1.7 2.1 
50mA/m2 1 3 3.3 3.2 3.6 3.3 4 3.2 

100mA/m2 3.3 1.7 3.3 2.8 2.3 3 3.7 2.2 
150mA/m2 2.8 4.4 4.6 3.6 4.3 5 5 3.5 
200mA/m2 2.1 7 4.3 3.7 3.6 5.8 7.3 8.6 
300mA/m2 1.4 2.2 1.4 0.6 1.1 0.7 0.8 0.8 
400mA/m2 2.2 1.7 1.4 0.6 0.6 0.8 0.6 0.6 
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Figure 4.65.   Plots of values for WC-T with increasing time at different applied current densities. 
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 At the open circuit potential condition, the average value of WC-T is 1.8. The average 

diffusion path of the active specie (oxygen) can be calculated from DW TC ∗= −δ , 

where D=225*10-5cm/s [23] the diffusion coefficient of oxygen. This value is assumed to 

be constant during our measurements and can be used to calculate various values of  δ at 

our chosen current densities. Therefore the average diffusion path of oxygen at the open 

circuit condition is 64*10-3 mm which is 64 μm.  

 

In the cases of applied current densities of  50 mA/m2 and 100 mA/m2 (Figure 4.65 and 

Table 4.23), the values of  WC-T were fairly similar over the total immersion time with 

average values of 3.1 and 2.8 respectively. The average diffusion path for O2 increased to 

83 μm and 79 μm.  

 

In the 150 mA/m2 and 200 mA/m2 cases, the  values of  WC-T were higher, lying between 

2.8 - 8.6, which indicates that protective deposits were forming under conditions of full 

cathodic protection, especially at 200 mA/m2, where the  values of  WC-T increased with 

time after 96 hours  immersion,  from 3.6 at 96 hours to 8.6 at 168 hours. The average 

values of  WC-T in these two cases were 4.2 and 5.3 respectively over the total immersion 

time, and the diffusion path for oxygen increased to 97.2 μm and 109 μm. 

 

It is interesting to note, that at the cathodic polarisation conditions of 300 mA/m2 and 400 

mA/m2, the values of  WC-T reduced to 1.14 and 1.06, which was probably due to 

hydrogen evolution that lead to film detachment and easy access of active species to the 

steel surface, and the diffusion path for oxygen decreased to 50.3 μm and 48.9 μm. 
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Figure 4.66. Plots of values for the inner layer resistor Rinner 
with increasing time  at different applied current densities. 

 

Table 4.24. The inner layer (L2) resistance Rinner (Ω.cm2 ) with increasing immersion time.  
at the different applied current densities. 

 
Applied current 
densities(mA/m2) 6h 24h 48h 72h 96h      120h 144h       168h 

0(open circuit) 19.7 24.3 30.5 30 31 40 26 36.7 
50mA/m2 18.7 16.2 33 35 20 26.3 21 21 

100mA/m2 20.3 10.1 24.4 38.5 23.8 30 40.7 22.8 
150mA/m2 58 55 67 28 34 48 41 61 
200mA/m2 55 65.6 73 52.9 66.1 61.7 73.8 70 
300mA/m2 26.8 24 21 27 35 54 58 52 
400mA/m2 32.2  29 28 29 38 43 38 43.8 

 

The contribution of the inner and outer layers of the film to the impedance is insignificant. 

However the variation of  Rinner and Cinner can be deduced from the results. 

 

Considering the results given in Figure 4.66 and Table 4.24, the resistance Rinner of the 

inner layer increases with increasing time in artificial sea water at different levels of 

cathodic protection. For the cathodic protection cases of 150 mA/m2 and 200 mA/m2, the 

inner layer (L2) was assumed to be primarily composed of the compact magnesium and 

iron compounds and has a slightly increased Rinner. But in the cases of the applied current 

densities of 50 mA/m2 and 100 mA/m2, the inner layer (L2) was assumed to be primarily 

composed of a mixture of the iron corrosion product and a co-deposited Mg compound. 

Generally the values of Rinner are similar for all applied current densities. 
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Figure 4.67. Plots of values for the capacitor Cinner with increasing time  

at different applied current densities. 
 

Table 4.25. Values of the inner layer (L2) capacitor Cinner (F) with increasing immersion time  
at the different applied current densities.  

 
Applied current 

densities(mA/m2) 
6h 24h 48h 72h 96h      120h 144h       168h 

0(open circuit) 51*10-6 39*10-6 51*10-6 47*10-6 52*10-6 54*10-6 51*10-6 60*10-6 

50mA/m2 34*10-6 32*10-6 45*10-6 46*10-6 38*10-6   52*10-6 52*10-6 41*10-6 

100mA/m2 79*10-6 31*10-6 40*10-6 41*10-6 33.2*10-6 36*10-6 33*10-6 33*10-6 

150mA/m2 43*10-6 52*10-6 45*10-6 43*10-6 35*10-6 37*10-6 34*10-6 36*10-6 

200mA/m2 48*10-6 48*10-6 49*10-6 44*10-6 42*10-6 37*10-6 39*10-6 35*10-6 

300mA/m2 41*10-6 46*10-6 37*10-6 33*10-6 34*10-6 26*10-6 20*10-6 16*10-6 

400mA/m2 52*10-6 68*10-6 38*10-6 29*10-6 26*10-6 24*10-6 24*10-6      28*10-6 

 

From the data presented in Figure 4.67 and Table 4.25, the values of the capacitance 

Cinner of the inner layer (L2) did not change much with increasing immersion time and 

cathodic polarization and has an average value of 40*10-6 F/cm2. This indicates that the 

thickness of the inner layer remains similar for all cases of cathodic protection. This 

finding confirms that the thickness of calcareous deposit is determined by growth of the 

outer layer. 
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The thickness of the inner film has been calculated by the following equation: 

d
C 0εε
=                  …………………………………………………………….         (4 -14)                         

Where ε0: dielectric  permeability ε0  =8.854 *10-12 F/m-1 ; 

           ε: the dielectric constant, 
32

)1( MgCOOH εθθεε −+= ; 

                   80
2
=OHε ;  1.8

3
=MgCOε [23] 

            θ : the proportion of water in the layer. 

 

By varying θ, the thicknesses of inner layer could be calculated from the previous 

equations and were in the order of nanometers, which indicates that the high frequency 

tail of the impedance spectra with low values of impedance were impossible to resolve. 

 

The contribution of the outer layer to the total impedance is negligible as well. According 

to the data presented in Tables 4.14 to 4.20, the variation of Router is in the range 4 - 22 

Ω.cm2, similar to solution resistance that varies from 5 - 18 Ω.cm2. The outer layer 

capacitance Couter was in the range of 0.5 - 5*10-6 F/cm2. There was also no significant 

change in capacitance with varying applied current density. 
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4.3.8.4. Impedance work conclusions. 

1.  We have proposed an equivalent circuit to correspond with our impedance data based 

on the evidence obtained from SEM/EDX analysis. 

 

2.  This equivalent circuit is valid for all levels of current density used in this work from 

zero (open circuit) to 400 mA/m2. 

 

3. The basic concept of our equivalent circuit is a limited layer Warburg diffusion model 

in combination with a porous layer with defects. 

 

4. The effect of increasing the current density is clearly seen in the anodic charge transfer 

process of iron dissolution with the charge transfer resistance becoming infinitely large at 

higher current densities (Applied current densities at 300 mA/m2 and 400 mA/m2 cases).   

 

5.  The Warburg diffusion model is applied to the cathodic process, mainly the oxygen 

reduction reaction. The cathodic Warburg diffusion WC, consisted of three parameters, 

WC-R, WC-T, and WC-P, and it evaluated the cathodic reaction level. 

 

6.  We have assumed literature values of the oxygen diffusion coefficients from which we 

have calculated oxygen diffusion path distances. 

 

7.  The values of the oxygen diffusion path distances correspond well with the SEM 

values obtained for the calcareous film thicknesses. 

 

8.  The effects of over protection and hydrogen evolution are to cause film rupture. Film 

rupture events can be clearly seen from the oxygen diffusion path distances. 
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4.4. Variable current density experiments. 
Earlier in the introduction to this Chapter (Section 4.3) we have already given the 

justification for carrying out this next set of experiments. For this part of the study, a 

higher current density (either 200 mA/m2 or 300 mA/m2) was initially used for the first 

three days, during which time some deposits were formed, and then a reduced current 

density of 100 mA/m2 was employed for the remainder (9 days) of the test period (total 

immersion time 12 days).  

 

A further experimental study was performed using samples which were subjected to 

constant current densities of 200 mA/m2 and 300 mA/m2 during an initial immersion 

period of six days, and then the current density was subsequently decreased to 50 mA/m2 

for a further 6 days (total immersion time 12 days).  

 

An additional set of control samples was tested by being immersed for the entire 12 day 

period at a constant current density of 200 mA/m2 and 300 mA/m2 respectively.  

 

In all cases, the potential of the samples which had the same initial applied current 

densities were compared. For all samples, at the termination of the 12 day period of 

immersion, the appearance and composition of the deposited films were then investigated 

and analysed using SEM, EDX and XRD techniques, as described in previous 

experiments.   

 

4.4.1. Potential Measurements. 

For this set of immersion tests designed to study and compare the effects of both constant 

and variable current densities, the six different experimental regimes employed can be 

summarized as follows: 

(i). A constant current density of 200 mA/m2 was used for the entire 12 day immersion 

period.  

(ii). A current density of 200 mA/m2 was employed for an initial three days, then the 

current density was reduced to 100 mA/m2 for the remainder of the 12 day test period. 

(iii). A current density of 200 mA/m2 was employed for an initial six days, then a reduced 

current density of 50 mA/m2 was employed for a further six days. 
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(iv). A constant current density of 300 mA/m2 was used for the entire 12 day immersion 

period.  

(v). A current density of 300 mA/m2 was employed for an initial three days, then the 

current density was reduced to 100 mA/m2 for the remainder of the 12 day test period. 

(vi). A current density of 300 mA/m2 was employed for an initial six days, then a reduced 

current density of 50 mA/m2 was employed for a further six days. 
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Figure 4.68. Graph showing plot of daily potential measurements obtained over a 12-day 

immersion period in artificial seawater 
(Applied constant current density of 200 mA/m2). 
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Figure 4.69. Graph showing plot of daily potential measurements  obtained over a 12-day  

immersion period in artificial seawater  
 (Applied current density of 200 mA/m2 for the first 3 days then decreased to 100 mA/m2). 
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Figure 4.70. Graph showing plot of daily potential measurements obtained over a 12-day 

immersion period in artificial seawater 
 (Applied current density of 200 mA/m2 for the initial 6 days then decreased to 50 mA/m2). 
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Figure 4.71. Graph showing plot of daily potential measurements obtained 

over a 12-day immersion in artificial seawater 
(Applied constant current density of 300 mA/m2). 
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Figure 4.72. Graph showing plot of daily potential measurements obtained  

over a 12-day immersion in artificial seawater  
(Applied current density of 300 mA/m2 for the initial period of 3 days then decreased to 100 mA/m2). 
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Figure 4.73. Graph showing plot of daily potential measurements obtained over a 12-day 

 immersion in artificial seawater  
(Applied current density of 300 mA/m2 for the first 6 days then decreased to 50 mA/m2). 

 

Figures 4.68 to 4.70 illustrate the graphs plotted for the potential/time measurements 

recorded daily for the three different experimental situations (i) to (iii) respectively over 

the 12 day testing period. From Figure 4.68, it was evident that the potential was 

decreasing with time over the entire 12 days, which indicated that the calcareous film was 

growing with time. According to the potential plots illustrated in Figure 4.69, the 

potential became slightly positive between day 3 to 6 after the current density was 

reduced to 100 mA/m2, but then become more negative again after day 9. Also, since the 

values of potential recorded were mainly about or over -0.9V (see Figure 4.69), this 

indicated that this sample would still be cathodically protected (earlier we have shown 

that the minimum potential required to achieve complete protection was -0.895V (SCE) 

from Section 4.2.1). In the case of the sample that was subjected to an initial current 

density of 200 mA/m2 for 6 days, then followed by a reduced current density of 50 

mA/m2 for the remaining 6 days (Figure 4.70), the values of the sample potentials 

became much more positive after the current density was reduced to 50 mA/m2, and it 

was around -0.77V at 7 days. In addition, it was noted that significant corrosion occurred 

on the sample surface, which means that the sample was under protected. 
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Figures 4.71 to 4.73 illustrate the graphs plotted for the potential/time measurements 

recorded daily for the three different experimental situations (iv) to (vi), over the 12 day 

testing period. From Figures 4.71 to 4.73, all of the potentials obtained for the three 

samples were over -900mV, which suggests that they would still be totally protected 

(Chapter 4, Section 4.2.1). Also, from the visual inspection of the samples, there was no 

corrosion occurring on the surfaces of the samples, and also no corrosion was observed 

on the sample surfaces that were covered by a porous calcareous film. These observations 

and results indicate that the initial applied current density is playing a major important 

role in the cathodic protection of the samples. These results are in agreement with those 

available in the literature [14],  which also suggest that the initial applied current density is 

very important for the formation of a protective calcareous film. 

 

4.4.2. SEM and EDX results. 

To investigate the differences in percentage content of calcium and magnesium in the 

deposits on the steel surfaces, both SEM examination and EDX analyses were performed 

(see Section 4.3.4). The relative percentages of the various elements determined using 

EDX quantification is presented in Tables 4.26 to 4.29. The working area of the samples 

was 10cm2, the areas selected for the EDX analysis were chosen as three different areas 

along the length direction of the sample. It was decided to analyse three replicate areas, in 

order to improve the accuracy of the results and to demonstrate consistency in the 

composition of the deposit film. The secondary electron SEM micrographs of the surface 

topographies of the deposits are given in Plates 4.17 to 4.20.  
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(1). Current density of 200 mA/m2 for initial 3 days then decreased to 100 mA/m2. 

    
       (a). Secondary electron image taken at 100x.      (b). Secondary electron image taken at 500x.  
 
Plate 4.17. SEM micrographs of surface of sample after immersion in artificial seawater for 12 days 

(applied current density of 200 mA/m2 for the initial 3 days then decreased to 100 mA/m2). 
 
 

 
Figure 4.74. EDX spectra of surface of sample after immersion in artificial seawater for 12 days 

(Applied current density of 200 mA/m2 for the initial 3 days then decreased to 100 mA/m2). 
  

Table 4.26. The relative percentages of various elements determined using EDX quantification, of 
calcareous film on steel samples after immersion in artificial seawater for 12 days (applied current 
density of 200 mA/m2 for the initial 3 days then decreased to 100 mA/m2 at magnification of 100x). 
 
Percentage 
of element   Calcium Magnesium Sulfur Iron Strontium Oxygen 

Area 1 10.09832 18.59714 0.312721 0.442209 0.301968 70.24764 
Area 2 6.851045 21.77534 0.321962 0.595348 0.235271 70.22104 
Area 3 9.011396 19.31851 0.227421 0.598357 0.185457 70.65886 

Average  8.653587 19.89399     
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(2). Constant current density of 200 mA/m2 for 12 days. 

    
(a). Secondary electron image taken at 100x.         (b). Secondary electron image taken at 500x. 
 

Plate 4.18. SEM micrographs of surface of sample after immersion in artificial seawater for 12 days 
(Applied constant current density of 200 mA/m2). 

 

 
Figure 4.75. EDX spectra of surface of sample after immersion in artificial seawater for 12 days 

(Applied constant current density of 200 mA/m2). 
 

Table 4.27. The relative percentages of various elements determined using EDX quantification, of 
calcareous film on steel samples after immersion in artificial seawater for 12 days (applied constant 
current density of 200 mA/m2 at magnification of 100x). 
 
Percentage 
of element Calcium Magnesium Sulfur Iron Strontium Oxygen 

Area 1 10.07133 17.61306 0.324186 0.291138 0.368447 71.33184 
Area 2 14.88112 13.48883 0.31009 3.050116 0.379151 67.89069 
Area 3 12.00294 19.16085 0.419077 0.289159 0.502628 67.62534 

Average 12.31846 16.754246     
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(3). Current density of 300 mA/m2 for 3 days then decreased to 100 mA/m2. 

         
(a). Secondary electron image taken at 100x              (b). Secondary electron image taken at 500x  

 
Plate 4.19. SEM micrographs of surface of sample after immersion in artificial seawater for 12 days 

(Applied current density of 300 mA/m2 for the initial 3 days then decreased to 100 mA/m2). 
 

 
Figure 4.76. EDX spectra of surface of sample after immersion in artificial seawater for 12 days 

(applied current density of 300 mA/m2 for the initial 3 days then decreased to 100 mA/m2). 
 

Table 4.28. The relative percentages of various elements determined using EDX quantification, of 
calcareous film on steel samples after immersion in artificial seawater for 12 days (applied current 
density of 300 mA/m2 for the initial 3 days then decreased to 100 mA/m2), [Magnification = 100 X]. 
 
Percentage 
of element Calcium Magnesium Sulfur Iron Strontium Oxygen 

Area 1 13.63397 18.42115 0.403137 0.326338 0.436851 66.77855 
Area 2 17.83058 12.89118 0.415029 0.283295 0.680228 67.89968 
Area 3 13.8412 16.67639 0.345437 0.323419 0.451832 68.36173 

Average 15.101916 15.99624     
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(4) Current density of 300 mA/m2 for 6 days then decreased to 50 mA/m2. 

                                 
(a). Secondary electron image taken at 100x        (b). Secondary electron image taken at 500x  

 
Plate 4.20. SEM micrographs of surfaces of sample after immersion in artificial seawater for 12 days 

(applied current density of 300 mA/m2 for the initial 6 days then decreased to 50 mA/m2). 
 

 
Figure 4.77. EDX spectra of surface of sample after immersion in artificial seawater for 12 days 

(applied current density of 300 mA/m2 for the initial 6 days then decreased to 50 mA/m2). 
 

Table 4.29. The relative percentages of various elements determined using EDX quantification, of 
calcareous film on steel samples after immersion in artificial seawater for 12 days (applied current 
density of 300 mA/m2 for the initial 6 days then decreased to 50 mA/m2 (magnification = 100x). 
 
Percentage of 

element 
Calcium Magnesium Sulfur Iron Strontium Oxygen Chlorine Sodium 

Area 1 18.79 4.67 0.49 37.96 0.54 33.56      0.75      3.22 
Area 2 18.83 3.77 0.1 40.22 0.16 34.37 0.28 2.26 

Area 3 13.45 6.52 0.39 48.04 0.2 27.64 0.47 3.28 

Average 17.02 4.99       
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The aragonite (CaCO3) clusters that form at the higher applied current density of 300 

mA/m2 (Plates 4.19(a), (b)) appear to be  larger than those that form under  the lower 

current density of 200 mA/m2 (compare with Plates 4.17(a), (b)) . The average content of 

magnesium (Table 4.27) determined in the deposit obtained with the applied constant 

current density of 200 mA/m2 was slightly lower than that obtained under the conditions 

where an  applied current density of 200 mA/m2 was applied for an initial 3 days,  then 

subsequently decreased to 100 mA/m2 (Table 4.26). However, the situation regarding the 

calcium contents of these two deposits was found to be the opposite. The average content 

of calcium (Table 4.27) that formed in the deposit obtained using a constant applied 

current density of 200 mA/m2 was slightly higher than that measured in the deposit 

obtained under conditions where an applied current density of 200 mA/m2 was used for 

an initial 3 days then subsequently decreased to 100 mA/m2 for the remainder of the 

immersion period (Table 4.26).  

 

Also, the average content of calcium was found to be greater at the higher applied current 

density of 300 mA/m2 (see Table 4.28 and  Table 4.29), compared to when a lower 

applied current density of 200 mA/m2 was employed (see Tables 4.26 and 4.27). 

However, in the case of magnesium, the reverse situation was found to occur, with 

magnesium content being greater in the deposits formed at the lower current density of 

200 mA/m2.  

 

Also, the magnesium content determined in the sample at an  applied current density of 

300 mA/m2 for an initial 6 days then decreased to 50 mA/m2 (Table 4.29), is lower than 

the magnesium content of the sample at an applied current density of 300 mA/m2 for the 

initial 3 days then decreased to 100 mA/m2 (see data in Table 4.28). However, in case of 

the calcium content, the reverse situation was found to occur, with  the calcium content 

determined in the sample at an  applied current density of 300 mA/m2 for an initial 6 days 

then decreased to 50 mA/m2, being higher than the calcium content of the sample at an 

applied current density of 300 mA/m2 for the initial 3 days then decreased to 100 mA/m2. 
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4.4.3. X-Ray Diffraction (XRD) results. 

Figure 4.78 and Table 4.30 show the results of the XRD analysis for the sample at an 

initial current density of  200 mA/m2 for the first 3 days, and then reduced to 100 mA/m2 

for the remainder of the 12 day immersion period. The main compounds present are 

predominantly calcium carbonate as aragonite, and magnesium hydroxide as brucite. A 

similar result was obtained for the XRD analysis of the sample at a constant current 

density of 200 mA/m2 for the entire 12 day immersion period. (Figure 4.79 and Table 

4.31). 

 

When cathodic protection was applied with the initial applied current density of 

200mA/m2, the XRD pattern for the metal substrate from the iron peaks showed another 

two crystalline phases,  these were for  aragonite (CaCO3) and brucite (Mg(OH)2). 

(Figure 4.78 and Figure 4.79).  

Position [? Theta] (Copper (Cu))
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Figure 4.78. XRD pattern for sample surface after immersion in artificial seawater for 12 days 

(Applied current density of 200mA/m2 for the initial 3 days then decreased to 100mA/m2). 
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Table 4.30. The Compound Name and Chemical Formula using XRD quantification, of calcareous 
films on steel samples after immersion in artificial seawater for 12 days 

(Applied current densities of 200 mA/m2 for the initial 3 days then decreased to 100 mA/m2). 
 
Visible Ref. Code Score Compound Name Scale 

Factor 
Chemical Formula 

* 00-041-1475 89 Aragonite 0.721 CaCO3 
* 00-007-0239 44 Brucite, syn 0.168 Mg (OH)2 
* 00-006-0696 23 ferrite, ledkunite, bainite 0.012 Fe 

 

Position [? Theta] (Copper (Cu))
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Figure 4.79. XRD pattern obtained for deposit on mild steel sample surface after immersion in 

artificial seawater for 12 days 
(Applied constant current density 200 mA/m2). 

 
Table 4.31. The Compound Name and Chemical Formula using XRD quantification, of calcareous 

film on steel samples after immersion in artificial seawater for 12 days 
 (Applied constant current density of 200 mA/m2). 

Visible Ref. Code Score Compound Name Scale Factor Chemical Formula 
* 00-041-1475 93 Aragonite 0.812 CaCO3 
* 00-007-0239 46 Brucite, syn 0.125 Mg(OH)2 
* 00-006-0696 46 ferrite, ledkunite, 

bainite 
0.023 Fe 
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To summarise, from the data given in the Tables 4.30 and 4.31, it is evident that the 

compounds present are the same, namely aragonite and brucite; the amount of Ca is 

slightly higher at constant current density than the varied one, but for Mg, it is the 

opposite, slightly higher at the varied current density, and lower at the constant current 

density. 

 

4.4.4. Discussion. 

The rationale for these series of experiments has already been provided in Section 4.1.2 

early in this Chapter.  Briefly, field experience has shown that in real offshore situations a 

higher initial current density is capable of growing a more effective protective calcareous 

film and this may be followed by a significant reduction in subsequent current density [14]. 

We decided to carry out this preliminary investigation to explore the possibilities of this 

interesting concept. The first problem was to select the initial current densities and initial 

polarisation times. We chose 200 and 300 mA/m2 from our previous data and from 

practical experience. 

 

 From the data given in Figure 4.68, the 200 mA/m2 system shows a steady fall in 

potential over the 12 day period but even at 12 days the system has not yet reached steady 

state. Figure 4.71 is the corresponding 300 mA/m2 data. A much faster decline in 

potential is observed but an obvious “event” has occurred at 6 days causing ennoblement 

of potential followed by recovery. We have suggested earlier in this Thesis that this event 

is probably due to hydrogen generation from the steel surface damaging the growing 

calcareous film. So our choice of initial potential and time needs to try and avoid this risk 

of hydrogen damage. The final current densities of 50 and 100 mA/m2 were also chosen 

based on our previous work described in this Chapter and also from field experience [14]. 

The 50 mA/m2 potential time decay shown in Figure 4.10 shows after 1 week of 

immersion a potential of around -770 mV (SCE), and the sample clearly showed 

corrosion. For the 100 mA/m2 situation, a similar behaviour was observed with a final 7 

day potential of around -830 mV(SCE) and still some corrosion, albeit somewhat less. In 

the limited time available, we chose to test the higher final current density at the 3 day 

pre-exposure conditions and the lower current density at the 6 day pre-exposure.  
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Restricted instrument access limited our use of SEM/EDX and X-ray Diffraction analysis 

to less specimens than would have been desirable. Our criteria of success were two fold, 

the final potential at 12 days and the visual appearance of the specimen. 

  

The results may be summarized as following: 

(1) Apart from the single case of the sample at a current density of 200 mA/m2 for 6 days 

then decreased to 50 mA/m2 for a further 6 days, which ended up at -776 mV SCE and 

obviously corroded, the other three samples subjected to variable current densities were 

successful both in terms of final potential and visual appearance.  

 

(2) X-ray Diffraction analysis on the 200 mA/m2 for 12 days sample and the 200 mA/m2 

for   3 days then decreased to 100 mA/m2 samples,  showed as expected both aragonite 

and brucite.  

 

(3) The SEM studies showed how the aragonite crystals were assembled and arranged on 

the surface and their distribution, size and coverage. The EDX analysis gave one 

interesting and curious observation, the 300 mA/m2 for 6 days then decreased to 50 

mA/m2 sample,  showed high and significant levels of iron in the film. It is thought that 

this is due to incomplete coverage of the steel surface by the aragonite film allowing 

sampling of the substrate. 

 

We have only carried out a preliminary investigation of this interesting and important 

field. Further work is clearly necessary to clarify the issues raised in our work. 
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4.5. Conclusions. 

• Weight loss measurements of cold-rolled mild steel have been made in artificial 

sea water over a 30 day period. Values obtained for corrosion rates at open circuit 

of 0.09 mm/y compare favourably with the accepted value of 0.13 mm/y. 

 

• Corrosion product analysis of the steel after 3 days and 7 days immersion periods 

at open circuit by EDX gives clear indication of the presence of magnesium as 

well as iron. No calcium was observed, and no calcium and magnesium were 

detected by X-Ray Diffraction. 

 

• The distribution of magnesium in the calcareous deposits formed at open circuit 

by EDX was non uniform, although the iron distribution was uniform. 

 

• Constant current cathodic polarisation has been carried out at varying values of 

current density from 0 to 400 mA/m2 together with 30 day weight loss 

measurements. 

 

• At a potential of -783 mV (SCE), [9 mV more negative than the accepted 

protection potential of -774 mV (SCE)] the steel is not fully protected and is still 

corroding at 25% of its open circuit value. 

 

• To fully protect the steel a further 112 mV shift in potential to -895 mV (SCE) is 

necessary.  

 

• Ashworth’s [8] conclusion that the relationship between protection level and 

potential is logarithmic is unfounded. The real relationship has been shown to be 

approximately linear. 

 

• Digital scanned images of the steel surfaces after immersion for one week at 

various levels of applied current density gave clear indication of the progress and 

effectiveness of cathodic protection. On a purely macroscopic visual level, there 

is no indication of any non uniformity across the steel surface.  
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• SEM/EDX in plan indicates the uneven distribution of magnesium, iron and 

calcium across the steel surface as a function of time and current density. The first 

precipitating specie at open circuit and at low applied current densities is shown 

to be magnesium and not calcium as was previously assumed.  

 

• Potentiometric titration experiments were performed to study this magnesium 

precipitation and showed that mixed oxide precipitation between the magnesium 

from the solution and the ferrous iron from the steel dissolution process was 

highly possible during the underprotection process. 

 

• GDOES analysis also confirms this clear presence of magnesium at a lower 

current density (50 mA/m2) even at 6 hours immersion. 

 

• SEM examination and EDX analysis of cross-sections of deposits, combined with 

EDX mapping of the distribution of selected single elements has been 

successfully accomplished and to our knowledge, this is the first time such images 

have been produced.  

 

• Clear evidence has been obtained of the distribution of calcium, magnesium and 

iron across the underprotected surface. Two distinct areas exist; firstly calcium 

precipitation directly onto the steel surface and secondly an iron containing inner 

layer with an over layer of magnesium.  

 

• A hypothesis has been floated based on the above, suggesting that since the 

magnesium can only precipitate in association with soluble ferrous iron, then 

these regions must be anodic sites on the surface. It therefore follows that the 

calcium regions are cathodic.  

 

• Some indication of the dimensions of the anodic and cathodic areas can therefore 

be made; cathodic regions being 50 µm in diameter and 100 µm apart. The 

remaining surface is anodic. 
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• At higher current densities closer to protection, significant dissolution of ferrous 

ions are suppressed, magnesium precipitation is severely limited and a simple 

three layer uniform system is found, the inner layer being iron containing, the 

middle layer contains  the magnesium and the outer layer the calcium.  

 

• At current densities well beyond protection, evidence of film cracking is seen in 

the SEM/EDX cross-section images and complete film detachment can be 

observed from the optical photographs and the SEM photomicrographs. 

 

• Hydrogen evolution is thought to be responsible for this film detachment.   

 

• Initial investigations have shown the possibility of reducing the current density 

for cathodic protection by laying down the calcareous film at an initial high 

current density for a limited time and subsequently applying a much reduced 

current density, below that which would normally be required to achieve full 

protection. 

 

• Based on the results of the SEM imaging and EDX results, impedance analysis 

was carried out using not a generalised equivalent circuit but an appropriately 

chosen equivalent circuit. The basic concept of our equivalent circuit is a limited 

layer Warburg diffusion model in combination with a porous layer with defects. 

 

• The high frequency regions are thought to represent the porous calcareous film 

with the low frequencies being ascribed to the charge transfer resistance at the 

film metal interface.  

 

• The effect of increasing the current density is clearly seen in the anodic charge 

transfer process of iron dissolution with the charge transfer resistance becoming 

infinitely large at higher current density. (Applied current densities at 300 mA/m2 

and 400 mA/m2 cases).   

 

• Explanations for the behaviour of this low frequency region as a function of time 

and current density have been proposed in terms of the specific electrochemical 
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reactions taking place and the nature and integrity of the calcareous films 

produced. 

 

• The Warburg diffusion model is applied to the cathodic process, mainly the 

oxygen reduction reaction. The cathodic Warburg diffusion WC, which consisted 

of three parameters, WC-R, WC-T, and WC-P, was used to evaluate the cathodic 

reaction level. 

 

• We have assumed literature values of the oxygen diffusion coefficients from 

which we have calculated oxygen diffusion path distances. 

 

• The values of the oxygen diffusion path distances correspond well with the SEM 

values obtained for the calcareous film thicknesses. 
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Chapter 5.  Studies Using a Calcium/Magnesium Containing  

Anti-Corrosion Pigment.  
 

5.1. Introduction. 
In the work described in the previous Chapter, the calcium and magnesium containing 

deposits that formed on the surfaces of the steel samples originated from ions present in 

the artificial seawater solution. However, in the work reported in this Chapter, an anti-

corrosion pigment containing calcium and magnesium was deliberately added into the 

immersion solutions.  The other major difference between the two deposits discussed in 

this and Chapter 6, is that in the studies reported in Chapter 4, the calcium and 

magnesium containing deposits were precipitated onto the surfaces of the mild steel 

samples under conditions of cathodic protection during immersion in artificial seawater; 

whereas in the studies described in the following Sections, the precipitates were formed 

under open circuit conditions. Each individual immersion experiment was carried out at 

least twice. The results obtained from duplicated experiments were extremely close and 

the data presented was not averaged but is merely given as one set. 

 

5.2. Corrosion Studies. 
Recently, a novel anti-corrosion pigment (D5-B) containing calcium and magnesium has 

become available, produced by a Japanese paint company (Dai Nippon Toryo Co., Ltd). 

The relevant literature associated with this part of the work is given in Section 2.11 of 

Chapter 2. To evaluate the mechanism of action and effectiveness of the new pigment 

D5-B, comparative experiments between D5-B and four other different pigments were 

performed using four different solutions. The methodology will be discussed in Section 

5.2.1.  

 

Subsequently, several analytical techniques and instruments were utilized to measure and 

assess the results of these comparative studies, including: potential measurements, optical 

photography (digital scanner), electrochemical tests (Linear Polarization Resistance 

(LPR), Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic polarisation, 

Scanning Electron Microscopy (SEM) in conjunction with Energy Dispersive X-Ray 

Analysis (EDX), and Glow-Discharge Optical Emission Spectroscopy (GDOES). 

 



Chapter 5. Studies Using a Calcium/Magnesium Containing Anti-Corrosion Pigment 
 

248 

5.2.1. Immersion tests. 

A small hole was drilled in the top of  each mild steel sample and an electrical connection 

was made using a self tapping screw. They were partly immersed in the appropriate test 

solutions at a depth of 2.0 cm, with the hole and screw connection remaining above the 

water line.  

 

Four pigments were examined, these were Ca 650 (aluminium tripolyphosphate, calcium 

neutralized), KW105 (aluminium tripolyphosphate, zinc neutralized), zinc phosphate, and 

the new pigment D5-B (calcium polyphosphate, magnesium neutralised). Blank solutions 

(without a pigment) were also examined as a control comparison in each group being 

tested. Potential measurements and optical photography were also carried out. In addition, 

visual assessment and examination of the samples was carried out on a daily basis. Later, 

due to time constraints, we concentrated solely on experiments utilising the novel 

pigment. 

 

Four test solutions were selected; these were deionised water as used by Mayne [1], 3.5% 

NaCl to mimic marine conditions, 0.025M sodium chlorate (following the 

recommendation of the Japanese Company) and a simulated acid rain solution to mimic 

industrial conditions as described in Section 3.2.2 of Chapter 3. Experiments were carried 

out with the pigment dispersed in a half litre of solution at a 1:100 weight ratio. The 

experiments were performed at a laboratory temperature of between 20oC and 25oC. 

 

5.2.1.1. Potential Measurements. 

Because deionised water has a low conductivity it was only used for immersion 

experiments. Potential/time measurements were carried out in the other three test 

solutions and were recorded daily over a 7 day period. A similar reference electrode 

system was used to that described previously in Chapter 3 and Chapter 4.  
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Figure 5.1. Graph showing plots of daily potential/time measurements for the 4 pigment 

inhibitors, and control; obtained over a 7-day test period in 3.5% NaCl solution. 
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Figure 5.2. Graph showing plots of daily potential/time measurements for the 4 pigment 

inhibitors, and control; obtained over a 7-day test period in 0.025M NaClO4 solution. 
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Figure 5.3. Graph showing plots of daily potential/time measurements for the 4 pigment 

inhibitors, and control; obtained over a 7-day test period in acid rain solution. 
 

Figures 5.1 to 5.3 are the graphs plotted for the potential/time measurements recorded 

daily for the three test solutions (3.5% NaCl, 0.025M NaClO4 and simulated acid rain) 

over a period of 7 days. 

 

In the case of samples immersed in 3.5% NaCl (Figure 5.1), the potentials of samples 

inhibited with D5-B were more negative than those of the samples inhibited using the 

other three inhibitor pigments (Ca 650, KW105 and zinc phosphate). Also, in comparison 

with the blank sample, the potentials of samples inhibited with D5-B were slightly more 

negative than that of the blank sample for the first two days of  immersion, and then 

became more positive.   

 

Figure 5.2 shows that for an initial period of 2 days, the potentials of samples inhibited 

with D5-B were slightly more negative compared with potentials obtained for samples 

inhibited with both Ca 650 and KW105, in the NaClO4 solution. However, after the first 

two days of immersion, the potentials also then became positive. In addition, the 

potentials for samples inhibited with zinc phosphate were more negative than those for 

the other samples evaluated using the other inhibitor pigments. 
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In the case of samples immersed in acid rain (Figure 5.3), for the first four days of 

immersion, the potentials obtained for samples inhibited with D5-B were more negative 

than those obtained for the samples inhibited using the other three inhibitor pigments and 

the blank sample. After this period, it became noble for the rest of the immersion time. 

 

Overall, the above observations suggest that the mechanism of inhibition of the new 

pigment D5-B is not purely cathodic; but is likely to be mixed. However, to investigate 

this further will require additional experimental work and analysis which will be 

described later in this Chapter. 

 

5.2.1.2. Exposure behaviour. 

All samples were scanned using a flat bed scanner at the end of the 7 day immersion 

period. They were positioned vertically and in this Chapter the specimen top corresponds 

to the top of the photograph. These photographic images are presented in Plates 5.1 to 5.4. 
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(1)Deionized water. 

        
                         (a)                                               (b)                                                     (c)        
              

                                      
                                             (d)                                                                          (e) 

 
Plate 5.1.  Photographs of surfaces of mild steel samples after immersion for 7 days in deionised 

water, in the presence of four different inhibitor pigments, and a control blank: 
(a) D5-B  (b) Ca 650 (c)  KW105  (d) Zinc phosphate (e) Blank. 

 
 

 

 

 

 



Chapter 5. Studies Using a Calcium/Magnesium Containing Anti-Corrosion Pigment 
 

253 

(2) 3.5% NaCl. 

      
                         (a)                                                  (b)                                                   (c)        
 

             
(d)                                                         (e) 

 

Plate 5.2.  Photographs of surfaces of mild steel samples after immersion for 7 days in 3.5% 
NaCl solutions, in the presence of four different inhibitor pigments, and a control blank:  

(a) D5-B,   (b) Ca 650  (c) KW105  (d) Zinc phosphate (e) Blank. 
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(3) Acid rain solution. 

       
   (a)                                                      (b)                                                    (c) 

 

             
(d)                                                               (e) 

 
 

Plate 5.3.    Photographs of surfaces of mild steel samples after immersion for 7 days in acid          
rain solution, in the presence of four different inhibitor pigments, and a control blank:  

(a)  D5-B,   (b) Ca 650  (c) KW105  (d) Zinc phosphate (e) Blank. 
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(4) 0.025% NaClO4. 

            
(a)                                                    (b)                                                      (c) 

 

                  
                                             (d)                                                                         (e) 

 
Plate 5.4. Photographs of surfaces of mild steel samples after immersion for 7 days in 0.025% 

NaClO4   solution, in the presence of four different inhibitor pigments, and a control blank: 
(a) D5-B  (b) Ca 650  (c) KW105 (d) Zinc phosphate (e) Blank. 
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From the visual observations made of the corroded mild steel samples and illustrated in 

the photographs in Plates 5.1 to 5.4, we suggest: 

 

From Plate 5.1 (7 days in deionised water), corrosion only occurred on the blank and the 

sample with zinc phosphate inhibitor. All the other remaining samples showed no visible 

evidence of significant corrosion.  

 

From Plate 5.2, 3.5% NaCl solution is clearly very corrosive. After 7 days immersion, 

corrosion was observed with all samples, although the sample protected using the new 

D5-B pigment was only slightly corroded, whereas the sample protected using zinc 

phosphate and also the blank sample were both very severely corroded.  

 

Plate 5.3 shows the extent of corrosion occurring after immersion of samples for 7 days 

in the simulated acid rain solution. It was observed that samples protected using the 

inhibitors Ca 650, KW105 and zinc phosphate all commenced corrosion after 2 days 

immersion. The samples protected using Ca650 showed only slight corrosion. In the case 

of samples protected using the new D5-B pigment, almost no corrosion was observed 

after 7 days immersion. 

 

From Plate 5.4, it was evident the samples immersed in 0.025% NaClO4 solution with 

D5-B and Ca 650 showed almost no evidence of corrosion after the 7 day test period. 

However the sample immersed in 0.025% NaClO4 with zinc phosphate corroded almost 

immediately, whilst the sample tested in the presence of KW105 inhibitor started to 

corrode after three days.  

 

In summary; from the photographs obtained (presented in Plates 5.1 to 5.4), and daily 

visual examination of the mild steel samples, it was possible to conclude that the new 

pigment D5-B clearly gave the best overall performance as a corrosion inhibitor, and also 

the other pigments Ca650, KW105 and Zinc phosphate had fairly acceptable performance. 
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5.2.2. Introduction and justification for the galvanic zinc experiments. 

A further series of experiments were carried out in aqueous solutions to mimic the 

hypothetical situation where the novel pigment was incorporated into a primer together 

with zinc metal particles, see Figure 5.4. The coating therefore would be an interesting 

combination of a conventional anti-corrosion primer and a conventional zinc metal 

containing primer. The rationale behind this suggestion was that: 

 

• Maybe the pigment would work more effectively if the steel surface were made a 

cathode with enhanced deposition of cathodic inhibitor. 

• And/or the inhibitive reaction on the steel surface due to the novel pigment would 

be enhanced by the presence of zinc ions in solution. 

  

 
Figure 5.4. The combination of zinc metallic primers and conventional anti-corrosion pigments. 

 

The successful use of the addition of zinc ions together with conventional corrosion 

inhibitors is very common in the field of corrosion inhibition and also the field of anti-

corrosion pigments. Polyphosphates are used in combination with calcium or zinc ions in 

solution on iron, steel and zinc substrates [2]. The role that zinc and calcium ions play in 

corrosion inhibition has been investigated by means of impedance studies, cyclic 

voltammetry and SEM/EDX techniques [3]. In the field of anti-corrosion pigments the 

classic example from Mayne’s work is the use of zinc with chromate as a pigment [4]. 

 
The actual experiment that was undertaken as part of the present Study was to utilise the 

same set of corrosive aqueous environments as investigated previously (3.5% NaCl, 

0.025M sodium chlorate and simulated acid rain solution) and in conjunction with the use 

of D5-B pigment, but then instead of simply immersing the mild steel sample in each of 

the solutions, the mild steel samples were coupled to pure zinc sheet. This experimental 
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set-up is illustrated in Figure 5.5. The resulting surface film was then compared with the 

“normal” film deposited in the presence of D5-B alone, using electrochemical and non 

electrochemical methods.  

 

 
Figure 5.5.  Experimental set-up. 

 

5.3. Electrochemical tests. 
5.3.1 Linear polarization resistance (LPR). 

We have already described this method in Section 2.4.1.3. We used a sweep from -10 mV 

to +10 mV at 0.2 mV/sec around the rest potential. 

 

To avoid drift during Rp measurements for the samples connected to the zinc, the steel 

was disconnected from the zinc and the potential allowed to stabilize (usually around five 

minutes) before making the Rp measurement at this stable potential. 
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5.3.1.1.   3.5% NaCl solution. 

Three mild steel samples were immersed separately in 3.5% NaCl solution, the first 

sample was immersed without any inhibitor being present, the second sample was 

immersed with D5-B inhibitor, and third sample was immersed in the presence of D5-B 

pigment, and also connected to a zinc metal anode for the duration of the 7 day test 

period. 

 

Measurements of potential (Figure 5-6(a)) and linear polarization resistance (Table 5-1) 

were carried out at daily intervals. As we have seen in Section 2.4.1.3, the corrosion 

current is proportional to 1/Rp. We therefore plotted the reciprocal 1/Rp against time, 

(Figures 5-6(b), (c) and (d)). The photographs of samples taken after 7 days immersion 

are shown in Plate 5.5.  

 

Values of polarization resistance Rp are given in Table 5.1, the value of Rp obtained for 

samples in 3.5% NaCl solution with D5-B as inhibitor (Figure 5.6(c))  is about 1.5 - 2.5 

times greater than the Rp obtained for samples in 3.5% NaCl solution (Figure 5.6(b))  

with no inhibitor.  Also, values of Rp obtained for samples both in the presence of D5-B 

only and also D5-B connected with zinc were from 3.5 to 20 times greater than the Rp 

values obtained for samples in 3.5% NaCl solution with no inhibitor present. It was noted, 

that values of Rp obtained for samples tested with the addition of both D5-B and zinc 

were also significantly larger (Figure 5.6(d)) (around 2.5 to 10 times greater) than the Rp 

readings obtained for samples immersed solely in the presence of D5-B inhibitor (Figure 

5.6(c)) alone. 
 

Table 5.1. The comparison of values of polarization resistance Rp  obtained for samples 
 both with and without the addition of D5-B inhibitor, or connected with a Zn anode 

 after immersion  in 3.5% NaCl solution for 7 days. 
                                Unit: Ohm.cm² 

Time 3.5% NaCl 3.5% NaCl 
with D5-B 

3.5% NaCl with 
D5-B and Zn Anode 

Day 1 2200 3000 7400 
Day 2 2600 3500 17000 
Day 3 2400 3800 31000 
Day 4 2000 4700 34900 
Day 5 2000 5000 40700 
Day 6 2200 4800 49100 
Day 7 2200 5100 49500 
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Figure 5.6(a).  Graph showing plots of daily potential/time measurements for samples  
both with and without the addition of D5-B inhibitor, or connected with a Zn anode;  

obtained over a 7-day test period in  3.5% NaCl solution.  
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Figure 5.6(b).  Graph showing plots of daily 1/Rp-time measurements:  

obtained over a 7-day test period in 3.5% NaCl solution with no inhibitor.  
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Figure 5.6(c).  Graph showing plots of daily 1/Rp measurements over a 7-day test period  

for mild steel samples with D5-B inhibitor in  3.5% NaCl solution.  
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Figure 5.6(d).  Graph showing plots of daily 1/Rp measurements over a 7-day test period in 3.5% 

NaCl solution, for mild steel samples with D5-B inhibitor and connected to a Zn anode. 
 

Figure 5.6. Graphs showing plots of daily potential/time and 1/Rp measurements over a 7-day   
test period for mild steel samples in 3.5% NaCl solution, both with and without the addition  

of D5-B inhibitor, or connected with a Zn anode.      
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From Figure 5.6(a), which gives the values of potential for samples immersed in 3.5% 

NaCl solution both with and without the addition of D5-B inhibitor, or connected with a 

Zn metal anode, the potential for the sample immersed in the presence of D5-B was 

around 200 mV more positive in comparison with the one without inhibitor. The potential 

for the sample immersed in the presence of both D5-B and zinc is more negative than the 

other two because of the presence of zinc. Since 1/Rp is related to the corrosion rate in 

Figures 5.6(b), (c) and (d), the value of 1/Rp appears to be significantly decreased by the 

presence of D5-B, especially D5-B in combination with a zinc anode.  In the case of the 

sample tested with D5-B and zinc, the value of 1/Rp was reduced by nearly 20 times 

compared with the sample with no inhibitor present. These results indicate that either the 

Zn cation or negative potential or both may have played a significant role in film 

deposition and also enhancing the performance of the inhibitor. To clarify this situation it 

was necessary to do further experiments which will be described in Section 5.3.1.3. 

 

        
(a)                                             (b)                                                    (c) 

Plate 5.5. Photographs of surfaces of mild steel samples after immersion for 7 days in 3.5% NaCl 
solution,   (a) no inhibitor,   (b) with D5-B,    (c) with D5-B and Zn anode 

 

From the series of photographs of the samples after 7 days immersion illustrated in Plate 

5.5, it was evident that severe corrosion occurred on the sample immersed in 3.5% NaCl 

with no inhibitor present.  In the case of the sample immersed in the presence only of D5-

B, only slight corrosion was evident. However, the sample immersed in 3.5% NaCl 
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solution with the addition of D5-B pigment and also coupled to a zinc anode was covered 

by a white deposit and no corrosion was evident. 

 

5.3.1.2.   Acid rain solution. 

The composition of the acid rain solution used has been given previously in Section 3.2.2. 

In order to assess the corrosion behaviour of mild steel, specimens were exposed to 

simulated acid rain conditions over a period of seven days to determine the performance 

of the D5-B pigment as an inhibitor under a variety of test regimes. Each experimental 

procedure was designed to assess the impact that the presence of D5-B inhibitor had on 

the progression of corrosion under various test conditions on uncorroded and also pre-

corroded steel surfaces.  

 

Four situations were examined:  

(i) The blank solution. 

(ii) Without D5-B for the first three days only (precorroded).  

(iii) The solution with D5-B only. 

(iv) With D5-B and connected to a zinc metal anode.  

 

For the specimen connected to the zinc, the steel potential reached around -850mV (SCE). 

Before LPR measurements were made the specimen was disconnected until the potential 

became stable (usually around five minutes), after which LPR was carried out at this 

stable potential. This was done daily, and measurements of potential (Figure 5.7(a), and 

1/Rp (Figures 5.7(b), (c), (d) and (e)) were also undertaken daily. From Figure 5.7(a), 

values of potential were obtained for samples immersed in different acid rain solutions. 

Photographs (digital scans) were also taken of each sample at the end of the immersion 

period (Plate 5.6). 
Table 5.2. The comparison of values of polarization resistance Rp   obtained for samples 

 immersed in acid rain solution, both with and without (first 3 days only) the addition of D5-B 
inhibitor, or connected with a Zn anode. 

                       Unit: Ohm.cm². 

Time Acid rain Without  D5-B  for 
first three days 

Acid rain 
with D5-B 

Acid rain with 
D5-B and Zn Anode 

Day 1 4400 3400 13800 50600 
Day 2 2900 3600 34800 58700 
Day 3 3100 3800 31100 58900 
Day 4 3300 3700 49800 69600 
Day 5 3400 4500 61100 59400 
Day 6 2500 4100 62100 88200 
Day 7 3200 6000 73500 144400 
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Figure 5.7(a).  The potential-time plots obtained in acid rain solution; obtained over  

a 7-day test period, both with and without (first 3 days only) the addition of D5-B  
inhibitor, or connected with a Zn anode. 
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Figure 5.7(b).  Graph showing plots of daily 1/Rp measurements; obtained over a 7-day  

test period in acid rain solution. 
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Figure 5.7(c).  Graph showing plots of daily 1/Rp measurements; obtained over a 7-day  

test period in acid rain solution without D5-B during first three days only.  
 

    

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

 

 

1/
R

p (
*1

0 
-5
 )

Time / days

  Acid rain with D5-B

                                             
Figure 5.7(d).  Graph showing plots of daily 1/Rp measurements;  
obtained over a 7-day test period in acid rain solution with D5-B. 
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Figure 5.7(e).  Graph showing plots of daily 1/Rp measurements; obtained over a 7-day  

test period  in acid rain solution with D5-B and Zn Anode. 
 

Figure 5.7.  Graphs showing plots of daily potential/time and 1/Rp measurements over a 7-day 
 test period  for mild steel samples in acid rain solutions,  both with and without (first 3 days only) 

the addition of D5-B inhibitor, or connected with a Zn anode. 
 
 

From Figure 5.7(d) which shows plots of daily 1/Rp measurements obtained in the acid 

rain solution in the presence of D5-B, it can be seen that the 1/Rp value became 

substantially smaller after immersion for one day.  Furthermore, it then remained fairly 

stable, so this indicates that D5-B is a fairly rapidly-acting and effective inhibitor. For the 

precorroded situation where D5-B was added after three days of immersion (Figure 

5.7(c)), the values of 1/Rp decreased slowly after the D5-B was added and had dropped 

significantly by day 7.  This interesting observation seems to suggest that D5-B might 

well be worth studying as an anti-corrosion pigment for application onto rusty steel. 

However we did not pursue this avenue further in this Study, but will leave for others to 

investigate in future research work.   

 

Figure 5.7(e) indicates that the Rp value of the sample immersed with D5-B and 

connected to a metallic zinc sheet is stable, and reduces by 80% when compared with the 

sample immersed continuously for 7 days with D5-B inhibitor alone (Figure 5.7(d)).  
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Photographs of the samples immersed in acid rain solution with the addition of D5-B 

(Plate 5.6(c), and also with D5-B in combination with a zinc metal anode (Plate 5.6(d)) at 

the end of the 7 day test period show no corrosion.  

 

From Tables 5.1 and 5.2, and Figures 5.6 and 5.7, in the case of the immersion 

experiment conducted in the solution containing D5-B in combination with a zinc metal 

anode, the significant changes in values of 1/Rp observed over the duration of the 7 day 

test period indicated an excellent degree of inhibition which was confirmed from visual 

observations (Plates 5.5 and 5.6). 

 

From a comparison of the change of samples’ potential in both 3.5% NaCl and acid rain 

solutions (Figure 5.6(a) and Figure 5.7(a)), it was noted that the potential of the inhibited 

samples were more noble than the uninhibited samples. The inhibitor D5-B may therefore 

be classed as an anodic inhibitor. Furthermore, the  Rp data obtained suggests that D5-B 

is reasonably successful as a corrosion inhibitor in both 3.5% NaCl solution and acid rain 

solution, both on bare steel and in the 3 day precorroded situation. 
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                                                  (a)                                                                  (b) 

                                        
                                                (c)                                                          (d)                                                            

Plate 5.6. Photographs of surfaces of mild steel samples after immersion for 7 days in different acid 
rain solution:  (a) no inhibitor,   (b) acid rain solution without D5-B in first three days 

                                      (c) with D5-B, (d) with D5-B and Zn anode. 
 

5.3.1.3.   The research on the Zn cation and constant potential.  

Clearly the effectiveness of D5-B as an inhibitor in the two aqueous solutions (NaCl and 

acid rain) studied has been significantly enhanced when the steel specimen has been 

simultaneously connected to a zinc anode. The potential in both situations moves 

negatively, much more so in the NaCl solutions (-1050mV vs. SCE) compared with the 

acid rain solution (-850mV vs. SCE), probably because of the lower conductivity of the 

acid rain which in turn will lead to a much reduced current output from the anode. There 
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are two possible explanations of the role of the zinc. The first is that the negative 

potential attained on connecting the steel to the zinc enhances the cathodic reactions on 

the steel and increases the interfacial pH at the steel and further enhances cathodic 

inhibition. The second is that the action of the zinc anode provides a source of soluble 

zinc ions in the solution which in turn can act to supplement the calcium and magnesium 

already present from the inhibitor. Of course, there is always the possibility of both 

mechanisms acting concurrently. To attempt to distinguish and choose between these two 

mechanisms, we carried out a series of additional experiments. They both involved the 

same two solutions, the same steel specimens, and also the same D5-B inhibitor additions. 

In one situation we added the zinc ions directly to the solution at a concentration of 1g 

ZnSO4 in 200ml of solution rather than have them generated from dissolution of the zinc 

anode. We chose this value of 1g ZnSO4 since a simple Faraday calculation on the zinc 

dissolution gives approximately this value after seven days. In the second situation, we 

used a potentiostat (ACM), to maintain the potential of the steel at the potential that the 

steel had attained when it was connected to the zinc, namely -1050mV in the NaCl 

solution and -850mV in the acid rain solution.  

 

The results may be seen in Table 5.3 for NaCl and Table 5.4 for the acid rain solution in 

the above conditions. The relevant curves of potential and 1/Rp over the 7 day period are 

given in the accompanying Figures 5.8 and 5.9. Consequently with the potentiostat 

experiments we also disconnected the power for five minutes before taking a reading, so 

that in Figure 5.8(a), the potential is not at -1050 mV SCE and in Figure 5.9(a) the 

potential is not at -850 mV SCE. 

 

(1). 3.5% NaCl solutions. 

The first sample was immersed in 3.5% NaCl with D5-B and ZnSO4, and the second 

sample was immersed in 3.5% NaCl with D5-B at constant potential -1050mV (SCE) 

using an ACM potentiostat. 

 

Measurements of potential (Figure 5.8(a)) and linear polarization resistance (Table 5.3) 

were carried out at regular daily intervals, and plotted as the reciprocal 1/Rp (Figures 

5.8(b) and (c)). The photographs of samples taken after 7 days immersion are shown in 

Plate 5.6.  
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Table 5.3. The comparison of values of polarization resistance Rp  obtained for samples  
immersed in 3.5% NaCl solution, with addition of D5-B inhibitor alone at constant potential  

-1050mV, or with D5-B and ZnSO4. 
                       Unit: Ohm.cm² 

Time 3.5% NaCl with 
D5-B and ZnSO4 

3.5% NaCl with D5-B  
at -1050mV (SCE) 

Day 1 13400 14700 
Day 2 16900 19200 
Day 3 21400 17500 
Day 4 22000 17100 
Day 5 23100 15000 
Day 6 26200 17100 
Day 7 27200 18600 
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Figure 5.8(a).  Graph showing plots of daily potential/time measurements for mild steel  

samples with addition of D5-B inhibitor alone at constant potential -1050mV,  
or with D5-B and ZnSO4 over a 7-day test period in 3.5% NaCl solution.  
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Figure 5.8(b). Graph showing plots of daily 1/Rp measurements for mild steel samples over a 7-day 

test period in  3.5% NaCl solution with D5-B and ZnSO4. 
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Figure 5.8(c). Graph showing plots of daily 1/Rp measurements over a 7-day test period 
with D5-B inhibitor at previous potential of  -1050mV in 3.5% NaCl solution. 

 
Figure 5.8.  Graphs showing plots of daily potential/time measurements over a 7-day  

test period for mild steel samples  in  3.5% NaCl solution, with addition  
of D5-B inhibitor at constant potential -1050mV, or with D5-B and ZnSO4. 
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(a)                                                  (b) 

Plate 5.7. Photographs of surfaces of mild steel samples after immersion for 7 days 3.5% NaCl 
solution, (a) with D5-B and ZnSO4  (b) with D5-B at potential -1050 mV SCE. 

 

(2). Acid rain solution 

A similar set of experiments were carried out as described above, but using simulated 

acid rain solution either with addition of D5-B inhibitor alone, at the constant potential  

 -850 mV (SCE) or with D5-B and ZnSO4. As with the previous experiment, 

measurements of potential (Figure 5.9(a), and 1/Rp (Figures 5.9(b) and (c)) were 

undertaken daily.  Table 5.4 gives values of polarization resistance Rp obtained for the 

samples immersed in acid rain solution with addition of D5-B inhibitor alone at potential 

-850 mV, or with addition of D5-B and ZnSO4. 

  

Figure 5.9(a), gives the values of potential obtained for the samples immersed in acid rain 

solution with addition of D5-B inhibitor alone at potential -850 mV (SCE), or with D5-B 

and ZnSO4. Photographs were also taken of each sample at the end of the immersion 

period (Plate 5.8). 
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Table 5.4. The comparison of values of polarization resistance Rp obtained for samples  
immersed in acid rain solution, with addition of D5-B inhibitor alone at  

constant potential -850 mV(SCE), or with D5-B and ZnSO4. 
                       Unit: Ohm.cm² 

Time Acid rain with 
D5-B and ZnSO4 

Acid rain with 
D5-B at -850mV(SCE) 

Day 1 42900 30000 
Day 2 57500 48000 
Day 3 69200 78200 
Day 4 71100 72300 
Day 5 73900 65200 
Day 6 74800 70700 
Day 7 95000 78600 
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Figure 5.9(a).  The potential-time plots obtained for mild steel samples obtained 

 over a 7-day test period in acid rain solution, with addition of D5-B inhibitor  
alone at potential -850 mV(SCE), or with D5-B and ZnSO4. 
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Figure 5.9(b).  Graph showing plots of daily 1/Rp measurements; obtained over a 7-day  

test period in acid rain solution with D5-B and ZnSO4. 
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Figure 5.9(c).  Graph showing plots of daily 1/Rp measurements; obtained over a 7-day test period in 

acid rain solution with D5-B at previous constant potential -850mV(SCE). 
 

Figure 5.9. Graphs showing plots of daily potential/time and 1/Rp measurements for mild steel 
samples over a 7-day test period in acid rain solution,  with addition of D5-B inhibitor alone at 

potential -850 mV(SCE), or with D5-B and ZnSO4.     
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(a)                                                           (b) 

 

Plate 5.8. Photographs of surfaces of mild steel samples after immersion for 7 days in different acid 
rain solution:  (a) with D5-B and ZnSO4  (b) with D5-B at potential -850mV(SCE). 

 

It was noted from the photographs of the samples immersed in acid rain solution with the 

addition of D5-B alone (Plate 5.6(c)), and also the samples in acid rain with D5-B and 

ZnSO4 (Plate 5.8(a)), and in acid rain with D5-B at a constant potential of -850mV (SCE) 

(Plate 5.8(b)); that at the end of the 7 day test period, none of the samples showed any 

evidence of corrosion.  

 

From Tables 5.3 and 5.4, and Figures 5.8 and 5.9, in the case of the immersion 

experiments conducted in the solution containing D5-B in combination with ZnSO4, the 

significant change in 1/Rp observed indicated an excellent degree of inhibition which was 

confirmed from visual observations (Plates 5.7 and 5.8). 

 

The results of the values of polarisation resistance Rp obtained over 7 days, may be seen 

in Table 5.3 for NaCl and Table 5.4 for the acid rain solution. The relevant curves of 

potential and 1/Rp over the 7 day period are given in the accompanying Figures 5.8 and 

5.9. From the data given in Table 5.3 and Table 5.4 and the relevant graphs given in 

Figures 5.8 and 5.9, it is clear that additions of zinc ions as zinc sulphate, and the 

maintenance of a potential of -1050 mV (SCE), has a significantly greater effect on the 

corrosion rate of the steel as measured by Rp compared with D5-B on its own. The 

reductions in corrosion rates obtained are between 4 and 5 times. However, the truly 
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significant reduction in corrosion rate occurs where the steel is coupled to a zinc anode, a 

10 times reduction in corrosion rate was observed. The acid rain data presented in Table 

5.2 and Table 5.4, is equally clear although it does seem that at 7 days, the system has 

still not completely reached steady state. There was a substantial improvement in 

reduction in corrosion rate with the addition of zinc ions and when operating at a constant 

potential of -850 mV SCE. But again as in the sodium chloride situation, the lowest 

corrosion rate was obtained when a zinc anode is used. It does appear from these data that 

the optimum performance is achieved where our two suggested mechanisms of inhibition 

are operating concurrently, namely the presence of zinc ions and a steel potential where 

cathodic inhibition is favoured.  
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5.3.2. Potentiodynamic polarisation.  

To get further mechanistic information from the D5-B inhibited systems, a set of 

Potentiodynamic Polarization scans were carried out, which provides information on 

electrode processes. 

 

A platinum electrode was used as a counter electrode and a saturated calomel electrode 

(SCE) was used as a reference electrode together with the usual salt bridge, Section 3.3.1. 

Samples were embedded in an epoxy resin, and prepared to provide an exposed working 

surface area of 10.0 cm2. Prior to each run the sample was polished by using 4000 grade 

silicon carbide paper and then degreased in pure alcohol followed by pure acetone.  

 

The corrosion measurements were conducted in 3.5% sodium chloride, 0.025M sodium 

chlorate and acid rain solutions both with and without the addition of the D5-B pigment. 
 

For the D5-B systems, it took around 4 hours for each specimen to be tested. The samples 

were immersed for 2 hours and the potential was determined and recorded using a 

computer which links to the 1286 Electrochemical Interface and then the samples were 

subjected to potentiodynamic polarization for around 2 hours. Each potentiodynamic 

polarization scan was carried out from -1.5 V to +2.5 V at a scan rate of 1 mV/s. 

 

5.3.2.1. Potential Measurements. 

An open circuit potential (OCP) measurement was determined for all samples in all 

different solutions, immediately after immersion. The sample’s potential was recorded 

using a 1286 Electrochemical Interface controlled by a desk-top computer over an initial 

2 hours immersion. Comparison with the manual potential/time plots Figures 5.1, 5.2 and 

5.3 over a seven day period shows the two sets of data were not widely dissimilar.  
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Figure 5.10.    Graphs of open circuit potentials plotted against time for:  
(a) 3.5% NaCl solution with D5-B, (b) 3.5% NaCl solution without D5-B. 
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Figure 5.11. Graphs of open circuit potentials plotted against time for:  
 (a) 0.025M NaClO4 solution with D5-B,   (b) 0.025M NaClO4 solution without D5-B. 
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Figure 5.12. Graphs of open circuit potentials plotted against time for:  
(a) acid rain solution with D5-B,   (b) acid rain solution without D5-B. 

 

Figure 5.10 shows the plots of open circuit potentials for mild steel samples measured 

against time for samples immersed in 3.5% NaCl solution both with and without the 

addition of D5-B inhibitor. In both cases, the potential started to drift slowly in the 
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negative direction presumably as electrochemical reactions start and deposits appear at 

the metal-electrolyte interface. The potential of the sample immersed with D5-B present 

is more positive than the sample tested without inhibitor, and the difference was observed 

to be around 10 mV; this value is probably not significant. For steel in 3.5% NaCl 

solution, the cathodic reaction at open circuit is oxygen reduction (O2 + 2 H2O + 4e-→ 4 

OH-).    

 

From Figure 5.11, the potential of the sample immersed in the 0.025M sodium chlorate 

solutions with D5-B, is slightly more negative (5mv) than the potential of the sample 

immersed in 0.025M sodium chlorate without D5-B. For steel in 0.025M sodium chlorate 

solution, the cathodic reaction is probably also the oxygen reduction reaction. 

 

From Figure 5.12, it can be seen that the potential of the sample immersed in simulated 

acid rainwater solution with D5-B took a longer time to attain a stable state, than the 

potential of the sample immersed without the presence of D5-B. This is probably because 

at the start of the immersion period the acid rain solution is quite resistive. It is possible 

that as dissolution of the pigment took place, this increases the conductivity of the 

solution. The potential of the samples were not significantly different in acid rain 

solutions either with or without the addition of inhibitor.  

 

5.3.2.2. Potentiodynamic polarization 

After the samples were immersed for two hours, and the potentials were almost stable 

then the samples were subjected to potentiodynamic polarization. 
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Figure 5.13(a). Graph showing plots illustrating relationship between Potential .vs. Current 
for mild steel samples immersed in 3.5% NaCl solution both with and without addition of 
D5-B inhibitor, (b) Graph showing a direct zoom into lower left-hand region of Graph (a), 

giving more detailed view of plots. 
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(b) 

Figure 5.14(a). Graph showing plots illustrating relationship between Potential  vs. Current 
for mild steel samples immersed in 0.025M NaClO4 solution both with and without addition 
of D5B inhibitor, (b) Graph showing a direct zoom into lower left-hand region of Graph (a), 

giving more detailed view of plots. 
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Figure 5.15(a). Graph showing plots illustrating relationship between Potential  vs. Current 
for mild steel samples immersed in acid rain solution both with and without addition of D5B 
inhibitor, (b) Graph showing a direct zoom into lower left-hand region of Graph (a), giving 

more detailed view of plots. 
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According to the plots shown in Figure 5.13, the potential at zero current obtained for the 

sample immersed in 3.5% NaCl solution with D5-B became slightly more positive [ -0.69 

V (SCE)] than the potential [-0.63 V (SCE)] of  the sample immersed without it. This is a 

similar result to those obtained from Figure 5.1 and Figure 5.10, so D5-B appears to be 

an anodic inhibitor in the presence of 3.5% NaCl solution. 

 

From Figure 5.14, it can be observed that the potential of the sample immersed in 

NaClO4 solution with D5-B became more negative than the potential obtained for the 

corresponding sample without D5-B by only around 10 mV, and Icorr was observed to 

drop significantly (Table 5.5), so D5-B may function as a mixed inhibitor in 0.025M 

NaClO4 solution. 

 

From Figure 5.15, it was evident that the potential of the sample immersed in simulated 

acid rain solution with the addition of D5-B was not significantly different from the 

potential observed for the sample immersed in acid rain without D5-B, but Icorr was 

observed to decrease greatly (see Table 5.5 in next Section), so D5-B may act as a mixed 

inhibitor in the acid rain solution. 

 

5.3.2.3. Summary of Results and Overall Discussion. 

Figures 5.13, 5.14 and 5.15 show the polarization curves recorded for mild steel samples 

immersed in the different corrosive solutions (3.5% NaCl, 0.025M NaClO4 and acid 

rainwater) both with and without D5-B.  

 

The corrosion current densities Icorr and the anodic and cathodic Tafel constants (βa and βc, 

respectively), were determined from the experimental curves on the basis of the Butler-

Volmer equation, and this was also discussed in Chapter 2, the equation 2-28 was given 

as following: 
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Where Eeq is the corrosion potential, i0 is the current density; βa and βc are the anodic and 

cathodic Tafel constants respectively. The corrosion current densities obtained from the 

fitting procedure, as well as the anodic dissolution current densities derived from 



Chapter 5. Studies Using a Calcium/Magnesium Containing Anti-Corrosion Pigment 
 

286 

potentiodynamic data, are summarized in Table 5.5. The polarization resistance (RP) data 

had also been presented in Chapter 2 (the equation 2-33). 

)(303.2 cacorr

ca
P I

R
ββ

ββ
+

=    .. …….. ………………….……….. …………………..     (5-2) 

                                   

The corrosion rates (CR) could be calculated from the corrosion current densities, using  

Faraday’s law (values are presented in Table 5.5), which has also been presented in 

Chapter 3 (equation 3-1), and are given as: 

ρρρ nF
Mis

AnF
MIs

A
KsCR ===             ... ………………….……….. …………………..     (5-3) 

Where: 

     CR = corrosion rate (cm/y) 

           K  = rate of corrosion (g/s) 

           A = area (cm2) 

          ρ = density of metal (g/cm3) 

         s = seconds in a year (31.5*106)  

 

The values of βa, βc, and Icorr depend on the particular section of the polarization curve 

contained between the anodic and cathodic potential limits, which were fitted. Thus, the 

values of βa, βc, and Icorr indicated correspond to given anodic and cathodic potential 

limits which are also indicated in Table 5.5.  

 

In the 3.5% NaCl solution with inhibitor (Figure 5.13), the ferrous ions were oxidised   

(Fe2+→Fe3+), and the corrosion current density was about 3*10-6 A/cm2 (0.03 A/m2) at -

0.69 V/SCE. Conversely, in the 3.5% NaCl solution without inhibitor, the corrosion 

current density was about 3*10-5 A/cm2 (0.3 A/m2) at -0.868 V/SCE. For 3.5% NaCl 

solution in the presence of the inhibitor, the cathodic Tafel constant was 76 mV/dec, 

whilst the anodic Tafel constant was 145 mV/dec. For 3.5% NaCl solutions in the 

absence of inhibitor, the cathodic Tafel constant was 92 mV/dec, whilst the anodic Tafel 

constant was 147 mV/dec. In comparison with the samples immersed with no inhibitor, 

the value of Icorr for the sample in 3.5% NaCl solution with the addition of inhibitor was 

significantly decreased by a factor of around ten times.  
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From Figure 5.14, which gives the values of Ecorr  for samples in the NaClO4 solution 

with D5-B, the potential at zero current became more negative than the potential recorded 

for samples without D5-B, and from Table 5.5,  Icorr was observed to drop significantly 

by a factor of around 3 - 4 times.  In the 0.025M NaClO4 solution with D5-B inhibitor, 

the mild steel was oxidised (Fe2+→Fe3+) at the corrosion current density of about 2*10-6  

A/cm2 (0.02 A/m2) at -0.9 V/SCE. Accordingly, in the case of samples immersed in  

0.025M NaClO4  solution without D5-B inhibitor,  the corrosion current density was 

around 1*10-5 A/cm2 (0.1 A/m2) at -0.832 V/SCE. For samples in 0.025M NaClO4 

solution with the inhibitor, the cathodic Tafel constant was 100  mV/dec, and the anodic 

Tafel constant was 335 mV/dec. For samples in 0.025M NaClO4 without inhibitor, the 

cathodic Tafel constant was 272 mV/dec, and the anodic Tafel constant is 234 mV/dec. 

 
Table 5.5. Summary Table of all major parameters determined for mild steel samples immersed in 

the three corrosive test solutions, both with and without the addition of D5-B inhibitor. 

 

From Figure 5-15, it can be seen that the potential of samples immersed in simulated acid 

rainwater with the addition of D5-B was not significantly different from the potential 

recorded for samples immersed in acid rain without D5-B inhibitor. However, the value 

of Icorr of the sample immersed with D5-B inhibitor decreased around four times.  In the 

case of acid rainwater with the addition of D5-B inhibitor, the cathodic Tafel constant 

was 136 mV/dec, whilst for samples in acid rainwater in  the absence of the inhibitor; the 

cathodic Tafel constant was 140 mV/dec. 

 

Treament Fitting Ecorr(V) Icorr 
(Amp/cm2) 

βα 
(mV) 

βc 
(mV) 

Corrosion rate 
(mm/y) 

RP 
(Ω/cm2) 

Tafel fit -0.868 3.0E-05 147 92 0.40 810 3.5% NaCl 
without  D5-B RP  fit -0.868 3.6E-05   0.42 720 

Tafel fit -0.690 2.7E-06 76 145 0.03 7950 3.5% NaCl 
with  D5-B RP  fit -0.692 7.9E-06   0.09 3280 

Tafel fit -0.832 1.3E-05 234 272 0.10 4090 0.025M NaClO4 
without  D5-B RP  fit -0.832 6.0E-06   0.05 4260 

Tafel fit -0.893 2.3E-06 335 100 0.018 14680 0.025M NaClO4 
with  D5-B RP  fit -0.846 4.3E-06   0.033 6120 

Tafel fit -0.727 3.3E-06 101 140 0.026 7660 Acid rainwater 
without  D5-B RP  fit -0.750 8.8E-06   0.064 3170 

Tafel fit -0.785 9.0E-08 135 136 0.0011 32550 Acid rainwater 
with  D5-B RP  fit -0.730 2.1E-06   0.025 12270 
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As part of the computer software, the facility existed to calculate Rp from Linear 

Polarisation Resistance obtained from the same sweep. The data given in Table 5.5 

presents Rp values calculated from High field (Tafel extrapolation) and Low field (LPR). 

A comparison of the calculated values may be made using column eight. On examination 

of the data, a good correlation between the two techniques exists for the uninhibited 

samples. In the inhibited situations, a significant difference between the two may be seen. 

Since we have not polarized the specimen excessively, it is tempting to assume that LPR 

values are more accurate than Tafel extrapolation values which seem to give lower 

corrosion rates. Also there is the possibility of an inaccurate estimation of the Tafel 

constants for the inhibited surface 

 

5.3.3. Electrochemical Impedance Spectroscopy (EIS) study on the deposit. 

In order to investigate how a deposit changes with time on the surface of a sample, 

Electrochemical Impedance Spectroscopy (EIS) testing could be employed over regular 

time intervals. In contrast to the previous 7 day testing periods, this experiment was 

carried out over 30 days of immersion testing. Electrochemical Impedance Spectroscopy 

(EIS) measurements using the Solartron system previously described in Section 3.6. 

Experiments were carried out while the specimens were immersed in various test 

solutions for periods of 2 hours, 4 hours, 8 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 1 

week, 2 weeks and 1 month in order to obtain the polarization resistance Rp, and also 

other additional useful data, including the Constant Phase Element CPE, Section 3.6.3.  

The experimental testing solutions were similar to that described in Section 5.3.2; and 

consisted of: 3.5% NaCl solution, 0.025M NaClO4 and artificial acid rain water. Mild 

steel specimens with an exposed area of 10.0 cm2 were used as the test specimens. The 

samples were immersed in these solutions both with and without the addition of D5-B. 

The use of EIS testing also provided further mechanistic information regarding D5-B, 

and also further information was gained concerning the interactions occurring on steel 

samples immersed in corrosive solutions with the addition solely of D5-B, and also the 

effect of D5-B in the presence of zinc metal. 

For each experiment, the data obtained from the Electrochemical Impedance 

Spectroscopy (EIS) were displayed by means of a Nyquist plot (Z׳ vs Z״) and a Bode plot 

(log lZl vs logω and θ vs logω), where lZl is the absolute value of the impedance, θ is the 
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phase angle and ω is the angular frequency (rad/s). The testing frequency at the start was 

10000 Hz, whilst the final test frequency was 0.1 Hz. 

 

In order to simulate the behaviour of the electrochemical reaction occurring at the 

corrosion interface, the simple equivalent circuit given in Figure 5.16 can be used. For 

this work, this simpler circuit was selected in preference to the more complex circuit used 

in Chapter 4. In this system, the thin uniform film was much simpler to model, and 

indeed the impedance data obtained looks much less complex. 
 

During the free corrosion process, charge transfer controlled reactions occur. The model 

circuit is shown in Figure 5.16, where the resistance Rs represents the solution and 

corrosion product films. The parallel combination of Rct and CPE (constant phase 

element) represents the charge transfer of the corroding surface, where Rct is the charge 

transfer resistance arising from the anodic and cathodic electrochemical reactions and is 

related both to the rate of flow of electrons and also to the rate of electron transfer from 

the interfacial double layer. The value of the constant phase element (CPE) represents the 

capacitive component of the equivalent circuit. The fitting results, the resistance of the 

solution (Rs), the charge transfer resistance (Rct) and some additional useful data (CPE-T 

and CET-P), are given in Tables 5.6, 5.7 and 5.8.   

 

 
Figure 5.16. The equivalent circuit. 

 

5.3.3.1. Commencing immersion testing (2h). 

To evaluate the influence of the various inhibitor pigments at the very beginning of the 

immersion period, a set of mild steel samples (as discussed previously in Section 3.2.1) 

was immersed in the three different test solutions (same set of corrosive test solutions as 

described in Section 5.3.2). Values of Rs, CPE-T, CPE-P and Rct were determined and 

recorded for each sample, and in each of the three test solutions, both with and without 

the addition of the inhibitor D5-B, after an initial two hours of immersion.  
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Table 5.6.  The comparison of values of  Rs, CPE-T, CPE-P and Rct obtained  
for mild steel samples immersed in 3.5% NaCl  solution for 2 hours,  

                      both with and without presence of D5-B inhibitor. 
 

    Rs 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
With D5-B 4 0.00041 0.80 5600 

Without D5-B 6 0.00026 0.81 1400 
 

 
Table 5.7.  The comparison of values of  Rs, CPE-T, CPE-P and Rct obtained  
 for mild steel  samples immersed in 0.025M NaClO4 solution for 2 hours,  

both with and without presence of D5-B inhibitor. 
 

 Rs 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
With D5-B 150 0.0024 0.61 6300 

Without D5-B 160 0.0026 0.68 3300 
 

 

Table 5.8.  The comparison of values of Rs, CPE-T, CPE-P and Rct obtained  
for mild steel samples immersed in acid rain solution for 2 hours,  

both with and without presence of D5-B inhibitor. 
 

 Rs 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
With D5-B 460 0.00042 0.57 2400 

Without D5-B 590 0.00033 0.66 760 
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(1). 3.5% NaCl solution with D5-B. 
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Figure 5.17. Graphs showing the comparison of impedance spectra obtained 
during the initial  2 hour period of immersion, for mild steel samples immersed 

 in 3.5% NaCl solution both with and without the addition of D5-B inhibitor: 
(a) Nyquist, ( b) Bode. 
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(2). 0.025M NaClO4 with D5-B. 
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Figure 5.18. Graphs showing the comparison of impedance spectra obtained 
during the initial  2 hour period of immersion, for mild steel samples immersed 

 in   0.025M NaClO4 solution both with and without the addition of D5-B inhibitor: 
(a) Nyquist, (b) Bode. 
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(3). Acid rainwater with D5-B. 
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Figure 5.19.  Graphs showing the comparison of impedance spectra obtained 
during the initial  2 hour period of immersion, for mild steel samples immersed  
in acid rainwater solution both with and without the addition of D5-B inhibitor: 

(a) Nyquist, (b) Bode. 
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The parameters obtained for the electrochemical impedances measured and recorded for 

the mild steel samples in the three different testing solutions both with and without the 

addition of D5-B inhibitor are presented in  Figures 5.17, 5.18 and 5.19, and Tables 5.6, 

5.7 and 5.8. For all three testing solutions, the values obtained for Rct (the charge transfer 

resistance) were found to be significantly increased by between 2 ~ 4 times, when D5-B 

inhibitor was present, compared to the values of Rct obtained when D5-B was absent. 

These results are comparable with those obtained by potentiodynamic polarization testing 

(given in Table 5.5). The value of icorr obtained with the addition of D5-B was lower than 

the value of icorr obtained with no D5-B inhibitor present (see the values of icorr given in 

Table 5.5). These icorr values were calculated by applying equation 5-1 (Section 5.3.2.3), 

so the value of Rct with D5-B was higher than the value of Rct without D5-B. Later we 

shall show the presence of calcium/magnesium and polyphosphate on the steel surface. It 

may be assumed that this layer increased the charge transfer resistance. When values of 

Rct obtained for samples in the 3 different test solutions (given in Tables 5.6, 5.7 and 5.8) 

are compared, the value of Rct determined in acid rain solution was noticeably reduced. It 

may be that since the pH of the solution was 3.5, the deposit was not so easily formed and 

also, the acid rain solution had fairly low conductivity and it was therefore slightly more 

difficult to form the deposit film in acid rain solution than in the other two solutions. 

 

5.3.3.2. Extended time immersion.  

When the immersion experiments were  continued for an extended continuous test period 

of  720 hours (30 days), in the set of three different test solutions with the addition of the 

inhibitor D5-B [same test solutions as stated previously (Section 5.3.3.1)], full sets of 

measurements were continuously noted and recorded at the intervals stated in the 

previous Section. 

 

 

 

 

 

 

 

 

 



Chapter 5. Studies Using a Calcium/Magnesium Containing Anti-Corrosion Pigment 
 

295 

(1). 3.5% NaCl with D5-B. 
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Figure 5.20(a). Nyquist graph for initial 96 hours test period  

in 3.5% NaCl solution with D5-B. 
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Figure 5.20(b). Nyquist graph for period between 120~192 hours of testing period  

in 3.5% NaCl solution with D5-B. 
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Figure 5.20(c). Nyquist graph for period between 240~720 hours of testing period   

in 3.5% NaCl solution with D5-B. 
 

Figure 5.20.  Nyquist graphs plotted over different test periods in 3.5% NaCl solution with D5-B. 
 

 
Table 5.9.  Table showing the change of various parameter values recorded for the equivalent circuit 

with increasing immersion time in 3.5% NaCl solution with D5-B. 
 

Immersed time Rs 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
2h 4 0.00041 0.80 5600 
 4h 5 0.00031 0.82 5100 
8h 4 0.00025 0.84 6200 
48h 6 0.00023 0.82 6300 
72h 5 0.00022 0.82 6800 
96h 5 0.00024 0.80 9900 

120h 3 0.00022 0.82 7000 
144h 3 0.00018 0.88 9800 
168h 4 0.00022 0.82 7600 
192h 2 0.00023 0.81 8600 
240h 5 0.00019 0.84 11300 
480h 24 8.8e-5 0.84 59500 
720h 29 0.00012 0.79 23200 
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Figure 5.21. Graph showing plot of change in transfer resistance (Rct) with increasing immersion 
time for mild steel samples in 3.5% NaCl solution with D5-B (up to 240 hours). 
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Figure 5.22. Graph showing change in CPE-T (μF) values recorded over time  
for mild steel samples in 3.5% NaCl solution with D5-B  (up to 240 hours).  
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 (2). 0.025M NaClO4 with D5-B. 
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Figure 5.23 (a). Nyquist graph for the initial 0 - 96 hours of testing period   

          in  0.025M NaClO4 with D5-B. 
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Figure 5.23(b).  Nyquist graph for the period 120 - 192 hours of testing  

              in  0.025M NaClO4 with D5-B. 
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Figure 5.23(c). Nyquist graph for the period 240 -720 hours of testing  

in  0.025M NaClO4 with D5-B. 

Figure 5.23. Nyquist graphs plotted over various times in 0.025M NaClO4 solution with D5-B. 

 
Table 5.10. The change of parameter values recorded for the equivalent circuit 

with increasing immersion time in 0.025M NaClO4 solution with D5-B. 

 

Immersed time Rs 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
2h 150 0.0024 0.61 6300 
4h 120 0.0027 0.61 8000 
8h 130 0.0026 0.64 8500 

48h 164 0.0013 0.67 13200 
72h 220 0.0011 0.68 16000 
96h 190 0.00068 0.73 20100 
120h 170 0.00027 0.74 7000 
144h 120 0.00025 0.77 7200 
168h 150 0.00022 0.79 12700 
192h 140 0.00024 0.76 9300 
240h 170 0.00024 0.75 9800 
312h 220 0.00026 0.69 23700 
480h 430 0.00012 0.72 73300 
720 h 560 0.00017 0.62 80000 
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Figure 5.24. Graph showing plot of charge transfer resistance Rct against Time 
for mild steel samples in 0.025M NaClO4 solution with D5-B (from 2 to 240 hours). 
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Figure 5.25. Graph of CPE-T vs. Time for mild steel samples in 0.025M NaClO4 solution  

with D5-B (from 2 to 240 hours). 
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(3). Acid rainwater with D5-B. 
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Figure 5.26 (a). Nyquist graph  for the initial 0~96 hours of testing period   

              in  acid rainwater with D5-B. 
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Figure 5.26 (b). Nyquist graph  for the period 120 -240 hours of testing  

         in  acid rainwater with D5-B. 
 

Figure 5.26.  Nyquist graphs plotted over various time periods in acid rain solution.  
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Figure 5.27. Graph showing plot of charge transfer resistance Rct with Time 
obtained for mild steel samples in acid rain solution with D5-B. 
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Figure 5.28. Graph of CPE-T vs. Time in acid rain solution with D5-B. 
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Table 5.11. The change of various parameters of the equivalent circuit 
with increasing immersion time in acid rain solution with D5-B. 

 

Immersed time RS 
(Ω.cm2) 

CPE-T 
(F/cm2) CPE-P Rct 

(Ω.cm2) 
2h 460 0.00042 0.57 2400 
4h 430 0.00037 0.63 2800 
8h 390 0.00035 0.67 3300 

24h 470 0.00032 0.63 6400 
72h 410 0.00030 0.64 7500 
96h 450 0.00027 0.64 12500 
120h 480 0.00025 0.64 13800 
168h 450 0.00024 0.64 16100 
240h 440 0.00022 0.65 20200 
720h 2500 0.00016 0.58 47800 

 

Figures 5.20, 5.23 and 5.26 and Tables 5.9, 5.10 and 5.11 show readings of Rct obtained 

with time for samples immersed in the three solutions with addition of D5-B inhibitor for 

the initial 240 hours of the 720 hours experimental duration. Over the first 96 hours of 

immersion, the value of the charge transfer resistance (Rct) was observed to increase. This 

is almost certainly due to film growth on the sample surface. Then, during the next 

120~240 hours of immersion, Rct became more variable, but overall, it increased. This 

instability is thought to be due to the protective film becoming detached from the steel 

surface and subsequently re-growing. After 240 hours, the data became fairly stable, and 

interestingly the resistance of the solutions (Rs) increased.  For the chlorate and acid rain 

solutions it could be argued that because after such a long immersion time, there was 

substantial deposition of corrosion film on the surface of the steel sample and the 

concentration of ions in the solution therefore decreased with time, so the resistance of 

the solution was also concurrently increased. It is difficult however to use the same 

argument in the highly conductive sodium chloride solution and this feature remains 

unresolved. In all cases the plot of CPE-T with time curve generally decreases while the 

Rct value increased. 
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5.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-

Ray Analysis (EDX). 
 An SEM examination and subsequent analysis using EDX was performed on the sodium 

chloride and acid rain solutions at the end of the immersion experiments. The sodium 

chlorate solutions were not examined due to lack of time. Either whole samples (to 

examine surfaces) or resin-embedded sample cross-sections (see Section 3.8.4) were 

mounted onto aluminium SEM specimen stubs using either adhesive  carbon tabs or 

double-sided adhesive copper mounting tape, then samples were carbon coated using an 

Edwards Carbon coater. Samples were coated once, then turned 180 degrees and coated 

again to avoid shadowing and charging effects. A coating thickness reference chart was 

used to estimate that samples were coated with carbon to a thickness of approximately 

5.0 to 8.0 nm. Prepared samples were examined in a FEI XL-30 FEGSEM, with attached 

RONTEC EDX system running Quantax Esprit 1.8 analytical software, which has also 

been discussed previously in Section 3.8.2. 

 

5.4.1. SEM/EDX examination of the sample surface deposits.  

Plate 5.9 shows the SEM images and corresponding EDX maps of the corrosion film 

deposits formed after 7 days immersion in 3.5% NaCl solution with addition of D5-B. 

Plate 5.9(a) shows an SEM photomicrograph of the sample surface taken at a 

magnification of 500 X, and Plates  5.9(b), (c), (d), (e), (f) and (g) present the set of EDX 

single element distribution maps that correspond with the image shown in Plate 5.9(a), 

whilst Figure 5.29 gives the EDX full spectra results of all the elements present, and 

Table 5.12 gives the quantitative percentages of all the selected elements in the deposit, 

over the area that was imaged at 500 X magnification.   
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 (a). Secondary electron image taken at 500x          (b) Single EDX element map of distribution of Ca               

               
 (c) Single EDX element map of distribution of Mg   (d) Single EDX element map of distribution of P                              

                
 (e) Single EDX element map of distribution of Fe   (f) Single EDX element map of distribution of Na       

      
     (g) Single EDX element map of distribution of Cl  

      Plate 5.9. SEM micrographs and associated EDX element distribution maps of surfaces 
of samples after immersion for 7 days in 3.5% NaCl solution with addition of D5-B inhibitor. 
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Figure 5.29. EDX spectra of surface of sample after immersion for 7 days in 3.5% NaCl 

solution with addition of D5-B inhibitor. 
 

 
Table 5.12.  The relative percentages of various elements determined using EDX quantification,  

of surface film deposits on steel samples after immersion in 3.5% NaCl solution for 7 days,  
with addition of D5-B inhibitor. 

 
Element Iron Calcium Magnesium Phosphorus Silicon Oxygen sulfur Sodium Chlorine 

Percentage  
of  Element 69.5 0.51 0.23 1.139 0.14 9.6 0.06 14.29 4.5 

 
 

The results of the SEM imaging, EDX spectra analysis (Plate 5.9 and Figure 5.29) and 

EDX mapping clearly show two kinds of area on the steel surface; firstly a uniform 

coating on the steel which contains magnesium and phosphorous (probably a precipitated 

magnesium phosphate) which also might contain iron as well. This is not certain as the 

iron map might also have come from the underlying base metal. If the iron is part of the 

film, a co-precipitation mechanism (see Section 4.3.5) seems one possible explanation. 

The second area seems to stand proud of the surface, typically 20 µm in diameter and 

contains largely calcium and phosphorous, probably calcium phosphate. The rest of the 

deposit is clearly sodium chloride originating from the solution. The growth with time 

(up to 120 hours) of this film has already been tracked using impedance (Figure 5.21) and 

it is tempting to suggest that the unevenness in this plot is associated with the growth and 

fracture of these films. 
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(a). Secondary electron image taken at 500x           (b) Single EDX element map of distribution of Ca        

            
 (c) Single EDX element map of distribution of Mg  (d) Single EDX element map of distribution of P        

  
 (e) Single EDX element map of distribution of Fe 

Plate 5.10. SEM micrographs and associated EDX element distribution maps  
of surface of mild steel sample after immersion for 7 days  
in acid rainwater solution with addition of D5-B inhibitor 

 

Plate 5.10 shows the corrosion film deposits formed on mild steel samples immersed in 

acid rainwater solution with addition of D5-B after 7 days. Plate 5.10(a) shows a SEM 

photomicrograph of the sample surface taken at a magnification of 500 X, and Plates  

5.10(b), (c), (d) and (e) present the single EDX element distribution maps  that 

correspond with the image shown in Plate 5.10(a), whilst  Figure 5.30 gives the EDX full  

spectra results of all the elements present, and Table 5.13  gives the quantitative 

percentages of all the selected elements in the deposit.   
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Figure 5.30. EDX full spectra of surface of sample after immersion for 7 days in acid 

rainwater solution with addition of D5-B inhibitor. 
 

Table 5.13.  The relative percentages of various elements determined using EDX quantification, of 
surface film deposits on steel samples after immersion in acid rainwater solution for 7 days, 

with addition of D5-B inhibitor. 
 

Element Iron Calcium Magnesium Phosphorus Silicon Oxygen Sulfur Sodium Chlorine 

Percentage  
of  Element 

61.75 0.88 0.33 4.9 6.9 24.5 0.14 0.35 0.19 

 

The results of the SEM imaging and EDX mapping (Plate 5.10), EDX analysis (Figure 

5.30 and Table 5.13) show that; as with the NaCl situation, the film formed by the 

inhibitor on the steel surface  is clearly composed of two layers. There is an inner 

compact layer containing magnesium, phosphorous and maybe iron, similar to the NaCl 

situation, with a film thickness of around 120 nm (Section 5.4.2). There is also a very 

obvious outer layer which curls up when it detaches, probably due to a residual tensile 

stress. This detachment is thought to be caused by drying out either on removal from the 

solution or in the low pressure atmosphere in the carbon coater. This spontaneous 

detachment due to residual stress has been observed before with organic coatings and has 

been discussed by Croll [5]. This detached outer layer differs from that observed in the 

NaCl case in that it contains not only calcium and phosphorous but also magnesium. It 

may be that the more acid conditions in the acid rain solution favours magnesium 

precipitation. Again, impedance analysis over 240 hours suggests a steady film growth 

with time (Figure 5.27). It is tempting to suggest that this growth is due to growth in the 

outer layer.  
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(a). Secondary electron image taken at 500x           (b) Single EDX element map of distribution of Ca   

                
(c) Single EDX element map of distribution of Mg  (d) Single EDX element map of distribution of P     

                 
(e) Single EDX element map of distribution of Fe  (f) Single EDX element map of distribution of Zn   

     

                 
(g) Single EDX element map of distribution of Na  (h) Single EDX element map of distribution of Cl   

 
Plate 5.11. SEM micrographs and associated EDX element distribution maps of surface of mild steel 

sample after immersion for 7 days in 3.5% NaCl solution with addition of D5-B inhibitor and 
connected to zinc metal anode. 
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Figure 5.31. EDX full spectra of surfaces of samples after immersion for 7 days in 3.5% NaCl  

solution with addition of D5-B inhibitor and  connected to zinc metal anode. 
 

Table 5.14. The relative percentages of various elements determined using EDX quantification, of 
surface film deposits on steel samples after immersion in 3.5% NaCl solution with addition of D5-B 

inhibitor and connected to zinc metal anode. 
 

Element Iron Calcium Magnesium Phosphorus Silicon Chlorine Sodium Oxygen Zinc Sulfur 

Percentage  
of  Element 

7.24 16.48 4.46 15.37 0.15 0.77 2.64 51.84 0.97 0.07 

 

Plate 5.11 shows the corrosion film deposits formed on mild steel samples after 

immersion for 7 days in 3.5% NaCl solution with the addition of D5-B and connected to a 

zinc metal anode. Plate 5.11(a) shows a  SEM photomicrograph of the sample surface 

taken at a magnification of 500 times, and Plates 5.11(b), (c), (d), (e), (f), (g) and (h) 

present the associated single EDX element distribution maps that correspond to the 

sample area imaged in Plate 5.11(a), whilst Figure 5.31 gives the EDX spectra results of 

all the elements present, and Table 5.14  gives the quantitative percentages of all the 

selected elements in the deposit. The results of the SEM imaging and EDX analysis 

(Plate 5.11 and Figure 5.31) show that calcium, magnesium, phosphorus and zinc were 

all present within the film deposit, the porous deposits that were formed on the sample 

surface are illustrated in the SEM micrographs shown in Plate 5.11(a). 
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       (a). Secondary electron image taken at 500x      (b) Single EDX element map of distribution of Ca 

          
 (c) Single EDX element map of distribution of Mg  (d) Single EDX element map of distribution of P 

          
(e) Single EDX element map of distribution of Fe  (f) Single EDX element map of distribution of Zn 

 
Plate 5.12. SEM micrographs and associated EDX element distribution maps of surface of mild steel 

sample after immersion for 7 days in acid rain solution with addition of D5-B inhibitor and 
connected to zinc metal anode. 

 
Table 5.15. The relative percentages of various elements determined using EDX quantification, of 

surface film deposits on steel sample after immersion in acid rainwater solution for 7 days, 
with addition of D5-B inhibitor and  connected to zinc metal anode. 

 
Element Iron Calcium Magnesium Phosphorus Silicon Chlorine Sodium Oxygen Zinc sulfur 

Percentage  
of  Element 

68.5 3.03 2.17 5.61 0.12 0.1 0.33 19.26 0.76 0.08 
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Figure 5.32. EDX spectra of surface of sample after immersion for 7 days in acid rain solution with 

addition of D5-B inhibitor and  connected to zinc metal anode. 
 

 

Plate 5.12 shows the corrosion film deposits formed in acid rainwater with the addition of 

D5-B and connected to a zinc metal anode after 7 days immersion. Plate 5.12(a) shows a 

SEM photomicrograph of a sample surface taken at an instrument magnification of 500 

times,  and Plates 5.12(b), (c), (d), (e) and (f) present the single EDX element distribution 

maps that correspond to are area imaged in Plate 5.12(a), whilst Figure 5.32 gives the 

EDX full spectra results of the elements present. The results of the SEM imaging and 

EDX analysis (Plate 5.12 and Figure 5.32) show that calcium, magnesium, phosphorus 

and zinc were all present within the film deposit, the porous deposits that were formed on 

the sample surface are illustrated in Plate 5.12(a) and (b). Table 5.15 gives the 

quantitative percentages of all the selected elements in the deposit.  
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5.4.2. SEM/EDX examination of deposit cross sections.  

To investigate the thicknesses of the deposits formed on the surfaces of mild steel 

samples as a result of immersion in 3.5% NaCl solution and acid rain solution with the 

addition of D5-B inhibitor, some cross-section analyses were carried out.  The method of 

preparation of samples and the procedures involved in this technique have already been 

described previously in Section 3.8.4 and Section 4.3.4.4. 

 
(a). Secondary electron image taken at 4000x. 

 
(b). Back scattered electron (BSE) image taken at 50000 X. 

 
Plate 5.13. SEM and BSE micrographs  of cross section of samples after immersion for 7 

days in 3.5% NaCl solution with addition of D5-B inhibitor. 
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 (a). Secondary electron image taken at 4000x  

 
 (b). Back scattered electron (BSE) image taken at 50000x  

Plate 5.14. SEM micrographs of cross section of samples after immersion for 7 days in acid 
rain solution with addition of D5-B inhibitor. 

 
Plates 5.13(a) and (b) and Plates 5.14(a) and (b) show SEM photomicrographs of sample 

cross sections taken at different instrument magnifications: (a) 4000 times (b) 50000 

times. These thin sections are much thinner than the EDX beam diameter and so point 

analysis was not possible. Therefore the purpose of this specific study is merely to use the 

SEM/section techniques to determine the film thickness.  

 

We already know the elements present on the film surface from our previous work. In 

Section 5.4.1, Figure 5.29 and Figure 5.30 give the EDX spectra for all the elements 
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present. Table 5.12 and Table 5.13 also present the quantitative percentages of all the 

selected elements in the deposit.   

 

Plate 5.13 shows a SEM micrograph of a sample/film cross-section after immersion for 7 

days in 3.5% NaCl solution with D5-B inhibitor. Film thickness measurements were 

carried out in three different locations and the thickness of the films were 130 nm, 188 

nm and 99.6 nm.  The SEM micrographs of a sample/film cross-section, after immersion 

for 7 days in acid rain solution with D5-B inhibitor are presented in Plate 5.14. Similar 

measurements were carried out in three different locations; the thicknesses obtained were 

149 nm, 157 nm and 53.6 nm. Tempting though it is to carry out a statistical comparison 

between the thicknesses obtained in these two solutions such an exercise would be 

meaningless. All that can be said is that the films in both solutions have a range of 

thicknesses which vary between 60 and 200nm. A more convincing thickness comparison 

using GDOES will be shown in the next Section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Studies Using a Calcium/Magnesium Containing Anti-Corrosion Pigment 
 

316 

5.5. GDOES. 
The technique of GDOES has already been explained and used earlier in this Thesis in 

Sections 3.11 and 4.33. The data below was generated after 4 days immersion in the 

inhibited solution and correspond to the visual images shown in Figure 5.33 and Figure 

5.34. In each graph, two figures (a) and (b) were presented together which were chosen at 

two different locations of the same sample.   
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Figure 5.33. GDOES graphs of samples after immersion for 7 days in 3.5% NaCl solution 
with addition of D5-B inhibitor. 
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Figure 5.34. GDOES graphs of samples after immersion for 7 days in acid rain solution 

with addition of D5-B inhibitor. 
 
Proceeding Left to Right across the graph indicates loss of the sputtered film and 

illustrates how the film composition varies with time, and the left-hand side represents 

the film surface (the vertical pink dotted line) and the second pink line represents the 

film-steel interface, so the thickness of films may be compared one with the other by 
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looking at the distance between the two pink lines within the same graph. In Figures 

5.33(a) and (b), the film thicknesses are quite similar,  and represented by 1s, while the 

film thickness is represented by 0.4s in Figures 5.34(a) and (b). Thus the GDOES data 

clearly shows a thinner film on the steel surface in acid rain compared to that formed in 

the 3.5% NaCl solution.  It also clearly shows that the films contain calcium, magnesium, 

phosphorus and oxygen.  
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5.6 General Discussion.  
5.6.1. Does D5-B work as a corrosion inhibitor? 

From the simple exposure tests in the four chosen aqueous test solutions, it is clear that 

the D5-B pigment possesses substantial anti-corrosion properties which appear somewhat 

superior to zinc phosphate and two other commercially available pigments. These 

observations are backed up by electrochemical corrosion rate determinations, using 

Linear Polarisation Resistance, and Impedance analysis. Furthermore, the visual 

appearance of the film formed with the D5-B pigment in the four solutions gives a 

marked opalescence similar to an interference film which suggests a film thickness 

around the 100-200 nm range. These film thicknesses have been confirmed using analysis 

of cross sections in the SEM, for the inhibited systems containing D5-B in NaCl and acid 

rain solution (Section 5.4.2). 

 

5.6.2. How efficient is D5-B as an inhibitor? 

Using the three independent techniques of linear polarization resistance, EIS analysis and 

Tafel extrapolation we can calculate using equation 5-4, how efficient the inhibitor is as a 

function of solution composition and time; see Table 5.16 and Table 5.17. It can be seen 

that this inhibitor works well in the acid rain solution (Table 5.17) and moderately well in 

the 3.5% NaCl solution (Table 5.16). Further, it is interesting to note that in these two 

solutions, the level of inhibitor efficiency increases with time, suggesting that the growth 

of the film providing the inhibition is an ongoing process.  

 

The inhibitor efficiency is based on the calculation of corrosion rate, and the value of 

Tafel constants. If the Stern-Geary constant is indeed constant, then efficiency can be 

calculated from the values of polarization resistance RP and may be given by the 

following equation: 
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Where: 

Rp1 = polarization resistance without inhibitor, (Ω.cm²). 

Rp2 = polarization resistance with inhibitor, (Ω.cm²). 
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Table 5.16. The efficiency of the inhibitor D5-B 
in 3.5% NaCl solution. 

 
Day LPR(%) EIS analysis(%) Tafel extrapolation(%) 

1 28.4 72 91.0 ( after 2 hours immersion) 
2 36.4 75  
3 36.9 73.6  
4 58.5 82  
5 60.1 75  
6 55.5 80  
7 57.3 82  

 
 

Table 5.17. The efficiency of the inhibitor D5-B 
in acid rain solution 

Day LPR(%) EIS analysis(%) Tafel extrapolation(%) 
1 68.7 81 99.0 ( after 2 hours immersion) 
2 91.4 82  
3 90.1 80  
4 93.3 87  
5 94.4 92  
6 95.9 95  
7 97.2 96  

 
 

5.6.3. What is the mechanism of inhibition? 

As we have seen in Chapter 3, the simplest and most common method of categorizing 

inhibitors is to define them as anodic, cathodic or mixed. These criteria are assigned after 

determining the movement of the open circuit potential after addition of the inhibitor. Our 

potential time data does seem to suggest that the D5-B inhibition is mixed. That is, both 

cathodic and anodic processes are inhibited.  

 

SEM/EDX microscopy and analysis reveals in the NaCl case a two layer structure with 

an inner layer containing Mg and P, probably a magnesium phosphate precipitate with an 

outer discontinuous layer containing calcium and phosphorous, probably calcium 

phosphate.  

 

In the acid rain solution, a two layer structure is also evident, the inner layer also contains 

magnesium and phosphorous, but the outer layer shows signs of fracture and detachment 

and contains not only Ca and P but also Mg.  
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When connected to zinc, in both the acid rain and NaCl solutions, there is no evidence of 

a two layer structure, there is a porous single film which contains Ca, Mg, P and Zn. 

  

GDOES analyses was not used when the steel was connected to the zinc. With the NaCl 

and acid rain solutions, GDOES clearly shows the presence of calcium, magnesium and 

phosphorous in the film. Examination of sample/film sections in the SEM  reveals a film 

thickness of 60-200 nm  

  

SEM section imaging suggests that the thickness varies with location on the surface. 

GDOES indicates that the NaCl film is thicker than the acid rain film. We feel that this 

data may be explained by the concept of local anodes and cathodes. In neutral solutions at 

open circuit, local anodes and cathodes would develop on immersion and would be 

expected to be quite far apart and therefore any inhibitor film formed would be somewhat 

unevenly distributed. We are suggesting a mixed inhibition mechanism and one might 

expect the initial film produced on the steel surface would be an anodic inhibitor; namely 

the inner calcium and phosphorous containing films which we have observed on the steel 

surface. Later, pH changes would generate cathodic deposits as a second layer which in 

the NaCl case contains calcium and phosphorous, maybe a mixed calcium carbonate/ 

calcium phosphate precipitate. In the acid rain solutions the outer cathodic precipitate 

also contains magnesium, maybe a magnesium coprecipitate! Chemically a further 

difference with the acid rain solutions would be the predominant cathode reaction of 

hydrogen evolution. One would expect this to give a much finer distribution of anodic 

and cathodic areas thereby leading to a much thinner inhibitor deposit. This we have 

observed. 

 

Much of what we have just said is speculative. In order to test the mechanisms proposed, 

thin-section TEM with EDX might provide the answer. 

 

5.6.4. The effect of direct connection of the steel to zinc. 

The justification for connecting the steel working electrode to a piece of pure zinc and 

then assessing the new role of D5-B has already been made in Section 5.2.3 of this 

Chapter. Clearly, the effectiveness of D5-B as an inhibitor in the two aqueous solutions 

studied has been significantly enhanced when the steel specimens have been 

simultaneously connected to a zinc anode. The potential in both situations moves 
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negatively, much more so in the NaCl solutions (-1050mV SCE) compared with the acid 

rain solution (-850mV SCE), probably because of the lower conductivity of the acid rain 

which in turn will lead to a much reduced current output from the anode. The visual 

appearance of samples indicates complete absence of corrosion and SEM/EDX analysis 

suggests a thin film of inhibitor containing calcium, magnesium, phosphorus and zinc. 

Also visually, the deposits formed with D5-B and a Zn anode together  (Plate 5.11 and 

Plate 5.12) were thicker than those where only the inhibitor D5-B was used alone (Plate 

5.9 and Plate 5.10).  

 

5.6.5. The Role of Zinc. 

There are two possible explanations for the role of the zinc.  

 

The first is that the negative potential attained on connecting the steel to the zinc 

enhances the cathodic reactions on the steel and increases the interfacial pH at the steel 

and further enhances cathodic inhibition. 

 

The second is that the action of the zinc anode provides a source of soluble zinc ions in 

the solution which in turn can act to supplement the calcium and magnesium already 

present from the inhibitor. Of course, there is always the possibility of both mechanisms 

acting concurrently.  

 

To attempt to distinguish and choose between these two mechanisms, we carried out a 

series of additional experiments. They both involved the same two solutions, the same 

steel specimens, the same D5-B inhibitor additions. In one situation we added the zinc 

ions directly to the solution at a concentration of 1g ZnSO4 in 200ml of solution rather 

than have them generated from dissolution of the zinc anode. From the results of our 

study it does appear that the optimum performance is where our two suggested 

mechanisms are operating concurrently, namely the presence of zinc ions and a steel 

potential where cathodic inhibition is favoured.  
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5.7. Conclusions. 
• The novel pigment D5-B works as a corrosion inhibitor for mild steel in deionised 

water, 3.5% NaCl , 0.025M NaClO4 and acid rain solutions and its performance in 

these solutions is comparable with and maybe exceeds three commercially 

available pigments. 

 

• Potential time measurements and potentiodynamic polarization studies have been 

carried out and from the data produced, inhibition by the pigment is thought to be 

mixed; i.e. both anodic and cathodic. 

 

• Electrochemical studies have been used to look at its inhibitor efficiency as a 

function of time in the NaCl, sodium chlorate, and acid rain solutions. 

 

• A simple electrical analogue circuit has been used to model the electrochemical 

behaviour of the steel electrode in the D5-B conditions. We have used this model 

with electrochemical impedance techniques to successfully study the growth of 

the inhibitor film on the steel surface as a function of time. Even after 240 hours 

the film has not reached steady state and continued to grow. 

 

• SEM/EDX and GDOES were used to provide information on the inhibitor films 

produced on the steel surface namely film thickness and film composition. Films 

were seen to have a two layer structure. The film composition depended on the 

solution. Film thicknesses were within the range 80 to 200 nm.  

 

• The inner layer in both the NaCl solutions and acid rain consisted of magnesium 

and phosphorus; the outer layer in NaCl contained calcium and phosphorus, in 

acid rain the outer layer also contained magnesium. 

 

• We suggest that the inner layer is an anodic deposit and the outer layer is a 

cathodic deposit; i.e. anodic insoluble phosphates plugging anodic sites with 

cathodic calcium and  magnesium containing alkali generated precipitates.  
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• Based on the GDOES data, films produced in the acid rain solution are 

significantly thinner than that from the sodium chloride solution. 

 

• The novel pigment performance is enhanced when the steel sample is coupled to a 

zinc anode. A single layer inhibitive film is produced which contains calcium, 

magnesium, phosphorus and zinc. 

 

• The mechanism of enhancement seems not just due to the negative potential 

attained, nor just due to the presence of zinc ions in solution but seems to be due 

to a combination of both effects. 
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Chapter 6.   General Discussion on the Action of the Films 

Studied and Future Work. 
 

6.1. General discussion. 
In this Thesis we have looked at two kinds of calcium and magnesium containing films 

on mild steel; firstly ones produced by growing a film using cathodic protection in an 

electrolyte containing calcium and magnesium, namely artificial sea water and secondly 

ones produced by immersion in a corrosion inhibitive solution where the calcium and 

magnesium ions are generated by dissolution of the slightly soluble pigment. We have 

looked at both films and at first sight the two areas seem totally separate. However in this 

final Chapter it is considered worthwhile and instructive to compare and contrast the two 

forms of films produced.  

 

Both films are inorganic, and in many situations on the same surface there are different 

regions, one calcium containing and the other magnesium containing. Both films have 

been shown to influence the corrosion of mild steel by reducing the corrosion rate. The 

calcareous film is thought to work in a way very similar to classic cathodic inhibitors 

which we have already described in our literature review in Section 2.6 in Chapter 2. 

Briefly, pH driven precipitation reactions take place at cathodic regions on the steel 

surface and the final produced film works as a barrier to movement of oxygen from the 

bulk solution through to the steel surface. Further, being a non electron conductor, the 

cathodic reduction reactions are no longer capable of taking place at the film electrolyte 

interface. The D5-B inhibition mechanism has been shown to be mixed, namely the D5-B 

acts both as an anodic and a cathodic inhibitor. Those cathodic functions of the D5-B 

inhibitor are also thought to act in the same way as described above.  

 

We have shown earlier in this Thesis (Section 4.3.4.3. and 4.3.4.4 in Chapter 4) that the 

magnesium deposition in the calcareous film, especially during underprotection, is 

strongly influenced by the steel substrate by a process of co-precipitation. Early stages of 

the magnesium part of the calcareous film growth may well be influenced uniquely by the 

presence of ferrous ions in solution. We have also shown using elemental mapping, the 

possibility of a combination of the magnesium in D5-B and the underlying iron in the 

substrate as well. The D5-B pigment is clearly an excellent inhibitor for the corrosion of 
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mild steel in the four solutions investigated, namely deionised water, 3.5% NaCl, a dilute 

perchlorate solution (0.025M) and an acid rain solution. We have not looked at its 

inhibitive functions in a seawater environment since it would never be used in this 

situation. Early theories concerning corrosion inhibition usually centred around Uhlig and 

his co-workers[1] concentrate on adsorption as the main mechanism of inhibition. In the 

three solutions chosen there is no evidence of a simple adsorption process taking place.  

 

In both the D5-B and the calcareous situations, we have shown there to be the presence of 

a three dimensional film on the steel surface. The calcareous film has an obvious 

microscopic multilayer structure.  The D5-B layer in 3.5% NaCl and the acid rain 

solution has a more compact structure with a visually slight optical interference sheen. 

The optical properties of the interference film formed by the interaction between the D5-

B pigment and the acid rain and sodium chloride solutions suggest a film thickness 

around the 100-300 nm range. This value is confirmed by SEM cross-section analysis of 

around 60-200 nm. 

  

SEM pictures of the change in the calcareous film with time seems to suggest a growth 

mechanism involving the calcium containing calcite crystals acting as nuclei for adjacent 

crystals. We have not looked at changes in D5-B growth with time using SEM due to 

time constraints. However we have used impedance to look at growth of these films over 

a thirty day testing period. It seems that a film appears very early on during exposure, 

which continues to grow in an approximately linear manner over a 240h exposure period.  

 

In spite of their similarities, there are fundamental and basic differences between the two 

systems. The main difference is simply the way the two systems perform. The calcareous 

film, although it does significantly reduce the cathodic protection current density, there is 

a permanent and probably continuous requirement of the presence of cathodic protection 

current to maintain the film and keep it intact. Although it is not entirely clear how low a 

steady state current density needs to be to achieve this, in this Thesis we have shown 

values of  200 mA/m2 and 300 mA/m2 are possible and in a recent publication [2], we 

have suggested a value of 15-19 mA/m2. Conversely, the D5-B film clearly forms 

spontaneously and merely needs a solution presence to operate as an anti-corrosion film. 

Indeed it does seem that the D5-B film improves with time of exposure. 
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The main chemical difference is that the source of inhibitor is a solid pigment also 

containing phosphorous whereas the calcareous film merely needs the presence of 

calcium and magnesium in solution in seawater. 

 

There is a considerable difference in the structure and morphology of the films produced 

in the two systems. The calcareous film as we have seen has a variable composition 

depending on the applied current density. Typically an inner layer is composed of a 

magnesium containing compound with an outer layer of calcium containing compound 

which clearly colonises the surface and grows in characteristic shapes with thicknesses of 

typically 40 - 50µm. 

 

The D5-B film in both solutions provides clear evidence of two types of deposit, both 

containing phosphorous, probably as phosphate, an inner layer composed of magnesium 

and phosphorous, and an outer region containing calcium and phosphorous in the NaCl 

solution with additional Mg in the acid rain. In the acid rain solution this outer region has 

a layered structure, whereas in sodium chloride solutions, the outer region is in the form 

of individual precipitates. Potential/time curves for the D5-B pigment in NaCl and the 

acid rain solution suggest that its mechanism is one of a mixed inhibitor, namely the 

inhibition is operating both on the anodic and cathodic half reactions.  

 

We suggest that the inner layer is an anodic deposit and the outer layer is a cathodic 

deposit; i.e. anodic insoluble phosphates plugging anodic sites with cathodic calcium and  

magnesium containing alkali generated precipitates.  
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6.2. Future work. 

• The work described in Chapter 4 on weight loss and cathodic protection used a 

stagnant artificial seawater solution, a thirty day exposure period and a relatively 

small area of exposure. This work needs to be repeated in real seawater, under 

well defined conditions of temperature, oxygen content and flow for a much 

longer exposure condition; at least one year and maybe a much larger exposed 

area. In particular, attention needs to be given to the nature of the corrosion 

process in terms of its visual appearance. Our claim concerning the validity of the 

so-called protection potential also needs further testing under real seawater 

conditions. 

 

• Further to the above, our work was carried out under sterile conditions. Clearly 

with natural seawater, a whole range of living organisms may have an influence 

on corrosion and the calcareous film and this will need to be considered during 

any future testing. 

 

• We have looked briefly at the situation of starting with a high protection current 

density for a given time and then reducing its value and assessing whether the 

cathodic protection is successful or not. This concept could be extended by 

varying the initial current density, initial time, final current density to cover an 

extensive study. A further study might include switching on and off the CP 

system for a period of time and looking at whether the calcareous film is capable 

of maintaining protection during the off period. 

 

• Under conditions of more negative potential, we have clearly seen the film 

becoming detached. We have suggested that evolution of hydrogen is the most 

likely cause of this detachment. However this suggestion is still only a hypothesis 

which needs testing. Hydrogen could be collected using a gas burette; different 

metal substrates could be studied of similar electrochemical potentials to iron but 

with differing exchange current densities for hydrogen. 
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• Our work on co-precipitation has highlighted the contribution of dissolved iron on 

the initial stages of the development of the calcareous film. Clearly the film 

should grow differently in the absence of this dissolved iron. The growth of 

calcareous films on stainless steels would be an obvious and worthwhile 

extension to this work. 

 

• With our work on the corrosion inhibitive pigment, the obvious extension of our 

work is to incorporate the pigment into typical binders and to carry out 

conventional accelerated corrosion testing on the new paint systems. Binders 

which might be considered  would include epoxys, alkyds, and maybe a water 

based acrylic with both clean and corroded steel, zinc and aluminium as possible 

substrates. 

 

• The combination of the novel pigment and metallic zinc looks like an exciting 

concept. A conventional, fully-formulated zinc metal containing paint system 

(epoxy or silicate) should be created where a portion of the pigment were replaced 

with our pigment and again put through an accelerated test programme to see 

whether our results are reflected in a real system. 

 

• The combination of ionic mixtures calcium, magnesium, phosphate and zinc as 

conventional corrosion inhibitors seems like a fruitful area of study. Changes in 

their relative proportions could be made, solutions could be varied, metals other 

than mild steel could be studied, indeed such a study could be made into a life’s 

work! 
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