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Abstract

This work presents a large scale multifractal analysis of the electronic state
in the vicinity of the localisation-delocalisation transition in the three-dimensional
Anderson model of localisation using high-precision data and very large system
sizes of up to L3 = 2403. The multifractal analysis is implemented using box- and
system- size scaling of the generalized inverse participation ratios employing typical
and ensemble averaging techniques. The statistical analysis in this study has shown
that in the thermodynamic limit a proposed symmetry relation in the multifractal
exponents is true for the 3D Anderson model in the orthogonal universality class.
Better agreement with the symmetry is found when using system-size scaling with
ensemble averaging in which a more complete picture of the multifractal spectrum
f(α) is also obtained. A complete profile of f(α) has negative fractal dimensions
and shows the contributions coming from the tails of the distribution. Various box-
partitioning approaches have been carefully studied such as the use of cubic and
non-cubic boxes, periodic boundary conditions to enlarge the system, and single
and multiple origins in the partitioning grid. The most reliable method is equal
partitioning of a system into cubic boxes which has also been shown to be the least
numerically expensive. Furthermore, this work gives an expression relating f(α)
and the probability density function (PDF) of wavefunction intensities. The relation
which contains a finite-size correction provides an alternative and simpler method
to obtain f(α) directly from the PDF in which f(α) is interpreted as the scale-
invariant distribution at criticality. Finally, a generalization of standard multifractal
analysis which is applicable to the critical regime and not just at the critical point is
presented here. Using this generalization together with finite-size scaling analysis,
estimates of critical disorder and critical exponent based on exact diagonalization
have been obtained that are in excellent agreement, supporting for the first time
previous results of transfer matrix calculations.

xii



Chapter 1

Introduction

1.1 Anderson model of localisation

The interest in this thesis is how electrons behave when the disorder in a lattice is

sufficiently strong such that it can cause a transition from a metallic to an insulat-

ing state. By disorder, we mean the presence of impurities and distortions, both

being randomly distributed in an otherwise perfect (clean and periodic) lattice. The

picture of disorder for a travelling electron is a sea of random potential. Localisa-

tion of electrons happens as an interference effect due to multiple scatterings of the

single particle electronic wavefunction with itself by a random potential. This phe-

nomenon is first demonstrated by Anderson [1] in his seminal paper on the absence

of diffusion in a simple system of noninteracting particles with random site potential

energy and zero external fields. Since then, Anderson localisation [2–4] is experi-

mentally observed in microwaves [5], ultrasound [6, 7], light waves [8, 9] quantum

waves [10,11] and cold atoms [12,13].

If the phase coherence length lϕ of the electron is large compared with the

system size L then the quantum interference effects become relevant and Anderson

localisation for electrons can happen [4]. This regime is reached when temperature is

sufficiently low such that inelastic electron-electron and electron-phonon scatterings

1



i
+

A

A i
−

r=0

[t]

Figure 1.1: A schematic picture of coherent back-scattering of an electron by a
random potential. An electron returns to its initial position at r = 0 with probability
amplitude A+

i (t′) after a series of scattering events as traced by the black arrows.
The brown arrows trace the corresponding inverse path with probability amplitude
A−
i (t′).

are suppressed. We can visualize the coherent backscattering that causes localisation

in the following manner [14, 15]. We consider an electron at point ~r = 0 and time

t = 0. The probability to return to the original point after some time t = t′ is given

by

P(t′) =

∣∣∣∣∣
∑

i∈S

Ai(t
′)

∣∣∣∣∣

2

, (1.1)

where Ai(t
′) is the probability amplitude of an electron that took the ith path to

return to ~r = 0 after a number of random scattering events. The return proba-

bility P(t′) is the sum of all possible scattering paths S. Let us consider a simple

illustration in Fig. 1.1. For every clockwise path S+
i traversed by an electron with

probability amplitude A+
i (t′), it is true that there exists a corresponding inverse or

time reversal path S−
i with A−

i (t′). Hence, the set of all scattering paths S is a sum

of these two subsets, i.e., S = S+ +S−. The return probability of the electron could

2



then be expressed as

P(t′) =

∣∣∣∣∣∣

∑

i∈S+

Ai(t
′) +

∑

i∈S−

Ai(t
′)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

i∈S+

A+
i (t′) +A−

i (t′)

∣∣∣∣∣∣

2

=
∑

i∈S+

∣∣A+
i (t′) +A−

i (t′)
∣∣2 +

∑

i6=j∈S+

[
A+
i (t′) +A−

i (t′)
]
×

[
A+
j (t′) +A−

j (t′)
]∗
. (1.2)

If there is time reversal symmetry such that the phase of the probability amplitude

is preserved, i.e., A+
i (t′) = A−

i (t′), then the above equation simplifies into P(t′) =

4
∑

i∈S+ |Ai(t′)|2. Note that the second term in Eq. (1.2) which accounts for the

interference effects between different scattering paths vanishes. In the classical case

where the conductivity is defined by the Drude model, the return probability reduces

to P(t′) = 2
∑

i∈S+ |Ai(t′)|2. The enhancement by a factor of two of the return

probability in the presence of coherent multiple backscattering simply means that

the electrons are now more spatially restricted in a confined space. This picture

which is brought upon by a significant degree of disorder offers a mechanism for the

exponential localisation of the electrons. In Fig. 1.2, we present the one dimensional

electronic eigenstate for the cases of weak and strong disorder. In the presence of

weak disorder, the wavefunction amplitude ψi is on average uniform in space which

means that the electron could be found anywhere and hence the state is extended.

On the other hand if the disorder is strong enough to cause large backscatterings

that can spatially confined the electron wavefunction then the state is localised. An

example of which is shown in Fig. 1.2 where ψi is large in one region and decays in

an exponential manner.
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Figure 1.2: A comparison between an extended and localised electronic eigenstate.
Shown here is the wavefunction amplitude for all 200 sites of a 1D lattice with length
L = 200 in units of lattice spacing and periodic boundary condition imposed. Using
a finite value of the parametrized disorder, the localised and extendend states here
are found at the band edge and centre respectively.

1.2 Scaling theory of localisation

The scaling theory of localisation describes the dependence of the Anderson transi-

tion on the dimensionality of the system [16–18]. As a starting point, we consider the

size-dependence of the conductance G. The conductance behaves as a measure of

the effective disorder. It is finite for a metallic state and zero for an insulating state

at absolute zero temperature. In units of e2/h where e and h are the electronic

charge and Planck’s constant respectively, we have the dimensionless (Thouless)

conductance g = h/e2 G [19]. Here, g(L, x) is only dependent on the system size

L and x which represents the set of external parameters such as disorder, Fermi

energy, pressure and electron density. The g(L, x) generally does not depend on the

microscopic details (e.g., unit cell) of the material.
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The basic assumption of the scaling theory is that given a d-dimensional

block with volume (bL)d and integer b its conductance will only be determined by

the conductance of the bd smaller blocks each with volume Ld that build up the

larger block. In other words, the conductance can be expressed as

g(bL, x) = F [g(L, x), b], (1.3)

which simply means that a rescaling g(L, x) → g(bL, x) of the conductance can be

defined by the function g(L, x) and scaling factor b. In differential form, Eq. (1.3)

can be expressed in dimensionless form as

d ln g(L, x)

d lnL
= β(g). (1.4)

Equation (1.4) states that the scaling function β is only dependent on g(L, x). We

will now obtain the asympotic behaviour of β(g) for the limiting cases of small

(localised insulating state) and big (extended metallic state) g(L, x). When the

random potential is weak, the electronic state is extended and plane wave-like. For

a d-dimension system of size L, the Ohmic conductance for a metal is G = 1/R =

σLd−2 whereG is simply the inverse of the resistance R and σ is the d.c. conductivity

of the material. When the disorder is sufficiently strong, the states very near the

Fermi energy are localised. Electronic states nearly equal in energy are far apart

from each other in space such that hopping between these states does not happen.

The electronic wavefunction is exponentially localised and the conductance assumes

the form g = g0 e−L/ξ . The localisation length ξ defines the spatial extent of the

wavefunction and here L >> ξ.

The scaling theory assumes that β(g) is monotonic and that a continuous

behaviour connecting the localised and extended regimes is possible. The scale-

dependence of β(g) is shown in Fig. 1.3. When β > 0 in the metallic case, the

conductance increases with L and diverges in the thermodynamic limit. The asymp-
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Figure 1.3: A schematic diagram showing the behaviour of the scaling function β(g)
for dimensions d = 1, 2, 3. The metallic region is β > 0. The localised region is the
shaded part corresponding to β < 0. A crossing point at β = 0 for d > 2 indicates
an MIT. According to the scale dependence of β(g), there are no extended states
for d ≤ 2 in the presence of a finite degree of disorder.

totic behaviour of the function is β(g) = d − 2. For β < 0, g decreases with L and

becomes zero as L → ∞. In the latter case, β(g) = ln(g/g0). The system becomes

more metallic or insulating as it gets bigger in L. For d ≤ 2, β(g) is always negative.

This means that in d ≤ 2 unless it is a perfect conductor all electronic wavefunctions

will always be localised and the system will always be an insulator in the presence

of a finite disorder. This is not the case for d = 3. A crossover at β = 0 between the

metallic and insulating regimes exists as seen in Fig. 1.3. At this critical point, the

conductance does not depend on the system size and this scale-invariance implies

that exactly at this point there is a metal to insulator transition (MIT). The set

of parameters x such as disorder controls the value of g(L, x). For instance, if the
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disorder is weak then the state is in the extended region. If the disorder is strong

enough, it is a localised state.

Near the critical transition, there is only one relevant length scale. It is the

localisation length ξ in the localised regime or the correlation length between wave-

function amplitudes in the extended region. The localisation (correlation) length

diverges near the MIT and since it depends on x then it should diverge at the critical

point x = xc as expressed by [20]

ξ ∝ |x− xc|−ν . (1.5)

The critical exponent ν defines the Anderson transition and is the same regardless

of the microscopic details for all systems belonging to one universality class or sys-

tems sharing the same symmetry in the Hamiltonian [21]. Furthermore, the scaling

theory states that near the critical point of the Anderson transition all systems with

finite length L can be scaled by the localisation length for L → ∞. If so then the

conductance or any measure characterizing critical properties can be described by

one scaling function as

g(L, x) = F
(
L

ξ

)
. (1.6)

Equations (1.3), (1.4) and (1.6) together is also known as one parameter scaling

theory [2, 17,18].

1.3 Numerical model

To model an electron in a disordered lattice, we use the single-electron tight-binding

Anderson Hamiltonian as given by [22]

H =
p2

2m
+

N∑

i=1

Ui(r −Ri), (1.7)
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where m is an effective mass of an electron with momentum p, Ui is the potential

energy of the i-th ion located at r −Ri and the summation is for the total number

of ionic sites N . The discrete version of this Hamiltonian in terms of lattice site

basis is

H =
∑

i

εi |i〉〈i| +
∑

i6=j

tij |i〉〈j|, (1.8)

for a simple case of only one state per site. Here, |i〉 is a basis denoting the electronic

state localised at position i = (x, y, z) in a cubic lattice of volume V = L3 , tij

are nearest-neighbour hopping amplitudes between sites i and j, and εi is the i-

th site potential energy. In this work, we only consider Hamiltonians that fall

under the symmetry class of Gaussian orthogonal ensemble, i.e., the H has time-

reversal and spin-rotational symmetries. The hopping term is set to unity t = 1

and disorder is introduced into the model by randomising the values of the site

potential energies εi. We consider εi to have a uniform probability distribution in

the interval [−W/2, W/2], whereW parametrizes the strength of the disorder. Here,

the critical disorder is Wc ≈ 16.5, above which all eigenstates are localised [23–26].

To minimize boundary effects, periodic boundary conditions are used. Due to the

universality of the Anderson transition, some of the the critical properties such as

the critical exponent will not depend on the details of the Hamiltonian. Hence, a

simple tight-binding model for a cubic lattice as just described is able to give the

critical properties of the transition.

The L3×L3 Hamiltonian matrix has random values in the diagonal elements

which represent the site potential energies. If only nearest neighbor hopping is

considered, it is also a sparse matrix with a few off-diagonal elements equal to one.

The matrix is diagonalized using the JADAMILU package [27] which is a Jacobi-

Davidson implementation with an integrated solver based on the incomplete-LU -

factorization package (ILUPACK) [27, 28]. We have considered eigenstates only

in the vicinity of the band centre E = 0 where the Anderson transition is found
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when Wc ≈ 16.5. We take about five eigenstates in a small energy window around

E = 0 for any given realizations of disorder. The statistics involved in this work is

unprecedented. At the critical point, we have used ∼ 5 × 104 states for system size

L 6 100 and ∼ 100 states for L > 100. The largest system size we have used is

L3 = 2403. In the critical regime, we have taken at least 10000 uncorrelated samples

for each size and disorder combination, for a total of 1, 530, 000 wave functions.

1.4 Fractal dimension and multifractals

Consider a line segment with unit length L = 1. Cover the line with spheres of

diameter l = 1/a. Other geometrical shapes may be used as well. The least number

of spheres that is needed to fully cover the line segment, N(l), is exactly equal to

(L/l)Df where Df is called the dimension of the support or simply the dimension of

a system. Extending this to a square and a cube, we can say that N(l) ∝ l−Df . For

these three cases of the line segment, square and cube, it is clear to see that Df =

1, 2, 3 respectively. The value of Df for the above examples is simply equivalent to

the Euclidean or topological dimension.

Let us now apply the same procedure to a deterministic fractal such as the

Mandelbrot-Given fractal [29] as shown in Fig. 1.4. We consider its initial structure

which is composed of eight line segments each with length L = 1/3. This fractal

structure is being generated by replacing each line segment with the initial structure.

For this fractal, N(l = 1
3) = 8, that is eight spheres with diameter l = 1/3 is

needed to separately contain each of the eight line segments of the initial structure.

If l is reduced then N(l = (1
3)2) = 82. Recall that N(l) ∝ l−Df , hence Df =

−ln[N(l)]/ln[l]. For the Mandelbrot-Given fractal, the dimensionDf is a non-integer

value of Df = log38 that is less than the Euclidean dimension d. Systems that are

defined by one non-integer dimension are called self-similar structures or simply

fractals [29–31]. Self-similar because they are scale invariant under isotropic scale
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Figure 1.4: The Mandelbrot-Given curve with fractal dimension of Df = log38.
The initial structure shown on the left is composed of eight line segments each with
length L = 1/3. The higher orders of the fractal structure are generated by replacing
each line segment with the initial structure. Courtesy of K.M. Svensson.

transformation which means that the volume of the system increases uniformly in

every spatial directions. Fractals occuring in nature are random fractals. Their

structure could not be exactly formed by repeated generation of a pattern but in a

statistical sense they are self similar.

The dimension that was obtained using the coverage procedure just outlined

is called the capacity dimension. The definition of the dimension in terms of the ca-

pacity dimension is useful for the purpose of obtaining the corresponding dimension

for a system with random distribution of measures, in particular, for multifrac-

tals [32, 33]. To illustrate the concept of multifractality, we consider the critical

eigenstate |Ψ〉 =
∑Ld

i=1 ψi|i〉 of an electron at the metal to insulator transition as

shown in Fig. 1.5. Recall that |i〉 is a basis state at site i with wavefunction am-

plitude ψi and the eigenstate is a superposition of all the orthonormal basis states.

This wavefunction corresponds to a three-dimensional cubic lattice of linear length

L and volume V = Ld. The wavefunction is normalized such that
∑Ld

i=1 ψi = 1 and

no site has exactly zero ψi. This critical state possesses very interesting character-

istics. The values of the wavefunction amplitudes greatly fluctuate from site to site.

Even more, these large fluctuations in ψi appear in all length scales [34–37], i.e.,

the fluctuations persist even when the scale at which the eigenstate is observed is

varied. There are points in the wavefunction containing large values of ψi and the

existence of sites having very small ψi such that the distribution function of ψi is
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broad. We apply the coverage procedure by dividing the system equally into smaller

boxes. One notices that different boxes enclose different substructures or densities.

The number of boxes enclosing one similar structure gives one fractal dimension. In

fact, a multitude of fractal dimensions is needed to completely characterize the full

extent of the complex distribution that defines a system. Systems of this kind are

called multifractals because they are made up of different fractal sets. This work

probes the multifractal characteristics of the electronic eigenstate at the critical

point and in the critical regime of the Anderson metal to insulator transition.
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Figure 1.5: Multifractal eigenstate for the 3D Anderson model at E = 0 and Wc =
16.5 for linear system size L=240 with periodic boundary conditions. The 410075
sites with probability |ψj |2 twice larger than the average 1/L3 are shown as boxes
with volume |ψj |2L3. The 26097 boxes with |ψj |2L3 > 2

√
1000 are plotted with

black edges. The color scale distinguishes between different slices of the system
along the axis into the page.
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Chapter 2

Theory of Multifractal Analysis

2.1 Mass exponents and generalized dimensions

We start by considering the distribution of the normalized wavefunction intensities

|ψ|2 in the multifractal electronic state at the critical point of the Anderson metal

to insulator transition. Using the usual box counting method [32, 33, 38], we ex-

tract the multifractal properties of this wavefunction. Let |ψi|2 be the value of the

wavefunction intensity at the i-th site in a discretized d-dimensional system with

volume Ld. If we cover the system equally with Nl boxes each with linear size l, the

probability to find the electron in the k-th box is simply given by

µk(l) =

ld∑

i=1

|ψi|2, k = 1, . . . , Nl. (2.1)

The box probability µk(l) constitutes the normalized measure
∑

all boxes µk(l) = 1.

In the limit that l → 1 (i.e., l is equal to the lattice spacing), the box probability

reduces to the |ψi|2. The sum of the moments of the box probability over all boxes

in the volume

Pq(l) =

Nl∑

k=1

µqk(l), (2.2)
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is called the generalized inverse-participation ratios (gIPR). The gIPR serve as a

q-microscope to effectively probe the fluctuations in |ψi|2. The positive q enhances

the contribution coming from the large |ψi|2 while the negative q is a region where

the small |ψi|2 dominate. For q = 2, the gIPR is simply the usual IPR P2 =
∑

i |ψi|4

which is inversely proportional to the number of sites contributing to a state.

The general assumption underlying multifractality is that within a certain

range of values for the ratio λ ≡ l/L, the moments Pq show a power-law behaviour

indicating the absence of length scales in the system, [38]

Pq(λ) ∝ λτ(q). (2.3)

The exponent τ(q) is the mass exponent and is defined as

τ(q) = lim
λ→0

log Pq(λ)

log λ
, (2.4)

where the limits states that the true value of τ(q) at criticality is in the thermody-

namic limit λ → 0. The values for τ(q) in the limiting cases of weak and strong

disorder and at the MIT are

τ(q) =





d(q − 1) for metals,

0 for insulators (q > 0),

Dq(q − 1) at the MIT.

(2.5)

In an extended metallic state where the wavefunction intensity is uniformly dis-

tributed as |ψi|2 ∝ L−d and d is the dimension of the support, τ(q) is a linear

function of q with slope d = 3 for a 3D system. For a strong disorder state where

the wavefunction is highly localized within one small spatial region, Pq = 1 for all

positive q’s and hence τ = 0. An indication that a state is multifractal is when τ(q)

is a nonlinear function of q. Generally, τ(q) is a non-decreasing convex function. The

general profile for τ(q) and the corresponding generalized dimensions Dq are shown
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Figure 2.1: Schematic profile of the mass exponents (left) and generalized fractal
dimensions (right). The filled black circles correspond to q = 0 while the empty
circles denote integer q. The thin horizontal and vertical lines indicate the τ(0) =
−3, D0 = 3 and q = 0 values, respectively.

in Fig. 2.1. At criticality, τ(q) can also be parametrized as τ(q) = d(q − 1) + ∆q,

where ∆q are the anomalous scaling exponents characterizing the critical point [39].

Furthermore, from Eqs. (2.2) and (2.3) it is easy to see that τ(0) = −d and due to

the normalization condition τ(1) = 0.

The values of τ(q) will give the set of generalized dimensions Dq that defines

the multifractal system. To show that this is the case, we consider for the present

purpose a uniform distribution of |ψi|2 on a support with fractal dimension Df .

Using the normalization condition, we can say that the box probability can be

expressed as µk(l) ∝ lDfL−Df since |ψi|2 ∝ L−Df and the number of sites in a box

is proportional to lDf . Take note that the assumption of normal distribution for |ψ|2

allows the relation |ψi|2 ∝ L−Df to be valid for all q and that Df to be independent

of q. The gIPR can then be reformulated as

Pq(λ) ∝ λDf (q−1), (2.6)

where the summation in Eq. (2.2) is replaced by the number of boxes Nl = (Ll )
Df .

Comparing equations (2.3) and (2.6), we can see that τ(q) = Df (q − 1). If the
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distribution of the measure is not normal such that the fractal dimension depends

on q then τ(q) = Dq(q − 1). The set of generalized fractal dimensions is then given

as

Dq =
1

q − 1
lim
λ→0

log Pq(λ)

log λ
. (2.7)

Dq is a monotonically decreasing positive function of q. As with τ(q), the q-

dependence of Dq is an indication of multifractality. For q = 0, D0 is equal to

the dimension of the support of the measure. D1 is equivalent to the information

dimension of the system which is in statistical mechanics related to the entropy

of the probability distribution of box probabilities Sλ = −∑
Nl
µk(λ)logµk(λ). The

generalized dimension corresponding to q = 2 is related to the correlation dimension.

2.2 Relation between the mass exponents and singular-

ity spectrum

We shall demonstrate that the mass exponents τ(q) are related to a set of fractal

dimensions called the singularity spectrum f(α) and that they are exactly equivalent

such that a multifractal state is completely defined by either one of them. Again,

we consider the multifractal distribution of the wavefunction intensities with volume

Ld and we divide it into boxes of length l. If we take one box probability µ1, we

will find that its value will have a λ dependence as µ1(λ) ∼ λα1 to some exponent

α1. Another box would scale to another exponent as µ2(λ) ∼ λα2 . In fact, different

boxes scale to different exponents α. Furthermore, the number of these boxes, Nα′ ,

corresponding to the same α = α′ scales as Nα′ ∝ λ−f(α′). The set of boxes that

scale to the same α = α′ is a fractal with a fractal dimension of f(α′). A multifractal

state such as the electronic state at the MIT is completely defined by an infinite set

of f(α) values which is called the singularity spectrum.

The ensemble (arithmetic) average of the generalized inverse participation

ratios in terms of the probability density function (PDF) of the box probability
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P(µk) is given by

〈Pq〉 ≡ λ−d〈µqk(λ)〉 = λ−d
∫ 1

0
P(µk) µ

q
k(λ) dµk, (2.8)

where the average is over all disorder realizations and over the lattice volume Ld.

The normalization of µk(λ) gives the limits of the integration. We make a change of

variables, P(µk)dµk = P(α)dα. In terms of α, we parametrize the box probability

to be µk(λ) ≡ λα and its logarithmic form is α ≡ lnµk/ ln λ. When l = 1, the

box probability reduces to the wavefunction intensity that is given by |ψi|2 ≡ L−α.

Furthermore, µqk(λ) = λlnλ µ
q
k = λq

ln µk
lnλ . Equation (2.8) becomes

λ−d〈µqk(λ)〉 = λ−d
∫ ∞

0
P(α) λqα dα. (2.9)

In terms of the PDF P(α), the number of boxes having the same values of µk = λα

is Nα = P(α)dα ·λ−d ∝ λ−f(α). Hence, using P(α) ∝ λd−f(α) into Eq. (2.9) we have

λ−d〈µqk(λ)〉 ∝
∫ ∞

0
λqα−f(α) dα

∝
∫ ∞

0
elnλ·F̃ (α) dα, (2.10)

where F̃ (α) = qα − f(α). We evaluate the above integral using the saddle-point

method which is justified in the limit of large L or small λ. The saddle-point method

requires that the function F̃ (α) must have a unique global maximum at some α = α̃,

i.e, F̃ ′′(α̃) < 0, and that α̃ is not an end point in the integration interval. Solving the

integral of Eq. (2.10) reproduces the scaling relation in (2.3) and gives the following

relations

q = f ′(α̃), (2.11)

τ(q) = qα̃− f(α̃), f(α̃) = qα̃− τ(q). (2.12)
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Furthermore using Eq. (2.12) into Eq. (2.11), we will obtain

q = q + α̃
dq

dα
− dτ

dq

dq

dα
, (2.13)

which gives the values of the singularity strength or the Lipschitz-Hölder exponent

to be

α̃q =
dτ(q)

dq
. (2.14)

Equations (2.11) to (2.14) state that f(α) is just the Legendre transformation of

τ(q). Furthermore, since q = f ′(α̃) then the maximum of the singularity spectrum

can exactly be found at q = 0.

The singularity spectrum f(α) is a convex function of α. A pictorial sketch

of the properties of f(α) is shown in Fig. 2.2. Due to the normalization condition

of |ψi|2, f(α) is only defined on a semi-axis α ≥ 0. It has its maximum at α0 > d

where f(α0) = d. Since nowhere in the wavefunction will |ψi|2 = 0, d is simply the

topological dimension. As previously shown, α0 corresponds exactly to the moment

q = 0 evaluation of the gIPR. To the right of α0 is the region of negative q’s where the

contributions coming from small wavefunction intensities |ψi|2 < L−d are dominant.

The left region at α < α0 of the singularity spectrum is the positive q’s area that

is being populated by large |ψi|2 > L−d. For α1 that corresponds to τ(1) = 0, we

have f(α1) = α1 and f ′(α1) = 1. In the limit of vanishing disorder the singularity

spectrum becomes narrower and eventually converges to one point f(d) = d. On the

other hand, as the value of disorder increases the singularity spectrum broadens and

in the limit of strong localisation the singularity spectrum tends to converge to the

points: f(0) = 0 and f(∞) = d. Only at the MIT we can have a true multifractal

behaviour and as a consequence the singularity spectrum must be independent of

all length scales, such as the system size.

18



0 α1/2=d α0 2dα1=2d-α0
α

0

d

α1

d-∆1/2

 f
(α

)

|ψi|
2
 > L

-d |ψi|
2
 < L

-d

 q = 0

 q = 1/2

 q = 1

sy
m

m
et

ry
 a

xi
s

 q >> 1

 q << 0

Figure 2.2: Pictorial representation of the general features of the multifractal spec-
trum at criticality. The dotted purple areas highlight forbidden regions for f(α).
Each point on the spectrum corresponds exactly to an evaluation of a q-moment
of the gIPR. The maximum is found at the point q = 0 where f(α0) = d. At
q = 1, f(α1) = α1 and f ′(α1) = 1. The two regions to the right and left of
q = 1/2 are determined by different wavefunction amplitudes, |ψi|2 > L−d (white)
and |ψi|2 < L−d (yellow). The symmetry axis at q = 1/2 is highlighted and here
f(α1/2 = d) = d−∆1/2. The yellow shaded area can be connected to the white area
via the symmetry relation (2.20),(2.21), and vice versa. The points corresponding
to q = 0 and q = 1 are symmetry related points.

2.3 Parabolic approximations to the f(α)

From an analytical viewpoint not much is known about how the singularity spectrum

should look like at criticality. However, an approximate expression for the f(α) has

been put forward that is valid in the regime of weak multifractality, i.e. when the

critical point is close to a metallic behaviour. This applies to the Anderson transition

in d = 2 + ǫ dimensions with ǫ ≪ 1. In this case a parabolic dependence of the
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singularity spectrum is found to be [40]

f(α) ≃ d− [α− (d+ ǫ)]2

4ǫ
. (2.15)

Equation (2.15) implies a corresponding approximation for the anomalous dimen-

sions as given by ∆q ≃ −ǫq(q − 1). For the case of d = 2 + 1, we have f(α) =

d− (α−α0)
2/4. This parabolic approximation for the f(α), apart from the dimen-

sion of the support d, only depends on one parameter α0 that is exactly α0 = 4 for

d = 2 + 1 case and that defines the position of the maximum f(α0) = d. Gener-

ally, equation (2.15) provides a very good approximation to the critical f(α) near

α = α0 and deviates from the true f(α) at α values far away from α0. Due to

the normalization condition of the wavefunction intensities, we have to impose the

condition α > 0 to Eq. (2.15). In the limit of α = 0 such that α = dτ(q)
dq = 0, the

mass exponent τ(q) should approach a constant value as q → qc where critical qc

corresponds to αqc = 0. Therefore, the parabolic f(α) should terminate at α = 0

with a finite value. This behaviour is known as the termination of the multifractal

spectrum. Whether the f(α) at α = 0 terminates or continues to negative infinity

will be further discussed later on. Although the parabolic approximation has turned

out to be exact for some models [41] its validity, in particular for the integer quan-

tum Hall transition, is currently under an intense debate [42] due to the implications

that this result has upon the critical theories describing the transition.

2.4 Symmetry relations in the multifractal exponents

at the Anderson transition

Recently, the existence of exact symmetry relations in the multifractal exponents of

the Anderson transition has been reported [43]. The mass exponents that describe

the scaling of the generalized inverse participation ratio in Eq. (2.3) can be defined
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at criticality to be τ(q) = d(q− 1)+ ∆q. The anomalous exponents ∆q separate the

critical point from the metallic phase for which ∆q = 0. Furthermore, ∆q determine

the scale dependence of the moments of the local density of states (LDOS) ρq [39]

that is expressed as

〈ρq〉 ∝ L−∆q . (2.16)

Previous works have suggested a symmetry relation in the distribution function of

LDOS Pρ(ρ̃) as given by [44–46]

Pρ(ρ̃) = ρ̃−3Pρ(ρ̃−1), (2.17)

where ρ̃ = ρ/〈ρ〉 is the normalized LDOS. Since 〈ρ̃q〉 =
∫

dρ̃ ρ̃q Pρ(ρ̃), Eq. (2.17)

implies the relation 〈ρ̃q〉 = 〈ρ̃1−q〉 which from Eq. (2.16) in turn gives

∆q = ∆1−q. (2.18)

Equation (2.17) has been derived using a supersymmetric nonlinear σ model [44]

that is able to approximately model the critical properties of the Anderson transition

for the case of weak disorder but breaks down for strong disorder. It has been argued

that although the mapping of the Anderson model onto the nonlinear σ model is

not exact, there exist several microscopic models (e.g., N -orbital Wegner model for

N → ∞) for the Anderson transition that can be reduced exactly to the nonlinear

σ model. The universality of the critical exponents permits the validity of the

symmetry relation (2.18) in the multifractal exponent ∆q on any microscopic model

of criticality.

In terms of the mass exponents and τ(1−q) = d(1−q−1)+∆1−q , Eq. (2.18)

can also be written as

τ(q) − τ(1 − q) = d(2q − 1). (2.19)

Equations (2.18) and (2.19) reveal the existence of the symmetry axis at q = 1/2 as
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clearly marked in Fig. 2.2. Furthermore, expressing τ(q) in its Legendre transform of

f(αq =
dτq
dq ) and since −α1−q =

dτ1−q

d(1−q)
d(1−q)

dq , the corresponding symmetry relations

are given by

αq + α1−q = 2d, (2.20)

f(2d− α) = f(α) + d− α. (2.21)

Equation (2.21) follows from using the relations (2.19) and (2.20) into the definition

of f(α1−q) = (1− q)α1−q − τ1−q. In Fig. 2.2, we highlight the symmetry points and

relations in the critical multifractal spectrum.

We shall look at the implications of these symmetry relations on the mul-

tifractal spectrum. The wave function normalization condition gives the lower

bound αmin = 0 for the singularity strength and requires that α is always posi-

tive. It readily follows from the symmetry in (2.20) that in the limit of αq→+∞ then

αq→+∞ +αq→−∞ = 2d which means that α should only be contained in the interval

[0, 2d]. If αq→+∞ = 0 then the upper bound is α 6 2d. Furthermore, the symmetry

relation in the singularity spectrum f(α) states that 0 6 α 6 d and d 6 α 6 2d

regions of the singularity spectrum must be related by the relation (2.21). In other

words, using (2.21) one can be mapped onto another. The symmetry axis α = d

is exactly equivalent to q = 1
2 . However, in the presence of a termination point at

α = 0 the validity of the symmetry relation is not yet clear [39].

Numerical calculations have since then supported this symmetry in f(α)

in the one-dimensional power-law random-banded-matrix model [43] and the two-

dimensional Anderson transition in the spin-orbit symmetry class [47] and SU2

model [48]. Recent experimental work on the multifractal analysis of vibrations in

elastic networks have successfully shown the existence of the symmetry [7]. In the

present work we numerically verify that this symmetry in the singularity spectrum

also holds in the three-dimensional (3D) Anderson model. In order to address this

hypothesis with sufficient accuracy, we have considered the box- and system-size
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scaling of the typical and ensemble averages of Pq in computing the f(α). We

discuss which numerical strategy will produce the best possible agreement with the

symmetry and we highlight the statistical analysis that must be used to observe the

reported symmetries with sufficient confidence.
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Chapter 3

Multifractal Analysis with

Typical Averaging

The numerical analysis is essentially based on an averaged form of the scaling law

for the gIPR (2.3) in the limit λ ≡ l/L → 0. The limit can be achieved either by

making the box size l → 0 for a fixed system size L, or by considering L → ∞ for

a fixed box-size. The question of how to compute a proper average of the moments

Pq is determined by the form of their distribution function [49,50]. The scaling law

for the typical average of the moments Pq is defined as

e〈lnPq(λ)〉 ∝ λτ
typ(q), (3.1)

where 〈· · · 〉 denotes the arithmetic average over all realizations of disorder, i.e. over

all different wavefunctions at criticality. The mass exponents are then defined by

τ typ(q) = lim
λ→0

〈lnPq(λ)〉
lnλ

, (3.2)

24



and can be obtained from the slope of the linear fit of 〈lnPq〉 versus lnλ. Applying

Legendre transformation we obtain similar definitions for α and f(α),

αtyp
q = lim

λ→0

1

lnλ

〈
Nλ∑

k=1

δk(q, λ) ln δk(1, λ)

〉
, (3.3a)

f typ
q = lim

λ→0

1

lnλ

〈
Nλ∑

k=1

δk(q, λ) ln δk(q, λ)

〉
, (3.3b)

where δk(q, λ) ≡ µqk(λ)/Pq(λ) is the normalized q-th power of the integrated proba-

bility distribution µk(λ). Note that, for varying l and L, µk(λ) values depend on the

ratio λ = l/L. The singularity spectrum could also be obtained from τ(q) by means

of the numerical Legendre transformation which involves a differentiation process,

but this latter method is numerically less stable.

The typical average is dominated by the behaviour of a single (representative)

wavefunction. It is because of this that the f typ(α) will usually only have positive

values, since the average number of points in a single wavefunction with a singularity

ᾱ such that f(ᾱ) < 0 is L−|f(ᾱ)| ≪ 1. It is also worth mentioning that due to the

relations (2.11) and (2.14), the typical singularity spectrum is expected to approach

the abscissa axis with an infinite slope. However, it has been proven numerically,

that the region of α values near the ends where the slope tends to diverge gets

narrower and eventually disappears as the thermodynamic limit is approached [51,

52]. A list of the number of states and the size of ψi used for each L is given in

Table 3.1.

3.1 Scaling with box size

In the scaling law of Eq. (2.3), the limit λ → 0 can be reached by taking the box

size l → 0, i.e., we are evaluating the scaling of Pq with box size l at constant L.

Numerically, we consider a system with large L and we partition it into smaller

boxes such that condition lm ≪ l < L is fulfilled with lm the lattice spacing. This
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Table 3.1: The linear system size L, corresponding volume V and the number of
samples taken and correspondingly the total number of wavefunction amplitudes
ψi evaluated. All eigenstates are at the critical MIT for which Wc = 16.5 and
correspond to the five eigenvalues closest to the band center. The diagonalization
of the matrix was computed on an SGI Altix 3700BX2 where for L = 240 it took
approximately 24 hours and requires ∼24GB of memory to obtain five eigenstates
for one disorder realization.

L V = L3 samples ψi
20 8 × 103 24 995 2 × 108

30 9 × 103 25 025 6.8 × 108

40 6.4 × 104 25 025 1.6 × 109

50 1.3 × 105 25 030 3.1 × 109

60 2.2 × 105 25 030 5.4 × 109

70 3.4 × 105 24 950 8.6 × 109

80 5.1 × 105 25 003 1.3 × 1010

90 7.3 × 105 25 005 1.8 × 1010

100 1 × 106 25 030 2.5 × 1010

140 2.7 × 106 105 2.9 × 108

160 4.1 × 106 125 5.1 × 108

180 5.8 × 106 100 5.8 × 108

200 8 × 106 100 8 × 108

210 9.3 × 106 105 9.7 × 108

240 1.4 × 107 95 1.3 × 109

ensures that the multifractal fluctuations of |ψ|2 will be properly measured. We

usually take values of the box size in the range l ∈ [10, L/2]. We have found that

the most adequate box-partitioning scheme is when the system is divided into integer

number of cubic boxes, each box with linear size l [53]. The system is partitioned in

such a way that it can be divided equally into boxes and the origin of the first box

coincides with the origin (x, y, z) = (0, 0, 0) of the system. We have used this method

to produce all the results in this section. We have also tried other box-partitioning

strategies, however, their results were less accurate and will be discussed in chapter

5.

For each wave function, we compute for the q-th moment of the box prob-

ability in each box, and Pq as in (2.2), as its sum from all the boxes. The scaling
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behaviour of the averaged gIPR with box size (3.1) is then obtained by varying l.

Finally, the corresponding values of the singularity strength α and spectrum f(α)

are derived from the linear fits of the Eqs. (3.3) in terms of the box size. With

only one system size to be considered, the box-size scaling is numerically relatively

inexpensive and has been much used previously in performing a MFA [36,54,55]. In

Figs. 3.1 and 3.2 we show examples of f(α) and associated linear fits. We note that

here and in the following, all data have been generated using q ∈ [−10, 10] in steps

of 0.1.

3.1.1 General features of f typ(α)

The singularity spectrum for system size L = 240 with 95 states that is obtained

using Eqs. (3.3) with l → 0 is shown in Fig. 3.1. The f typ is compared with the

corresponding spectrum that is derived from the symmetry relation (2.21) and with

the parabolic spectrum [40]. Here, the maximum f typ(α0) = 3 which is equal to the

dimension of the support can be found very near to α0 = 4 where the maximum of

the parabolic spectrum is located at [40]. In the region within the vicinity of α = 3,

the typical singularity spectrum closely resembles the parabolic f(α). However,

for large |q| values particularly at the tails, the f typ(α) starts to deviate from the

parabolic spectrum. We note that the symmetry relation (2.21) requires that the

spectrum should be contained below the upper bound of α = 2d.

In order to obtain α and f(α) via the linear fit of Eqs. (3.3), a general χ2

minimization is considered taking into account the statistical uncertainty of the

averaged right-hand side terms. In this way we can carry out a complete analysis

of the goodness of the fits via the quality-of-fit parameter Q, as well as the usual

linear correlation coefficient r2. The behaviour of these quantities for the different

parts of the spectrum (corresponding to different values of the moments q) is shown

in the bottom panel of Fig. 3.1. The r2 value is almost equal to one for all α

which shows the near perfect linear behaviour of the data. Furthermore, acceptable
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Figure 3.1: Singularity spectrum (thick solid black line) obtained using box-size
scaling of the typical average of Pq for system size L = 240 with 95 states. The error
bars which are equal to one standard deviation mark the locations corresponding
to integer q values. The corresponding symmetry-transformed spectrum (2.21) is
shown as thin black dashed line. The analytical parabolic form (2.15) is represented
by the thick gray solid line. The thin horizontal and vertical lines denote the f = 0,
f = 3 and α = 4, α = 6 values, respectively. The values for the linear correlation
coefficient r2 and quality-of-fit parameter Q for both αtyp and f typ(α) are shown in
the bottom shaded panel. Note that unless otherwise specified in the f(α) plot, the
solid lines are not fits but represent actual data points for all values of q ∈ [−10, 10]
in steps of 0.1. Furthermore, only data points corresponding to integer q are marked
by symbols.
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Figure 3.2: Mass exponents (a) and generalized fractal dimensions (b) obtained
using box-size scaling of the typical average of Pq for L = 240 considering 95 states.
The filled black circles correspond to q = 0 while the empty circles denote integer
q. The thin horizontal and vertical lines indicate the τ(0) = −3, D0 = 3 and q = 0
values, respectively. In panel (c), we show the linear fits of Eq. (3.2) for the τ typ(q)
in panel (a). Only fits for integer values of q ranging from q = −10 (top) to q = 10
(bottom) are shown. The values of τ typ(q) are given by the slopes of the fits. Data
points for q 6= 0 have been properly shifted vertically to ensure optimal visualization.
Data for q = 0 is highlighted with filled symbols. Standard deviations of all data
are contained within symbol size in all cases.
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values of the Q parameter are also obtained. However, a decline in the r2 and Q

values is seen at the tails. These regions correspond to the large |q| values where

the numerical uncertainties in computing for the Pq over a number of different

disorder realizations are large enough to affect the reliability of the data. Figure

3.2 presents the corresponding sets of mass exponents τ typ(q), generalized fractal

dimensions Dtyp
q and linear fits for τ typ(q) for the singularity spectrum in Fig. 3.1.

The q-dependence of the decreasing function Dq ≡ τ(q)/(q − 1) is an indication of

multifractality. Here, we see that D0 = d as expected. The corresponding τ typ(q)

is shown in Fig. 3.2(a). It displays the characteristic nonlinearity of a multifractal

where τ(0) = −d. The regions corresponding to large |q| values show a linear

behaviour with a constant slope. Since the singularity strength is defined as αq =

τ ′(q) then a linearity in τ typ(q) found in the limit of |q| → ∞ results in αtyp
q values

that approach upper α+ and lower α− bounds. Hence, the f typ(α) meets the αtyp

axis at these termination points with an infinite slope [52]. Furthermore, we will

show that the location of α− and α+ is greatly affected by system size. For a detailed

discussion on the relationship between the shapes of τ(q) and f(α), we refer to the

references [39] and [51].

3.1.2 Effects of the number of states and L on f typ(α)

In panel (a) of Fig. 3.3, we show the small-α region of f typ(α) for the case of

L = 90 with 2.5 × 102 and 2.5 × 104 states. When more states are considered for a

fixed system size, the symmetry relation is more closely satisfied. We also see the

tendency that the termination point α− moves further towards smaller values with

more states. This tendency is possible because the distribution for the generalized

inverse participation ratios Pq which give the values for αq has a long tail and is

not symmetric. A study near the tail of the f(α) is a region where the influence

of low-probability events or rare eigenfunctions becomes more significant. As we

increase the number of states, the number of these rare events also increases and
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Figure 3.3: Singularity spectrum obtained using box-size scaling of the typical av-
erage of Pq. In panel (a): system size L = 90 for 250 (thick gray line) and 2.5× 104

(thick black lines) states. The corresponding symmetry-transformed spectra (2.21)
are shown as thin dashed lines. The error bars mark the location of integer q values.
In panel (b): system size L = 60 (thick gray line), L = 100 (thin gray line), L = 200
(thin black line) and L = 240 (thick black line) each having 103, 102, 102 and 95
states respectively. The dashed vertical line indicates α = 6. In all cases, the error
bars denote one standard deviation.

therefore although its influence under typical averaging is subtle, it manifests itself

as a slow shift in the tail of the spectrum. However, when a large number of states

has already been considered (such as 2.5× 104 for L = 90) the shape of the f typ(α)

will not significantly change anymore with more states as illustrated by the already

small uncertainties. This takes us to consider bigger system sizes in order to be able

to improve the symmetry relation. In panel (b) of Fig. 3.3, we show a portion of

the large-α part of f typ(α) for varying system sizes L = 60 with 103 states, L = 100

and L = 200 with 102 states each, and L = 240 with 95 states. We see that for
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the same number of states the degree of fluctuations as represented by the size of

the error bars is larger for smaller system size. Moreover, the f typ(α) for L = 60

with 103 states is, within the standard deviations, the same as that for L = 240

with 95 states. This can be explained by the total number of wavefunction values

ψi involved in the average, which are nearly the same for both cases and hence

causes the same shape of f typ(α). This means that when using box-size scaling for

the typical average of Pq, the number of disorder realizations needed to obtain the

singularity spectrum up to a given degree of reliability decreases with the size of the

system. Remarkably, we also see in Fig. 3.3(b) a general tendency that with larger

L the singularity spectrum approaches the upper bound of α = 6 in keeping with

what the symmetry relation requires.

In Fig. 3.4, we show the spectra corresponding to L = 60 with 2.5× 104 and

L = 240 with 95 states to clearly show the effect of the system size. We observe

that the value of α0 (i.e., location of the maximum) and the shape of the singularity

spectrum near the maximum do not change anymore with L. This L-invariant

behaviour of the singularity spectrum is an attribute of a critical point. In inset (a),

with increasing system size the position of the termination point α− moves towards

smaller values. Furthermore, a closer look of f typ(α) in insets (a) and (b) shows

that when a bigger system size is used, even with less eigenstates, there is a well

defined improvement to satisfying the symmetry.

3.1.3 Symmetry relation

In order to quantify how the symmetry is being satisfied with regards to either

taking more states or considering bigger system size, we present Fig. 3.5. The

top panel is an exact calculation of the symmetry relation of Eq. (2.20) whereas

the bottom panel shows the difference between the singularity spectrum and its
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Figure 3.4: Singularity spectrum obtained using box-size scaling of the typical av-
erage of Pq, for system sizes L = 60 (thick gray line) and L = 240 (thick black line)
with 2.5×104 and 95 states respectively. The corresponding symmetry-transformed
spectra (2.21) are shown as thin dashed lines. The insets show details for (a) small
and (b) large α values. In all cases, the error bars are equal to one standard de-
viation. In inset (a), the error bars mark the location corresponding to integer q
values.

symmetry-transformed counterpart, defined as

δf(α) ≡ |f(α) − f(2d− α) + d− α|. (3.4)

The latter plot is an effective tool to tell us the range of the α values where the

symmetry is satisfied up to a given tolerance. However, directly comparing the

degree of symmetry via δf(α) is just an approximation since (i) linear interpolation

has to be used to measure the vertical distance properly at several values of α, and

(ii) for a given q the corresponding value of α as well as its uncertainty depend upon
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sizes and realizations of disorder, and this makes the comparison of the different

curves in terms of α not as reliable as Eq. (2.20). In fact, the resulting error bars

are much larger than in the top panel of Fig. 3.5 and even larger than the variation

between the 3 shown δf(α) curves. Nevertheless, the results in Fig. 3.5 illustrate

that there is a tendency to find a better agreement with the symmetry relation

whenever more states or bigger system sizes are considered. The best situation

corresponds to the biggest system size available (L = 240) even though the number

of eigenstates is lower than for smaller systems. The relatively weak effect of the

number of states on the shape of the singularity spectrum is a result of taking the

typical average where by nature the average does not dramatically change with the

number of samples taken. Furthermore, a rough estimation from our results suggest

that in order to obtain numerically a good f(α) symmetry relation (δf(α) 6 0.01)

for α ∈ [1.5, 4.5] using box-size scaling one would have to consider very big system

sizes L≫ 1000.

3.2 Scaling with system size

The scaling law of the gIPR (2.3) can also be studied in terms of the system size

L. Obviously the numerical calculation of eigenstates for very large 3D systems is

a demanding task [28, 56–58]. Hence previous MFA studies at the MIT have been

mostly based on the box-partitioning scaling described in Sec. 3.1. One naturally

would expect the scaling with the system size to perform better in revealing the

properties of the system in the thermodynamic limit. The fact that for each system

size one has several independent realizations of the disorder helps reduce finite-size

effects, which will be unavoidably more pronounced when doing scaling with the box

size. Obviously the larger the system sizes and the more realizations of the disorder,

the better.
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Figure 3.5: Measures for the degree of symmetry of the multifractal spectrum ob-
tained from the typical average with box-size scaling. The upper panel shows the
numerical evaluation of the symmetry law as a function of q for system sizes L = 60
with 2.5×104 states (dashed black), L = 100 with 2.5×104 (dark grey) and L = 240
(black) with 95 states. For each curve only one error bar in every three is shown
for clarity. The bottom panel shows δf(α) versus α. Note that there is no corre-
spondence between the abscissa axes of the upper and lower plots. For clarity, two
values of q for the black line are explicitly written.

3.2.1 Coarse-graining for negative q

In the present case the scaling variable is L, and the formulae (3.2) and (3.3) for the

singularity spectrum are only affected by the substitution: limλ→0 ⇒ − limL→∞.

The box size l which determines the integrated probability distribution µk(l) is now

a parameter in the expressions (3.2) and (3.3) for τ typ(q), αtyp
q and f typ

q . Changing

the value of l is effectively equivalent to renormalize the system size to a smaller

value L′ ≡ L/l. Therefore it is clear that the most favourable situation to approach

the thermodynamic limit is setting l = 1, thus defining the generalized IPR in terms

35



of the wavefunction itself, Pq =
∑L3

i=1 |ψi|2q. However, when considering negative

moments, all the possible numerical inaccuracies that may exist in the small values

of |ψi|2 will be greatly enhanced, which in turn causes a loss of precision in the right

branch (α > α0) of the singularity spectrum. The best way to fix this problem

is to use a box-size l > 1 for q < 0. In this way the relative uncertainties in the

smallest values of the coarse-grained integrated distribution µk(l) are reduced with

respect to the values of the wavefunction. This coarse-graining procedure to evaluate

the negative moments of the wavefunction when doing system-size scaling was first

described in Ref. [43] and as we have seen its validity is readily proven when one

assumes the scaling relation (2.3) as the starting point of the MFA.

The numerical singularity spectrum is thus obtained from the slopes of the

linear fits in the plots of the averaged terms in Eqs. (3.3) versus lnL, for different

values of the system size L. Where for positive q we have µk(1) = |ψk|2 and for

negative q the integrated measure µk(l > 1) is kept, with l = 5 in most of the

calculations. The value of l for the coarse-graining procedure should not be very

large, otherwise finite-size effects will be enhanced again due to the reduction in the

effective system size. For the benefit of the reader let us rewrite the formulae (3.3)

in the particular case where l = 1,

−αtyp
q lnL ∼

〈∑
i |ψi|2q ln |ψi|2∑

j |ψj |2q

〉
, (3.5a)

−f typ
q lnL ∼

〈∑
i |ψi|2q ln |ψi|2q∑

j |ψj |2q
− ln

∑

i

|ψi|2q
〉
, (3.5b)

for large enough system sizes L. As before the angular brackets denote the average

over all eigenstates.
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Figure 3.6: Singularity spectrum obtained from typical averaging. System sizes from
L = 20 to 100 have been considered with ∼ 2.5×104 different wavefunctions for each
system size, as shown in Table 3.1. The dashed line is the symmetry-transformed
spectrum according to f(6−α) = f(α)+3−α. The values of q range from q = −10
to q = 10 with a step of 0.1 (l = 1 for q > 0 and l = 5 for q < 0). Error bars which
are equal to one standard deviation highlight the values corresponding to integer q.
The lower panel shows the linear correlation coefficient (r2) and the quality-of-fit
parameter (Q) of the linear fits to obtain the values for α and f(α).

3.2.2 General features of f typ(α) and the effects of the number of

states and L

In Fig. 3.6 we show the singularity spectrum obtained from Eqs. (3.3) (q < 0) and

(3.5) (q > 0). We have considered system sizes ranging from L = 20 to 100, and

∼ 2.5 × 104 states for each system size, as shown in Table 3.1. In spite of the good

linear behaviour observed in the fits to obtain αtyp
q and f typ

q , shown in Fig. 3.7, the

values for Q in the bottom panel of Fig. 3.6, suggest a loss of reliability near the
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Figure 3.7: Linear fits of Eqs. (3.3) for αtyp
q values (left) and f typ

q values (right) of
the singularity spectrum in Fig. 3.6. Only fits for integers values of q ranging from
q = 10 (top) to q = −10 (bottom) are shown. The values of αtyp

q and f typ
q are given

by the slopes of the fits. Data points for q 6= 0 have been properly shifted vertically
to ensure optimal visualization. Data for q = 0 highlighted with filled symbols.
Standard deviations are contained within symbol size in all cases.

termination regions of the spectrum. On the other hand the standard deviations of

the {αtyp, f typ(α)} values are really small even near the ends. These uncertainties

are directly related to the number of states we average over: the more realizations,

the smaller these uncertainties are. It must be clear that these standard devia-

tions only give an idea about the reliability of data as a function of the number of

disorder realizations for the particular range of system sizes that one is using. To

illustrate the influence of the number of disorder realizations upon the typical aver-

age a comparison can be found in Fig. 3.8, between the f typ(α) spectrum obtained

after averaging over 103 states for each system size and the one for ∼ 2.5 × 104

states. As can be seen, after this increase in the number of states the overall change

in the spectrum is not very significant, altough some variation can be noticed in the
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Figure 3.8: Left branch (a) and right branch (b) of the singularity spectrum obtained
from typical average, scaling with system sizes from L = 20 to 100 for ∼ 2.5 × 104

states (black) and 103 (grey) for each system size. Dashed lines correspond to
spectra transformed according to the symmetry law. The values of q range from
q = −10 to q = 10 with a step of 0.1 (l = 1 for q > 0 and l = 5 for q < 0). Error
bars are standard deviations.

regions shown. In particular, the right branch of the spectrum moves inwards and

the end of the left tail shifts to smaller values of α. In both regions the expected

variation of the spectrum is well described by the standard deviations. In the case

of Fig. 3.6 according to the standard deviations the conclusion is that a further

increase of the number of states will not mean a significant change in the shape of

the spectrum. Nevertheless it must also be very clear that if we consider a differ-

ent range of larger system sizes, noticeable changes could happen in the singularity

spectrum. The standard deviations do never account for the effects stemming from

the range of system sizes used.

To evaluate the effects due to the system size, we compare in Fig. 3.9 the

multifractal spectrum obtained considering different ranges of system sizes with a
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similar number of disordered realizations. In the main plot it can be seen how the

shape of the spectrum changes in its right (large α) branch, which moves inwards,

when we consider system sizes in the interval [140, 240] compared to the situation

for sizes in [40, 100]. The left end of the spectrum also shifts to smaller values of

α when larger system sizes are considered. In this case the standard deviations are

noticeable since we have only considered 102 states for each system size. In the insets

(c) and (d) within Fig. 3.9 a similar comparison can be found for ranges of smaller

sizes, [60, 100] versus [20, 60] but with a much higher number of states, ∼ 2.5 × 104

for each size. In this situation the change is less dramatic, but the tendency remains

the same. In particular it should be noticed in Fig. 3.9(c) how the change in the

left end of the spectrum is not contained in the uncertainty regions given by the

error bars, confirming the fact that these standard deviations do not fully describe

system size effects.

3.2.3 Symmetry relation

The symmetry relation (2.21) is only partially fulfilled in Fig. 3.6. Still, a nice overlap

between the original spectrum and the symmetry-transformed one occurs in the

region around the symmetry point α = 3. The agreement is lost when approaching

the tails, which are the parts more affected by numerical inaccuracies and system-

size effects. For a given range of system sizes, the symmetry relation tends to be

better satisfied whenever the number of disordered realizations is increased, as can

be observed in Fig. 3.8. On the other hand the improvement of the symmetry is

even more dramatic when we consider larger system sizes to do the scaling, as shown

in the insets (a) and (b) of Fig. 3.9. In this figure it is evident how the value of

f(α = 6) decreases when considering larger system sizes, hence tending towards the

upper bound at α = 2d as predicted by (2.21).

A quantitative analysis of the symmetry relation is shown in the upper panel

of Fig. 3.10. The best data correspond to the scaling with system sizes in [140, 240]

40



5 5.5

2.4

2.7

0.6 0.8 1

0.3

0.6

0 2 4 6

αtyp

0

1

2

3

 f
ty

p (α
) 0.6 0.75

0

0.06

0.12

5.2 5.4

2.45

2.55

(c)

(d)

(a) (b)

Figure 3.9: Singularity spectrum obtained from typical average using different ranges
of system sizes. Grey line: 7 system sizes from L = 40 to 100 and 102 states for
each. Black line: 6 system sizes from L = 140 to 240 and ∼ 102 states for each.
Insets (c) and (d): Grey line: 5 system sizes from L = 20 to 60 and ∼ 2.5 × 104

states for each. Black line: 5 system sizes from L = 60 to 100 and ∼ 2.5 × 104

states for each. In all cases dashed lines correspond to spectra transformed via the
symmetry law. The values of q range from q = −10 to q = 10 with a step of 0.1
(l = 1 for q > 0 and l = 5 for q < 0). Error bars are standard deviations.

after averaging over ∼ 100 states for each size (cp. Table 3.1). Even with such a

low number of disorder realizations, the observed symmetry is better on average

than the one obtained for sizes in [20, 100] with 2.5 × 104 states for each L. Let us

emphasize that for L = 100 the total number of wave function values involved in

the calculation is 2.5 × 1010 while for L = 240 it is only 1.3 × 109. This shows that

although the number of disorder realizations is important to improve the reliability

of data (reducing the standard deviations), the effect of the range of system sizes

is more significant. And although it can be argued that the error bars of the black

line in the upper panel of Fig. 3.10 are still very large, we have already shown that
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Figure 3.10: Measure of degree of symmetry of the multifractal spectrum of Fig.
3.9 obtained from scaling with system size. The upper panel shows the numerical
evaluation of the symmetry law as a function of q. The bottom panel contains δf(α)
versus α. Dashed black: 7 system sizes from L = 40 to 100 and 102 states for each.
Grey: 9 system sizes from L = 20 to 100 and ∼ 2.5 × 104 states for each. Solid
black: 6 system size from L = 140 to 240 and ∼ 102 states for each. There is no
correspondence between the abscissa axes of the upper and lower plots. For clarity,
two values of q for the black line are explicitly written.

when increasing the number of states the symmetry simply gets better and thus the

line will move even closer to zero. In the lower panel of Fig. 3.10 the deviation from

symmetry δf(α) defined in (3.4) is also shown and corroborates these findings.

Hence, whenever the reliability of data is improved by increasing the number

of disorder realizations, or when finite-size effects are reduced by considering larger

system sizes, we get a better agreement with the symmetry law (2.21) of the multi-

fractal spectrum. Assuming the degree of symmetry is a qualitative measure of the

MFA itself, then from a numerical viewpoint, the best strategy when doing scaling

with system size and typical averaging would be to go for the largest system sizes
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Figure 3.11: Comparison of degree of symmetry for the spectra obtained using
typical averaging of Pq for the cases of box-size [BS] scaling (gray) and system-size
[SS] scaling (black). The best spectrum for each case has been considered: [BS]
L = 240 with 95 states and [SS] L ∈ [140, 240] with 100 states for each size. The
plot shows the numerical evaluation of the symmetry law as a function of q.

accessible even though it means having less realizations of disorder.

3.3 Summary

We have obtained the multifractal spectrum from the box- and system-size scaling of

the typical average of the gIPR. We find that, upon increasing either the number of

disorder realizations or by taking larger system size, the f typ(α) spectrum becomes

evermore close to obeying the proposed symmetry relation (2.21). Using the typical

average, the best symmetry in the singularity spectrum is obtained by taking large

system sizes. Due to the nature of the typical averaging, taking more states only

changes the shape of the f typ(α) up to a point. By considering larger system sizes,

a significant improvement of the symmetry relation is achieved, leading to lower

values of αtyp and f typ on the left side of the spectrum as well as a better agreement

with the upper cut-off of α ≤ 6.

In Fig. 3.11, let us now compare box- and system-size scaling. With system-

size scaling the symmetry is (nearly) satisfied for a wider range of α values as

compared with the box-size scaling. Box-size scaling is more strongly influenced by

finite-size effects. However, the agreement with the symmetry relation is lost for
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both methods at large |q| or equivalently at |α − 3| ≫ 0. Unsurprisingly, these are

the regions greatly affected by numerical inaccuracies and finite-size effects. Hence

we conclude that within the accuracy of the present calculation and within the limits

of the typical averaging procedure, the proposed symmetry relation (2.21) is valid

at the Anderson transition in 3D.

Last, let us remark that the relation (2.21) implies negative values of f for

small values of α. As discussed previously, this is hard to see using the typical

averaging procedure. In the next chapter, we have also performed MFA using the

ensemble-averaged box- and system-size scaling approaches. The results again sup-

port the existence of the symmetry for an even larger range of α values and including

a negative f(α) part for small α.
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Chapter 4

Multifractal Analysis with

Ensemble Averaging

The numerical MFA is based on an averaged form of the scaling law for the gIPR

in the limit λ ≡ l/L → 0, where the contributions from all finite-size critical wave-

functions are properly taken into account. The scaling law for the ensemble average

involves the arithmetic average of Pq over all realizations of disorder,

〈Pq(λ)〉 ∝ λτ
ens(q), (4.1)

where 〈· · · 〉 denotes the arithmetic average over all states. Thus the definition of

the scaling exponents is

τ ens(q) = lim
λ→0

ln〈Pq(λ)〉
lnλ

, (4.2)
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and the corresponding definitions of α and f(α) can be written in a compact form

as

αens
q = lim

λ→0

1

lnλ

〈
Nλ∑

k=1

δ̃k(q, λ) ln δ̃k(1, λ)

〉
, (4.3a)

f ens
q ≡ f(αens

q ) = lim
λ→0

1

lnλ

〈
Nλ∑

k=1

δ̃k(q, λ) ln δ̃k(q, λ)

〉
. (4.3b)

Here δ̃k(q, λ) ≡ µqk(λ)/〈Pq(λ)〉, which is not normalized for every wavefunction but

after the average over all of them. Let us emphasize that although Eqs. (4.3) are

handy analytically, it is much more useful for numerical purposes to develop them

in longer expressions with simpler factors (see Sec. 4.2).

In contradistinction to the typical average in the previous chapter which is

determined by the behaviour of representative wavefunctions, the ensemble average

weighs the contribution of all wavefunctions equally, including rare (and hence not

representative) realizations of the disorder. These rare events are indeed responsible

for the negative values of f(α). Therefore it is very important to take them into

account by doing the ensemble average, if one wants to have a complete picture

of the singularity spectrum. We emphasize that in the thermodynamic limit both

averaging processes must provide the same singularity spectrum in the positive

region. The relation between typical and ensemble averaging has been previously

commented in the literature [39, 49]. The whole set of data used for the analysis,

including system sizes and number of samples for each, is the same as in chapter 3

and is described in detail in Table 3.1.

4.1 Scaling with box size

The easiest way to approach the thermodynamic limit in the scaling law (4.1) is

considering the limit l → 0 for the box size l. Using this method, we only need

realizations for a system with a fixed linear size L, that is partitioned equally into
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Figure 4.1: Singularity spectrum (black line) obtained using box-size scaling of the
ensemble average of Pq for system size L = 100 with 2.5 × 104 states. The error
bars are equal to one standard deviation. The corresponding symmetry-transformed
spectrum f(2d − α) = f(α) + d − α is shown in black dashed line. The values for
the linear correlation coefficient r2 and quality-of-fit parameter Q for both αens and
f ens(α) are shown in the bottom shaded panel.

an integer number of smaller boxes of linear size l. This is the same partitioning

scheme that we have considered in the previous chpter when studying the typical

average of the scaling law.

For each state, the q-th moment of the box probability µqk(l) is evaluated in

each box, and Pq is obtained by summing the contribution from all boxes. The scal-

ing behaviour (4.1) is then obtained for different values of l. In all the computations

the values of the box size ranges in the interval 10 6 l 6 L/2.

47



-4 -2 0 2 4 6 8 10
q

0

2

4

6

D
qen

s

10 20 50 100
l

-50

0

50

100

A
ve

ra
ge

d 
C

on
tr

ib
ut

io
n 

fo
r 

τen
s (q

)

-4 -2 0 2 4 6 8
q

-40

-30

-20

-10

0

τen
s (q

)

(a)

(c)

(b)

Figure 4.2: (a) Mass exponents τ ens(q) and (b) generalized fractal dimensions Dens
q

corresponding to the singularity spectrum in Fig. 4.1. Dashed lines in upper panels
highlight the values D0 = d and τ0 = −d. Symbols highlight integer values of q.
Panel (c): linear fits of Eq. (4.2). Only fits for integer values of q ranging from
q = −5 (top) to q = 9 (bottom) are shown. The value of τ ens(q) is given by the
slope of the fits. Data points for q 6= 0 have been properly shifted vertically for
optimal visualization. Data for q = 0 highlighted with filled symbols. Standard
deviations are contained within symbol size in all panels.

4.1.1 General features of fens(α)

The singularity spectrum for L = 100 having 2.5 × 104 states is shown in Fig. 4.1

with its symmetry transformed spectrum. The first thing to notice is that the

f ens(α) spectrum attains negative values in the region of small α, corresponding to

high values of the wave function amplitudes. The negative region of the multifractal

spectrum describes the scaling of certain sets of unusual values of |ψ2
i | which only

occur for rare critical functions. Let us recall that f(ᾱ) < 0 is the fractal dimension
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of the set of points where |ψ2
i | ∼ L−ᾱ, which implies that the number of such points

decreases with the system size as L−|f(ᾱ)|. These negative dimensions are then

determined by events whose probability of occurrence decreases with the system

size. The negative part of the spectrum provides valuable information about the

distribution of wavefunction values for a finite-size system near the critical point and

is needed to give a complete characterization of the multifractal nature of the critical

states at the metal-insulator transition. At the left-half part of f ens(α) in Fig. 4.1,

we observe its termination in the negative region towards α → 0. The values of α

and f(α) are obtained from the slopes of the linear fit of Eqs. (4.3) via a general χ2

minimization taking into account the statistical uncertainty of the averaged right-

hand side terms. The behaviour of the linear correlation coefficient r2 and the

quality-of-fit parameter Q for the different parts of the spectrum (corresponding to

different values of the moments q) is shown in the bottom panel of Fig. 4.1. The

r2 value is very near to one for almost all α which shows the near perfect linear

behaviour of the data points. The parameter Q gives an estimation on how reliable

the fits are according to the error bars of the points involved in the fits. The unusual

decrease of Q observed around α = 3, corresponding to q ∼ 0.5, in Fig. 4.1 is due

to an underestimation of the standard deviations of the points in the fits, since the

linear correlation coefficient is still very high in this region. It can also be seen that

the uncertainties for the points of f ens(α) tend to grow when approaching the ends

of the spectrum. This effect is more significant when doing ensemble average, but

it should be naturally expected since the higher the value of |q| is, the more the

numerical inaccuracies of |ψi|2 are enhanced, specially in the region of negative q,

corresponding to the right branch of the spectrum. The mass exponents τ ens(q)

and the fits of Eq. (4.2) are shown in Fig. 4.2, along with the generalized fractal

dimensions Dens
q ≡ τ ens(q)/(q − 1) corresponding to the spectrum in Fig. 4.1.
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Figure 4.3: Left (a) and right (b) branches of the singularity spectrum obtained
using box-size scaling and ensemble average for system size L = 60 with 2.5 × 102

(grey) and 2.5 × 104 (black) number of states. The filled symbols denote q = 5.0
(a) and q = −1.0 (b). The empty symbols mark q = 7.0 (a) and q = −1.5 (b). The
error bars are equal to one standard deviation.

4.1.2 Effects of system size and disorder realizations on fens(α)

In Fig. 4.3 we study the effects of the number of states and disorder realizations on

f ens(α) for L = 60 having 2.5×102 and 2.5×104 states. Considering two particular

q values at each tail, when the number of samples is increased we see that the

domain of f ens(α) is enlarged. The point corresponding to a given q appears later

in the spectrum and thus the left end reaches more negative values with more states

[Fig. 4.3(a)]. The same stretching effect can also be observed for the right branch in

Fig. 4.3(b). Additionally the reliability of the data points in the singularity spectrum

is significantly improved as shown by the huge decrease in their uncertainties. These

effects prove the strong dependence of the ensemble averaging on the number of
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samples taken.

The effect of the system size on the shape of the singularity spectrum is

presented in Fig. 4.4. Here we consider system sizes L = 60 and L = 100 each

having 2.5 × 104 number of states. Once again, we take two particular q values

at each tail as shown in panels (a) and (b) and observe how their locations change

when the system size is varied. When we consider a bigger system size with the same

number of realizations, the domain of f ens(α) tends to decrease, and so for the same

q range, we see less negative values at the left end [Fig. 4.4(a)]. In other words to be

able to observe the same extent of the negative f ens(α) values of L = 60, one must

average over more states when a bigger system size such as L = 100 is considered.
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(dashed black) with 95 states, L = 60 (gray) with 2.5×104 states and L = 100 (solid
black) for 2.5×104 states. For each curve only one error bar in every three is shown
for clarity. The bottom panel shows δf(α) versus α. There’s no correspondence
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The same shrinking effect also occurs in the right branch of the spectrum. This

unexpected behaviour is due to the nature of the ensemble averaging process, that

is strongly determined by the contribution of rare events which are less likely to

happen for larger systems. This important effect will be discussed in more detail in

Sec. 4.2.

4.1.3 Symmetry relation

In the upper panel of Fig. 4.5 we give a numerical evaluation of the symmetry law.

An approximate estimation of the symmetry law is also shown in the lower panel
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using (2.21), which measures the distance between the spectrum and its symmetry-

transformed counterpart. We compare data for L = 240 (95 states), L = 60 (2.5×104

states) and L = 100 (2.5 × 104 states). Our results show that in general the closest

agreement to the symmetry in the singularity spectrum is achieved for the cases

with the highest number of disorder realizations, in particular for L = 100 (f(α)

shown in Fig. 4.1). Although around the symmetry point q = 1/2 the spectrum

obtained using the largest system size available, L = 240 with 95 states, tends to

behave slightly better (inset in upper panel of Fig. 4.1), the tendency is inverted

when looking at a broader region of q values. This result is a clear manifestation of

how important the number of disorder realizations is when doing ensemble average.

It is therefore clear that the more realizations, the better the symmetry is.

Obviously a bigger system size helps reduce finite-size effects, but we have shown

that increasing system size also implies generating more states in order to obtain

the same extent of f ens(α). Thus from a numerical viewpoint an agreement between

system size and disorder realizations must be found to optimize the use of box-size

scaling and ensemble averaging.

4.2 Scaling with system size

The scaling with the system size may be the most adequate way to describe the

thermodynamic limit of the scaling law for the gIPR (4.1) (L → ∞), however the

numerical eigenstate problem is highly demanding for very large 3D systems [28].

The formulae (4.2) and (4.3) for the singularity spectrum are now affected

by the substitution: limλ→0 ⇒ − limL→∞. As for the typical average 3, the box

size l which determines the integrated probability distribution is set to l = 1 for

non-negative moments (q > 0) and to a value l > 1 (usually l = 5) for q < 0, in

order to minimize the errors and the uncertainties in the right branch of f(α). For
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the case l = 1 the formulae to obtain the spectrum reduce to

−αens
q lnL ∼

〈∑
i |ψi|2q ln |ψi|2

〉
〈∑

j |ψj |2q
〉 , (4.4a)

−f ens
q lnL ∼

〈∑
i |ψi|2q ln |ψi|2q

〉
〈∑

j |ψj |2q
〉 − ln

〈
∑

i

|ψi|2q
〉
. (4.4b)

We note the clear difference between the ensemble average (4.4) and the typical

average techniques [Eqs. (3.5) in chapter 3]. The values of αens
q and f ens

q are obtained

from the slopes of the linear fits of the averaged terms in Eqs. (4.3) (q > 0) and

(4.4) (q < 0) versus lnL, for different values of the system size L.

4.2.1 General features of fens(α)

The multifractal spectrum obtained from the ensemble average is shown in Fig. 4.6,

where we have considered 9 different linear system sizes ranging from L = 20 to

100 for the scaling after averaging over ∼ 2.5 × 104 states for each size as shown

in Table 3.1. The branch of negative values characterizing f ens(α) can be clearly

seen. The absence of an infinite slope in the spectrum when crossing the abscissa

axis must also be emphasized. As discussed in chapter 3 this confirms the fact

that the divergence of the slope at the termination points observed when doing

the typical average, f typ(α), is purely a finite-size effect, since both averages must

provide the same result for f(α) > 0 in the thermodynamic limit. This is also

supported by the systematic shift of the left end of f typ(α) to smaller values of α

whenever more states or larger system sizes are considered. The error bars for the

values of f ens(α) are considerably larger than the ones obtained for f typ(α) using

the same system sizes and disorder realizations [Fig. (3.6) in chapter 3]. This is

of course a consequence of having larger errors for the points used in the linear

fits, shown in Fig. 4.7. These higher uncertainties are due to the nature of the

average itself and the probability distribution function for the generalized IPR. The
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Figure 4.6: Singularity spectrum obtained from ensemble averaging. System sizes
from L = 20 to 100 have been considered with ∼ 2.5 × 104 different wavefunctions
for each system size as shown in Table 3.1. The dashed line is the symmetry-
transformed spectrum. The values of q range from q = −2 to q = 7 with a step of
0.1 (l = 1 for q > 0 and l = 5 for q < 0). Symbols highlight the values corresponding
to integer q. Error bars in grey are standard deviations. The lower panel shows the
linear correlation coefficient (r2) and the quality-of-fit parameter (Q) of the linear
fits to obtain the values for α and f(α).

probability density for Pq is an asymmetric function around its maximum with long

tails [49,50], resembling a log-normal distribution. The calculation of the arithmetic

average of Pq, involved in the ensemble average is therefore much more heavily based

on the number of disorder realizations than the determination of the geometric mean

used for the typical average, and thus larger uncertainties and slower convergence

must be expected for the ensemble-averaged situation with the same number of

wavefunctions. Regarding the errors in the values of f ens(α), it is remarkable how

their magnitude grows, for high values of |q|, apparently at the same rate as the
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not shown, standard deviations are contained within symbol size.

spectrum deviates from the symmetry-transformed curve (dashed line in Fig. 4.6).

This suggests that it might be possible to observe almost a perfect agreement with

the symmetry law, using this small range of system sizes for the scaling, if the

number of realizations were large enough.

4.2.2 Effects of the number of disorder realizations on fens(α)

The effect of increasing the number of states in the ensemble average can be seen in

Fig. 4.8, for scaling with L ∈ [20, 100]. A reduction of the standard deviations must

be expected whenever more realizations are taken into account. To make this clear

we have considered two situations: averaging over 103 states or over ∼ 2.5 × 104

states for each size. In Fig. 4.8 the points with the specified vertical uncertainty
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Figure 4.8: Left (a) and right(b) branches of the singularity spectrum obtained
from ensemble averaging scaling with system sizes from L = 20 to 100 and same
number of states for each size: (grey) 103, (black) ∼ 2.5 × 104. The values of q
range from q = −10 to q = 10 with a step of 0.1 (l = 1 for q > 0 and l = 5 for
l < 0). The vertical standard deviation for the points marked with filled symbols is
always σf = 1.0, and only the uncertainty for α has been included, for clarity. The
q value corresponding to each of the symbols is indicated. Dashed lines represent
the spectrum in each case for higher values of q. Inset (c) shows the change in the
value f(α = 6) for the cases: (grey) 5× 103 states for each size, (black) ∼ 2.5× 104

states for each size.

appear later (for higher values of q) on the left and right branches of the spectrum

when we increase the number of states in the average. This clearly means that

for a fixed position on the f ens(α) curve, the uncertainty shrinks when more states

are included. There is however, another significant effect that must be emphasized.

In Fig. 4.8(a) and (b), the spectrum obtained for values of q higher than the ones

indicated is represented by dashed lines. For the average including only 103 samples

for each size, the values of the spectrum for high |q| are completely absurd and f(α)

behaves in an unexpected way, showing “kinks” and bumps as a consequence of a
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loss of precision in the fits caused by very large uncertainties. This implies that

by increasing the number of states in the ensemble average not only the standard

deviations are reduced for each point, but the domain of accessible values for f(α)

is also enlarged, e.g. for more wavefunctions the spectrum reaches more negative

values [Fig. 4.8(a)]. This is in marked contrast to the typical average for which

one obtains almost the same range of f(α) independently of the number of states

considered. When doing the ensemble average, the appearance of these “kinks” in

the spectrum, either for system-size or box-size scaling where they have also been

observed, is always the fingerprint of a lack of sampling of the distributions, i.e. not

enough disorder realizations.

In the inset (c) of Fig. 4.8, we have also illustrated the behaviour of the

value f(α = 6), at the upper boundary required by the symmetry relation, when

the number of states is changed from 5 × 103 to ∼ 2.5 × 104 for each system size.

The spectrum tends to be in better agreement with the upper boundary required

by (2.21) when the number of disorder realizations increases.

4.2.3 Effects of the range of system sizes on fens(α)

In order to study the effects of the system size, we show in Fig. 4.9 the singu-

larity spectrum obtained doing scaling in different intervals: L ∈ [40, 100] and

L ∈ [140, 240], taking ∼ 100 wave functions for each size in both cases. The fact that

we have only averaged over 100 states for each size, makes the standard deviations

noticeably large, however this does not affect the conclusions qualitatively. When

we consider larger system sizes for a fixed number of disorder realizations, the region

where we can reliably obtain the multifractal spectrum shrinks. Moreover if we go to

high enough values of |q| (highlighted by dashed lines in Fig. 4.9), it can be noticed

how the wrong behaviour of f(α) is enhanced. This is a very counterintuitive re-

sult, since one would expect that for increasing system sizes, the number of disorder

realizations needed to obtain the spectrum with a given degree of reliability should
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Figure 4.9: Singularity spectrum obtained from ensemble averaging scaling with 7
system sizes L ∈ [40, 100] and 102 states for each size (grey), and 6 system sizes
L ∈ [140, 240] and ∼ 102 states for each size (black). The values of q range from
q = −10 to q = 10 with a step of 0.1 (l = 1 for q > 0 and l = 5 for l < 0). Filled
symbols correspond to points with the same vertical standard deviation (σf ≃ 1.0,
not shown for clarity). Dashed lines represent the spectrum in each case for values of
q higher than the ones indicated beside their corresponding points. Inset (a) shows
the spectrum for a different set of data: L ∈ [20, 60] (grey) and L ∈ [60, 100] (black)
with ∼ 2.5 × 104 states for each size in both cases.

decrease proportionally – that is in fact what happens with the typical averaging.

However for ensemble averaging the conclusion is just the opposite: if you want to

improve the spectrum in a given region of the tails and you consider larger system

sizes to reduce finite size effects, the number of disorder realizations must also be

increased. This is due again to the nature of the ensemble averaging process and the

shape of the distributions for the gIPR. The arithmetic average is heavily based on

rare events which are less likely to appear for bigger systems, and so the number of

realizations has to grow with the system size in order to include the proper amount
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of rare events. This can be more clearly understood in the region of negative fractal

dimensions. We know that the number of points in a single wave function such that

|ψ2
i | ∼ L−ᾱ where f(ᾱ) < 0, is L−|f(ᾱ)| ≪ 1. Therefore to be able to see the region

of negative fractal dimensions we would need a number of states N such that we

can guarantee NL−|f(ᾱ)| ≫ 1. This implies that the number of disorder realizations

must go as N ∼ L|f(ᾱ)|, and thus it increases with the system size. This effect can

be observed in the inset (a) of Fig. 4.9, where we have compared scaling with sizes

L ∈ [20, 60] and L ∈ [60, 100] with ∼ 2.5 × 104 states for each size in both cases.

For higher sizes and the same number of states, we are not able to see the same

region of negative fractal dimensions. Aside from this effect, it must nevertheless

be emphasized that when we consider larger system sizes, the right branch of the

spectrum tends to find a better agreement with the upper boundary required by the

symmetry law.

4.2.4 Symmetry relation

To discuss the fulfilment of the symmetry using ensemble average and scaling with

system size, let us look at Fig. 4.10 where the numerical evaluation of the symmetry

law (2.20) is shown for different ranges of system sizes and disorder realizations.

The best result, according to the symmetry, corresponds undoubtedly to the case

with the highest number of disorder realizations, ∼ 2.5 × 104, for which the scaling

analysis involves sizes from L = 20 to 100. The difference is remarkable between

the situation corresponding to (i) L ∈ [40, 100] averaging over 100 states only, where

the symmetry is hardly satisfied at all, and (ii) the best case where the development

of the plateau for αq + α1−q − 2d around q = 0.5 can be seen very clearly. The

spectrum obtained for L ∈ [120, 240] with ∼ 100 states for each size also deviates

noticeably from the symmetry. These differences can also be seen in the bottom

panel of Fig. 4.10 where the degree of symmetry is estimated by δf(α).

For the ensemble average going to very large system sizes is not the best
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Figure 4.10: Measure of degree of symmetry of the multifractal spectrum obtained
from ensemble average doing scaling with system size. The upper panel shows the
numerical evaluation of the symmetry law as a function of q. Dashed black: 7 system
sizes from L = 40 to 100 and 102 states for each. Grey: 6 system size from L = 140
to 240 and ∼ 102 states for each. Solid black: 9 system sizes from L = 20 to 100 and
∼ 2.5 × 104 states for each. The bottom panel shows δf(α) versus α. There’s no
correspondence between the abscissa axes of the upper and lower plots. For clarity,
two values of q for the black line are explicitly written.

strategy unless one can generate an increasing number of states. It must be clear

that of course finite size effects will be reduced using large sizes but the number of

wavefunctions used for the average has to grow with the system size considered. For

a given range of system sizes, increasing the number of states improves the reliability

of data, enlarges the accessible domain of f(α), specially in the region of negative

dimensions, and improves the symmetry.
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4.3 Comparison of different scaling and averaging ap-

proaches

Taking the symmetry relation (2.20) as a measure of the quality of the numerical

MFA, let us compare the results of the different scaling and averaging techniques. In

Fig. 4.11 we show the best analyses obtained from box-size scaling and system-size

scaling using typical average and ensemble average in both cases. Data correspond-

ing to the typical average has been extracted from chapter 3. The performance of the

system-size scaling technique (solid lines) is clearly much better than box-size scal-

ing (dashed lines). This is not a very surprising result, since one expects finite-size

effects to be more enhanced in box-size scaling. For each of the scaling procedures

the ensemble average (black) is also better than the typical average (grey). This

may be not be so intuitive, since due to the nature of the distribution functions for

Pq [49, 50], one might expect the typical average to be a better choice. However it

turns out that the ensemble average does better in revealing the true behaviour in

the thermodynamic limit.

Let us recall the strategies that give the best result for each of the tech-

niques. For typical average the best symmetry is achieved using the largest system

sizes available, either for box-size or system-size scaling, although the number of re-

alizations is not the highest. On the other hand, using ensemble average, the safest

choice is to consider smaller system sizes for which a very large number of disorder

realizations can be obtained.

4.4 Summary

In this chapter we have studied the symmetry law (2.20) for the multifractal spec-

trum of the electronic states at the metal-insulator transition in the 3D Anderson

model, using the ensemble-averaged scaling law of the gIPR (4.1). A detailed anal-

ysis has revealed how the MFA is affected by system size and number of samples.
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System-size scaling with ensemble average has manifested itself as the most adequate

method to perform numerical MFA, in contrast to box-size scaling and typical av-

erage which had been mainly the method of choice in previous studies [36, 54, 55].

Since the ensemble average is strongly based on the number of disorder realizations,

from a numerical point of view, the best strategy to carry out the analysis is to

consider a sensible range of system sizes for which a very large number of states can

be generated.

All our results suggest that the symmetry law is true in the thermodynamic

limit, since a better agreement is found whenever a high enough number of disorder

realizations and larger system sizes are considered. The symmetry relation (2.21)

then provides a powerful tool to obtain a complete picture of f(α) at criticality,

since it would suffice to obtain numerically the spectrum in the most reliable region,

q > 0, and apply the symmetry to complete the function for q < 0.

The results obtained for f(α) also provide some useful information about the

validity of previous analytical results. The perturbative analysis in d = 2 + ǫ made

by Wegner [40] led to the following spectrum

fW(α) =d− [α− (d+ ǫ)]2

4ǫ

− ζ(3)
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[
(α− d)2 − ǫ2

] [
(α− d)2 + 15ǫ2

] (4.5)

where ζ(x) denotes the Riemann zeta function. Remarkably Wegner’s result obeys

the symmetry relation (2.21), provided the spectrum is indeed terminated at α = 0

and α = 2d. The first two terms in (4.5) constitute the usual parabolic approxima-

tion (PA). The extra quartic term is an overestimation in 3D (ǫ = 1), as explicitly

stated by Wegner, which gives a non-acceptable spectrum. To obtain the correct

f(α) at ǫ = 1 all the other terms in the perturbation series are required. Therefore

the deviation of the multifractal spectra from the PA must be naturally expected.

The reduced anomalous scaling exponents ∆q/q(1−q) are the most adequate quanti-
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ties to analyse non-parabolicity of the f(α) [42], since they are constant for a strictly

parabolic spectrum. In Fig. 4.12 we show the reduced anomalous scaling exponents

for the best analyses obtained in this work and previously shown in Fig. 4.11. The

exponents ∆q/q(1 − q) are also an extremely sensitive probe of the symmetry rela-

tion (2.20), as all small deviations from ∆q = ∆1−q are greatly amplified around the

symmetry point. In an ideal case the reduced anomalous scaling exponents should

be symmetric around q = 1/2 where their maximum must be located. In Fig. 4.12

the method combining system-size scaling and ensemble average is again confirmed

as the numerically most adequate to perform MFA.

In spite of the large amount of information that the numerical analyses, here

and in chapter 3, and the symmetry relation (2.20) have provided, the complete

picture of the multifractal spectrum for the MIT in 3D is still elusive. In particular

further research is needed to confirm the possible existence of termination points [39]

and whether these happen at negative values on both sides, since this has important

implications upon the distribution functions of the wavefunction amplitudes near the

localisation-delocalisation transition. Furthermore, we present in the appendix that

the symmetry relation can also be expressed in terms of the generalized dimensions

Dq. Here, we also give estimates for D2 and D4 based on the symmetry relation.
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Chapter 5

Optimisation of Multifractal

Analysis using Box-Size Scaling

In the implementation of the box-size scaling method, one usually considers a fixed

system size L and partitions it into smaller boxes. The scaling behaviour of the

gIPR with box size is then obtained by varying l and averaging over many samples.

Hence, with only one system size to be considered, box-size scaling is numerically

inexpensive and has been much used previously [36, 54, 55]. There exist, however,

multiple ways of carrying out this box partitioning, and some of them might lead

to better results, e.g. better fits or an improved statistical analysis. Some improved

box-counting methods have already been proposed in different contexts [59–61],

although not well suited to be straightforwardly applied to multifractal wavefunc-

tions. In the present chapter we analyse the performance of several partitioning

schemes, some of which have previously been used in the literature to perform the

MFA [36, 54, 62]. In particular, we shall study the application of cubic versus non-

cubic boxes, the use of periodic boundary conditions to enlarge the system, and

multiple origins for the partitioning grid, and adaptive linear fits. In Fig. 5.1 we

indicate these various strategies schematically. Here, we show that the use of cubic

boxes with integer L/l seems to be best suited to calculate the singularity spectrum
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L′ = 2×4. For the scaling λ = l/L′
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(c) Non-cubic boxes with
L = 6, lx = 2 and ly =
3. For the scaling λ =
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(d) Multiple origins for cubic boxes and integer L/l. The l2 non-equivalent origins for the parti-
tioning are shown for the case L = 6 and l = 2

Figure 5.1: Two-dimensional illustration of the different box-partitioning schemes.
The black dashed lines mark the partitioning grid. The thick grey line corresponds
to the boundaries of the physical system with linear size L. In cases (b) and (d), the
empty points in the shaded regions outside the system are obtained using periodic
boundary conditions to properly complete all boxes. The position of the black sites
highlights the periodicity pattern.

using the box-size scaling of Pq.

In chapters 3 and 4 we had shown that the box-size scaling method is more

likely to be affected by finite size effects as compared to the so-called system-size

scaling approach. The latter method is based on varying system size L with fixed

box size l in the limit L→ ∞ [39]. Nevertheless, we emphasize that box-size scaling

is still a useful alternative since (i) the computational and data-storage requirements

are much less demanding than for system-size scaling, (ii) in certain regions of the

spectrum such as close to the maximum, box-size scaling is also quite accurate, and
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(iii) in some situations it might be the only applicable method, i.e. when carrying

out an MFA of experimental data [10, 63, 64] for which the system size cannot be

easily changed. It is therefore important to know how to maximise the use and

performance of box-size scaling.

5.1 Partitioning into cubic boxes with integer ratios L/l

The most simple way of partitioning the system with linear size L is to use an

isotropic cubic grid which can fit exactly the system. In this case the box-sizes

in each direction satisfy lx = ly = lz with values of l such that L/l ≡ n ∈ N,

and thus we always cover the system of size L3 with an integer number of boxes, as

illustrated in Fig. 5.1a. This scheme is the common traditional partitioning strategy

of the box-counting method [33,38,54]. The singularity spectrum f(α) obtained for

a system with L = 60 after taking the typical average over 103 states is shown in

Fig. 5.2. It must be emphasized that since we are dealing with a discrete system,

the values of the box-size must be larger than the lattice spacing, in order to observe

properly the multifractal fluctuations of the distribution [38]. Usually we consider

values for the box-size in the interval l ∈ [10, L/2]. The points used for the linear fits

shown in Fig. 5.3 correspond to l = 10, 12, 15, 20, 30. Although easy to implement

numerically, the drawback of the present method is that depending on the system

size sometimes only a few values for l are allowed and that imposes a restriction on

the reliability of the fits to obtain αq and fq. In the following sections we consider

several additional partitioning strategies and compare their performance to the basic

integer cubic-boxes technique.

5.2 Using cubic boxes with unrestricted values for l

As illustrated in panel (b) of Fig. 5.1, an alternative partitioning method would be

to use all values of l in the range 10 6 l < L/2. The system is partitioned into
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Figure 5.2: Singularity spectrum obtained from box-size scaling of the typical av-
erage of Pq for L = 60 averaging over 103 states using different schemes of box-
partitioning: cubic boxes for integer L/l (solid black), cubic boxes for all values of
l (grey), non-cubic boxes (dashed black). The symbols denote the position of q = 2
(left), q = 0 (centre) and q = −4 (right).

cubic boxes without imposing the restriction of L/l being an integer. As such, there

are values of l where some of the outer boxes will have a lack of sites. This can be

overcome by using periodic boundary conditions where all necessary values |ψi|2 will

be repeated until all boxes are properly filled, and thus the system size is enlarged

into L′. For each box-size l the effective system size L′ = nl, with integer n, is

the required length ensuring that the original system is completely covered with

the minimum number of boxes. Therefore for each l we have a different L′. One

must realise that although the diagonalisation process to obtain the eigenstates uses

periodic boundary condition (PBC) to minimise edge effects, no true periodicity

pattern exists in the wavefunction itself. However by using this partitioning scheme
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Figure 5.3: Linear fits of Eqs. (3.3) for αtyp
q (left) and f typ

q (right) values of the
singularity spectra shown in Fig. 5.2 using different schemes of box-partitioning:
cubic boxes for integer L/l (black, square), cubic boxes for all values of l (grey,
circle), non-cubic boxes (black, triangle). For the method of cubic boxes for all
values of l, the data point corresponding to the average contribution for each λ
(plus symbol) is also shown. The dotted lines separate fits for q = 2 (top) from
q = −4 (bottom). The values of αtyp

q and f typ
q are given by the slopes of the fits.

Data points have been properly shifted vertically to ensure optimal visualisation. In
all cases, the standard deviations are contained within symbol size.

we are imposing a periodicity pattern on the distribution of |ψi|2 that in principle

might distort its multifractal properties. Furthermore, we must emphasize here that

the enlargement of the system into L′ as seen in Fig. 5.1b requires a renormalisation

of the wavefunctions if one wants to use the Eqs. (3.3) and (4.3). In Fig. 5.2, a

comparison can be found between the typical singularity spectra obtained using the

current box-partitioning method and the one involving cubic-boxes with integer L/l.

The corresponding linear fits used to obtain αtyp
q and f typ

q for a couple of values of

q are shown in Fig. 5.3.

Using this partitioning approach the number of available λ values in the fits is
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not increased, since whenever the system is enlarged the correct value for the scaling

variable must be also redefined to λ = l/L′, which is the inverse of the number of

boxes needed to cover the system in each dimesion. Therefore different box-sizes

give contributions to the same λ value in the fit. All these contributions as well

as the corresponding weighted average are explicitly shown in Fig. 5.3. The linear

fits performed to obtain the singularity spectrum are based on a χ2 minimisation

taking into account the individual standard deviations of each point. The first thing

to notice is that the uncertainties of the individual contributions to a given λ are

clearly in conflict with the range of values spanned by the points. In fact we have

observed that there exists a defined tendency of behaviour for these contributions.

In the fits for αq (left panel in Fig. 5.3), for large positive q and a fixed value of λ the

higher contribution is given by the box-size l which does not require an extension

of the system. As l is increased and the system size is enlarged, preserving the

value of λ, the contributions are progressively smaller. This makes the value of the

slope, that is αq, go systematically to smaller values at the end of the left branch

of the spectrum, when compared to the method in Sec. 5.1. For high negative q

the behaviour is the opposite, for a given λ the additional contributions of the box-

sizes requiring system enlargement grow with the box-size, and therefore the slope

attains higher values, i.e. αq moves towards higher values at the end of the right

branch of the spectrum. This leads to a systematic broadening of f(α) as shown in

Fig. 5.2 . The effect of the additional contributions in the fits for fq (right panel in

Fig. 5.3) causes a decrease of the slopes for high q, either negative or positive. We

have also checked that the shape of the singularity spectrum is strongly dependent

on the range of box-sizes taken into account for the linear fit. All these facts clearly

make the present partitioning method very unreliable and not suitable to perform

a numerical MFA.
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5.3 Partitioning with rectangular boxes

Another strategy is to consider an anisotropic non-cubic box partitioning as shown

in Fig. 5.1c, with at least one of the linear sizes lx, ly, lz different from the other

two. For simplicity we will consider values for the box sides such that L/lx,y,z

is an integer. Hence in all directions the system can be covered exactly with an

integer number of boxes, although this number can be different for each direction

x, y, z. The scaling parameter used in the present case is λ = l̄/L with an effective

linear box-size defined as l̄ = (lxlylz)
1/3. Let us note that different combinations of

{lx, ly, lz} can lead to the same l̄ and thus we could have different contributions to

the same λ, as in the method described in Sec. 5.2. In the fits of Fig. 5.3 only the

averaged contribution for each λ is shown. The corresponding singularity spectrum

(Fig. 5.2) is similar to the f(α) obtained using only cubic boxes with integer L/l.

We again note a tendency to broaden but it is less pronounced than when using

unrestricted values for the box-size. Although in the present case the number of

points used in the linear fits is noticeably increased as seen in Fig. 5.3, no significant

improvement with regards to the reliability of the f(α) has been observed.

5.4 Using multiple origins for the box partitions

An further possibility to increase the reliability of the multifractal spectrum would be

to consider different origins for the partitioning method as demonstrated in Fig. 5.1d.

This means that instead of considering the box-partitioning from a single origin, we

could use different points in the system as origins. This is equivalent, once we have

done the partitioning for a given box-size l and we have a rigid partition grid, to

shift the whole wavefunction at the same time one site at a time in all directions a

maximum of l sites. Here, one uses the PBC in such a way that the wavefunction

sites that are left of the grid in one direction enter the system through the opposite

end. Note that each value of |ψi|2 is used only once. Hence for each box-size
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(black) and multiple origins (grey) for the box partitioning. The error bars are equal
to one standard deviation. The values for the linear correlation coefficient r2 and
quality-of-fit parameter Q of the fits to obtain αens

q and f ens
q in the single origin and

multiple origin cases are shown in the bottom shaded panels as labelled.

we have l3 different non-equivalent origins for the box-partitioning. Therefore for

a given box-size l the number of contributions in the average of the gIPR Pq is

multiplied by l3. Since the ensemble average is specially sensitive to the number

of disorder realizations considered, we show in Fig. 5.4 how f ens(α) behaves when

multiple origins are taken into account. The change with respect to the single-

origin situation is really insignificant, there is almost a perfect overlap for both

lines. But the standard deviations are reduced almost to zero when multiple origins

are considered. This is due to the fact that the standard deviations of the averaged

contributions for the points in the fits, include a term 1/
√
N where N is the number

of states we average over. Since every origin counts as a different contribution, then
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the uncertainties are greatly reduced. However, let us show that this reduction is in

fact misleading and does not really mean an increase in reliability. In the bottom

panels of Fig. 5.4, we compare the quality-of-fit parameter Q of the linear fits to

obtain α and f(α) for the single-origin and multiple-origin techniques. In both cases

the linear correlation coefficient r2 is close to 1 in the whole α range indicating a good

linear behaviour. But in the multiple-origin situation, the values of Qα and Qf(α)

decrease considerably suggesting that the uncertainties of the points in the fits have

been clearly underestimated. Therefore there is no gain in reliability. Considering

multiple origins maybe seen as considering eigenstates of other disordered systems

which correspond to cyclic permutations in the three spatial directions of the initial

disorder realization. Clearly, such transformations will not give independent disorder

realizations. In fact the contribution of all these wavefunctions related by cyclic

permutations must be very similar, since their probability distribution function for

|ψi|2 values is identical. Therefore it is not correct to consider their contribution

as a different disorder realization. That explains why the spectrum hardly changes

when compared to the single-origin situation. From our point of view this strategy

should not be considered as a good method to reduce the uncertainty. It must

also be emphasized that the multiple-origin strategy is very expensive in terms of

computational time.

5.5 An adaptive MFA-fit strategy

Aside from the different schemes of partitioning, let us also study another strategy

related to the selection of values of box-sizes that are considered for the linear fit.

Having in mind that the proper region of values for l to do the scaling might also

depend on the value of q, we implemented an adaptive-linear-fit strategy. For a

given value of q, we consider a window with a certain number of points to do the fit

and we maximise the values of r2 and Q by shifting this window throughout all the

75



available interval of values for l, only for box-sizes with integer L/l. In this way for

each q the best linear behaviour is achieved using a different region of contiguous l

values. In this case we have considered a system with size L = 210, for which 14

available values of l exist in the interval l ∈ [2, L/2], and we tried different widths

of the window for l. Unfortunately using this strategy we have not been able to see

proper multifractal spectra. Due to the fluctuations of the uncertainty for the points

in the fits, sometimes the shifting of the window of l-values does not follow a smooth

tendency with q, moreover it also happens that for a given q the best fit for αq and

fq is achieved in a different range of l. These effects give rise to the appearance of

discontinuities and irregularities in f(α). Apparently our initial premise is not true.

5.6 Summary

We have shown that the simple box-partitioning MFA method based on the use

of cubic boxes with integer side length L/l and a single-origin for the partitioning,

although bearing some limitations, is numerically the most reliable one. It is also

optimal in terms of time and computational requirements, and it has already been

successfully implemented in chapters 3 and 4 to obtain the scaling behaviour at the

Anderson transition for very large system sizes. Therefore it should be considered

the method of choice. Furthermore, our results in Fig. 5.2 show that the strategy

of cubic boxes with integer sizes L/l and the use of a single origin increases the

agreement with the proposed symmetry in the singularity spectrum f(2d − α) =

f(α) + d− α.
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Chapter 6

Multifractal Analysis with the

Probability Density Function

The possibility of carrying out a multifractal analysis directly from the raw statistics

of intensities |ψ|2, i.e. the probability density function (PDF), is especially interest-

ing since their distributions can be measured experimentally in classical [6] and

quantum [10, 11, 64, 65] experiments. However, the numerical relation between the

PDF and the multifractal spectrum f(α) has not been completely elucidated. In this

chapter we show how to obtain the multifractal spectrum based on the PDF. The

PDF-to-f(α) connection is a numerically much simpler procedure than the usual

scaling of q-moments of |ψ|2 which is discussed in detail in the previous three chap-

ters. Furthermore, it yields direct understanding of physical properties at criticality,

such as the existence of a symmetry relation, the observation of negative fractal di-

mensions and the physical meaning of the possible appearance of termination points.

We apply the PDF-based approach to the three-dimensional Anderson model within

the Gaussian orthogonal ensemble, using a large number of critical states at E = 0

and very large system-sizes up to L3 = 2403.
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6.1 Relation between f(α) and the PDF(α)

At criticality, the distribution for the wavefunction intensity |ψ|2 has the scaling

form [39]

PL(|ψ|2) ∼
(
1/|ψ|2

)
Lf(− ln |ψ|2/ lnL)−d. (6.1)

Recall that in terms of PL(|ψ|2), the ensemble-averaged gIPR Ld〈|ψ|2q〉 for box

size l = 1 can be expressed as Ld〈|ψ|2q〉 = Ld
∫ 1
0 PL(|ψ|2) |ψ|2q d|ψ|2 ∝ L−τ(q).

A distribution function of this form (6.1) satisfies the scaling relation (2.3) of the

gIPR. Making a change of variable in terms of α ≡ − ln |ψ|2/ lnL, the PDF is

PL(α) ∼ Lf(α)−d, where f(α) is the multifractal spectrum, i.e. the fractal dimensions

of the sets of points in the wavefunction with values |ψi|2 = L−α.

The relation (6.1) between PL(α) and f(α) suggests a complete characteriza-

tion of multifractality directly from the PDF. The proportionality in (6.1) contains

an L-dependent normalization constant which can be naively included as

PL(α) = PL(α0)L
f(α)−d, (6.2)

where α0 is the position of the maximum of the multifractal spectrum, f(α0) = d.

Furthermore, since f(α) < d for all α 6= α0, we see that PL(α0) corresponds in fact

to the maximum value of the PDF itself. Note that PL(α = α0) as the maximum

of the PDF is true only in the thermodynamic limit or for large enough L. Hence

α0 can be easily obtained numerically. Since at criticality the shape of f(α) and

hence the position of α0 do not depend on L, the value of α0 obtained from the

critical PDF must also be L-invariant as we show in Fig. 6.1. From the PDF of

L = 50 to 200 with 5 × 104 and 100 states respectively, we have estimated the

position of the maximum of the PDF to be α0 = 4.027±0.016 which is in agreement

with that obtained from the system-size scaling of the ensemble-averaged gIPR in

chapter 4, α0 ∈ [4.024, 4.030]. Furthermore, using the normalization condition we
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Figure 6.1: PDF at criticality for ∆α = 0.04. The gray lines correspond to L from
30 (bottom) to 90 (top). Standard deviations are within the line width. For L 6 100
and L > 100 we average over 5×104 and 100 states respectively. The vertical dashed
line marks the mean value for α0 = 4.027 ± 0.016 using L from 50 to 200. Inset
(a) shows PL(α0) vs L. Standard deviations are contained within symbol size. The
solid line is the fit a ln(L/l)b, with a = 0.297 ± 0.002, b = 0.490 ± 0.005. Inset (b)
shows the collapse of all the PDF from L = 30 to 240 onto the f(α).

have PL(α0) =
(∫ ∞

0 Lf(α)−ddα
)−1

. Using the saddle point method, justified in the

limit of large L, we compute PL(α0) ∼
√

lnL, which holds very well even for small

L as shown in Fig. 6.1(a).

From the PDF for one fixed L the multifractal spectrum is hence straight-

forwardly obtained from (6.2) as

f(α) = d+ ln[PL(α)/PL(α0)]/ lnL. (6.3)

In Fig. 6.1(b), we show the corresponding f(α) for the PL(α) of different system

sizes from L = 30 to 240. It is clear that PL(α) is always system-size dependent

and it is through the f(α) spectrum that all PDFs for different L collapse onto

the same function. Therefore the f(α) can also be understood as the natural scale-
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invariant distribution of the wavefunction at criticality. We find excellent agreement

between the singularity spectrum obtained from the PDF for L = 30, . . . , 240 and

the one obtained from the more involved box-size scaling of the gIPR as discussed in

chapters 3 and 4. Alternatively, if f(α) is known, the PDF can be easily generated.

6.2 System size scaling of the PDF

In order to minimize finite-size effects, we can also determine f(α) from the PDF

using system-size scaling. We note that for a given L the number of points in the

wavefunction with values in the interval α ∈ [α − ∆α/2, α + ∆α/2] is NL(α) ≡

LdPL(α)∆α, where Ld is the volume and ∆α is the bin size used to generate the

numerical PDF whose method will be discussed in detail below. Hence the following

so-called normalized volume of the α-set ÑL(α) ≡ LdPL(α)/PL(α0) obeying

ÑL(α) = Lf(α), (6.4)

can be used to extract f(α) from a series of systems with different L. Each point in

the PDF-generated f(α) is simply computed as the slope of ln ÑL(α) versus lnL. In

Fig. 6.2 we compare the multifractal spectrum obtained using system-size scaling of

the PDF (6.4) with the one from gIPR scaling for L ∈ [20, 100] and having 5 × 104

critical states for each size. We find very good agreement between both, as well as

between the numerical PDFs and those generated from the gIPR f(α) [Fig. 6.2(a)].

Numerically, the PDF is approximated by

PL(α) ≡
∆α→0

〈
θ
(
∆α/2 −

∣∣α+ ln |ψi|2/ lnL
∣∣)〉 /∆α, (6.5)

where θ is the Heaviside step function and 〈.〉 involves an average over the volume of

the system and all realizations of disorder. To minimize the uncertainty especially in

the small |ψi|2, which becomes greatly enhanced in terms of α = − ln |ψi|
2

lnL , the ampli-
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tudes used for the histogram are those obtained from a coarse-graining procedure of

the state using boxes of linear size l = 5. Therefore the system size in all equations

is the effective system size L/l. The uncertainty of the PDF value is estimated from

the usual standard deviation for a counting process as σPL(α) =
√

PL(α)/NwLd∆α,

whereNw is the total number of states in the average, and for the α values a constant

σα = ∆α/3 is assigned. This procedure assumes uncorrelated α’s and hence |ψ|2’s;

this is only true between different disorder realizations, but not necessarily within

each state. Hence the errors of the PDF are probably somewhat underestimated

and the small uncertainty of the f(α)-values obtained from PDF scaling in Fig. 6.2

must be interpreted carefully. There also exists another source of error difficult to

quantify, namely, how much the histogram for finite ∆α deviates from the real PDF

when ∆α → 0. In spite of this, the PDF method is easy to implement numerically

and hence a valid alternative to the more demanding gIPR scaling techniques.

6.3 Symmetry Relation in the PDF

The symmetry relation in the singularity spectrum at criticality, f(2d−α) = f(α)+

d − α [43] for L → ∞, implies the existence of a symmetry for the PDF (recall

Eq. (6.2)) which should also hold for large enough system sizes,

PL(2d − α) = Ld−αPL(α). (6.6)

In terms of the wavefunction intensities, Eq. (6.6) reads

PL(L−2d/|ψ|2) = (Ld|ψ|2)3 PL(|ψ|2). (6.7)

With |ψ|2 = L−α, the above equation follows from making a change of variables

PL(α)dα = PL(L−α)dL−α. Hence, PL(α) = −PL(L−α)L−α lnL and PL(2d − α) =

−PL(L−(2d−α))L−(2d−α) lnL. Equation (6.7) establishes that at the critical point
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linear correlation coefficient r2 and quality-of-fit parameter Q for the f(α) obtained
from the log-log linear fits of Eq. (6.4).

the distribution of the wavefunction intensity in the interval L−2d < |ψ|2 6 L−d is

indeed determined by the PDF in the region L−d 6 |ψ|2 < 1. The lower bound for

the |ψ|2 values is a result of the upper bound for the singularity strength α 6 2d.

Of course, |ψ|2max 6 1 ⇒ α > 0. Furthermore, the symmetry relation in the PDF

confirms the existence of the symmetry axis at α = d.

We carry out a numerical check of the symmetry relation (6.6) by evaluating

δPL(α) = PL(α) − Lα−dPL(2d − α) accounting for the distance between the orig-

inal PDF and its symmetry-transformed counterpart at every α point, as well as

the cumulative difference δ(L) =
∫ 2d
0 dα|δPL(α)| for all α values. The symmetry-

transformed PDF for L = 100 and the evolution of δPL(α) for different L are shown

in Fig. 6.3. In Fig. 6.3(a), the symmetry-transformed PDF seems to deviate from
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the numerical PDF in the large α region. Note that the symmetry relation maps

the PDF for small |ψ|2 < L−d onto the PDF for large |ψ|2 > L−d. The large α

part of the symmetry-transformed PDF was generated using the small α region of

the original PDF, i.e., those regions corresponding to anomalously large |ψ|2 with

negative f(α) whose number decreases with L as Nα ∝ L−f(α). As one considers

more disorder realizations which means increasing the probability of finding this

large |ψ|2 then the symmetry relation will be better satisfied especially in the right

tail of the PDF. Nevertheless, we show in Fig. 6.3(b) that for a fixed number of

states the symmetry relation is better satisfied as L increases, and the improvement

can be roughly quantified as δ(L) ∼ L−0.545 as shown.
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6.4 Non-Gaussian Nature of the PDF

The parabolic approximation for f(α) ≃ d − [α−(d+ǫ)]2

4ǫ in d = 2 + ǫ [40] implies a

gaussian approximation (GA) for the PDF, PGA
L (α) =

√
lnL/4πǫ L−[α−(d+ǫ)]2/4ǫ.

The PDFs in Fig. 6.1 might indeed appear roughly gaussian and in Fig. 6.4 we

show gaussian fits of the PDF for L = 100, obtained via a usual χ2 minimization

taking into account the uncertainties of the PDF values. However, the quality-of-fit

parameter Q, which gives an indication on the reliability of the fit, is ridiculously

small (Q < 10−300000). Since the standard deviations of the PDF values may have

been slightly underestimated we also study how Q behaves when we intentionally

increase the error bars by a factor n. As shown in Fig. 6.4(c) one would have to

go to unreasonable high values of n ∼ 85 to accept a gaussian nature for the PDF

as plausible. The deviation from PGA
L (α) is also noticeable. Hence our statistical

analysis confirms that the PDF is non-gaussian in agreement with the observed

non-parabolic nature of f(α) at the 3D MIT.

6.5 Rare events and their negative fractal dimensions

The volume of the α-set, NL(α) = LdPL(α)∆α for a given L, gives the number of

points in the wavefunction with amplitudes in the range |ψi|2 ∈ [L−α−∆α/2, L−α+∆α/2].

It scales with the system size as NL(α) ∼
√

lnLLf(α). The negative values of f(α)

correspond then to those α-sets whose volume decreases with L for large enough L.

Physically, the negative fractal dimensions at small α are caused by the so-called rare

events containing localized-like regions of anomalously high |ψi|2 at criticality. The

probability, which is proportional to L−d−|f(α)|, of finding them likewise decreases

with L. In Fig. 6.5, we show examples of rare eigenstates. Due to the finite size term
√

lnL, the threshold α− [where f(α−) = 0], below which the decreasing behaviour

of NL(α) with L is detected, will change with the system size itself, and so the nor-

malized volume (6.4) of the α-set must be used. In Fig. 6.6 we show the behaviour
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deviation of the PDF-points is multiplied by the factor n.

of ÑL(α) vs L for two values of α corresponding to a positive and a negative fractal

dimension. The exponential decreasing of the volume of the α-set for f(α) < 0 is

clearly observed from the PDF values. In Fig. 6.6(a) it is demonstrated how the

normalized volume of the α-set becomes scale invariant at α− and thus ÑL(α−) = 1.

The opposite tendencies with L at each side of α− can also be seen. The estimated

value for α− ∈ [0.643, 0.675] from the PDF scaling agrees with the result obtained

using the multifractal spectrum from gIPR scaling, α− = 0.626 ± 0.028.

6.6 Termination points in f(α)

The fate of the f(α) spectrum at α = 0 and α = 2d is currently under debate in the

literature [47] due to the emergence of singularities at these points. At present, it is

not clear whether f(α) continues towards −∞ or terminates with finite values. The
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Figure 6.5: Rare eigenstates for the 3D Anderson model (E = 0, Wc = 16.5) for
L3 = 1003. The sites with probability |ψj |2 > L−3 are shown as boxes with volume
|ψj |2L3. The grayscale distinguishes between different slices of the system along the
axis into the page. The biggest boxes with black edges enclose the site with the
maximum normalized amplitude: |ψi|2 = 0.4484 (left) and 0.3617 (right).

physical consequences of the divergence of f(α) at those points are: (i) |ψi|2 > L−2d

at criticality since 2d would be an upper bound for α, and (ii) the probability to

find the most rare event, namely the most extremely localized state (|ψi0 |2 = 1,

corresponding to α = 0), at the critical point must always be zero independently of

the system size [PL(0) = 0]. In principle the PDF can be used to look for termination

points (TP). However, a reliable analysis in the vicinity of α = 0 requires a huge

number of disorder realizations; relying on the symmetry relation [43] a study around

α = 2d is more appropriate. For 1 ≪ α < 2d and as long as there is a finite TP, the

PDF admits the series expansion We assume that f ′(α)|α=0 and f ′(α)|α=2d remain

finite for finite L. Note that a finite TP with f ′(α)|α=0,2d → −∞ implies the same

infinite slope for the PDF at α = 0, 2d. This is not seen in our results.

PL(α) ≃ PL(α0)L
f(2d)−d [1 + q2d(α− 2d) lnL] , (6.8)
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whenever not shown. The vertical dashed line corresponds to the mean value of the
crossing point α− = 0.659 ± 0.008.

where q2d ≡ f ′(α)|α=2d. The existence of a finite TP at α = 0 requires f(2d) and

q2d to be L-independent, for large enough L. In Fig. 6.7 we show the values of f(2d)

and q2d obtained for different L. The value of f(2d) seems to reach a saturation

for large L although the numerical analysis cannot exclude a very slow decreasing

tendency. A similar result is found for q2d. Still larger L and more states are needed

to decide the fate of f(α) at 0 and 2d.

6.7 Summary

In this chapter, the probability density function (PDF) for critical wavefunction am-

plitudes is studied in the three-dimensional Anderson model. We have presented a
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formal expression between the PDF and the multifractal spectrum f(α) in which the

role of finite-size corrections is properly analyzed. We have shown the non-gaussian

nature and the existence of a symmetry relation in the PDF. From the PDF, we ex-

tracted information about f(α) at criticality such as the presence of negative fractal

dimensions and we commented on the possible existence of termination points. A

PDF-based multifractal analysis is shown to be a valid alternative to the standard

approach based on the scaling of inverse participation ratios.
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Chapter 7

Finite Size Scaling of

Multifractal Exponents

7.1 Finite Size Scaling Methodology

Near the metal to insulator transition, the only relevant length scale is the correlation

length ξ (or the localization length in the insulating regime) which diverges as the

state approaches the critical point. The one-parameter scaling theory states that a

quantity X defining the critical transition such as the conductance g could be scaled

by the correlation length in the thermodynamic limit ξL→∞ such that, in the vicinity

of the critical point xc, all X (L, x) from different sizes L with varying parameters x

is described by only one scaling function F
(
L
ξ

)
. The values of X is determined by

parameters such as L, energy and disorder. These parameters change the value of X

only through the one variable L/ξ. Furthemore the relation X = F
(
L
ξ

)
enables the

determination of the critical properties of the transition such as the critical disorder,

mobility edge and critical exponent from finite size data. The values of the X (L, x)

collapse onto the scaling function F
(
L
ξ

)
that has two branches if there is an MIT.

These two branches correspond to the localised (x > xc) and extended (x < xc)

phases.
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From the first order approximation for the correlation length in Eq. (1.5), the

scaling function could then be expressed as F(XL1/ν) where the critical exponent

ν defines the divergence of the correlation length near the critical point and X =

|x−xc

xc
|. Since z = XL1/ν = 0 at x = xc, F can then be Taylor expanded around

x = xc. The scaling function then becomes

X = Xc + a1XL
1/ν + a2X

2L2/ν + · · · , (7.1)

where the first term Xc is the critical value at x = xc. By fitting all the X (L, x)

data points into the Taylor series expansion of F , the transition point xc and critical

exponent ν can be numerically obtained as can be clearly seen from the preceding

equation. If there is a transition then a plot of X (L, x) vs x will show a common

crossing point xc at which there is scale-invariance.

To properly estimate the values of the critical parameters of the transition,

we use a set of fit functions which include two kinds of corrections to the universal

scaling [66, 67], (i) nonlinearities of the x dependence of the scaling variables and

(ii) an irrelevant scaling variable which accounts for a systematic shift with L of the

transition point (i.e, crossing point in the plot of X (L, x) vs x). The first correction

is due to the fact that when the range of x considered is broad then it is not correct

anymore to assume a simple linear dependence in x of the scaling variables and

nonlinearities in x must be taken into account. On the other hand, the shifting of

xc arises whenever there is a significant finite size effect whose contribution vanishes

for large enough system sizes. Therefore, the scaling function including corrections

to scaling is given by

X (L, x) = F(χrL
1/ν , χiL

y), (7.2)

where χr and χi are the relevant and leading irrelevant scaling fields, respectively.

The exponent y in the irrelevant field is expected to be negative y < 0. Assuming

the irrelevant scaling variable is well-behaved, the function can be Taylor expanded
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in the second argument around x = xc up to the order ni,

X (L, x) =

ni∑

n=0

χni L
nyFn(χrL

1/ν). (7.3)

Moreover, each Fn is expanded in Taylor series up to the order nr as

Fn =

nr∑

k=0

ankχ
k
rL

k/ν . (7.4)

The absolute scales of the arguments of F in (7.2) is not defined. Hence, we set

a01 = a10 = 1. Nonlinearities in the x-dependence of the scaling variables are

taken into account by expanding χr and χi in terms of X up to order mr and mi,

respectively, such that

χr(X) =

mr∑

m=1

bmX
m, χi(X) =

mi∑

m=0

cmX
m, (7.5)

with b1 = c0 = 1. The expansions in the fit functions are carried out up to orders

ni, nr,mr,mi which are adjusted to the specific data and should be kept as low as

possible, while giving the best fit to the data and FSS plot and minimizing the

χ2 values for the determination of critical parameters Wc and ν. The Levenberg-

Marquardt method was used to perform the non-linear fit [26, 68]. We emphasize

that the validity of the scaling results is determined by the goodness-of-fit parameter.

If there is a common crossing point xc for the X (L, x) then the irrelevant

correction is not necessary and we can set ni = mi = 0. Furthermore, by setting

nr = mr = 1 and ni = mi = 0, a linear relation X (L, x) = a00 + a01XL
1/ν is

obtained. In the presence of irrelevant scaling, the correct scaling behaviour is

obtained by subtracting the irrelevant terms as

X (L, x)corrected = X (L, x) −
ni∑

n=1

χni L
nyFn(χrL

1/ν). (7.6)
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The single-parameter scaling for X (L, x)corrected becomes

X (L, x)corrected = F0

(
±L
ξ

)
, (7.7)

where the correlation length ξ is defined as

ξ = Cχr(X)−ν . (7.8)

Note that χr(X) may contain higher order terms in X. If there is no nonlinearity

in x then a simple power law for ξ is recovered, that is ξ = C|x−xc

xc
|−ν where C is a

constant.

7.2 Scaling Laws for the Generalized Multifractal Ex-

ponents

We apply the finite-size scaling procedure to estimate the critical disorder Wc and

critical exponent ν of the Anderson transition from the multifractal exponents which

describe the complex distribution of the wavefunctions. Here, we consider wavefunc-

tions in the vicinity of the band centre E = 0. By fixing the energy, it is the disorder

that will drive the state into an Anderson transition. System sizes range from 203 to

1003, and disorder values in the interval W ∈ [15.0, 15.25, 15.5, · · · , 18.0]. For each

size and disorder combination, we have taken at least 10000 uncorrelated states for a

total of 1, 530, 000 wave functions. Comparing to the averaging-over-many-samples

interpretation [2] of the transfer matrix method (TMM), we can reinterpret this as

a TMM bar of cross-sectional area, say, 100×100 with 106 TMM multiplications —

something which is challenging even for TMM.

In this work, we propose a generalization of multifractal concepts of mass

exponents and singularity strengths (Lipschitz-Hölder exponents) that is applicable

to the critical regime and not just at the critical point. At criticality, in the thermo-
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dynamic limit (L → ∞), due to the multifractal nature of the states, the effective

length scale is λ ≡ ℓ/L where ℓ and L are the box and system sizes respectively. The

first quantity that we are considering are the generalized inverse participation ratios

(gIPR) 〈Pq〉 (2.2) which are simply the sum of the moments of the wavefunction

intensities |ψ|2. We recall that at criticality it scales as 〈Pq〉 ∝
λ→0

λτq , where the

brackets denote average over disorder realizations. Away from the transition how-

ever, the moments will depend on the degree of disorder W , ℓ and L. Moreover, it

follows from the scaling hypothesis that close to the transition, there exists a scaling

function for 〈Pq〉 as given by [69]

〈Pq〉 = Rq(L/ξ, ℓ/ξ) ≡ Rq(L/ξ, λ). (7.9)

Since 〈Pq〉 = 〈∑all boxes µ
q
k(λ)〉 where µk(λ) is the box probability that reduces to

|ψ|2 for ℓ = 1, it is clear to see that 〈Pq〉 changes with either ℓ, L and W . This

explains the nature of the two-parameter scaling above and the natural consequence

of λ being a scaling parameter is due to Rq(L/ξ, ℓ/ξ) = Rq(L/ξ, λ ·L/ξ). By writing

the averaged moments in terms of the distribution function for the wavefunction

amplitudes, we conclude that close to criticality we can write

〈Pq〉(W,L, λ) = λτqRq (L/ξ, λ) , (7.10)

where the dependence of the scaling function on λ may be non-trivial, in particular,

it is likely to be non-analytic at λ = 0. Furthermore, Eq.(7.10) can be rearranged

in the following form,

τ̃q(W,L, λ) = τq +
q(q − 1)

lnλ
Tq (L/ξ, λ) , (7.11)

where the new scaling function Tq is related to the original Rq and we have de-

fined a set of generalised mass exponents away from the transition as τ̃q(W,L, λ) ≡
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ln〈Pq〉/ lnλ, which becomes the usual τq at the critical point (Wc), and in the limit

λ→ 0. The factor q(q− 1) has been explicitly included to satisfy τ̃0 = τ0 = −d and

τ̃1 = τ1 = 0. That is the mass exponents corresponding to moments q = 0, 1 are

constant for all disorder. From Eq.(7.11) it is straightforward to obtain the scaling

law for the multifractal exponents,

α̃q(W,L, λ) = αq +
1

lnλ
Aq (L/ξ, λ) , (7.12)

where the second term on the rhs will be non-zero for all q values, and the generalised

exponents are defined as α̃q(W,L, λ)αq ≡ dτ̃q/dq ≡ 〈∑k µ
q
k lnµk〉/ (〈Pq〉 lnλ). Con-

sequently, we can define a disorder, system size and box-size dependent generalised

singularity spectrum around the critical point f̃q ≡ qα̃q − τ̃q, obeying

f̃q(W,L, λ) = fq +
q

lnλ
Fq (L/ξ, λ) . (7.13)

This generalised multifractal spectrum can be related to the probability density

function (PDF) for α̃ ≡ lnµk/ ln λ around the critical point as P(α̃;W,L, λ) ∝

λd−
ef(eα;W,L,λ), which as we approach the thermodynamic limit at the critical point

becomes the usual relation Pλ(α) ∝ λd−f(α) as discussed in chapter 6.

The generalization of the multifractal exponents for all moments suggests

a wide range or even an infinite number of parameters from multifractal analysis

than can be used to perform finite size scaling. Since the critical parameters are

independent of q, the use of different moments provides a further test on the stability

or confidence interval of the values of the critical parameters. However, the quality

of numerical data for higher moments |q| which are caused by either very small

or anomalously large wavefunction amplitudes are not very reliable due to high

numerical errors. Nevertheless, highly precise data could be found at q = 0 and

around its vicinity. In particular the parameter α̃0 could be estimated from the PDF

of wavefunction intensities since it is the position of the maximum of the PDF for all
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disorders. In the thermodynamic limit, the position of the maximum and α0 should

agree so we expect both to exhibit the same scaling behaviour, although for finite

L that can be quantitatively different. At criticality as demonstrated in Chapter

6, it is the only scale invariant parameter of an L-dependent PDF. This alternative

method might be attractive to experimentalists who can use measured PDF data to

perform a finite size study [70,71]. The maximum of the distribution was estimated

by fitting the PDF to P(α ≡ lnµk

lnλ ) ∝ λp(α) where p(α) is a polynomial such that

p(α) = a0 +
∑

j≥2 aj(α − α0)
j . α0 is a parameter in the fit and it corresponds to

the maximum of the PDF. The fit is performed for the PDF coming from 10 000

states for each set of values (W,L, ℓ). The order of the polynomial p(α) is chosen

to maximize the goodness of fit for every case. To obtain a reliable estimate of the

uncertainty σα0
, we carry out the fit 100 times for the 100 distributions obtained

from subsets of 100 wavefunctions each for every set (W,L, ℓ).

7.3 Scaling at finite λ = l/L

To start with, we consider the simple case of fixed λ = ℓ/L. Equations (7.11) and

(7.12) reduce to a single parameter scaling F(L/ξ). Here, the function F(χrL
1/ν , χiL

y)

which represents the right hand side of Eqs. (7.11) and (7.12) is expanded to the

first order of irrelevant scaling variable as F0(χrL
1/ν) + χiL

yF1(χrL
1/ν). As in sec-

tion 7.1, the relevant χr and irrelevant χi parameters are expanded in |Wc−W
Wc

| up

to orders mr and mi. Note that each F0 and F1 is expanded in the relevant scaling

field up to order n0 or n1 respectively.

In Table 7.1, we show representative results for 3 fits of τ̃q and 1 fit for α̃q

at various λ and q values. Our results show that in all cases, we have acceptable

goodness-of-fit and χ2 values. The observed larger standard deviation of the critical

paramaters for q = 3 is due to the fact that by considering higher moments the

fluctuations in the wavefunction amplitudes are also enhanced. Hence the τ̃3 points
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meth. q λ ν Wc ND NP χ2 p n0n1mrmi

τ (7.11) 2 0.1 1.58 [.52, .66] 16.57 [.50, .61] 153 13 151 0.2 5130
(7.11) 2 0.2 1.59 [.57, .61] 16.56 [.52, .58] 153 12 158 0.2 6020
(7.11) 3 0.1 1.62 [.57, .66] 16.56 [.42, .61] 153 10 133 0.7 5010

α PDF 0 0.1 1.56 [.54, .59] 16.53 [.49, .55] 153 10 131 0.7 3210

Table 7.1: The 95% confidence intervals of the critical exponent ν and the critical
disorder Wc. The number of data is ND, the number of parameters is NP , χ2 is
the value of the chi-squared statistic for the best fit, and p is the goodness of fit
probability. The orders of the expansions are specified in the last columns. The
system sizes are L = 20, 30, 40, 50, 60, 70, 80, 90, 100 and λ is the ratio of the box
size l to the system size L. The range of disorder is W ∈ [15, 18]. Where applicable,
q specifies the moment of the wavefunction amplitude that was considered.

used for the fitting to obtain the critical parameters have a corresponding larger

standard errors. In Figs. 7.1 and 7.2, we show the resulting fits together with the

original high-precision τ̃q and α̃q data. From Fig. 7.1, it is obvious that the quality

of the τ̃q data is comparable to the best TMM studies [67]. For all points in the plot,

the standard deviation is within symbol size. There is evidently a large irrelevant

shift of Wc upon increasing the system size. The tendency of τ̃2(W,L) can be clearly

explained by inset B which shows the location of a critical τ2 relative to the limiting

boundaries of a pure metallic state where the slope is d and a strongly localised state

τq = 0. At W < Wc, increasing L means the system becomes more metallic and

hence τ̃2 slowly approaches the metallic limit, τ̃2 → d(q − 1). Whereas the opposite

behaviour is seen for W > Wc in which τ̃2 becomes closer to the horizonal bound

of the insulating case. A similar observation can be made for the α̃q data in Fig.

7.2. In the regime of extended states where the disorder is weak, α̃0 approaches

the metallic limit of α(W = 0, L) = 3 upon increasing system size. Whereas in

the localized region, α̃0 increases with L. In the extreme case of |ψ|2 = 1 at one

site and zero elsewhere, α0 → ∞. The results of Table 7.1 show that all fits give

estimates of ν which (i) are consistent with each other, (ii) agree with the TMM

results ν = 1.58± 0.05 [67] and ν = 1.62± 0.07 [26] and (iii) are significantly larger

than 1 and, within the accuracy, different from 1.5 [72].

96



15 15.5 16 16.5 17 17.5 18
W

15 15.5 16 16.5 17 17.5 18
W

15 15.5 16 16.5 17 17.5 18
W

1.0

1.5

2.0

~ τ 2(
W

,L
,λ

)

16.5 17
W

1.3

1.4

1.5

1.6

~ τ 2(
W

,L
,λ

)

-5 0 5 10
q

-8

0

8

~ τ q(
W

,L
,λ

)

insulatorm
et

al

Figure 7.1: Plot of τ̃2 at E = 0 and λ = 0.1 as a function of disorder at various
system sizes L = 20 (◦), 30 (�), . . . , 100 (×). The errorbars denote standard
deviations obtained from averaging over disorder, they are within symbol size and
shown for L = 20 and L = 100 only. The lines are plotted according to Eq. (7.11)
for the finite-scaling scaling fit parameters as in the first row of Table 7.1. The
vertical dashed line shows the estimated Wc = 16.57 and its confidence intervals are
indicated by the grey region. Inset A shows the FSS functions (7.11) in an enlarged
view of the critical region. Inset B shows the q-dependence of the mass exponents
at criticality τq = Dq(q − 1) (dashed line), pure metallic state τq = d(q − 1) with
a slope of d (thin line) and extremely localized state τq = 0 (thin horizontal line).
The grey dashed line marks q = 2.

7.4 Scaling with two parameters

The two-parameter scaling laws given in the previous section allow us to consider

points of different λ altogether and fit them into one scaling function. The scaling

function can be written in Taylor series as F(χrℓ
1/ν , χrL

1/ν) = A0 + 1
lnλ

∑nL

n=0

∑nℓ

k=0

ankχ
n
rL

n/ν χkr ℓ
k/ν , where χr is as before. It is also possible to include irrelevant cor-

rections to both ℓ- and L- scaling. For the present case, we have already obtained

acceptable goodness-of-fit values even with the above function which has fewer pa-

rameters. Note that F represents the right hand side of Eq. (7.11) and (7.12). A
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Figure 7.2: Plot of α̃0 at E = 0 and λ = 0.1 as a function of disorder at various
system sizes L = 20 (◦), 30 (�), . . . , 100 (×) as in Fig. 7.1. The errorbars denote
standard deviations obtained from averaging over disorder. The lines are plotted
according to Eq. (7.12) for the finite-size scaling fit parameters as in the last row
of Table 7.1. The vertical dashed line shows the estimated Wc = 16.53 and its
confidence intervals are indicated by the grey region.

factor of q(q − 1) must be included in the second term of F for the scaling law of

τ̃q as in Eq. (7.11). At the critical point and in the limit of λ→ 0, the zeroth order

term should be A0 = τq or αq. Therefore in principle the two-parameter scaling in

L and λ (or ℓ) also provides an estimation for the values of the critical multifractal

exponents τq and αq.

A representative scaling plot for τ̃2 is shown in Fig. 7.3 along with the best

estimates for the critical parameters which are in good agreement with the values

given by the single-parameter scaling as listed in Table 7.1. The estimated values

of the critical parameters with the 95% confidence interval for nL = nℓ = 3 and

mr = 2 are Wc = 16.59 [16.57, 16.60], ν = 1.58 [1.55, 1.60] and τ2 = 1.23 [1.22, 1.24].

The shaded surface is the two-parameter scaling function F(χrℓ
1/ν , χrL

1/ν). The

estimation of the correlation length is ξ = χ−ν
r where χr is a series expansion in
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|W−Wc

Wc
| to an acceptable order as previously defined. The τ̃2 points corresponding

to disorder W < Wc all lie on the extended (upper) sheet. The lower sheet is the

localised area where all the τ̃2(W > Wc, L, ℓ) populate. The existence of the two

sheets of F is an indicaton of an MIT. Each slice of the surface corresponds to a

fixed λ.

The large statistics involved for a two-parameter scaling that considers points

of different λ give a better estimation of the critical parameters. However, we may

have data points corresponding to different ℓ but taken from the same system size L.

Points like these have a certain degree of correlations that our error estimations so

far have not taken into account. Here, we recount the steps necessary to include such

correlations in the data for a proper error analysis. We considerN number of random

variate 〈P (i)〉 for the fitting. Each 〈P (i)〉 is the sample mean of a set of M random

realizations. That is 〈P (i)〉 =
∑M

m=1 Pm(i)/M . The definition of the χ2 statistics

which is the weighted sum of the square of the residuals is given as χ2 = V TC−1V .

Here, the column vector V = {〈P (1)〉 − F , 〈P (2)〉 − F , · · · , 〈P (N)〉 − F} and F

is the model fit. Each element in the N × N covariance matrix is computed as

Cij = 1
N

1
M

∑M
m=1[Pm(i)−〈P (i)〉][Pm(j)−〈P (j)〉]. Note that Cij gives the degree of

correlation between points 〈P (i)〉 and 〈P (j)〉. If the data are uncorrelated, C reduces

to a diagonal matrix with zero off-diagonal elements. For correlated data, the Cij ’s

are nonzero and will generally have the same order of magnitude with Cii. The

parameters in the model are determined by minimizing χ2. We use the Mathematica

function FindMinimum for the minimization procedure. The parameter errors are

estimated by using a Monte Carlo process that generates a new synthetic data set

where each 〈P (i)〉 is randomly drawn from a Gaussian distribution as defined by the

mean and standard deviation of P (i), that is within the confidence interval of 〈P (i)〉.

From each Monte Carlo data set, a set of parameters is determined. The whole

process is repeated so that a distribution is obtained for each of the parameter. The

error for each parameter is the standard deviation of the corresponding distribution.
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Our statistical analysis have shown that there is insignificant correlations in our data

such that the estimated values of the critical disorder and critical exponent obtained

when correlations are taken into account are within the confidence intervals of the

results for the uncorrelated case. The results of our numerical estimations taking

into account correlations and higher order irrelevant corrections using 〈P2〉 as the

scaling parameter areWc = 16.574±0.005 and ν = 1.56±0.02 for ℓ > 6, L ∈ [20, 100]

and λ 6 1/3. High precision numerical analyses are in currently in progress.

7.5 Summary

We have proposed a generalisation of multifractal concepts such as mass exponents,

singularity strengths and the multifractal spectrum that is applicable to the critical

regime and not just at the critical point. In particular, our generalisation enables

MFA to be applied without knowing the exact position of the critical point in ad-

vance. In fact, an estimate of the position of the critical point is one of the results

of the analysis. We have tested our method on the Anderson model of an electron

in a disordered system. By combining MFA with FSS analysis we have estimated

the critical exponent that describes the divergence of the localisation length. Our

estimated values for the critical disorder and exponent are in excellent agreement

with previous TMM calculations [67]. This resolves a long standing problem that

the critical exponent estimated from exact diagonalization studies was significantly

smaller than that computed using TMM [67].

100



Figure 7.3: Finite-size scaling result for τ̃2(λ) at E = 0 when fitted according to
Eq. (7.11) indicated by the shaded surface. The 285 points considered for the fit
correspond to W ∈ [15.25, 17.75], L ∈ [30, 100], ℓ ∈ [6, L/5]. The black lines on
the surface highlight the different λ values: 1/15, 0.1 (◦), 1/9, 1/8, 1/7, 1/6, 0.2 (◦).
The parameters obtained from the fit are Wc = 16.59, ν = 1.58 in agreement with
those listed in Table 7.1. The estimation for the mass exponent is τ2 = 1.23 which
according to Eq. (7.11) corresponds to the extrapolation of τ̃2(λ) as λ → 0. The
goodness of fit is 0.09
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Chapter 8

Conclusion

To summarize, the aim of this work has been a careful and systematic study on the

multifractal characteristics of the electronic state at the critical point and in the

critical regime within the Anderson model of localisation using high-precision data

and very large system sizes. I hope to have demonstrated that the best strategy to

obtain a complete picture of and to find better agreement with the proposed sym-

metry in the multifractal spectrum f(α) is to use system-size scaling with ensemble

averaging in which to specifically consider a sensible range of system sizes with very

large number of states. From the multifractal analysis, we have extracted infor-

mation about critical properties of the Anderson transition such as the following:

validity of the symmetry in the multifractal exponents and in the probability dis-

tribution function (PDF) of wavefunction intensities, existence of rare events, and

estimations of the critical disorder and critical exponent. The multifractal analysis

has also allowed us to comment and give speculations about the non-parabolicity

of f(α) which is related to the non-Gaussian nature of the PDF and the possibility

of termination points in the f(α). Lastly, this work has proposed an alternative

method that is numerically simpler to obtain the multifractal spectrum from the

PDF of wavefunction intensities.

In the following, we highlight the most important results of this work. Using
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state of the art diagonalization technique for sparse matrices, we have reached very

large system sizes of up to L3 = 2403 which corresponds to wavefunction sites of

1.4 × 107. The statistics involved in this work is unprecedented given the very

large system sizes used. At the critical point, we have used ∼ 5 × 104 states for

every L 6 100 and ∼ 100 states every for L > 100. For the FSS studies, in the

critical regime corresponding to disorder values from 15 to 18, we have taken at

least 10000 uncorrelated samples for each size L ∈ [20, 30, · · · , 100] and disorder

combination, for a total of 1, 530, 000 wave functions. Altogether, the total number

of states considered in this work exceeds 2, 200, 000. The huge statistics here have

allowed us to reach regimes such as the tails and negative fractal dimensions of the

multifractal spectrum that are highly sensitive to finite size effects and number of

disorder realizations.

The study has given an in-depth and large scale analysis on the role of dif-

ferent averaging and the effect of system- and box- size scaling on the shape of the

critical multifractal spectrum. The scaling approach is necessary to estimate the

behaviour in the thermodynamic limit that is being reached faster by using system-

size scaling. When considering states of varying L, different disorder realizations

are taken into account and finite size effects are reduced. Due to the nature of typ-

ical average which is dominated by a single representative site, it has been shown

here that an increase in disorder realizations will only change f typ(α) up to a point

but increasing L shifts f typ(α) towards the left, i.e., towards lower values of αtyp

and f typ. On the other hand, the f ens(α) obtained by ensemble averaging which

considers contributions from all disorder realizations equally is shown to be heavily

dependent on the number of samples taken. Furthermore, f ens(α) gives a more com-

plete profile of the spectrum because it contains information about negative fractal

dimensions and shows contributions from the tails of the distribution. Both of which

are lost when using typical averaging The study has demonstrated that for a fixed

L, f ens(α) reaches more negative values upon an increase in disorder realizations.
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Since the region of the negative fractal dimensions is caused by the so-called rare

events whose number decreases with L, an increase in L must be accompanied with

an increase in the disorder realizations to reach the same extent of negative fractal

dimensions.

This work is first to demonstrate the validity of a proposed symmetry rela-

tion in the multifractal exponents for the 3D Anderson Model within the orthogonal

universality class. The statistical analyses have shown that the symmetry relation

seems to hold in the thermodynamic limit since it is better satisfied whenever higher

number of disorder realizations and larger system sizes are considered. Better agree-

ment to the symmetry is found whenever f(α) reaches more negative values, α moves

closer to zero and the right tail of f(α) satisfies the upper boundary of α ≤ 2d. The

best method to satisfy the symmetry relation is to use system-size scaling with en-

semble averaging that considers a sensible range of system sizes for which very large

number of states can be obtained.

In pursuit of a numerical optimisation of the box-scaling technique, different

box-partitioning schemes have been discussed including cubic and non-cubic boxes,

use of periodic boundary conditions to enlarge the system, and implementation of

single and multiple origins for the partitioning grid. The numerically most reliable

method is to divide a system of linear size L equally into cubic boxes of size l for

which L/l is an integer. This method is the least numerically expensive while having

a good reliability.

An exact relation between the singularity spectrum and the probability den-

sity function of the wavefunction intensities is given which includes a size-dependent

correction factor that must be taken into account. Using this relation, it has been

demonstrated that f(α) can be obtained from the PDF and vice versa. Furthermore,

it has been shown that the f(α) is the scale-invariant distribution at criticality. As

a natural consequence of the symmetry in the f(α), the critical PDF has also been

shown to obey a corresponding symmetry relation.
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Using a generalization in the definition of multifractal exponents that is ap-

plicable to the critical regime and not just at the critical point, the study has pro-

posed scaling laws for generalized mass exponents τ̃q, singularity strength α̃q and

singularity spectrum f̃q. Using single- and two-parameter scaling with FSS analysis,

the location of the critical point and critical exponents have been estimated that

are in excellent agreement with previous transfer matrix calculations. The results

presented here resolve the long-standing issue of systematically smaller exponents

found in previous results based on exact diagonalization [73–76].
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Appendix A

Symmetry Relation in the

Generalized Dimensions

The symmetry relation for the anomalous scaling exponents ∆1 = ∆1−q [43] can be

written in terms of the generalised fractal dimensions Dq ≡ d+ ∆q/(q − 1) as,

Dq(q − 1) + qD1−q = (2q − 1)d. (A.1)

For q > 1/2 then it follows,

D0 = d, q = 1,

D2 + 2D−1 = 3d, q = 2,

2D3 + 3D−2 = 5d, q = 3,

3D4 + 4D−3 = 7d, q = 4,

. . .

In Fig. A.1 we show the numerical evaluation of the symmetry relation in terms of

Dq. If the symmetry were perfectly obeyed by our data, all data points should lie on

the q-axis. As can be seen in the figure, we can roughly conclude that for q 6 2 the
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Figure A.1: Symmetry relation for the generalised fractal dimensions at the 3-D
Anderson model. Data were obtained doing system-size scaling with L ∈ [20, 100]
and 2.5 × 104 critical states for each size. Error bars denote standard deviations.

symmetry is well satisfied and so the numerical values for Dq are not expected to

change much when larger system sizes are considered for the analysis. However for

q > 2 the deviation from the symmetry relation is noticeable and so the numerical

values of Dq still differ from the ones corresponding to the thermodynamic limit.

The numerical values of Dq are listed in Table A.1. The standard deviation

of the values must be interpreted as a measure of the uncertainty in terms of the

number of critical states considered, and not as an absolute error for the value in

the thermodynamic limit. In other words, when considering larger system sizes,

some values of Dq (those for which the symmetry is not satisfied) will change much

more than the standard deviation listed in the table. According to Fig. A.1, the

ensemble average gives a better agreement with the symmetry relation and so the

values Dens
q are more reliable than those from typical average. On the other hand, as

shown in Fig. A.2, the value q = 4 already belongs to the region of negative fractal

dimensions, and so it means that the value of D4 obtained from typical average
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Figure A.2: Multifractal spectrum obtained using ensemble average as in chapter 4.
Filled symbols mark the position of the points corresponding to integer values for q.

must be different than that obtained from ensemble average. As suggested by figure

Fig. A.2 the positive left branch of the f(α) is described with q from 0 to values

slightly higher than 2, explicitly qc ≃ 2.1 − 2.2, and so we should have Dtyp
q = Dens

q

for q < qc, since in the thermodynamic limit both averages must give the same result

in the positive region of the spectrum.

A.1 Ensemble average

For Dens
2 and Dens

4 the values Dens
2 = 1.24 ± 0.07 and Dens

4 = 0.63 ± 0.2 seem

reasonable estimates. Here were are using for the error in D2 the difference between

ensemble and typical average values, i.e. (1.35361 − 1.24296)/2 = 0.055 ∼ 0.06

plus ∼ 0.01 from their standard error, hence the total error is about 0.07. For D4,

we cannot use the typical value as explained above, but from the D2 calculation,

we note that the true error is about an order of magnitude larger, thus we have
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10 · 0.015 ≃ 0.2. We have checked that using these error bars the symmetry relation

is satisfied within the uncertainty interval. Therefore these values seem appropriate

to check relations involving D2 and D4.

A.2 Typical average

On the other hand for typical average the situation is different, since the scaling of

the typical moments for high q will be highly affected by finite size effects. This

can be noticed in the difference values obtained for Dtyp
2 and Dens

2 , which must

be equal in the thermodynamic limit. Since finite size effects are less enhanced in

the ensemble average we consider the value of Dens
2 to be more correct. However,

for q > qc the Dq from typical and ensemble average must differ, and again Dtyp
q

will converge very slowly to their values in the thermodynamic limit. We know

that for the exponents τ(q) we have τ typ(q) = τ ens(q) for q < qc and they differ

for q > qc where the typical is simply given by τ typ(q) = qα−, where α− is the

crossing point f(α−) = 0 [Fig. A.2] which in the thermodynamic limit must be the

same for ensemble (crossing to negative dimensions) and typical averages (end of

the spectrum). Then it means than for q > qc the generalized fractal dimensions

from typical average are given by

Dtyp
q =

q

q − 1
α−. (A.2)

We could use this expression to estimate Dtyp
q using the α− that we can calculate

from the f(α) obtained from ensemble average, which is less affected by system size

effects. We have α− = 0.63±0.03 and thus for q = 4 it means according to Eq. (A.2)

that in the thermodynamic limit Dtyp
4 = 0.84 ± 0.04. The value obtained from the

scaling, listed in the table, Dtyp
4 = 1.02 is still far form the previous value. For q > qc

the values of Dtyp
q are strongly affected by finite-size effects and they must converge

to those given by Eq. (A.2). The convergence is very slowly and so they will always

109



be dependent on the range of system-sizes used in the analysis. So Eq. (A.2) could

a give a good approximation of the dimensions under typical average for q > qc. It

must also be emphasized that for the typical average the symmetry relation for the

multifractal spectrum and in particular Eq. (A.1) does not hold for q > qc.
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ENSEMBLE AVERAGE

q Dens
q σDens

q

0.00000 3.00000 0.00000
0.10000 2.89638 0.00017
0.20000 2.79126 0.00036
0.30000 2.68520 0.00055
0.40000 2.57880 0.00075
0.50000 2.47276 0.00097
0.60000 2.36778 0.00119
0.70000 2.26456 0.00142
0.80000 2.16370 0.00167
0.90000 2.06575 0.00193
1.10000 1.88019 0.00250
1.20000 1.79314 0.00281
1.30000 1.71014 0.00314
1.40000 1.63128 0.00350
1.50000 1.55658 0.00429
1.60000 1.48601 0.00429
1.70000 1.41949 0.00472
1.80000 1.35691 0.00517
1.90000 1.29813 0.00565
2.00000 1.24296 0.00614

2.10000 1.19125 0.00664
2.20000 1.14279 0.00716
2.30000 1.09738 0.00768
2.40000 1.05485 0.00820
2.50000 1.01499 0.00872
2.60000 0.97763 0.00924
2.70000 0.94260 0.00975
2.80000 0.90971 0.01026
2.90000 0.87884 0.01076
3.00000 0.84981 0.01124
3.10000 0.82252 0.01171
3.20000 0.79681 0.01217
3.30000 0.77259 0.01262
3.40000 0.74974 0.01305
3.50000 0.72817 0.01346
3.60000 0.70777 0.01387
3.70000 0.68847 0.01426
3.80000 0.67020 0.01463
3.90000 0.65287 0.01534
4.00000 0.63642 0.01534

TYPICAL AVERAGE

q Dtyp
q σDtyp

q

0.00000 3.00000 0.00000
0.10000 2.89639 0.00018
0.20000 2.79130 0.00037
0.30000 2.68523 0.00058
0.40000 2.57877 0.00080
0.50000 2.47256 0.00104
0.60000 2.36729 0.00128
0.70000 2.26368 0.00153
0.80000 2.16254 0.00177
0.90000 2.06473 0.00200
1.10000 1.88262 0.00239
1.20000 1.79989 0.00255
1.30000 1.72341 0.00268
1.40000 1.65336 0.00279
1.50000 1.58967 0.00288
1.60000 1.53207 0.00295
1.70000 1.48016 0.00300
1.80000 1.43344 0.00305
1.90000 1.39143 0.00308
2.00000 1.35361 0.00310

2.10000 1.31953 0.00312
2.20000 1.28876 0.00313
2.30000 1.26091 0.00313
2.40000 1.23563 0.00314
2.50000 1.21264 0.00314
2.60000 1.19166 0.00314
2.70000 1.17247 0.00313
2.80000 1.15487 0.00313
2.90000 1.13868 0.00313
3.00000 1.12375 0.00312
3.10000 1.10994 0.00311
3.20000 1.09715 0.00311
3.30000 1.08527 0.00310
3.40000 1.07421 0.00309
3.50000 1.06390 0.00308
3.60000 1.05425 0.00308
3.70000 1.04522 0.00306
3.80000 1.03675 0.00306
3.90000 1.02878 0.00305
4.00000 1.02128 0.00305

Table A.1: Dq values for ENSEMBLE(left) and TYPICAL(right) AVERAGE. Ob-
tained from system-size scaling L ∈ [20, 100] with 2.5 × 104 critical states for each
L
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