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ABSTRACT

The precision of formal specifications allows us to prove program correctness.

Even if formal methods are not used throughout the software project, formal-

isation improves our understanding of the problem. Formal specifications

are amenable to automated analysis and consistency checking. However us-

ing them is challenging. Customers do not understand formal notations.

Specifiers have difficulty tackling large problems. Once systems are built,

formal specifications quickly become outdated during software maintenance.

A method of developing formal specifications using concrete scenarios is pro-

posed to tackle the disadvantages just mentioned.

A concrete scenario describes system behaviour with successive steps.

The pre- and post-states of scenario steps are expressed with actual data

rather than variables. Concrete scenarios are expressed in a natural language

or formal notation. They increase customer involvement in the creation

of formal specifications. Scenarios may be ranked by priorities allowing

specifiers to focus on a small part of the system. Formal specifications are

constructed incrementally. New requirements are also captured in concrete

scenarios which guide the modification of formal specifications.

On one hand, concrete scenarios assist the creation and maintenance of

formal specifications. On the other hand, they facilitate program correctness

proofs without using conventional formal specifications. This is achieved by

adding implementation details to customer scenarios. The resulting devel-

oper scenarios, encapsulating decisions of data structures and algorithms,

are generalised to operation schemas. With the implementation details, the

schemas written in formal notations are programs rather than specifications.

Keywords: Concrete Scenarios, Formal Methods, Software Specifications,

Requirements Elicitation, Software Maintenance, Nondeterminism, Scenario

Expansion, Specification Refinement
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1. INTRODUCTION

Requirements specifications and their suport of program derivation have

been a challenge to software developers since the beginning of the computer

era. We introduce and advocate the use of concrete scenarios to create formal

requirements specifications and to support program development. Section

1.1 discusses the desirable qualities of requirements specifications and their

relationships with programs. Section 1.2 explains the challenges posed by

formal specifications. Section 1.3 gives an example of concrete scenarios but

we will wait until Chapter 3 to use them to derive a formal specification in

the Z notation. The derivation of Java programs from concrete scenarios

will appear in Appendix I. Section 1.4 lists our contributions. Sections 1.5

and 1.6 justify our research methodology and choice of examples. Section

1.7 reviews our program view. Section 1.8 outlines the dissertation.

1.1 Requirements Specifications

Our work concerns the effective transfer of information from customers to

developers so that correct programs can be written. We need to clarify a

few terms for a meaningful discourse.

Requirements are about the application domain not the machine [84].

A program is about the machine phenomena which are the responsibility of

programmers [84]. A specification documents an agreement between the

customer and the developer [58] [84]. There are at least two kinds of spec-

ifications. A requirements specification embodies customer requirements; a

design specification contains design decisions made by the developers [42].

We are interested in the requirements specification which bridges between

the requirements and the program.

We define a customer as someone who pays for the program or uses it.
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Requirements Specification Program

Customer ProgrammerSpecifier

Fig. 1.1: A simplistic view of software development

He or she is the source of software requirements. A specifier is responsible

for the creation of the specification capturing the requirements. A pro-

grammer creates a program with reference to the specification. In Chapter

7, we will see that the distinction between a specification and a program is

not always clear-cut. When it is not necessary for us to identify an artefact

as a specification or a program, we refer to its creator as a developer rather

than a specifier or a programmer.

1.1.1 Desirable Quality

It is challenging to write a good specification. The requirements tend to

be vague when first elicited from the customer. The program, on the other

hand, must be exact to be recognisable by the compiler for the generation

of executable code. To facilitate the creation of a satisfactory program, the

IEEE Standard 830-1998 Recommended Practice for Software Requirements

Specifications states that a good software requirements specification (SRS)

should have the following characteristics.

1. Correct - Requirements are accurately captured to reflect customers’
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needs.

2. Unambiguous - Every requirement has only one interpretation.

3. Complete - All requirements, relating to functionality, performance,

design constraints, attributes, or external interfaces, are included.

Valid and invalid input values are specified with expected responses.

4. Consistent - No subsets of individual requirements conflict internally

or with real-world objects. There is only one name for one object.

5. Ranked for importance and/or stability - When requirements

are ranked for importance, the ranks include though are not limited

to essential, desirable and optional. The stability of a requirement

may be captured by the number of expected changes.

6. Verifiable - For every requirement, there exists a cost-effective manual

or automated process to check its fulfilment by the program.

7. Modifiable - Each requirement is written separately without mixing

with other requirements. Redundancy is minimised and allowed only

for improved readability. There are table of contents, an index and

cross-references to facilitate modifications.

8. Traceable - Each requirement explicitly references its source in ealier

documents for backward traceability. Each requirement also has a

unique name or reference number for forward traceability.

Leffingwell and Widnig add the desirable quality of understandability

[100]. A requirement is understandable if it is fully comprehended by the

customer and the developer. These nine characteristics may be used in an

evaluation of specification languages or approaches.

1.1.2 Relationships with Programs

A requirements specification describes features essential to the customer.

Details in the program, of no concern to the customer, are supplied by the

programmer. Different programs may meet the same set of requirements.
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During verification, the programmer or tester determines whether a program

meets the requirements specification. In this exercise, we ask, “Are we

building the product right?” [20, page 37]

Specifications may contain errors. Programs based on erroneous spec-

ifications are also incorrect. The exercise of determining a specification’s

correctness is called validation. Validation is a set of activities to ensure

that the program is traceable to customer requirements [119, page 467]. In

other words, we ask, “Are we building the right product?”

1.2 Challenges in Using Formal Specifications

Our research is motivated by three phenomena regarding the usage of formal

specifications. The first is the lack of customer involvement. According to

the Standish group’s CHAOS report, the most important success factor is

customer involvement [61]. Formal specifications are written by formalism

experts based on their understanding of the application domains which may

differ from the customers’ expectations. Customers cannot provide feedback

on the correctness of the formal specifications due to the arduous notations

used [149]. Time and effort are wasted until the mistaken requirements are

finally caught by testing. The limited adoption of formal methods should

not be surprising [59]. Through the use of concrete scenarios, we hope to

improve customer involvement in the creation of formal specifications.

Secondly, the formal specification literature focuses on suitable sets of

notations and analysis of specifications. There is a general lack of guidance

for producing an initial formal specification from requirements [115]. Instead

of inventing new formal specification languages, van Lamsweerde advises

more effort be put into devising methods for the creation and modification

of good specifications [140]. We devise an approach to guide the specifiers

so that formal specifications can be built one step at a time.

Lastly, we aim to extend the use of formal specifications beyond initial

development. Specifications must keep up with changing requirements. The

need for specification maintenance was noted by Bustard and Winstanley

[33]. Previous research has been limited to formal specifications of event

ordering [95][139]. Our objective is to devise an iterative formal methodology
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Step Interaction System State

0 No. 4 is connected to no. 5.

1 Caller at no. 6 dials to no. 7. No. 4 is connected to no. 5.
Caller gets a ring tone. No. 6 is ringing no. 7.

2 Callee at no. 7 answers the phone. No. 4 is connected to no. 5.
Request is OK. No. 6 is connected to no. 7.

3 User at no. 6 hangs up the phone. No. 4 is connected to no. 5.
Request is OK.

Tab. 1.1: E-scenario MakeSimpleCall

that can cope with evolving requirements for general computation.

1.3 A Simple Concrete Scenario

With a number of steps, a concrete scenario documents how a user task

is performed in a particular situation. A scenario step is described by a

pre-state, a post-state, and some input/output parameters. Table 1.1 is a

concrete scenario of making a telephone call written in English. The stilted

writing style facilitates its translation to a formal notation. Single-digit

telephone numbers are used for their compactness. There are three steps in

this scenario. The pre-state of step 1 is shown on row 0 where phone number

4 is already connected to phone number 5. This connection does not change

throughout the scenario. In step 1, a user at phone number 6 dials phone

number 7 and he gets a ring. The post-state of this step is shown in the

right on the same row where phone number 6 is ringing phone number 7.

The post-state of step 1 is also the pre-state of step 2. In step 2, the user

at phone number 7 answers the phone. A connection of numbers 6 and 7 is

made. In step 3, the user at phone number 6 hangs up. The connection is

terminated.

Table 1.2 on the following page is an equivalent concrete scenario ex-

pressed in Z notation. In later chapters, we will explain the process of

writing concrete scenarios in English and in Z.

Concrete scenarios written in English are E-scenarios allowing customers

to confirm the required functionalities in a language that they understand.
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Step Interaction System State

0 connection = {4 7→ 5}
1 caller? = 6 ∧ callee? = 7 connection = {4 7→ 5}

tone! = ring ringing = {6 7→ 7}
2 answer? = 7 connection = {6 7→ 7, 4 7→ 5}

rqt ! = OK

3 hang? = 6 connection = {4 7→ 5}
rqt ! = OK

Tab. 1.2: Z-scenario MakeSimpleCall

Concrete scenarios written in Z are Z-scenarios which allow specifiers to

generalise steps to Z schemas accurately. Concrete scenarios are not written

in a new language but in a small subset of a chosen formalism. For example,

the Z-scenario above uses a subset of Z notation. We have chosen Z to

illustrate concrete scenarios for two reasons. First, it is widely known to the

formal method community. Second, it has schema operators for incremental

construction of formal specifications.

E-scenario

Z-scenario

Z schema

simple translation

generalisation

Fig. 1.2: Creating Z schemas from concrete scenarios

Concrete scenarios are first written in English, then translated to their

equivalent concrete scenarios in a chosen formalism, and finally generalised

to a formal specification as shown in Figure 1.2.

Scenario is a popular term. It has been used for many things. We call
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ours concrete scenario to distinguish it from other usage. When it is clear

in the context that we are referring to concrete scenarios, we may drop the

word concrete.

1.4 Contributions

The work is based on two premises. First, formal specifications are not un-

derstandable to customers [51][112]. Second, informal specifications are too

ambiguous to be useful for reliable creation of formal specifications [84][100].

Our first contribution is a way of representing scenarios by a sequence

of steps expressed with actual data rather than variables. The scenarios

are precise enough to guide the development of formal specifications and at

the same time more accessible to customers. Through concrete scenarios,

customers can participate in the creation of formal specifications.

Our second contribution is an approach to create formal specifications

iteratively from concrete scenarios. Specifiers incrementally construct formal

specifications following the priorities of the customer. Formal specifications

can be kept up-to-date with reasonable effort.

Our third contribution is an approach to create programs from concrete

scenarios. Scenarios are originally written from customers’ perspective and

then expanded to include implementation details that concern developers.

The expanded scenarios facilitate communications that concern developers.

Concrete scenarios are good for the verification of specifications and

programs making them the ultimate reference of customer requirements.

1.5 Research Philosophy

We have to be careful with the wording of our claims lest we make the

mistake that Rugg and Petre have warned us about [123, Page 40]. We

cannot prove that all integers are even numbers by enumerating a long list

of them, such as 2, 4, 6, 8 and so forth. By the same token, we cannot

claim that the use of concrete scenarios will always be beneficial by showing

a number of examples in which they shine.

We claim that concrete scenarios can be used to elicit user requirements

so that requirements can be faithfully captured in a formal specification. We
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further claim that concrete scenarios support iterative revisions of a formal

specification. Concrete scenarios can capture scenarios precisely from the

developer’s perspective as well as the customer’s perspective.

We support these claims by applying concrete scenarios to application

domains with varying characteristics. We only manage to show that our

scenario-driven approach is doable without any clear hint of exception. We

cannot prove or be expected to prove that the use of concrete scenarios are

always beneficial in all application domains.

Despite the stated limitation in our claims, we formally define concrete

scenarios so that they can be used to validate a formal specification. This

is a significant part of the dissertation. As long as software customers find

concrete scenarios more understandable than formal specifications, concrete

scenarios are poised to improve the appeal of formal methods to a larger

audience.

The usefulness of concrete scenarios is dependent on the background of

the developer. A formalism expert may well have a bias for skipping concrete

scenarios to directly create a formal specification. It is out of our current

scope to find out how people from different backgrounds respond to the use

of concrete scenarios.

1.6 Choice of Examples

In our exploration, we have considered four application domains. The choice

are made so that a wide range of characteristics are covered. It increases

our comfort level that the approach is applicable and beneficial in other

domains.

The first example is a warehouse ordering problem. The author tackled it

at the time he had little Z experience. We used a published Z specification

as our example so that our solution can be compared for correctness. In

retrospect, we realise another advantage. There can be a large number

of products in an order or a warehouse. It is only necessary to specify a

small number of products in our scenarios. Once generalised to operation

schemas, arbitrarily large numbers of products can be handled. The example

demonstrates the power of generalisation.
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The second example is a telephone switching system. It was chosen

for its high interactivity. A scenario has multiple steps involving several

users. We start with the basic functionality and add conferencing to the

completed specification to test the efficacy of our approach in specification

maintenance.

Unlike other examples, the sorting problem is purely computational.

With no user interactions, it is a one-step operation to the customer. Yet,

it consists of many steps to the developer. We explore how the approach

deals with the differing perspectives of the customer and the developer. The

example sets the stage to discuss the relationship between a program and a

specification.

The last example is dice rolling. We express nondeterministic behaviour

using scenarios and generalise them to a nondeterministic specification.

With the help of scenario expansion introduced in the sorting example, we

write a deterministic program to simulate the random behaviour. In the

examples of sorting and dice rolling, we create verifiably correct programs

from scenarios without going through formal specifications.

1.7 Program View

In the creation of Z specifications from scenarios, we adopt the view that a

program is a collection of operations OP1, OP2, . . . , OPm . Each operation

is defined as a disjunction of a number of schemas h1, h2, . . . , hn where a

schema hj handles steps of scenarios meeting a certain precondition.

OPi =̂ h1 ∨ h2 ∨ · · · ∨ hn

The schemas h1, . . . , hn are grouped into an operation by the signature

they share. The signature of a schema is defined by the names and types of

its input and output parameters.

The Z notation allows the details of a specification to be written at

two levels. At the low level inside a schema, there are operators to build

predicate expressions from simpler predicates. At the high level, there are

operators to construct schema expressions from simpler schemas. The same

notions are available once at the predicate level and again at the schema
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level. The redundancy is more for convenience than necessity. We restrain

ourselves to using the disjunct schema operator when defining operations.

It simplifies our program view without sacrificing expressive power.

1.8 Outline

Chapter 2 discusses other work on requirements specification. In Chapter

3, we introduce concrete scenarios and create a formal specification of a

warehouse ordering system showing that concrete scenarios afford customer

involvement in formal specification. In Chapter 4, we specify a telephone

system. The focus is on providing guidance to specifiers. In Chapter 5, we

maintain a formal specification by considering new scenarios which demand

an update to the data structure. Chapter 6 formally defines the observance

relation between Z schemas and concrete scenarios. In Chapter 7, customer

scenarios for the sorting problem are expanded to developer scenarios to

include implementation details. Chapter 8 uses a dice rolling simulator to

explore nondeterminism. Chapter 9 concludes our work.



2. A SURVEY OF REQUIREMENTS SPECIFICATION

TECHNIQUES

The chapter surveys both formal and informal requirements specification

approaches. A formal method consists of formal specification and design

calculi techniques [18]. A formal specification is expressed in a mathematical

language that has precise syntax and semantics. A specification written in a

mathematical language can be analysed for consistency. A design calculus is

a set of proof rules or transformation rules. Proof rules can be used to prove

a program correct with respect to a formal specification. Transformation

rules can be used to refine a formal specification step-by-step to a program

that is guaranteed to be correct.

Our discussion starts at the informal end of the spectrum. Use cases are a

popular informal specification approach in which user tasks are described as

sequences of steps in the user’s language. Test-driven development (TDD)

guides programming with test cases. The executable tests, normally unit

tests, are written before the actual programs to give programmers a better

understanding of the requirements. Though not a specification approach per

se, TDD inspired our use of concrete scenarios in the writing of specifications.

Structured analysis and object-oriented analysis are intuitive due to their

graphical notations. Their relatively shallow learning curve allows more

people to take part in the requirements activities. They are only considered

semi-formal because of the lack of mechanical ways to prove one way or

the other that two graphs are equivalent. the only their syntax is formally

defined but not their semantics.

Petri nets have an uncommon advantage of being both graphical and

formal. However the basic Petri nets would be quite awkward to use in

dealing with general problems. The bells and whistles in advanced variants

of Petri nets make the approach more usable but at the same time demand
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more training from the writers and readers.

We go on to discuss a few representative formal notations: the model-

based Vienna Development Method Specification Language (VDM-SL), the

event-based language of Temporal Ordering Specification (LOTOS), an alge-

braic language Larch and a tabular language called Software Cost Reduction

(SCR).

In a rule-based approach, rules can be written as low-level production

rules or high-level business rules. The abstract state machine (ASM) has the

flexibility to begin at the high-level and be gradually refined to the low-level

for implementation.

We also discuss hybrid approaches. One approach combines Data Flow

Diagrams (DFDs) used in Structured Analysis with VDM. Structured-object-

based-formal language (SOFL) is a variant of the above combination with an

added flavour of object-orientation. Framework for integrated test (Fit) is

a test-driven tabular programming approach. Controlled natural language

uses a subset of natural language with a formal underpinning.

2.1 Use Cases

An actor is a person or another system that interacts with the system we

are building. A primary actor requests our system to perform a task in

order to achieve a goal. The task may require the collaboration of secondary

actors. A use case is a description of the actions to accomplish the task.

Multiple actors may participate in a use case. Following is a sample use case

we have adapted [126, page 36]. It may be described in another format with

additional fields. The four most important fields are shown here: use case

name, precondition, flow of events and postcondition.

Table 2.1 is a use case described in low-level details. A use case may

also be described at a higher-level. It may refer to low-level use cases [38,

page 206]. For example, we may extend a main use case with an exception-

handling use case so that the event flow in the main use case is not cluttered

by exceptional events.

The events in the use case description were written in simple sentences

with clear subjects, verbs and objects to reduce ambiguity. However natural
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Use Case: Place Order
Precondition: A customer has logged on.
Flow of Events:
1. The customer selects Place Order.
2. The customer enters his or her name and address.
3. The customer enters product codes and quantities for items of his

or her choice.
4. The system supplies a product description and price for each item.
5. The system keeps a running total of items ordered.
6. The customer enters credit card information.
7. The customer selects Submit.
8. The system verifies the information and saves a pending order.
Postcondition: The new pending order is saved on the system.

Tab. 2.1: A simple use case

languages are inherently ambiguous. The events normally assume a simple

order. For example, event 4 follows event 3. But it is unclear if repetitions

are allowed. Some practitioners use conditionals and loops to describe use

cases more precisely [126, page 25] but this is a controversial practice. It

makes the use case harder to read. The added control information may be

preferred by the programmers but probably not by the customers.

Use cases are understandable without special training to anyone who

speaks the language. The software community at large embraces use cases

as an effective means to describe functional requirements. In summary, use

cases fare well in four of the nine desirable specification characteristics. They

are understandable, modifiable and traceable and can readily be ranked for

importance and stability. They are mediocre in the other five characteristics.

A scenario is a task performed in a particular situation. A use case

consists of several scenarios; some successfully achieve the goal and others

do not. A scenario description often looks like a use case description. The

boundary between them is not clear-cut. What one person chooses to call a

scenario, another may call a use case.

There is a difference between scenarios and our concrete scenarios. A

scenario describes a family of instances. Following is a scenario written in a

simple though uncommon format.

A bank customer comes to an ATM. He uses his ATM card
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number and password to withdraw money. The transaction

ends after the ATM machine dispenses the money, a receipt

and the ATM card.

A concrete scenario describes a particular instance. It contains actual

data of the card number, password and amount withdrawn. Here is an

example of a concrete scenario in English written as prose.

George Harrison is a customer of the HSBC. He inserts his ATM

card number 12345678 to access the ATM number 9421. He

enters password “229345” when prompted. He selects with-

drawal and keys in 80. The ATM machine dispenses $80, a

receipt and the ATM card. George takes them and leaves.

2.2 Test-Driven Development (TDD)

Test-driven development (TDD) is a practice of Extreme Programming (XP)

[14]. TDD guides programmers with small test cases. It is an iterative

development approach with each iteration consisting of five tiny steps [15].

1. write a test

2. make it compile

3. run it to see if it fails

4. modify the code until the test succeeds

5. refactor the code to remove any duplication introduced

Both TDD and XP belong to a family of agile methodologies. Their

premise is that requirements are subject to change. To reduce effort wasted

on creating and updating documents with little value, they try to get on

with the programming task with minimal documentation and planning. The

agile community by and large does not care for the use of formal methods.

Baumeister is a notable exception. He extends TDD by adding two new

steps to the end of a TDD iteration [13].
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6. generalize the tests to add assertions to code

7. refactor assertions

The approach was illustrated with Java Modeling Language (JML). It

addresses a shortcoming of TDD that test cases, being just examples, do

not completely describe the program behaviour. The objective is to gain

some benefits of formal specifications in the context of TDD while keeping

the agility. Written after the program code, the assertions do not guide the

programmer in the coding activities. Yet they still help the programmer to

acquire a better understanding of the program.

2.3 Structured Analysis (SA)

In the early era of computing, analysis and programming were conducted

with ad hoc methods. A search for disciplined, well-thought-out methods

resulted in a collection of structured techniques [105, page 3]. In that light,

SA is not confined to any specific method or notation. However the most

popular artefacts in SA are Entity-Relationship Diagrams (ERD), Data Flow

Diagrams (DFD) and State-Transition Diagrams (STD) [119, Chapter 12].

Data modelling identifies data objects, their attributes, relationships,

cardinality and modality. Cardinality is the maximum number of objects

allowed in a relationship. Modality indicates if a related object is mandatory.

manufacturer carbuilds

Fig. 2.1: A simple ERD

Figure 2.1 is a simple ERD that describes a one-to-many mandatory

relationship between a manufacturer and a car [119, Page 301]. A function
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is represented by a bubble in a DFD. The functional modelling begins with a

level 0 DFD which has only a single bubble (function). There are graphical

symbols to represent external entities and data stores. Every bubble in a

DFD is refined into a complete DFD at the next level until the desired level

of detail is reached. Information flow is expressed with an arrow. All bubbles

and arrows should be labelled. Behavioural modelling identifies the possible

states of a system in an STD. An arrow connecting two states represents a

state transition. In structured analysis, ERDs, DFDs and STDs are created

in distinct activities [49]. The separation of data modelling and behavioural

modelling does not lead to a system structure that is easy to maintain.

Object-oriented analysis was proposed to address those shortcomings.

2.4 Object-Oriented Analysis and Unified Modelling Language

Rumbaugh et. al. define an object as a concept, abstraction, or thing with

crisp boundaries. They use objects to represent the real world and to provide

a practical basis for programs [124]. The Unified Modeling Language (UML)

is by far the most common OO notation. It originated as an amalgamation of

the different notations advocated by Booch, Jacobson and Rumbaugh [23].

There were many diagram types in the original UML to represent different

aspects of a system. Widely used UML diagrams are:

1. Use case diagram

2. Class diagram

3. Object diagram

4. Sequence diagram

5. Collaboration diagram

6. Statechart diagram

7. Activity diagram

Some information in one diagram may be duplicated in a diagram of a

different type. The sequence diagram holds the same information as the col-
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Fig. 2.2: A sequence diagram

laboration diagram only presented differently. Good tool support is required

to check inconsistency across diagrams.

The sequence diagram in Figure 2.2 on the next page has three objects

of classes Student, Seminar and Course respectively [5]. Horizontal arrows

denote messages which are labelled with message names and parameters.

The UML is too rich for practitioners to master all its intricacies. Only

a subset of the UML is used for most applications. Its graphical notation is

both a blessing and a curse. Customers are well aware of the fact that they

do not understand formal specifications. But they would always try to make

sense of graphical models. Their guess could be wrong. Intuitive graphical

notations often give people the false impression of effective communication.

Ambiguities hide behind the attractive diagrams.

Large corporations have invested heavily in UML. It is unclear whether

their investments are driven by the merits of UML or the fear of being left

behind. It is doubtful if the corporations, other than UML tool vendors,

have received a reasonable return on their investments.

2.5 Petri Nets

Petri nets are a major model of concurrent systems [11]. Despite the graph-

ical representation, they are formal. A Petri net consists of places shown
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n 1
q

stock order

invoiced order

order handling

Fig. 2.3: A Petri net

as circles and transitions shown as rectangles. Figure 2.3 is a Petri net of a

warehouse order handling operation. Transition order handling has two in-

put places stock and order and one output place invoiced order. Place stock

has n tokens representing the quantity of an item in stock. Place order has

one token representing a pending order. Label q on an arc represents the

ordered quantity. If n ≥ q , the transition of order handling is fired resulting

in a token added to place invoiced order representing an invoiced order. If

the number of tokens is small and known, we usually use one black dot to

represent each token.

A transition is enabled to fire if tokens are available in all its input places.

The firing of a transition removes one token from each input place and adds

one token to each output place. The default of one token can be overriden

by labelling an arc with a positive integer as in the previous Petri net.

The state of a Petri net is represented by a marking that shows the

number of tokens in each place. For example, the previous Petri net has a

marking of (n 1 0). After the transition is fired, the numbers of tokens

in the two input places will be decremented by q and 1 respectively. The

number of tokens in the output places will be incremented by 1. The updated

marking will be (n−q 0 1). When multiple transitions are enabled at the

same time, any of the transitions may fire. The choice of the transition to

fire is made in a nondeterministic manner, i.e., randomly or by forces that

are not modelled [114].
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Bernardinello and de Cindio classify Petri nets into three levels [17].

Petri nets in the first level are characterised by Boolean tokens. Places can

only be marked by at most one token. Condition/Event (C/E) Petri nets

belong to level 1. Petri nets in the second level are characterised by multiple

tokens in one place serving as counters. Place/Transition (P/T) Petri nets

belong to level 2 of which our warehouse ordering Petri net is an example.

Petri nets in the third level are characterised by structured tokens holding

additional information beyond the counters. Coloured Petri nets belong to

level 3 [88].

Our warehouse ordering Petri net only handles orders of a particular

item for a fixed quantity. It does not handle the ordering of multiple items

for arbitrary quantities. Petri net extensions at level 3 can help express

requirements more elegantly but they may make the representation harder

to understand by the customers.

Petri nets can be analysed to answer useful questions about a model, for

example, whether a Petri net can deadlock. If tokens represent resources,

we can analyse the net to see if the resources are conserved after transitions.

Many questions can be reduced to reachability problems which ask if initial

markings lead to specific resulting markings.

2.6 VDM: a Model-based Language

A model-based specification is also called state-based. It is expressed as a

state model using common mathematical entities such as sets and functions

[131, Chapter 10]. An operation is defined by its effects on the system state

in terms of the relationship of variable values before and after the operation.

Z [144], B [2] and VDM-SL [92] are model-based specification languages.

The Z notation is based on set theory and predicate logic. The closely re-

lated B-Method supports the complete software life cylce from specification

to implementation using B-Tool and Abstract Machine Notation (AMN).

VDM stands for Vienna Development Method; SL stands for Specification

Language. People often use VDM to mean VDM-SL. Figure 2.4 on page 35

is a VDM specification for the hotel room booking operation [3, page 220].

In block types, we define type RoomNumber for values from 1 to 100
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and type RoomStatus for available or occupied. In block state, we define

variable rooms as a map from room number to room status. All rooms

are available initially. In block operations, the book-room operation is

defined with a room number parameter. The second statement in the block

declares that the external variable rooms is accessed for read and write. The

precondition, denoted by keyword pre, is that the parameter is a valid room

number and the room is available. In the original publication, the second

conjunct of the precondition about room availability is missing. The version

you see here has been corrected. Using override symbol †, the postcondition

specifies that the room becomes occupied.1

2.7 LOTOS: an Event-based Language

In an event-based specification, concurrent processes communicate through

events. Some languages, like Estelle, directly support both synchronised

and asynchronised communication. LOTOS [103] is a synchronous language

influenced initially by the Calculus of Communicating Systems (CCS) [107]

and later by the Communicating Sequential Processes (CSP) [78].

Figure 2.5 on page 35 shows two processes, Producer and Consumer ,

trying to communicate through a third process acting as a channel. The

corresponding LOTOS specification is in Figure 2.6 which simulates asyn-

chronous communication with the synchronous mechanism on four gates

pc1, pc2, cc1 and cc2. Process Channel is defined with choice operator [].

After synchronising on gate pc1, Channel can synchronise either on gate

pc2 with Producer , or on gate cc1 with Consumer .

Formal Description Techniques (FDT) are formal methods used mainly

to describe distributed systems such as communication protocols. They

capture distributed behaviour with timing and state transitions [30]. Many

event-based specification languages such as LOTOS, SDL and Estelle are

examples of FDT.

1 For typographical reasons, on the last line of the VDM specification in Figure 2.4,

we use the left arrow symbol ← above the variable rooms to denote its value prior to the

operation when the correct symbol is a left harpoon ↼.
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2.8 Larch: an Algebraic Language

An algebraic specification defines the functions of a software application

with equations. The expression on one side of an equation can be evaluated

using the expression on the other side. Data types are often called sorts to

emphasise the abstract nature of the specification languages in comparison

to programming languages. Examples of algebraic specification languages

are Extended ML (EML) [93], CafeOBJ [44] and Larch [65]. EML extends

ML with axioms which may or may not be executable. It should not be

mistaken for Extensible ML or eXtensible Markup Language (XML).

We demonstrate algebraic specification with Larch which is made up

of two tiers. The interface tier, Larch Interface Language (LIL), provides

the information needed to understand and use a module interface. LIL is

actually a family of specification languages and there is one specification

language for each supported programming language. Figure 2.7 has a LIL

specification fragment for the C programming language [65, Chapter 3]. It

describes a procedure that selects a task from a task queue.

The use statement says that the procedure uses a TaskQueue which we

will define next. The fourth line states that the procedure getTask takes a

queue as the parameter. Due to the asterisk symbol *, the function returns

a pointer to a task not a task. In C programming practice, a function should

return a pointer to the structure not the structure itself. A trailing caret ˆ

denotes the value before the operation; a trailing prime ′ denotes the value

after. Keyword result refers to the value returned by the procedure. The

if-statement means that if the queue is empty before the operation, no task

is returned and the queue is unchanged. Otherwise the first task will be

removed from the queue and be returned as the result.

Figure 2.8 on page 37 shows the counterpart of Figure 2.7 in the other

tier of Larch called the shared tier where the Larch Shared Language (LSL)

is used. LSL is independent of the target programming language.

A trait is the basic unit of specification in LSL. Keyword introduces

defines the signatures of six operators: new, a, isEmpty, hasImportant, first

and tail. The new operator returns a queue. The a operator takes a task and

a queue as parameters to return a queue. The remaining four operators all
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take a queue parameter. The isEmpty and hasImportant operators return

a Boolean value. The first and tail operators return a task and a queue

respectively.

Following keyword asserts are some predicates. The first predicate uses

keywords generated by to state that all values of sort queue can be built

from operators new and a. Next is a universally quantified predicate that

contains six conjuncts. Semi-colons are used to separate the conjuncts in

place of the usual symbol of ∧. The first conjunct states that a new queue

is empty. The second conjunct states that a queue constructed with the a
operator is not empty. The third conjunct states that a new queue does

not contain any important task. The last three conjuncts define operators

hasImportant, first and tail recursively. According to its definition, operator

first returns important tasks before unimportant ones regardless of their

positions in the queue.

2.9 SCR: a Tabular Language

The Software Cost Reduction (SCR) is a tabular notation developed by the

Naval Research Laboratory [73]. It is a formal methodology for specifying

and analysing real-time control systems [99]. The target users are engineers.

A number of industrial organisations, including Bell Lab [77] and Ontario

Hydro [113], have adapted the notation. CoRE is a version of the SCR

method. It was used to document the requirements of Lockheed’s C-130J

Operational Flight Program which was implemented with over 100K lines

of Ada code [50]. The SCR’s scalability is proven. It has been applied

successfully to nuclear plant systems [142], avionics systems [4] and military

systems [75].

The SCR notation specifies event-driven systems as state machines [36].

To keep track of the states, SCR uses two types of auxiliary variables: terms

and mode classes. Terms capture intermediate computation results. Mode

classes hold values to indicate the current mode. An SCR model can have

multiple mode classes.

We illustrate the SCR with a safety injection control system presented

by Heitmeyer, Jeffords and Labaw [73] which is a simplified version of a
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specification described by Courtois and Parnas [40]. The system has three

input variables, also called monitored variables. They are WaterPres, Block

and Reset. The system has one output variable, also known as controlled

variable. It is SafetyInjection. The values of the three monitored variables

are fed to the system through three sensors. Under specific conditions, the

system updates the controlled variable to inject coolant.

Table 2.2 is the Mode Transition Table for mode class Pressure. Its mode

changes on specific events. An event, denoted by @T( . . . ), occurs when an

input variable reaches the threshold specified in the brackets.

Old Mode Event New Mode

TooLow @T(WaterPres ≥ Low) Permitted

Permitted @T(WaterPres ≥ Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Tab. 2.2: A Mode Transition Table in SCR

Mode class Pressure may be in one of three modes: TooLow, Permitted

and High. The first of the four rows on the table describes that when mode

class Pressure is TooLow, the event of WaterPres being greater than or equal

to Low will change the mode to Permitted. In the centre column, Low and

Permit are two constant values that concern variable WaterPres.

Table 2.3 is the Event Table for term Overriden. Under the column

heading, the first two rows specify the situations when term Overriden will

change to the value on the bottom row.

Mode Events

High False @T(Inmode)

TooLow, @T(Block = On) @T(Inmode) OR

Permitted WHEN Reset=Off @T(Reset=On)

Overriden True False

Tab. 2.3: An Event Table in SCR
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Mode Conditions

High, Permitted True False

TooLow Overriden NOT Overriden

SafetyInjection Off On

Tab. 2.4: A Condition Table in SCR

On the first row, the value of False in the second column states that

under no suituations, the mode High (first column on the first row) can give

rise to value True (second column on the bottom row) for term Overriden.

Still on the first row, the value of @T(Inmode) in the third column states

that when mode class Pressure becomes High (first column on the first row),

Overriden becomes False (third column on the bottom row).

Table 2.4 is the Condition Table for output variable SafetyInjection.

The first row means that when the mode is High or Permitted, the value of

SafetyInjection will be off. The second row means that when the mode is

TooLow and Overriden is True, SafetyInjection will be off. When the mode

is TooLow and Overriden is False, SafetyInjection will be on.

It was claimed that engineers find SCR’s tabular specifications easy to

create and understand [73]. Decision tables are not uncommon in other

methodologies. A distinguished feature of the SCR is the specification of

each output, term and mode class in a separate table. A large decision

table in other notations is decomposed into small manageable ones in SCR.

SCRTool is an industrial-strength toolset [72][74]. SC(R)3 builds on top of

SCRTool to emphasise requirements reuse [36].

An SCR scenario is a sequence of input variable name and value pairs.

The SCR modelling tool may be used to run scenarios to display values

of output variables which will be inspected by a specifier for correctness.

Assertions may be placed between states to ensure that they hold during

the execution of the scenarios.

In the literature, systems specified in the SCR are control systems. If

the end product is not a state machine, we do not see how the use of tables

can help. Additionally the SCR was designed to be used by engineers. The

strong mathematical background possessed by engineers does not match the
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profile of a typical customer. The SCR is limited in the target application

domains and users. Our scenario-driven approach aims to handle general

computation usable by ordinary customers.

2.10 Alloy: an Executable Specification Language

While languages like Z and VDM can capture formal specifications, they

have limited utility in automated analysis. A number of languages have

been designed to address that need. They include PAISLey [147], Aslan

[47], Nitpick [81] and more recently Alloy [82].

Aslantest is an interactive tool to execute formal specifications written

in Aslan which is a state-based language in first-order predicate calculus.

However there may be too many values to test exhaustively. To reduce the

number of cases to consider, Aslantest would prompt the tester to enter a

value of true or false for expressions that it cannnot evaluate easily.

The design of Alloy starts by selecting features from Z that are essential

for object modelling [83]. It supports two kinds of analysis: simulation to

generate a state or transition and checking to generate a counterexample

which may exist. Since Z was not designed with automated analysis in

mind, Alloy has to adjust its syntax and semantics to ease implementation

of the analysis. Features for testers to communicate with analysis tools are

provided.

For specifications expressed in the Modechart language, the Modechart

Toolset can be used with the results visually shown [27] [136]. Modechart is

a graphical specification language similar to Harel’s Statecharts [68].

The intended usage of these executable languages is to test a generalised

formal specification with examples. On the contrary, the concrete scenario

approach intends to use scenarios to assist the generalisation process in the

creation of formal specifications.
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2.11 Rule-based Approaches

2.11.1 Production Systems

The terms rule-based systems and production systems are synonymous to

some people. To be more precise, production systems always hold low-level

rules written in programming languages. Rule-based systems, on the other

hand, hold low-level production rules and/or high-level business rules. The

latter rules may not be represented in an executable form.

The AI community use production systems to mimic human problem

solving. Brownston et. al. suggest that a production system is excellent

for carrying out requirements analysis for ill-defined or difficult-to-express

problem domains [29, page 20]. Production systems are useful prototypes to

validate customer requirements [138]. A production system has the following

three main components.

1. working memory or data memory

2. production memory

3. inference engine or rule engine

The working memory holds the state of computation to be updated in

program execution.

The production memory holds the production rules. A rule consists of

a condition and an action. A rule condition describes the data in working

memory required to fire the rule action. A rule action may update data

and produce output. There is neither a sequential execution order between

production rules nor explicit branching instruction.

The inference engine chooses the next rule to execute. When a rule’s

condition is satisfied by the data in the working memory, the rule is said to

be enabled. The engine executes enabled rules until no rule conditions are

satisfied. When multiple rules are enabled at the same time, the inference

engine applies a conflict resolution strategy to choose one rule to execute.

A popular default strategy selects the rule that references the most recently

updated data.
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Charles Forgy invented the Rete algorithm to power inference engines. It

efficiently finds the enabled rules even when the number of rules is huge. He

is responsible for a family of production systems OPS (Official Production

System), OPS2, OPS5, OPS83 and OPSJ. NASA’s CLIPS (C Language

Integrated Production System) also uses the Rete algorithm. It was made

available to the public in 1986 with fine documentation and implementations

on both Windows and Mac.

For both OPS5 and CLIPS, the production rules cohabit in a single tier.

If production rules are divided into two tiers, presentation and business logic,

change in one tier will not affect the other tier as long as their interface is

intact. Java-based production systems, for example Jess and JBoss Rule,

use the two-tier approach. An outstanding issue is that rules developed

for a particular production system cannot run on another platform without

modifications. There are two initiatives to deal with the differences in the

production system platforms. The Java Community Process (JCP) created

the JSR 94 which defines the application program interface (API) to be used

in the presentation tier. Another initiative RuleML works on standardising

the rule language used to express the business logic tier.

2.11.2 Business-Level Rules

Business rules extend the usefulness of production rules beyond software

development. They describe the business processes of organisations. To

ensure consistent adherence throughout an organisation, all its business rules

must be kept in a repository [76]. Ronald Ross lists some problems that the

business rules approach addresses [121].

• Ad hoc rules inconsistently made up by employees

• Miscommunication among people

• Inaccessible rules hidden in programs, documents and records

• Undistinguished products due to the inability to customise them

• Rapid changes in the market

• Disappearing knowledge caused by departing employees
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At the business level, a rule can be written in a natural language. Here is

a business rule of a university [12]. Special terms to be defined in a glossary

are underlined.

A student can sit for an exam three times at the most in one

academic year.

To implement the rule in a program, the rule may be rewritten as follows.

IF NumberOfTries(studentID, examID, year) < 3

THEN Register(studentID, examID)

An event may be required to trigger a rule. Rule representation ECA

stands for event, condition and action [31]. Other rule representations are

decision table, decision tree and flow diagram.

TEMPORA was an ESPRIT project supporting the complete software

development cycle [106]. High-level business rules are captured and then

refined to low-level rules for implementation. Blaze Advisor by Fair Isaac

and JRules by ILOG are two commercial products that provide a suite of

tools for the entire software life cycle.

2.11.3 Abstract State Machine (ASM)

The Abstract State Machine (ASM) was originally known as the Evolving

Algebras. It is an attempt by Yuri Gurevich to bridge the gap between

formal models of computation and practical specification methods [62]. The

thesis is that any algorithm can be modelled at its natural abstraction level

by an appropriate ASM.

The state of computation is captured in functions defined by the specifier.

The basic operations of ASMs are expressed as rules in the following form.

if cond then Updates

where cond is a boolean expression and Updates are a finite number of

function updates as follows.

f (t1, . . . , tn) := t0
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In each step of computation, the conditions of all rules are evaluated.

The rules with true condition are enabled and fired together to update the

functions. For example, after the update, function f above remains the same

as before except that it is overriden with t0 at the arguments of t1, . . . , tn .

However if two function updates try to override a function at the same

arguments with different values, no updates will take place [63, Section 2.3].

In addition to the if-rule above, there are also choose-rule, forall-rule and

so on [66, Chapter 6].

Consider the following informal requirement.

Whenever the cabin pressure exceeds the limits, the system shall

set the Cabin Pressure Alarm to TRUE, send a warning message

to the earth-bound controller that is controlling the CPM, and

switch to emergency state.

Gervasi translates it to an ASM rule at the same abstraction level as the

application domain [57].

if Exceeds( Pressure( Cabin), Limits) then

PressureAlarm( Cabin) := TRUE

SEND( WarningMessage, Controlling( CPM))

State( self) := Emergency

where

SEND(msg , dst) =̂ Channel(self , dst) := Channel(self , dst) ] {msg}

The above rule is not exactly customer-friendly. Yet, it improves on the

mainstream formal notations in understandability.

Table 2.5 on the next page shows four increasingly refined ASM rules for

the same requirement. The specifier can choose the right level of abstraction

to suit the stage of development.

ASM is applicable to sequential, parallel and distributed systems [64] [19]

[148]. It can capture design decisions as well as requirements. A ground

model is an ASM without any design decisions. Börger describes a 3-step



2. A survey of Requirements Specification Techniques 30

the cabin pressure exceeds the limits︸ ︷︷ ︸
EVENT

CabinPressureExceedsLimits()

the cabin pressure︸ ︷︷ ︸
INFORMATION

exceeds the limits︸ ︷︷ ︸
UNARY OP

ExceedsLimits(CabinPressure)

the cabin pressure︸ ︷︷ ︸
INFORMATION

exceeds︸ ︷︷ ︸
BINARY OP

the limits︸ ︷︷ ︸
INFORMATION

Exceeds(CabinPressure, Limits)

the cabin︸ ︷︷ ︸
ENTITY

pressure︸ ︷︷ ︸
ATTRIBUTE

exceeds︸ ︷︷ ︸
BINARY OP

the limits︸ ︷︷ ︸
INFORMATION

Exceeds(Pressure(Cabin), Limits)

Tab. 2.5: Increasingly refined ASM rules

iterative approach of building ASM ground models [24]. The first step is

to collect the informally presented requirements and to create from them a

rigorous description. The second step is to structure the description with

parameterisation and abstraction to make its structure more transparent.

The third step is to complete the description with more detailed customer

requirements, for example boundary conditions and exception handling. The

above table roughly corresponds to the first two steps of the approach.

There are a number of tools available to execute ASM specifications.

AsmGofer is an ASM interpreter embedded in a functional programming

language Gofer which is a subset of Haskell [125]. AsmGofer has been used

to specify an executable version of a light control system [24] and a Java

Virtual Machine (JVM) [134]. AsmL is another executable language created

by Foundations of Software Engineering (FSE) group of Microsoft Research

to work with other .NET languages [111]. Additional ASM tools include

XASM, CoreASM, TASM and ASMETA.

Many rule-based approaches have been proposed. In the 70’s, there were

Dijkstra’s guarded commands [46] and the production systems. In the 80’s,

there were Chandy and Misra’s UNITY [35], Gurevich’s ASM, and Back and

Kurki-Suonio’s Action System [9]. Most approaches represent rules at the

programming level. ASM distinguishes itself by using the terms and con-

cepts directly from the application domain. Communication is improved by

starting from a level of abstraction more accessible to customers. The ASM

method does not encompass the complete software process [80]. Its contri-

butions begin in the requirements specification. Customers must know the
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rules before the rules can be encoded in ASM. On the other hand, concrete

scenarios bring out the rules from customer-provided examples. Contribu-

tions of concrete scenarios begin in the requirements elicitation which drive

other development activities including the requirements elicitation.

2.12 Hybrid Approaches

2.12.1 DFD + VDM

Elicitation and analysis are two distinct requirements activities. Fraser et.

al. recognise that a customer-friendly language is needed during elicitation

to encourage customer participation. A formal language is needed during

analysis to support proofs and consistency checks. They choose data flow

diagram for requirements elicitation and VDM for requirements analysis

[55]. On that basis, they attempted two alternative approaches to create

VDM specifications.

In the first approach, DFD’s guide the manual development of VDM

specifications. The input/output data flow of a process in the DFD is used

to define the signature of an operation in VDM. Details such as the pre- and

post-conditions are manually added to the VDM specification.

In the second approach, DFD’s are used to create VDM specification

semi-automatically. Given specific control structures in a DFD, for example

a while-loop, the specifier can augment the DFD with a manually created

decision table for automatic generation of a VDM specification.

2.12.2 Structured-Object-based-Formal Language (SOFL)

SOFL integrates structured analysis, object-orientation and formal method

in a specification. It starts with a variant of DFD called condition data

flow diagram (CDFD). OO details are then added. The formal part of the

specification is written in VDM [102]. Unlike the work of Fraser et al.,

the VDM part in SOFL only describes partial constraints. This formal

part does not fully specify the program being built. It is a supplement to

the specification in CDFD and OO. Software quality is assured mainly by

reviews, inspections and testing. Formal proofs are optional.



2. A survey of Requirements Specification Techniques 32

2.12.3 SSADM + Z = SAZ

SAZ is another method that integrates a structured systems analysis method

(SSADM) and a formal notation (Z) [104]. Based on the waterfall model,

SSADM employs approachable diagrammatic and textual forms for tasks in

the following modules.

1. feasibility study

2. requirements analysis

3. requirements specification

4. logical system specification

5. physical design

The three key techniques used in SSADM are logical data modelling

for the staic aspect of data, data flow modelling for the dynamic aspect of

data and entity event modelling to capture the relationship of business

events and their influence on data entities. The use of the formal notation

Z encourages developers to address the requirements that are not described

detailed enough in the diagrams or precise enough in the texts. After remov-

ing the SSADM elements, the SAZ tutorials in [116] and [117] may appear

similar to the approach we are proposing in the dissertation. A key omission

in SAZ however is the use of z-scenarios, a form of examples expressed in Z

notation.

2.12.4 Framework for Integrated Test (Fit)

Fit is a tool to enhance collaboration among customers, programmers and

testers in software development [108]. Customers create tables documenting

sample computation in HTML files. Many tools, including word processing

programs, allow people without knowledge of HTML to edit HTML files.

A row on a table captures the input and output values of a computation

example. Programmers write small programs known as fixtures which check

the examples on the tables. The customer, programmer or tester can run a

fixture against a table. A similar table is returned with unexpected output
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values highlighted. Figure 2.9 shows the result of a payroll calculation [41].

New tests or examples can be easily added to a table for a rerun.
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The task computes the pay based on the number of standard hours,

holiday hours and the hourly rate. There are three examples in the generated

HTML file. The third example is highlighted pink to indicate a difference

in the expected pay of $1360 and the calculated pay of $1040. When this

happens, the programmer will update the fixture until all the results are

correct.
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types
RoomNumber = {1, . . . , 100};
RoomStatus = Available | Occupied

state Reservation of
rooms : RoomNumber m−→ RoomStatus
init mk-Reservation(rooms) 4 ∀ rn ∈ dom rooms • rooms(rn) = Available

end
operations

book-room (roomno : RoomNumber)
ext wr rooms : RoomNumber m−→ RoomStatus
pre roomno ∈ dom rooms ∧ rooms(roomno) = Available
post

let st : RoomStatus = Occupied in
rooms =←−−−rooms † {roomno 7→ st};

Fig. 2.4: A VDM specification

Producer ConsumerChannel
pc1 cc1

cc2pc2

Fig. 2.5: Two processes communicating over a channel process
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process Producer [pc1, pc2] : exit :=
pc1; pc2; exit

endproc

process Consumer [cc1, cc2] : exit :=
cc1; cc2; exit

endproc

process Channel pc1, pc2, [cc1, cc2] : exit :=
pc1;
(

pc2; cc1; cc2; exit
[]

cc1; pc2; cc2; exit
)

endproc

Fig. 2.6: A LOTOS specification

uses TaskQueue;
mutable type queue;
immutable type task;
task *getTask(queue q) {

modifies q;
ensures

if isEmpty(qˆ)
then result = NIL ∧ unchanged(q)
else (*result)′ = first(qˆ) ∧ q′ = tail(qˆ); }

Fig. 2.7: An LIL specification for the C language
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TaskQueue: trait
includes Nat
task tuple of id: Nat, important: Bool
introduces

new: → queue
a : task, queue → queue

isEmpty, hasImportant: queue → Bool
first: queue → task
tail: queue → queue

asserts
queue generated by new, a
∀ t: task, q: queue

isEmpty(new);
¬ isEmpty(t a q);
¬ hasImportant(new);
hasImportant(t a q) == t.important ∨ hasImportant(q);
first(t a q) == if t.important ∨ ¬ hasImportant(q)

then t
else first(q);

tail(t a q) == if first(t a q) = t
then q
else t a tail(q)

Fig. 2.8: An LSL specification corresponding to Figure 2.7

Fig. 2.9: An HTML file returned by Fit
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2.12.5 Controlled Natural Languages (CNLs)

A controlled natural language (CNL) is a subset of a natural language (NL)

with a well-defined lexicon, syntax and semantics. Attempto [128] and

PENG (Processable ENGlish) [127] are two controlled natural languages.

Sentences are written with predefined and user-defined words. Predefined

words are if, then, and, or, not, after, while, each, the, is and so on. User-

defined words express concepts in a specific application domain. Here is an

example [56].

If a passenger alerts a driver of a train

then the driver stops the train in a station.

Writing correct sentences according to the restrictions can be a slow

and challenging activity. A look-ahead editor ECOLE lowers the learning

curve and increases specifiers’ productivity [129]. It gives syntactic hints to

the specifiers as they type. It also displays the paraphrase of a completed

sentence for the specifier to confirm the intended meaning. A tool can

translate a sentence into a discourse representation structure (DRS) which

is a syntactical variant of first-order predicate logic. For example, the earlier

sentence would have the following DRS.

IF

[A, B, C, D]

passenger(A)

driver(B)

train(C)

of(B,C)

event(D, alert(A,B))

THEN

[E, F]

station(E)

event(F, stop(B,C))

location(F, in(E))

The translated DRS’s have been converted to executable languages, for

example, Attempto to Prolog and PENG to OTTER [94]. Inferences can be
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made by relating the sentences. For example, suppose we have the following

sentence.

A passenger alerts a driver of a train.

This simple sentence can be combined with the earlier if-sentence to give

the following.

The driver stops the train in a station.

The sentences in a controlled natural language can express business rules

formally.

2.13 Temporal Logic

In temporal logic, the truth values of propositions depend on time [16] [97].

Consider the following statements A and B.

A. The sun is rising.

B. The sun is setting.

We can write A leads-to B to mean that ”Sunrise leads to sunset”. In

addition to the leads-to operator, there are other operators such as always,

eventually and until. Temporal logic can be used to describe requirements

of concurrent programs, for example liveness and safety properties. Though

concurrency is not our emphasis, temporal logic is too important a topic

unmentioned.

As operators are added, a temporal logic expression quickly becomes

difficult to read. Message sequence charts [69] and their descendants UML

sequence diagrams can express event ordering as shown in Figure 2.2 on

page 17. But they have a few shortcomings. It is unclear whether the later

events in a diagram are mandatory or optional. There is no constuct in

them to concisely express that two events may reverse order or an event

can substitute another event. Property Sequence Chart (PSC) is a visual

language designed to overcome the above-mentioned deficiency by striking a
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balance between the friendlness of sequence diagrams and the expressiveness

of temporal logic [8].

PSC expresses requirements in terms of event ordering while concrete sce-

nario approach uses state changes with examples. In principle, events may

be parametised to express additional details found in concrete scenarios. In

practice, parametised events are seldom used likely due to its awkwardness.

2.14 Goal-oriented Requirements Specifications

Requirements can be written at different levels of abstraction. Svetinovic has

identified five levels of requirements from high to low [137]. He commends

the recent emphasis by researchers on the higher-level requirements which

better serve the customers in their business goals.

1. Business-level requirements concern the business goals to be fulfilled

by the system.

2. Domain-level requirements concern user goals and user tasks.

3. Product-level requirements involve the specification of functional

lists, use cases, data input and data output.

4. Design-level requirements, commonly expressed in UML, serve as

the transition from the product-level specification to the code-level

specification.

5. Code-level requirements, often expressed as pseudo-code, are a part

of the programming actitivty.

The approaches described earlier in the chapter mainly deal with the

lower levels in Svetinovic’s classification. In the past 10 to 15 years, we

have seen a noticeable increase in the attention to the top two levels of

requirements. The attention to business and user goals is well justified

lest the resulting software ends up doing a nice job for inappropriate goals.

Problem Frames [85] [86], KAOS and i* are three of the notations that

emphasize high-level goals.
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2.14.1 KAOS

KAOS is a goal-oriented requirements specification language which describes

the relationships between objects (active or passive), operations and goals

[141]. Following is a goal specification in KAOS by Brandozzi and Perry [26].

The goal here is to maintain the confidentiality of submissions in the review

process of a publication. DocumentCopy, Knows, People are data compo-

nents. The goal of ConfidentialityOfSubmissions is refined to the subgoals of

ConfidentialityOfSubmissionDocument and ConfidentialityOfIndirectSubmission.

At the end is an informal definition of the goal.

Goal Maintain[ConfidentialityOfSubmissions]

InstanceOf SecurityGoal

Concerns DocumentCopy, Knows, People

ReducedTo

ConfidentialityOfSubmissionDocument

ConfidentialityOfIndirectSubmission

InformalDef A submission must remain confidential.

A paper that has to be submitted has

to remain confidential.

The ultimate goal of the publisher is to publish quality articles. This

fundamentalgoal can be refined to a number of subgoals including the fol-

lowing.

Maintain[QualityOfEditorialDecisions]

Achieve[EnoughQuantityOfPublishedArticles]

Avoid[ConflictOfInterestsWithAssociatedEditor]
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2.14.2 i*

In an organization, heterogenous actors may have competing and interde-

pendent goals. Actors will have to undertake their tasks to accomplish these

goals. i* attempts to model this kind of distributed intentionality [1].

i* framework uses two kinds of models. A Strategic Dependency (SD)

model shows the dependency of an actor on the work of another actor.

Actors are shown in circles. Figure 2.10, taken from the PowerPoint used

by Yu for [146], has three actors: car owner, body shop and insurance

company. They are dependent on each other in multiple ways. In the

left side of the figure, the car owner depends on the body shop to have the

car repaired. The large oval between the two actors indicates that this is

a goal dependency. The tiny crescent shapes on both sides of the oval

shows the direction of the dependency. The rectangle labeled “Premium

payment”near the top of the figure is a resource dependency. A soft-goal

is a less precise goal. Therefore a soft-goal dependency is denoted by

a cloud shape, for example the third dependency from the top “Customer

Be Happy”. Finally, there is a task dependency not shown in the figure.

For example, an insurance company depends on an appraiser for the task to

appraise damages.

A Strategic Rationale (SR) model is built on top of an SD model by

adding details of goals, soft goals, tasks and resources. Two kinds of impor-

tant details are shown with means-ends links and task-decomposition links.

A means-end link shows the means of a task attaining the end of a goal.

A task-decomposition link shows a task being decomposed into subgoals,

subtasks, resources or softgoals. Figure 2.11, also by Yu the creator of i*,

shows in its top right corner that the task to handle a claim attains the goal

of claim settlement. The task to handle a claim is decomposed into three

subtasks to verify the policy, prepare a settlement offer and make an offer

to settle.
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Fig. 2.10: A strategic dependency model for car insurance
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Fig. 2.11: A strategic rationale model for claims handling
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2.14.3 User Requirements Notation (URN)

User Requirements Notation (URN) is an international standard of the Inter-

national Telecommunications Union (ITU). It is the work of ITU’s Telecom-

munication Standardization Sector (ITU-T). The semi-formal, lightweight

graphical language models and analyzes requirements in the form of goals

and scenarios [6]. URN consists of two complementary notations: Goal-

oriented Requirement Language (GRL) and Use Case Maps (UCM).

GRL models goals and other intentional concepts. It is mainly used

for the expression and reasoning of non-functional requirements, quality

attributes, rationales, alternatives and tradeoffs. It is based on i* and the

NFR framework [37] where NFR stands for non-functional requirements.

UCM is used for modelling scenario concepts covering functional require-

ments, operational constraints, performance and architectural reasoning.

UCM is a kind of flowcharts relating agents, processes and components with

fork and join flows. An and-fork splits the flow to two parallel paths. An

or-fork chooses a flow from two possible paths.

2.14.4 From Requirements to Architecture

Brandozzi and Perry developed the Preskriptor process that can be used to

derive an architecture from goals expressed in KAOS. The process involves

assigning architectural components to satisfy the goals. There are processing

components, data components and connector components. A component can

be defined in terms of simpler components. Figure 7 in [26] has an example

of a Preskriptor specification which describes an architecture to meet the

goals.

Similarly, Tropos is a formal language with an underlying methodology

that turns i* models into architectural and detailed design [34].

STRAW’01 and STRAW’03 published a few approaches that derive ar-

chitectures from requirements [110][48][60][101][130]. These approaches gen-

erally presume a top-down software development methodology which takes

us from requirements to architecture, then from architecture to detailed de-

sign. Nuseibeh’s approach is unique among other approaches in the two

conferences in the use of the Twin Peaks development model. It is a partial
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and simplified version of the spiral model [21] where details of the require-

ments are added side-by-side with the details in the architecture. This makes

Nuseibeh’s approach more compatible with agile development methods such

as XP. We will comeback to the discussion of top-down versus bottom-up in

the concluding chapter and how concrete scenarios fit into the big picture.

2.15 Chapter Conclusion

A formal specification fares well in four of the nine desirable qualities listed

in Chapter 1. It allows reliable determination of correctness and consis-

tency. It is as unambiguous and verifiable as it can get. For the qualities

of completeness, ranking for importance, modifiability and traceability, it is

dependent on the individual formal language. Its main weakness is the lack

of understandability by customers. Unfortunately, customer involvement is

the most important success factor [61]. Adding to it the increased costs and

time-to-market [132, page 193], the lack of impact by formal specification

languages on the industry can be explained [59].

Two formal approaches make significant strides in understandability.

The ASM approach allows specifications to be written with terms taken

directly from application domains though customers may need to get used

to the syntax of procedural calls and parameters. The CNL approach takes

it a step further by allowing requirements to be written as precise complete

sentences in natural languages. Both ASM and CNL approaches capture

requirements as general rules with variables. Concrete scenarios can supple-

ment both with examples written with actual data. Concrete scenarios doc-

ument specific examples which are generalised to rules or operation schemas

as shown in this thesis. Without concrete scenarios, customers may have

trouble generalising the examples to rules in their heads. Concrete scenarios

can be used as documentation to improve communications. Without scenar-

ios to link their actions, rules are independent entities. Scenarios put them

into perspective. They improve requirements understanding and reduce the

likelihood of unused rules. Concrete scenarios guide formal specification

writing and double as test cases for verification.

Concrete scenarios only deal with low-level and at best mid-level func-
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tional requirements. To manage high-level business goals and non-functional

requirements, a goal-oriented requirements specification presented in the

previous section is in order.



3. CUSTOMER-FRIENDLY CONCRETE SCENARIOS

A small experiement involved 62 computer science or software engineering

students [51]. Most of them had a basic training in discrete mathematics.

Their training in Z notation ranged from a 3-hour lecture to a full semester.

They were asked to answer three questions about a simple Z specification

with less than 20 lines. The students were allowed to take however long they

needed. Most had spent somewhere between 200 to 800 seconds. Finney

and Fedoree came to their observation and conclusion as follows [52].

As it was clear that 19 of the (62) subjects did not understand the

specification sufficiently to answer any of the questions correctly

despite their background, then we should not expect clients and

software engineers to master Z and other formal methods without

training.

If customers do not understand a formal specification, they cannot give

feedback on its correctness or completeness. To address this problem, we

advocate an approach in which computation steps are described by their

effects on the system state expressed in actual data rather than variables.

The customer uses simple English to describe a step by its input, output and

system states. The specifier translates the descriptions to a formal notation

using very few simple concepts. The approach allows customers to take part

in the creation of formal specifications. The odds of formal specifications

fully capturing customer requirements are improved.

The objective of this chapter is to introduce a scenario-driven approach

for specification writing with a focus on its customer-friendliness. Some of

the contents in this chapter have been published previously by Au, Stone

and Cooke [7]. In that publication, we called our scenarios precise scenarios

which are renamed concrete scenarios in this thesis. The new name suggests
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the use of concrete data which is a more distinctive feature of our scenarios.

The approach is introduced by example. This example is intended to

demonstrate the customer-friendliness of the approach. Other chapters deal

with other aspects. In this chapter, Section 3.1 describes the application

domain of our example. Section 3.2 outlines the approach and explains

the preparation. Sections 3.3 to 3.6 show the derivation of schemas from

scenarios. In Sections 3.7 and 3.8, we run the schemas through additional

scenarios to detect under- and over-specification. Section 3.9 demonstrates

how to prove an operation total. Section 3.10 justifies the claim that concrete

scenarios are more understandable to customers than formal specifications.

Section 3.11 is our chapter conclusion.

3.1 Warehouse Ordering Problem

The warehouse ordering problem we use is credited to Habrias and Frappier

[66]. Chapter 1 of the book presents a Z specification by Bowen which is

almost identical to our Z specification derived from concrete scenarios.

The customer needs an up-to-date record of the stock in the warehouse.

The four operations are order creation, fulfillment, cancellation and stock

replenishment. When an order is first created in the system, it is in status

pending. After the order is filled, the status becomes invoiced. Only a

pending order may be cancelled. The customer does not need a trail of

cancelled orders.

3.2 Scenario-Driven Specification

Figure 3.1 shows the six artefacts in the scenario-driven specification writing

approach that we advocate. An arrow represents the dependency between

two artefacts. When an artefact is modified, its dependent artefacts should

be revised. The artefacts that the specifier is responsible for may be tailored

to a formalism other than the Z notation.

1. Sentence Templates – System states, input and output are written

in simple sentences. The same sentence template is used to capture

the same kind of information.
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E-scenarios Z-scenarios Z schemas

Templates Z translations Types & State

Customer Specifier

Fig. 3.1: A scenario-driven specification process

2. E-scenarios – A scenario is a sequence of successive steps. A step has

a pre-state, post-state, input and output. The customer write them

in English according to the sentence templates.

3. English to Z Translation Rules – The specifier finds a Z expression

to suit each sentence template.

4. Types and State – The specifier defines Z types and system state

schema.

5. Z-scenarios – The specifier translates E-scenarios to Z-scenarios using

the rules above.

6. Z Operation Schemas – The specifier generalises Z-scenarios to Z

operation schemas. When in doubt, the specifier consults with the

customer to confirm the validity of the generalisation.

The remainder of Section 3.2 creates the first four artefacts. Sections 3.3

to 3.6 create the last two artefacts.

3.2.1 Templates in Words

Table 3.1 on the next page has the customer descriptions of sample inter-

actions between the users and the system. Table 3.2 describes four kinds of
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information about the system state: stock quantity, order content, order sta-

tus and free order id. By varying the underlined parts, different interactions

and states can be represented using the same templates.

Interactions Templates

Create Order Create an order for 4 nuts and 4 bolts.
A new order with id 3 is created.

Invoice Order Fill and invoice order id 2.
Cancel Order Cancel order id 2.

Enter Stock Replenish stock with 80 nuts and 70 bolts.
Report Operation report is okay.

Tab. 3.1: Interaction templates

States Templates

Stock Quantity There are 5 nuts in stock.
There are 6 bolts in stock.

Order Content Order 1 is for 2 nuts and 2 bolts.
Order 2 is for 3 bolts.

Order Status Order 1 is invoiced.
Order 2 is pending.

Free Order Id Id 3 is free for future use.
Id 4 is free for future use.

Tab. 3.2: State templates

3.2.2 E-Scenarios

Table 3.3 on the following page has an E-scenario describing the creation

of an order expressed with the sentence templates introduced earlier. We

highlight the parts being deleted from the pre-state or added to the post-

state by underlines. A computation step is made up of input, output, pre-

state and post-state. A scenario usually has multiple steps. To give the

readers a gentle introduction, all scenarios in this chapter have only one

step.

The customer is responsible for the English-based artefacts: sentence

templates and E-scenarios. The specifier is responsible for the remaining

artefacts because they are Z-based. After this point, the customer and
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Input
Create an order for 4 nuts and 4 bolts.

Pre-State
There are 5 nuts in stock. There are 6 bolts in stock.
Order 1 is for 2 nuts and 2 bolts. Order 2 is for 3 bolts.
Order 1 is invoiced. Order 2 is invoiced.
Id 3 is free for future use. Id 4 is free for future use.

Post-State
There are 5 nuts in stock. There are 6 bolts in stock.
Order 1 is for 2 nuts and 2 bolts. Order 2 is for 3 bolts.

Order 3 is for 4 nuts and 4 bolts.
Order 1 is invoiced. Order 2 is invoiced.
Order 3 is pending. Id 4 is free for future use.

Output
A new order with id 3 is created.
Operation report is okay.

Tab. 3.3: E-scenario CreateOrder

specifier can continue to communicate using English-based artefacts.

3.2.3 English to Z Translations

The specifier finds a suitable formal expression for each sentence template.

For our warehouse problem, two Z notions suffice: a set enclosed in braces

and an ordered pair on both sides of maplet symbol 7→. Table 3.4 shows input

and output parameters denoted by trailing question marks and exclamation

marks respectively. Table 3.5 on the following page shows state information

held in variables. The translation rules revealed in the tables can be used

to translate E-scenarios to Z-scenarios. From this point on, we will start

using the Z notation which the reader may not be familiar with. We try to

alleviate the discomfort that it may cost with appropriate explanations.

Interactions in English Z Expressions

Create an order for 4 nuts and 4 bolts. order? = {nut 7→ 4, bolt 7→ 4}
A new order with id 3 is created. newId ! = 3
Fill and invoice order id 2. id? = 2
Cancel order id 2. id? = 2
Refill stock with 80 nuts and 70 bolts. newStock? = {nut 7→ 80, bolt 7→ 70}
Operation report is okay. report ! = OK

Tab. 3.4: Warehouse Interactions – from English to Z
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States in English Z Expressions

There are 5 nuts in stock. stock = {nut 7→ 5, bolt 7→ 6}
There are 6 bolts in stock.

Order 1 is for 2 nuts and 2 bolts. orders = {1 7→ {nut 7→ 2, bolt 7→ 2},
Order 2 is for 3 bolts. 2 7→ {bolt 7→ 3}}
Order 1 is invoiced. orderStatus = {1 7→ invoiced ,
Order 2 is pending. 2 7→ pending}
Id 3 is free for future use. freeIds = {3, 4}
Id 4 is free for future use.

Tab. 3.5: Warehouse States – from English to Z

3.2.4 Type Definitions and State Schema

From the Z expressions, the developer would realise that basic types are

needed to identify individual orders and products. We define types ORDERID

and PRODUCT with the following statement so that they can be used in

the Z specification without concern of their actual implementation.

[ORDERID , PRODUCT ]

A bag of PRODUCT is equivalent to a partial function from PRODUCT

to the set of positive natural numbers N1. We define type ORDER for later

declarations of order and stock.

ORDER == {order : bag PRODUCT | order 6= ∅}

When an order is newly created, it is in status pending . After the order

has left the warehouse, its status changes to invoiced . These are the only

two statuses that concern us here. If we were to consider payment scenarios,

we would need another status paid .

STATUS ::= pending | invoiced

Schema OrderSystem uses four variables to represent the system state.

Their types must agree with the sample Z expressions used in Table 3.5.

The symbols 7→ and P represent partial function and power set respectively.
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OrderSystem

stock : bag PRODUCT

orders : ORDERID 7→ bag PRODUCT

orderStatus : ORDERID 7→ STATUS

freeIds : P ORDERID

dom orders = dom orderStatus

dom orders ∩ freeIds = ∅

After the horizontal dividing line in the schema definition, there are two

invariants. The keyword dom stands for domain. The first invariant ensures

that an order id must simultaneously exist in both orders and orderStatus

or not at all. The second invariant prevents an order id from being used

and at the same time available for new orders. It is common for Z experts

to write invariants before operation schemas as we do here. But this is not

necessary. Our argument is that we do not have a clear understanding of the

application until we have considered a number of scenarios. Writing down

invariants early is unrealistic for many real-world projects.

We want to know if an operation has succeeded or not. If an operation

fails, we shall report the reason of the failure. For convenience, we include

all the possible report values in the following definition of type REPORT .

In practice, the values will only be discovered one by one as scenarios are

considered. Their meanings will become clearer then.

REPORT ::= OK | no more ids | order not pending |
id not found | not enough stock

3.3 Create Order

In Sections 3.3 to 3.6, we derive Z schemas from Z-scenarios. Perhaps with

the help from the customer, the specifier discovers relationships of the data

in state variables and in I/O parameters. The relationships are codified as

predicates in schemas.

The E-scenario in Table 3.3 on page 52 is translated to the Z-scenario in

Table 3.6 on the next page. The translation rules are the same as those used
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in Tables 3.4 and 3.5. Due to the trivial correlations between E-scenarios

and Z-scenarios, we will skip the E-scenarios of other operations. The table

in the Z-scenario shows the state variables in four columns. Below the rows

of variable names, the first row has their pre-state values and the second

row has the post-state values.

order? = {nut 7→ 4, bolt 7→ 4}a
stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3b , 4}
bolt 7→ 6} 2 7→ {bolt 7→ 3}} 2 7→ invoiced}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {4}
2 7→ {bolt 7→ 3}, 2 7→ invoiced ,

3b 7→ {nut 7→ 4, bolt 7→ 4}a} 3b 7→ pending}
newId ! = 3b ∧ report ! = OK

Tab. 3.6: Z-scenario CreateOrder

Scenario CreateOrder documents a successful attempt to create an order.

The I/O parameter values that appear in the state variables are subscripted,

in this case {nut 7→ 4, bolt 7→ 4}a and 3b . The corresponding data in the

pre- and post-states are also subscripted to show their equality with the

I/O parameters. Some I/O parameters are not subscripted, for example

report value OK , because it is not directly related to any state variable.

The relationships between subscripted values in the state, input and output

will be captured in the predicates of a schema as follows.
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CreateOrder

∆OrderSystem

order? : ORDER

newId ! : ORDERID

report ! : REPORT

newId ! ∈ freeIds

stock ′ = stock

orders ′ = orders ∪ {newId ! 7→ order?}
orderStatus ′ = orderStatus ∪ {newId ! 7→ pending}
freeIds ′ = freeIds \ {newId !}
report ! = OK

Symbol ∆ in the first declaration of the schema denotes that variables

in OrderSystem will be updated. The presence of 3b in freeIds is captured

by the first predicate. Its absence in freeIds ′ is represented by the fifth

predicate. Due to the generalisation, output variable name newId ! is used

in the predicates in place of value 3b .

The 3-dot symbol . . . in the scenario is our way to express an unchanged

value. The unchanged value of stock ′ is specified by the second predicate.

In the third and fourth predicates, orders ′ and orderStatus ′ are expressed

in terms of variables rather than data values wherever possible.

Table 3.7 on the following page is a scenario of an unsuccessful attempt

to create an order due to fully depleted order ids. No data in the pre-state or

post-state are subscripted to match the I/O parameters because their values

are irrelevant. The precondition of the scenario is simply an empty set of

freeIds. The symbol Ξ in the first declaration of schema NoMoreIdsError

indicates that variables in OrderSystem remain unchanged.
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order? = {nut 7→ 7}
stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , { }
bolt 7→ 6} 2 7→ {bolt 7→ 3}, 2 7→ invoiced ,

3 7→ {nut 7→ 4, bolt 7→ 4}, 3 7→ pending ,
4 7→ {bolt 7→ 8}} 4 7→ pending}

. . . . . . . . . . . .

report ! = no more ids

Tab. 3.7: Z-scenario NoMoreIdsError

NoMoreIdsError

ΞOrderSystem

order? : ORDER

report ! : REPORT

freeIds = ∅
report ! = no more ids

Together the two schemas can be used to define CreateOrderOp that

covers all situations.

CreateOrderOp =̂ CreateOrder ∨ NoMoreIdsError
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3.4 Invoice Order

Table 3.8 desribes an invoicing operation that updates stock quantities and

changes the order status from pending to invoiced. Though we are not

showing E-scenarios anymore, they may be created before the Z-scenarios

as part of requirements elicitation.

id? = 2a ∧ {nut 7→ 4, bolt 7→ 3}b v {nut 7→ 5, bolt 7→ 9}c
stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 9}c 2a 7→ {nut 7→ 4, bolt 7→ 3}b } 2a 7→ pending}
{nut 7→ 1, . . . {1 7→ invoiced , . . .
bolt 7→ 6}d 2a 7→ invoiced}

report ! = OK ∧
{nut 7→ 1, bolt 7→ 6}d = {nut 7→ 5, bolt 7→ 9}c −∪ {nut 7→ 4, bolt 7→ 3}b

Tab. 3.8: Z-scenario InvoiceOrder

On the third column, the status of order id 2a is pending in the pre-state.

Round brackets stand for function application, for example, orderStatus(2)

returns pending . After the customer has confirmed this to be a precondi-

tion of the operation, we capture it as the second predicate after replacing

value 2a with variable id?. Its updated value of invoiced in the post-state

is captured in the sixth predicate using override symbol ⊕. Symbol v de-

notes pairwise ≤ comparisons between two bags. It is more convenient

than comparing individual product counts in the order and in stock. This

precondition is captured in the third predicate of the schema. Values are

replaced by state or I/O variables, {nut 7→ 5, bolt 7→ 9}c by stock and

{nut 7→ 4, bolt 7→ 3}b by orders(id?) according to the equality stipulated

by the subscripts. Symbol −∪ in the postcondition denotes pairwise subtrac-

tions between two bags. After the generalisation that replaces values with

variables, the postcondition becomes the fourth predicate.
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InvoiceOrder

∆OrderSystem

id? : ORDERID

report ! : REPORT

id? ∈ dom orderStatus

orderStatus(id?) = pending

orders(id?) v stock

stock ′ = stock −∪ orders(id?)

orders ′ = orders

orderStatus ′ = orderStatus ⊕ {id? 7→ invoiced}
freeIds ′ = freeIds

report ! = OK

We are showing three exceptional scenarios of this operation and their

schemas. Table 3.9 describes an attempt to invoice an order that does not

exist. The scenario is generalised to schema IdNotFoundError defined below.

id? = 3

stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 9} 2 7→ {bolt 7→ 3}} 2 7→ pending}

. . . . . . . . . . . .

report ! = id not found

Tab. 3.9: Z-scenario IdNotFoundError

IdNotFoundError

ΞOrderSystem

id? : ORDERID

report ! : REPORT

id? /∈ dom orderStatus

report ! = id not found

Table 3.10 on the next page describes an attempt to invoice an order that
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has the wrong status. The scenario is generalised to schema OrderNotPendingError

shown on next page.

id? = 1a

stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, { 1a 7→ invoiced , {3, 4}
bolt 7→ 9} 2 7→ {bolt 7→ 3}} 2 7→ pending}

. . . . . . . . . . . .

report ! = order not pending

Tab. 3.10: Z-scenario OrderNotPendingError

OrderNotPendingError

ΞOrderSystem

id? : ORDERID

report ! : REPORT

orderStatus(id?) 6= pending

report ! = order not pending

Table 3.11 describes an attempt to invoice an order when the warehouse

does not have sufficient stock to fill the order. The scenario is generalised

to schema NotEnoughStockError .

id? = 2a ∧ 77b > 9c

stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 9c} 2a 7→ {bolt 7→ 77b}} 2 7→ pending}

. . . . . . . . . . . .

report ! = not enough stock

Tab. 3.11: Z-scenario NotEnoughStockError
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NotEnoughStockError

ΞOrderSystem

id? : ORDERID

report ! : REPORT

¬ (orders(id?) v stock)

report ! = not enough stock

We define operation InvoiceOrderOp to deal with all situations. When

multiple errors happen at the same time, the definition is unspecific about

which error report to return. We will discuss nondeterminism in Chapter 8.

InvoiceOrderOp =̂ InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError
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3.5 Cancel Order

A pending order may be cancelled. The cancelled order id will be made

available for new orders in the future. Status pending is a pre-condition to

cancel order 2a in the scenario on Table 3.12. The first predicate in schema

CancelOrder captures this pre-condition. The third and fourth predicates

capture the disappearance of 2a from orders ′ and orderStatus ′ where the

domain anti-restriction symbol −C is used to remove maplets of id?. The

second last predicate captures the addition of 2a to freeIds ′.

id? = 2a

stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 6} 2a 7→ {bolt 7→ 3}} 2a 7→ pending}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}} {1 7→ invoiced} {2a , 3, 4}
report ! = OK

Tab. 3.12: Z-scenario CancelOrder

CancelOrder

∆OrderSystem

id? : ORDERID

report ! : REPORT

orderStatus(id?) = pending

stock ′ = stock

orders ′ = {id?} −C orders

orderStatus ′ = {id?} −C orderStatus

freeIds ′ = {id?} ∪ freeIds

report ! = OK

It is futile to cancel an order that does not exist or has been invoiced .

We reuse two error detecting schemas to handle those situations.

CancelOrderOp =̂ CancelOrder ∨ IdNotFoundError ∨
OrderNotPendingError
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3.6 Enter Stock

Table 3.13 describes Z-scenario EnterStock for the replenishment of depleted

stock.

newStock? = {nut 7→ 80, bolt 7→ 70}a
stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 9}b 2 7→ {bolt 7→ 3}} 2 7→ pending}
{nut 7→ 85, . . . . . . . . .
bolt 7→ 79}c

report ! = OK ∧
{nut 7→ 85, bolt 7→ 79}c = {nut 7→ 5, bolt 7→ 9}b ] {nut 7→ 80, bolt 7→ 70}a

Tab. 3.13: Z-scenario EnterStock

Symbol ] in the postcondition stands for pairwise bag additions.

EnterStock

∆OrderSystem

newStock? : ORDER

report ! : REPORT

stock ′ = stock ] newStock?

orders ′ = orders

orderStatus ′ = orderStatus

freeIds ′ = freeIds

report ! = OK

For simplification, we assume that the warehouse is so large that new

stock cannot lead to error.
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3.7 Underspecification

Our approach to generalise scenarios to schemas is not foolproof. We may

overlook a condition resulting in underspecification. The scenarios generated

from an incorrect schema allow us to detect underspecification. Suppose we

had omitted the following precondition in schema InvoiceOrder on Page 59

that checks for sufficient stock.

orders(id?) v stock

When we try to invoice an order for six nuts on a stock of 5 nuts with

the underspecified schema, we will get the scenario in Table 3.14. Take note

of the three underlined quantities of nuts.

id? = 2

stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 9} 2 7→ {nut 7→ 6, 2 7→ pending}

bolt 7→ 6}}
{nut 7→ 0, . . . {1 7→ invoiced , . . .
bolt 7→ 3} 2 7→ invoiced}

report ! = OK

Tab. 3.14: Z-scenario UnderSpecifiedInvoiceOrder

According to the definition of bag difference operator −∪ in Z Reference

Manual [133, page 126], the result is zero when the subtrahend is greater

than the minuend. But 5 − 6 = 0 is wrong. Even if we are ignorant about

the effect of operator −∪, the result of 5− 6 = −1 will still raise an eyebrow

because it is impossible to have negative stock. We learn from this test that

the schema is wrong.



3. Customer-Friendly Concrete Scenarios 65

3.8 Overspecification

Overspecification happens when unnecessary conditions are included in a

schema. Recall scenario CreateOrder on page 55. The quantities of the nuts

and bolts in the input parameter were both 4 by coincidence.

order? = {nut 7→ 4a , bolt 7→ 4a }
stock orders orderStatus freeIds

{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 6} 2 7→ {bolt 7→ 3}} 2 7→ invoiced}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {4}
2 7→ {bolt 7→ 3}, 2 7→ invoiced ,
3 7→ {nut 7→ 4a , bolt 7→ 4a }} 3 7→ pending}

newId ! = 3, report ! = OK

Tab. 3.15: Z-scenario OverSpecifiedCreateOrder

If the specifier had mistaken it as a general rule, the equality may be

codified as the first predicate in the schema on this page. The predicate

evaluates to false on a legitimate order for {nut 7→ 7, bolt 7→ 9}. The

overspecification is caught.

OverSpecifiedCreateOrder

∆OrderSystem

order? : ORDER

newId ! : ORDERID

report ! : REPORT

∀ p, q : PRODUCT | p ∈ dom order? ∧ q ∈ dom order? •
order?(p) = order?(q)

newId ! ∈ freeIds

stock ′ = stock

orders ′ = orders ∪ {newId ! 7→ order?}
orderStatus ′ = orderStatus ∪ {newId ! 7→ pending}
freeIds ′ = freeIds \ {newId !}
report ! = OK
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3.9 Totality and Coverage

Given our scenario-driven approach, an obvious question to ask is whether

we have covered enough scenarios. The specifier needs to make sure that the

operations are total. An operation is total if its precondition is always true.

In other words, a total operation handles all situations. We have defined

the combination of all four operations to be total. Recall the definition of

InvoiceOrderOp.

InvoiceOrderOp =̂ InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError

Let A be the precondition of InvoiceOrderOp

B ˜ InvoiceOrder

C ˜ IdNotFoundError

D ˜ OrderNotPendingError

E ˜ NotEnoughStockError

C = id? /∈ dom orderStatus

D = orderStatus(id?) 6= pending

E = ¬ (orders(id?) v stock)

B = id? ∈ dom orderStatus ∧ orderStatus(id?) = pending ∧ orders(id?) v stock

With the help of DeMorgan’s Laws, we prove the totality of InvoiceOrderOp

as follows.

B = ¬ C ∧ ¬ D ∧ ¬ E

B = ¬ (C ∨ D) ∧ ¬ E

B = ¬ (C ∨ D ∨ E )

A = B ∨ C ∨ D ∨ E

A = ¬ (C ∨ D ∨ E ) ∨ (C ∨ D ∨ E )

A = true

A total operation handles all situations but not necessarily in a way de-

sired by the customer. Totality is necessary but insufficient for an operation
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to fully meet customer requirements. The use of scenarios cannot completely

eliminate the possibility of an incomplete formal specification. But this is

not a problem caused by using scenarios. A formal specification may be

incomplete regardless of the approach used to build it. However the use of

scenarios to encourage customer participation can only improve our odds of

having a complete formal specification.

We do not want our schemas to work on only a few scenarios. We need

to have correct and complete conditions captured in the predicates. The

checking of underspecification, overspecification and totality helps.

3.10 Understandability to Customers

Biologists and educationists believe that understanding begins with concrete

examples [150, pages 102–103]. Thanks to their training, formalism experts

are comfortable with abstraction used in specifications. Our scenarios are

concrete examples which customers would find easier to understand than

abstract specifications.

Z-scenarios are written in few symbols denoting simple concepts. The Z-

scenarios in our example only use a small number of symbols: ? ! = { } 7→.

The formal specification uses all the above symbols plus many more, such

as ∆ Ξ == | =̂ bag 7→ dom ∪ ∩ ∈ \ ∅ v −∪ ⊕ /∈ ¬ ∧ ∨ ∀. Scenarios only

list concrete values while specifications use expressions constructed from

variables. We expect the phenomenon of scenarios using fewer and simpler

symbols to extend to other problem domains. Scenarios are simpler than

schemas.

If the customer still finds Z-scenarios too difficult, he or she can get help

from the E-scenarios. Commentary in specifications is not as helpful as E-

scenarios. The use of variables and additional concepts makes it harder to

write accurate English descriptions for formal specifications. Once written,

the commentary will be more difficult to understand than E-scenarios again

due to the additional concepts used.

Since each scenario only deals with a user task in a situation, many sce-

narios may be needed. Appropriate tool support can help us deal with large

numbers of scenarios much like the way test cases are managed. If we use
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scenarios for the double duty of guiding and verifying software development,

the costs of using them will be lowered.

Scenarios in this chapter only have a single step. In later chapters, we

will work with scenarios of multiple steps. When a scenario gets too long, we

may break it up into two or more shorter scenarios. Even for a long scenario,

the customer can understand it one step at a time. On balance scenarios

are more understandable to the customers than formal specifications.

3.11 Chapter Conclusion

Our approach can be described as a process of creating a few artefacts. The

sentence templates and E-scenarios are the responsibilities of customers.

The English to Z translation rules, type definitions, system state schemas,

Z-scenarios and schemas are the responsibilities of developers. The artefacts

embody many decisions. Our examples in the thesis represent the decisions

we make in the roles of customers and developers. Different decisions will

lead to different solutions. The issue of efficiency aside, our schemas should

always meet the requirements captured in the scenarios. In Chapter 5 on

specification maintenance, we will see how a previously acceptable decision

on the system state turns out to be a bad one as the requirements evolve.

To retract the decision, we have to revise many schemas.

Customer involvement is a critical factor of software projects [61]. The

use of concrete scenarios allows customers to participate more directly in

the creation of formal specifications.

A set of scenarios is a partial rather than complete specification. Through

the generalisation of data values and their relationships into variables and

predicates, we create a complete specification with Z schemas. Additional

scenarios can be used to validate a Z specification to gain confidence in its

correctness and completeness.
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Scenarios partition functional requirements. Customers can rank scenarios

by their importance or urgency. This ranking suggests an order in which the

scenarios should be tackled. Developers work on a small number of scenario

steps at one time without the risk of being overwhelmed. For example, in

this chapter, we will work on the most common scenarios before the rare

ones.

Our example is a telephone system chosen partly for the interactions of

multiple phone users. Contrary to the one-step scenarios in the previous

chapter, interactions require multiple steps in a scenario.

Section 4.1 describes the features expected by the customer. Sections

4.2 and 4.3 list the sentence templates for the state space and input/output

parameters. Their translations to Z notation are shown. Section 4.4 shows a

simple E-scenario and its equivalent Z-scenario. Sections 4.5 to 4.7 derive the

basic operations of dialling, answering and hanging. Section 4.8 considers a

scenario of competing calls and no answer. Section 4.9 proves the totality

and determinism of the dialling operation. Section 10 concludes the iterative

development approach we just demonstrated.

4.1 Telephone System

We specify a primitive phone system to resemble the way mobile phones

work. The interoperability with landline phones is excluded lest the details

distract readers from the main message. There are three basic operations:

dialling, answering and hanging. The dialling operation is ignored if the

caller is connected or being rung. Otherwise it results in a ring or busy

tone depending on the state of the callee. The answering operation can be

successfully performed by someone whose phone is ringing. It results in a
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new connection. When performed in other states, the answering operation is

ignored. The hanging operation can be successfully performed by someone

who is engaged in a connection. Performed in other states, the answering

operation is ignored.

Readers may find the examples in this thesis verbose. The verbiage

reflects our attempt to accommodate newcomers to the approach.

4.2 State Space

To keep the presentation compact, we only use single-digit phone numbers

from 1 to 9.

PHONE == {phone : 1 . . 9}

In Table 4.1, we keep two kinds of information in the system state:

connection and ring.

States in English Z Expressions

No. 1 is connected to no. 2. connection = {1 7→ 2, 3 7→ 4}
No. 3 is connected to no. 4.
No. 1 is ringing no. 2. ringing = {1 7→ 2}

Tab. 4.1: Telephone System States – from English to Z

Schema PhoneSystem stores the system state in variables connection and

ringing. We define the variables as partial functions with the 7→ symbol. If

ringing were defined as a total function by mistake, every phone would be

ringing all the time.

PhoneSystem

connection, ringing : PHONE 7→ PHONE

It is a common practice for Z experts to write invariants of the system

state at this point. For example, a phone cannot be simultaneously rung by

multiple callers. We deem the explicitly stated invariants optional because

the system behaviour is sufficiently constrained by concrete scenarios and

their generalised schemas. On the other hand, stating the invariants can
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enhance communication. In practice, we can only write state invariants

after having considered enough scenarios.

Sentence templates are decided by customers. Variable names, such as

connection and ringing , are decided by developers. Other names could be

used. For readability, it is best to choose the names meaningful in the

application domain.

4.3 Input/Output

After describing the system state, customers work with specifiers on the

user interface. In this example, interactions are initiated by users. Table 4.2

shows three kinds of user input.

Input in English Z Expressions

User at no. 3 dials to no. 4 caller? = 3 ∧ callee? = 4
User at no. 4 answers the phone answer? = 4
User at no. 3 hangs up the phone hang? = 3

Tab. 4.2: Telephone System Input – from English to Z

Shown in Table 4.3, the system returns three kinds of responses on the

dialling operation, a ring, busy tone or no tone at all. For the operations of

answering or hanging, a user gets an okay or ignored result.

Output in English Z Expressions

User gets a ring tone! = ring
User gets a busy tone tone! = busy
User gets no tone tone! = silent
Request is OK rqt! = OK
Request is ignored rqt! = ignored

Tab. 4.3: Telephone System Outputs – from English to Z

We define data types TONE and RESULT for the possible values on

output parameters tone! and rqt !.

TONE ::= ring | busy | silent

RESULT ::= OK | ignored
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Interactions are user observable events. For example, dialling a number

involves the pressing of numeric keys and the send button on a mobile phone.

Disconnecting a call involves the pressing of the end button. Customers

decide the level of details they want to capture. In our case, we have chosen

to ignore the pressing of individual numeric keys.

4.4 Scenarios of Simple Calls

Steps are the building blocks of concrete scenarios. A step consists of input

and output parameters. It transforms the system from one state to the next.

For an easy introduction to concrete scenarios, we only presented single-step

scenarios in the previous chapter. Multi-step scenarios are required to show

the interactions of two or more phone users. The adapted scenario table

should be read from left to right and then top to bottom. The first column

holds the step and state numbers. In the following scenario, the system is

initially in state 0 where users at no. 3 and no. 4 are already connected.

After the caller at no. 1 dials no. 2 to get a ring tone, the system is in the

state where no. 1 is ringing no. 2. After the callee has picked up the phone,

the system now has two active connections. After the phone user at no. 1

has hung up, the system is back to a state with only one connection.

Step Input/Output System State

0 No. 3 is connected to no. 4.

1 User at no. 1 dials to no. 2. No. 3 is connected to no. 4.
User gets a ring tone. No. 1 is ringing no. 2.

2 User at no. 2 answers the phone. No. 3 is connected to no. 4.
Request is OK. No. 1 is connected to no. 2.

3 User at no. 1 hangs up the phone. No. 3 is connected to no. 4.
Request is OK.

Tab. 4.4: E-scenario MakeSimpleCall

Specifiers or automated tools translate E-scenarios in English to their

equivalent Z-scenarios in Z notation. Whenever required by the customers

for better comprehension, the Z-scenario in say Table 4.5 on the following

page can be reverted back to the original E-scenario in Table 4.4. The
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readers of the thesis are expected to be familiar with formal notations. We

will work mainly with the more succinct Z-scenarios.

Step Input Output connection ringing

0 {3 7→ 4} { }
1 caller? = 1 ∧ callee? = 2 tone! = ring {3 7→ 4} {1 7→ 2}
2 answer? = 2 rqt ! = OK {1 7→ 2, 3 7→ 4} { }
3 hang? = 1 rqt ! = OK {3 7→ 4} { }

Tab. 4.5: Z-scenario MakeSimpleCall

The steps of Z-scenario MakeSimpleCall represent three operations each

with its own parameter names and types. We use the dot notation to refer

to individual steps of a scenario. For example, we write MakeSimpleCall.1

to refer to the first step in the scenario.

Specifiers discover patterns of data relationships in scenario steps and

generalise them to predicates. It helps to consider a pair of complementary

steps together as we will do in the following sections. Steps are said to be

complementary if they represent the same operation in different situations.

The scenario steps used for generalisation may influence the patterns initially

discovered. By considering more scenario steps for the operation, as was

done in Sections 3.7 and 3.8, we should eventually arrive at more or less the

same operation schema.

In the previous chapter, we worked with many numbers for stock or order

quantities. There may be equalities in the scenarios. We used subscripts to

distinguish required equalities from coincidental equalities. In this chapter,

all phone numbers are unique. All equalities are required. We need no

subscripts for differentiation.
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4.5 Dialling Operation

Schema DialRing generalizes a successful dialling attempt documented in

step MakeSimpleCall.1. ∆PhoneSystem declares that its variables may be

changed by the operation. Variable names without and with a prime stand

for values before and after the operation respectively. Caller 1 and callee

2 are not engaged in any connection or ringing activity. The observations

are captured by the first two predicates. The fourth predicate uses override

symbol ⊕ to state that the new value of ringing will be the same as before

except for caller? 7→ callee?.

DialRing

∆PhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? /∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

callee? /∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

connection ′ = connection

ringing ′ = ringing ⊕ {caller? 7→ callee?}
tone! = ring

DialBusy.1 is a step that gets the busy tone on a dialling operation.

The value 2 of callee? appears in the connection of the pre-state of step

DialBusy.1. After consulting with the customer, the developer wrote the

second predicate in schema DialBusy on the following page to capture this

fact. This predicate is the negation of the corresponding predicate in schema

DialRing. Variables connection and ringing in PhoneSystem are unchanged

by this operation as indicated by a preceding Xi symbol Ξ.

Step Input Output connection ringing

0 {2 7→ 3} { }
1 caller? = 1 ∧ callee? = 2 tone! = busy {2 7→ 3} { }

Tab. 4.6: Z-scenario DialBusy



4. Specification Development 75

DialBusy

ΞPhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? /∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

callee? ∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

tone! = busy

Step DialIgnored.1 is an ignored dialling operation. The precondition

of callee? appearing in connection is generalised to the first predicate in

schema DialIgnored which also checks for callee’s appearance in ringing.

Step Input Output connection ringing

0 {1 7→ 3} { }
1 caller? = 1 ∧ callee? = 2 tone! = silent {1 7→ 3} { }

Tab. 4.7: Z-scenario DialIgnored

DialIgnored

ΞPhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? ∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

tone! = silent

DiallingOp =̂ DialRing ∨ DialBusy ∨ DialIgnored
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4.6 Answering Operation

AnswerIgnored.1 is an ignored answering request which complements the

successful attempt in step MakeSimpleCall.2 in Table 4.5 on page 73.

Step Input Output connection ringing

0 {3 7→ 4} { }
1 answer? = 2 rqt ! = ignored {3 7→ 4} { }

Tab. 4.8: Z-scenario AnswerIgnored

MakeSimpleCall.2 is an answering operation resulting in a connection of

two phones. We generalise the step to schema AnswerRing which has a local

variable caller. The first predicate determines the caller causing the ring.

The second predicate updates connection with caller 7→ answer?. The third

predicate uses the range subtraction symbol −B to update function ringing.

It removes the ring for phone no. answer?.

AnswerRing

∆PhoneSystem

answer? : PHONE

rqt ! : RESULT

caller : PHONE

caller 7→ answer? ∈ ringing

connection ′ = connection ⊕ {caller 7→ answer?}
ringing ′ = ringing −B {answer?}
rqt ! = OK

Schema AnswerIgnored generalizes step AnswerIgnored.1.
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AnswerIgnored

ΞPhoneSystem

answer? : PHONE

rqt ! : RESULT

answer? /∈ ran ringing

rqt ! = ignored

AnsweringOp =̂ AnswerRing ∨ AnswerIgnored

4.7 Hanging Operation

HangIgnored.1 is an ignored hang up request which corresponds to the event

of a user pressing the end button on a mobile phone when it is not connected.

The step is complementary to MakeSimpleCall.3 in Table 4.5 on page 73.

Step Input Output connection ringing

0 {3 7→ 4} { }
1 hang? = 2 rqt ! = ignored {3 7→ 4} { }

Tab. 4.9: Z-scenario HangIgnored

Schema HangConnect generalizes step MakeSimpleCall.3 of terminating

a connection. Function connection is updated by removing the ordered pair

that contains the hanging phone number. Since we do not know whether

the hanging phone number is the caller or callee, we may as well apply both

domain and range subtraction, denoted by −C and −B symbols respectively. If

say the input phone number is in the range but not in the domain, the range

subtraction will remove the ordered pair while the domain subtraction will

have no effect.
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HangConnect

∆PhoneSystem

hang? : PHONE

rqt ! : RESULT

hang? ∈ dom connection ∪ ran connection

connection ′ = {hang?} −C connection −B {hang?}
ringing ′ = ringing

rqt ! = OK

Schema HangIgnored generalizes step HangIgnored.1.

HangIgnored

ΞPhoneSystem

hang? : PHONE

rqt ! : RESULT

hang? /∈ dom connection ∪ ran connection

rqt ! = ignored

HangingOp =̂ HangConnect ∨ HangIgnored

4.8 Competing Calls

In the previous sections, we include scenarios MakeSimpleCall, DialBusy,

AnswerIgnored and HangIgnored in our first iteration because they are the

most common scenarios. This section represents our second iteration where

we consider the less common scenario of two parties calling the same number

at about the same time. The first caller gets a ring tone; the second caller

gets a busy tone. Since the callee does not pick up the phone, the first caller

hangs up before a connection is ever made.

Before we modify the Z specification for a new step, we want to see if an

existing schema already handles to the step. Steps CompetingCalls.1 and

MakeSimpleCall.1 are identical. Schema DialRing that works on one must

also work on the other. No modification to the schema is required.
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Z-scenario CompetingCalls

Step Input Output connection ringing

0 {3 7→ 4} { }
1 caller? = 1 ∧ callee? = 2 tone! = ring {3 7→ 4} {1 7→ 2}
2 caller? = 5 ∧ callee? = 2 tone! = busy {3 7→ 4} {1 7→ 2}
3 hang? = 1 rqt ! = OK {3 7→ 4} { }

Tab. 4.10: Z-scenario CompetingCalls

4.8.1 Callee Already Ringing

Next we try to see if step CompetingCalls.2 can be handled by the current

specification. The I/O parameters of the step tell us that it is a dialling

operation. We shall apply the step’s data substitutions to the three disjuncts

of DiallingOp. The second disjunct schema DialBusy from page 75 has three

predicates, the first two are precondition and the last one is postcondition.

All three predicates evaluate to true as shown below. It means that the

schema handles this step perfectly.

caller? /∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

⇔ 5 /∈ dom{3 7→ 4} ∪ ran{3 7→ 4} ∪ dom{1 7→ 2} ∪ ran{1 7→ 2}
⇔ 5 /∈ {3} ∪ {4} ∪ {1} ∪ {2}
⇔ 5 /∈ {1, 2, 3, 4}
⇔ true

callee? ∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

⇔ 2 ∈ {1, 2, 3, 4}
⇔ true

tone! = busy

⇔ busy = busy

⇔ true



4. Specification Development 80

4.8.2 No Answer

We check if the current specification handles step CompetingCalls.3 on the

previous page. The input parameter hang? tells us that it is a hanging

operation. HangingOp is a disjunction of HangConnect and HangIgnored.

Though not shown here, after applying substitutions from the step, each

of the schemas has a predicate concerning the value of ringing evaluate to

false. We need a new schema HangRing to specify the correct value for

ringing. According to the step, hang? is in the domain of ringing. In other

words, the input phone number must be ringing someone. We express this

precondition as the first predicate in the new schema. The second predicate

removes from function ringing the ordered pair with the first phone number

equal to hang?. It stops the ringing caused by hang?. The schema handles

the case where the caller hangs up before the callee picks up the phone.

HangRing

∆PhoneSystem

hang? : PHONE

rqt ! : RESULT

hang? ∈ dom ringing

ringing ′ = {hang?} −C ringing

connection ′ = connection

rqt ! = OK

The precondition of existing schema HangIgnored is also true for step

CompetingCalls.3. This is a problem because its postcondition does not

match the step. We strengthen the precondition so that it evaluates to false

for the step.
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HangIgnored

ΞPhoneSystem

hang? : PHONE

rqt ! : RESULT

hang? /∈ dom connection ∪ ran connection ∪ dom ringing

rqt ! = ignored

HangingOp is redefined to include new schema HangRing.

HangingOp =̂ HangConnect ∨ HangRing ∨ HangIgnored

4.9 Totality and Determinism

An operation is total if its precondition is true. A total operation handles

all situations though not necessarily in a way desired by the customers.

Totality is a necessary but not a sufficient condition for an operation to

meet all customer requirements. In layman’s terms, we make sure that our

operation specification is total but we are not content yet.

An operation is deterministic if no two of its disjunct constituents overlap

in their preconditions. When there is an overlap, either schema can engage

in a step. Unless both schemas achieve the same outcome, users will be

confused by the differing results from the same input and pre-state. We

devote Chapter 8 to nondeterminism.

DiallingOp, AnsweringOp and HangingOp are total and deterministic.

The totality and determinism of DiallingOp are justified below.

Let the preconditions of DialRing, DialBusy, DialIgnored and DiallingOp

be P, Q, R and S respectively.

Let a = caller? ∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

b = callee? ∈ dom connection ∪ ran connection ∪ dom ringing ∪ ran ringing

P = ¬ a ∧ ¬ b

Q = ¬ a ∧ b

R = a
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S = P ∨ Q ∨ R

= (¬ a ∧ ¬ b) ∨ (¬ a ∧ b) ∨ a

= (¬ a ∧ (¬ b ∨ b)) ∨ a

= (¬ a ∧ true) ∨ a

= ¬ a ∨ a

= true

∴ DiallingOp is a total operation.

P ∧ Q = (¬ a ∧ ¬ b) ∧ (¬ a ∧ b)

= ¬ a ∧ (¬ b ∧ b)

= ¬ a ∧ false

= false

P ∧ R = (¬ a ∧ ¬ b) ∧ a

= ¬ a ∧ a ∧ ¬ b

= false ∧ ¬ b

= false

Q ∧ R = (¬ a ∧ b) ∧ a

= ¬ a ∧ a ∧ b

= false ∧ b

= false

∴ DiallingOp is deterministic.

4.10 Chapter Conclusion

Customers represent domain concepts at their desired level of details. If

our customer was a telephone set manufacturer, he would be interested in

the pressing of individual keys. Customers and specificiers work together to

write concrete scenarios using these domain concepts in English constrained

to a small set of sentence templates. Specifiers translate scenarios in English

to equivalent scenarios in Z notation.

Writing the formal specification for a large system can be overwhelming.

Developers need to decide where to start. Concrete scenarios should be
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ranked by customers for importance. Prioritised scenarios provide good

guidance. At any time, developers work on the more important scenarios

that remain.

An operation is defined as a disjunction of schemas. A disjunct schema

handles a family of similar situations. For a given step, we would normally

only want one disjunct’s precondition to be true so that other disjuncts do

not interfere. The precondition of an existing schema can be weakened to

handle a new step if the postcondition of the schema matches the step. If

no disjunct schema has a matching postcondition, we create a new schema.

During specification maintenance, we identify different groups of predicates

that constitute the precondition and the postcondition. The Z notation does

not declare whether a predicate belongs to the precondition or postcondition

but it is not difficult to differentiate them. The precondition is captured by

the predicates that refer to post-state variables or output parameters. All

other predicates constitute the postcondition.

Scenarios are an organisation tool. We can maintain traceability be-

tween a step and its handling schema. Any time a schema is modified, the

developer should rerun an animator to verify the updated formal specifica-

tion against the concrete scenarios. Working with concrete scenarios would

be similar to working with test cases, good tool support is crucial to manage

them in numbers.

This chapter comprises two iterations. The first iteration deals with the

basic functionality. The second iteration deals with competing calls. We can

prove that the schemas from the first iteration are total and deterministic.

Totality gives us the false impression that a formal specification is correct

and complete. Concrete scenarios help us to discover missing functionality

in a formal specification.



5. SPECIFICATION MAINTENANCE

During the initial development of a formal specification, we would consider

two or more complementary steps together in the writing of the disjunct

schemas for an operation. For example, based on the steps that return

busy tone and ring tone, we write schemas DialRing and DialBusy to define

DiallingOp.

During the maintenance of a formal specification, we often consider new

scenarios one step at a time resulting in the modifications and/or additions

of schemas. The second iteration in the last chapter was carried out just

like a maintenance effort. In this chapter, we work on a sizeable change in

customer requirements that warrants an update to the state representation.

In order to support conference calls, the representation of phone connections

is changed from ordered pairs to sets. We revise the existing schemas to work

with the new state representation before working on the new scenarios.

The theme of the chapter is to describe the use of scenarios to facilitate

specification maintenance. Section 5.1 gives an account of the scanty existing

work. Section 5.2 describes a change to the state space for conferencing.

Section 5.3 revises the existing schemas for the new state space. Section

5.4 creates the schemas to start and end a conference. We also strengthen

the preconditions of existing schemas so that they do not interfere with

the new schemas. Section 5.5 discusses the necessary reverification after

scenarios and schemas are updated. Section 5.6 concludes the chapter with

a comparison of two alternative solutions to support conference calls.

5.1 Related Work

The maintenance of formal specifications has not received the attention it

deserves [33]. We seldom see authors modify finished formal specifications
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for evolving requirements. Students and professionals alike walk away with

the impression that formal specification is only suitable for applications

with stable requirements. The following is a summary of others’ work on

specification maintenance.

D. R. Kuhn measures sizes of formal specification updates by predicate

differences, a notion defined in terms of the effects of variable substitutions

on predicates in the specification [98]. There is no guidance on how to

update formal specifications for requirement changes.

Khendek and Bochmann create a new labelled transition system (LTS)

by merging two finite LTS’s. The specifier writes a small LTS for the new

behaviour and merges it with the current LTS of the original behaviour

[95]. An algorithm can automate the merge if the two LTS’s meet certain

conditions. Their work allows a large LTS to be built incrementally. The

approach is limited to simple events meeting some criteria.

K. J. Turner describes incremental requirements specification of a file

system using LOTOS [139]. He called his approach the constraint-oriented

style. Requirements are specified in a compositional way. A constraint

may take the following form resembling a rule in rule-based approaches of

specification writing. Unlike our approach, it does not use concrete data in

scenarios to aid customer comprehension.

if some condition or state applies

then behaviour is restricted according to the constraint

else behaviour is unconstrained

The idea of refactoring was initially used for the improvement of existing

code design [53]. It is about the application of small behaviour-preserving

transformations to make code more elegant and maintainable. Stepney,

Polack and Toyn apply the idea to improve Z specifications [135]. The first of

sixteen refactoring transformations they describe is renaming which changes

an existing name to a more descriptive name. The second transformation

is commonality extraction which gives a name to a common part appearing

in multiple schemas. I am not yet convinced of the merits of refactoring.

It may be better to make quality updates to a formal specification than to

ruin it with quick and dirty changes just to recover later with refactoring. It
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is not our aim to dispute here the philosophy of refactoring which is related

to agile methodology. Our concern is that refactoring does not update a

specification to accommodate requirement changes. Refactoring only makes

behaviour-preserving updates to improve the structure of a specification.

5.2 Suppport for Conference Calls

We would like to add the support of conference calls to the basic telephone

system with minimal impact to the current usage. The I/O parameters for

existing operations should not change. The initiation to join a conference

call must come from within a connection. For example, consider that phone

users A and B are in a connection but user C is not. Either A or B can

phone C . If C picks up the phone, he or she joins the conference. If instead,

C calls A or B , a busy ring tone will result.

When requirements change, customers and specifiers work together to

capture the new features with scenarios. It may be necessary to revise the

data structure. In the previous chapter, a connection is expressed as an

ordered pair. This representation is not good for multi-user conferencing.

The same conference call can be represented differently using ordered pairs.

Following are three of many equivalent representations for a conference of

numbers 2, 3, 4, and 5.

{2 7→ 3, 3 7→ 4, 4 7→ 5}
{2 7→ 3, 3 7→ 4, 3 7→ 5}
{2 7→ 3, 2 7→ 4, 2 7→ 5}

It is a chore to determine if two representations are equivalent. The

querying and updating of a conference connection on an unsuitable data

structure are difficult to express at all levels: scenario, specification and

program. Given the first representation above, we learn that numbers 2 and

5 are connected after the inspection of three ordered pairs. When number 4

hangs up, numbers 2, 3, and 5 will remain connected as follows. The update

is accomplished by removing an ordered pair and updating another pair. We

find the query and update operations tedious to express in the Z notation.

{2 7→ 3, 3 7→ 5}
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5.2.1 Update to State Space

The way a specification is written depends on the data structure it uses.

Ordered pairs segregate phone numbers into domain and range. This data

structure is unsuitable for the symmetrical relationship of the users in a

conference. The problem was less obvious when we only have connections

of two numbers. The switch to sets from ordered pairs simplifies the writing

of scenarios and the Z specification.

States in English Z Expressions

Nos. 1 and 4 are connected {1, 4}
Nos. 3, 5, 7 and 8 are connected {3, 5, 7, 8}

Tab. 5.1: Multi-party Connections – from English to Z

PhoneSystem

connection : P(P PHONE )

ringing : PHONE 7→ PHONE

State variable connection is redefined with the notion of power set. We

decide to use the same data structure for normal calls and conferencing.

Alternatively, we could keep the old definition of connection for 2-party

connections and add a new state variable for conferencing. We will compare

the two alternatives in the chapter conclusion.

The ordered pair data structure to express ringing is unchanged because

we still want to distinguish the caller and callee so that the hanging and

answering operations can be handled according to the user’s role.

5.3 Schema Revisions for New State Space

Existing operation schemas that refer to the modified data structure must

be revised. Most operation schemas are affected. The first two predi-

cates of schemas DialRing and DialBusy on pages 74 and 75 should be

changed. The domain and range operators on connection are replaced

with the generalised union
⋃

which is a unary operator in Z. If s is a
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set of sets {a, b, c, . . .},
⋃

s denotes the smallest set containing all el-

ements that appear in at least one of a, b, c and so on. For example,⋃
{{1, 2}, {3, 4, 5}, {6, 7}} = {1, 2, 3, 4, 5, 6, 7}.

DialRing

∆PhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

callee? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

connection ′ = connection

ringing ′ = ringing ⊕ {caller? 7→ callee?}
tone! = ring

DialBusy

ΞPhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

callee? ∈ dom ringing ∪ ran ringing ∪
⋃

connection

tone! = busy

The second predicate in schema AnswerRing on page 76 needs revising.

Function override ⊕ for the maplet is replaced with union ∪ for the set.

Ordered pair caller 7→ answer? becomes set {caller , answer?}.
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AnswerRing

∆PhoneSystem

answer? : PHONE

rqt ! : RESULT

caller : PHONE

caller 7→ answer? ∈ ringing

connection ′ = connection ∪ {{caller , answer?}}
ringing ′ = ringing −B {answer?}
rqt ! = OK

Schema AnswerIgnored requires no change because it does not refer to

variable connection.

Schema HangConnect is revised so that the first predicate determines the

connection hangSet that number hang? belongs to. The second predicate

subtracts this set from connection. So far, only schema AnswerRing can

create a connection. The new connection must be made up of a caller and

a callee not already in a connection where the number of the callee is held

in variable answer?. We can prove that hangSet in the following schema

HangConnect is unique.

HangConnect

∆PhoneSystem

hang? : PHONE

rqt ! : RESULT

hangSet : P PHONE

hang? ∈ hangSet ∧ hangSet ∈ connection

connection ′ = connection \ {hangSet}
ringing ′ = ringing

rqt ! = OK

The first predicate of schema HangIgnored on page 81 is revised with

the generalised union operator.
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HangIgnored

ΞPhoneSystem

hang? : PHONE

rqt ! : RESULT

hang? /∈ dom ringing ∪
⋃

connection

rqt ! = ignored

Schema HangRing needs not be changed.

5.4 A Conference Call Scenario

Scenario ThreeInConference shows three numbers in a conference. It begins

with numbers 4 and 6 already connected. In state 1, the user at number

6 dials number 2. The phone at number 2 rings. At state 2, the user at

number 2 picks up the phone. The phone at number 2 stops ringing. A

conference call involving numbers 2, 4 and 6 is established. At state 3, the

user at number 6 hangs up. Users at numbers 2 and 4 remain connected.

Numbers 7 and 9, staying connected for the whole time, do not play an

active role in this scenario.

Step Input/Output System State

0 Nos. 4 and 6 are connected.
Nos. 7 and 9 are connected.

1 User at no. 6 dials to no. 2. Nos. 4 and 6 are connected.
User gets a ring tone. Nos. 7 and 9 are connected.

No. 6 rings no. 2.

2 User at no. 2 answers the phone. Nos. 2, 4 and 6 are connected.
Request is OK. Nos. 7 and 9 are connected.

3 User at no. 6 hangs up the phone. Nos. 2 and 4 are connected.
Request is OK. Nos. 7 and 9 are connected.

Tab. 5.2: E-scenario ThreeInConference
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Step Input Output connection ringing

0 {{4, 6}, {7, 9}} { }
1 caller? = 6 ∧ callee? = 2 tone! = ring {{4, 6}, {7, 9}} {6 7→ 2}
2 answer? = 2 rqt ! = OK {{2, 4, 6}, {7, 9}} { }
3 hang? = 6 rqt ! = OK {{2, 4}, {7, 9}} { }

Tab. 5.3: Z-scenario ThreeInConference

5.4.1 Verifying a Dialling Step

To see if a schema is capable of handling a step, we substitute the values

in the step for the variables in the schema’s predicates. If all predicates

evaluate to true, it means that the schema can handle the scenario step. We

have been doing this through earlier chapters. We shall formally define this

useful relationship between schemas and scenarios in the next chapter.

Step ThreeInConference.1 in Table 5.3 is a DiallingOp based on the

names and types of its I/O parameters. After substitutions of the step’s

data, the first predicate of schema DialRing is the only predicate that eval-

uates to false.
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caller? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

⇔ 6 /∈ dom ∅ ∪ ran ∅ ∪
⋃
{{4, 6}, {7, 9}}

⇔ 6 /∈ ∅ ∪ ∅ ∪ {4, 6, 7, 9}
⇔ 6 /∈ {4, 6, 7, 9}
⇔ false

callee? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

⇔ 2 /∈ {4, 6, 7, 9}
⇔ true

connection ′ = connection

⇔ {{4, 6}, {7, 9}} = {{4, 6}, {7, 9}}
⇔ true

ringing ′ = ringing ⊕ {caller? 7→ callee?}
⇔ {6 7→ 2} = ∅ ⊕ {6 7→ 2}
⇔ {6 7→ 2} = {6 7→ 2}
⇔ true

tone! = ring

⇔ ring = ring

⇔ true

We can modify schema DialRing on page 88 by weakening its precon-

dition. The dropping of the generalised union of connection makes sense

because we want a connected user to be able to ring someone so that a

conference call can start or include more phone users.
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DialRing

∆PhoneSystem

caller?, callee? : PHONE

tone! : TONE

caller? /∈ dom ringing ∪ ran ringing

callee? /∈ dom ringing ∪ ran ringing ∪
⋃

connection

connection ′ = connection

ringing ′ = ringing ⊕ {caller? 7→ callee?}
tone! = ring

5.4.2 Starting a Conference

Schema AnswerRing only creates connections of two phone numbers. It

does not augment existing connections with additional numbers. We need

to create a new schema AnswerConference for step ThreeInConference.2 in

Table 5.3 on page 91.

AnswerConference

∆PhoneSystem

answer? : PHONE

rqt ! : RESULT

caller : PHONE

callerSet : P PHONE

caller 7→ answer? ∈ ringing

caller ∈ callerSet ∧ callerSet ∈ connection

connection ′ = connection \ {callerSet} ∪ {callerSet ∪ {answer?}}
ringing ′ = ringing −B {answer?}
rqt ! = OK

There are two local variables in the schema: caller and callerSet. The

first predicate constrains the value of caller. The second predicate specifies

the value of callerSet which holds all the numbers in the connection before

the operation. The value of callerSet is unique. In other words, a caller

cannot be connected to different parties at the same time. Though not shown
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here, it can be proved by induction based on the way variable connection is

updated. The third predicate adds the answering number to callerSet and

substitutes the new set for the original callerSet in connection. The fourth

predicate removes from ringing the ordered pair that has the answering

number in the range.

We verify schema AnswerConference against step ThreeInConference.2

by first substituting the values from the step for the variables of the schema.

We then try to find suitable values for local variables to make the predicates

of the schema true. We can assign value 6 to caller to make the first predicate

true as shown below.

caller 7→ answer? ∈ ringing

⇔ caller 7→ 2 ∈ {6 7→ 2}

In the evaluation of the second predicate, we can assign value {4, 6} to

callerSet to make the predicate true.

caller ∈ callerSet ∧ callerSet ∈ connection

⇔ 6 ∈ callerSet ∧ callerSet ∈ {{4, 6}, {7, 9}}

The remaining three predicates in the schema evaluate to true as shown

below. Schema AnswerConference works for step ThreeInConference.2.

connection ′ = connection \ {callerSet} ∪ {callerSet ∪ {answer?}}
⇔ {{2, 4, 6}, {7, 9}} = {{4, 6}, {7, 9}} \ {{4, 6}} ∪ {{4, 6} ∪ {2}}
⇔ {{2, 4, 6}, {7, 9}} = {{7, 9}} ∪ {{4, 6} ∪ {2}}
⇔ {{2, 4, 6}, {7, 9}} = {{7, 9}} ∪ {{2, 4, 6}}
⇔ {{2, 4, 6}, {7, 9}} = {{2, 4, 6}, {7, 9}}
⇔ true

ringing ′ = ringing −B {answer?}
⇔ ∅ = {6 7→ 2} −B {2}
⇔ ∅ = ∅
⇔ true

rqt ! = OK

⇔ OK = OK

⇔ true
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5.4.3 Starting a 2-party Connection

New schema AnswerConference and old schema AnswerRing overlap in their

preconditions. Since the former is handling conference calls for us, we will

limit schema AnswerRing to create connections with only two users. Shown

in the revised version of schema AnswerRing on this page, a new predicate

ensures that the caller is not a member of an existing connection. Using

the definition of the generalised union operator, we could prove that the

second predicate in the revised AnswerRing and the second predicate of

AnswerConference are mutually exclusive.

AnswerRing

∆PhoneSystem

answer? : PHONE

rqt ! : RESULT

caller : PHONE

caller 7→ answer? ∈ ringing

caller /∈
⋃

connection

connection ′ = connection ∪ {{caller , answer?}}
ringing ′ = ringing −B {answer?}
rqt ! = OK

We redefine AnsweringOp with new AnswerConference and revised AnswerRing .

AnsweringOp =̂ AnswerRing ∨ AnswerConference ∨ AnswerIgnored

5.4.4 Ending a Conference

Step ThreeInConference.2 in Table 5.3 on page 91 shows a user hanging

up. The remaining users are still connected. To determine the new value of

connection, we first find the set that holds the hanging number and subtract

the set from the set of connections. We then add back the connection without

the hanging number. As before, hangSet is unique.
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HangConference

∆PhoneSystem

hang? : PHONE

rqt ! : RESULT

hangSet : P PHONE

hang? ∈ hangSet ∧ hangSet ∈ connection

#hangSet > 2

connection ′ = connection \ {hangSet} ∪ {hangSet \ {hang?}}
ringing ′ = ringing

rqt ! = OK

We verify schema HangConference against step ThreeInConference.3 as

follows. In the evaluation of the first predicate, we can only assign value

{2, 4, 6} to local variable hangSet to make the predicate true.

hang? ∈ hangSet ∧ hangSet ∈ connection

⇔ 6 ∈ hangSet ∧ hangSet ∈ {{2, 4, 6}, {7, 9}}

All remaining predicates in HangConference evaluate to true. Having

the size of hangSet greater than 2 ensures that the schema is only applied

to a conference call.
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#hangSet > 2

⇔ #{2, 4, 6} > 2

⇔ 3 > 2

⇔ true

connection ′ = connection \ {hangSet} ∪ {hangSet \ {hang?}}
⇔ {{2, 4}, {7, 9}} = {{2, 4, 6}, {7, 9}} \ {{2, 4, 6}} ∪ {{2, 4, 6} \ {6}}
⇔ {{2, 4}, {7, 9}} = {{7, 9}} ∪ {{2, 4, 6} \ {6}}
⇔ {{2, 4}, {7, 9}} = {{7, 9}} ∪ {{2, 4}}
⇔ {{2, 4}, {7, 9}} = {{2, 4}, {7, 9}}
⇔ true

ringing ′ = ringing

⇔ ∅ = ∅
⇔ true

rqt ! = OK

⇔ OK = OK

⇔ true
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5.4.5 Ending a 2-party Connection

Schema HangConnect was written with the assumption that all connections

have only two users. It did not check this condition explicitly. Now we need

to strengthen its precondition with the second predicate below. Without the

checking of set size, schema HangConnect will interfere with the operation

of schema HangConference.

HangConnect

∆PhoneSystem

hang? : PHONE

rqt ! : RESULT

hangSet : P PHONE

hang? ∈ hangSet ∧ hangSet ∈ connection

¬ (#hangSet > 2)

connection ′ = connection \ {hangSet}
ringing ′ = ringing

rqt ! = OK

HangingOp is redefined with new schema HangConference.

HangingOp =̂ HangConnect ∨ HangRing ∨ HangConference ∨ HangIgnored
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5.5 Reverification

For every scenario step, the formal specification needs to have an operation

to handle it. An operation is defined as a disjunction of schemas. Every time

there are new or revised scenarios, after making necessary modifications to

the specification, we should reverify it. If we have a tool that keeps track

of scenario steps and their handling schemas, the reverification can be done

selectively on the affected scenarios and schemas.

We should consider to modify an existing schema before adding a new

one. It can prevent the number of schemas from growing unnecessarily. We

only need to consider the schemas used to define the same operation. For

example, if a new scenario step has I/O parameters matching those of OP ,

we just need to see if any of Disjunct1, Disjunct2 and Disjunct3 can handle

the step with or without modification.

OP =̂ Disjunct1 ∨ Disjunct2 ∨ Disjunct3

It is possible for customers to drop the requirements captured in some

scenarios. Reverification identifies the schemas not used for any steps. We

can eliminate the unused schemas from the formal specification. Suppose

Disjunct3 is not used anymore, we can redefine OP .

OP =̂ Disjunct1 ∨ Disjunct2

After modifications on the operations, we shall check that the operations

are still total and deterministic. For example, the deletion of Disjunct3 may

create a hole in the precondition of OP .

Finally, customers can periodically review the scenarios to see that they

are still current and complete.
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5.6 Chapter Conclusion

The majority of formal method authors have unrealistically treated customer

requirements as being static. The existing work has severe limitations. Some

only deal with event-based specifications. Refactoring only deals with the

clean-up after quick and dirty changes but not how to put the changes in

the specification.

In the previous chapter, we have made a bad decision on the data struc-

ture used to represent connections. Ordered pairs are only good for two

numbers in a connection. Much work is involved in changing data struc-

tures. We have to revise all existing schemas for the new data structure

even before we can consider conferencing scenarios. Only a foreknowledge

of future requirements can safeguard us from the predicament.

We chose to represent a conference of multiple users by a set. We picked

the same data structure for 2-party connections and conference calls. This

decision may allow us to use the same schema whether an operation relates

to a normal connection or a conference.

We could have made a different decision to keep ordered pairs for normal

connections and only use sets for conference calls. This alternative choice

would eliminate the schema revision work we did in section 5.3. However

the short term gain may be more expensive in the long run because we will

always need to keep two schemas of each operation for 2-party and multi-

party connections. To query the status of a line, we will also need to check

two state variables. Therefore we decided to bite the bullet and convert all

connections to sets.

Following is a number of tasks that specifiers would try in order for new

scenarios.

1. Try existing schemas

2. Try to modify existing schemas

3. Create new schemas on existing state space

4. Revise state space and create new schemas



6. SPECIFICATION VERIFICATION

We have introduced an approach to create operation schemas by generalising

concrete values in scenarios to variables. Relationships of the variables are

captured in schema predicates. Given our limited cognitive capacity, we

can only attend to a few scenario steps when writing an operation schema.

For example, in Chapter 4 we created schemas by considering two or three

complementary scenario steps together. To gain more confidence of their

completeness and correctness, we verify schemas against additional scenario

steps. This chapter presents the underpinning of schema verification against

scenario steps that we have been doing in earlier chapters.

In the formal definition of a programming language, we could define

the language syntax, the semantic domain and the function that maps the

syntax to its semantic value [143, Chapter 4]. That approach of defining

a programming language does not work well for our formalising effort of

concrete scenarios. It presumes that any particular program gives rise to

a unique meaning. Our authoring of operation schemas from scenarios on

the other hand is creative. Design decisions are made by the developer in

the process. A set of concrete scenarios does not map to a unique set of

schemas.

We specify the formal relationship between a set of concrete scenarios and

a collection of operation schemas with scenarioObserved a Boolean function.

It returns true when the concrete scenarios in its first parameter are observed

by the schemas in its second parameter. With different developer’s decisions,

we will derive different schemas from the same concrete scenarios. The

function will still return true. The function is built on top of a simpler and

similar function called stepObserved that returns true when the scenario

step in its first parameter is realised by an implementation of the schema in

its second parameter.
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Section 6.1 defines the syntax of variable names and scenario steps. Sec-

tion 6.2 defines basic functions. Function pre2post maps pre-state variable

names to corresponding post-state variable names. Several other functions

return the names of various kinds of variables used in an operation schema.

Section 6.3 defines concrete scenarios concluding the treatment of syntax.

We then turn to semantics and define step observance in Section 6.4. The

observance relation is extended from steps to scenarios in Section 6.5. The

examples in this chapter are taken from the telephone system problem.

6.1 Basic Types

We borrow symbols from Z notation for our formal definition. The basic

types defined in this section do not change even when we move to different

problem domains.

6.1.1 Variable Names

X-TYPE, Y-TYPE, I-TYPE and O-TYPE respectively hold the names of

all pre-state, post-state, input and output variables. The four types are used

in scenarios and schemas.

Definition 6.1.1.

X-TYPE == C +

Y-TYPE == C +′

I-TYPE == C +?

O-TYPE == C +!

where C stands for an alphanumeric character,
+ is a metasymbol for non-zero repetitions of the construct before it,

and ′, ? and ! are terminal symbols.

Definition 6.1.2.

L-TYPE == C +

L-TYPE holds the names of all local variables. L-TYPE is not used in

scenarios because they do not contain local variables. Both pre-state and

local variable names are strings of alphanumeric characters. Developers need
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to avoid the conflicting use of the same name as a pre-state variable and a

local variable in the same operation schema.

Example

connection ∈ X-TYPE

connection ′ ∈ Y-TYPE

hang? ∈ I-TYPE

rqt ! ∈ O-TYPE

hangSet ∈ L-TYPE

6.1.2 Values

V-TYPE is the type for values that can be stored in the variables. Integers

and strings are just some possible values allowed by V-TYPE. We use an

inclusive definition below to allow any values.

Definition 6.1.3. Set V-TYPE contains all permissible values that may be

assigned to variables.

6.1.3 Scenario Steps

STEP-TYPE is the type for scenario steps. A step is a partial function

which maps pre-state, post-state, input and output variables to values.

Definition 6.1.4.

STEP-TYPE == (X-TYPE ∪ Y-TYPE ∪ I-TYPE ∪ O-TYPE ) 7→ V-TYPE

Example

The first step of scenario ThreeInConference on page 91 has the following

value from STEP-TYPE.

{ connection 7→ {{4, 6}, {7, 9}},
ringing 7→ ∅,
connection ′ 7→ {{4, 6}, {7, 9}},
ringing ′ 7→ {6 7→ 2},
caller? 7→ 6, callee? 7→ 2,

tone! 7→ ring}
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6.2 Basic Functions

6.2.1 Mapping Variables from Pre-state to Post-state

Function pre2post maps a pre-state variable name to its post-state variable

name by appending the terminal symbol prime ′ to the end. The function

helps us express the continuity of the steps in a scenario.

Definition 6.2.1.

pre2post : X-TYPE → Y-TYPE

pre2post = {x : X-TYPE • x ′}

Example

connection is a pre-state variable and connection ′ is the corresponding post-

state variable. This fact is represented by the following relation.

connection 7→ connection ′ ∈ pre2post

6.2.2 Variables Used By Schemas

The types and function defined earlier are universal. They do not change

when we move from one application domain to the next. From this point

on, however, all definitions are tailored to individual application domains.

Operation schemas consist of declarations and predicates. Declarations

name the variables that the predicates use. We define a few functions to

return the various kinds of variables declared in a schema.

Definition 6.2.2. Functions pre(h), post(h), in(h) and out(h) respectively

contain the names of the global pre-state, global post-state, input and output

variables used in an operation schema h.

pre(h) ⊂ X-TYPE

post(h) ⊂ Y-TYPE

in(h) ⊂ I-TYPE

out(h) ⊂ O-TYPE
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Example

Schema HangConnect on page 98 declares PhoneSystem, hang? and rqt !.

PhoneSystem in turn consists of connection and ringing .

pre(h) = {connection, ringing}
post(h) = {connection ′, ringing ′}
in(h) = {hang?}
out(h) = {rqt !}

6.3 Concrete Scenarios

Before formally defining concrete scenarios, we illustrate domain restriction

operator C and function composition operator o
9 from Z with examples.

Example

We place X-TYPE and Y-TYPE to the left of domain restriction operator

C to extract the mappings of pre-state and post-state variables respectively.

X-TYPE C { connection 7→ {{4, 6}, {7, 9}}, ringing 7→ ∅,
connection ′ 7→ {{4, 6}, {7, 9}}, ringing ′ 7→ {6 7→ 2},
caller? 7→ 6, callee? 7→ 2, tone! 7→ ring}

= {connection 7→ {{4, 6}, {7, 9}}, ringing 7→ ∅}

Y-TYPE C { connection 7→ {{4, 6}, {7, 9}}, ringing 7→ ∅,
connection ′ 7→ {{4, 6}, {7, 9}}, ringing ′ 7→ {6 7→ 2},
caller? 7→ 6, callee? 7→ 2, tone! 7→ ring}

= {connection ′ 7→ {{4, 6}, {7, 9}}, ringing ′ 7→ {6 7→ 2}}

Example

To the left of operator o
9, we have a set that maps pre-state variable ringing

to post-state variable ringing ′. Composing it with a mapping from a post-

state variable to a value, we get a mapping from the corresponding pre-state

variable to the same value.
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{ringing 7→ ringing ′} o
9 {ringing ′ 7→ {6 7→ 2}}

= {ringing 7→ {6 7→ 2}}

Definition 6.3.1.

SCENARIO-TYPE ==

{f : N 7 7→ STEP-TYPE | dom f = 1 . . #f ∧
( ∀ i ∈ 1 . . (#f − 1) •
(pre2post o

9 Y-TYPE C f (i)) = ( X-TYPE C f (i + 1))))}

A concrete scenario is a finite partial function indicated by Z symbol

7 7→. The first conjunct describes that the domain of the function consists of

consecutive natural numbers. The range of the function are scenario steps.

A scenario step maps pre-state, post-state, input and output variables to

values. The second conjunct requires the post-state of a step to match the

pre-state of the following step. Expression Y-TYPE C f (i) restricts the

domain of step f (i) to post-state variables.

When writing a formal specification, if the value of a variable remains

unchanged by an operation, we can write that a variable holding a range of

values in one state implies the same variable holding a larger range of values

in the next state, for example (0 6 i 6 5) ⇒ (0 6 i ′ 6 9). But concrete

scenarios deal with exact value assignments instead of value ranges. We can

afford to be more precise to write that after composing with pre2post the

post-state of a step equals the pre-state of the next step.

In earlier chapters, we attached alphabetic subscripts to some data values

for documentation and understanding. They are not a part of the formal

definition.

Example

Given individual scenario steps t1, t2 and t3 as follows:

t1 = { connection 7→ {{4, 6}, {7, 9}},
ringing 7→ ∅,
connection ′ 7→ {{4, 6}, {7, 9}},
ringing ′ 7→ {6 7→ 2},
caller? 7→ 6, callee? 7→ 2,
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tone! 7→ ring}

t2 = { connection 7→ {{4, 6}, {7, 9}},
ringing 7→ {6 7→ 2},
connection ′ 7→ {{2, 4, 6}, {7, 9}},
ringing ′ 7→ ∅,
answer? 7→ 2,

rqt ! 7→ OK}

t3 = { connection 7→ {{2, 4, 6}, {7, 9}},
ringing 7→ ∅,
connection ′ 7→ {{2, 4}, {7, 9}},
ringing ′ 7→ ∅,
hang? 7→ 6,

rqt ! 7→ OK}

Scenario ThreeInConference originally in a table form on page 91 can be

expressed as a set {1 7→ t1, 2 7→ t2, 3 7→ t3} in agreement to Definition 6.3.1.

The domain of a concrete scenario is a set of consecutive numbers. In Z,

such a set of mappings can be written compactly as a sequence 〈t1, t2, t3〉.
The first conjunct in the concrete scenario definition requires all steps to

be of STEP-TYPE. The proof is so trivial that it is hardly necessary. We

just need to show that every step is a partial function with domain X-TYPE

∪ Y-TYPE ∪ I-TYPE ∪ O-TYPE and range V-TYPE.

The second conjunct requires a step’s post-state to match the next step’s

pre-state. There are n − 1 matches to prove in an n-step scenario. Consider

i = 1 for the first of the two required matches in our 3-step scenario.

t1 = { connection 7→ {{4, 6}, {7, 9}},
ringing 7→ ∅,
connection ′ 7→ {{4, 6}, {7, 9}},
ringing ′ 7→ {6 7→ 2},
caller? 7→ 6, callee? 7→ 2,

tone! 7→ ring}
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Y-TYPE C t1 = {connection ′ 7→ {{4, 6}, {7, 9}}, ringing ′ 7→ {6 7→ 2}}

pre2post o
9 Y-TYPE C t1

= {connection 7→ connection ′, ringing 7→ ringing ′, . . .}o9
{connection ′ 7→ {{4, 6}, {7, 9}}, ringing ′ 7→ {6 7→ 2}}

= {connection 7→ {{4, 6}, {7, 9}}, ringing 7→ {6 7→ 2}}

t2 = { connection 7→ {{4, 6}, {7, 9}},
ringing 7→ {6 7→ 2},
connection ′ 7→ {{2, 4, 6}, {7, 9}},
ringing ′ 7→ ∅,
answer? 7→ 2,

rqt ! 7→ OK}

X-TYPE C t2 = {connection 7→ {{4, 6}, {7, 9}}, ringing 7→ {6 7→ 2}}

∴ pre2post o
9 Y-TYPE C t1 = X-TYPE C t2

∴ 1 < 3⇒ (pre2post o
9 Y-TYPE C t1) = ( X-TYPE C t2)

The consideration of the case for i = 2 is required to complete the proof

of the second conjunct in Definition 6.3.1 on page 106. We will skip it

because of its similarity to the case for i = 1 which we have just proved.

When a scenario is expressed with a table, a step is actually represented

by two consecutive rows. In Table 5.3 on page 91, rows 0 and 1 are the

pre-state and post-state of step t1. Rows 1 and 2 are the pre-state and

post-state of step t2. Rows 2 and 3 are the pre-state and post-state of step

t3. The representation guarantees the matching of the post-state of one step

with the pre-state of the next step. For example, row 2 is simultaneously

the post-state of t2 and the pre-state of t3.

6.4 Step Observance

We use square brackets to represent the substitutions of values for variables.

For example, h[t ] denotes the evaluation of schema h after the variables
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in its predicates are substituted with the values in step t . Schema h may

have additional local variables not specified in the step. Function u specifies

suitable values for the local variables declared in schema h. If h evaluates

to true after the appropriate substitutions for step t and the local variables,

schema h is said to observe step t .

Definition 6.4.1.

stepObserved : STEP-TYPE × SCHEMA → BOOLEAN

stepObserved = {t : STEP-TYPE ; h : SCHEMA |
X-TYPE C t = pre(h) ∧
Y-TYPE C t = post(h) ∧
I-TYPE C t = in(h) ∧
O-TYPE C t = out(h) ∧
∃ u ∈ (L-TYPE 7→ V-TYPE) • h[t ][u]}

The first four conjuncts in the definition ensure that the scenario step

and the schema cover the same state, input and output variables.

Example

We would like to prove that h observes t for h = schema HangConference

on page 96 and t = ThreeInConference.3 which is step t3 on page 107.

h[t ]

⇔ hang? ∈ hangSet ∧ hangSet ∈ connection ∧ #hangSet > 2 ∧
connection ′ = connection \ {hangSet} ∪ {hangSet \ {hang?}} ∧
ringing ′ = ringing ∧ rqt ! = OK [t ]

⇔ 6 ∈ hangSet ∧ hangSet ∈ {{2, 4, 6}, {7, 9}} ∧ #hangSet > 2 ∧
{{2, 4}, {7, 9}} = {{2, 4, 6}, {7, 9}} \ {hangSet} ∪ {hangSet \ {6}} ∧
∅ = ∅ ∧ OK = OK

⇔ 6 ∈ hangSet ∧ hangSet ∈ {{2, 4, 6}, {7, 9}} ∧ #hangSet > 2 ∧
{{2, 4}, {7, 9}} = {{2, 4, 6}, {7, 9}} \ {hangSet} ∪ {hangSet \ {6}}

We need to find a suitable function u so that h[t ][u] evaluates to true.

Local variable hangSet is constrained by the second conjunct above to two

possible values {2, 4, 6} and {7, 9}. We will try u = {hangSet 7→ {2, 4, 6}}
first.
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h[t ][u]

⇔ 6 ∈ hangSet ∧ hangSet ∈ {{2, 4, 6}, {7, 9}} ∧ #hangSet > 2 ∧
{{2, 4}, {7, 9}} = {{2, 4, 6}, {7, 9}} \ {hangSet} ∪ {hangSet \ {6}}
[ {hangSet 7→ {2, 4, 6}} ]

⇔ 6 ∈ {2, 4, 6} ∧ {2, 4, 6} ∈ {{2, 4, 6}, {7, 9}} ∧ #{2, 4, 6} > 2 ∧
{{2, 4}, {7, 9}} = {{2, 4, 6}, {7, 9}} \ {{2, 4, 6}} ∪ {{2, 4, 6} \ {6}}

⇔ true ∧ true ∧ 3 > 2 ∧
{{2, 4}, {7, 9}} = {{7, 9}} ∪ {{2, 4, 6} \ {6}}

⇔ true ∧ {{2, 4}, {7, 9}} = {{7, 9}, {2, 4}}
⇔ true

Schema hangConference observes step ThreeInConference.3.

6.5 Scenario Observance

We define an operation as the disjunction of a number of schemas sharing

the same input and output parameters. The definition reflects our view

of programs described in Section 1.7. As explained, given the flexibility

allowed within the predicates of a schema, this view does not compromise

the generality of the programs we can express.

Definition 6.5.1.

OPERATION == h1 ∨ h2 ∨ . . . ∨ hn

where n ∈ N ∧
∀ i , j ∈ 1 . . n • hi ∈ SCHEMA ∧ in(hi) = in(hj ) ∧ out(hi) = out(hj )

A set of operations observes a set of concrete scenarios if and only if for

every step t in the scenarios, there exists an operation h such that h observes

t . This relationship is captured by Boolean function scenarioObserved.

Definition 6.5.2.

scenarioObserved : P SCENARIO-TYPE ×P OPERATION → BOOLEAN

scenarioObserved = {Q : P SCENARIO-TYPE ; H : P OPERATION |
(∀ q ∈ Q ; t ∈ q ; ∃ h ∈ H • stepObserved(t , h))}
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6.6 Chapter Conclusion

We have defined four basic types X-TYPE, Y-TYPE, I-TYPE and O-TYPE

for variable names and another basic type V-TYPE for all possible values.

Post-state variables in X-TYPE differ from their corresponding pre-state

variables by a trailing prime. The basic types are universal. They do not

change when we move from one problem domain to another.

Step type STEP-TYPE is a function that maps basic variable types to

value type V-TYPE. A concrete scenario is a sequence of consecutive steps

where the post-state variables of one step must match the pre-state variables

of the next step.

An operation schema observes a scenario step if the schema predicates

evaluate to true after suitable value substitutions for variables. The obser-

vance relation is also defined between a set of schemas and a set of scenarios.

A set of operation schemas observes a set of concrete scenarios if there exists

a schema to observe every scenario step.

The observance of a scenario step by a schema only means that the

schema does not contradict the step. Observance alone does not preclude

another step from having the same input and pre-state but difference output

and post-state. Observance has to be combined with determinism to avoid

undesirable outcomes. Determinism will be discussed in Chapter 8.



7. SCENARIO EXPANSIONS VERSUS SPECIFICATION

REFINEMENT

The concrete scenarios in the previous chapters are written at an abstraction

level for the customers. They are customer scenarios. Their steps are

called customer steps describing only what need to be done. All variables

used concern the customer. Otherwise they would not be part of a customer

scenario.

The developer may expand a customer step into multiple developer

steps to describe how it can be accomplished. The expanded scenarios

are also called developer scenarios. The expansions embody choices of

algorithms. The expanded steps are described with new states and variables

which do not concern the customer. Developers can add details to scenarios

useful for implementations.

In this chapter, we work on the sorting problem. The customer sees

it as a single operation. For the developer, a single sorting operation is

accomplished with many swaps passing through a number of intermediate

states. If we allow the swaps to take place in any order, an initial state can

reach its final state through different sequences of intermediate states. These

expanded scenarios are generalised to a specification. If the path from an

initial state to its final state is fixed by an algorithm, the expanded scenarios

are generalised to a program instead.

Customers use scenarios to express and document their requirements.

Developers use expanded scenarios to visualise and document the detailed

steps needed to accomplish user tasks. Customer and developer scenarios

both facilitate communications between project team members.

Specifiers generalise customer scenarios to create specifications. It is

common for formal method practitioners to refine specifications to programs.

Alternatively, programmers may expand the customer scenarios and gener-
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alise the expanded scenarios to programs. The programs can be verified

directly against scenarios without using formal specifications.

7.1 Sorting Specification

We have the task to sort a number of records. To focus on the key concepts,

we use integers as record keys and ignore other record components.

7.1.1 First Order Logic

Following is a formal specification adapted from [39, page 318]. Symbols
a and ] stand for list concatenation and bag union respectively. Lists are

enclosed in 〈 〉 and bags in [[ ]].

Sort : N∗ → N∗

pre-Sort(l) =̂ True

post-Sort(lu , ls) =̂ bag(lu) = bag(ls) ∧ ascending(ls)

where

bag(〈〉) =̂ ∅
bag(〈x 〉) =̂ [[x ]]

bag(l1 a l2) =̂ bag(l1) ] bag(l2)

ascending(l) =̂ ∀ x , y : N • inOrder(x , y , l)⇒ x ≤ y

inOrder(x , y , l) =̂ ∃ l1, l2, l3 : N∗ • l = l1 a 〈x 〉a l2 a 〈y〉a l3

The postcondition specified in post-Sort(lu , ls) has two conjuncts. Func-

tion bag turns a list into a bag which keeps the count of each key but ignores

the order of the keys in the list. The first conjunct bag(lu) = bag(ls) states

that the counts of each key in unsorted list lu and sorted list ls are equal.

The second conjunct ascending(ls) means that the keys in the output list

must be in ascending order.

7.1.2 Z

The above specification in first order logic can be written in Z notation

as follows where items is the Z function to turn a sequence into a bag.

Sequences and lists are different names for the same structure. The first
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predicate ensures that both lists contain the same keys, and if applicable

the same number of duplications. In Z, we use the bracket notation to

refer to individual squence members. For example, ls?(i) refers to the ith

member of input sequence ls?. The second predicate ensures that the keys

in the sorted list are in ascending order. The two predicates here correspond

to the two conjuncts of the specification in first order logic above.

SortSpec

lu?, ls? : seq N

items lu? = items ls?

∀ i , j : 1 . . 50 • i < j ⇒ ls?(i) ≤ ls?(j )

Like all other Z schemas that appear in the thesis, the above schema

has been verified to comply with Z syntax using type checker ZTC [91]. We

also use a Z animator called ZANS to execute schemas [89]. ZANS lacks the

capability of programming languages like Prolog to automatically find the

correct values of sorted list ls for unsorted list lu. To animate the schema, we

need to code the sorted list as an input parameter indicated by the trailing

question mark.

We have hard coded the above schema to sort a list of 50 keys. ZANS

only animates a subset of Z [90] and it does not evaluate size operator #

correctly within a for all construct. Should we change the hard coded size

50 to the more general expression #ls? for arbitrary list size, ZANS returns

an empty range and mistakenly considers the for all predicate true even

when the keys in ls are unsorted. For the other schemas in the thesis, we

present the normal version that passed the type checker rather than the

idiosyncratic version adapted for execution on the animator.

This is about as simple as a useful formal specification can get. However a

few years ago when I wrote the sorting specification, I forgot the permutation

requirement. It is difficult to tell when we miss a part of the complete

specification. Another problem is that customers would not be able to tell us

if a formal specification is correct since they do not understand the notations

used. This is why we turn to this scenario-driven approach to create a

specification or program.
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7.2 Scenario-Based Specification

We normally begin by writing domain concepts in sentences using a natural

language. We confine the sentences to a small number of templates for

manageability. The sentences are then translated to Z expressions. Since

sorting is a familiar problem, we shall skip the sentences and jump right into

Z-scenarios. We consider a scenario with distinct keys and another scenario

with duplicated keys.

7.2.1 Distinct Key Scenario

There are no user interactions necessary. In addition to a column for state

variable KeyList, we use a new column condition to capture the significant

data relationships in the respective state.

Step keyList Condition

0 〈8, 4, 2, 6〉
1 〈2, 4, 6, 8〉 2 ≤ 4 ≤ 6 ≤ 8

Tab. 7.1: Z-scenario SortFourKeys

State 1 of the scenario in Table 7.1 has the terminating condition of

2 ≤ 4 ≤ 6 ≤ 8 for a sorted KeyList. We prefer this contracted syntax over

the lengthened version 2 ≤ 4 ∧ 4 ≤ 6 ∧ 6 ≤ 8 which favours compilers over

human readers.

From the scenario, we observe that three of the four positions in the

finishing list have their values altered. We use a basic operation that swaps

two values. The change of three values is effected by two or more swaps.

The one-step customer scenario may be expanded into the two-step scenario

in Table 7.2 on the next page. State 0a is a newly expanded state as denoted

by the alphabetic character tagged to the state number. In the right column,

we show the enabling conditions of the steps, for example 8 > 2 for state 0.

There are often multiple ways to expand a scenario. Table 7.3 on the

following page is another expansion for the same customer scenario.
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Step keyList Condition

0 〈8, 4, 2, 6〉 8 > 2

0a 〈2, 4, 8, 6〉 8 > 6

1 〈2, 4, 6, 8〉 2 ≤ 4 ≤ 6 ≤ 8

Tab. 7.2: Z-scenario SortFourKeys Expansion 1

Step keyList Condition

0 〈8, 4, 2, 6〉 8 > 4

0a 〈4, 8, 2, 6〉 8 > 2

0b 〈4, 2, 8, 6〉 8 > 6

0c 〈4, 2, 6, 8〉 4 > 2

1 〈2, 4, 6, 8〉 2 ≤ 4 ≤ 6 ≤ 8

Tab. 7.3: Z-scenario SortFourKeys Expansion 2

7.2.2 Duplicated Key Scenario

The customer also wants to sort lists with duplicated keys.

Step keyList Condition

0 〈8, 4, 2, 6, 8, 4〉
1 〈2, 4, 4, 6, 8, 8〉 2 ≤ 4 ≤ 4 ≤ 6 ≤ 8 ≤ 8

Tab. 7.4: Z-scenario SortSixKeys

Tables 7.5 and 7.6 on the next page show two possible expansions for

the same customer scenario. Subscripts allow the specifier to track different

instances of the same key value. The final state of the first expanded scenario

has 8b before 8a while that of the second expanded scenario has 8b after 8a .

Subscripts are not part of the original customer scenario. The relative order

of the duplicated keys does not concern the customer.

7.2.3 Z

Our sorting scenarios have assumed that the keys are stored in sequences.
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Step keyList Condition

0 〈8a , 4c , 2, 6, 8b , 4d 〉 8a > 2

0a 〈2, 4c , 8a , 6, 8b , 4d 〉 8a > 4d

1 〈2, 4c , 4d , 6, 8b , 8a〉 2 ≤ 4c ≤ 4d ≤ 6 ≤ 8b ≤ 8a

Tab. 7.5: Z-scenario SortSixKeys Expansion 1

Step keyList Condition

0 〈8a , 4c , 2, 6, 8b , 4d 〉 8b > 4d

0a 〈8a , 4c , 2, 6, 4d , 8b〉 6 > 4d

0b 〈8a , 4c , 2, 4d , 6, 8b〉 4c > 2

0c 〈8a , 2, 4c , 4d , 6, 8b〉 8a > 2

0d 〈2, 8a , 4c , 4d , 6, 8b〉 8a > 4c

0e 〈2, 4c , 8a , 6, 8b , 4d 〉 8a > 6

0f 〈2, 4c , 6, 8a , 8b , 4d 〉 8b > 4d

0g 〈2, 4c , 6, 8a , 4d , 8b〉 8a > 4d

0h 〈2, 4c , 6, 4d , 8a , 8b〉 6 > 4d

1 〈2, 4c , 4d , 6, 8a , 8b〉 2 ≤ 4c ≤ 4d ≤ 6 ≤ 8a ≤ 8b

Tab. 7.6: Z-scenario SortSixKeys Expansion 2

SortingState

keyList : seq N

There is a common feature in all the expanded steps. The precondition

is that two keys in the list are out of order. The postcondition is that the

two keys are swapped. This common feature in the expanded steps can

be generalised to schema Swap on Page 118. It has four local variables.

Variables i and j hold indices and variables x and y hold the keys. The

third and fourth predicates detect out-of-order keys in the list. The last

predicate performs the swap.
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Swap

∆SortingState

i , j , x , y : N

keyList(i) = x

keyList(j ) = y

i < j

x > y

keyList ′ = keyList ⊕ {i 7→ y , j 7→ x}

Cooke discusses a measure decreased by a swap of out-of-order keys

[39, page 322]. The measure eventually reaches zero when Swap cannot be

invoked anymore. At that point, the negation of the 5-predicate conjunction

is true. The list is sorted.

The out-of-order condition may be true for multiple pairs of keys in a

state. The swap can apply to any one of the out-of-order pairs. In the above

expansions, we do not insist that one pair of keys should have priority over

another pair. The generalisation of the swapping steps leads to a schema

that does not prescribe a particular order to perform the swaps. Therefore

we consider the schema a specification.

7.3 Insertion Sort

In this section, we expand the customer scenario using insertion sort. We

illustrate the sorting of five keys as follows [120]. The keys are positive

integers. Value 0 at the beginning is not a real key. The sentinel value

simplifies our job so there is no special handling to insert a key to the front.

The first two keys, including sentinel value 0, are always sorted initially.

The first iteration of the insertion sort algorithm begins with x3.
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Stage x1 x2 x3 x4 x5 x6

3 0 ↓ 8 7 2 4 6

4 0 ↓ 7 8 2 4 6

5 0 2 ↓ 7 8 4 6

6 0 2 4 ↓ 7 8 6

0 2 4 6 7 8

The boxed value is the key being moved and the downward arrow shows

its new position. At stage j , the j th key is inserted in the correct position

among the previously sorted j − 1 keys. After j stages, the first j keys are

sorted. The action at each stage is very specific moving a specific key to a

specific new place. There is only one route through the intermediate states

from the initial state to the final state.

Step x Condition

0 〈8, 7, 2, 4, 6〉
1 〈2, 4, 6, 7, 8〉 2 ≤ 4 ≤ 6 ≤ 7 ≤ 8

Tab. 7.7: Z-scenario SortFiveKeys

Step x j Condition

0 〈8, 7, 2, 4, 6〉 1 j = 1

0a 〈0, 8, 7, 2, 4, 6〉 3 xj = 7 ∧ 0 ≤ 7 ≤ 8

0b 〈0, 7, 8, 2, 4, 6〉 4 xj = 2 ∧ 0 ≤ 2 ≤ 7

0c 〈0, 2, 7, 8, 4, 6〉 5 xj = 4 ∧ 2 ≤ 4 ≤ 7

0d 〈0, 2, 4, 7, 8, 6〉 6 xj = 6 ∧ 4 ≤ 6 ≤ 7

0e 〈0, 2, 4, 6, 7, 8〉 7 j > length(x )

1 〈2, 4, 6, 7, 8〉 2 ≤ 4 ≤ 6 ≤ 7 ≤ 8

Tab. 7.8: Z-scenario SortFiveKeys Expansion

The customer scenario in Table 7.7 is expanded to the developer scenario

in Table 7.8 using insert sort. The first and last steps deal with the sentinel

value 0. New variable j keeps track of the stage number.
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Step x j Condition Schema

0 〈8, 7, 2, 4, 6〉 1 j = 1 Initialise

0a 〈0, 8, 7, 2, 4, 6〉 3 xj = 7 ∧ x1 ≤ xj ≤ x2 Insert

0b 〈0, 7, 8, 2, 4, 6〉 4 xj = 2 ∧ x1 ≤ xj ≤ x2 Insert

0c 〈0, 2, 7, 8, 4, 6〉 5 xj = 4 ∧ x2 ≤ xj ≤ x3 Insert

0d 〈0, 2, 4, 7, 8, 6〉 6 xj = 6 ∧ x3 ≤ xj ≤ x4 Insert

0e 〈0, 2, 4, 6, 7, 8〉 7 j > length(x ) Finalise

1 〈2, 4, 6, 7, 8〉 x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5

Tab. 7.9: Z-scenario SortFiveKeys Generalised Expansion

Table 7.9 is similar to Table 7.8. The developer rewrites some values in

the condition as indexed keys to facilitate the generalisation of conditions

and actions to schemas. There is also a new column to show the name of

the schema responsible for each expanded step.

The first two schemas SortingState and InitSortingState declare the state

space and specify its initial state.

SortingState

x : seq N
j : N

InitSortingState

SortingState ′

x ′ = 〈8, 7, 2, 4, 6〉
j ′ = 1

Symbol a stands for sequence concatenation. During the initialisation

in schema Initialise, a value of zero which is less than the smallest keys is

placed at the front of the key list.
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Initialise

∆SortingState

j = 1

j ′ = 3

x ′ = 〈0〉a x

Now we come to schema Insert on this page. Symbol # is the size

operator of sequences. Variable j holds the stage number. The first predicate

ensures that j holds a valid key index. The second predicate requires the

point of insertion i to be before j. The third predicate determines the value

of i . The fourth predicate defines the new key list x ′ by inserting the j th key

to the (i +1)th position. This is achieved by concatenating four components

as follows. The first component (1. .i) � x is a subsequence of original x from

position 1 to i where symbol � stands for subsequence extraction. The second

component 〈x (j )〉 is a 1-key sequence holding just xj . The third component

((i + 1) . . (j − 1)) � x is a subsequence of original x from positions i + 1 to

j − 1. The last component ((j + 1) . . (#x )) � x is a subsequence of x from

position j + 1 to the end.

Insert

∆SortingState

i : N

j ≤ #x

i ≤ j

x (i) ≤ x (j ) ∧ x (j ) ≤ x (i + 1)

x ′ = (1 . . i) � x a 〈x (j )〉 a ((i + 1) . . (j − 1)) � x a

((j + 1) . . (#x )) � x

j ′ = j + 1

The Z function tail returns a sequence after the first item is removed.

We use it to remove the phoney key 0.
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Finalise

∆SortingState

j > #x

x ′ = tail x

The expansion in this section allows no alternatives. More specific steps

generalise to more specific schemas. The resulting schemas prescribe an

order to perform the operations. Despite the use of Z notation, the schemas

are really a program because of their embodiment of an algorithm. The

sorting program terminates when no schema has true precondition.

7.3.1 More Scenarios

It is wise to consider more scenarios especially the ones with new conditions

and actions. In stage 3 of the next scenario, x3 with value 7 follows a smaller

value 2. No move is required for the stage.

Stage x1 x2 x3 x4

3 0 2 ↓ 7 3

4 0 2 ↓ 7 3

0 2 3 7

We need a schema to advance the stage number without moving the

current key. Schema Insert is not satisfactory because it always moves the

key to the left by at least one position.

Step x j Condition Schema

0 〈2, 7, 3〉 1 j = 1 Initialise

0a 〈0, 2, 7, 3〉 3 x3 = 7 ∧ x2 ≤ x3 Advance

0b 〈0, 2, 7, 3〉 4 x4 = 3 ∧ x2 ≤ x4 ≤ x3 Insert

0c 〈0, 2, 3, 7〉 5 j > length(x ) Finalise

1 〈2, 3, 7〉 2 ≤ 3 ≤ 7

Tab. 7.10: Z-scenario SortThreeKeys Generalised Expansion
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We write new schema Advance to fit the bill. Its first predicate checks

that xj is already in the correct position in the subsequence up to the j th

position.

Advance

∆SortingState

x (j − 1) ≤ x (j )

x ′ = x

j ′ = j + 1

Sequences are the chosen data structure. Subsequence extraction and

concatenation are the basic operations used. With insertion sort as the

algorithm, the Z schemas describe a program.

7.4 Merge Sort

In this section, we expand a scenario using merge sort. Bags of sequences

are the data structure. The operations used are “sequence to bag” conver-

sion, bag union and bag difference. The customer scenario SortFourKeys in

Table 7.1 on page 115 expands to the developer scenario in Table 7.11 on the

following page with the help of new variable b holding a bag of sequences to

be worked on. The first four steps in the expanded scenario create singleton

sequences from the original key list. The enabling conditions of the steps

at the first four states from 0 to 0c are a non-empty key list x . Due to

the similarity in the conditions and actions, we would write schema Split

to handle them. The next three steps, on states 0d to 0f , merge sequences

in b while maintaining the ascending order. Their enabling conditions are

that b has at least two sequences. The finishing step on state 0g copies the

only sequence in b to x which is the result expected by the customer. The

condition of this step is that there is only one sequence in bag b and x is

empty.

SortingState

x : seq N
b : bag(seq N)
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Step x b Condition Schema

0 〈8, 4, 2, 6〉 #x > 0 Split

0a 〈4, 2, 6〉 [[〈8〉]] #x > 0 Split

0b 〈2, 6〉 [[〈8〉, 〈4〉]] #x > 0 Split

0c 〈6〉 [[〈8〉, 〈4〉, 〈2〉]] #x > 0 Split

0d 〈〉 [[〈8〉, 〈4〉, 〈2〉, 〈6〉]] ([[〈8〉]] ] [[〈4〉]]) v b Merge

0e 〈〉 [[〈4, 8〉, 〈2〉, 〈6〉]] ([[〈2〉]] ] [[〈6〉]]) v b Merge

0f 〈〉 [[〈4, 8〉, 〈2, 6〉]] ([[〈4, 8〉]] ] [[〈2, 6〉]]) v b Merge

0g 〈〉 [[〈2, 4, 6, 8〉]] (b −∪ [[〈2, 4, 6, 8〉]]) = [[]] ∧ x = 〈〉 Finish

1 〈2, 4, 6, 8〉 [[〈2, 4, 6, 8〉]] x1 ≤ x2 ≤ x3 ≤ x4

Tab. 7.11: Z-scenario SortFourKeys Generalised Expansion

InitSortingState

SortingState ′

x ′ = 〈8, 4, 2, 6〉
b′ = [[]]

The steps are generalised to the following schemas. In schema Split,

the first item of sequence x is removed and assigned to local variable k . A

sequence, with just key k , is added to bag b.

Split

∆SortingState

k : N

#x > 0

k = head x

x ′ = tail x

b′ = b ] [[〈k〉]]

In schema Merge, sequences p and q are in b. The third predicate ensures

that sequence r has all keys from p and q . The fourth predicate ensures that

keys in r are in ascending order. The last predicate removes old sequences

p and q from b and adds new sequence r to the bag.
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Merge

∆SortingState

p, q , r : seq N

p in b

q in b

items r = items p ] items q

∀ i : 1 . . (#r − 1) • r(i) ≤ r(i + 1)

b′ = ( (b −∪ [[p]]) −∪ [[q ]]) ] [[r ]]

The first two predicates in schema Finish ensures that p is the only

sequence in b. The third predicate copies the sequence to x .

Finish

∆SortingState

p : seq N

p in b

b −∪ [[p]] = [[]]

x ′ = p

b′ = b

7.4.1 More Scenarios

The sorting of a 1-key list has no practical significance. But we will test our

program against it anyway.

Step x b Condition Schema

0 〈6〉 #x > 0 Split

0a 〈〉 [[〈6〉]] (b −∪ [[〈6〉]]) = [[]] ∧ x = 〈〉 Finish

1 〈6〉 [[〈6〉]]

Tab. 7.12: Z-scenario SortOneKey Generalised Expansion
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7.5 Specifications and Programs

Both specifications and programs formally describe computer behaviour. For

most people, the main difference is that specifications describe the what and

programs describe the how. This distinction is perspective-dependent. To

the programmer of a financial application, mathematical models to simulate

financial situations are the what and mathematical formulas to calculate

various quantities in the models are the how. To the programmer of a C

compiler, mathematical formulas in the input source programs are the what.

The what to the compiler programmer is the how to the financial application

programmer. The movable perspective makes the distinction between the

what and the how a less than ideal tool to understand the difference between

specifications and programs.

Hehner states that programs are implemented specifications [70] [71].

Programs are written in restrictive notations to facilitate execution. Hoare

shares this differentiation of specifications and programs [79]. When logic is

used for their representations, Kowalski considers efficiency to be the main

difference between specifications and programs [96]. None of their views

suggests that specifications and programs have a clear-cut distinction.

7.5.1 Three Decisions in Software Development

Our view is compatible with theirs. We treat specifications and programs as

endpoints of a continuum. We place a set of schemas on the continuum based

on three decisions that may be present in them. The decisions cover the data

structures, operations and algorithms to be used. At the specification end,

no decisions have been made. At the program end, all decisions have been

made.

Figure 7.1 on the next page shows the positions of the four sorting de-

scriptions on the continuum. Schema SortSpec uses sequences as the data

structure. In other words, only one of the three major decisions have been

made. Schema SortSpec is close to the specification end.

Schema Swap uses sequences for data structures and swaps for oper-

ations. Two of the three major decisions have been made. Without an

algorithm of how out-of-order pairs are selected for swapping, it is still a
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Specification Program

Swap
SortSpec Merge

Insert

Fig. 7.1: The specification-program continuum

specification to most.

Schema Insert includes all three decisions on data structures, operations

and algorithms. It is the closest to the program end among the four sorting

descriptions.

Schema Merge uses bags of sequences, a number of bag operations and

merge sort spanning the three major decisions. The fourth predicate of

the schema ensures ascending order in the new sequence without describing

how to build it from two smaller sequences. Decisions on algorithms are only

partially made. Therefore we place schema Merge closer to the specification

end than schema Insert.

7.6 Expansion

Customer scenarios have the states and variables that concern the customer.

The corresponding developer scenarios have everything from the customer

scenarios plus additional states and variables concerning only the developer.
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Definition 7.6.1.

Let Q and Q ′ be sets of m customer and developer scenarios respectively

such that Q = {q1, q2, . . . , qm} and Q ′ = {q ′1, q ′2, . . . , q ′m}.

Q ′ expands Q

iff

∀ i : 1 . . m; t ∈ ran qi • ∃ x , y ∈ N •
〈t ′x , t ′x+1, . . . , t ′y〉 in q ′i ∧
X-TYPE C t ⊆ X-TYPE C t ′x ∧
Y-TYPE C t ⊆ Y-TYPE C t ′y ∧
I-TYPE C t = I-TYPE C (t ′x ∪ t ′x+1 ∪ . . . ∪ t ′y) ∧
O-TYPE C t = O-TYPE C (t ′x ∪ t ′x+1 ∪ . . . ∪ t ′y) ∧
∀ j , k ∈ x . . y • j 6= k ⇒

dom (I-TYPE C tj ) ∩ dom (I-TYPE C tk ) = ∅ ∧
dom (O-TYPE C tj ) ∩ dom (O-TYPE C tk ) = ∅

Step t in customer scenario qi is expanded into a subsequence of steps

〈t ′x , t ′x+1, . . . , t ′y〉 in the corresponding developer scenario q ′i . We use domain

restriction symbol C extensively in the definition. The second conjunct

requires the first expanded step t ′x in the subsequence to have a pre-state to

match the pre-state of step t . The third conjunct requires the last expanded

step t ′y in the subsequence to have a post-state to match the post-state of

step t .

The fourth and fifth conjuncts require the expanded steps to cover the

input and output of the original customer step. The last conjunct is a for

all expression that prevents an input or output variable from being used

more than once in two different steps in the expanded subsequence. This

is necessary because an I/O variable is only used once in a customer step.

The definition forbids behaviour altering expansions.

The number of developer scenarios must match the number of customer

scenarios. The developer can selectively add details with extra scenario

steps. The developer cannot remove steps or scenarios from the set of cus-

tomer scenarios because it takes away behaviour requested by the customer.

Not shown here, we can prove that a set of scenarios expands itself.
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7.6.1 Combining Expansion and Observance

The definition of observance requires the schemas and scenarios to have the

same granularity. A scenario step must be fulfilled by the invocation of one

operation. Combining the notions of expansion and observance, we allow a

customer scenario step to be effected by multiple operations.

A customer step may be too complex to be expressed in terms of our

basic operations. Applying expansion, a customer step can be carved into

smaller developer steps which are simple enough to be generalised in terms

of our basic operations.

Customer scenario SortFourKeys has a lone step of a 3-way swap. It is

relatively complex to express the enabling condition and action of a 3-way

swap. The result of generalising such a 3-way swap into a schema would not

be readily applicable to the sorting of other key lists. On the other hand,

the condition and effect of a 2-way swap is simple. Appropriate repetitions

of 2-way swap can sort various key lists. We decide to divide the sorting

operation that involves a 3-way swap into multiple 2-way swaps.

Our expansions leading to the insertion sort and merge sort programs

are more involved. The expansions are trivial to the author because he

knows the algorithms. Without this prior knowledge, the discovery of a

good algorithm to be used in the expansion requires insight and is likely

a trial and error process. The use of developer scenarios does not replace

creative thinking. It is a tool for documentation and separation of concerns.

Creating software without developer scenarios is akin to doing mathematics

without the use of a paper to write down the steps. It is less manageable and

more error-prone. An expanded scenario allows the developer to document

a computation in terms of actual data rather than variables. Unlike the

customer scenario, the data used may be required by an implementation but

does not concern the customer. The documentation of developer scenarios

aids reasoning and communications.

An expanded scenario written during development does not represent a

commitment. If the developer were unable to generalise an expansion, he or

she would backtrack to try another expansion. If attempts at expansion and

generalisation are to no avail, developers would go back to the customers for
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Customer Scenarios

Specification

Program

generalisation

refinement

Fig. 7.2: Creating programs from specifications

a possible revision of the customer scenarios.

7.6.2 Complementing Formal Specifications

In previous chapters, we presumed that customer scenarios were used to

create formal specifications which could be refined to programs. Refinement

is a stepwise method to make a specification ‘more deterministic’ until it

becomes an executable program [39, page 302] [10, page 20] as shown in

Figure 7.2.

Scenario expansions provide an alternative approach to create programs

from scenarios without going through formal specifications. Scenarios are

expanded and then generalised to programs as shown in Figure 7.3 on the

next page.

Implementation details of data structures, operations and algorithms are

added to customer scenarios through expansions. The details are retained

when we generalise developer scenarios to programs. We have introduced

a new and rigorous approach to create programs without the use of formal

specifications.

Should we skip formal specifications? One of their main contributions is

the verification of programs. Throughout the thesis, we have been challeng-

ing the conventional wisdom of using formal specifications as the ultimate
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Fig. 7.3: Creating programs from developer scenarios

reference of software requirements. The creation of formal specifications

lacks direct user involvement. On the other hand, the creation of concrete

scenarios directly involves users. If generalisation is done correctly on a

well-chosen set of scenarios, the resulting program can still be complete.

Without a formal specification, we can verify that a program observes a set

of customer scenarios in two steps. First, the program observes a set of

developer scenarios. Second, the set of developer scenarios expands a set

of customer scenarios. So far as correctness is concerned, we do not need a

formal specification.

7.7 Chapter Conclusion

A description of computer behaviour contains three main major decisions:

data structures, operations and algorithms. A description can be classified

as a specification or a program based on the decisions it contains. We have

developed Z operation schemas for sorting that stand on different positions

on the continuum of specifications and programs. The more decisions we

have included in a description, the closer it is to the end of programs on

the continuum. However we are not always certain about the number of

remaining decisions to be made. For example, a decision to use sets for

the data structure may qualify a description as a program if we run it on a
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platform that directly supports sets. But if we have chosen a platform that

only supports arrays, we need to decide how to implement sets on an array

machine. There are more decisions to be made moving the description away

from the end of programs.

Our approach supports the initial creation of customer scenarios which

may be expanded to developer scenarios. Customer scenarios capture the

what’s; developer scenarios capture the how’s. Concrete scenarios are a tool

that allows customers and developers to clarify and document their think-

ing before their generalisation to specifications and programs respectively.

Without a formal specification, we can still verify a program against the

developer scenarios expanded from customer scenarios which capture our

customer requirements.

Will scenario expansions result in overwhelmingly large number of steps?

Not all customer steps need expansions. We expand just enough scenario

steps to help us create the required operation schemas. The remaining

unexpanded customer scenarios are still useful for requirements elicitation,

documentation and testing. Developers are doing expansions in their brains

anyway. Our approach documents developers’ thoughts to make their mental

process more tractable and to record them for others to see.

The chapter disseminates three development activities: writing customer

scenarios, expanding them with implementation details and generalising the

results into programs. The process separates the concerns of customers,

developers and the generalisation activity. The results of the three activities

are documented.

A software development should be structured in some way - that

there should be a separation of concerns. – M. Jackson [84, page

206]



8. NONDETERMINISTIC SCENARIOS

In last chapter, we explicate that the classification of software behaviour

descriptions as specifications or programs is not exact. It depends on how

many decisions on data structures, operations and algorithms have been

made and remain to be made. The classification is influenced by the data

structures and operations provided by the platform used. Nondetermin-

ism describes the case in which a number of decisions are yet to be made.

The use of this term on generalised software behaviour descriptions is sel-

dom consensual. In this chapter, we use that term on concrete scenarios.

Since concrete scenarios are specific rather than generalised descriptions, the

meaning of nondeterminism may become easier to grasp.

A customer scenario is nondeterministic because algorithms have not

been chosen yet. A fully expanded scenario is deterministic for it captures

the developer’s choice of algorithms. Nondeterministic scenarios are gener-

alised to specifications while deterministic scenarios are generalised to pro-

grams. This chapter elaborates on nondeterminism with illustrations of a

dice rolling simulator. An ordinary dice gives a random outcome from one

to six. Our customer is a trickster who has a special requirement. He wants

the dice to give random outcomes most of the time. Only occasionally, he

would tamper with the outcome.
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8.1 Deterministic Customer Scenarios

A set of scenarios is deterministic if and only if the same input parameters

and pre-state always lead to the same output parameters or post-state.

Definition 8.1.1.

Let Q be a set of scenarios {q1, . . . , qn}, Q is deterministic

iff

∀ i , j : 1 . . n • ∀ t1 ∈ ran qi ; t2 ∈ ran qj •
X-TYPE C t1 = X-TYPE C t2 ∧ I-TYPE C t1 = I-TYPE C t2
⇒ Y-TYPE C t1 = Y-TYPE C t2 ∧ O-TYPE C t1 = O-TYPE C t2

A scenario is a sequence of steps. Another way to look at a scenario

that it is a set of mappings from step numbers to steps. Steps are therefore

the range of a scenario. Steps t1 and t2 map input, output, pre-state and

post-state variables to values. They are two arbitrary steps in the scenarios.

Symbol C stands for domain restriction. Expression X-TYPE C t1 only

maps pre-state variables in step t1 to values. We have similar expressions

that restrict post-state, input and output variables. The implication requires

any pair of steps to have the same output and post-state if their input and

pre-state are identical.

Example

The user-controlled dice behaviour is exhaustively captured in the following

set of six scenarios. Each scenario, enclosed in a pair of angle brackets, has

a single step. There is no requirement for an internal state thus we do not

have any state variables. The only variables in the steps are trick? and

outcome! for input and output.

{ 〈{trick? 7→ 1, outcome! 7→ 1}〉,
〈{trick? 7→ 2, outcome! 7→ 2}〉,
〈{trick? 7→ 3, outcome! 7→ 3}〉,
〈{trick? 7→ 4, outcome! 7→ 4}〉,
〈{trick? 7→ 5, outcome! 7→ 5}〉,
〈{trick? 7→ 6, outcome! 7→ 6}〉}
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No two steps in the set of scenarios has the same input. Regardless of the

choice of t1 and t2 in Definition 8.1.1 on the preceding page, the antecedent

will always be false. The implication is trivially true and thus the set of

scenarios is deterministic.

8.2 Nondeterministic Customer Scenarios

A set of scenarios is nondeterministic if and only if there exists two scenario

steps in the set that have the same input and pre-state but different output or

post-state. The output or post-state is controlled by factors not completely

captured in the input and pre-state. The definition of nondeterminism is

the negation of the definition of determinism.

Definition 8.2.1.

Let Q be a set of scenarios {q1, . . . , qn}, Q is nondeterministic

iff

∃ i , j : 1 . . n • ∃ t1 ∈ ran qi ; t2 ∈ ran qj •
X-TYPE C t1 = X-TYPE C t2 ∧ I-TYPE C t1 = I-TYPE C t2 ∧

( Y-TYPE C t1 6= Y-TYPE C t2 ∨ O-TYPE C t1 6= O-TYPE C t2 )

Example

The value of zero is not a valid outcome of rolling a dice. The user can

use this value to indicate that a random outcome is desired. The finite

nondeterministic behaviour can be specified with six other scenarios.

{ 〈{trick? 7→ 0, outcome! 7→ 1}〉,
〈{trick? 7→ 0, outcome! 7→ 2}〉,
〈{trick? 7→ 0, outcome! 7→ 3}〉,
〈{trick? 7→ 0, outcome! 7→ 4}〉,
〈{trick? 7→ 0, outcome! 7→ 5}〉,
〈{trick? 7→ 0, outcome! 7→ 6}〉}

We combine this nondeterministic set of scenarios with the deterministic

set of scenarios from the previous section to cover the complete behaviour

of random and controlled outcome.
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8.3 Nondeterministic Z Specifications

In Z, we define the types for input and output values as follows.

TRICK == {trick : 0 . . 6}

OUTCOME == {outcome : 1 . . 6}

The six scenarios for the deterministic behaviour are generalised to schema

TrickyRollSpec.

TrickyRollSpec

trick? : TRICK

outcome! : OUTCOME

trick? 6= 0

outcome! = trick?

The remaining six scenarios are generalised to schema FairRollSpec.

Their nondeterministic behaviour is magically expressed with a disjunction

of the six possible outcomes.

FairRollSpec

trick? : TRICK

outcome! : OUTCOME

trick? = 0

outcome! = 1 ∨ outcome! = 2 ∨ outcome! = 3 ∨
outcome! = 4 ∨ outcome! = 5 ∨ outcome! = 6

Our dice rolling simulator is specified by a disjunction of two schemas,

one deterministic and one nondeterministic.

RollDiceSpec =̂ TrickyRollSpec ∨ FairRollSpec
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8.4 Deterministic Programs

In the conventional use of formal methods, practitioners would obtain a

program by refining the above specification. We use the approach introduced

in the last chapter that creates a program from the expanded scenarios

bypassing the formal specification. The program will be expressed in Z

notation.

8.4.1 Developer Scenarios

We mimic the nondeterministic outcomes with a 6-member sequence, for

example 〈4, 3, 2, 5, 1, 6〉. By cycling through the sequence, the user gets an

impression of random outcomes especially when non-tricky rolls taken from

the sequence are interspersed with tricky rolls. Following is our current set

of twelve scenarios after expansion.

{ 〈{trick? 7→ 1, outcome! 7→ 1}〉,
〈{trick? 7→ 2, outcome! 7→ 2}〉,
〈{trick? 7→ 3, outcome! 7→ 3}〉,
〈{trick? 7→ 4, outcome! 7→ 4}〉,
〈{trick? 7→ 5, outcome! 7→ 5}〉,
〈{trick? 7→ 6, outcome! 7→ 6}〉,
〈{trick? 7→ 0, outcome! 7→ 1, pos 7→ 5, pos ′ 7→ 6}〉,
〈{trick? 7→ 0, outcome! 7→ 2, pos 7→ 3, pos ′ 7→ 4}〉,
〈{trick? 7→ 0, outcome! 7→ 3, pos 7→ 5, pos ′ 7→ 6}〉,
〈{trick? 7→ 0, outcome! 7→ 4, pos 7→ 1, pos ′ 7→ 2}〉,
〈{trick? 7→ 0, outcome! 7→ 5, pos 7→ 4, pos ′ 7→ 5}〉,
〈{trick? 7→ 0, outcome! 7→ 6, pos 7→ 6, pos ′ 7→ 1}〉}

The first six scenarios need no expansion. They already contain enough

information for generalisation to an implementation. The last six scenarios

are expanded with a new variable pos which points to the outcome in the

6-member sequence 〈4, 3, 2, 5, 1, 6〉. If outcome! is 4 for a step, the value of

pos should be 1 because that is the position of 4 in the sequence. The value

of pos ′ would be (pos + 1) except when we reach the end of the sequence,

it will be reset to 1. The developer could have chosen a list with a different
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size and pattern. If we want to make the outcomes appear more random, a

larger list would be used.

8.4.2 A Program in Z

The customer scenarios have been expanded with an algorithm to simulate

the random behaviour by cycling through a list of outcomes. The result of

generalisation will therefore be a program despite the fact that it is expressed

in a formal specification notation Z. We define constant OutcomeList to hold

the random outcome simulation sequence and type POS to hold valid posi-

tions in the sequence. The hash symbol # is the size operator for sequences.

OutcomeList == 〈4, 3, 2, 5, 3, 5, 2, 4, 1, 6, 6, 1〉

POS == {pos : 1 . . #OutcomeList}

The types for input and output values are the same as those in the Z

specification.

TRICK == {trick : 0 . . 6}

OUTCOME == {outcome : 1 . . 6}

Schema Position declares pos as a state variable.

Position

pos : POS

Schema InitPosition initialises pos to the beginning of the outcome list.

InitPosition

Position ′

pos ′ = 1

The user can use schema SetPosition to set pos to point to anywhere of

the outcome list. Running this operation occasionally with varying input

values increases the perception of randomness in the outcomes.
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SetPosition

∆Position

newPos? : POS

pos ′ = newPos?

For fair rolls, the user indicates his or her intention of not controlling

the outcome with an input of 0. The program returns an outcome from the

list and updates pos to point to the next position of the list. If the end of

the list is reached, pos is reset to the first position.

FairRollPgm

∆Position

trick? : TRICK

outcome! : OUTCOME

trick? = 0

outcome! = OutcomeList(pos)

(pos < #OutcomeList ∧ pos ′ = pos + 1) ∨ (pos = #OutcomeList ∧ pos ′ = 1)

The program schema for the tricky rolls is the same as the specification

schema.

TrickyRollPgm

trick? : TRICK

outcome! : OUTCOME

trick? 6= 0

outcome! = trick?

RollDicePgm =̂ TrickyRollPgm ∨ FairRollPgm
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8.5 Chapter Conclusion

The use of scenarios does not inhibit the expression of nondeterministic

behaviour which can be captured by steps having the same input and pre-

state but different output or post-state. Scenarios partition deterministic

and nonderterministic behaviour. The two kinds of scenarios are generalised

into separate schemas in a formal specification.

We show how scenarios are expanded to include details that concern

only the developers. While the original scenarios document the thoughts

of customers, the expanded scenarios document the thoughts of developers.

The expanded scenarios facilitate communications much like the original

scenarios. The difference is in the content being communicated.

Expansions make scenarios more deterministic. The generalisation of

deterministic scenarios creates programs rather than specifications.



9. EMPIRICAL STUDY

The concrete scenarios presented earlier in this dissertation were written by

the candidate alone. How will software pratitioners receive this approach

of expressing requirements? More specifically, will people in the role of

systems analysts be able to write concrete scenarios that are understandable

by programmers for their creation of executable programs?

Section 1 of the chapter describes the objective of our empirical study.

Section 2 discusses the choice of our subjects and application domains for

the empirical study. Section 3 describes a few philosophical positions that

empirical researchers can adopt. From the various positions, we have chosen

the critical position. In the next few sections, we chronologically document

and interpret the work of our three subjects. The chapter ends with a

discussion of the lessons learned from the empirical study.

9.1 Objective of our Empirical Study

Our main objective in the empirical study is to find out if people trained

in computing can write concrete scenarios. We do not directly test people’s

ability to read concrete scenarios. But if they can learn to write concrete

scenarios, we argue that they must also be able to read concrete scenarios.

The subjects either know the PhD candidate before the empirical study

or will get to know him personally in the course of the empirical study.

They would not want to see the candidate to fail in the examination of

his PhD research. Our subjects might be biased when asked how they feel

about the concrete scenario approach. Therefore we refrain from asking

their subjective feelings.

We are only interested in finding out if people can read and write con-

crete scenarios. We do not attempt a direct comparison of their readability
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and writability with alternative specification methods, at least not in this

empircal study. We feel that the result of such a comparison will be heavily

skewed by the training of the subjects and the maturity of the software tools

supporting the approach. Due to the lack of a mature tool, we are not ready

for a head-to-head comparision with competing methods.

Despite the limiting scope of our empirical study, we will be able to

find out if people can use concrete scenarios as a means to communicate

requirements. From the mistakes made by our subjects, we may learn how

to fine-tune our notation and approach. Concrete scenarios may or may not

be suitable for the entire requirements process. The findings in the empirical

study may identify where we can put conccrete scenarios into good use.

9.2 Choice of Subjects and Application Domains

Finding appropriate subjects proves to be challenging. The subjects must

afford the time to learn and use our approach. Most successful software

practitioners are busy and expensive. As a compromise, one of our subjects

is experienced but is semi-retired perhaps involuntarily due to his inability

to keep up with the rapidly changing technology. Our two other subjects

are fresh computing graduates with absolutely no real world experience. We

introduce our three subjects as follows.

The first subject is Meng who has a Bachelor and a Master degree in

computer science from the Georgia Institute of Technology. He has resided

in Toronto after his graduation from Georgia Tech. With over a decade of

programming experience in C and C++, Meng had also held the positions

of analysts and project managers. He is in his early 50’s. Though he is still

very active in his social life, he has not been gainfully employed for about

five years.

Our next two subjects are Kain and Lam who have recently completed

the Bachelor in Computing at the Open University of Hong Kong (OUHK).

OUHK was founded with government seed money but operate on incomes

from tuition fees and endowments. OUHK was originally a distance learning

institution but has ventured into face-to-face education in recent years. It

has the lowest entrance requirements among all universities in Hong Kong.
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The students were recommended by their program leader Dr. Andrew Lui

as two of his better students. While looking for employment, they volunteer

to take part in this research.

Application domains should be well understood by the subjects, the

researcher and the readers. Thus we have chosen the browsing of an online

catalogue, book borrowing at a library and checking out of a shopping cart.

9.3 Our Philosophical Position

Deductive reasoning and inductive reasoning are two paths to acquire new

knowledge. Deductive reasoning employs logical proofs and deductions that

have limited use in determining the receptivenes of practitioners to a new

requirements specification approach. For that, we need inductive reasoning

which involves drawing inferences from experiences and empirical data.

Quantitative empirical methods have four main characteristics: control,

operational definition, replication and hypothesis testing [32]. Researchers

control specific variables to isolate the cause of an effect. An operational

definition describes the steps to obtain quantitative measurements. It can

eliminate confusion in meaning and communication. Observations must be

repeatable. Hypotheses are tested systematically. However the plethora

of forces within individual human being and in the environment does not

always afford the precise control or measurement by the researcher.

Qualitative methods offer a viable alternative to acquire knowledge about

human behaviour. They stress holistic analysis rather than working with

a few discrete variables [122]. Qualitative research can be meaningfully

conducted on a small number of subjects. By focusing our resources, we

can study to the level of details that might otherwise be infeasible. The

collected details can also be used to design subsequent relevant quantitative

research [54].

The researchers that use qualitative research adopt different underlying

philosophical positions [109]. Positivists assume that reality is objectively

given and can be described by measurable properties independent of the ob-

servers and their instruments [145]. Interpretive researchers assume that one

can only access reality through social constructions such as language, con-
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sciousness and shared meanings. Interpretive studies attempt to understand

phenomena through the meanings that people assign to them [22]. Instead

of the previous two positions, we adopt the position of critical researchers

who assume that social reality is historically constituted. Although people

can consciously act to change their social and economic circumstances, their

ablity to do so is constrained by various forms of social, cultural and political

domination [28]. In simpler words, the ability of a subject to use concrete

scenarios is influenced by his or her prior training.

9.4 Meng’s First Batch of Work

After studying the Concrete Scenarios Writing Guide v1.0 in Appendix A

on page 179, Meng was asked to write concrete scenarios for any user task

on the Web site of a take-out / delivery restaurant. He picked the payment

handling task. His work is shown in Appendix B on page 186. He wrote two

scenarios for the task. Scenario 1 showed the acceptance of a cash payment.

Scenario 2 showed the acceptance of a payment by Visa and the rejection

of a payment by American Express. He tried to show which credit cards

are acceptable with scenario 2. The unwarranted items in his scenarios are

listed below.

1. In the English sentence template, he included data type information for

each field. This is unnecessary but relatively harmless. It is however an

evidence of the baggage that people bring from their prior experience

when using this new approach.

2. He did not include the required input of payment type in the scenarios.

This is comparable to the use of an undeclared variable in a computer

program.

3. The scenarios of payment handling task should have side-effects on

the system state otherwise we have no way of telling which orders

have been paid for. But Meng did not record any side-effect in his

scenarios.

4. He combined two examples of credit card payments into one scenario.
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For clarity and readability, a scenario should describe one example

only.

5. The name of scenario 2 is wrong. It was an obvious oversight when he

copied and pasted from the Concrete Scenarios Writing Guide.

In a video conference, Meng complained that he was not clear what to

include in concrete scenarios. He also asked for more examples of concrete

scenarios. His suggestion, complaint and the mistakes found in his first

batch of work result in a significantly revised guide version 4.2.

9.5 Meng’s Second Batch of Work

After studying the revised Concrete Scenarios Writing Guide version 4.2 in

Appendix C on page 188, Meng was asked to write scenarios for tasks relating

to online shopping. He chose to write scenarios for the tasks of browsing

the online catalogue, adding an item to shopping cart, and confirming an

order. His second batch of concrete scenarios in revised syntax can be found

in Appendix D on page 207. Despite our effort to improve the guide and the

syntax of concrete scenarios, Meng did not write better concrete scenarios

than before. Familiar mistakes were made along with new ones. Readers

in a hurry should feel free to skip the detailed account of his mistakes by

jumping to the concluding paragraph of this section on the next page.

Scenario browse-item.1 on page 208 is problematic. For the input field

main-items, Meng listed a range of possible values while only one value

should be specified for the particular scenario. In the task definition, the

catalogue table has two columns. But the same table is shown inconsistently

in the scenario with one column and again with two columns. The two

equalities in the relation part are also incorrect. How can main-items in the

input equals sub-items in the first relation? They correspond to different

levels in the catalogue.

The task description of add-item on page 209 may look acceptable on

the surface. It has an input field not used in any scenario which is relatively

harmless just like the declaration of an unused variable in a program. A

closer look reveals that no field on the orders table can be used to identify
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the owner of a shopping cart. To solve this problem, a new column is needed

on the orders table. Let’s turn to scenario add-item.1 on page 210. Its first

relation shows that the selected item in the input equals the selected item in

the stock but the corresponding equality between the input and the order is

omitted. Another subtle mistake in the second relation is that the relational

operator ‘<’ should have been ‘≤’. Meng made a small though annoying

mistake when he copied and pasted scenario add-item.1 to create add-item.2.

He attempted to use a different item for the second scenario. But he had

forgotten to change one of three occurrences of the item from ‘War Game’

to ‘War & Peace’. He should have changed all three occurrences.

Scenario purchase-item.1 on page 212 has an if-statement in the relation

part. Its condition of “input.pickup = no” is not applicable to the scenario

because the actual input value of pickup is yes. The use of if-statements

goes against the principle of concrete scenarios to express requirements as

examples not rules. The last two equalities in the relation part describe that

the stock table should be updated but the table is not part of the scenario’s

system state. Variable input.quantity used in the last equality does not exist

because quantity is not an input parameter of this task.

Meng has defined two instances of purchase-item.1 with different input

values. Meng apparently has forgotten to change the scenario number and

description when he copied and pasted. The mistake of using an if-statement

happened again in the second instance of purchase-item.1. He omitted a

scenario for the purchase-item task with the input pickup being ‘no’ and the

input address being non-blank.

In conclusion, Meng did not write scenarios based on an adequate set of

tables. For example, he did not have a column to identify the shopper in an

order. Meng did not use his tables consistently (with the same number of

columns throughout). The lack of a syntax checker is partly to blame but

Meng had made more than his fair share of mistakes. The repeated use of

if-statements proves the difficulty he has to overcome in order to embrace

the essence of concrete scenarios.
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9.6 First Meeting with Kain and Lam

The XML-based Concrete Scenario Writing Guide v5.0 in Appendix E on

page 213 introduces a syntax checker for concrete scenarios expressed in

XML syntax. The guide also introduces an XSLT displayer for easy viewing

of the XML-based concrete scenarios. Kain and Lam were given the guide to

study one week prior to our first meeting. In the early part of the meeting,

the students were given the opportunity to ask questions about the approach.

Lam had not completely grasped the main concept of concrete scenarios.

Kain helped us to explain to his peer.

Kain started using our notebook computer to write the concrete use

case and scenario of borrowing a book from a library. It was Kain’s idea to

work on this task. He used the Liquid XML Studio software for about half

an hour to create the concrete use case and a successful concrete scenario

in Appendix F on page 246. We were happy to see Kain’s satisfactory

performance in writing his first concrete scenario.

Lam worked at the other end of the table using a scrapbook. He worked

on the same user task as Kain. Initially, Lam broke down the main task

into two subtasks of verifying borrower and verifying book. He asked us if

that was a good start. We reiterated to him that the job of writing concrete

scenarios is to document requirements by examples. We were not writing

programs with stepwise refinement. After that, Lam was able to complete

his work independently on his scrapbook. He worked on the visual form

of concrete scenarios directly without going through the XML form. His

resulting concrete scenario is similar to Kain’s.

After observing their independent creation of a simple concrete scenario

at the meeting, we believed that they knew enough of the approach to create

additional scenarios without assistance. Kain suggested to us some changes

leading to a more consistent XML syntax. We revised the syntax checking

XML schema and the visual displaying XSLT. The two students were then

given different user tasks to work on.
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9.7 Lam’s Work

As a continuation of the book borrowing scenario written at the meeting,

Lam defined a failed attempt by a library user to borrow a book, a successful

scenario of book returning and a successful scenario of book reservation.

His work shown in Appendix G on page 252 is not perfect because there

should be more scenarios for some tasks. Take the book reserving task as

an example. We should consider the issue of fairness where there are two

reservation requests for the same book. The second reservation request on

a book could be different from the first request on the same book. Since

Lam is an unpaid volunteer, we had decided not to pursue him beyond the

scenarios he had written.

Lam’s first scenario on page 252 was a failed attempt made by a library

user to borrow a book. It failed because the borrowing quota has been

exceeded. The relationships are clear and complete.

The second scenario on page 253 was a successful attempt to return a

book. While the system state change is correct, a row number in a relation-

ship is wrong.

3. system.user.1.borrowing_quota = system.user.1.borrowing_quota + 1

It should be corrected as follows.

3. system.user.2.borrowing_quota = system.user.1.borrowing_quota + 1

The scenario stated that the book is unavailable before it is returned.

4. system.book.1.available = "F"

It failed to state that the the book is available after it is returned. The

following relationship should be added.

5. system.book.2.available = "T"

Lam made similar mistakes of using incorrect row numbers and omitting

some relationships in the scenario of book reservation on page 254. There

are more serious mistakes in the expressions referring to table cells.
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3. system.available = "F"

4. system.booking = "T"

They should be corrected as follows.

3. system.book.1.available = "F"

4. system.book.1.book = "T"

As a summary, Lam made two kinds of low-level mistakes. The first

kind of mistakes was just mentioned above which is the incorrect specifica-

tion of fields in relationships. A powerful tool can provide a GUI that allows

analysts to build relationships by selecting fields rather than writing poten-

tially wrong XML expressions. The second kind of mistakes is the trivial

omission of relationships. A semi-intelligent tool can check if every field has

been mentioned in at least one relationship. This checking cannot detect

the omission of multi-way relationships. Suppose a field is related to two

other fields in two relationships. The tool will not alarm you if you have

only omitted one because so far as the tool is concerned the field is covered

by a relationship.

We have been examining Lam’s scenarios for internal inconsistency. But

what about inconsistency that spans multiple scenarios? Are the book bor-

rowing scenarios consistent with the book reservation scenarios? We can

chain a series of scenarios together so that the end state of one scenario is

the begin state of the next scenario. Each scenario will become a step in a

multi-step scenario which you have seen in Chapter 4. However the guide

provided to our subjects does not treat the topic of multi-step scenarios.

9.8 Kain’s Work

After our first meeting, we requested Kain to write concrete scenarios for

the shopping cart check out operation. Even we wrote “shopping cart” in

the email, we actually meant “online shopping cart”. Kain took the request

literally and created scenarios that concern physical shopping carts. Despite

the miscommunication, Kain demonstrated his ability to author concrete

scenarios. He wrote the successful and failed scenarios of pushing a shopping
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cart into the unloading zone at the cash register. When writing requirements

in words, analysts may or may not remember to write down the constraint

of at most one shopping cart can be in the unloading zone at any time. The

failed scenario by Kain illustrates this constraint with an example. Kain also

wrote the scenario of checking out an item after the shopping cart has been

placed in the unloading zone. The last scenario written by Kain is about

the task of pushing the shopping cart off the unloading zone. As far as I can

tell, all his concrete scenarios were correctly written. The relationships of

the data fields contained in them are complete. By representing the checking

out cart id as a simple data field, he limited his scenarios to the modeling

of a single cash register. If he had represented the checking out cart id in a

table, his concrete scenarios can model the concurrent operation of multiple

cash registers.

9.9 Lessons Learned from Our Subjects

9.9.1 Reality of Old-School Analysts

Meng had at least 20 years of experience as either a programmer or an

analyst. In the empirical study, he did not write his concrete scenarios based

on an adequate set of data tables. In the relation part, he omitted some

important data fields. He used the if keyword to make general statements

about data fields. In the style of concrete scenarios that we endorse, data

fields should be constrained to actual values. As a programmer, he wrote

programs with rules in the form of if-then-else or looping statements. As

an analyst, he wrote requirements as business rules. The programs and

specifications he created in his professional career normally contained rules

rather than examples. His prior experience and training primed him to write

generalized rules instead of specific examples. When he needs to express

requirements, rules may come to mind more naturally than examples. We

cannot reasonably expect that a few hours or days of exposure to concrete

scenarios approach can easily alter his practice developed over two decades.

Though a good tool and quality instruction may be helpful, it will still be a

major challenge for analysts to switch to expressing requirements in terms

of examples only. If we insist on the use of concrete scenarios alone to
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express functional requirements, old-school analysts would doom the effort

to failure.

9.9.2 Granularity

In Lam’s first attempt to write a scenario of borrowing a book during the

meeting, he tried to divide it into two parts: verifying borrower and veri-

fying book. Lam mistakenly wrote concrete scenarios as if he was writing

procedural programs. After having been corrected by us, Lam did not com-

mit the same “mistake” again. In retrospect, Lam’s division of a scenario

into two parts may not be wrong. A complex scenario can be viewed as a

succession of two or more simpler scenarios. Lam might just prefer to work

at a different level of granularity. A good requirements notation should allow

its users to select the level of details to work with.

9.9.3 Lack of a Bird’s Eye View

When we first read the shopping cart scenarios written by Kain, we could not

understand what Kain was trying to express. The bewilderment stemmed

from our expectation to see scenarios about “online” shopping carts which

are significantly different from scenarios about “physical” shopping carts.

If a bird’s eye view were available, the confusion would be avoided. For

example, a UML statechart can show the big picture of state transitions

caused by various events. The details of the state change in each transition

can be documented by a concrete scenario. Concrete scenarios may be used

with another notation that is more apt to present the big picture.

9.9.4 Completeness

Meng and Lam omitted data relationships in concrete scenarios. All three

subjects omitted scenarios for the task they are specifying. As far as our

subjects are concerned, concrete scenarios have not achieved completeness

for them. However it does not mean that concrete scenarios cannot be

helpful. We will come back to the topic of completeness in the concluding

chapter.
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9.9.5 Power of a Suitable Tool

Meng and Lam did not adapt immediately to the example-driven style of

thinking embodied in concrete scenarios. Our primitive tool ensures the well-

formedness of XML-based concrete scenarios. It weeds out some meaningless

scenarios. Lam apparently had benefited from the tool. He did not make

absurd mistakes as Meng did. Illegal syntax, like if-statements, is prohibited.

However our current tool leaves a lot to be desired. It lacks a GUI that allows

analysts to create data tables for use in concrete scenarios. It does not have

a click-and-select feature that enables analysts always refer to the correct

fields in data relationships. The development of a truly capable tool should

be high on the agenda of our ongoing concrete scenario research.

9.10 Chapter Conclusion

We have learned that concrete scenarios should not be the only notation

used by analysts to express requirements. Concrete scenarios may not be

technically the best notation for all levels of granularity. For instance, the

UML statechart may offer a better bird’s eye view of the requirements.

Even if concrete scenarios can match an alternative notation on technical

ground, they may be considered inferior by an analyst due to his or her

prior training. Of course, there is room for a good tool to support the use

of concrete scenarios.

It is a coincidence that the three subjects spread over degrees of mastery

of concrete scenarios: bad, mediocre and good. Capacity to express require-

ments in concrete scenarios should vary from person to person. From the

types of mistakes made by our subjects, a few abilities are helpful.

• attend to details

• switch to declarative thinking (from procedural thinking)

• design data tables

Appendix I on page 259 is a guide to help programmers to derive Java

programs from concrete scenarios. The guide also shows the derivation of
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automated tests encoded in JUnit which is a Java-based unit testing frame-

work. We had promised the subjects not to take up an excessive amount

of their time. After the subjects had written the concrete scenarios, we felt

that we had used up our self-imposed quota of their time. The program-

ming guide was not given to the subjects because we would like to postpone

further empirical study. Once an appropriate set of tools has been built,

we can build a stronger case to convince people to invest time learning and

using the concrete scenario specification approach.

The usefulness of concrete scenarios rests on analysts’ ability to write

them as well as programmers’ ability to read them. Our student subjects can

read and write concrete scenarios. Work experience is not necessary and may

not even be helpful as suggested by the case of Meng. The anecdotal evidence

suggests that undergraduate computing education is a good preparation for

the learning of concrete scenarios. We have not shown the cost-effectiveness

of concrete scenarios in comparison with other requirements specification

approaches. This will be a topic for future empirical studies with appropriate

tools.



10. CONCLUSIONS

In this last chapter of the thesis, we summarise the work of early chapters in

Section 10.1. Concrete scenarios that we have invented are evaluated in Sec-

tion 10.2 on the issues of completeness, usability, scalability, costs and etc.

Section 10.3 describes three popular requirements specification approaches.

Section 10.4 compares concrete scenarios with the three competing notations

on a number of desirable attributes we would like to find in requirements

specifications. In Section 10.5, we outline research opportunities ahead. Sec-

tion 10.6 discusses briefly some potential impacts of concrete scenarios on

software development processes. Section 10.7 concludes the chapter and the

thesis.

10.1 Synopsis of Previous Chapters

The incomprehensibility of formal specifications by customers sparked our

research. After a survey of existing work in Chapter 2, we embarked on our

quest of a precise and comprehensible requirements specification approach.

We resolved to use concrete scenarios to describe user tasks performed in

selected situations. An E-scenario consists of a number of successive states

described in English with concrete data. If the states are precise, E-scenarios

expressed in them are readily convertible to state-based formalisms. Since

we have used Z notation to describe the states, we call them Z-scenarios.

In Chapter 3, we wrote a formal warehouse system specification which is

a set of operation schemas generalised from scenarios. States in concrete sce-

narios may be expressed with English sentences. Simple sentences are used

because of their manageability. We restrained ourselves to a small number

of sentence templates to facilitate translation to a formal notation. Our

scenarios should be more accessible to customers than the corresponding Z
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schemas because only a small subset of Z notation is used. If necessary,

customers can read the equivalent English translations. The friendliness of

concrete scenarios over formal specifications should boost customer involve-

ment. It improves the odds that formal specifications reflect user require-

ments faithfully. We argue that the same benefits are extensible to other

problem domains.

In Chapter 4, we specified a basic telephone system. Multi-step scenar-

ios were used to capture interactions between phone users. They allowed

developers to work on smaller steps one at a time. A ranking of scenarios

based on importance guided developers to approach the system in an orderly

manner according to customer priorities. For example, making basic phone

calls was more important than conferencing. Thus we worked on the former

scenarios first.

In Chapter 5, we enhanced the telephone system with conferencing. We

started by considering new scenarios with the feature. We demonstrated how

a specification could be kept up-to-date by revising or adding Z schemas.

The traceability of schemas to scenario steps helps us quickly identify the

affected schemas from updated steps or vice versa. We have shown how to

update schemas for a modified state space. The chapter demonstrated how

formal specifications derived from concrete scenarios may be maintained.

Chapter 6 defines the basics of verification. The building blocks are

types of pre-state, post-state, input and output variables. A step is defined

as a function that maps variables to values. A scenario is a sequence of

steps where the post-state of a step matches the pre-state of the next step.

The key result of the chapter is an observance relation between a set of

operation schemas and a set of scenarios. The relation asserts that there is

an operation schema that may be refined to effect every scenario step.

Chapter 7 works on sorting. We showed a sorting specification in first

order logic and in Z. By the generalisation of scenarios, we created another

sorting specification, an insertion sort program and a merge sort program,

all in Z notation. Customer scenarios are expanded to developer scenarios

with the augmentation of decisions about data structures, basic operations

to use and algorithms. A customer step is expanded into a sequence of

smaller and simpler developer steps often with the help of additional state
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variables. If the resulting operation schemas are generalised from customer

scenarios with few design decisions, we call the set of operation schemas

a specification. If the schemas are generalised from developer scenarios

embodying most design decisions, the set of schemas would be considered

a program. The key concept of this chapter is expansions. Developers can

benefit from working with scenarios containing implementation details.

Chapter 8 continues the discussion of scenario expansion on a dice rolling

simulator. The focus is on determinism. We captured deterministic and

nondeterministic behaviour in separate sets of scenarios. Nondeterministic

steps are expanded to deterministic steps before they can be simulated by

a deterministic program. Observance and determinism are combined to

define the notion of implementation. When a set of schemas observes a

set of scenarios, the schemas may effect the scenario steps. When a set of

schemas implements a set of scenarios, the schemas are guaranteed to effect

the scenario steps.

Chapter 9 documents the empirical study of three subjects attempting

to express requirements with concrete scenarios. The Z-inspired notations

used in earlier chapters are replaced with notations in line with commonly

used programming langauges such as Java to accommodate our subjects who

have not been trained in formal methods. We want to emphasize that the

concrete scenario approach is not tied to a particular set of notations. The

notations we use in the concrete scenario approach need to be precise and

comprehensible with the ability to express state changes. All our subjects

can understand the concrete scenarios they read. But they do not master

the writing skills equally well. Kain wrote correct scenarios naturally. Lam

learned to write after some initial stumbles. Meng did not learn even after

a few attempts. We have also discovered two major weaknesses in concrete

scenarios. First, they do not present the big picture of user requirements.

Second, they do not relate to high-level business goals.

10.2 Evaluating Concrete Scenarios

We shall evaluate concrete scenarios on their correctness, unambiguity, com-

pleteness, prioritisation, verifiability, modifiability, traceability, usability,
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scalability and costs.

10.2.1 Correctness

A requirements specification is correct if it accurately reflects the cus-

tomer’s needs. The customer’s biggest concern is not how the system be-

haves. It is how the business goals may be accomplished through the system.

Concrete scenarios can accurately describe the system behaviour externally

through the input and output, and internally through the side-effects. But

concrete scenarios are not being related to high-level business goals. We

want to know to what extent the low-level requirements specified in con-

crete scenarios contribute to the attainment of high-level business goals.

Concrete scenarios alone are inadequate. We need to incorporate them into

another methodogy that deals with business goals. i* described in Section

2.14.2 seems to be a generic enough methodology that may be compatible

with concrete scenarios. Further work is required to explore this possibility.

10.2.2 Unambiguity

A requirements specification is unambiguous if every requirement in it has

only one interpretation. A concrete scenario unambiguously describes an

example of an operation by its input, output and side-effects. Programs are

derived in a manual process of generalizing the data relationships in concrete

scenarios. A unique interpretation of concrete scenarios depends on the fact

that all significant data relationships have been identified. In other words,

ambiguous concrete scenarios omit important data relationships.

Distinct data relationships in two concrete scenarios will be handled

by two branches of a program as shown in the Program Writing Guide in

Appendix I. If data relationships are missing, two fundamentally different

scenarios will be handled by the same branch. When this happens, the

programmer may suspect that important data relationships are missing. The

programmer can then work with the analyst to discover the missing data

relationships. This way of detecting ambiguity relies on the programmer’s

judgment of which scenarios should be fundamentally different. Empirical

study is in order to find out how well programmers can make this judgment
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to catch ambiguously written concrete scenarios. We would also like to

learn how well programmers and analysts can work together to discover the

missing data relationships.

10.2.3 Completeness

A requirements specification is complete if it thoroughly covers functional

and non-functional requirements. This dissertation uses concrete scenarios

to express functional requirements only. Non-functional requirements must

be expressed in other notations. To completely specify an operation, we need

to write the concrete scenarios for all representative cases. We can determine

if the concrete scenarios are complete with respect to an operation when we

use them to derive a formal specification or a program as explained below.

In Section 3.9, we defined a user operation as a disjunction of several Z

schemas. If the disjunction evaluates to true, we know that the specification

of the operation can handle all possible input values in any system state.

We can conclude that both our concrete scenarios and formal specification

are complete.

In Appendix I Program Writing Guide, every program branch handles at

least one scenario. If there is a branch, say the else-clause of an if-statement,

found unrelated to any scenario, we know that we are missing a concrete

scenario. Though concrete scenarios afford incompleteness detection, we

do not know how well programmers can detect incompleteness in practice.

Empirical study will be necessary to confirm this possibility.

A better alternative is not to detect incomplete concrete scenarios but

to write complete scenarios in the first place. In our empirical study, the

subjects did not produce a complete set of representative concrete scenarios.

One possible explanation is that concrete scenarios do not contribute to

completeness when first written. Before we come to that conclusion, we can

try to improve our approach or tools to see if analysts can produce more

complete scenarios on their first attempts.
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10.2.4 Consistency

A requirements specification is internally consistent if no subsets of its

individual requirements are in conflict. When a conflict exists, no programs

can simultaneously satisfy all requirements stated in the specification. The

exact nature of XML-based concrete scenarios permits certain automated

consistency checks. One consistency check can make sure that all concrete

scenarios for the same operation have the same parameter list. Another

check can make sure that the same table is used consistently in all scenar-

ios with an identical set of columns. More interesting is the case in which

two scenarios produce different outputs or ending states from identical input

and initial state. The requirements may be inconsistent or nondeterministic.

See Chapter 8 for a treatment of nondeterminism. After consulting with

customers, analysts will decide whether specifications are inconsistent or

nondeterministic. Analysts will make the necessary corrections if the speci-

fications are inconsistent. In conclusion, the exactness of concrete scenarios

supports parsing which can discover inconsistencies. The use of concrete

scenarios facilitates the creation of consistent requirements specifications.

10.2.5 Ranking by Importance or Stability

It is a good practice to rank requirements by importance or stability to

facilitate their implementation in an appropriate order. Most requirements

specification notations are neutral in this regard. Concrete scenarios are no

exception. They neither assist nor hinder ranking.

10.2.6 Verifiability

A requirements specification is verifiable if for every requirement, there

exists a cost-effective manual or automated process to check its fulfilment

by the program. Concrete scenarios describe user operations by their input,

output, pre-states and post-states. As we have demonstrated in Appendix

I, each concrete scenario can be verified in a unit test. Concrete scenarios

are fully verifiable.
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10.2.7 Modifiability

A requirements specification is modifiable if it accommodates requirement

updates. In conventional requirements specifications, some measures are

useful for modifiability. Requirements may be written and organised to

minimize crosscutting. Redundancies are minimized and allowed only when

their benefits outweight the costs, perhaps for the sake of readability. A

table of contents, an index and cross-references may also be used.

In the same way, good organization makes concrete scenarios more mod-

ifiable. Concrete scenarios are naturally organized by the operations that

they belong to. With a good tool, this 2-tier organization will be fine for a

system with a few operations and a few dozen scenarios. Practical systems

could have a few hundred or even thousand scenarios. It quickly becomes

unwieldy. We can consider adding tiers above operations to give more struc-

ture to the mostly flat 2-tier organization. High-level business goals are good

candidates for the top tier. Under the business goals, we can add a tier or

two of what we may call mid-level requirements notations such as Message

Sequence Charts (MSC) or Statecharts. After integration with other nota-

tions, there will be four to five tiers in total allowing analysts to express

requirements at any level they desire. Before we find an effective combi-

nation of notations along that line, requirements specifications in concrete

scenarios are weak in modifiability.

Another thing working against concrete scenarios in their modifiability

is the amount of details they capture. Information about system states

found in concrete scenarios is rare among requirements notations. When

requirements change, we have more details to update in concrete scenarios

than in other requirements notations. This is an inherent disadvantage of

concrete scenarios. A compromise act is to write concrete scenarios only for

selected operations, such as complex operations that demand more analysis

before coding.

10.2.8 Traceability

The Program Writing Guide in Appendix I demonstrates the development

of program and test suites from concrete scenarios. Some data relationships



10. Conclusions 161

in the scenarios are pre-conditions. They are tested in the conditions in

if-statements or while-loops. Other data relationships are post-conditions.

They are effected by assignments and/or database updates found in branches

of the if-statements or at appropriate places in or around the loops. This

style of program development supports strong traceability from scenarios to

branches of if-statements as seen in the program on page 261. It is not a

coincidence that we can derive programs this way. Data relationships must

be either pre-conditions or post-conditions. Otherwise the data relationship

should not be included in a concrete scenario at all. Data relationships

concerning only the initial system state are pre-conditions to be tested in

conditions of if-statements or while-loop. Remaining data relationships must

concern the ending system state. They are post-conditions to be effected

by appropriately placed assignments or method calls. We know what to

do with every data relationship. We can therefore assert that the style of

program development is generally applicable to concrete scenarios.

The development of test suites from concrete scenarios supports strong

traceability as well. On page 267, we see three tests corresponding to three

concrete scenarios. It is for the tester’s convenience that we have made all

three scenarios share the same pre-state. As a result, the three corresponding

tests share the same initialisation method initialiseTable( ). In each test,

the operation is called with the input values matching those in the respective

concrete scenario. In the second and third tests test password update 2 ( )

and test password update 3 ( ) where there are no side-effects, we can just

check the return Boolean values. If the return value is not Boolean, the

checking may be slightly more involved. In test test password update 1 ( )

where there are side-effects, we can make calls to test the system state more

thoroughly after the operation. For example, the test includes calls to the

logon operation to see which password is good and which is not. When the

concrete scenario is updated, we know exactly which test is affected and

where we can make changes to keep the test suite up-to-date.

We have strong traceability between scenarios, programs and unit tests

to assist programmers and testers to deal with requirement updates. But

a notable weakness in traceability is that we are not providing backward

traceability to high-level business goals. This weakness will be addressed
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if we can successfully incorporate concrete scenarios into a goal-oriented

requirements specification approach such as i*.

10.2.9 Usability

A requirements specification is usable if analysts have no trouble writing it

to express the requirements and programmers and testers can respectively

read them to create programs and tests. In Chapter 9, we have learned

of a few usability obstacles that our subjects encountered. Analysts may

find it more natural to express requirements by general rules in the form

of if-statements rather than by concrete examples in terms of data values.

We realize that there should be different notations available to analysts to

express requirements at a suitable level of abstraction. Concrete scenarios

are a very low-level requirements notation. It will be counter-productive to

only permit requirements to be expressed at that level. We should aim to

integrate concrete scenarios smoothly into existing requirements notations

for analysts to choose.

10.2.10 Scalability

A requirements notation is scalable if it can be effectively used to fully

express the requirements of very large and complex systems. There are

two aspects of scalability: size and complexity. Let us discuss the issue of

complexity first. A concrete scenario for a complex operations may have

more input and output values than an average operation. The side-effects

and the data relationships will involve more fields and data tables than

usual. However a concrete scenario is an example describing only a single

case with one set of values. The concrete scenario will always be simpler than

its implementing program that deals with many cases on a range of values. If

the resulting program is manageable, the simpler concrete scenarios can only

be more manageable as far as complexity is concerned. The tried-and-true

technique of functional decomposition can break down arbitrary complex

operations into simpler operations. We therefore do not think complexity

will be a cause of concern in the scalability of using concrete scenarios.

We are more concerned about the impact of size. A large system supports
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many operations. A complex operation may spawn many concrete scenarios

directly. If we break the complex operation into simpler operations before

writing scenarios for it, we will have an even larger number of scenarios.

We can try to understand the scalability of concrete scenarios based on

experiences on software testing. Professional testers are not strangers to

the management of several thousands of test cases in one system. Concrete

scenarios contain similar type and amount of information found in white

box tests. Therefore we think concrete scenarios are scalable given mature

enough tools.

10.2.11 Costs

To estimate the costs of using concrete scenarios, we can start by analysing

the information included in concrete scenarios. The input and output of

concrete scenarios are required for the creation of black box tests. The

system states described in concrete scenarios are useful information in the

creation of white box tests. Consider test password update 1 ( ) on page 267.

The test checks the post-operation system state as well as the output. It

demonstrates the information in concrete scenario can be reused for black

box and white box testing.

Unlike black box testing, white box testing is not universally used. It

is fair to say that in the creation of concrete scenarios, the specification

of input and output values takes very little effort. Analysts expend most

energy describing systems states and data relationships. When the added

costs of white box testing are not justified in a software development project,

the effort of writing concrete scenarios may not pay off. On the other hand,

if a development tool helps us to reuse the information in the creation and

maintenance of test cases, the costs of gathering the information in concrete

scenarios would be bearable.

Concrete scenarios incur costs to train analysts and programmers. The

costs depend on trainees’ backgrounds, quality of instructions and maturity

of the tools used. We would like to postpone further investigation in training

costs. We no longer hold the position that concrete scenarios should be used

to specify all operations across-the-board. The cost-effectiveness of concrete
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scenarios may be limited to critical or obscure operations.

10.3 Competing Requirements Notations

We have selected three commonly used requirements specification notations

for a systematic comparison with concrete scenarios in the next section. In

this section, we will introduce the notations and discuss them in light of the

abstraction levels of requirements supported.

10.3.1 Requirements Definitions

Requirements definitions may be the most common form of requirements

specifications documents. They are written in natural languages. Taken

from Figure 3-14 of [43, Page 134] unmodified, Figure 10.1 on the following

page is a list of functional requirements for a music store chain planning to

sell their products online. Functional requirements are features of the system

corresponding to product-level requirements. They are grouped under the

user goals of (1) search and browse, (2) purchase and (3) promote.

10.3.2 Sequence Diagrams

UML Sequence diagrams are widely used. A sample from Chapter 2 is

reproduced in Figure 10.2 on page 166. It shows three objects inside a system

interacting with each other by sending and receiving messages. One or more

of the objects are often users or external actors. A message is denoted by

an arrow to represent an internal operation or a user task. Messages may

have optional parameters.

10.3.3 Use Case

Use cases are a relatively new technique of expressing requirements. It was

first formulated by Ivar Jacobson in the mid-80’s and became popular in the

90’s [87]. We have described it briefly in Section 2.1.

As shown in the example of Figure 10.3 on page 167, a central part

of a use case description is the flow of events. An event can be an actor

performing an action, for example providing an input to the system. An
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1. Search and Browse

1.1 The system will allow customers to browse music choices by pre-

defined categories.

1.2 The system will allow customers to search music choices by title,

artist, and genre.

1.3 The system will allow customers to listen to a short music sample

of a music selection.

1.4 The system will enable the customer to add music selections to a

“favorite” list.

2. Purchase

2.1 The system will enable the customer to create a customer account

(if desired) that will store customer data and payment information.

2.2 The system will enable the customer to specify the music choice

for download.

2.3 The system will collect and verify payment information. Once

payment is verified, the music selection download process will be-

gin.

3. Promote

3.1 The system keeps track of the customer’s interests on the basis of

samples selected for listening and uses this information to promote

music selections during future visits to the Web site.

3.2 Marketing department can create promotions and specials on the

Web site.

3.3 Based on customer’s previous purchases, music choices can be tar-

geted to the customer on future visits to the Web site.

3.4 On the basis of customer interests, customers can be notified of

special offers on CDs.

Fig. 10.1: Requirements of a music store chain going online
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Fig. 10.2: A sequence diagram

event can also be a repsonse by the system, such as producing an output.

Events are described in sentences to show subjects, actions, objects and

parameters.

10.3.4 Requirements Levels Supported

Table 10.1 on page 168 summarizes how well each notation expresses re-

quirements at a particular level. The five levels of abstraction are taken

from [137] that was explained in Section 2.14.

It is a common practice for requirements definitions to have sections

explaining the business goals and the linkage between them and user goals.

But the use of natural languages does not ensure that business goals are

well expressed and linkages are well established. The other three notations

do not deal with business goals.

Requirements definitions group individual features under respective user

goals. Sequence diagrams graphically relate messages in user tasks. Use

cases list the events to achieve user goals. These three notations provide

moderate support to domain-level requirements. Concrete scenarios do not

provide a bird’s eye view of how individual scenarios can be combined to

attain user goals. Concrete scenarios cannot express requirements at the

domain-level.
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Use Case: Place Order
Precondition: A customer has logged on.
Flow of Events:
1. The customer selects Place Order.
2. The customer enters his or her name and address.
3. The customer enters product codes and quantities for items of his

or her choice.
4. The system supplies a product description and price for each item.
5. The system keeps a running total of items ordered.
6. The customer enters credit card information.
7. The customer selects Submit.
8. The system verifies the information and saves a pending order.
Postcondition: The new pending order is saved on the system.

Fig. 10.3: A simple use case description

Features in requirements definitions are often described without clear

and explicit representation of data input and data output. Requirements

definitions only provide moderate support of product-level requirements.

Sequence diagrams and use cases provide strong support of product-level

requirements. Concrete scenarios cover product-level with input and output

information for operations but they do not cover functional lists and use

cases. Therefore concrete scenarios only support product-level requirements

moderately.

Concrete scenarios provide stronger support of design-level requirements

because of the description of system states and actual data used.

Table 10.1 on the following page shows a pattern of requirements defini-

tions favouring the high-level, sequence diagrams and use case descriptions

favouring the mid-level and concrete scenarios favouring the low-level.

10.4 Comparing Concrete Scenarios

In this section, we compare concrete scenarios with competing notations in

their support of desirable characteristics for requirements specifications.

10.4.1 Correctness

Concrete scenarios tend to focus on low-level requirements. It is unclear

how the low-level requirements actually contribute to the business goals.



10. Conclusions 168

Requirements Requirements Sequence Use Concrete
Support Definitions Diagrams Cases Scenarios

Business-level #

Domain-level # # #

Product-level #   #

Design-level # #  

Code-level

# = moderate support,  = strong support

Tab. 10.1: Requirements Levels Supported by Notations

When business goals are taken as the ultimate reference of requirements

correctness, concrete scenarios are the weakest of all notations. The bird’s

eye view afforded by sequence diagrams and use cases helps the requirements

to correctly reflect the business goals. Requirements definitions usually have

sections in the documents to discuss business goals and how they are satisfied

by individual requirements. Well-written requirements definitions tend to

do best in describing the business goals and relating them to individual

features and constraints.

10.4.2 Unambiguity

Requirements definitions are the weakest in their precision. Despite the fact

that Figure 10.1 on page 165 is intended to be a textbook example, we can

find many alternative ways to interpret the functional requirements. Take

item 3.2 as an example. The requirement of “Marketing department can

create promotions and specials on the Web site” can be satisfied by any

existing Web site without doing any software development up front if static

html files are used to hold the promotions. On the other hand, it can lead

to a sophisticated database-driven application that can create promotions

with many bells and whistles.

Sequence diagrams only show input and output of messages. Side-effects

of messages on the internal state are not represented. This allows a message

to be interpreted differently. Use cases descriptions suffer from the use
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of natural languages though their pre- and post-conditions can be helpful.

The added details of system states in terms of data values make concrete

scenarios the most precise notation of the four.

10.4.3 Completeness

It is easier to spot an omission in high-level requirements than in low-level

requirements because of the better focus afforded by fewer items at the high-

level. Sequence diagrams and use cases support requirements expressions at

multiple levels of abstraction. Customers, analysts, programmers and testers

have multiple opportunities to check for completeness.

Originally, we had expected concrete scenarios to give strong support on

completeness. The completeness can be checked when scenarios are used to

derive formal specifications or programs. We have not been able to support

this with our empirical study. Based on the limited evidence that we have,

we can only assign a low rating to concrete scenarios on completeness.

10.4.4 Consistency

The English used in the writing of requirements definitions allows conflicts

to creep in unnoticed. You cannot easily tell how much two requirements

have overlapped or how much they have contradicted.

The precision in sequence diagrams affords higher confidence in conflict

detection. There is potential for automated consistency checking though

only to the level of events not the level of detailed system states.

Use cases descriptions suffer in their precision due to the use of English.

They make up some of the deficiency with their pre- and post-conditions.

The partitioning of the functionality into use cases afford better manual

consistency checking than do requirements definitions.

Detailed systems states and data values in concrete scenarios make them

the best notation in ensuring a consistent requirements specification if we can

assume the availability of appropriate tools to perform automated checking.
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10.4.5 Verifiability

Similar to consistency, verifiability depends on a notation’s precision. Ex-

pressed in a natural language, verifiability is not a strong suit of requirements

definitions. Sequence diagrams state sequences of messages with senders and

recipients which can be rigorously verified against an implementation. Use

case descriptions have the pre- and post-conditions to compensate for the

potentially imprecise event flows. Concrete scenarios are the most verifiable

notation. As we have seen in the Program Writing Guide in Appendix I

that data relationships in concrete scenarios can be turned into white-box

tests which is a level of testing not required by many projects.

10.4.6 Modifiability

Requirements definitions and use case descriptions are both quite easy to

modify though modifications may introduce inconsistency into the specifi-

cation. Sequence diagrams are relatively easy to modify due to the small

amount of information contained in them. Concrete scenarios are the worst

in modifiability due to the sheer number of scenarios and the large amount

of details inside each.

10.4.7 Traceability

All four notations support traceability given appropriate software processes

and tools are used.

10.4.8 Usability

Usability of a requirements notation consists of two parts: writability and

readability. The popularity of requirements definitions provides convincing

argument for their writability and readability. Sequence diagrams and use

cases require moderate amount of training and practice to write well. But

they are both easy to read almost without training.

Concrete scenarios are also readable with minimal training. Concrete

scenarios demand a paradigm shift from the writer. Without appropriate

tool support, people may not be able to make the paradigm shift. Due to the
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weak tool support we can currently muster, we have not proved nor fairly

assessed their writability.

10.4.9 Scalability

Requirements definitions, sequence diagrams and use cases have been widely

used in requirements specifications for large systems. Scalability is well

proven for them. One thing working against concrete scenarios is the amount

of details in each scenario. Each operation spawns at least a few scenarios.

A complex operation will have more scenarios and each with numerous data

relationships. We are somewhat pessimistic about the scalability of concrete

scenarios even before we field-test them on large systems. Modularization

may help us deal with the scalability issue if we can successfully integrate

concrete scenarios with mid- to high-level notations which we invent or select

from existing notations.

10.4.10 Costs

Requirements definitions may be the best notation cost wise. They require

little or no technical training for the readers and authors. The time and

effort to read and write them are reasonable. They do not require expensive

software. Use cases will cost slightly more in training and effort. Sequence

diagrams will cost more in software licensing.

The costs of using concrete scenarios are higher in all areas. The main

reason for the high costs is the added information in them. On a positive

note, we think that there is a possibility for the costs of using concrete

scenarios to be fully recouped in the saving of testing costs.

10.4.11 Comparison Summary

Comparisons of the four notations are summarized in Table 10.2 on the

following page. The table shows that concrete scenarios stand out in the

three areas of unambiguity, consistency and verifiability. Concrete scenarios

match use case descriptions in two areas and trail in five. In their current

form, concrete scenarios are not the best choice for general purpose require-

ments specification.
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Support
Requirements

Definitions

Sequence

Diagrams

Use

Cases

Concrete

Scenarios

Correctness  # # ◦
Unambiguity ◦ # #  

Completeness # # # ◦
Consistency ◦ # #  

Verifiability ◦ # #  

Modifiability # # # ◦
Traceability # # # #

Usability  # # ◦
Scalability    #

Costs  # # ◦
◦ = weak support, # = moderate support,  = strong support

Tab. 10.2: Requirements Notations Comparison

10.5 Future Work

10.5.1 Integration with Mid-level Requirements Notations

Our empirical study shows that the lack of a bird’s eye view is a problem with

the use of concrete scenarios. The comparison with competing notations

confirms this weakness of focusing solely on the low-level requirements.

We like the idea embodied in goal-oriented requirements approaches that

low-level requirements should be shown to support business goals. Can we

integrate concrete scenarios into a goal-oriented requirements specification

notation such as i*? The five levels of requirements abstraction remind

us that a direct integration may not be feasible. Goal-oriented approaches

deal with the top two levels and concrete scenarios only support the third

level moderately. We need additional work to bridge between a high-level

goal-oriented requirements notation and low-level concrete scenarios.

The direct integration of concrete scenario with a mid-level requirements

notation may give us a better payoff. Consider sequence diagrams which

show bird’s eye views of various related messages. Concrete scenarios may
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be written selectively for messages that require clarification. Sequence di-

agrams complement concrete scenarios and vice versa. Each notation does

what it is best at. The integration may also solve the scalability issue of con-

crete scenarios. It may be too much work to specify the entire system with

concrete scenarios. With the integration, a mid-level notation can specify

the entire system with concrete scenarios saved for obscured parts.

In a similar way, concrete scenarios may be used to elaborate events in

statecharts. This is also a good opportunity for concrete scenarios to go

object oriented. States referred in concrete scenarios will be object states

rather than system states. Object orientation also holds promise to the

expression of concurrency in requirements.

After successful integration of concrete scenarios into other requirements

notations, we could investigate how to best use concrete scenarios in the

software development life cycle. For example, we can try to find out if

concrete scenarios can facilitate parallel software development.

10.5.2 Tools Building

We have defined concrete scenario syntax in an XML schema. It ensures

that important components are present in the concrete scenarios written by

our subjects. The XML schema allows a typical XML tool on the market

to check the well-formedness of concrete scenarios. But it does not prevent

the writing of meaningless expression of “x + 1 = 2” even when x = 0. To

address the shortcoming, we quickly put together a formatter in XLST to

display the XML-based concrete scenarios neatly to facilitate visual checking

by readers or writers.

Given more time, we should build a proper concrete scenario authoring

program. Its users will write scenarios through a GUI which does not allow

ill-formed scenarios to be written in the first place. This is better than

detecting errors after they have been written. System states and object

states must be used consistently in all scenarios. (Our subjects have used

the same table but with different columns in different scenarios.) More

intelligent checking can be built into the tool. For example, it should check

that all data relationships are actually true in the scenario they belong. The
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objective of this tool is to make it easy to write scenarios and they must be

well-formed and meaningful.

Another desirable tool would generate test cases from concrete scenarios.

Concrete scenarios contain a superset of the information needed for black

box testing. The test generation tool is effectively a sophisticated formatter

that puts texts in the right places with appropriate texts inserted here and

there. We are quite comfortable that such a tool would be feasible.

If we were to proceed with the research direction of integrating concrete

scenarios with mid-level requirements notations, we would try to integrate

our tools into other tools that specialize in mid-level requirements. This

work however is not in our near-term agenda.

10.5.3 Further Empirical Studies

During this research, we have learned to appreciate the value of empirical

studies. If we are serious about inventing or refining notations that people

will find useful, we must not stop at the doable demonstration. We must go

on to show the usability through appropriate empirical studies. Due to the

primitive state of our method and tool, we are not ready for a quantitative

empirical study now.

In [7], we have argued that concrete scenarios make the Z formal notation

more accessible. The written feedback from the referees and the responses

from the audience of the presentation seem to be in favour of our position.

We could make a real contribution to learners of formal methods by putting

together a package with tools and instructions to help them learn Z notations

with concrete scenarios. Possibly the classroom setting will tolerate the

primitive tool we can produce given our limited resources. Strides in this

direction depend on an acceptable quality in the tools and instructions that

we can provide and the successful recruitment of academic staff who are

willing to use concrete scenarios in their formal method classes.

10.6 Potential Impacts on Software Development Processes

We are beginning to learn how concrete scenarios may be best used. Before

our notation and tools mature, we may not fully appreciate the implications
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of using concrete scenarios. This section explores a few areas in software

development where concrete scenarios may have an impact.

10.6.1 Users of Concrete Scenarios

Concrete scenarios will be written by people who normally have the title

of systems analysts in North America. They may also be called business

analysts or simply analysts. They are knowledgeable in the application

domain. They fully appreciate the high-level business goals of the system

being built. They know both the end-users of the system and the developers

well and understand their languages. After all, they are the bridge between

end-users and developers. They master the tools of requirements analysis.

To write concrete scenarios, they must be able to switch paradigm to explain

with concrete examples rather than generalized rules. When such an ideal

person does not exist, two or more persons may split the task.

Concrete scenarios will be read by programmers to derive programs.

They apply rigorous techniques to turn concrete scenarios into programs.

The techniques have been demonstrated in the Program Writing Guide in

Appendix I.

Testers also need to read concrete scenarios. Before test generation

tools are available, testers must manually turn concrete scenarios into test

cases. The techniques used by testers are more mechanical and easier than

the techniques employed by programmers.

Assuming other notations are used to express mid-level and high-level

requirements, system architects will not need to know the details in concrete

scenarios.

Paying customers, end-user representatives and project leaders may not

have the need to read concrete scenarios. It depends on how hands-on they

are.

Concrete scenarios are used to enhance the precision of communications

especially between analysts and programmers. If concrete scenarios serve

their purpose, every stakeholder will be benefited.
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10.6.2 Use of Formal Specifications

Advocates told us that “formal methods increase the cost of development” is

a myth [67]. It was reported that the application of Z to IBM’s CICS resulted

in a 9 percent savings in development costs [25]. But few can dispute that

formal methods may not be suitable or cost-effective for the development

of all systems. If we can confirm from development projects that concrete

scenarios improve the customers’ understanding of formal specifications, we

may widen the appeal of formal methods.

10.6.3 Test-Driven Development (TDD)

Dijkstra downplayed the significance of testing and regarded formal specifi-

cations as the ultimate reference of user requirements.

Program testing can be used to show the presence of bugs, but

never to show their absence. – E.W. Dijkstra [45, page 7]

Test-Driven Development (TDD) pratitioners write unit tests before the

programs. They treat tests as a practical means to document requirements.

Our position is compatible with theirs. But we do not want to be limited

to black box tests of individual units. It is possible that concrete scenarios

may become a variation of TDD.

10.6.4 Top-Down Versus Bottom-Up

According to conventional wisdom, we should approach computing problems

systematically in a top-down manner. We thoroughly analyse requirements,

design an architecture from them, break down the architecture repeatedly

into small components until a component can be managed by an individual

programmer.

The authority of the top-down approach is challenged by agile methods

which include eXtreme Programing (XP), Test-Driven Development (TDD)

and a lightweight project management method SCRUM. Agile methods do

not attempt to learn all the requirements in details at the beginning of the

project. They do not try to start with the most capable architecture for

the problem at hand. They take a user story written in three sentences or
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less. With access to an onsite customer, they write the minimal program to

implement the user story in two to three weeks. They refactor the code to

rectify inappropriate program design decisions made earlier. Agile methods

have a unmistakable bottom-up favour.

Some requirements analysis notations favour the top-down approach, for

example, a data flow diagram (DFD) that breaks down a large process into

a few smaller processes. Low-level concrete scenarios are neutral. They may

become more important when developments are increasingly done in the

bottom-up fashion.

10.7 Conclusion

We have argued that concrete scenarios can be a friendly alternative to for-

mal specifications because they are more readable by people not trained

in formalism. We have used concrete scenarios to specify a run-of-the-mill

warehouse application, an interactive phone system, a nondeterministic dice

and a computational sorting problem. We formally define the observance

relationship of formal speciations by concrete scenarios. We conducted a

qualitative experiment that involves subjects writing concrete scenarios. We

learned that concrete scenarios are not as usable as we had expected. They

do not portray the big picture of the system clearly. The vast amount of de-

tails in all concrete scenarios may be unmanageable for a large system. On

the other hand, concrete scenarios offer better precision, consistency and

verifiability than the competing notations. As they currently stand, con-

crete scenarios are useful for the clarification of potentially misunderstood

system behaviour. With improved tool support and better integration of

mid- to high-level requirements notations, concrete scenarios may become

an excellent notation to specify all low-level functional requirements.
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A. CONCRETE SCENARIO WRITING GUIDE – V1.0

About this guide. This is the first tutorial written to help analysts to write

concrete scenarios. It is a stripped-down version of the approach presented

in earlier chapters. Data relationships which are normally a part of concrete

scenarios are not required in order to ease the learning curve. The guide

contains seven concrete scenarios for two user tasks: logon and id unlock.

The tasks are applicable to an internal network or an email system. System

states are first represented with English sentences. Interchangeable values in

sentence templated are captured as columns on data tables. The guide uses

a yellow background to highlight data that are important in the scenario.

Values updated in a scenario are shown to the right of the old values with

an arrow in between. Fields that appear before the table in the scenario are

regarded implicitly as input. Fields appearing after the table are output.

Analysts are expected to write concrete scenarios with an ordinary word

processor without any assistance in the syntax.

A.1 Introduction

User requirements are often expressed in natural languages, for example

English. Natural languages are ambiguous and subject to interpretations.

Our research proposed to specify requirements precisely with concrete sce-

narios. In this tutorial, the approach is demonstrated with the creation of

concrete scenarios for the user login functionality. There are four general

steps as described in the following sections.

1. Use sentence templates to express system states

2. Use tables to capture the same information in the sentences

3. Name the scenarios for each user task
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4. Describe each scenario based on its impact on the tables

A.2 Express system states in sentence templates

You will write a number of sample sentences that can capture the system

state. Here are some examples.

1. User id francis is valid.

2. User id cudie is valid.

3. User id meng is locked.

4. User id francis has password hello246.

5. User id cudie has password 7there59.

6. User id meng has password family.

7. User id francis has accumulated 2 unsuccessful login(s).

8. User id cudie has accumulated 0 unsuccessful login(s).

9. User id meng has accumulated 4 unsuccessful login(s).

The sentences above only follow three templates. By varying the under-

lined values, we can derive an infinite number of sentences. With different

combinations of sentences, we can capture different system states. This is

not the only way to write the sentences. Another set of equivalent sentences,

based on a single template, is shown below. It hardly matters whether you

choose to use three simpler templates or a single slightly more complicated

template. The key is that the sentences should be understandable.

1. User id francis is valid with password hello246 and 2 accumulated

unsuccessful login(s).

2. User id cudie is valid with password 7there59 and 0 accumulated un-

successful login(s).

3. User id meng is locked with password family and 4 accumulated un-

successful login(s).
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A.3 Extract variable parts of sentences into tables

While sentences can describe system states, they are too verbose. We prefer

to use tables to capture equivalent information. The sentence template

with four underlined fields gives rise to the following table of four columns.

Meaningful column headings are used to enhance readability.

User Id Status Password Accumulated failed login

francis valid hello246 2

cudie valid 7there59 0

meng locked family 4

A.4 Identify successful and unsuccessful scenarios for a user task

We immediately think of a successful and a failed scenarios for the login task.

It is helpful but not necessary to identify all the scenarios at the beginning.

A.5 Express scenarios with concrete data in table

A user task normally has input and output data. Our first scenario below

shows a user trying to login with an incorrect password. He uses ‘francis’ as

the id and ‘goodbye’ as the password. But from the table, we see that the

correct password is ‘hello246’. The data participating in the scenario are

highlighted with a maron coloured font. A side-effect of the scenario is that

the number of accumulated failed logins is incremented. The new value ‘3’

after the scenario is shown to the right of the old value ‘2’ separated by an

arrow →. The output is a failure indicator.

Scenario id: 1

Scenario name: login failed for using an incorrect password

User id: francis Password: goodbye

User Id Status Password Accumulated failed login

francis valid hello246 2 → 3

cudie valid 7there59 0

meng locked family 4

Result: login failed
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Starting from the same data table, if the correct password has been

entered, we will have a successful login scenario. The number of accumulated

login failure is reset to zero.

Scenario id: 2

Scenario name: login successful

User id: francis Password: hello246

User Id Status Password Accumulated failed login

francis valid hello246 2 → 0

cudie valid 7there59 0

meng locked family 4

Result: login succeeded

A.6 Adding more concrete scenarios to a user task

Using different data in the input or in the table in a scenario, we can discover

new scenarios. It is especially easy to overlook the exceptional or erroneous

scenarios, for example, trying to login with a locked id.

Scenario id: 3

Scenario name: login failed for using a locked id

User id: meng Password: family

User Id Status Password Accumulated failed login

cudie valid 7there59 0

meng locked family 4 → 5

Result: login failed

Another exceptional scenario is an attempt to login with a non-existent

id. The paticipating data span a column instead of a row. There is no

side-effect in this scenario.
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Scenario id: 4

Scenario name: login failed for using a non-existent id

User id: gina Password: sister

User Id Status Password Accumulated failed login

francis valid hello246 2

cudie valid 7there59 0

meng locked family 4

Result: login failed

The above scenarios only result in the update of the accumulated number

of login failures. We may also want to update the id status when the number

of failures reaches four.

Scenario id: 5

Scenario name: login failed resulting in a locked id

User id: francis Password: candle

User Id Status Password Accumulated failed login

francis valid → locked hello246 3 → 4

cudie valid 7there59 0

meng locked family 4

Result: login failed

A.7 Adding more tables

As we continue to specify the complete system, we consider more user tasks.

One of the tasks for the login functionality is to unlock previously locked

id’s. If the current system state is inadequate, we will need to repeat the

earlier steps of writing sentence templates and creating tables before we can

define scenarios for the new task. Unlocking is a privileged task that only

managers should be able to do. We will create a new sentence template to

capture the manager-employee relationship.

1. Manager cudie has employee(s) francis and meng.

2. Manager oliver has employee(s) jasper.
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We shall need a new table as follows. We allow a list of user ids to be

enclosed in a pair of square brackets [ and ]. Items inside a list are separated

by commas.

Manager Employees

cudie [francis, meng]

oliver [jasper]

To save space, we will only describe two scenarios for the unlock user

task.

Scenario id: 6

Scenario name: unlock succeeded

Manager id: cudie Employee id: meng

User Id Status Password Accumulated failed login

cudie valid 7there59 0

meng locked family 4

Manager Employees

cudie [francis, meng]

oliver [jasper]

Result: unlock succeeded

Scenario id: 7

Scenario name: unlock failed due to insufficient privilege

Manager id: oliver Employee id: meng

User Id Status Password Accumulated failed login

oliver valid 7there59 0

meng locked family 4

Manager Employees

cudie [francis, meng]

oliver [jasper]

Result: unlock failed
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A.8 Summary

Concrete scenarios capture usages of a system by examples. You first write

sentence templates to capture system states in plain and understandable

English. Then you capture the system state compactly in tables. Finally,

you identify representative scenarios and describe them with actual input,

output and the system states before and after. A complete system is spec-

ified incrementally, task by task, one scenario at a time. Each scenario

represents a unique combination of input data and the system state. To

write a complete specification, you need to exhaust all the representative

combinations. As you build your requirements specification, you may need

to revise your data to support new scenarios. What data to keep? What

effect does a scenario has on the data? These are decisions to be made

based on the computing requirements. Concrete scenarios are intended to

be written by the systems analysts, precise enough for programmers to write

programs and friendly enough for users to confirm if the requirements are

accurately and completely captured.



B. MENG’S FIRST BATCH OF WORK

B.1 Express system states in sentence templates

Sentences that can capture the system state:

Order number (0001 to 9999) is valid with customer name (Alpha), ad-

dress (Numeric & Alpha numeric), phone number (7 digits), food ordered

(Alpha) and type of payment (Cash or Credit card)

B.2 Extract variable parts of sentences into tables

Order Status Customer Address Phone Food Type of
number name number ordered payment

0001 valid John Doe 123 Jane 555-6666 Soup Cash
Street

0002 valid Jane White 456 John 666-5555 Fried VISA
Street Chicken

0003 invalid 789 Center 888-9999 Hamburger Cash
Street

B.3 Identify successful and unsuccessful scenarios for a user task

Two scenarios for the Order task: successful (Valid) and unsuccessful (In-

valid).
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B.4 Express scenarios with concrete data in table

Payment is valid with cash or credit card

Credit card is valid with credit check

Scenario id: 1

Scenario name: Cash payment

Order number: 0006

Order Status Type of

number payment

0006 valid Cash

Result: succeeded

Scenario id: 2

Scenario name: Unlock succeeded

Order number: 0007 0008

Order Status Type of Type of

number payment credit card

0007 valid Credit card VISA

0008 invalid Credit card AMEX

Order Credit check

number

0007 Pass

0008 Fail

Result: succeeded & failed



C. CONCRETE SCENARIO WRITING GUIDE – V4.2

About this guide. This is the second tutorial provided to Meng to help

him write concrete scenarios in the role of an analyst. The guide describes

logon, password update and id creation tasks with twice as many concrete

scenarios in the previous version. We assume that analysts will have no

trouble working directly with data tables. The initial step of creating English

sentences is therefore dropped though the sentences can be retrofitted at

a later time if required by users. Task descriptions are written to serve

as templates for scenario descriptions. Keywords input and output are

used explicitly on the parameters. Hopefully, these changes could encourage

analysts to give more thought to input/output parameters thus reducing the

chance of omitting them in scenarios. Keywords deleted and added are

used beside appropriate rows to identify outgoing and incoming data. They

remind analysts to think about the side-effects in the concrete scenarios

being written. Analysts are now required to include data relationships in

the scenarios. Analysts will continue to write concrete scenarios with a word

processor that offers no assistance in the use of correct syntax.

C.1 Introduction

This research proposed to express requirements with concrete scenarios. The

goal of using concrete scenarios is twofold: readability and precision. In the

proposed approach, a system is divided into a number of user tasks that

users may want to perform. For example, browsing catalogue, adding items

to a shopping cart and confirming an order are three common user tasks on

online shopping Web sites. A user task may be performed in various ways

giving rise to different outcomes. For example, ordering a book when it is

out of stock is different from ordering the same book when it is in stock. We
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already have two scenarios for the same task of ordering a book.

In the existing literature, a scenario is an instance of a use case. Concrete

scenarios adds to it the actual data used. An advantage of using concrete

scenarios is that the requirements are so precisely expressed that they can

be used as test data. In this tutorial, we will demonstrate concrete scenarios

with the user logon functionality.

C.2 Logon Task

C.2.1 Task

Most user tasks have input and output data. To log on, the user inputs a

user id and a password. The system responds with a success or failure result

after comparing the input with the user information stored in an account

table. There are three input and output fields: user-id, password and result.

Each of them represents a single value. A table is distinguished from single-

valued items by a box frame. The table is called account which has two

fields: user-id and password. The logon task is described as follows.

Task: logon

Description: log on to the system

Input: user-id, password

Output: result

System: account

user-id password

C.2.2 Scenarios

A concrete scenario, described by actual values in the input, output and

system data, is an example of performing a user task. The first concrete

scenario description presented below has six components: scenario name,

description, input parameters, output parameters, system data and relations

between the input and system data. The name of a scenario is formed by the

task name, followed by a dot ‘.’ and a number, for example logon.1, logon.2

and so on.
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Scenario: logon.1

Description: the input matches a row in the system table

Input: user-id (francis), password (hello246)

Output: result (success)

System: account

user-id password

cudie 7there59

francis hello246

meng family

Relation: input.user-id = account.2.user-id // input id matches

input.password = account.2.password // input password matches

Values of single-valued data items are enclosed in brackets. For example,

the value of input user-id is ‘francis’. Scenario logon.1 is a successful logon

attempt as indicated by the result which is ‘success’. The acccount table

is shown with three rows of data though only one row is actually involved

in the two equalities of the relation component. The first equality says

that the input user-id equals user-id in row 2 of the account table. The

second equality says that the input password equals password in row 2 of

the account table. We can place any comments preceded by // to explain

the relations.

The second scenario for the task is a failed logon attempt in which the

user inputs an incorrect password ‘goodbye’.

Scenario: logon.2

Description: the input password is incorrect

Input: user-id (francis), password (goodbye)

Output: result (failure)

System: account

user-id password

francis hello246

meng family

Relation: input.user-id = account.1.user-id // input id matches

input.password 6= account.1.password // but password does not
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The third scenario for the task is also a failed logon attempt.

Scenario: logon.3

Description: the input user id does not exist

Input: user-id (jasper), password (alberta)

Output: result (failure)

System: account

user-id password

cudie 7there59

francis hello246

meng family

Relation: // input user id does not match any user id on account table

input.user-id 6= account.1.user-id

input.user-id 6= account.2.user-id

input.user-id 6= account.3.user-id

We have defined one successful scenario and two failed scenarios for the

logon task. When a requirements specification is correctly written, it is

common to see more failed scenarios than successful scenarios.

C.3 Password Update Task

C.3.1 Task

For the password update task, the input will be a user id, the old password

and the new password. The output and system data are unchanged from

the logon task.

Task: password-update

Description: change the password

Input: user-id, old-password, new-password

Output: result

System: account

user-id password
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C.3.2 Scenarios

The successful scenario of password update has a side-effect. The record with

the old password is deleted. The record with the new password is added. To

simplify our notation, we use a deletion followed by an addition to simulate

a record update. The programmer is free to implement the scenario wth a

direct update.

Scenario: password-update.1

Description: the input user id and old password match an existing user account

Input: user-id (meng), old-password (family), new-password (babygirl)

Output: result (success)

System: account

user-id password

meng family deleted

meng babygirl added

Relation: input.user-id = account.1.user-id

input.old-password = account.1.password

input.user-id = account.2.user-id

input.new-password = account.2.password

The two failed scenarios for the password update task resemble the failed

scenarios for the logon task.

Scenario: password-update.2

Description: the input old password does not match the current password

Input: user-id (francis), old-password (goodbye), new-password (goodwill)

Output: result (failure)

System: account

user-id password

cudie 7there59

francis hello246

Relation: input.user-id = account.2.user-id

input.old-password 6= account.2.password
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Scenario: password-update.3

Description: the input user id does not exist

Input: user-id (jasper), old-password (calgary), new-password (edmonton)

Output: result (failure)

System: account

user-id password

cudie 7there59

francis hello246

Relation: input.user-id 6= account.1.user-id

input.user-id 6= account.2.user-id
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C.4 Create Id Task

We have been using the account table to define scenarios for the logon and

password update tasks. But where do the data in the account table come

from? We need a user task to create user ids and passwords.

C.4.1 Task

Only privileged ids should be allowed to create other ids. We keep the

privileged ids in a new table called super-id. Note that both tables are shown

with initialization data: the user id ‘admin’ and an identical password. Once

the system is configured, the systems operator is expected to change the

obvious password to an obscure one. The third to fifth input parameters of

the task are the information for the new id.

Task: create-id

Description: create a user id with an initial password

Input: creator-id, creator-password, id, password, privilege

Output: result

System: account

user-id password

admin admin

super-user

user-id

admin

This is not the only way to describe the system data for the task. An

alternative is to add a privilege column to the account table as follows. An

id can have either ‘super’ or ‘normal’ privilege. However we have chosen

to use two tables instead for demonstration purpose. When necessary, the

readers will know how to use multiple tables in one task.

account

user-id password privilege

admin secret super

cudie hello normal
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C.4.2 Scenarios

The first scenario describes the creation of a super id. The creator id and

password must match a row on the account table. The creator id must also

be present on the super id table. The new id ‘meng’ is added to both tables.

Scenario: create-id.1

Description: create a super user id

Input: creator-id (admin), creator-password (secret)

id (meng), password (vacation), privilege (super)

Output: result (success)

System: account

user-id password

admin secret

meng vacation added

super-user

user-id

admin

meng added

Relation: // matching creator’s id and password

input.creator-id = account.1.user-id

input.creator-password = account.1.password

// creator is a super id

input.creator-id = super-user.1.user-id

// add the new id to account table

input.id = account.2.user-id

input.password = account.2.password

// add the new id as a privileged id

input.privilege = ‘super’

input.id = super-user.2.user-id
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Scenario create-id.1a is different from create-id.1 in that no new row

is added to the super id table. It is because the new id ‘cudie’ is not a

privileged id as indicated by the normal privilege in the input.

Scenario: create-id.1a

Description: create a normal user id

Input: creator-id (meng), creator-password (vacation),

id (cudie), password (hello), privilege (normal)

Output: result (success)

System: account

user-id password

admin secret

meng vacation

cudie hello added

super-user

user-id

admin

meng

Relation: input.creator-id = account.2.user-id

input.creator-password = account.2.password

input.creator-id = super-user.2.user-id

input.id = account.3.user-id

input.password = account.3.password

input.privilege = ‘normal’
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The next scenario shows that the attempt to create a new id from a

normal id will fail. The reason is that the creator id ‘cudie’ is not on the

super id table.

Scenario: create-id.2

Description: create a user id from a normal user id

Input: creator-id (cudie), creator-password (hello)

id (francis), password (francis), privilege (normal)

Output: result (failure)

System: account

user-id password

admin secret

cudie hello required

meng vacation

super-user

user-id

admin

meng

Relation: input.creator-id 6= super-user.1.user-id

input.creator-id 6= super-user.2.user-id
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Another reason for the task to fail is that the id being created already

exists.

Scenario: create-id.3

Description: create a user id with name conflicting with an existing id

Input: creator-id (admin), creator-password (secret)

id (cudie), password (pass1234), privilege (super)

Output: result (failure)

System: account

user-id password

admin secret

cudie hello

meng vacation

super-user

user-id

admin

meng

Relation: input.id = account.2.user-id

C.5 Password Expiry Feature

Software requirements evolve. The simple logon task defined earlier may be

deemed insecure. We want the users to change their passwords periodically.

We will remind users to change their passwords after one month of their

previous password updates. If they ignore the reminders, two months after

their previous password updates, ther ids will be locked. We are not defining

a task. We are just modifying one or more previously defined tasks.

C.5.1 Revised Logon

The logon task needs to be revised to return the result of ‘please change

your password’ when the password has been unchanged for over a month.

However the tables used in the current system are inadequate. We need to

store the date of the most recent password update for every user. This can
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be done by adding a column to the account table. The system also needs

the current date available for comparison with the date of the most recent

password update.

Task: logon

Description: log on to the system

Input: user-id, password

Output: result

System: current-date

account

user-id password updated-on

In the task description, we know that current-date is a single-valued data

item because it is not followed by a box frame like the table account. The

successful scenario is revised as follows.

Scenario: logon.1

Description: the input matches a row in the account table and the

password has been updated within a month

Input: user-id (francis), password (hello246)

Output: result (success)

System: current-date (2009-Feb-03)

account

user-id password updated-on

francis hello246 2009-Jan-25

Relation: input.user-id = account.1.user-id

input.password = account.1.password

current-date ≤ account.1.updated-on + 1 month

The new field of current-date and new column updated-on do not affect

the failure of scenarios logon.2 and logon.3. Other than the new field and

column, nothing is changed. We do not produce their trivial revisions here.

According to the current date of the next scenario, Meng’s password was

last updated one month and a day ago. Therefore his logon attempt will

succeed with the request to change password now.
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Scenario: logon.4

Description: the password has been last updated for over a month

but not more than 2 months

Input: user-id (meng), password (family)

Output: result (success but change password now)

System: current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation: input.user-id = account.3.user-id

input.password = account.3.password

account.3.updated-on + 1 month < current-date

current-date ≤ account.3.updated-on + 2 months

In the next scenario, Cudie tried to logon but her password has not

changed for over two months. Her logon attempt failed.

Scenario: logon.5

Description: the password has been last updated for over 2 months

Input: user-id (cudie), password (7there59)

Output: result (failure due to password not changed over two months)

System: current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation: input.user-id = account.1.user-id

input.password = account.1.password

current-date > account.1.updated-on + 2 months
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C.5.2 Revised Password Update

When a user updates the password, the corresponding updated-on cell in the

account table must be changed to the current date.

Scenario: password-update.1

Description: the input user id and old password match a user account

Input: user-id (meng), old-password (family), new-password (babygirl)

Output: result (success)

System: current-date (2009-Feb-03)

account

user-id password updated-on

meng family 2009-Jan-02 deleted

meng babygirl 2009-Feb-03 added

Relation: input.user-id = account.1.user-id

input.old-password = account.1.password

input.user-id = account.2.user-id

input.new-password = account.2.password

current-date = account.2.updated-on

In the failed scenarios of password update, the value of updated-on is

not changed. Thus the password expiry feature does not affect scenarios

password-update.2 and password-update.3. No revision to them is required.
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C.5.3 Revised Create Id

When an id is created, its updated-on value in the account table should be

set to the current date.

Scenario: create-id.1

Description: create a super user id

Input: creator-id (admin), creator-password (secret)

id (meng), password (vacation), privilege (super)

Output: result (success)

System: current-date (2009-Feb-03)

account

user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03 added

super-user

user-id

admin

meng added

Relation: input.creator-id = account.1.user-id

input.creator-password = account.1.password

input.creator-id = super-user.1.user-id

input.id = account.2.user-id

input.password = account.2.password

current-date = account.2.updated-on

input.privilege = ‘super’

input.id = super-user.2.user-id



C. Concrete Scenario Writing Guide – V4.2 203

Scenario: create-id.1a

Description: create a normal user id

Input: creator-id (meng), creator-password (vacation),

id (cudie), password (hello), privilege (normal)

Output: result (success)

System: current-date (2009-Feb-10)

account

user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03

cudie hello 2009-Feb-10 added

super-user

user-id

admin

meng

Relation: input.creator-id = account.2.user-id

input.creator-password = account.2.password

input.creator-id = super-user.2.user-id

input.id = account.3.user-id

input.password = account.3.password

current-date = account.3.updated-on

input.privilege = ‘normal’

For a reason similar to the password update task, the failed scenarios of

the id creation task do not need to be revised.
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C.6 Guidelines of Writing Concrete Scenarios

Writing concrete scenarios is an incremental process. After the analyst has

identified the user tasks to be supported by the system, he or she would

write scenarios for each task. Step-by-step instructions follow.

C.6.1 Writing Task Descriptions

Task Give the task a short name which begins with an action verb. Multiple

words should be concatenated with hyphens as in ‘create-id’.

Description Give the task a description. Others should be able to tell two

tasks apart by looking at their different descriptions.

Input List the input parameters the user needs to supply to the system to

perform this task.

Output List the output parameters the user will get after performing the

task.

System List the data items kept by the system that are required or affected

by this task.

The input, output and system data may be single-valued or multi-valued.

Tables are used to hold multi-valued data. To distinguish themselves from

single-valued data items, multi-valued in tables are enclosed in framed boxes.

In our examples, the input and output have been single-valued data

items. But it is also possible for them to have tables. For example, in a

Web browsing task on an online bookstore, the output may be a table of

book titles, author names, descriptions, prices and etc. In our examples,

the system data have been mostly tables. But it is also possible to have

single-valued system data like the current-date in the revised logon task.
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C.6.2 Writing Scenario Descriptions

Varying combinations of input and system data give rise to different output.

They can be captured in different concrete scenarios. For example, in the

successful id creation scenarios, the privilege parameter may be ‘super’ or

‘normal’. The value determines if the new id will be aded to the super user

table. Therefore we need two scenarios for successful id creation.

Scenario The scenario name is made up of the task name, a dot ‘.’ and

a number, for example create-id.1. If two scenarios are sufficiently

similar, you can emphasize their resemblance with the same number

and a trailing letter, for example create-id.1 and create-id.1a.

Description Others should be able to tell two scenarios apart by looking at

their different descriptions.

Input Specify actual values for the input parameters in this scenario.

Output Specify actual values for the output parameters in this scenario.

System Specify actual values for the system data in this scenario.

Relation Specify the relationships between the input, output and system

data.

The values of single-valued data items are enclosed in brackets following

the data names. The values of multi-valued data items are listed in table

format under column headings. Rows of data to be deleted from and added

to a system table are denoted by keywords deleted and added respectively.

In the relation part, data are referred with the dot notation. Input and

output data shall have the prefixes of input and output respectively before

a dot. Data items without one of the two prefixes are assumed to be system

data. Data from a table should be identified by a table name, followed by

a row number, followed by a column name, all separated by a dot. You

can relate two individual items by a relational operator. Line comments

preceded with // may be used.
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C.7 Summary

In this tutorial, we have written three user tasks relating to the system

logon functionality. The first task was logon. You have learned that it is

possible to have many scenarios for a single task. In particular, there may

be more unsuccessful scenarios than the successful ones. The second task

was password update. You have seen that it is possible to define new task

using existing data tables. It is common for different tasks to share data

tables in the system. The third task was id creation. We have used two

tables to define one task. We also showed the initialization of a super id

required for the task.

As requirements evolve, task and scenarios need revising. We might want

to enforce periodic password update. The system should return reminders

regarding password expiry. A few new scenarios were written to give those

reminders with the help of the new column holding the recent password

modification dates added to the account table. We also go through all the

scenarios that use the modified account table for possible revisions.



D. MENG’S SECOND BATCH OF WORK

This is Meng’s concrete scenarios documenting the tasks performed by a

shopper on an online store. An evaluation of this work can be found in

Section 9.5 on page 145.

D.1 Browse an online store

D.1.1 Task

Task: browse-item

Description: browse an online store

Input: main-items

Output: sub-items, detail-items

System: catalogue

main-items sub-items

subCatalogue

sub-items detail-items
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D.1.2 Scenario

Scenario: browse-item.1

Description: browse an online store

Input: main-items (books, music, movies, games . . . )

Output: sub-items (art, biographies, computers, engineering . . . )

detail-items (digital photography, computer language, war games . . . )

System: catalogue

main-item

books

music

movies

...

main-items sub-items

books art

biographies

computers
...

subCatalogue

sub-items detail-items

computers digital photography

computer language

war games
...

Relation: // input item matches

input.main-items = subCatalogue.1.sub-items

// input item matches

input.sub-items = subCatalgoue.1.detail-items
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D.2 Add an item to an online shopping cart

D.2.1 Task

Task: add-item

Description: adding an item to shopping cart at an online store

Input: selected-items, quantity, available

Output: result

System: orders

selected-item quantity

stocks

selected-item available



D. Meng’s Second Batch of Work 210

D.2.2 Scenario

Scenario: add-item.1

Description: add an item to the shopping cart

Input: selected-items (War Game), quantity (1)

Output: result (success)

System: orders

selected-item quantity

War Game 1 added

stocks

selected-item available

War Game 10

Relation: // input item matches

input.selected-item = stocks.1.selected-item

// quantity order is greater than available stock

input.quantity < stocks.1.avaliable

Scenario: add-item.2

Description: the input quantity required is out of stock

Input: selected-items (War & Peace), quantity (99)

Output: result (failure)

System: orders

selected-item quantity

War & Peace 99 added

stocks

selected-item available

War Game 3

Relation: // input item matches

input.selected-item = stocks.1.selected-item

// quantity order is greater than available stock

input.quantity > stocks.1.avaliable
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D.3 Purchase item at an online store

D.3.1 Task

Task: purchase-item

Description: purchase an item at an online store

Input: email-id, pickup, address

Output: result

System: customers

email-id pickup address
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D.4 Scenario

Scenario: purchase-item.1

Description: purchase an item in the shopping cart

Input: email-id (john@yahoo.com), pickup (yes), address ( )

Output: result (success)

System: customers

email-id pickup address

john@yahoo.com yes added

Relation: // save information

input.email-id = customer.1.email-id

input.pickup = customer.1.pickup

// save address for delivery

IF input.pickup = ‘no’

input.address = customer.1.address

// Update stock

input.selected-item = stocks.1.selected-item

stocks.1.available = stocks.1.available − input.quanitity

Scenario: purchase-item.1

Description: purchase an item in the shopping cart

Input: email-id (jane@gmail.com), pickup (no), address ( )

Output: result (failure)

System: customers

email-id pickup address

jane@gmail.com no added

Relation: // save information

input.email-id = customer.1.email-id

input.pickup = customer.1.pickup

// save address for delivery

IF input.pickup = ‘no’ & input.address = ‘’

put up error message



E. XML-BASED CONCRETE SCENARIO WRITING GUIDE –

V5.0

About this guide. This is the third tutorial to help analysts to write

concrete scenarios. Learning from Meng’s not-so-successful experience, it

becomes clear that the minimal tool we must provide is a syntax checker.

It occurred to us that components in concrete scenarios can be expressed

as customizable elements in XML documents. We expressed a document

structure suitable for concrete scenarios in an XML schema stored in an

XSD file. Analysts can use any XML editor available on the market to write

concrete scenarios in XML. All industrial strength XML editors support

the validation of XML documents against XSD files. We can now check

the well-formedness of our XML-based concrete scenarios. We also created

a stylesheet in Extensible Stylesheet Language Transformation (XSLT). It

transforms the XML-based concrete scenarios to HTML displayable on Web

browsers.

Analysts can use the first tool to check the syntax of XML-based concrete

scenarios and use the second tool to display the XML-based scenarios in a

more reader-friendly visual form. But our tools do not prevent the writing

of some meaningless scenarios. Analysts can refer to a well-formed but non-

existent field in a relationship. We have not built our tool with the ability to

test the validity of relationships. We added an introduction to requirements

specification for our inexperienced student subjects. They are reminded

that relationships should cover every important field. In the visual display,

outgoing data are now denoted with the brownish colour of soil and new

data rows are shown in the green colour of sprout.

The previous guide shows how concrete scenarios are revised to cope

with requirement changes. We have removed the discussion because it is

unnecessary for this introductory guide.
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E.1 The challenge of requirement specifications

During software development, requirements must be accurately communi-

cated from the clients to the developers. Requirements are the foundation

of most other work in a software project. A poor job in requirements speci-

fication will give rise to a solution not meeting the client’s needs.

It is often necessary to capture requirements in writing. A use case is

a user task. Use case descriptions can capture detailed functional require-

ments1. A use case may have a primary scenario and several alternative

scenarios. Following is an example of the log on use case description.

Use case name: Logon - primary scenario

Precondition: System is up

Postcondition: User is logged on

Event flow: 1. The system prompts the user to log on.

2. The user enters the correct user id and password.

3. The system verifies that the entered information.

Requirements expressed in English or any other natural language can be

amibguious. Here is an example attributed to M. Jackson. He spotted two

signs at the foot of an escalator in an airport.

1. Shoes must be worn

2. Dogs must be carried

The first sign required him to wear a pair of shoes before stepping on

the escalator. By the same token, if he wanted to ride the escalator, he had

to have a dog in his arms, right? Wrong! The second sentence really means

that if he had a dog with him, he had to carry it while on the escalator.
1 Software requirements are generally classified as two kinds: functional and non-

functional. Functional requirements describe what the software can do, for example adding

an item to a shopping cart on an online store. Non-functional requirements are other im-

portant qualities which may concern usability, reliability, performance, security and etc.

“An average query must be completed in one second” is a non-functional requirement.

Don’t confuse use case descriptions with use case diagrams. Use case diagrams show the

actors of use cases and interrelationships between use cases but no details beyond that.
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But he was not required to have a dog. According to the first sentence

however he was required to have a pair of shoes. The two sentences should

be interpreted differently. If you want to improve the precision of the signs,

you need to lengthen the sentences to deal with a number of situations.

For instance, if you have 3 pairs of shoes with you, you are only required to

wear one pair. On the other hand, if you have three dogs with you, you must

carry them all. If your dogs are currently at home, you are not required to

bring any of them to ride on the escalator. The two signs should not have

caused many problems in practice. Since we know that not everyone has

dogs, we will choose a more or less consistent context to interpret the simple

sentences. Software requirements are far more complex. With clients and

developers coming from different technical backgrounds, misunderstanding

happens all the time.

E.2 Concrete use cases and scenarios

This research proposed to express detailed functional requirements with con-

crete scenarios. The goal is twofold: readability and precision. He describes

a concrete use case with the kinds of input/output parameters and system

data required for the user task. A concrete scenario is further described

with the actual data used. A concrete scenario also shows how the actual

output is related to the input and how the system data is modified by the

scenario. A concrete scenario is not written as a generalized rule but an

example. It is unclear how other people can manage this approach of speci-

fying requirements. You are invited to study this tutorial that demonstrates

the approach with a user logon application. You are then asked to apply the

approach on another problem. Your experience with the approach will help

us to determine the usability of the approach. Even if you were to have neg-

ative experience, your feedback is still welcome and may be helpful to refine

our requirements specification techniques. Followings are the general steps

in our concrete scenario specification approach. The first step produces a

concrete use case. The second step produces a concrete scenario.

1. For each use case, determine
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(a) the kinds of system data involved

(b) the kinds of input and output data involved

2. Identify representative examples of the use case, describe each example

as a concrete scenario with

(a) the actual input, output and system data used

(b) the relationships between the data

Decisions on data design are made in concrete scenario specifications.

It may be argued that concrete scenarios concern more than just require-

ments. The positioning of the approach as a requirement tool or a design

tool however is not the focus of the current exercise. In the rest of this

tutorial, we will be dealing with concrete use cases and concrete scenarios.

When it is not likely to cause confusion, we may refer to them as use cases

and scenarios for short.

E.3 Id creation

We will describe the scenarios for the use cases of id creation, logon, and

password update. Given the incremental nature of the approach, it generally

does not matter which use case do we start with. Let’s start with the id

creation task anyway.

E.3.1 Concrete use case

A concrete use case is described by five components: use case name, descrip-

tion, input parameters, output parameters and system state. The input of

this use case consists of the creator’s user id, password, new user id, its

initial password and privilege. The output is a result indicating whether

the task has been performed successfully. The system data consists of the

current date and two tables. An individual data item is distinguished from

a table by a pair of trailing brackets.

There is a system table called account to hold the user ids, passwords and

the dates on which the passwords were last updated. The dates are useful if

we want to remind users to change their passwords that have been unchanged
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long enough. There is another table called super-id that holds the ids with

the privilege to create other ids. An alternative to this 2-table design is

an additional column in the account table to hold the privilege of every id.

Our decision to use the 2-table design is not due to its technical merits but

our objective to demonstrate the use of multiple tables to represent system

state.

A key activty in writing a concrete use case is to decide what system

data are needed. We may make a decision on data organization that can

adversely affect the writing of concrete scenarios. It may be necesary for

us to reorganize the data or add missing data. These revisions could be

tedious. Since we do not currently have good tools to support our approach,

we will not show the revisions that may have taken place in order to keep

our tutorial short.

Use case: create-id

Description: create a user id with an initial password

Input:

• creator-id ( )

• creator-password ( )

• id ( )

• password ( )

• privilege ( )

Output:

• result ( )

System:

• current-date ( )

account

user-id password updated-on

super-user

user-id
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E.3.2 Concrete Scenarios

Concrete scenarios are really just examples of concrete use cases. The main

difference between them is that concrete scenarios are described in terms

of the actual data used. Values of individual data items are enclosed in

brackets. Table data are listed under column headings row by row.

Given a system state and input parameters, a scenario specifies the out-

put parameters and its side-effect to the system state. In scenario create-id.1

below, the ‘admin’ user with password ‘secret’ attempts to create a privi-

leged id for ‘meng’ with the initial password of ‘vacation’. According to the

system tables, the ‘admin’ id is defined on the system as a privileged id and

its password matches the input password. Therefore we have a successful

outcome. The scenario adds new rows to the system tables. New data rows

are highlighted in a green background, for example row 2 for ‘meng’ is green

in both tables.

Scenario: create-id.1

Description: create a super user id

Input:

• creator-id (admin)

• creator-password (secret)

• id (meng)

• password (vacation)

• privilege (super)

Output:

• result (success)

System:

• current-date (2009-Feb-03)

account
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user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03

super-user

user-id

admin

meng

Relation:

1. input.creator-id = system.account.1.user-id

2. input.creator-password = system.account.1.password

3. input.creator-id = system.super-user.1.user-id

4. input.id = system.account.2.user-id

5. input.password = system.account.2.password

6. system.current-date = system.account.2.updated-on

7. input.privilege = ‘super’

8. input.id = system.super-user.2.user-id

9. output.result = ‘success’

Nine relationships are specified in this scenario. Similar relationships

must hold between input, output and system data whenever privileged user

ids are created. In this scenario, all relations happen to be equalities. Other

relations are also possible, for example less than, greater than and etc. The

syntax to express an individual item is a source name followed by an item

name. The source can be input, output or system. A legitimate expression

for an item in this scenario is input.creator-id. It refers to the value of

an input parameter called creator-id. On the other hand, output.id is not

allowed in this scenario because id is not defined in the output of the use

case.
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The syntax to express a cell in a table is slightly longer. It starts with a

source name, followed by the table name, row number and column name, all

separated by a dot. For example, the expression system.account.1.user-id

stands for the user-id cell in row 1 on the system table called account.

Relations 1 and 2 specify that the input creator id and password match

a user id and its password on the account table. Relation 3 specifies that

the input creator id is a privileged id. Relations 4 and 5 specify the new

user id and its password to match the corresponding input values. Relation 6

specifies that today’s date is used initially as the last date that the password

is updated. Relation 7 states that the new id is a privileged id according to

the input. Relation 8 adds the new id to the privileged id table. Relation 9

specifies that the result is ‘success’.

It is common for the relationships to cover all input parameters. If an

input parameter is not mentioned in any relation, its value is not used by

the scenario. The value of an output parameter is usually set to a constant

or a value determined from the input and system data. It is theoretically

possible for an output parameter not appearing in any relationship when we

do not care about its value. Such a scenario is said to be nondeterministic

which is uncommon in business applications.
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In scenario create-id.2, the user of privileged id ‘meng’ adds a normal

id ‘cudie’. Scenarios create-id.1 and create-id.2 are very similar except for

relation 8 in create-id.1. The new id is only added as row 3 to the account

table but not added to the super-user table.

Scenario: create-id.2

Description: create a normal user id

Input:

• creator-id (meng)

• creator-password (vacation)

• id (cudie)

• password (hello)

• privilege (normal)

Output:

• result (success)

System:

• current-date (2009-Feb-10)

account

user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03

cudie hello 2009-Feb-10

super-user

user-id

admin

meng

Relation:

1. input.creator-id = system.account.2.user-id
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2. input.creator-password = system.account.2.password

3. input.creator-id = system.super-user.2.user-id

4. input.id = system.account.3.user-id

5. input.password = system.account.3.password

6. system.current-date = system.account.3.updated-on

7. input.privilege = ‘normal’

8. output.result = ‘success’
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Scenario create-id.3 specifies an unsuccessful attempt to create a new id

from a normal id2. The failure is due to the creator id ‘cudie’ not on the

super user table. No rows on the system tables are colored meaning that

the scenario has no side-effects. The privilege of the new id in the input

parameter is not mentioned in the relations. It means that the result will

be the same regardless if the attempt is to create a super id or not.

Scenario: create-id.3

Description: create a user id from a normal (non-privileged) user id

Input:

• creator-id (cudie)

• creator-password (hello)

• id (francis)

• password (wong)

• privilege (super)

Output:

• result (failure)

System:

• current-date (2009-Feb-11)

account

user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03

cudie hello 2009-Feb-10

super-user
2 Modern programming languages, for example Java, have features to handle errors and

exceptions reliably and elegantly. Software specifications should as well be written with

enough attention to errors and exceptions. The use of concrete scenarios can be helpful

in that regard.
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user-id

admin

meng

Relation:

1. input.creator-id = system.account.3.user-id

2. input.creator-password = system.account.3.password

3. input.creator-id 6= system.super-user.1.user-id

4. input.creator-id 6= system.super-user.2.user-id

5. output.result = ‘failure’

Scenario create-id.4 specifies an attempt to create a new id that fails for

a different reason – the id already exists. This is possible under an imperfect

administrative process, holders of the ‘meng’ id and the ‘admin’ id both try

to create an id for the same new user. No table data are coloured. Therefore

this scenario has no side-effects.
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Scenario: create-id.4

Description: create a user id that already exists

Input:

• creator-id (admin)

• creator-password (secret)

• id (cudie)

• password (urgent)

• privilege (normal)

Output:

• result (failure)

System:

• current-date (2009-Feb-11)

account

user-id password updated-on

admin secret 2009-Jan-28

meng vacation 2009-Feb-03

cudie hello 2009-Feb-10

super-user

user-id

admin

meng

Relation:

1. input.id = system.account.3.user-id

2. output.result = ‘failure’
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E.4 Logon

E.4.1 Concrete use case

Our second use case is logon. It only needs two input parameters: user

id and password. Only the account table is needed by this use case. We

have an output parameter message used to remind users to change their

passwords when they were unchanged for more than a month.

Use case: logon

Description: log on to the system

Input:

• user-id ( )

• password ( )

Output:

• result ( )

• message ( )

System:

• current-date ( )

account

user-id password updated-on

E.4.2 Concrete Scenarios

In scenario logon.1, user logs on with id ‘francis’ and password ‘hello246’.

The password was last changed within a month as stated in relation 3. The

logon scenario succeeds with a simple welcome message.

Scenario: logon.1

Description: log on to the system

Input:

• user-id (francis)
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• password (hello246)

Output:

• result (success)

• message (welcome)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id = system.account.2.user-id

2. input.password = system.account.2.password

3. system.current-date ≤ system.account.2.updated-on + 1 month

4. output.result = ‘success’

5. output.message = ‘welcome’

The second scenario is an unsuccessful logon attempt. The reason is

captured in relation 2 where the input password ‘goodbye’ does not match

the correct password ‘hello246’. There is no relation referring to the current

system date because it does not matter in this scenario.

Scenario: logon.2

Description: log on with incorrect password

Input:

• user-id (francis)

• password (goodbye)
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Output:

• result (failure)

• message (incorrect password)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id = system.account.2.user-id

2. input.password 6= system.account.2.password

3. output.result = ‘failure’

4. output.message = ‘incorrect password’

The third scenario of the use case is also a failed logon attempt. The

first three relations show that the input id does not match any id currently

defined on the system. We have no relations referring to the current system

date or even the password because they are irrelevant in this scenario.

Scenario: logon.3

Description: log on with incorrect id

Input:

• user-id (jasper)

• password (alberta)

Output:

• result (failure)
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• message (id does not exist)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id 6= system.account.1.user-id

2. input.user-id 6= system.account.2.user-id

3. input.user-id 6= system.account.3.user-id

4. output.result = ‘failure’

5. output.message = ‘id does not exist’
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Scenario logon.4 is a successful logon attempt. Unlike logon.1, the pass-

word has been updated for more than a month as stated in relation 3. Our

client wants to remind the user to change the password.

Scenario: logon.4

Description: log on with password last updated for more than a month

Input:

• user-id (meng)

• password (family)

Output:

• result (success)

• message (please change password)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id = system.account.3.user-id

2. input.password = system.account.3.password

3. system.account.3.updated-on + 1 month < system.current-date

4. system.current-date ≤ system.account.3.updated-on + 2 months

5. output.result = ‘success’

6. output.message = ‘please change password’
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Relation 3 in scenario logon.5 states that the password has not changed

for over 2 months. Our client considers this to be unacceptable perhaps due

to security reason. Note that relation 3 here is the negation of relation 4 in

scenario logon.4. This is why scenario logon.4 is a successful logon attempt

but scenario logon.5 is not.

Scenario: logon.5

Description: log on with password last updated more than 2 months

Input:

• user-id (cudie)

• password (7there59)

Output:

• result (failure)

• message (id locked because password unchanged over 2 months)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

cudie 7there59 2008-Nov-29

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id = system.account.1.user-id

2. input.password = system.account.1.password

3. system.current-date > system.account.1.updated-on + 2 months

4. output.result = ‘failure’

5. output.message = ‘id locked because password unchanged over 2 months’
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E.5 Password Update

E.5.1 Concrete use case

The third and last use case we will write in this tutorial is password update.

Use case: password-update

Description: change the password

Input:

• user-id ( )

• old-password ( )

• new-password ( )

Output:

• result ( )

System:

• current-date ( )

account

user-id password updated-on
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E.5.2 Concrete Scenarios

Scenario password-update.1 replaces a row in the account table. The deleted

row 2 with the old password is shown in the brown colour of soil. The new

row 3 with the new password is shown in the green colour of sprout.

Scenario: password-update.1

Description: change the password

Input:

• user-id (meng)

• old-password (family)

• new-password (babygirl)

Output:

• result (success)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

francis hello246 2009-Jan-25

meng family 2009-Jan-02

meng babygirl 2009-Feb-03

Relation:

1. input.user-id = system.account.2.user-id

2. input.old-password = system.account.2.password

3. input.user-id = system.account.3.user-id

4. input.old-password = system.account.3.password

5. system.current-date = system.account.3.updated-on

6. output.result = ‘success’
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Scenario: password-update.2

Description: password update using incorrect current password

Input:

• user-id (francis)

• old-password (goodbye)

• new-password (goodwill)

Output:

• result (failure)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id = system.account.1.user-id

2. input.old-password 6= system.account.1.password

3. output.result = ‘failure’
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Scenario: password-update.3

Description: password update for a non-existing id

Input:

• user-id (jasper)

• old-password (calgary)

• new-password (edmonton)

Output:

• result (failure)

System:

• current-date (2009-Feb-03)

account

user-id password updated-on

francis hello246 2009-Jan-25

meng family 2009-Jan-02

Relation:

1. input.user-id 6= system.account.1.user-id

2. input.user-id 6= system.account.2.user-id

3. output.result = ‘failure’
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E.6 Writing Guides

The previous sections demonstrated the use of concrete scenarios to express

functional requirements precisely. Concrete scenarios are examples. Con-

crete scenarios are described by their exact effects on the system states.

Relationships between data are expressed with relational operators, such as

=, <, ≤ and etc.

In software projects, we have clients to provide software requirements

at one end and programmers to translate the requirements into executable

programs at the other. Systems analysts create requirements specifications

which ideally should be understandable to the clients for their confirmation

of correctness and completeness. The documents should also be precise for

the programmers to do their job. System analysts are the bridge between

clients and programmers. If concrete scenarios are used, systems analysts

would be responsible for writing them.
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E.6.1 Writing concrete use cases

A use case is a user task. We describe it in terms of a name, a description,

input parameters, output parameters and the system data that it works on.

XML is a language suitable for the expression of structured textual data.

Followings are the XML fragment that we use to represent the password-

update use case. Line numbers, not part of the XML document, are shown

to facilitate explanation.

1 <use-case>

2 <name>password-update</name>

3 <desc>change the password</desc>

4 <input>

5 <item>user-id</item>

6 <item>old-password</item>

7 <item>new-password</item>

8 </input>

9 <output>

10 <item>result</item>

11 </output>

12 <system>

13 <item>current-date</item>

14 <table>

15 <name>account</name>

16 <column>user-id</column>

17 <column>password</column>

18 <column>updated-on</column>

19 </table>

20 </system>

21 </use-case>

Don’t worry if XML is new to you. Its essence is quite simple. An

XML document consists of a number of XML elements. An XML element

is enclosed between matching begin and end tags. <use-case> on line 1

is a begin tag. </use-case>, differed with a slash character on line 21,



E. XML-based Concrete Scenario Writing Guide – V5.0 238

is the matching end tag. XML elements may be related in a parent-child

relationship. For example, the use-case element has five children name, desc,

input, output and system. If we view the XML fragment as a tree, name and

desc elements on lines 2 and 3 are leaf nodes. They contain data without

any child elements beneath them. The input element on lines 4 to 8 is an

intermediate node with three children of item. An item element, for example

line 5, is a leaf node used to hold a single value. The system element on

lines 12 to 20 has two children: an item and a table. The table element

from lines 14 to 19 has four children: a name and three columns. Study the

XML fragment side by side with the concrete use case of password-update

to understand how the two correspond.

It is not enough for the system analyst to master our XML syntax. He

or she has to identify the kinds of input and output parameters required for

the use case. The analyst also has to choose a logical data structure, usually

with some tables, to express the system state.

E.6.2 Writing concrete scenarios

Varying combinations of input and system data produce different output.

Each combination is captured in a separate concrete scenario. For instance,

by varying the value of input parameter privilege as ‘super’ or ‘normal’, we

have two scenarios of successful id creation. Scenario create-id.1 adds the

new id to the super user table but scenario create-id.2 does not.

Based the concrete use case’s XML description, we can make the follow-

ing changes to create a concrete scenario, for example scenario password-

update.1 in XML coming up shortly.

• Lines 1 and 68 – Change the enclosing use-case tags to scenario tags.

• Line 2 – Specify the id number of scenario with the id attribute. Note

that In XML double quotes around attribute values are compulsory.

• Line 3 – Specify an appropriate description.

• Lines 4 to 8 – Specify the value of each input item with the value

attribute.
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• Lines 9 to 11 – Specify the value of each output item.

• Line 13 – Specify the value of each system item.

• Lines 19 to 33 – Specify each row on system tables. For each system

table, at least for some scenarios, I encourage you to include non-

participating data. Failure to do so may require you to revise the

table design in the future.

• Lines 19 to 23 – We have three cells in a row to match the three

columns on the table. Without the status attribute, this row of data

is on the table before and after the scenario.

• Line 24 – The row status with value “old” states that the row exists

before the scenario but deleted afterward due to its side-effect.

• Line 29 – The row status with value “new” states that the row does

not exist before the scenario but added afterward due to its side-effect.

• Lines 36 to 67 – Specify relationships on the data. A relation is ex-

pressed with individual items, table cells and operators to be explained

next.

• Line 38 – The source of an individual item is input, output or system.

The name of an item must match one in the concrete use case.

• Line 39 – The most common operator seened in relations is equality.

Since the angle brackets are used in XML to enclose element tags, they

cannot be used directly. We will revisit the topic of operators shortly.

• Line 40 – A cell on a table is represented by a table-item element. In

addition to the source, you also need to specify the table name and

row number. Finally, we specify the column name of the cell which is

user-id here.

Study the XML fragment below with scenario passord-update.1 on page

233.
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1 <scenario>

2 <name id="1">password-update</name>

3 <desc>change the password</desc>

4 <input>

5 <item value="meng">user-id</item>

6 <item value="family">old-password</item>

7 <item value="babygirl">new-password</item>

8 </input>

9 <output>

10 <item value="success">result</item>

11 </output>

12 <system>

13 <item value="2009-Feb-03">current-date</item>

14 <table>

15 <name>account</name>

16 <column>user-id</column>

17 <column>password</column>

18 <column>updated-on</column>

19 <row>

20 <cell>francis</cell>

21 <cell>hello246</cell>

22 <cell>2009-Jan-25</cell>

23 </row>

24 <row status="old">

25 <cell>meng</cell>

26 <cell>family</cell>

27 <cell>2009-Jan-02</cell>

28 </row>

29 <row status="new">

30 <cell>meng</cell>

31 <cell>family</cell>

32 <cell>2009-Feb-03</cell>

33 </row>

34 </table>
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35 </system>

36 <relation>

37 <line>

38 <item source="input">user-id</item>

39 <op>=</op>

40 <table-item source="system" table="account" row="2">user-id</table-item>

41 </line>

42 <line>

43 <item source="input">old-password</item>

44 <op>=</op>

45 <table-item source="system" table="account" row="2">password</table-item>

46 </line>

47 <line>

48 <item source="input">user-id</item>

49 <op>=</op>

50 <table-item source="system" table="account" row="3">user-id</table-item>

51 </line>

52 <line>

53 <item source="input">new-password</item>

54 <op>=</op>

55 <table-item source="system" table="account" row="3">password</table-item>

56 </line>

57 <line>

58 <item source="system">current-date</item>

59 <op>=</op>

60 <table-item source="system" table="account" row="3">updated-on</table-item>

61 </line>

62 <line>

63 <item source="output">result</item>

64 <op>=</op>

65 <constant>’success’</constant>

66 </line>

67 </relation>

68</scenario>
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E.6.3 Validating concrete scenarios

Concrete use cases and scenarios in XML can be validated automatically.

For example, we can validate a relation that equates an input item and a

table cell. Given our limited resources, I have not created such a power-

ful validation tool. I have created an XML Schema that performs some

rudimentary checks on the XML syntax of concrete use cases and concrete

scenarios. For example, does a concrete scenario has a valid id number? The

XML schema file used to validate our XML documents is specified on line 4

of the skeleton on next page. To do the actual validation, you need to vali-

date the XML document from an XML authoring tool. Unless you encounter

major problems writing syntactically correct concrete scenarios, I want to

save time by choosing not to teach you how to use an XML authoriung tool.

Instead, I have created an XSLT stylesheet which transforms the concrete

use cases and scenarios from XML to HTML. The concrete use case and its

concrete scenarios are placed in the same .xml file. You then open the XML

file on a Web browser. The XSLT stylesheet has been tested on Microsoft

IE and Mozilla Firefox. The next page shows the skeleton of the password-

update use case and its three concrete scenarios in an XML file. The second

line is a processing instruction that names the XSLT stylesheet concrete-

scenario.xslt to be used for the transformation.
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<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="concrete-scenario.xslt"?>

<concrete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="concrete-scenario.xsd">

<use-case>

.

.

.

</use-case>

<scenario>

<name id="1">password-update</name>

<desc>change the password</desc>

.

.

.

</scenario>

<scenario>

<name id="2">password-update</name>

<desc>password update using incorrect current password</desc>

.

.

.

</scenario>

<scenario>

<name id="3">password-update</name>

<desc>password update for a non-existing id</desc>

.

.

.

</scenario>

</concrete>
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The transformation from XML to HTML allows you to visually check the

correctness of concrete scenarios. It is still very far from the fully automated

validation tool that we can potentially build. For instance, it does not warn

you when you have mistakenly referred to a table cell using a non-existing

row number. But I hope the HTML file can assist you in your manual

checking.

You can open the XML files for the use cases of create-id, logon and

password-update from a Web browser. And then open the same XML file

with an editor to compare the generated HTML and original XML side

by side. Lines 2 and 4 in the skeleton assume the XSD and XSLT files

stored in the same directory as the XML file. Try to understand how the

two files correspond to each other. I expect the specification of relations

to be the area that you will most likely encounter problems. I will add

a few words here. Each relation line consists of individual items, table

items, constants and operators. Some operators can be specified trivially, for

example, =, +, -, *, /, ( and ) as they display correctly in HTML. However

for other operators, you will need to use the following HTML codes. Consult

http://www.chami.com/tips/internet/050798I.html for operators not shown

here.

Symbol HTML code

6= &#8800;

< &#60;

≤ &#8804;

> &#62;

≥ &#8805;
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E.7 Summary

You have seen concrete use cases and their scenarios for a logon application.

You have also seen the corresponding XML documents and their transfor-

mation into HTML documents for visual checking. I would like you to apply

the approach to specify the functional requirements of another application.

Please start thinking about some potential applications you can apply this

approach. Due to the level of details and amount of work involved, you

should probably start small. I would like to meet with you to discuss what

application should you work on and how you should proceed.

Writing requirements specifications may not be what you are expect-

ing. You may be more interested in writing computer programs. It is true

that in the early stage of your computing career, programming abilities are

important. But I must remind you that as you advance in your technical ca-

reer, the ability to manage requirements becomes incrinindependenteaingly

important. I believe this exposure to software requirements will benefit you.

I have not included the sequel of this tutorial because I do not want

to overwhem you. The sequel involves a semi-mechanical creation of Java

programs from the concrete scenarios. It also involves the creation of JUnit

tests. But it is not a compulsory part of my PhD research thus has a lower

priority. But you can also get involved in the programming exercise at a

later time if you are interested.

If you have not done so already, please study the XML documents after

opening them side-by-side in an editor and again in a Web browser. It is

not necessary for you to study the XSD and XSLT files which are here to

help you write correct concrete scenarios.



F. KAIN’S WORK AT THE MEETING

During our first meeting, Kain wrote the XML-based concrete use case for

the borrowing of a library book as follows.

<use-case>

<name>borrow a book</name>

<desc></desc>

<input>

<item>user_id</item>

<item>book_id</item>

</input>

<output>

<item>result</item>

</output>

<system>

<item>current-date</item>

<table>

<name>user</name>

<column>user-id</column>

<column>borrowing_quota</column>

</table>

<table>

<name>borrow_record</name>

<column>user_id</column>

<column>book_id</column>

<column>borrowing_date</column>

</table>

</system>

</use-case>
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Kain went on to write an XML-based concrete scenario as follows.

<scenario>

<name id="1">borrowing</name>

<desc>User borrow a book</desc>

<input>

<item value="s001">user_id</item>

<item value="b001">book_id</item>

</input>

<output>

<item value="success">result</item>

</output>

<system>

<item value="2009-June-08">current-date</item>

<table>

<name>user</name>

<column>user-id</column>

<column>borrowing_quota</column>

<row status="old">

<cell>s001</cell>

<cell>2</cell>

</row>

<row status="new">

<cell>s001</cell>

<cell>1</cell>

</row>

</table>

<table>

<name>borrow record</name>

<column>user_id</column>

<column>book_id</column>

<column>borrowing_date</column>

<row status="new">

<cell>s001</cell>
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<cell>b001</cell>

<cell>2009-6-8</cell>

</row>

</table>

</system>

<relation>

<line>

<item source="input">book_id</item>

<op>=</op>

<table-item source="system"

table="borrow_record" row="1">book_id</table-item>

</line>

<line>

<item source="input">user_id</item>

<op>=</op>

<table-item source="system"

table="borrow_record" row="1">user_id</table-item>

</line>

<line>

<item source="input">user_id</item>

<op>=</op>

<table-item source="system"

table="user" row="1">user_id</table-item>

</line>

<line>

<table-item source="system"

table="user" row="1">borrowing_quota</table-item>

<op>&#62;</op>

<constant>0</constant>

</line>

<line>

<item source="system">current-date</item>

<op>=</op>

<table-item source="system"
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table="borrow_record" row="1">borrowing_date</table-item>

</line>

<line>

<table-item source="system"

table="borrow_record" row="1">borrowing_quota</table-item>

<op>-</op>

<constant>1</constant>

<op>=</op>

<table-item source="system"

table="borrow_record" row="2">borrowing_quota</table-item>

</line>

<line>

<item source="output">result</item>

<op>=</op>

<constant>’Success’</constant>

</line>

</relation>

</scenario>

The concrete use case and scenarios, taking the place of the vertical dots

below, are placed in the same file enclosed within the tags. The second line

specifies the stylesheet file “concrete-scenario.xslt” which convert the XML

to HTML for display on Web browsers. The fourth line specifies the XML

schema used for syntax checking.

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="concrete-scenario.xslt"?>

<concrete xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="concrete-scenario.xsd">

.

.

.

</concrete>

Kain completed the above work during the meeting by using the sample

XML document from version 5 of the guide as a template. The screen
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capture of the XML-based concrete use case and scenario displayed with

our XSLT file follows.

Fig. F.1: Borrow a book use case by Kain
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Fig. F.2: Successful borrow a book scenario by Kain



G. LAM’S WORK

Lam created three scenarios for three different tasks shown here in the visual

form.

Fig. G.1: Unable to borrow a book by Lam
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Fig. G.2: Returning a book by Lam
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Fig. G.3: Reserving a book by Lam



H. KAIN’S WORK

Kain created a few scenarios relating to the checking out of items in a

shopping cart.

Fig. H.1: Push cart into unloading zone at cashier by Kain
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Fig. H.2: Failed to push cart into an occupied unloading zone by Kain
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Fig. H.3: Check out an item in shopping cart by Kain
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Fig. H.4: Push cart out of unloading zone at cashier by Kain



I. PROGRAM WRITING GUIDE – V1.0

Concrete scenarios have two main usages. The scenario writing guide v4.2

in Appendix C on page 188 demonstrates the first usage in which analysts

express functional requirements with them. This tutorial is a sequel to the

earlier guide to demonstrate the second usage in which programmers derive

programs from concrete scenarios. You are expected to have studied the

scenario writing guide first. Please refer back to it as necessary. We shall

start with the programming of the logon task followed by the password

update task.

I.1 Account Data Structure

In the logon task description on page 189, we have an account table with

two fields: user id and password. Each record on the account table can be

represented with a Java object. In Java’s convention, we store the code of the

account class in a file called Account.java. For the non-OO programmers out

there, the construtor method is invoked when an acccount object is created.

The two assignment statements inside the constructor initialise the two fields

of an account object.

public class Account {

String userId ;

String password ;

// Constructor method below has the same name as the class

public Account (String id, String pswd) {

userId = id ;

password = pswd ;

}

}
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I.2 Logon Method

The first task we are going to build in our user management system is logon

as described in Appendix C.2 on page 189. The task uses an account table

which consists of a number of account objects. We declare the account table

acTable as a set of account objects to save you from the distracting code

used to access the database.

import java.util.* ;

public class UserSystem {

// declare account table as a set of account objects

public static Set<Account> acTable ;

public boolean logon( String id, String pswd) { ... }

}

Now we are ready to define the body of the logon method. The relation

components of the three logon scenarios from page 190 to page 191 the

scenario writing guide are reproduced below.

logon.1 input.user-id = account.2.user-id

input.password = account.2.password

logon.2 input.user-id = account.1.user-id

input.password 6= account.1.password

logon.3 input.user-id 6= account.1.user-id

input.user-id 6= account.2.user-id

input.user-id 6= account.3.user-id

The matching of the input id and password in scenario logon.1 can be

implemented with the conditions in two if-statements. Though the scenario

shows a match on the second row of the data table, the match can be

generalised to any row implemented by a while-loop that iterates through

every account object. Scenario logon.2 differs from scenario logon.1 only

in the unmatched password. This is implemented conveniently by the else-

branch of the second if-statement. Scenario logon.3 allows no match for the

input id on any row in the table. This is implemented with a trival return

outside the while-loop. The resulting program is shown next.
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import java.util.* ;

public class UserSystem {

// declare account table as a set of account objects

public static Set<Account> acTable ;

public boolean logon( String id, String pswd) {

Iterator iterator = acTable.iterator( ) ;

while( iterator.hasNext( ) ) {

Account ac = (Account) iterator.next( ) ;

if ( ac.userId.equals(id) ) {

if ( ac.password.equals(pswd) )

return true ; // scenario logon.1

else

return false ; // scenario logon.2

}

};

return false ; // scenario logon.3

}

}

We implement a user task with a method. The input parameters of

the logon task, user id and password, become the method’s two arguments.

The task result of success or failure is captured by the method’s boolean

return type. The task’s input and output parameters are fully covered by

the method’s signature.

The logon method shows the use of an iterator stepping through the set

of account objects. The method hasNext( ) tests if there is at least one

object left in the iterator. The method next( ) actually returns the next

object. But the returned oject is a generic one which must be recasted

to an account object before being assigned to the variable ac. Scenario

logon.3 requires none of the exising account names to match the input user

id. Therefore its corresponding statement to return a failed result is placed

outside the while-loop after all account names have been exhausted. The

equals( ) method used in the if-statements compares two strings.
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I.3 Logon Tests

After we have written the logon method for our user management system,

we create a test suite capturing the concrete scenarios in JUnit which is a

framework created by Kent Beck to facilitate automated testing. Beck is

also the inventor of eXtreme Programming (XP).

import org.junit.* ;

import static org.junit.Assert.* ;

public class LogonTest {

UserSystem mySystem = new UserSystem() ;

@Before

public void initialiseTable() {

System.out.print("Initialise User System -- ") ;

mySystem.acTable = new HashSet<Account>( ) ;

mySystem.acTable.add( new Account("cudie", "7there59"));

mySystem.acTable.add( new Account("francis", "hello246"));

mySystem.acTable.add( new Account("meng", "family"));

}

@Test

public void test_logon_1() {

System.out.println("Scenario logon.1") ;

assertTrue(mySystem.logon("francis", "hello246")) ;

}

@Test

public void test_logon_2() {

System.out.println("Scenario logon.2") ;

assertFalse(mySystem.logon("francis", "goodbye")) ;

}

@Test

public void test_logon_3() {

System.out.println("Scenario logon.3") ;

assertFalse(mySystem.logon("jasper", "alberta")) ;

}

}



I. Program Writing Guide – V1.0 263

We name our test suite LogonTest. The test suite was written in the

same style as explicated in a JUnit tutorial [118]. The LogonTest class uses

an instance of UserSystem defined on page 261. The suite has three tests:

test logon 1 ( ), test logon 2 ( ) and test logon 3 ( ). JUnit does not care what

we call the tests as long as they are appropriately annotated with ‘@Test’.

In each test, we invoke the logon method with the input arguments from the

corresponding scenario. Methods assertTrue and assertFalse are provided

by JUnit to test boolean expressions. Since scenario logon.1 is expected to

return true, we call assertTrue. The other two scenarios are expected to

return false, we call assertFalse.

Method initialiseTable is annotated with ‘@Before’. It is invoked auto-

matically before each test to create three ids on the account table: cudie,

francis and meng.

I.4 Running Logon Tests

JUnit can be used with advanced IDE’s such as Eclipse. However we make

the minimal assumptions about readers’ Java background and installations.

The tests will be executed from the MS Windows command prompt.

I.4.1 Downloading JDK

From http://java.sun.com/javase/, find a link to download and install Java

Standard Edition (Java SE) Development Kit (JDK). The current version at

the time of writing installs files in folder c:\Program Files\Java\jdk1.6.0 06.

I.4.2 Setting the Path

Path is an environment variable used to find the program names you enter

on the command prompt. You can enter path to see the current list of

directories from which MS Windows tries to find programs. You can append

the path of the JDK to the end of the path list with the following command.

set path=%path%;C:\Program Files\Java\jdk1.6.0_06\bin
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I.4.3 Getting All Files

You need the following files to run the test suite.

1. Account.java

2. UserSystem.java

3. LogonTest.java

4. junit-4.5.jar

The first three are Java source files obtainable from us. The last file is

the current version 4.5 of JUnit downloadable from http://www.junit.org/.

Its file type jar is the Java archive file format that aggregates multiple files

into one.

I.4.4 Compilation and Execution

After you have stored the four files in a single folder of your choice. You

compile them with the following commands.

javac Account.java

javac UserSystem.java

javac -cp .;junit-4.5.jar LogonTest.java

Finally, you can run the test suite.

java -cp .;junit-4.5.jar org.junit.runner.JUnitCore LogonTest

You will get the following expected result for three tests. Three lines

were output by the print statements we inserted in the test suite.

JUnit version 4.5

.Initialise User System -- Scenario logon.1

.Initialise User System -- Scenario logon.2

.Initialise User System -- Scenario logon.3

Time: 0.048

OK (3 tests)
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Suppose by mistake we have coded assertFalse( ) in place of assertTrue(

) in the third test test logon 3. When we recompile and rerun LogonTest,

JUnit will identify the failed test method followed by a dump of the current

call stack.

JUnit version 4.5

.Initialise User System -- Scenario logon.1

.Initialise User System -- Scenario logon.2

.Initialise User System -- Scenario logon.3

E

Time: 0.053

There was 1 failure:

1) test_logon_3(LogonTest)

java.lang.AssertionError:

at org.junit.Assert.fail(Assert.java:91)

at org.junit.Assert.assertTrue(Assert.java:43)

at org.junit.Assert.assertTrue(Assert.java:54)

at LogonTest.test_logon_3(LogonTest.java:33)

.

.

.

FAILURES!!!

Tests run: 3, Failures: 1

I.5 Password Update Method

The next task we are going to build in our user management system is

password-update as described in Appendix C.3 on page 191. The task shares

the same account table with the logon task. We do not need to create new

data structure. The relations of the three password update scenarios are

reproduced below.

password-update.1 input.user-id = account.1.user-id

input.old-password = account.1.password

input.user-id = account.2.user-id
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input.new-password = account.2.password

password-update.2 input.user-id = account.1.user-id

input.old-password 6= account.1.password

password-update.3 input.user-id 6= account.1.user-id

input.user-id 6= account.2.user-id

The password update task is implemented with a method in the user

system. The new method has three arguments to match the task’s input

parameters. The successive deletion and addition in the scenario is more

directly implemented by an update to the password field. Other than the

new input parameter and the side-effect on the account data, the password

update method is very similar to the logon method.

import java.util.* ;

public class UserSystem {

public static Set<Account> acTable ;

public boolean logon( String id, String pswd) { ... }

public boolean passwordUpdate( String id,

String oldPswd,

String newPswd) {

Iterator iterator = acTable.iterator( ) ;

while(iterator.hasNext( )) {

Account ac = (Account) iterator.next( ) ;

if ( ac.userId.equals(id) ) {

if ( ac.password.equals(oldPswd) ) {

ac.password = newPswd ; // scenario password-update.1

return true ;

}

else

return false ; // scenario password-update.2

};

return false ; // scenario password-update.3

}

}
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I.6 Password Update Tests

import java.util.* ;

import org.junit.* ;

import static org.junit.Assert.* ;

public class PasswordUpdateTest {

UserSystem mySystem = new UserSystem() ;

@Before

public void initialiseTable() {

mySystem.acTable = new HashSet<Account>( ) ;

mySystem.acTable.add( new Account("francis", "hello246"));

mySystem.acTable.add( new Account("meng", "family"));

}

@Test

public void test_password_update_1() {

assertTrue(mySystem.passwordUpdate("meng", "family", "babygirl")) ;

assertFalse(mySystem.logon("meng", "family")) ; // old password

assertTrue(mySystem.logon("meng", "babygirl")) ; // new password

assertTrue(mySystem.logon("francis", "hello246")) ; // current password

}

@Test

public void test_password_update_2() {

assertFalse(mySystem.passwordUpdate("francis", "goodbye", "goodwill")) ;

}

@Test

public void test_password_update_3() {

assertFalse(mySystem.passwordUpdate("jasper", "calgary", "edmonton")) ;

}

}

The three scenarios are encoded in three test methods. In the first

method, we make additional calls to the logon method to more thoroughly

test the user system after a successful password update operation.
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javac UserSystem.java

javac -cp .;junit-4.5.jar PasswordUpdateTest.java

java -cp .;junit-4.5.jar org.junit.runner.JUnitCore PasswordUpdateTest

The above commands compile and execute the password update tests to

give the following result. The output is cleaner than before because we have

not inserted print statements in the tests. You see three dots between the

JUnit version number and the elapsed time, one for a test method. When

we have dozens of more involved test methods in the suite, the expanding

line of dots informs us that the testing is still alive.

JUnit version 4.5

...

Time: 0.041

OK (3 tests)

I.7 Summary

We shall recap the steps to derive Java programs from concrete scenarios.

The coding is performed task by task. If you are new to writing programs

from concrete scenarios, I would suggest you to begin with a simple task

using only simple data structure. After you have become proficient in the

approach, you may start with tasks considered important or urgent by the

customers.

We will look at the data manipulated by the task to create classes for

data objects and tables. We will then create a method for each task. The

method must have input and output parameters to match the task.

We go on to write the code for the method. We need to look at all

the scenarios of the task especially their relation components. The relations

refer to specific data values. You will generalise them to program statements

expressed with variables. Often two branches of an if-statement implement

two scenarios. We can also deal with one scenario inside a loop and another

scenario outside the loop.
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Sometimes the analyst may have overlooked a scenario. That generally

will result in a dangling else-branch or unspecific action after exiting a loop.

The programmer can confirm with the anlayst for possible omissions. For

example, the analyst may have omitted scenario logon.3. The programmer

will generalise scenarios logon.1 and logon.2 to the following code which

does not specify what to return after the while loop has terminated. The

programmer can bring it to the attention of the analyst.

import java.util.* ;

public class UserSystem {

public static Set<Account> acTable ;

public boolean logon( String id, String pswd) {

Iterator iterator = acTable.iterator( ) ;

while( iterator.hasNext( ) ) {

Account ac = (Account) iterator.next( ) ;

if ( ac.userId.equals(id) ) {

if ( ac.password.equals(pswd) )

return true ; // scenario logon.1

else

return false ; // scenario logon.2

}

};

// What to return at this point? Missing a scenario?

}

}



GLOSSARY

Black box testing The test designer assumes no knowledge of how the

module being tested is implemented. Therefore black box tests are

limited to the checking of correct output for specific input.

Concrete Scenarios A concrete scenario describes an operation of a sys-

tem with an actual example. The description includes the actual values

used in the input and output parameters and the system states before

and after the operation. System states are represented by individual

data fields and rows of data in tables. Data fields and rows are instan-

tiated to specific values not ranges of values. Many concrete scenarios

in this thesis are described with two states: a begin state and an end

state. Some concrete scenarios are described with intermediate states

representing additional decisions made by the analysts. The syntax

of concrete scenarios has evolved over the course of our research. The

concrete scenarios in Appendix E uses the latest syntax that aims to

facilitate the deriviation of programs by programmers other than the

researcher.

Customer Scenarios Customer scenarios are concrete scenarios which ex-

press examples to the level of details cared by the customers. The

meaning of the term customers is taken broadly. In an online book-

shop development project, customers include the business manager,

the staff who operate the website on a daily basis, shoppers and users

who are just browsing. Table 7.1 on page 115 is a customer scenario.

The scenario shows a sorted list as the outcome. It does not show an

algorithm which the customer does not care.

Developer Scenarios A developer scenario is built on top of a customer

scenario. A developer scenario has details to help the developer to



I. Program Writing Guide – V1.0 271

visualize how the customer scenario may be implemented. There may

be new data fields and intermediate states to capture progress to the

desirable ending state. Tables 7.5 and 7.6 show two possible developer

scenarios based on the same customer scenario in Table 7.4. Essen-

tially a developer scenario adds algorithm-related information to the

customer scenario.

E-Scenarios An E-scenario is a form of concrete scenarios where data

fields are embedded in English sentences to give them meaning in

the application domain. Data rows from the same table will follow

the same sentence template. Section 3.2.2 on page 51 has a detailed

explanation. Figure 1.2 on Page 6 shows how they fit in the software

development process.

Expansion Expansion is the manual process to create developer scenar-

ios from customer scenarios. A choice of algorithm is made and is

represented with actual data. This is an optional process that brings

concrete scenarios closer to implementations. Programmers can derive

programs directly from customer scenarios or indirectly through de-

veloper scenarios. The process allows programmers to grasp complex

computations with examples. See Chapter 7 for details.

Generalization This is a task for programmers and formal specification

writers. It turns the specific data relationships in concrete scenarios

to executable statements in programs or logical expressions in formal

specifications. Data values are replaced by variables. See Figure 1.2

on Page 6 and explanations on Page 50.

Observance Observance is a formally defined relationship between a set

of Z operation schemas and a set of concrete scenarios. The formal

foundation is defined using value substitions. If all logical expressions

in Z schemas evaluate to true after substitions specified in scenarios,

we know that our specification in Z or other formalism satisfies the

requirements expressed in the scenarios. See details in Chapter 6.

White box testing It utilises internal knowledge of the module being tested.
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For example, path testing is a kind of white box testing that covers

all possible paths of execution through this module.

Z-Scenarios A Z-scenario is a form of concrete scenarios. There is a one-

to-one correspondence between E-scenarios and Z-scenarios. Sentences

from E-scenarios are rewritten in Z notation. Data fields from the same

sentence in E-scenario are related in a Z maplet 7→. See Table 3.6 on

page 55 for an example.
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