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We review the general theory of cobordism of codimension & immersions of compact
manifolds M into a given compact manifold N. Applying the Pontrjagin-Thom con-
struction for immersions, any cobordism class [F' : M™ & N"**] corresponds to a
unique homotopy class f € [N} QMO(k)]. According to Eccles [E96] the cobor-
dism class of the immersion F', as well as the r-fold intersection points of F', can be
determined using the Hurewicz image of the mapping f.

We shall apply these techniques to the problem of studying double point manifolds
of immersions M**2 o5 CP**!. The double point manifold of such an immersion is a
surface, and the cobordism group of surfaces is completely known.

We shall prove that in the case that k£ is odd there exists always an immersion
M*+2 9 CP*! whose double point manifold is cobordant to the projective plane.
For even k, specifically k = 2, we show that there exists an immersion M* 9 CP°
whose double point manifold is cobordant to the projective plane.

In the other cases, M**2 o5 CP*! with k > 2 and k = 2 (mod 4), we determine a
homological condition for the double point manifold to be cobordant to the projective
plane.

For k = 4, we show that the double point of any immersion M% 9= CP? is a boundary.
In the case k > 4 with £ = 0 (mod 4) we do not have a complete result and this is

an ongoing project.
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Introduction

The idea of cobordism is a purely geometric idea, which aims to distinguish between
different manifolds. In an ideal world, one would like to determine whether or not
two given smooth n-dimensional manifolds M, and M; are diffeomorphic, which is of
course an open problem as well as it is not an easy problem. It is immediate that if
two manifolds My and M; are diffeomorphic then the disjoint union M, LI M; = OW
where W = My x [0,1] is an (n + 1)-dimensional manifold. However, the converse is
not true, i.e. MyU M; = OW does not imply that My and M; are diffeomorphic. Two
manifolds are said to be cobordant if MyLIM; is the boundary of an (n+1)-dimensional
manifold W. Hence, cobordism provides a way of classifying n-dimensional manifolds
where n > 0 is arbitrary. This idea was initially considered by Thom.

The problem then reduces to distinguishing between two different manifolds in the
same cobordism class. These ideas can be extended to study cobordisms with given
structures, and various versions of such cobordism theories do exist. In this thesis,
we consider the theory of cobordism of manifolds equipped with an immersion in an
ambient space.

The essential idea in this thesis is to use a basic property of immersions. Given
an immersion F : M™ & N"** the image of I’ may have points whose preimage has
more than one point. Such points are known as ‘self-intersection’ points of F. We
then observe that if the immersion F' is self-transverse then the set of those points
whose preimage has r-distinct points known as the r-fold manifold of F' is itself a
submanifold. We shall only consider the case of double point manifolds of immersions,
in the special case of M**2 a5 CP*+! where the double point manifolds are surfaces.

Previously, Asadi and Eccles [AEa00] have considered the problem of determining

10
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the cobordism class of double point manifolds of immersions M*+2? 9» R2+2 Any
surface is either a boundary or is cobordant to the real projective plane. For all k,
there exists an immersion M**2 9= R?*2 with double point manifold which is a
boundary. For example take the standard embedding S*+2 < R?**2 when the double
point manifold is empty. They show that there exists an immersion I’ with double
point manifold cobordant to the projective plane if and only if £ = 1 (mod 4), or
k=3 (mod 4) and k + 1 is a power of 2.

This thesis considers the same problem for immersions M**2 ¢» CP**!. Notice
that any immersion M**2 95 R**2 gives rise to an immersion M**2? q» CP*+!
with the same double point manifold. We show that, for odd k, there is always an
immersion with double point manifold cobordant to the projective plane. For even
k, we only have partial result. For k& = 2, there exists an immersion with double
point manifold cobordant to the projective plane. For k = 4, there does not exist an
immersion with double point manifold cobordant to the projective plane. For other
values of k£ with £ = 2 (mod 4), we give a condition for the existence of an immersion
with double point coborant to the projective plane.

The method of our calculation is to translate problems from geometry into homo-
topy theory through the Pontrjagin-Thom construction. The outline of this thesis is
as follows.

Chapter 1 includes background material from differential topology, and homotopy
theory. We review the issue of transversality in Chapter 2. In Chapter 3 we recall the
basics of the Pontrjagin-Thom construction for embeddings, which are essential for
the introduction of the Pontrjagin-Thom construction for immersions introduced in
Chapter 4. In these two chapters, we also set up the homological machinery that we
are going to use during our calculations. In Chapter 5 we recall some facts about the
Steenrod operations, and the Kudo-Araki operations. We shall describe in Chapter
6, how we can determine the cobordant class of the double point manifold of an
immersion. Chapters 7 and 8 then illustrate the techniques introduced in previous

chapters, and contain the proofs of our results.



Chapter 1

Background

Through this chapter we review some of the geometric background material, and fix
our notation.

The notion of homotopy is of fundamental importance for us. The main essence of
our thesis is to translate geometric problems into equivalent problems in homotopy
theory, and use the methods of algebraic topology to solve these problems. For this

reason, we start by recalling some basic facts from homotopy theory.

1.1 Sets of homotopy classes of maps

We consider topological spaces and continuous maps between these spaces.

Definition 1.1.1. We say two continuous maps fo, f1 : X — Y are homotopic if
there is a family of continuous maps f; : X — 'Y for every t € I =10,1] i.e if there
exists a continuous map F: X xXI — Y such that F(x,0) = fo(x) and F(z,1) = fi(x).
We say F' is a homotopy between fo and fi, and we write fo ~ fi (or F : fo =~ f1) to

indicate that fy is homotopic to fi.

It is easy to check that the homotopy relation is an equivalence relation on the
set of all continuous maps X — Y, denoted by Map(X,Y"). Let [X, Y] denote the set

of homotopy classes of maps from X to Y, i.e.
X, Y] = Map(X, )/ =,

12



CHAPTER 1. BACKGROUND 13

where ~ is the homotopy relation.

Notice that if Y is path-connected then the set [X, Y] contains a distinguished
class of maps, namely all the constant maps. We will use this as a base point for
[X, Y] if one is needed.

If X has a base point zo and Y has a base point yg, let [(X, z0), (Y, y0)] denote
the homotopy classes of based maps, where a based map is a map f: X — Y, such
that f(xo) = yo. We may write f : (X, z9) — (Y, o) for such a pointed map. Then
[(X, o), (Y, y0)] has distinguished class, namely the class of the constant mapping
sending everything to yg.

Given amap f: X — Y, let [f] denote its homotopy class in [ X, Y]. Notice that
it will be clear from the context whether the spaces are based or not . So if there is
no confusion we may write [X, Y] for based maps as well.

Next, we introduce a couple of constructions that are central in homotopy theory.

Definition 1.1.2. For a space X, the suspension SX is the quotient of X x I obtained
by collapsing X x 0 to one point and X x 1 to another point.
If X has a base point xy € X the reduced suspension of X, denoted by XX, is obtained

from the suspension SX by collapsing the line segment xq X I to a point; equivalently
VX2 XAST2 X xSH/X VS

The point that we collapse X V St to is the base point of this space.

The space of all paths in a space Y is defined to be the function space Y! = PY =
Map(I,Y) [G75]. This space is given the compact-open topology, that is generated by
all pairs (K, V) of all f € Maps(X,Y) with f(K) CV for K C X andV CY such
that K is a compact subset of X and V' is an open subset of Y. If Y has a base point

Yo € Y the space of loops in'Y based at yy is defined by

Q(K yO) = Map ((L {07 1})7 (Yv yO))

which is the set of all maps « : I — Y such that a(0) = «(1) = yo. This set is
homeomorphic to Map ((Sl,so), (Y, yo)) with the compact-open topology where sqg =

(1,0) is the base point of S* (when sitting in R?). The space of loops atY is a subspace
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of Y1 and is topologized as a subspace of the space Y. Recall that ¥.S™ = S" (i.e.

they are homeomorphic).

Notice that the loop and suspension give rise to functors. More precisely, for a
given map f : X — Y we have Xf : ¥X — XY where Xf([z,t]) = [f(z),t] where
we write [z,t] for the class of (z,t) € X x I under the identification in the above

definition. Similarly, we have Qf : QX — QY where Qf(a) = foa.

Our next observation, is a relation between suspension and loop functors.

Theorem 1.1.3. Adjointness theorem . Let X,Y be pointed spaces. Then there
is a natural bijection [ X,Y] = [X,QY].

Proof. Let X be a space with base point x3. The maps
f: X xI—>Y
are in one to one correspondence with maps
g: X —-Y!

defined by f(x,t) = g(z)(t), where (z € X,t € I). If we take account of the base

points, we find the maps f : ¥.X — Y are in (1-1)-correspondence with maps
g: X — QY.
So, passing to homotopy class we see that a natural (1-1)-correspondence
EX,)Y] < [X,QY],

where QY is the loop space of Y at its chosen basepoint and the constant loop is

taken as the basepoint of QY. O

Now we would like to have a group structure on [X,Y]. This can be obtained

using the basic adjoint relation as following.

Lemma 1.1.4. Let X and Y be based spaces and all maps and homotopies preserve
base points. Then

(1) [X, QY] = [XX,Y] is a group;

(2) [X,QQ))] 2 [EX,QY] = [¥2X,Y] is an abelian group.
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Proof. See [DK, Lemma 6.41]. O

Definition 1.1.5. Suppose that X 1is a pointed space with base point xqg € X, and

n > 0. The n-th homotopy group of X at xg, denoted by 7, (X, xo) is defined by
(X, 0) = [(5™, 50), (X, 20)],

where s is the base point of S™ = XS 1. When n = 0, we have the set of path-
connected components of X which is not a group in general and is given by myX =

[(S8Y,{0}), (X, xq)] where S° ={0,1}.

Notice that m (X, xg) is a group, but non-commutative in general. 7,(X, z¢) is an
abelian group for n > 2.

This definition depends on the chosen base point. However, there are spaces such
that the definition will be independent of this choice. Recall that a space X is called
path connected if for any pair of points zy, x;1 € X there exists a continuous function
a : I — X such that a(0) = 2o and a(l) = x1. Moreover, for a given such path we
have the reverse path associated with « given by r,, : I — X such that r,(t) = a(1—t)
which satisfies r,(0) = x; and r,(1) = xo.

We also recall the definition juxtaposition of two paths. If we have «, 8 € PX such

that a(1) = 4(0), we then may define another path a x5 € PX by

a(2t) 0<t<1/2,
(axpB)(t) =
BRt—1) 1/2<t<1.

Now assume X is path connected and let zg, x1 € X be two distinct points. Choose

a path o € PX such that a(0) =z and a(1) = ;. We then define
Go : T(X, 20) — T (X, 71)

by
Galf] = lafral.

This is easy to check that this map is an isomorphism of groups.

Lemma 1.1.6. The mapping ¢q : 71 (X, xo) — m1 (X, x1) is an isomorphism.
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This lemma has a generalization to higher homotopy groups.

Theorem 1.1.7. Let n > 1. For each path « : [ — X there exists an isomorphism
7"-n()(u 06(0)) - ﬂ-n(X7 Oé(l))
Proof. See [B, Theorem 7.2, Chapter VIIJ. ]

According to above lemma, and the theorem after it, when X is path connected
we may relax our notation and just write m, X. Moreover, when X has more than one
component, we choose to work with the component which has the base point, and
hence using this notation for 7, X makes sense.

Finally, according to the Adjointness theorem observe that for nonnegative inte-
gers n, k

ToeX = [S"TF X] = [ZFS" X] =2 [S", OFX] = 7, QF X

1.2 Stable homotopy groups

Recall from the previous section that suspending a based map f : X — Y gives rise

to a based map X f : ¥ X — XY. This then allows us to have the following definition.

Definition 1.2.1. The suspension homeomorphism
Y :mp(X) = w1 (2X),n >0,

is defined by X[f] = [2f], where f : S" — X and Bf : ¥.8" & " — VX s
the suspension of f. Clearly it is a natural transformation from the functor m, to the

functor w1 0 2.

It is useful to know if there are cases when the suspension homeomorphism is
an isomorphism. The following theorem identifies one of these cases. Recall that a

topological space X is said to be (k — 1)-connected, if m;X =0 for all i < k — 1.

Theorem 1.2.2. Freudenthal suspension theorem . Suppose that X is a (k—1)-
connected CW complex. Then the suspension map m;(X) — mi11(XX) is an isomor-

phism for 1 < 2k — 1 and a surjection for 1 = 2k — 1.
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Proof. See [H02, Corollary 4.24.] O

Notice that in particular, the n-sphere S™ is (n — 1)-connected. The following then

is an application of the above theorem.
Corollary 1.2.3. For everyn > 1

Y7, (S™) — Mt (ST
is an isomorphism, and hence 7, (S™) = Z,n > 1.

Proof. See [S75, Theorem 6.28]. O

From Theorem 1.2.2 for a (k — 1)-connected CW complex X, the suspension map
mi(X) — m41(2XX) is an isomorphism for ¢ < 2k — 1. We note that when we suspend
a space, we increase the connectivity of that space by 1. Therefore, for every space X
and i > 0, there exists [, sufficiently large, such that (X!X) is (k + [ — 1)-connected

and i +1 < 2(k+1)—1, ie. in
Tin ' X = T X = me(5PX) — - T S

all mappings are isomorphisms where m > 0 is arbitrary. This means that for any
space X, and ¢ > 0, after finitely many suspensions the resulting homotopy group
is independent of suspension, and there is a unique group, which we call it the i-th

stable homotopy group of X, denoted by 77 X. More formally, we may define
7TZ$ X = direct limit 7ri+lElX )

By the Adjointness theorem 7;;¥!X is isomorphic to m;Q'¥'X for all [ and i,
where ' denotes the [-th loop space functor. There is a natural inclusion of Q'3!X
in QYHLX . Let QX denote the direct limit lim Q'3!X. According to [G75, Chapter
15 (direct limits)] one can take direct limit of a directed system of spaces and then
take the homotopy group, or can take the homotopy group and then take the direct

limit of the result directed system of groups. So,
X 2 lim 7,2 X 2 lim 7,8 X 2 rlim Q'YX 2 1,QX,

that is, any stable homotopy group can viewed as an unstable homotopy group as

well.
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1.3 Immersions

Through this thesis we will work with compact, connected, smooth manifolds of finite
dimensions, and smooth maps between such manifolds; M"™ will denote a manifold of

dimension n.

Definition 1.3.1. A map FF : M — N is called an immersion if the Jacobian
dF, : T,M — Tp)N is a monomorphism (injective) for every x € M. We denote

an immersion F' by F': M 3 N.

Definition 1.3.2. A map F' : M — N is called a submersion if the Jacobian

dF, : Ty M — Tp) N is surjective for every x € M.

Definition 1.3.3. If F' : M & N is an immersion and F : M — F(M) maps
M homeomorphically onto its image, then F' s called an embedding denoted by F' :
M — N.

We shall provide examples of immersions in later chapters. Next, we introduce

equivalence relations between immersions and embeddings.

Definition 1.3.4. An isotopy between embeddings of manifolds Fy, Fy : M — N is

a homotopy
F:MxI— N ;(z,t) — Fy(x)

such that for each t € I the map Fy : M — N 1is an embedding. That is, it is a

homotopy through embeddings.

Definition 1.3.5. A regular homotopy of immersions Fy, Fy : M & N is a homotopy
F:MxI— N ;(z,t) — Fy(z)

such that for each t € I the map F, : M & N is an immersion.

Remark 1.3.6. In particular, an embedding is an immersion, and isotopic embed-

dings are regular homotopic.
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This notion will be useful, as in the next subsection we show that the normal
bundle of an immersion only depends on the regular homotopy class of the given im-
mersion. This is technically important as we want to calculate the algebraic invariants
of a given immersions.

The set of r-fold points of a given immersion is defined as below.

Definition 1.3.7. Let F' : M™ & N™** be an immersion where k > 0. For integers

r > 1, we may define the r-fold self intersection sets of F' in N as follows

L(F) = {y=F(x)==F(x)eN||F(y)| =r} CN.
A point y € N™ is called an r-fold intersection point of F if y € I.(F).

Example 1.3.8. Forn =1 and k = 1 then the figure eight immersion of the circle
F : S' % R? has a single double point, I,(F) C R?.

In the next chapters, we will set up the framework that we are going to use in
order to study the self-intersection points of a given immersion. In our examples we
will take N to be Euclidean spaces, and projective spaces. We fix our notation for

these spaces.

Definition 1.3.9. The real projective space RP™ is the set of lines through the origin

in R"1 4.e. RP" is the set of all one-dimensional subspaces of R*"+1,
We may obtain RP" by identifying antipodal points in S™, i.e. RP" = S™ /{z, —z}.

Example 1.3.10. RP! = St is called the real projective line. RP? is called the real
projective plane. We will use this surface in many places. RP* = lim,, RP™ s called

infinite real projective space.
By analogy, we may define complex projective space CP".

Definition 1.3.11. The complex projective space CP™, of complex dimension n (real

dimension 2n), is the set of complex 1-dimensional subspaces of C"1.
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We can identify this space with a quotient of the unit 2n + 1 sphere in C**! under
the action of U(1) = S, i.e. CP" = §?"*1 /51 This is because every complex line in

C"™*! intersects the unit sphere in a circle. This action is given by
2(21, 29,y Zne1) = (221,222, -+ o, 22n41),
for z € St and (21,29, ..., 2p41) € SZTL

Example 1.3.12. CP! = §3/S!' = S2 s called the complex projective line. CP? is

called the complex projective plane. CP> is called infinite complex projective space.

Notation 1.3.13. We will write RP}* for the truncated real projective space RP" /RP*~1,
and RP® for the truncated real projective space RP> /RP*. Similarly, we will write
CPp for the truncated complex projective space CP™/CP 1, also CP° for the trun-

cated complex projective space CP>/CP*1.

1.4 Vector bundles

In order to study the self intersection points of a given immersion, we will use specific
invariants of vector bundles. For this reason, we include a brief review of vector bundle

theory.

Definition 1.4.1. A real vector bundle £ over B is a triple (E,m, B) such that:

(1) The topological space E = E(£) is called the total space.

(2) The continuous map w: E — B called the projection map.

(3) Each b € B has a fiber 7=*(b) and each fiber has the structure of a vector space
over R, we will write Fy(§) for this fibre. Moreover, for each b € B there exists a
neighborhood U € B of b, and a homeomorphism ¢ : U x R" — 7= 1(U), such that
for each x € U the restriction ¢ : {x} x R* — 7~ 1(x) is an isomorphism of vector
spaces. The pair (U, ¢) will be called a local coordinate system for & about b. We say
¢ is n-dimensional if 7=1(b) =~ R" for all b € B.

Next, we define maps between n-dimensional vector bundles over the same base

space.
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Definition 1.4.2. Let £ = (E,7,B) and n = (E', 7', B") be two vector bundles. A
bundle map n — & is pair of continuous functions g : E' — E and g : B — B such

that the following diagram commutes

E/*Q>E

B'—B
g
So g(Fy (1)) € Faen (&) for allb € B'. If & and n are over the same base space, i.e.

B = B’ and g(b) = b, we will say £ is isomorphic to n if g is a homeomorphism,
and it maps (Fy (1)) isomorphically onto Fyu)(§). We write Vect™(B) for the set of

n-dimensional bundles over B.

We now provide the reader with a set of examples of vector bundles that we are

going to use throughout this thesis.

Example 1.4.3. The trivial bundle over B is given by €'y = (B xR", 7, B) where 7 :
B xR"™ — B 1is the natural projection. More generally, we will say an n-dimensional
vector bundle & over B is trivial if it is isomorphic to €. Such an isomorphism is a

trivialization of &.

Example 1.4.4. Let M C R be an n-dimensional manifold. The tangent bundle

of M, denoted by Tar, has E(Ta) = Uyep ToM with
T.M = {(z,v) | v € R""* such that v is tangent to M at x}.

The space E(1y) € M x R™™* has the subspace topology. The projection w : E(1y) —
M map is given by w(x,v) = x. Notice that 7' (x) = T, M. The vector space structure

on each fibre T, M 1is determined by
ti(z,v1) + tao(x,v2) = (2, 6101 + tavs)
where t1,ty € R. The local triviality condition is satisfied.

Although we used an embedding to define the tangent bundle, it is possible to

define the tangent bundle of a differentiable n-dimensional manifold M only using
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the charts of the differentiable structure. For a given point x € M with a local
chart ¢ : U = R" one identifies the tangent space T, M with the space spanned by

differential operators

o 0 0
ozxl’ Ox? "Oxn

In this way, it is possible to see that 7, is an n-dimensional vector bundle and is

independent of the embedding ( we refer the reader to [B75, Chpater 2, Section 4] for
more details). The space E(1y) also can be given the structure of a 2n-dimensional
differential manifold [MST74].

However, our definition is of a more geometrical nature. We note that it is always
possible to define the tangent bundle of a given manifold in this way as according to
Whitney’s embedding theorem we always can embed a given manifold in Euclidean

space as a submanifold.

Theorem 1.4.5. Whitney’s embedding theorem . If M" is a compact n-manifold

then there exists a smooth embedding F : M™ — R2"+1,

Proof. See [B, Theorem 10.7]. O

In the next proposition we study the pullback of a given vector bundle.

Proposition 1.4.6. Given a map f : B — B and a vector bundle & given by
7 E — B there ezists a vector bundle f*¢ = (E(f*€), ', B") and a map

]?: [*E — E taking the fiber Fy (f*€) isomorphically onto Fru(§).

Moreover, if n = (E',p', B") is another vector bundle with a bundle map n — & then
n = f*¢ as vector bundles over B', i.e. pullback of a vector bundle along f is unique
up to isomorphism of vector bundles over B'.

Proof. We define E(f*¢) = {(b,e) |b € B',e € E,f(b) = w(e)} C B’ x E with the
subspace topology. We let 7 : E(f*¢) — B’ be defined by 7/(b',e) = b'. There is a
continuous map ]?: E(f*¢) — FE given by fA(b/, e) = e. Then we can check that the
following diagram commutes.

E(f€) 2~ E

B 7 B
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One can be more explicit about local trivializations in the constructed bundle
f*¢. If E is trivial over a subspace U C B then f*¢ is trivial over f~}(U) and so is a
vector bundle. In particular, if ¢ is a trivial bundle then so is f*¢. This can also be
seen directly from the definition, which in the case ' = B x R" just says that f*¢
consists of the triples (b',b,e) in B' x B x R® with b = f(b'), so we have just the
product B x R”.

To show uniqueness, let n = (E',p', B") be another vector bundle satisfying the

proposition, i.e. there exists a mapping ﬁ : B — E such that

E/LE

| f l

B'—B
and f, maps each fibre Fy (n) isomorphically onto Fraw(€).
Define h : E' — E(f*€) by h(e) = (¢/(¢), fi(¢))) = (b, e), where ¢ € E'. Since h
is continuous and maps each fiber Fy/ (n) isomorphically onto the corresponding fiber

F,(f*€) then h is an isomorphism of vector bundles. O

Remark 1.4.7. From the uniqueness statement it follows that the isomorphism type
of f*¢ depends only on the isomorphism type of the bundle & since we can compose
the map ]/”\ with an isomorphism of E with another vector bundle over B. Thus we
have a function f* : Vect™(B) — Vect™(B') taking the isomorphism class of E(€)
to the isomorphism class of E'(n). Often the vector bundle E'(n) is written as f*¢
and called the bundle induced by f, or the pullback of € by f. A map f: B — B

gives rise to a function f* : Vect"(B) — Vect™(B'), in the reverse direction.

Notice that by construction, if £ is an n-dimensional vector bundle then f*¢ is

also an n-dimensional vector bundle. We provide some easy examples.

Example 1.4.8. The restriction of a vector bundle & over a subspace A C B can
be viewed as a pullback with respect to the inclusion map A — B since the inclusion

7Y A) — E is certainly an isomorphism on each fiber.

Example 1.4.9. If f : B® — B is a constant map, having image a single point

b€ B, then f*¢ = E(B x n= (b)) is a trivial bundle.
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Definition 1.4.10. If £ is a bundle over B and n is a bundle over B'. We define a
bundle & x n over B x B’ by

E(¢ x ) = B(€) x B()) ™™~ B x B .

Then the Whitney sum & @ n of two bundles over B is defined to be A*(§ x n)
and is called Whitney sum of & and n where A : B — B X B is the diagonal map
A(b) = (b,b). Note that each fiber Fy(§®n) is canonically isomorphic to Fy(£)® Fy(n).

The notion of a pullback bundle has a nice homotopy property.

Theorem 1.4.11. Let f, g : B' — B be two homotopic maps, with B" a para-compact
space. Let & be a vector bundle over B. Then f*¢ and g*& are isomorphic as vector

bundles over B'.
Proof. See [D66, Theorem 4.7, Chapter 1, Section 4]. O

Definition 1.4.12. Let &, n, and { be three vector bundles over a fixed base space B.

A short exact sequence

of vector bundles over a fixed base space is given by bundle maps g and h where over

each point b € B we obtain short exact sequences of vector spaces

0 Fy(§) == Fy(n) == F(Q) 0.

Now we can define the normal bundle of an immersion. Let F': M™ 9= N"** be an
immersion. We then have two vector bundles over M", namely, 7); and F*7y where

for each z €¢ M
E(tum) = {(x,v) |veT, M},

E(F*ty) = {(z,w)|w € Tpu)yN}.
We define a bundle map from 7, — F*7n which on the level of total spaces is
covered by g : E(ry) — E(F*ry) with g(z,v) = (z,dF,v). Notice that F is an

immersion, and therefore the restriction of g to each fibre F,(7y) — F.(F*1y) is
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a monomorphism, since ¢ is defined by dF. We then let the normal bundle of F,

denoted by vg, be defined by the following exact sequence of vector bundles over M
O—>TM—Q>F*TN—}Z>VF—>O.
More precisely, we have vrp = (E(vg), m, M) defined by
E(vp) ={(z,v) |z € M,v € F(F'tn)/F.(Tm)}

and the projection map is given by m(z,v) = x. Notice that over each point x € M
the above short exact sequence is given by a short exact sequence of vector spaces
over R

which is split, i.e. over each point x € M we have F,(F*1y) = F,(7p) @ F(vp). This
implies that E(vp) C E(F*1y). We then give the subspace topology to F(vg).

If we assume that N C R! for some large [, where R! has the Euclidean inner
product, then, 7y has a natural Euclidean structure. Therefore, we may think of vg
as given by

{(z,v) |z € M,ve€ F'ry and v L T, M}

over each point x € M. In this case, each fibre v at a point x € M is given by the

orthogonal complement of T, M, that is
Fo(vp) = TyM* = {(z,v) |v € F*ry and v L T, M}.

We then may view vp as the orthogonal complement of 73, in F*1y.

Notice that each fibre Fj,(vr) is defined as the quotient of two vector space, namely
F.(ty) and F(F*7y). We then may say that v is the quotient of F*7x by 7). In fact
for given a map of vector bundles & — 7 over the same base space with dim ¢ < dimn
we can define a general construction as the quotient bundle n/£. We refer the reader

to [D66] for more details. The following proposition collects these observations.

Definition 1.4.13. If M" 9= N"* is an immersion. The quotient bundle vp =
F*1n/Tun 48 a k-dimensional bundle over M called the normal bundle of the immer-

sion F.
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Proposition 1.4.14. For any immersion F': M & N, with N Riemannian, that is,
its tangent bundle Tn has a Euclidian structure, there is a Whitney sum decompo-
sition

F*TN%JTM@VF.

Proof. Since F' is an immersion then dF, : T,M — Ty N is a monomorphism. In
addition, T, M is isomorphic to dF,(T,M). This implies that T, M is a subvector

space of T'r(,)N. However,

F.(F*ry) = zx{(y,v) € n:y=F(2)},
{(F(z),v) |v € TpayN}
Tpe)N.

I

1%

Hence, T, M is a subvector space of TN, Therefore 7j; is a subbundle of F™*7y.

Then we have F*1n = 7y © vp. O

In particular, when F': M™ — R""* we have

F*T(Rn+k) = Tm D Vp.

Since T(gn+xy is trivial, then F*Tga+xy is trivial, i.e. 7y O vp = 5'](4““.

We note that the notion of the ‘orthogonal complement’ of ‘tangent bundle’ can
be generalized as follows. Suppose n = (F,m, B) is a vector bundle which possesses
a Riemannian metric, as explained in Section 1.5. Let £ be a sub-bundle of 7, i.e.
¢ = (E',7',B) where E' C F and 7' is just given by the restriction of 7 on E’. In
particular, we have F,(§) C Fy(n). We also have the orthogonal complement of Fy(§)
inside Fy(n), defined by

Fy(&)*F = {(b,v) € Fy(n) | (v, w), = 0 for all w € Fy(n)}

where (—, —); denotes the inner product on F,(n) coming from the Riemannian struc-

ture on 1. We then define the vector bundle ¢+ as a sub-bundle of 7, to have

B = | B©*

beB
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and the projection map F(¢1) — B is given by (b,v) — b. The local triviality of
this bundle and the vector space structure on each fibre are inherited from 7. We call

&+ the orthogonal complement of £ in 7.

Theorem 1.4.15. E(&4) is the total space of a sub-bundle £+ C n. Furthermore n

is isomorphic to the Whitney sum & ® &+,
Proof. See [MS74, Thm 2.10]. O

Remark 1.4.16. From Proposition 1.4.14, since T is a sub-bundle of F*1y. Then

by Theorem 1.4.15 we have F*1y = TM@TALJ. Hence the normal bundle of F, vp = 73;.

Corollary 1.4.17. A cross section of Tar is called a (tangent) vector field on M,

and a cross section of vy is called a (normal) vector field on M.

Finally, we describe the ‘universal bundles’ and show that any vector bundle over
a para-compact space is the pullback of a universal bundle. First we recall definition
of the Stiefel and Grassmann manifolds.
Before defining the Stiefel space let us mention that an n-frame in R*** is an n-tuple

of linearly independent vectors of R"*.

Definition 1.4.18. (1) The Stiefel manifold V,,(R"**) is the set of all orthonormal

n-frames in R" i.e.
Vn(Rn+k) = {(’Ul, e ,Un) | v; € Sn+k_1, Vi - Vj = 52']‘},

where 0;; is Kronecker’s delta function.
(2) The Grassmann space of n-dimensional subspaces of R™* denoted by G,,(R"™*),
is the set of all n-dimensional vector subspace of R"**  that is n-dimensional planes

in R passing through the origin.

Notice that because V,,(R"**) is a closed subset of the compact space (S™+1)",
it is a compact space when it is topologized with the subspace topology. Moreover, ac-
cording to the above definition, there is a natural surjection V,,(R"™*) — G, (R"*¥)
sending an n-frame to the subspace it spans, and G,,(R"*) is topologized by giving
it the quotient topology with respect to this surjection. So G, (R"**) is compact as

well. We also record the following fact.
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Lemma 1.4.19. The Grassmann manifold G, (R"™) is a compact topological mani-
fold of dimension nk. The correspondence V. — VL, which assigns to each n-plane

its orthogonal n-plane, defines a homeomorphism between G, (R""*) and G (R™**).
Proof. See [MS74, Lemma 5.1]. O

Next, we introduce the notion of infinite dimensional Grassmann spaces. No-
tice that there are natural inclusions R™ — R™*! which allows to think of a k-
plane in R™ as a k-plane in R™*!. Using these inclusions we obtain inclusion maps

Go(R™F) — G, (R" 1) We now can formulate the definition of infinite dimensional

Grassmannians.

Definition 1.4.20. The infinite dimensional Grassmann manifold of n-planes in R>,
18 the set of all n-dimensional linear subspace of R*
BO(n) = G,(R*®) = kh_)rglo G (RYHFHL) = D Gn(R™F)
k=0
and 1is topologized by the weak topology, i.e. a set in Gp(R>) is open (or closed) if
and only if it intersects each G, (R"™) in an open (or closed) set. Here the direct

limit is taken over the natural inclusions G,(R"*) — G, (R"*+1) g5 k — oo.

The space BO(n) is a limit of compact spaces, and in particular, it is paracompact

[MS74, Corollary p. 66].

Remark 1.4.21. We note that by analogy one can define the complexr Grassmannian
manifold G, (C"**) to be the space of all complex n-dimensional subspaces of C"tk,
Similarly, we have the Grassmannian manifold of complex n-dimensional subspaces

in C* which we denote by BU(n).

Note that when n = 1 we have G (R'™*) = RP* and V; (R**) = S*. In particular,

we have
BO(1) = G1(R*) = RP>®, BU(1) = G1(C*®) = CP*>.

Let A,, denote the set of all n xn real matrices. The set of all non-singular matrices

is the general linear group GL(n,R), which is an open subset of A,. We have the
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group O(n) of orthogonal real matrices which is a subgroup of GL(n,R) and then
the group O(n — 1) is a subgroup of O(n). From these groups we can construct the

Stiefel space as

V(R = O(n + k) /O(k).

This description is useful, when we consider the generalized .J-homomorphism in

Chapter 7. We also have
Gu(R™) = V,(R™)/O(n).

Now we are ready to introduce the ‘universal bundles’. First, we look at the canonical

bundles over finite dimensional Grassmann manifolds.

Example 1.4.22. The canonical n-vector bundle v (R"™) over G, (R"™) has the

total space
E(yi(R™*) = E(y) = {(X,2) | X € G,(R™),z € X}.

This is to be topologized as a subset of G,(R"*) x R"™*. The projection map  :
E(}) — G (R"™*) is defined by m(X,x) = X.
Lemma 1.4.23. 77(R™"**) is n-dimensional vector bundle.

Proof. See [HO3, Lemma 1.15]. O

In the special case of n = 1, 7} is called the canonical line bundle.
Next, we define the Gauss map which tells us how to classify a given bundle over
a para-compact space.

Given a smooth n-manifold M C R"** the generalized Gauss map
G: M — G,(R™™)

can be defined as the function which carries each x € M to its tangent space T, M €

G, (R™*). In the following diagram

E(TM)—g>E(%?)

|

M Gn (Rn—l—k)

g
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g is covered by a bundle map
g B(ra) — E(Y)
where g(z,v) = (T, M,v). We will use the abbreviated notation
g:TM — Vg

for this bundle map. From the uniqueness of pullbacks in Proposition 1.4.6, we deduce
that that 7y = ¢g*y;. Not only tangent bundles, but all other n-vector bundles over a
para-compact space can be mapped into the bundle ~;' providing that £ is sufficiently
large. For this reason 7" over BO(n) is called the “universal bundle”.

The universal bundles are analogous to the canonical bundles, but they are defined

over the infinite dimensional Grassmann spaces BO(n).

Example 1.4.24. The universal n-plane bundle 4" over BO(n) has the total space
EO(n)=ER®")={(X,z) | X € BO(n),z € X}.

This is to be topologized as a subset of BO(n)xR>. The projection map w : EO(n) —
BO(n) is defined by m(X,z) = X.

Lemma 1.4.25. The bundle ¥" satisfies the local triviality condition.
Proof. See [MS74, Lemma 5.4]. O

In this case the Gauss map
g: M — G,(R*) = BO(n)

will be defined as the map which carries each x € M to its tangent space in BO(n).
This is covered by a bundle map ¢ : E(7y) — EO(n), where g(x,v) = (T, M, v).
The covering means that (g)*y", the induced bundle by g on M is isomorphic to 7.

Now we turn back to the general case.

Theorem 1.4.26. Any n-vector bundle & over a para-compact base space admits a

bundle map & — y".
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Proof. See [MS74, Theorem 5.6]. O

Two bundle maps, f,g : & — 7" are called bundle-homotopic if there exists a

one-parameter family of bundle maps
hy : &€ —=~"0<t<1,

with hg = f,hy = g, such that h; is continuous as a function in both variables. In

other words the associated function
h:E() %x[0,1] — E(y")
must be continuous.

Theorem 1.4.27. Any two bundle maps from an n-vector bundle to ¥ are bundle-

homotopic.
Proof. See [MS74, Theorem 5.7]. O

Corollary 1.4.28. Any n-vector bundle & over a para-compact space B determines

a unique homotopy class of maps
f:B — BO(n).

Proof. Let F': £ — ~™ be any bundle map, and let f be the induced map of base

spaces. 0

Notice that the above theorems together with Proposition 1.4.6 imply that given
any n-vector bundle ¢ = (E, 7, B) there exists a map f : B — BO(n), unique up to

homotopy, such that £ = f*y™.

Definition 1.4.29. The mapping f : B — BO(n) is called the classifying map for

the vector bundle &.

Recall the notation [B, G, (R""*)] for the set of homotopy classes of maps

f:B — GL(R"™).
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Theorem 1.4.30. For para-compact B, the map [B, BO(n)] — Vect"(B),

[f] — f*(v™), is a bijection.

Proof. Given f : B — BO(n), this corresponds to the pullback f*4™, thus vector
bundles over a fixed base space are classified by homotopy classes of maps into BO(n).

From last four theorems we can say that if £ is an n-dimensional bundle then
there is a continuous map f : B — BO(n) such that £ = f*4". Furthermore,

ot = i < fo ~ fi. This means that
Vect"(B) «— [B, BO(n)].
O]

Now, we want to use the notion of the classifying map for vector bundles together
with the uniqueness of pullback bundles to show that the isomorphism class of the

normal bundle only depends on the regular homotopy class of the given immersion.

Theorem 1.4.31. Suppose Fy, Fy : M™ & N"** are two reqularly homotopic immer-

sions in N" %, Then

VF() = VFl-

Proof. Let Fy and Fy : M % N be regular homotopic immersions with a regular
homotopy F': M X1 — N.Let G: M x I — N x I be the map G(z,t) = (F(z,t),t).
Then G is an immersion, the normal bundle of G restricted to M x 0 gives the normal
bundle of Fj and the normal bundle of G restricted to M x 1 gives the normal bundle
of F.

Let g : M x I — BO(k) be the classifying map for the normal bundle of G.
Then, if i : M — M x I is the map io(x) = (,0) and ¢; : M — M x [ is the map
i1(x) = (z, 1), then goig is the classifying map for the normal bundle of Fy and g o,
is the classifying map for the normal bundle of Fj.

However, 7y is homotopic to i1, the homotopy is the identity map M x I — M x I
and so g o 1y is homotopic to g o i;. Hence the normal bundle of Fj is isomorphic to
the normal bundle of Fj (since homotopic maps to BO(k) correspond to isomorphic

bundles). O
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We also have the following observation which is a comparison between the iso-

morphism classes of vector bundles over two different base spaces.

Theorem 1.4.32. A homotopy equivalence f : B' — B of para-compact spaces

mduces a bijection

f*: Vect™(B) — Vect"(B').

In particular, every vector bundle over a contractible para-compact base space is

trivial.

Proof. If g* is a homotopy inverse of f* then we have

124
—

and

]

Remark 1.4.33. If we have an immersion M™ & N™* then 7y is an n-dimensional
vector bundle, i.e. vp is a k-dimensional vector bundle over M. Hence, since our
manifolds are compact, then we have a unique map v(F) : M — BO(k) which

classifies the normal bundle vg. This is called normal map of the immersion.

1.5 Suspension and Thom spaces

Throughout this section we consider those n-vector bundles ¢ = (F,w, B) which
possess a Riemannian metric. This means that on each fibre Fy(§) = R™ there is a

positive definite Riemannian product, that is an inner product

(= = Fp(&) x Fy(§) — R

for each b € B where R is the set of all nonnegative real numbers. In this case, we

can make sense of the length of a vector z € F,(§) denoted by |z| where we define

|2 = (&, z)s.



CHAPTER 1. BACKGROUND 34

We note that in our calculations in this thesis we are dealing with compact manifolds

which always possess a Riemannian metric on their tangent bundle.

Definition 1.5.1. For a vector bundle &, having the base space B and total space E,
the disc bundle of £ is defined by D(§) = {z € E(§) | |x| < 1}, that consists of all
vectors in E(§) of length < 1.

Definition 1.5.2. For a vector bundle £, the sphere bundle of € is defined by S(§) =
{z € E(&) | |x| =1}, that consists of all vectors in E(§) of length = 1.

Definition 1.5.3. The Thom space of a real vector bundle £, denoted by T'(§), is the
quotient space D(§)/S(§).

Remark 1.5.4. Let 7 : E — B be n-dimensional real vector bundle over the compact
space B. Then for each point b in B, the fiber Fy, is n-dimensional real vector space.
We can form an associated sphere bundle Sph(§) by taking the one-point compactifi-
cation of each fiber separately. Finally, from the total space E(§) we may obtain the
Thom space T'(&) by identifying all the new points to a single point oo, which we take
as the basepoint of T(€).

Proposition 1.5.5. If £ is a real vector bundle with a compact base space, T(&) is
homeomorphic to the one-point compactification of E(§), i.e. T(§) = E(§)+, where

E(§)4+ is the one-point compactification of E(E).

Proof. Observe that D(§) — S(§) and E() are homeomorphic. The one-point com-

pactification of D(§) — S(€), and the one-point compactification of E(£) are homeo-
morphic, [G75]. E(§)4 = (D(§) — S5(£))4 = D(§)/5(§) = T(E). 0

Proposition 1.5.6. Let & and n be two real vector bundles over compact spaces. then

the Thom space T(& x 1) and the space T'(&) NT(n) are homeomorphic.

Proof. By using Proposition 1.5.5, the Thom space T'(§ X n) is the one-point com-
pactification of E(§ x n). However E({ x n) = E(§) x E(n), and so E(§ x 1)y =
E(§)+ N E(n)+. Hence T(§ x n) = T(§) AT (n). O
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Theorem 1.5.7. The Thom space T(§ @ &™) is homeomorphic to the suspension
XMT(8))-

Proof. Notice that £ & €™ isomorphic to £ x R", where R" is the n-dimensional real

vector bundle over a point. Then by Proposition 1.5.5 we have
T(€® ") 2 T(E x R") = T(€) AT(R"),
Hence T(§) AR =T(§) AS™ = X"T(€). O

Example 1.5.8. Suppose that % 1is the n-dimensional trivial vector bundle over
X. Then E(e%) = X x R", where E(e%) is the total space of €. Then we have
T(e%) =2 ¥™(X). In particular, if €7 is the trivial n-dimensional vector bundle over

a point *, then T(e") = ({*} x R"), =2 SO A S" = 5™,
Finally, we record one of the important properties of Thom complexes.

Theorem 1.5.9. Thom Isomorphism. Let & be a k-dimensional vector bundle
over B and T(§) the related Thom space then H"(B) = ﬁ"““(T(f’)) and H,(B) =

I:TnJrk(T(f)) where the homology and cohomology groups have Z/2-coefficients.
Proof. See [D66, Theorem 16.10.3]. O

Remark 1.5.10. The Thom isomorphism is natural in the sense that if € — € is a
map of Euclidean bundles then (T(F)) o¢ = ¢o (F)* where T(F) : T(&) — T(€) is
the induced map of Thom complezes, F : B — B’ is the map of base spaces and ¢,

¢ denote the appropriate Thom isomorphisms.

1.6 Stiefel-Whitney classes

In this section we introduce some algebraic invariants associated with vector bundles.
These will be useful when we describe a systematic way to determine cobordism
classes of given immersions.

First of all we will introduce four axioms which characterize the Stiefel-Whitney
cohomology classes of a vector bundle. The coefficient group will be Z/2, the group
of integers modulo 2, and we write H*X for H*(X;7Z/2) and H.X for H.(X;Z/2).
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Theorem 1.6.1. Axiom 1. To each vector bundle & there corresponds a sequence of
cohomology classes,

wi(€) € H'B(€), fori=0,1,2,...,

called the Stiefel-Whitney classes of €. The class wo(§) =1 € HB(E) and w;(€) =0
for v >n if € is an n-plane bundle.

Axiom 2. Naturality. If f : B(§) — B(n) is covered by a bundle map from & ton,
then

wi(§) = [fwi(n).
Axziom 3. The Whitney Product Theorem. If & and n are vector bundles over the

same base space, then

5@77 sz kaz )

where U (which we will omit when it is clear) denotes the cup product.
Aziom 4. For the line bundle i over the circle RP', the Stiefel-Whitney class
wy(v1) € H'RP' 2 7Z/2, is non-zero.

In the case when & = €% is the trivial bundle over B, we have w;(§) = 0 for all
i > 0 [MST74, Proposition 2, Chapter 4]. For the special case of the universal n-plane

bundle we have the following.

Theorem 1.6.2. H*BO(k) = Z/2[wy, wa, ... wx] a polynomial ring with coeffcients
in Z)2, where w; € H'(BO(k)) is the i-th universal Stiefel whitney class, has dimen-

sion |w;| = 1.
Proof. See [MS74, Theorem 7.1]. O

Remark 1.6.3. In the special case of the universal bundle ¥* the Thom isomorphism
H"BO(k) = H™*MO(k) is given by w! — w!wy, since w, € H*BO(k) = 7,2 is
the Thom class. (See [D66, Theorem 16.10.3]).

Remark 1.6.4. Given any n-plane bundle &, over a para-compact base space, it is

classified by a map f: B(§) — BO(n). By Aziom 2, we have

wi(§) = f*(w;).
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The total Stiefel-Whitney class of an n-dimensional vector bundle ¢ over B is

defined to be the element

w(§) =14+ wi(§) + -+ wn(§)

of the ring H*B. In particular, w(e'y) = 1 for all n > 0. The Whitney product theorem

can now be expressed by the simple formula

w(§ @ n) = w(§)w(n).

Let & be an n-dimensional vector bundle over a compact space B. Suppose that there
n+m

is an m-dimensional vector bundle 7 over B such that £ @ 7 is a trivial bundle ¢';

Since wy(e5™™) = 0 for k > 0, then by the Whitney Product Theorem for k > 0

k

S wiwitn) = 0.

i=0
Therefore if the Stiefel-Whitney classes of the bundle ¢ are known then we can
compute the Stiefel-Whitney classes of bundle n from the above formula. We have
w(&)w(n) = 1 and so w(n) is the multiplicative inverse of w(§) which is often written
w(e).

Suppose a differentiable manifold M™ has an immersion in Euclidean space R"**.
Then the immersion has a k-dimensional normal bundle v such that 75, ® v =2 ™t*
by Proposition 1.4.14. Since w(e" ™) = 1, then w(my)w(v) = 1, so w(v) is the formal
inverse of w(7ys). We often write w(M"™) = w(7y), and call w(M™) the total Stiefel-
Whitney class of M™; then w(v) is called the dual Stiefel-Whitney class and is denoted

by w(M™). Notic that w,(M"™) = 0 for r > k. This give us the following result.

Lemma 1.6.5. Whitney duality theorem . If 7y, is the tangent bundle of a
manifold in Euclidean space and v is the normal bundle then w(rmy)w(v) = 1 or

(equivalently) w;(v) = w;(Tr).

We provide some examples which illustrate how the Steifel-Whitney classes can

be calculated.

Lemma 1.6.6. For the tangent bundle Tsn of the sphere S™, the class w(Tsn) =

w(vgn) is equal to 1.
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Proof. For the standard embedding S™ C R"*! the normal bundle v is trivial. Hence
w;(vgn) = 0 for ¢ > 0, and wy(vsn) = 1, then w(vgn) = 1. Therefore from Theorem

1.6.5, we deduce that w(7gn) = 1. O

Lemma 1.6.7. The group H'RP™ is cyclic of order 2 for 0 < i < n and is zero for
higher values of i. Furthermore, if a denotes the non-zero element of H'RP" then

each H'RP" is generated by the i-fold cup product a'.
Proof. See [D66, Lemma 4.3]. O

Thus H*RP™ can be described as the algebra with unit over Z/2 having one

generator a and one relation a" ™! = 0.

Remark 1.6.8. [MS74, Remark p.42]. For the canonical map f : S™ — RP", this

lemma can be used to compute the homomorphism
f*:H'RP" — H"S"

providing that n > 1. In fact

since f*a € H'S™ = 0.

Example 1.6.9. The total Stiefel- Whitney class of the canonical line bundle . over
RP™ is given by

w(y,) =1+a.

Proof. The standard inclusion j : RP! — RP™ is clearly covered by a bundle map

from ~; to v.. Therefore
7 wi (1) = wiyg) #0.

This shows that w;(7!) cannot be zero, hence must be equal to a. The remaining

Stiefel-Whitney classes of v} are determined by Axiom 2. ]
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Theorem 1.6.10. The Whitney sum Trpn @ €' is isomorphic to the (n + 1)-fold

Whitney sum v} @&~ @ ...®~L. Hence the total Stiefel-Whitney class of RP™ is given

by

1 1 1
w(RP”):(1+a)”+1:1+<nJ{ >a+(n; )a2+-~+<n+ )a”,

n

where a is the generator of H'RP".
Proof. See [D66, Theorem 4.5]. ]

Remark 1.6.11. The total Stiefel-Whitney class of the normal bundle of RP™ 1is
given by

w(vppn) = W(Tepn) = (1 +a)"t = (1 4+a)" L.

Theorem 1.6.12. Let M™ be a manifold. If M™ can be immersed in R"**. then
w;(M) =0 fori> k. If M™ can be embedded in R"* then w;(M) =0 fori > k.

Proof. See [E81, Theorem 17.10.2]. O

Example 1.6.13. If the 9-dimensional manifold RP° can be immersed in R*%_ then

Trpo @ vppo = 2. Using Theorem 1.6.10 we find that
w(RP?) = (1+a)=1+a*+a®+a" =14a®+d®,
because a'® € HY(RP?) = 0 and then
w(Tap) - w(e) = w(rep) - 1 = WD),

Hence
w(vhpe) = (1+a%+ad) =1+ a*+a* + a.
In particular, wg(vrps) # 0. Hence dim(vgps) > 6 and so k > 6.
Proposition 1.6.14. RP™ can be embedded in R™ only if n = 2" — 1 for some r

and can be immersed in R™ only if n =2" —1 orn =2"—2. If n = 2" then there

is no immersion of RP™ in R*2 and no embedding in R*"~1L,
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Proof. We know that if RP™ can be immersed in R"*! then w(RP") = 1 or w(RP") =
1+ a. In the first case since w(RP") = (1 +a)"*™, by Theorem 1.6.10 we would have
(1+ a)"! =1, which implies n + 1 = 2", for some .

In the latter case (14 a)"*? = 1, which implies n + 2 = 2". The former case must

hold if RP™ can be embedded. If n = 2", then
W(RP") = (14a)" ") = (140) " (14a)"! = (1+a™)-(14a+- - -4a") = 1+a+- - +a" "},
and so the final statement follows from Prop.1.6.14. ]

Remark 1.6.15. Whitney showed that any differentiable n-manifold can be immersed
in R*1 and embedded in R*".[M58, 1.32]

1.7 Chern classes

In this section we define the Chern classes of complex vector bundles, cohomology

groups have coefficients Z.

Theorem 1.7.1. [D66]. For each complex vector bundle £ over a space B there are
classes c;(§) € H*(B;Z) with the following properties:

(1) co(§) =1 € H°B and ¢;(§) =0 fori > dim¢;

(2) if & and n are isomorphic, it follows that ¢(§) = ¢(n), and if f : By — B is a
map, then we have f*(c(§)) = c(f*(£));

(3) for vector bundles & and n over B, the relation c(§ ®n) = c(&)c(n) (cup multipli-
cation) holds;

(4) for the canonical line bundle A} over S* = CP', the element c1(\}) is a generator
of H*(S*,Z);

(5) for the canonical line bundle \' over CP>, the element c1(\') is a generator b of

the polynomial ring H*(CP>;Z).

Definition 1.7.2. Let & be a complex n-vector bundle over B. For i < n, we define

the total Chern class of & denoted c(§) € H*(B(§);7Z) as follows,

c(§) =1+ cr(§) + ... +cul§)
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Proposition 1.7.3. For the tangent bundle Tcpn there is the relation ¢(CP™) =
(1+ b)Y where b is a generator of H*(CP™;Z) [D66, Prop. 4.5].

We have the following relation between w, and c;.

Lemma 1.7.4. Given a complex vector bundle & (over a para-compact space B) then

wo(€) € H?B is the mod 2 restriction of c1(€) € H*(B;Z).

Proof. See [D66, Cor.11.5] O



Chapter 2

Self-transversality and multiple

point of immersions

Let F : M™ — N™ be a smooth map of manifolds, in order to have F~'(y) as a
submanifold of M, we need y to be a regular value of F. Firstly, we will explain

briefly how smooth maps pull regular values back to submanifolds.

2.1 Regular values and Sard’s theorem

Definition 2.1.1. Let F : M™ — N™ be a smooth map of manifolds.

(1) p € M is a critical point of F' if dFy, : T,(M) — Tppy(N) has rank < n.

(2) p € M is a regular point of F if dF), : T,(M) — Tp@)(N) has rank = n.

(3) ¢ € N a critical value of F' if ¢ = F(p) is the image of critical point p.

(4) q € N is a regular value of F' when F(p) = q, this implies that p is reqular point.
So if g ¢ F(M), then q is a regqular value.

Definition 2.1.2. Let M be a manifold of dimension m and Z C M a subspace such
that for each point p € Z we can find a smooth chart (V, @) in the mazimal atlas of
M around p in M with ZNV = ¢~1(R¥ C R™). Then Z is called a submanifold of

dimension k (or codimension m — k) in M.

From the next proposition there is, a close relationship between submanifolds and

embeddings.

42
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Proposition 2.1.3. If M is a submanifold of N, then the inclusion map, i : M — N,
is an embedding. Conversely, if F : M — N is an embedding, then F(M) with the

subspace topology is a submanifold of N and F' is a diffeomorphism between M and

Proof. See [083, Chapter 1]. O
We will mention the most useful property of regular values.

Theorem 2.1.4. [B0/jJ. Let F' : M™ — N™ be a smooth map between smooth mani-
folds. If ¢ € N is a regular value of F', Then F~'(q) is either a smooth submanifold

of M of dimension m —n or the empty set.

Proposition 2.1.5. Let Z be the preimage of a reqular value g € N under the smooth
map F : M™ — N™. Then the kernel of the derivative dF, : T,(M) — T,(N) at any

point p € Z is precisely the tangent space to Z, T,(Z).

Proof. Since F' is constant on Z, dF, is zero on T,(Z). But dF, : T,(M) — T,(N) is

surjective, so the dimension of the kernel of dF), must be
dim7T,(M) — dimT,(N) = dim M — dim N = dim Z.

Thus T,(Z) is a subspace of the kernel that has the same dimension as the complete

kernel; hence T,(Z) must be the kernel. O

Definition 2.1.6. (1) Let S be a subset of R™. Then S has measure zero if for every
€ > 0, there exists a cover of S by a countable number of open cubes Cy,Cy, ... in R™
such that >~ vol[C;] < e.

(2) Let M be a smooth manifold and S a subset of M. Then S is of measure zero if
there exists a countable open cover Uy, Us, ... of S and charts ¢; : Uy — R™ such that

¢:(U; NS) has measure zero in R™.
The following is the main result concerning regular values.

Theorem 2.1.7. Sard’s theorem. If F': M — N is any smooth map of manifolds,

then almost every point in N is a reqular value of F.
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The assertion in Sard’s theorem that (almost every point) of NV is regular value for
M means that the points that are not regular values constitute a set of measure zero.
Since the complement of the regular values are the critical values, Sard’s theorem

may be restated as follows:

Theorem 2.1.8. Sard’s theorem (restated). If F': M — N be a smooth map of

manifolds, then the set of critical values of F' has measure zero in N.

Proof. See [GP, Theorem p.40]. O

2.2 Transversality

Transversality can be viewed as a generalization of the notion of regular value. We
define the basic notions of transversality and show briefly that transverse maps pull
submanifolds back to submanifolds.

We can neatly define the transversality of manifolds using tangent spaces.

Definition 2.2.1. Let M be a smooth manifold, W and Z submanifolds of M. Then
W and Z are transverse at p € M, denoted W th, Z, if either:

(H)pgWnNZ or

2)peWnZ and T,M =T,W +1T,Z.

We say that W and Z are transverse, which we denoted by W M Z, when W th, Z

for every p € X.

Theorem 2.2.2. If W th Z in M™ then W N Z is a submanifold of M™ of dimension
dim(W N Z) = dim(W) 4+ dim(Z) — dim(M).

Proof. See [B, Theorem 7.7.] O

Proposition 2.2.3. Two submanifolds W and Z are transverse atp € M, W, Z,
if either:

l-p¢gWnZor

2- v,WNv,Z ={0}, where v, W = (T,W)* and v,Z = (T,Z)*, (Remark 1.4.16).
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Proof. Suppose U and V C R", then U +V = R" if and only if Ut NV = {0}. O

Proposition 2.2.4. [GP, Ez.j]. Let W and Z be transverse submanfolds of M. If
peWnZ then T, WNZ)=T,W)NT,Z.

The following is a generalization of the definition of transversality 2.2.1, where we

define what it means for a smooth map to be transverse to a submanifold.

Definition 2.2.5. Let F' : M™ — N" be a smooth map of smooth manifolds, let
W be a submanifold of N of dimension k. Then F' is transverse to W atp € M, if
either:

(1) F(p) ¢ W or

(2) F(p) € W and TppyN = (dF),(TyM) + TrgyW.

By applying Theorem 2.2.2 we get
(dF)p<TpM> N TF(p)W =m+k—n.

Lemma 2.2.6. Let F': M — N be a smooth map of manifolds, W a submanifold of

N. Then F' is transverse to W at p if and only if
VpF N I/F(p)W = {0}
Proof. Similar to the proof of Proposition 2.2.3. [

Proposition 2.2.7. Let F': M — N be a map of smooth manifolds, W a submanifold
of N. If dim M +dim W < dim N, then F' h W if and only if the image of F' is disjoint
from W, that is, F(M)NW = .

Proof. Suppose there p € M with F(p) € W. Then

dim[(dF), (T, M) + Trp W]

IN

dim(dF),(T, M) + dim Ty W

IN

dim M + dim W
dim N

A\

dim TF(p)N

Therefore, (dF),(T,M) + Tr@pW # TrpyN. And so F is not transverse to W at p.
So F(M)NnW = 0. O
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Remark 2.2.8. (1) Suppose that dim M > dim N and that W consists of a single
point g € N. Then F' h W if and only if q is a reqular value of F'. For F is transversal
to q if (dF),(T,M) = Try)N for all p € F~1(q), which is to say that q is a reqular
value of F. So transversality includes the notation of reqularity as a special case.

(2) It also follows immediately that submersions are transverse to every submanifold.
(3) If F is an embedding then F th W if and only if F(M) i W in the sense of
Definition 2.2.1.

Theorem 2.1.4 provides a useful tool for generating manifolds. We can generalize

it by the next theorem.

Theorem 2.2.9. If F': M™ — N is transverse to a submanifold W in N, then
F=YW) is a submanifold of M with codimF~"(W) = codimW, that is,

dim M — dim F~Y(W) = dim N — dim W.
Proof. See [S75, Theorem 12.17.] ]

Corollary 2.2.10. Let M be a smooth manifold, W and Z submanifolds. If W th Z
then W N Z is a submanifold of M with

codim(W N Z) = codimW + codimZ.

Proof. Let i : Z — M be the inclusion map. Then (di),(7,2) = T,M, so W th Z
implies i h Z. W N Z =1i"'(Z) so we are done by Theorem 2.2.9. O

We are going to state the next proposition which is a generalization of Proposition

2.1.5.

Proposition 2.2.11. /GP, Ez.5]. Let F : M — N be a map transverse to a sub-
manifold W in N so that Z = F~Y(W) is a submanifold of M. Then T,(Z) is the
preimage of Tpey (W) under the linear map dF, : T,(M) — Tp@)(N).

Proof. The proof is a generalization of the proof of Proposition 2.1.5. O]

Now we are considering the case of a map F : M™ 9 N"** and the definition of

a self-transverse immersion as follows.
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Definition 2.2.12. An immersion F : M™ & N™"* is self-transverse at the set of

distinct points {xy1,xo,...x,} such that F(x1) = F(xy) = --- F(x,) when
dim(vy, F + vy, F 4+ -+ v, F) =rk.

An immersion F is self-transverse if it is self-transverse at all sets of distinct points

{z1,29,... 2.} such that F(z,) = F(xs) =+ = F(z,).

Example 2.2.13. Imagine a smooth curve in R? intersecting itself transversely at
a point. With only two dimension in which to move, it impossible to remove this
intersection through an arbitrarily small deformation. However, if we now embed the
curve in R3, we can remove the intersection.

Given an immersion F : S* & R3 then v, F and Uy, F' are 2-dimensional. Then
given distinct points {xy,x2} such that F(x1) = F(x3) we cannot have
dim(vy, F + v, F) = 4 since dimR3 = 3. So it cannot be self-transverse at {x1,z}.
Therefore, a self-transverse curve in R® can have no double points and so will be an

embedding.

2.3 The double points of immersions in Euclidean
spaces

Let F : M™ 9+ R"* be an immersion of a compact closed smooth n-dimensional
manifold in Euclidean space. A point y € (R™"*) is a double point of F when it is
the image of two distinct points x1, x5 € M.

We write M for the Cartesian product of two copies of M with itself and
F® : M@ — R?>+2F for the map induced by F between the products.
Let Ag(R™™*) = {(u,u) | u € R"™*} be the diagonal of R*"*?* Since we have the

inclusion map i : R"* — A (R"**) C R?"*2* then for y € R"¥,
d’iy . Tan-l—k — Rn—l—k N T(y,y)A2 (Rn+k) g T(y,y) (R2n+2k) — R2n+2k7
where T{, ) As(R™) = Ay(R™™*) and di, (R"*) = Ay(R"**). Hence

V(y,y)A2(Rn+k) = A2(Rn+k)L = {(u1,u2) € R 2k | uy +uy =0}
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is the orthogonal complement of Ay (R™™).

Proposition 2.3.1. Given an immersion F : M™ & R""*  suppose that F(x,) =
F(x9) = y, 11 # 19 € M. Then F® is transverse to Ay(R™*) at (z1,29) € M@ if

and only if F' is self-transverse at {xy,x2}.

Proof. First of all, observe that F' is self-transverse at {x, 25} if and only if
dim(v,, F + vy, F) = 2k or, equivalently, v,, F N v,, F = {0}. Suppose that F'® is

transverse to Ay(R"**) at (21, 25). Then by Lemma 2.2.6,
Ve F® 00 Do (R™) = {(0,0)}.

Suppose u € v, F Ny, F. Then v € v,, F and v € v,,F so that —u € v,,F. Since
Vs FF X Uy F = Vg, 1)@, then (u, —u) € vy, 1p) FP.

Since also u € v, F and —u € v, F and u+ (—u) = 0, then (u, —u) € v, ,)Aa(R").
Thus (u, —u) € Vg, u0) F® Ny A(R™F) = {(0,0)}, ie (u, —u) = (0,0). So u = 0,
Hence v, F Nv,, F' = {0} and therefore F' is self-transverse at {x, z2}.

Conversely, suppose that F' is self-transverse at {x;, 22} so that v, F Ny, F =
{0}. Let (u,v) € V(g u0)F® Ny Aa(R"F), then (u,v) € vy, 4 F@ and (u,v) €
V(g Do (R™). Hence u € v, F,v € 1, F and u+v = 0. Hence u = —v € v, F. Then
u € vy, FNy, F={0} and so u = 0. So (u,v) = (0,0) and so
Vieraa)F'® N vy Do (R™F) = {(0,0)}. Therefore F® is transverse to Ao(R™™*) at
(1, 29). O

2.4 Triple points of immersions in Euclidean spaces

Given an immersion F : M™ ¢ R"* of a connected n-dimensional compact closed
smooth manifold in Euclidean space, a point y € R"** is a triple intersection point
of F' when it is the image of three distinct points xy, 9, x3 of M.

Let Ag(R™*) = {(u,u,u) | u € R""F} C R3"T3% be the diagonal of R3 3%, Then
for y € R, we have T(y, ) As(R™™) = Ag(R™™) . And so vy, As(R™™) is the

orthogonal complement of Az(R™"*). Also for(uy, us, uz) € R¥3 and for u € R"+*
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we have

(ug,u9,uz) - (w,u,u) = up-u+ug-u+ug-u
= (up4+us+uz)-u=0

& up+us+us =0.
Hence l/(y7y7y)A3(Rn+k> = {(uy, ug, uz) € R¥3% | 4y + uy + ug = 0}.

Remark 2.4.1. The immersion F : M"™ 9% R"F s self-transverse at the set of

distinct points {x1,x9, x3} if and only if
dim (v, (F') + Ve, (F) 4 vy (F)) = 3k.
Lemma 2.4.2. For linear subspaces Uy, Uy, Us of dimension k,
dim(U;y + Us 4+ Uz) = 3k < Uy NUs = {0} and (U + Uy) N U3 = {0}.

Proof. Suppose that dim(U; + Uy + Us) = 3k, then dim(U; + Uy) = 2k and
(U1 + Us) N Uz = {0}. Since dimU; = k,dimUs = k, then dimU; + dim U, = 2k.
Since also dim(U; + Usy) = dim Uy + dim Uy, dim(U; N Usy) = 0. Hence U; N Uy = {0}
and (U; + Us) NUs = {0}.

Conversely, suppose that Uy N Uy = {0} and (U; + Uy) N Uz = {0}. Then
dim(Uy + Uy) = 2k and (U; + U) N Us = {0}. Hence

O]

Proposition 2.4.3. Given an immersion F : M™ & R"™* suppose that F(z,) =
F(x9) = F(x3) =y where x1, 29, 23 are distinct points of M. Then F'®) is transverse

to As(R"™K) at (z1, 19, 23) if and only if F is self-transverse at {1, 15,73}

Proof. Suppose that F® is transverse to As(R"**) at (z1, 29, z3). By Lemma 2.2.6,
e BV Vs, 1) PO V(50 B0 (R7H) = {(0,0,0)}.
Suppose that u € (v, (F) + vgy (F)) N vg,(F). Then u € (v, (F) + v, (F)) and

U € vy, (F), so that —u € v, (F). Since u € (v, (F)+vy, (F)) we can write u = uq+us,
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where uy € vy, (F), us € v, (F).

Since u = uy + ug,us + us + (—u) = 0. Then (ur, us, —u) € vy As(R"). Also
(w1, Uz, —U) € Vigy apes) F'D = V5 F X 1, F X v, F. So (ug, ug, —u) = (0,0,0). There-
fore, u1 = ug = —u = 0.

Hence u = 0 and so (v, (F) + vy (F)) N vy, (F) = {0}. Also from Proposition 2.3.1

we can prove that v, (F) Ny, (F) = {0}. Hence, by Lemma 2.4.2,
dim(v,, F' + vy, F' + v, F') = 3k.

And so F is self-transverse immersion at {1, xs, x3}.

Conversely suppose that F is self-transverse at {1, 25, x3}. Then by Lemma 2.4.2,
Vay (F) Ny, (F) = {0} and (va, (F) 4 vay (F)) Nvg, (F) = {0}.

Let (u,0,W) € Vigywows) F® N 1y As(R™F). Then (u,v,w) € V(g rpug)F®
and (u,v,w) € Yy, A(R™). Hence u € vy, (F),v € vy (F),w € v, (F) and
u~+ v + w = 0 which implies u + v = —w.

Since u + v € (Vg (F) 4 v, (F)) then —w € (v, (F) + vy, (F)) and so
w € (Vg (F) + vgy(F)). Since w € v,,(F), w = 0 by our second hypothesis, and
sou+wv =0.8Snce u+v=0,u=—v € v, (F). Hence u € v, (F) Nv,(F) =
{0} and so u = 0 and v = —u = 0. So (u,v,w) = (0,0,0). Hence vz, 4 2 F® N
Vi Da(R™F) = {(0,0,0)} and so F® is transverse to Az(R™*) at (21, 20,23) O

Now we are going to consider the general case of r-fold points of an immersion in

a manifold N.

2.5 r-Fold points of immersions in manifold N

Given a self-transverse immersion F : M™ — N"** of a compact n-dimensional man-
ifold of M in N. Let i : N — A.(N) C N™ be the inclusion map, where
A (N) = {(u,u,...,u) | u € N} € N, the diagonal of N. Then for y € N, we

-----

(TyN x ... x TyN) = T, (N x ... x N) is the tangent space of the diago-

77777

nal. Hence, the orthogonal complement of tangent space of the diagonal defined by
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V(y y)AT(N) = AT<T(y y)N)J‘ = {(ul, C ,ur)|ui € TyN, Egzlui = 0}

----------

By a generalization of Lemma 2.4.2 we obtain the following lemma.

Lemma 2.5.1. An immersion F : M™ & N"VF s self-transverse at (r1,...,2,) if
and only if
Vo (F) N, (F) = {0},

(le(F) +VI2(F)) mV&f3(P1) = {0}7

(Ve F + -+ v, F)N v, F = {0}.

Lemma 2.5.2. Given an immersion F': M™ & N"k suppose that F(z,) = -+ =
F(x,) = y where x1,...,, are the distinct points of M. Then F") : M™) — N s

transverse to A.(N)at (z1,...,x,) if and only if F' is self-transverse at {xy,...,x,.}.

Proof. Suppose that F() is transverse to A,(N) at (zy,...,2,). Then by Lemma
Using Lemma 2.5.1, suppose u € (vp, F+ -+ -4 vy,  F)Nuv,, F, for 2 <i <r. Then
u€ (v F+--+uvy, F)and u € v, F, so that —u € v,, F.
Since v € (Vg F' 4+ -+ 4+ vy, | F), we write v = uy + -+ + u;—1 where u; €

Ve Fy oo iy € vy, (F. Since w = uy + -+ + u;—q, then ug + -+ - + u;—1 + (—u) = 0,

(ula ceey Ui—1, —'LL) S V(y,..., y)Ar(N)a and (ub -5 Ui—1, ua) € V(gy,..., :EZ)F(T) So
(Uty . Uim1, =) € Vigy o an F N, A(N) = {(0,...,0)}. Hence
(ul,...,ui_l,—u) = (0,,0) = UL =" = Uj—1 = —U =

Therefore, u = 0 and so (v, F + -+ -+ vy, F)Nv,, FF = {0} for 2 <i <r. By Lemma
2.5.1, F is self-transverse at {x1,...,2,}.

Conversely, suppose that F' is self-transverse at {x1,...,2,} so that
(Ve '+ -+ vy, (F)N v FF={0} forall i, 2<i<r.

Let (wi,...,w,) € Vs xT)F(””) N v,

7777777777777

and (w17 st 7w7') E V(y 77777

Hence wy + - -+ + w,_; = —w,. Since wy + -+ +w,—1 € (Ve F' 4+ -+ + vy, F),

—w, € (W '+ 41, F)andsow, € (v, F+ -+ v, F). As w, € v, F then
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w, € (Ve F+ ...+ vy, F)Nv,, F ={0} by Lemma 2.5.1. Therefore
w, = 0.

Similarly, by the induction we can prove that w; =--- jw,_; = 0. So

Hence vy, o F™ Ny, ) A(N) ={(0,...,0)}, and so by Lemma 2.2.6

...........

F) is transverse to A (N"™*) at (zy,...,z,). O

Theorem 2.5.3. Suppose F : M™ 9 N"** is a self-transverse immersion of a
compact closed smooth manifold M in smooth manifold N. Then the r-fold self in-

tersection sets I.(F') is itself the image of an immersion
0.(F) : A (F) 9 N"tF

Proof. See Eccles-Grant [G06]. Suppose F' is a self-transverse immersion of manifold
M in N, then for each r > 1, F") : (M) a (N)) is transverse to the diagonal
A (N).

Let A.(F) = {(z1,...,2,) € MD|F(z)) = ... = F(z,),i # j = x; # x;}, where
M) is the r-fold cartesian product of M with itself.
F' (M,r) = {(zy,...,2,) € M") i # j = x; # x;} € M™ is an open submanifold

of M) and so has dimension rn. Hence by Lemma 2.5.2 and Proposition 2.2.11,

is a submanifold of F"'(M,r) C M), of codimension (n+ k)(r —1) . Thus A,(F) has
dimension rn — (n + k)(r — 1) =n — k(r — 1).
The symmetric group Y, acts freely on A,(F) by permuting the coordinates.

Factoring out by this action give a compact manifold of dimension n — (r — 1)k

This is the rfold point manifold of F'in N. We may define a map

0,(F): A(F) % N
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by 0,.(F)[z1,...,z,] = F(x1). We show that this map is an immersion as follows.
Since F : M™ 95 N™* is an immersion, then F") : F'(M,r) ¢ M) — N is

an immersion. By restricting to A,(F) in F' (M, r) and to A,(N) in N we deduce

that the restriction ¢ : A.(F) — A,(N) is an immersion too. This follows from the

following diagram.

F’/(]\47 7") LT)) N(r) *p> N

| A

A (F) —5=A(N)

The diagonal s : A.(N) C N — N is a diffeomorphism. Then by composing g
and s, we get the map sg = o : A,(F) — N which is an immersion. Consider the
following diagram.

A (F) "L N
qT .
A (F)
Since the space A,.(F) is obtained by factoring out A,.(F) by the symmetric group

action, and since « is an immersion, then 6,.(F) : A,(F) & N is immersion. O



Chapter 3

Pontrjagin-Thom theory for

embeddings

The classical Pontrjagin-Thom theory establishes a relation between the cobordism
classes of embeddings M"™ < N"* and the set of homotopy classes of maps Nf’k —
MO(k). If N*** is compact, then N™* is given by N"** together with a disjoint
base point. For N"™% = R"** then N}** =~ §n+k Moreover, MO(k) is the Thom
complex of the universal n-plane bundle 4. We start with the cobordism theory of

embeddings.

3.1 Cobordism group of embeddings

Suppose n and k are fixed non-negative integers, M is a compact smooth n-dimensional
manifold without boundary, and (M, F') be a pair where F': M™ — N"** is an em-
bedding. Roughly speaking, we say that two manifolds M; and M, are said to be
cobordant if their disjoint union, denoted by Ll is the boundary of some other mani-

fold. More formally, we have the following definition.

Definition 3.1.1. Given two embeddings F : M?* — N""* and G : My — N"tk,
we say (My, F) is cobordant to (M, G), written (My, F) ~ (Ms, G) if the following
conditions hold,

(1) There ezists (n + 1)-dimensional manifold W such that OW = M; x 0 My x 1.

o4
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(2) There exists an embedding H : W — N"** x [0,1] such that,

Hlyyxo =F x 0 and Hl|pypx1 = G X 1.

(3) x € OW if and only if H(x) € N™** x {0,1}.

(4) There exists € > 0 such that (N"t* x [0,€)) N F(W) = F(M,;) x [0,€), and

(N" P x (1 —e,1))NH(W) = G(My) x (1 —¢,1].

We say that (W, H) is a cobordism between (M, F') and (Ms, G). The cobordism
relation ~ is an equivalence relation on the set of all pairs (M, F). Let Emb,(N"**)
be the set of equivalence classes of such pairs. We shall denote the class of (M, F') by
(M, F)].

Before introducing the Pontrjagin-Thom construction, we need to recall the tubu-

lar neighborhood theorem.

Theorem 3.1.2. Tubular neighborhood theorem. Let F : M™ — N"t* be an
embedding. Then there exists an open neighborhood of M™ in N"™** which is diffeo-
morphic to E(vp) under a diffeomorphism which maps each point of x € M to the

zero mormal vector at x.
Proof. See [MS74, Theorem 11.1]. O
Our next theorem introduces the Thom-Pontrjagin construction.

Theorem 3.1.3. Thom. The Pontrjagin-Thom construction induces a function
7 Emby(N™™F) — [NTTF MO(k)).

Proof. Let o € Embi(N™*) and let (M, F) be a representative of a. Given an
embedding F' : M" — N"** where M is a closed connected smooth n-dimensional

manifold, we have the following commutative diagram.

E(vr) —— E(7")

L,

M —E—~ BO(k)

in which F': M — BO(k) is the normal map of F which classifies the normal bundle
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vp over M. Since M™ is compact, F is closed [G75], and hence
F: E(vp) — E(Y")
is closed. This consequently induces a map
T(F):T(vp) — MO(k)

which is induced by vy on the associated Thom space.

Since M =2 F(M) is a submanifold of N"** by Theorem 3.1.2, M has a tubular
neighborhood U in N™** such that U is diffeomorphic to the total space E(v) of the
normal bundle over M. Notice that M is compact, so T(vr) = E(vg)y. Thus we
obtain a map

L:U=E(vp) — E(r): =T (vp).

Now we have a map which is defined on U C Nf“k but not all of Nfrk. We extend
this map to N_T“k by sending N_"ﬁk — U to ty, the base point of the Thom space of

normal bundle vr. Let r denotes this continuous extension,
r: NP — T(vp).
If we compose the map T'(F) with r, the composition provides the required map
fi N — MO(K).

A similar construction starting from a cobordism H : W — N"tk x [0, 1] leads
to a homotopy f : (N"* x [0,1])4 — MO(k). Hence the homotopy class of f only
depends on the cobordism class of (M, F').

The map f is called Pontrjagin-Thom Construction associated with the embed-

ding F'. Now we define the Thom map
71 Emby(N™™%) — [NI*% MO(k))]
by 7(c) = [f], where [f] denotes the homotopy class of f. O

Now we want to construct the inverse to the function 7 in the above theorem.
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Theorem 3.1.4. There is one-to-one map
t: NI MO(K)] — Emby(N™F).
Proof. Suppose that o € [Nfrk, MO(k)] is represented by a map
fi NI — MO(k).

Choose a representative f which is transverse to BO(k) C MO(k). Then by the
methods of chapter 2 and using Theorem 2.2.9, f~'(BO(k)) = M™ is a submanifold

of N of dimn. This gives an embedding map M" < NT*.

N L MO(k)

1, ]

M™ ——— BO(k)

According to the above diagram, we get a map of vector bundle v; — ~* which
is isomorphism in each fiber, where v; is the normal bundle of the embedding ¢+ and
7% is the normal bundle of the map BO(k) — MO(k). This show that f;(v*) = v;.
Hence we have an embedding M™ < N"**,

Similarly a homotopy (N"** x [0,1]), — MO(k) gives rise to a cobordism

Wntl — N7tk [0, 1]. Hence we have defined a function

t: [NIR MO(K)] — Emby(N"F).

O
Theorem 3.1.5. The map 7 is bijection,
Emby(N"F) 2 [N MO(K)].
Proof. The map t is inverse to 7. [S68, Theorem p. 18]. ]

If N+ = R"** then Nfrk = S"** and we obtain a one to one correspondence

71 Embi(R"F) — [S"* MO(K)] = 71 MO(k)
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where the right hand side is a group. On the other hand Emb,(R"*) is a group under
the disjoint union operation, and it is Thom’s result that the mapping 7 defined above
is a group isomorphism. The method of proof is similar to the proof of Theorem 3.1.3.

Given an embedding F' : M™ — R"** it corresponds to an element o € 7,1t M O(k).
We can construct a map f : St — MO(k) be the Pontrjagin-Thom construction
and 7(a) = [f] where [f] is the homotopy class of f.

We are going to show that the cobordism class of M determines and is deter-
mined up to cobordism by certain Hurewicz images and so it natural to ask how this
information can be retrieved.

We will define the Hurewicz homomorphism which illuminates the close relation

between homology and homotopy.

Definition 3.1.6. The Hurewicz homomorphism
h: [N MO((K)] — Hp e MO(K)

is defined by setting h(a) = h([f]) = f.[N], where [N] € H, ,N""* is the fundamen-
tal homology class of N, and f.[N] € H, x MO(k), for

Je: Hn+an+k I n+kMO(k7)
the map induced by f.
If N*tF = R"** then The Hurewicz homomorphism
h: 7y MO(k) — Hy e MO(K)

is defined by setting h(a) = h([f]) = fu(gnir) for f : S"™ — MO(k), such that
Gnik is a generator of H,xS™* and f, : H, xS"* — H, . x,MO(k) is induced by

f.
Next we need to explain characteristic numbers of manifolds.

3.2 Stiefel-Whitney numbers and cobordism

Let M be a closed connected smooth n-dimensional manifold with an embedding.

Recall that our manifolds are compact and connected. Hence, according to [MS74,
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Theorem A.8| there exists a unique non-zero fundamental homology class [M] €
H, (M), and for any cohomology class v € H"M, the Kronecker product (v, [M]) €
7.2 is defined. We will use the abbreviated notation v[M] for this Kronecker product.

Let F': M™ — N""* be an embedding. For I = (iy,...,%,) a sequence of non-

negative integers with degree ¢1 + 2i5 + 3i3 4 - - - +ri,, = n we can form the monomial
w (vp) = wi (ve)w2 (vp) ... wr (vp) € H"M.

Definition 3.2.1. The Normal Stiefel-Whitney number of an embedding F corre-

sponding to a monomial wilws? ... w'r = w! of degree n is the number

w(vp)[M] = (w'(vp), [M]) € Z/2.

Notation 3.2.2. In the case of an embedding F : M™ — R"* we have vp @ T3y =
g™ then w(vp) = w(ra)™t, and so the normal Stiefel-Whitney numbers do not
depend on F and so can be written w'[M]. In the case of an embedding F : M"™ —
Ntk we call w!(vp)[M] the normal Stiefel-Whitney number of F corresponding to
monomial wfl ... w¥ and denoted it W'[F), since it may depend on the choice of

r

embedding (see Example 3.3.10).

Remark 3.2.3. [t is also possible to define tangent Stiefel-Whitney number of a

manifold M using the tangent bundle. This is more usual.

The example below illustrates how to calculate the normal Stiefel-Whitney num-

bers .

Example 3.2.4. Given an embedding RP?> — R!, for sufficiently large . Then the
normal Stiefel-Whitney numbers of RP? are described as follows.

According to Theorem 1.6.10, Tpp: e’ = va & va ® s, where va is Hopf line bundle.
Then W(RP?) = w(vgpz) = w(trpz) ' = (1 +a)® = (1 +a).

Then w1 (RP?) = a, Wa(RP?) = 0. Hence

Wi RP? = 1, wWy[RP?] = 0.
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We are interested in the Stiefel-Whitney numbers as they distinguish between
given manifolds belonging to different cobordism classes. This is the outcome of the

following results.

Theorem 3.2.5. [Pontrjagin/. If B is a smooth compact (n+1)-dimensional manifold

with boundary equal to M, then the Stiefel-Whitney numbers of M are all zero.
Proof. See [D66, Theorem 4.9]. O
We may say that Thom’s theorem is an inverse for Pontrjagin’s theorem.

Theorem 3.2.6. [Thom/. If all of the Stiefel-Whitney numbers of M are zero, then

M can be realized as boundary of some smooth compact manifold.
Proof. See [BG88| O
Combining Theorem 3.2.5 and Theorem 3.2.6 we have the following.

Theorem 3.2.7. Two smooth closed n-manifolds belong to same cobordism class if

and only if their corresponding normal Stiefel-Whitney numbers are equal for all I.

Proof. See [GT75, Proposition 30.21]. O

Thus is a similar result for the case of tangent Stiefel-Whitney number (see[D66,
Theorem 17.9.7]).
Now we will calculate the normal Stiefel-Whitney numbers of two different man-

ifolds of the same dimension in order to demonstrate that they are not cobordant.

Example 3.2.8. Given RP? x RP? — R! and RP* — R/, their normal Stiefel-

Whitney numbers are calculated a below

W(RP? x RP?) = w(vgp2xrp2) = W(Trpexrpz) "t = (1 +a)3(1 + b) ™3, where
H*(RP? xRP?) = H*RP*® H*RP? = 7/2[a] /(a®) @ Z/2[b] | () = Z./2[a, b]/(a®,b?).

Since (1+a)? =1+a* =1, then (1+a)*(1+a) =1, and so (1+a)3 = 1 +a. Hence
W(RP? x RP?) = (1+a)(1+b) =1+ (a+b) + ab.
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So Wy (RP% x RP?) = a+b,wy(RP? x RP?) = ab. Then w}(RP? x RP?) = (a+b)* =
a*+bt =0, Wwy(RP?xRP?) = (a+b)*(ab) = (a®>+b*)ab = 0, w,w3(RP? x RP?) =
(a+b)a*t® = 0, Wi(RP? x RP?) = a?b?, w,(RP? x RP?) = 0. Hence

W2RP? x RP? =1,

and the other characteristic numbers are zero.
Since we have W(RP*Y) = (1+a)™® = (14+a)? =1+ a+a®+a?, then w,(RP?*) =
a, Wy (RP?Y) = a? w3(RP?Y) = a,w,(RP*) = 0, and then w} = w2w, = W w3 = Ws =

a*, w, = 0. Hence

Wi [RP?Y = ww,[RPY = w,w3|RP*Y) = wiRPY = 1,
wy[RPY = 0.

We deduce that the above two manifolds have different normal Stiefel-Whitney
numbers.
Our calculations in Example 3.2.8 show that the manifolds RP* and RP?xRP? are

not cobordant because they do not have the same normal Stiefel-Whitney numbers.

3.3 Reading off the Stiefel-Whitney numbers

Now, we describe a systematic way how to read off the normal Stiefel-Whitney num-
bers of a given embedding F' : M™ «— N"*k This answers the question that we
posted at the end of Section 3.1.

We start by describing the cohomology of MO(k). To determine the cohomology
group of MO(k), remember that MO(k) = D(7*)/S(~*) where

E(*) = {(X,z)€ BO(k)xR®:z € X},
S = {(X,2) € E(y*) : |z = 1},
D(v*) = {(X,z) € E(v*) 1|z <1}

We then have the following observations.

Lemma 3.3.1. D(v*) is homotopy equivalent to BO(k).
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Lemma 3.3.2. S(v*) is homotopy equivalent to BO(k — 1).
Lemma 3.3.3. MO(k) is homotopy equivalent to BO(k)/BO(k — 1).

Proof. This lemma follows by the following diagram :

S(y*) —— D(y*) ——= MO(k)

| ig |

BO(k — 1) —> BO(k) —= BO(k)/BO(k — 1)

Here f and g are homotopy equivalences by Lemma 3.3.1 and Lemma 3.3.2, respec-

tively. Note that the induced map h makes the diagram commutative. [

Lemma 3.3.3 and Theorem 1.6.2 enable us to calculate the cohomology of MO(k).

Consider the cofibration sequence
BO(k — 1) —= BO(k) —= BO(k)/BO(k — 1) .

In the long exact cohomology sequence the induced homeomorphism
i* : H*BO(k) — H*BO(k—1) is given by i*(w;) = w; for i < k—1 and i*(w;) = 0 by
Theorem 1.6.1. Hence ¢* is an epimorphism. This means that the long exact sequence

breaks up into the following short exact sequence
0 —= H*BO(k)/BO(k — 1) —— H*BO(k) —— H*BO(k — 1) —=0..

Since ¢* is ring homomorphism, then ker(i*) = wiZ /2wy, wa, . .. wy].
But H*BO(k)/BO(k—1) = ker(i*). By Lemma 3.3.3 BO(k)/BO(k—1) is homotopy

equivalent to MO(k) so we have the following corollary.

Corollary 3.3.4. f[*MO(k) = 7./2[wy, we, . .. wi|/Z)2[wy, wa, . . wg_1] =

wiZ /2wy, wa, . .. wy].

A basis for H*MO(k) leads to a dual basis for H,MO(k). To be more explicit we

will describe the homology of M O(k) briefly in term of the basis €;,, e;,,...,¢€;

ke

let e; € H;BO(1) = HRP> = 7Z/2 be the non-zero element for all i > 0. Let

i : BO(1)® = BO(1) x BO(1) x ... x BO(1) — BO(k)
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be the map which classifies the product of k copies of the universal line bundle. Then
for the sequence

I = (iy,19,...,1x) of non-negative integers We define
er =€, €y ..., = (g)e(en @ey, ®...®e;,) € H.BO(k). (3.3.5)

By the homotopy commutativity of the product,

€ig(l)eia(2) c. eig(k) = (,uk)*(eig(l) R...Q eia(k))
= (ur)«(e ®...®¢€;)

€;1€iy - - - €

for each o € X, where X is the permutation group on k elements. Thus each such

element can be written as e;,e;, . ..e; where 0 <1y < iy < ... <14 and it follows by

k

a counting argument that
{€i1€i2...€ik ’OSZl S/LQ S Slk}

is a basis for H,BO(k).
The inclusion map ¢ : BO(k — 1) — BO(k) induces a map in homology
iv: H(BO(k — 1)) — H,BO(k) given by i.(e; ... €;,_,) = €04y - - - €,

Hence using Lemma 3.3.3, it follows that
{€i16i2...€ik ’ 1 Sll S/LQ S Slk}

is a basis for H,M O(k). Next, we record one of the important properties of Thom

complexes.

Theorem 3.3.6. Thom isomorphism. Let v* be universal bundle over BO(k)
and MO(k) the related Thom space. Then the Thom isomorphism T : H.BO(k) —
H.MO(k) is given by

T(€i1€i2 c. eik) = €41, +1€i5+1 - - - Ejp+1-

Proof. Recall that py : BO(1)®) — BO(k), then (u). : H.BO(1)®) — H,BO(k)
and

(pg)s (€, Resy @ ... @ €;,) = €64, ...€, € H.BO(k).
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By naturality, we have the following diagram

H.BO(L)® 2 5 BO(k)

r| |

(Bk)x  ~

H,MO(k)® == H,MO(k)
where T" denotes the Thom isomorphism. The Thom isomorphism of 7' : H; BO(1) —
f[iHM O(1) =2 Z/2 is given by T'(e;) = e;41. Therefore, by naturality the Thom iso-
morphism T : H, BO(k) — H,MO(k) is given by

T(ei€iy...€) = T(up)le, Rep®@...0¢;)
= (p)«(Te;, ®Tes, ®...@ Te;,)
= T(€i1€i2 .. eik)

= €;;4+1€i5+1 - - - €4 +1-
O

Recall the map py, : BO(1)F — BO(k). Write a; € H*BO(1)* for the generator
1®...0w ®...® 1, with w; in the i-th place. Then H*BO(1)* is the polynomial
ring Z/2[ay, . .., ai|. Evaluation of the total Stiefel-Whitney class of the product of

the line bundles gives
(4w + ... +wg) =1 4+a)(14+a)...(1+ ax)

from which it follows that pjw; = o;(ay,as,...,ar) = o;, the i-th elementary sym-
My

metric polynomial Xajas ... a; = Xaj aj, .. .aj for 1 < j; <...j; < k. More generally

prw’ = prwt . wl = ol ol =07 (3.3.7)

This implies to the following result.

Proposition 3.3.8. For w’ € H*BO(k) and e; € H.BO(k) the Kronecker product

(w” er) is given by the coefficient of a’ when o’ is written as a polynomial in ay, . . . a.

Proof. See [AEb00, Proposition. 3.4]. O
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We now state our main theorem which explains the relation between the normal
Stiefel-Whitney numbers and the Hurewicz homomorphisms. This provides the main

computational tool for us that we are going to use in our calculations in next chapters.

Theorem 3.3.9. Suppose F : M"™ — N"** is an embedding which corresponds to
a € [N MO(k)] under the Pontrjagin-Thom construction. The normal Stiefel-

Whitney numbers of F' are given by the Kronecker product
W [F] = w! (vp)[M] = (w'wy, h(a)).

Proof. Let T'(vp) be the Thom space of normal bundle of F'. Let vp be the classifying
map of the normal bundle of M and h denote the Hurewicz homomorphism. Let
a € Emb,(N"*F) represent the embedding M™ — N"* under the Pontrjagin-Thom
construction. Therefore, a is the homotopy class of a composition of the following
form.

FoNm T T ) T MO

By Definition 3.1.6
ha) = £.(IN]) = (P(F)r).([N)) € HupsMO(K).

Now consider the following commutative diagram, where 6, and ¢, denote the Thom

isomorphisms in homology.

H, s MO(k) —2~ H, BO(k)
TT(F)* T(F)*
HyorT(ve) —2 = H M

Therefore, 0,h(a) = 0,T(F),r([N]) = (F).¢.r.([N]). However, r,([N]) is non-zero,
where

. n+k
Ty © Hn+kN+ — n+kT(VF)7

and ¢, is an isomorphism, therefore ¢,r.([N]) = [M] € H,(M) 2 Z/2,

(F)«[M] = (F).¢uri([N]) = 0.T(F)r.([N]) = 0.h().
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As a result,

= (w',0.h(a))
= (0"w', h(a)))

= (w'w, h(a))

where 6* : H"(BO(k)) — H""*(MO(k)) denotes the Thom isomorphism in coho-
mology and is given by w! < w!wy. Hence h(a) determines characteristic numbers

of embedding F : M™ — N"tF, O
Let us give an example of how this theorem works out.

Example 3.3.10. The normal Stiefel-Whitney numbers of
F:RP? — CP".

Let G : CP" — R! be an embedding for | large.

In Ezample 3.2.4 we found that w(vgor) = 1+ a. Since vgor = vp ® F*vg then
14+ a=w(vgor) = w(vp)F*w(vg).

Moreover, c(tcpn) = (1 + b)"*, where b € H*(CP™) and c is the total Chern class

by Proposition 1.7.8 and Definition 1.7.2. So c(vepn) = (14 b)™""1. Hence
CI(V(CP") = —(TL + 1)b
Since the class wo(vepn) is the mod 2 restriction of c1(vepn) by Lemma 1.7.4 , then

b if n is even,

0 if nis odd.

wg(l/(cpn) =

In the case of n odd, then F*w(vg) = F*w(vepr) = 1 and so w(vp) = w(Vgor) =

1+ a.
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On the other hand when n is even, then F*w(vg) = 1+ F*(b) = 1+ \a?, for some
A€ ZJ2. Then1+a= (1+ Xa*)w(vr). Hence
w(vp) = (1+a)(1+Xa®) = (1 +a)(l+X?) =1+a+ A’

Now we have two possibilities for \. If \ = 1 then w(vp) = 1+a+a?. So w,(vr) =

a, wy(vp) = a®. Hence by Theorem 3.3.9 the normal Stiefel-Whitney numbers are
wi(vp) [RP?] = (wiwy, ha)) = 1,
wa(vr)[RP] = (w3, h(a)) = 1.

From (3.8.8) since we have pi(w?) = (Za1)? = a2, pi(wy) = Zajas and

pi(wg) =Xay...ap =ay...ax. Then
* 2 2
pp(wiwg) = Xajaq,...ag
3
= Xajas...ag,
ES
r(wowy) = (Bajas)ay,. .. ax
2 2

Hence, by Proposition 3.3.8,

(wiwg, e)"es) = 1,
(wywy, e¥tes) = 0,
(wiwy, ef%e3) = 0,
(wowy, e¥2e2) = 1.

Hence

h(a) = efteg + e 22,
When A = 0 then wy(vr) = a € H (RP?), wy(vr) =0 so

wi(vp)[RP? =1, ws(vp)[RP? = 0.

Hence, as above
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Proposition 3.3.11. Given an embedding L*> — CP", for n is even corresponding to
a € [CP!, MO(2n—2)], then h(a) € Hy, MO(2n—2) determines L* up to cobordism.
L? ~ RP? if and only if

_ 2n—1 2n—2 2
h(a) = ef" “es + e1" “e3,

or

L? is a boundray if and only if

or

Proof. The cobordism class of the embedding L? < CP" corresponds to

a € Embg, »(CP™) = [CP?, MO(2n — 2)] = [CP?

n—1

MO((2n —2)].

Then the cofiber sequence

52n72 _ (Cpr?fl N SQn

induces a short exact sequence

0 — m,MO(2n —2) — [CP}

n—1

MO(2n —2)] = 7,2 MO(2n — 2) — 0,

where w9, MO(2n — 2) = Z/2 and ma,_2MO(2n — 2) = Z /2. Therefore,

[CP"_,, MO(2n — 2)] has order 4. Now we shall show that the Hurewicz image
h: [(Cpg_l, MO(2TL - 2)] — H2nMO(2n—2)

is a monomorphism.
The embedding F': RP? — R** C CP" gives § € [CP}, MO(2n — 2)]. From

Example 3.3.10 since RP? & R3, wy(vp) = 0, so w(vp) = 1 + a®. Hence

h(0) = e3" ey € HyyMO(2n — 2).
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The embedding G: S = CP! < CP" gives ¢ € [CP?", MO(2n — 2)]. Since

w(tep)w(vg) = w(G 1epn)

L +0)*wle) = (1+b0)",
so (since n is even), then

wa(vg) = (n+1)b

This gives
h(¢) = e 2e3 € Hy,MO(2n — 2)

as in Example 3.3.10. Thus A([CP}, MO(2n—2)|) € Hy, MO(2n —2) has order 4 and
so h is an isomorphism. Hence h(a) determines o € Embsg,_o(CP™) and therefore
determines the embedded manifold (up to cobordism).

The above examples give the result in the theorem once we observe that if h(a) =

ed ey 4+ 2" 2e2  then the surface is cobordant to RP? LU S? ~ RP2. u

In the final two chapters we will study the double point manifold of an immersion
M™1 a5 CP™ and this will be a surface embedded in CP". In chapter 7 we will study
the values of h(a). The above example shows that we need to take account of the
ambient space of the embedding in order to determine the Stiefel-Whitney numbers
of the surface via the Hurewicz image.

If N = R"** we can restate Thom’s theorem in the following form.

Theorem 3.3.12. Thom. Suppose that M™ — R"™* represents a € m, 1x MO(k).

Then the Hurewicz image h(«) € H, x MO(k) determines the cobordism class of M.

Proof. Theorem 3.3.9 shows that the Hurewicz image h(a) € H, MO(k) deter-
mines the characteristic numbers of M. Then from Theorem 3.2.7 this determines

the cobordism class of M. O

For F : M"™ — N"** by Example 3.3.10 we have shown that the normal bundle

depend on the embedding F. However if N = R"™* we have the next Proposition.
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Proposition 3.3.13. Given an embedding F : M™ — R"** then the stable normal
bundle is independent of the embedding F'. Hence the normal Stiefel- Whitney numbers

are given by Kronecker product
w' [M] = (w'wy, h(c)).

We will provide a simple example to show the Hurewicz image arising from the real
projective plane in Euclidean spaces. Then illustrate the relation between homology

classes and normal Stiefel-Whitney numbers.

Example 3.3.14. For an embedding F' : RP? — R? the homology class h(a) €
HyMO(2) is shown in the following table.

RP? - R* | (RP?)® < (RY® | (RP2)® < (RY)O)
k=2 k=4 k=6
a € myMO(2) a € mgMO(4) a € maMO(6)
h(a) = ejes h(a) = eel h(a) = eles

Here the embedding F® : (RP?)® < (R*)®@ is the Cartesian product of two
copies of RP? and so on. By Example 3.2.4 the normal Stiefel-Whitney numbers of
RP? are given by

Wi RP? = 1 and w,[RP? = 0.

Then by Proposition 3.3.13

(wiwy, h(a)) = 1 and (w3, h(a)) = 0

However,
(wiwy, ere3) = 1 and (w3, eje3) =0
also
(w?wy, e2) = 0 and (w3, e3) = 1
and so

h(a) = eqes.

The other examples are calculated similarly.
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In the second case of Example 3.3.10, when A = 0 we get similar result for the
normal Stiefel-Whitney numbers as in example 3.2.4 and same result of homology
class h(«) as in above example. However, we get different normal Stiefel-Whitney
numbers for embedding manifold in complex projective case. Hence we deduce that

the normal bundle depends on the embedding in general.

3.4 Pontrjagin-Thom theory for embeddings with
¢-structures

The Pontrjagin-Thom theory for embeddings has a well developed generalisation

where one puts a specific structure on the normal bundle.

Definition 3.4.1. Suppose & and v are arbitrary RE-bundles, not necessarily over the
same base space. We say v has a &-structure if there is a map of bundles v — & which
induces isomorphism on fibres, i.e. if the bundle map is covered by F : E(v) — E(€)
and F : B(v) — B(£) then the mapping F maps Fy(v) isomorphically onto Frpy ()
Given an embedding F : M™ — N"* we say that it has a &-structure if the normal

bundle vp has a &-structure.

Notice that if F : M™ < N"** has a &-structure, we then obtain a mapping
T(vp) — T(§) by Thomification. Similar to the previous theory, there are notions
such as regular homotopy between two embeddings Fy, [} : M™ — N™'* with ¢-
structures and cobordism of embeddings with &-structure. Notice that in this way,
given any embedding F' : M" — N"* with a ¢-structure, the Tubular Neighborhood
Theorem provides a mapping N, — T'(vp) where composition with 7' (vp) — T'(§)

yields a mapping N, — T¢. This then defines a mapping
7o Emby(N™F) — [N+ T¢]

where Embi(N n+k) is the set of all coboridsm classes for embeddings F' : M™ «— N"*
with a ¢-structure. We refer the reader to [S68, chapter 2| for details on this. We

mention the main theorem which is analogous to the classical one.
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Theorem 3.4.2. The Pontrjagin-Thom construction
7o Emby(N™F) — [N+ T¢]
s a one to one correspondence.

Proof. See [S68, Theorem on page 18]. O

This theorem will be useful when we introduce the Pontrjagin-Thom construction

for immersions.



Chapter 4

Pontrjagin-Thom theory for

Immersions

The Pontrjagin-Thom construction, which originally was developed for embeddings,
has been extended to the case of immersions. In this version of the Pontrjagin-Thom
theory, the cobordism classes of immersions M™ &+ N"** are related to stable homo-
topy classes of maps N_"ﬁk — MO(k).

In this chapter, and based on The compression theorems of Rourke and Sanderson
[RS01], we provide a new proof of this extended Pontrjagin-Thom theory for the case
of immersions M" 9 N+,

We start with the cobordism theory of immersions.

Definition 4.0.1. Let F' : M} & N"™* and G : M} & N"** be two immersions
of closed n-manifolds in N"**. Then F and G are said to be cobordant, denoted by
F ~ G, if the following conditions hold,

(1) There exists (n + 1)-manifold W™ such that OW™™ = My x 0L M, x 1,

(2) There exists an immersion H : W o Nk 5 [ where I = [0,1], and a
projection map m : N"™* x I — I such that H|yyxo = F x 0 and H|p, <1 = G x 1.
(3) For H(W) C N™tk 5 [ ¢ N™tF x R,

mH(x) € {0,1} & 2 € oW
TH(z) =02 € Myx0 and mH(z) =1z € M, x 1.

73
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This relation is an equivalence relation on the set of immersions of n dimensional
manifolds M™ into N"*k. We write [M™, F] for the equivalence class of such an
immersion. We write Immy(N™F) for the set of all cobordism classes of immersions
M™ a Nk Next, we put the structure of a group on I'mmy(N"**). First, we record

the following fact.

Lemma 4.0.2. Let F': M™ 9 N™"* be an immersion. Then there exists large | such

that the composition
ioF: M™% N — Ntk x R

is reqular homotopic to an embedding Fy : M™ — N"** x R! where i is the standard

inclusion i : N"tk — Nntk o R

Proof. Applying Whitney’s embedding theorem, Theorem 1.4.5, we can find [ > 0
and an embedding G : M™ «— R'. Define

H:M"xI— N xR

by

(z,1) = (F(x),tG(x)),
for (z,t) € M x I. Notice that H(z,0) =1io0 F(z).
The mapping F' is immersion and hence ¢ o F' is an immersion. Moreover, GG is an
embedding which in particular means it is an immersion. This implies that H; :
M™ x I — N™ x R! defined by Hy(z) = H(x,t) is an immersion for all ¢ € [0, 1].
Hence, H is a regular homotopy.

On the other hand, since G is one to one, hence H; given by

is a one to one immersion, i.e. H; is an embedding as M is compact. We can choose

Fy = H,. This completes the proof. ]

We now introduce the group operation on I'mmy,(N"%).
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Definition 4.0.3. Let F : M & N"** and G : M3 & N™* be two immersions,
then the sum

FUG : MU My o N™F
18 an immersion, where the symbol U be the disjoint union.

Theorem 4.0.4. Let F' : M1 & N and G : My & N be two immersions. If io F and

1o G are regular homotopic to embeddings

Fy: My — N xR and Gy : My — N x R%
Then there exist an embedding F' U G: M; U My < N""* x R which is reqular
homotopic to i o (F'UG).

Proof. Suppose that i o F' : M; & N"tF — Ntk xRl j0 G @ My & Nk —
N™tF % RI Applying Lemma 4.0.2 we find that the composition i o F is regular
homotopic to an embedding F; : M; — N"** x R!. Also i o G is regular homotopic
to an embedding G : My — N"TF x R,

Now we notice that R' = R x (0, 00) as well as R""! x (—o0, 0), using

R 2 (—00,0) 2 (0,00). Then let
F2 . ]\41 SN Nn+k % Rl ~ Nn+k % Rl_l % (—O0,0) C Nn+k % Rl_l <« R.

G2 . ]\42 MEN Nn-‘rk % Rl ~ Nn+k % Rl_l % (07 OO) C Nn-‘rk % Rl_l < R.

Fy is clearly regular homotopic to F; and so to i o F', also G5 is similarly regular

homotopic to G and so to i o G. Next we have the map
F2|_|G2 . A]\41|_|.Z\4'2—>]Vn+]C X]Rl
is an embedding and is regular homotopic to i o (F' U G). O

The Pontrjagin-Thom theorem for immersions can deduced from the Pontrjagin-
Thom theorem for embeddings. In one direction, starting with a given immersion, we
record the following fact.

Lemma 4.0.2 allows us to define a group homomorphism

Immy(N™F) — [N QMO(k)).
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Lemma 4.0.5. There is a group homomorphism
7 Immy (N"F) — [NTTF . QMO(K)].

Proof. Let F': M™ &= N™* be an immersion. Then according to Lemma 4.0.2 there

exists [ > 0 such that the composition
M" g N"™* — N™F xR

is regular homotopic to an embedding. The normal bundle of this embedding is given
by vr @ €' and its Thom space is T'(vp @ ') = ST (vp) by Theorem 1.5.7. Applying

the Pontrjagin-Thom construction to this embedding we obtain a mapping
(N™F x RN 2 SINTTF — ST (vp).

Moreover, notice that v is a k-vector bundle, hence we obtain a mapping

T(vr) — T(y") = MO(k).
Hence, composition gives

[ RINTE L SEMO(K).
We then have the adjoint,

NIE — Q'SIMO(k).

Composing this map with the inclusion Q'S!MO(k) — QMO(k) then gives a map,

fi N — QMO(K).

Moreover, let [My, F], [Ms, G] be two immersions which are cobordant through the
immersion H : W™l as N"t* x [ Applying the same technique as above yields a
homotopy, say 7([W"*L H]) : (N"** x ), — QMO(k) between F and G. Hence, we

have obtained a mapping
7 Immy(N"F) — [NTTF QM O(K)].

Now for an immersions F,G : M™ 9 N"*% the last suspension coordinate will

be R. Let Y = F, UGy : M — N"™* x R! be the embedding of Theorem 4.0.4 which
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represent [F]+[G]. So by taking the sum of last suspension coordinates and applying
Theorem 4.0.4 we find that § ~ f + § where y = 7([Y]) and § € [SINTTE SUMO(K)]

correspond to Y. Hence
T([FUG)) = 7([F]) + 7((G])

so that 7 is a homomorphism. Notice that QMO(k) is a loop space. Hence the set
[NTTE QMO(k)] is a group. O

4.1 The compression theorem

In order to describe an inverse mapping
[NTHF QMO(K)] — Immy(N™F)

we need to start with a given map Nfrk — QMO(k) and show that it represents
a unique cobordism class of immersions M™ 9» N"*%_ This can be done using the
Pontrjagin-Thom theory for embeddings with £-structure together with the Compres-

sion theorem of Rourke and Sanderson. Before proceeding we recall some definitions.

Definition 4.1.1. Let F : M™ — N™* be an immersion. A normal vector field on
M is a mapping s : M™ — E(vg) such that s(x) € F,(vp) for each x € M™. More
briefly, mo s = 1y where m : E(vp) — M is the projection and 1y, is the identity

function on M.

Notice that vp is a k-vector bundle, i.e. F,(vp) = R* for each z € M™. Suppose

S1,...,8 are normal vector fields on M™. We then have the following definition.

Definition 4.1.2. We say the vector fields si,...,s; : M — E(vp) are linearly
independent if and only if the {si(x),...,s;(z)} is a linearly independent subset in

F.(vp) for each x € M".

Definition 4.1.3. Let F : M™ — N"t* x R be an embedding, then the normal
vector field is called straightened if it is parallel to the given R direction, namely,

s(x) = (0,e1) € Fp(vp) C TpyN x R for all x € M where e; =1 € R.



CHAPTER 4. PONTRJAGIN-THOM FOR IMMERSIONS 78

Now we want to construct the inverse to the homomorphism of Lemma 4.0.5. To

do this we need to use The compression theorem which will now be explained.

Theorem 4.1.4. The compression theorem . Let M"™ be a compact manifold
embedded in N"* x R and equipped with a non-trivial normal vector field. Assume

k > 1. Then the vector field can be straightened by an isotopy of M.
Proof. See [RS99, section 2.] O

Definition 4.1.5. An embedding M — N"* x R is called compressible if it projects

by vertical projection to an immersion in N™tk,

We think of R as vertical and the positive R direction as upwards. Theorem 4.1.4
moves M to a position where it is compressible. We could say that the vector field
always points vertically up.

More generally, we can straighten a sequence of vector fields. More precisely,
suppose that M is embedded in N"** x R! with [ independent normal vector fields,
then M is isotopic to an embedding in which each vector field is parallel to the

corresponding copy of R.

Definition 4.1.6. let M™ be embedded in N"tF x R! and suppose that M is equipped
with [ linearly independent normal vector fields. Then we say that the embedding

is parallel if the | vector fields are parallel to the | coordinate directions in R! i.e.

si(x) = (0,¢;) for 1 <i<l,x € M.

Theorem 4.1.7. Multi-compression theorem . Suppose that M™ is embedded
in Nt x RY with 1 independent normal vector fields and k > 1. Then the | vector

field can be straightened by an isotopy of M to a parallel embedding .
Proof. See [RS01, Theorem 4.5.] O
The following Theorem is an application of the compression theorem.

Theorem 4.1.8. Suppose F': M™ — N"T* xR is a parallel embedding with | linearly

independent normal vector fields. Then

Fi=pioF:M"3 N'F
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is an immersion, i.e F is a compressible embedding, where p; : N"tF x Rl — Ntk

1s the projection map.

Proof. Suppose that F' : M™ — N"tk x R! is a parallel embedding and consider

Fi =pioF: M"™— N"% as shown in next figure.

M™ 4F> Nn—i—k: % Rl

Nn+k
Let F(z) = (F\ (), F3(z)), where Fy(x) € N** and Fy(x) € R'. Then
dF, : T,M" — Tpy(N" x RY) = Ty oy N X Ty () R' = Ty () N x RL

For 0 <i <1, si(z) = (0,¢;) € Fy(vp) C Ty N"* x R’ Therefore,
{0} x R C F,(vp). Then (dF,(T,M)) N ({0} x RY) = {0}. Hence {0} x R will not
lie in
dF, (T, M) C Ty (N" x RY.
Now by taking the projection map

dpi : Tr@) (N x R') = Ty N x R — Ty N

the kernel dp, = {0} x R'.

TIM" 4Fe TF(JC)(NW’_IC X ]Rl) — TFl(m)Nn'i_k X Rl

<dF1>a¢ ldm idpl

TFl(fB) <Nn+k) - Tr (=) (Nn+k> = Tr, (m)N”+k

Then
(dFy)y : TeM™ — Ty () (N™F)

is a monomorphism if and only if
dF,(T,M) N kernel dp, = dF,(T,M™) N ({0} x R") = {0}
which we have proved. Hence
Fy: M™ — N"tE

is an immersion which completes the proof. ]
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Theorem 4.1.9. There is a function
t: [Nﬁ*k,QMO(k)} — Immy,(N™F),
wverse to the function T of Theorem 4.0.5.

The proof of this theorem is similar to that of the case of embeddings, replacing
embeddings by immersions in cobordism theory corresponds to replacing homotopy

groups of Thom complexes by stable homotopy groups.
Proof. Let a € [NT™* QMO(k)] be represented by a map
f: Nﬁ*’“ — QMO(k)

where QM O(k) = lim Q'S'MO(k). Thus, there exists [ > 0 such that we may realize
f as a mapping f : N'™ — QIX!'MO(k). We then consider the adjoint of f as a
mapping

g: SN — SIMO(K).
Notice that YINTTF = (N"+F x RY), and S'MO(k) = T'(7* @ e') where €' is the trivial
[-dimensional bundle over BO(k). Hence, we may consider g as a mapping

(Nn+k % Rl)+ _ T(’yk fan gl)'

By the generalised Pontrjagin-Thom construction for embeddings this mapping rep-
resents an embedding

M"™ — N™™* x R
where the normal bundle of this embedding admits a splitting v @ &'. This then
satisfies the conditions of Theorem 4.1.8. Hence, by the Multi compression theorem,

by composing with the projection N"** x Rl — N"** we obtain a mapping
M" —s Nn+k % Rl _ Nn—‘rk:

which is isotopic to an immersion F': M™ 9 N" ™% with vp = v.
Moreover, one may start with a homotopy and end up with a cobordism class by

applying the analogous construction. Hence, we have defined a function

t o [NTF QMO(K)) — Immy(N™F).
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It is straightforward to check that ¢ and 7 are inverse functions. ]

Corollary 4.1.10. The homomorphism
7o Immy(N"TF) = [Nﬁ+k7QMO(k)}
s an isomorphism.

Notice that in this particular case, the Pontrjagin-Thom theory provides
Immy(R™F) — [S™F QMO(k)] 2 72, MO(k),

which relate the (n + k)-th stable homotopy group of MO(k) to the cobordism of

codimension k immersed in R"*,

4.2 Stiefel-Whitney numbers of immersions

The cobordism class of manifolds are determined by their normal Stiefel-Whitney
numbers. This is similar to the case of embedded manifolds and we may apply a similar
construction to determine the Stiefel-Whitney numbers of an immersion M" 9» N,
Let f: NI — QMO(k) represent an element o in [N?* QMO(k)]. Then there
exists [ > 0 such that f : NI — QIX'MO(k). This gives the adjoint mapping
SINTE 5 SUMO(K).

Definition 4.2.1. The stable Hurewicz homomorphism
RS [N QMO(K)] — Hp e MO(k)

1s defined by the composition

(NI, QIS MO(K)] 2 [SIN™, SIMO(R)] - HogX MO(K) 2 Hyy MO(K)

where h is the Hurewicz homomorphism defined in previous section.

The following theorem is a generalisation of the result of Asadi and Eccles [AEb0O,

Lemma 2.2].
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Theorem 4.2.2. Suppose an immersion F : M™ 9 N™* corresponds to an element
a € [N QMO(K)]. Then the normal Stiefel-Whitney numbers of the immersion
are determined by

(w!(vp), [M]) = (w'wy, h*(a)).

The proof of this theorem is based on Theorem 3.3.9, Lemma 4.0.2, and the

Thom-Pontrjagin theory for immersions.

Proof. Suppose F' : M™ 9+ N™* is an immersion, corresponding to an element
a € [N QMO(k)]. Under The Thom-Pontrjagin construction we represent o by
the map
f i NP — QMO(k) = direct lim Q'S'MO(k).
On the other hand, according to Lemma 4.0.2, there exists [ > 0 such that F is
regular homotopic to an embedding F; : M™ — N"™* x R! with v, 2 vp @ el ie.

F corresponds to an element a € [S!'NT™F S MO(k)] which is represented by
f o SINTE L SEMO(k).

Observe that, according to the proof of the Thom-Pontrjagin theory for immersions,

we may think of a as the stable adjoint of a.. In particular, this implies that

Applying Whitney’s product theorem we see that w;(vr, ) = w;(vr ® ') = w;(vr)
for all ¢ < k and w;(vp ) = 0 for ¢ > k. This means that v and v, have the same
Stiefel-Whitney classes, and hence the same Stiefel-Whitney numbers. This implies
that

<wI(VF)’ [M]> = <wI(VF1)7 [MD = <w1wk7h<&)> = <w1wk7h5(a)>'

This completes the proof. O

Corollary 4.2.3. For an immersion F' : M™ & R"** corresponding to o € m, :QMO(k),

the normal Stiefel-Whitney numbers of the manifolds are determined by

w' [M] = (w'wy, h®(a)).



Chapter 5

Steenrod operations and

Kudo-Araki operations

We have observed that determining the cobordism class of a manifold M™ depends
on determining the Steifel-Whitney numbers of the stable normal bundle of M. Ac-
cording to Theorem 4.2.2 determining the normal Steifel-Whitney numbers of F' can
be done by calculating the image of the fundamental class [Nfrk] under the stable

Hurewicz homomorphism
RS L [NTTR MO(K))® — H,o s MO(K).

In this chapter, we will describe the homology of QM O(k) and introduce some alge-
braic tools that help us to do calculations in the homology ring H,.QMO(k) namely

the Steenrod operations, and the Kudo-Araki operations.

5.1 Steenrod operations

Roughly speaking, a cohomology operation # is homomorphism from the additive
group H*X to itself, which assigns a class 6(z) € H*X to every given x € H*X. The
class 0(x) does not need to have the same dimension as x. We refer the reader to
[IMT68] for a general theory of (co-)homology operations.

A Steenrod operation, is a cohomology operation satisfying some specific proper-

ties. The following theorem introduces Steenrod squares.
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Theorem 5.1.1. There are unique cohomology operations Sq*, i = 0,1,2, ..

the i-th “Steenrod squares” which, are homomorphisms
Sq': H'X — H"MX

defined for all n > 0, satisfying the following properties:
(1) S¢°(x) = =, (the identity homomorphism);
(2) Sq'(x) =0 for allz € H"X, i > n;
(3) S¢'(x) = 2% if v € H'X;
(4)

sequence 0 — 7Z./2 — 7Z./4 — 7Z/2 — 0;

84

., called

4) Sq' is the Bockstein (connecting) homomorphism associated with the coefficient

(5) (Stability) if o* : H*"X — H™ 'YX is the suspension isomorphism, then

Sqio_* — O_>0<‘qu7,7
(6) (Naturality) for any map f: X — Y, then

Sq'f* = f*Sq¢;

(7) (Cartan formula): Sq'(xU y) = >, (S¢z) U U (Sq*y), where x U y denotes the

cup product;
(8) (Adem relations). If 0 < a < 2b, then

b—c—1
Sa®S b _ Sa+bfcsc
¢"Sq" = < " o ) q ¢,
where the binomial coefficient is taken mod 2.

Proof. See [MT68, Chapter 2].

]

Because of condition 5 in the above theorem we say that the Steenrod operations

are “stable operations”.

Notice that Sq’ is a function, so it makes sense to take about composition of two

given squares, such as Sq¢'Sq’, and so on. In general, a Steenrod operation 6 will be

a linear combination of compositions of Steenrod squares, for example
0 =Sq¢*"Sq* + Sq¢*Sq°

is a Steenrod operation.
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Definition 5.1.2. Let I = (i1,...,is) be a sequence of nonnegative integers which
denoted by Sq¢' = Sq" ---Sq". Then Sq’ is called admissible if i; > 2i;,, for every
j < s. The excess of I is given by ex(I) = iy — iy — ... — i,. We also define

dim(l) =4y +ia + ... +is, and the length of I by I(I) = s.

Proposition 5.1.3. [MT68, Cor.1]. Every Steenrod square can be written in terms

of
Squ, 7> 0.

For example S¢?Sq? = S¢*Sq' = Sq'Sq*Sq' and Sq¢'Sq' = 0.

Next, we describe the action of the Steenrod squares on the cohomology of some
well-understood spaces, namely real and complex projective space, that we are going
to deal with during our calculations in the next chapters. First, we recall the following

description.

Proposition 5.1.4. The following isomorphisms describe the cohomology rings of

projective spaces,
H*RP>® = 7/2]a],

H*RP" = Z/2[a)/(a"),
H'CP> = 7,/2[1],
H'CP™ = 7,/2[b]/(b"+Y),

where dima =1 and dim b = 2.

Proof. See [G75, Corollary 26.35]. O

We then have the following description.

Proposition 5.1.5. Let a € H'RP>®, b € H*CP> be non-zero elements. Then
(1) S¢'a™ = (7)a"",

(2) Sg%b" = (Til)anri’

(3) Sg? i = 0.

Proof. See [GT75, Proposition 27.20]. O
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We notice that, by definition, the Steenrod operations Sq¢': H"X — H""X are
linear functions between Z/2-vector spaces. By vector space duality, we obtain Z/2-

homology operations

Sqi cH, ;X — H,X.

These operations have properties, similar to cohomology operations. For example, if

f: X — Y is given, then the operations S¢¢ are natural, i.e.
f*S(Jix = SQif*x

where z € H,X. We calculate the action of these operation, using the actions of the

cohomology operations Sq' and the Kronecker pairing
(—,—) H'X x H X - Z)2.

Example 5.1.6. Consider H,RP>. For each k, we have a generator e, € HRP>
such that <aj, ex) = 0 where 0, is the Kronecker delta function. In order to calculate

Sqter, we notice that
i

, k—1
SCIin:( p )ek—z‘-

In H.CP> we have generators ag, € Ho,CP> such that (b, ask) = &; %

<aj; SQi€k> = <5qiaja€k> = (<].)ai+j7€k> = (Z)éw’k'

This implies that

A similar calculation as above shows that

- k—1
ngla% = ( ; )G%zi,

and Sq*ay, = 0 for all i > 0.

5.2 The homology of QMO(k) and Kudo-Araki op-
erations

In order to describe the homology of QM O(k) we need to describe the Z/2-homology

operations known as Kudo-Araki operations. First, we note that the space QMO(k)
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is a loop space. If we have two loops f,g € QMO(k) we then can consider the loop
sum f*g € QMO(k), as introduced in Section 1.2. This means that we have a
mapping

QMO(k) x QMO(k) — QMO(k).

In homology, this mapping induces a product
H.QMO(k) ® H.QMO(k) — H.QMO(k).

This gives the structure of a ring to H,QMO(k) which is known as the Pontrjagin

ring, and the ring product is known as the Pontrjagin product [W78, Chap.7].

Theorem 5.2.1. Let X be an infinite loop space. Then for each j =0,1,2,..., there
exist operations

Q: H,X — H,;X,
which satisfying the following prorerties:
1) Q7 raises dimensions by j, where 7 =0,1,2,.. ..
2) Q’z =0 if j <n for any x € H,X;

(

(2)

(3) Q'x = 2% if j = n, where the square is the Pontrjagin product;

(4) Q"1 =0 1ifj >0, where 1 € HyX is the identity element of the Pontrjagin ring;
()

5) the Cartan formula holds:

Q(xy) = Y (Q)(Q%);

i+k=j

(6) Q commutes with homology suspension i.e.

U*Qj = Qja*7
where o, : f[*QX — ?[*X 15 the homology suspension;
(7) the Adem relation. If a > 2b, then

Qabe _ Z (T2_7,l)__al> Q(h#b*?ﬂ@?”x;

T

(8) the Nishida relations:

SqQ'r = (a N ) QT Sqw.

1 — 2r



CHAPTER 5. (CO-)HOMOLOGY OPERATIONS 88

Proof. See [CLM76, Theorem 1.1.]. O

These operations satisfy other variations of Cartan formula [CLMT76]. As with the

Steenrod squares we may consider iterations of these operations.

Definition 5.2.2. Let J = (ji, ..., Jr) be a sequence of nonnegative integers. Then the
term Q7 = Q7 --- Q' is called admissible if j; < 2ji41 for 1 <i <r —1. The excess
of J is given by ex(J) = j1 —jo— ... — jr. We also define dim(J) = j1 +ja+ ...+ Jjr,
and length of J by I(J) =r.

The significance of these definition is that @’z is a Pontrjagin square if ex(J) =
dim(z) and vanishes if ex(J) < dim(z). Also if J is a non-admissible sequence, then
@’ can be written in terms of admissible sequences using Adem relations in the same
way that this is done for Steenrod squares.

The homology ring H,Q X, when X is a path connected space, can be described
as follows. Let {z,} be a homogencous basis for H,X C H,QX, the reduced Z/2-
homology of X. We then have [CLM76]

H.QX = 7/2]Q”x,|J admissible, ex(.J) > dim z,,].

Thus a basis for H,QX is provided by the monomials in the polynomial generators.
Now, for X = MO(k) we have the following. Recall from Chapter 3 that H, MO (k)

has a homogeneous basis
{eg: I = (iy,...,ix) such that 1 < iy <ig--- <ig}.
This then implies that
H,QMO(k) = Z/2[Q”e; | J admissible , ex(.J) > dim e;].

The action of the Steenrod operations Sq] on the classes ey is calculated using

naturality. More precisely, note that
er = (p)«(6i, ® - ®e;,).
This implies that

Sier = Sq(u)elen ® - @ ¢,) = (1) Sel(en - D ey,). (5.2.3)
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On the other hand, similar to the diagonal Cartan formula in cohomology in
Theorem 5.1.1, we have diagonal Cartan formula in homology; if + € H,X and

y € H,Y then
S¢i(z @y) =D (Sq ) ® (S¢ly).

J

We shall apply this formula to (5.2.3) to determine Sqle;. This of course, can be
tedious when [(I) is too big, but we will work with cases when [(I) is reasonably

small, where [(I) = k is the length of a sequence I.

Definition 5.2.4. We say that a homology class x € H,X is A-annihilated if and
only if Sqtx =0 for alli > 0.

From Proposition 5.1.3 we deduce the following result

Corollary 5.2.5. Let x € H,X. Then x is A-annihilated if and only if Sqfix =0

for alli >0, 27! < dimz.
Example 5.2.6. A basis for H{QMO(2) is given by the following set
{eres, €3, ef - ef}

where - denotes the Pontrjagin product in H.QMO(2) coming from the loop space

structure on QMO(2). The following table shows the Steenrod squares of these ele-

ments.
Sqy | Sq;
€1€3 0 0
e 0 | e
e?-e?| 0 0

For instance, in the case of calculating Sq-e3 we have the following.

Sqi(e3) = (Sqrez)(Sqles) + (Sqles)(Sqiex) = erey + eren = 0.
Sq:(e3) = (Sq2ez)(Sqles) + (Sqrez)(Sqiea) + (Sqlez)(Sqies) = erer = ei. And for
r>2, Sq¢le2 =0.

In the case of the element €3 - €2 we also need to use Cartan formula as follow

Sqi(e}-e) = Sq,(el) - €] + ef - Sqi(e]) = 0.
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By using the diagonal Cartan formula in homology and the Nishida relations we
can find the A-annihilated elements of H.QMO(k).
In the above example, we find clearly that the elements eje; and e? - e? are A-

annihilated. However the element €3 is not.

5.3 The cup-coproduct in H,QMO(k)

We describe the primitive classes in H.QMO(k). This is useful when we wish to
determine the Hurewicz image f,[N}**] for a given map f : NI — QMO(k).
The cup-coproduct or briefly coproduct is denoted by the symbol ¢). The map ¢ :
H.X — H, X ® H,X is induced by the diagonal map X — X x X. We notice that

this map is the vector space dual of the cup-product
H'X®HX — H*X.

Definition 5.3.1. The homology class u € H, X 1is called primitive if
Yu)=u®l+1eu,

where,

Y Hy X — Hy(X x X) =Y H;X ® H,_;X.
J

Let a denote the generator of H'BO(1). Then a’ is the generator of H'BO(1)
which is dual to e; € H;BO(1). Since a/ U a*7 = a', then by the definition of ¢ we
have

¢(6,) = 26]' & ei—j-
§=0

The coproduct 1 is the mapping which in homology is induced by the diagonal
mapping X — X x X. This implies that ¢ is natural with respect to mappings of

spaces, that is for g : X — Y we have

V. (u) = (g« ® g.)1(u)

where (g ® g.)(a®b) = g«(a) ® g.(b) and v € H,X. Moreover, we have the following.
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Proposition 5.3.2. The coproduct on a homology class u @ v € H, (X xY) =
H. X ® H.Y 1is calculated by

P(u®v) =1(u) @¢(v).

Proof. Assume that the map A : X — X x X is the diagonal map, then we have a

commutative diagram

X xY X xY (5.3.3)
AXAl
XxXxYxY A

IXTXll

X XY XXXY 1 XxYxXxXxY

where 7 : X XY — Y x X is the map which switches components, i.e. 7(z,y) = (y, x).

Then given
Y(u) = Zu’ ®@u" and ¥(v) = Z"U/ ®v",
we have
Pusy) = YW ev)e W o)
= ¥(u) @ ¢(v)
where w € H, X and v € H,Y. O

Remark 5.3.4. Recall that for I = (iy, ..., i) with 0 < iy <iy < ... < i we defined
er = (pn)«(ei, ® ---®e;,) € H.BO(k). Hence, we may calculate 1(er) by naturality.

We may express 1(ey) in the following form:
w(el) :€I®1+Z€[7M®€M+1®€[—|—A[

where the sum > e;_p @ ey runs over terms where both M and I — M have only

nonzero entries. The class Ay is a sum of terms of the form

€j1€jp * " €j, & €k - C

o

where J = (j1,...,7Jr) and K = (k1,...,k.) are increasing sequences, and at least

one of them has an entry equal to 0, and at least one of the entries in both of J or
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K is nonzero, with the convention that eg = 1. For example, gives eses € H,BO(2),

we may calculate that

P(e)h(es) = (2@1+e1®e+1Rer)(es@1+ea®e;+e1®ex+ 1R e3)
= ee3®@1+ei®e; +ejea ey + ey ® ezt
eies Q e; + ejeq ®ef +€%®61€2 + e ®ees+

63®62—|—62®6162—|—61®e§+1®6263.

Here the sum > er_p ® ey is given by
2, 2
e1ea ® €1 + €1 X erjes
whereas Az 3) s given by

€ ®er+erey ®ey+ ey @eg+ ere3 @ e+
e1 ®erez +e3 ® ey + e @ eres + €1 ® €3

Notice that the class eses maps to a nontrivial class in H,MO(2). On the other
hand we know that classes such as ey belong to the kernel of the projection map
H.BO(2) — H.MO(2). Notice that the class e} = 1 maps to 1 € HyMO(2). This
implies that in H.MO(2) @ H.MO(2) we have

P(eges) = egez3 @1+ €160 ® 6% + 6% ® eres + 1 ® eqes.

In general, we observe that Ay, in the expression for v(es) belongs to the kernel of the
projection map H,BO(k) ® H.BO(k) — H.MO(k) ® H.MO(k), i.e. in H.MO(k) ®
H.MO(k) we have

w<61)261®1+2617M®€M+1®31

where the sum > e;_p @ ey runs over terms where both M and I — M have only

nonzero entries.

Definition 5.3.5. The reduced coproduct J: H.X — H X ® H.X is defined by

Y(u)=vu) —1u—u®l.
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Then, according to the above example, in H,MO(2) we have

D(eges) = €16y @ €] + e ® erey = P(ea)(es).
This is an example of a general result.

Lemma 5.3.6. Let [ = (iy,...,ix) be an increasing sequence with iy > 1. Then for
¢ € H.BO(K)
Y(er) = Z er-m @ em + Ap,

using the notation of Remark 5.3.4.
Consequently, in H.MO(k) @ H.MO(k) we have an expression of the form

@Z(F/’I) = Z er—-m @ em
where both M and I — M have only nonzero entries.
Proof. This is straightforward from Remark 5.3.4, and Definition 5.3.5. O]

Theorem 5.3.7. Fore; =¢;,---e;, € HLMO(r) and e; = ej,---¢;, € H.MO(s),
the reduced coproduct satisfies

bleres) = yler)(es)
where eje; = €;, -+ €;.€j, - - €j,.
Proof. From Lemma 5.3.6, we calculate that in H,BO(r)
w<€[) :€[®1+1®€[+Z€],M®€M—|—A[.
M
Moreover, in H,BO(s) we have
1/](6]) :ej®1+1®€J+ZeJ_N®€N+AJ.
N

Hence ¢(erey) in H,BO(r + s) is given by

¢(€]6J) = ereg® 1+1 X erey + (ZM er—m ® €M)<ZN €ej-N & 6N> + A(LJ)

= ere;®@1+1®ere;+ 3y yer-mes-n @ emen + A,
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where (I,J) = (i1,...,ir,J1,---,Js). Moreover,

Ay = Y (erej-n)@eny+er®es+
Y (er—mer) @en + > er—m ® (eprey)+
(o X er + ZBJ_N X (6[6N)+

other terms coming from products with Ay or A; .

This implies that ¢ (erey) in H.MO(r + s) is given by
Ylerey) =ere; @1 +1®ere; + Z er-mej-N ® epen
M.N
or equivalently

72(6161) = Z er—mMej-N Q eyeny = 72(61)72(&])-

M,N

This completes the proof. O
Example 5.3.8.

(e’ = (2@l+ei@e+106)
= e@1+el?®el> +1®ed?

Hence

Fe = e et
The following result determines those classes ey that are primitive in H,MO(k).

Lemma 5.3.9. For I = (iy,i9,...,1x), such that iy < iy < ... <. The element e;

is primitive in H.MO(k) if and only if i1 = 1.

Proof. Notice that @Z(ei) = 0 if and only if ¢ = 1. Suppose that e; € H,.QX is
primitive, then

Yler) = Y(es, ...e) =U(ey) ... ¢Y(e;) = 0.

Hence J(eij) = 0 for some i;. Then i; = 1 and then ¢; = 1 since 1 <1y <.
Conversely, Suppose that i; = 1, then ¢(e;,) = 0 and so ¥(e;) = 0. Hence e is

primitive. [
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In H,QX the coproduct is calculated as follows. Let ¢(u) = > o' ® u”, then the
diagonal Cartan formula [CLM76, Part I, Theorem 1.1] is given by

QW) = > Qu Q"
it+k=j
Using this we have the following.
Proposition 5.3.10. Ifu € H,MO(k) is primitive, then Q"u is primitive in H.QMO (k).

Proof. Suppose that v is primitive, then ¥(u) = u ® 1 + 1 ® u. Then

Q") = L,QueQ"1+X,0Q1®Q" u
= Q"u®l+1®Q"u,

since Q'1 = 0 for ¢ > 0. Then J(Q"u) = 0. Hence Q™u is primitive ]

In Example 5.2.6, by Lemma 5.3.9 and Proposition 5.3.10, it is obvious that the
elements ejes, €2 - €2 € HyQMO(2) are primitive, but not the element e3. Hence we
deduce that the elements eje3 and Q%e? are A-annihilated and primitive.

We note that the Pontrjagin product
H.QMO(k)® H.QMO(k) — H.QMO(k)

is induced by the addition of loops QM O(k) x QMO(k) — QMO(k). The fact that

the coproduct is natural then implies that for u,v € H.QMO(k) we have

U(u-v) =1(u) - (v).

Let us mention a useful Lemma which gives the primitive elements required in

the study of manifolds immersed in Euclidean spaces [AEa00].

Lemma 5.3.11. Let k > 2. Then a basis for the cup coproduct primitive classes in

Hop2QMO(k) is given by the following set of elements
{eeiy .|l =1 iy < --- < U{eb el + ek e 22 ehley - eftey, QFF2el).
For k =1, a basis for the primitives in H{QMO(1) is given by

{Q%, e1-e1-e1-e1}.
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For k =2, a basis for the primitives in HsQMO(2) is given by

2, 2. 2 2 2 2 4,2
{e1e5, e5+ej-el+ej-ef-€f, erea-eren, Qei}.

Proof. See [AEa00, Lemma 2.6].
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Chapter 6

Determing the double point

manifolds of F : M" g Ntk

In this chapter, we turn to our core problem in this thesis, determining the cobor-
dism class of double point manifolds of a given immersion. We describe the general
machinery here, and leave the detailed calculations to the next chapters.

Given an immersion F : M™ 9 N"** by Definition 1.3.7, I,.(F) will be the set of
r-fold self-intersection points of F', i.e. points of N which are the image under F' of
at least r distinct points of the manifold under F'. We always can choose F' to be a
self-transverse immersion up to regular homotopy [B].

Moreover, a cobordism between self-transverse immersions can be taken to be self-
transverse [AEDO0]; it is obvious that such a cobordism will induce a cobordism of the
immersions of the r-fold self-intersection sets. By Theorem 2.5.3 the self-transversality
of F implies that I.(F) C N™* is itself the image of 6,(F) : A.(F) & N™* the
r-fold self-intersection manifold which is of dimension n — k(r — 1).

Let the immersion F correspond to a map f : N*"™ — QMO(k) under the
Pontrjagin-Thom construction. We will show that the Stiefel-Whitney numbers of the
r-fold self-intersection manifold can be determined from f,[N***] € H, ,.QMO(k).

When N7 = S™* then f,[N7*] has to be A-annihilated and primitive and
then this case was considered by Asadi-Eccles [AEa00]. We first consider the general

case, when N"** is an arbitrary manifold. The co-coproduct structure of H*N$+k
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and the action of the Steenrod algebra place restrictions on the possible values of
f-[N7**] but in general it need not be A-annihilated and primitive.

We then focus on the case r = 2 and we refer to Ay(F') as the double point
manifold of F'. Our goal is then to describe a machinery that determines the cobordism
class of Ay(F'). This will be built upon the tools that we have described in section
4.2. We will use homotopy theory to carry out this task. In order to do this, we need
to introduce another set of tools from homotopy theory, namely the stable James-
Hopf invariants. The applications of the James-Hopf invariant to the problem of our
study was first observed by A. Sziics [S76I],[S7611], P. Vogel [V74] and Koschorke and
Sanderson [KST78|.

6.1 Stable James-Hopf invariants and Ay(F)

We start by recalling some facts about QX. Suppose X is a path connected space.
According to [BE74, Theorem B] the space QX admits a splitting

QX ~ ] @D, X (6.1.1)
r=1
where D, X is defined by
XN xy WX,
D.X = - )
{x} xg, WX,

Here X" denotes the r-fold smash product X A X A--- A X, X, denotes the per-
mutation group on r elements, and W, a contractible space with a free ¥, -action.
The group X, acts on X" by permuting the factors. The space D, X is known as the
r-adic construction on X. In particular, D; X = X. Projection onto the r-th factor
gives natural maps

h": QX — QD, X
known as the r-th stable James-Hopf maps. These have stable adjoint

YPQX — XD, X

which can be used to construct a stable splitting [BE74, Theorem C]

QX stable \/ DTX (612)

r=1
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We are interested in the case r = 2 where W, can be taken as S* with X5 acting
by the antipodal action. The space Dy X is called the quadratic construction on X.

The projection onto the second factor in the first splitting yields a map
h?: QX — QDX

known as the second stable James-Hopf map [AEa00] which induces the 2nd stable

James-Hopf invariant
B NP QX] — (NI, @Dy X].

The r-adic construction can be done also on vector bundles. In particular, we have

a ‘universal bundle’ Dy(7*) given by
(EO(k) x EO(K)) x5, 5% — (BO(K) x BO(k)) x5, 5.

Next, let F' : M™ 9 N"** be an immersion. Then the double point manifold
Ay(F') has dimension n — k, i.e. considering the double point manifolds of a given

immersion defines a mapping
92 : Immk(N"Jrk) — Imek(Nn+k)

The normal bundle of the immersion 65(F) : Ay(F) & N™* has a Dy(y*)-structure
[AEa00]. Hence, applying the generalised Pontrjagin-Thom construction for immer-

sions to Oy (F') yields a mapping
fo: NiTH— QT(Da(7")).
Note that T(Da(v%)) = DoT(v*) = DyMO(k). Hence,
fo: NITF— QDyMO(k).

On the other hand the immersion F' corresponds to a mapping, unique up to homo-
topy, [ : Nf“k — QMO(k) under the Pontrjagin-Thom construction. According to

Koshchorke and Sanderson [KS78], see also [AEDb00], f5 is given by the composition

N L QMO(K) 25 QDyMO(k).
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Notice that Do(+*) is a 2k-bundle. The classifying map for this bundle is a map
(BO(k) x BO(k)) x5, WYy — BO(2k).
This then induces a map of Thom spaces
§: DyMO(k) — MO(2k)

which corresponds to forgetting the additional structure on the normal bundle of the
double point manifold and viewing it only as a vector bundle of dimension 2k. This

then induces a mapping
&t NI DaMO(K)] — [NTHR MO(2k))].
The main result of [KS78], see also Sziics [S76]], is the following theorem.

Theorem 6.1.3. The following diagram is commutative.

02

Immy, (N™F) Immayy, (N™TF) (6.1.4)

glf 2 %T

[N_?Jrk, QMO(k)] L) [Ni+k, QDQMO(k)] @) [NﬁJrk’ QMO(2k>]

This commutative diagram provides the main tool in our calculations when we

pass on to the homology of the spaces involved here.

6.2 The homology of James-Hopf maps

We start by describing H, D, X . The splitting (6.1.2) gives rise to a decomposition of
homology as

H.QX = é H.D,X.

r=1
Define the height function At on the monomial generators of ]?I*QX by ht(z,) = 1,
ht(Q'x) = 2ht(z) and ht(x - y) = ht(x) + hi(y), where z - y represents the Pontrjagin
product and z, € H,X. It is known that H,D,X is generated by the monomial
generators of H,QX which have height r [GT73].
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Notice that projecting onto the r factor in the first splitting (6.1.1) provides a map
QX — (D, X which in homology induces

h o H.QX — H,QD, X

which maps the elements of height r nontrivially, and all of the elements of other
heights belong to its kernel.

If a basis for H.QMO(k) is written in terms of the standard monomial generators,
then the terms of height 1 in f,[N"**] determine the characteristic numbers of F as
in Theorem 4.2.2. We shall show that the height 2 terms determine the characteristic
numbers of double point manifold of F'.

Let us recall that given any space X, the homology suspension o, : H,Q0X —
H, 1 X is induced by the evaluation map [W78|. More precisely, the identity mapping
1: 09X — QX has the adjoint e : ¥QX — X usually known as the evaluation map.

In homology, we then obtain
o, =¢€,: H,QX = H, 1¥Q0X — H, 1 X.

In particular, we may consider the identity map 1 : Q%' X — Q'3'X and its iterated

adjoint LI X — 3'X . This then induces the iterated homology suspension
HQY'X 20, 20X — H,, Y X = H,X.

By analogy, in the case of QX = direct limit Q'>!X we consider the identity mapping
1: QX — QX and its stable adjoint X*°QX — »*°X. The stable mapping X*°QX —
> X agrees with the projection on to the first factor D1 X = X in the splitting

(6.1.2). This induces the homology suspension
p o H,QX — H, X.
Next, notice that the stable James-Hopf map
R* QX — QDX

has stable adjoint
YPQX — XDy X.
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This induces a mapping in homology with agrees with the mapping p, : H,QX —
H,D;X defined by the composition

po=poh’: HQX — H.QDyX — H,D,X.

Notice that, in general, H,£2.X is a ring. The homology suspension has the property
that it kills products [S75]. Hence, in this case, the mapping p; : H,QD; X —
H,D>,X Xkills all of the product elements. Finally, notice that elements of height 1 in
H,.QQD>X correspond to elements of height 2 in H,Q)X. Hence, using the effect of py,
we see that the mapping ps maps all elements of height 2 isomorphically whereas it
kills all of terms of height other than 2.

Now we want to describe .. Let X = MO(k). Then H,DsMO(k) has a basis

{enein . iy ejejy .. i, Qenen. . e |ex(J)>diml},
where [ = (Zl,,Zk) and dll’IlI:Zl +22++2k

Theorem 6.2.1. The homomorphism &, : HopoDoMO(k) — Hopi o MO(2k) is de-

termined by the following values:

Eulel - e es) = 7" leg;
Elel-e%e3) = e e
E(eh ey - efley) = 22l
)
0 for k=0 (mod 4);
ik e leg fork=1 (mod 4);
&(Qey) = _—
er” el for k=2 (mod 4);
e leg 4222 for k=3 (mod 4).
\
Proof. See [AEa00, Lemma 2.4]. O

6.3 Normal Steifel-Whitney numbers of Ay(F)

According to Pontrjagin-Thom theory the cobordism class of a manifold M with an

immersion F : M" 9» N"** determines the normal Stiefel-Whitney numbers of F. In
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general, the normal Stiefel-Whitney numbers of F' may not determine M. For example
if F: M™ — M"™ x R the normal bundle is trivial so all the normal Stiefel-Whitney
numbers are zero. So there is no information about M. Then the Stiefel-Whitney
numbers of F' may not determine the Stiefel-Whitney numbers of M.

According to Theorem 4.2.2 these numbers depend on stable Hurewicz homomor-
phism of f : Nf“k — QMO(k) where f corresponds to I’ under the Pontrjagin-Thom
construction.

The main result in this chapter, which provides the framework for our calculations
in the next chapters, is that the normal Stiefel-Whitney numbers of the self intersec-

tion immersions 6,.(F") can be determined by the unstable Hurewicz homomorphism
h: [N QMO(K)] — Hy i QMO(K).

We will provide some details below.

Given a map f: N — QINIMO(k) € QMO(k) we have the adjoint mapping
[ XINTE L SEMO(k).
Recall that we have the homology suspension map
ol Hy S MO(K) — Hpyy o i X MO(E).
Proposition 6.3.1. Suppose f : Nfrk — QINIMO(K) is any map and fv: Elerk —

SIMO(K) is its adjoint. Then the diagram below commutes for all n + k.

Hyo NTH—L o g QISMO(E)

Lk

n f
Hn+k+lElN++k - n+k+ZElMO(k')

Proof. See [S75, Proposition 15.43.]. O

According to Theorem 6.1.3 and the cobordism of immersions in chapter 4 the
normal Stiefel-Whitney numbers (and so the cobordism class) of Ag(F') corresponding

to a € [N} QMO(k)] are determined by (and determine) the Hurewicz image

1(8) = &p2h(ar) € HyykMO(2K)
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where the element 8 = (Q¢). o h?(a) € [N}, QMO(2k)] corresponds to the immer-
sion Oo(F) : Ap(F) & N™*. To determine it we will state and prove the next main

theorem.

Theorem 6.3.2. Suppose that the self-transverse immersion F : M™ 9 N"tk cor-
responds to a continuous function f : Nﬁ*k — QMO(k). Then the Steifel-Whitney

numbers of the normal bundle of 03(F) : Ay(F) & N are given by
W' [02(F)] = (w! (Vo (r)), Da(F)) = (w'wag, Eapah()).
Proof. Given a map f: N'™ — QMO(k), then
Je: Hn+kN_7:+k - n+kQMO(k)-
The composition of &, and py induces the following map
Hy 1 QMO(K) —22= H, DoMO(K) —== H, . MO(2K) .

So we have the next diagram.

Hy NP [ QMO ik Do MO(k)
H,.,MO(2k)

Since h® = p; o h, then we get the following commutative diagram.

QY+

NI QMO - VI QD,MO(R)] L Vi QuO@k)]  (633)
g | |
HoihQMO(R) — " H,y o QDo MO(k) — 22 H,., ,OMO(2k)

| : :

Hy ik QMO(k) —2 = H, . DoMO(K) —— H, s MO(2K)

So the immersion 65(F) : AT"*(F) 95 N™** corresponds to the element

3 = (Q€). o hi(a) € [NIT*, QMO(2k)]

where o € [N} QMO(K)] and h([f]) = f.[N7F] = h(a).
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From Theorem 4.2.2 we can find the Stiefel-Whitney numbers of 02(F') by evalu-

ating the stable Hurewicz image of the element 3. However,

h3(QE).hl(a) = pih(QE).h*(a)
= &phhi(a)
= &pihih(a)
= &p2h(a).

Hence, the stable Hurewicz image of (Q&).h%(a) is &po o h(a). The theorem now
follows from Theorem 4.2.2. ]

Remark 6.3.4. In the case of N"** = R"** the Steifel-Whitney numbers in this
theorem are the Steifel-Whitney numbers of Aq(F) (see Notation 3.2.2). Hence h(a)

determines the cobordism class of Ao(F). This is not true in general.

In the next two chapters we will investigate the case of N = CP**!,



Chapter 7

The double point manifolds of
F: M**? qu CP**! when & is odd.

Suppose F': M**+2 q» CP**! is an immersion. We shall apply the methods of Chapter
6 to determine the cobordism class of double point manifolds of immersions F'. Notice
that in this case, the double point manifold will be a surface and the cobordism
classes of surfaces are completely known, so it is either a boundary or cobordant to
the projective plane.

Previous work has been done in the case of immersions F : M*+2 q» R2+2
[AEa00]. In this case the double point manifold must be a boundary if k£ = 0,2
(mod 4), or k = 3 (mod 4) and «a(k + 1) > 1, where « is the number of digits 1
in the dyadic expression; there exists an immersion for which it is cobordant to the
projective plane when either £ = 1 (mod 4), or k = 3 (mod 4) and k+1 is a power of
2. In this chapter we are going to investigate the double point manifold of immersions
F : M*2 a5 CP*! when k is odd.

If k=1 (mod 4), there exists an immersion F' in complex projective space with
double point manifold cobordant to the projective plane. This result follows from
the result for immersions in Euclidean spaces. If k£ =3 (mod 4) we show that for all
values of k there exists immersion F : M**2 q» CP**! with double point manifold
cobordant to projective plane. We are going to state the next theorem for the case

k =11 as an illustration of the case k =3 (mod 4).

106
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7.1 The case k£ =11.

Theorem 7.1.1. An immersion F : M'3 & CP'? corresponding to a function f :
CP!? — QMO(11) has double point manifold cobordant to the projective plane if
and only if

feolagy) = c QBel* + cre1%q - ey + caett - eles + ¢,

where @ has height one.

Proof. According to the techniques explained in Section 6.2, we need to calculate the
Hurewicz image of f. Notice that here h([f]) = f.([CP{?]) = fi(a21) € HuQMO(11).

Applying lexicographic ordering, the group HoyQMO(11) has a basis as follows

10 13 11
{e1%: - e1%, €1 - e1%es, €1 - efes, QeI Uy,

where, y denotes a basis for the elements of height one.
In order to eliminate the impossible values for f.(as,) we will use the action of

Sql, and the homology coproduct. More precisely, the relations

Sqi filazs) = f.Sql(azs) =0
and
U(fulaz) = (fe® f)(@(a2))
= (fe ® f)(a2 ® age + a1 ® ag + a6 ® a1s + ag ® a1 + a1p @ 12+
a12 ® a1z + G154 ® a0 + a16 @ ag + a8 @ ag + a0 @ Gy + a2 @ ag).
= filaz) ® filage) + fi(as) @ filaz) + filas) ® filais)+
filag) ® fulais) + fi(aro) @ filars) + felar2) ® fi(ai2)+
fe(a14) ® filaw) + filas) @ filag) + filag) @ filag)+
Ji(azo) ® filas) + filazz) ® fi(az).

However, we notice that
filazi) =0, for i <5

since Hy;(QMO(11)) = 0.
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The group Hi;QMO(11) = Z/2 is generated by el%,, and so f.(a1p) = a'el%%,

for o/ € Z/2. By applying Sq! to the homology class we have, Sq!(f.(a2)) =
f+(Sqi(a12)) = f.(0) = 0 but Sq¢!(a'el%;) = a'el’, and so o' = 0. Hence

f*(@n) = 0.

This implies that 1;( fi(azs)) = 0, so that f.(ag) is primitive. Calculation gives

the following table

Sqt | ¢

ees erees| A

e’ - elel 0 A

ety - e1%;y | 0 0

Q13! 0 0

el - elley 0 B
exley eyles | B+C

ereSeses | eredel 0

where

A = el'@eded +elel@ell,

11 10 10 11
= e, ®eje3t+ee3Rer,
Cc = e}oeg ® 6%062.

We have four elements of height two {e}' - efe3, e1%; - €], Q'eil,ei! - €103}
Then from above table observe that the element ej!-efe2 is not primitive, in addition
there is no linear combination with other elements to give A-annihilated and primitive
element. A only appears in the coproduct of which gives an eje? and e}! - eJe2.

The element ei!-el%; is A-annihilated. However, it is not primitive and also there
is no linear combination with other elements given a primitive element.

: 11,.,9.2, 9.2 8 10,10 13 11
Finally, the elements e;"-eje;+ejes+eje5eseq, €1 ea-e1 eq and (Q*°e; are primitive

and are A-annihilated by Sq!. Hence

1311 10 10 11 9.2
felags) = c Q7 ey + crey ey - e ea + caey - eje; + .
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Hence there are eight possibilities for f,(aaq).
We are now in a position to determine the double point manifold of an immersion

F'. By using diagram (6.3.3) and referring to Theorem 6.2.1, we find that
Eupah() = c(ef'es + €3%3) + crefles + caei’es € HyyQMO(22).

This implies that

Epah(a) = ce2les + (c+ 1 + c)edles.

Applying Proposition 3.3.11 we get that for an embedding L? < CP'? correspon-
ing to a € [CP}?, MO(22)], L? is cobordant to RP? if and only if

h(a) = e'es + eles,

or

h(a) = eles.

Hence, the double point manifold of F : M3 ¢» CP'? is cobordant to the projec-

tive plane if and only if ¢ # 0. [

We are now going to show this case does arise from the double point of an im-

mersion and we can give a general result for all £ =3 (mod 4).

7.2 The case k=3 (mod 4)

The case k = 11 is the first case where we obtain a different result from the case
of immersed manifolds in R%**+2, In [AEa00] Eccles and Asadi have shown that the
double point manifold of any immersion in Euclidean spaces is a boundary because
a(ll +1) = «(12) = 2 > 1. However, we will show that there is an immersion F
in complex projective space with double point manifold cobordant to the projective
plane.

Now we are going to state the main theorem of this study which shows the exis-
tence of an immersion F : M*t2 95 CP**! with double point manifold cobordant to

the projective plane for k = 3 (mod 4).
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Theorem 7.2.1. For k = 3 (mod 4), there exists a map f : CPi* — QMO(k),

such that

fulagkya) = Q" %ey.

Suppose that agg o € szHCPfH is the generator. We want to prove that there

exists a map f such that
fe(aogs2) = Qk+2€1f € Hopp2QMO(K).

This is constructed as a map

CPI™ — SFRPF? — QMO(k) .

f
We prove this theorem by breaking the proof into two propositions as follows.

Proposition 7.2.2. There exists a map f, : CP¥™ — SFRPI2 | such that

(f1)(a2p42) = Okbk+2.

Proof. Let (CP,i€Jr1 be the truncated complex projective space (CP,f*’1 = CP+t/CPr1.
For k odd we can form CP/™ from S?* by attaching a (2k + 2)-cell €2**2 via the sus-
pension of the Hopf map 7y, : S**1 — S2F because Sq¢? : H**CPF™ — H#*+2CpFH!

is non-zero. Then

k+1 _ g2k 2k+2
CP™ =57 U,, e~

Let RPFT? = RPF2/RPF=! then we can form RPI*? from RPF™! by attaching

a (k: + 2)— cell eFt2 via a map gb;c+1 . QR+l ]RP]f“ and

RPF2 =RPFM U, 2

i1
Let ¢y : S¥ — RP* be the double cover map. Then
RPk+1 — RPk‘ Uqﬁk eki-i—l.

Thus we have a cofibre sequence:

Pk

i

S —m RPE L R R T gt
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The composition
5t pph s RPERPE 2 g

is a map of degree
0 if k is even,

L+ (—D)k! =
2 if k is odd.

Since k is odd then P, o ¢ = 20 : S¥ — S* where + € 7,S% = Z generated by
identity map ¢ : S¥ — S*. So we have the following diagram of cofibration sequences

Gk Pk R Pk @ R Pk+1 et Gh+1 (7.2.3)
zl ip,g lpk l:
Gh—2 s ok L LR pr+t P Gh+1

Since we have k > 3 we are in the stable range and so the cofibrations give exact

sequences of stable homotopy groups. We have the following diagram.

(7.2.4)

Sk+1 m RPk—I—l 41) RPk+2

B

e+t LRl i gkt

Diagrams (7.2.3) and (7.2.4) give the following diagram.

k+1

S
o P

£
gk 2> gh s RPI1 > RPEFL/RPF = SE+HL —» SR PF

The map Pyyi 0 ¢ppq @ SFH — Sk+1 s trivial since k is odd. Hence the attaching

map P o ¢y, pulls back to ¢ : S¥1 — Sk This gives the following commutative



CHAPTER 7. K IS ODD 112

diagram of cofibre sequences defining the function g;.

Gh+1 v Gh+1

) Podp i1

Sk L - RpHH

i

(S Uy eh*?) > RPfH?

Sk+2 1

Sk+2

Suppose that ¢ €, 1S¥ = Z/2, it is generated by the map ¢ : S¥1 — Sk,
Then we have the mapping cone Cy = S* U4 eF*2.

The induced diagram in homology shows that (g¢1). : HyCy — HkRP,fJr2 and
(91)s : Hp2Cp — Hk+2RP,f+2 are isomorphisms.

Hence by naturality Sq¢? : Hg2Cy — HiCy is non-zero. This shows that ¢ is
non-trivial and so is homotopic to n; : S¥*' — S* the suspension of the Hopf map.

Hence C, ~ S* U,, €2 and so
SRCY ~ §2 Unae e +2 = C Pt

Taking the k-th suspension of g; leads to
Sk S U

2k+2 kp pk+2
ok € — X'RP;

such that (f1). : HoksoCPF™ — Hop o XFRPIH! is an isomorphism. Since

H;, oRPI? =2 7,/2. 1t is generated by by 2. Then

(Ekgl)*(azmz) = kak+2,

Finally we compose $¥g, with the quotient map ¢: CPF™ — CPF™ to obtain the

required map f; = ¥¥g; o ¢ which completes the proof. ]
g

Proposition 7.2.5. There exists a map f, : SFRP™ — QMO(k), such that

(f2)« (0 b)) = Q"X modulo elements of height one .
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To prove this we describe two maps and then take their composition to get the

required map as in Eccles [E96].

Definition 7.2.6. We define the J-homomorphism
J : Va(RF3) — QFFS3MO(E).

Suppose that G(k + 3) is a closed subgroup of the orthogonal group O(k + 3) with
inclusion map

i:G(k+3) — O(k+3).
Then if € is a (k + 3)-dimensional vector bundle over S**2 represented by ¢ €
Trp2BO(Kk + 3), a G(k + 3)-structure on ¢ is a choice of element & € 7,2 BG(k + 3)

such that i,& = £&. We have the following exact sequence:
Tr20(k + 3)/G(k + 3) — T2 BG(k + 3) — mp2BO(k + 3).

The normal bundle v of the standard embedding S*+? < RZ?*° is trivial, and
so each element of 7, 20(k + 3)/G(k + 3) determines a G(k + 3)-structure on v.
With this structure, the embedded sphere represents an element of mo, s MG(k + 3)
by the Pontrjagin-Thom construction [E96]. This process defines the generalized J-

homomorphism
Jo : Tpy20(k + 3)/G(k + 3) — mopys MG(k + 3).

The image of this map J, consists of those elements which may be represented by
the standard embedding S**2 — R?*5 with some G(k + 3)-structure.

When G(k 4+ 3) is the trivial group, we get the classical J-homomorphism
7Tk+20<k + 3) — 7T2k+55k+3.

On the other hand when G(k + 3) = O(k), O(k + 3)/O(k) will be the real Stiefel
manifold V3(R**3) as defined after Remark 1.4.21, and MG(k + 3) is the suspension
Y3MO(k). So we get a map from the homotopy group of the real Stiefel manifold to

the homotopy of the suspended Thom complex of O(k).

T Mo Va(R¥3) — 7m0y, s B3MO(E).
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Assume that for the classifying space of 7* we take the infinite Grassmannian
G (R>) of k-dimensional linear subspaces of R*. Then the total space FO(k) of the

universal bundle is given by
EO(k) ={(u,U)|u € U,U € G(R*)}.

Next, let v = (vy,v9,v3) € V3(R¥3) be an orthogonal 3-frame in R¥3. We can
write U = (v, 09, v3)7 C RFF3 C R™ for the subspace of R**3 orthogonal to vy, v,
and vs. Then a point of R¥3 may be written uniquely as u + t;v1 + tavs + t3v3
where t; € R for i = {1,2,3} and u € U. Define a continuous map J(v) : R¥3 —

EO(k) x R? by
J(U)(u + tyvg + tavg + tgvz) = ((u, U), ty, ta, t3).
One point compactification induces a map
J(w) : S¥3 — MO(K) A S3,

i.e. J(v) € Q33 MO(k), and then, by [E96, Proposition 2.1.], the continuous map
J : V3(RFF3) — QP33 MO(k) induces the generalized J-homomorphism

Tt Mo Va(RF3) — mp o QFBS3MO(K) — 1o 55 MO(E).
Definition 7.2.7. We define the hyperplane reflection map
A RPF2 — V5 (RFF?).

A point a € RP**2 is a line through the origin of R¥*3, and we may use this to define

a map

Megs : RP*2 5 O(k + 3).

The element Mg 3(a) is given by the hyperplane reflection map which is given by
reflection in the hyperplane orthogonal to the line @ € RP**2. Given a point z €
R*¥3 ) we can write it uniquely as = x; + z,, such that x; € span{a),z, € a’.
Then A\gi3(a)(x) = —x1 + x5. This is an orthogonal map represented by an element

Mesa(a) € Ok + 3).
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In the following commutative diagram the right hand is a sequence of groups and
the left is a cofibre sequence. Since RF = R* x {0} C R¥3 we get the following

commutative diagram defining the map A

RPk-1 A O(k)

o]

RPk+2 LO(k + 3)

o

RPF2 2~ O(k + 3)/O(k)

where the vertical maps are the standard inclusions and O(k + 3)/O(k) = V3(RF*3).

Proof of Proposition 7.2.5. The k-th adjoint of the continuous map J gives a map
J : SRV (RFP) — PS3MO(k) — QMO(k). (7.2.8)

Moreover, by taking k-th suspension of the hyperplane reflection map we get a
map

X SFRPI2 o SRV (R, (7.2.9)

Then by taking the composition of the maps (7.2.8) and (7.2.9) we have
fo=JoX: SFRPH? — QMO(k).

Next we need to describe this map in homology. Consider the following commu-

tative diagram.

SFRPM? — A sk (RAY) —L e QMO(k)

SR

SFR P 2 D, 5% — > QDy 5% 220 QDyMO(k)

This follows from the diagram in the proof of Theorem 3.4 in [E96]. Since o*by,» €
H2k+22kRP,f+2 corresponds to Q¥*2g, € HopysQD,S* which maps to Q2 €

Ho20QDoMO(),

(f2)x(0"bri2) = Q2! modulo elements of height one .
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This completes the proof of Proposition 7.2.5. O

Proof of Theorem 7.2.1. By the composition of the functions of Proposition 7.2.2 and

Proposition 7.2.5 we get the following
CPi L yErpEe2 L OMO(K) .
Hence we may define
f=faofi:CPITY — QMO(K).

Then
filazrra) = (f2)u(f1)s(a242) = (f2)u(0"bri2) = Q* e,

which completes the proof. O

Corollary 7.2.10. There exist an immersion F : M*?2? — CP*! which has a

double point manifold O2(F) : Ao(F) & CP* cobordant to the projective plane.

Proof. Suppose that F': M*+2 - CP**! is an immersion corresponding to the map
f:CPI — QMO(k),

which is given above. The self-transverse immersion F' represents the element o €
[CPF, MO(K))®, where a is the homotopy class of f. Then by Theorem 6.3.2 the
double point manifold

0o(F) : Ay(F) & CPM
corresponds to the element h2(a) € [CP{, DoMO(K)]®, where
R . [CPE MO(K)])® — [CPF DyaMO(K)).

is the Hopf invariant.
Suppose that [g] = &, o h? o ([f]), where [g] € [CP¥™' MO(2k)]®. This element

corresponds to the immersion

05(F) : Ag(F) 9 CP*
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By Theorem 6.3.2 the element g, (ask12) € Hori2QMO(2k) determines (and is deter-
mined by) the characteristic numbers of the immersion 6,(F) : Ay ¢ CP*+L,
Since f,(asgrio) = Q¥ 2k, pofi(asnin) = Q¥ 2ek. Hence, by Theorem 6.2.1, we

deduce that
9i(A2k42) = §*p2(Qk+2€If) = eik_le?, + €%k_2€§ € Hopp2QMO(2K).

This shows that the immersion 0y(F) : Ay(F) & CP*! is cobordant to an

immersion RP? ¢+ CP**! with by — a; as we explained in Example 3.3.10. O

7.3 The case k=1 (mod 4)

We show that in this case, it is possible to have an immersion F' : M*+2 q» CP*+!
whose double point manifold is not a boundary. This occurs directly from the solution

of the problem in the Euclidean case.

Theorem 7.3.1. There always exists an immersion F : M*2? qu CP*! whose

double point manifold is cobordant to the projective plane.

Proof. According [AEa00, Theorem 4.1] there always exists an immersion F : M**+2 o
R2?*+2 whose double point manifold is cobordant to a projective plane.
Let i : R?**2 — CP**! be an embedding which always exists as CP**! is a

(2k + 2)-dimensional manifold. The composition
ioF Mk+2 Qs R2k+2 N (CPkJrl

provides an immersion whose double point manifold is not a boundary. O



Chapter 8

The double point manifolds of

F - M*2 o CPF! when k is even

In the previous chapter we deduced that for all odd values of k there exists an
immersion F' with double point manifold cobordant to the projective plane.

In this chapter we deal with the case when k is even, and divide it into two cases,
k=2 (mod 4) and £ =0 (mod 4).

In the case of k = 2 (mod 4) we start with the specific case of k = 2 and show
that there exists an immersion with double point manifold cobordant to the projective
plane. In general we derive a condition for the double point manifold to be cobordant
to the projective plane. However we have not shown that these immersions exist.

For k =0 (mod 4) we consider the specific example of k = 4 but we do not obtain

a general result in this case.

8.1 The case k=2 (mod 4).

Assume k = 4r + 2. We start by studying immersions F : M**2 q» CP*! with
k = 2,6,10. According to the Pontrjagin-Thom theory, we have to calculate the
possible values of f,[CPI™] where f : CPF™ — QMO(k) corresponds to F. Of
course, these are just potential values and in order to show the existence of the

desired immersions we either have to construct the immersion F' directly or construct

118
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a mapping f which has the given Hurewicz image. We will do this in the case of

k= 2.

8.1.1 The double point manifold of F : M* g9+ CP3

Theorem 8.1.1. An immersion F : M* & CP? corresponding to a map f : CP? —
QMO(2) has double point manifold cobordant to the projective plane if and only if

ﬁ(a4) = €2 + ejes, where f: CP? - MO(2) is the stable map corresponding to f.

Proof. Our goal is to prove that for some immersion F' the double point manifold
is cobordant to projective plane. The Pontrjagin-Thom construction gives a function
[ CP} — QMO(2) representing a homotopy class a € [CP?, QMO(2)].
We need to calculate f.(ag) and in order to eliminate possible values we also need to
find out about f.(as) and f.(a4).

First of all, since f.(as) € HyQMO(2) = 7/2 generated by €2, then for o' € Z/2.

fulag) = a'é2.

Hence we have two possibilities for f,(ay), which are either 0 or €.

It remains to determine the possibilities for f.(a4), fi(ag). A basis of HiQMO(2)
is given by

{61637 6%7 6% ' 6%}

To eliminate the impossible values of f,(a4) , we consider the following table

Sq; | Sqz | ¥
€1€3 0 0 0

2 2 | .2 o 02
€5 0 | ef |ef®e]

et-e| 0 | 0 0

Consider the reduced coproduct of f.(a4) as follows

V(fulas)) = filaz) ® fulaz),

= d (@)
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Then f,(a4) is not primitive if o' = 1. Hence
fu(as) = a'€2 + primitive terms.

Since Sq!f.(as) = 0,S¢2f.(ay) = f.(az) = o'e?, then f,(ay) is not A-annihilated if
o = 1. The A-annihilated and primitive elements in H;QMO(2) are spanned by
{eie3, €2 - e1}. Then for some 3,v € Z/2.
folaa) = o' €3 + Beres + e - €,
Our task is now to consider the possibilities for f.(ag). Let

h(a) = f.(as) € He(QMO(2)),

where ag = [CP}] € Hg(CP?) is the fundamental class. A basis for HsQMO(2) is

given by
2 2 2 2 42 2 2 2
{eres, eaey, €3, €] - ejes, €] - €5, e1ea - e1ea, 7€y, €] - €] -el}.

To eliminate the possible values of f.(ag) € HsQMO(2), we consider the following

table:
Sql Sq? Y
€1€5 0 €1€3
€264 e1eq4 + €e9e3 | e1es + 6% B + C
e 0 0 A
6% - €163 0 0
el - e 0 el-e? |A+D
e1es - €169 0 e e? 0
Q'el Q%e} ef - ef 0
el-e?-e? 0 0 D
where

_ 2 2 2 2
= e1®e;t+e; e,
= e2®ees+ee3®@e?
- 1 1€3 1€3 1

€162 & eqeo,

S QO T
I

2 2 2 2 2 2
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By applying the reduced coproduct of f,(ag) we will obtain

U(filag)) = filaz) @ filas) + fi(as) ® fulaz)
= d(ed@ed) +a Bl @ees) +ay(el@el-ed)
+ (G ®e) +aflees@el) +ay(el- el @el)
= a'A+a'BB+a4D.
Then f.(ag) is not primitive if o’ = 1. Hence
fulag) = o' €2+ B(e? - eres) + o' y(€2 - €2 - €2) + primitive terms.

Applying Sq! and S¢? to the homology class f.(ag) implies that Sqlf.(as) =
0,S¢? f«(ag) = 0, so that f.(ag) is A-annihilated. Hence for some ¢ € Z/2

fulag) =o' €2+ ' B(e? - eres) +a'v(e2 - €2 - €2) + o,

where ¢ = €3 + €3 - €3 + €169 - €169 + €3 - €3 - €2 is the unique non-zero A-annihilated

and primitive element in HeQMO(2). Hence
fuolag) = o' 240 B(e2-eres) +a y(e? -2 -2)+ (24 €2 24 ejer-erea+ €262 €2).

The following table summarizes the possible value for f,(ag;) for 1 <i < 3.

filaz) filaa) filag)  (mod ¢)
0 0 0
0 e1és 0
0 e el 0
0 e1e3 + €3 - e 0
e? €3 e
e2 €3+ eres e3 +e? - ere;
e2 e3+e? - el e2+et-e?-e?

2 2 2,52 | 02 4 2 2,52, 52
e] e, feest+ej-ef|est+ef-ee3tej-ef-e]

Applying diagram (6.3.3) we deduce that

poh(a) = o/ﬂe? -ejes +6(e? €2+ eje; - eres),
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and then from Theorem 6.2.1 we have
Epoh(a) = o/ Bedes + 0(e2e2 + e2e2).
Hence
Epah(a) = o' Bedes € HeMO(4).

We are now in a position to deduce that the immersion F' : M* 95 CP3 has
a double point manifold cobordant to the projective plane if and only if h(«) has
a = 3 =1 as observed on the line 6 and 8 of the above table. This mean that

fulay) = €2+ eres + ve2 - €2 or equivalently f,(as) = €2 + ejes. O

Next we are going to show that there exists an immersion with double point mani-
fold cobordant to the projective plane by constructing a stable map CP? - QMO(2)
whose Hurewicz image in homology gives the right terms to have this property. This

map is constructed from two other maps which we now describe.
Proposition 8.1.2. There exists a map f1 : CP} — QMO(2) such that its stable
adjoint fi : CP? - MO(2) satisfies

(ﬁ)*(a4) = €1€3.

We shall define ﬁ as the composition of two maps which are X : CP? — S* and

Y : §* -» MO(2). We break the proof into small lemmas.
Lemma 8.1.3. There is a map X : CP? — S* such that ay — ga.

Proof. We have the truncated projective space CP3 = CP3/CP?, this is given by a
cell complex S* U, e® obtained by attaching the 6-cell €8 via a map a : S — S%
The homotopy group m55* & Z/2 is generated by suspension of the Hopf map. The

Hopf map is detected by
S¢*#0: H*S*U, e — HS* U, €°.
However, S¢> = 0 : HICP} — HCP; and so « is trivial and so CP3 ~ S*V S°.

CP} —~CPj ~ S*v S°

e

54
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Now by the composing of the quotient map ¢ with the projection map p as in the

above diagram we obtain a map X : CP} — S4 such that

X, (ag) = ga € HyS*.

Lemma 8.1.4. There is a stable map Y : S* -» MO(2) such that g4 — e;es.
Proof. The double cover map
¢2 : Sz — sz
is the attaching map of the 3-cell in RP?, i.e. RP? Uy, e® = RP?. We have a cofiber
sequence
Sl 41) RPQ L> SQ .
This cofibration gives an exact sequence

T Px
7y St —=miRP? ——= 7552 .

The composition p o ¢y : S? — RP?/RP! = S? has degree 0 and so is trivial in
homotopy [H02]. This means that p.[¢s] € 75S? is trivial, and hence by exactness

there exists [¢] € m5S?, such that

[P2] = i[n].
This means that there exists a stable map ¢; : S? - S!' = RP! such that the

following diagram is commutative

52

g

RP! = §1 —>Rp? =52 = RP?/RP!

I

RP3
where [¢1] € 75St 2 7,/2 is generated by the Hopf map n : S% — S? which is detected

by S¢*. But S¢? : H'RP? — H?RP?3 is trivial. Moreover, by naturality we see that

Sq?: H'S* Uy, € — H*ST Uy, €°
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is trivial. So [¢1] = 0, and so [¢o] = 0 € 7y RP2. Hence there is a stable equivalence
RP? ~RP?V 5.

Therefore, there is a stable map ¢3 : S® - RP? Vv S3 ~ RP? such that the following

diagram commutes

513 JP) RP3
e
S3 = RP?/RP?
and so (¢3)«(g3) = es.
We define a stable mapping Y : S* - MO(2) by the composition

54 2% yR P = SRP® = SMO(1) —> MO(2)

where RP* = MO(1). The mapping XMO(1) — MO(2) sends ce3 to eje;s.
Hence,

Yi(g4) = eres.

This completes the proof. ]

Now we are ready to prove Theorem 8.1.2.
Proof of Theorem 8.1.2. From Lemma 8.1.3 and Lemma 8.1.4 we get the following
map:

fi:CP3 —> gt % MO(2) .

By the composition we get the required map

(f1)x(as) = Y 0 X, (aq) = eses.

Proposition 8.1.5. There exists a map fo : CP} — QMO(2), such that its stable
adjoint fs : CP? — MO(2) satisfies

(f2)-(as) = €.
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Proof. Let n be the universal complex line bundle over the base space BU(1) = CP*°,
where U(1) is the unitary group of degree 1 which corresponds to the circle group,
that is, U(1) = S'. The bundle 7 is a 2-dimensional real vector bundle and so is
classified by a map

g: BU(1) — BO(2).
This gives a diagram.

E(n) —=EO(2)

L

BU(1) -~ BO(2)
We have £O(2) which is the total space of the universal 2-plane bundle over the base

space BO(2). This map of bundles induces a map
MU(1) -2 MO(2),

where MU(1) is the Thom complex of universal complex line bundle over BU(1).

Now by the Thom isomorphism 3.3.6 we have the following diagram

H,BU(1) -~ H,BO(2)

x|z =|r

HMU(1) —Z= H,MO(2)
We have a cohomology map
g H'BO(2) — H*BU(1).
Since H'BU (1) = 0 for dimensional reasons, then g*(w;) = 0. Since wy(n) is the mod
2 restriction of ¢; € H?BU(1) by Lemma 1.7.4, then
9" (ws) = c1.

By duality since ay € HoBU(1) , then g.(az) = €3 € HyBO(2). From this, we
deduce that if a4 is the generator of HyMU (1) then (g).(as) = €3 € H{MO(2) since

T(e2) = €2 by Theorem 3.3.6. We obtain f by restricting g to CP:.

CP3 ——~CP> = MU(1)

© Mo
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and then (f2).(as) = €2 € H{MO(2) which gives Lemma 8.1.2. O

Theorem 8.1.6. There is an immersion F : M* 9= CP3, such that the double point

manifold of F' is cobordant to the projective plane.

Proof. The idea is to prove that there exists a map f: CP? — QMO(k) such that

filag) = €3 + erez + el - ef,

and use Theorem 8.1.1. This corresponds to a stable map f : CP? - M O(2) such

that

felay) = eg + ees.

Now it is straightforward to prove this result by taking the sum of maps con-

structed in Proposition 8.1.2 and Proposition 8.1.5. Define
f=Ffi+fr:CP*» MO(2).
Then
filas) = (f)aa) + (F2)ulas) = € + eres € HiMO(2)

This completes the proof. ]

8.1.2 The double point manifold of F : M® 9 CP’

Similarly to the previous example, we will observe that it is enough to consider f,(ag)

rather than f,(a4).

Theorem 8.1.7. An immersion F : M8 & CP" corresponding to a map f : (CPJZ —
QMO(6) has double point manifold cobordant to the projective plane if and only if
the map f has the property

fi(ag) = etes + eles.

Proof. Since f.(az) € HoQMO(6) = 0, then f,(ag) = 0. Since f,(as) € HIQMO(6) =
0, then
f*(a4) =0.
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We have HgQMO(6) = Z/2 generator by €}, and so
fulag) = o€l

The group HgQMO(6) is spanned by {efes, eje3}.

Sq!l | Sq¢? | Sqt

etes | 0 0 0

o | O | =)

4.2 6
etes| 0 | el | O

The reduced coproduct of f,(ag) is obtained by the following:

Y(filas)) = fulaz) @ filas) + fi(as) ® fulas) + filas) ® fi(az) = 0.

Then f,(ag) is primitive.
Since S, fu(as) = 0, S¢2fu(as) = f.(ag) = o'ef, and Sq;f.(as) = fu(as) = 0.
Then f,(asg) is not A-annihilated if o' = 1. For S¢2f,(as) = a'€f, then the coefficient

of efe2 € f.(ag) is o . Hence
«(ag) = a’e*e? modulo the other basis elements .
162

From the above table we deduce that the only A-annihilated and primitive elements

in HsQMO(6) is e®es. Hence, for some 3 € Z/2
1
filag) = o/e‘feg + Beles.

A basis for H1gQMO(6) is given by the set {eles, efeseq, ele3, eled, eiedes}.

Consider the following table.

Sql Sq2 S¢t | v

edes 0 eles 0 10
elesey | €3ey + efeses | ehes +efed | 0 |0
ele2 0 0 0 |0
eley 0 0 e$ |0
0

3.2 5
ejeses 0 ejes 0
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Since ¥(f,(ay)) = 0, then f,(a1o) is primitive.
We have Sq¢!(ay) = 0, S¢?f.(a10) = 0, and Sq’f.(a10) = f.(ag) = o' €Y. Hence
f+(a1o) is not A-annihilated if o' = 1. Since Sq¢?f.(a10) = f.(ag) = a'€S, then from

the above table f,(a19) = o e?es modulo the other basis elements . Hence
fularg) = o' €26l + yele2 + 6(edes + eeles).
We will not need to find f,(a12) because S¢?f.(a1s) = f«(Sq?a14) = 0.

Now a basis of H;4,QMO(6) is given by

5 4 4 4.2 4 5 4.2 32 3 3
{eleg, eleser, €leacs, €le;, e1€r€5, €xea, €r€3, €1eser, €1eaeses, €1€aeqes, ..,

2 2 6.5 6,42 5 5 8,6
..., €1€5€3€5, €] - €€3, €] - €165, €163 - €1€z, Q7€r},

where . .. is other elements of height one.

We are almost ready to invoke the 4-annihilated and primitive elements of H1,QMO(6)

as shown in the following table:

1 2 4 "
54, Sq; Sq, ¥
4,2 4,2
€563 0 0 eies A
6. 4,2 6. .6
eles - ejes 0 e$ - ef 0 0
8,6 7.6 6. .6
Q€ Qe €16 0 0
b - efes 0 0 0 B
eseq ere3eqs + €5es | erezes + €5 | eleses | B4+ C
where,
_ 6o 42 42 o 6
A = e Qe tee; ®e,

6 < 5 5 6
= e; ®ejez+ejes ®ey,

5 5
= elex ®ejes.

To find the non primitive elements of f,(a14) we are going to apply the reduced
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coproduct as below:

Y(filan)) = filas) ® filas) + filas) @ fi(as)
= ol @ (a'ele? + Beles) + (o' ele? + Beles) ® o€l
= (@)2(f @ete) +a' B @ eles) + (o) (ete? @ €) + o' B(edes ® €Y)

= o A+d'BB.

Then f.(ay4) is not primitive if o' = 1. Hence

’
folarg) = '€l - ele? + o' Bel - eles + primitive terms.

Hence, from the table above the primitive elements of H14QQMO(6) are spanned
by

4.2 5 8
{6263 +ef - eles, efey - eley, Q%S U Py
where Py, are primitive elements of height one. Therefore,

folan) = a el efed +aB b - eles + biy (enes + €S - eled) + ciq €les - eleat

dya Qseff + ¢,

where b4, c14, diy are € Z/2 and ¢ € Pyy.

Since Sql(f.(a14)) = 0, S¢%(f(aws)) = 0 and Sq*(f.(aws)) = 0. Then f,(ay4) is
A-annihilated.

For Sq!(f.((ai4)) = 0, we have dy4 = 0 which yields

— ) 6. .42 "9 6. .5 4.2 6, 4.2 5 5 !
fe(ara) = o €] -ejes +a [ ey - ejes + by (€5 + €] - eje3) + c1g ejes - ejea + ¢

where Sql¢ = 0.
As S¢?(f.((ar4)) = 0, we obtain

' 6 6 6 6 6 6
ael-e]+buuel-el+ciue)-e] =0.

In this equation we have:

Coefficient of €$ - €% : o + by +cy =0. Hence,

!
fulars) = a'eb - ete2 +a' B 8- edes + by (ehe? + €8 - ele2) 4+ ey ey - lea +
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where " is the set of an A-annihilated and primitive elements of height one in
HisQMO(6) and Sq2¢” = 0.

From diagram (6.3.3) we obtain that

' 6. 42 /o 6 5 6, 4.2 5 5
pah(a) = aey - eje; +a B e] - ejes + biy €] - eje;5 + c1q €]es - ejes.

Then by Theorem 6.2.1
&e(peh(a)) = (0/ + b1y + cua) €105 + 0/66%163
since @' 4 by, + c14 = 0. Then
E(pah(@) = o' B ef'es.

Hence the double point manifold of an immersion F' is cobordant to the projective

plane if and only if for o' = 8 = 1. Notice that o' = 3 =1 if and only if
filag) = efes + eles.

Hence, it is enough only to consider f.(ag). This completes the proof. ]

8.1.3 The double point manifold of F : M!'? - CP!

This is our final example, and hopefully will make the general pattern clear.

Theorem 8.1.8. An immersion F : M & CPY corresponding to a map f :
CP!" — QMO(10), has double point manifold cobordant to the projective plane if

and only if the map f has the property
felarz) = eie; + ejes.

Proof. Notice that
fe(ag;) =0 fori < 5.

We have HygQMO(10) = Z/2 generator by el then for some o' € Z/2,

fularg) = o'l
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A basis for Hi2QMO(10) is given by {efes, efe3}.

Consider the following table

Sqt | Sq? | Sqt | &
efes | 0 0 0 1]0
efe3| 0 | el 0 |0

Since the reduced coproduct of f.(ai2) is trivial, then f.(ai2) is primitive.
We have Sq;(a12) = 0, S¢: fu(ar2) = fu(aro) = a'ei’, Sq! f.(ar2) = 0. Then f,(ar2)
is not A-annihilated if o' = 1.

Because Sq2f.(a12) = a'el?, then the coefficient of efe3 is a’. So
«(ar2) = o ebe2 modulo the other basis elements .
162

From the above table it is obvious that the only non-zero A-annihilated and primitive

element in H1oQMO(10) is ee3. Hence for some 3 € Z/2,
fulary) = o' €32 + Beles.

A basis of Hi4QMO(10) is given by {eles, efeses, €fe3, eleies, efes}. Consider

the following table.

S S¢2 v

eles 0 efes 0
e§6264 6?64 + e?egeg 6?63 + e?e% 0
efe3 0 0 0
eleses 0 efes 0
Vel 0 0 0

Since ¥ ( f,(a1s)) = 0, then f,(ay4) is primitive. We have Sq!(ais) = 0, S¢2f.(ays) = 0,
Sqtf.(ars) = 0 and Sq¢®f.(a14) = 0. Then f,(ay4) is A-annihilated . Hence

fulara) = yefes + deie; + e(ejes + efezes),

where 7,8, e € Z/2.
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We will not need to find fi(a6), fi(ais) and f.(ag) for similar reasons to Theorem

8.1.7. A basis for HyoQMO(10) is given by the set

9 8,2 6,3 8,2 10 . 9 10, 8.2 9 9 1210
{eie1s, ejer, ereyes, exes, .o, € - ejes, ep - eje;, ejex-ejen, Qer t

where the symbol . . . denote to other elements of height one. We consider the following

table.
1 2 4 8 )y
54, S¢; Sq. | 5S¢ ¥
8,2 8,2
eses 0 0 0 | efes A
10, 8,2 10, .10
eles - eles 0 e1? - ef® 0 0 0
Q1210 Q'lelo el0 . 10 0 0 0
e1? - efes 0 0 0 0 B
6364 616364 + egeg 616363 + e%o 0 e§6264 B+C
where,
10 o 8,2 | 8.2 o 10
A = e ®eje;+eje; e,
10 o 9 9 10
B = e ®ejes+ejes@e;,

9 9
= ey Qejes.

Next we are going to apply the reduced coproduct on basis elements to find out a

non primitive elements as below:

U(fila)) = filan) ® fila2) + filaz) ® fi(a)
= a'(e? @ efes + efes + ®el’) + a'Blef’ @ eles + efes @ 1)

= o A+d'BB.
Then f,(ag) is not primitive if o’ = 1. Hence

/ / . o e
filaz) = a'el” - efes + a Bei’ - eles + primitive terms.
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From the table above the primitive elements of HyeQMO(10) are spanned by
{eSes +e1” - eles, eles - eles, Q™2e1”} U Pay
where Psy is a basis of primitive elements of height one. Therefore,
fulag) =a el eBe2 +a/Bel%. eles + by (€562 + 10 - e8e2) 4 o9 €ley - edeg+

dao Qme%o + ¥,

where bgg, Co2, d22 € Z/2 and (2 S PQQ.

Since Sql(f.(as)) =0, Sq(f(az)) =0, Sqi(f.(az)) = 0 and S¢d(f.(az)) =
f«(a14). Then f.(ag2) is not A-annihilated if (7 # 0 or 6 # 0).
Since Sq!(f«(asz)) = 0, then dy(Q"el®) = 0 = dyy = 0 and then

© 10 8.2 o 109 8.2, 10 82 9 9 /
fulagn) = a e -efes +a [ e - ejes+ by (e5e5 + € - eje3) + coo eea - eea + ¢,

where Sql¢ = 0. For S¢?(f.((as)) = 0, then

' 1010 10
Qe e +b22€ 61 + Co2 €1 61 =0
. . !
Since the coefficient of €1 - 1 : o + byy + 99 = 0. Hence

_ /10 9 10, 8.2 9
fulag) =a'el® - e3¢z + o/ el eles + byy (e5e2 + €10 efed) + ¢ eley - ey +

where " is the set of an A-annihilated primitive elements of height one in HoyQMO(10)
with Sq2¢” = 0 . Using diagram (6.3.3)

poh(a) = o/e1 ele2 + o ﬂe -efes + by €10 - e8e2 4 cgg eley - ey,
Then by Theorem 6.2.1 we have
&(pah(a)) = o' BeiPes + (0 + by + cxz)e®es.
Since o + bas + ¢92 = 0. Then
E(pah(a)) = ' Betbes.

Hence the double point manifold of immersion F' is cobordant to projective plane
if and only if @' = 3 = 1. Similar to the previous example, we observe that it is

enough to consider f,(a2). O
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In the next section we are going to use the same method in general to give a
condition for the existence of an immersion F' : M**2 9= CP**! with double point

manifold cobordant to the projective plane for general k =2 (mod 4).

8.1.4 The double point manifold of F : M**2 q» CP**!

We now give our main theorem. We observe that in the case of determining the double
point manifolds of a given immersion F : M**2 95 CP**+! it is possible to reduce the
calculation from calculating f,(agx+2) to calculating f.(agi2). We have the following

theorem.

Theorem 8.1.9. An immersion F : M2 qs CP*! corresponding to a map f :
CPYY — QMO(Kk), for k =2 (mod 4), i.e. k =4r +2, and r > 0 has double point

manifold cobordant to the projective plane if and only if
filagia) = €€ + i es.
Proof. Given a function f: CP{*™ — QMO(k), since k = 4r + 2, then
fiCPIT — QMO(4r + 2).
Since HyyQMO(4r +2) = 0, for all ¢ < 2r + 1. Then
fe(azi) = 0.

The homology group Hy,2QMO(4r + 2) = 7./2 generated by e;" 2. Then

for some o’ € Z/2. Moreover, since Hy,4QMO(4r+2) = (Z/2)? generated by ef"es

and ej"e3 and Sq?(a4r44) = agrre. Then

!
felasris) = avel’es + Bey es.

A basis for Hg,,QMO(4r + 2) is given by the set

ar+2 4r+1 Ar+4-2 4r 2 4r+41 4r+1 4r+4 r+2
{eq €3, €1 € €y, €1 €2 2, Q FUX.
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Here x denoted to elements of height one. The homology class of f.(as,+¢) has reduced

coproduct

U(filagris)) = felagri2) @ filasrra) + felaaria) @ fulagrio)
= o (2P @elre +elre2 @ el t?) +

! 4r42 4r+1 4r+1 4r+1
aflel P @el™es +el ey @ el es)

! !
= aA+af(B.
where
A = e odagtaGgea

o 4r+2 4r+1 4r+1 4r+1
B = e]"""®e] Tes+e] Te3®e] " es.

Then f,(asy4+¢) is not primitive when o' = 8 = 1. Hence

! Ar42 4r 2 + 06/564T+2 . 64T+1
1

fragrie = el el e 1 es + primitive terms.

The set of primitive elements of Hg, QMO (4r + 2) is spanned by
{ex'es + et etles, el en el s, QU TR U Py,

where Py, is the set of primitive elements of height one in Hg, sQMO(4r + 2).

Hence

o 4r42 Ar 2 o 4Ar42 Ar+1 Ar 2 4r+2 Ar 2
filasrie) = ey -ey"ey + o fey ™ el es + b (ex ey + ey ey eg)+

Ar41 dr+1 Ar+d Ar42
cel ey el es +d QY el + o,

where ¢ € Py, 6.
Now by applying S¢! on f.(ag,16) we get that Sq! f.(ag,+6) = 0 then

d Q' +1ef™? = 0 and so d = 0. Hence

! Ard2 dr 2| o dr+2 drtl ar 2 | Ar+2_dr 2 4+l Ar+l /

felasre) = ael el es+a Bl el estb (€3 es+el el es)+c el rer el eatp,
!

where Sql¢ = 0. For Sq¢?f.(ag,4¢) = 0. Then

7 p—
Oé 6411r+2 . 64{:7’-%2 + b (6%612” 26:2)’ + 64{:7”-%2 . elllr-‘rQ) +ec 641=r+2 X 64117“4-2 =0
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’
Coefficient of ef"t? . e} : a +b+c=0. Hence
ar42_4r 2 4r2 Aril Ar 2 Ar+2 dr Ar41,  Arl "
folagrys) = o el 2.etme2 10/ el e3tb (€5 es+el el ed)+c el eyel eyt

where ¢" is set of height one in Hg,,¢@MO(4r + 2) with Sq¢2¢" = 0.

Next by using diagram (6.3.3) we deduce that
Poh(Q) = €2 . el e | o/ Belrt? L hrtle, 4 b it gired | o etrtle, L irtle,
Therefore, by Theorem 6.2.1
E(pah(a)) = o' Bef ey + (o + b+ c)ef €]
Since & + b+ ¢ = 0. Then

é*(p2h<04)) = 6€8T+3

Then the double point manifold of an immersion F' is cobordant to the projective

plane if and only if o' = 3 = 1. ]

In the case r = 0 we have been able to construct a map with required property
showing that an immersion exists with double point manifold cobordant to the pro-
jective plane. For r > 0, a construction would be more difficult and this has not been

achieved.

8.2 The case k=14

We show that any immersion F : M% a» CP® has a double point manifold which is a

boundary.

Theorem 8.2.1. Given any immersion I : M® 9 CP®, then the double point man-
ifold of F' is a boundary.

Proof. According to Section 6.2, a basis of H1o@QMO(4) is given by the set

2 3 2 2 2.2 3 2.2 3 4 2.2 4 3
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3 3 6,4
ejes - ejes, Q7€ }.

Next we need to eliminate the impossible values for f,(aj) by using the action of the
Steenrod algebra, and the homology coproduct as we explained in chapter 5.

We start with f.(az). Since fi(as) € HoQMO(4) = 0, then
f«(az) = 0.
Since HiQMO(4) = Z/2 generated by e}, then
fulag) = a'eh.

A basis for HiQMO(4) is given by {e?e3, eles}. The homology class f.(ag) €
HgQMO(4) has the reduced cup coproduct

Ufilas) = fulas) ® fu(an) + folas) @ filas) = 0.

So f.(ag) is primitive. Since S¢q} f.(ag) = 0, Sq¢? f.(ag) = 0, then f,(a¢) is A-annihilated.

The only A-annihilated and primitive elements of HsQMO(4) is e}e3 as shown in the

following table:

e2ez| 0 | ef

n

i

N

=5
o | o | =

Hence we deduce that
felag) = ﬁe:{’eg.

A basis for HgQMO(4) is given by {ei€3es, eleses, cles, elel, e, ef-et}. To

eliminate the impossible values of f.(as) € HsQMO(4), we consider the following

table.
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Sql Sq2 Sq: W

e1€e3e3 0 eles 0 0

e2eqey | €ley + efeges | ees + ees | 0 0

eles 0 eles 0 0

ere3 0 0 0 0
e 0 0 el |el®@el

e} -ef 0 0 0 0

The reduced coproduct of f,(ag) is given by the following:

V(filag)) = filaz2) ® filas) + fulas) @ fulas) + filas) ® fi(az)

= a(eg@ef).
Then f,(ag) is not primitive if o' = 1. Hence
fulag) = o3 + primitive terms.

Since Sql(f.(as)) = 0, S¢2(f.(as)) = fu(as) = Beies and Sqi(f.(as)) = fulas) = a'ef,
then f,(ag) is not A-annihilated if o’ =1 or 3 = 1.

Since S¢*(f.(ag)) = a'e?, the coefficient of e} € f,(ag) is a’. Hence
fu(as) = &'} modulo the other basis elements .

On the other hand S¢?(f.(ag)) = fi(ag) = Beles, and we have two elements in
HgQMO(4) which are eje3es and ejes, with SqZejeses = Sq?ejes = eles. However,
e1e2es + ejes is an A-annihilated and primitive element.

Since the coefficient of eje2es € f.(ag) is 8. Then
fulas) = a3 4+ Beje2es + modulo annihilated primitive elements.

From the above table we deduce that the A-annihilated and primitive elements in

HgQMO(4) are spanned by the set {eje3es + efes, ele3, ef - ef}. Hence

folag) = a'ey + Beredes + ¢
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where ¢ = yefei+del el +e(ejedes+edes) is the set of an A-annihilated and primitive

element in HsQMO(4). Hence
fulag) = a'eh + Bejeles + ve2e? + det - et + e(erees + €les).

We are almost ready to invoke the A-annihilated and primitive elements for

Hi1oQMO(4) as follows

Sq! Sq¢? Sqt | W
e1egezey | €2eseq + ereqes elel 0 0
616365 0 616363 + 6?65 6?63 0
eleg 0 0 0 0
e2eqcq eleq + e2eges eles eles 0
6%6365 0 6%6% 0 0
eled 0 ete3 etes 0
eleq 0 0 0 0
ese3 0 ete3 0 A
6%64 616364 + 6%63 6%6264 + eg + 616363 e%e% B+C
e} - ee3 0 e] - ef 0 A
e} - eles 0 0 B
eley - edey 0 e} - ef 0 0
Q%e} Qoet 0 0 0
where
A = el®eles+ el ®e]
B = ef®eéles+elez@e]

3 3
= ejex ®ejer.
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The reduced coproduct of f,(a10) is obtained as follows

U(felan)) = filas) ® fulas) + filas) ® filas)
= o/e‘l1 ® Bedes + Bedes ® o/e‘ll
= afet @ edes + eles @ ed)

= o fB.
Then f.(ay0) is not primitive if o/ = 1. Hence
fulare) = o' fet - e3es + primitive terms.

Because Sq(a10) = 0, S¢fi(a10) = 0, and Sg; fi(aw) = fi(as) = PBejes, then
f+(a1p) is not A-annihilated if 5 = 1.
Now if we find all primitive elements in HyoQMO(4) which have S¢}(f.(a19)) =0

we deduce that
' 43 2 3 2 2 2 3
felar) = a B e} - ejes + 1 erezes + co eres + ¢3 ejeses + ¢4 eje; + ¢s ejer+

2 22, 4 22 3 3
co(ejeses + eze; + € - efe; + ejes - ejes),

where ¢; € Z/2, i =1,...,6.
By evaluating S¢? on f.(ajg) we get the following.

Since Sq}(fi(a10)) = fi(ag) = B €3es, then 3 e3ez = c; efes + ¢4 ele? and so
c1 =0 and ¢4 = 0.
Hence
felai) = alﬁe‘f . 6?63 + 0 616365 + ¢s eleg + c3 6%6365 + ¢5 ei’eﬁ—

2 22 4. 22 3 3
co (ereses + ezes + €] - efe; + ejes - ejes).

Finally, we note that because S¢?f.(aj0) = 0, then
Blereies + e3es) + c3 €22 + cg (eeses + ezes +ef - elel + edey - edey) = 0.

Therefore, § = c3 = 0.



CHAPTER 8. K IS EVEN 141

Now after the above calculations we find

h(a) = f.(aw) = co eres + cs5 e3er + co(eleses + e5es + e - e5es5 + erey - e3ey).

We are now in a position to determine the double point manifold of an immersion

F'. By using diagram (6.3.3) and referring to Theorem 6.2.1 we find that
poh(a) = cg(e] - €23 + e3ey - e3ey) € HigDyMO(4).

Then
Epah(a) = cﬁ(e?eg + e?eg) =0¢€ HioMO(8).

Hence the double point manifold of the immersion F' is a boundary. ]

The above theorem then shows that for any immersion F : M% 9= CP? its double

point manifold is a boundary.
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