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We review the general theory of cobordism of codimension k immersions of compact

manifolds M into a given compact manifold N . Applying the Pontrjagin-Thom con-

struction for immersions, any cobordism class [F : Mn # Nn+k] corresponds to a

unique homotopy class f ∈ [Nn+k
+ , QMO(k)]. According to Eccles [E96] the cobor-

dism class of the immersion F , as well as the r-fold intersection points of F , can be

determined using the Hurewicz image of the mapping f .

We shall apply these techniques to the problem of studying double point manifolds

of immersions Mk+2 # CP k+1. The double point manifold of such an immersion is a

surface, and the cobordism group of surfaces is completely known.

We shall prove that in the case that k is odd there exists always an immersion

Mk+2 # CP k+1 whose double point manifold is cobordant to the projective plane.

For even k, specifically k = 2, we show that there exists an immersion M4 # CP 6

whose double point manifold is cobordant to the projective plane.

In the other cases, Mk+2 # CP k+1 with k > 2 and k ≡ 2 (mod 4), we determine a

homological condition for the double point manifold to be cobordant to the projective

plane.

For k = 4, we show that the double point of any immersion M6 # CP 5 is a boundary.

In the case k > 4 with k ≡ 0 (mod 4) we do not have a complete result and this is

an ongoing project.
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Introduction

The idea of cobordism is a purely geometric idea, which aims to distinguish between

different manifolds. In an ideal world, one would like to determine whether or not

two given smooth n-dimensional manifolds M0 and M1 are diffeomorphic, which is of

course an open problem as well as it is not an easy problem. It is immediate that if

two manifolds M0 and M1 are diffeomorphic then the disjoint union M0 tM1 = ∂W

where W = M0 × [0, 1] is an (n+ 1)-dimensional manifold. However, the converse is

not true, i.e. M0tM1 = ∂W does not imply that M0 and M1 are diffeomorphic. Two

manifolds are said to be cobordant ifM0tM1 is the boundary of an (n+1)-dimensional

manifold W . Hence, cobordism provides a way of classifying n-dimensional manifolds

where n > 0 is arbitrary. This idea was initially considered by Thom.

The problem then reduces to distinguishing between two different manifolds in the

same cobordism class. These ideas can be extended to study cobordisms with given

structures, and various versions of such cobordism theories do exist. In this thesis,

we consider the theory of cobordism of manifolds equipped with an immersion in an

ambient space.

The essential idea in this thesis is to use a basic property of immersions. Given

an immersion F : Mn # Nn+k the image of F may have points whose preimage has

more than one point. Such points are known as ‘self-intersection’ points of F . We

then observe that if the immersion F is self-transverse then the set of those points

whose preimage has r-distinct points known as the r-fold manifold of F is itself a

submanifold. We shall only consider the case of double point manifolds of immersions,

in the special case of Mk+2 # CP k+1 where the double point manifolds are surfaces.

Previously, Asadi and Eccles [AEa00] have considered the problem of determining
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the cobordism class of double point manifolds of immersions Mk+2 # R2k+2. Any

surface is either a boundary or is cobordant to the real projective plane. For all k,

there exists an immersion Mk+2 # R2k+2 with double point manifold which is a

boundary. For example take the standard embedding Sk+2 ↪→ R2k+2 when the double

point manifold is empty. They show that there exists an immersion F with double

point manifold cobordant to the projective plane if and only if k ≡ 1 (mod 4), or

k ≡ 3 (mod 4) and k + 1 is a power of 2.

This thesis considers the same problem for immersions Mk+2 # CP k+1. Notice

that any immersion Mk+2 # R2k+2 gives rise to an immersion Mk+2 # CP k+1

with the same double point manifold. We show that, for odd k, there is always an

immersion with double point manifold cobordant to the projective plane. For even

k, we only have partial result. For k = 2, there exists an immersion with double

point manifold cobordant to the projective plane. For k = 4, there does not exist an

immersion with double point manifold cobordant to the projective plane. For other

values of k with k ≡ 2 (mod 4), we give a condition for the existence of an immersion

with double point coborant to the projective plane.

The method of our calculation is to translate problems from geometry into homo-

topy theory through the Pontrjagin-Thom construction. The outline of this thesis is

as follows.

Chapter 1 includes background material from differential topology, and homotopy

theory. We review the issue of transversality in Chapter 2. In Chapter 3 we recall the

basics of the Pontrjagin-Thom construction for embeddings, which are essential for

the introduction of the Pontrjagin-Thom construction for immersions introduced in

Chapter 4. In these two chapters, we also set up the homological machinery that we

are going to use during our calculations. In Chapter 5 we recall some facts about the

Steenrod operations, and the Kudo-Araki operations. We shall describe in Chapter

6, how we can determine the cobordant class of the double point manifold of an

immersion. Chapters 7 and 8 then illustrate the techniques introduced in previous

chapters, and contain the proofs of our results.



Chapter 1

Background

Through this chapter we review some of the geometric background material, and fix

our notation.

The notion of homotopy is of fundamental importance for us. The main essence of

our thesis is to translate geometric problems into equivalent problems in homotopy

theory, and use the methods of algebraic topology to solve these problems. For this

reason, we start by recalling some basic facts from homotopy theory.

1.1 Sets of homotopy classes of maps

We consider topological spaces and continuous maps between these spaces.

Definition 1.1.1. We say two continuous maps f0, f1 : X → Y are homotopic if

there is a family of continuous maps ft : X → Y for every t ∈ I = [0, 1] i.e if there

exists a continuous map F : X×I → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x).

We say F is a homotopy between f0 and f1, and we write f0 ' f1 (or F : f0 ' f1) to

indicate that f0 is homotopic to f1.

It is easy to check that the homotopy relation is an equivalence relation on the

set of all continuous maps X → Y , denoted by Map(X, Y ). Let [X, Y ] denote the set

of homotopy classes of maps from X to Y , i.e.

[X, Y ] = Map(X, Y )/ ',

12



CHAPTER 1. BACKGROUND 13

where ' is the homotopy relation.

Notice that if Y is path-connected then the set [X, Y ] contains a distinguished

class of maps, namely all the constant maps. We will use this as a base point for

[X, Y ] if one is needed.

If X has a base point x0 and Y has a base point y0, let [(X, x0), (Y, y0)] denote

the homotopy classes of based maps, where a based map is a map f : X −→ Y , such

that f(x0) = y0. We may write f : (X, x0) → (Y, y0) for such a pointed map. Then

[(X, x0), (Y, y0)] has distinguished class, namely the class of the constant mapping

sending everything to y0.

Given a map f : X −→ Y , let [f ] denote its homotopy class in [X, Y ]. Notice that

it will be clear from the context whether the spaces are based or not . So if there is

no confusion we may write [X, Y ] for based maps as well.

Next, we introduce a couple of constructions that are central in homotopy theory.

Definition 1.1.2. For a space X, the suspension SX is the quotient of X×I obtained

by collapsing X × 0 to one point and X × 1 to another point.

If X has a base point x0 ∈ X the reduced suspension of X, denoted by ΣX, is obtained

from the suspension SX by collapsing the line segment x0 × I to a point; equivalently

ΣX ∼= X ∧ S1 ∼= X × S1/X ∨ S1.

The point that we collapse X ∨ S1 to is the base point of this space.

The space of all paths in a space Y is defined to be the function space Y I = PY =

Map(I, Y ) [G75]. This space is given the compact-open topology, that is generated by

all pairs 〈K,V 〉 of all f ∈ Maps(X, Y ) with f(K) ⊆ V for K ⊆ X and V ⊆ Y such

that K is a compact subset of X and V is an open subset of Y . If Y has a base point

y0 ∈ Y the space of loops in Y based at y0 is defined by

Ω(Y, y0) = Map
(
(I, {0, 1}), (Y, y0)

)
which is the set of all maps α : I → Y such that α(0) = α(1) = y0. This set is

homeomorphic to Map
(
(S1, s0), (Y, y0)

)
with the compact-open topology where s0 =

(1, 0) is the base point of S1 (when sitting in R2). The space of loops at Y is a subspace
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of Y I and is topologized as a subspace of the space Y I . Recall that ΣSn ∼= Sn+1 (i.e.

they are homeomorphic).

Notice that the loop and suspension give rise to functors. More precisely, for a

given map f : X → Y we have Σf : ΣX → ΣY where Σf([x, t]) = [f(x), t] where

we write [x, t] for the class of (x, t) ∈ X × I under the identification in the above

definition. Similarly, we have Ωf : ΩX → ΩY where Ωf(α) = f ◦ α.

Our next observation, is a relation between suspension and loop functors.

Theorem 1.1.3. Adjointness theorem . Let X, Y be pointed spaces. Then there

is a natural bijection [ΣX, Y ] ∼= [X,ΩY ].

Proof. Let X be a space with base point x0. The maps

f : X × I → Y

are in one to one correspondence with maps

g : X → Y I

defined by f(x, t) = g(x)(t), where (x ∈ X, t ∈ I). If we take account of the base

points, we find the maps f : ΣX → Y are in (1-1)-correspondence with maps

g : X → ΩY.

So, passing to homotopy class we see that a natural (1-1)-correspondence

[ΣX, Y ]↔ [X,ΩY ],

where ΩY is the loop space of Y at its chosen basepoint and the constant loop is

taken as the basepoint of ΩY .

Now we would like to have a group structure on [X, Y ]. This can be obtained

using the basic adjoint relation as following.

Lemma 1.1.4. Let X and Y be based spaces and all maps and homotopies preserve

base points. Then

(1) [X,ΩY ] ∼= [ΣX, Y ] is a group;

(2) [X,Ω(ΩY )] ∼= [ΣX,ΩY ] ∼= [Σ2X, Y ] is an abelian group.



CHAPTER 1. BACKGROUND 15

Proof. See [DK, Lemma 6.41].

Definition 1.1.5. Suppose that X is a pointed space with base point x0 ∈ X, and

n > 0. The n-th homotopy group of X at x0, denoted by πn(X, x0) is defined by

πn(X, x0) = [(Sn, s0), (X, x0)],

where s0 is the base point of Sn ∼= ΣSn−1. When n = 0, we have the set of path-

connected components of X which is not a group in general and is given by π0X =

[(S0, {0}), (X, x0)] where S0 = {0, 1}.

Notice that π1(X, x0) is a group, but non-commutative in general. πn(X, x0) is an

abelian group for n ≥ 2.

This definition depends on the chosen base point. However, there are spaces such

that the definition will be independent of this choice. Recall that a space X is called

path connected if for any pair of points x0, x1 ∈ X there exists a continuous function

α : I → X such that α(0) = x0 and α(1) = x1. Moreover, for a given such path we

have the reverse path associated with α given by rα : I → X such that rα(t) = α(1−t)

which satisfies rα(0) = x1 and rα(1) = x0.

We also recall the definition juxtaposition of two paths. If we have α, β ∈ PX such

that α(1) = β(0), we then may define another path α ? β ∈ PX by

(α ? β)(t) =

 α(2t) 0 6 t 6 1/2,

β(2t− 1) 1/2 6 t 6 1.

Now assume X is path connected and let x0, x1 ∈ X be two distinct points. Choose

a path α ∈ PX such that α(0) = x0 and α(1) = x1. We then define

φα : π1(X, x0) −→ π1(X, x1)

by

φα[f ] = [αfrα].

This is easy to check that this map is an isomorphism of groups.

Lemma 1.1.6. The mapping φα : π1(X, x0) −→ π1(X, x1) is an isomorphism.
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This lemma has a generalization to higher homotopy groups.

Theorem 1.1.7. Let n > 1. For each path α : I → X there exists an isomorphism

πn(X,α(0)) −→ πn(X,α(1)).

Proof. See [B, Theorem 7.2, Chapter VII].

According to above lemma, and the theorem after it, when X is path connected

we may relax our notation and just write πnX. Moreover, when X has more than one

component, we choose to work with the component which has the base point, and

hence using this notation for πnX makes sense.

Finally, according to the Adjointness theorem observe that for nonnegative inte-

gers n, k

πn+kX = [Sn+k, X] = [ΣkSn, X] ∼= [Sn,ΩkX] = πnΩkX.

1.2 Stable homotopy groups

Recall from the previous section that suspending a based map f : X → Y gives rise

to a based map Σf : ΣX → ΣY . This then allows us to have the following definition.

Definition 1.2.1. The suspension homeomorphism

Σ : πn(X)→ πn+1(ΣX), n ≥ 0,

is defined by Σ[f ] = [Σf ], where f : Sn −→ X and Σf : ΣSn ∼= Sn+1 −→ ΣX is

the suspension of f . Clearly it is a natural transformation from the functor πn to the

functor πn+1 ◦ Σ.

It is useful to know if there are cases when the suspension homeomorphism is

an isomorphism. The following theorem identifies one of these cases. Recall that a

topological space X is said to be (k − 1)-connected, if πiX = 0 for all i ≤ k − 1.

Theorem 1.2.2. Freudenthal suspension theorem . Suppose that X is a (k−1)-

connected CW complex. Then the suspension map πi(X) −→ πi+1(ΣX) is an isomor-

phism for i < 2k − 1 and a surjection for i = 2k − 1.



CHAPTER 1. BACKGROUND 17

Proof. See [H02, Corollary 4.24.]

Notice that in particular, the n-sphere Sn is (n−1)-connected. The following then

is an application of the above theorem.

Corollary 1.2.3. For every n ≥ 1

Σ : πn(Sn) −→ πn+1(Sn+1)

is an isomorphism, and hence πn(Sn) ∼= Z, n ≥ 1.

Proof. See [S75, Theorem 6.28].

From Theorem 1.2.2 for a (k−1)-connected CW complex X, the suspension map

πi(X)→ πi+1(ΣX) is an isomorphism for i < 2k− 1. We note that when we suspend

a space, we increase the connectivity of that space by 1. Therefore, for every space X

and i > 0, there exists l, sufficiently large, such that (ΣlX) is (k + l − 1)-connected

and i+ l < 2(k + l)− 1, i.e. in

πi+lΣ
lX → πi+l+1Σl+1X → πi+l+2(Σl+2X)→ · · · → πi+l+mΣl+mX

all mappings are isomorphisms where m > 0 is arbitrary. This means that for any

space X, and i > 0, after finitely many suspensions the resulting homotopy group

is independent of suspension, and there is a unique group, which we call it the i-th

stable homotopy group of X, denoted by πSi X. More formally, we may define

πSi X = direct limit πi+lΣ
lX.

By the Adjointness theorem πi+lΣ
lX is isomorphic to πiΩ

lΣlX for all l and i,

where Ωl denotes the l-th loop space functor. There is a natural inclusion of ΩlΣlX

in Ωl+1Σl+1X. Let QX denote the direct limit lim ΩlΣlX. According to [G75, Chapter

15 (direct limits)] one can take direct limit of a directed system of spaces and then

take the homotopy group, or can take the homotopy group and then take the direct

limit of the result directed system of groups. So,

πSi X
∼= lim πi+lΣ

lX ∼= lim πiΩ
lΣlX ∼= πilim ΩlΣlX ∼= πiQX,

that is, any stable homotopy group can viewed as an unstable homotopy group as

well.
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1.3 Immersions

Through this thesis we will work with compact, connected, smooth manifolds of finite

dimensions, and smooth maps between such manifolds; Mn will denote a manifold of

dimension n.

Definition 1.3.1. A map F : M −→ N is called an immersion if the Jacobian

dFx : TxM −→ TF (x)N is a monomorphism (injective) for every x ∈ M . We denote

an immersion F by F : M # N .

Definition 1.3.2. A map F : M −→ N is called a submersion if the Jacobian

dFx : TxM −→ TF (x)N is surjective for every x ∈M .

Definition 1.3.3. If F : M # N is an immersion and F : M → F (M) maps

M homeomorphically onto its image, then F is called an embedding denoted by F :

M ↪→ N .

We shall provide examples of immersions in later chapters. Next, we introduce

equivalence relations between immersions and embeddings.

Definition 1.3.4. An isotopy between embeddings of manifolds F0, F1 : M ↪→ N is

a homotopy

F : M × I −→ N ; (x, t) 7→ Ft(x)

such that for each t ∈ I the map Ft : M ↪→ N is an embedding. That is, it is a

homotopy through embeddings.

Definition 1.3.5. A regular homotopy of immersions F0, F1 : M # N is a homotopy

F : M × I −→ N ; (x, t) 7→ Ft(x)

such that for each t ∈ I the map Ft : M # N is an immersion.

Remark 1.3.6. In particular, an embedding is an immersion, and isotopic embed-

dings are regular homotopic.
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This notion will be useful, as in the next subsection we show that the normal

bundle of an immersion only depends on the regular homotopy class of the given im-

mersion. This is technically important as we want to calculate the algebraic invariants

of a given immersions.

The set of r-fold points of a given immersion is defined as below.

Definition 1.3.7. Let F : Mn # Nn+k be an immersion where k > 0. For integers

r ≥ 1, we may define the r-fold self intersection sets of F in N as follows

Ir(F ) = {y = F (x1) = · · · = F (xr) ∈ N | |F−1(y)| ≥ r} ⊆ N.

A point y ∈ Nn is called an r-fold intersection point of F if y ∈ Ir(F ).

Example 1.3.8. For n = 1 and k = 1 then the figure eight immersion of the circle

F : S1 # R2 has a single double point, I2(F ) ⊆ R2.

In the next chapters, we will set up the framework that we are going to use in

order to study the self-intersection points of a given immersion. In our examples we

will take N to be Euclidean spaces, and projective spaces. We fix our notation for

these spaces.

Definition 1.3.9. The real projective space RP n is the set of lines through the origin

in Rn+1, i.e. RP n is the set of all one-dimensional subspaces of Rn+1.

We may obtain RP n by identifying antipodal points in Sn, i.e. RP n = Sn/{x,−x}.

Example 1.3.10. RP 1 ∼= S1 is called the real projective line. RP 2 is called the real

projective plane. We will use this surface in many places. RP∞ = limn RP n is called

infinite real projective space.

By analogy, we may define complex projective space CP n.

Definition 1.3.11. The complex projective space CP n, of complex dimension n (real

dimension 2n), is the set of complex 1-dimensional subspaces of Cn+1.
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We can identify this space with a quotient of the unit 2n+1 sphere in Cn+1 under

the action of U(1) = S1, i.e. CP n ∼= S2n+1/S1. This is because every complex line in

Cn+1 intersects the unit sphere in a circle. This action is given by

z(z1, z2, . . . , zn+1) = (zz1, zz2, . . . , zzn+1),

for z ∈ S1 and (z1, z2, . . . , zn+1) ∈ S2n+1.

Example 1.3.12. CP 1 ∼= S3/S1 ∼= S2 is called the complex projective line. CP 2 is

called the complex projective plane. CP∞ is called infinite complex projective space.

Notation 1.3.13. We will write RP n
k for the truncated real projective space RP n/RP k−1,

and RP∞k for the truncated real projective space RP∞/RP k−1. Similarly, we will write

CP n
k for the truncated complex projective space CP n/CP k−1, also CP∞k for the trun-

cated complex projective space CP∞/CP k−1.

1.4 Vector bundles

In order to study the self intersection points of a given immersion, we will use specific

invariants of vector bundles. For this reason, we include a brief review of vector bundle

theory.

Definition 1.4.1. A real vector bundle ξ over B is a triple (E, π,B) such that:

(1) The topological space E = E(ξ) is called the total space.

(2) The continuous map π : E → B called the projection map.

(3) Each b ∈ B has a fiber π−1(b) and each fiber has the structure of a vector space

over R, we will write Fb(ξ) for this fibre. Moreover, for each b ∈ B there exists a

neighborhood U ∈ B of b, and a homeomorphism φ : U × Rn → π−1(U), such that

for each x ∈ U the restriction φ : {x} × Rn → π−1(x) is an isomorphism of vector

spaces. The pair (U, φ) will be called a local coordinate system for ξ about b. We say

ξ is n-dimensional if π−1(b) ' Rn for all b ∈ B.

Next, we define maps between n-dimensional vector bundles over the same base

space.
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Definition 1.4.2. Let ξ = (E, π,B) and η = (E ′, π′, B′) be two vector bundles. A

bundle map η → ξ is pair of continuous functions g : E ′ → E and g : B′ → B such

that the following diagram commutes

E ′
g //

π′

��

E

π

��
B′ g

// B

So g(Fb′(η)) ⊆ Fg(b′)(ξ) for all b′ ∈ B′. If ξ and η are over the same base space, i.e.

B = B′ and g(b) = b, we will say ξ is isomorphic to η if g is a homeomorphism,

and it maps (Fb′(η)) isomorphically onto Fg(b′)(ξ). We write V ectn(B) for the set of

n-dimensional bundles over B.

We now provide the reader with a set of examples of vector bundles that we are

going to use throughout this thesis.

Example 1.4.3. The trivial bundle over B is given by εnB = (B×Rn, π, B) where π :

B ×Rn → B is the natural projection. More generally, we will say an n-dimensional

vector bundle ξ over B is trivial if it is isomorphic to εnB. Such an isomorphism is a

trivialization of ξ.

Example 1.4.4. Let M ⊆ Rn+k be an n-dimensional manifold. The tangent bundle

of M , denoted by τM , has E(τM) =
⋃
x∈M TxM with

TxM = {(x, v) | v ∈ Rn+k such that v is tangent to M at x}.

The space E(τM) ⊆M×Rn+k has the subspace topology. The projection π : E(τM)→

M map is given by π(x, v) = x. Notice that π−1(x) = TxM . The vector space structure

on each fibre TxM is determined by

t1(x, v1) + t2(x, v2) = (x, t1v1 + t2v2)

where t1, t2 ∈ R. The local triviality condition is satisfied.

Although we used an embedding to define the tangent bundle, it is possible to

define the tangent bundle of a differentiable n-dimensional manifold M only using
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the charts of the differentiable structure. For a given point x ∈ M with a local

chart φ : U
∼=→ Rn one identifies the tangent space TxM with the space spanned by

differential operators

∂

∂x1
,
∂

∂x2
· · · , ∂

∂xn
.

In this way, it is possible to see that τM is an n-dimensional vector bundle and is

independent of the embedding ( we refer the reader to [B75, Chpater 2, Section 4] for

more details). The space E(τM) also can be given the structure of a 2n-dimensional

differential manifold [MS74].

However, our definition is of a more geometrical nature. We note that it is always

possible to define the tangent bundle of a given manifold in this way as according to

Whitney’s embedding theorem we always can embed a given manifold in Euclidean

space as a submanifold.

Theorem 1.4.5. Whitney’s embedding theorem . If Mn is a compact n-manifold

then there exists a smooth embedding F : Mn → R2n+1.

Proof. See [B, Theorem 10.7].

In the next proposition we study the pullback of a given vector bundle.

Proposition 1.4.6. Given a map f : B
′ −→ B and a vector bundle ξ given by

π : E −→ B there exists a vector bundle f ∗ξ = (E(f ∗ξ), π′, B′) and a map

f̂ : f ∗E −→ E taking the fiber Fb′(f
∗ξ) isomorphically onto Ff(b′)(ξ).

Moreover, if η = (E ′, p′, B′) is another vector bundle with a bundle map η → ξ then

η ∼= f ∗ξ as vector bundles over B′, i.e. pullback of a vector bundle along f is unique

up to isomorphism of vector bundles over B′.

Proof. We define E(f ∗ξ) = {(b′ , e) | b′ ∈ B′ , e ∈ E, f(b
′
) = π(e)} ⊆ B′ × E with the

subspace topology. We let π
′

: E(f ∗ξ) −→ B
′

be defined by π′(b
′
, e) = b

′
. There is a

continuous map f̂ : E(f ∗ξ) −→ E given by f̂(b
′
, e) = e. Then we can check that the

following diagram commutes.

E(f ∗ξ)

π
′

��

f̂ // E

π

��
B
′

f
// B
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One can be more explicit about local trivializations in the constructed bundle

f ∗ξ. If E is trivial over a subspace U ⊆ B then f ∗ξ is trivial over f−1(U) and so is a

vector bundle. In particular, if ξ is a trivial bundle then so is f ∗ξ. This can also be

seen directly from the definition, which in the case E = B × Rn just says that f ∗ξ

consists of the triples (b
′
, b, e) in B

′ × B × Rn with b = f(b
′
), so we have just the

product B
′ × Rn.

To show uniqueness, let η = (E ′, p′, B′) be another vector bundle satisfying the

proposition, i.e. there exists a mapping f̂1 : E ′ → E such that

E ′
f̂1 //

p′

��

E

π

��
B′

f // B

and f̂1 maps each fibre Fb′(η) isomorphically onto Ff(b′)(ξ).

Define h : E
′ → E(f ∗ξ) by h(e

′
) = (p′(e

′
), f̂1(e

′
)) = (b

′
, e), where e

′ ∈ E ′ . Since h

is continuous and maps each fiber Fb′ (η) isomorphically onto the corresponding fiber

Fb′ (f
∗ξ) then h is an isomorphism of vector bundles.

Remark 1.4.7. From the uniqueness statement it follows that the isomorphism type

of f ∗ξ depends only on the isomorphism type of the bundle ξ since we can compose

the map f̂ with an isomorphism of E with another vector bundle over B. Thus we

have a function f ∗ : V ectn(B) −→ V ectn(B
′
) taking the isomorphism class of E(ξ)

to the isomorphism class of E
′
(η). Often the vector bundle E

′
(η) is written as f ∗ξ

and called the bundle induced by f , or the pullback of ξ by f . A map f : B
′ −→ B

gives rise to a function f ∗ : V ectn(B) −→ V ectn(B
′
), in the reverse direction.

Notice that by construction, if ξ is an n-dimensional vector bundle then f ∗ξ is

also an n-dimensional vector bundle. We provide some easy examples.

Example 1.4.8. The restriction of a vector bundle ξ over a subspace A ⊆ B can

be viewed as a pullback with respect to the inclusion map A ↪→ B since the inclusion

π−1(A) ↪→ E is certainly an isomorphism on each fiber.

Example 1.4.9. If f : B
′ −→ B is a constant map, having image a single point

b ∈ B, then f ∗ξ = E(B
′ × π−1(b)) is a trivial bundle.
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Definition 1.4.10. If ξ is a bundle over B and η is a bundle over B′. We define a

bundle ξ × η over B ×B′ by

E(ξ × η) = E(ξ)× E(η)
π×π′ // B ×B′ .

Then the Whitney sum ξ ⊕ η of two bundles over B is defined to be ∆∗(ξ × η)

and is called Whitney sum of ξ and η where ∆ : B → B × B is the diagonal map

∆(b) = (b, b). Note that each fiber Fb(ξ⊕η) is canonically isomorphic to Fb(ξ)⊕Fb(η).

The notion of a pullback bundle has a nice homotopy property.

Theorem 1.4.11. Let f, g : B′ → B be two homotopic maps, with B′ a para-compact

space. Let ξ be a vector bundle over B. Then f ∗ξ and g∗ξ are isomorphic as vector

bundles over B′.

Proof. See [D66, Theorem 4.7, Chapter 1, Section 4].

Definition 1.4.12. Let ξ, η, and ζ be three vector bundles over a fixed base space B.

A short exact sequence

0 // ξ
g // η h // ζ // 0

of vector bundles over a fixed base space is given by bundle maps g and h where over

each point b ∈ B we obtain short exact sequences of vector spaces

0 // Fb(ξ)
g // Fb(η) h // Fb(ζ) // 0.

Now we can define the normal bundle of an immersion. Let F : Mn # Nn+k be an

immersion. We then have two vector bundles over Mn, namely, τM and F ∗τN where

for each x ∈M
E(τM) = {(x, v) | v ∈ TxM},

E(F ∗τN) = {(x,w) | w ∈ TF (x)N}.

We define a bundle map from τM → F ∗τN which on the level of total spaces is

covered by g : E(τM) → E(F ∗τN) with g(x, v) = (x, dFxv). Notice that F is an

immersion, and therefore the restriction of g to each fibre Fx(τM) → Fx(F
∗τN) is
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a monomorphism, since g is defined by dF . We then let the normal bundle of F ,

denoted by νF , be defined by the following exact sequence of vector bundles over M

0 // τM
g // F ∗τN

h // νF // 0.

More precisely, we have νF = (E(νF ), π,M) defined by

E(νF ) = {(x, v) | x ∈M, v ∈ Fx(F ∗τN)/Fx(τM)}

and the projection map is given by π(x, v) = x. Notice that over each point x ∈ M

the above short exact sequence is given by a short exact sequence of vector spaces

over R

0 // Fx(τM)
g // Fx(F

∗τN) h // Fx(νF ) // 0

which is split, i.e. over each point x ∈M we have Fx(F
∗τN) ∼= Fx(τM)⊕Fx(νF ). This

implies that E(νF ) ⊆ E(F ∗τN). We then give the subspace topology to E(νF ).

If we assume that N ⊆ Rl for some large l, where Rl has the Euclidean inner

product, then, τN has a natural Euclidean structure. Therefore, we may think of νF

as given by

{(x, v) | x ∈M, v ∈ F ∗τN and v ⊥ TxM}

over each point x ∈ M . In this case, each fibre νF at a point x ∈ M is given by the

orthogonal complement of TxM , that is

Fx(νF ) = TxM
⊥ = {(x, v) | v ∈ F ∗τN and v ⊥ TxM}.

We then may view νF as the orthogonal complement of τM in F ∗τN .

Notice that each fibre Fx(νF ) is defined as the quotient of two vector space, namely

Fx(τM) and Fx(F
∗τN). We then may say that νF is the quotient of F ∗τN by τM . In fact

for given a map of vector bundles ξ → η over the same base space with dim ξ 6 dim η

we can define a general construction as the quotient bundle η/ξ. We refer the reader

to [D66] for more details. The following proposition collects these observations.

Definition 1.4.13. If Mn # Nn+k is an immersion. The quotient bundle νF =

F ∗τN/τM is a k-dimensional bundle over M called the normal bundle of the immer-

sion F .
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Proposition 1.4.14. For any immersion F : M # N , with N Riemannian, that is,

its tangent bundle τN has a Euclidian structure, there is a Whitney sum decompo-

sition

F ∗τN ∼= τM ⊕ νF .

Proof. Since F is an immersion then dFx : TxM → TF (x)N is a monomorphism. In

addition, TxM is isomorphic to dFx(TxM). This implies that TxM is a subvector

space of TF (x)N . However,

Fx(F
∗τN) ∼= x× {(y, v) ∈ τN : y = F (x)},

∼= {(F (x), v) | v ∈ TF (x)N}
∼= TF (x)N.

Hence, TxM is a subvector space of TF (x)N , Therefore τM is a subbundle of F ∗τN .

Then we have F ∗τN ∼= τM ⊕ νF .

In particular, when F : Mn → Rn+k we have

F ∗τ(Rn+k) = τM ⊕ νF .

Since τ(Rn+k) is trivial, then F ∗τ(Rn+k) is trivial, i.e. τM ⊕ νF = εn+k
M .

We note that the notion of the ‘orthogonal complement’ of ‘tangent bundle’ can

be generalized as follows. Suppose η = (E, π,B) is a vector bundle which possesses

a Riemannian metric, as explained in Section 1.5. Let ξ be a sub-bundle of η, i.e.

ξ = (E ′, π′, B) where E ′ ⊆ E and π′ is just given by the restriction of π on E ′. In

particular, we have Fb(ξ) ⊆ Fb(η). We also have the orthogonal complement of Fb(ξ)

inside Fb(η), defined by

Fb(ξ)
⊥ = {(b, v) ∈ Fb(η) | 〈v, w〉b = 0 for all w ∈ Fb(η)}

where 〈−,−〉b denotes the inner product on Fb(η) coming from the Riemannian struc-

ture on η. We then define the vector bundle ξ⊥ as a sub-bundle of η, to have

E(ξ⊥) =
⋃
b∈B

Fb(ξ)
⊥
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and the projection map E(ξ⊥) −→ B is given by (b, v) 7−→ b. The local triviality of

this bundle and the vector space structure on each fibre are inherited from η. We call

ξ⊥ the orthogonal complement of ξ in η.

Theorem 1.4.15. E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊆ η. Furthermore η

is isomorphic to the Whitney sum ξ ⊕ ξ⊥.

Proof. See [MS74, Thm 2.10].

Remark 1.4.16. From Proposition 1.4.14, since τM is a sub-bundle of F ∗τN . Then

by Theorem 1.4.15 we have F ∗τN ∼= τM⊕τ⊥M . Hence the normal bundle of F , νF ∼= τ⊥M .

Corollary 1.4.17. A cross section of τM is called a (tangent) vector field on M ,

and a cross section of νM is called a (normal) vector field on M .

Finally, we describe the ‘universal bundles’ and show that any vector bundle over

a para-compact space is the pullback of a universal bundle. First we recall definition

of the Stiefel and Grassmann manifolds.

Before defining the Stiefel space let us mention that an n-frame in Rn+k is an n-tuple

of linearly independent vectors of Rn+k.

Definition 1.4.18. (1) The Stiefel manifold Vn(Rn+k) is the set of all orthonormal

n-frames in Rn+k i.e.

Vn(Rn+k) = {(υ1, . . . , υn) | υi ∈ Sn+k−1, υi · υj = δij},

where δij is Kronecker’s delta function.

(2) The Grassmann space of n-dimensional subspaces of Rn+k, denoted by Gn(Rn+k),

is the set of all n-dimensional vector subspace of Rn+k, that is n-dimensional planes

in Rn+k passing through the origin.

Notice that because Vn(Rn+k) is a closed subset of the compact space (Sn+k−1)n,

it is a compact space when it is topologized with the subspace topology. Moreover, ac-

cording to the above definition, there is a natural surjection Vn(Rn+k) −→ Gn(Rn+k)

sending an n-frame to the subspace it spans, and Gn(Rn+k) is topologized by giving

it the quotient topology with respect to this surjection. So Gn(Rn+k) is compact as

well. We also record the following fact.
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Lemma 1.4.19. The Grassmann manifold Gn(Rn+k) is a compact topological mani-

fold of dimension nk. The correspondence V −→ V ⊥, which assigns to each n-plane

its orthogonal n-plane, defines a homeomorphism between Gn(Rn+k) and Gk(Rn+k).

Proof. See [MS74, Lemma 5.1].

Next, we introduce the notion of infinite dimensional Grassmann spaces. No-

tice that there are natural inclusions Rm → Rm+1 which allows to think of a k-

plane in Rm as a k-plane in Rm+1. Using these inclusions we obtain inclusion maps

Gn(Rn+k)→ Gn(Rn+k+1). We now can formulate the definition of infinite dimensional

Grassmannians.

Definition 1.4.20. The infinite dimensional Grassmann manifold of n-planes in R∞,

is the set of all n-dimensional linear subspace of R∞

BO(n) = Gn(R∞) = lim
k→∞

Gn(Rn+k+1) =
∞⋃
k=0

Gn(Rn+k)

and is topologized by the weak topology, i.e. a set in Gn(R∞) is open (or closed) if

and only if it intersects each Gn(Rn+k) in an open (or closed) set. Here the direct

limit is taken over the natural inclusions Gn(Rn+k)→ Gn(Rn+k+1) as k →∞.

The space BO(n) is a limit of compact spaces, and in particular, it is paracompact

[MS74, Corollary p. 66].

Remark 1.4.21. We note that by analogy one can define the complex Grassmannian

manifold Gn(Cn+k) to be the space of all complex n-dimensional subspaces of Cn+k.

Similarly, we have the Grassmannian manifold of complex n-dimensional subspaces

in C∞ which we denote by BU(n).

Note that when n = 1 we haveG1(R1+k) = RP k, and V1(R1+k) = Sk. In particular,

we have

BO(1) = G1(R∞) = RP∞, BU(1) = G1(C∞) = CP∞.

Let An denote the set of all n×n real matrices. The set of all non-singular matrices

is the general linear group GL(n,R), which is an open subset of An. We have the
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group O(n) of orthogonal real matrices which is a subgroup of GL(n,R) and then

the group O(n − 1) is a subgroup of O(n). From these groups we can construct the

Stiefel space as

Vn(Rn+k) ∼= O(n+ k)/O(k).

This description is useful, when we consider the generalized J-homomorphism in

Chapter 7. We also have

Gn(Rn+k) ∼= Vn(Rn+k)/O(n).

Now we are ready to introduce the ‘universal bundles’. First, we look at the canonical

bundles over finite dimensional Grassmann manifolds.

Example 1.4.22. The canonical n-vector bundle γnk (Rn+k) over Gn(Rn+k) has the

total space

E(γnk (Rn+k)) = E(γnk ) = {(X, x) | X ∈ Gn(Rn+k), x ∈ X}.

This is to be topologized as a subset of Gn(Rn+k) × Rn+k. The projection map π :

E(γnk ) −→ Gn(Rn+k) is defined by π(X, x) = X.

Lemma 1.4.23. γnk (Rn+k) is n-dimensional vector bundle.

Proof. See [H03, Lemma 1.15].

In the special case of n = 1, γ1
k is called the canonical line bundle.

Next, we define the Gauss map which tells us how to classify a given bundle over

a para-compact space.

Given a smooth n-manifold M ⊆ Rn+k the generalized Gauss map

g : M −→ Gn(Rn+k)

can be defined as the function which carries each x ∈M to its tangent space TxM ∈

Gn(Rn+k). In the following diagram

E(τM)

��

g // E(γnk )

��

M
g

// Gn(Rn+k)
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g is covered by a bundle map

g : E(τM) −→ E(γnk ),

where g(x, v) = (TxM, v). We will use the abbreviated notation

g : τM −→ γnk

for this bundle map. From the uniqueness of pullbacks in Proposition 1.4.6, we deduce

that that τM ∼= g∗γnk . Not only tangent bundles, but all other n-vector bundles over a

para-compact space can be mapped into the bundle γnk providing that k is sufficiently

large. For this reason γn over BO(n) is called the “universal bundle”.

The universal bundles are analogous to the canonical bundles, but they are defined

over the infinite dimensional Grassmann spaces BO(n).

Example 1.4.24. The universal n-plane bundle γn over BO(n) has the total space

EO(n) = E(γn) = {(X, x) | X ∈ BO(n), x ∈ X}.

This is to be topologized as a subset of BO(n)×R∞. The projection map π : EO(n) −→

BO(n) is defined by π(X, x) = X.

Lemma 1.4.25. The bundle γn satisfies the local triviality condition.

Proof. See [MS74, Lemma 5.4].

In this case the Gauss map

g : M −→ Gn(R∞) = BO(n)

will be defined as the map which carries each x ∈ M to its tangent space in BO(n).

This is covered by a bundle map g : E(τM) −→ EO(n), where g(x, v) = (TxM, v).

The covering means that (g)∗γn, the induced bundle by g on M is isomorphic to τM .

Now we turn back to the general case.

Theorem 1.4.26. Any n-vector bundle ξ over a para-compact base space admits a

bundle map ξ −→ γn.
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Proof. See [MS74, Theorem 5.6].

Two bundle maps, f, g : ξ −→ γn are called bundle-homotopic if there exists a

one-parameter family of bundle maps

ht : ξ → γn, 0 ≤ t ≤ 1,

with h0 = f, h1 = g, such that ht is continuous as a function in both variables. In

other words the associated function

h : E(ξ)× [0, 1]→ E(γn)

must be continuous.

Theorem 1.4.27. Any two bundle maps from an n-vector bundle to γn are bundle-

homotopic.

Proof. See [MS74, Theorem 5.7].

Corollary 1.4.28. Any n-vector bundle ξ over a para-compact space B determines

a unique homotopy class of maps

f : B −→ BO(n).

Proof. Let F : ξ −→ γn be any bundle map, and let f be the induced map of base

spaces.

Notice that the above theorems together with Proposition 1.4.6 imply that given

any n-vector bundle ξ = (E, π,B) there exists a map f : B → BO(n), unique up to

homotopy, such that ξ = f ∗γn.

Definition 1.4.29. The mapping f : B → BO(n) is called the classifying map for

the vector bundle ξ.

Recall the notation [B,Gn(Rn+k)] for the set of homotopy classes of maps

f : B −→ Gn(Rn+k).
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Theorem 1.4.30. For para-compact B, the map [B,BO(n)] −→ V ectn(B),

[f ] 7−→ f ∗(γn), is a bijection.

Proof. Given f : B −→ BO(n), this corresponds to the pullback f ∗γn, thus vector

bundles over a fixed base space are classified by homotopy classes of maps into BO(n).

From last four theorems we can say that if ξ is an n-dimensional bundle then

there is a continuous map f : B −→ BO(n) such that ξ ∼= f ∗γn. Furthermore,

f ∗0γ
n ∼= f ∗1γ

n ⇔ f0 ' f1. This means that

V ectn(B)←→ [B,BO(n)].

Now, we want to use the notion of the classifying map for vector bundles together

with the uniqueness of pullback bundles to show that the isomorphism class of the

normal bundle only depends on the regular homotopy class of the given immersion.

Theorem 1.4.31. Suppose F0, F1 : Mn # Nn+k are two regularly homotopic immer-

sions in Nn+k. Then

νF0
∼= νF1 .

Proof. Let F0 and F1 : M # N be regular homotopic immersions with a regular

homotopy F : M × I → N . Let G : M × I → N × I be the map G(x, t) = (F (x, t), t).

Then G is an immersion, the normal bundle of G restricted to M×0 gives the normal

bundle of F0 and the normal bundle of G restricted to M×1 gives the normal bundle

of F1.

Let g : M × I → BO(k) be the classifying map for the normal bundle of G.

Then, if i0 : M → M × I is the map i0(x) = (x, 0) and i1 : M → M × I is the map

i1(x) = (x, 1), then g ◦ i0 is the classifying map for the normal bundle of F0 and g ◦ i1

is the classifying map for the normal bundle of F1.

However, i0 is homotopic to i1, the homotopy is the identity map M × I →M × I

and so g ◦ i0 is homotopic to g ◦ i1. Hence the normal bundle of F0 is isomorphic to

the normal bundle of F1 (since homotopic maps to BO(k) correspond to isomorphic

bundles).
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We also have the following observation which is a comparison between the iso-

morphism classes of vector bundles over two different base spaces.

Theorem 1.4.32. A homotopy equivalence f : B
′ −→ B of para-compact spaces

induces a bijection

f ∗ : V ectn(B) −→ V ectn(B
′
).

In particular, every vector bundle over a contractible para-compact base space is

trivial.

Proof. If g∗ is a homotopy inverse of f ∗ then we have

f ∗g∗ ∼= 1∗ ∼= 1

and

g∗f ∗ ∼= 1∗ ∼= 1.

Remark 1.4.33. If we have an immersion Mn # Nn+k then τM is an n-dimensional

vector bundle, i.e. νF is a k-dimensional vector bundle over M . Hence, since our

manifolds are compact, then we have a unique map ν(F ) : M −→ BO(k) which

classifies the normal bundle νF . This is called normal map of the immersion.

1.5 Suspension and Thom spaces

Throughout this section we consider those n-vector bundles ξ = (E, π,B) which

possess a Riemannian metric. This means that on each fibre Fb(ξ) ∼= Rn there is a

positive definite Riemannian product, that is an inner product

〈−,−〉b : Fb(ξ)× Fb(ξ) −→ R

for each b ∈ B where R is the set of all nonnegative real numbers. In this case, we

can make sense of the length of a vector x ∈ Fb(ξ) denoted by |x| where we define

|x|2 = 〈x, x〉b.
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We note that in our calculations in this thesis we are dealing with compact manifolds

which always possess a Riemannian metric on their tangent bundle.

Definition 1.5.1. For a vector bundle ξ, having the base space B and total space E,

the disc bundle of ξ is defined by D(ξ) = {x ∈ E(ξ) | |x| ≤ 1}, that consists of all

vectors in E(ξ) of length ≤ 1.

Definition 1.5.2. For a vector bundle ξ, the sphere bundle of ξ is defined by S(ξ) =

{x ∈ E(ξ) | |x| = 1}, that consists of all vectors in E(ξ) of length = 1.

Definition 1.5.3. The Thom space of a real vector bundle ξ, denoted by T (ξ), is the

quotient space D(ξ)/S(ξ).

Remark 1.5.4. Let π : E → B be n-dimensional real vector bundle over the compact

space B. Then for each point b in B, the fiber Fb is n-dimensional real vector space.

We can form an associated sphere bundle Sph(ξ) by taking the one-point compactifi-

cation of each fiber separately. Finally, from the total space E(ξ) we may obtain the

Thom space T (ξ) by identifying all the new points to a single point ∞, which we take

as the basepoint of T (ξ).

Proposition 1.5.5. If ξ is a real vector bundle with a compact base space, T (ξ) is

homeomorphic to the one-point compactification of E(ξ), i.e. T (ξ) ≡ E(ξ)+, where

E(ξ)+ is the one-point compactification of E(ξ).

Proof. Observe that D(ξ) − S(ξ) and E(ξ) are homeomorphic. The one-point com-

pactification of D(ξ)− S(ξ), and the one-point compactification of E(ξ) are homeo-

morphic, [G75]. E(ξ)+
∼= (D(ξ)− S(ξ))+

∼= D(ξ)/S(ξ) ∼= T (ξ).

Proposition 1.5.6. Let ξ and η be two real vector bundles over compact spaces. then

the Thom space T (ξ × η) and the space T (ξ) ∧ T (η) are homeomorphic.

Proof. By using Proposition 1.5.5, the Thom space T (ξ × η) is the one-point com-

pactification of E(ξ × η). However E(ξ × η) = E(ξ) × E(η), and so E(ξ × η)+
∼=

E(ξ)+ ∧ E(η)+. Hence T (ξ × η) = T (ξ) ∧ T (η).
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Theorem 1.5.7. The Thom space T (ξ ⊕ εn) is homeomorphic to the suspension

Σn(T (ξ)).

Proof. Notice that ξ ⊕ εn isomorphic to ξ × Rn, where Rn is the n-dimensional real

vector bundle over a point. Then by Proposition 1.5.5 we have

T (ξ ⊕ εn) ∼= T (ξ × Rn) ∼= T (ξ) ∧ T (Rn).

Hence T (ξ) ∧ Rn
+ = T (ξ) ∧ Sn ∼= ΣnT (ξ).

Example 1.5.8. Suppose that εnX is the n-dimensional trivial vector bundle over

X. Then E(εnX) = X × Rn, where E(εnX) is the total space of εnX . Then we have

T (εnX) ∼= Σn(X+). In particular, if εn∗ is the trivial n-dimensional vector bundle over

a point ∗, then T (εn∗ )
∼= ({∗} × Rn)+

∼= S0 ∧ Sn ∼= Sn.

Finally, we record one of the important properties of Thom complexes.

Theorem 1.5.9. Thom Isomorphism. Let ξ be a k-dimensional vector bundle

over B and T (ξ) the related Thom space then Hn(B) ∼= H̃n+k(T (ξ)) and Hn(B) ∼=

H̃n+k(T (ξ)) where the homology and cohomology groups have Z/2-coefficients.

Proof. See [D66, Theorem 16.10.3].

Remark 1.5.10. The Thom isomorphism is natural in the sense that if ξ → ξ
′

is a

map of Euclidean bundles then (T (F ))∗ ◦ φ′ = φ ◦ (F )∗ where T (F ) : T (ξ)→ T (ξ
′
) is

the induced map of Thom complexes, F : B → B
′

is the map of base spaces and φ,

φ
′

denote the appropriate Thom isomorphisms.

1.6 Stiefel-Whitney classes

In this section we introduce some algebraic invariants associated with vector bundles.

These will be useful when we describe a systematic way to determine cobordism

classes of given immersions.

First of all we will introduce four axioms which characterize the Stiefel-Whitney

cohomology classes of a vector bundle. The coefficient group will be Z/2, the group

of integers modulo 2, and we write H∗X for H∗(X; Z/2) and H∗X for H∗(X; Z/2).
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Theorem 1.6.1. Axiom 1. To each vector bundle ξ there corresponds a sequence of

cohomology classes,

wi(ξ) ∈ H iB(ξ), for i = 0, 1, 2, . . . ,

called the Stiefel-Whitney classes of ξ. The class w0(ξ) = 1 ∈ H0B(ξ) and wi(ξ) = 0

for i > n if ξ is an n-plane bundle.

Axiom 2. Naturality. If f : B(ξ) → B(η) is covered by a bundle map from ξ to η,

then

wi(ξ) = f ∗wi(η).

Axiom 3. The Whitney Product Theorem. If ξ and η are vector bundles over the

same base space, then

wk(ξ ⊕ η) =
k∑
i=0

wi(ξ) ∪ wk−i(η)

where ∪ (which we will omit when it is clear) denotes the cup product.

Axiom 4. For the line bundle γ1
1 over the circle RP 1, the Stiefel-Whitney class

w1(γ1
1) ∈ H1RP 1 ∼= Z/2, is non-zero.

In the case when ξ = εnB is the trivial bundle over B, we have wi(ξ) = 0 for all

i > 0 [MS74, Proposition 2, Chapter 4]. For the special case of the universal n-plane

bundle we have the following.

Theorem 1.6.2. H∗BO(k) ∼= Z/2[w1, w2, . . . wk] a polynomial ring with coeffcients

in Z/2, where wi ∈ H i(BO(k)) is the i-th universal Stiefel whitney class, has dimen-

sion |wi| = i.

Proof. See [MS74, Theorem 7.1].

Remark 1.6.3. In the special case of the universal bundle γk the Thom isomorphism

HnBO(k) ∼= H̃n+kMO(k) is given by wI ↔ wIwk, since wk ∈ HkBO(k) ∼= Z/2 is

the Thom class. (See [D66, Theorem 16.10.3]).

Remark 1.6.4. Given any n-plane bundle ξ, over a para-compact base space, it is

classified by a map f : B(ξ) −→ BO(n). By Axiom 2, we have

wi(ξ) = f ∗(wi).
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The total Stiefel-Whitney class of an n-dimensional vector bundle ξ over B is

defined to be the element

w(ξ) = 1 + w1(ξ) + · · ·+ wn(ξ)

of the ring H∗B. In particular, w(εnB) = 1 for all n > 0. The Whitney product theorem

can now be expressed by the simple formula

w(ξ ⊕ η) = w(ξ)w(η).

Let ξ be an n-dimensional vector bundle over a compact space B. Suppose that there

is an m-dimensional vector bundle η over B such that ξ ⊕ η is a trivial bundle εn+m
B .

Since wk(ε
n+m
B ) = 0 for k > 0, then by the Whitney Product Theorem for k > 0

k∑
i=0

wi(ξ)wk−i(η) = 0.

Therefore if the Stiefel-Whitney classes of the bundle ξ are known then we can

compute the Stiefel-Whitney classes of bundle η from the above formula. We have

w(ξ)w(η) = 1 and so w(η) is the multiplicative inverse of w(ξ) which is often written

w(ξ).

Suppose a differentiable manifold Mn has an immersion in Euclidean space Rn+k.

Then the immersion has a k-dimensional normal bundle ν such that τM ⊕ ν ∼= εn+k

by Proposition 1.4.14. Since w(εn+k) = 1, then w(τM)w(ν) = 1, so w(ν) is the formal

inverse of w(τM). We often write w(Mn) = w(τM), and call w(Mn) the total Stiefel-

Whitney class of Mn; then w(ν) is called the dual Stiefel-Whitney class and is denoted

by w(Mn). Notic that wr(M
n) = 0 for r > k. This give us the following result.

Lemma 1.6.5. Whitney duality theorem . If τM is the tangent bundle of a

manifold in Euclidean space and ν is the normal bundle then w(τM)w(ν) = 1 or

(equivalently) wi(ν) = wi(τM).

We provide some examples which illustrate how the Steifel-Whitney classes can

be calculated.

Lemma 1.6.6. For the tangent bundle τSn of the sphere Sn, the class w(τSn) =

w(νSn) is equal to 1.
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Proof. For the standard embedding Sn ⊆ Rn+1,the normal bundle ν is trivial. Hence

wi(νSn) = 0 for i > 0, and w0(νSn) = 1, then w(νSn) = 1. Therefore from Theorem

1.6.5, we deduce that w(τSn) = 1.

Lemma 1.6.7. The group H iRP n is cyclic of order 2 for 0 ≤ i ≤ n and is zero for

higher values of i. Furthermore, if a denotes the non-zero element of H1RP n then

each H iRP n is generated by the i-fold cup product ai.

Proof. See [D66, Lemma 4.3].

Thus H∗RP n can be described as the algebra with unit over Z/2 having one

generator a and one relation an+1 = 0.

Remark 1.6.8. [MS74, Remark p.42]. For the canonical map f : Sn → RP n, this

lemma can be used to compute the homomorphism

f ∗ : HnRP n → HnSn

providing that n > 1. In fact

f ∗(an) = (f ∗a)n = 0

since f ∗a ∈ H1Sn = 0.

Example 1.6.9. The total Stiefel-Whitney class of the canonical line bundle γ1
n over

RP n is given by

w(γ1
n) = 1 + a.

Proof. The standard inclusion j : RP 1 → RP n is clearly covered by a bundle map

from γ1
1 to γ1

n. Therefore

j∗w1(γ1
n) = w1(γ1

1) 6= 0.

This shows that w1(γ1
n) cannot be zero, hence must be equal to a. The remaining

Stiefel-Whitney classes of γ1
n are determined by Axiom 2.
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Theorem 1.6.10. The Whitney sum τRPn ⊕ ε1 is isomorphic to the (n + 1)-fold

Whitney sum γ1
n⊕γ1

n⊕ . . .⊕γ1
n. Hence the total Stiefel-Whitney class of RP n is given

by

w(RP n) = (1 + a)n+1 = 1 +

(
n+ 1

1

)
a+

(
n+ 1

2

)
a2 + · · ·+

(
n+ 1

n

)
an,

where a is the generator of H1RP n.

Proof. See [D66, Theorem 4.5].

Remark 1.6.11. The total Stiefel-Whitney class of the normal bundle of RP n is

given by

w(νRPn) = w(τRPn) = (1 + a)n+1 = (1 + a)−n−1.

Theorem 1.6.12. Let Mn be a manifold. If Mn can be immersed in Rn+k, then

wi(M) = 0 for i > k. If Mn can be embedded in Rn+k, then wi(M) = 0 for i ≥ k.

Proof. See [E81, Theorem 17.10.2].

Example 1.6.13. If the 9-dimensional manifold RP 9 can be immersed in R9+k, then

τRP 9 ⊕ νRP 9 = ε9+k. Using Theorem 1.6.10 we find that

w(RP 9) = (1 + a)10 = 1 + a2 + a8 + a10 = 1 + a2 + a8,

because a10 ∈ H10(RP 9) = 0 and then

w(τRP 9) · w(ε) = w(τRP 9) · 1 = w(γ1
9)10.

Hence

w(νkRP 9) = (1 + a2 + a8) = 1 + a2 + a4 + a6.

In particular, w6(νRP 9) 6= 0. Hence dim(νRP 9) ≥ 6 and so k ≥ 6.

Proposition 1.6.14. RP n can be embedded in Rn+1 only if n = 2r − 1 for some r

and can be immersed in Rn+1 only if n = 2r − 1 or n = 2r − 2. If n = 2r then there

is no immersion of RP n in R2n−2 and no embedding in R2n−1.
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Proof. We know that if RP n can be immersed in Rn+1 then w(RP n) = 1 or w(RP n) =

1 + a. In the first case since w(RP n) = (1 + a)n+1, by Theorem 1.6.10 we would have

(1 + a)n+1 = 1, which implies n+ 1 = 2r, for some r.

In the latter case (1 + a)n+2 = 1, which implies n+ 2 = 2r. The former case must

hold if RP n can be embedded. If n = 2r, then

w(RP n) = (1+a)−(n+1) = (1+a)−n(1+a)−1 = (1+an)·(1+a+· · ·+an) = 1+a+· · ·+an−1,

and so the final statement follows from Prop.1.6.14.

Remark 1.6.15. Whitney showed that any differentiable n-manifold can be immersed

in R2n−1 and embedded in R2n.[M58, 1.32]

1.7 Chern classes

In this section we define the Chern classes of complex vector bundles, cohomology

groups have coefficients Z.

Theorem 1.7.1. [D66]. For each complex vector bundle ξ over a space B there are

classes ci(ξ) ∈ H2i(B; Z) with the following properties:

(1) c0(ξ) = 1 ∈ H0B and ci(ξ) = 0 for i > dim ξ;

(2) if ξ and η are isomorphic, it follows that c(ξ) = c(η), and if f : B1 −→ B is a

map, then we have f ∗(c(ξ)) = c(f ∗(ξ));

(3) for vector bundles ξ and η over B, the relation c(ξ ⊕ η) = c(ξ)c(η) (cup multipli-

cation) holds;

(4) for the canonical line bundle λ1
1 over S2 = CP 1, the element c1(λ1

1) is a generator

of H2(S2,Z);

(5) for the canonical line bundle λ1 over CP∞, the element c1(λ1) is a generator b of

the polynomial ring H∗(CP∞; Z).

Definition 1.7.2. Let ξ be a complex n-vector bundle over B. For i ≤ n, we define

the total Chern class of ξ denoted c(ξ) ∈ H∗(B(ξ); Z) as follows,

c(ξ) = 1 + c1(ξ) + . . .+ cn(ξ).
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Proposition 1.7.3. For the tangent bundle τCPn there is the relation c(CP n) =

(1 + b)n+1, where b is a generator of H2(CP n; Z) [D66, Prop. 4.5].

We have the following relation between w2 and c1.

Lemma 1.7.4. Given a complex vector bundle ξ (over a para-compact space B) then

w2(ξ) ∈ H2B is the mod 2 restriction of c1(ξ) ∈ H2(B; Z).

Proof. See [D66, Cor.11.5]
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Self-transversality and multiple

point of immersions

Let F : Mm → Nn be a smooth map of manifolds, in order to have F−1(y) as a

submanifold of M , we need y to be a regular value of F . Firstly, we will explain

briefly how smooth maps pull regular values back to submanifolds.

2.1 Regular values and Sard’s theorem

Definition 2.1.1. Let F : Mm → Nn be a smooth map of manifolds.

(1) p ∈M is a critical point of F if dFp : Tp(M)→ TF (p)(N) has rank < n.

(2) p ∈M is a regular point of F if dFp : Tp(M)→ TF (p)(N) has rank = n.

(3) q ∈ N a critical value of F if q = F (p) is the image of critical point p.

(4) q ∈ N is a regular value of F when F (p) = q, this implies that p is regular point.

So if q /∈ F (M), then q is a regular value.

Definition 2.1.2. Let M be a manifold of dimension m and Z ⊆M a subspace such

that for each point p ∈ Z we can find a smooth chart (V, φ) in the maximal atlas of

M around p in M with Z ∩ V = φ−1(Rk ⊆ Rm). Then Z is called a submanifold of

dimension k (or codimension m− k) in M .

From the next proposition there is, a close relationship between submanifolds and

embeddings.

42
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Proposition 2.1.3. If M is a submanifold of N , then the inclusion map, i : M → N ,

is an embedding. Conversely, if F : M → N is an embedding, then F (M) with the

subspace topology is a submanifold of N and F is a diffeomorphism between M and

F (M).

Proof. See [O83, Chapter 1].

We will mention the most useful property of regular values.

Theorem 2.1.4. [B04]. Let F : Mm → Nn be a smooth map between smooth mani-

folds. If q ∈ N is a regular value of F , Then F−1(q) is either a smooth submanifold

of M of dimension m− n or the empty set.

Proposition 2.1.5. Let Z be the preimage of a regular value q ∈ N under the smooth

map F : Mm → Nn. Then the kernel of the derivative dFp : Tp(M)→ Tq(N) at any

point p ∈ Z is precisely the tangent space to Z, Tp(Z).

Proof. Since F is constant on Z, dFp is zero on Tp(Z). But dFp : Tp(M)→ Tq(N) is

surjective, so the dimension of the kernel of dFp must be

dimTp(M)− dimTq(N) = dimM − dimN = dimZ.

Thus Tp(Z) is a subspace of the kernel that has the same dimension as the complete

kernel ; hence Tp(Z) must be the kernel.

Definition 2.1.6. (1) Let S be a subset of Rm. Then S has measure zero if for every

ε > 0, there exists a cover of S by a countable number of open cubes C1, C2, . . . in Rm

such that
∑∞

i=1 vol[Ci] < ε.

(2) Let M be a smooth manifold and S a subset of M . Then S is of measure zero if

there exists a countable open cover U1, U2, . . . of S and charts φi : Ui → Rm such that

φi(Ui ∩ S) has measure zero in Rm.

The following is the main result concerning regular values.

Theorem 2.1.7. Sard’s theorem. If F : M → N is any smooth map of manifolds,

then almost every point in N is a regular value of F .
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The assertion in Sard’s theorem that (almost every point) of N is regular value for

M means that the points that are not regular values constitute a set of measure zero.

Since the complement of the regular values are the critical values, Sard’s theorem

may be restated as follows:

Theorem 2.1.8. Sard’s theorem (restated). If F : M → N be a smooth map of

manifolds, then the set of critical values of F has measure zero in N .

Proof. See [GP, Theorem p.40].

2.2 Transversality

Transversality can be viewed as a generalization of the notion of regular value. We

define the basic notions of transversality and show briefly that transverse maps pull

submanifolds back to submanifolds.

We can neatly define the transversality of manifolds using tangent spaces.

Definition 2.2.1. Let M be a smooth manifold, W and Z submanifolds of M . Then

W and Z are transverse at p ∈M , denoted W tp Z, if either:

(1) p /∈ W ∩ Z or

(2) p ∈ W ∩ Z and TpM = TpW + TpZ.

We say that W and Z are transverse, which we denoted by W t Z, when W tp Z

for every p ∈ X.

Theorem 2.2.2. If W t Z in Mm then W ∩Z is a submanifold of Mm of dimension

dim(W ∩ Z) = dim(W ) + dim(Z)− dim(M).

Proof. See [B, Theorem 7.7.]

Proposition 2.2.3. Two submanifolds W and Z are transverse at p ∈M , W tp Z,

if either:

1- p /∈ W ∩ Z or

2- νpW ∩ νpZ = {0}, where νpW = (TpW )⊥ and νpZ = (TpZ)⊥, (Remark 1.4.16).
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Proof. Suppose U and V ⊆ Rn, then U + V = Rn if and only if U⊥ ∩ V ⊥ = {0}.

Proposition 2.2.4. [GP, Ex.4]. Let W and Z be transverse submanfolds of M . If

p ∈ W ∩ Z, then Tp(W ∩ Z) = Tp(W ) ∩ TpZ.

The following is a generalization of the definition of transversality 2.2.1, where we

define what it means for a smooth map to be transverse to a submanifold.

Definition 2.2.5. Let F : Mm → Nn be a smooth map of smooth manifolds, let

W be a submanifold of N of dimension k. Then F is transverse to W at p ∈ M , if

either:

(1) F (p) /∈ W or

(2) F (p) ∈ W and TF (p)N = (dF )p(TpM) + TF (p)W .

By applying Theorem 2.2.2 we get

(dF )p(TpM) ∩ TF (p)W = m+ k − n.

Lemma 2.2.6. Let F : M → N be a smooth map of manifolds, W a submanifold of

N . Then F is transverse to W at p if and only if

νpF ∩ νF (p)W = {0}.

Proof. Similar to the proof of Proposition 2.2.3.

Proposition 2.2.7. Let F : M → N be a map of smooth manifolds, W a submanifold

of N . If dimM+dimW < dimN, then F t W if and only if the image of F is disjoint

from W , that is, F (M) ∩W = ∅.

Proof. Suppose there p ∈M with F (p) ∈ W . Then

dim[(dF )p(TpM) + TF (p)W ] ≤ dim(dF )p(TpM) + dimTF (p)W

≤ dimM + dimW

< dimN

= dimTF (p)N

Therefore, (dF )p(TpM) + TF (p)W 6= TF (p)N . And so F is not transverse to W at p.

So F (M) ∩W = ∅.
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Remark 2.2.8. (1) Suppose that dimM ≥ dimN and that W consists of a single

point q ∈ N . Then F t W if and only if q is a regular value of F . For F is transversal

to q if (dF )p(TpM) = TF (p)N for all p ∈ F−1(q), which is to say that q is a regular

value of F. So transversality includes the notation of regularity as a special case.

(2) It also follows immediately that submersions are transverse to every submanifold.

(3) If F is an embedding then F t W if and only if F (M) t W in the sense of

Definition 2.2.1.

Theorem 2.1.4 provides a useful tool for generating manifolds. We can generalize

it by the next theorem.

Theorem 2.2.9. If F : Mm → Nn is transverse to a submanifold W in N , then

F−1(W ) is a submanifold of M with codimF−1(W ) = codimW, that is,

dimM − dimF−1(W ) = dimN − dimW.

Proof. See [S75, Theorem 12.17.]

Corollary 2.2.10. Let M be a smooth manifold, W and Z submanifolds. If W t Z

then W ∩ Z is a submanifold of M with

codim(W ∩ Z) = codimW + codimZ.

Proof. Let i : Z → M be the inclusion map. Then (di)p(TpZ) = TpM, so W t Z

implies i t Z. W ∩ Z = i−1(Z) so we are done by Theorem 2.2.9.

We are going to state the next proposition which is a generalization of Proposition

2.1.5.

Proposition 2.2.11. [GP, Ex.5]. Let F : M → N be a map transverse to a sub-

manifold W in N so that Z = F−1(W ) is a submanifold of M . Then Tp(Z) is the

preimage of TF (p)(W ) under the linear map dFp : Tp(M)→ TF (p)(N).

Proof. The proof is a generalization of the proof of Proposition 2.1.5.

Now we are considering the case of a map F : Mn # Nn+k, and the definition of

a self-transverse immersion as follows.
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Definition 2.2.12. An immersion F : Mn # Nn+k is self-transverse at the set of

distinct points {x1, x2, . . . xr} such that F (x1) = F (x2) = · · ·F (xr) when

dim(νx1F + νx2F + · · ·+ νxrF ) = rk.

An immersion F is self-transverse if it is self-transverse at all sets of distinct points

{x1, x2, . . . xr} such that F (x1) = F (x2) = · · · = F (xr).

Example 2.2.13. Imagine a smooth curve in R2 intersecting itself transversely at

a point. With only two dimension in which to move, it impossible to remove this

intersection through an arbitrarily small deformation. However, if we now embed the

curve in R3, we can remove the intersection.

Given an immersion F : S1 # R3 then νx1F and νx2F are 2-dimensional. Then

given distinct points {x1, x2} such that F (x1) = F (x2) we cannot have

dim(νx1F + νx2F ) = 4 since dim R3 = 3. So it cannot be self-transverse at {x1, x2}.

Therefore, a self-transverse curve in R3 can have no double points and so will be an

embedding.

2.3 The double points of immersions in Euclidean

spaces

Let F : Mn # Rn+k be an immersion of a compact closed smooth n-dimensional

manifold in Euclidean space. A point y ∈ (Rn+k) is a double point of F when it is

the image of two distinct points x1, x2 ∈M .

We write M (2) for the Cartesian product of two copies of M with itself and

F (2) : M (2) → R2n+2k for the map induced by F between the products.

Let ∆2(Rn+k) = {(u, u) | u ∈ Rn+k} be the diagonal of R2n+2k. Since we have the

inclusion map i : Rn+k → ∆2(Rn+k) ⊆ R2n+2k, then for y ∈ Rn+k,

diy : TyRn+k = Rn+k → T(y,y)∆2(Rn+k) ⊆ T(y,y)(R2n+2k) = R2n+2k,

where T(y,y)∆2(Rn+k) = ∆2(Rn+k) and diy(Rn+k) = ∆2(Rn+k). Hence

ν(y,y)∆2(Rn+k) = ∆2(Rn+k)⊥ = {(u1, u2) ∈ R2n+2k | u1 + u2 = 0}
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is the orthogonal complement of ∆2(Rn+k).

Proposition 2.3.1. Given an immersion F : Mn # Rn+k, suppose that F (x1) =

F (x2) = y, x1 6= x2 ∈ M . Then F (2) is transverse to ∆2(Rn+k) at (x1, x2) ∈ M (2) if

and only if F is self-transverse at {x1, x2}.

Proof. First of all, observe that F is self-transverse at {x1, x2} if and only if

dim(νx1F + νx2F ) = 2k or, equivalently, νx1F ∩ νx2F = {0}. Suppose that F (2) is

transverse to ∆2(Rn+k) at (x1, x2). Then by Lemma 2.2.6,

ν(x1,x2)F
(2) ∩ ν(y,y)∆2(Rn+k) = {(0, 0)}.

Suppose u ∈ νx1F ∩ νx2F . Then u ∈ νx1F and u ∈ νx2F so that −u ∈ νx2F . Since

νx1F × νx2F = ν(x1,x2)F
(2), then (u,−u) ∈ ν(x1,x2)F

(2).

Since also u ∈ νx1F and −u ∈ νx2F and u+(−u) = 0, then (u,−u) ∈ ν(y,y)∆2(Rn+k).

Thus (u,−u) ∈ ν(x1,x2)F
(2) ∩ ν(y,y)∆2(Rn+k) = {(0, 0)}, i.e (u,−u) = (0, 0). So u = 0,

Hence νx1F ∩ νx2F = {0} and therefore F is self-transverse at {x1, x2}.

Conversely, suppose that F is self-transverse at {x1, x2} so that νx1F ∩ νx2F =

{0}. Let (u, v) ∈ ν(x1,x2)F
(2) ∩ ν(y,y)∆2(Rn+k), then (u, v) ∈ ν(x1,x2)F

(2) and (u, v) ∈

ν(y,y)∆2(Rn+k). Hence u ∈ νx1F, v ∈ νx2F and u+v = 0. Hence u = −v ∈ νx2F . Then

u ∈ νx1F ∩ νx2F = {0} and so u = 0. So (u, v) = (0, 0) and so

ν(x1,x2)F
(2) ∩ ν(y,y)∆2(Rn+k) = {(0, 0)}. Therefore F (2) is transverse to ∆2(Rn+k) at

(x1, x2).

2.4 Triple points of immersions in Euclidean spaces

Given an immersion F : Mn # Rn+k of a connected n-dimensional compact closed

smooth manifold in Euclidean space, a point y ∈ Rn+k is a triple intersection point

of F when it is the image of three distinct points x1, x2, x3 of M .

Let ∆3(Rn+k) = {(u, u, u) | u ∈ Rn+k} ⊆ R3n+3k be the diagonal of R3n+3k. Then

for y ∈ Rn+k, we have T(y,y,y)∆3(Rn+k) = ∆3(Rn+k) . And so ν(y,y,y)∆3(Rn+k) is the

orthogonal complement of ∆3(Rn+k). Also for(u1, u2, u3) ∈ R3n+3k and for u ∈ Rn+k
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we have

(u1, u2, u3) · (u, u, u) = u1 · u+ u2 · u+ u3 · u

= (u1 + u2 + u3) · u = 0

⇔ u1 + u2 + u3 = 0.

Hence ν(y,y,y)∆3(Rn+k) = {(u1, u2, u3) ∈ R3n+3k | u1 + u2 + u3 = 0}.

Remark 2.4.1. The immersion F : Mn # Rn+k is self-transverse at the set of

distinct points {x1, x2, x3} if and only if

dim(νx1(F ) + νx2(F ) + νx3(F )) = 3k.

Lemma 2.4.2. For linear subspaces U1, U2, U3 of dimension k,

dim(U1 + U2 + U3) = 3k ⇔ U1 ∩ U2 = {0} and (U1 + U2) ∩ U3 = {0}.

Proof. Suppose that dim(U1 + U2 + U3) = 3k, then dim(U1 + U2) = 2k and

(U1 + U2) ∩ U3 = {0}. Since dimU1 = k, dimU2 = k, then dimU1 + dimU2 = 2k.

Since also dim(U1 + U2) = dimU1 + dimU2, dim(U1 ∩ U2) = 0. Hence U1 ∩ U2 = {0}

and (U1 + U2) ∩ U3 = {0}.

Conversely, suppose that U1 ∩ U2 = {0} and (U1 + U2) ∩ U3 = {0}. Then

dim(U1 + U2) = 2k and (U1 + U2) ∩ U3 = {0}. Hence

dim(U1 + U2 + U3) = 3k.

Proposition 2.4.3. Given an immersion F : Mn # Rn+k, suppose that F (x1) =

F (x2) = F (x3) = y where x1, x2, x3 are distinct points of M . Then F (3) is transverse

to ∆3(Rn+k) at (x1, x2, x3) if and only if F is self-transverse at {x1, x2, x3}.

Proof. Suppose that F (3) is transverse to ∆3(Rn+k) at (x1, x2, x3). By Lemma 2.2.6,

we have ν(x1,x2,x3)F
(3) ∩ ν(y,y,y)∆3(Rn+k) = {(0, 0, 0)}.

Suppose that u ∈ (νx1(F ) + νx2(F )) ∩ νx3(F ). Then u ∈ (νx1(F ) + νx2(F )) and

u ∈ νx3(F ), so that−u ∈ νx3(F ). Since u ∈ (νx1(F )+νx2(F )) we can write u = u1+u2,
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where u1 ∈ νx1(F ), u2 ∈ νx2(F ).

Since u = u1 + u2, u1 + u2 + (−u) = 0. Then (u1, u2,−u) ∈ ν(y,y,y)∆3(Rn+k). Also

(u1, u2,−u) ∈ ν(x1,x2,x3)F
(3) = νx1F × νx2F × νx3F. So (u1, u2,−u) = (0, 0, 0). There-

fore, u1 = u2 = −u = 0.

Hence u = 0 and so (νx1(F ) + νx2(F )) ∩ νx3(F ) = {0}. Also from Proposition 2.3.1

we can prove that νx1(F ) ∩ νx2(F ) = {0}. Hence, by Lemma 2.4.2,

dim(νx1F + νx2F + νx3F ) = 3k.

And so F is self-transverse immersion at {x1, x2, x3}.

Conversely suppose that F is self-transverse at {x1, x2, x3}. Then by Lemma 2.4.2,

νx1(F ) ∩ νx2(F ) = {0} and (νx1(F ) + νx2(F )) ∩ νx3(F ) = {0}.

Let (u, v, w) ∈ ν(x1,x2,x3)F
(3) ∩ ν(y,y,y)∆3(Rn+k). Then (u, v, w) ∈ ν(x1,x2,x3)F

(3)

and (u, v, w) ∈ ν(y,y,y)∆(Rn+K). Hence u ∈ νx1(F ), v ∈ νx2(F ), w ∈ νx3(F ) and

u+ v + w = 0 which implies u+ v = −w.

Since u+ v ∈ (νx1(F ) + νx2(F )) then −w ∈ (νx1(F ) + νx2(F )) and so

w ∈ (νx1(F ) + νx2(F )). Since w ∈ νx3(F ), w = 0 by our second hypothesis, and

so u + v = 0. Since u + v = 0, u = −v ∈ νx2(F ). Hence u ∈ νx1(F ) ∩ νx2(F ) =

{0} and so u = 0 and v = −u = 0. So (u, v, w) = (0, 0, 0). Hence ν(x1,x2,x3)F
(3) ∩

ν(y,y,y)∆3(Rn+k) = {(0, 0, 0)} and so F (3) is transverse to ∆3(Rn+k) at (x1, x2, x3)

Now we are going to consider the general case of r-fold points of an immersion in

a manifold N .

2.5 r-Fold points of immersions in manifold N

Given a self-transverse immersion F : Mn → Nn+k of a compact n-dimensional man-

ifold of M in N . Let i : N → ∆r(N) ⊆ N (r) be the inclusion map, where

∆r(N) = {(u, u, . . . , u) | u ∈ N} ⊆ N (r), the diagonal of N (r). Then for y ∈ N, we

have diy(TyN) = T(y,...,y)∆r(N) = {(u, . . . , u) | u ∈ TyN} = ∆r(TyN) ⊆

(TyN × . . . × TyN) = T(y,...,y)(N × . . . × N) is the tangent space of the diago-

nal. Hence, the orthogonal complement of tangent space of the diagonal defined by
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ν(y,...,y)∆r(N) = ∆r(T(y,...,y)N)⊥ = {(u1, . . . , ur)|ui ∈ TyN,Σr
i=1ui = 0}.

By a generalization of Lemma 2.4.2 we obtain the following lemma.

Lemma 2.5.1. An immersion F : Mn # Nn+k is self-transverse at (x1, . . . , xr) if

and only if

νx1(F ) ∩ νx2(F ) = {0},

(νx1(F ) + νx2(F )) ∩ νx3(F ) = {0},

...

(νx1F + · · ·+ νxr−1F ) ∩ νxrF = {0}.

Lemma 2.5.2. Given an immersion F : Mn # Nn+k, suppose that F (x1) = · · · =

F (xr) = y where x1, . . . , xr are the distinct points of M . Then F (r) : M (r) → N (r) is

transverse to ∆r(N)at (x1, . . . , xr) if and only if F is self-transverse at {x1, . . . , xr}.

Proof. Suppose that F (r) is transverse to ∆r(N) at (x1, . . . , xr). Then by Lemma

2.2.6, we have ν(x1,...,xr)F
(r) ∩ ν(y,...,y)∆r(N) = {(0, . . . , 0)}.

Using Lemma 2.5.1, suppose u ∈ (νx1F + · · ·+ νxi−1
F )∩ νxiF, for 2 ≤ i ≤ r. Then

u ∈ (νx1F + · · ·+ νxi−1
F ) and u ∈ νxiF , so that −u ∈ νxiF.

Since u ∈ (νx1F + · · · + νxi−1
F ), we write u = u1 + · · · + ui−1 where u1 ∈

νx1F, . . . , ui−1 ∈ νxi−1
F. Since u = u1 + · · · + ui−1, then u1 + · · · + ui−1 + (−u) = 0,

(u1, . . . , ui−1,−u) ∈ ν(y,...,y)∆r(N), and (u1, . . . , ui−1,−u, ) ∈ ν(x1,...,xi)F
(r). So

(u1, . . . , ui−1,−u) ∈ ν(x1,...,xr)F
(r) ∩ ν(y,...,y)∆r(N) = {(0, . . . , 0)}. Hence

(u1, . . . , ui−1,−u) = (0, . . . , 0)⇒ u1 = · · · = ui−1 = −u = 0.

Therefore, u = 0 and so (νx1F + · · ·+ νxi−1
F )∩ νxiF = {0} for 2 ≤ i ≤ r. By Lemma

2.5.1, F is self-transverse at {x1, . . . , xr}.

Conversely, suppose that F is self-transverse at {x1, . . . , xr} so that

(νx1F + · · ·+ νxi−1
F ) ∩ νxiF = {0} for all i, 2 ≤ i ≤ r.

Let (w1, . . . , wr) ∈ ν(x1,...,xr)F
(r) ∩ ν(y,...,y)∆r(N). Then (w1, . . . , wr) ∈ ν(x1,...,xr)F

(r)

and (w1, . . . , wr) ∈ ν(y,...,y)∆r(N). So w1 ∈ νx1F, . . . , wr ∈ νxrF and w1 + · · ·+wr = 0.

Hence w1 + · · · + wr−1 = −wr. Since w1 + · · · + wr−1 ∈ (νx1F + · · · + νxr−1F ),

−wr ∈ (νx1F + · · ·+ νxr−1F ) and so wr ∈ (νx1F + · · ·+ νxr−1F ). As wr ∈ νxrF then
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wr ∈ (νx1F + . . .+ νxr−1F ) ∩ νxrF = {0} by Lemma 2.5.1. Therefore

wr = 0.

Similarly, by the induction we can prove that w1 = · · · , wr−1 = 0. So

(w1, . . . , wr) = (0, . . . , 0).

Hence ν(x1,...,xr)F
(r) ∩ ν(y,...,y)∆r(N) = {(0, . . . , 0)}, and so by Lemma 2.2.6

F (r) is transverse to ∆r(N
n+k) at (x1, . . . , xr).

Theorem 2.5.3. Suppose F : Mn # Nn+k is a self-transverse immersion of a

compact closed smooth manifold M in smooth manifold N . Then the r-fold self in-

tersection sets Ir(F ) is itself the image of an immersion

θr(F ) : ∆r(F ) # Nn+k.

Proof. See Eccles-Grant [G06]. Suppose F is a self-transverse immersion of manifold

M in N , then for each r ≥ 1, F (r) : (M)(r) # (N)(r) is transverse to the diagonal

∆r(N).

Let ∆r(F ) = {(x1, . . . , xr) ∈ M (r)|F (x1) = . . . = F (xr), i 6= j ⇒ xi 6= xj}, where

M (r) is the r-fold cartesian product of M with itself.

F
′
(M, r) = {(x1, . . . , xr) ∈ M (r) : i 6= j ⇒ xi 6= xj} ⊆ M (r) is an open submanifold

of M (r) and so has dimension rn. Hence by Lemma 2.5.2 and Proposition 2.2.11,

∆r(F ) = (F (r))−1(∆r(N)),

is a submanifold of F
′
(M, r) ⊆M (r), of codimension (n+ k)(r− 1) . Thus ∆r(F ) has

dimension rn− (n+ k)(r − 1) = n− k(r − 1).

The symmetric group Σr acts freely on ∆r(F ) by permuting the coordinates.

Factoring out by this action give a compact manifold of dimension n− (r − 1)k

∆r(F ) = ∆r(F )/Σr.

This is the rfold point manifold of F in N . We may define a map

θr(F ) : ∆r(F ) # N
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by θr(F )[x1, . . . , xr] = F (x1). We show that this map is an immersion as follows.

Since F : Mn # Nn+k is an immersion, then F (r) : F
′
(M, r) ⊂ M (r) −→ N (r) is

an immersion. By restricting to ∆r(F ) in F
′
(M, r) and to ∆r(N) in N (r), we deduce

that the restriction g : ∆r(F ) → ∆r(N) is an immersion too. This follows from the

following diagram.

F
′
(M, r)

F (r)
// N (r)

p // N

∆r(F )

OO

g
// ∆r(N)

OO

s

<<zzzzzzzzz

The diagonal s : ∆r(N) ⊂ N (r) → N is a diffeomorphism. Then by composing g

and s, we get the map sg = α : ∆r(F ) → N which is an immersion. Consider the

following diagram.

∆r(F )
θr(F ) // N

∆r(F )

q

OO

α

<<zzzzzzzzz

Since the space ∆r(F ) is obtained by factoring out ∆r(F ) by the symmetric group

action, and since α is an immersion, then θr(F ) : ∆r(F ) # N is immersion.



Chapter 3

Pontrjagin-Thom theory for

embeddings

The classical Pontrjagin-Thom theory establishes a relation between the cobordism

classes of embeddings Mn ↪→ Nn+k and the set of homotopy classes of maps Nn+k
+ →

MO(k). If Nn+k is compact, then Nn+k
+ is given by Nn+k together with a disjoint

base point. For Nn+k = Rn+k then Nn+k
+
∼= Sn+k. Moreover, MO(k) is the Thom

complex of the universal n-plane bundle γn. We start with the cobordism theory of

embeddings.

3.1 Cobordism group of embeddings

Suppose n and k are fixed non-negative integers,M is a compact smooth n-dimensional

manifold without boundary, and (M,F ) be a pair where F : Mn ↪→ Nn+k is an em-

bedding. Roughly speaking, we say that two manifolds M1 and M2 are said to be

cobordant if their disjoint union, denoted by t is the boundary of some other mani-

fold. More formally, we have the following definition.

Definition 3.1.1. Given two embeddings F : Mn
1 ↪→ Nn+k and G : Mn

2 ↪→ Nn+k,

we say (M1, F ) is cobordant to (M2, G), written (M1, F ) ∼ (M2, G) if the following

conditions hold,

(1) There exists (n+ 1)-dimensional manifold W such that ∂W = M1 × 0 tM2 × 1.

54
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(2) There exists an embedding H : W −→ Nn+k × [0, 1] such that,

H|M1×0 = F × 0 and H|M2×1 = G× 1.

(3) x ∈ ∂W if and only if H(x) ∈ Nn+k × {0, 1}.

(4) There exists ε > 0 such that (Nn+k × [0, ε)) ∩ F (W ) = F (M1)× [0, ε), and

(Nn+k × (1− ε, 1]) ∩H(W ) = G(M2)× (1− ε, 1].

We say that (W,H) is a cobordism between (M1, F ) and (M2, G). The cobordism

relation ∼ is an equivalence relation on the set of all pairs (M,F ). Let Embk(N
n+k)

be the set of equivalence classes of such pairs. We shall denote the class of (M,F ) by

[(M,F )].

Before introducing the Pontrjagin-Thom construction, we need to recall the tubu-

lar neighborhood theorem.

Theorem 3.1.2. Tubular neighborhood theorem. Let F : Mn ↪→ Nn+k be an

embedding. Then there exists an open neighborhood of Mn in Nn+k which is diffeo-

morphic to E(νF ) under a diffeomorphism which maps each point of x ∈ M to the

zero normal vector at x.

Proof. See [MS74, Theorem 11.1].

Our next theorem introduces the Thom-Pontrjagin construction.

Theorem 3.1.3. Thom. The Pontrjagin-Thom construction induces a function

τ : Embk(N
n+k) −→ [Nn+k

+ ,MO(k)].

Proof. Let α ∈ Embk(N
n+k) and let (M,F ) be a representative of α. Given an

embedding F : Mn ↪→ Nn+k where M is a closed connected smooth n-dimensional

manifold, we have the following commutative diagram.

E(νF )

��

F̂ // E(γk)

��
M

F // BO(k)

in which F : M −→ BO(k) is the normal map of F which classifies the normal bundle
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νF over M . Since Mn is compact, F is closed [G75], and hence

F̂ : E(νF ) −→ E(γk)

is closed. This consequently induces a map

T (F ) : T (νF ) −→MO(k)

which is induced by νF on the associated Thom space.

Since M ∼= F (M) is a submanifold of Nn+k, by Theorem 3.1.2, M has a tubular

neighborhood U in Nn+k such that U is diffeomorphic to the total space E(ν) of the

normal bundle over M . Notice that M is compact, so T (νF ) ∼= E(νF )+. Thus we

obtain a map

L : U ∼= E(νF ) −→ E(νF )+
∼= T (νF ).

Now we have a map which is defined on U ⊂ Nn+k
+ but not all of Nn+k

+ . We extend

this map to Nn+k
+ by sending Nn+k

+ − U to t0, the base point of the Thom space of

normal bundle νF . Let r denotes this continuous extension,

r : Nn+k
+ −→ T (νF ).

If we compose the map T (F ) with r, the composition provides the required map

f : Nn+k
+ −→MO(k).

A similar construction starting from a cobordism H : W n+1 −→ Nn+k × [0, 1] leads

to a homotopy f
′

: (Nn+k × [0, 1])+ → MO(k). Hence the homotopy class of f only

depends on the cobordism class of (M,F ).

The map f is called Pontrjagin-Thom Construction associated with the embed-

ding F . Now we define the Thom map

τ : Embk(N
n+k) −→ [Nn+k

+ ,MO(k)]

by τ(α) = [f ], where [f ] denotes the homotopy class of f.

Now we want to construct the inverse to the function τ in the above theorem.
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Theorem 3.1.4. There is one-to-one map

t : [Nn+k
+ ,MO(k)]→ Embk(N

n+k).

Proof. Suppose that α ∈ [Nn+k
+ ,MO(k)] is represented by a map

f : Nn+k
+ →MO(k).

Choose a representative f which is transverse to BO(k) ⊂ MO(k). Then by the

methods of chapter 2 and using Theorem 2.2.9, f−1(BO(k)) = Mn is a submanifold

of N of dimn. This gives an embedding map Mn ↪→ Nn+k
+ .

Nn+k
+

f // MO(k)

Mn

i

OO

f1 // BO(k)

OO

According to the above diagram, we get a map of vector bundle νi → γk which

is isomorphism in each fiber, where νi is the normal bundle of the embedding i and

γk is the normal bundle of the map BO(k) → MO(k). This show that f ∗1 (γk) = νi.

Hence we have an embedding Mn ↪→ Nn+k.

Similarly a homotopy (Nn+k × [0, 1])+ → MO(k) gives rise to a cobordism

W n+1 −→ Nn+k × [0, 1]. Hence we have defined a function

t : [Nn+k
+ ,MO(k)]→ Embk(N

n+k).

Theorem 3.1.5. The map τ is bijection,

Embk(N
n+k) ∼= [Nn+k

+ ,MO(k)].

Proof. The map t is inverse to τ . [S68, Theorem p. 18].

If Nn+k = Rn+k then Nn+k
+ = Sn+k and we obtain a one to one correspondence

τ : Embk(Rn+k) −→ [Sn+k,MO(k)] = πn+kMO(k)
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where the right hand side is a group. On the other hand Embk(Rn+k) is a group under

the disjoint union operation, and it is Thom’s result that the mapping τ defined above

is a group isomorphism. The method of proof is similar to the proof of Theorem 3.1.3.

Given an embedding F : Mn ↪→ Rn+k, it corresponds to an element α ∈ πn+kMO(k).

We can construct a map f : Sn+k −→ MO(k) be the Pontrjagin-Thom construction

and τ(α) = [f ] where [f ] is the homotopy class of f .

We are going to show that the cobordism class of M determines and is deter-

mined up to cobordism by certain Hurewicz images and so it natural to ask how this

information can be retrieved.

We will define the Hurewicz homomorphism which illuminates the close relation

between homology and homotopy.

Definition 3.1.6. The Hurewicz homomorphism

h : [Nn+k
+ ,MO(k)]→ Hn+kMO(k)

is defined by setting h(α) = h([f ]) = f∗[N ], where [N ] ∈ Hn+kN
n+k is the fundamen-

tal homology class of N , and f∗[N ] ∈ Hn+kMO(k), for

f∗ : Hn+kN
n+k −→ Hn+kMO(k)

the map induced by f .

If Nn+k = Rn+k then The Hurewicz homomorphism

h : πn+kMO(k)→ Hn+kMO(k)

is defined by setting h(α) = h([f ]) = f∗(gn+k) for f : Sn+k −→ MO(k), such that

gn+k is a generator of Hn+kS
n+k and f∗ : Hn+kS

n+k −→ Hn+kMO(k) is induced by

f .

Next we need to explain characteristic numbers of manifolds.

3.2 Stiefel-Whitney numbers and cobordism

Let M be a closed connected smooth n-dimensional manifold with an embedding.

Recall that our manifolds are compact and connected. Hence, according to [MS74,
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Theorem A.8] there exists a unique non-zero fundamental homology class [M ] ∈

Hn(M), and for any cohomology class v ∈ HnM, the Kronecker product 〈v, [M ]〉 ∈

Z/2 is defined. We will use the abbreviated notation v[M ] for this Kronecker product.

Let F : Mn ↪→ Nn+k be an embedding. For I = (i1, . . . , ir) a sequence of non-

negative integers with degree i1 + 2i2 + 3i3 + · · ·+ rir = n we can form the monomial

wI(νF ) = wi11 (νF )wi22 (νF ) . . . wirr (νF ) ∈ HnM.

Definition 3.2.1. The Normal Stiefel-Whitney number of an embedding F corre-

sponding to a monomial wi11 w
i2
2 . . . w

ir
r = wI of degree n is the number

wI(νF )[M ] = 〈wI(νF ), [M ]〉 ∈ Z/2.

Notation 3.2.2. In the case of an embedding F : Mn ↪→ Rn+k, we have νF ⊕ τM ∼=

εn+k, then w(νF ) = w(τM)−1, and so the normal Stiefel-Whitney numbers do not

depend on F and so can be written wI [M ]. In the case of an embedding F : Mn ↪→

Nn+k we call wI(νF )[M ] the normal Stiefel-Whitney number of F corresponding to

monomial wi1i . . . w
ir
r and denoted it wI [F ], since it may depend on the choice of

embedding (see Example 3.3.10).

Remark 3.2.3. It is also possible to define tangent Stiefel-Whitney number of a

manifold M using the tangent bundle. This is more usual.

The example below illustrates how to calculate the normal Stiefel-Whitney num-

bers .

Example 3.2.4. Given an embedding RP 2 ↪→ Rl, for sufficiently large l. Then the

normal Stiefel-Whitney numbers of RP 2 are described as follows.

According to Theorem 1.6.10, τRP 2 ⊕ ε1 = γ1
2 ⊕ γ1

2 ⊕ γ1
2 , where γ1

2 is Hopf line bundle.

Then w(RP 2) = w(νRP 2) = w(τRP 2)−1 = (1 + a)−3 = (1 + a).

Then w1(RP 2) = a, w2(RP 2) = 0. Hence

w2
1[RP 2] = 1, w2[RP 2] = 0.
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We are interested in the Stiefel-Whitney numbers as they distinguish between

given manifolds belonging to different cobordism classes. This is the outcome of the

following results.

Theorem 3.2.5. [Pontrjagin]. If B is a smooth compact (n+1)-dimensional manifold

with boundary equal to M, then the Stiefel-Whitney numbers of M are all zero.

Proof. See [D66, Theorem 4.9].

We may say that Thom’s theorem is an inverse for Pontrjagin’s theorem.

Theorem 3.2.6. [Thom]. If all of the Stiefel-Whitney numbers of M are zero, then

M can be realized as boundary of some smooth compact manifold.

Proof. See [BG88]

Combining Theorem 3.2.5 and Theorem 3.2.6 we have the following.

Theorem 3.2.7. Two smooth closed n-manifolds belong to same cobordism class if

and only if their corresponding normal Stiefel-Whitney numbers are equal for all I.

wI [M ] = wI [N ].

Proof. See [G75, Proposition 30.21].

Thus is a similar result for the case of tangent Stiefel-Whitney number (see[D66,

Theorem 17.9.7]).

Now we will calculate the normal Stiefel-Whitney numbers of two different man-

ifolds of the same dimension in order to demonstrate that they are not cobordant.

Example 3.2.8. Given RP 2 × RP 2 ↪→ Rl and RP 4 ↪→ Rl, their normal Stiefel-

Whitney numbers are calculated a below

w(RP 2 × RP 2) = w(νRP 2×RP 2) = w(τRP 2×RP 2)−1 = (1 + a)−3(1 + b)−3, where

H∗(RP 2×RP 2) ∼= H∗RP 2⊗H∗RP 2 ∼= Z/2[a]/(a3)⊗Z/2[b]/(b3) = Z/2[a, b]/(a3, b3).

Since (1 + a)4 = 1 + a4 = 1, then (1 + a)3(1 + a) = 1, and so (1 + a)−3 = 1 + a. Hence

w(RP 2 × RP 2) = (1 + a)(1 + b) = 1 + (a+ b) + ab.
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So w1(RP 2×RP 2) = a+ b, w2(RP 2×RP 2) = ab. Then w4
1(RP 2×RP 2) = (a+ b)4 =

a4 +b4 = 0, w2
1w2(RP 2×RP 2) = (a+b)2(ab) = (a2 +b2)ab = 0, w1w3(RP 2×RP 2) =

(a+ b)a3b3 = 0, w2
2(RP 2 × RP 2) = a2b2, w4(RP 2 × RP 2) = 0. Hence

w2
2[RP 2 × RP 2] = 1,

and the other characteristic numbers are zero.

Since we have w(RP 4) = (1 + a)−5 = (1 + a)3 = 1 + a+ a2 + a3, then w1(RP 4) =

a, w2(RP 4) = a2, w3(RP 4) = a3, w4(RP 4) = 0, and then w4
1 = w2

1w2 = w1w3 = w2
2 =

a4, w4 = 0. Hence

w4
1[RP 4] = w2

1w2[RP 4] = w1w3[RP 4] = w2
2[RP 4] = 1,

w4[RP 4] = 0.

We deduce that the above two manifolds have different normal Stiefel-Whitney

numbers.

Our calculations in Example 3.2.8 show that the manifolds RP 4 and RP 2×RP 2 are

not cobordant because they do not have the same normal Stiefel-Whitney numbers.

3.3 Reading off the Stiefel-Whitney numbers

Now, we describe a systematic way how to read off the normal Stiefel-Whitney num-

bers of a given embedding F : Mn ↪→ Nn+k. This answers the question that we

posted at the end of Section 3.1.

We start by describing the cohomology of MO(k). To determine the cohomology

group of MO(k), remember that MO(k) = D(γk)/S(γk) where

E(γk) = {(X, x) ∈ BO(k)× R∞ : x ∈ X},

S(γk) = {(X, x) ∈ E(γk) : |x| = 1},

D(γk) = {(X, x) ∈ E(γk) : |x| ≤ 1}.

We then have the following observations.

Lemma 3.3.1. D(γk) is homotopy equivalent to BO(k).
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Lemma 3.3.2. S(γk) is homotopy equivalent to BO(k − 1).

Lemma 3.3.3. MO(k) is homotopy equivalent to BO(k)/BO(k − 1).

Proof. This lemma follows by the following diagram :

S(γk)
i //

f

��

D(γk)
q //

g

��

MO(k)

h
��

BO(k − 1) i // BO(k)
q // BO(k)/BO(k − 1)

Here f and g are homotopy equivalences by Lemma 3.3.1 and Lemma 3.3.2, respec-

tively. Note that the induced map h makes the diagram commutative.

Lemma 3.3.3 and Theorem 1.6.2 enable us to calculate the cohomology of MO(k).

Consider the cofibration sequence

BO(k − 1) i // BO(k)
q // BO(k)/BO(k − 1) .

In the long exact cohomology sequence the induced homeomorphism

i∗ : H̃∗BO(k) −→ H̃∗BO(k−1) is given by i∗(wi) = wi for i ≤ k−1 and i∗(wi) = 0 by

Theorem 1.6.1. Hence i∗ is an epimorphism. This means that the long exact sequence

breaks up into the following short exact sequence

0 // H̃∗BO(k)/BO(k − 1)
q∗ // H̃∗BO(k)

i∗ // H̃∗BO(k − 1) // 0 .

Since i∗ is ring homomorphism, then ker(i∗) = wkZ/2[w1, w2, . . . wk].

But H̃∗BO(k)/BO(k−1) ∼= ker(i∗). By Lemma 3.3.3 BO(k)/BO(k−1) is homotopy

equivalent to MO(k) so we have the following corollary.

Corollary 3.3.4. H̃∗MO(k) ∼= Z/2[w1, w2, . . . wk]/Z/2[w1, w2, . . . wk−1] ∼=

wkZ/2[w1, w2, . . . wk].

A basis for H∗MO(k) leads to a dual basis for H∗MO(k). To be more explicit we

will describe the homology of MO(k) briefly in term of the basis ei1 , ei2 , . . . , eik .

let ei ∈ HiBO(1) = HiRP∞ ∼= Z/2 be the non-zero element for all i ≥ 0. Let

µk : BO(1)(k) = BO(1)×BO(1)× . . .×BO(1)→ BO(k)
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be the map which classifies the product of k copies of the universal line bundle. Then

for the sequence

I = (i1, i2, . . . , ik) of non-negative integers We define

eI = ei1ei2 . . . eik = (µk)∗(ei1 ⊗ ei2 ⊗ . . .⊗ eik) ∈ H∗BO(k). (3.3.5)

By the homotopy commutativity of the product,

eiσ(1)
eiσ(2)

. . . eiσ(k)
= (µk)∗(eiσ(1)

⊗ . . .⊗ eiσ(k)
)

= (µk)∗(ei1 ⊗ . . .⊗ eik)

= ei1ei2 . . . eik

for each σ ∈ Σk, where Σk is the permutation group on k elements. Thus each such

element can be written as ei1ei2 . . . eik where 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik and it follows by

a counting argument that

{ei1ei2 . . . eik | 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik}

is a basis for H∗BO(k).

The inclusion map i : BO(k − 1)→ BO(k) induces a map in homology

i∗ : H∗(BO(k − 1))→ H∗BO(k) given by i∗(ei1 . . . eik−1
) = e0ei1 . . . eik−1

.

Hence using Lemma 3.3.3, it follows that

{ei1ei2 . . . eik | 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik}

is a basis for H̃∗MO(k). Next, we record one of the important properties of Thom

complexes.

Theorem 3.3.6. Thom isomorphism. Let γk be universal bundle over BO(k)

and MO(k) the related Thom space. Then the Thom isomorphism T : H∗BO(k) →

H̃∗MO(k) is given by

T (ei1ei2 . . . eik) = ei1+1ei2+1 . . . eik+1.

Proof. Recall that µk : BO(1)(k) → BO(k), then (µk)∗ : H∗BO(1)(k) → H∗BO(k)

and

(µk)∗(ei1 ⊗ ei2 ⊗ . . .⊗ eik) = ei1ei2 . . . eik ∈ H∗BO(k).
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By naturality, we have the following diagram

H∗BO(1)(k)
(µk)∗ //

T
��

H∗BO(k)

T
��

H̃∗MO(k)(k)
(µk)∗ // H̃∗MO(k)

where T denotes the Thom isomorphism. The Thom isomorphism of T : HiBO(1)→

H̃i+1MO(1) ∼= Z/2 is given by T (ei) = ei+1. Therefore, by naturality the Thom iso-

morphism T : H∗BO(k)→ H̃∗MO(k) is given by

T (ei1ei2 . . . eik) = T (µk)∗(ei1 ⊗ ei2 ⊗ . . .⊗ eik)

= (µk)∗(Tei1 ⊗ Tei2 ⊗ . . .⊗ Teik)

= T (ei1ei2 . . . eik)

= ei1+1ei2+1 . . . eik+1.

Recall the map µk : BO(1)k → BO(k). Write ai ∈ H1BO(1)k for the generator

1⊗ . . .⊗ w1 ⊗ . . .⊗ 1, with w1 in the i-th place. Then H∗BO(1)k is the polynomial

ring Z/2[a1, . . . , ak]. Evaluation of the total Stiefel-Whitney class of the product of

the line bundles gives

µ∗k(1 + w1 + . . .+ wk) = (1 + a1)(1 + a2) . . . (1 + ak)

from which it follows that µ∗kwi = σi(a1, a2, . . . , ak) = σi, the i-th elementary sym-

metric polynomial Σa1a2 . . . ai = Σaj1aj2 . . . aji for 1 ≤ j1 < . . . ji ≤ k. More generally

µ∗kw
J = µ∗wj11 . . . wjkk = σj11 . . . σjkk = σJ . (3.3.7)

This implies to the following result.

Proposition 3.3.8. For wJ ∈ H∗BO(k) and eI ∈ H∗BO(k) the Kronecker product

〈wJ , eI〉 is given by the coefficient of aI when σJ is written as a polynomial in a1, . . . ak.

Proof. See [AEb00, Proposition. 3.4].
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We now state our main theorem which explains the relation between the normal

Stiefel-Whitney numbers and the Hurewicz homomorphisms. This provides the main

computational tool for us that we are going to use in our calculations in next chapters.

Theorem 3.3.9. Suppose F : Mn ↪→ Nn+k is an embedding which corresponds to

α ∈ [Nn+k
+ ,MO(k)] under the Pontrjagin-Thom construction. The normal Stiefel-

Whitney numbers of F are given by the Kronecker product

wI [F ] = wI(νF )[M ] = 〈wIwk, h(α)〉.

Proof. Let T (νF ) be the Thom space of normal bundle of F . Let νF be the classifying

map of the normal bundle of M and h denote the Hurewicz homomorphism. Let

α ∈ Embk(Nn+k) represent the embedding Mn ↪→ Nn+k under the Pontrjagin-Thom

construction. Therefore, α is the homotopy class of a composition of the following

form.

f : Nn+k
+

r // T (νF )
T (F ) // MO(k) .

By Definition 3.1.6

h(α) = f∗([N ]) = (T (F )r)∗([N ]) ∈ Hn+kMO(k).

Now consider the following commutative diagram, where θ∗ and φ∗ denote the Thom

isomorphisms in homology.

Hn+kMO(k)
θ∗ // HnBO(k)

Hn+kT (νF )

T (F )∗

OO

φ∗ // HnM

(F )∗

OO

Therefore, θ∗h(α) = θ∗T (F )∗r∗([N ]) = (F )∗φ∗r∗([N ]). However, r∗([N ]) is non-zero,

where

r∗ : Hn+kN
n+k
+ −→ Hn+kT (νF ),

and φ∗ is an isomorphism, therefore φ∗r∗([N ]) = [M ] ∈ Hn(M) ∼= Z/2,

(F )∗[M ] = (F )∗φ∗r∗([N ]) = θ∗T (F )r∗([N ]) = θ∗h(α).
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As a result,

wI(νF )[M ] = 〈(F )∗(wI), [M ]〉

= 〈wI , (F )∗([M ])〉

= 〈wI , θ∗h(α)〉

= 〈θ∗wI , h(α))〉

= 〈wIwk, h(α)〉

where θ∗ : Hn(BO(k)) → Hn+k(MO(k)) denotes the Thom isomorphism in coho-

mology and is given by wI ↔ wIwk. Hence h(α) determines characteristic numbers

of embedding F : Mn ↪→ Nn+k.

Let us give an example of how this theorem works out.

Example 3.3.10. The normal Stiefel-Whitney numbers of

F : RP 2 ↪→ CP n.

Let G : CP n → Rl be an embedding for l large.

In Example 3.2.4 we found that w(νG◦F ) = 1 + a. Since νG◦F = νF ⊕ F ∗νG then

1 + a = w(νG◦F ) = w(νF )F ∗w(νG).

Moreover, c(τCPn) = (1 + b)n+1, where b ∈ H2(CP n) and c is the total Chern class

by Proposition 1.7.3 and Definition 1.7.2. So c(νCPn) = (1 + b)−n−1. Hence

c1(νCPn) = −(n+ 1)b.

Since the class w2(νCPn) is the mod 2 restriction of c1(νCPn) by Lemma 1.7.4 , then

w2(νCPn) =

 b if n is even,

0 if n is odd.

In the case of n odd, then F ∗w(νG) = F ∗w(νCPn) = 1 and so w(νF ) = w(νG◦F ) =

1 + a.
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On the other hand when n is even, then F ∗w(νG) = 1+F ∗(b) = 1+λa2, for some

λ ∈ Z/2. Then 1 + a = (1 + λa2)w(νF ). Hence

w(νF ) = (1 + a)(1 + λa2)−1 = (1 + a)(1 + λa2) = 1 + a+ λa2.

Now we have two possibilities for λ. If λ = 1 then w(νF ) = 1+a+a2. So w1(νF ) =

a, w2(νF ) = a2. Hence by Theorem 3.3.9 the normal Stiefel-Whitney numbers are

w2
1(νF )[RP 2] = 〈w2

1w2, h(α)〉 = 1,

w2(νF )[RP 2] = 〈w2
2, h(α)〉 = 1.

From (3.3.8) since we have µ∗k(w
2
1) = (Σa1)2 = Σa2

1, µ∗k(w2) = Σa1a2 and

µ∗k(wk) = Σa1 . . . ak = a1 . . . ak. Then

µ∗k(w
2
1wk) = Σa2

1a1, . . . ak

= Σa3
1a2 . . . ak,

µ∗k(w2wk) = (Σa1a2)a1, . . . ak

= Σa2
1a

2
2a3 . . . ak.

Hence, by Proposition 3.3.8,

〈w2
1wk, e

k−1
1 e3〉 = 1,

〈w2wk, e
k−1
1 e3〉 = 0,

〈w2
1wk, e

k−2
1 e2

2〉 = 0,

〈w2wk, e
k−2
1 e2

2〉 = 1.

Hence

h(α) = ek−1
1 e3 + ek−2

1 e2
2.

When λ = 0 then w1(νF ) = a ∈ H1(RP 2), w2(νF ) = 0 so

w2
1(νF )[RP 2] = 1, w2(νF )[RP 2] = 0.

Hence, as above

h(α) = ek−1
1 e3.
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Proposition 3.3.11. Given an embedding L2 ↪→ CP n, for n is even corresponding to

α ∈ [CP n
+,MO(2n−2)], then h(α) ∈ H2nMO(2n−2) determines L2 up to cobordism.

L2 ∼ RP 2 if and only if

h(α) = e2n−1
1 e3 + e2n−2

1 e2
2,

or

h(α) = e2n−1
1 e3.

L2 is a boundray if and only if

h(α) = e2n−2
1 e2

2,

or

h(α) = 0.

Proof. The cobordism class of the embedding L2 ↪→ CP n corresponds to

α ∈ Emb2n−2(CP n) ∼= [CP n
+,MO(2n− 2)] ∼= [CP n

n−1,MO(2n− 2)].

Then the cofiber sequence

S2n−2 → CP n
n−1 → S2n

induces a short exact sequence

0→ π2nMO(2n− 2)→ [CP n
n−1,MO(2n− 2)]→ π2n−2MO(2n− 2)→ 0,

where π2nMO(2n− 2) ∼= Z/2 and π2n−2MO(2n− 2) ∼= Z/2. Therefore,

[CP n
n−1,MO(2n− 2)] has order 4. Now we shall show that the Hurewicz image

h : [CP n
n−1,MO(2n− 2)]→ H2nMO(2n−2)

is a monomorphism.

The embedding F : RP 2 ↪→ R2n ⊂ CP n gives θ ∈ [CP n
+,MO(2n − 2)]. From

Example 3.3.10 since RP 2 # R3, w2(νF ) = 0, so w(νF ) = 1 + a2. Hence

h(θ) = e2n−1
1 e3 ∈ H2nMO(2n− 2).
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The embedding G : S2 = CP 1 ↪→ CP n gives φ ∈ [CP n
+,MO(2n− 2)]. Since

w(τCP 1)w(νG) = w(G∗τCPn)

(1 + b)2w(νG) = (1 + b)n+1,

so (since n is even), then

w2(νG) = (n+ 1)b

= b.

This gives

h(φ) = e2n−2
1 e2

2 ∈ H2nMO(2n− 2)

as in Example 3.3.10. Thus h([CP n
+,MO(2n−2)]) ⊆ H2nMO(2n−2) has order 4 and

so h is an isomorphism. Hence h(α) determines α ∈ Emb2n−2(CP n) and therefore

determines the embedded manifold (up to cobordism).

The above examples give the result in the theorem once we observe that if h(α) =

e2n−1
1 e3 + e2n−2

1 e2
2, then the surface is cobordant to RP 2 t S2 ∼ RP 2.

In the final two chapters we will study the double point manifold of an immersion

Mn+1 # CP n and this will be a surface embedded in CP n. In chapter 7 we will study

the values of h(α). The above example shows that we need to take account of the

ambient space of the embedding in order to determine the Stiefel-Whitney numbers

of the surface via the Hurewicz image.

If N = Rn+k we can restate Thom’s theorem in the following form.

Theorem 3.3.12. Thom. Suppose that Mn ↪→ Rn+k represents α ∈ πn+kMO(k).

Then the Hurewicz image h(α) ∈ Hn+kMO(k) determines the cobordism class of M.

Proof. Theorem 3.3.9 shows that the Hurewicz image h(α) ∈ Hn+kMO(k) deter-

mines the characteristic numbers of M. Then from Theorem 3.2.7 this determines

the cobordism class of M.

For F : Mn ↪→ Nn+k, by Example 3.3.10 we have shown that the normal bundle

depend on the embedding F . However if N = Rn+k we have the next Proposition.
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Proposition 3.3.13. Given an embedding F : Mn ↪→ Rn+k, then the stable normal

bundle is independent of the embedding F . Hence the normal Stiefel-Whitney numbers

are given by Kronecker product

wI [M ] = 〈wIwk, h(α)〉.

We will provide a simple example to show the Hurewicz image arising from the real

projective plane in Euclidean spaces. Then illustrate the relation between homology

classes and normal Stiefel-Whitney numbers.

Example 3.3.14. For an embedding F : RP 2 ↪→ R4 the homology class h(α) ∈

H4MO(2) is shown in the following table.

RP 2 ↪→ R4 (RP 2)(2) ↪→ (R4)(2) (RP 2)(3) ↪→ (R4)(3)

k = 2 k = 4 k = 6

α ∈ π4MO(2) α ∈ π8MO(4) α ∈ π12MO(6)

h(α) = e1e3 h(α) = e2
1e

2
3 h(α) = e3

1e
3
3

Here the embedding F (2) : (RP 2)(2) ↪→ (R4)(2) is the Cartesian product of two

copies of RP 2 and so on. By Example 3.2.4 the normal Stiefel-Whitney numbers of

RP 2 are given by

w2
1[RP 2] = 1 and w2[RP 2] = 0.

Then by Proposition 3.3.13

〈w2
1w2, h(α)〉 = 1 and 〈w2

2, h(α)〉 = 0

However,

〈w2
1w2, e1e3〉 = 1 and 〈w2

2, e1e3〉 = 0

also

〈w2
1w2, e

2
2〉 = 0 and 〈w2

2, e
2
2〉 = 1

and so

h(α) = e1e3.

The other examples are calculated similarly.
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In the second case of Example 3.3.10, when λ = 0 we get similar result for the

normal Stiefel-Whitney numbers as in example 3.2.4 and same result of homology

class h(α) as in above example. However, we get different normal Stiefel-Whitney

numbers for embedding manifold in complex projective case. Hence we deduce that

the normal bundle depends on the embedding in general.

3.4 Pontrjagin-Thom theory for embeddings with

ξ-structures

The Pontrjagin-Thom theory for embeddings has a well developed generalisation

where one puts a specific structure on the normal bundle.

Definition 3.4.1. Suppose ξ and ν are arbitrary Rk-bundles, not necessarily over the

same base space. We say ν has a ξ-structure if there is a map of bundles ν → ξ which

induces isomorphism on fibres, i.e. if the bundle map is covered by F̂ : E(ν)→ E(ξ)

and F : B(ν)→ B(ξ) then the mapping F̂ maps Fb(ν) isomorphically onto FF (b)(ξ).

Given an embedding F : Mn ↪→ Nn+k we say that it has a ξ-structure if the normal

bundle νF has a ξ-structure.

Notice that if F : Mn ↪→ Nn+k has a ξ-structure, we then obtain a mapping

T (νF ) → T (ξ) by Thomification. Similar to the previous theory, there are notions

such as regular homotopy between two embeddings F0, F1 : Mn ↪→ Nn+k with ξ-

structures and cobordism of embeddings with ξ-structure. Notice that in this way,

given any embedding F : Mn ↪→ Nn+k with a ξ-structure, the Tubular Neighborhood

Theorem provides a mapping N+ → T (νF ) where composition with T (νF ) → T (ξ)

yields a mapping N+ → Tξ. This then defines a mapping

τ : Embξk(N
n+k) −→ [Nn+k

+ , T ξ]

where Embξk(N
n+k) is the set of all coboridsm classes for embeddings F : Mn ↪→ Nn+k

with a ξ-structure. We refer the reader to [S68, chapter 2] for details on this. We

mention the main theorem which is analogous to the classical one.
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Theorem 3.4.2. The Pontrjagin-Thom construction

τ : Embξk(N
n+k) −→ [Nn+k

+ , T ξ]

is a one to one correspondence.

Proof. See [S68, Theorem on page 18].

This theorem will be useful when we introduce the Pontrjagin-Thom construction

for immersions.



Chapter 4

Pontrjagin-Thom theory for

immersions

The Pontrjagin-Thom construction, which originally was developed for embeddings,

has been extended to the case of immersions. In this version of the Pontrjagin-Thom

theory, the cobordism classes of immersions Mn # Nn+k are related to stable homo-

topy classes of maps Nn+k
+ →MO(k).

In this chapter, and based on The compression theorems of Rourke and Sanderson

[RS01], we provide a new proof of this extended Pontrjagin-Thom theory for the case

of immersions Mn # Nn+k.

We start with the cobordism theory of immersions.

Definition 4.0.1. Let F : Mn
0 # Nn+k and G : Mn

1 # Nn+k be two immersions

of closed n-manifolds in Nn+k. Then F and G are said to be cobordant, denoted by

F ∼ G, if the following conditions hold,

(1) There exists (n+ 1)-manifold W n+1 such that ∂W n+1 = M0 × 0 tM1 × 1,

(2) There exists an immersion H : W n+1 # Nn+k × I, where I = [0, 1], and a

projection map π : Nn+k × I → I such that H|M0×0 = F × 0 and H|M1×1 = G× 1.

(3) For H(W ) ⊂ Nn+k × I ⊂ Nn+k × R,

πH(x) ∈ {0, 1} ⇔ x ∈ ∂W n+1,

πH(x) = 0⇔ x ∈M0 × 0 and πH(x) = 1⇔ x ∈M1 × 1.
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This relation is an equivalence relation on the set of immersions of n dimensional

manifolds Mn into Nn+k. We write [Mn, F ] for the equivalence class of such an

immersion. We write Immk(N
n+k) for the set of all cobordism classes of immersions

Mn # Nn+k. Next, we put the structure of a group on Immk(N
n+k). First, we record

the following fact.

Lemma 4.0.2. Let F : Mn # Nn+k be an immersion. Then there exists large l such

that the composition

i ◦ F : Mn # Nn+k −→ Nn+k × Rl

is regular homotopic to an embedding F1 : Mn ↪→ Nn+k ×Rl, where i is the standard

inclusion i : Nn+k −→ Nn+k × Rl

Proof. Applying Whitney’s embedding theorem, Theorem 1.4.5, we can find l > 0

and an embedding G : Mn ↪→ Rl. Define

H : Mn × I → Nn+k × Rl,

by

(x, t)→ (F (x), tG(x)),

for (x, t) ∈M × I. Notice that H(x, 0) = i ◦ F (x).

The mapping F is immersion and hence i ◦ F is an immersion. Moreover, G is an

embedding which in particular means it is an immersion. This implies that Ht :

Mn × I → Nn+k × Rl defined by Ht(x) = H(x, t) is an immersion for all t ∈ [0, 1].

Hence, H is a regular homotopy.

On the other hand, since G is one to one, hence H1 given by

H1(x) = (F (x), G(x))

is a one to one immersion, i.e. H1 is an embedding as M is compact. We can choose

F1 = H1. This completes the proof.

We now introduce the group operation on Immk(N
n+k).
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Definition 4.0.3. Let F : Mn
1 # Nn+k and G : Mn

2 # Nn+k be two immersions,

then the sum

F tG : Mn
1 tMn

2 # Nn+k

is an immersion, where the symbol t be the disjoint union.

Theorem 4.0.4. Let F : M1 # N and G : M2 # N be two immersions. If i ◦F and

i ◦G are regular homotopic to embeddings

F1 : M1 ↪→ N × Rl and G1 : M2 ↪→ N × Rl.

Then there exist an embedding F t G : M1 t M2 ↪→ Nn+k × Rl which is regular

homotopic to i ◦ (F tG).

Proof. Suppose that i ◦ F : M1 # Nn+k → Nn+k × Rl, i ◦ G : M2 # Nn+k →

Nn+k × Rl. Applying Lemma 4.0.2 we find that the composition i ◦ F is regular

homotopic to an embedding F1 : M1 ↪→ Nn+k × Rl. Also i ◦ G is regular homotopic

to an embedding G1 : M2 ↪→ Nn+k × Rl.

Now we notice that Rl ∼= Rl−1 × (0,∞) as well as Rl−1 × (−∞, 0), using

R ∼= (−∞, 0) ∼= (0,∞). Then let

F2 : M1 ↪→ Nn+k × Rl ∼= Nn+k × Rl−1 × (−∞, 0) ⊂ Nn+k × Rl−1 × R.

G2 : M2 ↪→ Nn+k × Rl ∼= Nn+k × Rl−1 × (0,∞) ⊂ Nn+k × Rl−1 × R.

F2 is clearly regular homotopic to F1 and so to i ◦ F , also G2 is similarly regular

homotopic to G1 and so to i ◦G. Next we have the map

F2 tG2 : M1 tM2 → Nn+k × Rl

is an embedding and is regular homotopic to i ◦ (F tG).

The Pontrjagin-Thom theorem for immersions can deduced from the Pontrjagin-

Thom theorem for embeddings. In one direction, starting with a given immersion, we

record the following fact.

Lemma 4.0.2 allows us to define a group homomorphism

Immk(N
n+k) −→ [Nn+k

+ , QMO(k)].
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Lemma 4.0.5. There is a group homomorphism

τ : Immk(N
n+k) −→ [Nn+k

+ , QMO(k)].

Proof. Let F : Mn # Nn+k be an immersion. Then according to Lemma 4.0.2 there

exists l > 0 such that the composition

Mn # Nn+k −→ Nn+k × Rl

is regular homotopic to an embedding. The normal bundle of this embedding is given

by νF ⊕ εl and its Thom space is T (νF ⊕ εl) ∼= ΣlT (νF ) by Theorem 1.5.7. Applying

the Pontrjagin-Thom construction to this embedding we obtain a mapping

(Nn+k × Rl)+
∼= ΣlNn+k

+ −→ ΣlT (νF ).

Moreover, notice that νF is a k-vector bundle, hence we obtain a mapping

T (νF )→ T (γk) = MO(k).

Hence, composition gives

f̃ : ΣlNn+k
+ −→ ΣlMO(k).

We then have the adjoint,

Nn+k
+ −→ ΩlΣlMO(k).

Composing this map with the inclusion ΩlΣlMO(k)→ QMO(k) then gives a map,

f : Nn+k
+ −→ QMO(k).

Moreover, let [M1, F ], [M2, G] be two immersions which are cobordant through the

immersion H : W n+1 # Nn+k × I. Applying the same technique as above yields a

homotopy, say τ([W n+1, H]) : (Nn+k× I)+ → QMO(k) between F and G. Hence, we

have obtained a mapping

τ : Immk(N
n+k) −→ [Nn+k

+ , QMO(k)].

Now for an immersions F,G : Mn # Nn+k, the last suspension coordinate will

be R. Let Y = F2 tG2 : M ↪→ Nn+k ×Rl be the embedding of Theorem 4.0.4 which
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represent [F ]+ [G]. So by taking the sum of last suspension coordinates and applying

Theorem 4.0.4 we find that ỹ ' f̃ + g̃ where y = τ([Y ]) and ỹ ∈ [ΣlNn+k
+ ,ΣlMO(k)]

correspond to Y . Hence

τ([F tG]) = τ([F ]) + τ([G])

so that τ is a homomorphism. Notice that QMO(k) is a loop space. Hence the set

[Nn+k
+ , QMO(k)] is a group.

4.1 The compression theorem

In order to describe an inverse mapping

[Nn+k
+ , QMO(k)] −→ Immk(N

n+k)

we need to start with a given map Nn+k
+ → QMO(k) and show that it represents

a unique cobordism class of immersions Mn # Nn+k. This can be done using the

Pontrjagin-Thom theory for embeddings with ξ-structure together with the Compres-

sion theorem of Rourke and Sanderson. Before proceeding we recall some definitions.

Definition 4.1.1. Let F : Mn → Nn+k be an immersion. A normal vector field on

M is a mapping s : Mn → E(νF ) such that s(x) ∈ Fx(νF ) for each x ∈ Mn. More

briefly, π ◦ s = 1M where π : E(νF ) → M is the projection and 1M is the identity

function on M .

Notice that νF is a k-vector bundle, i.e. Fx(νF ) ∼= Rk for each x ∈ Mn. Suppose

s1, . . . , sl are normal vector fields on Mn. We then have the following definition.

Definition 4.1.2. We say the vector fields s1, . . . , sl : M → E(νF ) are linearly

independent if and only if the {s1(x), . . . , sl(x)} is a linearly independent subset in

Fx(νF ) for each x ∈Mn.

Definition 4.1.3. Let F : Mn ↪→ Nn+k × R be an embedding, then the normal

vector field is called straightened if it is parallel to the given R direction, namely,

s(x) = (0, e1) ∈ Fx(νF ) ⊆ TF (x)N × R for all x ∈M where e1 = 1 ∈ R.
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Now we want to construct the inverse to the homomorphism of Lemma 4.0.5. To

do this we need to use The compression theorem which will now be explained.

Theorem 4.1.4. The compression theorem . Let Mn be a compact manifold

embedded in Nn+k × R and equipped with a non-trivial normal vector field. Assume

k ≥ 1. Then the vector field can be straightened by an isotopy of M .

Proof. See [RS99, section 2.]

Definition 4.1.5. An embedding M ↪→ Nn+k×R is called compressible if it projects

by vertical projection to an immersion in Nn+k.

We think of R as vertical and the positive R direction as upwards. Theorem 4.1.4

moves M to a position where it is compressible. We could say that the vector field

always points vertically up.

More generally, we can straighten a sequence of vector fields. More precisely,

suppose that M is embedded in Nn+k × Rl with l independent normal vector fields,

then M is isotopic to an embedding in which each vector field is parallel to the

corresponding copy of R.

Definition 4.1.6. let Mn be embedded in Nn+k×Rl and suppose that M is equipped

with l linearly independent normal vector fields. Then we say that the embedding

is parallel if the l vector fields are parallel to the l coordinate directions in Rl ,i.e.

si(x) = (0, ei) for 1 ≤ i ≤ l, x ∈M .

Theorem 4.1.7. Multi-compression theorem . Suppose that Mn is embedded

in Nn+k × Rl with l independent normal vector fields and k ≥ 1. Then the l vector

field can be straightened by an isotopy of M to a parallel embedding .

Proof. See [RS01, Theorem 4.5.]

The following Theorem is an application of the compression theorem.

Theorem 4.1.8. Suppose F : Mn ↪→ Nn+k×Rl is a parallel embedding with l linearly

independent normal vector fields. Then

F1 = p1 ◦ F : Mn # Nn+k
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is an immersion, i.e F is a compressible embedding, where p1 : Nn+k × Rl → Nn+k

is the projection map.

Proof. Suppose that F : Mn ↪→ Nn+k × Rl is a parallel embedding and consider

F1 = p1 ◦ F : Mn → Nn+k as shown in next figure.

Mn

F1 %%KKKKKKKKKK
F // Nn+k × Rl

p1
��

Nn+k

Let F (x) = (F1(x), F2(x)), where F1(x) ∈ Nn+k and F2(x) ∈ Rl. Then

dFx : TxM
n → TF (x)(N

n+k × Rl) = TF1(x)N
n+k × TF2(x)Rl = TF1(x)N

n+k × Rl.

For 0 ≤ i ≤ l, si(x) = (0, ei) ∈ Fx(νF ) ⊆ TF1(x)N
n+k × Rl. Therefore,

{0} × Rl ⊆ Fx(νF ). Then (dFx(TxM)) ∩ ({0} × Rl) = {0}. Hence {0} × Rl will not

lie in

dFx(TxM) ⊆ TF (x)(N
n+k × Rl).

Now by taking the projection map

dp1 : TF (x)(N × Rl) = TF1(x)N
n+k × Rl → TF1(x)N

the kernel dp1 = {0} × Rl.

TxM
n

(dF1)x
��

dFx // TF (x)(N
n+k × Rl)

dp1
��

= // TF1(x)N
n+k × Rl

dp1
��

TF1(x)(N
n+k)

= // TF1(x)(N
n+k)

= // TF1(x)N
n+k

Then

(dF1)x : TxM
n −→ TF1(x)(N

n+k)

is a monomorphism if and only if

dFx(TxM) ∩ kernel dp1 = dFx(TxM
n) ∩ ({0} × Rl) = {0}

which we have proved. Hence

F1 : Mn → Nn+k

is an immersion which completes the proof.
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Theorem 4.1.9. There is a function

t : [Nn+k
+ , QMO(k)] −→ Immk(N

n+k),

inverse to the function τ of Theorem 4.0.5.

The proof of this theorem is similar to that of the case of embeddings, replacing

embeddings by immersions in cobordism theory corresponds to replacing homotopy

groups of Thom complexes by stable homotopy groups.

Proof. Let α ∈ [Nn+k
+ , QMO(k)] be represented by a map

f : Nn+k
+ −→ QMO(k)

where QMO(k) = lim ΩlΣlMO(k). Thus, there exists l > 0 such that we may realize

f as a mapping f : Nn+k
+ → ΩlΣlMO(k). We then consider the adjoint of f as a

mapping

g : ΣlNn+k
+ −→ ΣlMO(k).

Notice that ΣlNn+k
+
∼= (Nn+k×Rl)+ and ΣlMO(k) ∼= T (γk⊕εl) where εl is the trivial

l-dimensional bundle over BO(k). Hence, we may consider g as a mapping

(Nn+k × Rl)+ −→ T (γk ⊕ εl).

By the generalised Pontrjagin-Thom construction for embeddings this mapping rep-

resents an embedding

Mn ↪→ Nn+k × Rl

where the normal bundle of this embedding admits a splitting ν ⊕ εl. This then

satisfies the conditions of Theorem 4.1.8. Hence, by the Multi compression theorem,

by composing with the projection Nn+k × Rl → Nn+k we obtain a mapping

Mn ↪→ Nn+k × Rl −→ Nn+k

which is isotopic to an immersion F : Mn # Nn+k with νF ∼= ν.

Moreover, one may start with a homotopy and end up with a cobordism class by

applying the analogous construction. Hence, we have defined a function

t : [Nn+k
+ , QMO(k)] −→ Immk(N

n+k).
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It is straightforward to check that t and τ are inverse functions.

Corollary 4.1.10. The homomorphism

τ : Immk(N
n+k) ∼= [Nn+k

+ , QMO(k)]

is an isomorphism.

Notice that in this particular case, the Pontrjagin-Thom theory provides

Immk(Rn+k)→ [Sn+k, QMO(k)] ∼= πSn+kMO(k),

which relate the (n + k)-th stable homotopy group of MO(k) to the cobordism of

codimension k immersed in Rn+k.

4.2 Stiefel-Whitney numbers of immersions

The cobordism class of manifolds are determined by their normal Stiefel-Whitney

numbers. This is similar to the case of embedded manifolds and we may apply a similar

construction to determine the Stiefel-Whitney numbers of an immersion Mn # Nn+k.

Let f : Nn+k
+ → QMO(k) represent an element α in [Nn+k

+ , QMO(k)]. Then there

exists l > 0 such that f : Nn+k
+ → ΩlΣlMO(k). This gives the adjoint mapping

ΣlNn+k
+ → ΣlMO(k).

Definition 4.2.1. The stable Hurewicz homomorphism

hS : [Nn+k
+ , QMO(k)] −→ Hn+kMO(k)

is defined by the composition

[Nn+k
+ ,ΩlΣlMO(k)] ∼= [ΣlNn+k,ΣlMO(k)]

h−→ Hn+k+lΣ
lMO(k) ∼= Hn+kMO(k)

where h is the Hurewicz homomorphism defined in previous section.

The following theorem is a generalisation of the result of Asadi and Eccles [AEb00,

Lemma 2.2].
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Theorem 4.2.2. Suppose an immersion F : Mn # Nn+k corresponds to an element

α ∈ [Nn+k
+ , QMO(k)]. Then the normal Stiefel-Whitney numbers of the immersion

are determined by

〈wI(νF ), [M ]〉 = 〈wIwk, hS(α)〉.

The proof of this theorem is based on Theorem 3.3.9, Lemma 4.0.2, and the

Thom-Pontrjagin theory for immersions.

Proof. Suppose F : Mn # Nn+k is an immersion, corresponding to an element

α ∈ [Nn+k
+ , QMO(k)]. Under The Thom-Pontrjagin construction we represent α by

the map

f : Nn+k
+ → QMO(k) = direct lim ΩlΣlMO(k).

On the other hand, according to Lemma 4.0.2, there exists l > 0 such that F is

regular homotopic to an embedding F1 : Mn ↪→ Nn+k × Rl with νF1
∼= νF ⊕ εl, i.e.

F1 corresponds to an element α̃ ∈ [ΣlNn+k
+ ,ΣlMO(k)] which is represented by

f̃ : ΣlNn+k
+ → ΣlMO(k).

Observe that, according to the proof of the Thom-Pontrjagin theory for immersions,

we may think of α̃ as the stable adjoint of α. In particular, this implies that

hS(α) = h(α̃).

Applying Whitney’s product theorem we see that wi(νF1) = wi(νF ⊕ εl) = wi(νF )

for all i 6 k and wi(νF1) = 0 for i > k. This means that νF and νF1 have the same

Stiefel-Whitney classes, and hence the same Stiefel-Whitney numbers. This implies

that

〈wI(νF ), [M ]〉 = 〈wI(νF1), [M ]〉 = 〈wIwk, h(α̃)〉 = 〈wIwk, hS(α)〉.

This completes the proof.

Corollary 4.2.3. For an immersion F : Mn # Rn+k corresponding to α ∈ πn+kQMO(k),

the normal Stiefel-Whitney numbers of the manifolds are determined by

wI [M ] = 〈wIwk, hS(α)〉.



Chapter 5

Steenrod operations and

Kudo-Araki operations

We have observed that determining the cobordism class of a manifold Mn depends

on determining the Steifel-Whitney numbers of the stable normal bundle of M . Ac-

cording to Theorem 4.2.2 determining the normal Steifel-Whitney numbers of F can

be done by calculating the image of the fundamental class [Nn+k
+ ] under the stable

Hurewicz homomorphism

hS : [Nn+k
+ ,MO(k)]S → Hn+kMO(k).

In this chapter, we will describe the homology of QMO(k) and introduce some alge-

braic tools that help us to do calculations in the homology ring H∗QMO(k) namely

the Steenrod operations, and the Kudo-Araki operations.

5.1 Steenrod operations

Roughly speaking, a cohomology operation θ is homomorphism from the additive

group H∗X to itself, which assigns a class θ(x) ∈ H∗X to every given x ∈ H∗X. The

class θ(x) does not need to have the same dimension as x. We refer the reader to

[MT68] for a general theory of (co-)homology operations.

A Steenrod operation, is a cohomology operation satisfying some specific proper-

ties. The following theorem introduces Steenrod squares.

83
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Theorem 5.1.1. There are unique cohomology operations Sqi, i = 0, 1, 2, . . ., called

the i-th “ Steenrod squares” which, are homomorphisms

Sqi : HnX → Hn+iX

defined for all n ≥ 0, satisfying the following properties:

(1) Sq0(x) = x, (the identity homomorphism);

(2) Sqi(x) = 0 for all x ∈ HnX, i > n;

(3) Sqi(x) = x2 if x ∈ H iX;

(4) Sq1 is the Bockstein (connecting) homomorphism associated with the coefficient

sequence 0 −→ Z/2 −→ Z/4 −→ Z/2 −→ 0;

(5) (Stability) if σ∗ : HnX −→ Hn+1ΣX is the suspension isomorphism, then

Sqiσ∗ = σ∗Sqi;

(6) (Naturality) for any map f : X → Y , then

Sqif ∗ = f ∗Sqi;

(7) (Cartan formula): Sqi(x∪ y) =
∑

j+k=i(Sq
jx)∪ (Sqky), where x∪ y denotes the

cup product;

(8) (Adem relations). If 0 < a < 2b, then

SqaSqb =
∑(

b− c− 1

a− 2c

)
Sqa+b−cSqc,

where the binomial coefficient is taken mod 2.

Proof. See [MT68, Chapter 2].

Because of condition 5 in the above theorem we say that the Steenrod operations

are “stable operations”.

Notice that Sqi is a function, so it makes sense to take about composition of two

given squares, such as SqiSqj, and so on. In general, a Steenrod operation θ will be

a linear combination of compositions of Steenrod squares, for example

θ = Sq4Sq2 + Sq1Sq5

is a Steenrod operation.



CHAPTER 5. (CO-)HOMOLOGY OPERATIONS 85

Definition 5.1.2. Let I = (i1, . . . , is) be a sequence of nonnegative integers which

denoted by SqI = Sqi1 · · ·Sqis . Then SqI is called admissible if ij ≥ 2ij+1 for every

j < s. The excess of I is given by ex(I) = i1 − i2 − . . . − ir. We also define

dim(I) = i1 + i2 + . . .+ is, and the length of I by l(I) = s.

Proposition 5.1.3. [MT68, Cor.1]. Every Steenrod square can be written in terms

of

Sq2i , i ≥ 0.

For example Sq2Sq2 = Sq3Sq1 = Sq1Sq2Sq1 and Sq1Sq1 = 0.

Next, we describe the action of the Steenrod squares on the cohomology of some

well-understood spaces, namely real and complex projective space, that we are going

to deal with during our calculations in the next chapters. First, we recall the following

description.

Proposition 5.1.4. The following isomorphisms describe the cohomology rings of

projective spaces,

H∗RP∞ ∼= Z/2[a],

H∗RP n ∼= Z/2[a]/(an+1),

H∗CP∞ ∼= Z/2[b],

H∗CP n ∼= Z/2[b]/(bn+1),

where dim a = 1 and dim b = 2.

Proof. See [G75, Corollary 26.35].

We then have the following description.

Proposition 5.1.5. Let a ∈ H1RP∞, b ∈ H2CP∞ be non-zero elements. Then

(1) Sqian =
(
n
i

)
an+i,

(2) Sq2ibn =
(
n
i

)
bn+i,

(3) Sq2i+1bn = 0.

Proof. See [G75, Proposition 27.20].
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We notice that, by definition, the Steenrod operations Sqi : HnX → Hn+iX are

linear functions between Z/2-vector spaces. By vector space duality, we obtain Z/2-

homology operations

Sqi∗ : Hn+iX −→ HnX.

These operations have properties, similar to cohomology operations. For example, if

f : X → Y is given, then the operations Sqi∗ are natural, i.e.

f∗Sq
i
∗x = Sqi∗f∗x

where x ∈ H∗X. We calculate the action of these operation, using the actions of the

cohomology operations Sqi and the Kronecker pairing

〈−,−〉 : H∗X ×H∗X → Z/2.

Example 5.1.6. Consider H∗RP∞. For each k, we have a generator ek ∈ HkRP∞

such that 〈aj, ek〉 = δj,k where δj,k is the Kronecker delta function. In order to calculate

Sqi∗ek we notice that

〈aj, Sqi∗ek〉 = 〈Sqiaj, ek〉 = 〈
(
j

i

)
ai+j, ek〉 =

(
j

i

)
δi+j,k.

This implies that

Sqi∗ek =

(
k − i
i

)
ek−i.

In H∗CP∞ we have generators a2k ∈ H2kCP∞ such that 〈bj, a2k〉 = δj,2k.

A similar calculation as above shows that

Sq2i
∗ a2k =

(
k − i
i

)
a2k−2i,

and Sq2i+1
∗ a2k = 0 for all i ≥ 0.

5.2 The homology of QMO(k) and Kudo-Araki op-

erations

In order to describe the homology of QMO(k) we need to describe the Z/2-homology

operations known as Kudo-Araki operations. First, we note that the space QMO(k)
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is a loop space. If we have two loops f, g ∈ QMO(k) we then can consider the loop

sum f ? g ∈ QMO(k), as introduced in Section 1.2. This means that we have a

mapping

QMO(k)×QMO(k) −→ QMO(k).

In homology, this mapping induces a product

H∗QMO(k)⊗H∗QMO(k) −→ H∗QMO(k).

This gives the structure of a ring to H∗QMO(k) which is known as the Pontrjagin

ring, and the ring product is known as the Pontrjagin product [W78, Chap.7].

Theorem 5.2.1. Let X be an infinite loop space. Then for each j = 0, 1, 2, . . . , there

exist operations

Qj : HnX −→ Hn+jX,

which satisfying the following prorerties:

(1) Qj raises dimensions by j, where j = 0, 1, 2, . . ..

(2) Qjx = 0 if j < n for any x ∈ HnX;

(3) Qjx = x2 if j = n, where the square is the Pontrjagin product;

(4) Qj1 = 0 if j > 0, where 1 ∈ H0X is the identity element of the Pontrjagin ring;

(5) the Cartan formula holds:

Qj(xy) =
∑
i+k=j

(Qix)(Qky);

(6) Qj commutes with homology suspension i.e.

σ∗Q
j = Qjσ∗,

where σ∗ : H̃∗ΩX → H̃∗X is the homology suspension;

(7) the Adem relation. If a > 2b, then

QaQbx =
∑
r

(
r − b− 1

2r − a

)
Qa+b−rQrx;

(8) the Nishida relations:

Sqi∗Q
ax =

∑
r

(
a− i
i− 2r

)
Qa−i+rSqr∗x.
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Proof. See [CLM76, Theorem 1.1.].

These operations satisfy other variations of Cartan formula [CLM76]. As with the

Steenrod squares we may consider iterations of these operations.

Definition 5.2.2. Let J = (j1, . . . , jr) be a sequence of nonnegative integers. Then the

term QJ = Qj1 · · ·Qjr is called admissible if ji 6 2ji+1 for 1 6 i 6 r − 1. The excess

of J is given by ex(J) = j1− j2− . . .− jr. We also define dim(J) = j1 + j2 + . . .+ jr,

and length of J by l(J) = r.

The significance of these definition is that QJx is a Pontrjagin square if ex(J) =

dim(x) and vanishes if ex(J) < dim(x). Also if J is a non-admissible sequence, then

QJ can be written in terms of admissible sequences using Adem relations in the same

way that this is done for Steenrod squares.

The homology ring H∗QX, when X is a path connected space, can be described

as follows. Let {xµ} be a homogeneous basis for H̃∗X ⊆ H∗QX, the reduced Z/2-

homology of X. We then have [CLM76]

H∗QX ∼= Z/2[QJxµ|J admissible, ex(J) > dimxµ].

Thus a basis for H∗QX is provided by the monomials in the polynomial generators.

Now, forX = MO(k) we have the following. Recall from Chapter 3 that H̃∗MO(k)

has a homogeneous basis

{eI : I = (i1, . . . , ik) such that 1 ≤ i1 ≤ i2 · · · ≤ ik}.

This then implies that

H∗QMO(k) = Z/2[QJeI | J admissible , ex(J) > dim eI ].

The action of the Steenrod operations Sqr∗ on the classes eI is calculated using

naturality. More precisely, note that

eI = (µk)∗(ei1 ⊗ · · · ⊗ eik).

This implies that

Sqr∗eI = Sqr∗(µk)∗(ei1 ⊗ · · · ⊗ eik) = (µk)∗Sq
r
∗(ei1 ⊗ · · · ⊗ eik). (5.2.3)
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On the other hand, similar to the diagonal Cartan formula in cohomology in

Theorem 5.1.1, we have diagonal Cartan formula in homology; if x ∈ H∗X and

y ∈ H∗Y then

Sqr∗(x⊗ y) =
∑
j

(Sqr−j∗ x)⊗ (Sqj∗y).

We shall apply this formula to (5.2.3) to determine Sqr∗eI . This of course, can be

tedious when l(I) is too big, but we will work with cases when l(I) is reasonably

small, where l(I) = k is the length of a sequence I.

Definition 5.2.4. We say that a homology class x ∈ HnX is A-annihilated if and

only if Sqi∗x = 0 for all i > 0.

From Proposition 5.1.3 we deduce the following result

Corollary 5.2.5. Let x ∈ HnX. Then x is A-annihilated if and only if Sq2i

∗ x = 0

for all i ≥ 0, 2i+1 ≤ dimx.

Example 5.2.6. A basis for H4QMO(2) is given by the following set

{e1e3, e
2
2, e

2
1 · e2

1}

where · denotes the Pontrjagin product in H∗QMO(2) coming from the loop space

structure on QMO(2). The following table shows the Steenrod squares of these ele-

ments.

Sq1
∗ Sq2

∗

e1e3 0 0

e2
2 0 e2

1

e2
1 · e2

1 0 0

For instance, in the case of calculating Sqr∗e
2
2 we have the following.

Sq1
∗(e

2
2) = (Sq1

∗e2)(Sq0
∗e2) + (Sq0

∗e2)(Sq1
∗e2) = e1e2 + e1e2 = 0.

Sq2
∗(e

2
2) = (Sq2

∗e2)(Sq0
∗e2) + (Sq1

∗e2)(Sq1
∗e2) + (Sq0

∗e2)(Sq2
∗e2) = e1e1 = e2

1. And for

r > 2, Sqr∗e
2
2 = 0.

In the case of the element e2
1 · e2

1 we also need to use Cartan formula as follow

Sq1
∗(e

2
1 · e2

1) = Sq1
∗(e

2
1) · e2

1 + e2
1 · Sq1

∗(e
2
1) = 0.
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By using the diagonal Cartan formula in homology and the Nishida relations we

can find the A-annihilated elements of H∗QMO(k).

In the above example, we find clearly that the elements e1e3 and e2
1 · e2

1 are A-

annihilated. However the element e2
2 is not.

5.3 The cup-coproduct in H∗QMO(k)

We describe the primitive classes in H∗QMO(k). This is useful when we wish to

determine the Hurewicz image f∗[N
n+k
+ ] for a given map f : Nn+k

+ → QMO(k).

The cup-coproduct or briefly coproduct is denoted by the symbol ψ. The map ψ :

H∗X −→ H∗X ⊗H∗X is induced by the diagonal map X → X ×X. We notice that

this map is the vector space dual of the cup-product

H∗X ⊗H∗X −→ H∗X.

Definition 5.3.1. The homology class u ∈ HnX is called primitive if

ψ(u) = u⊗ 1 + 1⊗ u,

where,

ψ : HnX → Hn(X ×X) ∼=
∑
j

HjX ⊗Hn−jX.

Let a denote the generator of H1BO(1). Then ai is the generator of H iBO(1)

which is dual to ei ∈ HiBO(1). Since aj ∪ ai−j = ai, then by the definition of ψ we

have

ψ(ei) =
i∑

j=0

ej ⊗ ei−j.

The coproduct ψ is the mapping which in homology is induced by the diagonal

mapping X → X × X. This implies that ψ is natural with respect to mappings of

spaces, that is for g : X → Y we have

ψg∗(u) = (g∗ ⊗ g∗)ψ(u)

where (g∗⊗g∗)(a⊗ b) = g∗(a)⊗g∗(b) and u ∈ H∗X. Moreover, we have the following.
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Proposition 5.3.2. The coproduct on a homology class u ⊗ v ∈ H∗(X × Y ) ∼=

H∗X ⊗H∗Y is calculated by

ψ(u⊗ v) = ψ(u)⊗ ψ(v).

Proof. Assume that the map ∆ : X → X ×X is the diagonal map, then we have a

commutative diagram

X × Y 1 //

∆×∆
��

X × Y

∆

��

X ×X × Y × Y
1×τ×1

��
X × Y ×X × Y 1 // X × Y ×X × Y

(5.3.3)

where τ : X×Y → Y ×X is the map which switches components, i.e. τ(x, y) = (y, x).

Then given

ψ(u) =
∑

u′ ⊗ u′′ and ψ(v) =
∑

v′ ⊗ v′′,

we have

ψ(u⊗ v) =
∑

(u′ ⊗ v′)⊗ (u′′ ⊗ v′′)

= ψ(u)⊗ ψ(v)

where u ∈ H∗X and v ∈ H∗Y .

Remark 5.3.4. Recall that for I = (i1, . . . , ik) with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik we defined

eI = (µk)∗(ei1 ⊗ · · · ⊗ eik) ∈ H∗BO(k). Hence, we may calculate ψ(eI) by naturality.

We may express ψ(eI) in the following form:

ψ(eI) = eI ⊗ 1 +
∑

eI−M ⊗ eM + 1⊗ eI + AI

where the sum
∑
eI−M ⊗ eM runs over terms where both M and I −M have only

nonzero entries. The class AI is a sum of terms of the form

ej1ej2 · · · ejr ⊗ ek1 · · · ekr

where J = (j1, . . . , jr) and K = (k1, . . . , kr) are increasing sequences, and at least

one of them has an entry equal to 0, and at least one of the entries in both of J or
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K is nonzero, with the convention that e0 = 1. For example, gives e2e3 ∈ H∗BO(2),

we may calculate that

ψ(e2)ψ(e3) = (e2 ⊗ 1 + e1 ⊗ e1 + 1⊗ e2)(e3 ⊗ 1 + e2 ⊗ e1 + e1 ⊗ e2 + 1⊗ e3)

= e2e3 ⊗ 1 + e2
2 ⊗ e1 + e1e2 ⊗ e2 + e2 ⊗ e3+

e1e3 ⊗ e1 + e1e2 ⊗ e2
1 + e2

1 ⊗ e1e2 + e1 ⊗ e1e3+

e3 ⊗ e2 + e2 ⊗ e1e2 + e1 ⊗ e2
2 + 1⊗ e2e3.

Here the sum
∑
eI−M ⊗ eM is given by

e1e2 ⊗ e2
1 + e2

1 ⊗ e1e2

whereas A(2,3) is given by

e2
2 ⊗ e1 + e1e2 ⊗ e2 + e2 ⊗ e3 + e1e3 ⊗ e1+

e1 ⊗ e1e3 + e3 ⊗ e2 + e2 ⊗ e1e2 + e1 ⊗ e2
2.

Notice that the class e2e3 maps to a nontrivial class in H∗MO(2). On the other

hand we know that classes such as e2 belong to the kernel of the projection map

H∗BO(2) → H∗MO(2). Notice that the class e2
0 = 1 maps to 1 ∈ H0MO(2). This

implies that in H∗MO(2)⊗H∗MO(2) we have

ψ(e2e3) = e2e3 ⊗ 1 + e1e2 ⊗ e2
1 + e2

1 ⊗ e1e2 + 1⊗ e2e3.

In general, we observe that AI , in the expression for ψ(eI) belongs to the kernel of the

projection map H∗BO(k)⊗H∗BO(k)→ H∗MO(k)⊗H∗MO(k), i.e. in H∗MO(k)⊗

H∗MO(k) we have

ψ(eI) = eI ⊗ 1 +
∑

eI−M ⊗ eM + 1⊗ eI

where the sum
∑
eI−M ⊗ eM runs over terms where both M and I −M have only

nonzero entries.

Definition 5.3.5. The reduced coproduct ψ̃ : H∗X → H∗X ⊗H∗X is defined by

ψ̃(u) = ψ(u)− 1⊗ u− u⊗ 1.
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Then, according to the above example, in H∗MO(2) we have

ψ̃(e2e3) = e1e2 ⊗ e2
1 + e2

1 ⊗ e1e2 = ψ̃(e2)ψ̃(e3).

This is an example of a general result.

Lemma 5.3.6. Let I = (i1, . . . , ik) be an increasing sequence with i1 ≥ 1. Then for

eI ∈ H∗BO(k)

ψ̃(eI) =
∑

eI−M ⊗ eM + AI ,

using the notation of Remark 5.3.4.

Consequently, in H∗MO(k)⊗H∗MO(k) we have an expression of the form

ψ̃(eI) =
∑

eI−M ⊗ eM

where both M and I −M have only nonzero entries.

Proof. This is straightforward from Remark 5.3.4, and Definition 5.3.5.

Theorem 5.3.7. For eI = ei1 · · · eir ∈ H∗MO(r) and eJ = ej1 · · · ejs ∈ H∗MO(s),

the reduced coproduct satisfies

ψ̃(eIeJ) = ψ̃(eI)ψ̃(eJ)

where eIeJ = ei1 · · · eirej1 · · · ejs.

Proof. From Lemma 5.3.6, we calculate that in H∗BO(r)

ψ(eI) = eI ⊗ 1 + 1⊗ eI +
∑
M

eI−M ⊗ eM + AI .

Moreover, in H∗BO(s) we have

ψ(eJ) = eJ ⊗ 1 + 1⊗ eJ +
∑
N

eJ−N ⊗ eN + AJ .

Hence ψ(eIeJ) in H∗BO(r + s) is given by

ψ(eIeJ) = eIeJ ⊗ 1 + 1⊗ eIeJ + (
∑

M eI−M ⊗ eM)(
∑

N eJ−N ⊗ eN) + A(I,J)

= eIeJ ⊗ 1 + 1⊗ eIeJ +
∑

M,N eI−MeJ−N ⊗ eMeN + A(I,J)
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where (I, J) = (i1, . . . , ir, j1, . . . , js). Moreover,

A(I,J) =
∑

(eIeJ−N)⊗ eN + eI ⊗ eJ+∑
(eI−MeJ)⊗ eM +

∑
eI−M ⊗ (eMeJ)+

eJ ⊗ eI +
∑
eJ−N ⊗ (eIeN)+

other terms coming from products with AI or AJ .

This implies that ψ(eIeJ) in H∗MO(r + s) is given by

ψ(eIeJ) = eIeJ ⊗ 1 + 1⊗ eIeJ +
∑
M,N

eI−MeJ−N ⊗ eMeN

or equivalently

ψ̃(eIeJ) =
∑
M,N

eI−MeJ−N ⊗ eMeN = ψ̃(eI)ψ̃(eJ).

This completes the proof.

Example 5.3.8.

(ψe4
2)3 = (e4

2 ⊗ 1 + e4
1 ⊗ e4

1 + 1⊗ e4
2)3

= e12
2 ⊗ 1 + e12

1 ⊗ e12
1 + 1⊗ e12

2

Hence

ψ̃(e4
2)3 = e12

1 ⊗ e12
1 .

The following result determines those classes eI that are primitive in H∗MO(k).

Lemma 5.3.9. For I = (i1, i2, . . . , ik), such that i1 ≤ i2 ≤ . . . ≤ ik. The element eI

is primitive in H∗MO(k) if and only if i1 = 1.

Proof. Notice that ψ̃(ei) = 0 if and only if i = 1. Suppose that eI ∈ H∗QX is

primitive, then

ψ̃(eI) = ψ̃(ei1 . . . eik) = ψ̃(ei1) . . . ψ̃(eik) = 0.

Hence ψ̃(eij) = 0 for some ij. Then ij = 1 and then i1 = 1 since 1 ≤ i1 ≤ ij.

Conversely, Suppose that i1 = 1, then ψ̃(ei1) = 0 and so ψ̃(eI) = 0. Hence eI is

primitive.
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In H∗QX the coproduct is calculated as follows. Let ψ(u) =
∑
u
′ ⊗ u′′ , then the

diagonal Cartan formula [CLM76, Part I, Theorem 1.1] is given by

ψ(Qj(u)) =
∑
i+k=j

Qiu
′ ⊗Qku

′′
.

Using this we have the following.

Proposition 5.3.10. If u ∈ H∗MO(k) is primitive, then Qnu is primitive in H∗QMO(k).

Proof. Suppose that u is primitive, then ψ(u) = u⊗ 1 + 1⊗ u. Then

ψ(Qnu) = ΣiQ
iu⊗Qn−i1 + ΣiQ

i1⊗Qn−iu

= Qnu⊗ 1 + 1⊗Qnu,

since Qi1 = 0 for i > 0. Then ψ̃(Qnu) = 0. Hence Qnu is primitive

In Example 5.2.6, by Lemma 5.3.9 and Proposition 5.3.10, it is obvious that the

elements e1e3, e
2
1 · e2

1 ∈ H4QMO(2) are primitive, but not the element e2
2. Hence we

deduce that the elements e1e3 and Q2e2
1 are A-annihilated and primitive.

We note that the Pontrjagin product

H∗QMO(k)⊗H∗QMO(k)→ H∗QMO(k)

is induced by the addition of loops QMO(k)×QMO(k)→ QMO(k). The fact that

the coproduct is natural then implies that for u, v ∈ H∗QMO(k) we have

ψ(u · v) = ψ(u) · ψ(v).

Let us mention a useful Lemma which gives the primitive elements required in

the study of manifolds immersed in Euclidean spaces [AEa00].

Lemma 5.3.11. Let k > 2. Then a basis for the cup coproduct primitive classes in

H2k+2QMO(k) is given by the following set of elements

{ei1ei2 . . . eik |1 = i1 ≤ i2 ≤ · · · ≤ ik} ∪ {ek−2
2 e2

3 + ek1 · ek−2
1 e2

2, e
k−1
1 e2 · ek−1

1 e2, Q
k+2ek1}.

For k = 1, a basis for the primitives in H4QMO(1) is given by

{Q3e1, e1 · e1 · e1 · e1}.
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For k = 2, a basis for the primitives in H6QMO(2) is given by

{e1e5, e2
3 + e2

1 · e2
1 + e2

1 · e2
1 · e2

1, e1e2 · e1e2, Q4e2
1}.

Proof. See [AEa00, Lemma 2.6].



Chapter 6

Determing the double point

manifolds of F : Mn # Nn+k

In this chapter, we turn to our core problem in this thesis, determining the cobor-

dism class of double point manifolds of a given immersion. We describe the general

machinery here, and leave the detailed calculations to the next chapters.

Given an immersion F : Mn # Nn+k, by Definition 1.3.7, Ir(F ) will be the set of

r-fold self-intersection points of F , i.e. points of N which are the image under F of

at least r distinct points of the manifold under F . We always can choose F to be a

self-transverse immersion up to regular homotopy [B].

Moreover, a cobordism between self-transverse immersions can be taken to be self-

transverse [AEb00]; it is obvious that such a cobordism will induce a cobordism of the

immersions of the r-fold self-intersection sets. By Theorem 2.5.3 the self-transversality

of F implies that Ir(F ) ⊆ Nn+k is itself the image of θr(F ) : ∆r(F ) # Nn+k, the

r-fold self-intersection manifold which is of dimension n− k(r − 1).

Let the immersion F correspond to a map f : Nn+k
+ −→ QMO(k) under the

Pontrjagin-Thom construction. We will show that the Stiefel-Whitney numbers of the

r-fold self-intersection manifold can be determined from f∗[N
n+k
+ ] ∈ Hn+kQMO(k).

When Nn+k
+ = Sn+k then f∗[N

n+k
+ ] has to be A-annihilated and primitive and

then this case was considered by Asadi-Eccles [AEa00]. We first consider the general

case, when Nn+k is an arbitrary manifold. The co-coproduct structure of H∗N
n+k
+

97
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and the action of the Steenrod algebra place restrictions on the possible values of

f∗[N
n+k
+ ] but in general it need not be A-annihilated and primitive.

We then focus on the case r = 2 and we refer to ∆2(F ) as the double point

manifold of F . Our goal is then to describe a machinery that determines the cobordism

class of ∆2(F ). This will be built upon the tools that we have described in section

4.2. We will use homotopy theory to carry out this task. In order to do this, we need

to introduce another set of tools from homotopy theory, namely the stable James-

Hopf invariants. The applications of the James-Hopf invariant to the problem of our

study was first observed by A. Szücs [S76I],[S76II], P. Vogel [V74] and Koschorke and

Sanderson [KS78].

6.1 Stable James-Hopf invariants and ∆2(F )

We start by recalling some facts about QX. Suppose X is a path connected space.

According to [BE74, Theorem B] the space QX admits a splitting

QX '
∞∏
r=1

QDrX (6.1.1)

where DrX is defined by

DrX =
X∧r ×Σr WΣr

{∗} ×Σr WΣr

.

Here X∧r denotes the r-fold smash product X ∧ X ∧ · · · ∧ X, Σr denotes the per-

mutation group on r elements, and WΣr a contractible space with a free Σr-action.

The group Σr acts on X∧r by permuting the factors. The space DrX is known as the

r-adic construction on X. In particular, D1X = X. Projection onto the r-th factor

gives natural maps

hr : QX −→ QDrX

known as the r-th stable James-Hopf maps. These have stable adjoint

Σ∞QX −→ Σ∞DrX

which can be used to construct a stable splitting [BE74, Theorem C]

QX 'stable

∞∨
r=1

DrX. (6.1.2)
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We are interested in the case r = 2 where WΣ2 can be taken as S∞ with Σ2 acting

by the antipodal action. The space D2X is called the quadratic construction on X.

The projection onto the second factor in the first splitting yields a map

h2 : QX −→ QD2X

known as the second stable James-Hopf map [AEa00] which induces the 2nd stable

James-Hopf invariant

h2
∗ : [Nn+k

+ , QX] −→ [Nn+k
+ , QD2X].

The r-adic construction can be done also on vector bundles. In particular, we have

a ‘universal bundle’ D2(γk) given by

(EO(k)× EO(k))×Σ2 S
∞ −→ (BO(k)×BO(k))×Σ2 S

∞.

Next, let F : Mn # Nn+k be an immersion. Then the double point manifold

∆2(F ) has dimension n − k, i.e. considering the double point manifolds of a given

immersion defines a mapping

θ2 : Immk(N
n+k) −→ Imm2k(N

n+k).

The normal bundle of the immersion θ2(F ) : ∆2(F ) # Nn+k has a D2(γk)-structure

[AEa00]. Hence, applying the generalised Pontrjagin-Thom construction for immer-

sions to θ2(F ) yields a mapping

f2 : Nn+k
+ → QT (D2(γk)).

Note that T (D2(γk)) = D2T (γk) = D2MO(k). Hence,

f2 : Nn+k
+ → QD2MO(k).

On the other hand the immersion F corresponds to a mapping, unique up to homo-

topy, f : Nn+k
+ → QMO(k) under the Pontrjagin-Thom construction. According to

Koshchorke and Sanderson [KS78], see also [AEb00], f2 is given by the composition

Nn+k
+

f−→ QMO(k)
h2

−→ QD2MO(k).
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Notice that D2(γk) is a 2k-bundle. The classifying map for this bundle is a map

(BO(k)×BO(k))×Σ2 WΣ2 −→ BO(2k).

This then induces a map of Thom spaces

ξ : D2MO(k) −→MO(2k)

which corresponds to forgetting the additional structure on the normal bundle of the

double point manifold and viewing it only as a vector bundle of dimension 2k. This

then induces a mapping

ξ∗ : [Nn+k
+ , D2MO(k)]→ [Nn+k

+ ,MO(2k)].

The main result of [KS78], see also Szücs [S76I], is the following theorem.

Theorem 6.1.3. The following diagram is commutative.

Immk(N
n+k)

∼= τ

��

θ2 // Imm2k(N
n+k)

∼= τ

��
[Nn+k

+ , QMO(k)]
h2
∗ // [Nn+k

+ , QD2MO(k)]
(Qξ)∗ // [Nn+k

+ , QMO(2k)]

(6.1.4)

This commutative diagram provides the main tool in our calculations when we

pass on to the homology of the spaces involved here.

6.2 The homology of James-Hopf maps

We start by describing H∗DrX. The splitting (6.1.2) gives rise to a decomposition of

homology as

H̃∗QX ∼=
∞⊕
r=1

H̃∗DrX.

Define the height function ht on the monomial generators of H̃∗QX by ht(xµ) = 1,

ht(Qix) = 2ht(x) and ht(x · y) = ht(x) + ht(y), where x · y represents the Pontrjagin

product and xµ ∈ H∗X. It is known that H∗DrX is generated by the monomial

generators of H∗QX which have height r [G73].
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Notice that projecting onto the r factor in the first splitting (6.1.1) provides a map

QX → QDrX which in homology induces

hr∗ : H̃∗QX −→ H̃∗QDrX

which maps the elements of height r nontrivially, and all of the elements of other

heights belong to its kernel.

If a basis for H∗QMO(k) is written in terms of the standard monomial generators,

then the terms of height 1 in f∗[N
n+k] determine the characteristic numbers of F as

in Theorem 4.2.2. We shall show that the height 2 terms determine the characteristic

numbers of double point manifold of F .

Let us recall that given any space X, the homology suspension σ∗ : HnΩX →

Hn+1X is induced by the evaluation map [W78]. More precisely, the identity mapping

1 : ΩX → ΩX has the adjoint e : ΣΩX → X usually known as the evaluation map.

In homology, we then obtain

σ∗ = e∗ : HnΩX ∼= Hn+1ΣΩX −→ Hn+1X.

In particular, we may consider the identity map 1 : ΩlΣlX → ΩlΣlX and its iterated

adjoint ΣlΩlΣlX → ΣlX. This then induces the iterated homology suspension

HnΩlΣlX ∼= Hn+lΣ
lΩlΣlX −→ Hn+lΣ

lX ∼= HnX.

By analogy, in the case of QX = direct limit ΩlΣlX we consider the identity mapping

1 : QX → QX and its stable adjoint Σ∞QX → Σ∞X. The stable mapping Σ∞QX →

Σ∞X agrees with the projection on to the first factor D1X = X in the splitting

(6.1.2). This induces the homology suspension

p1 : HnQX −→ HnX.

Next, notice that the stable James-Hopf map

h2 : QX −→ QD2X

has stable adjoint

Σ∞QX −→ Σ∞D2X.
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This induces a mapping in homology with agrees with the mapping p2 : H∗QX →

H∗D2X defined by the composition

p2 = p1 ◦ h2
∗ : H∗QX −→ H∗QD2X −→ H∗D2X.

Notice that, in general,H∗ΩX is a ring. The homology suspension has the property

that it kills products [S75]. Hence, in this case, the mapping p1 : H∗QD2X −→

H∗D2X kills all of the product elements. Finally, notice that elements of height 1 in

H∗QD2X correspond to elements of height 2 in H∗QX. Hence, using the effect of p1,

we see that the mapping p2 maps all elements of height 2 isomorphically whereas it

kills all of terms of height other than 2.

Now we want to describe ξ∗. Let X = MO(k). Then H∗D2MO(k) has a basis

{ei1ei2 . . . eik · ej1ej2 . . . ejk , QJei1ei2 . . . eik | ex(J) > dim I},

where I = (i1, . . . , ik) and dim I = i1 + i2 + . . .+ ik.

Theorem 6.2.1. The homomorphism ξ∗ : H2k+2D2MO(k) → H2k+2MO(2k) is de-

termined by the following values:

ξ∗(e
k
1 · ek−1

1 e3) = e2k−1
1 e3;

ξ∗(e
k
1 · ek−2

1 e2
2) = e2k−2

1 e2
2;

ξ∗(e
k−1
1 e2 · ek−1

1 e2) = e2k−2
1 e2

2.

ξ∗(Q
k+2ek1) =



0 for k ≡ 0 (mod 4);

e2k−1
1 e3 for k ≡ 1 (mod 4);

e2k−2
1 e2

2 for k ≡ 2 (mod 4);

e2k−1
1 e3 + e2k−2

1 e2
2 for k ≡ 3 (mod 4).

Proof. See [AEa00, Lemma 2.4].

6.3 Normal Steifel-Whitney numbers of ∆2(F )

According to Pontrjagin-Thom theory the cobordism class of a manifold M with an

immersion F : Mn # Nn+k determines the normal Stiefel-Whitney numbers of F . In
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general, the normal Stiefel-Whitney numbers of F may not determine M . For example

if F : Mn → Mn × R the normal bundle is trivial so all the normal Stiefel-Whitney

numbers are zero. So there is no information about M . Then the Stiefel-Whitney

numbers of F may not determine the Stiefel-Whitney numbers of M .

According to Theorem 4.2.2 these numbers depend on stable Hurewicz homomor-

phism of f : Nn+k
+ → QMO(k) where f corresponds to F under the Pontrjagin-Thom

construction.

The main result in this chapter, which provides the framework for our calculations

in the next chapters, is that the normal Stiefel-Whitney numbers of the self intersec-

tion immersions θr(F ) can be determined by the unstable Hurewicz homomorphism

h : [Nn+k
+ , QMO(k)]→ Hn+kQMO(k).

We will provide some details below.

Given a map f : Nn+k
+ → ΩlΣlMO(k) ⊆ QMO(k) we have the adjoint mapping

f̃ : ΣlNn+k
+ → ΣlMO(k).

Recall that we have the homology suspension map

σl∗ : Hn+kΩ
lΣlMO(k)→ Hn+k+lΣ

lMO(k).

Proposition 6.3.1. Suppose f : Nn+k
+ → ΩlΣlMO(k) is any map and f̃ : ΣlNn+k

+ →

ΣlMO(k) is its adjoint. Then the diagram below commutes for all n+ k.

Hn+kN
n+k
+

∼=
��

f∗ // Hn+kΩ
lΣlMO(k)

σl∗
��

Hn+k+lΣ
lNn+k

+

f̃∗ // Hn+k+lΣ
lMO(k)

Proof. See [S75, Proposition 15.43.].

According to Theorem 6.1.3 and the cobordism of immersions in chapter 4 the

normal Stiefel-Whitney numbers (and so the cobordism class) of ∆2(F ) corresponding

to α ∈ [Nn+k
+ , QMO(k)] are determined by (and determine) the Hurewicz image

hS(β) = ξ∗p2h(α) ∈ Hn+kMO(2k)



CHAPTER 6. BORDISM OF DOUBLE POINT MANIFOLDS 104

where the element β = (Qξ)∗ ◦ h2
∗(α) ∈ [Nn+k

+ , QMO(2k)] corresponds to the immer-

sion θ2(F ) : ∆2(F ) # Nn+k. To determine it we will state and prove the next main

theorem.

Theorem 6.3.2. Suppose that the self-transverse immersion F : Mn # Nn+k cor-

responds to a continuous function f : Nn+k
+ → QMO(k). Then the Steifel-Whitney

numbers of the normal bundle of θ2(F ) : ∆2(F ) # Nn+k are given by

wI [θ2(F )] = 〈wI(νθ2(F )),∆2(F )〉 = 〈wIw2k, ξ∗p2h(α)〉.

Proof. Given a map f : Nn+k
+ → QMO(k), then

f∗ : Hn+kN
n+k
+ −→ Hn+kQMO(k).

The composition of ξ∗ and p2 induces the following map

Hn+kQMO(k)
p2 // Hn+kD2MO(k)

ξ∗ // Hn+kMO(2k) .

So we have the next diagram.

Hn+kN
n+k

((QQQQQQQQQQQQ

f∗ // Hn+kQMO(k)
p2 // Hn+kD2MO(k)

ξ∗uullllllllllllll

Hn+kMO(2k)

Since hS = p1 ◦ h, then we get the following commutative diagram.

[Nn+k
+ , QMO(k)]

h
��

h2
∗ // [Nn+k

+ , QD2MO(k)]

h
��

(Qξ)∗ // [Nn+k
+ , QMO(2k)]

h
��

Hn+kQMO(k)

=

��

h2
∗ // Hn+kQD2MO(k)

p1
��

(Qξ)∗ // Hn+kQMO(2k)

p1
��

Hn+kQMO(k)
p2 // Hn+kD2MO(k)

ξ∗ // Hn+kMO(2k)

(6.3.3)

So the immersion θ2(F ) : ∆n−k
2 (F ) # Nn+k corresponds to the element

β = (Qξ)∗ ◦ h2
∗(α) ∈ [Nn+k

+ , QMO(2k)]

where α ∈ [Nn+k
+ , QMO(k)] and h([f ]) = f∗[N

n+k
+ ] = h(α).
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From Theorem 4.2.2 we can find the Stiefel-Whitney numbers of θ2(F ) by evalu-

ating the stable Hurewicz image of the element β. However,

hS(Qξ)∗h
2
∗(α) = p1h(Qξ)∗h

2(α)

= ξ∗p1hh
2
∗(α)

= ξ∗p1h
2
∗h(α)

= ξ∗p2h(α).

Hence, the stable Hurewicz image of (Qξ)∗h
2
∗(α) is ξ∗p2 ◦ h(α). The theorem now

follows from Theorem 4.2.2.

Remark 6.3.4. In the case of Nn+k = Rn+k, the Steifel-Whitney numbers in this

theorem are the Steifel-Whitney numbers of ∆2(F ) (see Notation 3.2.2). Hence h(α)

determines the cobordism class of ∆2(F ). This is not true in general.

In the next two chapters we will investigate the case of N = CP k+1.



Chapter 7

The double point manifolds of

F : Mk+2 # CP k+1 when k is odd.

Suppose F : Mk+2 # CP k+1 is an immersion. We shall apply the methods of Chapter

6 to determine the cobordism class of double point manifolds of immersions F . Notice

that in this case, the double point manifold will be a surface and the cobordism

classes of surfaces are completely known, so it is either a boundary or cobordant to

the projective plane.

Previous work has been done in the case of immersions F : Mk+2 # R2k+2

[AEa00]. In this case the double point manifold must be a boundary if k ≡ 0, 2

(mod 4), or k ≡ 3 (mod 4) and α(k + 1) > 1, where α is the number of digits 1

in the dyadic expression; there exists an immersion for which it is cobordant to the

projective plane when either k ≡ 1 (mod 4), or k ≡ 3 (mod 4) and k+1 is a power of

2. In this chapter we are going to investigate the double point manifold of immersions

F : Mk+2 # CP k+1 when k is odd.

If k ≡ 1 (mod 4), there exists an immersion F in complex projective space with

double point manifold cobordant to the projective plane. This result follows from

the result for immersions in Euclidean spaces. If k ≡ 3 (mod 4) we show that for all

values of k there exists immersion F : Mk+2 # CP k+1 with double point manifold

cobordant to projective plane. We are going to state the next theorem for the case

k = 11 as an illustration of the case k ≡ 3 (mod 4).

106
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7.1 The case k = 11.

Theorem 7.1.1. An immersion F : M13 # CP 12 corresponding to a function f :

CP 12
+ −→ QMO(11) has double point manifold cobordant to the projective plane if

and only if

f∗(a24) = c Q13e11
1 + c1e

10
1 e2 · e10

1 e2 + c2e
11
1 · e9

1e
2
2 + ϕ,

where ϕ has height one.

Proof. According to the techniques explained in Section 6.2, we need to calculate the

Hurewicz image of f . Notice that here h([f ]) = f∗([CP 12
+ ]) = f∗(a24) ∈ H24QMO(11).

Applying lexicographic ordering, the group H24QMO(11) has a basis as follows

{e10
1 e2 · e10

1 e2, e
11
1 · e10

1 e3, e
11
1 · e9

1e
2
2, Q

13e11
1 } ∪ χ,

where, χ denotes a basis for the elements of height one.

In order to eliminate the impossible values for f∗(a24) we will use the action of

Sq1
∗, and the homology coproduct. More precisely, the relations

Sq1
∗f∗(a24) = f∗Sq

1
∗(a24) = 0

and

ψ̃(f∗(a24)) = (f∗ ⊗ f∗)(ψ̃(a24))

= (f∗ ⊗ f∗)(a2 ⊗ a22 + a4 ⊗ a20 + a6 ⊗ a18 + a8 ⊗ a16 + a10 ⊗ a14+

a12 ⊗ a12 + a14 ⊗ a10 + a16 ⊗ a8 + a18 ⊗ a6 + a20 ⊗ a4 + a22 ⊗ a2).

= f∗(a2)⊗ f∗(a22) + f∗(a4)⊗ f∗(a20) + f∗(a6)⊗ f∗(a18)+

f∗(a8)⊗ f∗(a16) + f∗(a10)⊗ f∗(a14) + f∗(a12)⊗ f∗(a12)+

f∗(a14)⊗ f∗(a10) + f∗(a16)⊗ f∗(a8) + f∗(a18)⊗ f∗(a6)+

f∗(a20)⊗ f∗(a4) + f∗(a22)⊗ f∗(a2).

However, we notice that

f∗(a2i) = 0, for i ≤ 5

since H2i(QMO(11)) = 0.
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The group H12QMO(11) ∼= Z/2 is generated by e10
1 e2, and so f∗(a12) = α

′
e10

1 e2

for α
′ ∈ Z/2. By applying Sq1

∗ to the homology class we have, Sq1
∗(f∗(a12)) =

f∗(Sq
1
∗(a12)) = f∗(0) = 0 but Sq1

∗(α
′
e10

1 e2) = α
′
e11

1 , and so α
′
= 0. Hence

f∗(a12) = 0.

This implies that ψ̃(f∗(a24)) = 0, so that f∗(a24) is primitive. Calculation gives

the following table

Sq1
∗ ψ̃

e9
2e

2
3 e1e

8
2e

2
3 A

e11
1 · e9

1e
2
2 0 A

e10
1 e2 · e10

1 e2 0 0

Q13e11
1 0 0

e11
1 · e10

1 e3 0 B

e10
2 e4 e10

2 e3 B + C

e1e
8
2e3e4 e1e

8
2e

2
3 0

...
...

...

where

A = e11
1 ⊗ e9

1e
2
2 + e9

1e
2
2 ⊗ e11

1 ,

B = e11
1 ⊗ e10

1 e3 + e10
1 e3 ⊗ e11

1 ,

C = e10
1 e2 ⊗ e10

1 e2.

We have four elements of height two {e11
1 · e9

1e
2
2, e

10
1 e2 · e10

1 e2, Q
13e11

1 , e
11
1 · e10

1 e3}.

Then from above table observe that the element e11
1 ·e9

1e
2
2 is not primitive, in addition

there is no linear combination with other elements to giveA-annihilated and primitive

element. A only appears in the coproduct of which gives an e9
2e

2
3 and e11

1 · e9
1e

2
2.

The element e11
1 ·e10

1 e3 is A-annihilated. However, it is not primitive and also there

is no linear combination with other elements given a primitive element.

Finally, the elements e11
1 ·e9

1e
2
2+e9

2e
2
3+e1e

8
2e3e4, e10

1 e2·e10
1 e2 and Q13e11

1 are primitive

and are A-annihilated by Sq1
∗. Hence

f∗(a24) = c Q13e11
1 + c1e

10
1 e2 · e10

1 e2 + c2e
11
1 · e9

1e
2
2 + ϕ.
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Hence there are eight possibilities for f∗(a24).

We are now in a position to determine the double point manifold of an immersion

F . By using diagram (6.3.3) and referring to Theorem 6.2.1, we find that

ξ∗p2h(α) = c(e21
1 e3 + e20

1 e
2
2) + c1e

20
1 e

2
2 + c2e

20
1 e

2
2 ∈ H24QMO(22).

This implies that

ξ∗p2h(α) = ce21
1 e3 + (c+ c1 + c2)e20

1 e
2
2.

Applying Proposition 3.3.11 we get that for an embedding L2 ↪→ CP 12 correspon-

ing to α ∈ [CP 12
+ ,MO(22)], L2 is cobordant to RP 2 if and only if

h(α) = e21
1 e3 + e20

1 e
2
2,

or

h(α) = e21
1 e3.

Hence, the double point manifold of F : M13 # CP 12 is cobordant to the projec-

tive plane if and only if c 6= 0.

We are now going to show this case does arise from the double point of an im-

mersion and we can give a general result for all k ≡ 3 (mod 4).

7.2 The case k ≡ 3 (mod 4)

The case k = 11 is the first case where we obtain a different result from the case

of immersed manifolds in R2k+2. In [AEa00] Eccles and Asadi have shown that the

double point manifold of any immersion in Euclidean spaces is a boundary because

α(11 + 1) = α(12) = 2 > 1. However, we will show that there is an immersion F

in complex projective space with double point manifold cobordant to the projective

plane.

Now we are going to state the main theorem of this study which shows the exis-

tence of an immersion F : Mk+2 # CP k+1 with double point manifold cobordant to

the projective plane for k ≡ 3 (mod 4).
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Theorem 7.2.1. For k ≡ 3 (mod 4), there exists a map f : CP k+1
+ → QMO(k),

such that

f∗(a2k+2) = Qk+2ek1.

Suppose that a2k+2 ∈ H2k+2CP k+1
+ is the generator. We want to prove that there

exists a map f such that

f∗(a2k+2) = Qk+2ek1 ∈ H2k+2QMO(k).

This is constructed as a map

CP k+1
+ → ΣkRP k+2

k → QMO(k)︸ ︷︷ ︸
f

.

We prove this theorem by breaking the proof into two propositions as follows.

Proposition 7.2.2. There exists a map f1 : CP k+1
+ −→ ΣkRP k+2

k , such that

(f1)∗(a2k+2) = σkbk+2.

Proof. Let CP k+1
k be the truncated complex projective space CP k+1

k = CP k+1/CP k−1.

For k odd we can form CP k+1
k from S2k by attaching a (2k+ 2)-cell e2k+2 via the sus-

pension of the Hopf map η2k : S2k+1 → S2k because Sq2 : H2kCP k+1
k → H2k+2CP k+1

k

is non-zero. Then

CP k+1
k = S2k ∪η2k e2k+2.

Let RP k+2
k = RP k+2/RP k−1, then we can form RP k+2

k from RP k+1
k by attaching

a (k + 2)- cell ek+2 via a map φ
′

k+1 : Sk+1 −→ RP k+1
k and

RP k+2
k = RP k+1

k ∪φ′k+1
ek+2.

Let φk : Sk −→ RP k be the double cover map. Then

RP k+1 = RP k ∪φk ek+1.

Thus we have a cofibre sequence:

Sk
φk // RP k i // RP k+1

Pk+1 // Sk+1 .
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The composition

Sk
φk // RP k

Pk // RP k/RP k−1 ∼= Sk

is a map of degree

1 + (−1)k+1 =

 0 if k is even,

2 if k is odd.

Since k is odd then Pk ◦ φk = 2ι : Sk → Sk, where ι ∈ πkSk ∼= Z generated by

identity map ι : Sk −→ Sk. So we have the following diagram of cofibration sequences.

Sk
φk //

=

��

RP k i //

Pk
��

RP k+1
Pk+1 //

Pk
��

Sk+1

=

��
Sk

2ι // Sk
i // RP k+1

k

Pk // Sk+1

(7.2.3)

Since we have k ≥ 3 we are in the stable range and so the cofibrations give exact

sequences of stable homotopy groups. We have the following diagram.

Sk+1
φk+1 //

=

��

RP k+1 i //

Pk
��

RP k+2

Pk
��

Sk+1
φ
′
k+1 // RP k+1

k
i // RP k+2

k

(7.2.4)

Diagrams (7.2.3) and (7.2.4) give the following diagram.

Sk+1

φ

||
P◦φk+1

��

Pk+1◦φk+1

((QQQQQQQQQQQQQQ

// Sk
2ι // Sk

i // RP k+1
k

// RP k+1/RP k = Sk+1 // ΣRP k
k

The map Pk+1 ◦φk+1 : Sk+1 −→ Sk+1 is trivial since k is odd. Hence the attaching

map P ◦ φk+1 pulls back to φ : Sk+1 −→ Sk. This gives the following commutative



CHAPTER 7. K IS ODD 112

diagram of cofibre sequences defining the function g1.

Sk+1

φ

��

1 // Sk+1

P◦φk+1

��

Sk

��

i // RP k+1
k

i
��

(Sk ∪φ ek+2)

��

g1 // RP k+2
k

��
Sk+2 1 // Sk+2

Suppose that φ ∈, πk+1S
k ∼= Z/2, it is generated by the map φ : Sk+1 −→ Sk.

Then we have the mapping cone Cφ = Sk ∪φ ek+2.

The induced diagram in homology shows that (g1)∗ : HkCφ → HkRP k+2
k and

(g1)∗ : Hk+2Cφ → Hk+2RP k+2
k are isomorphisms.

Hence by naturality Sq2
∗ : Hk+2Cφ → HkCφ is non-zero. This shows that φ is

non-trivial and so is homotopic to ηk : Sk+1 → Sk the suspension of the Hopf map.

Hence Cφ ' Sk ∪ηk ek+2 and so

ΣkCφ ' S2k ∪η2k e2k+2 = CP k+1
k

Taking the k-th suspension of g1 leads to

Σkg1 : S2k ∪η2k e2k+2 −→ ΣkRP k+2
k

such that (f1)∗ : H2k+2CP k+1
+ → H2k+2ΣkRP k+1

k is an isomorphism. Since

Hk+2RP k+2
k
∼= Z/2. It is generated by bk+2. Then

(Σkg1)∗(a2k+2) = σkbk+2.

Finally we compose Σkg1 with the quotient map q : CP k+1
+ → CP k+1

k to obtain the

required map f1 = Σkg1 ◦ q which completes the proof.

Proposition 7.2.5. There exists a map f2 : ΣkRP k+2
k −→ QMO(k), such that

(f2)∗(σ
kbk+2) = Qk+2ek1 modulo elements of height one .
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To prove this we describe two maps and then take their composition to get the

required map as in Eccles [E96].

Definition 7.2.6. We define the J-homomorphism

J : V3(Rk+3) −→ Ωk+3Σ3MO(k).

Suppose that G(k + 3) is a closed subgroup of the orthogonal group O(k + 3) with

inclusion map

i : G(k + 3) −→ O(k + 3).

Then if ξ is a (k + 3)-dimensional vector bundle over Sk+2 represented by ξ ∈

πk+2BO(k + 3), a G(k + 3)-structure on ξ is a choice of element ξ ∈ πk+2BG(k + 3)

such that i∗ξ = ξ. We have the following exact sequence:

πk+2O(k + 3)/G(k + 3)→ πk+2BG(k + 3)→ πk+2BO(k + 3).

The normal bundle ν of the standard embedding Sk+2 ↪→ R2k+5 is trivial, and

so each element of πk+2O(k + 3)/G(k + 3) determines a G(k + 3)-structure on ν.

With this structure, the embedded sphere represents an element of π2k+5MG(k + 3)

by the Pontrjagin-Thom construction [E96]. This process defines the generalized J-

homomorphism

J∗ : πk+2O(k + 3)/G(k + 3) −→ π2k+5MG(k + 3).

The image of this map J∗ consists of those elements which may be represented by

the standard embedding Sk+2 ↪→ R2k+5 with some G(k + 3)-structure.

When G(k + 3) is the trivial group, we get the classical J-homomorphism

πk+2O(k + 3) −→ π2k+5S
k+3.

On the other hand when G(k + 3) = O(k), O(k + 3)/O(k) will be the real Stiefel

manifold V3(Rk+3) as defined after Remark 1.4.21, and MG(k + 3) is the suspension

Σ3MO(k). So we get a map from the homotopy group of the real Stiefel manifold to

the homotopy of the suspended Thom complex of O(k).

J∗ : πk+2V3(Rk+3) −→ π2k+5Σ3MO(k).
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Assume that for the classifying space of γk we take the infinite Grassmannian

Gk(R∞) of k-dimensional linear subspaces of R∞. Then the total space EO(k) of the

universal bundle is given by

EO(k) = {(u, U)|u ∈ U,U ∈ Gk(R∞)}.

Next, let υ = (υ1, υ2, υ3) ∈ V3(Rk+3) be an orthogonal 3-frame in Rk+3. We can

write U = 〈υ1, υ2, υ3〉⊥ ⊆ Rk+3 ⊆ R∞ for the subspace of Rk+3 orthogonal to υ1, υ2

and υ3. Then a point of Rk+3 may be written uniquely as u + t1υ1 + t2υ2 + t3υ3

where ti ∈ R for i = {1, 2, 3} and u ∈ U . Define a continuous map J(υ) : Rk+3 −→

EO(k)× R3 by

J(υ)(u+ t1υ1 + t2υ2 + t3υ3) = ((u, U), t1, t2, t3).

One point compactification induces a map

J(υ) : Sk+3 −→MO(k) ∧ S3,

i.e. J(υ) ∈ Ωk+3Σ3MO(k), and then, by [E96, Proposition 2.1.], the continuous map

J : V3(Rk+3) −→ Ωk+3Σ3MO(k) induces the generalized J-homomorphism

J∗ : πk+2V3(Rk+3) −→ πk+2Ωk+3Σ3MO(k)→ π2k+5Σ3MO(k).

Definition 7.2.7. We define the hyperplane reflection map

λ : RP k+2
k −→ V3(Rk+3).

A point a ∈ RP k+2 is a line through the origin of Rk+3, and we may use this to define

a map

λk+3 : RP k+2 −→ O(k + 3).

The element λk+3(a) is given by the hyperplane reflection map which is given by

reflection in the hyperplane orthogonal to the line a ∈ RP k+2. Given a point x ∈

Rk+3, we can write it uniquely as x = x1 + x2, such that x1 ∈ span〈a〉, x2 ∈ a⊥.

Then λk+3(a)(x) = −x1 + x2. This is an orthogonal map represented by an element

λk+3(a) ∈ O(k + 3).



CHAPTER 7. K IS ODD 115

In the following commutative diagram the right hand is a sequence of groups and

the left is a cofibre sequence. Since Rk = Rk × {0} ⊆ Rk+3, we get the following

commutative diagram defining the map λ

RP k−1

=

��

λk // O(k)

i
��

RP k+2

��

λk+3 // O(k + 3)

��
RP k+2

k
λ // O(k + 3)/O(k)

where the vertical maps are the standard inclusions and O(k + 3)/O(k) = V3(Rk+3).

Proof of Proposition 7.2.5. The k-th adjoint of the continuous map J gives a map

J̃ : ΣkV3(Rk+3) −→ Ω3Σ3MO(k)→ QMO(k). (7.2.8)

Moreover, by taking k-th suspension of the hyperplane reflection map we get a

map

λ̃ : ΣkRP k+2
k −→ ΣkV3(Rk+3). (7.2.9)

Then by taking the composition of the maps (7.2.8) and (7.2.9) we have

f2 = J̃ ◦ λ̃ : ΣkRP k+2
k −→ QMO(k).

Next we need to describe this map in homology. Consider the following commu-

tative diagram.

ΣkRP k+2
k

=i
��

λ̃ // ΣkV3(Rk+3)
J̃ // QMO(k)

h2

��
ΣkRP∞k ∼= D2S

k i // QD2S
k

(QD2)i // QD2MO(k)

This follows from the diagram in the proof of Theorem 3.4 in [E96]. Since σkbk+2 ∈

H2k+2ΣkRP k+2
k corresponds to Qk+2gk ∈ H2k+2QD2S

k which maps to Qk+2ek1 ∈

H2k+2QD2MO(k),

(f2)∗(σ
kbk+2) = Qk+2ek1 modulo elements of height one .
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This completes the proof of Proposition 7.2.5. 2

Proof of Theorem 7.2.1. By the composition of the functions of Proposition 7.2.2 and

Proposition 7.2.5 we get the following

CP k+1
+

f1 // ΣkRP k+2
k

f2 // QMO(k) .

Hence we may define

f = f2 ◦ f1 : CP k+1
+ −→ QMO(k).

Then

f∗(a2k+2) = (f2)∗(f1)∗(a2k+2) = (f2)∗(σ
kbk+2) = Qk+2ek1,

which completes the proof. 2

Corollary 7.2.10. There exist an immersion F : Mk+2 −→ CP k+1 which has a

double point manifold θ2(F ) : ∆2(F ) # CP k+1 cobordant to the projective plane.

Proof. Suppose that F : Mk+2 # CP k+1 is an immersion corresponding to the map

f : CP k+1
+ −→ QMO(k),

which is given above. The self-transverse immersion F represents the element α ∈

[CP k+1
+ ,MO(k)]S, where α is the homotopy class of f . Then by Theorem 6.3.2 the

double point manifold

θ2(F ) : ∆2(F ) # CP k+1

corresponds to the element h2
∗(α) ∈ [CP k+1

+ , D2MO(k)]S, where

h2
∗ : [CP k+1

+ ,MO(k)]S −→ [CP k+1
+ , D2MO(k)]S.

is the Hopf invariant.

Suppose that [g] = ξ∗ ◦ h2
∗ ◦ ([f ]), where [g] ∈ [CP k+1

+ ,MO(2k)]S. This element

corresponds to the immersion

θ2(F ) : ∆2(F ) # CP k+1.
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By Theorem 6.3.2 the element g∗(a2k+2) ∈ H2k+2QMO(2k) determines (and is deter-

mined by) the characteristic numbers of the immersion θ2(F ) : ∆2 # CP k+1.

Since f∗(a2k+2) = Qk+2ek1, p2f∗(a2k+2) = Qk+2ek1. Hence, by Theorem 6.2.1, we

deduce that

g∗(a2k+2) = ξ∗p2(Qk+2ek1) = e2k−1
1 e3 + e2k−2

1 e2
2 ∈ H2k+2QMO(2k).

This shows that the immersion θ2(F ) : ∆2(F ) # CP k+1 is cobordant to an

immersion RP 2 # CP k+1 with b2 7→ a1 as we explained in Example 3.3.10.

7.3 The case k ≡ 1 (mod 4)

We show that in this case, it is possible to have an immersion F : Mk+2 # CP k+1

whose double point manifold is not a boundary. This occurs directly from the solution

of the problem in the Euclidean case.

Theorem 7.3.1. There always exists an immersion F : Mk+2 # CP k+1 whose

double point manifold is cobordant to the projective plane.

Proof. According [AEa00, Theorem 4.1] there always exists an immersion F : Mk+2 #

R2k+2 whose double point manifold is cobordant to a projective plane.

Let i : R2k+2 ↪→ CP k+1 be an embedding which always exists as CP k+1 is a

(2k + 2)-dimensional manifold. The composition

i ◦ F : Mk+2 # R2k+2 ↪→ CP k+1

provides an immersion whose double point manifold is not a boundary.



Chapter 8

The double point manifolds of

F : Mk+2 # CP k+1 when k is even

In the previous chapter we deduced that for all odd values of k there exists an

immersion F with double point manifold cobordant to the projective plane.

In this chapter we deal with the case when k is even, and divide it into two cases,

k ≡ 2 (mod 4) and k ≡ 0 (mod 4).

In the case of k ≡ 2 (mod 4) we start with the specific case of k = 2 and show

that there exists an immersion with double point manifold cobordant to the projective

plane. In general we derive a condition for the double point manifold to be cobordant

to the projective plane. However we have not shown that these immersions exist.

For k ≡ 0 (mod 4) we consider the specific example of k = 4 but we do not obtain

a general result in this case.

8.1 The case k ≡ 2 (mod 4).

Assume k = 4r + 2. We start by studying immersions F : Mk+2 # CP k+1 with

k = 2, 6, 10. According to the Pontrjagin-Thom theory, we have to calculate the

possible values of f∗[CP k+1
+ ] where f : CP k+1

+ → QMO(k) corresponds to F . Of

course, these are just potential values and in order to show the existence of the

desired immersions we either have to construct the immersion F directly or construct

118



CHAPTER 8. K IS EVEN 119

a mapping f which has the given Hurewicz image. We will do this in the case of

k = 2.

8.1.1 The double point manifold of F : M 4 # CP 3

Theorem 8.1.1. An immersion F : M4 # CP 3 corresponding to a map f : CP 3
+ →

QMO(2) has double point manifold cobordant to the projective plane if and only if

f̃∗(a4) = e2
2 + e1e3, where f̃ : CP 3

+ 9 MO(2) is the stable map corresponding to f .

Proof. Our goal is to prove that for some immersion F the double point manifold

is cobordant to projective plane. The Pontrjagin-Thom construction gives a function

f : CP 3
+ → QMO(2) representing a homotopy class α ∈ [CP 3

+, QMO(2)].

We need to calculate f∗(a6) and in order to eliminate possible values we also need to

find out about f∗(a2) and f∗(a4).

First of all, since f∗(a2) ∈ H2QMO(2) ∼= Z/2 generated by e2
1, then for α

′ ∈ Z/2.

f∗(a2) = α
′
e2

1.

Hence we have two possibilities for f∗(a2), which are either 0 or e2
1.

It remains to determine the possibilities for f∗(a4), f∗(a6). A basis of H4QMO(2)

is given by

{e1e3, e
2
2, e

2
1 · e2

1}.

To eliminate the impossible values of f∗(a4) , we consider the following table

Sq1
∗ Sq2

∗ ψ̃

e1e3 0 0 0

e2
2 0 e2

1 e2
1 ⊗ e2

1

e2
1 · e2

1 0 0 0

Consider the reduced coproduct of f∗(a4) as follows

ψ̃(f∗(a4)) = f∗(a2)⊗ f∗(a2),

= α
′
(e2

1 ⊗ e2
1).
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Then f∗(a4) is not primitive if α
′
= 1. Hence

f∗(a4) = α
′
e2

2 + primitive terms.

Since Sq1
∗f∗(a4) = 0, Sq2

∗f∗(a4) = f∗(a2) = α
′
e2

1, then f∗(a4) is not A-annihilated if

α
′

= 1. The A-annihilated and primitive elements in H4QMO(2) are spanned by

{e1e3, e
2
1 · e2

1}. Then for some β, γ ∈ Z/2.

f∗(a4) = α
′
e2

2 + βe1e3 + γe2
1 · e2

1,

Our task is now to consider the possibilities for f∗(a6). Let

h(α) = f∗(a6) ∈ H6(QMO(2)),

where a6 = [CP 3
+] ∈ H6(CP 3

+) is the fundamental class. A basis for H6QMO(2) is

given by

{e1e5, e2e4, e
2
3, e

2
1 · e1e3, e

2
1 · e2

2, e1e2 · e1e2, Q
4e2

1, e
2
1 · e2

1 · e2
1}.

To eliminate the possible values of f∗(a6) ∈ H6QMO(2), we consider the following

table:

Sq1
∗ Sq2

∗ ψ̃

e1e5 0 e1e3 0

e2e4 e1e4 + e2e3 e1e3 + e2
2 B + C

e2
3 0 0 A

e2
1 · e1e3 0 0 B

e2
1 · e2

2 0 e2
1 · e2

1 A+D

e1e2 · e1e2 0 e2
1 · e2

1 0

Q4e2
1 Q3e2

1 e2
1 · e2

1 0

e2
1 · e2

1 · e2
1 0 0 D

where

A = e2
1 ⊗ e2

2 + e2
2 ⊗ e2

1,

B = e2
1 ⊗ e1e3 + e1e3 ⊗ e2

1,

C = e1e2 ⊗ e1e2,

D = e2
1 ⊗ e2

1 · e2
1 + e2

1 · e2
1 ⊗ e2

1.
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By applying the reduced coproduct of f∗(a6) we will obtain

ψ̃(f∗(a6)) = f∗(a2)⊗ f∗(a4) + f∗(a4)⊗ f∗(a2)

= α
′
(e2

1 ⊗ e2
2) + α

′
β(e2

1 ⊗ e1e3) + α
′
γ(e2

1 ⊗ e2
1 · e2

1)

+ α
′
(e2

2 ⊗ e2
1) + α

′
β(e1e3 ⊗ e2

1) + α
′
γ(e2

1 · e2
1 ⊗ e2

1)

= α
′
A+ α

′
βB + α

′
γD.

Then f∗(a6) is not primitive if α
′
= 1. Hence

f∗(a6) = α
′
e2

3 + α
′
β(e2

1 · e1e3) + α
′
γ(e2

1 · e2
1 · e2

1) + primitive terms.

Applying Sq1
∗ and Sq2

∗ to the homology class f∗(a6) implies that Sq1
∗f∗(a6) =

0, Sq2
∗f∗(a6) = 0, so that f∗(a6) is A-annihilated. Hence for some ϕ ∈ Z/2

f∗(a6) = α
′
e2

3 + α
′
β(e2

1 · e1e3) + α
′
γ(e2

1 · e2
1 · e2

1) + ϕ,

where φ = e2
3 + e2

1 · e2
2 + e1e2 · e1e2 + e2

1 · e2
1 · e2

1 is the unique non-zero A-annihilated

and primitive element in H6QMO(2). Hence

f∗(a6) = α
′
e2

3 +α
′
β(e2

1 · e1e3) +α
′
γ(e2

1 · e2
1 · e2

1) + δ(e2
3 + e2

1 · e2
2 + e1e2 · e1e2 + e2

1 · e2
1 · e2

1).

The following table summarizes the possible value for f∗(a2i) for 1 ≤ i ≤ 3.

f∗(a2) f∗(a4) f∗(a6) (mod φ)

0 0 0

0 e1e3 0

0 e2
1 · e2

1 0

0 e1e3 + e2
1 · e2

1 0

e2
1 e2

2 e2
3

e2
1 e2

2 + e1e3 e2
3 + e2

1 · e1e3

e2
1 e2

2 + e2
1 · e2

1 e2
3 + e2

1 · e2
1 · e2

1

e2
1 e2

2 + e1e3 + e2
1 · e2

1 e2
3 + e2

1 · e1e3 + e2
1 · e2

1 · e2
1

Applying diagram (6.3.3) we deduce that

p2h(α) = α
′
βe2

1 · e1e3 + δ(e2
1 · e2

2 + e1e2 · e1e2),
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and then from Theorem 6.2.1 we have

ξ∗p2h(α) = α
′
βe3

1e3 + δ(e2
1e

2
2 + e2

1e
2
2).

Hence

ξ∗p2h(α) = α
′
βe3

1e3 ∈ H6MO(4).

We are now in a position to deduce that the immersion F : M4 # CP 3 has

a double point manifold cobordant to the projective plane if and only if h(α) has

α
′

= β = 1 as observed on the line 6 and 8 of the above table. This mean that

f∗(a4) = e2
2 + e1e3 + γe2

1 · e2
1 or equivalently f̃∗(a4) = e2

2 + e1e3.

Next we are going to show that there exists an immersion with double point mani-

fold cobordant to the projective plane by constructing a stable map CP 3
+ 9 QMO(2)

whose Hurewicz image in homology gives the right terms to have this property. This

map is constructed from two other maps which we now describe.

Proposition 8.1.2. There exists a map f1 : CP 3
+ −→ QMO(2) such that its stable

adjoint f̃1 : CP 3
+ 9 MO(2) satisfies

(f̃1)∗(a4) = e1e3.

We shall define f̃1 as the composition of two maps which are X : CP 3 −→ S4 and

Y : S4 9 MO(2). We break the proof into small lemmas.

Lemma 8.1.3. There is a map X : CP 3
+ −→ S4 such that a4 7−→ g4.

Proof. We have the truncated projective space CP 3
2 = CP 3/CP 1, this is given by a

cell complex S4 ∪α e6 obtained by attaching the 6-cell e6 via a map α : S5 −→ S4.

The homotopy group π5S
4 ∼= Z/2 is generated by suspension of the Hopf map. The

Hopf map is detected by

Sq2 6= 0 : H4S4 ∪α e6 −→ H6S4 ∪α e6.

However, Sq2 = 0 : H4CP 3
2 −→ H6CP 3

2 and so α is trivial and so CP 3
2 ' S4∨S6.

CP 3
+

X
''OOOOOOOOOOOOO

q //CP 3
2 ' S4 ∨ S6

p

��
S4
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Now by the composing of the quotient map q with the projection map p as in the

above diagram we obtain a map X : CP 3
+ −→ S4 such that

X∗(a4) = g4 ∈ H4S
4.

Lemma 8.1.4. There is a stable map Y : S4 9 MO(2) such that g4 7→ e1e3.

Proof. The double cover map

φ2 : S2 −→ RP 2

is the attaching map of the 3-cell in RP 3, i.e. RP 2 ∪φ2 e
3 = RP 3. We have a cofiber

sequence

S1 i // RP 2
p // S2 .

This cofibration gives an exact sequence

πS2 S
1 i∗ // πS2 RP 2 p∗ // πS2 S

2 .

The composition p ◦ φ2 : S2 −→ RP 2/RP 1 = S2 has degree 0 and so is trivial in

homotopy [H02]. This means that p∗[φ2] ∈ πS2 S
2 is trivial, and hence by exactness

there exists [φ1] ∈ πS2 S1, such that

[φ2] = i∗[φ1].

This means that there exists a stable map φ1 : S2 9 S1 = RP 1 such that the

following diagram is commutative

S2

φ1

yysssssssssss

φ2

��

0

''OOOOOOOOOOOO

RP 1 = S1 i // RP 2

i

��

p //S2 = RP 2/RP 1

RP 3

where [φ1] ∈ πS2 S1 ∼= Z/2 is generated by the Hopf map η : S3 → S2 which is detected

by Sq2. But Sq2 : H1RP 3 −→ H3RP 3 is trivial. Moreover, by naturality we see that

Sq2 : H1S1 ∪φ1 e
3 −→ H3S1 ∪φ1 e

3
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is trivial. So [φ1] = 0, and so [φ2] = 0 ∈ πS2 RP 2. Hence there is a stable equivalence

RP 3 ' RP 2 ∨ S3.

Therefore, there is a stable map φ3 : S3 9 RP 2 ∨ S3 ' RP 3 such that the following

diagram commutes

S3 6
φ3 //

1

&&NNNNNNNNNNNN RP 3

��
S3 = RP 3/RP 2

and so (φ3)∗(g3) = e3.

We define a stable mapping Y : S4 9 MO(2) by the composition

S4 6
Σφ3 // ΣRP 3 i // ΣRP∞ = ΣMO(1) // MO(2)

where RP∞ = MO(1). The mapping ΣMO(1) → MO(2) sends σe3 to e1e3.

Hence,

Y∗(g4) = e1e3.

This completes the proof.

Now we are ready to prove Theorem 8.1.2.

Proof of Theorem 8.1.2. From Lemma 8.1.3 and Lemma 8.1.4 we get the following

map:

f̃1 : CP 3
+

X // S4 6Y // MO(2) .

By the composition we get the required map

(f̃1)∗(a4) = Y∗ ◦X∗(a4) = e1e3.

2

Proposition 8.1.5. There exists a map f2 : CP 3
+ −→ QMO(2), such that its stable

adjoint f̃2 : CP 3
+ →MO(2) satisfies

(f̃2)∗(a4) = e2
2.
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Proof. Let η be the universal complex line bundle over the base space BU(1) = CP∞,

where U(1) is the unitary group of degree 1 which corresponds to the circle group,

that is, U(1) = S1. The bundle η is a 2-dimensional real vector bundle and so is

classified by a map

g : BU(1) −→ BO(2).

This gives a diagram.

E(η)

��

// EO(2)

��
BU(1)

g // BO(2)

We have EO(2) which is the total space of the universal 2-plane bundle over the base

space BO(2). This map of bundles induces a map

MU(1)
g // MO(2) ,

where MU(1) is the Thom complex of universal complex line bundle over BU(1).

Now by the Thom isomorphism 3.3.6 we have the following diagram

H2BU(1)

T∼=
��

g∗ // H2BO(2)

T∼=
��

H4MU(1)
g∗ // H4MO(2)

We have a cohomology map

g∗ : H∗BO(2) −→ H∗BU(1).

Since H1BU(1) = 0 for dimensional reasons, then g∗(w1) = 0. Since w2(η) is the mod

2 restriction of c1 ∈ H2BU(1) by Lemma 1.7.4, then

g∗(w2) = c1.

By duality since a2 ∈ H2BU(1) , then g∗(a2) = e2
1 ∈ H2BO(2). From this, we

deduce that if a4 is the generator of H4MU(1) then (g)∗(a4) = e2
2 ∈ H4MO(2) since

T (e2
1) = e2

2 by Theorem 3.3.6. We obtain f̃2 by restricting g to CP 3
+.

CP 3
+

//

f̃2 ''NNNNNNNNNNNN CP∞ = MU(1)

g

��
MO(2)
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and then (f̃2)∗(a4) = e2
2 ∈ H4MO(2) which gives Lemma 8.1.2.

Theorem 8.1.6. There is an immersion F : M4 # CP 3, such that the double point

manifold of F is cobordant to the projective plane.

Proof. The idea is to prove that there exists a map f : CP 3
+ → QMO(k) such that

f∗(a4) = e2
2 + e1e3 + γe2

1 · e2
1,

and use Theorem 8.1.1. This corresponds to a stable map f̃ : CP 3 9 MO(2) such

that

f̃∗(a4) = e2
2 + e1e3.

Now it is straightforward to prove this result by taking the sum of maps con-

structed in Proposition 8.1.2 and Proposition 8.1.5. Define

f̃ = f̃1 + f̃2 : CP 3 9 MO(2).

Then

f̃∗(a4) = (f̃1)∗(a4) + (f̃2)∗(a4) = e2
2 + e1e3 ∈ H4MO(2)

This completes the proof.

8.1.2 The double point manifold of F : M 8 # CP 7

Similarly to the previous example, we will observe that it is enough to consider f∗(a8)

rather than f∗(a14).

Theorem 8.1.7. An immersion F : M8 # CP 7 corresponding to a map f : CP 7
+ →

QMO(6) has double point manifold cobordant to the projective plane if and only if

the map f has the property

f∗(a8) = e4
1e

2
2 + e5

1e3.

Proof. Since f∗(a2) ∈ H2QMO(6) = 0, then f∗(a2) = 0. Since f∗(a4) ∈ H4QMO(6) =

0, then

f∗(a4) = 0.
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We have H6QMO(6) ∼= Z/2 generator by e6
1, and so

f∗(a6) = α
′
e6

1.

The group H8QMO(6) is spanned by {e5
1e3, e

4
1e

2
2}.

Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e5
1e3 0 0 0 0

e4
1e

2
2 0 e6

1 0 0

The reduced coproduct of f∗(a8) is obtained by the following:

ψ̃(f∗(a8)) = f∗(a2)⊗ f∗(a6) + f∗(a4)⊗ f∗(a4) + f∗(a6)⊗ f∗(a2) = 0.

Then f∗(a8) is primitive.

Since Sq1
∗f∗(a8) = 0, Sq2

∗f∗(a8) = f∗(a6) = α
′
e6

1, and Sq4
∗f∗(a8) = f∗(a4) = 0.

Then f∗(a8) is not A-annihilated if α
′
= 1. For Sq2

∗f∗(a8) = α
′
e6

1, then the coefficient

of e4
1e

2
2 ∈ f∗(a8) is α

′
. Hence

f∗(a8) = α
′
e4

1e
2
2 modulo the other basis elements .

From the above table we deduce that the only A-annihilated and primitive elements

in H8QMO(6) is e5
1e3. Hence, for some β ∈ Z/2

f∗(a8) = α
′
e4

1e
2
2 + βe5

1e3.

A basis for H10QMO(6) is given by the set {e5
1e5, e

4
1e2e4, e

4
1e

2
3, e

2
1e

4
2, e

3
1e

2
2e3}.

Consider the following table.

Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e5
1e5 0 e5

1e3 0 0

e4
1e2e4 e5

1e4 + e4
1e2e3 e5

1e3 + e4
1e

2
2 0 0

e4
1e

2
3 0 0 0 0

e2
1e

4
2 0 0 e6

1 0

e3
1e

2
2e3 0 e5

1e3 0 0
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Since ψ̃(f∗(a10)) = 0, then f∗(a10) is primitive.

We have Sq1
∗(a10) = 0, Sq2

∗f∗(a10) = 0, and Sq4
∗f∗(a10) = f∗(a6) = α

′
e6

1. Hence

f∗(a10) is not A-annihilated if α
′

= 1. Since Sq4
∗f∗(a10) = f∗(a6) = α

′
e6

1, then from

the above table f∗(a10) = α
′
e2

1e
4
2 modulo the other basis elements . Hence

f∗(a10) = α
′
e2

1e
4
2 + γe4

1e
2
3 + δ(e5

1e5 + e3
1e

2
2e3).

We will not need to find f∗(a12) because Sq2
∗f∗(a14) = f∗(Sq

2
∗a14) = 0.

Now a basis of H14QMO(6) is given by

{e5
1e9, e

4
1e3e7, e

4
1e4e6, e

4
1e

2
5, e1e

4
2e5, e

5
2e4, e

4
2e

2
3, e

3
1e

2
2e7, e

3
1e2e3e6, e

3
1e2e4e5, . . . ,

. . . , e2
1e

2
2e3e5, e

6
1 · e5

1e3, e
6
1 · e4

1e
2
2, e

5
1e2 · e5

1e2, Q
8e6

1},

where . . . is other elements of height one.

We are almost ready to invoke theA-annihilated and primitive elements ofH14QMO(6)

as shown in the following table:

Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e4
2e

2
3 0 0 e4

1e
2
3 A

e6
1 · e4

1e
2
2 0 e6

1 · e6
1 0 A

e5
1e2 · e5

1e2 0 e6
1 · e6

1 0 0

Q8e6
1 Q7e6

1 e6
1 · e6

1 0 0

e6
1 · e5

1e3 0 0 0 B

e5
2e4 e1e

4
2e4 + e5

2e3 e1e
4
2e3 + e6

2 e4
1e2e4 B + C

...
...

...
...

...

where,

A = e6
1 ⊗ e4

1e
2
2 + e4

1e
2
2 ⊗ e6

1,

B = e6
1 ⊗ e5

1e3 + e5
1e2 ⊗ e6

1,

C = e5
1e2 ⊗ e5

1e2.

To find the non primitive elements of f∗(a14) we are going to apply the reduced
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coproduct as below:

ψ̃(f∗(a14)) = f∗(a6)⊗ f∗(a8) + f∗(a8)⊗ f∗(a6)

= α
′
e6

1 ⊗ (α
′
e4

1e
2
2 + βe5

1e3) + (α
′
e4

1e
2
2 + βe5

1e3)⊗ α′e6
1

= (α
′
)2(e6

1 ⊗ e4
1e

2
2) + α

′
β(e6

1 ⊗ e5
1e3) + (α

′
)2(e4

1e
2
2 ⊗ e6

1) + α
′
β(e5

1e3 ⊗ e6
1)

= α
′
A+ α

′
βB.

Then f∗(a14) is not primitive if α
′
= 1. Hence

f∗(a14) = α
′
e6

1 · e4
1e

2
2 + α

′
βe6

1 · e5
1e3 + primitive terms.

Hence, from the table above the primitive elements of H14QMO(6) are spanned

by

{e4
2e

2
3 + e6

1 · e4
1e

2
2, e

5
1e2 · e5

1e2, Q
8e6

1} ∪ P14

where P14 are primitive elements of height one. Therefore,

f∗(a14) = α e6
1 · e4

1e
2
2 + αβ e6

1 · e5
1e3 + b14 (e4

2e
2
3 + e6

1 · e4
1e

2
2) + c14 e

5
1e2 · e5

1e2+

d14 Q
8e6

1 + ϕ,

where b14, c14, d14 are ∈ Z/2 and ϕ ∈ P14.

Since Sq1
∗(f∗(a14)) = 0, Sq2

∗(f∗(a14)) = 0 and Sq4
∗(f∗(a14)) = 0. Then f∗(a14) is

A-annihilated.

For Sq1
∗(f∗((a14)) = 0, we have d14 = 0 which yields

f∗(a14) = α
′
e6

1 · e4
1e

2
2 + α

′
β e6

1 · e5
1e3 + b14 (e4

2e
2
3 + e6

1 · e4
1e

2
2) + c14 e

5
1e2 · e5

1e2 + ϕ
′
,

where Sq1
∗ϕ
′
= 0.

As Sq2
∗(f∗((a14)) = 0, we obtain

α
′
e6

1 · e6
1 + b14 e

6
1 · e6

1 + c14 e
6
1 · e6

1 = 0.

In this equation we have:

Coefficient of e6
1 · e6

1 : α
′
+ b14 + c14 = 0. Hence,

f∗(a14) = α
′
e6

1 · e4
1e

2
2 + α

′
β e6

1 · e5
1e3 + b14 (e4

2e
2
3 + e6

1 · e4
1e

2
2) + c14 e

5
1e2 · e5

1e2 + ϕ
′′
,
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where ϕ
′′

is the set of an A-annihilated and primitive elements of height one in

H14QMO(6) and Sq2
∗ϕ
′′

= 0.

From diagram (6.3.3) we obtain that

p2h(α) = α
′
e6

1 · e4
1e

2
2 + α

′
β e6

1 · e5
1e3 + b14 e

6
1 · e4

1e
2
2 + c14 e

5
1e2 · e5

1e2.

Then by Theorem 6.2.1

ξ∗(p2h(α)) = (α
′
+ b14 + c14) e10

1 e
2
2 + α

′
βe11

1 e3

since α
′
+ b14 + c14 = 0. Then

ξ∗(p2h(α)) = α
′
β e11

1 e3.

Hence the double point manifold of an immersion F is cobordant to the projective

plane if and only if for α
′
= β = 1. Notice that α

′
= β = 1 if and only if

f∗(a8) = e4
1e

2
2 + e5

1e3.

Hence, it is enough only to consider f∗(a8). This completes the proof.

8.1.3 The double point manifold of F : M 12 # CP 11

This is our final example, and hopefully will make the general pattern clear.

Theorem 8.1.8. An immersion F : M12 # CP 11 corresponding to a map f :

CP 11
+ → QMO(10), has double point manifold cobordant to the projective plane if

and only if the map f has the property

f∗(a12) = e8
1e

2
2 + e9

1e3.

Proof. Notice that

f∗(a2i) = 0 for i < 5.

We have H10QMO(10) ∼= Z/2 generator by e10
1 , then for some α

′ ∈ Z/2,

f∗(a10) = α
′
e10

1 .
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A basis for H12QMO(10) is given by {e9
1e3, e

8
1e

2
2}.

Consider the following table

Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e9
1e3 0 0 0 0

e8
1e

2
2 0 e10

1 0 0

Since the reduced coproduct of f∗(a12) is trivial, then f∗(a12) is primitive.

We have Sq1
∗(a12) = 0, Sq2

∗f∗(a12) = f∗(a10) = α
′
e10

1 , Sq4
∗f∗(a12) = 0. Then f∗(a12)

is not A-annihilated if α
′
= 1.

Because Sq2
∗f∗(a12) = α

′
e10

1 , then the coefficient of e8
1e

2
2 is α

′
. So

f∗(a12) = α
′
e8

1e
2
2 modulo the other basis elements .

From the above table it is obvious that the only non-zero A-annihilated and primitive

element in H12QMO(10) is e9
1e3. Hence for some β ∈ Z/2,

f∗(a12) = α
′
e8

1e
2
2 + βe9

1e3.

A basis of H14QMO(10) is given by {e9
1e5, e

8
1e2e4, e

8
1e

2
3, e

7
1e

2
2e3, e

6
1e

4
2}. Consider

the following table.

Sq1
∗ Sq2

∗ ψ̃

e9
1e5 0 e9

1e3 0

e8
1e2e4 e9

1e4 + e8
1e2e3 e9

1e3 + e8
1e

2
2 0

e8
1e

2
3 0 0 0

e7
1e

2
2e3 0 e9

1e3 0

e6
1e

4
2 0 0 0

Since ψ̃(f∗(a14)) = 0, then f∗(a14) is primitive. We have Sq1
∗(a14) = 0, Sq2

∗f∗(a14) = 0,

Sq4
∗f∗(a14) = 0 and Sq8

∗f∗(a14) = 0. Then f∗(a14) is A-annihilated . Hence

f∗(a14) = γe8
1e

2
3 + δe6

1e
4
2 + ε(e9

1e5 + e7
1e

2
2e3),

where γ, δ, ε ∈ Z/2.
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We will not need to find f∗(a16), f∗(a18) and f∗(a20) for similar reasons to Theorem

8.1.7. A basis for H22QMO(10) is given by the set

{e9
1e13, e

8
1e

2
7, e1e

6
2e

3
3, e

8
2e

2
3, . . . , e

10
1 · e9

1e3, e
10
1 · e8

1e
2
2, e

9
1e2 · e9

1e2, Q
12e10

1 },

where the symbol . . . denote to other elements of height one. We consider the following

table.

Sq1
∗ Sq2

∗ Sq4
∗ Sq8

∗ ψ̃

e8
2e

2
3 0 0 0 e8

1e
2
3 A

e10
1 · e8

1e
2
2 0 e10

1 · e10
1 0 0 A

e9
1e2 · e9

1e2 0 e10
1 · e10

1 0 0 0

Q12e10
1 Q11e10

1 e10
1 · e10

1 0 0 0

e10
1 · e9

1e3 0 0 0 0 B

e9
2e4 e1e

8
2e4 + e9

2e3 e1e
8
2e3 + e10

2 0 e8
1e2e4 B + C

...
...

...
...

...
...

where,

A = e10
1 ⊗ e8

1e
2
2 + e8

1e
2
2 ⊗ e10

1 ,

B = e10
1 ⊗ e9

1e3 + e9
1e3 ⊗ e10

1 ,

C = e9
1e2 ⊗ e9

1e2.

Next we are going to apply the reduced coproduct on basis elements to find out a

non primitive elements as below:

ψ̃(f∗(a22)) = f∗(a10)⊗ f∗(a12) + f∗(a12)⊗ f∗(a10)

= α
′
(e10

1 ⊗ e8
1e

2
2 + e8

1e
2
2 +⊗e10

1 ) + α
′
β(e10

1 ⊗ e9
1e3 + e9

1e3 ⊗ e10
1 )

= α
′
A+ α

′
βB.

Then f∗(a22) is not primitive if α
′
= 1. Hence

f∗(a22) = α
′
e10

1 · e8
1e

2
2 + α

′
βe10

1 · e9
1e3 + primitive terms.
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From the table above the primitive elements of H22QMO(10) are spanned by

{e8
2e

2
3 + e10

1 · e8
1e

2
2, e

9
1e2 · e9

1e2, Q
12e10

1 } ∪ P22

where P22 is a basis of primitive elements of height one. Therefore,

f∗(a22) = α
′
e10

1 · e8
1e

2
2 + α

′
β e10

1 · e9
1e3 + b22 (e8

2e
2
3 + e10

1 · e8
1e

2
2) + c22 e

9
1e2 · e9

1e2+

d22 Q
12e10

1 + ϕ,

where b22, c22, d22 ∈ Z/2 and ϕ ∈ P22.

Since Sq1
∗(f∗(a22)) = 0, Sq2

∗(f∗(a22)) = 0, Sq4
∗(f∗(a22)) = 0 and Sq8

∗(f∗(a22)) =

f∗(a14). Then f∗(a22) is not A-annihilated if (γ 6= 0 or δ 6= 0).

Since Sq1
∗(f∗(a22)) = 0, then d22(Q11e10

1 ) = 0⇒ d22 = 0 and then

f∗(a22) = α
′
e10

1 · e8
1e

2
2 + α

′
β e10

1 · e9
1e3 + b22 (e8

2e
2
3 + e10

1 · e8
1e

2
2) + c22 e

9
1e2 · e9

1e2 + ϕ
′
,

where Sq1
∗ϕ
′
= 0. For Sq2

∗(f∗((a22)) = 0, then

α
′
e10

1 · e10
1 + b22 e

10
1 · e10

1 + c22 e
10
1 · e10

1 = 0

Since the coefficient of e10
1 · e10

1 : α
′
+ b22 + c22 = 0. Hence

f∗(a22) = α
′
e10

1 · e8
1e

2
2 + α

′
β e10

1 · e9
1e3 + b22 (e8

2e
2
3 + e10

1 · e8
1e

2
2) + c22 e

9
1e2 · e9

1e2 + ϕ
′′

where ϕ
′′

is the set of anA-annihilated primitive elements of height one inH22QMO(10)

with Sq2
∗ϕ
′′

= 0 . Using diagram (6.3.3)

p2h(α) = α
′
e10

1 · e8
1e

2
2 + α

′
βe10

1 · e9
1e3 + b22 e

10
1 · e8

1e
2
2 + c22 e

9
1e2 · e9

1e2.

Then by Theorem 6.2.1 we have

ξ∗(p2h(α)) = α
′
βe18

1 e3 + (α
′
+ b22 + c22)e18

1 e
2
2.

Since α
′
+ b22 + c22 = 0. Then

ξ∗(p2h(α)) = α
′
βe18

1 e3.

Hence the double point manifold of immersion F is cobordant to projective plane

if and only if α
′

= β = 1. Similar to the previous example, we observe that it is

enough to consider f∗(a12).
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In the next section we are going to use the same method in general to give a

condition for the existence of an immersion F : Mk+2 # CP k+1 with double point

manifold cobordant to the projective plane for general k ≡ 2 (mod 4).

8.1.4 The double point manifold of F : Mk+2 # CP k+1

We now give our main theorem. We observe that in the case of determining the double

point manifolds of a given immersion F : Mk+2 # CP k+1 it is possible to reduce the

calculation from calculating f∗(a2k+2) to calculating f∗(ak+2). We have the following

theorem.

Theorem 8.1.9. An immersion F : Mk+2 # CP k+1 corresponding to a map f :

CP k+1
+ → QMO(k), for k ≡ 2 (mod 4), i.e. k = 4r + 2, and r > 0 has double point

manifold cobordant to the projective plane if and only if

f∗(a4r+4) = e4r
1 e

2
2 + e4r+1

1 e3.

Proof. Given a function f : CP k+1
+ → QMO(k), since k = 4r + 2, then

f : CP 4r+3
+ → QMO(4r + 2).

Since H2iQMO(4r + 2) = 0, for all i < 2r + 1. Then

f∗(a2i) = 0.

The homology group H4r+2QMO(4r + 2) ∼= Z/2 generated by e4r+2
1 . Then

f∗(a4r+2) = α
′
e4r+2

1 ,

for some α
′ ∈ Z/2. Moreover, since H4r+4QMO(4r+2) ∼= (Z/2)2 generated by e4r+1

1 e3

and e4r
1 e

2
2 and Sq2

∗(a4r+4) = a4r+2. Then

f∗(a4r+4) = α
′
e4r

1 e
2
2 + βe4r+1

1 e3.

A basis for H8r+6QMO(4r + 2) is given by the set

{e4r+2
1 · e4r+1

1 e3, e
4r+2
1 · e4r

1 e
2
2, e

4r+1
1 e2 · e4r+1

1 e2, Q
4r+4e4r+2

1 } ∪ χ.
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Here χ denoted to elements of height one. The homology class of f∗(a8r+6) has reduced

coproduct

ψ̃(f∗(a8r+6)) = f∗(a4r+2)⊗ f∗(a4r+4) + f∗(a4r+4)⊗ f∗(a4r+2)

= α
′
(e4r+2

1 ⊗ e4r
1 e

2
2 + e4r

1 e
2
2 ⊗ e4r+2

1 ) +

α
′
β(e4r+2

1 ⊗ e4r+1
1 e3 + e4r+1

1 e3 ⊗ e4r+1
1 e3)

= α
′
A+ α

′
βB.

where

A = e4r+2
1 ⊗ e4r

1 e
2
2 + e4r

1 e
2
2 ⊗ e4r+2

1 ,

B = e4r+2
1 ⊗ e4r+1

1 e3 + e4r+1
1 e3 ⊗ e4r+1

1 e3.

Then f∗(a8r+6) is not primitive when α
′
= β = 1. Hence

f∗a8r+6 = α
′
e4r+2

1 · e4r
1 e

2
2 + α

′
βe4r+2

1 · e4r+1
1 e3 + primitive terms.

The set of primitive elements of H8r+6QMO(4r + 2) is spanned by

{e4r
2 e

2
3 + e4r+2

1 · e4r
1 e

2
2, e4r+1

1 e2 · e4r+1
1 e2, Q4r+4e4r+2

1 } ∪ P8r+6,

where P8r+6 is the set of primitive elements of height one in H8r+6QMO(4r + 2).

Hence

f∗(a8r+6) = α
′
e4r+2

1 · e4r
1 e

2
2 + α

′
βe4r+2

1 · e4r+1
1 e3 + b (e4r

2 e
2
3 + e4r+2

1 · e4r
1 e

2
2)+

c e4r+1
1 e2 · e4r+1

1 e2 + d Q4r+4e4r+2
1 + ϕ,

where ϕ ∈ P8r+6.

Now by applying Sq1
∗ on f∗(a8r+6) we get that Sq1

∗f∗(a8r+6) = 0 then

d Q4r+4e4r+2
1 = 0 and so d = 0. Hence

f∗(a8r+6) = α
′
e4r+2

1 ·e4r
1 e

2
2+α

′
βe4r+2

1 ·e4r+1
1 e3+b (e4r

2 e
2
3+e4r+2

1 ·e4r
1 e

2
2)+c e4r+1

1 e2·e4r+1
1 e2+ϕ

′
,

where Sq1
∗ϕ
′
= 0. For Sq2

∗f∗(a8r+6) = 0. Then

α
′
e4r+2

1 · e4r+2
1 + b (e2

1e
4r−2
2 e2

3 + e4r+2
1 · e4r+2

1 ) + c e4r+2
1 · e4r+2

1 = 0
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Coefficient of e4r+2
1 · e4r+2

1 : α
′
+ b+ c = 0. Hence

f∗(a8r+6) = α
′
e4r+2

1 ·e4r
1 e

2
2+α

′
βe4r+2

1 ·e4r+1
1 e3+b (e4r

2 e
2
3+e4r+2

1 ·e4r
1 e

2
2)+c e4r+1

1 e2·e4r+1
1 e2+ϕ

′′
,

where ϕ
′′

is set of height one in H8r+6QMO(4r + 2) with Sq2
∗ϕ
′′

= 0.

Next by using diagram (6.3.3) we deduce that

p2h(α) = α
′
e4r+2

1 · e4r
1 e

2
2 + α

′
βe4r+2

1 · e4r+1
1 e3 + b e4r+2

1 · e4r
1 e

2
2 + c e4r+1

1 e2 · e4r+1
1 e2.

Therefore, by Theorem 6.2.1

ξ∗(p2h(α)) = α
′
βe8r+3

1 e3 + (α
′
+ b+ c)e8r+2

1 e2
2.

Since α
′
+ b+ c = 0. Then

ξ∗(p2h(α)) = α
′
βe8r+3

1 e3

Then the double point manifold of an immersion F is cobordant to the projective

plane if and only if α
′
= β = 1.

In the case r = 0 we have been able to construct a map with required property

showing that an immersion exists with double point manifold cobordant to the pro-

jective plane. For r > 0, a construction would be more difficult and this has not been

achieved.

8.2 The case k = 4

We show that any immersion F : M6 # CP 5 has a double point manifold which is a

boundary.

Theorem 8.2.1. Given any immersion F : M6 # CP 5, then the double point man-

ifold of F is a boundary.

Proof. According to Section 6.2, a basis of H10QMO(4) is given by the set

{e1e2e3e4, e1e
2
2e5, e1e

3
3, e

2
1e2e6, e

2
1e3e5, e

2
1e

2
4, e

3
1e7, e

2
2e

2
3, e

3
2e4, e

4
1 · e2

1e
2
2, e

4
1 · e3

1e3,
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e3
1e2 · e3

1e2, Q
6e4

1}.

Next we need to eliminate the impossible values for f∗(a10) by using the action of the

Steenrod algebra, and the homology coproduct as we explained in chapter 5.

We start with f∗(a2). Since f∗(a2) ∈ H2QMO(4) = 0, then

f∗(a2) = 0.

Since H4QMO(4) ∼= Z/2 generated by e4
1, then

f∗(a4) = α
′
e4

1.

A basis for H6QMO(4) is given by {e2
1e

2
2, e

3
1e3}. The homology class f∗(a6) ∈

H6QMO(4) has the reduced cup coproduct

ψ̃f∗(a6) = f∗(a2)⊗ f∗(a4) + f∗(a4)⊗ f∗(a2) = 0.

So f∗(a6) is primitive. Since Sq1
∗f∗(a6) = 0, Sq2

∗f∗(a6) = 0, then f∗(a6) isA-annihilated.

The only A-annihilated and primitive elements of H6QMO(4) is e3
1e3 as shown in the

following table:

Sq1
∗ Sq2

∗ ψ̃

e2
1e

2
2 0 e4

1 0

e3
1e3 0 0 0

Hence we deduce that

f∗(a6) = βe3
1e3.

A basis for H8QMO(4) is given by {e1e
2
2e3, e2

1e2e4, e3
1e5, e2

1e
2
3, e4

2, e4
1 · e4

1}. To

eliminate the impossible values of f∗(a8) ∈ H8QMO(4), we consider the following

table.
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Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e1e
2
2e3 0 e3

1e3 0 0

e2
1e2e4 e3

1e4 + e2
1e2e3 e3

1e3 + e2
1e

2
2 0 0

e3
1e5 0 e3

1e3 0 0

e2
1e

2
3 0 0 0 0

e4
2 0 0 e4

1 e4
1 ⊗ e4

1

e4
1 · e4

1 0 0 0 0

The reduced coproduct of f∗(a8) is given by the following:

ψ̃(f∗(a8)) = f∗(a2)⊗ f∗(a6) + f∗(a4)⊗ f∗(a4) + f∗(a6)⊗ f∗(a2)

= α
′
(e4

1 ⊗ e4
1).

Then f∗(a8) is not primitive if α
′
= 1. Hence

f∗(a8) = α
′
e4

2 + primitive terms.

Since Sq1
∗(f∗(a8)) = 0, Sq2

∗(f∗(a8)) = f∗(a6) = βe3
1e3 and Sq4

∗(f∗(a8)) = f∗(a4) = α
′
e4

1,

then f∗(a8) is not A-annihilated if α
′
= 1 or β = 1.

Since Sq4
∗(f∗(a8)) = α

′
e4

1, the coefficient of e4
2 ∈ f∗(a8) is α

′
. Hence

f∗(a8) = α
′
e4

2 modulo the other basis elements .

On the other hand Sq2
∗(f∗(a8)) = f∗(a6) = βe3

1e3, and we have two elements in

H8QMO(4) which are e1e
2
2e3 and e3

1e5, with Sq2
∗e1e

2
2e3 = Sq2

∗e
3
1e5 = e3

1e3. However,

e1e
2
2e3 + e3

1e5 is an A-annihilated and primitive element.

Since the coefficient of e1e
2
2e3 ∈ f∗(a8) is β. Then

f∗(a8) = α
′
e4

2 + βe1e
2
2e3 + modulo annihilated primitive elements.

From the above table we deduce that the A-annihilated and primitive elements in

H8QMO(4) are spanned by the set {e1e
2
2e3 + e3

1e5, e
2
1e

2
3, e

4
1 · e4

1}. Hence

f∗(a8) = α
′
e4

2 + βe1e
2
2e3 + φ
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where φ = γe2
1e

2
3+δe4

1 ·e4
1+ε(e1e

2
2e3+e3

1e5) is the set of an A-annihilated and primitive

element in H8QMO(4). Hence

f∗(a8) = α
′
e4

2 + βe1e
2
2e3 + γe2

1e
2
3 + δe4

1 · e4
1 + ε(e1e

2
2e3 + e3

1e5).

We are almost ready to invoke the A-annihilated and primitive elements for

H10QMO(4) as follows

Sq1
∗ Sq2

∗ Sq4
∗ ψ̃

e1e2e3e4 e2
1e3e4 + e1e2e

2
3 e2

1e
2
3 0 0

e1e
2
2e5 0 e1e

2
2e3 + e3

1e5 e3
1e3 0

e1e
3
3 0 0 0 0

e2
1e2e6 e3

1e6 + e2
1e2e5 e3

1e5 e3
1e3 0

e2
1e3e5 0 e2

1e
2
3 0 0

e2
1e

2
4 0 e2

1e
2
3 e2

1e
2
2 0

e3
1e7 0 0 0 0

e2
2e

2
3 0 e2

1e
2
3 0 A

e3
2e4 e1e

2
2e4 + e3

2e3 e2
1e2e4 + e4

2 + e1e
2
2e3 e2

1e
2
2 B + C

e4
1 · e2

1e
2
2 0 e4

1 · e4
1 0 A

e4
1 · e3

1e3 0 0 0 B

e3
1e2 · e3

1e2 0 e4
1 · e4

1 0 0

Q6e4
1 Q5e4

1 0 0 0

where

A = e4
1 ⊗ e2

1e
2
2 + e2

1e
2
2 ⊗ e4

1

B = e4
1 ⊗ e3

1e3 + e3
1e3 ⊗ e4

1

C = e3
1e2 ⊗ e3

1e2.
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The reduced coproduct of f∗(a10) is obtained as follows

ψ̃(f∗(a10)) = f∗(a4)⊗ f∗(a6) + f∗(a6)⊗ f∗(a4)

= α
′
e4

1 ⊗ βe3
1e3 + βe3

1e3 ⊗ α
′
e4

1

= α
′
β(e4

1 ⊗ e3
1e3 + e3

1e3 ⊗ e4
1)

= α
′
βB.

Then f∗(a10) is not primitive if α
′
β = 1. Hence

f∗(a10) = α
′
βe4

1 · e3
1e3 + primitive terms.

Because Sq1
∗(a10) = 0, Sq2

∗f∗(a10) = 0, and Sq4
∗f∗(a10) = f∗(a6) = βe3

1e3, then

f∗(a10) is not A-annihilated if β = 1.

Now if we find all primitive elements in H10QMO(4) which have Sq1
∗(f∗(a10)) = 0

we deduce that

f∗(a10) = α
′
β e4

1 · e3
1e3 + c1 e1e

2
2e5 + c2 e1e

3
3 + c3 e

2
1e3e5 + c4 e

2
1e

2
4 + c5 e

3
1e7+

c6(e2
1e3e5 + e2

2e
2
3 + e4

1 · e2
1e

2
2 + e3

1e2 · e3
1e2),

where ci ∈ Z/2, i = 1, . . . , 6.

By evaluating Sq4
∗ on f∗(a10) we get the following.

Since Sq4
∗(f∗(a10)) = f∗(a6) = β e3

1e3, then β e3
1e3 = c1 e

3
1e3 + c4 e

2
1e

2
4 and so

c1 = β and c4 = 0.

Hence

f∗(a10) = α
′
βe4

1 · e3
1e3 + β e1e

2
2e5 + c2 e1e

3
3 + c3 e

2
1e3e5 + c5 e

3
1e7+

c6 (e2
1e3e5 + e2

2e
2
3 + e4

1 · e2
1e

2
2 + e3

1e2 · e3
1e2).

Finally, we note that because Sq2
∗f∗(a10) = 0, then

β(e1e
2
2e3 + e3

1e5) + c3 e
2
1e

2
3 + c6 (e2

1e3e5 + e2
2e

2
3 + e4

1 · e2
1e

2
2 + e3

1e2 · e3
1e2) = 0.

Therefore, β = c3 = 0.
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Now after the above calculations we find

h(α) = f∗(a10) = c2 e1e
3
3 + c5 e

3
1e7 + c6(e2

1e3e5 + e2
2e

2
3 + e4

1 · e2
1e

2
2 + e3

1e2 · e3
1e2).

We are now in a position to determine the double point manifold of an immersion

F . By using diagram (6.3.3) and referring to Theorem 6.2.1 we find that

p2h(α) = c6(e4
1 · e2

1e
2
2 + e3

1e2 · e3
1e2) ∈ H10D2MO(4).

Then

ξ∗p2h(α) = c6(e6
1e

2
2 + e6

1e
2
2) = 0 ∈ H10MO(8).

Hence the double point manifold of the immersion F is a boundary.

The above theorem then shows that for any immersion F : M6 # CP 5 its double

point manifold is a boundary.
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