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Rod bundle is a typical constitutive element of a very wide range of nuclear reactor de-
signs. This thesis describes the investigation of such geometry with wall-resolved Large
Eddy Simulation (LES). In order to alleviate the mesh constraint, imposed by the near
wall resolution, the usage of embedded refinements and polyhedral meshes is analysed
firstly with a inviscid laminar case (Taylor Green vortices) and secondly with a fully tur-
bulent case (channel flow only with embedded refinement). The inviscid test case shows
that the addition of embedded refinements decreases the conservation properties of the
code. Indeed the accuracy decreases from second order in a structured conformal mesh,
to something in between first and second order depending on the quality of the unstruc-
tured mesh. Better results are obtained when the interface between refined and coarse
areas presents a more regular and structured pattern, reducing the generation of skewed
and stretched cells. The channel flow simulation shows that the Reynolds stresses, of
some embedded refined meshes, are affected by spurious oscillations. Surprisingly this
effect is present in the unstructured meshes with the best orthogonal properties. Indeed
analysis of Reynolds stress budgets shows that terms, where the gradient in the wall
normal direction is dominant, have a largely oscillatory behaviour. The cause of the
problem is attributed to the convective term and in particular in the method used for
the gradient reconstruction.

As a consequence of these contradictory signs between the inviscid and the fully
turbulent cases, the rod bundle test case is analysed using a conventional body fitted
multiblock mesh. Two different Reynolds numbers are investigated reporting Reynolds
stresses and budgets. The flow is characterised by an energetic and almost periodic
azimuthal flow pulsation in the gap region between adjacent sub-channels, which makes
turbulent quantities largely different from those in plane channel and pipes and enhances
mixing. Experiments found that a constant Strouhal number, with the variation of
the Reynolds number, characterises the phenomenon. The frequency analysis finds
that present simulations are distinguished by three dominant frequencies, the first in
agreement with the experimental value and two higher ones, which might be due to
the correlation of the azimuthal velocity in the streamwise direction. Several passive
temperature fields are added at the simulations in order to study the effects of the
variation of the Prandtl number and the change in boundary conditions (Neumann and
Dirichlet). A simplified case where an imbalance of the scalar between adjacent sub-
channels is also investigated in order to evaluate the variation of the heat fluxes with
respect to the homogeneous case.

An alternative solution, to reduce the mesh constraint imposed by the wall, is to
hybridize LES with RANS. The main achievement of this work is to integrate the
heat transfer modelling to the already existing model for the dynamic part. Further
investigations of the blending function, used to merge the two velocity fields, are carried
out in conjunction with a study of the model dependency on the mesh resolution. The
validation is performed on a fully developed channel flow at different Reynolds numbers
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and with constant wall heat flux. On coarse meshes the model shows an improvement
of the results for both thermal and hydraulic parts with respect to a standard LES.
On refined meshes, suitable for wall-resolved LES, the model suffers from a problem
of double counting of modelled Reynolds stresses and heat fluxes because the RANS
contribution does not naturally disappear as the mesh resolution increases.
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Nomenclature

Capital Roman Symbols

CD Smagorinsky constant for the Germano’s Dynamic Model.

Cs Smagorinsky constant

D Diameter

D/Dt Substantial derivative (∂/∂t+ uj ∂/∂xj)

Dh Hydraulic diameter (4S/P )

−→
G c,I Gradient evaluated with Up-Wind definition (eq. (3.12))

H Heaviside Step Function

−→
IF Distance vector between point I and point F .

I Index of cell centre of the Ith cell

I ′ Index of the point obtained by the projection of the Ith cell centre on the line
perpendicular to a face between cell I and J and passing through the face centre
(see figure 3.1)

K Total kinetic energy ((uiui/2)

L Charactheristic length of largest eddies

Lt RANS turbulent length scale

Lij Resolved stress (Eq. (2.32))

Laij Anisotropic resolved stress (Eq. (2.29))

Mij Scaled composite rate-of-strain tensor (Eq. (2.31))

Nu
hDh

k
Nusselt number
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P Perimeter

P Pitch distance (fuel rod bundle test case, see figure 6.1)

P/D Pitch-to-diameter-ratio

Pr Prandtl number

Prt Turbulent Prandtl number

PrSGS Sub-grid Prandtl number

Prt,γ Turbulent Prandtl number for the homogeneous part of the hybrid RANS/LES
model

Prt,a Turbulent Prandtl number for the anisotropic part of the hybrid RANS/LES
model

Rij,R Reduced Reynolds stresses Rij − 1
3Rkkδij

Re Reynolds number (Eq (1.2))

Sij Filtered rate-of-strain 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
S̃ij Filtered rate-of-strain 1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
S Cross section area

Sw Wall surface

St Strouhal number (see Eq. ( 6.8))

T+ (Tw − T ) /Tτ Dimensionless temperature

TB Bulk Temperature

Tτ Local friction temperature

Tij Doubly filtered SGS stress tensor (Eq. (2.27))

T aij Anisotropic double filtered SGS stress tensor (Eq. (2.29))

UB Bulk velocity

UL Velocity scale of largest eddies∥∥∥−→V ∥∥∥ Intensity secondary motion

Lower-case Roman Symbols
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cp Specific heat capacity at constant pressure

c Constant (see Eq. (2.56))

f Dominant frequency

f Elliptic relaxation factor (see Chapter A)

h
qw

(Tw − TB)
Heat transfer coefficient

k wave number cutoff (k = 1/η), or turbulent kinetic energy (u′iu
′
i/2)

kη wave number cutoff for the scalar field (1/ηη)

l Charactheristic length of an eddy

lei demarcation length scale between the energy-containig range of eddies (l > lei)

and smaller eddies (l < lei)

mIJ mass flux evaluated at the face centre between cell I and cell J .

−→n IJ Normal vector to the face

ni Normal vector to the surface

p Filtered pressure

p Pressure

p′ Pressure fluctuation

qw Wall heat flux

s Subgrid-activity parameter

s′ij Filtered fluctuating rate-of-strain
(
Sij −

〈
Sij
〉)

s∗ Modified subgrid-activity parameter

sφ Volumetric source term

t Time

〈u〉GAP Bulk velocity in the gap region (Fuel Rod Bundle test case)

ui Filtered velocity

−→
u∗ Predicted velocity in the SIMPLEC velocity pressure coupling
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−→u Velocity vector

−→u IJ Velocity vector evaluated at the face centre between cell I and cell J

u′i Velocity fluctuation or subgrid velocity component in ith direction with i =

1, 2, 3

u, v, w Velocity components is a Cartesian system of reference (used in channel flow,
see Chapter 5)

u, v, w Velocity components is a curvilinear system of reference (used for fuel rod bun-
dle, see Chapter 6)

ui Velocity componenets in ith direction with i = 1, 2, 3

uη Kolmogorov’s velocity scale

v2 Normal velocity fluctuations to the wall

x, r, θ Curvilinear system of reference (used for furl rod bundle, see Chapter 6.1)

x, y, z Cartesian coordinates (used in channel flow, see Chapter 5)

xi Cartesian coordinate in the ith direction with i = 1, 2, 3

Capital Greek Symbols

∆ Grid filter with the Smagorinsky model (see Eq. (2.25))

∆ Grid filter with the Germano’s Dynamic model (see Eq. (2.26))

∆̃ Effective filter with the Germano’s Dynamic model (see Eq. (2.26)).

Γa Turbulent diffusivity for Schumann’s decomposition (Eq (2.46))

Γr Sub-grid diffusivity for Schumann’s decomposition (Eq (2.46))

Γθ Molecular diffusivity for the scalar θ

ΓSGS Sub-grid diffusivity

ΩI Volume of the Ith cell

Lower-case Greek Symbols

α Blending parameter

αIJ Geometrical factor

∥∥∥−→FJ∥∥∥∥∥∥−→IJ∥∥∥
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η Kolmogorov’s length scale

ηθ Obukhov-Corrsin scale (Eq. (2.43))

ε Dissipation

λ Thermal conductivity

λ Wavelength

µ Molecular viscosity

ν Kinematic viscosity

νa Turbulent viscosity in Schumann’s decomposition (Eq. (2.40))

νr Sub-grid viscosity in Schumann’s decomposition (Eq. (2.40))

νSGS Subgrid eddy discosity (Eq (.2.23))

φ Generic scalar

φI Generic scalar evaluated at the cell centre of the Ith cell

φIJ Generic scalar evaluated at the face centre between cell I and cell J

ρ Fluid density

σ dTb/dx1 Bulk temperature variation along the streamwise direction (see Eq.(6.10))

θ Filtered scalar

τaij Subgrid anisotropic stress tensor (Eq. (2.17))

τRij Subgrid stress tensor (Eq. (2.16))

τRj Subgrid scalar flux (Eq. (2.16))

τL Time scale of largest eddies

τη Kolmogorov’s time scale

θ Conserved passive scalar

ϕ v2/k (see section A.1.1)

Abbreviations

BC Boundary conditions
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CD Central difference

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs number
u∆t

∆x

DNS Direct Numerical Simulation

FD Finite Difference

FV Finite Volume

HPC High Performing Computing

LES Large Eddy Simulation

RANS Reynolds Averaged Navier-Stokes

SOLU Second Order Linear Up-Wind

UW Up-Wind

URANS Unsteady Reynolds Averaged Navier-Stokes

WP Work Package

Mathematical Symbols

Fb Blending function (see Eq.(2.54) )

∇ Nabla operator
∑n

i=1 x̂i
∂
∂xi

∂ΩI Surface of the Ith cell



Chapter 1

Introduction

De’ Fiumi

“Dove il canale è più stretto, ivi corre l’acqua più forte, e nell’uscire dallo stretto si
allarga con furia e percote e consuma le vicine rive traverse, e spesso muta corso d’uno

in altro loco” 1

The above statement is taken from the Codex Atlanticus where Leonardo Da Vinci
annotated his observations about the flowing of the river Arno in Tuscany. Leonardo had
a very wide range of interests: from philosophy to astronomy, from anatomy to military
engineering, from mechanics to bird flight and, of course, fluid mechanics. Leonardo
was hundreds of years ahead with respect to his age: for example in the Codex E
Leonardo gave a very precise description of how birds fly, explaining very accurately
the mechanisms responsible for lift generation. Leonardo can be considered the father
of modern fluid dynamics, for example the first part of the above statement can be
interpreted as the first enunciation of the principle of mass conservation. Continuing
in his study Leonardo was able to formulate the following general rule “where the flow
carries large quantity of water, the speed of the water is greater and vice versa”2 which
can be mathematically express as:

UBS = const (1.1)

where UB is the fluid velocity and S is the cross sectional area. During his work
Leonardo also approached turbulence. Figure 1.1 shows the flow around an obstacle,

1On Rivers “ Where the channel is narrow, the water proceeds faster, and coming out from the
straight it expands with anger and hits and erodes the near cross bank, and frequently it changes
stream from one place to another ” Leonardo Da Vinci, Codex Atlanticus, 1483-1518, 403 pages about
various topics. The translation from Italian is done by the author of this work. The original text is
taken from e-Leo, electronic scansion of the original manuscript conserved at Biblioteca Ambrosiana,
Milan.

2Translation from Tokaty (1971) page 39.
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Figure 1.1: Sketches from the Codex Atlanticus of Leonardo Da Vinci. In the upper
part of the image a complex turbulent flow is showed, which is generated by an obstacle
introduced in a-free stream. The bottom part shows a waterfall and the consequent
recirculation, generated in the underneath basin (Figure from Reuteler (2006))
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where the separation and the consecutive wake are very clear. In the bottom part
instead a waterfall is drawn and with the following quotation:

“L’acqua che caderà da alto in basso, si farà profondo pelago, il quale sempre
accrescerà, e spesso le sue argini vi ricaderanno dentro. E la ragion si é che l’acqua
che cade sopra l’altra acqua, per la velocità del colpo del peso si fa dar loco, viene a
passare insino sul fondo, dove cava, e per la percussione e per l’aria che nel cadere

sommerge insieme con seco, viene a resurgere, a elevarsi in alto per varie vie, le quali
fanno gargugliamento, ...”.3

The interesting part of the statement is the second one, where Leonardo describes
two mechanisms, the collision between the falling water and the water at the bottom
and the imprisoned air that is moving upward, that give rise to the turbulent motion
(“gargugliamento”).

After Leonardo a number of other scientists approached fluid mechanics, but was not
until the end of the nineteenth century that turbulence was spoken about in the work of
Reynolds (1883). Reynolds carried out series of experiments, employing horizontal pipes
and inserting a colour liquid inside the main flow, in order to visualise the streamlines.
He observed that for low speed the pattern of the streamlines was regular: they were
all parallel and aligned with the flow direction. By increasing the speed of the fluid,
eddies formed at the end of the pipe and this destroyed the regular streamline pattern in
the region. By increasing the velocity further the eddy formation moved upstream and
after a certain value of the velocity the flow was chaotic everywhere. He plotted also
the head loss as function of the velocity (Fig. 1.2) and he found that the relationship
was linear until point 1, random between points 1 and 2 and, after 2, again a smooth
curve, with a possible quadratic relation with the velocity. From this description the
flow can be clearly divided into three different regimes: a laminar regime before point
1, a transitional regime between 1 and 2 and a fully turbulent regime after 2. Reynolds
investigated the transitional point, he carried out his experiments with pipes of different
diameters and he came up with the following dimensionless parameter, later called the
Reynolds number:

Re =
ρUBD

µ
=
UBD

ν
. (1.2)

3“The water falling down from the top to the bottom will create a deep cavity, which will always
grow, and frequently its bank-side will fall into. And the reason is due to the velocity of the knock and
the weight of the water falling onto other water. The falling water is getting room and proceeding to
the bottom (“ viene a passare insino sul fondo”), where it digs in. And due to the hitting and the air
imprisoned (“per la percussione e per l’aria che nel cadere sommerge”) into the fall that after the water is
rising again (“viene a resurgere”), moving upward, generating a chaotic motion (“gargugliamento”),...”,
Leonardo Da Vinci, Codex Atlanticus. Translation by the author of this work.
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Figure 1.2: Reynolds diagram showing the loss of head as function of the velocity.

He observed that the flow regime was dependent only on this number; he assigned
at P1 a Reynolds number between 1900 and 2000 (Reynolds (1895)). The Reynolds
number has a fundamental importance in fluid mechanics because it permits to com-
pare similar flows around similar configurations, even if the geometrical dimensions are
different.

A fundamental tool in order to understand turbulence is the concept of the energy
cascade. The concept was introduced by Richardson in 1922 and the great Russian
scientist Kolmogorov perfected it. First of all the concept of eddy has to be introduced
as turbulent motion localised within a region of size l, which is at least moderately
coherent over the region. A typical example is a vortex. The flow is divided into large
and small scales. The former has a typical dimension L of the same order as the geometry
under investigation (for example the diameter of the pipe) and at this level the kinetic
energy enters the turbulence through the production mechanism. The energy is then
transferred to the small scales by an inviscid process and is dissipated at the smallest
scales (in general named as Kolmogorov’s scale). A more complete description of the
phenomenon is given in Chapter 2. This concept of energy cascade has a fundamental
role in modern numerical simulation such as Large Eddy Simulation.

1.1 Types of analysis in a CFD framework

With the introduction and the continuing development of computer science, Computa-
tional Fluid Dynamics (CFD) is becoming more and more popular in many branches of
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research and engineering. CFD is based on the approximation, discretization and the
solution of the Navier-Stokes equations (N.S.).

The main problem of a turbulent flow is that even if the equations are deterministic
the consequent velocity field is random4. The reason has to be found in unavoidable
perturbations in initial conditions, boundary conditions and material properties. As
was demonstrated by Reynolds in his experiments the flow field, after a certain speed,
is very sensitive to these perturbations.

The direct resolution of the N.S. equations is called Direct Numerical Simulation
(DNS). In this approach all the time and space scales are resolved as shown in Fig.
(1.3). In order to resolve small scales (Kolmogorov scales) the mesh has to be very fine.
DNS is becoming increasingly popular because the information that can be provided
is, in same cases, not even achievable by experiments. This method is now widely
used in research and in particular in turbulence modelling. As a consequence of its
extremely fine level of description, DNS is very time consuming. Table 1.1reports the
CPU time needed for a simulation of isotropic turbulence as function of the Reynolds
number, showing that CPU time is proportional to the Re3. Consequently simulations
of relatively complicated geometries at very high Reynolds number are still not feasible,
even using High Performing Computing (HPC). The second failing of DNS is that
high order schemes, in the discretization of equations, have to be employed in order to
minimise the numerical dispersion and dissipation. Implementation of these schemes is
relatively easy in block-structured meshes, but their formulation on general unstructured
grids, as required in very complex engineering flows, is not straightforward. In Chapter
4 all these points will be discussed in more detail. Some examples of DNS are reported
in Kim et al. (1987); Kawamura et al. (1999); Abe et al. (2001, 2004)

A second type of approach consists in calculating the statistical average of the solu-
tion. In this method, which is based on Reynolds observations, the solution is divided
into two parts: a mean part and a fluctuating part. Mathematically the decomposition
is:

ui︸︷︷︸
instant value

= ui︸︷︷︸
mean

+ u′i︸︷︷︸
fluctuating

(1.3)

where the mean value is obtained as:

ui = lim
T→∞

1

2T

ˆ t+T

t−T
u(x, t′)dt′ (1.4)

This is called Reynolds Averaged Navier-Stokes (RANS), where turbulence effects are
4Random event: considering a certain event A ( for example A ≡

{
u1 < 10ms−1

}
), if the event A

inevitably occurs, then A is certain, If A never occurs, then it is impossible, if A may or may not occur,
then it is random.
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fully modelled as presented in Figure (1.4). The computational resources required are
far less than in DNS. Consequently very high Reynolds numbers and very complex
geometries are feasible to be resolved even on a simple laptop. These characteristics
make the approach very attractive for engineering applications, and in fact it is the
base of most commercial and industrial codes. For a more detailed description of RANS
method and models refer to Pope (2000); Wilcox (1993).

A very similar approach to RANS is the Unsteady Reynolds Averaged Navier-Stokes
(URANS), or Semi-Deterministic Simulation (SDS), or Very Large-Eddy Simulation
(VLES). In this case the resolved part is only constituted by some low frequency modes
in time, and all turbulence is modelled following a RANS approach (Fig. 1.5). In this
case the level of information given by the solution is more detailed than RANS. This
approach is used frequently when there is a superimposition on the mean flow of an
external unsteadiness, for example a pulsating flow or vortex shedding.

An intermediate approach between RANS and DNS is Large Eddy Simulation (LES).
As the name suggests the flow is divided into large and small scales. The former are
resolved and the latter, instead, are modelled (Fig. 1.6). In order to separate the two
scales a cut-off length has to be defined. The methodology to do this scale separation
is presented in Chapter 2. The same chapter also presents governing equations for LES
and some commonly used turbulence models. A more complete introduction to the topic
could be found in Pope (2000) and in particular in the book of Sagaut (2001), which
is entirely devoted to the subject. Clearly the level of approximation, given by LES, is
more accurate than what RANS can provide. In the past, LES was entirely devoted to
research about turbulence when DNS was still too expensive. More recently, with the
increase of the computational CPU power, LES has started to become attractive also
for industrial and engineering applications. In some applications, for example nuclear
power plant, the results given by RANS calculations do not give enough details about the
fluctuating forces or temperatures which are important for the circa fifty years lifespan
of major components. LES becomes feasible and more accurate than RANS when it
can be applied to a sub-component such as pipe bends, T-junction, flow between tubes.
As a consequence several commercial codes (Fluent, Star-CD are only two examples)
and industrial ones (Code_Saturne) are introducing this type of approach among their
turbulence model options.

1.2 Ph.D. motivations and objective

This Ph.D. is part of the KNOO project (Keep Nuclear Option Open), a five year
initiative to enhance research in the nuclear field. The project is divided in four work
packages (WP):
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ReL = kL
ν Reλ = u′rmsλ

ν CPU Time
94 25 20 min
375 50 9 h
1500 100 13 days
6000 200 20 months
24000 400 90 years
96000 800 5000 years

Table 1.1: Estimation of the CPU time for DNS of isotropic turbulence at different
Reynolds number. The estimation was done at 1 gigaflops (1000 operations per mode
per time step). The data are taken from Pope (2000) .

1. Fuel Thermal-hydraulics and reactor systems;

2. Materials performances and monitoring reactors conditions;

3. An integrate approach to waste immobilisation;

4. Safety and performances for a new generation of reactor design.

This work is enclosed in WP1. The aim of this work is to use LES to generate a reliable
data-set for RANS validation. The main drawback of LES in wall bounded flows is the
very fine mesh resolution required by the small near wall structures. Therefore one of
the main objective of this work is to relax the near wall mesh constraints employing
some of the recent techniques such as embedded refinements or Hybrid RANS/LES
turbulence modelling.

1.3 Outline of the thesis

This thesis is divided into two parts: the first is a theoretical review of fundaments of
turbulence models and numerical analysis, whereas the second presents the results.

Chapter 2 recalls the Navier-Stokes equation, the concept of energy cascade and
some concepts of turbulence modelling. The turbulence modelling section is mainly
concentrated on the filtering approach, which is the theoretical base of Large Eddy
Simulation. The Smagorinsky model and Germano’s Dynamic approach are introduced,
underlining their strengths and weaknesses. Because the main focus of this work is to-
ward wall bounded flow some elements of anisotropic modelling are also brought up,
in particular focusing on Schumann’s decomposition. Heat transfer modelling is also
considered, along with different thermal regimes as function of the Prandtl number
variation. Finally the chapter presents a Hybrid RANS/LES model based on the Schu-
mann’s decomposition, where heat transfer is taken into account. Appendix A briefly
reviews the equations for the RANS approach.
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In this work the numerical analysis is performed using Code_Saturne, a CFD code
developed by R&D at EDF. The solver is based on a Finite Volume discretization and
the computational methods used are described in Chapter 3.

A considerable part of this work investigates the influence of the mesh requirements
for LES type of calculations and Section 3.1 gives a briefly overview of the available
mesh strategies, focusing in particular on the comparison between structured and un-
structured approaches.

In Chapter 4 the concept of kinetic energy conservation in conjunction with an
inviscid bi-dimensional test case (Taylor-Green vortices) is used in order to compare
structured and unstructured mesh performances. During the comparison embedded
refined and polyhedral meshes are tested against a well known structured conformal
grid. The use of unstructured meshes increases the level of error, but performance can
be recovered if the unstructured mesh presents a low level of non-orthogonalities. Indeed
results show the large importance of the accuracy of the gradient reconstruction, which
is used in the evaluation of the explicit part of the convective and diffusive terms when
the mesh is non-orthogonal.

The comparison between mesh arrangements is carried on in Chapter 5, but using
a 3D fully turbulent flow at Reτ = 395. Several types of mesh are employed and
compared with a structured grid. Some of the unstructured meshes presented some
non-physical oscillations in the Reynolds stresses profiles. Budgets of turbulent kinetic
energy and Reynolds stresses are also evaluated in order to find a possible explanation
for the problem.

Chapter 5 presents a validation of a Hybrid RANS/LES model, which includes heat
transfer modelling. The model is tested against wall resolved LES on coarse meshes and
it has been proved to be beneficial. An investigation of the model dependency to the
mesh resolution is also carried out. In the validation process the effect of the Prandtl
number variation is also considered.

Chapter 6 presents the fuel rod bundle test case. Firstly the quality of simulations
is evaluated using some LES quality indices and after the results are presented. The
flow presents coherent structures that are flowing in the streamwise direction in the
gap region between two adjacent sub-channels. This generates a phenomena called
flow pulsations, which is enhancing mixing between sub-channels. Budgets of turbulent
kinetic energy and Reynolds stresses are computed and reported. Heat transfer results
are also presented taking into account different boundary conditions for the scalars:
Neumann (constant wall heat flux) and Dirichlet (constant wall Temperature). Effects
of the Prandtl number variation on the thermal field are also taken into account. Finally
a case with scalar imbalance between adjacent sub-channels is investigated. A similar
geometry, where a spacer wire is wrapped around every fuel rod, in presented into
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Appendix D. The test case is analysed with RANS turbulence models therefore it is
inserted into appendix.
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Figure 1.3: Decomposition of the energy spectrum into resolved and modelled parts for
a DNS analysis.
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Figure 1.4: Decomposition of the energy spectrum into resolved and modelled parts for
a RANS analysis.

k

E(k)

Total
k

E(k)

Resolved
k

E(k)

Modelled

Figure 1.5: Decomposition of the energy spectrum in resolved part and modelled part
for a URANS analysis.
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Figure 1.6: Decomposition of the energy spectrum into resolved and modelled parts for
a LES analysis.
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Chapter 2

Governing Equations and
Turbulence modelling

In this chapter the governing equations for fluid motion and heat transfer are presented.
The concept of energy cascade is also briefly revised in order to have a more complete
introduction to turbulence modelling. Secondly LES modelling is introduced and some
of the most popular models are presented. RANS modelling is not considered in this
chapter, but a very quick overview is given in Appendix A. Finally Hybrid RANS/LES
is introduced in conjunction with a new Hybrid model for the heat transfer. More
details about fluid mechanics and turbulence modelling can be found in several books,
for example Tritton (1988) and Pope (2000), whereas a complete description of LES
and Hybrid modelling can be found in Sagaut (2001).

2.1 Governing Equations

The intrinsic physical meaning of thermodynamic quantities must be found in the sta-
tistical description of a gas. Consequently the governing equations for fluid motion can
be derived using a statistical mechanics approach. Such rigorous derivation of mass,
momentum and energy conservation can be found in the book of Vincenti and Kruger
(1965).

In this work the starting point is the Navier-Stokes equations1 in their incompressible
form 2 and with assumption of constant fluid properties. The energy balance is conse-
quently reduced to a transport equation of a passive scalar. The system of equations
being solved is therefore:

1In this context Einstein’s notation is used.
2In case of constant density the buoyant term in the momentum equation is neglected and the

thermal field is only acting as a passive scalar, without any feedback in the momentum.

35
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∂ui

∂xi
= 0

∂ui

∂t
+
∂ujui

∂xj
= −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
∂θ

∂t
+
∂ujθ

∂xj
= Γ

∂2θ

∂xj∂xj

(2.1)

where xi is the coordinate in the ith direction, ui the velocity component in the ith

direction, t the time, ρ the density, p the pressure, ν the kinematic viscosity, θ a scalar
(i.e. temperature) and Γ = ν/Pr is the diffusivity of θ with Pr being the Prandtl
number.

In general the pressure is seen as a thermodynamic variable and thus can be related
to density and temperature using an equation of state. In the case of a constant density
flow this link is lost and a different interpretation for the role of pressure is required.
Taking the divergence of the second equation of the system 2.1 leads to

(
D

Dt
− ν∇2

)
∇ · −→u = −1

ρ
∇2p−

∂ui

∂xj

∂uj

∂xi
(2.2)

In the case of a divergence free flow ∇·−→u = 0 and this is true if and only if the RHS of
Eq. (2.2) is equal to zero everywhere, which implies that the following Poisson equation
for the pressure has to be verified:

∂2p

∂x2
i

= −ρ∂ui
∂xj

∂uj
∂xi

(2.3)

Thus: the satisfaction of Equation (2.3) is a necessary and sufficient condition for the
velocity field to be solenoidal.

2.2 The energy cascade

The concept of energy cascade was first introduced by Richardson (1922). It is based
on the concept of an eddy defined as turbulent motion localized in a region of size l,
which has a moderately coherent structure over this region. The Richardson point of
view can be summarized as:

• Turbulence can be considered composed by eddies of different sizes;

• The largest eddies are characterized by a length scale L, which is comparable with
the flow scale and by a velocity UL comparable with the root mean square (r.m.s.)
value of the turbulent fluctuating velocity;
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• The Reynolds number of the large eddies is large enough for the viscosity effects
to be negligible;

• The large eddies are unstable and they break down, transferring their energy to
smaller eddies;

• The same procedure of breaking and energy transfer affects also these new small
eddies, creating even smaller eddies;

• This process of energy cascade continues until the Reynolds number of the eddies
is small enough for the molecular viscosity to take place and dissipate the kinetic
energy; at this stage the smallest scales of the turbulent motion are reached;

• Dissipation takes place only at the end of the energy cascade, the dissipation rate
can be determinate by this process in sequence and it scales as3

ε ≡ U3
L

L
(2.4)

Two main questions remain still unanswered: what is the size of the smaller eddies? As
the characteristic length scale of an eddy decreases what happens to the characteristic
velocity u(l) and time scale τ(l)? Answers were given by Kolmogorov (1941a,b,c, 1962)4

when he formulated his hypotheses.

• Kolmogorov’s hypothesis of local isotropy: at sufficiently high Reynolds
number, the small-scale turbulent motions are statistically isotropic5. The separa-
tion length scale between anisotropic large eddies and isotropic small eddies is in
general referred as lei6.

• Kolmogorov’s first similarity hypothesis: in every turbulent flow at suffi-
ciently high Reynolds numbers, the statistics of the small scale motion (l < lei)
have a universal form that is uniquely determined by the kinematic viscosity ν and
the dissipation rate ε. lei demarcates the so called Universal Equilibrium range.

3The large scales have energy of order U2
L and then the time scale τ is

τL =
L

UL
so the rate of transfer of energy scales as:

U2
L

τL
=
U3
L

L

4A translation from Russian to English of Kolmogorov’s work can be found in Kolmogorov (1991)
5Statistically isotropy: all the statistics of u′i does not change if the coordinate system is rotated by

an arbitrary angle.
6A rough estimation is lei ≈ 1

6
L (Pope (2000)).
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Combining ν and ε yields: 

η ≡
(
ν3

ε

)1/4

uη ≡ (εν)1/4

τη ≡
(
ν

ε

)1/2

(2.5)

where η is the length scale of the smallest eddies (also called Kolmogorov’s scale),
uη the velocity scale and τη the time scale. Using the definition of the dissipation
rate given by Eq. (2.4), the following estimations of ratios between small and
large scales can be derived:



η

L
∼ Re−3/4

uη

UL
∼ Re−1/4

τη

τL
∼ Re−1/2

(2.6)

• Kolmogorov’s second similarity hypothesis: in every turbulent flow at suffi-
ciently high Reynolds numbers, the statistics of the motion of scale l in the range
L � l � η have a universal form that is uniquely determined by ε and indepen-
dent from ν. Now it is convenient to introduce a length scale ldi (ldi w 60 · η) that
divides the universal equilibrium range into an inertial sub-range where inertia
still dominates, and a viscous range where the dissipation acts. In the inertial
sub-range the velocity and time scales are:

u(l) = (εl)1/3

τ(l) =

(
l2

ε

)1/3
(2.7)

Figure (2.1) visualizes all the different scales and ranges.

2.3 Large Eddy Simulation

As a consequence of the energy cascade presented in the previous section, a turbulent
flow could be divided into small, or sub-grid, scales and large scales. In LES the
decomposition is applied through a filtering operation. The equations obtained are the



CHAPTER 2. GOVERNING EQUATIONS AND TURBULENCE MODELLING39

Dissipation range Inertial subrange

Energy containing rangeUniversal equilibrium range

η ldi lei L

Figure 2.1: Visualization of the typical length scales of a turbulent motion at high
Reynolds number.

usual mass, momentum and energy conservation with the addition of a new term the
Sub-Grid Scale (SGS) stress tensor that represents the effect of small scales on the
large ones. This term has to be modelled and many options are possible, starting from
a simply eddy viscosity model (Smagorinsky model) to more complex models where
several transport equations are solved for different sub-grid quantities. A very complete
and comprehensive description of LES modelling and related issues is given in Sagaut
(2001).

2.3.1 Filtering

A filtering operation can be mathematically defined as a convolution product:

ui(
−→x , t) =

ˆ ∞
−∞

ui(
−→r , t)G(−→x −−→r , t)d−→r (2.8)

where ui is the filtered velocity, G is the kernel of the convolution and depends on the
type of the filter.

The residual field is defined as:

u′i(
−→x , t) ≡ ui(−→x , t)− ui(−→x , t) (2.9)

and the velocity field can be decomposed as

ui(
−→x , t) ≡ ui(−→x , t) + u′i(

−→x , t). (2.10)

This decomposition appears to be similar to the Reynolds one, but in this case the
filtered velocity u(−→x , t) is random and time dependent. The second difference is that
the filtering operation applied to the residual field is not zero:
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u′i(
−→x , t) 6= 0. (2.11)

The filter must verify the following properties:

1. Conservation of constant:

a = a⇐⇒
ˆ ∞
−∞

G(−→r , t)d−→r = 1 (2.12)

2. Linearity:

u1 + u2 = u1 + u2 (2.13)

3. Commutation with differentiation7:

∂ui
∂s

=
∂ui
∂s

(2.14)

General G(r)

Box 1
∆H

(
1
2∆− |r|

)
Gaussian

√
6

π∆2 exp
(
−6r2

∆2

)
Sharp spectral sin(πr/∆)

πr

Table 2.1: Example of one-dimensional filter functions. H is the Heaviside Step Func-
tion.

Table 2.1 reports some examples of filter functions in one-dimension (for simplicity).
For a more detailed treatment of the filter operation, its properties and its applications
refer to the book of Sagaut (2001).

2.3.2 LES formulation

Using the velocity decomposition of Eq. (2.10) for both velocities and pressure, the
system of Equations (2.1) becomes:

∂ui

∂xj
= 0

∂u′i
∂xj

= 0

∂ui

∂t
+
∂uiuj

∂xj
= −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
∂θ

∂t
+
∂ujθ

∂xj
= Γ

∂2θ

∂xj∂xj
.

(2.15)

7The commutation with differentiation holds only if G is homogeneous in space.
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From equations in the first line of system (2.15) it is immediately possible to observe
that both the filtered and the sub-grid field are solenoidal. Now the problem comes from
the term uiuj that is not simply equal to the product of the filtered single velocities.
The non-linear term can be expressed as:

τRij = uiuj − ui uj . (2.16)

The residual stress tensor could be divided into an isotropic and anisotropic part as:

τaij = τRij −
1

3
τRkkδij (2.17)

and the isotropic part could be added to the pressure obtaining:

p ≡ p+
1

3
ρτRkkδij . (2.18)

The momentum equation can be rewritten as:

∂ui
∂t

+
∂uj ui
∂xj

= −1

ρ

∂p

∂xi
−
∂τaij
∂xj

+ ν
∂2ui
∂xj∂xj

. (2.19)

Same issue also affects the sub-grid scalar flux, which can be expressed as:

τRj = ujθ − uj θ (2.20)

and the transport equation for the scalar can be rewritten as:

∂θ

∂t
+
∂uj θ

∂xj
= −

∂τRj
∂xj

+ Γ
∂2θ

∂xj∂xj
. (2.21)

The filtered quantities depend also on the type and the width of the filter. Filtered
quantities can also appear indirectly in the model of τaij and τ

R
j .

2.3.3 S.G.S. Modelling

2.3.3.1 The Smagorinsky model

The simplest model to express τaij was proposed by Smagorinsky (1963) and is based on
a mixing length hypothesis:

τaij = −2 (Cs∆)2
∣∣S∣∣Sij (2.22)

where Cs is the Smagorinsky constant, ∆ the filter width, Sij = 1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
is the

filtered rate of strain tensor and
∣∣S∣∣ =

√
2Sij Sij . The sub-grid viscosity (νSGS) is:
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νSGS = (Cs∆)2
∣∣S∣∣ (2.23)

and the model has a total viscosity equal to:

νTOT = ν + νSGS (2.24)

The theoretical value of the Smagorinsky constant is still an open debate. Pope
(2000) gives a value of 0.17 for isotropic turbulence. A common way to evaluate is to
use the decay of the isotropic turbulence in order to take into account the numerical
dissipation. For inhomogeneous flow a smaller value is used, for example in channel
flow a common value is Cs = 0.1 or Cs = 0.065 (see Benhamadouche (2006)) and they
are in general related to conservative properties of the code.

This model presents many drawbacks:

• Different values of Cs are used to describe different flows;

• The sub-grid stresses do not vanish in laminar regions. Consequently damping
functions must be introduced in order to take into account near wall effects;

• Intermittency functions must be introduced for transitional flow in order to modify
Cs;

• The model does not take into account the back-scatter that occurs when the
energy flows from small scales to the large ones. The phenomenon sometimes can
be significant;

• Anisotropy of small scales in the near wall region is not considered;

• The model needs also to be modified in the case of a strong density stratification
or rotation, even if the Reynolds number is high.

In the framework of Code_Saturne the value used for Cs = 0.065 and the filter width
is defined as:

∆ = 2 3
√

ΩI (2.25)

Where ΩI is the cell volume. The Van Driest (1956) damping is used to damp the SGS
viscosity in wall-bounded flows.

2.3.3.2 The Germano Dynamic model

The dynamic model introduced by Germano et al. (1991) can be interpreted as an evo-
lution of the Smagorinsky model, where the Smagorinsky constant becomes a coefficient
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that depends on space and time. The model is based on a double filtering operation.
The first filtering operation is defined as the implicit mesh induced filter and it is de-
noted here with an over-line symbol. This filter is characterised by a filter width ∆.
The second filtering operation is called test filtering. It is indicated by a tilde and it is
characterized by an effective filter width ∆̃. Both filter widths are related as:

∆̃ > ∆. (2.26)

In general literature ∆̃ = 2∆ (see Moin et al. (1991)), but for example Benhamadouche
(2006) in his PhD thesis uses a ratio of 1.5, computed as the optimal value from tests
on isotropic turbulence. Applying the second filtering operation to the residual stress
tensor defined in Eq. (2.16) the corresponding residual stress tensor is obtained as:

Tij = ũiuj − ũi ũj . (2.27)

The model is based on Germano’s identity (Germano (1992)) that is written as:

Lij = Tij − τ̃Rij = ũi uj − ũi ũj . (2.28)

The same decomposition on isotropic and anisotropic parts used in (2.17) for τij can be
applied also for Tij and Lij obtaining:{

T aij = Tij − 1
3Tkkδij

Laij = Lij − 1
3Lkkδij

(2.29)

The residual stress tensors τRij and Tij , obtained from the two filtering levels, can be
modelled using the same constant CD. This leads to: τaij = −2CD∆

2 ∣∣S∣∣Sij
T aij = −2CD∆̃

2 ∣∣∣S̃∣∣∣ S̃ij (2.30)

Taking CD to be uniform and defining

Mij = 2
˜

∆
2 ∣∣S∣∣Sij − 2∆̃

2 ∣∣∣S̃∣∣∣ S̃ij . (2.31)

Substituting Eq. (2.30) into the second of Eq. (2.29) and taking into account definition
(2.31) gives:

LSij = T aij − τ̃aij = CDMij (2.32)

where LSij represents the Smagorinsky model for the anisotropic part of the resolved
stress Lij . A single value of the coefficient CD cannot be chosen to satisfy the six
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independent components of the tensor defined as:

Eij = Laij − LSij . (2.33)

A possible solution is presented by Lilly (1992), where CD is evaluated using a mean
square minimisation of the error between the deviatoric stress Laij and its Smagorinsky
prediction LSij obtaining

8:

CD =
LaijMij

MklMkl
=

LijMij

MklMkl
(2.34)

From this definition of CD some considerations can be made:

• CD can assume a negative value: this is in general interpreted as a synonym of
the back-scatter;

• If Mkl → 0 ⇒ CD →∞.

These two situations lead to instability of the solution. A common practice to overcome
the problem (see for example Piomelli and Liu (1995)) is to average, in time and/or
along homogeneous directions, the numerator and the denominator of Eq. (2.34).

In addition the following conditions need also to be verified in order to obtain a
physically acceptable solution: {

ν + νt ≥ 0

CD ≤ C2
s

(2.35)

where Cs is the value of the Smagorinsky constant used for isotropic turbulence. With
the Germano Dynamic Model no damping function is required in the near wall region.

2.3.4 Non isotropic modelling

The development of most LES models is done under the framework of isotropic flows. In
a case where the flow is anisotropic some adaptations are required. A common example
is the introduction of the Van Driest (1956) damping function for the turbulent viscosity
in case of a wall bounded flow. In these types of flows the cells, and in particular in
the near wall region, are far from isotropic (i.e. perfect cube) and the usual filter width
proposed by Deardorff (1970), where the filter width is simply the cube root of the cell
volume9, is questionable.

∆(−→x ) = (∆1(−→x )∆2(−→x )∆3(−→x ))
1/3 (2.36)

8Since Mij is deviatoric ⇒MijLij = MijL
a
ij .

9Most authors use twice the cube root of the volume because the smallest eddy which can be resolved
has to be composed by at least two cells.
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where ∆i(
−→x ) is the filter width in the ith direction. Some simple modifications, in order

to take into account mesh stretching, could be (see Sagaut (2001)):

∆(−→x ) =

√
1

3

(
∆2

1(−→x ) + ∆2
2(−→x ) + ∆2

3(−→x )
)

(2.37)

∆(−→x ) = max (∆1(−→x ),∆2(−→x ),∆3(−→x )) (2.38)

A more complex modification of the filter width due to cell stretching is proposed
by Scotti et al. (1993) where the filter width is computed as:

∆(−→x ) = ∆(−→x )isof (a1, a2) (2.39)

where ∆(−→x )iso is defined in Eq. (2.36), f is a function depending on the ratios a1 and
a2, which are computed as ai = ∆i/∆max

10.
All these approaches can be brought back to the isotropic modelling where just only

one length is defined for the filter width. Another possibility, when cells are extremely
stretched in one direction, is to introduce several lengths and have a variable filter width
depending on the direction. An example is presented in Bardina et al. (1983) where a
tensorial formulation related with the cell geometry is proposed for the filter width. Of
course the modelling stages becomes more complex with this latter option. However
the validity of LES performed on very stretched grid can be questionable.

Schumann’s decomposition

Another way to approach inhomogeneous flow is proposed by Schumann (1975). The
method consists of splitting the velocity field into locally isotropic and inhomogeneous
parts. The model can consequently be formulated as follows:

τaij = −2νr
(
Sij −

〈
Sij
〉)︸ ︷︷ ︸

Locally isotropic

− 2νa
〈
Sij
〉︸ ︷︷ ︸

inhomogeneous

(2.40)

where νr can be considered as a sub-grid viscosity which is computed from a transport
equation for the sub-grid kinetic energy. The inhomogeneous term is instead treated in
a RANS way and the turbulent viscosity νa is evaluated with a mixing length model.
The angular parentheses 〈〉 denote an average quantity.

Other authors, instead, treat both terms in a “LES fashion”, using for both viscosities
a sub-grid formulation. An example is presented by Moin and Kim (1982) where both
viscosities are evaluated as:

10∆max is computed using Eq. (2.38) and ∆i are the other two smaller filter widths.
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 νr = (C1∆)2
√

2
(
Sij −

〈
Sij
〉) (

Sij −
〈
Sij
〉)

νa = (C2∆y)
2
√〈

Sij
〉 〈
Sij
〉 (2.41)

where C1 and C2 are two arbitrary constants and the two filter widths are defined as: ∆ = (∆1∆2∆3)1/3 (1− exp (y+/A+))

∆y = ∆y

(
1− exp

(
(y+/A+)

2
)) (2.42)

where y is the wall normal direction ∆ and ∆y are two filter widths associated with
νr and νy. Both filter widths are damped using the Van Driest damping for ∆ and
a modified Van Driest with quadratic argument for the exponential for ∆y. A+ is a
constant equal to 25 and y+ is the dimensionless distance from the wall.

2.3.5 Passive scalar modelling

In the same manner as for the hydrodynamic field, presented in Sec. 2.2, a length scale
needs to be introduced in order to describe scalar dynamics. This scale is named after
Corrsin (1951):

ηθ =
( ε

Γ3

)1/4
=

(
1

Pr

)3/4

η (2.43)

with η the Kolmogorov scale defined in Eq. (2.5). The ratio between cut-off wave
numbers consequently scales as:

kθ
k

= Pr3/4 (2.44)

with kθ = 2π/ηθ wave cut-off number for the scalar field and k = 2π/η wave number
cut-off for the velocity. 11

Three different regimes can be encountered:

1. Pr � 1: when the diffusivity is much bigger than the kinematic viscosity. In
this case the scalar cut-off wave number is smaller than the one for the velocity.
Thinking in terms of boundary layer (B.L.) thickness the velocity B.L. is smaller
than thermal one.

2. Pr ' 1: in this case both cut-off wave numbers are comparable. Consequently
the two boundary layers have similar thickness.

11The Obukhov-Corrsin definition is not valid at very high Prandtl numbers, for which Batchelor
(1959) derived a wave number defined as:

kB =
( ε

νλ2

)1/4
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3. Pr � 1 : when the velocity cut-off is larger that the one for scalar. This case is
more complex because the scalar length is smaller than the velocity length, with
the consequence that the thermal boundary layer has a smaller thickness.

The simplest closure approach for the scalar modelling is to use a gradient diffusion
hypothesis, where a sub-grid Prandtl number is introduced and the sub-grid diffusivity
is defined as:

ΓSGS =
νSGS
PrSGS

(2.45)

PrSGS is in general a constant and is evaluated in order to better fit reference results.
In the literature the value varies between 0.1 and 1, with a common value around 0.7
12. This option is also the most used in most of the CFD codes even if it is a crude
approximation.

Moin et al. (1991) present a generalization of the dynamic model (see 2.3.3.2) in-
cluding scalar transport. The same dynamic procedure is applied to the calculation of
a sub-grid Prandtl number. It is interesting to notice that, in the case of a turbulent
channel flow at Reτ = 180 (Reynolds number based on the friction velocity), PrSGS
has a wide variation ranging from more than 1 in the near wall region, to 0.6 at the
centre of the channel.

Schumann’s decomposition of Section 2.3.4, can be also applied to the heat trans-
fer modelling (see Grötzbach (1979); Grötzbach and Schumann (1979)) leading to the
following formulation for the heat fluxes:

τRj = −Γr
∂

∂xj

(
θ −

〈
θ
〉)
− Γa

∂
〈
θ
〉

∂xj
(2.46)

2.4 Hybrid RANS/LES coupling

The use of LES to study 3D transient flows has been in huge growth, in particular
because of the ability of the method to give quantitatively better information than
those provided by a usual RANS calculation. Despite this the application of LES to high
Reynolds number wall bounded flow is still an issue due to computational constraints.
For those types of flows a large amount of control volumes is necessary in order to capture
all the scales responsible for the turbulent production and to avoid the deficiencies of
most of the LES models to take into account anisotropy and non-equilibrium.

Wall modelling is necessary to keep the computational cost of the simulation rea-
sonable. A first simple approach is to use the so called “wall-function” approach to

12The reason of a PrSGS smaller that 1 is often explained because the ability of temperature hot
spot to diffuse more with respect to a velocity peak, without counter action from pressure.
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provide the right amount of shear stress at the first cell, which is located far above the
laminar sub-layer (y+ � 5). Wall functions can range from simple models based on the
”log law”, to a resolution of simplified equations in the near wall region. For a detailed
presentation about wall model requirements refer to Baggett (1997).

Another way to reduce LES mesh requirements is to hybridise it with another type
of computational technique able to provide lower frequency solution at cheaper com-
putational cost. The obvious candidate is RANS. Hybrid RANS/LES models can be
divided into three main groups following Sagaut (2001):

1. Non-linear disturbance equations: the method is firstly proposed by Morris et al.
(1997) in which the flow field is divided into a steady or low frequency part and a
high frequency or fluctuating part. The first is computed with a RANS approach
and the second with a LES method. The result is a generalized form of the
Navier-Stokes equations written in a perturbation form.

2. Universal modelling : in this case the sub-grid model is generalised by including a
combination of RANS and usual LES modelling. Those models are designed in a
way to recover asymptotically the behaviour of typical RANS, with the inclusion
of some LES capabilities. The aim is to make the sub-grid model able to deal
with coarse meshes and then move the cut-off to lower frequencies. An example of
this type of modelling is Germano’s Hybrid model presented in Germano (1999,
2004).
The model starts from the definition of a hybrid filter as a sum of LES and RANS
filters. The main outcome is that the residual stress tensor has three contributions:
the LES term, the RANS term and an extra term, which arises from the blending
between the two types of filters.

3. Zonal decomposition: with this approach the domain is divided into sub-domains,
with some domains treated with RANS and the remaining with LES.

The zonal decomposition has received most attention by many different research groups
and can be divided into two main types: the sharp and the smooth transition. In
the first family the RANS and the LES parts are divided by a defined interface. The
communication between the two regions is in general done by exchanging boundary
conditions. A problem arises because the fluctuating part, ignored by the RANS sub-
domain, has to be reconstructed in order to have proper boundary conditions for the
LES domain. An example of this type of technique is presented in Davidson and Peng
(2003), where both plane channel flow and flow over a periodic hill are considered.
The near wall region (y+ ≤ 60) is computed with a k−ω model and the inner region is
modelled with a one equation model for the sub-grid stress tensor. The interface is fixed
and Neumann boundary conditions are applied for the RANS sub-domain. The results
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are better than LES on the same coarse meshes but some problems are pointed out.
Firstly results are dependent from the location of the matching plane between RANS
and LES and, secondly, the velocity shows a sudden acceleration at this interface. This
problem is more evident in the channel flow simulation. This may be, according to the
authors, due to the smoothing produced by the convective and diffusive transport in the
latter case. As already mentioned, RANS domain does not contain enough turbulent
characteristics and the LES part is not supplied with the right amount of fluctuations.
Improvements in the results for the channel flow calculation are obtained in Davidson
and Dahlstrom (2005); Davidson and Billson (2006), where fluctuations are imposed at
the interface. In the first case, fluctuations are computed from a DNS database for a
generic boundary layer, in the second case they are computed with a Synthetic Eddy
Method (SEM). The same method is also used for the plane diffuser finding better
results than usual RANS simulation.

Another sharp transition approach is presented by Temmerman et al. (2005). In
this case the key feature is to impose a continuity constraint to the turbulent viscosity
at the interface. The coefficient Cµ (see Appendix A for definition) is computed at the
interface as ratio between average LES turbulent viscosity and RANS viscosity and after
it is used to increase the RANS viscosity, via an exponential function, as the wall is
approached. Many different RANS models and different locations of the interface have
been tested finding better results than analogue coarse LES. The model is also tested on
a series of periodic hills finding, instead, worse results than pure LES on same meshes.
The approach gives an excessively long recirculation zone with respect to the reference
solution. Evidence suggests that the problem is caused by defects in the wall shear
stress provided by the RANS model. The same method is also compared with LES with
wall functions (standard log law and zonal two-layer strategy) in Tessicini et al. (2006)
for different test cases. The Hybrid method in general provides better results because
it permits to place the interface further away from the wall. On the other hand the
two-layers approach is very simple, economical and far more accurate than a standard
log-law wall function.

Keating et al. (2006) applied Hybrid RANS/LES to attached boundary layers. Au-
thors found that a Synthetic Eddy Method is not sufficient to reconstruct the fluctuating
field because the method needed long distance (about 10-20 times the boundary layer
thickness) to develop proper phase relationships between the modes. A forcing term was
introduced with the result of a decrease of the development distance to 1-2 boundary
layer thicknesses.

A very popular technique, that can be included in the smooth transition family, is
the so-called Detached Eddy Simulation (DES). The method consists in an unsteady
RANS model in which the turbulent length scale is switched to a LES filtered type
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when a separation occurs. This is actuated by damping the turbulent viscosity. The
original formulation of DES model is presented by Spalart et al. (1997) using a one
equation Spallart-Allmaras model, but later many other models are incorporated in the
same framework e.g. Mockett et al. (2005). The drawback for this type of approach
is when the near wall region is approached and fine meshes are employed. In this part
of the domain the RANS length scales might become much larger than those imposed
by the mesh, leading the method to a grid induced separation as proved by Menter
et al. (2003). As the name suggests the model works with highly separated flows, but it
does not performs very well with wall bounded flow. The problem is taken into account
and corrected in Spalart et al. (2006) where the concept of Delayed Detached Eddy
Simulation (DDES) is introduced.

Another type of smooth transition model can be extended from the splitting tech-
nique proposed by Schumann (1975) and also briefly recalled in Section 2.3.4. In this
case the anisotropic part of the residual stress tensor is corrected with a term computed
with a RANS approach. The two terms that compose the stress tensor, are blended
using a blending function, in order to obtain a smooth transition between the RANS
and the LES sub-domains. This method was first proposed by Baggett (1998), finding
some controversial results: unphysical very elongated streaks in the streamwise direc-
tion were formed in the RANS region. As a consequence there is a decorrelation of the
fluctuation in the streamwise and wall normal direction that must be compensated by
a larger velocity gradient. The result is a shift toward higher distance from the wall
of the intercept of the logarithmic region. The reason of all this seems to be more
caused by the low resolution in the near wall region rather than a modelling deficiency.
Many authors try to alleviate the problem by introducing different types of corrections.
Piomelli et al. (2003) move the interface more close to the wall in combination with
a less dissipative sub-grid model without a big improvement of the results. On the
other hand the introduction of a back-scatter forcing term in the region immediately
below the interface is proven beneficial. Good results are also found by Hamba (2003),
introducing an overlap region in which the model switches smoothly from the RANS to
the LES.

In the family of the smooth transition models a very interesting model is presented
by Abe (2005). In this case a non-linear eddy viscosity model is used in both domains.
In the RANS part uses a k− ε base model, whereas the LES part employs an algebraic
definition. The blending function is parameterised using the wall distance and the grid
size. Several channel flows are computed finding good results in terms of mean velocity
profiles, but with a stronger stress anisotropy caused by some suppression of energy
redistribution from the streamwise to the wall normal and the spanwise directions.

A complete review of different Hybrid methods and their application can be found
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in Fröhlich and von Terzi (2008).

2.4.1 Hybrid RANS/LES formulation

This section presents the Hybrid model used in this work. The model is based on
Schumann’s decomposition recalled in Section 2.3.4. This model was originally formu-
lated by Uribe et al. (2009). Here the model is extended with some improvements in
the blending function definition and the addition of the heat transfer modelling (Rolfo
et al. (2010)).
From Equations (2.40) and (2.46) the sub-grid terms can be expressed as:

τaij = −2νr
(
Sij −

〈
Sij
〉)
− 2νa

〈
Sij
〉

τj = −Γr
∂

∂xj

(
θ −

〈
θ
〉)
− Γa

∂
〈
θ
〉

∂xj

(2.47)

For the homogeneous part a simple Smagorinsky model based on the fluctuating strain
is used (Moin and Kim (1982)), leading to the following expression for the sub-grid
turbulent viscosity:

νr = (Cs∆)2
√

2s′ijs
′
ij (2.48)

with s′ij = Sij −
〈
Sij
〉
and a filter width equal to twice the cubic root of the cell volume

(∆ = 2 · Ω1/3
I ). The ϕ − f model of Laurence et al. (2005) is used to compute the

average viscosity νa, and the description of the model can be found in Section A.1.1 of
the Appendix.

For the eddy conductivity a simple gradient diffusion hypothesis has been employed,
obtaining the following expressions: Γr = νr/Prt,γ

Γa = νa/Prt,a
(2.49)

where Prt,γ is the Turbulent Prandtl number for the locally isotropic (i.e LES) contri-
bution and Prt.a the one for the inhomogeneous part. This model allows the possibility
to have two different control parameters for both contributions to the modelled heat
flux. The influence of these two constants on the thermal field is investigated in Chap-
ter 5, Section 5.3.1. However in order to have an idea about the turbulent Prandtl
number variation the reader should refer to Moin et al. (1991). The paper shows a
large variation of the parameters moving from the near wall region to the centre of the
channel. For coarse meshes a variation depending of the molecular Prandtl number is
also observed.

In order to introduce a smooth transition between the resolved and the ensemble



CHAPTER 2. GOVERNING EQUATIONS AND TURBULENCE MODELLING52

average turbulent parts a blending function is introduced and the sub-grid terms of Eq.
(2.47) are rewritten as:

τaij =

Locally Isotropic︷ ︸︸ ︷
−Fb2νr

(
Sij −

〈
Sij
〉)
−

Inhomogeneous︷ ︸︸ ︷
(1−Fb) 2νa

〈
Sij
〉

τRj = −FbΓr
∂

∂xj

(
θ −

〈
θ
〉)
− (1−Fb) Γa

∂
〈
θ
〉

∂xj

(2.50)

The average of the sub-grid modelled terms can be expressed as:
〈
τaij

〉
= − (1−Fb) 2νa

〈
Sij
〉

〈
τRj

〉
= − (1−Fb) Γa

∂
〈
θ
〉

∂xj

(2.51)

where only the RANS contribution takes place. Consequently the total Reynolds stresses
and heat fluxes take the following formulation:

〈
u′iu
′
j

〉
TOT

=
〈
u′iu
′
j

〉
RES
− 2νa (1−Fb)

〈
Sij
〉

〈u′iθ′〉TOT = 〈u′iθ′〉RES − (1−Fb) Γa
∂
〈
θ
〉

∂xj

(2.52)

where
〈
u′iu
′
j

〉
RES

are the resolved Reynolds stresses and 〈u′iθ′〉RES the resolved heat
fluxes. The rate of energy transfer from the filtered motion to the residual is estimated
as13:

−
〈
τaijSij

〉
= 2

〈
νrFb

(
Sij −

〈
Sij
〉)
Sij
〉

+ 2 (1−Fb)
〈
νa
〈
Sij
〉
Sij
〉

= 2νrFb
(〈
SijSij

〉
−
〈
Sij
〉 〈
Sij
〉)

+ 2 (1−Fb) νa
〈
Sij
〉 〈
Sij
〉

(2.53)

Eq. (2.53) shows that RANS viscosity contributes to the dissipation only in association
with the mean motion, consequently the LES resolved turbulent fluctuations are free to
develop independently.

2.4.2 Blending Function

The blending function Fb can be parameterised using the ratio between a turbulent
length scale computed from the average field and the filter width of LES, leading to:

Fb = tanh

(
Cl
Lt
∆

)n
(2.54)

13It is assumed that
〈
νrSijSij

〉
≈ νr

〈
SijSij

〉
as proposed by Nicoud et al. (2001).
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where Lt = ϕk3/2/ε is a turbulent length computed from the RANS field. In the original
formulation (Uribe et al. (2009)) the empirical constants were set to Cl = 1 and n = 1.5.
In this work their values are changed to Cl = 1.3 and n = 2, in order to have a better
agreement with the velocity profile for channel flow at Reτ = 395. Furthermore a new
definition of the filter width ∆ is introduced:

∆ = max

(
2Ω

1/3
I ,

2

3
(∆1 + ∆2 + ∆3)

)
(2.55)

where ∆1, ∆2, ∆3 are the max cell dimensions in directions x1, x2, x3. When ∆1 ≈
∆2 ≈ ∆3 ⇒ 2Ω

1/3
I ≈ 2

3 (∆1 + ∆2 + ∆3). When instead a cell is stretched in one or two
directions or a cell is highly skewed 2Ω

1/3
I � 2

3 (∆1 + ∆2 + ∆3). In these cases the filter
width ∆ is kept bigger and consequently more “RANS” is performed. The changing
of the definition for the filter width is used only for the calculation of the blending
function. If this new filter width is applied also to the LES part a new validation of the
Smagorinsky model employing the new constant should be necessary. The objective of
this small modification is only to trust more the RANS model than the LES in case of
a very skewed or stretched cell.

2.4.3 Averaging procedure

In order to compute the sub-grid stress tensor, heat fluxes (Eq. 2.50) RANS viscosity νa,
average velocities and temperature are necessary. A first possibility could be to perform
a space averaging along homogeneous directions. This procedure is relatively easy in
the case of channel flow and structured mesh, but in a fully 3D flow and unstructured
mesh this operation is no more possible. A second possibility is to perform a standard
time average defined as:

〈ui〉 =
1

N

N∑
i=1

ui (2.56)

Where N is the number of samples. In this work instead a time running average is
performed, making the model respond quickly to changes:

〈ui〉n+1 = cun+1
i + (1− c) 〈ui〉n (2.57)

Where c is a constant used to control the time window size14 and superscripts indices
stand for the time step. In the case of channel flow, the use of a running or a usual
ensemble average does not affect the results. The window size for the running average
also does not affect largely the results as long as it is kept well above the eddy turn over

14Time window is the time over which is performed the running average and it is composed by a
fixed number of time steps decided a priori.
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time15. The main advantage of the running average, with respect to the time average,
is the save in CPU time. In the case of very small windows for the running average, the
mean values have strange fluctuations and the mean strain becomes large in the region
far from the wall. A good practice is to initialize the running average with a mean value
computed with a precursor RANS simulation, in order to reduce the time necessary to
have constant values for the variables.

15In the case of channel flow a value of 10 δ
uτ

is used as optimum size for the time window. In order to
have good and stable results the time window has to be no smaller than 5 δ

uτ
seconds. δ is the channel

height and uτ is the shear velocity.



Chapter 3

Numerical Methods

In this chapter the discretization techniques employed in Code_Saturne are briefly intro-
duced. More details about the code are given in Archambeau et al. (2004). A complete
overview of the most common computational methods for CFD, using finite volume or
Finite Differences, is available in the book of Ferziger and Peric (1997). In the case of
Finite Elements refer to the books of Chung (1978) and Ern and Guermond (2004).

3.1 Mesh Generation

Grid generation is often considered as the most important and most time consuming
part of CFD simulation. The quality of the grid plays a direct role on the final quality
of the analysis, regardless of the flow solver used. Additionally, the solver will be more
robust and accurate when using a well-constructed mesh. It is important for the CFD
user to know and understand all of the various grid generation methods. Only by
knowing all the methods can the right tool be selected to solve the problem at hand. It
is possible to distinguish several ways of discretising a complex geometry:

• Coordinate transformations

• Structured grids

– Hexahedral grids

– Multi-blocks grids

– Overlapping grids

• Unstructured grids

• Hybrid grids.

A more comprehensive review with many sharp cues can be found in Baker (2005), or
in the book of Thompson et al. (1999).

55
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3.1.1 Generalized curvilinear coordinates

The computation of flow-fields in and around a complex shape involves computational
boundaries that do not coincide with coordinate lines in physical space. For finite dif-
ference methods, the imposition of boundary conditions for such problems has required
a complicated interpolation of the data on local grid lines and, typically, a local loss of
accuracy in the computational solution. Such difficulties motivate the introduction of a
mapping or transformation from physical (x, y, z) space to a generalised curvilinear co-
ordinate (ξ, η, ζ) space. This technique is used since the beginning of CFD when it was
still performed by hand calculations like in Thom (1933). The generalized coordinate
domain is constructed so that a computational boundary in physical space coincides with
a coordinate line in generalised coordinate space. The use of generalised coordinates im-
plies that a distorted region in the physical domain is mapped into a rectangular region
in the generalized coordinate space. The governing equations are expressed in terms of
generalised coordinates as independent variables and the discretization is undertaken in
the generalised coordinate space. Thus the computation is performed in the generalised
coordinate space, effectively. The concept of generalised coordinates suggests additional
possibilities. First, the computational grid in generalised-coordinate space can corre-
spond to a moving grid in physical space as would be appropriate for an unsteady flow
with boundary movement. The mapping between physical and generalised-coordinate
space permits grid lines to be concentrated in parts of the physical domain where severe
gradients are expected. If the severe gradient region changes with time (e.g. shock-wave
propagation) the physical grid can be adjusted in time to ensure that the local grid is
sufficiently refined to obtain a accurate solution. The use of generalised coordinates in-
troduces some specific complications; it is necessary to consider what form the governing
equations take in generalized coordinates. In this case they contain additional terms
that define the mapping between the physical and the generalised-coordinate domains.
These additional terms usually need to be discretised and this introduces an additional
source of error in the solution.

3.1.2 Structured grids

Structured meshes in general display a very regular pattern composed by quadrilateral
elements in 2D and hexahedral elements in 3D. Structured grids depend on the creation
of blocks, which are shaped in order to fit the geometry (body fitted meshes). In order to
improve the orthogonality and the uniformity of the grid, mesh optimization algorithms,
based on sophisticated elliptic equations, were extensively developed and can be found
in most of the commercial mesh generators (for example Gambit, or ICEM CFD refer to
Thompson et al. (1999)). In the past, structured meshes could only consist of one block,
and various cell flagging schemes were used to "turn off" portions of the block to model
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obstacles. Later, multi-block was developed allowing several blocks to be connected
together in order to discretise the whole geometry (Lee et al. (1980)). Several types of
block connections were developed and this gives more freedom in the mesh generation,
but the block connection can still place some limitations in the meshing procedure.

A possible solution to the problem is to use Chimera or overset grids (see for example
Chesshire and Henshaw (1990)), where blocks are free from the physical boundary and
can overlap. This technique uses interpolation of data between different meshes and
can generate a large source of error. However in case of very complicated geometries,
where usual meshing techniques produce high degree of distortion, or moving meshes,
Chimera grids can guarantee a high level of orthogonality.

The main advantage of structured grids is high degree of control over the mesh.
In addition, hexahedral and quadrilateral elements can support a certain amount of
skewness and stretching without affecting the quality of the solution. This allows the
user to concentrate control points in key areas, for example in regions of sharp gradients.
Another important feature is that the mesh is, in general, aligned with the main flow
direction increasing the accuracy of the solver. Structured codes are, in general, faster
than unstructured codes and the implementation of high order schemes is easier.

The major drawback is the requirement of very experienced users in order to build
a suitable mesh. Indeed the meshing procedure can be extremely long and measured in
days if not weeks. Another disadvantage is that the refinement in one area can results
in an addition of points where not necessary. In case of singularities in the geometry
structured mesh does not perform well, displaying a high degree of skewness which
might affect dramatically the solution.

3.1.3 Unstructured grids

Unstructured grids employ arbitrary elements to map the domain and because the
arrangement of cells does not have a specific pattern, the mesh is called unstructured.
In general this technique employs triangles in 2D and tetrahedra in 3D. Unstructured
mesh techniques have a large degree of automatization, requiring very little input from
the user. Automatic meshing procedures are in general divided into two steps: first
the meshing of the boundary and after the interior. This second step can be performed
with two different types of strategies:

• the advancing front where elements touching the boundary are constructed (Thomp-
son et al. (1999));

• Delaunay where points are added in the domain and afterwards connected (George
and Borouchaki (1998)).
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The main advantage is the already mentioned high level of automatization. The user
does not need to worry about laying out block structure or connections. There is no
need for the user to create structured blocks and also inexperienced users can produce
suitable meshes for most applications. Indeed the mesh generation time is short in
comparison with other techniques, measurable in minutes or hours.

A very attractive type is polyhedral cells, which possesses very interesting properties,
is illustrated in Peric (2004). The starting point is a conventional tetrahedral mesh from
where a dual-mesh is generated: edge mid points, face centroids and cell centres are
connected forming new quadrilateral faces. Those faces are linked in order to form
a polyhedron. At this stage a large number of faces is generated, consequently an
optimization has to be performed which consists of merging the quadrilateral faces
which lie between two original nodes of the primitive tetrahedral mesh. In comparison
with tetrahedral, polyhedral cells have more neighbours (in general ten cells) making
the local gradient calculation approximation better. Moreover polyhedral cells are also
less sensitive to stretching with respect to usual tetrahedral. The main problem of this
type of cells is the creation of warped faces, where the face centre lays out of the face
plane.

The major drawback of unstructured grids is the lack of user control when laying out
the mesh. In general the user has some control of the mesh generation of the boundary,
typically on the edges of the geometry, but the program fills automatically the interior.
Moreover, triangle and tetrahedral elements are not very suitable for skewing or stretch-
ing, and in general the grids are largely isotropic, creating problems when a refinement
has to be placed in a specific direction, like across a boundary layer. This problem is
frequently resolved by over-refining the mesh, with an obvious impact of the simulation
speed up. Another more recent solution is the introduction of a prism layer close to
the wall, where cells retain their unstructured form (both triangular or polyhedron) in
planes parallel to the wall, but in the wall normal plane the cell cross-section has a
quadrilateral shape (Ferziger and Peric (1997)). This solution is now extensively used
in most of the commercial packages like ICEM-CFD and STARCCM+. The success
of the meshing stage highly depends on very precise CAD models. In fact most of the
mesh generation failures are due to imperfections, sometimes even microscopic, of the
CAD model. Unstructured solvers are typically slower than structured codes and the
implementation of high order schemes is complicated. Post processing of the solution
is difficult and requires specific and very powerful tools.

3.1.4 Hybrid grids

Hybrid grids are obtained by combining structured and unstructured meshes, trying to
combine the positive aspects of the two types. Hybrid grids can contain every single



CHAPTER 3. NUMERICAL METHODS 59

type of element presented above according to their strengths and weaknesses. An ex-
ample is embedded refined meshes, using so-called hanging nodes. These meshes can be
considered as a particular type of Hybrid grid, where a structured multi-block approach
is employed, but without the need of mesh matching at the interface. This procedure
improves the flexibility of the multi-block approach and it is widely used in case of
wall refinements (see Kravchenko et al. (1996)). In this framework, adaptive mesh re-
finements (AMR) gain a certain degree of popularity (see Iaccarino and Ham (2005))
and can be found in commercial meshing packages like ICEM-CFD and STARCCM+.
The method consists in a successive decomposition of a Cartesian grid. A parent cell is
divided into four (eight in 3D) children, and the connectivity follows a typical tree-like
structure also called OCTAL-TREE.

3.2 Discretization techniques

Mathematical models presented in Chapter 2 have now to be discretised using a suitable
numerical method. For the sake of clarity the discretization will be applied to the passive
scalar equation only.

A general transport equation for a generic variable φ, can be written as:

∂ρφ

∂t
+

∂

∂xi
(ρuiφ)− ∂

∂xi

(
Γφ

∂φ

∂xi

)
= sφ (3.1)

where ui is the fluid velocity vector, Γφ is the diffusivity of φ and sφ is the associated
source term. Applying a Finite Volume Discretization Eq. (3.1) can be rewritten as:

∂

∂t

ˆ
ΩI

ρφdV︸ ︷︷ ︸
TI

+

ˆ
∂ΩI

ρuiφnidS︸ ︷︷ ︸
CI

−
ˆ
∂ΩI

Γ
∂φ

∂xi
nidS︸ ︷︷ ︸

DI

=

ˆ
ΩI

sφdV︸ ︷︷ ︸
SI

(3.2)

where ΩI is the volume of the Ith cell1, ∂ΩI is its boundary and with ni are the
components of the normal vector to the surface. TI is the time dependent term, CI the
convection term, DI the diffusion term and SI the source term.

The next three sections provide details of discretization of different terms in Eq.
(3.2). In an unstructured code a very important point is the gradient reconstruction.
Details about its implementation are given in Sec. 3.2.4. LES is essentially a transient
type of approach, therefore some details about time discretization are given in Section
3.3. The visualization of the discretization nomenclature is plotted in Fig. 3.1.

1Capital letters, in subscript position, denote a variable evaluated at the cell centre. Two capital
letters point to a surface between two cells (refer to Fig. 3.1)
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Figure 3.1: Labelling for the computation of the convection-diffusion term.

3.2.1 Temporal and source terms

The first approximation consists of computing the volume integral as:

ˆ
ΩI

φdV ≈ φIΩI (3.3)

which is leading to rewrite terms TI and SI of Eq. (3.2) as:

TI ≈
∂φIρIΩI

∂t
SI ≈ sφIΩI

(3.4)

3.2.2 Convection term

The convective term of Eq. (3.2) can be written as:

CI =

ˆ
∂ΩI

ρuiφnidS ≈
∑

J∈ℵ(ΩI)

φIJ(−→u IJ · −→n IJ)SIJ =
∑

J∈ℵ(ΩI)

φIJmIJ (3.5)

where ℵ(I) represents the set of cells that are neighbours of the volume ΩI , φIJ is the
value of the scalar at the face centre between cell I and cell J , −→n IJ is the vector normal
to the face and mIJ is the mass flux between these two adjacent cells. In Code_Saturne
the convective term is discretised with the following schemes:



CHAPTER 3. NUMERICAL METHODS 61

1. Up-Wind (UW): this is a first order scheme, which is based on the nearest upwind
neighbour

φUWIJ ≡
{

φI IF mIJ ≥ 0

φJ IF mIJ < 0
(3.6)

This interpolation preserves the correct physical bounds on φ under all conditions,
but it leads to numerical diffusion;

2. Linear upwind (SOLU): this is a special adapted, second order accurate scheme
derived for an original proposal for structured meshes:

φSOLUIJ ≡
{

φI +
−→
IF · (∇φ)I IF mIJ ≥ 0

φJ +
−→
JF · (∇φ)J IF mIJ < 0

(3.7)

where
−→
IF and

−→
JF are distances between the cell and the face centre expressed

in vectorial form. The gradient is computed explicitly from the solution at the
previous time step.

3. Central Difference (CD): this scheme is also second order and it is based on a
linear interpolation on the nearest neighbour value.

φCDIJ = αIJφI + (1− αIJ)φJ (3.8)

where αIJ =
∥∥∥−→FJ∥∥∥ / ∥∥∥−→IJ∥∥∥ . For regular meshes it is equal to 1/2. In the case of

a non skewed mesh, where the line connecting the two cell centres does not pass
through the face centre, the variable is firstly projected in points I ′and J ′ (see
Fig. 3.1) as:

φK′ = φK +
1

2
((∇φ)I + (∇φ)J) ·

−−→
KK ′ K = I or J (3.9)

and the interpolation at the face is performed as:

φIJ = α′IJφI′ + (1− α′IJ)φJ ′ (3.10)

being α
′

=
∥∥∥−−→FJ ′∥∥∥ / ∥∥∥−−→I ′J ′∥∥∥. In Eq. (3.9) a factor of 1/2 is used instead of the

more appropriate α′ and (1− α′) because of stability reason (see Benhamadouche
(2006)).



CHAPTER 3. NUMERICAL METHODS 62

4. Blended Differencing (BD): this is a scheme in which SOLU or CD is blended with
UW as:

φBDIJ = γφCD or SOLU
IJ + (1− γ)φUWIJ (3.11)

where γ is the weight coefficient for the CD or SOLU schemes.

A slope test, in order to verify if the variable φ is non-monotonic, is also present and
locally reverts the convective term from a second order scheme (CD or SOLU) to a
UW. The test is based on the calculation of an upwind gradient defined as:

−→
G c,I ≡

∑
J∈ℵ(IΩI)

φIIUWIJ
−→n SIJ (3.12)

where φIIUWIJ is the variable at the interface using a second order upwind interpolation
like:

φIIUWIJ ≡
{

φI +
−→
IF · (∇φ)I IF mij ≥ 0

φJ +
−→
JF · (∇φ)J IF mij < 0

(3.13)

The first condition for the test to be activated is to verify that the dot product between
the upwind gradient computed in I and J is negative or mathematically:

−→
G c,I ·

−→
G c,J < 0 (3.14)

In the case of a 1D problem the monotonicity of the solution can be also studied
using the dot product of the function at the previous I − 1 and the following I + 1

discretization points. In a 3D FV context this is equivalent to projecting the gradient
on the face. The final formulation of the slope test criteria is:



((
∂φ

∂xi

)
I

· −→n SIJ
)2

−

−→G c,I · −→n SIJ −
φi − φj∥∥∥−−→I ′J ′∥∥∥SIJ

2

IF mij ≥ 0

((
∂φ

∂xi

)
J

· −→n SIJ
)2

−

−→G c,J · −→n SIJ −
φi − φj∥∥∥−−→I ′J ′∥∥∥SIJ

2

IF mij < 0

(3.15)

The slope test is used to switch locally from a second order scheme to a first order
upwind scheme when the solution is non-monotone. This might help in case of non-
stable solutions, but with a reduction to first order of the accuracy. In the case of LES
calculations reverting to first order accuracy has the effect to delay the transition from
the laminar state to the turbulent state of the solution. The use of the slope test is
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investigated in Chapters 4 and 5 using a small but substantial modification: the slope
test is reverted to a blended scheme as defined in Eq. (3.11) with a small percentage
of up-winding. The percentage is chosen to keep the computation stable or to damp
spurious oscillation due to numerical instability.

3.2.3 Diffusion term

The diffusive term DI is computed as follows:

DI =

ˆ
∂ΩI

Γφ
∂φ

∂xi
nidS =

∑
J∈ℵ(ΩI)

ΓIJ (∇φ)IJ · −→nIJSIJ =
∑

J∈ℵ(ΩI)

ΓIJ
φJ ′ − φI′∥∥∥−−→I ′J ′∥∥∥ SIJ

(3.16)
where the variable at the projection points I ′ and J ′ is computed using (3.9).

3.2.4 Gradient reconstruction

A key issue not yet developed is the gradient calculation. As stated in Eq. (3.9) the
explicit value of the gradient at the cell centre is used to correct the effect of the non-
orthogonality. An accurate approximation of the gradient is consequently a necessary
requirement. In Code_Saturne several options are possible:

1. A least square method;

2. A generalized least square method based on extended neighbours (all cells sharing
a cell vertex, but necessary a face);

3. An iterative reconstruction of the non-orthogonality based on the Green-Gauss
theorem.

In this context only the last option is considered. Methods based on the least square
method are not reviewed because of their diffusive effects and their high inaccuracy in
cases of non-conformal meshes (see Ham and Iaccarino (2004)).

The starting point is the Green-Gauss theorem:

ˆ
ΩI

∂φ

∂xi
dV =

ˆ
∂ΩI

φ−→n dS ≈
∑

J∈ℵ(ΩI)

φIJ
−→n IJ SIJ (3.17)

Firstly the volume integral is approximated as in Eq. (3.3) giving:

ˆ
ΩI

∂φ

∂xi
dV =

∂φ

∂xi
ΩI (3.18)

secondly the value φIJ is interpolated at the interface as:
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φIJ = α′IJφI +
(
1− α′IJ

)
φJ +

1

2
((∇φ)I + (∇φ)J) · −−→FO (3.19)

where the factor 1
2 is used for stability reasons. Combining Eq. (3.18) and (3.19) into

(3.17) leads to the following formulation:

(∇φ)I ΩI =
∑

J∈ℵ(ΩI)

[
α′IJφI +

(
1− α′IJ

)
φJ +

1

2
((∇φ)I + (∇φ)J) · −−→FO

]
−→n IJSIJ

(3.20)
where the unknown is the gradient (∇φ)I evaluated at the centre of mass of the cell.
This system of equations can be solved with an iterative procedure as follows:

(∇φ)τ+1
I ΩI −

∑
J∈ℵ(ΩI)

[
1

2

(
(∇φ)τ+1

I · −−→FO
)−→n IJSIJ

]
=

∑
J∈ℵ(ΩI)

[
α′IJφI +

(
1− α′IJ

)
φJ +

1

2
(∇φ)τJ ·

−−→
FO

]
−→n IJSIJ (3.21)

where τ denotes the sub-iterations and the initial guess is done without taking into
account the correction term due to non-orthogonality.

3.3 Time discretization

Time schemes are in general divided into two main categories: explicit and implicit. In
Code_Saturne a combination of second order explicit and implicit time schemes, namely
Adam-Bashforth (AB) and Crank-Nicolson (CN), are used Benhamadouche (2006). The
formulation assumes constant time step and it fits well with LES, where time averaging
is important. All terms are centred in time hence they are expressed at the time n+ 1

2 .

Temporal term

The time term TI of Eq. (3.4) is discretised using a fully implicit Euler scheme:

T1 =
∂

∂t

ˆ
ΩI

ρφdV =
∂

∂t
(φIΩI) = ΩI

φn+1
I − φnI

∆t
(3.22)

where ∆t is the time step. The time term has first order accuracy, but in case of right
hand side (RHS) also expressed at n + 1

2 the formulation becomes second order (see
Benhamadouche (2006)).
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Convection term

The mass flux in the convective term of Eq. (3.5) is evaluated explicitly at the time
step n+ 1

2 using an AB scheme:

m
n+ 1

2
IJ =

3

2
mn
IJ −

1

2
mn−1
IJ (3.23)

The variable φIJ at the face centre is instead evaluated with CN, which leads to:

φ
n+ 1

2
IJ =

1

2

(
φn+1
IJ + φnIJ

)
(3.24)

The convection term can be rewritten as:

ˆ
∂ΩI

φ−→n dS ≈
∑

J∈ℵ(ΩI)

[
1

2

(
φn+1
IJ + φnIJ

)(3

2
mn
IJ −

1

2
mn−1
IJ

)]
(3.25)

Diffusion term

In this case the CN scheme is applied to the main variable φ only. The diffusivity Γ

is always explicit (i. e. evaluated with AB scheme) in order to avoid negative values,
which may affect the stability of the solution.

ˆ
∂ΩI

Γφ
∂φ

∂xi
nidS =

∑
J∈ℵ(ΩI)

[
1

2
ΓnIJ

(
(∇φ)n+1

IJ + (∇φ)nIJ

)
· −→n IJSIJ

]
(3.26)

Source term

In general the source terms (i.e. the buoyant term in the momentum equations) are
treated explicitly using the AB scheme.

SI = sφΩI = ΩI

(
3

2
snφI −

1

2
sn−1
φI

)
(3.27)

For the pressure gradient term in the momentum equation a special treatment is used
and is discussed in Section 3.5, where the velocity-pressure coupling is presented.

3.4 Transport equation

Finally the equation for the resolution of the unknown φ is discretised as follows:
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ΩI
φn+1
I

∆t
+

∑
J∈ℵ(ΩI)

[
1

2

(
1

2
(mIJ + |mIJ |)φn+1

I +
1

2
(mIJ − |mIJ |)φn+1

J

)
+

−1

2
ΓIJ

φn+1
J − φn+1

I∥∥∥−→IJ∥∥∥ SIJ

 =

+ΩI
φnI
∆t
−

∑
J∈ℵ(ΩI)

1

2
φnIJmIJ −

1

2
ΓIJ

φnJ ′ − φnI′∥∥∥−−→I ′J ′∥∥∥ SIJ

 +

ΩIsφ (3.28)

where all the implicit terms are placed in the LHS and the explicit in the RHS. The
implicit part of the LHS is evaluated using an UW scheme. The CD scheme and
the reconstruction terms appear only on the RHS following the equations presented in
Section 3.2. The mass flux and the physical properties are evaluated explicitly using
the AB scheme of Eq. (3.23).

Equation (3.28) is solved in an iterative and incremental way because this allows
to treat implicitly part of the correction term for the convection-diffusion term. Let us
introduce the following increments of the variable φ as: δφn+1,k+1 = φn+1,k+1 − φn+1,k

δφn+1,k = φn+1,k − φn+1,0
(3.29)

where, by definition, φn+1,0 = φn is the value at the previous time step and k the index
for the sub-iteration. Applying the variations of Eq. (3.29) to the scalar solver (3.28)
leads to:

ΩI
δφn+1,k+1

I

∆t
+

∑
J∈ℵ(ΩI)

[
1

2
(mIJ + |mIJ |) δφn+1,k+1

I +
1

2
(mIJ − |mIJ |) δφn+1,k+1

J

]
+

+
∑

J∈ℵ(ΩI)

−1

2
ΓIJ

δφn+1,k+1
J − δφn+1,k+1

I∥∥∥−→IJ∥∥∥ SIJ

 =

+ ΩI
δφn+1,k

I

∆t
−

∑
J∈ℵ(ΩI)

1

2
δφn+1,k

IJ mIJ −
1

2
ΓIJ

δφn+1,k
J ′ − δφn+1,k

I′∥∥∥−−→I ′J ′∥∥∥ SIJ

+ ΩIs
n
φ (3.30)

This is equivalent to the resolution of a linear system of the type Ax = b where x is
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the vector of the unknown, b is the RHS of Eq. (3.30) and A is a non symmetric matrix,
but conditioned with an up-wind scheme. This discretization permits to reconstruct the
RHS with the updated values φn+1,k.

3.5 Velocity pressure coupling

In the case conservation of the momentum velocity and pressure are coupled and this
has to be taken into account by the algorithm. In Code_Saturne a SIMPLEC algorithm
is used. Rhie and Chow interpolation is applied to the Poisson equation in order to avoid
the odd-even decoupling problem. The method consists of three different steps named:
prediction, correction and test. Firstly the following increments have to introduced: δ−→u = −→u −−→u ∗

δpk+1 = pk+1 − pk

1. Predictor step: the momentum is resolved using an explicit pressure gradient
computed from a known pressure field (i.e. from the previous iteration or sub-
iteration). The predicted velocity −→u ∗ is resolved as:

ΩI

−→u ∗k+1
I

∆t
+
∑

J∈ℵ(ΩI)

mIJ
−→u ∗k+1
IJ − (ν + νT )

−→u ∗k+1
J ′ −−→u ∗k+1

I′∥∥∥−−→I ′J ′∥∥∥ SIJ

 = ΩIs−→u−ΩI (∇p)kI

(3.31)

2. Corrector step: the discrete version of the Poisson equation (2.3) is resolved
for the unknown pressure variation δpk+1. Firstly the discrete version of Poisson
Equation (2.3) has to be introduced as:

∇dis · (Tu∇disδp) = ∇dis · (δ−→uI) (3.32)

where Tu is a matrix which contains the temporal terms and the subscript dis
stands for discrete. The discrete divergence is defined as

∇dis · (δ−→uI) =
∑

J∈ℵ(ΩI)

δ−→uIJ · −→uIJSIJ (3.33)

Finally also the interpolation suggested by Rhie and Chow (1983) is added and
the final equation for pressure being solved is:
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∑
J∈ℵ(ΩI)

Tu
(
∇δpk+1

)
IJ
· −→nIJSIJ = −∇dis ·

(−→u ∗k+1
I

)
−∇dis ·

[
Tu
(
∇pk

)
I

]
+

+
∑

J∈ℵ(ΩI)

Tu
(
∇pk

)
IJ
· −→nIJSIJ (3.34)

With this value of the pressure correction the pressure and the velocity are cor-
rected as: pk+1 = pk + δpk+1

−→u k+1
I = −→u ∗k+1

I −Tu
(
∇δpk+1

)
I

(3.35)

3. Test: checking of the convergence using a least square norm defined as∥∥∥−→u k+1
I −−→u kI

∥∥∥
L2
> ε (3.36)

If the test is positive the procedure is restarted from point 1.
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Chapter 4

Kinetic energy conservation

The numerical conservation of kinetic energy is a crucial point for all calculations and
particularly for turbulence simulation approaches, which aim to reproduce a good part
of the energy spectrum. Discretization schemes that conserve energy have been proved
to produce accurate results (Ham and Iaccarino (2004)); moreover energy conservation
ensures that the contribution from the sub-grid model is not obscured by numerical
errors. With the increase of LES type approaches in industrial engineering problems,
the geometry becomes more complicated and the mesh quality might deteriorate. Indeed
the generation of an optimal mesh might result in a long procedure, which might account
up to 50 − 80% of the total CFD process. An automatic meshing procedure might
be desirable, considerably reducing the time required by the mesh generation step.
Additionally there is a constraint for the near wall resolution, which, in the case of a
wall-resolved simulation, imposes a fine near wall mesh distribution.

The aim of this chapter is to use the concept of kinetic energy conservation in order
to investigate the use of embedded refinements in the context of a finite volume unstruc-
tured code. Kinetic energy conservation is recalled in Section 4.2 in both continuous and
discrete sense. The test case considered is the well-known Taylor-Green vortices, which
consist of an infinite array of vortices. Firstly some results for conformal structured
meshes are recalled, in order to introduce a reference solution. Afterwards embedded
refinements are taken into consideration, varying the configuration of the mesh at the
interface between the coarse and refined area. In this context an attempt to perform a
simple mesh optimization is also presented. Finally polyhedral meshes are considered.
The use of a blended CD-UPWIND convective scheme when the slope test fails (see
Section 3.2.2) is also investigated. As pointed out by many authors (see Section 4.1)
the role of the gradient reconstruction is fundamental in order to minimize the numeri-
cal dissipation. Indeed the introduction of non-orthogonalities can increase the error of
the gradient calculation up to more than one order of magnitude, largely deteriorating
the accuracy of the solution.

70
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4.1 Introduction

The incompressible Navier-Stokes equations, conserve mass, momentum and, in their
inviscid limit, kinetic energy (see Section 4.2). A sufficient but not necessary condi-
tion to help improve energy conservation is to employ high order schemes as presented
by Vasilyev (2000), where high order finite differences (FD) schemes for a staggered
pressure-velocity arrangement are generalized for non-uniform grids. These schemes do
not conserve simultaneously mass, momentum, and kinetic energy. However, depending
on the form of the convective term, conservation of either momentum or energy, in ad-
dition to mass, can be achieved. Conservation properties of these schemes are as good
as those of standard second order finite difference, but their accuracy is far superior.
Finite difference can, in principle, be applied to any type of grid, however in most cases
reported in literature, are applied to structured meshes. Therefore FD is in general
restricted to the analysis of relatively simple geometries.

The finite volume method (FV) can more easily accommodate any type of cell
geometry and it is the most widely used approach for unstructured cell-based solvers.
The method conserves mass and momentum by construction. The main advantage is
the flexibility of the method, which permits to concentrate the control volumes only
in the needed parts of the domain. Indeed, the unstructured approach permits to
adapt the mesh size to the local length-scales avoiding unnecessary refinements. A
good example of LES applied to the study of the flow past a cylinder is reported in
Liang and Papadakis (2007). Thanks to the use of hanging nodes, the work takes into
account the effects of mesh refinement close to the cylinder without refining over all the
domain. A similar technique is also applied in Liang et al. (2009), in order to study the
effect of tube spacing on vortex shedding in in-line tube arrays. The investigation is
carried out at very low Reynolds number, therefore no turbulence modelling is employed.
The principle disadvantage is that high-order numerical schemes are relatively difficult
to develop on 3D unstructured meshes because the formulation requires three level of
approximation: interpolation, differentiation and integration (see Section 3.2).

Ham and Iaccarino (2004) demonstrate that a co-located arrangement of the vari-
able might not conserve kinetic energy. The non-conservative term arises from the dis-
cretization of the pressure and it can be demonstrated that it is dissipative. A similar
conclusion is also reported by Benhamadouche (2006), where the author demonstrates
that kinetic energy conservation in a co-located arrangement can be achieved using low
order (i.e. 2nd order) scheme only without the use of Rhie and Chow interpolation and
on regular grids (see Sec. 4.2.2). Additionally Ham and Iaccarino (2004) pointed out
the importance of the gradient reconstruction method, devising an alternative recon-
struction based on the Green-Gauss theorem, where a correction term is introduced in
order to minimize the non-conservation of the kinetic energy due to pressure term. This
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method is compared with a face-area-weighted least-squares minimisation to reconstruct
the pressure gradient. For the case of inviscid Taylor-Green vortices on skewed mesh
the Green-Gauss reconstruction shows to be a necessary requirement to obtain a sta-
ble solution, whereas the least-squares method displays an increase of the total kinetic
energy, which is unphysical.

The effect of different mesh types in energy conservation is presented by Moulinec
et al. (2005). Three different types of mesh are assessed and results indicate that polyhe-
dral meshes have conservation properties similar to those of hexahedral and considerably
better than tetrahedral meshes, if no special treatment is performed.

An important question arises: what is the order of accuracy of a standard finite
volume discretization, when a CD scheme is used to evaluate the convective term on
an unstructured or irregular mesh? Svard et al. (2008) propose an answer to the prob-
lem, by evaluating the accuracy of the discretization of second and first derivatives on
different mesh types, both from a theoretical point of view and via numerical verifica-
tion. The outcome is that the approximation of second derivatives is inconsistent1 in
case of unstructured tetrahedral meshes. Consistency can be recovered using “high level
grids” such as rectangles or regular polygons (in 2D). Another important conclusion
of the work is that, on mixed grids (hexahedra plus tetrahedra or mesh with hanging
nodes), the order of accuracy for first order derivatives, evaluated with a 2nd order CD
scheme, drops to 1.5 in case of a smooth interface (face to face matching) and to 0.5 in
non-smooth (presence of hanging nodes). Eriksson and Nördstrom (2009) report similar
findings in their analysis of both hyperbolic and elliptic problems with Dirichlet bound-
ary conditions. The hyperbolic problem has been proved to have a rate of convergence,
in L2 norm, equal to 0.5 on a completely random mesh (casual distribution of cells
and face centres). However, in the case of an advection-diffusion problem, the order of
accuracy of the error remains (in the case without forcing term) second order for any
type of mesh and drops to 1.5 on a random mesh with forcing term2. In the paper an
interesting statement is also reported in the conclusions:
“The most significant feature of a “good” grid is that the control volumes are centred,
i.e. that the flux points3 are positioned right between the solution points. Note that this
centring is very easy to create in one dimension, but it is not clear how to achieve the
same thing in multiple dimensions”.

A first approach to solve this issue is to combine unstructured finite volumes with
high order finite difference schemes. An example is presented in Nördstrom and Gong
(2006) where a hyperbolic problem is studied. The finite volume is predominantly used

1Consistency: the rate of the error decrease follows the theoretical value given by the Taylor expan-
sion.

2The forcing term is constituted by a trigonometric function.
3The flux points can be interpreted as the face centre in a more standard finite volume nomenclature.
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close to the wave source, where the geometry is more complex and non-linear phenom-
ena are present. The high order finite difference is instead used for wave propagation.
In both domains strict stability is achieved using a Summation-By-Part (SBP) in con-
junction with a penalty procedure to impose boundary conditions called Simultaneous
Approximation Term (SAT, see Nördstrom et al. (2003)). Strict stability implies that
the growth rate of the semi-discrete solution is less than or equal to the growth rate
of the analytic solution. Satisfying this condition ensures that the error does not grow
with time. The coupling is based on energy estimates and stable conditions are enforced
at the FV-FD interface, modifying the dual mesh of the FV domain at the interface.
This method is generalized for convection-diffusion problems in complex geometries in
Gong and Nördstrom (2007).

Another approach consists of switching from a co-located to a staggered arrange-
ment. Perot (2000) presents a staggered formulation for unstructured meshes, which
conserve mass, momentum, kinetic energy and vorticity at machine precision. Velocity is
located at the face centre, whereas pressure is located at the circumcentre. This scheme
is proven, both analytically and numerically, to be first order on unstructured grids and
second on regular Cartesian meshes. Another important feature of the approach is its
ability to avoid spurious oscillation in the solution: the scheme takes advantage by the
creation of a “co-volume” mesh (Nicolaides (1993)), which is created using a Voronoi
tessellation: every single unstructured (triangles in 2D and tetrahedra in 3D) has asso-
ciated an orthogonal “dual mesh”. The method is generalized for fully 3D applications
in Zhang et al. (2002) and for moving mesh with free surface flow in Perot and Nallapati
(2003). Following almost the same formulation an algorithm for LES computations on
arbitrary grid is presented in Mahesh et al. (2004). Several test cases are taken into
consideration ranging from simple laminar flow i.e. Taylor-Green vortices, to simple
LES like decay of isotropic turbulence to a very complex flow in a Pratt and Whitney
gas turbine combustor.

Another interesting staggered formulation is presented in Benhamadouche and Lau-
rence (2002), where pressure is stored at both the cell centre and cell vertex and instead
the velocity is located at the face centre. The discretization uses a hybrid FV/FE
formulation: the velocity is linear over the discretization element (triangles in 2D or
tetrahedra in 3D), whereas the pressure is P1 over the diamond obtained joining two
nodes and the centre of gravity. The name of the velocity-pressure element is of the
type P1−non− conform−P1− bubble. The discretization is verified to be completely
conservative both analytically and numerically.

The combination of SBP and SAT, introduced earlier, is applied to a staggered ar-
rangement by Ham et al. (2006). Staggered solvers display a more consistent second
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order reduction of the error, without dropping to smaller orders in case of non confor-
mal meshes, making the discretization suitable for accurate LES or DNS in complex
geometries. An extension of the formulation including also scalar transport equations
is introduced in Ham (2008).

4.2 Conservation of the global properties

As introduced in the previous section the Navier-Stokes equations, in their incompress-
ible form, conserve mass, momentum and (in the inviscid limit) the kinetic energy. The
energy conservation equation is obtained from the scalar product between the momen-
tum equations and the velocity vector.

4.2.1 Kinetic energy conservation in a continuous sense

The Navier-Stokes equations, in their incompressible form and neglecting the diffusive
term, could be rewritten as: 

∂ui

∂xi
= 0

∂ui

∂t
+
∂uiuj

∂xj
= −

1

ρ

∂p

∂xi

(4.1)

Thus the energy equation is derived as:

ui

(
∂ui
∂t

+
∂uiuj
∂xj

= −
1

ρ

∂p

∂xi

)
(4.2)

If the kinetic energy is introduced as K = uiui/2 Equation (4.2) could be divided into
three terms:

1. Temporal term:

ui
∂ui
∂t

=
∂ (uiui/2)

∂t
=
∂K

∂t
(4.3)

2. Convective term:

ui
∂uiuj
∂xj

=
∂ (uiuiuj/2)

∂xj
− u2

i

2

∂uj
∂xj

=
∂Kuj
∂xj

−K ∂uj
∂xj

(4.4)

3. Pressure term:

−
ui

ρ

∂p

∂xi
= −

1

ρ

∂uip

∂xi
+
p

ρ

∂ui
∂xi

(4.5)
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Substituting (4.3), (4.4) and (4.5) into (4.2) and keeping in mind that the flow is diver-
gence free (first equation of (4.1)), the following formulation for the energy conservation
is obtained:

∂K

∂t
= −∂Kui

∂xi
− ∂uip

∂xi
= − ∂

∂xi

[(
K +

p

ρ

)
ui

]
(4.6)

If the flow is periodic in all directions the integral of the total kinetic energy, over all
the domain, is constant therefore:

ˆ
V

∂K

∂t
dV = 0 (4.7)

4.2.2 Kinetic energy conservation in a discrete sense

Now the same procedure can be applied to verify the conservation of energy in a discrete
sense. The different terms are approximated with formulae presented in Chapter 3.

1. Temporal term:

ˆ
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(4.8)

where KI = 1
2 (uiui)I .

2. Convective term:
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(4.9)
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The term A disappears if α is constant over the entire domain (i.e. α = 1/2 is the
value for a conformal mesh) because of the discrete divergence

∑
J∈ℵ(ΩI)m

n
IJ = 0.

The term B does not necessarily vanish if α is constant, but requires also to have
−→u I = −→u J ′ in order to have the velocity evaluated at the same point in cell I and
J . This only happens in the case of a uniform and constant mesh.

3. Pressure term:
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(4.10)

The comments already made for Eq. (4.9) are applicable also for Eq. (4.10). The
A term vanishes when α is constant (i.e α = 1/2). This condition is necessary but
not sufficient for term B, which requires also to have the Rhie and Chow interpo-
lation, presented in Section (3.5), deactivated as demonstrated in Benhamadouche
(2006).

4.3 Taylor-Green vortices

The test case of the Taylor-Green vortices is employed in this chapter to study the
effect of unstructured meshes (meshes with embedded refinements and polyhedral cells
are considered), in the framework of a FV second order accurate code in time and
space. The concept of kinetic energy conservation is used to measure the effect of
mesh distortion. Comparison with regular Cartesian grid is performed. In the case of
embedded refined meshes different patterns of the interface between the coarse and the
fine areas are investigated in order to find possible best practice guidelines for mesh
generation. An attempt to obtain a mesh optimization of a particular configuration will
be presented.
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It is commonly accepted to use second order accurate, FV codes on structured
meshes in order to perform LES / “quasi DNS” computations. On the other hand, in
this context, the use of unstructured meshes is questionable. The evaluation of the
conservation properties of Code_Saturne is not the object of this study, consequently
conservation of angular momentum or other types of conservative verifications is not
presented herein. The purpose is to compare advantages and disadvantages of unstruc-
tured meshes with the well known structured meshes. Differences are very clear in
the inviscid limit of the test case, therefore only this is presented. In conclusion the
question, which we are trying to address is:

Is it possible to perform LES/DNS using an unstructured mesh and, if so, under which

conditions?

4.3.1 Test case definition

The 2D Taylor-Green vortices are an infinite array of vortices. Because of periodicity
only a square 2π × 2π is considered. The velocity field has the following analytical
expression: {

u1 = − cos(kx1) · sin(kx2) · e−2k2νt

u2 = sin(kx1) · cos(kx2) · e−2k2νt
(4.11)

and the pressure is expressed by:

p = −1

4
[cos (2kx1) + cos (2kx2)] · e−4k2νt (4.12)

where k = 2π
2l and l is the size of the vortex (in this case k = 1 with l equal to π). The

number of vortices in each direction is equal to 2 × k. Table 4.1 lists all grids used,
whereas Table 4.2 defines the numerical options used in this analysis. The calculation
are performed with a time step equal to 0.01 s, which correspond to a maximum CFL
number of 0.095 in the conformal mesh and 0.19 in the mesh RR050 which is the mesh
with the largest CFL number.

A possible strategy to improve the results without over-refining could be to localize
the refinements in the most needed regions. In the present test the refinement is placed
in the middle of the domain, in order to avoid the connection between hanging nodes
and periodic boundary conditions on the external edges. Figure 4.1 shows a sketch of
the domain, highlighting the refined area (which is also referred as slave block, whereas
the coarse is referred as master block). Fig. 4.2 illustrates a practical example of a
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mesh 60 × 60 with an embedded refinement. The refinements can be characterised by
the refined ratio (RR) parameters defined as (and referring to Fig. 4.1(b)):

RR =
AB

AC
≡ NMaster

NSlave
(4.13)

x
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2

Block 2
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Figure 4.1: (a) Presentation of the block structure for the Taylor-Green vortices. The
domain is 2π×2π with the refined block positioned in the middle with dimensions π×π.
(b) Schematic sketch of the interface between master and slave block.

Figure 4.2: Example of an embedded refined mesh. The base resolution is 60× 60 and
the refinement has a 3-4 structure. On the left hand side global view of the domain, on
the right hand side a close up view on the refined area.
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Mesh RR Type of refinement n cells n faces

CONF60 1.00 60× 60 + no ref. in slave blk 3600 7440
RR097 0.97 60× 60 + 31× 31 in slave blk 3661 7433
RR094 0.94 60× 60 + 32× 32 in slave blk 3724 7558
RR091 0.91 60× 60 + 33× 33 in slave blk 3789 7695
RR088 0.88 60× 60 + 34× 34 in slave blk 3856 7824
RR077 0.77 60× 60 + 39× 39 in slave blk 4221 8553
RR075 0.75 60× 60 + 40× 40 in slave blk, 3-4 sub pattern 4300 8840
RR073 0.73 60× 60 + 41× 41 in slave blk 4381 8879
RR068 0.68 60× 60 + 44× 44 in slave blk 4636 9394
RR067 0.66 60× 60 + 45× 45 in slave blk 4725 9555
RR065 0.65 60× 60 + 46× 46 in slave blk 4816 9756
RR062 0.625 60× 60 + 48× 48 in slave blk 5004 10134
RR061 0.61 60× 60 + 49× 49 in slave blk 5101 10282
RR060 0.60 60× 60 + 50× 50 in slave blk 5200 10520
RR050 0.50 60× 60 + 60× 60 in slave blk, 1-2 sub pattern 6300 12840
POLY1 / / 2119 10593
POLY2 / / 2050 10251
POLY3 / / 4157 20786

Table 4.1: List of all the meshes used for the Taylor-Green vortices. In the Type of
refinement column is described the resolution used for the base conformal mesh and the
type of refinement used in the slave block (Fig. 4.1).

Run n it vel/pres R&C ∇φ Conv. Term.

R1 1 1 G&G rec. CD
R2 2 1 G&G rec. CD
R3 5 1 G&G rec. CD
R4 2 0.5 G&G rec. CD
R5 2 0 G&G rec. CD
R6 2 1 L2 ext. CD
R7 2 1 G&G rec. CD + Slope 10%

Table 4.2: List of the numerical options adopted for the different runs of the Taylor-
Green vortices test case. Col. 1: acronym of the run; col. 2: iterations for the velocity
pressure coupling (SIMPLEC, see sec. 3.5); col. 3: Arakawa constant controlling the
R&C interpolation (1 full interpolation, 0 no interpolation); col. 4: gradient recon-
struction (G&G is Green and Gauss with reconstruction of the non-orthogonalities, see
Sec. 3.2.4, L2 ext stands for least squares method with extended neighbours); col. 5:
convective scheme (see Sec. 3.2.2).
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Total kinetic energy.

The kinetic energy (K) for the Taylor-Green vortices reads:

K =
1

2

(
u2

1 + u2
2

)
=

1

2

(
cos2(kx1) sin2(kx2) + sin2(kx1) cos2(kx2)

)
e−4k2νt (4.14)

The integral of Eq. (4.14) over the whole domain leads to4:
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=
1

4
e−4νt (4.15)

where k = 1 and VTOT is the total volume. In the inviscid limit5 the result of (4.15)
reads:

KTOT =
1

4
= K0 (4.16)

4.3.2 Conformal Mesh

This section briefly recalls results for energy conservation on a conformal structured
mesh. Figures 4.3 and 4.4 report the results as function of time for an increased for
different values of the Rhie and Chow constant and for an increased number of iterations
of the velocity/pressure coupling. Figures report on the top rights the decay of the
total kinetic energy, the error of velocity u1 (bottom left) and pressure p (bottom right)
computed using a least squares definition6:

4The unit of measure of the total kinetic energy K is
[
m2
/s2
]
. The argument of the exponential is(

−4k2νt
)
which is dimensionless because [1/m]2

[
m2
/s
]

[s]. The final results of Eqs. (4.15) and (4.16)
could be misleading because some factors cancel out or are equal to 1 and therefore dropped in order
to obtain an simpler formulation for K.

5ν → 0
6In the case of error distribution on all the computational domain (see for example Fig. 4.5) the

error is evaluated as:

err
[
ψi (~x)

]
=

∥∥ψi (~x)− ψ0 (~x)
∥∥

‖ψ0 (~x)‖∞
. (4.17)

This formulation is necessary in order to avoid division by 0.
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L2(ψi) =

√∑N
n=1 (ψ0(n)− ψi(n))2∑N

n=1 (ψ0(n))2
(4.18)

where N is the total amount of cells, ψi is a general variable at time step i and ψ0

is its initial solution, which correspond to the analytical definition of Eqs. (4.11) and
(4.12). As already stated in Section 4.2.2 full conservation is achieved only when the
Rhie and Chow interpolation is deactivated7 as can be seen from Fig. 4.3. In other
cases there is a decay of kinetic energy due to numerical diffusion. A simple estimation
of this numerical diffusion is obtained by inverting Eq. (4.15) as:

νnum =
ln (KTOT /K0)

−4t
(4.19)

where K0 = 1/4 is given by Eq. (4.16). This definition of equivalent numerical viscosity
is used to measure the diffusivity of the code and it is reported on the top right of the
Figures 4.3 and 4.4. Ham and Iaccarino (2004) demonstrate that the decay of total
kinetic energy follows:
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∂t
+

∂

∂xi
(...) = −

(
∆x2

i∆t

4

)
p
∂4p

∂x4
i

(4.20)

Integrating (4.20) over the entire domain and using the expression of the Taylor-
Green vortices in the inviscid limit we have:

∂KTOT

∂t
=

1

VTOT

ˆ 2π

0

ˆ 2π

0
−
(

∆x2
i∆t

4

)
p
∂4p

∂x4
i

dx1dx2 = −
(

∆x2
i∆t

4

)
≈ −0.275 · 10−4

(4.21)
assuming as ∆t = 0.01 and a constant ∆xi = 2π

60 . This value is in fair agreement with
0.25 · 10−4, value that can be found in Fig. 4.3 (top right).

On the other hand the effect of increasing the number of iterations on the veloc-
ity/pressure coupling does not have a major impact on the solution (Fig. 4.4), in fact
the change in slope of the kinetic energy can be appreciated only in the close up view.
The effect is more evident on the equivalent numerical viscosity νnum, which converges
immediately to a constant value when more than one iteration is used.

The global error of the u1 velocity component has a linear increase with time (this
error is always reported on the bottom left of the figure). Indeed after 17-18 rotations
the error has a sudden jump and starts to increase rapidly in addition with a large
oscillatory behaviour. This point roughly corresponds to an abrupt discontinuity in the
kinetic energy conservation. The reason of this phenomenon is a loss of coherence of the

7Under Code_Saturne the Rhie & Chow interpolation is controlled using the Arakawa constant. A
value equal to 1 mean a full activation, 0 the interpolation is deactivated.
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solution as can be seen in Fig. 4.5, which reports the velocity field and the distribution
of the u1 velocity error after 240 seconds. Figure 4.6 reports the same quantities after
only forty seconds. Large errors are located in areas where the velocity is small and
among them the most critical zone is located in the middle of the domain. A problem
of chessboard oscillations of the pressure arises in the middle of the domain as can be
seen in the pressure field of Fig. 4.5. This point, where the solution starts to diverge8,
is fundamental in this analysis because it is the major point of comparison between
unstructured (embedded refinement and polyhedral meshes) and structured conformal
mesh performances.
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Figure 4.3: Taylor Green vortices: results as function of the number of Rhie & Chow
constant for mesh CONF60. Total kinetic energy (top left), equivalent viscosity (top
right), global error on u1 (bottom left), global error on p (bottom right). Time is
expressed in number of vortex rotations (1 rot = 10 s). See Table 4.2 for run definitions.

8Divergence of the solution is characterized by an abrupt decrease of the total kinetic energy (top
right), or, equivalently by a sudden increase of the error (two bottom graphs).
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Figure 4.4: Taylor Green vortices: results as function of the number of velocity/pressure
coupling iterations for mesh CONF60. Total kinetic energy (top left), equivalent vis-
cosity (top right), global error on u1 (bottom left), global error on p (bottom right).
Time is expressed in number of vortex rotations (1 rot = 10 s). See Table 4.2 for run
definitions.

Figure 4.5: Taylor Green vortices: Velocity vectors (left), error of u1 (middle) and
pressure field (right) for the conformal mesh 60×60 (CONF60). The solution is at time
240 s (approximately 24 complete vortex rotations). The error is evaluated using Eq.
(4.17).
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Figure 4.6: Taylor Green vortices: velocity field and error of the u1 velocity component
computed using Eq. (4.17) after 40 s ( approximately 4 complete rotations) for the
conformal mesh 60× 60 (CONF60). Velocity vectors (left), velocity error (right).

4.3.3 Embedded refined mesh

In this study the refinement ratio RR varies between 1 (structured conformal mesh) and
0.5 (1-2 sub-pattern). Table 4.1 lists all the meshes investigated, whereas the numer-
ical options used are reported in Table 4.2. The results concerning the kinetic energy
conservation, the equivalent viscosity and the error for the u1 velocity and pressure are
reported from Fig. 4.7 to 4.14. The following observations can be made.

• The addition of the refinement is bringing forward the point at which the solution
is loosing coherence with respect to the conformal mesh. This is true for all the
cases but there is a strong variation between meshes and two main points can be
made:

– The presence of a structured sub-pattern (i.e. a 3− 4 refinement) at the in-
terface between master and slave areas improves the conservative properties.
This is clear in Fig. 4.9, where the 3-4 sub-pattern of the RR075 mesh pro-
duces significantly better results than RR077 and RR073. A structured sub-
pattern avoids the presence of small surfaces reducing the non-orthogonalities
of the grid.
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– Embedded refinements characterised by RR ≈ 1 also display better conserva-
tion properties because of the smaller stretching of the mesh at the interface.
The α′ parameter, defined in Eq. (3.10), is consequently closer to the ideal
value of 0.5. Although this effect is less important than mesh sub-pattern
structure.

• More iterations on the velocity-pressure coupling are necessary to have constant
equivalent viscosity νnum (Fig. 4.13) in the first part of the simulation.

• With more cells in the slave block, the kinetic energy has a slower decay. This is a
consequence of the increase of the global resolution. The objective herein is not to
find the best conservative meshes, but to analyze the effect of the addition of non-
conformities with respect to a reference solution (i.e. structured conformal mesh).
A more appropriate procedure could have been to keep constant the number of
cells across all the meshes. On the other hand the methodology adopted is faster
and because of a large number of grids generated, this last option was chosen.
Indeed this methodology shows that even increasing the mesh resolution does not
automatically lead to more accurate results.

• The method used for the gradient reconstruction is fundamental as already stated
by Ham and Iaccarino (2004). Using a least square method on such type of meshes
might lead to unstable solutions as can be seen from Fig. 4.14.

• The RR050 mesh, which corresponds to a 1-2 type of refinement, shows the worst
conservation properties among all meshes characterized by a regular sub-pattern.
This is not surprising because the mesh at the interface is over-stretched and
skewed. However this type of refinement is widely used in many commercial
grid generators (Star-CCM, ICEM-CFD) and academic as well for reasons of its
simplicity and automatisation.

We now analyse the reasons for the reduced performance of the embedded refined meshes
with respect to the conformal grid. From Fig. 4.15 to 4.17 the contours of errors
of u1 velocity and its gradient in the x1 direction are plotted along with a complete
visualization of the velocity field for different time steps. The addition of the refinement
induces an increase of the error at the interface between master and slave regions. The
error is subsequently convected to the centre of the domain bringing forward the loss of
coherence of the solution. Table 4.3 reports the global error of first velocity component
and its gradient in the direction x1. Here it is clear that in the case of the unstructured
mesh the accuracy decreases; for instance the u1 error has a jump of about one order of
magnitude. A fundamental part is played by the error in the gradient calculation. The
gradient is used in the explicit evaluation of the convection-diffusion term, in order to
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correct the effect of non-orthogonalities (see Chapter 3), therefore small errors in the
solution are amplified in the gradient reconstruction and they are subsequently used
to correct the solution. A confirmation is provided by Figure 4.18 shows the error
reduction for the CONF and RR075 meshes as function of the mesh size. RR075 not
only shows a higher error but also the order of accuracy moves from the second order
of the conformal to 1.71. An interesting point to look at is the CPU time required
by the different meshes, which is reported in Table 4.3. CPU time is divided by the
number of cells and number of faces in order to have a more fair comparison. A common
statement is that the reduction of cells achievable using an unstructured mesh makes
also the calculation faster. From Table 4.3 it does not seem the case: the conformal
mesh is always the fastest, independent of the way in which the comparison is carried
out. The reason is simple: embedded meshes need to iterate in order to reconstruct the
gradient making the calculation slower. Further consideration about speed up of the
solution as a function of the mesh characteristics can be found in Chapter 5 where a
turbulent case is analysed.

Mesh CPU [s] CPU/n cells CPU/n faces Global Global
err u1 err ∂u1/∂x1

CONF60 6.4 0.0010 0.0009 0.90 · 10−5 0.18 · 10−2

RR097 11.2 0.0031 0.0015 0.93 · 10−4 0.23 · 10−2

RR075 16.3 0.0038 0.0018 0.15 · 10−3 0.20 · 10−2

RR050 30.9 0.0049 0.0025 0.25 · 10−3 0.19 · 10−2

POLY1 20.0 0.0094 0.0019 0.40 · 10−3 0.83 · 10−2

POLY2 19.9 0.0097 0.0019 0.19 · 10−3 0.61 · 10−2

Table 4.3: List of the CPU time for different type of meshes, global error for the first
velocity component and its gradient in the x1 direction. The CPU time is evaluated
after 100 time steps. In order to make the comparison more fair the elapsed time is
also divided by the total number of cells and faces. Errors are instead computed after
1 iteration using run R2 (see Table 4.2).
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Figure 4.7: Taylor Green vortices: results for meshes RR097 and RR094. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
See Table 4.2 for run definitions.
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Figure 4.8: Taylor Green vortices: results for meshes RR091 and RR088. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
See Table 4.2 for run definitions.
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Figure 4.9: Taylor Green vortices: results for meshes RR077, RR075 and RR073. Total
kinetic energy (top left), equivalent viscosity (top right), global error on u1 (bottom
left), global error on p (bottom right). Time is expressed in number of vortex rotations
(1 rot = 10 s). See Table 4.2 for run definitions.
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Figure 4.10: Taylor Green vortices: results for meshes RR068, RR067 and RR065. Total
kinetic energy (top left), equivalent viscosity (top right), global error on u1 (bottom
left), global error on p (bottom right). Time is expressed in number of vortex rotations
(1 rot = 10 s). See Table 4.2 for run definitions.
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Figure 4.11: Taylor Green vortices: results for meshes RR062 and RR061. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
See Table 4.2 for run definitions.
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Figure 4.12: Taylor Green vortices: results for meshes RR060 and RR050. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
See Table 4.2 for run definitions.
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Figure 4.13: Taylor Green vortices: results as function of the number of Rhie & Chow
interpolation and number of velocity/pressure coupling for mesh RR075 . Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
See Table 4.2 for run definitions.
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Figure 4.14: Taylor Green vortices: results as function of the gradient reconstruction
method for mesh RR075 . Total kinetic energy (top left), equivalent viscosity (top right),
global error on u1 (bottom left), global error on p (bottom right). Time is expressed in
number of vortex rotations (1 rot = 10 s). See Table 4.2 for run definitions.
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Figure 4.15: Taylor Green vortices: errors and velocity fields after 2.6 s for the mesh
RR050. On top left error of the u1 velocity component; on top right error of the ∂u/∂x
derivative; on the bottom left the corresponding velocity field.

Figure 4.16: Taylor Green vortices: errors and velocity fields after 20 s for the mesh
RR050. On top left error of the u1 velocity component; on top right error of the ∂u1/∂x1

derivative; on the bottom left the corresponding velocity field.
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Figure 4.17: Taylor Green vortices: errors and velocity fields after 50 s for the mesh
RR050. On top left error of the u1 velocity component; on top right error of the ∂u1/∂x1

derivative; on the bottom left the corresponding velocity field.
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Figure 4.18: Taylor Green vortices: error reduction as function of the grid spacing for
the conformal and the RR075 meshes. The base resolutions used are 48 × 48, 60 × 60

and 120× 120. The base size is computed as weighted average of the different cell sizes.
The error is evaluated after one hundred time steps (0.1 s in real time).
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RR050 mesh optimization

Among all the embedded meshes the RR050 shows some of the worst properties in
terms of energy conservation, displaying the earliest loss of coherence of the solution.
However this type of refinement is widely used by commercial mesh generators. This
section presents an attempt to improve conservation properties by moving the nodes
at the interface between master and slave blocks. The mesh at the interface can be
reduced to the one presented in Fig. 4.19. The optimization is carried out moving in
the vertical direction the nodes yl and yr in order to have the face lying exactly half
way between the two cell centres, which can be mathematically expressed as:

CfG”1

CfG”2

=
O2G3

O2G2

=
O3G4

O3G1

= 1 (4.22)

where Cf is the face centre at the interface, G is the cell centre, G” is the projection
of the cell centre on the line passing through the face centroid and perpendicular to
the face, O is the intersection point between the line connecting two cell centres and
the face and subscript numbers stands for the cell number. Note that in a not highly
skewed cell (i.e. square or rectangle) O ∼= Cf . The variation of the three ratios, defined
by Eq. (4.22), as functions of yl and yr is drawn in the map of Figure 4.19 (left). The
map presents two more lines: a thick black which represents the condition yl = yr and
a thin red which is the limiting condition where the cell centre G1 has the same vertical
distance yr.

Obviously all conditions expressed by Eq. (4.22) cannot be achieved simultaneously
because the three optimal lines do not intersect each other at one location. Conse-
quently different “optimal points” are defined. P1 and P2 tries to improve the ratio
CfG”1/CfG”2 shifting upwards yl and yr by the same amount. Point P3 tries to make
the value of all the three ratios as close as possible to 1 maintaining the master cell
convex. The condition expressed by (4.22) is achieved by point P4, but making concave
the master cell. Finally point P5, where only the master-slave interface is considered,
CfG”1/CfG”2 = 1 and the line connecting G”1G”2 or G1G2 is exactly orthogonal with
respect to the face at the interface.

Results are reported in Fig. 4.20 where it is obvious that the best “optimised”
configurations can produce the same results of the original 1-2 configuration (RR050).
In the original configuration the ratios O2G3/O2G2 and O3G4/O3G3 are already equal
to 1 and the optimisation procedure spreads the non-orthogonality, distorting the mesh
where was conformal before doing the optimisation. Eriksson and Nördstrom (2009)
pointed out that the optimal condition is to have a flux point in the middle of the face
centroid, which is easy to impose in 1D but not always possible in 2D and very difficult
to achieve in 3D. Using a more complex mesh optimization as presented by Iaccarino
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and Ham (2005) could lead to better results, but there will always be areas where the
optimizing algorithm will not produce perfectly orthogonal or slightly stretched meshes.
As shown in this work, even if small, this imperfection could have a great impact on
the solution.
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Figure 4.19: RR050 mesh optimization: map with the value of different ratios as func-
tion of yr and yl vertical distance.

4.3.4 Polyhedral mesh

Finally, the Taylor-Green vortices test case is simulated with a fully unstructured mesh.
Tetrahedral meshes, under Code_Saturne , are already investigated by Benhamadouche
(2006). Polyhedral cells are considered in Moulinec et al. (2005) but using the Code
Comet of M. Peric (see Ferziger and Peric (1997))

In this work three different meshes are considered and their characteristics are listed
in Table 4.1. The mesh marked by POLY1 is generated directly from the mesh generator
imposing periodic faces to topologically match. The reference size used by the grid
generator is equal to the diagonal of a cell in the CONF60 mesh. The resulting mesh
can be seen in Fig. 4.21. The mesh displays a high level of skewing and polygons are not
regular. In order to improve the mesh quality another mesh is generated (see Fig. 4.22)
and marked as POLY2. In this case a regular pre-triangulation of surfaces is created
and, at the periodic faces, hanging nodes are allowed. The mesh POLY3 is similar to
POLY2, but with a base size half the one in POLY2.
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All meshes display a very early divergence of the solution, after only 2 vortex rota-
tions. Moreover the POLY1 mesh shows an oscillatory behaviour (clear in the close up
view) and the total kinetic energy overshoots the maximum theoretical value of 0.25.
This unphysical behaviour can be fixed by adding the SLOPE test for the convective
term as described in Section 3.2.2 (run R7 in Table 4.2). On the other hand the addition
of the up-wind term increases the numerical dissipation, increasing the negative slope
of the kinetic energy decay. A higher and more spread error, over all the domain, can
be seen if error contours of u1 velocity and x1 derivative for the poly mesh (see Figs.
4.21 and 4.22) are compared with ones in an embedded refined mesh (see Fig. 4.15) .
The non-orthogonalities of the mesh are distributed over the entire domain making the
error no longer located in a specific area. A more regular grid like POLY2 produces
better results as also reported in Table 4.3. The run times for the polyhedral meshes are
also higher with respect to all the others not only because more iterations are necessary
to reconstruct the non-orthogonalities, but also because of the high number of faces
required to build this type of grid: all loops to compute convective and diffusion terms
are performed on faces.

4.4 Conclusions

In this chapter kinetic energy conservation on embedded refined and polyhedral meshes
is investigated and performances are compared against a structured conformal mesh
simulation. The main outcome is that performances are degraded. All meshes lead to
a divergence of the solution due to a loss of coherence of the solution. Unstructured
meshes bring forward this phenomenon mainly because of the larger error committed
in the reconstruction of the gradient. The evolution of the solution divergence depends
on mesh quality: meshes with less skewness and stretching conserve energy for a longer
period. This feature is characteristic of refinements with a structured sub-pattern like
the 3-4. A value close to one of the refinement ratio RR also improves the conservation
because of the stretching reduction at the interface. The importance of an orthogonal
mesh is clear, in particular in the polyhedral mesh, where the non-regular mesh POLY1
displays a non-physical increase of the total kinetic energy. The problem is corrected
using a CD convective scheme with the addition of a test on the slope, but which comes
with an increase of the numerical viscosity. The most regular polyhedral mesh shows a
large amount of error in comparison with the embedded refinements.

An attempt to optimize the 1-2 configuration is carried out with not much success.
The reduction of non-orthogonalities at the interface is obscured by the addition of non-
orthogonalities in adjacent areas. Better results might be obtained if a more complex
algorithm is employed as the one presented in Iaccarino and Ham (2005), but it is very
difficult to obtain a perfect orthogonality everywhere in the domain.
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With the current availability of HPC facilities, and the chance to run meshes with
millions or even billions of cells, automatic or semi-automatic mesh generation is in-
evitable. Unstructured meshes will be a requirement and, even using mesh optimization
algorithms, the mesh will not be perfect all over the domain. Therefore author’s moot
point is that the approach to the problem has to be reversed from mesh optimization to
numeric improvements. Numerical codes must be able to deal also with bad constructed
grids, not only displaying a stable but also accurate solution. A possible alternative
methodology is the use of auxiliary points in order to locally rebuild orthogonality as
presented by Moulinec and Wesseling (2000). For every face centre two auxiliary points
are created in order to have the flux point lying exactly in the middle. Afterward the
solution is interpolated on the auxiliary points using a predefined support. The advan-
tage of the method is that the convection-diffusion term can be evaluated using exactly
a second order discretization and all the error is concentrated only in the interpolation
phase. Many other solutions can be implemented, like the SBP (Summation-By-Part)
operators in conjunction with a penalty procedure to impose boundary conditions as
presented in the introduction (Sec. 4.1).
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Figure 4.20: Taylor Green vortices: results for the optimization of mesh RR050. Total
kinetic energy (top left), equivalent viscosity (top right), global error on u1 (bottom
left), global error on p (bottom right). Time is expressed in number of vortex rotations
(1 rot = 10 s). See Table 4.2 for run definitions.

Figure 4.21: Taylor Green vortices: errors and velocity fields after one iteration for the
mesh POLY1 On top left the error on the u velocity component; on top right the error
on the ∂u1/∂x1 derivative; on the bottom left the correspondent velocity field.
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Figure 4.22: Taylor Green vortices: errors and velocity fields after one iteration for the
mesh POLY2. On top left the error on the u velocity component; on top right the error
on the ∂u1/∂x1 derivative; on the bottom left the correspondent velocity field.
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Figure 4.23: Taylor Green vortices: results for the polyhedral meshes. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u1 (bottom left),
global error on p (bottom right). Time is expressed in number of vortex rotations
(1 rot = 10 s). See Table 4.2 for run definitions.



Chapter 5

Channel Flow

The turbulent channel flow has been used for many years as a reference for turbulence
modelling. Indeed, with the increase of computing power, several DNS studies have been
carried out in order to gain a better understanding of near wall turbulence. Examples of
DNS studies of channel flow can be found in Kim et al. (1987); del Alamo and Jimenez
(2003). In the present work Kawamura et al. (1999); Abe et al. (2001, 2004) are used
as references because of the availability of heat transfer data.

This chapter is divided into three main sections: first an introduction, secondly
the use of unstructured meshes in wall bounded LES is analysed; finally the Hybrid
RANS/LES model of Sec. 2.4 is validated. In the case of unstructured meshes the focus
is mainly on embedded refinements, trying to verify some of the findings of Chapter 4. In
the case of the Hybrid model the main focus is to investigate some possible modifications
of the blending function and the effect of mesh resolution. Additionally an extensive
validation of the heat transfer modelling is also carried out.

5.1 Introduction

The geometry representing a plane channel, with the definition of all geometrical pa-
rameters, is sketched in Fig. 5.1. The top and bottom walls are located at y = 0 and
y = 2δ. The streamwise direction1 is x1 = x and the maximum velocity is located at
the centre line y = δ. The mean velocity field is only dependent on the wall-normal
direction and is driven by a constant pressure gradient in the stream-wise direction. All
other statistical derivatives in the span-wise and streamwise directions are zero.

The mean momentum equations of A.2 can be simplified to:
1In this context a Cartesian system of reference (x, y, z) is used instead (x1, x2, x3) adopted in

Chapter 2. Consequently the velocity components are (u, v, w).

99
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−

1

ρ

∂〈p〉
∂x

=
∂〈u′v′〉
∂y

− ν
∂2〈u〉
∂y2

−
1

ρ

∂〈p〉
∂y

=
∂〈v′v′〉
∂y

(5.1)

being 〈w〉 = 0, 〈v〉 = 0, 〈u〉 function on the wall normal coordinate (〈u〉 = f(y)). If the
lateral momentum equation is integrated in the y direction, between 0 and a generic
coordinate y, and as boundary condition at the wall 〈v′v′〉y=0 = 0 is used, the following
relation can be obtained:

〈v′v′〉+
〈p〉
ρ

=
pw(x)

ρ
(5.2)

where pw is the average pressure at the wall as function of x, hence the mean axial
pressure gradient is uniform across the flow which can be express as:

∂〈p〉
∂x

=
dpw
dx

(5.3)

If Eq. (5.3) is inserted into the mean axial momentum the following ordinary differential
equation can be written:

− 1

ρ

dpw
dx

=
d〈u′v′〉
dy

− ν d
2〈u〉
dy2

(5.4)

now the total shear stress can be introduced as:

τ = ρν
d〈u〉
dy
− 〈u′v′〉 (5.5)

the axial momentum becomes:

dτ

dy
=
dpw
dx

(5.6)

Equation (5.6) is solved with separation of variable and introducing the wall shear stress
as:

τ(0) ≡ τw ≡ ρν
(
d〈u〉
dy

)
y=0

(5.7)

The total shear is antisymmetric with respect to the channel mid plane, hence τ(δ) = 0

and τ(2δ) = −τw giving the following solution for Eq. (5.6):
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τ(y) = τw

(
1−

y

δ

)

−
dpw

dx
=
τw

δ

(5.8)

In the near wall region viscosity is the dominant parameter, therefore a set of viscous
scales can be defined as follows:

friction velocity uτ ≡

√
τw

ρ

viscous length δν ≡
ν

uτ

frictionRe Reτ ≡
uτδ

ν

wall units y+ ≡
uτy

ν
u+ ≡

〈u〉
uτ

(5.9)

The channel flow can be divided, as a function of the wall distance, into different
regions and layers, which have different properties:

• viscous sublayer (y+ < 5): the Reynolds stress 〈u′v′〉 is negligible and the dimen-
sionless wall velocity u+ is a linear function of y+ as follows:

u+ = y+ (5.10)

• buffer layer (5 < y+ < 30): blending region between the viscous sublayer and the
log-law region;

• log-law region (y+ > 30 ∧ y/δ < 0.3): the dimensionless wall velocity u+ holds a
logarithmic profile as follows:

u+ =
1

κ
ln y+ +B (5.11)

where κ = 0.41 is the von Karman constant and B = 5.2;

• outer layer (y+ > 50): the shear stress is mainly dominated by the Reynolds shear
stress;

• inner layer (y/δ < 0.1): the mean velocity profile 〈u〉 is mainly dominated by uτ
and y+ and independent from velocity at the centre line U0 and δ;

• overlap region (y+ > 50 ∧ y/δ < 0.1): overlap region between the inner and the
outer layers.
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Figure 5.1: Sketch of the geometry of a plane channel flow.

5.2 LES

5.2.1 Mesh description

In this section the objective is to investigate the use of unstructured meshes for LES
calculations. Five different meshes for channel flow at Reτ = 395 are employed and the
characteristics are summarized in Table 5.1. The STRUCT mesh is a structured mesh
where, in the wall normal direction, a hyperbolic node distribution is employed. The
TAYLOR mesh is an embedded refined mesh built following the Taylor micro-scales2 as
described in Addad et al. (2008). Taylor micro-scales are estimated from DNS databases
and lengthscales in streamwise and span-wise directions are used to define the cell sizes
at different wall distances. Below y+ ≈ 70 the wall normal spacing does not follow the
Taylor micro-scales, but the distribution follows a geometrical expansion with a ratio of
about 1.1, starting from a position of the first cell centre at y+ = 1. The mesh presents
an almost continuous coarsening as the wall distance increases. The RR075 mesh is
characterized by embedded refinements but only four coarsening steps are applied and
they follow a 3-4 sub-pattern as presented in Chapter 4 as the best ratio for embedded
refinements. The four interfaces are placed around y+ = 14, 45, 100 and 205. In the
wall normal direction a geometrical distribution with an expansion ratio around 1.1 is

2The Taylor micro-scale λf is defined as:

λf =

[
−1

2
f ′′ (0, t)

]−1/2

where f is the velocity auto-correlation function and f ′′ (0, t) its second derivative evaluated at r = 0.
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used. The RANDOM mesh has the first near wall layer identical to the one of RR075
and it is also identical from y+ = 205 to the centre line. Between 2 < y+ < 230 a
continuous coarsening is used, following a parabolic decrease3. A bar chart with the
non-orthogonality coefficients4 for TAYLOR, RR075 and RANDOM meshes are plotted
in Fig. 5.3. Mesh RR075 shows the best orthogonality, having over than 80% of the
orthogonality coefficients below 7.5o, whereas the other two meshes have around, or
even more that 50% of faces above this limit.

Table 5.2 lists the numerical parameters used for all the different simulations. The
time step is 0.2·10−2 s and constant for all cases, which gives an instantaneous CFLmax ≤
1.5 and an average value 〈CFLmax〉 ≤ 1. All cases employ the Smagorinsky model (see
Sec. 2.3.3.1) with a constant Cs = 0.065. The anisotropy is taken into account using
the Van Driest damping as described into Sec. 2.3.4).

Mesh Mesh resolution ∆x+, ∆y+, ∆z+ no cells
[
103
]

STRUCT 128× 64× 96 20× 2× 13 786
TAYLOR 200× 46× 100 13× 2× 13 443
RR075 216× 44× 112 12× 2× 11.5 493

RANDOM 216× 44× 112 12× 2× 11.5 344

Table 5.1: List of all the meshes used for the LES of channel flow at Reτ = 395. In
the cases of the three embedded refined meshes the number of cells in the streamwise
and span-wise direction refers only to the first layer at the wall. For the subsequent
layers a coarsening of the mesh is employed following different strategies (see Sec. 5.2.1).
The number of cells in the wall-normal direction stands for the number of layers from
wall-to-wall.

3A parabola is fitted between the number of cell at the first layer and at the layer placed at y+ = 205.
The number of cells was calculated finding the zero of the following:{

streamwise dir ⇒ 67.2n2
x − 1.82nx − yc = 0

spanwise dir ⇒ 81.2n2
z − 2.10nz − yc = 0

where nx is the number of cells in the streamwise direction, nz in the span-wise and yc is the
location of the cell centre. nx and nz were subsequently truncated to the closest integer number. The
coefficients of the two parabolas are obtained using a parabolic fitting between the number of cells
in the streamwise and span-wise directions in the first layer at the wall (nx = 212 nz = 112) and at
y+ = 230 (nx = 66 nz = 36). The location of the cell centre ycis the same of the RR075 mesh.

4Non-orthogonality coefficient is the angle between the line connection two cell centres of adjacent
cells and the line perpendicular to the face and passing through the face centre.
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Figure 5.2: Visualization of the unstructured meshes used for the LES of channel
flow.(a)TAYLOR mesh; (b) RR075 mesh; (c) RANDOM mesh.
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Non-orthogonality coeff. [o]

TAYLOR RR075 RANDOM

1 0-7.5 0-7.5 0-8.25

2 7.5-15 7.5-15 8.25-16.5

3 12-22.5 12-22.5 16.5-24.75

4 22.5-30 22.5-30 24.77-33

5 30-37.5 30-37.5 33-41.25

6 37.5-45 37.5-45 41.25-49.5

7 45-52.5 45-52.5 49.5-57.75

8 52.5-60 52.5-60 57.75-66

9 60-67.5 60-67.5 66-74.25

10 67.5-75 67.5-75 74.25-82.5

Figure 5.3: Non-orthogonality coefficients for the meshes TAYLOR, RR075 and RAN-
DOM. The coefficient is measured in [o] and it represents the angle between the line
connecting two face centres and the line orthogonal to the face passing through the face
centre.
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Parameter Value
Convective scheme CD
Residual resolution

linear system
p⇒ ε = 1e− 5

vel⇒ ε = 1e− 5

Number vel/pres coup. 1

Grad. reconstruction
nmax rec = 100

ε = 1e− 6

Reconstruction of the
RHS

p = 10

vel = 5

Time step 0.2 · 10−2 s

Run no vel/pres
STx 1

STx + VP 3

Run Conv. scheme
ST4 CD + 4% UW(fail ST)

ST2 + VP CD + 2% UW(fail ST)

Table 5.2: List of the default numerical settings used for the LES calculations. ST
means addition of up-winding (UW) is case of slope test failure (see Sec. 3.2.2). VP
stands for an increase of the iterations in the velocity-pressure coupling.

5.2.2 Results

In most papers the resolved quantities given by the LES are directly compared with the
ones given by DNS or experiment. In Winckelmans et al. (2002) authors suggested that,
instead, the reduced or anisotropic Reynolds stresses should be used for the comparison
as follows:

REXPij,R ≈ RLESij,RES + 〈τaij〉 (5.12)

where Rij,R = Rij− 1
3Rkkδij and 〈τaij〉 is the average of the modelled part of the Reynolds

stresses. In this context an effective eddy viscosity model is used and the anisotropic
part of the sub-grid contribution is given by Eq. (2.22).

Figure 5.4 reports both the resolved and the modelled part of the Reynolds stresses
for the TAYLOR mesh. For normal stresses u,+rms, v,+rms and w,+rms the modelled contri-
bution is negligible. In the case of the shear stress 〈u′v′〉+ the inclusion of the modelled
part is relevant only for y+ ≤ 100, and the contribution around the peak value is of the
order of 3%. Therefore this contribution can be neglected without a large impact on
the final quality of the results. Indeed, as will be clear form the following coverage, the
main point is not to obtain a perfect comparison with the reference DNS, but to analyse
if the the solution has some oscillatory behaviour. As suggested by Winckelmans et al.
(2002) reduced stresses are reported in order to have a wider comparison.

Figure 5.5 reports a comparison between different meshes. The shear stress 〈u′v′〉+
reaches the required DNS level in the log-layer (y+ ≈ 50) with the TAYLOR grid, but
the mesh RR075 shows an oscillatory behaviour of the solution between 15 < y+ < 200

which corresponds to the region between the refined layers. Normal stresses u,+rms and
w,+rms , for the same mesh, do not display any clear oscillatory behaviour whereas v,+rms
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does. Figure 5.6 reports two attempts to remove the oscillations: the first one by
increasing the number of iterations of the velocity/pressure coupling and second one by
using the test on the slope for the convective scheme as presented in Section 3.2.2. Both
attempts fail to correct the problem. The phenomenon has been already described in
Benhamadouche (2006) in conjunction with a 1−2 type of refinement and it was credited
to this particular type of refinement. On the other hand the RANDOM mesh does not
display the same problem (see Fig. 5.7). The mesh has in common with RR075 the
first layer of cells at wall and middle parts, but the structure of the refinement is more
similar to the TAYLOR mesh. Indeed results for the RANDOM mesh are satisfactory
taking into account that the global resolution is almost one quarter less with respect to
the TAYLOR or RR075 meshes5.

When the CD convective scheme with slope test is used, it is of interest to visualize
where the test fails. This is achieved using an average counter for every internal face:
a value close to zero stands for no failure of the slope test for the face; on the contrary
a value close to one indicates that the face fails the test every time the variable is
resolved. An example is plotted in Fig. 5.8 for u and in Fig. 5.9 for v. In the near
wall region the slope test is rarely active. Moving toward the centre of the channel,
where the flow is turbulent, more up-winding is added, in particular where the mesh is
more stretched or where the non-orthogonality, introduced by the refinement process,
is large. This is clear looking at the interfaces, close to the channel centre line, and
in particular where small faces are adjacent to large ones (Fig. 5.8). Two interesting
points are observed: first the slope test fails also in regions where the mesh is structured
(around the centre of the channel), consequently up-winding is added where, in theory,
it should not be (structured part in the centre of the domain). In a turbulent flow, high
level of oscillations are present and it is very difficult to distinguish between turbulent
and spurious oscillations. The second point is that oscillations affects more v velocity
component with respect to others. This is not surprising because the coarsening is
perpendicular to this velocity component, whereas it is parallel to the other two. More
figures about the distribution of up-winding use can be found in Appendix B (Figs. B.2,
B.3 and B.4).

Table 5.4 lists the average CPU time for the STRUCT, TAYLOR and RR075 meshes.
The average is performed over 40000 time steps on an 8 Dual-Core AMD Opteron
Processor 8220. Although the TAYLOR mesh has less cells than the other two, it has
the highest CPU time per iteration. This is not surprising, because the TAYLOR grid
has the highest amount of non-orthogonalities and the reconstruction of the gradient
requires more time to converge. Moreover iterations necessary to resolve a linear system

5The RR075 mesh displays the same oscillatory behaviour also in others code, i.e. STAR-CD, as can
be seen from Fig. B.1 in appendix. Therefore the issue is not code related but resides in the specific
meshing strategy employed to generate the mesh RR075.
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increase, for example in the STRUCT mesh only 88 iterations are required to converge,
whereas 265 are necessary for the TAYLOR mesh.

In order to better understand the nature of the spurious oscillations budgets of
kinetic energy and Reynolds stresses are evaluated using the equations of Appendix
B.1. More about modelling effects on budgets can be found in Howard and Addad
(2009). The budgets are computed in a “DNS mode”, therefore modelling effects are not
taken into account, because the focus of this analysis is to identify possible oscillatory
behaviours and not to exactly reproduce the DNS data-set. Budgets are computed only
for TAYLOR and RR075 in order to compare the behaviour of two unstructured meshes.
As mentioned before dissipation is underestimated, but the simple addition of the model
does not compensate, because numerical dissipation is also relevant. The only possibility
to reduce numerical dissipation is to increase the mesh resolution moving toward a DNS.
Despite the absence of model contributions, turbulent kinetic energy k budget compares
with a relatively good approximation against the DNS data, beside the dissipation (see
Figs. 5.10 and 5.11). Surprisingly 〈u′v′〉 budget (see Fig. 5.12) does not display any
clear oscillatory behaviour, although Πu′v′ and Pu′v′ do not have the smooth profiles
as the ones of the TAYLOR mesh (Fig. 5.13). Turbulent diffusion T uu′u′ (compare Fig.
5.14 with Fig. 5.15) and the velocity-pressure transfer term Πu′u′ (compare Fig. 5.16
with Fig. 5.17) show a large oscillatory behaviour. A first possible explanation might
be the sparse distribution of the control points in the wall normal direction, but the
absence of the phenomenon in the RANDOM mesh (which has the same wall normal
cell distribution of RR075) gives evidence of the contrary. The velocity-pressure transfer
term Πv′v′ reduces to:

Πv′v′ =
2

ρ

〈
v′
∂p′

∂y

〉
(5.13)

and the turbulent diffusion T uu′u′ leads to:

T uu′u′ ≈
〈
v′
∂u′u′

∂y

〉
=

〈
2u′v′

∂u′

∂y

〉
(5.14)

In both terms appear a quantity (v′ for Πv′v′ and u′v′ for T uu′u′) that has shown a
swinging behaviour and which is amplified by a large gradient with the result of an
amplification of the phenomenon. The ascription of the spurious oscillations to the
wall normal velocity is not surprising because the non-conformal refinements follow
the same direction. The main question now remains: why is this effect not present
for the TAYLOR or the RANDOM mesh? A possible explanation could be a simple
error cancellation. A series of equal coarsening steps can introduce the same error in the
solution, while a non-specific pattern produces a more random error. Random errors can
cancel out, in particular through the average procedure in time and space. In conclusion
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in a mesh with series of random refinements the error exists but the averaging process
only hides it. The remaining budgets for 〈w′w′〉 are reported in Section B.1 of appendix.

Mesh Avg CPU Time [s] Diff. [%] Avg no iter. for p Diff. [%]

STRUCT 15.8 0 88 0
TAYLOR 18.5 17 265 200
RR075 16.6 5 188 113

Table 5.4: Average iteration time for different meshes and average number of iteration
necessary to resolve the linear system for the pressure. The average is performed over
40000 time steps on a 8 Dual-Core AMD Opteron Processor 8220 all grouped in the
same blade.
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Figure 5.4: LES of channel flow: evaluation of the difference between resolved and
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Figure 5.8: LES of channel flow: average counting of the slope test failure in the cross
plane for the u velocity component in the span-wise direction. The cut plane is located
in the middle of the domain and the average is performed over 20000 time steps (2 s of
physical time). The results are plotted on the cell faces. The amount of UW is equal
to 2%.

Figure 5.9: LES of channel flow: average counting of the slope test failure in the cross
plane for the v velocity component in the span-wise direction. The cut plane is located
in the middle of the domain and the average is performed over 20000 time steps (2 s of
physical time). The results are plotted on the cell faces. The amount of UW is equal
to 2%.
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Figure 5.10: LES of channel flow: budget of turbulent kinetic energy k for the RR075
mesh. P production, T u turbulent transport, T p pressure transport, T ν viscous trans-
port, ε dissipation. Bullet points are DNS data, continuous lines LES.
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Figure 5.11: Budget of turbulent kinetic energy k for the TAYLOR mesh: P production,
T u turbulent transport, T p pressure transport, T ν viscous transport, ε dissipation.
Bullets points are DNS data, continuous lines LES.
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Figure 5.12: LES of channel flow: budget of 〈u′v′〉 for the RR075 mesh. P production,
T u turbulent transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation.
Bullet points are DNS data, continuous lines LES.
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Figure 5.13: LES of channel flow: budget of 〈u′v′〉 for the TAYLORmesh. P production,
T u turbulent transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation.
Bullet points are DNS data, continuous lines LES.
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Figure 5.14: LES of channel flow: budget of 〈u′u′〉 for the RR075 mesh. P production,
T u turbulent transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation.
Bullet points are DNS data, continuous lines LES.
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Figure 5.15: Budget of 〈u′u′〉 for the TAYLOR mesh: P production, T u turbulent
transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation. Bullets
points are DNS data, continuous lines LES.
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Figure 5.16: LES of channel flow: budget of 〈v′v′〉 for the RR075 mesh. P production,
T u turbulent transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation.
Bullet points are DNS data, continuous lines LES.
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Figure 5.17: Budget of 〈v′v′〉 for the TAYLOR mesh: P production, T u turbulent
transport, Π velocity-pressure transfer, T ν viscous transport, ε dissipation. Bullets
points are DNS data, continuous lines LES.
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5.2.3 Partial conclusions

In this part LES of channel flow at Reτ = 395 is performed with unstructured gridding
and compared with the results for a structured mesh. The best results are obtained
with the so-called TAYLORmesh, which is built according to the TAYLORmicro-scales.
The criterion of the Taylor micro-scales gives a good estimation of the mesh resolution
necessary, avoiding the need for several runs in order understand the mesh requirements.
The drawback is that their correct estimation can be done only in presence of DNS
results. Scales estimated from RANS computations do not compare very well with
those produced by DNS and they tend to zero at the wall. Attempts to use RANS
length scales to build the meshes are also presented in Addad et al. (2008). Good
results are found also in the case of the RANDOM mesh, where a series of coarsening
steps, without following any particular criterion, was used to maintain reasonable the
total number of cells.

The embedded refined mesh RR075, which has four coarsening steps following a 3−4

sub-pattern, is also investigated and shows oscillations of the Reynolds stresses around
the refined area. The issue can be ascribed to the wall normal velocity fluctuations,
which display a swinging behaviour. This finding is in contrast with the one of Chapter
4 where a structured sub-pattern produces the best results. The reason can be due
to error cancellation: meshes with a random structure of the refinement may produce
a less accurate instantaneous field, but averaging procedure cancels out this random
error. On the other hand, in the case of several layers with the same structure of the
refinement (i.e. in the mesh RR075), the error is systematic and the averaging does
not remove it. Moreover the addition of the slope test does not solve the problem of
the spurious oscillations. In this case it is extremely difficult to separate turbulent from
spurious numerical oscillations. As a matter of fact up-winding damping is also activated
very frequently in the centre of the channel where the mesh is structured. Findings
about mesh requirements, and in particular the choices of the refinement patterns, are
in contrast with the ones of Chapter 4. This makes it difficult to formulate general
statements for mesh generation because they are highly dependent on the test case
considered.

The last, but maybe most important observation about the structured versus em-
bedded refinements can be made from Table 5.4, where the iteration CPU time and
the number of iterations necessary to resolve the Poisson equation for pressure for the
different grids are listed. Although the TAYLOR mesh has the least number of cells
it is 16% slower than the structured mesh, whereas RR075 is 5% slower. The reasons
are mainly two: firstly the already mentioned additional time required by the gradient
reconstruction to reconstruct the non-orthogonality, and secondly the pressure solver
needs more iterations to converge. In general, for incompressible codes, pressure is the
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variable that requires more iterations to obtain a converged solution. Pressure resolu-
tion can take up to 80− 90% of the total time step. The saving in time because of the
mesh size reduction due to the use of unstructured mesh is not always obvious and it
might be achievable for significantly higher Reynolds number.

5.3 Hybrid RANS/LES

In this section the Hybrid RANS/LES model introduced in 2.4 is validated. The meshes
employed are reported in Table 5.5. A summary of the results, with the percentage error
on the bulk velocity and temperature6, is listed into Table 5.6. Hybrid RANS/LES has
an advantage over pure LES with very coarse meshes as can be seen in Figure 5.18.
where LES with Smagorinsky model does not capture the logarithmic layer. This leads
to an error of about 17% in the bulk velocity estimation for LES whereas on the same
mesh, the Hybrid gives at most 2% error, depending on the blending function used
(see Table 5.6). Moreover LES shows a consistent underestimation of the shear stress
〈u′v′〉+ whereas in the Hybrid method, the anisotropic modelling has a positive effect,
making the global shear stress match the DNS. Also, the comparison of normal stresses
for LES shows a large overestimation of u,+rms and underestimation of the remaining two
components. Despite the fact that Hybrid normal stresses are simply resolved (i.e. no
addition of modelling from the anisotropic contribution to the modelled stress) they
compared better with DNS with respect to LES. For the sake of completeness, reduced
stresses are also reported but they do not compare very well with DNS in all the cases.
Among normal stresses the less accurately predicted component is the wall normal v,+rms,
which can be improved by adding the RANS model contribution as shown in Figure
5.19. In order to make the description easier only the total shear stress 〈u′v′〉+ (sum
of the resolved plus the modelled) will be displayed in the following of the discussion.
Two sets of constants for the blending function of Eq. (2.54) are employed and their
definitions are reported in Table 5.5 and plotted in Figure 5.20 for the mesh M1_395 at
Reτ = 395. BF2 grows more rapidly toward unity, moving the transition toward LES
closer to the wall. The effect of the filter width correction, expressed by Eq. (2.55),
is small for this mesh. Results for Reτ = 395, mesh M1_395 and different blending
functions are presented in Figure 5.21. All four formulations of the blending function
provide very similar results, which shows low sensitivity to the RANS to LES shift. The
comparison with DNS is good for mean velocity and shear stress. In the shear stress is
very evident the effect of RANS model addition to the resolved turbulence.

6As mean pressure gradient and wall heat flux are imposed in the simulation, monitoring the error
on the bulk velocity and temperature is equivalent to friction coefficient and Nusselt number.
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5.3.1 Heat transfer

Figure 5.22 shows improvement in performances of the Hybrid heat transfer model over
the usual LES on a very coarse grid. In this case the error of the bulk temperature is
larger than the one for the bulk velocity (see Table 5.6). The same positive effect of the
RANS modelling encountered for the shear stress 〈u′v′〉+ (Figure 5.18) is also found for
the 〈v′θ′〉+ heat flux, which is almost overlapping with the DNS data. The other heat
flux 〈u′θ′〉+ and the temperature variance θ,+rms show an underestimation in the near
wall region, until y+ ≈ 100 where mainly RANS is performed, since the streamwise
heat flux cannot be reproduced by a simple Eddy Viscosity model.For the same reason
discussed in the case of the shear stress 〈u′v′〉+, the total heat flux 〈v′θ′〉+ is going to
be plotted in the continuation of the exposition.

In order to model the eddy conductivities (see Eq (2.49)) two constants are defined,
namely Prt,γ and Prt,a, representing the turbulent Prandtl number for the homogeneous
and anisotropic parts respectively of the modelled stresses and heat fluxes. In general
those constants are kept below one, because of the higher facility of hot spot to diffuse
with respect to hydrodynamic structures. The effect of Prt,γ on all the profiles is almost
negligible (Fig. 5.23), whereas Prt,a has a large impact (Fig. 5.24). Low values of the
constant allow more RANS in the solution, damping the turbulent oscillations. As
a consequence, the mean temperature profile is underestimated. High values increase
the fluctuations, making the Hybrid temperature r.m.s compare well with the DNS
from y+ ≈ 10, but with an overestimation of the bulk temperature. A value of 0.75

was chosen in order to minimize the error of the mean temperature profile. Prt,γ is
set equal to 0.70 to be consistent with other LES works (see for example Moin et al.
(1991)) which indicates a lower value for the turbulent Prandtl number in the centre
of the channel, compared to the near wall region. The model is also tested at very low
Pr, typical of liquid metals which are used as coolant for some nuclear reactors. In
this case the thermal boundary layer is thicker than the kinematic one, lowering the
effect of the meshing. Results for mean temperature profile, fluctuations and heat fluxes
improve with respect to the high Pr (Fig. 5.25). The only problem is 〈v′θ′〉+ where
the anisotropic modelling addition makes the total overshoot the DNS in the near wall
region. Low Prandtl effects need to be introduced in the RANS model or in the blending
function. The problem of mesh resolution dependency will be investigated furthermore
in section 5.3.3.

5.3.2 Reynolds number effects

From Figures 5.26 to 5.29 the behaviour of the model is tested as the Reynolds number
increases. Here the advantages of this model are clear: results display the same level of
accuracy as the ones at Reτ = 395, but without the need of fine mesh resolution, which
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are required by wall resolved LES. In the case of wall resolved LES the mesh requirement
grows with a rate proportional to Re1.8 as reported in Piomelli and Balaras (2002). In
the Hybrid model presented here the growth rate is instead proportional to Re1.14, in
fact the mesh used for Reτ = 1020 (which corresponds to a Reb ≈ 40, 000) has only
180,000 cells because of the extremely stretched cells used in the near wall region. The
anisotropic RANS contribution is relevant only until y+ = 100, which is also the area
where the mesh starts to be more isotropic and the length-scales start to be free from
wall effects. For the case at very low Reynolds (Reτ = 180) two different meshes were
tested: M1_180 with 30×40×30 and M2_180 with 40×40×30 cells. Surprisingly the
best results are obtained using the coarse mesh M1_180 as can be seen from Figures
5.30 and 5.31. As the wall heat flux is imposed, so is the sum of molecular plus turbulent
heat flux, and, in the end, it is the temperature gradient in the wall normal direction
that varies while 〈v′θ′〉 is always close to the DNS. The profile of the blending function
along with the filter width ∆Fb , used to compute the blending function and the mesh
anisotropy, are plotted in Figure 5.32. More results and considerations on the effects of
the mesh resolution are presented in the next section.

5.3.3 Mesh resolution effects

An important point to investigate is the dependency of the Hybrid model on mesh
refinement. In the case of a 1D channel flow, resolved with a low Reynolds RANS
model, at least sixty points in the wall normal direction are necessary to obtain a correct
mean velocity profile. Two meshes with such resolution in the wall normal direction are
created; M2_395 with the first point located at y+ ' 1 and M3_395 with the first
point located at y+ ' 0.2. Results from those two meshes are reported from Figures
5.33 to 5.38. Mesh M2_395 shows an unusual behaviour, in particular if the filter width
correction of Eq. (2.55) is used. There is an increase of the temperature fluctuations
(Figures 5.34 and 5.37) in the centre of the channel, making the model overestimate
the DNS by an large margin. When the max correction is used the r.m.s fluctuations
in the streamwise direction 〈u′〉+rms also show the same behaviour. On the other hand
these issues are not present in the mesh M3_395, independently of the formulation of
the blending function. The reason does not come from the blending function, which
is very similar in all the cases (Figs. 5.35 top right and Fig. 5.38), but in the cell
stretching. Although after y+ = 100, LES contribution is clearly dominant, cells are
stretched in the span- and stream-wise directions (see two graphs at the bottom of Fig.
5.35, which report ratios between the height of the cell over the length in the streamwise
and span-wise directions respectively). Mesh M3_395 does not have the same problem:
cells are more clustered close to the wall, allowing the central part of the domain (where
mainly LES is performed) to regain mesh isotropy. The correction of Eq. (2.55) does
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not have any positive effect: the correction is acting, increasing the filter width ∆Fb
as presented in Fig. 5.38, only close to the wall where the cells are stretched and the
turbulent length Lt is already small. In the centre of the channel the increase of ∆Fb
does not compensate the increase of Lt and consequently the blending function grows
toward unity almost with the same rate.

Figures 5.39, 5.40 and 5.41 present the results of velocity field, thermal field and
blending function for fine meshes. The two meshes employed were those used in the
previous part of this chapter for the LES: the first is the structured mesh 128× 64× 96

which is now labelled as M4_395, and the second is the TAYLOR mesh, now labelled
as MT_395 (see Table 5.5). In this case mean profiles, both velocity and temperature,
display a substantial underestimation, which leads to an error of around 15% for the bulk
velocity and more than 25% for bulk temperature in both cases. The main difference,
with respect to earlier calculations on coarser meshes, is the incorrect prediction of
the shear stress 〈u′v′〉+ and heat flux 〈v′θ′〉+. The problem can be explained starting
from Eq. (2.52), which gives the composition of the total stresses and heat fluxes. The
modelled part is controlled by the blending function, whereas the resolved contribution
does not have any constraint. In case of very fine meshes the total stresses should be
composed only by the resolved part and the model contribution should vanish, as the
grid is appropriate for a classical LES. Instead the blending function at the wall does not
tend to zero, allowing the RANS (which is proportional to the mean velocity gradient)
to contribute to the total solution. This creates a problem of double counting of stresses
and heat fluxes, which can be avoid only using coarse meshes at the wall. For example
in the mesh MT_395 at y+ ≈ 30 the blending function is still around 0.5, where it
should be almost one (Figure 5.41).

5.3.4 Conclusions

In the second part of this chapter a Hybrid RANS/LES model is validated, producing
good results on very coarse meshes. The main improvement is the addition of heat
transfer into the already available model for the dynamic part. The key point of the
model is the addition of a RANS contribution in the near wall region, which gradually
vanishes as the mesh tends more towards isotropy and the turbulent flow component is
more resolved rather than modelled. Because of the relaxed constraint of the near wall
resolution the model not only allows the use of coarse meshes but also a growth rate for
the mesh size that is proportional to Re1.14 instead of the usual Re1.8 typical of wall
resolved LES.

A new set of constants is proposed for the blending function, showing a better
approximation of the bulk velocity and temperature. On the other hand the introduction
of the max correction of Eq. (2.55) does not have any major impact on the model
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performance, and in some cases the modification is counterproductive.
In the case of thermal modelling a balance between mean temperature, temperature

variance and turbulent heat fluxes must be established. High values of the turbulent
Prandtl numbers for the inhomogeneous contribution result in a better approximation
of temperature r.m.s. values, along with a noteworthy under-prediction of the mean
temperature gradient and, by integration, the temperature profile itself. Low values
have, on the other hand, the opposite effect, producing an underestimation of tempera-
ture r.m.s. in the near wall region and larger temperature gradient. A balance is found
by setting Prt,γ = 0.75, which also gave the minimum error in the bulk velocity assess-
ment. The model is also tested for a very low Prandtl number of Pr = 0.025 showing
very good performances with the exception of 〈v′θ′〉, where the RANS addition, on an
already relatively well resolved thermal field, makes the Hybrid model overshoot the
DNS close to the wall.

Despite many positive features the model shows some shortfalls: some dependency
on the mesh and in particular on the relation between cell aspect ratio and blending
function. When the blending function tends to unity, cells should also be fairly isotropic.
If this condition is not satisfied, an increase in the r.m.s. values in the central part of
the domain is observed for both velocity and temperature. A second problem appears
when the model is tested on fine meshes, already appropriate for wall-resolved LES. In
these cases the mean quantities are underestimated because of an overestimation of the
level of turbulence in the solution due to a double counting of the shear stress. As a
consequence shear stress 〈u′v′〉 and heat flux 〈v′θ′〉 are wrongly over-predicted in the
near wall region. This double counting could be countered by switching off turbulence
production, in the LES, by modifying the convecting velocity field with a slip condition
at the wall.

The introduction of the blending function is compulsory in order to make possible the
natural development of fluctuations. On the other hand its formulation is fairly arbitrary
and relied on a careful constant tuning, which might be case dependent. Moreover even
in a DNS mesh, near wall cells have aspect ratios far from the unity, making criteria
based on cell isotropy not very general. Other specifications based on cell dimensions,
expressed in wall units, might be also not universal, but dependant on the test cases
used for the definition.

A more pragmatic and better solution should be an “a priori” knowledge of the
blending function field, designing the mesh to follows its evolution. In this context
RANS models based on elliptic blending can provide an effective solution (see Sec.
A.1.2). This model is characterised by a parameter α which takes into account wall
effects and is evaluated through an elliptic equation. Therefore a precursor RANS
simulation can be performed and used in the mesh construction.
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Reτ Acronym Mesh resolution y+ 1st cell

180 M1_180 30× 40× 30 1
180 M2_180 40× 40× 30 1

395 M1_395 40× 40× 32 1
395 M2_395 40× 60× 32 1
395 M3_395 40× 60× 32 0.2
395 M4_395 128× 64× 96 1
395 MT_395 200× 46× 100 1

640 / 50× 50× 40 1
1020 / 60× 60× 50 1

Acronym Coeff.
Cl n

BF1 1 1.5
BF2 1.3 2

BF1/2max see Eq. (2.55)

Table 5.5: Mesh acronyms and characteristics for the hybrid calculations (left) and
constant used for the blending function Fb (right).

Reτ Mesh Blending function UB error [%] TB error [%]

180 M1_180 BF1 1.1 0.3
180 M2_180 BF2 3.8 5
180 M2_180 BF2max 5.5 11

395 M1_395 LES 17.7 51
395 M1_395 BF1 1.26 3.33
395 M1_395 BF2 0.21 1.32
395 M1_395 BF2max 0.38 2.40
395 M2_395 BF2 0.21 0.7
395 M2_395 BF2max 0.35 4.7
395 M3_395 BF2max 0.35 1.22
395 M4_395 BF2 14 29
395 MT_395 BF2 13 26
395 MT_395 BF2max 14 26.6

640 / BF2 1.5 0.11
640 / BF2max 1.18 0.015

1020 / BF2 0.4 1.8
1020 / BF2max 0.2 2.3

Table 5.6: Percentage error with respect to Abe et al. (2004, 2001) DNS for differ-
ent meshes and blending functions. The turbulent Prandtl number for heat transfer
modelling are set to Prt.γ = 0.70 and Prt,a = 0.75.
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Figure 5.18: Hybrid channel flow (Reτ = 395): comparison between LES and Hybrid
for mesh M1_395 (see Table 5.5). The blending function used is BF2 (see table 5.5
(left)). Mean velocity (top left), shear stress (top right), normal stresses (bottom left)
and their reduced counterparts (bottom right). .

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

y
+

u
,+ r
.m

.s
., 

v
,+ r
.m

.s
., 

w
,+ r
.m

.s
.

 

 

DNS

Resolved

RANS

Total

Figure 5.19: Hybrid channel flow (Reτ = 395): normal Reynolds stresses with the ad-
dition of RANS Reynolds stresses. The RANS addition is equal to (1−Fb) v2, where
v2 is the one given by the EVM ϕ− f model of Laurence et al. (2005).



CHAPTER 5. CHANNEL FLOW 124

10
0

10
1

10
2

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

y
+

∆

 

 

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
+

F
b

 

 

BF1
BF1

max

BF2
BF2

max

2/3*(∆
1
+∆

2
+∆

3
)

2*Ω
I

1/3

Mesh: M1_395

Figure 5.20: Hybrid channel flow: comparison between blending function for channel
flow at Reτ = 395 on mesh M1_395.

10
0

10
1

10
2

0

5

10

15

20

25

y
+

U
+

 

 

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

y
+

−
u

, v
,+

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

y
+

u
,+ r.

m
.s

., 
v

,+ r.
m

.s
., 

w
,+ r.

m
.s

.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

y
+

u
, u

,+ R
, 

v
, v

,+ R
, 

w
, w

,+ R

DNS

BF1
BF1

max

BF2
BF2

max

Mesh: M1_395

Figure 5.21: Hybrid channel flow (Reτ = 395): effect of blending function for mesh
M1_395 (see Table 5.5). Mean velocity (top left), shear stress (top right), normal
stresses (bottom left) and their reduced counterparts (bottom right). Comparison be-
tween different blending functions .



CHAPTER 5. CHANNEL FLOW 125

10
0

10
1

10
2

0

5

10

15

20

25

y
+

T
+

 

 

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

y
+

θ
,+ r.

m
.s

.

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

y
+

u
, θ

,+

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

y
+

v
, θ

,+

 

 

DNS

Resolved

RANS

Total

DNS

HY

LES

Pr =1
Pr

t,γ
 =0.7

Pr
t,a

 =0.75
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Figure 5.26: Hybrid channel flow at high Reynolds case (Reτ = 640): comparison be-
tween different blending functions (see Table 5.5). Mean velocity (top left), shear stress
(top right), normal stresses (bottom left) and their reduced counterparts (bottom right).
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Figure 5.28: Hybrid channel flow at high Reynolds case (Reτ = 1020): comparison
between different blending functions (see table 5.5). Mean velocity (top left), shear
stress (top right), normal stresses (bottom left) and their reduced counterparts (bottom
right).
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Figure 5.29: Hybrid channel flow at high Reynolds case (Reτ = 1020): comparison
between different blending functions (see table 5.5).Temperature profile (top left), tem-
perature r.m.s. (top right), heat fluxes (bottom).
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Figure 5.30: Hybrid channel flow at low Reynolds case (Reτ = 180): comparison be-
tween different mesh resolution (see table 5.5). Mean velocity (top left), shear stress
(top right), normal stresses (bottom left) and their reduced counterparts (bottom right).
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Figure 5.31: Hybrid channel flow at low Reynolds case (Reτ = 180): comparison be-
tween different mesh resolution (see table 5.5). Temperature profile (top left), temper-
ature r.m.s. (top right), heat fluxes (bottom).
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Figure 5.36: Hybrid channel flow (Reτ = 395): effect of the max correction (see table
5.5). Mean velocity (top left), shear stress (top right), normal stresses (bottom left)
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Figure 5.40: Hybrid channel flow heat transfer (Reτ = 395): effect of the mesh resolution
(see table 5.5). Temperature profile (top left), temperature r.m.s. (top right), heat
fluxes (bottom).
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Chapter 6

Fuel rod bundle

6.1 Introduction

A Rod bundle is a key constitutive element of a very wide range of nuclear reactor designs
(Pressurized Water Reactor PWR, Boiling Water Reactor BWR, Sodium Cooled Fast
Reactor SFR, etc.). It is composed by a set of rods, within the nuclear fuel, arranged
with different configurations: staggered, triangular or even more complicated. Those
elements are cooled by a fluid flowing parallel to the rods. The coolant is different
depending of the type of the reactor: from water in a PWR to Sodium in a SFR. A
detailed description of the thermal-hydraulic flow field is necessary, in particular thermal
and velocity fluctuations, in order to improve the efficiency and the security of the
current designs. For example, in the case of SFR (Sodium cooled Fast Reactor), which
is one of the proposals for the next generation IV, CFD will have a fundamental role
because of the scarce availability of experimental data and their difficult realisation.
Note that improvement of thermal hydraulic simulation capabilities of this kind of
geometry is also of high interest for the heat exchangers.

Many experimental studies (Krauss and Meyer (1998); Rehme (1992)) found that
the distribution of the turbulent intensities is different from those in pipes and plane
channels. In particular, in the gap region between two sub-channels, maxima of the
turbulent intensities is located far from the wall. Indeed the turbulent quantities are
strongly dependent from the pitch to diameter ratio of the configuration. Higher mixing
between sub-channels was also observed and several explanations were given.

Mass transfer between adjacent sub-channels can basically result from the following
three different mechanisms as described byLexmond et al. (2005).

1. Diversion cross flow: it is the result of different time averaged pressure between
two adjacent sub-channels.

2. Void-drift: In two-phase flows, vapour tends to concentrate in channels of higher

135
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hydraulic diameter

3. Turbulent mixing: directly from enhanced turbulent diffusion, but also by sec-
ondary mean flow motion induced by turbulent stress anisotropy and inhomo-
geneity

In the case of a rod bundle arranged in a triangular array, where all the sub-channels
have the same hydraulic diameter, and considering a fully developed turbulent flow
without any pressure imbalance, only turbulent mixing can appear.

For long time this high mixing between sub-channels was explained with the presence
of a secondary flow (Trupp and Azad (1975); Vonka (1988b)). Following a Prandtl
description, secondary flows can be generated by two different mechanisms: by turning
or skewing the principal flow as in a U-bend pipe or by non-uniformity of turbulence
in the near wall region like in a channel of non axial-symmetric cross section. In a rod-
bundle, under fully developed conditions, only this second type of secondary motion is
possible. The intensity of this secondary flow was directly measured for the first time by
Vonka (1988a), finding a value about 0.1% of the mean bulk velocity for a rod bundle
at pitch-to-diameter ratio P/D = 1.3 (see Fig. 6.1) and a Reynolds numbers ranging
from 60000 to 175000. Despite their weak intensity these secondary motions have a
non-negligible effect on axial momentum in both radial and circumferential direction.

In nuclear reactors a high value of burn-up1 is desirable in order to reduce refuelling
down time and number of fresh fuel elements required. This can be achieved with a
very small value for the pitch-over-diameter ratio (P/D). In such configurations, an
energetic and almost periodic azimuthal flow pulsation is present in the gap region
between two fuel elements. Rowe et al. (1974) already observed this phenomenon and
it was definitely confirmed and measured by Hooper and Rehme (1984). Krauss and
Meyer (1998) demonstrated that those fluctuations are the reason of higher mixing
between sub-channels. Spectral measurements further enabled characterisation of the
phenomenon.

These flow pulsations are described as coherent large-scale structures flowing in
the stream-wise direction, superimposed on mean motions. Several experimental works
showed that:

• Azimuthal velocity fluctuations in the gap region are almost sinusoidal with a
dominant frequency function of the geometrical parameters and Reynolds number
(Krauss and Meyer (1998));

• The phenomenon disappears below a certain Reynolds number threshold (Lex-
mond et al. (2005));

1Burn-up: measure of the neutron irradiation of the fuel.
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• Coherent structures have a quasi-periodic distribution that is weakly dependent
from the Reynolds number (Lexmond et al. (2005));

• Above a certain value for P/D (1.1 for a triangular array) the flow pulsation
intensity decreases.

First attempts to approach the problem using CFD techniques are reported in Bartzis
and Todreas (1979) and Seale (1979). The k − ε model gives unsatisfactory results for
want of capturing the secondary motion. Rapley and Gosman (1986) also confirmed the
need of anisotropic models. They analysed three different P/D ratios with an algebraic
stress model coupled with a k − ε model. The necessity of using a more advanced
turbulence model than simply isotropic EVM is pointed out by many authors in the last
two decades (see for example Lee and Jang (1997); Baglietto and Ninokata (2005); Cheng
and Tak (2006)). Lee and Jang investigate an array characterized by P/D = 1.12 using a
non-linear k−ε model. They find good agreement with experimental results, but also an
underestimation of the turbulent stresses in the gap region. In Baglietto and Ninokata
(2005) and in the subsequent work Baglietto et al. (2006) a non-linear eddy viscosity
model, specifically designed for this type of application, is developed and tested. The
agreement with experimental results, in term of wall shear stress, is satisfactory for
many configurations with the exception of the very tight lattice (P/D = 1.06).

Also the steady state rather than time-marching integration technique is found un-
suitable for very tight geometry, because it completely ignores the previously described
flow pulsations. A first attempt to use unsteady RANS approach (URANS) is intro-
duced by Chang and Tavoularis (2005, 2007), where authors consider isothermal flow in
a sector of 60° of a 37-rod bundle. Authors reported time average velocity and fluctu-
ations and found high correlations between structure in the entire geometry. Another
URANS work is presented in Merzari et al. (2008) using, as turbulence model, the al-
ready cited non-linear k−ε of Baglietto and Ninokata (2005). The results are compared
with the experiments of Krauss and Meyer (1998) reporting good agreement in terms
of wall shear stress and turbulent kinetic energy, but with an underestimation of the
dominant frequency. Authors report also the coherence pattern for the azimuthal ve-
locity between two reference gaps, showing a coherence peak in accordance with the
experiment. Consequently The authors claimed that a cross section composed by two
adjacent sub-channels is sufficient, thus the finding of extended cross section (Chang
and Tavoularis (2007)) is too conservative. Another interesting conclusion of Bagli-
etto’s work is that the wavelength and dominant frequency depend on the length of the
computational domain in the streamwise direction

The same paper also reports a LES of a simplified geometry composed by two rect-
angular channel closed on 3 sides and connected by a narrow gap. The geometry is also
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subjected to flow fluctuations and results are in fair agreement with the experimental
study of Lexmond et al. (2005). The same geometry is also used by Biemuller et al.
(1996) in an earlier study in order to confirm the presence of the flow pulsations and
their importance in comparison with the secondary flow.

The geometry is also tackled with LES and DNS in Baglietto et al. (2006) with
P/D from 1.06 to 1.2 and Reynolds number from 6000 till 24000. The cross section of
the computational domain is composed of only four elementary units, covering the gap
and centres of two adjacent sub channels. In this case flow pulsations are not reported,
possibly because of the short length used in the stream-wise direction, rather than the
limited cross section employed. In Mayer et al. (2007), a lattice Boltzmann LES method
is applied to a closed geometry composed of an hexagonal cylinder around a single fuel
element. The P/D is equivalent to 1.34 and the Reynolds number is around 20,000.
In this case the flow pulsations are not clearly captured and the Reynolds stresses do
not compare very well with the experiment, possibly because of the lack of any wall
treatment despite very large near wall cells.

A very comprehensive review of CFD applied to rod bundle can be found in Ninokata
et al. (2009). In this review it is observed that, for a P/D = 1.2 a turbulent region
develops in the gap after Re = 4, 000 and the flow can be considered fully turbulent
after Re = 24, 000. Indeed as the geometry becomes tighter the transition is delayed.
This finding is in contrast with what will be shown in the Section 6.3 of this work where
the flow seems fully turbulent everywhere in the domain already at Reynolds number
well below 10,000. The study gives also an average intensity of the secondary motion
of about 0.4% of the bulk velocity, where the previous mentioned experimental papers
gave values around 0.1%.

The flow pulsations described above may introduce vibration problems and their
study is a key issue in nuclear applications. A common approach is to separate the
problems, performing the CFD with the structure considered infinitely rigid and ob-
taining the value for the fluid velocity and pressure, and then passing this information
to the structural code in order to evaluate the displacements. This approach, which
is often referred as “partitioned”, can have different levels of coupling depending on
how often the information is exchanged between the domains (see for instance Ahn and
Kallinderis (2006)). An alternative approach is presented in Papadakis (2008), where
the elastodynamics equations for Hookean solids are rewritten using the same unknown
of the Navier-Stokes equations (i.e. velocity and pressure). These types of methods,
so-called “Monolithic”, have the advantage that there is not any discontinuity at the in-
terface between the two media. The novelty of this work is the use of a Finite Volume,
co-located arrangement for the discretization of the governing equations for both solid
and fluid.
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6.2 Case description

Figure 6.1 presents the triangular infinite rod bundle pattern considered herein, with
D = 0.14m. The narrow part that connects two adjacent sub-channels, from now on,
will be referred as the gap region, whereas the centre of a sub-channel will be named
as the open region. A first problem is to identify which is the best cross section to be
used. A first choice could be a cross section composed by only four elementary units,
arranged around the gap region, which is also the smallest possible (light blue in Fig.
6.1). In this case a rotational periodicity2 is used, linking the segment AB with A′B′

and AC with A′C ′. A second possibility is to use a larger domain, composed by two
complete adjacent sub-channels (green domain in Fig. 6.1). The natural procedure to
apply the periodicity is to link DE with D′E′ and FH with F ′H ′. Another possibility
could be to use a rotational periodicity between adjacent sides like, for example, DE
with FH.

A local system of reference is used in order to report the results where x is the rod
axis and the streamwise direction, r the wall normal direction and ϕ the tangential
direction moving from the gap to the centre region. In order to be consistent with
previous works from other authors, velocity components, in directions x, r and ϕ, are
labelled u, v and w respectively as in the Cartesian notation.

In the case of the small computational domain two different configurations are taken
into consideration, characterised by P/D = 1.06 and P/D = 1.15. Both the geometries
are tested at ReB ≈ 6000, that corresponds approximately3 to Reτ ≈ 400. The dimen-
sions of the first near wall layer, in wall units, for the two meshes are: 0.7 ≤ r+ ≤ 1.06,
7.5 ≤ r∆ϕ+ ≤ 11 and 16 ≤ ∆x+ ≤ 22.5 for the lower P/D and 0.8 ≤ r+ ≤ 1.1,
6.5 ≤ r∆ϕ+ ≤ 10 and 16 ≤ ∆x+ ≤ 22.5 for the higher. The final meshes count around
1.6 million cells for P/D = 1.06 and around 1.4 million for P/D = 1.15.

For the larger geometry, with two complete sub-channels in the cross section, only
one P/D ratio of 1.06 is considered, but for two shear Reynolds numbers of 600 and
800 (bulk values of 6,000 and 13,000 respectively). The near wall mesh resolutions are:
0.7 ≤ r+ ≤ 0.9, 6 ≤ r∆θ+ ≤ 10 and 11 ≤ ∆x+ ≤ 18 for Reτ = 400 and 0.7 ≤ r+ ≤ 1,
7.5 ≤ r∆θ+ ≤ 15, 17 ≤ ∆x+ ≤ 30 for Reτ = 800. The resulting total number of cells
is around seven million for the first case and around 14.2 million cells for the second.

2In order to link AC with A′B′ a translation plus a rotation are necessary, making the original do-
main and the copy fully overlapping. Consequently it is not possible to use this periodical configuration
because the original domain is intersecting with itself.

3The shear velocity uτ is constantly changing moving from the gap to the open region. In order
to evaluate the shear Reynolds number an average value, along the azimuthal direction ϕ is used.
Consequently the definition for the shear Reynolds is:

Reτ =
uτ,avgDh

ν

where Dh is the hydraulic diameter. The above definition is extrapolated from Baglietto et al. (2006).
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In the case of Reτ = 800 the shear velocity increases from the gap to the open region,
making the dimensionless grid spacing variable. Consequently, the accuracy of the skin
friction can vary and the error should increase moving from the gap to the centre of
the sub-channel. According to Meyers and Sagaut (2007) the error increment could be
around 3%. A possible solution might be to introduce non-conformal mesh refinements
in order to decrease cell stretch. This will generate many non-orthogonalities that may
introduce spurious oscillations in the solution as observed in Chapter 5. In the same
chapter it was also demonstrated that embedded refined meshes with a random pattern
for the coarsening did not suffer from the problem, but the construction of such grids
in a curvilinear geometry is extremely difficult. Small interpenetration of cells can arise
in the presence of hanging nodes because on a curve, three consecutive nodes might not
be aligned. In order to solve the problem a specific meshing tool has to be developed
or a very laborious and long manual work is required. Indeed this test case has also
a secondary motion, and its interaction with the large amount of non-orthogonalities,
might introduce undesired unphysical phenomena.

A key point in the geometry definition is its length in the streamwise direction: the
flow between two periodic surfaces must be uncorrelated. This is in general verified when
the two-point correlations, between points located at the period face and points located
at the cross section in the middle of the domain, is lower that a prescribed threshold. In
general in LES of plane channels turbulent length-scales are relatively small compared
with domain dimensions; in fact the ratio between hydraulic diameter and streamwise
periodic length is in general around 1.5. On the other hand, in case of large-scale
periodic oscillations, longer domains are required because of their development in the
flow direction. Indeed the length of the domain, if not long enough, can shift the
value for the dominant frequencies. The only available information is from Krauss and
Meyer (1998), where a constant Strouhal number, equal to 0.93, is found which leads
to a λ ' 0.150m. A linear variation with the Reynolds number is also established
for the Strouhal number (see Sec 6.3.3). Consequently the wavelength λ is almost
constant as the bulk velocity changes. The periodic length of the domain is set to
400mm, which corresponds to more than double the wavelength λ and around twelve
times the hydraulic diameter Dh. The same proportion between hydraulic diameter and
streamwise length is kept for all geometries.

Budgets of turbulent kinetic energy and Reynolds stresses are computed for the low
Reynolds number using the same methodology presented in the channel flow Section
B.1.

To efficiently make-up for scarcity of data several temperature fields were coupled
with the hydrodynamic field, since in pure forced convection regime all the scalars
can be considered passive (i.e. there is no feedback from the temperature field to the
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velocity field). Note that a Dirichlet wall temperature boundary condition will force the
temperature variance to go zero, while a Neumann, i.e. heat flux wall condition, allows
high r.m.s temperature fluctuations at the wall. The Prandtl number cases vary from
0.01 to 10. A very important challenge in fuel bundles is to understand what happens in
case of imbalances between sub-channels, or when a region presents a hot spot. Here a
very simplified situation is analysed: a source term is introduced in the scalar equation
and it is designed to be zero at the wall at the boundary of a sub-channel, maximum
on the centre of one sub-channel and minimum in the adjacent. This artificial situation
where a positive source in one sub-channel is surrounded by negative sources allows
development of heat flux variations in various directions. For the high Reynolds number
only one Prandtl number, Pr = 0.71, is considered along with only the Neumann BC.
The majority of the results presented herein refer to the large computational domain;
references to the small computational domain are explicitly mentioned.
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Figure 6.1: Fuel rod bundle: sketch of the geometry.
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6.3 Results.

The results are presented in the following order:

• Simulation quality assessment;

• Mean velocity profiles;

• Flow pulsation frequencies;

• Reynolds stress profiles;

• Second moment budgets

• Scalar fields with variable boundary values;

• Scalars with artificial channel to channel imbalance.

In all cases the Smagorinsky model (see Sec. 2.3.3.1) is used with a constant Cs = 0.065.
The anisotropy is taken into account using the Van Driest damping as described into
Sec. 2.3.4). In the case of heat fluxes a Gradient Diffusion hypothesis is used (see
Sec. 2.3.5) with a constant turbulent Prandtl number Prt = 0.91. The time step used
such that the instantaneous CFLmax ≤ 1.5 and an average value 〈CFLmax〉 ≤ 1 for all
cases. The time average is performed over at least 100 flow pass-through and afterwards
a space average is also applied4.

6.3.1 LES quality criteria

Pope (2000) suggests the following classification of LES following the percentage of
resolved energy over the total energy:

• LES with near wall resolution (LES-NWR): the mesh is fine enough to resolve at
least 80% of the energy everywhere in the domain;

• LES with near wall modelling (LES-NWM): the mesh is able to resolve at least
80% far from the wall;

• Very Large Eddy Simulation (VLES): the mesh is too coarse to resolve at least
80% of the energy everywhere in the domain.

These criteria for LES quality assessment poses a difficulty which consists in the quan-
tification of the resolved energy and the problem is more challenging in case of implicit
filtering with an effective viscosity model like the Smagorinsky model used herein. A

4The space average is performed along the homogeneous direction and along every elementary unit.
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first possibility is presented by Geurts and Fröhlich (2002) where the amount of mod-
elled energy, introduced by the LES model with respect to DNS, is quantified with a
parameter called s, defined as:

s =
〈εSGS〉

〈εSGS〉+ 〈εν〉
(6.1)

where 〈εSGS〉 is the average sub-grid dissipation and 〈εν〉 the average molecular dissi-
pation. The subgrid-activity can vary 0 ≤ s ≤ 1, with s = 0 corresponding to DNS
and s = 1 to a LES at infinite Reynolds number. The dissipation can be related to
the molecular and average turbulent viscosity as demonstrated by Celik et al. (2005),
leading to:

s u
〈νSGS〉
〈νSGS〉+ ν

. (6.2)

Celik et al. (2005) claim that in most of LES applications s u 1, therefore it is difficult
to use it as an estimator and they propose an alternative formulation, which takes into
account also the numerical dissipation:

s∗ =
〈νSGS〉+ 〈νNUM 〉
〈νSGS〉+ 〈νNUM 〉+ ν

=
〈νEFF 〉
〈νEFF 〉+ ν

(6.3)

where 〈νNUM 〉 is the average numerical viscosity, which can be summed with the sub-
grid obtaining the effective viscosity 〈νEFF 〉 = 〈νSGS〉 + 〈νNUM 〉. The problem now
lies in the evaluation of the numerical diffusion. The easiest option is to assume that
numerical dissipation is negligible, which correspond to 〈νSGS〉 � 〈νNUM 〉. This as-
sumption could be acceptable if a very conservative code with high order schemes is
employed. In the case of a second order, unstructured finite volume code it is not the
case as demonstrated in Chapter 4. In Addad (2004) the numerical dissipation is eval-
uated as 30% of the average sub-grid dissipation in the case of decay of homogeneous
turbulence. Celik et al. (2009) find instead a value of 〈νNUM 〉 ≈ 〈νSGS〉. 5

In this work the sub-grid activity s of Eq. (6.2) the modified s∗ (Eq. (6.3)) are
used to estimate the amount of resolved turbulent kinetic energy and the results are
reported in Figs. 6.2 and 6.3 respectively. Table 6.1 gives a a summary of the results
reporting the maximum and the average values for the sub-grid activity, which are in
both cases below 0.20. The low Reynolds case shows a considerable part of the domain
(concentrated in particular in the gap region) where the sub-grid model is rarely active.

5Celik et al. (2009) evaluate 〈νNUM 〉 ≈ 〈νSGS〉 assuming the same weight for numerical and sub-grid
energy and h ≈ ∆. In Code_Saturne , strictly speaking, the filter width ∆ ≈ 2h as can be derived from
Equation (2.25), consequently νNUM = 1/4 · νSGS , which is more close to the estimation of Addad
(2004). Because the mesh presents some skewing close to the centre of each sub-channel and some
stretching in the near wall region not everywhere in the domain the code can be considered second
order accurate. Consequently maintaining h ≈ ∆ leads to a more conservative assumption.
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The model starts to play a role in the open region and in particular in the sub-channel
centre. This does not mean that the flow in the gap region is laminar, on the contrary,
the flow is turbulent as already demonstrated. On the other hand at high Reynolds
the model starts to be active also in the gap and the maximum of the activity is not
only located in the sub-channel centre, but also close to the wall in the open region. A
maximum value of 0.34 for s means that over the entire domain, and in both cases, the
sub-grid viscosity is below the molecular viscosity. The evaluation of s∗ presents the
same characteristics of s, with only a shifting towards higher value of the parameter.

More accurate estimations of the numerical diffusion can be obtained from Richard-
son extrapolation using several meshes with increasing resolution (Celik et al. (2005,
2009)). The method consists of evaluating the effective viscosity as a polynomial func-
tion in h and ∆. In order to estimate the constant at least five different simulations are
necessary which make the procedure expensive, but with some assumptions it is possi-
ble to reduce to only two different tests. This method was not use because testing two
different meshes on such a big domain is too expensive. A second and more important
reason is that these types of indices does not provide a clear estimation of the error,
but only an indication of the level of resolution.

An alternative method to provide an error evaluation as function of model param-
eters such as ∆ and Cs is presented by Meyers et al. (2006). The method is based on
the error estimation as

err (a, b) =

∥∥∥∥ΦLES (a, b)− ΦDNS (a, b)

ΦDNS (a, b)

∥∥∥∥ (6.4)

where a and b are the arguments, Φ the function used for the comparison and DNS the
filtered function given by the DNS. The method was applied in the decay of isotropic
turbulence using, as arguments, the grid resolution and the Smagorinsky constant Cs,
and as comparison function the energy. Several simulations are performed in order to
obtain a “landscape” where valleys identify low error levels and hills identify high error
level. Consequently it is possible to identify relations between the two arguments that
minimize the global error. The method was also applied to channel flow in Meyers
and Sagaut (2007) using as argument the resolutions in the streamwise and span-wise
directions and the wall shear stress as comparing function. The drawbacks are the needs
of several calculations to build the landscape and the necessity of a reference solution
for the comparison. In this specific case only experimental results are available for the
comparison, but the Reynolds number is too large to be approached with a wall-resolved
LES.
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ReB = 6000 ReB = 13000

Parameter Max Avg Max Avg

s 0.26 0.11 0.34 0.20
s∗ (〈νNUM 〉 ≈ 30% 〈νSGS〉) 0.32 0.14 0.40 0.24
s∗ (〈νNUM 〉 ≈ 〈νSGS〉) 0.42 0.19 0.50 0.32

Table 6.1: Summary of the quality indexes for the rod bundle test case.

Figure 6.2: Sub-grid activity s (Eq (6.2)) for the rod bundle. On the left hand side
results at Reb = 6000 and on the right hand side Reb = 13000.

Figure 6.3: Modified sub-grid activity s∗ (Eq (6.3)) for the rod bundle. On the left hand
side results at Reb = 6000 and on the right hand side Reb = 13000. On the top hand
side the numerical dissipation is evaluate as 〈νNUM 〉 = 30% 〈νSGS〉, on the bottom
〈νNUM 〉 = 〈νSGS〉.
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6.3.2 Flow description and mean velocity profiles

In Fig. 6.4 two instantaneous velocity fields are visualized for ReB = 6000 (left) and
ReB = 13000 (right). From the temperature iso-surfaces a meandering behaviour is
very clear in the gap region between the two sub-channels. The phenomenon is similar
to the one observed in composite-bed river (see Uijttewaal and Booij (2000)) and it is
generated by a coherent structure resulting from the mean axial flow velocity difference
from the low speed gap to the more rapid free flow regions. From both the temperature
fields the flow seems turbulent everywhere in the domain at both Reynolds numbers.
These coherent elongated structures in the gap region can be seen also in Figure 6.5,
while in the centre of the sub-channel they are more isotropic. A consequence of these
flow fluctuations is an increase of the mixing between sub-channels, which is confirmed
by the alternating positive/negative pattern displayed by the velocity fluctuations w′

plotted in the middle plane section (Fig. 6.6).
A second feature of the flow is the secondary motion, which is visualised in Fig. 6.7.

Every elementary unit is characterised by a weak secondary vortex rotating from the
centre to the gap. The intensity of secondary motion is defined as the ratio between
the secondary velocity and the bulk velocity in the streamwise direction, or rather:∥∥∥−→V ∥∥∥

UB
≈
〈u′v′〉
U2
B

(6.5)

with
∥∥∥−→V ∥∥∥ being the module of the velocity of the secondary motion. In Trupp and Azad

(1975) and Vonka (1988b) the intensity of the secondary vortices is demonstrated to be
similar to the ratio between the shear stress and the square of the bulk velocity. Table
6.2 lists the maximum and the average intensity of the secondary motion using both
the definitions of Eq. (6.5). The intensity of the secondary motion for low Reynolds is
0.4% of the bulk velocity with a peak of more than 1%, whereas at high Reynolds the
intensity show a decrease of about 50%. It is interesting to notice that at low Reynolds
the approximation of the secondary motion intensity using the turbulent shear stress
is not in accordance with the proper definition. This approximation of the secondary
motion intensity seems to be verified only at high Reynolds as it is in all the experimental
works.

The comparison of the wall shear stress with the experiment of Krauss and Meyer
(1998) and the DNS of Ninokata et al. (2009) is reported in Fig. 6.8. The experiments
are at higher Reynolds number with respect to the ones of this study, but they are
reported in order to have an experimental reference. The profiles of the present work
are in agreement with the experimental data, while the DNS profiles shows a very steep
variation from the gap to the open region. Authors explain this strong variation as a
consequence of a relaminarization in the gap region, which disappears with the increase
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of the Reynolds number. An alternative explanation could be an underestimation of
the secondary motion. As already mentioned previously in the text linear EVM models
do not capture the secondary motion and wall shear stress profile has a large variation
from gap to open regions in comparison with what a non linear model predicts (see the
comparison of profiles in Rapley and Gosman (1986)). In an analogue way the DNS
at low Reynolds number might not capture (or highly underestimate) the secondary
motion, with the consequence of large variation of the shear stress. The present LES
at high Reynolds number confirms this, in fact the intensity of the secondary motion is
lower with respect to the low Reynolds number and the shear stress profile is moder-
ately sharper. The reason may be attributed to the coarser resolution in terms of wall
units with respect to the low Reynolds case. Indeed in Ninokata et al. (2009) the wall
shear profile becomes more flat as the P/D increase, whereas it is the opposite in the
experiment of Krauss and Meyer (1998). Figure 6.8 reports also the velocity profiles at
different azimuthal locations (α = 0o, 15o and 30o). If profiles are made dimensionless
with the local shear velocity, they collapse to each other according to:

u+ = 2.6 ln y+ + 5 (6.6)

which is in according with Krauss and Meyer (1998)6.

ReB = 6000 ReB = 13000

Parameter Max [%] Avg [%] Max [%] Avg [%]∥∥∥−→V ∥∥∥ /UB 1.41 0.41 0.85 0.235
〈u′v′〉 /U2

B 0.45 0.25 0.51 0.25

Table 6.2: Measures of the intensity of the secondary motion.
6The slope for the logarithmic layer given byKrauss and Meyer (1998) is moderately lower and equal

to 2.5 instead of the 2.6 found in this work.
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Figure 6.4: Instantaneous temperature field for the rod bundle test case. Iso-surfaces
at Re = 6000 (left) and contours of temperature at Re = 13000 (right) .

Figure 6.5: Velocity contours on the mid plane of the domain for the rod bundle test
case. ReB = 6000 (left) and ReB = 13000 (right). In order to visualize the structure
in the gap region the velocity in the streamwise direction is u = u− 〈u〉GAP .

Figure 6.6: Velocity fluctuations in the z direction in the mid plane for the rod bundle
test case. Re = 6000 (left) and Re = 13000 (right).
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Figure 6.7: Average secondary motion and streamwise velocity for rod bundle test case.
ReB = 6000 (left) and ReB = 13000 (right).
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6.3.3 Frequency analysis

In Krauss and Meyer (1998) flow pulsations are characterised by a constant Strouhal
number defined as:

St =
fD

〈u〉GAP
= 0.93 (6.7)

where f is the dominant frequency and 〈u〉GAP is the mean velocity in the gap region.
Using (6.7), for a constant viscosity and rod diameter, a linear relation between Reynolds
number and dominant frequency can be established, leading to following values:

f = 13Hz@ReB = 6000

f = 30Hz@ReB = 13000

f = 112Hz@ReB = 39000

(6.8)

In order to perform a frequency analysis several probes are placed in the domain and
their positions, in the reference cross-section, are visualized in Fig. 6.9. The spectra
are evaluated with two different methods: the FFT in the West and Welch’s method.
Welch’s method is based on the standard periodogram method and Bartlett’s method.
The signal is divided into several overlapping segments (eight in this case). Subsequently
every segment is windowed. The periodogram is applied in order to evaluate the discrete
Fourier transform on every window and an average over all the segment is performed.
The main advantage of Welch’s method is noise reduction due to imperfection of input
data. More details can be found in Welch (1967); Hayes (1996). The comparison
between the methods is reported in Fig. 6.10, where are plotted spectra for the reduced
geometry at P/D = 1.15 and P/D = 1.06 in the middle of the gap region. The tight
geometry is characterised by three dominant frequencies placed at 13, 28 and 42 Hz,
which correspond to Strouhal numbers of 0.93, 2 and 3 respectively. On the contrary
the wider P/D does not present any lower dominant frequency.

The first frequency is in accordance with the experimental value, while the two higher
are unexpected. Indeed the values are very close to the second and third harmonics.
The same problem affects also the big computational domain, and the values of the
dominant frequencies are consistent between the two geometries (Fig. 6.11). Moving
toward the centre of the sub-channel (points P4 and P5) the lower dominant frequency
tends to disappear, whereas the two higher frequencies remain. Only points extremely
close to the wall (P7, P8 and P9) do not possess any peaks. The same considerations
can be made for temperature fluctuations and figures can be found in the appendix (Fig.
C.1). The streamwise velocity fluctuation spectra are given in Fig. 6.12. In the gap
region the u′ spectrum is similar to the one presented above, but, in the centre of the
sub-channel, all the dominant frequencies tend to disappear. Spectra at high Reynolds
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number, for all the variables, display the same features described above and they are
attached in Appendix C (Figs. C.2, C.3 and C.4) . The first dominant frequency is equal
to 30Hz in accordance with the experimental value, and the two extra high frequencies
have Strouhal numbers similar to the ones found in the low Reynolds case.

Two-point correlations between inlet and middle of the domain show that stream-
wise velocity fluctuations are substantially uncorrelated, while azimuthal velocity fluc-
tuations are relatively highly correlated (see Figs. 6.13 and 6.14). This means there are
elongated structures in the gap region which are mainly acting in the azimuthal direc-
tion. This fact might explain the presence of the two higher extra dominant frequencies
and verification using longer domains should be carried out.

Two-point correlation between position 1 and 2 confirm the high level of correlation
for the azimuthal velocity fluctuations, while, surprisingly, streamwise velocity fluctu-
ations are relatively uncorrelated (see Figs. 6.15 and 6.16). This means that there is
no transfer of axial flow-rate between left and right channels, but rather periodic bulk
flow-rate across the periodic side boundaries of the domain (pressure gradient is set
to zero in this direction, but nevertheless one could have non zero and periodic mass
and momentum flow in this lateral direction). Conservation of momentum would imply
large-scales lateral body force exchanges between fluid and solid, potentially leading to
flow induced vibrations if the tubes were not infinitely rigid.

The same observations can be made for the two point correlation between points
P2 and P3 (Figs. C.5 and C.6 in appendix C).
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Figure 6.9: Probes location for the frequency analysis for the rod bundle test case.
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Figure 6.10: Comparison between two different methods to evaluate the power spectra
of w′ on point P1 (see Fig. 6.9). On the left FFT, on the right Welch.
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Figure 6.11: Spectra of the w′ velocity fluctuations at different locations (see Fig. 6.9)
at Re = 6000. Spectra are computed with the Welch’s method.
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Figure 6.12: Spectra of the u′ velocity fluctuations at two different locations (see Fig.
6.9) at Re = 6000. Spectra are computed with the Welch’s method.
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Figure 6.13: Two-point correlation for streamwise and azimuthal velocity fluctuations
between inlet and middle of the domain for the location P1 (see Fig. 6.9) at ReB = 6000.
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Figure 6.14: Two-point correlation for streamwise and azimuthal velocity fluctuations
between inlet and middle of the domain for the location P1 (see Fig. 6.9) at ReB =

13000.
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Figure 6.15: Two points correlation between point P1 and P2 (see Fig. 6.9) of the u′

and w′ velocity fluctuations at Re = 6000.
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Figure 6.16: Two points correlation between point P1 and P2 (see figure 6.9) of the u′

and w′ velocity fluctuations at Re = 13000.

6.3.4 Reynolds stresses and budgets

The effect of the flow fluctuations is clearly visible on some components of the Reynolds
stresses7. Fluctuations in the streamwise and wall normal directions display profiles
similar to the one of pipes and plane channels (see Fig. 6.17). Maximum of u,+rms is
located close to the wall as this is where it is generated by the sharp gradient of the
axial velocity (see Fig. 6.7), whereas an almost constant value is reached in the bulk of
the domain. Wall normal fluctuations increase slowly and monotonically up the central
region, as is the case in low Reynolds number channel flows.

7All stresses are made dimensionless using the friction velocity at the same azimuthal position.
Budgets are made dimensionless dividing by u4

τ and multiply by the kinematic viscosity ν.
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The particularity of this type of flow is expressed by fluctuations in the azimuthal
direction. In this case there are two maxima, of about the same intensity, one located
in the open region close to the wall, where there is the maximum of transfer of energy
from u,+rms to w,+rms by the pressure strain terms. The second peak of w,+rms, in the
middle of the gap region in contrast with the decrease of u,+rms, is clearly made of the
coherent structures discussed previously. The peculiarity of the stresses with at least one
component is in the azimuthal direction is also confirmed by Fig. 6.18, where 〈u′v′〉+,
〈u′w′〉+ and 〈v′w′〉+ are plotted. 〈u′w′〉+ and 〈v′w′〉+ present maxima in the gap region
then abruptly go to zero as necessary to respect the symmetries of the geometry and
Reynolds stress tensor.

On the other hand 〈u′v′〉+ corresponds to the main momentum transfer from axial
flow to the tube walls (creating drag or head losses). It is interesting to notice that the
maximum of 〈u′v′〉+ is about half of the one of 〈u′w′〉+, i.e. lateral transfer of axial
momentum is from the high speed central region to the slower gap region rather than
towards the wall.

The same considerations can be drawn for the Reynolds stresses of the high Reynolds
number case with the only exception that now the maxima 〈u′v′〉+ and 〈u′w′〉+ are now
of the same order (Figs. 6.19 and 6.20).

Figs. 6.21 and 6.22 present the budget of turbulent kinetic energy k. The production
is concentrated in the near wall region, in particular in the gap, and also the dissipation
follows the same trend. In contrast with usual channel flow budgets, the advection
is not negligible because of the presence of the secondary motion, but, in terms of
absolute values, it has a very minor role (30 times smaller than production) because of
the weak intensity of the secondary motion. Moreover the advection term plays a very
localized role close to wall at the middle of the open region where the colliding pair of
secondary eddies eject high turbulence from the wall to the centre. Viscous diffusion is
only important at the wall where it displays in a very rapid change from a maximum
at the wall to a minimum around. Turbulent and pressure diffusion are relatively
important in the gap region, where the turbulent transport shows its maximum. This
is not surprising as large values of triple velocity correlations are usually associated
with larger structures. The dissipation and the transport due to modelling were also
computed in the budget, but they were found to be negligible with respect to the others
terms and therefore they are not reported.

In the case of Reynolds stresses only the production and turbulent diffusion are
reported, because they show the most interesting features (see Figs. 6.23, 6.24 and
6.25). Production and turbulent transport of 〈u′u′〉 and 〈u′v′〉 do not show any peculiar
features and they resemble the ones already described for the turbulent kinetic energy.
Production of 〈u′w′〉 presents some unusual behaviour: it is mainly concentrated in the
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middle of gap region, away from the wall, and it has negative values, meaning that
stress and strain are not lined up. Negative production can be also noticed in 〈v′w′〉,
〈w′w′〉 and 〈v′v′〉. In particular the latter shows a rapid change from a negative to a
positive peak in the open region. Turbulent diffusion also exhibits compelling profiles.
For example 〈u′w′〉 has its absolute maximum in the gap region where flow pulsations
are stronger and a minimum where the secondary motion is stronger.

Budgets at the high Reynolds number case display very similar features, therefore
they are attached in Appendix C

Figure 6.17: Dimensionless normal stresses for the rod bundle test case at Re = 6000.
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Figure 6.18: Dimensionless shear stresses for the rod bundle test case at Re = 6000.

Figure 6.19: Dimensionless normal stresses for the rod bundle test case at Re = 13000.
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Figure 6.20: Dimensionless shear stresses for the rod bundle test case at Re = 13000.

Figure 6.21: Budget of turbulent kinetic energy k at Re = 6000: Production Pk,
dissipation εk and order of Zero.



CHAPTER 6. FUEL ROD BUNDLE 159

Figure 6.22: Budget of turbulent kinetic energy k at Re = 6000: Turbulent diffusion
T uk , viscous diffusion T

ν
k pressure diffusion T pk and advection.

Figure 6.23: Budget of 〈u′u′〉 and 〈u′v′〉 k at Re = 6000: Production P and Turbulent
diffusion T u.
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Figure 6.24: Budget of 〈u′w′〉 and 〈v′w′〉 k at Re = 6000: Production P and Turbulent
diffusion T u.

Figure 6.25: Budget of 〈v′v′〉 and 〈w′w′〉 k at Re = 6000: Production P and Turbulent
diffusion T u.
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6.3.5 Thermal field

This section reports the results for the thermal field in forced convection8. The Prandtl
number used is equal to 0.71 and two different types of boundary conditions (BC)
are employed: a constant wall heat flux (54W/m2 at Re = 6000 and 200W/m2 at
Re = 13000) and a constant wall temperature (300K at Re = 6000). The increase of
energy due to the wall heating is compensated by introducing a sink term sφ in the
energy equation of the system (2.1), which takes the following form:

sφ = −ρσuiδi1 (6.9)

where δ is the Kronecker delta, with 1 being the stream-wise direction, and σ = dTB/dx1

the bulk temperature variation along the stream-wise direction. The estimation of the
increment of bulk temperature is obtained from global enthalpy conservation, yielding:

σ =
qwSw
ṁcpLx1

(6.10)

where qw is the desired wall heat flux, Sw the wall heat surface, ṁ the mass flow rate,
cp the specific heat capacity at constant pressure and Lx1 the periodic length in the
stream-wise direction. A more exhaustive account about periodic boundary conditions
for temperature can be found in Utriainen and Sundén (2002); Rosaguti et al. (2006,
2007).

Fig. 6.26 reports the profiles for the Nusselt number9 and the wall heat flux. Pro-
files for the Nusselt number resemble the ones for the wall shear stress and the same
considerations can be made. The new point to notice is the comparison between profiles
obtained at Re=6,000 with the two different types of BC. The profile with imposed heat
flux has steeper variation moving from the gap to open region, where it is around 10%
larger than the profile with Dirichlet BC. The wall heat flux, in the case of Dirichlet
BC, increases moving from the gap to the open region, reaching an almost constant
value after α = 25o and with an average value over the entire angular direction equal
to 54W/m2 as in the constant heat flux case.

8The coefficient of volume expansion β is kept equal to zero, therefore the density is constant and
not a function of the temperature.

9The Nusselt number is defined as:

Nu =
hDh

λ

where Dh is the hydraulic diameter, λ the thermal conductivity and h = qw/(Tw−TB) the heat transfer
coefficient. In the case of Dirichlet BC the wall heat flux is varying as function of the azimuthal angle
α (see Fig. 6.26).
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The dimensionless temperature profiles match the following Log-law (see Fig. 6.27):
T+ = 2.5 ln y+ + 3.4 (6.11)

with T+ = (Tw − T ) /Tτ and Tτ = qw/(ρcpuτ ) the local friction temperature10. The
law is respected only when the scalar has a Neumann BC, whereas with a Dirichlet
BC temperature profiles do not collapse well. The experimental results of Krauss and
Meyer (1998) also report a non clear collapsing of the dimensionless temperature profiles.
Map of the dimensionless mean temperature for both types of BC is displayed in Fig.
6.28. Profiles have similar trends, but the maximum dimensionless temperature for
the Neumann BC is around 16, whereas for the constant wall temperature it is above
20. Contours of the temperature variance and heat fluxes at Re = 6000, employing
a constant heat flux at the wall, are plotted in Fig. 6.29. Temperature fluctuations
have a maximum in the gap region and a minimum in the centre of the sub-channel.
Heat fluxes 〈u′θ′〉+, 〈v′θ′〉+ and 〈w′θ′〉+ mirror the stresses u,+rms, 〈u′v′〉+ and 〈u′w′〉+

respectively. Temperature variance for the Dirichlet BC is very similar in both trends
and values at the previous (constant wall heat flux) with the only exception of the
wall value (see Fig. 6.30): in the Dirichlet BC case is going to zero, whereas in the
Neumann case the wall value is around 1.7. Heat fluxes displays very similar trends
with a variation of peak values at most equal to 20%. The only exception is display
by 〈u′θ′〉+ in the gap region, which is flat in the case of Dirichlet BC, whereas it has
a peak around y+ = 15 in the case of Neumann BC. The results at high Reynolds are
presented in Fig. 6.31. Temperature variance follows the one described for the same
BC at lower Reynolds number, with the maximum located in the gap region.

10In the case of Dirichlet BC also the wall heat flux is varying as function of the circumferential
direction and this is taken into account in the evaluation of Tτ . The heat flux is evaluated using the
Fourier’s law:

qw = λ
∂ 〈T 〉
∂r

with r being the wall normal direction.
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Figure 6.28: Comparison of of dimensionless temperature at Re = 6000 between Neu-
mann and Dirichlet BC for the rod bundle.

Figure 6.29: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 using
a constant heat flux for the rod bundle.
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Figure 6.30: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 using
a constant wall temperature for the rod bundle test case.

Figure 6.31: Dimensionless temperature fluctuations and heat fluxes at Re = 13000

using a constant wall heat flux for the rod bundle test case.
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Effect of Prandtl number variation

This section presents different thermal fields as a function of the Prandtl number, which
varies from 0.01 to 10. The related dimensionless temperature T+ for the first layer
of cells has a wide variation according to the thickness of the thermal boundary layer.
This analysis is carried imposing a constant wall temperature (Dirichlet BC). In the
case of Pr = 0.01 T+ is varying from 0.008 in the gap to 0.033 in the open, whereas
for Pr = 10 T+ varies from 7.8 in the gap to 10.5 in the open. At low Pr number,
temperature slope in the wall normal direction is smoothed gradually, whereas at high
Pr temperature gradient is mainly concentrated in the near wall region (see Fig. 6.32).
Indeed profiles present different trends depending on the Prandtl number: the lower the
Prandtl is, the more the temperature profiles are different from one azimuthal location
to the next, whereas at high Pr they tend to collapse. This fact might be explained with
the variation, as function of the angular direction, of the local friction temperature Tτ..
At low Pr the wall heat flux qw has large variation in the angular direction, variation
that decreases as the Pr number increases (see Fig. 6.33) . This makes the friction
temperature to have a substantial change from the gap to the open region in case of
low Pr, whereas it is more uniform at high Pr. The average Nusselt number for the
different scalars is reported in Table 6.3.

Re BC Pr 〈Nu〉 Re BC Pr 〈Nu〉
6000 Neu. 0.71 20.5 6000 Dir 0.01 6.10
6000 Dir 0.71 20.1 6000 Dir 10.0 56.3
6000 Dir 1.00 23.0 13000 Neu 0.71 37.6
6000 Dir 0.1 9.30

Table 6.3: Average Nusselt as function of Reynolds number Prandtl number and different
BC for the rod bundle test case.

Figures 6.34 to 6.37 report contours of temperature variance and heat fluxes as
function of the increase of the Prandtl number. Peak values, both positive and negative,
increase with the rise of the Prandtl number. For example the maximum value of θ,+rms
moves from 0.2 at Pr = 0.01 to 14 at Pr = 10. At low Pr fluctuations and heat
fluxes are concentrated toward the centre of the sub-channel, in particular temperature
fluctuations are close to zero in the gap region (Pr = 0.01 see Fig. 6.34). As the Pr
number increases heat fluxes become closer to ones described in the above section. At
very high Pr number the variation of temperature fluctuations is mainly concentrated
at the near wall region, then uniform throughout the domain.
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Figure 6.34: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 with
Pr = 0.01 for the rod bundle test case.

Figure 6.35: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 with
Pr = 0.10 for the rod bundle test case.
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Figure 6.36: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 with
Pr = 1.00 for the rod bundle test case.

Figure 6.37: Dimensionless temperature fluctuations and heat fluxes at Re = 6000 with
Pr = 10.0 for the rod bundle test case.
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6.3.6 Scalar imbalance

A very characteristic concern in nuclear applications is when some imbalances, for ex-
ample of temperature, are present in the cross section of a fuel rod bundle. The main
interest is the variation of the fluxes in order to re-establish a uniform configuration.
For this purpose a specific source term is designed to be zero at the wall and edges
of a sub-channel, and maximum at the centre (see Fig. 6.38). This makes the bulk
contribution of the source term, to the scalar balance, equal to zero, and correspond to
a situation where a sub-channel, with positive source in the centre, is surrounded by
negative sources or sink and vice-versa. This source term being anti-symmetric with
respect to the symmetry line still allows generating fluxes in the gap region. This con-
figuration is unlike to happen, but can provide some useful insights about heat fluxes
variation. Moreover the influence of flow pulsations, on the inter-channels mixing, can
be also investigated.

Results are shown in Figs. 6.39 and 6.40. In the first case a constant heat flux at
the wall is imposed and equal to 54W/m2, in the second an adiabatic BC is instead
employed.

The comparison between Fig. 6.39 with Fig. 6.40 shows some interesting features
of the new thermal field. Despite the fact that the maximum of the additional source
term is at most 15% of the global source term, temperature fluctuations are changing
from the range 1.7− 3.2 to 1.4− 6.5. The peak is located in the gap region toward the
channel characterized by the positive part of the additional source term. Also 〈u′θ′〉+

has a large degree of change: the maximum value has an increase of about 30% and it
is located in the gap region, whereas, in the homogeneous case, it is close to the wall in
the open region. The effect of the flow pulsations, i.e. enhancing the mixing between
the sub-channels, is clear from 〈w′θ′〉+. The flux is clearly showing a path from the cold
to the hot region (left to right).

The case with adiabatic wall confirms the results described above (Fig. 6.40). Re-
sults are made dimensionless using the friction temperature Tτ from the case with heated
wall, because, by definition, the friction temperature of the case is equal to zero11. In
this case the scalar variance is symmetric, whereas the fluxes are anti-symmetric. Fluxes
are active in particular in the gap region as sign of an intense activity of exchange be-
tween sub-channels. It is interesting to notice that the temperature variation, with
respect to the bulk, is of the order of 1%, but this produces temperature fluctuations
from four to five times larger than correspondent homogeneous case with constant wall
heat flux.

11In this case the wall heat flux qW = 0, therefore also the friction temperature Tτ is equal to zero.
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Figure 6.38: Contours of the source term used for the imbalance of scalar in the rod
bundle test case. The amplitude is divided by σ, which represent the variation of bulk
temperature in the stream-wise direction (Eq. (6.10)).

Figure 6.39: Dimensionless temperature (top left), variance (top right), 〈u′θ′〉+ (bottom
left), 〈v′θ′〉+ (bottom right) for the case of scalar imbalance with constant wall heat flux
for the rod bundle test case.
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Figure 6.40: Dimensionless temperature (top left), variance (top right), 〈u′θ′〉+ (bottom
left), 〈v′θ′〉+ (bottom right) for the case of scalar imbalance with adiabatic wall for the
rod bundle test case. Because no heat flux is applied at the wall and the consequent
shear temperature is equal to zero the Tτ of the case with constant heat flux is used to
make the quantities dimensionless.

6.4 Conclusions

In this chapter the flow inside a fuel rod bundle is investigated using wall resolved
LES. It is shown that more than 80% of the total energy, everywhere in the domain, is
resolved, which is a necessary, but possibly not sufficient, condition for reliable results.
However the sum of the terms in budget of the kinetic energy is close enough to zero,
on a scale comparable with the magnitude of the production or dissipation terms, and
all symmetries are well respected, which indicates sufficient statistical sampling even
for large and rare events (particularly reflected by turbulent transport terms).

The secondary motion is captured at both Reynolds numbers and its intensity is
equal to 0.41% the bulk velocity at Re = 6, 000 and 0.24% at Re = 13, 000. This
last intensity seems low and might be underestimated due to the cell stretching in the
stream-wise direction. The importance of the secondary motion, in the prediction of the
wall shear stress, is a well-known fact, but not an easy feature to reproduce because of
the extreme weakness of the vortices. All shear stress coefficient profiles are comparable
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with the experimental results although only qualitatively since the Reynolds number is
sensibly higher. This comparison is difficult because flows with weak secondary motion,
can be highly sensitive to the variation of the Reynolds number. The comparison with
the DNS found in the literature is instead not very satisfactory. The DNS is showing a
very steep variation from the gap to the open region, which is surprising. Such profile
for the shear stress was seen in literature only when a RANS eddy viscosity model
was employed, which does not capture the secondary motion. Indeed the DNS results
show some contradictions with respect to the experimental results. For example the
DNS reports flatter profiles of the wall shear stress as the P/D increases, whereas the
experiments show an opposite trend.

Non-dimensional velocity profiles are collapsing on each other at different azimuthal
locations and on the logarithmic law is in accordance with the experiments of Krauss
and Meyer (1998).

The second important feature of the flow is the so-called flow pulsations, which are
clearly captured in this work. Three dominant frequencies are found in the spectra for
all Reynolds numbers, and their Strouhal number is consistent across all runs. The
first dominant frequency is in agreement with the value given by the experiment of
Krauss and Meyer (1998), whereas the two higher values are not reported. The extra
frequency might be attributed to the rather limited cross section of the domain, but
the bigger computational domain is also exhibiting the same phenomenon. Frequency
analysis shows that the azimuthal velocity between inlet and middle of the geometry is
still highly correlated and verification against even longer geometry would need to be
tested.

The effect of the flow pulsations largely modifies the turbulence quantities, as it is
clearly visible from the Reynolds stresses profiles. Reynolds stresses with at least one
component in the azimuthal direction display unusual behaviour: they are predomi-
nantly active in the gap region and their peak value is located away from the wall. The
intensity of 〈u′w′〉+ is of the same order as or larger than the mainstream-to-wall shear
stress 〈u′v′〉+. Budgets of turbulent kinetic energy and Reynolds stresses confirm the
“turbulent activity” of the gap region; in particular turbulent transport in the area is
comparable with the one near the wall in the open region. In the case of 〈u′w′〉 and
〈v′w′〉 the production is mainly concentrated in the gap region and not in the open
region close to the wall as for the other components.

Temperature profiles, when made dimensionless, also collapse on the ”Log-law”, but
only in the case of a Neumann BC (imposed wall heat flux). The difference of BC
produces also differences in the Nusselt profiles, in particular in the open region, for
heat fluxes and temperature variance. The change on BC affects mainly the peak values
of the heat fluxes, whereas profiles present similar features. Temperature variance also
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presents very similar trends, with the exception of the wall values, which go to zero in
the case of Dirichlet BC and tend to a constant value in the case of Neumann BC.

The variation of the Prandtl number has also a large impact on the thermal field.
As the Prandtl number increases temperature profiles tend to collapse, whereas low
values display a large degree of change as the azimuthal angle increases. The same
variation is also shown by the Nusselt profiles. Fluxes maxima tend to move toward
the centre of the channel as the Prandtl decreases and peak values increase with the
Prandtl. Temperature variance has a vast dependency on the Prandtl, for the present
low Re numbers. At low value it tends to zero in the gap region and maximum value is
located at about α = 25o, toward the centre of the channel. At high Prandtl number
the maximum is located close to the wall, for all the azimuthal locations, and a uniform
value is found in most of the domain.

In the case of non-homogeneous scalar distribution, heat fluxes show an increase of
the mixing across the sub-channels, in particular peak values, in the gap region, show
a large increase.



Chapter 7

Conclusions and Future work

This thesis has described the application of LES to test cases of nuclear interest under
the framework of a finite volume unstructured code. The work can be divided into three
main topics: the influence of the mesh quality on a LES calculation; the application
of LES to flow in fuel rod bundles; the development of a Hybrid RANS/LES model
with the addition of heat transfer modelling. This PhD thesis has been conducted
in the framework of the KNOO project (Keeping the Nuclear Option Open), a five-
year initiative sponsored by EPSRC in order to enhance research in the nuclear related
applications.

7.1 Major contributions

Application of unstructured mesh to LES

The first main objective was to provide reliable data for RANS validation using mainly
LES methodology. Because of the constraint imposed by solid boundaries, mesh require-
ments for a wall resolved LES tend toward the resolution required by a DNS calculation,
rendering the procedure prohibitively expensive. One option to alleviate the cost of near
wall refinements is to use embedded meshes. The use of hanging nodes introduces some
non-orthogonalities in the mesh, which results in a decrease of the conservation proper-
ties of the code (see Chapters 4) and introduces spurious oscillations in the solution (see
Chapter 5). In the inviscid test case (Taylor-Green vortices), conservation properties
with respect to a conformal structured mesh are recovered for unstructured meshes,
reducing the level of non-orthogonalities, and this has been achieved by using specific
sub-patterns at the interface between coarse and refined mesh areas (i.e. a 3 − 4 sub-
pattern). On the other hand in 3D fully turbulent flow (channel flow), the best results
are obtained from embedded meshes with worst orthogonality (TAYLOR mesh). The

175
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RR075 grid displays an oscillatory behaviour of the Reynolds stresses and in particu-
lar of the shear stress 〈u′v′〉+. In addition pressure transfer in 〈v′v′〉+ and turbulent
diffusion in 〈u′u′〉+ budgets also display oscillatory behaviour. In both the test cases
considered the spurious oscillation problem could be ascribed to the velocity fluctua-
tions in the wall normal direction v′. The channel flow performed on the TAYLOR mesh
shows that averaging in time and space, along homogeneous directions, may result in an
error cancellation, but this positive effect is not always present and is highly dependent
from the mesh configuration. The use of locally blended Up-Wind convective scheme,
activated when a slope test on the gradient fails (see Section 3.2.2), does not alleviate
the problem. On the other hand the modified convective scheme helps to maintain a
stable solution and avoid unphysical phenomena (i.e. increase of the total kinetic energy
in the Taylor-Green vortices performed with very skewed polyhedral meshes).

Fuel Rod Bundles

The second objective of this work was to build a reliable data-set for RANS valida-
tion using LES. In order to minimize the uncertainty in the use of embedded mesh
refinements, the test case of the fuel rod bundle has been investigated using a struc-
tured conformal mesh. The flow is characterised by so-called flow pulsations: coherent
structures flowing in the streamwise direction are observed in the gap region. The
phenomenon is characterised by a constant Strouhal number and numerical results pre-
sented herein agree well with what is reported in experiments. Spectral analysis reveals
two unexpected higher frequencies, with Strouhal numbers equal to 2 and 3 respectively.
In the first instance the origin of these two unexpected frequencies was attributed to
the small extension of the cross section, but comparison using a larger domain reveals
the same phenomenon. Two-point correlations show that azimuthal velocity between
“inlet” and centre of the domain remain highly correlated and verifications employing a
longer domain in the streamwise direction are ongoing.

The effect of the flow pulsations largely modifies the Reynolds stresses with at least
one component in the azimuthal direction: they are predominantly active in the gap
region and their peak value is located away from the wall.

Results show the importance of the capture of the secondary motion in order to
predict, with high accuracy, the wall shear stress. This is not an easy task because the
secondary motion intensity is only around 0.4% of the bulk velocity.

Temperature profiles, when made dimensionless, collapse on the “Log-law”, but only
in the case of a Neumann BC (imposed wall heat flux). The difference of boundary
conditions produces also differences in the Nusselt number profiles, in particular in the
open region, heat fluxes and temperature variance. The change of boundary conditions
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affects mainly the peak values of the heat fluxes, whereas profiles present similar fea-
tures. Temperature variance also presents very similar trends, with the exception of the
wall values, which go to zero in the case of Dirichlet BC and tend to a constant value
in the case of Neumann BC.

The variation of the Prandtl number has also a large impact on the thermal field. As
the Prandtl number increases temperature, profiles tend to collapse, whereas low values
of the Prandtl number display a large degree of change as the azimuthal angle increases.
The same variation is also shown by the Nusselt number profiles. Flux apexes tend to
move toward the centre of the channel as the Prandtl number decreases and peak values
increase with the Prandtl number. Temperature variance has a large dependency on
the Prandtl number, for the present low Reynolds numbers.

In the case of non-homogeneous scalar distribution heat fluxes show an increase of
the mixing across the sub-channels, in particular peak values, in the gap region.

Hybrid RANS/LES

As previously noted, mesh requirements dictated by the near wall structures, push up
the necessary grid resolution for LES towards that of DNS, making impractical the sim-
ulation of high Reynolds number cases. A second possibility to alleviate this constraint
is carried out with the introduction of a Hybrid RANS/LES turbulence model. The
principal achievement of this thesis is the introduction, in the Hybrid framework, of
heat transfer modelling. Indeed the model permits the use not only of coarse meshes,
but also a lesser growth rate of the mesh size with the Reynolds number (i.e. propor-
tional to Re1.14 instead of the usual Re1.8 for LES). On such coarse meshes the model
displays good agreement with DNS of mean quantities and Reynolds stresses, while on
the other hand heat fluxes and temperature variance are moderately underestimated in
the near wall region.

A study on the influence of mesh resolution is also carried out, with the main
outcome that in case of fine meshes, the model produces an overestimation of the tur-
bulence, which largely degrades the accuracy of results, due to a double counting of
the Reynolds stresses in the near wall region. The blending function is unable to suffi-
ciently reduce the modelled RANS contribution in the near wall region, even where the
mesh resolution is adequately small to resolve the very small scales (i.e. a quasi-DNS).
Some simple modifications of the blending function are suggested, but they have been
proved ineffective. Indeed the definition of the blending is rather arbitrary based on
past experiences.
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7.2 Future work

Use of unstructured mesh for LES

The use of a Green-Gauss reconstruction for the gradient is a necessary but not suffi-
cient condition to have accurate evaluation of the gradient and decrease the negative
effects of the non-orthogonality. A possible solution to improve the accuracy of the cal-
culation, without moving to a staggered arrangement or introducing penalty methods is
presented in Moulinec and Wesseling (2000), where auxiliary points are created on the
line perpendicular to the face and passing through the face centre. The method permits
to reconstruct locally the orthogonality and also to avoid cell stretching. The solution is
subsequently interpolated from cell centres to the auxiliary points, using for example a
bi-linear interpolation. Here, the main problem lies in the creation of a suitable stencil
for the extra points, i.e. the cell centres of all extended neighbours1 could be used.
The method would be expected to be beneficial for completely unstructured meshes, in
particular in the case of polyhedral meshes. The implementation of this methodology
under the framework of Code_Saturne is under investigation.

Hybrid RANS/LES

Several aspects of the Hybrid RANS/LES model can be improved in order to correct
some of the deficiencies reported.

• The ϕ − f model used for the anisotropic contribution (see Section A.1.1) can
be replaced by the ϕ − α model of Billard et al. (2008) (see Section A.1.2). The
main advantage is the introduction of the blending parameter α, evaluated using
an elliptic equation. In the formulation of this model α is used to spilt the elliptic
relaxation factor f into homogeneous and near wall components. In the context
of the Hybrid RANS/LES approach α can be used as base parameter in order
to produce a new definition of the blending function, thereby avoiding the use
of arbitrary, a priori formulation. A second advantage is that a priori RANS
calculations, carried out with the ϕ − α model, can be used to provide a rough
estimation of the blending function. Consequently the mesh generation stage is
facilitated and the double counting of the Reynolds stresses can be avoided by
stretching the grid in areas where RANS is performed.

• Another modus operandi to approach the blending between RANS and LES would
be the introduction of a subgrid-scale energy transport model (kSGS) in order to
provide a mesh independent blending function. For instance the switch from
RANS to LES will be allowed only when kSGS < 20% kRANS (i.e. the resolved

1Extended neighbours: cells which are sharing at least one cell vertex, even if not sharing a face.
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turbulent kinetic energy is more than 80% of the total). A similar definition of
blending parameter as ratio between resolved and total turbulent kinetic energy,
but inserted in the framework of LES seen as a Hybrid DNS/RANS filter, is
presented in Germano and Sagaut (2006).

• In the actual formulation of the Hybrid model the RANS velocity field is obtained
from a running average applied to the instantaneous field. This imposes a mesh
constraint in the wall normal direction because the RANS model requires the first
cell centre to be placed at y+ ≈ 1. This imposes the usage of an expansion ra-
tio in the wall normal direction in order to cluster cells close to the wall. As a
consequence cells away from the wall, where mainly LES is performed, may not
be isotropic. Two very different and opposing constraints to the mesh generation
can therefore be identified: the inherent need for isotropic cells in the LES part of
the domain, and the near wall refinement, in the wall normal direction required
by the low RANS model. A possible solution to simultaneously meets both re-
quirements could be the usage of over-set or CHIMERA grids (see Section 3.1).
Two separated velocity fields can be employed and interpolation is used to pass
information between domains. Each domain has its own mesh, which is optimized
in order to meet the different requirements of the different models. The domain
overlapping can be total or only partial. From a modelling point of view the
former is preferable because the two domains share only physical boundaries. In
the latter interfaces must also be the reconstruction of the fluctuations, moving
from the RANS to the LES, is mandatory. This latter configuration might be
unavoidable in case of very complex geometries like in the test case presented in
Appendix D.

• The Smagorinsky model, used for the isotropic part of the subgrid stress tensor,
can be replaced by Germano’s dynamic model (Germano et al. (1991)). The model
would expect to benefit from the advantages of this approach (see Section 2.3.3.2)
and the same procedure could also be applied to the heat transfer modelling as
presented in Moin et al. (1991), so as to make the turbulent Prandtl number for
the LES part Prt,γ function of time and space.

• Improvement of the RANS heat transfer modelling could also be implemented; one
very effective solution is presented by Hanjalic et al. (1996), where the turbulent
heat fluxes are modelled using an algebraic expression. Results show a significant
improvement of the results with respect to a simple gradient diffusion hypothesis.
The model is incorporated into an elliptic relaxation framework in Kenjeres et al.
(2005) using a five equations k − ε− v2 − f − θ2 model.
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Appendix A

RANS formulation

Since the full resolution of the Navier-Stokes equations requires the consideration of a
vast range of length and time scales, RANS (Reynolds Averaged Navier-Stokes) equa-
tions are used to limit the computational cost. Reynolds decomposition splits quantities
into a mean component, which is time-averaged, and fluctuating term, which represents
the effects of the turbulence as: 

p = 〈p〉+ p′

ui = 〈ui〉+ u′i
θ = 〈θ〉+ θ′

(A.1)

The Navier-Stokes equations can be consequently rewritten as

∂ 〈ui〉
∂xi

= sm

∂ (〈ui〉)
∂t

+
∂ 〈uj〉 〈ui〉

∂xj
= −

1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj
(〈τij〉) + si

∂ 〈θ〉
∂t

+
∂ 〈uj〉 〈θ〉
∂xj

=
∂

∂xj

(
Γ
∂ 〈θ〉
∂xj

+
〈
u′jθ
′
〉) (A.2)

where 〈τij〉 = ν

(
2 〈Sij〉 −

2

3

∂ 〈uk〉
∂xk

δij

)
−
〈
u′iu
′
j

〉
. As in the LES formulation also here

there is the presence of extra-terms that represent the influence of the fluctuating motion
on the mean part and they are called Reynolds stresses

〈
u′iu
′
j

〉
and turbulent heat fluxes〈

u′jθ
′
〉
. Those terms have to be related with mean quantities and in case of an eddy

viscosity model and gradient diffusion hypothesis their constitutive relations are:
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−
〈
u′iu
′
j

〉
= νT

[
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

]
−

2

3
kδij

〈
u′jh
′
〉

= −
νT

Ptt

∂ 〈θ〉
∂xj

(A.3)

where k represents the turbulent kinetic energy, νT is the turbulent viscosity and Prt
is the turbulent Prandtl number.

In this chapter the ϕ − f of Laurence et al. (2005) and the ϕ − α of Billard et al.
(2008) are described. These two models are cited several times in this work, and they
are strongly connected with the Hybrid RANS-LES model of section 2.4.

A.1 Turbulence models

The v2 − f of Durbin (1991) is an interesting turbulence model that, since its ap-
pearance, has raised high attention in both academia and industry. In this model the
introduction of a transport equation for normal fluctuations v2 permits to have a better
modelling of the flow in the near wall region. The second peculiarity of this model is
the introduction of the elliptic relaxation function f (obtained solving a Helmholtz-type
elliptic equation), in order to take into account non-local effects in the pressure/strain-
rate correlation. The v2 − f is a k − ε based model where the transport equations for
turbulent kinetic energy and for the dissipation rate are:

Dk

Dt
= P − ε+

∂

∂xj

[(
ν +

νt

σk

)
∂k

∂xj

]
(A.4)

Dε

Dt
=
Cε1P − Cε2ε

τ
+

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
(A.5)

where P is the production, which includes also the buoyancy part, and νt = CµϕkT is
the turbulent viscosity, with ϕ = v2/k. The constants depend on the model formulation
and are reported in Table A.1 for the ϕ− f and Table A.2 for ϕ− α.

Despite its phisically realistic formulation the model has some numerical drawbacks
due to the stiffness of the boundary condition for the relaxation function f . The model
is very sensitive to the near-wall mesh, in particular when the y+ of the first point is
very small. The problem could be avoided by coupling the solution of v2 and f , but
most of the codes are segregated, in order to require less computational power. To
avoid these problems alternative formulations of the v2 and f equations were proposed
in Durbin (1995); F.S. Lien (1996), but with less satisfactory results in comparison with
the original formulation.

The new formulations, described herein, are based on a change of variable, solving a
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new transport equation for v2/k instead of the usual v2. This reformulation permits a
more convenient boundary condition, because f is going to 0 at the wall with y2 instead
than y4 of the original formulation, improving the stability of the model. The second
advantage is the absence of ε in the transport equation of v2/k. Consequently it is
decoupled from the dissipation equation, increasing the robustness.

A.1.1 The ϕ− f models

The model is presented in Laurence et al. (2005) and, with respect to the original
formulation, presents two changes of variables:

ϕ = v2/k

f = f −
2ν∇ϕ∇k

k
− ν∇2ϕ

(A.6)

The transport equations for ϕ and the elliptic for f are:


Dϕ

Dt
= f + Pk

ϕ
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2

k
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σk

)
∂ϕ

∂xk

]

L2
∂2f

∂x2
k
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1
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(C1 − 1)

[
ϕ−

2

3

]
− C2

Pk
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−

2ν

k

∂ϕ

∂xk
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∂xk
− ν

∂2ϕ

∂x2
k

(A.7)

where L = CL max

min

(
k3/2

ε
,

k3/2

√
6Cµv2S

)
, Cη

(
ν3

ε

)1/4
 is the turbulent length scale

and T = max

k
ε
, CT

√
ν

ε

 the turbulent time scale. The boundary conditions for the

models are 

kw = 0

εw = limy→0

2νk

y2

ϕw = 0

fw = 0

(A.8)

and in Table A.1 are reported the coefficients used in the model. This model is used
in the Hybrid RANS/LES (Sec. 2.4) for the anisotropic contribution of the modelled
stresses.
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Cµ Cε1 Cε2 σε σk A C1 C2 CL Cη

0.22 1.4

1 +A1

√
1

ϕ

 1.90 1.30 1.00 0.06 3.40 1.80 0.266 100

Table A.1: Coefficients used for the Manchester ϕ− f

A.1.2 The ϕ− α models

The model is presented in Billard et al. (2008) and with respect to the ϕ − f is based
on the concept of elliptic blending introduced by Thielen et al. (2005). The relaxation
function f is split into two parts: a homogeneous (fh) and a near wall (fw). These two
are blended together through the blending coefficient α inside the transport equation
for ϕ. The elliptic equation, resolved for the coefficient α, is:L

2∆α− α = −1

lim
y→0

α = 0
(A.9)

Using the α blending parameter and decomposing f in homogeneous and near wall
parts, the transport equation for ϕ becomes:



Dϕ

Dt
= (1− αp)

[
−ϕ

ε

k
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︸ ︷︷ ︸
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+αpfh − P
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∂xk
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σϕ
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∂ϕ

∂xk

]

fh = −
1

T

(
C1 − 1− C2

P

ε

)(
ϕ−

2

3

)
(A.10)

where the different coefficients are listed in Tables A.2, A.3 and A.4.

Cε1 Cε1 CA1 Cε2 σk σε νt Cµ

1.44

1 + CA1 (1− αp)

√
1

ϕ

 1.44 0.04 1.83 1 1.22 CµϕkT 0.22

Table A.2: Constants of the ϕ− α model: k and ε equations

T CT L CL Cη

max

k
ε
, CT

√
ν

ε

 6 CL max

k3/2

ε
, Cη

(
ν3

ε

)1/4
 0.161 90

Table A.3: Constants of the ϕ− α model: scales
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C1 C2 σϕ p

1.7 1.2 1 3

Table A.4: Constants of the ϕ− α model: ϕ equation



Appendix B

Channel flow

This appendix reports figures, which are not included into Chapter 5. Fig. B.1 dispays
the results for the RR075 mesh using the commercial CFD software Star-CD. The results
are similar to the ones obtained with Code_Saturne demonstrating that the problem of
the spurious oscillation comes from the mesh strategy employed.
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Figure B.1: LES of channel flow: verification of the spurious oscillation on the mesh
RR075 with STAR-CD. Mean velocity (top left), shear stress (top right), normal stresses
(bottom left) and their reduced counterparts (bottom right).
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Slope test for the CD scheme.

Figure B.2: Average counting of the slope test failure in the streamwise plane for the
u velocity component. The cut plane is located in the middle of the domain and the
average is performed over 20000 iterations (2 s of physical time). The results are plotted
on the cell faces. The amount of UW is equal to 2%.

Figure B.3: Average counting of the slope test failure in the streamwise plane for the
v velocity component. The cut plane is located in the middle of the domain and the
average is performed over 20000 iterations (2 s of physical time). The results are plotted
on the cell faces. The amount of UW is equal to 2%.
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Figure B.4: Average counting of the slope test failure in the streamwise for the w velocity
component. The cut plane is located in the middle of the domain and the average is
performed over 20000 iterations (2 s of physical time). The results are plotted on the
cell faces. The amount of UW is equal to 2%.

B.1 LES budgets.

This section presents the equations used for the evaluation of budgets for the turbulent
kinetic energy k and for the Reynolds stresses

〈
u′iu
′
j

〉
. The budget for the turbulent

kinetic energy k can be written as follow:

Dk

Dt
=
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u′iu
′
j
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︸ ︷︷ ︸

P

− 2ν

〈
∂u′i
∂xj

∂u′j
∂xj

〉
︸ ︷︷ ︸

ε

− 1

ρ

〈
u′i
∂p′

∂xi

〉
︸ ︷︷ ︸

T p

− ν
〈
∂2u′iu

′
j

∂x2
j

〉
︸ ︷︷ ︸

T ν

−
〈
∂u′iu

′
iu
′
j

∂xj

〉
︸ ︷︷ ︸

Tu

+

〈
∂

∂xk

(
uiνt

(
∂ui
∂xk

+
∂uk
∂xi

))〉
+

〈
νt

(
∂ui
∂xk

+
∂uk
∂xi

)
∂ui
∂xk

〉
︸ ︷︷ ︸

Model

Where P is the production, ε the dissipation, T p the velocity-pressure transfer, T ν the
transport by molecular diffusion, T u the transport by convection. The budget contain
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also the contribution form the model, which is used only in the case of the fuel rod
bundle (see Chapter 6). More considerations about modelling effects in conjunction
with different mesh types can be found in Howard and Addad (2009). In the case of
Reynolds stresses budgets becomes:

D
〈
u′iu
′
j

〉
Dt

=
〈
u′iu
′
k

〉〈∂uj
∂xk

〉
+
〈
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′
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〉
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P

− 2ν
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︸ ︷︷ ︸

ε

− 1

ρ
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∂p′

∂xj
+ u′j

∂p′

∂xi

〉
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+ ν
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j

∂x2
k
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T ν

−
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∂u′iu

′
ju
′
k

∂xk

〉
︸ ︷︷ ︸

Tu

where Π is the velocity pressure transfer and the conventional summation on the index
apply only on k. In this case the model is not considered for any test case considered
in this work.
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Figure B.5: Budget of w′w′ for the Taylor mesh: P production, T u turbulent transport,
Π velocity-pressure transfer, T ν viscous transport, ε dissipation. Bullets points are DNS
data, continuous lines LES.
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Figure B.6: Budget of w′w′ for the RR075 mesh: P production, T u turbulent transport,
Π velocity-pressure transfer, T ν viscous transport, ε dissipation. Bullets points are DNS
data, continuous lines LES.



Appendix C

Figures Rod Bundle

This chapter presents spectra at Re = 13000 for the fuel rod bundle test case (see
Chapter 6). The spectra are confirming the observation made at low Reynolds number
(Re = 6000), in particular the Strouhal numbers for the three dominant frequencies are
0.93, 2 and 3.
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Figure C.1: Spectra of the θ′ temperature fluctuations at two different locations (see
figure 6.9) at Re = 6000. Spectra are computed with the Welch’s method.
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Figure C.2: Spectra of the w′ velocity fluctuations at different locations (see Fig. 6.9)
at Re = 13000. Spectra are computed with the Welch’s method.

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

f [Hz]

S
p
e
c
tr

a
(θ

, )

P2

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

f [Hz]

S
p
e
c
tr

a
(θ

, )

P4

f
1
 =30.6

f
2
 =63.8

f
3
 =95.7

Figure C.3: Spectra of the θ′ temperature fluctuations at two different locations (see
Fig. 6.9) at Re = 13000. Spectra are computed with the Welch’s method.
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Figure C.4: Spectra of the u′ velocity fluctuations at two different locations (see Fig.
6.9) at Re = 13000. Spectra are computed with the Welch’s method.
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Figure C.5: Two points correlation between point P2 and P3 (see Fig. 6.9) of the u′

and w′ velocity fluctuations at Re = 6000.
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Figure C.6: Two points correlation between point P2 and P3 (see Fig. 6.9) of the u′

and w′ velocity fluctuations at Re = 13000.



Appendix D

Wire wrapped fuel rod bundle

D.1 Introduction

Fast reactors with liquid metal coolant have recently received a renewed interest due
to a more efficient usage of the primary uranium resources, and they are one of the
proposals for the Generation IV reactors. Fuel bundles of fast reactor are arranged
into a triangular configuration and pins are wrapped with wire spacer, which follows a
helical pattern around the rod axis. The primary reason of the wire is to avoid collision
between adjacent pins. Moreover the presence of the wire is also reducing vibrations
and avoiding the trapping of the liquid metal coolant (in general sodium). From the
thermal-hydraulic point of view the wire is creating a very complex secondary motion
enhancing mixing between sub-channels. From a historical point of view the effect of
the wire is investigated via experimental correlations, which provide the friction factor
as function of geometrical and hydraulic parameters. A first example is provided in
Novendstern (1972), where the usual Blasius formula, for pipe flow, is corrected taking
into account several parameters like the number and the hydraulic diameter of the
different types of sub-channels of the fuel assembly. Another famous correlation is
given by Rehme (1973), where a shape factor F, which takes into account the pitch-
over-diameter ratio P/D and the helix-over-diameter ration H/D, is introduced. A
milestone in the experimental evaluation of this type of flow is presented by Cheng
and Todreas (1986), where two sets of correlations are presented. The detailed version
takes into account several geometrical and different hydraulic parameters, making the
correlations suitable for many configurations, but also very difficult to use. A simplified
version is also presented and the two versions are converging toward the same values as
the Reynolds number increases. Because the main interest of this work is toward fully
turbulent, i.e. relatively high Reynolds number, only the simplified version is considered.
Last correlation, which is used herein, is presented by Engel et al. (1979). In this work
a modified version by Bubelis and Schikorr (2008) is used. This last work present a

208
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very large and methodical comparison of several well accepted correlations with some
available experimental and numerical data. This paper is a perfect introduction of one
of the key issue encountered during this work: which is the accuracy of the results?
Experimental correlations have validity ranges depending on the experiments used for
the definition. Pure experimental data are more reliable but very scarce. In this contest
CFD can play a role in supplying a vast and very specific amount of data. An example
is again present in Bubelis and Schikorr (2008) where experimental correlations are
compared with RANS (Reynolds Average Navier-Stokes equations) turbulence models
from Gajapathy et al. (2007). In Gajapathy et al. (2007) the CFD results are validated
against correlations finding good agreement and in Bubelis and Schikorr (2008) the
same correlations are validated against the CFD. Now a question is obvious: which are
the data to be trusted and used as reference? A possible solution could be provided by
LES and DNS as the one presented by Fischer et al. (2007). LES and DNS are able
to provide a very broad and very accurate, if a proper code is used, amount of data,
which can be very difficult to obtain with experimental techniques. Instantaneous flow
field and extensive average results (for example Nusselt distribution along the fuel rod)
will be available, making more rigorous the validation of RANS models. Because of the
extremely time consuming and cost of LES and DNS (very powerful High Performing
Computing, HPC, facilities are necessary), they are still limited to reduced geometry
and moderate Reynolds numbers, whereas usual RANS will be devoted to the study of
more industrial cases. Some RANS studies are also starting to appear like Raza and Kim
(2008) and Smith et al. (2009), employing reduced geometries with a limited number
of pins and results are compared with well established experimental correlations. An
even more difficult task is to find heat transfer correlations for the evaluation of the
Nusselt number. Several studies were conducted during the sixter and the seventer for
several projects. Pfrang and Struwe (2007) presents a review of the outcome of several
studies. In this work the Nusselt correlations of the EUTATOM project Graber and
Rieger (1972), of Kazimi and Carelli (1976) and Mikityuk (2009) are used.

The aim of this work is firstly to investigate the ability of Code_Saturne to study
these types of flows, underlining important parameters to take into consideration (mesh
configuration, turbulence models, etc. . . ). This validation is carried out using reduced
geometries composed by only seven and nineteen pins with only one helix pass. Con-
sequently periodicity is used in the streamwise direction, in order to reduce further the
domain. Global results of pressure drop and global Nusselt number are compared with
the previous mentioned correlations for both friction factor and Nusselt number. Two
different turbulence models are used: the k − ε of Jones and Launder (1972) and the
second moment closure Rij of Speziale et al. (1991). The wall treatment includes the
use of scalable wall functions presented by Grotjans and Menter (1998) .
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The mesh generation step constitutes a fairly challenging task because the wire in-
duces a very large number of singularities in the geometry due to the fact that the
wire attached to each pin is almost in contact with the surrounding pins. After sev-
eral attempts with commercial mesh generators, the homemade procedure described in
Péniguel et al. (2009) is followed. Several variants regarding the way to handle the
connection between the wire and the pin have been investigated. It leads to an almost
structured mesh with a very good control on the number of cells across two adjacent
pins. Here all meshes used have at least 8 cells between two pins. Moreover only one
helix pass along with periodicity in the streamwise direction in order to reduce even
further the mesh size.

D.2 Flow description

The Reynolds number is varied between 5,000 and 50,000 (based on the hydraulic di-
ameter and bulk velocity). The wall heat flux is constant and equal to 6 · 105W/m2,
which makes the Peclet number (Pe) ranging from 25 till 400. Two different helix-to-
diameter ratios H/D are used, which take the value of 22 and 17. As expected, the
flow field presents no symmetry in the plane perpendicular to the stream-wise direction.
The presence of the wire is inducing a global swirling motion on the edge and corner
sub-channels. Moreover the location of the maximum of the stream wise velocity is
rotating following the pattern of the helix. In all wall channels, characterised by a high
axial velocity, a large secondary vortex is also visible. It is interesting to notice that
the wall sub-channel, characterised by the large bulk velocity, has also the maximum
of the swirl flow velocity. On the opposite wall sub-channels, with low velocity, do
not have a clear secondary motion structure. Central sub-channels are characterised
by a secondary vortex for all wire angles. For those sub-channels the unbalance of the
stream-wise velocity, typical of the wall sub-channels, does not appear clearly. Figure
D.1 presents the comparison between mean streamwise direction velocity and secondary
motion for the two turbulence models. Both flows look very similar even in their quan-
titative comparison. This could lead us to the wrong conclusion that the turbulence
model has a minor effect on the results. As a matter of fact, if the shear velocity uτ is
compared (Fig. D.2), the two models are showing a substantial difference, making the
estimation of the pressure drop relatively different.

The variation of the helix pass has a great influence on the solution as can be
appreciated in Fig. D.3, where results are obtained using a k − ε model. The helix-to-
diameter ratio H/D = 22 correspond to a new design, whereas H/D = 17 corresponds
to the old design used in the SuperPhenix reactor. The flow features are still the
same, but a higher velocity and a stronger secondary motion can be appreciated. If
now the k − ε is compared with the second moment closure Rij , a large difference can
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be appreciated (Fig. D.3 on the right). The k − ε model is giving an almost 20%
underestimation of the maximum axial velocity with respect to the Rij , and also the
secondary motion is weaker.

As the number of pin increases the flow does not change, as can be established from
Fig D.4 (on the left). It is interesting, however, to notice that as the pins number
increases the edge and corner sub-channels start to loose their predominance and the
flow field is more homogeneous.

The temperature field has also a very complex pattern as can be seen from Fig.
D.4 (on the right). On the fuel rod surfaces a simplified boundary condition (constant
temperature) is imposed (Dirichlet BC), whereas walls of the external case are adiabatic
(Neumann BC with wall normal gradient equal to zero). In reality of course only the
pin itself contains fuel and therefore heat deposit. Also in this case the field can be
divided into central and side sub-channels. The first-ones are characterised by higher
temperatures and in particular in the gap region between two adjacent pins and by a
relatively uniform temperature distribution. Side channels are more influenced by the
location of the streamwise velocity maximum, which corresponds to the temperature
minimum. The influence of the turbulence model, in the heat transfer is very limited,
probably due to the use of scalable wall functions.

Figure D.1: Comparison of the streamwise velocity and secondary motion between k−ε
(left) and Rij (right) turbulence models for the SFR fuel rod bundle with seven pins.
P/D = 1.1, H/D = 21 and Re = 10000.
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Figure D.2: Comparison of the wall velocity between k− ε (left) and Rij (right) turbu-
lence models for the SFR fuel rod bundle with seven pins. P/D = 1.1, H/D = 21 and
Re = 10000.

Figure D.3: Comparison of the streamwise velocity and secondary motion between k−ε
(left) and Rij (right) turbulence models for the SFR fuel rod bundle with seven pins.
P/D = 1.1, H/D = 17 and Re = 10000.

Figure D.4: Left: streamwise velocity and secondary motion for the nineteen pins con-
figuration (Rij turbulence models. P/D = 1.1, H/D = 17 and Re = 10000). Right:
Comparison of temperature fields between k−ε (left) and Rij (right) turbulence models
(P/D = 1.1, H/D = 17 and Pe = 55).
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D.2.1 Friction factor and Nusselt profiles

In order to compare the results with available and well-accepted correlations, global
parameters have to be evaluated. The friction factor f is defined as:

f = ∆p
Dh

Lz

2

ρU2
B

(D.1)

where Dh is the hydraulic diameter, Lz the periodic length in the streamwise direction,
UB the bulk velocity and ∆p the pressure drop. The evaluation of the pressure drop is
very sensitive because several options are available and the results can vary considerably.
For example the pressure drop can be evaluated from the wall shear as:

∆p =
τw

Sw,TOT
(D.2)

being τw the wall shear and Sw,TOT the total wall surface. The wall shear can be
estimated from the friction velocity given by the wall function as:

τw =

wall faces∑
i

ρu2
τ (i)Sw (i) (D.3)

where uτ is the shear velocity at the wall, which is evaluated directly from the wall
function as:

uτ (i) =
uI′ (i)

ln y+

κ + C
(D.4)

with I ′ being the intersection between the wall normal direction through the wall face
centre F and the projection of the cell centre on that line. κ and C are two constants
equal to 0.42 and 5.2 respectively. The wall dimensionless distance is evaluated from a
turbulent velocity uk = Cµ

√
k as:

y+ =
duk
ν

(D.5)

where d is the distance between I ′ and F and . Another possibility could be to use the
imposed pressure drop used in the streamwise direction, which is equal to:

∆p = βLz (D.6)

with β = ∂p/∂x3 and x3 the main flow direction. In the first case also pressure redis-
tribution on the cross section is taken into account, whereas in the latter not. Values
are relatively different, in particular at low Reynolds numbers, as can be seen in Fig.
D.5 (left) for the seven pins bundle and in Fig. D.6 for the nineteen. The method of
Eq. (D.2) is labeled as

∑
ρu2

τSw, whereas the one of Eq. (D.6) as QDM.
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In general the Reynolds stress model is giving higher value of f with respect to the
eddy viscosity model, but values tend to converge as the Reynolds number increases.
Indeed the same effect can be seen as the number of pins increase because of the lesser
importance of edge channels on the global flow field. The data are in the range given
by the experimental correlations and they seem to agree better with the one of Cheng
and Todreas (1986).

The Nusselt number is instead evaluated as:

Nu =
qw

(Tw − TB)

Dh

cpΓ
(D.7)

The comparison against the experimental correlation is plotted in Fig. D.5 (right)
for the seven pins configuration. In this case the difference between the two turbulence
models is almost negligible, but slightly increase with the Peclet number. The reason
could be the wall treatment; consequently more accurate modelling is required. It is
interesting to notice that CFD profiles are increasing with a relatively steep slope. On
the other hand the experimental correlations have almost the same, and not very rapid,
rate of increase, although they have different starting points.
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Figure D.5: Profiles of the friction factor f and Nusselt number Nu for the seven pins
configuration. The friction factor is evaluated with two different approaches according
to Eqs. (D.3) and (D.6).
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Figure D.6: Profiles of the friction factor f for the nineteen pins configuration. The
friction factor is evaluated with two different approaches according to Eqs. (D.3) and
(D.6).

D.2.2 Effect of the mesh configuration

Despite the fact that the geometry can be described using few geometrical parameters,
the mock-up is very difficult to mesh as described in Péniguel et al. (2009). The wire
is introducing many singularities that are skewing the mesh. Now an obvious question
arises: with which grade of accuracy the mesh has to reproduce the geometry? Can a
simplified geometry produce the same flow features and accurate global flow parame-
ters?. An easy way to improve the orthogonality is to blend the wire with the relative
pin creating what is shown in Fig. D.7 (a). A more accurate solution is to hybrid hex-
ahedral and prism with triangular base around the wire obtaining a better geometrical
description (D.7 (b)). Figs. D.7 (c) and (d) show a visual comparison between the
blended and the triangular (around the wire) meshes. The flow features seems very
similar, the triangular mesh is only showing very low velocities at the tips of the wire,
whereas these areas are chopped out in the blended mesh. Table D.1, that reports the
value of the friction factor f for the different meshes and the percentage difference with
respect to the base mesh, also confirms this fact. However this conclusion is valid mainly
for hydrodynamic aspects. It is likely that the better geometric definition of the wire
can have a major role in the heat transfer.
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Mesh Type fric. factor f (Eq. (D.1)) Variation [%]

Base 0.287 · 10−1 0.00

Base Rij 0.319 · 10−1 11.1

Triangular 0.283 · 10−1 1.39

Blended 0.274 · 10−1 4.53

Table D.1: SFR test case: comparison of friction factor f for different mesh at Re =

25, 000 using k − ε.

D.2.3 Conclusions

In this chapter thermal-hydraulic of wire wrapped fuel bundle is investigated. Two
different configurations, with seven and nineteen fuel rods, are taken into account,
finding that the main flow features remain unchanged as the number of pins increase.
Two different turbulence models were tested finding good agreement with experimental
correlations. On the other hand the evaluation of the heat transfer requires more inves-
tigation. Experimental correlations for Nusselt number are largely scattered, making
difficult the assessment of the CFD. Indeed the wall modelling for the heat transfer is
only fist order accurate, which can make quite dubious the Nusselt evaluation. Better
modelling employing low Reynolds models could be required and comparison with high
Reynolds approach is on going. Another solution to the problem, which can avoid the
use of refined mesh in the near wall region, could be the use of more advance wall func-
tions as the one presented by Suga et al. (2006). As the number of pins increase the
influence of side and corner sub-channels is becoming less important and flow is more
homogeneous as is clearly suggested by the 19 pins configuration. In general it was
difficult to find data to compare with. In this context refined LES and DNS could play
an important role providing a large and reliable dataset for RANS modelling evaluation.

Figure D.7: Comparison between the blended mesh and the Triangular mesh for the
SFR test case: (a) Blended mesh; (b) Triangular mesh; (c) Streamwise velocity blended
mesh; (c) Streamwise velocity triangular mesh.
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