LES AND HYBRID RANS/LES
TURBULENCE MODELLING IN
UNSTRUCTURED FINITE VOLUME
CODE AND APPLICATIONS TO
NUCLEAR REACTOR FUEL
BUNDLES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2010

By
Stefano Rolfo

Mechanical, Aerospace and Civil Engineering



CONTENTS

ABSTRACT 13
DECLARATION 15
COPYRIGHT 16
ACKNOWLEDGEMENTS 17
1 INTRODUCTION 24
1.1 TYPES OF ANALYSIS IN A CFD FRAMEWORK . . . . . . . . . . . .. .. 27
1.2 PH.D. MOTIVATIONS AND OBJECTIVE . . . . . . . v v v v v i v 29
1.3 OUTLINE OF THE THESIS . . . « v v v i i ettt s s s 30

I THEORETICAL OVERVIEW 34
2 GOVERNING EQUATIONS AND TURBULENCE MODELLING 35
2.1 GOVERNING EQUATIONS . . . . . . . . . . . . o . 35
2.2 THE ENERGY CASCADE . . . . . v v v i v it i d e s s, 36
2.3 LARGE EDDY SIMULATION . . . .« v v v i i i h i s e, 38
2.3.1 FILTERING . . . . . . . o v et e e e e 39

2.3.2 LES FORMULATION . . . . o v v v i i it s s, 40

2.3.3 S.G.S. MODELLING . . . . v v v v ittt i s 41

2.3.3.1 THE SMAGORINSKY MODEL . . . . . « v v v v . o . .. 41

2.3.3.2 THE GERMANO DYNAMIC MODEL . . . . . . . . . ... 42

2.3.4 NON ISOTROPIC MODELLING . . . . . . v v v ittt 44

2.3.5 PASSIVE SCALAR MODELLING . . . . « . v v v v v vt 46

2.4 HyYBRID RANS/LES COUPLING . . . .. ... ... ........... 47
2.4.1 HyBriD RANS/LES FORMULATION . . . . . . .. .. ...... o1

2.4.2 BLENDING FUNCTION . . . . . . . . . . . .. . . ... 52

2.4.3 AVERAGING PROCEDURE . . . . v v v e ettt i i i 53



3 NUMERICAL METHODS 55

11

3.1 MESH GENERATION . . . . . . v v it i et et e e e e 55
3.1.1 GENERALIZED CURVILINEAR COORDINATES . . . . . . . . . ... 56
3.1.2 STRUCTURED GRIDS . . . . . . v v i it et e e e e e 56
3.1.3 UNSTRUCTURED GRIDS . . . . .t v v v v e e e e e e 57
3.1.4 HYBRID GRIDS . . . . . . i vt i e i e e e e e o8

3.2 DISCRETIZATION TECHNIQUES . . . . . . . . . . . . ... ... ..... 59
3.2.1 TEMPORAL AND SOURCE TERMS . . . . . . v . v v v v v i vt o 60
3.2.2 CONVECTION TERM . . . . . .t v v ittt e e e e 60
3.2.3 DIFFUSION TERM . . . .+« v v vt ettt e e e e e e 63
3.2.4 GRADIENT RECONSTRUCTION . . . . . . . o v v v vttt 63

3.3 TIME DISCRETIZATION . . . . .+t v v vt ettt e e e e e 64

3.4 TRANSPORT EQUATION . . . . . . . . . . . . ... ... 65

3.5 VELOCITY PRESSURE COUPLING . . . . .« v v v v i e e e e 67

RESULTS 69

KINETIC ENERGY CONSERVATION 70

4.1 INTRODUCTION . . . . . v v vttt et e e e e e e e e e e 71

4.2 (CONSERVATION OF THE GLOBAL PROPERTIES . . . . . . . . . . . . . .. 74
4.2.1 KINETIC ENERGY CONSERVATION IN A CONTINUOUS SENSE . . . 74
4.2.2 KINETIC ENERGY CONSERVATION IN A DISCRETE SENSE . . . . . 75

4.3 TAYLOR-GREEN VORTICES . . . . . .t v v v it ittt e e e 76
4.3.1 TEST CASE DEFINITION . . . . . . . . . . . vt 77
4.3.2 CONFORMAL MESH . . . . . . . . o i vt ittt 80
4.3.3 EMBEDDED REFINED MESH . . . . . . . . . o v v it o 84
4.3.4 POLYHEDRAL MESH . . . . . . . . v v it ittt e 94

4.4 CONCLUSIONS . . . o v o v i e e e e e e e e e s e s e 95

CHANNEL FLow 99

5.1 INTRODUCTION . . . . o v v it e e et e e e e e e e e 99

5.2 LES . . . 102
5.2.1 MESH DESCRIPTION . . . . . .t v v it i ettt e e 102
5.2.2 RESULTS . . . . . o o it e e e e 105
5.2.3 PARTIAL CONCLUSIONS . . . .+ v v v v v it e i et e 116

5.3 HyBrRID RANS/LES . .. ... ... . . 117
5.3.1 HEAT TRANSFER . . . .+« v v vt ittt e e e e e 118
5.3.2 REYNOLDS NUMBER EFFECTS . . . . . . . .« v v v v v oo 118
5.3.3 MESH RESOLUTION EFFECTS . . . . . v v v v vt v i e oo 119



5.3.4

CONCLUSIONS . . o v v o e e e e e e e s s s

6 FUEL ROD BUNDLE

6.1 INTRODUCTION . . . . . . v o it e e e e e s s

6.2 CASE DESCRIPTION . . . o v v v e et e s s s s,

6.3 RESULTS. . . . . . . e

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

LES QUALITY CRITERIA . . . . . . . . o v it i i e e
FLOW DESCRIPTION AND MEAN VELOCITY PROFILES . . . . . .
FREQUENCY ANALYSIS . . . . . . o v v it i e i e e e
REYNOLDS STRESSES AND BUDGETS . . . . . . . . . . .. . ...
THERMAL FIELD . . . . v v v v v v e e e e e e e e e
SCALAR IMBALANCE . . . . . v v ittt e e e e

6.4 CONCLUSIONS . . . o v v e e e e e e s s s s

CONCLUSIONS AND FUTURE WORK

7.1 MAJOR CONTRIBUTIONS . . . . . o o o i i it et s s

7.2 FUTURE WORK . . . . . . . o o o i e e e e s s e s

Bibliography

A

RANS FORMULATION

A.1 TURBULENCE MODELS . . .« « v v i et i i d i s s,

A1l
A1.2

THE @ — f MODELS . . . « vt vttt et
THE ¢ — @ MODELS . . . . . .« v i it e i e e e

CHANNEL FLOW

B.1 LES BUDGETS. . . . . . o o e e e e

FI1GURES Rop BUNDLE

WIRE WRAPPED FUEL ROD BUNDLE

D.1 INTRODUCTION . . . . . o v o s s s s s s,

D.2 FrLow
D.2.1
D.2.2
D.2.3

DESCRIPTION . . . . . . . ittt e e e e e s
FRICTION FACTOR AND NUSSELT PROFILES . . . . . . . . . ...
EFFECT OF THE MESH CONFIGURATION . . . . . . . . . .. ...
CONCLUSIONS . . . v v v i e e e e e s e s e

Word count 37524

135
135
139
142
142
146
150
154
161
170
172

175
175
178

181

195
196
197
198

200
202

205



List of Tables

1.1

2.1

4.1
4.2

4.3

5.1
5.2
5.4

5.5

5.6

6.1
6.2
6.3

Al
A2
A3
A4

Estimation of the CPU time for DNS of isotropic turbulence at different

Reynolds number. . . . . . . . . ...

Example of one-dimensional filter functions. H is the Heaviside Step

Function. . . . . . . . e

List of all the meshes used for the Taylor-Green vortices. . . . . . . . ..
List of the numerical options adopted for the different run of the Taylor-
Green vortices test case. . . . . . . .. ...
List of the CPU time for different type of meshes, global error for the u

velocity components and its gradient in the = direction. . . . . ... ..

List of all the meshes used for the LES of channel flow @ Re, = 395. . .
List of the default numerical settings used for the LES calculations. . . .
Average iteration time for different meshes and average number of itera-
tion necessary to resolve the linear system for the pressure for the LES
of channel flow. . . . . . . . . . . ..
Mesh acronyms and characteristics for the hybrid calculations (left) and
constant used for the blending function Fy (right). . . . ... ... ...
Hybrid channel flow: bulk velocity and temperature errors for the differ-

ent TUNS. . . . . . . . o e e e e

Summary of the quality indexes for the rod bundle test case.. . . . . . .
Measures of the intensity of the secondary motion. . . . . ... ... ..
Average Nusselt as function of Reynolds number Prandtl number and
different BC for the rod bundle test case.. . . . . . . . .. ... .. ...

Coeflicients used for the Manchester o — f . . . . . . ... .. ... ...
Constants of the ¢ — o model: k and € equations . . . . .. .. .. ...
Constants of the ¢ — a model: scales . . . . . .. ... .. ... .. ...

Constants of the ¢ — o model: ¢ equation . . . . . ... ... ... ...



D.1 SFR test case: comparison of friction factor f for different mesh at Re =
25,000 using k —e. . ...



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

2.1

3.1

4.1
4.2

4.3

44

4.5

4.6

4.7

4.8

Sketches from the Codex Atlanticus of Leonardo Da Vinci. . . . . . . . . 25
Reynolds diagram showing the loss of head as function of the velocity. . 27

Decomposition of the energy spectrum into resolved and modelled parts

for a DNS analysis. . . . . . . ... . . 32
Decomposition of the energy spectrum into resolved and modelled parts
for a RANS analysis. . . . . . . .. ... 32
Decomposition of the energy spectrum in resolved part and modelled part
for a URANS analysis. . . . . ... ... . .. 32
Decomposition of the energy spectrum into resolved and modelled parts
for a LES analysis. . . . . . .. ... 33

Visualization of the typical length scales of a turbulent motion at high

Reynolds number. . . . . . . ... L 39
Labelling for the computation of the convection-diffusion term. . . . . . 60

Sketch of the embedded refined mesh used for the Taylor-Green vortices. 78
Example of an embedded refined mesh used for the Taylor-Green vortices
test case. . . ... L L 78
Taylor Green vortices: results as function of the number of Rhie & Chow
constant for mesh CONF60. . . . . . . . . . ... ... ... ... .... 82
Taylor Green vortices: energy conservation, numerical viscosity, global
error for u; and p as function of velocity /pressure coupling iterations on
mesh CONF60. . . . . . . . . . 83
Taylor Green vortices: velocity field and error of the u; velocity component. 83
Taylor Green vortices: velocity field and error of the u velocity component. 84

Taylor Green vortices: Energy conservation, numerical viscosity, global

error for u; and p for meshes RR0O97 and RR094. . . . . ... ... ... 87
Taylor Green vortices: Energy conservation, numerical viscosity, global
error for u; and p for meshes RR091 and RRO88. . . . . ... ... ... 87



4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20
4.21

4.22

4.23

5.1
5.2
5.3

5.4

5.5
5.6

Taylor Green vortices: Energy conservation, numerical viscosity, global

error for u; and p for meshes RRO77, RRO75 and RRO73. . . . .. ... 88
Taylor Green vortices: Energy conservation, numerical viscosity, global
error for u; and p for meshes RR068, RR067 and RR065. . . . . . . .. 88
Taylor Green vortices: Energy conservation, numerical viscosity, global
error for u; and p for meshes RR062 and RRO61. . . . . ... ... ... 89
Taylor Green vortices: Energy conservation, numerical viscosity, global
error for u; and p for meshes RR0O60 and RR0O50. . . . . . ... .. ... 89

Taylor Green vortices: energy conservation, numerical viscosity, global
error for u1 and p as function of the number of Rhie & Chow interpolation

and number of velocity/pressure coupling for mesh RRO75. . . . . . . .. 90

Taylor Green vortices: energy conservation, numerical viscosity, global
error for u and p as function of the gradient reconstruction method for
mesh RRO75. . . . . . . . 90
Taylor Green vortices: errors and velocity fields after 2.6 s for the mesh
RRO50. . . . e 91
Taylor Green vortices: errors and velocity fields after 20 s for the mesh
RROB0. . . . e 91
Taylor Green vortices: errors and velocity fields after 50 s for the mesh
RROB0. . . . o e 92
Taylor Green vortices: error reduction as function of the grid spacing for
the conformal and the RRO75 meshes. . . . . . ... ... ... ..... 92
RR050 mesh optimization: map with the value of different ratios as
function of y, and y; vertical distance. . . . . . . .. ... ..o 94
Taylor Green vortices: results for the optimization of mesh RR050. . . . 97
Taylor Green vortices: errors and velocity fields after one iteration for
the mesh POLY1. . . . . . . . . . . . ... .. . . 97
Taylor Green vortices: errors and velocity fields after one iteration for
the mesh POLY2. . . . . . . . . . . . . .. .. . 98
Taylor Green vortices: results for the polyhedral meshes. . . . . . . . .. 98
Sketch of the geometry of a plane channel flow. . . . . ... .. ... .. 102

Visualization of the unstructured meshes used for the LES of channel flow.104

Non-orthogonality coefficients for the embedded refined meshes used for

LES of channel flow. . . . . . .. . ... .. ... ... ... ... ... . 104
LES of channel flow: evaluation of the difference between resolved and

modelled. . . . . . . .. 109
LES of channels flow: comparison between meshes (a). . . . . . ... .. 109
LES of channel flow: effect of the numerical treatment. . . . . . . . . .. 110



0.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
0.17
5.18
5.19

5.20

5.21
5.22
5.23
5.24
5.25

5.26
5.27
5.28
5.29
5.30
5.31
5.32

5.33

5.34

5.35

LES of channel flow: comparison between meshes (b). . . .. ... ... 110
LES of channel flow: average counting of the slope test failure in the
cross plane for the u velocity component. . . . . . . . .. ... ... ... 111

LES of channel flow: average counting of the slope test failure in the

cross plane for the v velocity component. . . . . . . ... ... ... ... 111
LES of channel flow: budget of k for the mesh RRO75. . . . . . ... .. 112
LES of channel flow: budget of k for the TAYLOR mesh.. . . . . . . .. 112
LES of channel flow: budget of (u/v) for the mesh RRO75 . . . . . . .. 113
LES of channel flow: budget of (u/v") for the TAYLOR mesh. . . . . .. 113
LES of channel flow: budget of (u/v’) for the mesh RRO75.. . . . . . .. 114
LES of channel flow: budget of (u'u’) for the TAYLOR mesh. . . . . . . 114
LES of channel flow: budget of (v'v’) for the mesh RRO75. . . . . . . .. 115
LES of channel flow: budget of (v'v') for the TAYLOR mesh. . . . . .. 115
Hybrid channel flow: comparison with LES. . . . . ... ... ... ... 123
Hybrid channel flow (Re, = 395): normal Reynolds stresses with the

addition of RANS Reynolds stresses. . . . . . .. ... ... ... .... 123
Hybrid channel flow: comparison between blending function for channel

flow at Re; =395 on mesh M1 _395. . . . . ... ... ... ... .... 124
Hybrid channel flow (Re; = 395): effect of blending function. . . . . . . 124
Hybrid channel flow heat transfer: comparison with LES. . . . . . . .. 125

Hybrid channel flow heat transfer (Re, = 395): effect variation of Pr;,. 125
Hybrid channel flow heat transfer (Re, = 395): effect variation of Pr;,. 126
Hybrid channel flow heat transfer (Re; = 395): effect of low Prandtl

number. . ... L 126
Hybrid channel flow: high Reynolds case (Re, =640) . . . . . . . . . .. 127
Hybrid channel flow heat transfer: high Reynolds case (Re, = 640) . . . 127
Hybrid channel flow: high Reynolds case (Re; =1020) . . . . .. .. .. 128
Hybrid channel flow heat transfer: high Reynolds case (Re; = 1020) . . 128
Hybrid channel flow: low Reynolds case (Re; =180) . . . . ... .. .. 129
Hybrid channel flow heat transfer: low Reynolds case (Re, = 180) . . . 129
Hybrid channel flow at low Reynolds case (Re, = 180): comparison of

the blending function for different mesh resolution . . . . ... .. ... 130
Hybrid channel flow (Re, = 395): effect of the refinement in the wall

normal direction. . . . . .. ... Lo 130
Hybrid channel flow heat transfer (Re, = 395): effect of the refinement

in the wall normal direction. . . . . . . . . . .. ... ... L. 131

Hybrid channel flow (Re; = 395): comparison of the blending function

for different mesh resolution . . . . . . . . . . . ... ... 131



5.36
5.37

5.38

5.39
5.40

5.41

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18
6.19

Hybrid channel flow (Re,; = 395): effect of the max correction. . . . . . 132
Hybrid channel flow heat transfer (Re, = 395): effect variation of max
correction. . . . . . . ... 132

Hybrid channel flow (Re; = 395): comparison of the blending function

with the max correction. . . . . . . . .. .. L oo 133
Hybrid channel flow (Re; = 395): effect of the mesh resolution. . . . . . 133
Hybrid channel flow heat transfer (Re; = 395): effect of the mesh reso-

lution. . . . . . . 134
Blending function F; for the Taylor mesh at Re, =395. . . . . ... .. 134
Fuel rod bundle: sketch of the geometry. . . . . .. ... .. ... ... 141
Sub grid activity s for the rod bundle test case. . . . . . .. .. ... .. 145
Modified sub grid activity s* for the rod bundle test case. . . . .. . .. 145
Instantaneous temperature field for the rod bundle test case. . . . . . . . 148

Velocity contours on the mid plane of the domain for the rod bundle test

CASE. © v v e e e e e e e e e e e e e 148
Velocity fluctuations in the z direction in the mid plane for the rod bundle

test case. . . ... 148
Average secondary motion for rod bundle test case. . . . . . .. ... .. 149

Average velocity profiles at different azimuthal location: Re = 6000 on
the top left and Re = 13000 on the top right. Bottom average wall shear
stress profiles. . . . . . .. 149
Probes location for the frequency analysis for the rod bundle test case. 151
Comparison between spectra obtained with FFTW and Welch’s methods. 152

Spectra of the w’ velocity fluctuations at different locations at Re = 6000

for the rod bundle test case. . . . . . .. ... oL 152
Spectra of the u’ velocity fluctuations at different locations at Re = 6000
for the rod bundle test case. . . . . . .. ... oL 153
Two points correlation between inlet and middle of the domain at Re =
6000 for the rod bundle test case. . . . . . ... .. ... ... .. ... 153
Two points correlation between inlet and middle of the domain at Re =
13000 for the rod bundle test case. . . . . . . ... ... ... ... ... 153
Two points correlation between symmetric points in gap region at Re =
6000 for the rod bundle test case. . . . . . ... .. ... ... .. ... 154
Two points correlation between symmetric points in gap region at Re =
13000 for the rod bundle test case. . . . . . . . .. ... ... ... ... 154

Dimensionless normal stresses for the rod bundle test case at Re = 6000. 156
Dimensionless shear stresses for the rod bundle test case at Re = 6000. . 157

Dimensionless normal stresses for the rod bundle test case at Re = 13000. 157

10



6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33
6.34

6.35

6.36

6.37

6.38

6.39

6.40

B.1

Dimensionless shear stresses for the rod bundle test case at Re = 13000. 158

Budget of k& at Re = 6000 : Py, ¢ and order of Zero. . . . . .. .. ... 158
Budget of k£ at Re = 6000 : T}, T¢, T,f and advection. . . ... ... .. 159
Budget of (v'u/) and (u'v') at Re =6000: P and T". . .. ... .... 159
Budget of (v/w’) and (v'w') at Re =6000: P and T%. . .. ... ... . 160
Budget of (v'v') and (w'w’) at Re = 6000 : P and T". . ... ... ... 160

Nusselt profiles and wall heat flux distribution for the rod bundle test case.163

Average temperature profiles at different azimuthal location for the rod

bundle test case. . . . . .. .. 163
Comparison of of dimensionless temperature at Re = 6000 between Neu-
mann and Dirichlet BC for the rod bundle. . . . .. ... ... .. ... 164

Dimensionless temperature fluctuations and heat fluxes at Re = 6000
using a constant heat flux for the rod bundle. . . . . . ... .. ... .. 164
Dimensionless temperature fluctuations and heat fluxes at Re = 6000
using a constant wall temperature for the rod bundle test case. . . . . . 165
Dimensionless temperature fluctuations and heat fluxes at Re = 13000
using a constant wall heat flux for the rod bundle test case. . . . . . .. 165

Average temperature profiles at different azimuthal location at Re = 6000

and for different Prandtl number. . . . . . . .. ... ... 167
Nusselt profiles and wall heat flux distribution. . . . . . . ... ... .. 167
Dimensionless temperature fluctuations and heat fluxes at Re = 6000
with Pr = 0.01 for the rod bundle test case. . . . . . .. ... ... ... 168
Dimensionless temperature fluctuations and heat fluxes at Re = 6000
with Pr = 0.10 for the rod bundle test case. . . . . . . . ... ... ... 168
Dimensionless temperature fluctuations and heat fluxes at Re = 6000
with Pr = 1.00 for the rod bundle test case. . . . . . . . ... ... ... 169
Dimensionless temperature fluctuations and heat fluxes at Re = 6000
with Pr = 10.0 for the rod bundle test case. . . . . . . .. ... .. ... 169
Contours of the additional source term used for the imbalance of scalar
in the rod bundle test case. . . . . . . . .. ... ... 171

Dimensionless temperature (top left), variance (top right), (u/')* (bot-
tom left), (v/6’)" (bottom right) for the case of scalar imbalance with
constant wall heat flux for the rod bundle test case. . . . . . .. . .. .. 171
Dimensionless temperature (top left), variance (top right), (u/6")* (bot-
tom left), (v/6/)" (bottom right) for the case of scalar imbalance with
adiabatic wall for the rod bundle test case. . . . . . .. ... ... .. .. 172

LES of channel flow: verification of the spurious oscillation on the mesh
RRO75 with STAR-CD. . . . ... .. . . . . . . . . . ... 200



B.2

B.3

B.4

B.5
B.6

C.1

C.2

C.3

C4

C.5

C.6

D.1

D.2

D.3

D.4
D.5

D.6

D.7

Average counting of the slope test failure in the cross plane for the
velocity component in the streamwise direction. . . . . . . . . . ... .. 201
Average counting of the slope test failure in the cross plane for the v
velocity component in the streamwise direction. . . . . . . . .. .. ... 201

Average counting of the slope test failure in the cross plane for the w

velocity component in the streamwise direction. . . . . . . . .. .. ... 202
Taylor mesh: budget of (w'w’). . . . ... ... o 203
Mesh RRO75: budget of (w'w'). . . . . ... ... o 204

Spectra of the 6" temperature fluctuations at different locations at Re =

6000 for the rod bundle test case. . . . . . . ... ... ... ... ... 205
Spectra of the w’ velocity fluctuations at different locations at Re =
13000 for the rod bundle test case. . . . . . . . .. ... ... ... ... 206
Spectra of the ' temperature fluctuations at Re = 13000 for the rod
bundle test case. . . . . ... L 206
Spectra of the v’ temperature fluctuations at different locations at Re =
13000 for the rod bundle test case. . . . . . . . .. ... ... ... 207
Two points correlation between two adjacent gap regions at Re = 6000
for the rod bundle test case. . . . . . . .. ... L. 207
Two points correlation between two adjacent gap regions at Re = 13000
for the rod bundle test case. . . . . . . .. ... L. 207

SFR test case: comparison of the streamwise velocity and secondary

motion at P/D = 1.1, H/D = 21 and Re =10,000 . . .. ... ... .. 211
SFR test case: comparison of the wall velocity at P/D = 1.1, H/D = 21
and Re =10,000. . . . . . . . . .. 212
SFR test case: comparison of the streamwise velocity and secondary
motion at P/D = 1.1, H/D = 17 and Re =10,000. . . . . . ... .. .. 212

SFR test case: velocity and thermal fields for the 19 pins configuration . 212
SFR test case: profiles of the friction factor f and Nusselt number Nu
for the seven pins configuration. . . . . . . . ... ... .. 214
SER test case: profiles of the friction factor f and for the nineteen pins
configuration. . . . . . . ... Lo 215
SFR test case: comparison between the blended mesh and the triangular
mesh for the SFR test case. . . . . .. . .. ... ... ... ... . ... 216

12



The University of Manchester

Stefano Rolfo

Doctor of Philosophy

LES and Hybrid RANS/LES Turbulence Modelling in unstructured Finite
Volume Code and Applications to Nuclear Reactor Fuel Bundles

October 29, 2010

Rod bundle is a typical constitutive element of a very wide range of nuclear reactor de-
signs. This thesis describes the investigation of such geometry with wall-resolved Large
Eddy Simulation (LES). In order to alleviate the mesh constraint, imposed by the near
wall resolution, the usage of embedded refinements and polyhedral meshes is analysed
firstly with a inviscid laminar case (Taylor Green vortices) and secondly with a fully tur-
bulent case (channel flow only with embedded refinement). The inviscid test case shows
that the addition of embedded refinements decreases the conservation properties of the
code. Indeed the accuracy decreases from second order in a structured conformal mesh,
to something in between first and second order depending on the quality of the unstruc-
tured mesh. Better results are obtained when the interface between refined and coarse
areas presents a more regular and structured pattern, reducing the generation of skewed
and stretched cells. The channel flow simulation shows that the Reynolds stresses, of
some embedded refined meshes, are affected by spurious oscillations. Surprisingly this
effect is present in the unstructured meshes with the best orthogonal properties. Indeed
analysis of Reynolds stress budgets shows that terms, where the gradient in the wall
normal direction is dominant, have a largely oscillatory behaviour. The cause of the
problem is attributed to the convective term and in particular in the method used for
the gradient reconstruction.

As a consequence of these contradictory signs between the inviscid and the fully
turbulent cases, the rod bundle test case is analysed using a conventional body fitted
multiblock mesh. Two different Reynolds numbers are investigated reporting Reynolds
stresses and budgets. The flow is characterised by an energetic and almost periodic
azimuthal flow pulsation in the gap region between adjacent sub-channels, which makes
turbulent quantities largely different from those in plane channel and pipes and enhances
mixing. Experiments found that a constant Strouhal number, with the variation of
the Reynolds number, characterises the phenomenon. The frequency analysis finds
that present simulations are distinguished by three dominant frequencies, the first in
agreement with the experimental value and two higher ones, which might be due to
the correlation of the azimuthal velocity in the streamwise direction. Several passive
temperature fields are added at the simulations in order to study the effects of the
variation of the Prandtl number and the change in boundary conditions (Neumann and
Dirichlet). A simplified case where an imbalance of the scalar between adjacent sub-
channels is also investigated in order to evaluate the variation of the heat fluxes with
respect to the homogeneous case.

An alternative solution, to reduce the mesh constraint imposed by the wall, is to
hybridize LES with RANS. The main achievement of this work is to integrate the
heat transfer modelling to the already existing model for the dynamic part. Further
investigations of the blending function, used to merge the two velocity fields, are carried
out in conjunction with a study of the model dependency on the mesh resolution. The
validation is performed on a fully developed channel flow at different Reynolds numbers

13



and with constant wall heat flux. On coarse meshes the model shows an improvement
of the results for both thermal and hydraulic parts with respect to a standard LES.
On refined meshes, suitable for wall-resolved LES, the model suffers from a problem
of double counting of modelled Reynolds stresses and heat fluxes because the RANS
contribution does not naturally disappear as the mesh resolution increases.

14
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Nomenclature

Capital Roman Symbols

Cpb

Smagorinsky constant for the Germano’s Dynamic Model.
Smagorinsky constant

Diameter

Substantial derivative (0/0t + u; 0/0x;)

Hydraulic diameter (45/P)

Gradient evaluated with Up-Wind definition (eq. (3.12))
Heaviside Step Function

Distance vector between point I and point F'.

Index of cell centre of the I cell

Index of the point obtained by the projection of the I cell centre on the line
perpendicular to a face between cell I and J and passing through the face centre

(see figure 3.1)

Total kinetic energy ((u;u;/2)
Charactheristic length of largest eddies
RANS turbulent length scale

Resolved stress (Eq. (2.32))
Anisotropic resolved stress (Eq. (2.29))

Scaled composite rate-of-strain tensor (Eq. (2.31))

h
—— Nusselt number
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P/D
Pr

P’I“t

Perimeter

Pitch distance (fuel rod bundle test case, see figure 6.1)
Pitch-to-diameter-ratio

Prandtl number

Turbulent Prandtl number

Prsas Sub-grid Prandtl number

PTt’y

)

Ur

7]
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Turbulent Prandtl number for the homogeneous part of the hybrid RANS/LES

model

Turbulent Prandtl number for the anisotropic part of the hybrid RANS/LES

model
Reduced Reynolds stresses R;; — %Rkkéij
Reynolds number (Eq (1.2))

Filtered rate-of-strain % (% + T;)

Filtered rate-of-strain 3 (gf; + ggz>
Cross section area

Wall surface

Strouhal number (see Eq. ( 6.8))

(T, — T') /T; Dimensionless temperature

Bulk Temperature

Local friction temperature

Doubly filtered SGS stress tensor (Eq. (2.27))
Anisotropic double filtered SGS stress tensor (Eq. (2.29))
Bulk velocity

Velocity scale of largest eddies

Intensity secondary motion

Lower-case Roman Symbols
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Cp Specific heat capacity at constant pressure
c Constant (see Eq. (2.56))
f Dominant frequency
f Elliptic relaxation factor (see Chapter A)
h _w Heat transfer coefficient
(Tw — Tg)
k wave number cutoff (k = 1/n), or turbulent kinetic energy (ujul/2)
ks, wave number cutoff for the scalar field (1/7,)
l Charactheristic length of an eddy
lei demarcation length scale between the energy-containig range of eddies (I > l;)

and smaller eddies (I < l;)
myy mass flux evaluated at the face centre between cell I and cell J.

Ty 7 Normal vector to the face

n; Normal vector to the surface
P Filtered pressure

P Pressure

P Pressure fluctuation

Qu Wall heat flux
s Subgrid-activity parameter

st Filtered fluctuating rate-of-strain (Si; — (Si;))

s* Modified subgrid-activity parameter
S¢ Volumetric source term
t Time

(u)gap Bulk velocity in the gap region (Fuel Rod Bundle test case)

U; Filtered velocity

17 Predicted velocity in the SIMPLEC velocity pressure coupling
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U Velocity vector
U1y Velocity vector evaluated at the face centre between cell I and cell J

u) Velocity fluctuation or subgrid velocity component in ** direction with i =
1,2, 3

u, v, w Velocity components is a Cartesian system of reference (used in channel flow,
see Chapter 5)

u, v, w Velocity components is a curvilinear system of reference (used for fuel rod bun-
dle, see Chapter 6)

U; Velocity componenets in i** direction with i = 1, 2, 3
Uy Kolmogorov’s velocity scale
02 Normal velocity fluctuations to the wall

x, r, 0 Curvilinear system of reference (used for furl rod bundle, see Chapter 6.1)
x, y, z Cartesian coordinates (used in channel flow, see Chapter 5)
Z; Cartesian coordinate in the " direction with i =1, 2, 3

Capital Greek Symbols

A Grid filter with the Smagorinsky model (see Eq. (2.25))

A Grid filter with the Germano’s Dynamic model (see Eq. (2.26))

A Effective filter with the Germano’s Dynamic model (see Eq. (2.26)).
Iy Turbulent diffusivity for Schumann’s decomposition (Eq (2.46))

r, Sub-grid diffusivity for Schumann’s decomposition (Eq (2.46))

Iy Molecular diffusivity for the scalar 6
I'sgs Sub-grid diffusivity

Qr Volume of the T cell

Lower-case Greek Symbols

o Blending parameter

g

ary  Geometrical factor

=l
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n Kolmogorov’s length scale

Mo Obukhov-Corrsin scale (Eq. (2.43))

€ Dissipation

A Thermal conductivity

A Wavelength

7 Molecular viscosity

v Kinematic viscosity

Vg Turbulent viscosity in Schumann’s decomposition (Eq. (2.40))
Uy Sub-grid viscosity in Schumann’s decomposition (Eq. (2.40))
vsas Subgrid eddy discosity (Eq (.2.23))

[0} Generic scalar

o1 Generic scalar evaluated at the cell centre of the I*" cell

¢r;  Generic scalar evaluated at the face centre between cell I and cell J
P Fluid density

o dTy/dx1 Bulk temperature variation along the streamwise direction (see Eq.(6.10))
0 Filtered scalar

T Subgrid anisotropic stress tensor (Eq. (2.17))

Tg Subgrid stress tensor (Eq. (2.16))

TjR Subgrid scalar flux (Eq. (2.16))

TI Time scale of largest eddies

T Kolmogorov’s time scale

0 Conserved passive scalar

© v2/k (see section A.1.1)

Abbreviations

BC  Boundary conditions



CD  Central difference

CFD Computational Fluid Dynamics

Ut
CFL Courant-Friedrichs number ——

Azx
DNS Direct Numerical Simulation
FD  Finite Difference
FV  Finite Volume
HPC High Performing Computing
LES Large Eddy Simulation
RANS Reynolds Averaged Navier-Stokes
SOLU Second Order Linear Up-Wind
UW  Up-Wind
URANS Unsteady Reynolds Averaged Navier-Stokes
WP  Work Package
Mathematical Symbols
Fp Blending function (see Eq.(2.54) )
\V4 Nabla operator » ;" fla%l

9Q;  Surface of the It* cell



Chapter 1

INTRODUCTION

DE’ Fiumi

“Dove il canale & piu stretto, i corre l'acqua pit forte, e nell’uscire dallo stretto si
allarga con furia e percote e consuma le vicine rive traverse, e spesso muta corso d’uno

in altro loco”

The above statement is taken from the Codex Atlanticus where Leonardo Da Vinci
annotated his observations about the flowing of the river Arno in Tuscany. Leonardo had
a very wide range of interests: from philosophy to astronomy, from anatomy to military
engineering, from mechanics to bird flight and, of course, fluid mechanics. Leonardo
was hundreds of years ahead with respect to his age: for example in the Codex F
Leonardo gave a very precise description of how birds fly, explaining very accurately
the mechanisms responsible for lift generation. Leonardo can be considered the father
of modern fluid dynamics, for example the first part of the above statement can be
interpreted as the first enunciation of the principle of mass conservation. Continuing
in his study Leonardo was able to formulate the following general rule “where the flow
carries large quantity of water, the speed of the water is greater and vice versa’ which

can be mathematically express as:

UpS = const (1.1)

where Up is the fluid velocity and S is the cross sectional area. During his work

Leonardo also approached turbulence. Figure 1.1 shows the flow around an obstacle,

LON RIVERS “ Where the channel is narrow, the water proceeds faster, and coming out from the
straight it expands with anger and hits and erodes the near cross bank, and frequently it changes
stream from one place to another ” Leonardo Da Vinci, Codex Atlanticus, 1483-1518, 403 pages about
various topics. The translation from Italian is done by the author of this work. The original text is
taken from e-Leo, electronic scansion of the original manuscript conserved at Biblioteca Ambrosiana,
Milan.

2Translation from Tokaty (1971) page 39.
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Figure 1.1: Sketches from the Codex Atlanticus of Leonardo Da Vinci. In the upper
part of the image a complex turbulent flow is showed, which is generated by an obstacle
introduced in a-free stream. The bottom part shows a waterfall and the consequent
recirculation, generated in the underneath basin (Figure from Reuteler (2006))



CHAPTER 1. INTRODUCTION 26

where the separation and the consecutive wake are very clear. In the bottom part

instead a waterfall is drawn and with the following quotation:

“L’acqua che cadera da alto in basso, si fara profondo pelago, il quale sempre
accrescera, e spesso le sue argini vi ricaderanno dentro. F la ragion si € che l'acqua
che cade sopra Ualtra acqua, per la velocita del colpo del peso si fa dar loco, viene a
passare insino sul fondo, dove cava, e per la percussione e per l’aria che nel cadere

sommerge insieme con seco, viene a resurgere, a elevarsi in alto per varie vie, le quali
fanno gargugliamento, ...”3

The interesting part of the statement is the second one, where Leonardo describes
two mechanisms, the collision between the falling water and the water at the bottom
and the imprisoned air that is moving upward, that give rise to the turbulent motion
(“gargugliamento”).

After Leonardo a number of other scientists approached fluid mechanics, but was not
until the end of the nineteenth century that turbulence was spoken about in the work of
Reynolds (1883). Reynolds carried out series of experiments, employing horizontal pipes
and inserting a colour liquid inside the main flow, in order to visualise the streamlines.
He observed that for low speed the pattern of the streamlines was regular: they were
all parallel and aligned with the flow direction. By increasing the speed of the fluid,
eddies formed at the end of the pipe and this destroyed the regular streamline pattern in
the region. By increasing the velocity further the eddy formation moved upstream and
after a certain value of the velocity the flow was chaotic everywhere. He plotted also
the head loss as function of the velocity (Fig. 1.2) and he found that the relationship
was linear until point 1, random between points 1 and 2 and, after 2, again a smooth
curve, with a possible quadratic relation with the velocity. From this description the
flow can be clearly divided into three different regimes: a laminar regime before point
1, a transitional regime between 1 and 2 and a fully turbulent regime after 2. Reynolds
investigated the transitional point, he carried out his experiments with pipes of different
diameters and he came up with the following dimensionless parameter, later called the
Reynolds number:

pU BD - U BD

— = . 1.2
Re p > (1.2)

3«The water falling down from the top to the bottom will create a deep cavity, which will always
grow, and frequently its bank-side will fall into. And the reason is due to the velocity of the knock and
the weight of the water falling onto other water. The falling water is getting room and proceeding to
the bottom (“ viene a passare insino sul fondo”), where it digs in. And due to the hitting and the air
imprisoned (“per la percussione e per l’aria che nel cadere sommerge”) into the fall that after the water is
rising again (“viene a resurgere”), moving upward, generating a chaotic motion (“gargugliamento”),...”
Leonardo Da Vinci, Codex Atlanticus. Translation by the author of this work.

)
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Figure 1.2: Reynolds diagram showing the loss of head as function of the velocity.

He observed that the flow regime was dependent only on this number; he assigned
at P1 a Reynolds number between 1900 and 2000 (Reynolds (1895)). The Reynolds
number has a fundamental importance in fluid mechanics because it permits to com-
pare similar flows around similar configurations, even if the geometrical dimensions are
different.

A fundamental tool in order to understand turbulence is the concept of the energy
cascade. The concept was introduced by Richardson in 1922 and the great Russian
scientist Kolmogorov perfected it. First of all the concept of eddy has to be introduced
as turbulent motion localised within a region of size [, which is at least moderately
coherent over the region. A typical example is a vortex. The flow is divided into large
and small scales. The former has a typical dimension L of the same order as the geometry
under investigation (for example the diameter of the pipe) and at this level the kinetic
energy enters the turbulence through the production mechanism. The energy is then
transferred to the small scales by an inviscid process and is dissipated at the smallest
scales (in general named as Kolmogorov’s scale). A more complete description of the
phenomenon is given in Chapter 2. This concept of energy cascade has a fundamental

role in modern numerical simulation such as Large Eddy Simulation.

1.1 TYPES OF ANALYSIS IN A CFD FRAMEWORK

With the introduction and the continuing development of computer science, Computa-

tional Fluid Dynamics (CFD) is becoming more and more popular in many branches of
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research and engineering. CFD is based on the approximation, discretization and the
solution of the Navier-Stokes equations (N.S.).

The main problem of a turbulent flow is that even if the equations are deterministic
the consequent velocity field is random?. The reason has to be found in unavoidable
perturbations in initial conditions, boundary conditions and material properties. As
was demonstrated by Reynolds in his experiments the flow field, after a certain speed,
is very sensitive to these perturbations.

The direct resolution of the N.S. equations is called Direct Numerical Simulation
(DNS). In this approach all the time and space scales are resolved as shown in Fig.
(1.3). In order to resolve small scales (Kolmogorov scales) the mesh has to be very fine.
DNS is becoming increasingly popular because the information that can be provided
is, in same cases, not even achievable by experiments. This method is now widely
used in research and in particular in turbulence modelling. As a consequence of its
extremely fine level of description, DNS is very time consuming. Table 1.1reports the
CPU time needed for a simulation of isotropic turbulence as function of the Reynolds
number, showing that CPU time is proportional to the Re®. Consequently simulations
of relatively complicated geometries at very high Reynolds number are still not feasible,
even using High Performing Computing (HPC). The second failing of DNS is that
high order schemes, in the discretization of equations, have to be employed in order to
minimise the numerical dispersion and dissipation. Implementation of these schemes is
relatively easy in block-structured meshes, but their formulation on general unstructured
grids, as required in very complex engineering flows, is not straightforward. In Chapter
4 all these points will be discussed in more detail. Some examples of DNS are reported
in Kim et al. (1987); Kawamura et al. (1999); Abe et al. (2001, 2004)

A second type of approach consists in calculating the statistical average of the solu-
tion. In this method, which is based on Reynolds observations, the solution is divided
into two parts: a mean part and a fluctuating part. Mathematically the decomposition

is:

u; = u + U (1.3)

instantvalue — mean  flyctuating

where the mean value is obtained as:

t+T
u; = lim / u(x, t')dt’ (1.4)
t

This is called Reynolds Averaged Navier-Stokes (RANS), where turbulence effects are

4Random event: considering a certain event A ( for example A = {u1 < 10 ms*l})7 if the event A
inevitably occurs, then A is certain, If A never occurs, then it is impossible, if A may or may not occur,
then it is random.
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fully modelled as presented in Figure (1.4). The computational resources required are
far less than in DNS. Consequently very high Reynolds numbers and very complex
geometries are feasible to be resolved even on a simple laptop. These characteristics
make the approach very attractive for engineering applications, and in fact it is the
base of most commercial and industrial codes. For a more detailed description of RANS
method and models refer to Pope (2000); Wilcox (1993).

A very similar approach to RANS is the Unsteady Reynolds Averaged Navier-Stokes
(URANS), or Semi-Deterministic Simulation (SDS), or Very Large-Eddy Simulation
(VLES). In this case the resolved part is only constituted by some low frequency modes
in time, and all turbulence is modelled following a RANS approach (Fig. 1.5). In this
case the level of information given by the solution is more detailed than RANS. This
approach is used frequently when there is a superimposition on the mean flow of an
external unsteadiness, for example a pulsating flow or vortex shedding.

An intermediate approach between RANS and DNS is Large Eddy Simulation (LES).
As the name suggests the flow is divided into large and small scales. The former are
resolved and the latter, instead, are modelled (Fig. 1.6). In order to separate the two
scales a cut-off length has to be defined. The methodology to do this scale separation
is presented in Chapter 2. The same chapter also presents governing equations for LES
and some commonly used turbulence models. A more complete introduction to the topic
could be found in Pope (2000) and in particular in the book of Sagaut (2001), which
is entirely devoted to the subject. Clearly the level of approximation, given by LES, is
more accurate than what RANS can provide. In the past, LES was entirely devoted to
research about turbulence when DNS was still too expensive. More recently, with the
increase of the computational CPU power, LES has started to become attractive also
for industrial and engineering applications. In some applications, for example nuclear
power plant, the results given by RANS calculations do not give enough details about the
fluctuating forces or temperatures which are important for the circa fifty years lifespan
of major components. LES becomes feasible and more accurate than RANS when it
can be applied to a sub-component such as pipe bends, T-junction, flow between tubes.
As a consequence several commercial codes (Fluent, Star-CD are only two examples)
and industrial ones (Code_Saturne) are introducing this type of approach among their

turbulence model options.

1.2 PH.D. MOTIVATIONS AND OBJECTIVE

This Ph.D. is part of the KNOO project (Keep Nuclear Option Open), a five year
initiative to enhance research in the nuclear field. The project is divided in four work
packages (WP):
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Re; = EL | Rey = Upns CPU Time

v v

94 25 20 min
375 50 9h
1500 100 13 days
6000 200 20 months

24000 400 90 years
96000 800 5000 years

Table 1.1: Estimation of the CPU time for DNS of isotropic turbulence at different
Reynolds number. The estimation was done at 1 gigaflops (1000 operations per mode
per time step). The data are taken from Pope (2000) .

1. Fuel Thermal-hydraulics and reactor systems;

2. Materials performances and monitoring reactors conditions;

3. An integrate approach to waste immobilisation;

4. Safety and performances for a new generation of reactor design.

This work is enclosed in WP1. The aim of this work is to use LES to generate a reliable
data-set for RANS validation. The main drawback of LES in wall bounded flows is the
very fine mesh resolution required by the small near wall structures. Therefore one of
the main objective of this work is to relax the near wall mesh constraints employing
some of the recent techniques such as embedded refinements or Hybrid RANS/LES

turbulence modelling.

1.3 OUTLINE OF THE THESIS

This thesis is divided into two parts: the first is a theoretical review of fundaments of
turbulence models and numerical analysis, whereas the second presents the results.
Chapter 2 recalls the Navier-Stokes equation, the concept of energy cascade and
some concepts of turbulence modelling. The turbulence modelling section is mainly
concentrated on the filtering approach, which is the theoretical base of Large Eddy
Simulation. The Smagorinsky model and Germano’s Dynamic approach are introduced,
underlining their strengths and weaknesses. Because the main focus of this work is to-
ward wall bounded flow some elements of anisotropic modelling are also brought up,
in particular focusing on Schumann’s decomposition. Heat transfer modelling is also
considered, along with different thermal regimes as function of the Prandtl number
variation. Finally the chapter presents a Hybrid RANS/LES model based on the Schu-
mann’s decomposition, where heat transfer is taken into account. Appendix A briefly

reviews the equations for the RANS approach.
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In this work the numerical analysis is performed using Code_Saturne, a CFD code
developed by R&D at EDF. The solver is based on a Finite Volume discretization and
the computational methods used are described in Chapter 3.

A considerable part of this work investigates the influence of the mesh requirements
for LES type of calculations and Section 3.1 gives a briefly overview of the available
mesh strategies, focusing in particular on the comparison between structured and un-
structured approaches.

In Chapter 4 the concept of kinetic energy conservation in conjunction with an
inviscid bi-dimensional test case (Taylor-Green vortices) is used in order to compare
structured and unstructured mesh performances. During the comparison embedded
refined and polyhedral meshes are tested against a well known structured conformal
grid. The use of unstructured meshes increases the level of error, but performance can
be recovered if the unstructured mesh presents a low level of non-orthogonalities. Indeed
results show the large importance of the accuracy of the gradient reconstruction, which
is used in the evaluation of the explicit part of the convective and diffusive terms when
the mesh is non-orthogonal.

The comparison between mesh arrangements is carried on in Chapter 5, but using
a 3D fully turbulent flow at Re, = 395. Several types of mesh are employed and
compared with a structured grid. Some of the unstructured meshes presented some
non-physical oscillations in the Reynolds stresses profiles. Budgets of turbulent kinetic
energy and Reynolds stresses are also evaluated in order to find a possible explanation
for the problem.

Chapter 5 presents a validation of a Hybrid RANS/LES model, which includes heat
transfer modelling. The model is tested against wall resolved LES on coarse meshes and
it has been proved to be beneficial. An investigation of the model dependency to the
mesh resolution is also carried out. In the validation process the effect of the Prandtl
number variation is also considered.

Chapter 6 presents the fuel rod bundle test case. Firstly the quality of simulations
is evaluated using some LES quality indices and after the results are presented. The
flow presents coherent structures that are flowing in the streamwise direction in the
gap region between two adjacent sub-channels. This generates a phenomena called
flow pulsations, which is enhancing mixing between sub-channels. Budgets of turbulent
kinetic energy and Reynolds stresses are computed and reported. Heat transfer results
are also presented taking into account different boundary conditions for the scalars:
Neumann (constant wall heat flux) and Dirichlet (constant wall Temperature). Effects
of the Prandtl number variation on the thermal field are also taken into account. Finally
a case with scalar imbalance between adjacent sub-channels is investigated. A similar

geometry, where a spacer wire is wrapped around every fuel rod, in presented into
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Appendix D. The test case is analysed with RANS turbulence models therefore it is

inserted into appendix.
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Figure 1.3: Decomposition of the energy spectrum into resolved and modelled parts for

a DNS analysis.
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Figure 1.4: Decomposition of the energy spectrum into resolved and modelled parts for

a RANS analysis.
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Figure 1.5: Decomposition of the energy spectrum in resolved part and modelled part

for a URANS analysis.
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Figure 1.6: Decomposition of the energy spectrum into resolved and modelled parts for

a LES analysis.
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Chapter 2

(GOVERNING EQUATIONS AND
TURBULENCE MODELLING

In this chapter the governing equations for fluid motion and heat transfer are presented.
The concept of energy cascade is also briefly revised in order to have a more complete
introduction to turbulence modelling. Secondly LES modelling is introduced and some
of the most popular models are presented. RANS modelling is not considered in this
chapter, but a very quick overview is given in Appendix A. Finally Hybrid RANS/LES
is introduced in conjunction with a new Hybrid model for the heat transfer. More
details about fluid mechanics and turbulence modelling can be found in several books,
for example Tritton (1988) and Pope (2000), whereas a complete description of LES
and Hybrid modelling can be found in Sagaut (2001).

2.1 GOVERNING EQUATIONS

The intrinsic physical meaning of thermodynamic quantities must be found in the sta-
tistical description of a gas. Consequently the governing equations for fluid motion can
be derived using a statistical mechanics approach. Such rigorous derivation of mass,
momentum and energy conservation can be found in the book of Vincenti and Kruger
(1965).

In this work the starting point is the Navier-Stokes equations! in their incompressible
form 2 and with assumption of constant fluid properties. The energy balance is conse-
quently reduced to a transport equation of a passive scalar. The system of equations

being solved is therefore:

'In this context Einstein’s notation is used.
?In case of constant density the buoyant term in the momentum equation is neglected and the
thermal field is only acting as a passive scalar, without any feedback in the momentum.

35
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Bui
Oxi -
Oou; Ouju; 10p 0%u;
b =t (2.1)
ot Ox; pOx; O0x;0x;
00  Ou;b %0
— -T
875 aZL'j 8([3ja$j

where z; is the coordinate in the *" direction, u; the velocity component in the it*
direction, t the time, p the density, p the pressure, v the kinematic viscosity, 6 a scalar
(i.e. temperature) and I' = v/Pr is the diffusivity of 6 with Pr being the Prandtl
number.

In general the pressure is seen as a thermodynamic variable and thus can be related
to density and temperature using an equation of state. In the case of a constant density
flow this link is lost and a different interpretation for the role of pressure is required.

Taking the divergence of the second equation of the system 2.1 leads to

D 9 B 1 9 8ui 8Uj
(Dt—uv>v 7_—pvp o, B (2.2)

In the case of a divergence free flow V- @ = 0 and this is true if and only if the RHS of
Eq. (2.2) is equal to zero everywhere, which implies that the following Poisson equation

for the pressure has to be verified:

82p _ 6uz 8u]~
axf p@xj 0x;

(2.3)

Thus: the satisfaction of Equation (2.3) is a necessary and sufficient condition for the

velocity field to be solenoidal.

2.2 THE ENERGY CASCADE

The concept of energy cascade was first introduced by Richardson (1922). It is based
on the concept of an eddy defined as turbulent motion localized in a region of size [,
which has a moderately coherent structure over this region. The Richardson point of

view can be summarized as:
e Turbulence can be considered composed by eddies of different sizes;

e The largest eddies are characterized by a length scale L, which is comparable with
the flow scale and by a velocity Uy, comparable with the root mean square (r.m.s.)

value of the turbulent fluctuating velocity;
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e The Reynolds number of the large eddies is large enough for the viscosity effects

to be negligible;

e The large eddies are unstable and they break down, transferring their energy to

smaller eddies;

e The same procedure of breaking and energy transfer affects also these new small

eddies, creating even smaller eddies;

e This process of energy cascade continues until the Reynolds number of the eddies
is small enough for the molecular viscosity to take place and dissipate the kinetic

energy; at this stage the smallest scales of the turbulent motion are reached;

e Dissipation takes place only at the end of the energy cascade, the dissipation rate

can be determinate by this process in sequence and it scales as®

)
Il

=S

(2.4)

Two main questions remain still unanswered: what is the size of the smaller eddies? As
the characteristic length scale of an eddy decreases what happens to the characteristic
velocity u(l) and time scale 7(1)? Answers were given by Kolmogorov (1941a,b,c, 1962)*

when he formulated his hypotheses.

¢ Kolmogorov’s hypothesis of local isotropy: at sufficiently high Reynolds
number, the small-scale turbulent motions are statistically isotropic®. The separa-
tion length scale between anisotropic large eddies and isotropic small eddies is in

general referred as [;5.

¢ Kolmogorov’s first similarity hypothesis: in ecvery turbulent flow at suffi-
ciently high Reynolds numbers, the statistics of the small scale motion (I < l¢;)
have a universal form that is uniquely determined by the kinematic viscosity v and

the dissipation rate €. lo; demarcates the so called Universal Equilibrium range.

3The large scales have energy of order U? and then the time scale T is

S L
L=,
so the rate of transfer of energy scales as:
Ui _ UL
. L

1A translation from Russian to English of Kolmogorov’s work can be found in Kolmogorov (1991)

5Statistically isotropy: all the statistics of u; does not change if the coordinate system is rotated by
an arbitrary angle.

5A rough estimation is l¢; ~ %L (Pope (2000)).
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Combining v and ¢ yields:

3 1/4
n=|—
£
Uy = (ev) /4 (2.5)
1/2
v
\

where 7 is the length scale of the smallest eddies (also called Kolmogorov’s scale),
u,, the velocity scale and 7, the time scale. Using the definition of the dissipation
rate given by Eq. (2.4), the following estimations of ratios between small and

large scales can be derived:

Unp

' Re~ /4 2.6
b, ~ B (2.6)
Tl ~ Re_1/2

TL

¢ Kolmogorov’s second similarity hypothesis: in every turbulent flow at suffi-
ciently high Reynolds numbers, the statistics of the motion of scale | in the range
L > 1 > n have a universal form that is uniquely determined by € and indepen-
dent from v. Now it is convenient to introduce a length scale ly4; (Ig; = 60-7) that
divides the universal equilibrium range into an inertial sub-range where inertia
still dominates, and a viscous range where the dissipation acts. In the inertial

sub-range the velocity and time scales are:

u(l) = (e))'/3

2 1/3
(9

Figure (2.1) visualizes all the different scales and ranges.

(2.7)

2.3 LARGE EDDY SIMULATION

As a consequence of the energy cascade presented in the previous section, a turbulent
flow could be divided into small, or sub-grid, scales and large scales. In LES the

decomposition is applied through a filtering operation. The equations obtained are the
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Universal equilibrium range
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Figure 2.1: Visualization of the typical length scales of a turbulent motion at high
Reynolds number.

usual mass, momentum and energy conservation with the addition of a new term the
Sub-Grid Scale (SGS) stress tensor that represents the effect of small scales on the
large ones. This term has to be modelled and many options are possible, starting from
a simply eddy viscosity model (Smagorinsky model) to more complex models where
several transport equations are solved for different sub-grid quantities. A very complete
and comprehensive description of LES modelling and related issues is given in Sagaut

(2001).

2.3.1 FILTERING

A filtering operation can be mathematically defined as a convolution product:

T(T ) = /OO w(POG(T — 7 0)d7 (2.8)

—0oQ
where u; is the filtered velocity, G is the kernel of the convolution and depends on the
type of the filter.
The residual field is defined as:

(T 1) = u (T, t) —w(T,t) (2.9)

and the velocity field can be decomposed as

wi(7,t) = w (2, t) + ul(7,t). (2.10)

This decomposition appears to be similar to the Reynolds one, but in this case the
filtered velocity U(?, t) is random and time dependent. The second difference is that

the filtering operation applied to the residual field is not zero:
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ul(Z,t) # 0. (2.11)
The filter must verify the following properties:

1. Conservation of constant:
oo
a=a / G(7,t)d7 =1 (2.12)
—00
2. Linearity:

U1 +uy = Uy + uy (2.13)

3. Commutation with differentiation”:

ou; ou;
= 2.14
0s 0s ( )
General ‘ G(r) ‘
Box %H (%A — |r\)
Gaussian \/% exp (—%)
Sharp spectral %

Table 2.1: Example of one-dimensional filter functions. H is the Heaviside Step Func-

tion.

Table 2.1 reports some examples of filter functions in one-dimension (for simplicity).
For a more detailed treatment of the filter operation, its properties and its applications
refer to the book of Sagaut (2001).

2.3.2 LES FORMULATION

Using the velocity decomposition of Eq. (2.10) for both velocities and pressure, the

system of Equations (2.1) becomes:

(

ou; 8u; 0
(%cj - Ga:j N
ou; Owu;  10p o*u;
+ N +v (2.15)
ot a$]' p@xz a$ja$j
00 Ou;0 0%0
-+ =T .
ot Oxj Oxj0x;

"The commutation with differentiation holds only if G is homogeneous in space.
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From equations in the first line of system (2.15) it is immediately possible to observe
that both the filtered and the sub-grid field are solenoidal. Now the problem comes from
the term w;u; that is not simply equal to the product of the filtered single velocities.
The non-linear term can be expressed as:

R

Tij = Willj — Ui Uj - (2.16)

The residual stress tensor could be divided into an isotropic and anisotropic part as:
a R 1 R
and the isotropic part could be added to the pressure obtaining:

_ 1
P=p+ ngﬁ&j. (2.18)

The momentum equation can be rewritten as:

ou;  Oww _ 10p Omy O (2.19)
ot Ox; pOx;  Ox; O0x;0x;
Same issue also affects the sub-grid scalar flux, which can be expressed as:
=0 — ;0 (2.20)
and the transport equation for the scalar can be rewritten as:
0 Ou,; 0 orh 20
90 0u0 _ 91y 0 (2.21)

ot Ox; oz; 0x;0x;
The filtered quantities depend also on the type and the width of the filter. Filtered
quantities can also appear indirectly in the model of 7'2-“]- and TJR.
2.3.3 S.G.S. MODELLING
2.3.3.1 THE SMAGORINSKY MODEL
The simplest model to express Tiaj was proposed by Smagorinsky (1963) and is based on

a mixing length hypothesis:

8 = —2(CsA)*[S] S (2.22)

_ 1 ou; Oﬂj
where Cs is the Smagorinsky constant, A the filter width, S;; = 5 3 + 3 is the
Zj €T;

filtered rate of strain tensor and ’?‘ = 1/285;; Sij. The sub-grid viscosity (vsgs) is:
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vsas = (CsA)? S (2.23)

and the model has a total viscosity equal to:

vror =V + VsGs (2.24)

The theoretical value of the Smagorinsky constant is still an open debate. Pope
(2000) gives a value of 0.17 for isotropic turbulence. A common way to evaluate is to
use the decay of the isotropic turbulence in order to take into account the numerical
dissipation. For inhomogeneous flow a smaller value is used, for example in channel
flow a common value is Cs = 0.1 or Cs5 = 0.065 (see Benhamadouche (2006)) and they
are in general related to conservative properties of the code.

This model presents many drawbacks:
e Different values of Cy are used to describe different flows;

e The sub-grid stresses do not vanish in laminar regions. Consequently damping

functions must be introduced in order to take into account near wall effects;

e Intermittency functions must be introduced for transitional flow in order to modify
Cs;

e The model does not take into account the back-scatter that occurs when the
energy flows from small scales to the large ones. The phenomenon sometimes can

be significant;
e Anisotropy of small scales in the near wall region is not considered;

e The model needs also to be modified in the case of a strong density stratification

or rotation, even if the Reynolds number is high.

In the framework of Code_Saturne the value used for Cy = 0.065 and the filter width

is defined as:

A =23/ (2.25)
Where Qj is the cell volume. The Van Driest (1956) damping is used to damp the SGS
viscosity in wall-bounded flows.
2.3.3.2 THE GERMANO DYNAMIC MODEL

The dynamic model introduced by Germano et al. (1991) can be interpreted as an evo-

lution of the Smagorinsky model, where the Smagorinsky constant becomes a coefficient
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that depends on space and time. The model is based on a double filtering operation.
The first filtering operation is defined as the implicit mesh induced filter and it is de-
noted here with an over-line symbol. This filter is characterised by a filter width A.
The second filtering operation is called test filtering. It is indicated by a tilde and it is
characterized by an effective filter width i Both filter widths are related as:

A > A (2.26)

In general literature A =27 (see Moin et al. (1991)), but for example Benhamadouche
(2006) in his PhD thesis uses a ratio of 1.5, computed as the optimal value from tests
on isotropic turbulence. Applying the second filtering operation to the residual stress
tensor defined in Eq. (2.16) the corresponding residual stress tensor is obtained as:

Tij = UiUj — U; Uy (2.27)
The model is based on Germano’s identity (Germano (1992)) that is written as:

Lij =T~ =G — 0 4. (2.28)
The same decomposition on isotropic and anisotropic parts used in (2.17) for 7;; can be

applied also for Tj; and L;; obtaining:

1S
{ T = Tii = 3Tty (2.29)

L§; = Lij — 5 Lix0ij

The residual stress tensors Ti]; and Tj;, obtained from the two filtering levels, can be

modelled using the same constant C'p. This leads to:

6 = —20pA°|S| 5

~2 == (2.30)
Ts = -2CpA [5|5;
Taking C'p to be uniform and defining
5 = ~2 |1z =
My = 28" [S|5; - 28 [3] 55, (2.31)

Substituting Eq. (2.30) into the second of Eq. (2.29) and taking into account definition
(2.31) gives:

LY =T% - ;g = CpM;, (2.32)

where ij represents the Smagorinsky model for the anisotropic part of the resolved

stress L;;. A single value of the coefficient C'p cannot be chosen to satisfy the six
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independent components of the tensor defined as:

Eij =LY — LY. (2.33)

A possible solution is presented by Lilly (1992), where Cp is evaluated using a mean
square minimisation of the error between the deviatoric stress Lf; and its Smagorinsky
prediction ij obtaining®:

_ LMy Li M,
MMy Mg M

From this definition of Cp some considerations can be made:

Cp (2.34)

e Cp can assume a negative value: this is in general interpreted as a synonym of
the back-scatter;

° Ikal—>0 :>CD—>OO.

These two situations lead to instability of the solution. A common practice to overcome
the problem (see for example Piomelli and Liu (1995)) is to average, in time and/or
along homogeneous directions, the numerator and the denominator of Eq. (2.34).

In addition the following conditions need also to be verified in order to obtain a

physically acceptable solution:

>0
{”+”— (2.35)

Cp<C?

where Cj is the value of the Smagorinsky constant used for isotropic turbulence. With

the Germano Dynamic Model no damping function is required in the near wall region.

2.3.4 NON ISOTROPIC MODELLING

The development of most LES models is done under the framework of isotropic flows. In
a case where the flow is anisotropic some adaptations are required. A common example
is the introduction of the Van Driest (1956) damping function for the turbulent viscosity
in case of a wall bounded flow. In these types of flows the cells, and in particular in
the near wall region, are far from isotropic (i.e. perfect cube) and the usual filter width
proposed by Deardorff (1970), where the filter width is simply the cube root of the cell

9

volume”, is questionable.

A(T) = (A1(T) 2o(T) A3(T))* (2.36)

SSiHCG Mi]' is deviatoric = MIJL” = M”L;Lj
9Most authors use twice the cube root of the volume because the smallest eddy which can be resolved
has to be composed by at least two cells.




CHAPTER 2. GOVERNING EQUATIONS AND TURBULENCE MODELLING45

where A;(Z) is the filter width in the i*" direction. Some simple modifications, in order

to take into account mesh stretching, could be (see Sagaut (2001)):

A = [ (033) + 83(7) + 83(2) (2.37)

A(T) = max (AL (T), Ao (T), A3(T)) (2.38)

A more complex modification of the filter width due to cell stretching is proposed
by Scotti et al. (1993) where the filter width is computed as:

A(T) = A(@)isof (a1, a2) (2.39)

where A(?)iso is defined in Eq. (2.36), f is a function depending on the ratios a; and
az, which are computed as a; = A;/Apmaz'C.

All these approaches can be brought back to the isotropic modelling where just only
one length is defined for the filter width. Another possibility, when cells are extremely
stretched in one direction, is to introduce several lengths and have a variable filter width
depending on the direction. An example is presented in Bardina et al. (1983) where a
tensorial formulation related with the cell geometry is proposed for the filter width. Of
course the modelling stages becomes more complex with this latter option. However

the validity of LES performed on very stretched grid can be questionable.

Schumann’s decomposition

Another way to approach inhomogeneous flow is proposed by Schumann (1975). The
method consists of splitting the velocity field into locally isotropic and inhomogeneous

parts. The model can consequently be formulated as follows:

i = —=2u, (S5 — (Si)) — 2va (Sij) (2.40)
~ ——
Locally isotropic inhomogeneous

where v, can be considered as a sub-grid viscosity which is computed from a transport
equation for the sub-grid kinetic energy. The inhomogeneous term is instead treated in
a RANS way and the turbulent viscosity v, is evaluated with a mixing length model.
The angular parentheses () denote an average quantity.

Other authors, instead, treat both terms in a “LES fashion”, using for both viscosities
a sub-grid formulation. An example is presented by Moin and Kim (1982) where both

viscosities are evaluated as:

A ez is computed using Eq. (2.38) and A; are the other two smaller filter widths.
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= (0 2 (55— (52) (S — (5)
e = (o) /(55 (55)

where C7 and Cs are two arbitrary constants and the two filter widths are defined as:

(2.41)

A = (A1AsA5)" (1 — exp (y+/AT))
A, = A, (1 — exp ((y+/A+)2>>

where y is the wall normal direction A and A, are two filter widths associated with

(2.42)

vy and vy. Both filter widths are damped using the Van Driest damping for A and
a modified Van Driest with quadratic argument for the exponential for A,. AT is a

constant equal to 25 and y* is the dimensionless distance from the wall.

2.3.5 PASSIVE SCALAR MODELLING

In the same manner as for the hydrodynamic field, presented in Sec. 2.2, a length scale
needs to be introduced in order to describe scalar dynamics. This scale is named after
Corrsin (1951):

e \1/4 1\**
ne=<ﬁ> :<Pr> n (2.43)

with 7 the Kolmogorov scale defined in Eq. (2.5). The ratio between cut-off wave
numbers consequently scales as:

% = pr/4 (2.44)
with kg = 27 /ny wave cut-off number for the scalar field and k = 27 /n wave number
cut-off for the velocity. !

Three different regimes can be encountered:

1. Pr < 1: when the diffusivity is much bigger than the kinematic viscosity. In
this case the scalar cut-off wave number is smaller than the one for the velocity.
Thinking in terms of boundary layer (B.L.) thickness the velocity B.L. is smaller

than thermal one.

2. Pr ~ 1: in this case both cut-off wave numbers are comparable. Consequently

the two boundary layers have similar thickness.

1The Obukhov-Corrsin definition is not valid at very high Prandtl numbers, for which Batchelor
(1959) derived a wave number defined as:
e \1/4
ko= (5e)
B vA2
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3. Pr > 1: when the velocity cut-off is larger that the one for scalar. This case is
more complex because the scalar length is smaller than the velocity length, with

the consequence that the thermal boundary layer has a smaller thickness.

The simplest closure approach for the scalar modelling is to use a gradient diffusion
hypothesis, where a sub-grid Prandtl number is introduced and the sub-grid diffusivity

is defined as:

(2.45)

Prsags is in general a constant and is evaluated in order to better fit reference results.
In the literature the value varies between 0.1 and 1, with a common value around 0.7
12 This option is also the most used in most of the CFD codes even if it is a crude
approximation.

Moin et al. (1991) present a generalization of the dynamic model (see 2.3.3.2) in-
cluding scalar transport. The same dynamic procedure is applied to the calculation of
a sub-grid Prandtl number. It is interesting to notice that, in the case of a turbulent
channel flow at Re; = 180 (Reynolds number based on the friction velocity), Prsas
has a wide variation ranging from more than 1 in the near wall region, to 0.6 at the
centre of the channel.

Schumann’s decomposition of Section 2.3.4, can be also applied to the heat trans-
fer modelling (see Grotzbach (1979); Grotzbach and Schumann (1979)) leading to the

following formulation for the heat fluxes:

0 20
F= T G- @) -5 240

Ty

2.4 HyYBRID RANS/LES COUPLING

The use of LES to study 3D transient flows has been in huge growth, in particular
because of the ability of the method to give quantitatively better information than
those provided by a usual RANS calculation. Despite this the application of LES to high
Reynolds number wall bounded flow is still an issue due to computational constraints.
For those types of flows a large amount of control volumes is necessary in order to capture
all the scales responsible for the turbulent production and to avoid the deficiencies of
most of the LES models to take into account anisotropy and non-equilibrium.

Wall modelling is necessary to keep the computational cost of the simulation rea-

sonable. A first simple approach is to use the so called “wall-function” approach to

2The reason of a Prsas smaller that 1 is often explained because the ability of temperature hot
spot to diffuse more with respect to a velocity peak, without counter action from pressure.
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provide the right amount of shear stress at the first cell, which is located far above the
laminar sub-layer (y* > 5). Wall functions can range from simple models based on the
"log law”, to a resolution of simplified equations in the near wall region. For a detailed
presentation about wall model requirements refer to Baggett (1997).

Another way to reduce LES mesh requirements is to hybridise it with another type
of computational technique able to provide lower frequency solution at cheaper com-
putational cost. The obvious candidate is RANS. Hybrid RANS/LES models can be
divided into three main groups following Sagaut (2001):

1. Non-linear disturbance equations: the method is firstly proposed by Morris et al.
(1997) in which the flow field is divided into a steady or low frequency part and a
high frequency or fluctuating part. The first is computed with a RANS approach
and the second with a LES method. The result is a generalized form of the

Navier-Stokes equations written in a perturbation form.

2. Universal modelling: in this case the sub-grid model is generalised by including a

combination of RANS and usual LES modelling. Those models are designed in a
way to recover asymptotically the behaviour of typical RANS, with the inclusion
of some LES capabilities. The aim is to make the sub-grid model able to deal
with coarse meshes and then move the cut-off to lower frequencies. An example of
this type of modelling is Germano’s Hybrid model presented in Germano (1999,
2004).
The model starts from the definition of a hybrid filter as a sum of LES and RANS
filters. The main outcome is that the residual stress tensor has three contributions:
the LES term, the RANS term and an extra term, which arises from the blending
between the two types of filters.

3. Zonal decomposition: with this approach the domain is divided into sub-domains,
with some domains treated with RANS and the remaining with LES.

The zonal decomposition has received most attention by many different research groups
and can be divided into two main types: the sharp and the smooth transition. In
the first family the RANS and the LES parts are divided by a defined interface. The
communication between the two regions is in general done by exchanging boundary
conditions. A problem arises because the fluctuating part, ignored by the RANS sub-
domain, has to be reconstructed in order to have proper boundary conditions for the
LES domain. An example of this type of technique is presented in Davidson and Peng
(2003), where both plane channel flow and flow over a periodic hill are considered.
The near wall region (y* < 60) is computed with a k¥ —w model and the inner region is
modelled with a one equation model for the sub-grid stress tensor. The interface is fixed

and Neumann boundary conditions are applied for the RANS sub-domain. The results
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are better than LES on the same coarse meshes but some problems are pointed out.
Firstly results are dependent from the location of the matching plane between RANS
and LES and, secondly, the velocity shows a sudden acceleration at this interface. This
problem is more evident in the channel flow simulation. This may be, according to the
authors, due to the smoothing produced by the convective and diffusive transport in the
latter case. As already mentioned, RANS domain does not contain enough turbulent
characteristics and the LES part is not supplied with the right amount of fluctuations.
Improvements in the results for the channel flow calculation are obtained in Davidson
and Dahlstrom (2005); Davidson and Billson (2006), where fluctuations are imposed at
the interface. In the first case, fluctuations are computed from a DNS database for a
generic boundary layer, in the second case they are computed with a Synthetic Eddy
Method (SEM). The same method is also used for the plane diffuser finding better
results than usual RANS simulation.

Another sharp transition approach is presented by Temmerman et al. (2005). In
this case the key feature is to impose a continuity constraint to the turbulent viscosity
at the interface. The coeflicient C), (see Appendix A for definition) is computed at the
interface as ratio between average LES turbulent viscosity and RANS viscosity and after
it is used to increase the RANS viscosity, via an exponential function, as the wall is
approached. Many different RANS models and different locations of the interface have
been tested finding better results than analogue coarse LES. The model is also tested on
a series of periodic hills finding, instead, worse results than pure LES on same meshes.
The approach gives an excessively long recirculation zone with respect to the reference
solution. Evidence suggests that the problem is caused by defects in the wall shear
stress provided by the RANS model. The same method is also compared with LES with
wall functions (standard log law and zonal two-layer strategy) in Tessicini et al. (2006)
for different test cases. The Hybrid method in general provides better results because
it permits to place the interface further away from the wall. On the other hand the
two-layers approach is very simple, economical and far more accurate than a standard
log-law wall function.

Keating et al. (2006) applied Hybrid RANS/LES to attached boundary layers. Au-
thors found that a Synthetic Eddy Method is not sufficient to reconstruct the fluctuating
field because the method needed long distance (about 10-20 times the boundary layer
thickness) to develop proper phase relationships between the modes. A forcing term was
introduced with the result of a decrease of the development distance to 1-2 boundary
layer thicknesses.

A very popular technique, that can be included in the smooth transition family, is
the so-called Detached Eddy Simulation (DES). The method consists in an unsteady
RANS model in which the turbulent length scale is switched to a LES filtered type
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when a separation occurs. This is actuated by damping the turbulent viscosity. The
original formulation of DES model is presented by Spalart et al. (1997) using a one
equation Spallart-Allmaras model, but later many other models are incorporated in the
same framework e.g. Mockett et al. (2005). The drawback for this type of approach
is when the near wall region is approached and fine meshes are employed. In this part
of the domain the RANS length scales might become much larger than those imposed
by the mesh, leading the method to a grid induced separation as proved by Menter
et al. (2003). As the name suggests the model works with highly separated flows, but it
does not performs very well with wall bounded flow. The problem is taken into account
and corrected in Spalart et al. (2006) where the concept of Delayed Detached Eddy
Simulation (DDES) is introduced.

Another type of smooth transition model can be extended from the splitting tech-
nique proposed by Schumann (1975) and also briefly recalled in Section 2.3.4. In this
case the anisotropic part of the residual stress tensor is corrected with a term computed
with a RANS approach. The two terms that compose the stress tensor, are blended
using a blending function, in order to obtain a smooth transition between the RANS
and the LES sub-domains. This method was first proposed by Baggett (1998), finding
some controversial results: unphysical very elongated streaks in the streamwise direc-
tion were formed in the RANS region. As a consequence there is a decorrelation of the
fluctuation in the streamwise and wall normal direction that must be compensated by
a larger velocity gradient. The result is a shift toward higher distance from the wall
of the intercept of the logarithmic region. The reason of all this seems to be more
caused by the low resolution in the near wall region rather than a modelling deficiency.
Many authors try to alleviate the problem by introducing different types of corrections.
Piomelli et al. (2003) move the interface more close to the wall in combination with
a less dissipative sub-grid model without a big improvement of the results. On the
other hand the introduction of a back-scatter forcing term in the region immediately
below the interface is proven beneficial. Good results are also found by Hamba (2003),
introducing an overlap region in which the model switches smoothly from the RANS to
the LES.

In the family of the smooth transition models a very interesting model is presented
by Abe (2005). In this case a non-linear eddy viscosity model is used in both domains.
In the RANS part uses a k — € base model, whereas the LES part employs an algebraic
definition. The blending function is parameterised using the wall distance and the grid
size. Several channel flows are computed finding good results in terms of mean velocity
profiles, but with a stronger stress anisotropy caused by some suppression of energy
redistribution from the streamwise to the wall normal and the spanwise directions.

A complete review of different Hybrid methods and their application can be found
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in Frohlich and von Terzi (2008).

2.4.1 HyYBRID RANS/LES FORMULATION

This section presents the Hybrid model used in this work. The model is based on
Schumann’s decomposition recalled in Section 2.3.4. This model was originally formu-
lated by Uribe et al. (2009). Here the model is extended with some improvements in
the blending function definition and the addition of the heat transfer modelling (Rolfo
et al. (2010)).

From Equations (2.40) and (2.46) the sub-grid terms can be expressed as:

5 = —2 (S5~ (55)) — 2va ()
- —rr;(e— @) -1 0(0) (2.47)

a
xj Ox;

For the homogeneous part a simple Smagorinsky model based on the fluctuating strain
is used (Moin and Kim (1982)), leading to the following expression for the sub-grid

turbulent viscosity:

vy = (CsA)? /25 8], (2.48)

with s{; = Sij — (Si;j) and a filter width equal to twice the cubic root of the cell volume
(A=2- Q}/?’). The ¢ — f model of Laurence et al. (2005) is used to compute the
average viscosity v,, and the description of the model can be found in Section A.1.1 of
the Appendix.

For the eddy conductivity a simple gradient diffusion hypothesis has been employed,

obtaining the following expressions:

Iy = vp/Prey
Fa = I/a/PTtya

(2.49)

where Pry ., is the Turbulent Prandtl number for the locally isotropic (i.e LES) contri-
bution and Pry, the one for the inhomogeneous part. This model allows the possibility
to have two different control parameters for both contributions to the modelled heat
flux. The influence of these two constants on the thermal field is investigated in Chap-
ter 5, Section 5.3.1. However in order to have an idea about the turbulent Prandtl
number variation the reader should refer to Moin et al. (1991). The paper shows a
large variation of the parameters moving from the near wall region to the centre of the
channel. For coarse meshes a variation depending of the molecular Prandtl number is
also observed.

In order to introduce a smooth transition between the resolved and the ensemble
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average turbulent parts a blending function is introduced and the sub-grid terms of Eq.

(2.47) are rewritten as:

Locally I sotropic Inhomogeneous
= —F2vy (Sij — (Si5)) — (1 = Fp) 2v4 {Sij)
a(6)

8:Bj

(2.50)

" =—fbr§’< @) -a-Fr

The average of the sub-grid modelled terms can be expressed as:

<Tg> —(1— F) 200 (S5)

(tFy=—(1-7) 0,240 220

where only the RANS contribution takes place. Consequently the total Reynolds stresses

and heat fluxes take the following formulation:

1,1 [t _ _ <
(U5 ) g = U5 ) g = 200 (1= F0) (533)
¥y, 10/ (9<9> (2'52)
(W) ror = (W) gps — (1 — Fp) Lo —
Lj

where <u2u]>RES are the resolved Reynolds stresses and (uj0’) ¢ the resolved heat

fluxes. The rate of energy transfer from the filtered motion to the residual is estimated

aslS:

—(m58i) = 2(Fo (S —(55)) Sig) +2(1 = Fo) (va (S5) Sij)
= 2’/7"7:6(<SZJSZJ> <Sw>< >)+2(1_Fb Va< ZJ><SW> (2.53)

Eq. (2.53) shows that RANS viscosity contributes to the dissipation only in association
with the mean motion, consequently the LES resolved turbulent fluctuations are free to
develop independently.

2.4.2 BLENDING FUNCTION

The blending function J, can be parameterised using the ratio between a turbulent

length scale computed from the average field and the filter width of LES, leading to:

7o o (12) 25)

"*It is assumed that (v,-5i;Si;) ~ v (Si;Si;) as proposed by Nicoud et al. (2001).
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where L; = g0k3/ 2 /¢ is a turbulent length computed from the RANS field. In the original
formulation (Uribe et al. (2009)) the empirical constants were set to C; = 1 and n = 1.5.
In this work their values are changed to C; = 1.3 and n = 2, in order to have a better
agreement with the velocity profile for channel flow at Re; = 395. Furthermore a new
definition of the filter width A is introduced:

A = max (29}/3, g (Aq+ Ao+ A3)> (2.55)

where Ay, Ay, Ag are the max cell dimensions in directions 1, x2, 3. When A; =~
Ay =~ A3 = QQ}/B ~ % (A1 4+ Az + Asz). When instead a cell is stretched in one or two
directions or a cell is highly skewed 29}/ P« % (A1 + Ag + A3). In these cases the filter
width A is kept bigger and consequently more “RANS” is performed. The changing
of the definition for the filter width is used only for the calculation of the blending
function. If this new filter width is applied also to the LES part a new validation of the
Smagorinsky model employing the new constant should be necessary. The objective of
this small modification is only to trust more the RANS model than the LES in case of

a very skewed or stretched cell.

2.4.3 AVERAGING PROCEDURE

In order to compute the sub-grid stress tensor, heat fluxes (Eq. 2.50) RANS viscosity v,
average velocities and temperature are necessary. A first possibility could be to perform
a space averaging along homogeneous directions. This procedure is relatively easy in
the case of channel flow and structured mesh, but in a fully 3D flow and unstructured
mesh this operation is no more possible. A second possibility is to perform a standard

time average defined as:

N
(ug) = %Zui (2.56)
=1

Where N is the number of samples. In this work instead a time running average is

performed, making the model respond quickly to changes:

(u)" T = cu™ (1 = ¢) (u)" (2.57)

Where ¢ is a constant used to control the time window size!* and superscripts indices
stand for the time step. In the case of channel flow, the use of a running or a usual
ensemble average does not affect the results. The window size for the running average

also does not affect largely the results as long as it is kept well above the eddy turn over

Time window is the time over which is performed the running average and it is composed by a
fixed number of time steps decided a priori.
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time!®. The main advantage of the running average, with respect to the time average,
is the save in CPU time. In the case of very small windows for the running average, the
mean values have strange fluctuations and the mean strain becomes large in the region
far from the wall. A good practice is to initialize the running average with a mean value
computed with a precursor RANS simulation, in order to reduce the time necessary to

have constant values for the variables.

15Tn the case of channel flow a value of 10% is used as optimum size for the time window. In order to

have good and stable results the time window has to be no smaller than 5% seconds. ¢ is the channel
height and u, is the shear velocity.



Chapter 3

NUMERICAL METHODS

In this chapter the discretization techniques employed in Code_Saturne are briefly intro-
duced. More details about the code are given in Archambeau et al. (2004). A complete
overview of the most common computational methods for CFD, using finite volume or
Finite Differences, is available in the book of Ferziger and Peric (1997). In the case of
Finite Elements refer to the books of Chung (1978) and Ern and Guermond (2004).

3.1 MESH GENERATION

Grid generation is often considered as the most important and most time consuming
part of CFD simulation. The quality of the grid plays a direct role on the final quality
of the analysis, regardless of the flow solver used. Additionally, the solver will be more
robust and accurate when using a well-constructed mesh. It is important for the CFD
user to know and understand all of the various grid generation methods. Only by
knowing all the methods can the right tool be selected to solve the problem at hand. It

is possible to distinguish several ways of discretising a complex geometry:
e Coordinate transformations

e Structured grids

— Hexahedral grids
— Multi-blocks grids
— Overlapping grids
e Unstructured grids
e Hybrid grids.
A more comprehensive review with many sharp cues can be found in Baker (2005), or

in the book of Thompson et al. (1999).

55
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3.1.1 GENERALIZED CURVILINEAR COORDINATES

The computation of flow-fields in and around a complex shape involves computational
boundaries that do not coincide with coordinate lines in physical space. For finite dif-
ference methods, the imposition of boundary conditions for such problems has required
a complicated interpolation of the data on local grid lines and, typically, a local loss of
accuracy in the computational solution. Such difficulties motivate the introduction of a
mapping or transformation from physical (z,y, z) space to a generalised curvilinear co-
ordinate (£, 7, () space. This technique is used since the beginning of CFD when it was
still performed by hand calculations like in Thom (1933). The generalized coordinate
domain is constructed so that a computational boundary in physical space coincides with
a coordinate line in generalised coordinate space. The use of generalised coordinates im-
plies that a distorted region in the physical domain is mapped into a rectangular region
in the generalized coordinate space. The governing equations are expressed in terms of
generalised coordinates as independent variables and the discretization is undertaken in
the generalised coordinate space. Thus the computation is performed in the generalised
coordinate space, effectively. The concept of generalised coordinates suggests additional
possibilities. First, the computational grid in generalised-coordinate space can corre-
spond to a moving grid in physical space as would be appropriate for an unsteady flow
with boundary movement. The mapping between physical and generalised-coordinate
space permits grid lines to be concentrated in parts of the physical domain where severe
gradients are expected. If the severe gradient region changes with time (e.g. shock-wave
propagation) the physical grid can be adjusted in time to ensure that the local grid is
sufficiently refined to obtain a accurate solution. The use of generalised coordinates in-
troduces some specific complications; it is necessary to consider what form the governing
equations take in generalized coordinates. In this case they contain additional terms
that define the mapping between the physical and the generalised-coordinate domains.
These additional terms usually need to be discretised and this introduces an additional

source of error in the solution.

3.1.2 STRUCTURED GRIDS

Structured meshes in general display a very regular pattern composed by quadrilateral
elements in 2D and hexahedral elements in 3D. Structured grids depend on the creation
of blocks, which are shaped in order to fit the geometry (body fitted meshes). In order to
improve the orthogonality and the uniformity of the grid, mesh optimization algorithms,
based on sophisticated elliptic equations, were extensively developed and can be found
in most of the commercial mesh generators (for example Gambit, or ICEM CFD refer to
Thompson et al. (1999)). In the past, structured meshes could only consist of one block,

and various cell flagging schemes were used to "turn off" portions of the block to model
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obstacles. Later, multi-block was developed allowing several blocks to be connected
together in order to discretise the whole geometry (Lee et al. (1980)). Several types of
block connections were developed and this gives more freedom in the mesh generation,
but the block connection can still place some limitations in the meshing procedure.

A possible solution to the problem is to use Chimera or overset grids (see for example
Chesshire and Henshaw (1990)), where blocks are free from the physical boundary and
can overlap. This technique uses interpolation of data between different meshes and
can generate a large source of error. However in case of very complicated geometries,
where usual meshing techniques produce high degree of distortion, or moving meshes,
Chimera grids can guarantee a high level of orthogonality.

The main advantage of structured grids is high degree of control over the mesh.
In addition, hexahedral and quadrilateral elements can support a certain amount of
skewness and stretching without affecting the quality of the solution. This allows the
user to concentrate control points in key areas, for example in regions of sharp gradients.
Another important feature is that the mesh is, in general, aligned with the main flow
direction increasing the accuracy of the solver. Structured codes are, in general, faster
than unstructured codes and the implementation of high order schemes is easier.

The major drawback is the requirement of very experienced users in order to build
a suitable mesh. Indeed the meshing procedure can be extremely long and measured in
days if not weeks. Another disadvantage is that the refinement in one area can results
in an addition of points where not necessary. In case of singularities in the geometry
structured mesh does not perform well, displaying a high degree of skewness which

might affect dramatically the solution.

3.1.3 UNSTRUCTURED GRIDS

Unstructured grids employ arbitrary elements to map the domain and because the
arrangement of cells does not have a specific pattern, the mesh is called unstructured.
In general this technique employs triangles in 2D and tetrahedra in 3D. Unstructured
mesh techniques have a large degree of automatization, requiring very little input from
the user. Automatic meshing procedures are in general divided into two steps: first
the meshing of the boundary and after the interior. This second step can be performed

with two different types of strategies:

e the advancing front where elements touching the boundary are constructed (Thomp-
son et al. (1999));

e Delaunay where points are added in the domain and afterwards connected (George
and Borouchaki (1998)).
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The main advantage is the already mentioned high level of automatization. The user
does not need to worry about laying out block structure or connections. There is no
need for the user to create structured blocks and also inexperienced users can produce
suitable meshes for most applications. Indeed the mesh generation time is short in
comparison with other techniques, measurable in minutes or hours.

A very attractive type is polyhedral cells, which possesses very interesting properties,
is illustrated in Peric (2004). The starting point is a conventional tetrahedral mesh from
where a dual-mesh is generated: edge mid points, face centroids and cell centres are
connected forming new quadrilateral faces. Those faces are linked in order to form
a polyhedron. At this stage a large number of faces is generated, consequently an
optimization has to be performed which consists of merging the quadrilateral faces
which lie between two original nodes of the primitive tetrahedral mesh. In comparison
with tetrahedral, polyhedral cells have more neighbours (in general ten cells) making
the local gradient calculation approximation better. Moreover polyhedral cells are also
less sensitive to stretching with respect to usual tetrahedral. The main problem of this
type of cells is the creation of warped faces, where the face centre lays out of the face
plane.

The major drawback of unstructured grids is the lack of user control when laying out
the mesh. In general the user has some control of the mesh generation of the boundary,
typically on the edges of the geometry, but the program fills automatically the interior.
Moreover, triangle and tetrahedral elements are not very suitable for skewing or stretch-
ing, and in general the grids are largely isotropic, creating problems when a refinement
has to be placed in a specific direction, like across a boundary layer. This problem is
frequently resolved by over-refining the mesh, with an obvious impact of the simulation
speed up. Another more recent solution is the introduction of a prism layer close to
the wall, where cells retain their unstructured form (both triangular or polyhedron) in
planes parallel to the wall, but in the wall normal plane the cell cross-section has a
quadrilateral shape (Ferziger and Peric (1997)). This solution is now extensively used
in most of the commercial packages like ICEM-CFD and STARCCM+. The success
of the meshing stage highly depends on very precise CAD models. In fact most of the
mesh generation failures are due to imperfections, sometimes even microscopic, of the
CAD model. Unstructured solvers are typically slower than structured codes and the
implementation of high order schemes is complicated. Post processing of the solution

is difficult and requires specific and very powerful tools.

3.1.4 HYBRID GRIDS

Hybrid grids are obtained by combining structured and unstructured meshes, trying to

combine the positive aspects of the two types. Hybrid grids can contain every single
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type of element presented above according to their strengths and weaknesses. An ex-
ample is embedded refined meshes, using so-called hanging nodes. These meshes can be
considered as a particular type of Hybrid grid, where a structured multi-block approach
is employed, but without the need of mesh matching at the interface. This procedure
improves the flexibility of the multi-block approach and it is widely used in case of
wall refinements (see Kravchenko et al. (1996)). In this framework, adaptive mesh re-
finements (AMR) gain a certain degree of popularity (see laccarino and Ham (2005))
and can be found in commercial meshing packages like ICEM-CFD and STARCCM+.
The method consists in a successive decomposition of a Cartesian grid. A parent cell is
divided into four (eight in 3D) children, and the connectivity follows a typical tree-like
structure also called OCTAL-TREE.

3.2 DISCRETIZATION TECHNIQUES

Mathematical models presented in Chapter 2 have now to be discretised using a suitable
numerical method. For the sake of clarity the discretization will be applied to the passive
scalar equation only.

A general transport equation for a generic variable ¢, can be written as:

pp 0 9 99\ _
W + 8:1:1 (puztb) — (97331 <F¢8LL’Z‘) = S¢ (3.1)

where wu; is the fluid velocity vector, I'y is the diffusivity of ¢ and sy is the associated

source term. Applying a Finite Volume Discretization Eq. (3.1) can be rewritten as:

9 / ppdV +/ puipn;dS — r 0 n;dS = sdV (3.2)
ot Jq, o0, o0, O o
Tr Cr Dy St

where Q; is the volume of the I'* celll, 9Q; is its boundary and with n; are the
components of the normal vector to the surface. 717 is the time dependent term, C the
convection term, Dy the diffusion term and S the source term.

The next three sections provide details of discretization of different terms in Eq.
(3.2). In an unstructured code a very important point is the gradient reconstruction.
Details about its implementation are given in Sec. 3.2.4. LES is essentially a transient
type of approach, therefore some details about time discretization are given in Section

3.3. The visualization of the discretization nomenclature is plotted in Fig. 3.1.

!Capital letters, in subscript position, denote a variable evaluated at the cell centre. Two capital
letters point to a surface between two cells (refer to Fig. 3.1)
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Figure 3.1: Labelling for the computation of the convection-diffusion term.

3.2.1 TEMPORAL AND SOURCE TERMS

The first approximation consists of computing the volume integral as:

o gde ~ gbIQ[ (3.3)

which is leading to rewrite terms 77 and St of Eq. (3.2) as:
8¢IPIQI (34)

T[% T S[%8¢IQ[

3.2.2 CONVECTION TERM

The convective term of Eq. (3.2) can be written as:

C’I:/vaQ PuzﬁbnzdS% Z d)IJ(ﬁIJ'ﬁIJ)SIJ: Z gf)[JmIJ (3.5)

JeXR(Qr) JeX(Qr)

where W(I) represents the set of cells that are neighbours of the volume 7, ¢r; is the
value of the scalar at the face centre between cell I and cell J, g 7 is the vector normal
to the face and myy is the mass flux between these two adjacent cells. In Code_Saturne

the convective term is discretised with the following schemes:
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1. Up-Wind (UW): this is a first order scheme, which is based on the nearest upwind

neighbour

¢r IFmr; >0
or] = (3.6)
gZ)J IF mry <0

This interpolation preserves the correct physical bounds on ¢ under all conditions,

but it leads to numerical diffusion;

2. Linear upwind (SOLU): this is a special adapted, second order accurate scheme

derived for an original proposal for structured meshes:

¢§9LU;{ ¢1 +I1E- (Vo) IFmpy >0 .

¢J+ﬁ'(v¢)J IFm;; <0

where I? and ﬁ are distances between the cell and the face centre expressed
in vectorial form. The gradient is computed explicitly from the solution at the

previous time step.

3. Central Difference (CD): this scheme is also second order and it is based on a

linear interpolation on the nearest neighbour value.

TP = argér+ (1 —ary)ds (3.8)

where ay; = HF_jH / Hﬁ

a non skewed mesh, where the line connecting the two cell centres does not pass

’ . For regular meshes it is equal to 1/2. In the case of

through the face centre, the variable is firstly projected in points I'and J' (see
Fig. 3.1) as:

1 —
¢K’:¢K+§((v¢)l+(v¢)J)'KK/ K=1TIorJ (3.9)

and the interpolation at the face is performed as:
¢1y = apy¢r + (1 —aps)y (3.10)

= 1=
being a = HFJ’ /‘ I'J'||. In Eq. (3.9) a factor of 1/2 is used instead of the
more appropriate o’ and (1 — /) because of stability reason (see Benhamadouche

(2006)).
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4. Blended Differencing (BD): this is a scheme in which SOLU or CD is blended with
UW as:

o1y =957 M + (1= )ef)" (3.11)

where v is the weight coefficient for the CD or SOLU schemes.

A slope test, in order to verify if the variable ¢ is non-monotonic, is also present and
locally reverts the convective term from a second order scheme (CD or SOLU) to a

UW. The test is based on the calculation of an upwind gradient defined as:

c 1= Y oSy (3.12)
JER(IQ)

where gbﬁUW is the variable at the interface using a second order upwind interpolation
like:

GHUW — { o1 +TF - (V@) IF m; >0 (3.13)

67+ TE - (V), IF my; <0

The first condition for the test to be activated is to verify that the dot product between

the upwind gradient computed in I and J is negative or mathematically:

8671 . BCJ <0 (3.14)

In the case of a 1D problem the monotonicity of the solution can be also studied
using the dot product of the function at the previous I — 1 and the following I + 1
discretization points. In a 3D FV context this is equivalent to projecting the gradient

on the face. The final formulation of the slope test criteria is:

2 2
<<§f> '751J> - 80[ Sy - T’Zi(b—]su IF m;; >0
00 I 2 bi— 2 (3.15)
<<3x> 'ﬁSIJ> - 8cJ S — HSU IF my; <0
‘)

The slope test is used to switch locally from a second order scheme to a first order
upwind scheme when the solution is non-monotone. This might help in case of non-
stable solutions, but with a reduction to first order of the accuracy. In the case of LES
calculations reverting to first order accuracy has the effect to delay the transition from

the laminar state to the turbulent state of the solution. The use of the slope test is
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investigated in Chapters 4 and 5 using a small but substantial modification: the slope
test is reverted to a blended scheme as defined in Eq. (3.11) with a small percentage
of up-winding. The percentage is chosen to keep the computation stable or to damp

spurious oscillation due to numerical instability.

3.2.3 DIFFUSION TERM

The diffusive term D; is computed as follows:

) -
Di= [ ToglmdS= Y Tu(Ve), msy= Y TS
Qg 8.Z'Z )I,J,
Ter(@r) JER(Qy)

(3.16)

where the variable at the projection points I’ and J' is computed using (3.9).

3.2.4 GRADIENT RECONSTRUCTION

A key issue not yet developed is the gradient calculation. As stated in Eq. (3.9) the
explicit value of the gradient at the cell centre is used to correct the effect of the non-
orthogonality. An accurate approximation of the gradient is consequently a necessary

requirement. In Code_Saturne several options are possible:
1. A least square method;

2. A generalized least square method based on extended neighbours (all cells sharing

a cell vertex, but necessary a face);

3. An iterative reconstruction of the non-orthogonality based on the Green-Gauss

theorem.

In this context only the last option is considered. Methods based on the least square
method are not reviewed because of their diffusive effects and their high inaccuracy in
cases of non-conformal meshes (see Ham and Iaccarino (2004)).

The starting point is the Green-Gauss theorem:

0
8¢dvz P dS ~ Z b1y 17 S1) (3.17)
Qp 9 0% TER(Q)
I

Firstly the volume integral is approximated as in Eq. (3.3) giving:

o .. 09
Q 8$1dv N 81’1

Qr (3.18)

secondly the value ¢;; is interpolated at the interface as:
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615 = a1+ (1= afy) 65+ 3 (V6); + (V6),) - FO (3.19)

where the factor 3 is used for stability reasons. Combining Eq. (3.18) and (3.19) into
(3.17) leads to the following formulation:

(Vo) 2= ) [Oéfzﬂﬁl + (1 —ahy) b5+ % (Vo) +(V9o),) - FO| 7 14515
JER(Q))
(3.20)

where the unknown is the gradient (V¢), evaluated at the centre of mass of the cell.

This system of equations can be solved with an iterative procedure as follows:

Vorta - Y B ((vo)i™- FO) ﬁusu} -
JER(Q)

Z |:O/IJ¢[—|—(1—O/IJ) @J—F;(qu)}ﬁ] WIJS[J (3.21)

JER(Q)

where 7 denotes the sub-iterations and the initial guess is done without taking into

account the correction term due to non-orthogonality.

3.3 TIME DISCRETIZATION

Time schemes are in general divided into two main categories: explicit and implicit. In
Code_Saturne a combination of second order explicit and implicit time schemes, namely
Adam-Bashforth (AB) and Crank-Nicolson (CN), are used Benhamadouche (2006). The
formulation assumes constant time step and it fits well with LES, where time averaging

is important. All terms are centred in time hence they are expressed at the time n + %

TEMPORAL TERM

The time term 77 of Eq. (3.4) is discretised using a fully implicit Euler scheme:

_9 _9 _o ot e
T1 = ot a, p(de = ot (¢]Q1) = Q[ At (322)

where At is the time step. The time term has first order accuracy, but in case of right
hand side (RHS) also expressed at n + 3 the formulation becomes second order (see
Benhamadouche (2006)).
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CONVECTION TERM

The mass flux in the convective term of Eq. (3.5) is evaluated explicitly at the time

step n + % using an AB scheme:

n—‘rl 3 1 _

The variable ¢;; at the face centre is instead evaluated with CN, which leads to:

n4 1
¢1J ? = 5 (ﬁb?jl + Qb}lj) (3'24)
The convection term can be rewritten as:
— 1 n+1 n 3 n 1 n—1
pMdS ~ Y 5 (@17 + 1) ( gmis — 5mi (3.25)

0% JER(Q)

DIFFUSION TERM

In this case the CN scheme is applied to the main variable ¢ only. The diffusivity I'
is always explicit (i. e. evaluated with AB scheme) in order to avoid negative values,

which may affect the stability of the solution.

0 1 n n
/8 Ql%fimds = > [2 7 (<V¢>Jl+(w>u)~ﬁusu} (3.26)

SOURCE TERM

In general the source terms (i.e. the buoyant term in the momentum equations) are

treated explicitly using the AB scheme.

3., 1.,
SI = S¢Q] = Q[ <2S¢1 - 53471 1> (327)

For the pressure gradient term in the momentum equation a special treatment is used

and is discussed in Section 3.5, where the velocity-pressure coupling is presented.

3.4 TRANSPORT EQUATION

Finally the equation for the resolution of the unknown ¢ is discretised as follows:
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¢n+1

+ ) [ ( m1J+|m1JD¢?+1+;(mu—mIJ\)cb?H) +

JER(Q)

1 ¢n+1 _¢n+1
17|

o 1 1 ¢ —

%L~ ST | Sehmpy — o7 TS

+ At 2¢Umu 5 1J )IJ 1J +
JGN(Q[)

Qrsg (3.28)

where all the implicit terms are placed in the LHS and the explicit in the RHS. The
implicit part of the LHS is evaluated using an UW scheme. The CD scheme and
the reconstruction terms appear only on the RHS following the equations presented in
Section 3.2. The mass flux and the physical properties are evaluated explicitly using
the AB scheme of Eq. (3.23).

Equation (3.28) is solved in an iterative and incremental way because this allows
to treat implicitly part of the correction term for the convection-diffusion term. Let us

introduce the following increments of the variable ¢ as:

¢n+1 K+l ¢n+1 k41 ¢n+1,k

(3.29)
¢n+1 k ¢n+1 k ¢n+1,0

where, by definition, ¢"t10 = ¢ is the value at the previous time step and k the index
for the sub-iteration. Applying the variations of Eq. (3.29) to the scalar solver (3.28)

leads to:
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This is equivalent to the resolution of a linear system of the type Ax = b where x is
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the vector of the unknown, b is the RHS of Eq. (3.30) and A is a non symmetric matrix,
but conditioned with an up-wind scheme. This discretization permits to reconstruct the
RHS with the updated values ¢mhF,

3.5 VELOCITY PRESSURE COUPLING

In the case conservation of the momentum velocity and pressure are coupled and this
has to be taken into account by the algorithm. In Code_Saturne a SIMPLEC algorithm
is used. Rhie and Chow interpolation is applied to the Poisson equation in order to avoid
the odd-even decoupling problem. The method consists of three different steps named:

prediction, correction and test. Firstly the following increments have to introduced:

U= —uU*

k+1 k

gpFtt =pttt —p

1. Predictor step: the momentum is resolved using an explicit pressure gradient
computed from a known pressure field (i.e. from the previous iteration or sub-

iteration). The predicted velocity U* is resolved as:

k+1
8

W*J’f—"l _ 7;5—1—1

p— S[J 29187—(2[ (Vp)];
rJy

(3.31)

2. Corrector step: the discrete version of the Poisson equation (2.3) is resolved
k+1

Q

+ Z m[(jﬁﬁff’-l — (l/ + Z/T)
JER(Q) ‘

for the unknown pressure variation §p*". Firstly the discrete version of Poisson

Equation (2.3) has to be introduced as:

vdis : (Tuvdisé‘p) = vdz‘:s : (517}) (332)

where T" is a matrix which contains the temporal terms and the subscript dis

stands for discrete. The discrete divergence is defined as

Vais - (6]) = Y Siug) - ur)Srs (3.33)
JER(Q)

Finally also the interpolation suggested by Rhie and Chow (1983) is added and

the final equation for pressure being solved is:
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> (R, s = e (7)o [14(5),] 4
JER(QY)

+ 3T (vp’“)u.msu (3.34)
JER(Q)

With this value of the pressure correction the pressure and the velocity are cor-

rected as:

pFHL = pk 4 gpktl

k+1 k+1 k+1 (3.35)
71 :71 — T (Vop** )1
3. Test: checking of the convergence using a least square norm defined as
Hﬁ’;“ - 7’;HL2 > e (3.36)

If the test is positive the procedure is restarted from point 1.
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Chapter 4

KINETIC ENERGY CONSERVATION

The numerical conservation of kinetic energy is a crucial point for all calculations and
particularly for turbulence simulation approaches, which aim to reproduce a good part
of the energy spectrum. Discretization schemes that conserve energy have been proved
to produce accurate results (Ham and Iaccarino (2004)); moreover energy conservation
ensures that the contribution from the sub-grid model is not obscured by numerical
errors. With the increase of LES type approaches in industrial engineering problems,
the geometry becomes more complicated and the mesh quality might deteriorate. Indeed
the generation of an optimal mesh might result in a long procedure, which might account
up to 50 — 80% of the total CFD process. An automatic meshing procedure might
be desirable, considerably reducing the time required by the mesh generation step.
Additionally there is a constraint for the near wall resolution, which, in the case of a
wall-resolved simulation, imposes a fine near wall mesh distribution.

The aim of this chapter is to use the concept of kinetic energy conservation in order
to investigate the use of embedded refinements in the context of a finite volume unstruc-
tured code. Kinetic energy conservation is recalled in Section 4.2 in both continuous and
discrete sense. The test case considered is the well-known Taylor-Green vortices, which
consist of an infinite array of vortices. Firstly some results for conformal structured
meshes are recalled, in order to introduce a reference solution. Afterwards embedded
refinements are taken into consideration, varying the configuration of the mesh at the
interface between the coarse and refined area. In this context an attempt to perform a
simple mesh optimization is also presented. Finally polyhedral meshes are considered.
The use of a blended CD-UPWIND convective scheme when the slope test fails (see
Section 3.2.2) is also investigated. As pointed out by many authors (see Section 4.1)
the role of the gradient reconstruction is fundamental in order to minimize the numeri-
cal dissipation. Indeed the introduction of non-orthogonalities can increase the error of
the gradient calculation up to more than one order of magnitude, largely deteriorating

the accuracy of the solution.

70
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4.1 INTRODUCTION

The incompressible Navier-Stokes equations, conserve mass, momentum and, in their
inviscid limit, kinetic energy (see Section 4.2). A sufficient but not necessary condi-
tion to help improve energy conservation is to employ high order schemes as presented
by Vasilyev (2000), where high order finite differences (FD) schemes for a staggered
pressure-velocity arrangement are generalized for non-uniform grids. These schemes do
not conserve simultaneously mass, momentum, and kinetic energy. However, depending
on the form of the convective term, conservation of either momentum or energy, in ad-
dition to mass, can be achieved. Conservation properties of these schemes are as good
as those of standard second order finite difference, but their accuracy is far superior.
Finite difference can, in principle, be applied to any type of grid, however in most cases
reported in literature, are applied to structured meshes. Therefore FD is in general
restricted to the analysis of relatively simple geometries.

The finite volume method (FV) can more easily accommodate any type of cell
geometry and it is the most widely used approach for unstructured cell-based solvers.
The method conserves mass and momentum by construction. The main advantage is
the flexibility of the method, which permits to concentrate the control volumes only
in the needed parts of the domain. Indeed, the unstructured approach permits to
adapt the mesh size to the local length-scales avoiding unnecessary refinements. A
good example of LES applied to the study of the flow past a cylinder is reported in
Liang and Papadakis (2007). Thanks to the use of hanging nodes, the work takes into
account the effects of mesh refinement close to the cylinder without refining over all the
domain. A similar technique is also applied in Liang et al. (2009), in order to study the
effect of tube spacing on vortex shedding in in-line tube arrays. The investigation is
carried out at very low Reynolds number, therefore no turbulence modelling is employed.
The principle disadvantage is that high-order numerical schemes are relatively difficult
to develop on 3D unstructured meshes because the formulation requires three level of
approximation: interpolation, differentiation and integration (see Section 3.2).

Ham and Iaccarino (2004) demonstrate that a co-located arrangement of the vari-
able might not conserve kinetic energy. The non-conservative term arises from the dis-
cretization of the pressure and it can be demonstrated that it is dissipative. A similar
conclusion is also reported by Benhamadouche (2006), where the author demonstrates
that kinetic energy conservation in a co-located arrangement can be achieved using low
order (i.e. 2"¢ order) scheme only without the use of Rhie and Chow interpolation and
on regular grids (see Sec. 4.2.2). Additionally Ham and Iaccarino (2004) pointed out
the importance of the gradient reconstruction method, devising an alternative recon-
struction based on the Green-Gauss theorem, where a correction term is introduced in

order to minimize the non-conservation of the kinetic energy due to pressure term. This
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method is compared with a face-area-weighted least-squares minimisation to reconstruct
the pressure gradient. For the case of inviscid Taylor-Green vortices on skewed mesh
the Green-Gauss reconstruction shows to be a necessary requirement to obtain a sta-
ble solution, whereas the least-squares method displays an increase of the total kinetic
energy, which is unphysical.

The effect of different mesh types in energy conservation is presented by Moulinec
et al. (2005). Three different types of mesh are assessed and results indicate that polyhe-
dral meshes have conservation properties similar to those of hexahedral and considerably
better than tetrahedral meshes, if no special treatment is performed.

An important question arises: what is the order of accuracy of a standard finite

volume discretization, when a CD scheme is used to evaluate the convective term on
an unstructured or irregular mesh? Svard et al. (2008) propose an answer to the prob-
lem, by evaluating the accuracy of the discretization of second and first derivatives on
different mesh types, both from a theoretical point of view and via numerical verifica-
tion. The outcome is that the approximation of second derivatives is inconsistent! in
case of unstructured tetrahedral meshes. Consistency can be recovered using “high level
grids” such as rectangles or regular polygons (in 2D). Another important conclusion
of the work is that, on mixed grids (hexahedra plus tetrahedra or mesh with hanging
nodes), the order of accuracy for first order derivatives, evaluated with a 2"¢ order CD
scheme, drops to 1.5 in case of a smooth interface (face to face matching) and to 0.5 in
non-smooth (presence of hanging nodes). Eriksson and Nordstrom (2009) report similar
findings in their analysis of both hyperbolic and elliptic problems with Dirichlet bound-
ary conditions. The hyperbolic problem has been proved to have a rate of convergence,
in Ly norm, equal to 0.5 on a completely random mesh (casual distribution of cells
and face centres). However, in the case of an advection-diffusion problem, the order of
accuracy of the error remains (in the case without forcing term) second order for any
type of mesh and drops to 1.5 on a random mesh with forcing term?. In the paper an
interesting statement is also reported in the conclusions:
“The most significant feature of a “good” grid is that the control volumes are centred,
i.e. that the flux points3 are positioned right between the solution points. Note that this
centring is very easy to create in one dimension, but it is not clear how to achieve the
same thing in multiple dimensions”.

A first approach to solve this issue is to combine unstructured finite volumes with
high order finite difference schemes. An example is presented in Noérdstrom and Gong

(2006) where a hyperbolic problem is studied. The finite volume is predominantly used

LConsistency: the rate of the error decrease follows the theoretical value given by the Taylor expan-
sion.

2The forcing term is constituted by a trigonometric function.

3The flux points can be interpreted as the face centre in a more standard finite volume nomenclature.
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close to the wave source, where the geometry is more complex and non-linear phenom-
ena are present. The high order finite difference is instead used for wave propagation.
In both domains strict stability is achieved using a Summation-By-Part (SBP) in con-
junction with a penalty procedure to impose boundary conditions called Simultaneous
Approximation Term (SAT, see Nordstrom et al. (2003)). Strict stability implies that
the growth rate of the semi-discrete solution is less than or equal to the growth rate
of the analytic solution. Satisfying this condition ensures that the error does not grow
with time. The coupling is based on energy estimates and stable conditions are enforced
at the FV-FD interface, modifying the dual mesh of the FV domain at the interface.
This method is generalized for convection-diffusion problems in complex geometries in
Gong and Nordstrom (2007).

Another approach consists of switching from a co-located to a staggered arrange-
ment. Perot (2000) presents a staggered formulation for unstructured meshes, which
conserve mass, momentum, kinetic energy and vorticity at machine precision. Velocity is
located at the face centre, whereas pressure is located at the circumcentre. This scheme
is proven, both analytically and numerically, to be first order on unstructured grids and
second on regular Cartesian meshes. Another important feature of the approach is its
ability to avoid spurious oscillation in the solution: the scheme takes advantage by the
creation of a “co-volume” mesh (Nicolaides (1993)), which is created using a Voronoi
tessellation: every single unstructured (triangles in 2D and tetrahedra in 3D) has asso-
ciated an orthogonal “dual mesh”. The method is generalized for fully 3D applications
in Zhang et al. (2002) and for moving mesh with free surface flow in Perot and Nallapati
(2003). Following almost the same formulation an algorithm for LES computations on
arbitrary grid is presented in Mahesh et al. (2004). Several test cases are taken into
consideration ranging from simple laminar flow i.e. Taylor-Green vortices, to simple
LES like decay of isotropic turbulence to a very complex flow in a Pratt and Whitney
gas turbine combustor.

Another interesting staggered formulation is presented in Benhamadouche and Lau-
rence (2002), where pressure is stored at both the cell centre and cell vertex and instead
the velocity is located at the face centre. The discretization uses a hybrid FV/FE
formulation: the velocity is linear over the discretization element (triangles in 2D or
tetrahedra in 3D), whereas the pressure is P1 over the diamond obtained joining two
nodes and the centre of gravity. The name of the velocity-pressure element is of the
type P1 —non — con form — P1 —bubble. The discretization is verified to be completely
conservative both analytically and numerically.

The combination of SBP and SAT, introduced earlier, is applied to a staggered ar-

rangement by Ham et al. (2006). Staggered solvers display a more consistent second



CHAPTER 4. KINETIC ENERGY CONSERVATION 74

order reduction of the error, without dropping to smaller orders in case of non confor-
mal meshes, making the discretization suitable for accurate LES or DNS in complex
geometries. An extension of the formulation including also scalar transport equations
is introduced in Ham (2008).

4.2 CONSERVATION OF THE GLOBAL PROPERTIES

As introduced in the previous section the Navier-Stokes equations, in their incompress-
ible form, conserve mass, momentum and (in the inviscid limit) the kinetic energy. The
energy conservation equation is obtained from the scalar product between the momen-

tum equations and the velocity vector.

4.2.1 KINETIC ENERGY CONSERVATION IN A CONTINUOUS SENSE

The Navier-Stokes equations, in their incompressible form and neglecting the diffusive

term, could be rewritten as:

6ui

O (4.1)
Ou;  Ouu; 1 0p
ot * 856]‘ N _;858,

Thus the energy equation is derived as:

Ou;  Oujuy 1 op
i ( ot o __paxi> (4.2)

If the kinetic energy is introduced as K = u;u;/2 Equation (4.2) could be divided into

three terms:
1. Temporal term:

= v T 4.3
Yot ot ot (4.3)

2. Convective term:
Uiagiuj _ 0 (usuiuj/2) B ’Lﬁ % _ 0K u; B K% (4.4)
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3. Pressure term:
Ui O 1 0w, P Ou;
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Substituting (4.3), (4.4) and (4.5) into (4.2) and keeping in mind that the flow is diver-

gence free (first equation of (4.1)), the following formulation for the energy conservation

p
Cr N —

If the flow is periodic in all directions the integral of the total kinetic energy, over all

is obtained:

0K  0Ku; Oup 0

E - ax, 8%1 N _aTi

the domain, is constant therefore:

oK
—dV = 4.
T dv =0 (4.7)

4.2.2 KINETIC ENERGY CONSERVATION IN A DISCRETE SENSE

Now the same procedure can be applied to verify the conservation of energy in a discrete

sense. The different terms are approximated with formulae presented in Chapter 3.

1. Temporal term:
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2. Convective term:
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The term A disappears if « is constant over the entire domain (i.e. o = 1/2 is the
value for a conformal mesh) because of the discrete divergence Jen(@,) M1y =0
The term B does not necessarily vanish if « is constant, but requires also to have
Ur=1u g in order to have the velocity evaluated at the same point in cell I and

J. This only happens in the case of a uniform and constant mesh.

3. Pressure term:

0 n n
/ AV = S s
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The comments already made for Eq. (4.9) are applicable also for Eq. (4.10). The
A term vanishes when « is constant (i.e & = 1/2). This condition is necessary but
not sufficient for term B, which requires also to have the Rhie and Chow interpo-
lation, presented in Section (3.5), deactivated as demonstrated in Benhamadouche
(2006).

4.3 TAYLOR-GREEN VORTICES

The test case of the Taylor-Green vortices is employed in this chapter to study the
effect of unstructured meshes (meshes with embedded refinements and polyhedral cells
are considered), in the framework of a FV second order accurate code in time and
space. The concept of kinetic energy conservation is used to measure the effect of
mesh distortion. Comparison with regular Cartesian grid is performed. In the case of
embedded refined meshes different patterns of the interface between the coarse and the
fine areas are investigated in order to find possible best practice guidelines for mesh
generation. An attempt to obtain a mesh optimization of a particular configuration will

be presented.
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It is commonly accepted to use second order accurate, FV codes on structured
meshes in order to perform LES / “quasi DNS” computations. On the other hand, in
this context, the use of unstructured meshes is questionable. The evaluation of the
conservation properties of Code Saturne is not the object of this study, consequently
conservation of angular momentum or other types of conservative verifications is not
presented herein. The purpose is to compare advantages and disadvantages of unstruc-
tured meshes with the well known structured meshes. Differences are very clear in
the inviscid limit of the test case, therefore only this is presented. In conclusion the

question, which we are trying to address is:

Is it possible to perform LES/DNS using an unstructured mesh and, if so, under which

conditions?

4.3.1 TEST CASE DEFINITION

The 2D Taylor-Green vortices are an infinite array of vortices. Because of periodicity

only a square 27 x 2w is considered. The velocity field has the following analytical

expression:
up = —cos(kxq) - sin(kxy) - e 2Kt (4.11)
up = sin(kz1) - cos(kay) - e~ 2Vt '
and the pressure is expressed by:
1
p =7 lcos (2ka1) + cos (2ka2)] - et (4.12)
where k = 22—7[ and [ is the size of the vortex (in this case k = 1 with [ equal to 7). The

number of vortices in each direction is equal to 2 x k. Table 4.1 lists all grids used,
whereas Table 4.2 defines the numerical options used in this analysis. The calculation
are performed with a time step equal to 0.01 s, which correspond to a maximum CFL
number of 0.095 in the conformal mesh and 0.19 in the mesh RR050 which is the mesh
with the largest CFL number.

A possible strategy to improve the results without over-refining could be to localize
the refinements in the most needed regions. In the present test the refinement is placed
in the middle of the domain, in order to avoid the connection between hanging nodes
and periodic boundary conditions on the external edges. Figure 4.1 shows a sketch of
the domain, highlighting the refined area (which is also referred as slave block, whereas

the coarse is referred as master block). Fig. 4.2 illustrates a practical example of a
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mesh 60 x 60 with an embedded refinement. The refinements can be characterised by
the refined ratio (RR) parameters defined as (and referring to Fig. 4.1(b)):

o AB — Npaster

RR=122 = (4.13)
AC NSlave
@ : : (b) NM
Block 7 Block 8 Block 9 ]
Master block |
Slave block
. Master cell
Block 4 Block 6
2n Block 5
Refined A B C
[ 2
. Block2 | Block3
Block 1§ o § o Slave cell
v : :
X
2w i
% N

! S

Figure 4.1: (a) Presentation of the block structure for the Taylor-Green vortices. The
domain is 27 x 27 with the refined block positioned in the middle with dimensions 7 X 7.

(b) Schematic sketch of the interface between master and slave block.

Figure 4.2: Example of an embedded refined mesh. The base resolution is 60 x 60 and
the refinement has a 3-4 structure. On the left hand side global view of the domain, on

the right hand side a close up view on the refined area.
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Mesh ‘ RR ‘ Type of refinement ‘ n cells ‘ n faces ‘
CONF60 1.00 60 x 60 + no ref. in slave blk 3600 7440
RRO0O97 0.97 60 x 60 + 31 x 31 in slave blk 3661 7433
RR094 0.94 60 x 60 + 32 x 32 in slave blk 3724 7558
RR091 0.91 60 x 60 + 33 x 33 in slave blk 3789 7695
RRO88 0.88 60 x 60 + 34 x 34 in slave blk 3856 7824
RRO77 0.77 60 x 60 + 39 x 39 in slave blk 4221 8553
RRO75 0.75 | 60 x 60 + 40 x 40 in slave blk, 3-4 sub pattern | 4300 8840
RRO73 0.73 60 x 60 + 41 x 41 in slave blk 4381 8879
RR068 0.68 60 x 60 + 44 x 44 in slave blk 4636 9394
RRO67 0.66 60 x 60 + 45 x 45 in slave blk 4725 9555
RR065 0.65 60 x 60 + 46 x 46 in slave blk 4816 9756
RR0O62 | 0.625 60 x 60 + 48 x 48 in slave blk 5004 10134
RRO061 0.61 60 x 60 + 49 x 49 in slave blk 5101 10282
RRO060 0.60 60 x 60 + 50 x 50 in slave blk 5200 10520
RR050 0.50 | 60 x 60 + 60 x 60 in slave blk, 1-2 sub pattern 6300 12840
POLY1 / / 2119 10593
POLY2 / / 2050 10251
POLY3 / / 4157 20786

Table 4.1: List of all the meshes used for the Taylor-Green vortices. In the Type of
refinement column is described the resolution used for the base conformal mesh and the
type of refinement used in the slave block (Fig. 4.1).

’ Run ‘ n it vel/pres ‘ R&C ‘ Vo ‘ Conv. Term.
R1 1 1 G&G rec. CD
R2 2 1 G&G rec. CD
R3 5 1 G&G rec. CD
R4 2 0.5 | G&G rec. CD
R5 2 0 G&G rec. CD
R6 2 L2 ext. CD
R7 2 1 G&G rec. | CD + Slope 10%

Table 4.2: List of the numerical options adopted for the different runs of the Taylor-
Green vortices test case. Col. 1: acronym of the run; col. 2: iterations for the velocity
pressure coupling (SIMPLEC, see sec. 3.5); col. 3: Arakawa constant controlling the
R&C interpolation (1 full interpolation, 0 no interpolation); col. 4: gradient recon-
struction (G&G is Green and Gauss with reconstruction of the non-orthogonalities, see
Sec. 3.2.4, L2 ext stands for least squares method with extended neighbours); col. 5:

convective scheme (see Sec. 3.2.2).
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TOTAL KINETIC ENERGY.

The kinetic energy (K) for the Taylor-Green vortices reads:

K = (cos? (k) sin® (ko) + sin®(kzy) cos® (kz2)) eIt (4.14)

N

(u% + u%) =

NN

The integral of Eq. (4.14) over the whole domain leads to?:

1 2T 27
KTOT = / K- d(L’ld.Tz
Vror Jo Jo
1 2T 2T 1 9
= — = (cos?(kxy) sin®(kxa) + sin?(kxy) cos® (ko e~k Yt e das
(2m)? 2
™ 0 0
_ [z sin(2kay) sin(2kzs) 14w =2m ARt 1 sin(4nk)] g
1672 6472k 1.22=0 4 6472k
1
= g (4.15)

where k = 1 and Vror is the total volume. In the inviscid limit® the result of (4.15)

reads:
Kror = 1= Ky (4.16)

4.3.2 CONFORMAL MESH

This section briefly recalls results for energy conservation on a conformal structured
mesh. Figures 4.3 and 4.4 report the results as function of time for an increased for
different values of the Rhie and Chow constant and for an increased number of iterations
of the velocity/pressure coupling. Figures report on the top rights the decay of the
total kinetic energy, the error of velocity u; (bottom left) and pressure p (bottom right)

computed using a least squares definition®:

“The unit of measure of the total kinetic energy K is [mz/sz]. The argument of the exponential is
(—4k*vt) which is dimensionless because [1/m]” [7?/s] [s]. The final results of Eqs. (4.15) and (4.16)
could be misleading because some factors cancel out or are equal to 1 and therefore dropped in order
to obtain an simpler formulation for K.

Sv =0

In the case of error distribution on all the computational domain (see for example Fig. 4.5) the
error is evaluated as:

e [wi (1] = 1" @ =" @]
V@l - SHeen

This formulation is necessary in order to avoid division by 0.

(4.17)
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where N is the total amount of cells, 1 is a general variable at time step i and 1"
is its initial solution, which correspond to the analytical definition of Eqs. (4.11) and
(4.12). As already stated in Section 4.2.2 full conservation is achieved only when the
Rhie and Chow interpolation is deactivated” as can be seen from Fig. 4.3. In other
cases there is a decay of kinetic energy due to numerical diffusion. A simple estimation
of this numerical diffusion is obtained by inverting Eq. (4.15) as

In (Ko7 /Ko)

v % (4.19)

where Ky = 1/4 is given by Eq. (4.16). This definition of equivalent numerical viscosity
is used to measure the diffusivity of the code and it is reported on the top right of the
Figures 4.3 and 4.4. Ham and Iaccarino (2004) demonstrate that the decay of total

kinetic energy follows:

2 4
0K 0 B <AxiAt) 0*p (4.20)

R G Lo
Integrating (4.20) over the entire domain and using the expression of the Taylor-

Green vortices in the inviscid limit we have:

OKror 1 / 2m / 2 Az?At 84p Az?At 4
= — L dzid - ~ —0.275-10
8t VTOT 0 0 4 8 4 a2 = 4

(4.21)
assuming as At = 0.01 and a constant Ax; = %—g. This value is in fair agreement with
0.25- 1074, value that can be found in Fig. 4.3 (top right).

On the other hand the effect of increasing the number of iterations on the veloc-

ity /pressure coupling does not have a major impact on the solution (Fig. 4.4), in fact
the change in slope of the kinetic energy can be appreciated only in the close up view.
The effect is more evident on the equivalent numerical viscosity vpum, which converges
immediately to a constant value when more than one iteration is used.

The global error of the u; velocity component has a linear increase with time (this
error is always reported on the bottom left of the figure). Indeed after 17-18 rotations
the error has a sudden jump and starts to increase rapidly in addition with a large
oscillatory behaviour. This point roughly corresponds to an abrupt discontinuity in the

kinetic energy conservation. The reason of this phenomenon is a loss of coherence of the

"Under Code_Saturne the Rhie & Chow interpolation is controlled using the Arakawa constant. A
value equal to 1 mean a full activation, 0 the interpolation is deactivated.
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solution as can be seen in Fig. 4.5, which reports the velocity field and the distribution
of the u; velocity error after 240 seconds. Figure 4.6 reports the same quantities after
only forty seconds. Large errors are located in areas where the velocity is small and
among them the most critical zone is located in the middle of the domain. A problem
of chessboard oscillations of the pressure arises in the middle of the domain as can be
seen in the pressure field of Fig. 4.5. This point, where the solution starts to diverge®,
is fundamental in this analysis because it is the major point of comparison between
unstructured (embedded refinement and polyhedral meshes) and structured conformal

mesh performances.
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Figure 4.3: Taylor Green vortices: results as function of the number of Rhie & Chow
constant for mesh CONF60. Total kinetic energy (top left), equivalent viscosity (top
right), global error on u; (bottom left), global error on p (bottom right). Time is
expressed in number of vortex rotations (1rot = 10s). See Table 4.2 for run definitions.

8Divergence of the solution is characterized by an abrupt decrease of the total kinetic energy (top
right), or, equivalently by a sudden increase of the error (two bottom graphs).
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Figure 4.4: Taylor Green vortices: results as function of the number of velocity /pressure
coupling iterations for mesh CONF60. Total kinetic energy (top left), equivalent vis-
cosity (top right), global error on wu; (bottom left), global error on p (bottom right).
Time is expressed in number of vortex rotations (17ot = 10s). See Table 4.2 for run

definitions.
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Figure 4.5: Taylor Green vortices: Velocity vectors (left), error of u; (middle) and
pressure field (right) for the conformal mesh 60 x 60 (CONF60). The solution is at time
240 s (approximately 24 complete vortex rotations). The error is evaluated using Eq.
(4.17).
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Figure 4.6: Taylor Green vortices: velocity field and error of the u; velocity component
computed using Eq. (4.17) after 40 s ( approximately 4 complete rotations) for the
conformal mesh 60 x 60 (CONF60). Velocity vectors (left), velocity error (right).

4.3.3 EMBEDDED REFINED MESH

In this study the refinement ratio RR varies between 1 (structured conformal mesh) and
0.5 (1-2 sub-pattern). Table 4.1 lists all the meshes investigated, whereas the numer-
ical options used are reported in Table 4.2. The results concerning the kinetic energy
conservation, the equivalent viscosity and the error for the u; velocity and pressure are

reported from Fig. 4.7 to 4.14. The following observations can be made.

e The addition of the refinement is bringing forward the point at which the solution
is loosing coherence with respect to the conformal mesh. This is true for all the
cases but there is a strong variation between meshes and two main points can be

made:

— The presence of a structured sub-pattern (i.e. a 3 — 4 refinement) at the in-
terface between master and slave areas improves the conservative properties.
This is clear in Fig. 4.9, where the 3-4 sub-pattern of the RR075 mesh pro-
duces significantly better results than RR077 and RR0O73. A structured sub-
pattern avoids the presence of small surfaces reducing the non-orthogonalities
of the grid.
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— Embedded refinements characterised by RR = 1 also display better conserva-
tion properties because of the smaller stretching of the mesh at the interface.
The o parameter, defined in Eq. (3.10), is consequently closer to the ideal
value of 0.5. Although this effect is less important than mesh sub-pattern

structure.

e More iterations on the velocity-pressure coupling are necessary to have constant

equivalent viscosity vpym (Fig. 4.13) in the first part of the simulation.

e With more cells in the slave block, the kinetic energy has a slower decay. This is a
consequence of the increase of the global resolution. The objective herein is not to
find the best conservative meshes, but to analyze the effect of the addition of non-
conformities with respect to a reference solution (i.e. structured conformal mesh).
A more appropriate procedure could have been to keep constant the number of
cells across all the meshes. On the other hand the methodology adopted is faster
and because of a large number of grids generated, this last option was chosen.
Indeed this methodology shows that even increasing the mesh resolution does not

automatically lead to more accurate results.

e The method used for the gradient reconstruction is fundamental as already stated
by Ham and Iaccarino (2004). Using a least square method on such type of meshes

might lead to unstable solutions as can be seen from Fig. 4.14.

e The RR050 mesh, which corresponds to a 1-2 type of refinement, shows the worst
conservation properties among all meshes characterized by a regular sub-pattern.
This is not surprising because the mesh at the interface is over-stretched and
skewed. However this type of refinement is widely used in many commercial
grid generators (Star-CCM, ICEM-CFD) and academic as well for reasons of its

simplicity and automatisation.

We now analyse the reasons for the reduced performance of the embedded refined meshes
with respect to the conformal grid. From Fig. 4.15 to 4.17 the contours of errors
of uy velocity and its gradient in the z; direction are plotted along with a complete
visualization of the velocity field for different time steps. The addition of the refinement
induces an increase of the error at the interface between master and slave regions. The
error is subsequently convected to the centre of the domain bringing forward the loss of
coherence of the solution. Table 4.3 reports the global error of first velocity component
and its gradient in the direction x;. Here it is clear that in the case of the unstructured
mesh the accuracy decreases; for instance the u; error has a jump of about one order of
magnitude. A fundamental part is played by the error in the gradient calculation. The

gradient is used in the explicit evaluation of the convection-diffusion term, in order to
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correct the effect of non-orthogonalities (see Chapter 3), therefore small errors in the
solution are amplified in the gradient reconstruction and they are subsequently used
to correct the solution. A confirmation is provided by Figure 4.18 shows the error
reduction for the CONF and RR075 meshes as function of the mesh size. RR075 not
only shows a higher error but also the order of accuracy moves from the second order
of the conformal to 1.71. An interesting point to look at is the CPU time required
by the different meshes, which is reported in Table 4.3. CPU time is divided by the
number of cells and number of faces in order to have a more fair comparison. A common
statement is that the reduction of cells achievable using an unstructured mesh makes
also the calculation faster. From Table 4.3 it does not seem the case: the conformal
mesh is always the fastest, independent of the way in which the comparison is carried
out. The reason is simple: embedded meshes need to iterate in order to reconstruct the
gradient making the calculation slower. Further consideration about speed up of the
solution as a function of the mesh characteristics can be found in Chapter 5 where a

turbulent case is analysed.

Mesh | CPU [s] | CPU/n cells | CPU/n faces Global Global
err uy err Juy/0xy
CONF60 6.4 0.0010 0.0009 0.90-107° | 0.18-1072
RR097 11.2 0.0031 0.0015 0.93-107% | 0.23-1072
RRO75 16.3 0.0038 0.0018 0.15-1073 | 0.20-1072
RR050 30.9 0.0049 0.0025 0.25-1073 | 0.19-1072
POLY1 20.0 0.0094 0.0019 0.40-1073 | 0.83-1072
POLY?2 19.9 0.0097 0.0019 0.19-1073 | 0.61-1072

Table 4.3: List of the CPU time for different type of meshes, global error for the first
velocity component and its gradient in the z; direction. The CPU time is evaluated
after 100 time steps. In order to make the comparison more fair the elapsed time is
also divided by the total number of cells and faces. Errors are instead computed after

1 iteration using run R2 (see Table 4.2).
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Figure 4.7: Taylor Green vortices: results for meshes RR097 and RR094. Total kinetic
energy (top left), equivalent viscosity (top right), global error on u; (bottom left), global

error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).
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See Table 4.2 for run definitions.
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Figure 4.8: Taylor Green vortices: results for meshes RR091 and RR088. Total kinetic

energy (top left), equivalent viscosity (top right), global error on u; (bottom left), global
error on p (bottom right). Time is expressed in number of vortex rotations (1 rot = 10 s).

See Table 4.2 for run definitions.
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Figure 4.9: Taylor Green vortices: results for meshes RR077, RR075 and RR073. Total

kinetic energy (top left), equivalent viscosity (top right), global error on u; (bottom
left), global error on p (bottom right). Time is expressed in number of vortex rotations

(Irot = 10s). See Table 4.2 for run definitions.
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Figure 4.10: Taylor Green vortices: results for meshes RR068, RR067 and RR065. Total
kinetic energy (top left), equivalent viscosity (top right), global error on u; (bottom

left), global error on p (bottom right). Time is expressed in number of vortex rotations
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