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Chapter 1

Introduction

Since the 17th century, Newton (1643–1727) and Leibniz (1646–1716) created the world of

modern mathematics by introducing calculus. With differentials in calculus, people started

to think about differential equations. For instance, Newton’s second law is a primary ex-

ample. After that, lots of partial differential equation (PDE) models for different physics

problems have been established by many great mathematicians. Two of these pioneers,

Claude-Louis Navier (1785–1836) and George Stokes (1819–1903) contributed the funda-

mental equations for flow problems, which we now refer to as the Navier-Stokes equations.

There is no word to describe how important the Navier-Stokes equations are. These

equations are the heart of many areas of science and technology. By accurately solving

them, people can predict the weather, develop more efficient cars and aircraft, and even

produce better medicines.

A crucial problem is how to accurately and efficiently solve the flow equations. Since

PDEs can rarely be solved exactly, numerical schemes play an important role. There are

typically three widely used numerical methods: finite differences, finite volumes and finite

elements. Within these methods, the finite element method is the most robust, and has the

most solid mathematical base—it is fully built on functional analysis which is one of the

greatest mathematical achievements during the twentieth century. An increasing proportion

of CFD (computational fluid mechanics) software utilizes this discretization approach, e.g.

the commercial software COMSOL (COMSOL AB, http://www.comsol.com) and the free

software OOMPH-LIB (http://oomph-lib.maths.man.ac.uk).

14
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A number of different finite element methods have been developed for solving flow

problems since the mid-20th century. However, the most widely used methods in practice

are the low order methods—that are zero order (constant) approximations, (bi- or tri-)linear

approximations and (bi- or tri-)quadratic approximations. This is because first, these low

order elements are easy to implement; second, higher order approximations do not provide

more accurate solutions when the exact solution is not regular enough (this is often the case

in many practical problems). Due to these reasons, this thesis concentrates on low order

elements.

Since finite element solutions are approximations of the exact solutions, there exist

some errors. It is of interest to estimate these approximation errors. Generally speaking,

there are two kinds of error estimation—a priori estimation and a posteriori estimation. The

a priori error estimation typically gives convergence rates of finite element approximations

before computing approximate solutions, but is not able to provide computable bounds

for the errors. On the contrary, a posteriori estimation is processed after obtaining finite

element solutions, and can provide computable bounds for the errors. This thesis will

discuss both types of error estimation for low order approximations.

In the rest of Chapter 1, the mathematical setting of this thesis will be introduced with

an example problem—the Stokes equations. After that, an outline of the thesis will be

provided.

1.1 The Model Stokes Problem

In this section, we consider the model of viscous incompressible flow in an idealized,

bounded, connected domain Ω in R2:

−∇2~u + ∇p = ~f in Ω, (1.1)

∇ · ~u = 0 in Ω, (1.2)

~u = ~g on ∂ΩD, (1.3)

∂~u
∂n
− ~np = ~0 on ∂ΩN . (1.4)
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We assume that Ω has a polygonal boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, so that ~n

is the usual outward-pointing normal vector and ∂~u/∂n is the directional derivative in the ~n

direction. The vector field ~u is the velocity of the flow and the scalar variable p represents

the pressure. If ∂ΩN = ∅, the flow problem models enclosed flow.

1.2 Function Spaces

1.2.1 Sobolev spaces

First, the space of continuous functions from Ω to real numbers is denoted by C0(Ω). Next,

L2(Ω) is the space of functions which are square integrable over Ω in the sense of Lebesgue

integration,

L2(Ω) :=
{

u : Ω→ R,
∫

Ω

u2 dΩ < ∞

}
. (1.5)

The space L2(Ω) is a Hilbert space, equipped with the inner product

(u, v) :=
∫

Ω

uv dΩ, (1.6)

and the associated norm

‖u‖0 := (u, u)
1
2 . (1.7)

Moreover, L2
0(Ω) is the factor space:

L2
0(Ω) :=

{
u
∣∣∣∣∣u ∈ L2(Ω) and

∫
Ω

u dΩ = 0
}
. (1.8)

Then, we define the vector function space L2(Ω)2,

L2(Ω)2 :=
{
~q | qi ∈ L2(Ω), i = 1 : 2

}
,

where ~q = (q1, q2). The inner product of L2(Ω)2 is defined by

(~p, ~q ) =

∫
Ω

~p · ~q dΩ =

2∑
i=1

∫
Ω

piqi dΩ,

and the associated norm is also denoted by ‖ · ‖0.
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Given an integer k ≥ 0 (i.e. k ∈ N0), we define the Sobolev space

Hk(Ω) :=
{
v| Dmv ∈ L2(Ω),m ∈ N0 and 0 ≤ m ≤ k

}
,

where the operator Dm is

Dmv =
∂mv

∂xm1∂ym2
, m1,m2 ∈ N0 and m = m1 + m2. (1.9)

The semi-norm and norm of Hk(Ω) are

|v|k =

∑
m=k

‖Dmv‖20


1
2

, ‖v‖k =

∑
k′≤k

|v|2k′


1
2

.

Note that in the notation of the above inner product and (semi-)norms, the integration

domain Ω is ignored. However, if the integration area is some other area (e.g. ω) rather

than the domain Ω, the inner product and norms are denoted by (·, ·)ω, ‖·, ·‖k,ω and |·, ·|k,ω.

In addition, for a vector α = (α1, α2) ∈ N2
0, the associated differential operator Dα is

Dα(·) =
∂α1(·)
∂xα1

∂α2(·)
∂yα2

. (1.10)

Analogously to the definition of L2(Ω)2, the space Hk(Ω)2 is defined. For any vector

function ~v = (v1, v2) ∈ Hk(Ω)2, the operators Dm and Dα are defined as

Dm~v = (Dmv1,Dmv2); Dα~v = (Dαv1,Dαv2). (1.11)

Finally, for the Dirichlet boundary ∂ΩD,

H1/2(∂ΩD)2 :=
{
~v

∣∣∣ ~v = ~u |∂ΩD , ~u ∈ H1(Ω)2
}
. (1.12)

The boundary data ~g in (1.3) is assumed to be in the space H1/2(∂ΩD)2.

1.2.2 Solution and test spaces

For simplicity, the two dimensional vector function spaces are denoted by

Hk := Hk(Ω)2 ∀k ∈ N0. (1.13)

The velocity solution and test spaces are

H1
E :=

{
~u ∈ H1

∣∣∣ ~u = ~g on ∂ΩD

}
, (1.14)

H1
E0

:=
{
~v ∈ H1

∣∣∣ ~v = ~0 on ∂ΩD

}
. (1.15)
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In addition, the dual space H−1 is defined by

H−1 :=
{
~u

∣∣∣∣∣ ∫
Ω

~u · ~v dΩ < ∞, ∀~v ∈ H1
E0

}
. (1.16)

The function ~f on the right hand side of (1.1) is assumed to be in H−1.

Lastly, the pressure space P is

P =


L2(Ω) when

∫
ΩN

ds > 0 ,

L2
0(Ω) when

∫
ΩN

ds = 0 .
(1.17)

1.3 Weak Formulation

The weak formulation of (1.1)–(1.4) is: find ~u ∈ H1
E and p ∈ P such that∫

Ω

∇~u : ∇~v −
∫

Ω

p∇ · ~v =

∫
Ω

~f · ~v ∀~v ∈ H1
E0
, (1.18)∫

Ω

q∇ · ~u = 0 ∀q ∈ P. (1.19)

As is well known, see Girault & Raviart [24, pp. 59–61], a sufficient condition for the

existence and uniqueness of a solution satisfying (1.18)–(1.19) is the continuous inf-sup

condition that is stated below.

Definition 1.3.1 Continuous inf-sup condition: there exists a positive constant γ depen-

dent on the shape of the domain Ω such that,

inf
0,q∈P

sup
~0,~v∈H1

E0

|(q,∇ · ~v )|
|~v |1 ‖q‖0

≥ γ. (1.20)

In the sequel, this continuous inf-sup condition will be assumed to be satisfied. To the

author’s knowledge, establishing this continuous inf-sup condition for an arbitrary domain

Ω with a natural outflow condition (1.4) is an open problem. For enclosed flow problems

there are some theoretical results for special domain types. For example, Chizhonkov

and Olshanskii [15] prove that, for a channel domain, the continuous inf-sup constant γ

decreases in proportion to the length of the channel. Herein, we assume that the domain Ω

is fixed, so the degeneration of the continuous inf-sup constant is not an issue.
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1.4 Notation for Meshes

1.4.1 Mesh structure

This thesis only concentrates on rectangular partitionings, except Chapter 2 where trian-

gular partitionings are also considered. Note that, although we only consider domains Ω

which are a union of rectangles throughout this thesis for simplicity, most of our results

can be generalized to more general domains with quadrilateral or triangular partitions. A

rectangular mesh is denoted by Th. Any rectangle T in Th is an open set and T is used

to denote its closure. The mesh Th is assumed to be regular, which implies that for two

different rectangles T1 and T2 in Th, T 1 ∩ T 2 is either a common edge, a common vertex or

an empty set.

As usual, εh is used to denote the set of element edges of Th. Then, εh,Ω is the set of

element edges inside of Ω, εh,D is the set of element edges on the boundary ∂ΩD and εh,N

is the set of element edges on the boundary ∂ΩN . So, εh = εh,Ω ∪ εh,D ∪ εh,N . For an

element T ∈ Th, ε(T ) is the set of edges of T , N(T ) is the set of vertices of T . Also, for an

edge E ∈ εh, N(E) is the set of vertices of E.

For any T ∈ Th and E ∈ εh, the following local patches are defined,

ωT = ∪ε(T )∩ε(T ′),∅T ′, T ′ ∈ Th; (1.21)

ω̃T = ∪N(T )∩N(T ′),∅T ′, T ′ ∈ Th; (1.22)

ωE = ∪E∈ε(T ′)T ′, T ′ ∈ Th; (1.23)

ω̃E = ∪N(E)∩N(T ′),∅T ′, T ′ ∈ Th. (1.24)

Then,

ωT = ωT \ ∂ωT , ω̃T = ω̃T \ ∂ω̃T , ωE = ωE \ ∂ωE, ω̃E = ω̃E \ ∂ω̃E. (1.25)

Note that for any area ω ⊂ R2, ∂ω is the boundary of ω.
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Figure 1.1: Element edge lengths: hT,x and hT,y.

1.4.2 Mesh measurement

For a rectangle T in Th, its edge lengths are measured by hT,x and hT,y (see Fig. 1.1). The

element size of T is then measured by

hT,min := min(hT,x, hT,y), (1.26)

hT,max := max(hT,x, hT,y), (1.27)

and the global mesh size is

h := max
T∈Th

(hT,max). (1.28)

In addition, without considering directions, hT,E is used to denote the length of E ∈ ε(T )

and h⊥T,E is the length of the edge E⊥ ∈ ε(T ) where E⊥ is perpendicular to E. For simplicity,

without referring to elements, hE is the length of an edge E ∈ εh.

Next, the aspect ratio of an rectangle T is

ρT :=
hT,max

hT,min
, (1.29)

whereas the global aspect ratio of Th is

ρ := max
T∈Th

(ρT ). (1.30)

Finally, the local grading factor κT and the global grading factor κ are defined by

κT := max
T ′⊂ω̃T

(
max

(
hT ′,x

hT,x
,

hT,x

hT ′,x
,

hT ′,y

hT,y
,

hT,y

hT ′,y

))
, (1.31)

κ := max
T∈Th

(κT ). (1.32)

For ρ and κ, it is easy to obtain the following inequality,

κ ≤ ρ2. (1.33)

So, if a mesh is isotropic (its global aspect ratio ρ is a moderate constant), its global grading

factor κ can not be large. However, the converse does not hold.
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1.5 Mixed Finite Element Approximation

Mixed finite element approximations of (1.18)–(1.19) are obtained by taking finite dimen-

sional subspaces Xh
E to approximate H1

E, Xh
0 to approximate H1

E0
and Mh to approximate P.

Then, the Galerkin formulation is: find ~uh ∈ Xh
E and ph ∈ Mh such that,∫

Ω

∇~uh : ∇~vh −

∫
Ω

ph∇ · ~vh =

∫
Ω

~f · ~vh ∀~vh ∈ Xh
0 , (1.34)∫

Ω

qh∇ · ~uh = 0 ∀qh ∈ Mh. (1.35)

We denote the basis functions of the space Xh
E by ~φ j, j = 1 : nu + n∂, such that

Xh
E =

~u
∣∣∣∣∣∣∣ ~u =

nu∑
j=1

a j ~φ j +

nu+n∂∑
j=nu+1

a j ~φ j, j ∈ R

 , (1.36)

where Xh
0 = span{φ j}

nu
j=1 and the additional coefficients a j : j = nu + 1, ..., nu + n∂ are

associated with the Lagrange interpolation of the boundary data ~g on ∂ΩD. Collecting the

coefficients {a j}
nu
j=1 into a vector u and associating a vector p ∈ Rnp with the coefficients in

the expansion of ph leads to a characteristic system of algebraic equations: A BT

B 0


 u

p

 =

 f

g

 . (1.37)

In this thesis, we consider four typical low order finite element approximations associ-

ated with the rectangular mesh Th: Q2 − Q1, Q2 − P−1, Q2 − P0 and Q1 − P0. In order to

introduce these approximations, the polynomial spaces defined on a rectangle T ∈ Th are

first defined as follows: Qk(T ) is the set of polynomials of maximal degree at most k and

P−k(T ) (“−” implies the corresponding global functions may be discontinuous across ele-

ment interfaces) is the set of polynomials of total degree at most k. As well, Qk(T )2 is the

set of vector functions whose components are in Qk(T ). Then the Q1 − P0 approximation

is associated with the following choices for Xh
0 and Mh,

Xh
0 =

{
~vh : ~vh|T ∈ Q1(T )2,∀T ∈ Th

}
∩H1

0, (1.38)

Mh = {qh : qh|T ∈ P0(T ),∀T ∈ Th} ∩ P. (1.39)

The other approximation methods are defined similarly. Fig. 1.2 shows the degrees of

freedom for these low order elements.
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Figure 1.2: Degrees of freedom for low order rectangular elements (→ and ↑ imply the x
and y derivatives).

Analogously to the continuous situation, a sufficient condition for the unique solvability

of the “saddle-point” system (1.37) is a (discrete–) inf-sup condition.

Definition 1.5.1 (Discrete inf-sup condition). A mixed approximation Xh
0 ×Mh is inf-sup

stable if

min
0,qh∈Mh

max
~0,~vh∈Xh

0

|(qh,∇ · ~vh)|
|~vh|1 ‖qh‖0

= γh > 0 (1.40)

where γh may depend on the mesh Th and it is called the inf-sup constant.

As discussed in [21, section 5.5], the discrete inf-sup condition is equivalent to an algebraic

problem. First, consider the following generalized eigenvalue problem,

BA−1BT x = λQx, (1.41)

where the matrices B, A are those given in (1.37), and Q is the Grammian matrix associ-

ated with the basis functions spanning the pressure approximation space Mh. Arrange the

eigenvalues of (1.41) as

λnp ≥ λnp−1 ≥ ... ≥ λ2 ≥ λ1 ≥ 0. (1.42)
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Then γh in (1.40) satisfies

γh =


√
λ2 if ∂ΩN = ∅,
√
λ1 if ∂ΩN , ∅.

(1.43)

By computing the inf-sup constant γh, we can verify that Q2−Q1, Q2−P−1 and Q2−P0

are inf-sup stable, whereas Q1 − P0 is unstable, since we found that λ2 = 0 when ∂ΩN = ∅.

Any inf-sup stable method has the following a priori error estimate (see [21, p.253]):

‖~u − ~uh‖1 + ‖p − ph‖0 ≤ C̃
(

inf
~vh∈Xh

E

‖~u − ~vh‖1 + inf
qh∈Mh

‖p − qh‖0

)
, (1.44)

where C̃ = O( 1
γh

). So, the bound (1.44) is not so useful, if γh degenerates.

In order to make progress, the rectangular meshes will be grouped into different fam-

ilies. For a specific inf-sup stable approximation, its inf-sup constant can be bounded

below by some positive constant for some families, e.g. the family of isotropic meshes (ρ

is bounded by some moderate constant). Then, the accuracy of the approximation is guar-

anteed for these mesh families. However, for mesh families including anisotropic meshes,

the inf-sup constant often degenerates—a more detailed study is given in Chapter 4.

In the subsequent chapters, for simplicity, “bounded below” will be used instead of

“bounded below by some positive constant”. Moreover, an approximation is said to be

stable for some mesh families, if its inf-sup constant is bounded below for these families.

1.6 Outline of Thesis

Chapter 2 focusses on a posteriori error estimation for the diffusion problem. The method-

ology of local problem error estimation will be studied. The novel contribution of Chapter 2

is the development of effective error estimators for (bi-)quadratic elements.

Chapter 3 discusses a posteriori error estimation for the Stokes problem and the con-

tents of this chapter have appeared in [32]. The strategy herein is still based on solving

local problems. This chapter focusses on the inf-sup stable methods, e.g. the Q2 − P−1

and Q2 −Q1 approximations. The efficiency and reliability of the local problem estimators

for these approximations will first be proven. Numerical results will suggest these error

estimators are effective.
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Chapter 4 studies the stability of the mixed approximations for anisotropic meshes.

First some inf-sup stable methods will be discussed. Their inf-sup constants can degenerate

as the mesh becomes anisotropic and then the constant C̃ in (1.44) may become very large.

As a result, solution accuracy can not be guaranteed. Due to this reason, a local jump

stabilized Q1 − P0 approximation introduced by Kechkar and Silvester[31] will be studied.

The novel contribution of this chapter is the derivation of robust a priori error estimation

for this stabilized method, which implies this method can work efficiently for anisotropic

meshes. Finally, a posteriori error estimation for the stabilized Q1 − P0 method associated

with anisotropic meshes will be discussed.

In Chapter 5, the stabilized Q1−P0 method is used to solve two practical problems: the

first problem is flow in a step domain and the second one is flow around a square cylinder

in a channel. The focus is then switched to the time dependent Navier-Stokes equations in

the case of small viscosity. The novel contribution of Chapter 5 is the identification of an

optimal stabilization parameter, which is eventually shown to be independent of the time

step and inversely proportional to the Reynolds number of the flow.

Finally, some open questions will be addressed in Chapter 6. Some MATLAB functions

arising from this thesis will be introduced in Appendix A.



Chapter 2

A Posteriori Error Estimation for the

Diffusion Problem

2.1 Introduction

In this chapter, effective a posteriori error estimators for (bi-)linear and (bi-)quadratic finite

element approximations for the diffusion problem are presented. These error estimators are

based on solving local problems—a methodology that was introduced by Bank and Weiser

[6]. Generally speaking, local problem error estimators are quite accurate compared with

other error estimators (e.g. standard widely used residual error estimators), since they are

directly derived from error equations (see Section 2.1.2). However, most of the recent liter-

ature (e.g. Verfürth [47] and Elman et al. [21, pp.48–56]) on local problem error estimators

only focusses on (bi-)linear approximations, whereas the effectivity of this kind of error

estimators for (bi-)quadratic elements is unclear even for the simple diffusion problem. In

addition, whilst Verfürth [46] theoretically establishes some local problem estimators for

higher order elements, there are no numerical results to show their effectivity.

Moreover, we are interested in a posteriori error estimation for mixed approxima-

tions for incompressible flow problems. Standard inf-sup stable methods usually need

(bi-)quadratic approximations for the velocity. Thus, effective local problem error estima-

tors for (bi-)quadratic elements need to be established first, so that this error estimation

strategy can then be applied when dealing with inf-sup stable mixed approximations. This

25



CHAPTER 2. A POSTERIORI ERROR ESTIMATION FOR DIFFUSION 26

will be discussed in detail in Chapter 3.

2.1.1 The diffusion problem

The Poisson equation modeling diffusion in two dimensions is,

−∇2u = f in Ω, (2.1)

u = g on ∂Ω, (2.2)

where the unknown function u typically denotes a temperature and f is a heat source.

The standard weak formulation of (2.1)–(2.2) is: find u ∈ H1
E(Ω), such that∫

Ω

∇u · ∇v =

∫
Ω

f v ∀v ∈ H1
0(Ω), (2.3)

where the spaces H1
E(Ω) and H1

0(Ω) are

H1
E(Ω) :=

{
u ∈ H1(Ω)

∣∣∣ u = g on ∂Ω
}
, (2.4)

H1
0(Ω) :=

{
u ∈ H1(Ω)

∣∣∣ u = 0 on ∂Ω
}
. (2.5)

The standard Galerkin finite element method is: find uh ∈ Xh
E ⊂ H1

E(Ω), such that∫
Ω

∇uh · ∇vh =

∫
Ω

f vh ∀vh ∈ Xh
0 ⊂ H1

0(Ω),

where Xh
E and Xh

0 are finite dimensional spaces.

This chapter focusses on a posteriori error estimation for the lowest order conforming

finite element approximations; which are the linear element P1, the bilinear element Q1,

the quadratic element P2 and the biquadratic element Q2. Fig. 2.1 shows the degrees of

freedom of these elements.

2.1.2 Error estimation based on solving local problems

Subtracting
∫

Ω
∇uh · ∇v from both sides of (2.3), the error (e = u − uh) then satisfies the

following error equation,∫
Ω

∇e · ∇v =

∫
Ω

f v −
∫

Ω

∇uh · ∇v ∀v ∈ H1
0(Ω). (2.6)
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Figure 2.1: (Bi)-linear and (bi-)quadratic elements.

Integrating by parts for the second term on the right hand side of (2.6) and breaking the

integrals into element contributions, the error then satisfies

∑
T∈Th

(∇e,∇v)T =
∑
T∈Th

( f + ∇2uh, v)T −
1
2

∑
E∈ε(T )

〈�
∂uh

∂n

�
, v

〉
E

 , (2.7)

where
�
∂uh
∂n

�
is the flux jump which is defined in [21, p.49]—that is for an edge E shared

by elements T and S ,�
∂uh

∂n

�
:= (∇uh|T − ∇uh|S ) · ~nE,T = (∇uh|S − ∇uh|T ) · ~nE,S . (2.8)

If the edge E is on the boundary, the flux jump is set to zero.

Next, the error equation (2.7) can be localized as

(∇eT ,∇v)T = (RT , v)T −
∑

E∈ε(T )

〈RE, v〉E , (2.9)

where

RT = f + ∇2uh, RE =
1
2

�
∂uh

∂n

�
. (2.10)

Note that eT in (2.9) is stronger than e in (2.7), since eT automatically satisfies (2.7) while

e does not need to satisfy (2.9) on each element. Thus, the error e can be approximated
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by solving the localized error equation (2.9) using proper finite element schemes. This

methodology for estimating errors was introduced in [6].

The formal definition of the local problem error estimation strategy is: choose a suitable

finite element space QT which is also called the correction space or the error element, and

then find eh ∈ QT , such that

(∇eh,∇vh)T = (RT , vh)T −
∑

E∈ε(T )

〈RE, vh〉E ∀vh ∈ QT . (2.11)

The correction space QT should satisfy two requirements:

• QT must be “larger” than the original approximation space Xh
0 ;

• QT should make the problem (2.11) uniquely solvable—that is appropriate boundary

conditions must be built into its definition.

Remark 2.1.1 The reason for these two requirements needs to be clarified. First, if QT

is a subspace1 of Xh
0 , then the right hand side of (2.11) may be zero. As a result, the

estimated error ‖∇eh‖0,T can be zero, even though the exact error may be large. Next, since

the problem (2.11) is a diffusion problem with a pure Neumann boundary condition, its

solution is only unique up to a constant. Thus, a Dirichlet boundary condition is needed

to guarantee the uniqueness of the solution of (2.11). How to apply a proper Dirichlet

boundary condition is a key issue of this chapter.

At this point, some notation is required,

η•,T = ‖∇eh‖0,T and η• = ‖∇eh‖0,Ω, (2.12)

where • stands for different choices of QT . For instance, if the P2 approximation is used to

compute the error (i.e. QT = P2 in (2.11)), the corresponding element contribution and the

global estimation of the error are denoted by

ηP2,T = ‖∇eh‖0,T and ηP2 = ‖∇eh‖0,Ω. (2.13)

1More precisely, this means Q ⊂ Xh
0 |T := {v′ | v′ = v|T , ∀v ∈ Xh

0}.
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To be efficient and reliable, an error estimator needs to satisfy the following two in-

equalities,

‖∇e‖0 ≤ Cη•, (2.14)

η•,T ≤ c‖∇e‖0,ωT , (2.15)

where C and c are two generic constants independent of the exact solution and meshes, and

the local patch ωT is defined in Section 1.4.1.

Definition 2.1.2 (Effectivity). The effectivity of an error estimator is the ratio η•
‖∇e‖0

.

An error estimator is said to be effective in the subsequent sections, if its effectivity is

close to one. In addition, the element contribution η•,T of an effective error estimator is

expected to be similar to ‖∇e‖0,T .

Remark 2.1.3 From a mathematical point of view, if the generic constants C and c in

(2.14)–(2.15) can be accurately evaluated, a tight bound on the effectivity can be estimated.

However, this is quite tricky—a lot of equivalences between different norms are necessarily

required in standard analysis techniques (they will be discussed in Section 2.2), which leads

to a number of unknown constants. Thus, the effectivity of error estimators may only be

able to be examined numerically.

2.1.3 Test problem 1

In order to test the effectivity of error estimators, a simple example with the following exact

solution

u = −(x4 + y4), (2.16)

will be tested in subsequent sections. The domain for test problem 1 is the square (−1, 1)2.

In Fig. 2.2, the initial and refined rectangular and triangular meshes are shown. In this

chapter, only uniform refinement is considered, where each element is equally subdivided

into four.
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(a) The initial triangular mesh (b) Triangular mesh, refinement level three

(c) The initial rectangular mesh (d) Rectangular mesh, refinement level three

Figure 2.2: Meshes for test problem 1.
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Figure 2.3: Error elements for the P1 and Q1 approximations (the empty circles imply these
basis functions are removed).

2.2 Error Estimators for (Bi-)linear Elements

As discussed in [21, pp.48–56], for the linear element P1 and the bilinear element Q1, the

corresponding correction spaces are the quadratic element P2 and the biquadratic element

Q2 with the vertex nodes removed (the error estimators associated with them are called the

P2 and Q2 estimators2). Fig. 2.3 shows these error elements, in which the removed nodes

imply that zero boundary values are applied at these points.

The motivation for applying these Dirichlet boundary conditions for the error elements

needs to be discussed. Roughly speaking, a linear finite element approximation implies

that the numerical solution uh is a linear interpolant of the exact solution u. Consequently,

the error e = u − uh is usually smaller on element vertices than the error at other points in

the element 3.
2The Q2 estimator is implemented in IFISS [20]. In IFISS, there is some modification for the Q2 correc-

tion space on the boundary elements (which contain some edges in ∂Ω). However, for simplicity, the domain
boundary effect is not considered for other error estimators in this chapter, since it is quite small.

3This argument can only be verified by numerical experiments, since there is no theory in recent litera-
ture to support it. Although there are many publications discussing a stronger argument—natural pointwise
superconvergence (see [34], [35] and [33]), Lin [33, pp.70–80] states that there is no superconvergence point
for the P1 approximation, whilst it is unclear if there is any superconvergence point for the Q1 approximation.
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Table 2.1: Errors for the P1 approximation, test problem 1.

Refinement level ‖∇e‖0
ηP2
‖∇e‖0

ηR
‖∇e‖0

2 1.3528 × 10−1 1.1412 × 100 3.1927 × 100

3 6.8211 × 10−2 1.0764 × 100 3.1769 × 100

4 3.4195 × 10−2 1.0400 × 100 3.1740 × 100

Convergence Order O(h)

Table 2.2: Errors for the Q1 approximation, test problem 1.

Refinement level ‖∇e‖0
ηQ2
‖∇e‖0

ηR
‖∇e‖0

1 5.3823 × 10−1 1.0032 × 100 4.7380 × 100

2 2.7267 × 10−1 1.0002 × 100 4.8157 × 100

3 1.3678 × 10−1 0.9996 × 100 4.8818 × 100

Convergence Order O(h)

However, the standard analysis methodology introduced in [47] to establish (2.14)–

(2.15) for local problem estimators does not capture this idea. In these analysis techniques,

the first step is to establish the upper bound (2.14) and the local lower bound (2.15) for the

residual estimator which is defined as

ηR,T =

√√
h2

T

p2 ‖RT ‖
2
T +

∑
E∈∂T

hE

p
‖RE‖

2
E, (2.17)

ηR =

√∑
T∈Th

η2
R,T , (2.18)

where p is the order of the approximation polynomial (i.e. p = 1 for the P1 and Q1 approx-

imations and p = 2 for the P2 and Q2 approximations). After that, a second step is to show

the equivalence between the residual estimator and the local problem estimator.

Table 2.1 and 2.2 show the exact error and the effectivity of the P2 and Q2 estimators. It

can be seen that the exact error reduces by a factor of two, which is expected for (bi-)linear

finite element approximations. The effectivity of the P2 and Q2 estimators is close to one,

whereas the residual estimator is much less effective.
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Figure 2.4: Error elements for the P2 and Q2 approximations, part 1.

2.3 Error Estimators for (Bi-)quadratic Elements

2.3.1 P3 and Q3 estimation strategy

The P3 and Q3 error estimators are direct modifications of the lowest order case. Fig. 2.4

shows the P3 and Q3 error elements, which are the P3 and Q3 elements with the vertex

nodes removed. Using the standard analysis techniques in [46], these estimators can be

shown to satisfy (2.14)–(2.15). So, the P3 and Q3 estimators are mathematically efficient

and reliable.

Next, test problem 1 is used to test the performance of the P3 and Q3 estimators. From

Table 2.3, it can be seen that the effectivity of the P3 estimator is about 2.7 rather than 1,

while the residual estimator for this situation is even worse—its effectivity is more than 5.

Table 2.4 shows the effectivity of the Q3 estimator, which is about 2. In summary, these

estimators are not as effective as their lowest order counterparts.

For the mesh shown in Fig. 2.2(b), the element contributions of the exact error, the P3

estimator and the residual estimator for test problem 1 are provided in Fig. 2.5. It can be

seen that since the solution in Fig. 2.5(a) changes rapidly towards the corner (1, 1), the exact



CHAPTER 2. A POSTERIORI ERROR ESTIMATION FOR DIFFUSION 34

Table 2.3: Errors for the P2 approximation, test problem 1, part 1.

Refinement level ‖∇e‖0
ηP3
‖∇e‖0

ηR
‖∇e‖0

2 2.7942 × 10−3 2.5790 × 100 5.4970 × 100

3 7.0576 × 10−4 2.7128 × 100 5.4878 × 100

4 1.7736 × 10−4 2.7792 × 100 5.4826 × 100

Convergence Order O(h2)

Table 2.4: Errors for the Q2 approximation, test problem 1, part 1.

Refinement level ‖∇e‖0
ηQ3
‖∇e‖0

ηR
‖∇e‖0

1 1.1391 × 10−2 1.9617 × 100 3.8793 × 100

2 2.8514 × 10−3 1.9521 × 100 3.8747 × 100

3 7.1310 × 10−4 1.9493 × 100 3.8734 × 100

Convergence Order O(h2)

error is maximized near this corner, which is expected for any finite element approximation.

The residual estimator in Fig. 2.5(c) has the same shape as the exact error, but the scale

is much larger. Fig. 2.5(d) shows that the P3 estimator provides wrong information about

the error. In addition, looking at the mesh in Fig. 2.2(b) again, it can be seen that the P3

estimator is quite mesh dependent—if the triangles have an edge parallel to y = x (along

which the exact solution changes rapidly), the error is small, but otherwise it is large.

From the discussion above, the P3 estimator provides quite inaccurate estimation for

the errors, whereas the Q3 estimator is not effective enough either. This motivates the next

section which is to find effective estimators for the P2 and Q2 approximations.

2.3.2 P4 and Q4 estimation strategy

We hypothesize that the P3 and Q3 estimators are not effective, because their Dirichlet

boundary conditions may be inappropriate. For linear interpolation, the most accurate

points should be the vertices. However, for quadratic interpolation, the midpoints are also

quite accurate. In detail, from Lin [33, pp.70–80], the P2 and Q2 nodes are typically the
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Figure 2.5: Error estimators for P2 approximation, test problem 1, part 1.
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Figure 2.6: Error elements for the P2 and Q2 approximations, part 2.

natural superconvergence points for the P2 and Q2 approximations. This motivates the P4

and Q4 estimators that we developed and are shown in Fig. 2.6.

For test problem 1, the element contribution of the P4 estimator is shown in Fig. 2.7(d)

for the mesh refinement level three. From this figure, it can be seen that the P4 estimator

provides quite an accurate approximation of the exact error.

Tables 2.5 and 2.6 show the effectivity of the P4 and Q4 estimators, while the results

of the other estimators are also provided for comparison. From Table 2.5, the effectivity

of the P4 estimator is in the interval (1.25, 1.27), which is still close to 1. However, from

Table 2.6, the effectivity of the Q4 estimator is slightly larger, which is around 1.5. So,

further modification is needed for the Q4 estimator, which will be discussed in the next

section.

2.3.3 A refined Q4 estimation strategy

In order to find an effective estimator for the Q2 approximation, three levels of reduction of

the Q4 element are tested, which are shown in Fig. 2.8. For the biquadratic approximation,

the most accurate points might be the midpoints—this motivates the reduction level a, in
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Figure 2.7: Error estimators for P2 approximation, test problem 1, part 2.

Table 2.5: Errors for the P2 approximation, test problem 1, part 2.

Refinement level ‖∇e‖0
ηP4
‖∇e‖0

ηP3
‖∇e‖0

ηR
‖∇e‖0

2 2.7942 × 10−3 1.2538 × 100 2.5790 × 100 5.4970 × 100

3 7.0576 × 10−4 1.2625 × 100 2.7128 × 100 5.4878 × 100

4 1.7736 × 10−4 1.2667 × 100 2.7128 × 100 5.4878 × 100

Convergence Order O(h2)
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Table 2.6: Errors for the Q2 approximation, test problem 1, part 2.

Refinement level ‖∇e‖0
ηQ4
‖∇e‖0

ηQ3
‖∇e‖0

ηR
‖∇e‖0

1 1.1391 × 10−2 1.4518 × 100 1.9617 × 100 3.8793 × 100

2 2.8514 × 10−3 1.4510 × 100 1.9521 × 100 3.8747 × 100

3 7.1310 × 10−4 1.4508 × 100 1.9493 × 100 3.8734 × 100

Convergence Order O(h2)

Table 2.7: Errors for the Q2 approximation, test problem 1, part 3.

Refinement level
ηa

Q4
‖∇e‖0

ηb
Q4
‖∇e‖0

ηc
Q4
‖∇e‖0

1 1.7148 × 100 1.4518 × 100 1.0504 × 100

2 1.7140 × 100 1.4510 × 100 1.0492 × 100

3 1.7137 × 100 1.4508 × 100 1.0488 × 100

which the values of the error on the midpoints are set to zero. Level b is the Q4 element with

all the Q2 nodes removed, which has been tested in Section 2.3.2. Since the biquadratic

approximation is a tensor product of the one dimensional quadratic approximation, Level

c removes all the vertices and all the nodes on the horizontal and vertical midlines where

at least one component of the tensor product is a midpoint node.

Note that, some removed nodes in Level c are not superconvergence points. This is

because our criterion for removing nodes is the pointwise error rather than the natural

pointwise superconvergence which is a much stronger criterion. From numerical experi-

ments, the error at the removed non-Q2 nodes in Level c is still relatively small compared

with the error at other points, even though the error at these removed non-Q2 nodes is not

reduced by a larger factor.

The effectivities of these Q4 estimators are shown in Table 2.7, where ηa
Q4

, ηb
Q4

and

ηc
Q4

denote the global estimated error for the reduction level a, b and c respectively. From

Table 2.7, Level c is very effective—its effectivity is quite close to one. In addition, Level

c is relatively cheap, since it has only 12 degrees of freedom per element.
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Figure 2.8: Error elements for the Q2 approximation, part 3.
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2.4 More Challenging Test Problems for (Bi-)quadratic

Elements

From the discussion of Section 2.3, it can be concluded that the P4 estimator and the Q4

estimator with reduction level c are effective for the P2 and Q2 approximations respectively.

However, this conclusion is based on test problem 1, which is very smooth—just a fourth

order polynomial. So, in order to guarantee the effectivity of these two error estimators,

more test problems are necessarily needed. In this section, two additional numerical exam-

ples are tested. The first one has a complicated smooth solution and the second one has a

singular solution.

2.4.1 Test problem 2: a smooth solution

The solution of test problem 2 is:

u = sin(πx) sin(πy) exp(x). (2.19)

The domain and the initial meshes for this test problem are the same as test problem 1.

Table 2.8 shows the exact errors and estimated errors for the triangular P2 approximation.

The effectivity of the P4 estimator is in the interval (1.23, 1.25) which is broadly consistent

with test problem 1. Table 2.9 shows the errors for the rectangular Q2 approximation, and

it can be seen that the Q4 estimator with reduction level c is still very effective.

Some aspects of the quadrature used need to be clarified at this point. For test prob-

lem 1, the exact solution and the source function f are polynomials with order at most

four. So, a Gaussian quadrature rule with a small number of Gauss points is enough to

accurately compute the integrals arising with computing the exact error and the estimated

errors. However, for test problems 2 and 3, the exact solutions are more complicated. For

the triangular case, a high degree Gaussian quadrature rule with 73 Gauss points provided

by Dunavant [19] is used. For the rectangular case, the tensor product of the one dimen-

sional ten-point Gauss rule 4 is used.

4We also tried the MATLAB function dblquad. It does not provide any significantly different result.
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Table 2.8: Errors for the P2 approximation, test problem 2.

Refinement level ‖∇e‖0
ηP4
‖∇e‖0

ηR
‖∇e‖0

2 1.5929 × 10−2 1.2313 × 100 4.2048 × 100

3 4.0142 × 10−3 1.2405 × 100 4.1213 × 100

4 1.0072 × 10−3 1.2441 × 100 4.0792 × 100

Convergence Order O(h2)

Table 2.9: Errors for the Q2 approximation, test problem 2.

Refinement level ‖∇e‖0
ηc

Q4
‖∇e‖0

ηR
‖∇e‖0

1 2.1805 × 10−2 1.0459 × 100 3.9094 × 100

2 5.4653 × 10−3 1.0479 × 100 3.8826 × 100

3 1.3672 × 10−3 1.0485 × 100 3.8755 × 100

Convergence Order O(h2)

2.4.2 Test problem 3: a singular solution

Test problem 3 is the example 1.1.4 in [21, p.12], which is also included in IFISS [20]. The

solution of this test problem is:

u = r2/3 sin((2θ + π)/3), (2.20)

where r =
√

x2 + y2, and θ is the angle with the x−axis. The domain of test problem 3 is

the L−shape domain which is (−1, 1)× (−1, 1) \ (−1, 0]× (−1, 0]. The initial triangular and

rectangular meshes are shown in Fig. 2.9.

Tables 2.10 and 2.11 provide the effectivity of the P4 estimator and the Q4 estimator

with reduction level c, which show that their effectivity is still close to one. So, these two

estimators are still effective for this singular problem. In addition, from both tables, the

exact errors of the P2 and Q2 approximations reduce by a factor of approximately 22/3 as

the mesh is refined, which is consistent with the results in [21, p.47].
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The initial triangular mesh The initial rectangular mesh

Figure 2.9: Initial meshes for test problem 3.

Table 2.10: Errors for the P2 approximation, test problem 3.

Refinement level ‖∇e‖0
ηP4
‖∇e‖0

ηR
‖∇e‖0

2 5.2758 × 10−2 8.9145 × 10−1 2.8267 × 100

3 3.3228 × 10−2 8.9130 × 10−1 2.8261 × 100

4 2.0930 × 10−2 8.9122 × 10−1 2.8258 × 100

Convergence Order O(h2/3)

Table 2.11: Errors for the Q2 approximation, test problem 3.

Refinement level ‖∇e‖0
ηc

Q4
‖∇e‖0

ηR
‖∇e‖0

1 6.1493 × 10−2 8.9795 × 10−1 3.0061 × 100

2 3.8728 × 10−2 8.9767 × 10−1 3.0052 × 100

3 2.4394 × 10−2 8.9756 × 10−1 3.0049 × 100

4 1.5366 × 10−2 8.9751 × 10−1 3.0047 × 100

Convergence Order O(h2/3)
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2.5 Summary and Conclusion

In this chapter, the strategy of local problem error estimation for the diffusion problem is

reviewed. Results from test problem 1 show that the P2 and Q2 estimators are effective

for the linear and bilinear approximations. After that, the P3 and Q3 estimators are shown

to be ineffective for the quadratic and biquadratic approximations. Finally, the following

estimators are effective

• the P4 estimator for the P2 approximation;

• the Q4 estimator with reduction level c for the Q2 approximation.

Note that, the upper and lower bounds (2.14)–(2.15) for the P4 and Q4 estimators can also

be established using the analysis methodology introduced in [46]. However, these upper

and lower bounds are necessary but not sufficient for an effective error estimator.

A more interesting problem is addressed in the next chapter—that of establishing effec-

tive a posteriori error estimators for inf-sup stable mixed approximations for incompress-

ible flow problems.



Chapter 3

A Posteriori Error Estimation for

Classical Mixed Approximation of

Stokes Equations

3.1 Introduction

The mathematical analysis foundation of a posteriori error estimation for incompressible

flow problems was established in Bank & Welfert [7] and Verfürth [45]. Subsequently,

Ainsworth & Oden [3] introduced the methodology of “local Poisson problem” error es-

timation (which is adopted herein). After that, Kay and Sivester [30] show that the local

Poisson problem estimator is effective and computationally cheap for the stabilized Q1−P0

approximation, which will be discussed in detail in Section 4.4.

Note that the pioneering a posteriori error estimation techniques for incompressible

flow are typically built on the lowest order approximations, e.g. stabilized Q1−P0 approxi-

mation and stable P1−P1 (linear velocity, continuous linear pressure) mixed approximation,

using either bubble terms (i.e. the mini-element, see e.g. [12, p. 153]), or a macroelement

definition of the pressure (see e.g. [12, p. 152]) to guarantee inf-sup stability. For this rea-

son, the aim of this chapter is to establish simple and effective error estimation techniques

for higher order stable mixed approximations: in particular Q2 − P−1 and Q2 − Q1.

44



CHAPTER 3. A POSTERIORI ERROR ESTIMATION FOR STOKES FLOW 45

As discussed in Chapter 2, the main issue of establishing effective local problem esti-

mators is to find proper correction spaces. Similarly to the process in Chapter 2, we start

with testing the Q3 correction space. Unlike the diffusion problem, our numerical tests

show that the Q3 correction space works well for the Q2 −P−1 and Q2 −Q1 approximations

for the Stokes problem (see Section 3.4). So, there is no need to use the higher order Q4

correction space, which is more expensive. A detailed study will be given in the following

sections. Although we restrict attention to two dimensional approximation throughout this

chapter, the extension of our approach to three dimensional Q2–P−1 or P2∗–P−1 approxima-

tion (superquadratic velocity, discontinuous linear pressure, see [21, p. 248]) using bricks

or tetrahedra is completely straightforward.

This chapter is based on Liao and Silvester [32] and an outline is as follows. In the next

section we review the notion of mixed approximation of the Stokes equations. We present

a theoretical analysis of three a posteriori error estimation strategies for Q2–P−1 mixed

approximation in Section 3.3. Specifically, three alternative error estimators are shown to

be equivalent to the discretisation error. Some numerical results are presented in Section

3.4. Here the efficiency and reliability of the Poisson problem estimator is compared with

the popular Z–Z error indicator originally introduced by Zienkiewicz & Zhu [48]. Some

conclusions are given in Section 3.5.

3.2 Mathematical Setting

In this chapter, we consider the simplest possible model of viscous incompressible flow in

R2:

−∇2~u + ∇p = ~0 in Ω, (3.1)

∇ · ~u = 0 in Ω, (3.2)

~u = ~g on ∂ΩD, (3.3)

∂~u
∂n
− ~np = ~0 on ∂ΩN . (3.4)

Note that the right hand side of (3.1) is set to zero which is different from (1.1) in Chap-

ter 1. For convenience, in the next section, the boundary data ~g will be assumed to be
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a polynomial with order at most two—this will ensure that there is no error incurred in

approximating the boundary condition on ∂ΩD.

As discussed in Chapter 1, the weak formulation of (3.1)–(3.4) is: find ~u ∈ H1
E and

p ∈ P such that ∫
Ω

∇~u : ∇~v −
∫

Ω

p∇ · ~v = 0 ∀~v ∈ H1
E0
, (3.5)∫

Ω

q∇ · ~u = 0 ∀q ∈ P. (3.6)

A sufficient condition for the existence and uniqueness of a solution satisfying (3.5)–(3.6)

is the continuous inf-sup condition (see Definition 1.20). An immediate consequence of

the stability bound (1.20) is the “B-stability bound” given below. For a proof see [21,

Lemma 5.2].

Proposition 3.2.1 B-stability: working with the “big” bilinear form

B : (H1,P ) × (H1,P )→ R so that

B((~u, p); (~v, q)) = (∇~u,∇~v ) − (p,∇ · ~v ) − (q,∇ · ~u ), (3.7)

for all (~w, s) ∈ H1
E0
× P, we have that

sup
(~v, q) ∈H1

E0
×P

B((~w, s); (~v, q))
|~v |1 + ‖q‖0

≥ γD( |~w|1 + ‖s‖0), (3.8)

where γD depends only on the shape of the domain Ω.

The mixed finite element approximation of (3.5)–(3.6) is: find ~uh ∈ Xh
E and ph ∈ Mh

such that, ∫
Ω

∇~uh : ∇~vh −

∫
Ω

ph∇ · ~vh = 0 ∀~vh ∈ Xh
0 , (3.9)∫

Ω

qh∇ · ~uh = 0 ∀qh ∈ Mh, (3.10)

where the finite dimensional spaces Xh
E, Xh

0 and Mh are introduced in Section 1.5.

We let (~u, p) denote the solution of (3.5)–(3.6) and let (~uh, ph) denote the solution of

(3.9)–(3.10) with Q2–P−1 approximation on a rectangular subdivision Th, which is assumed

to be regular and isotropic in this chapter. Our aim is to estimate the velocity and the

pressure errors

~e = ~u − ~uh, ε = p − ph, (3.11)
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by post-processing the computed solution (~uh, ph). Following established convention, C

and c denote generic constants which are independent of the mesh size, the domain Ω, and

the solution (~u, p) throughout this chapter. Such constants could depend on the element

aspect ratio ρT .

If an error estimator η is to be useful then an important factor is the requirement that it

should be cheap to compute—as a rule of thumb, the computational work should scale lin-

early as the number of elements is increased. As discussed in Chapter 2, an error estimator

is efficient and reliable, if it gives the following upper and lower bounds,

|~e |1 + ‖ε‖0 ≤ CΩη, (3.12)

ηT ≤ CΩ

 ∑
T ′∈ωT

{
|~e |21,T ′ + ‖ε‖20,T ′

}
1/2

, (3.13)

where η =

√∑
T∈Th

η2
T , and the generic constant CΩ is independent of the mesh size and

the exact solution but may depend on the domain and the element aspect ratio. The upper

bound (3.12) is to guarantee the accuracy of mixed approximations, whereas the local

lower bound (3.13) is used to drive a reliable adaptive refinement process. In addition, an

estimator is said to be effective if η/(|~e |1 + ‖ε‖0) is close to one.

In the next sections we will introduce three alternative estimators and show that each

satisfies the requirements (3.12) and (3.13).

3.3 Analysis of Estimators

We begin this section by summarising some standard results that will prove to be useful.

First, so-called bubble functions on the reference element T̃ = (0, 1) × (0, 1) are defined as

follows:

bT̃ = 24x(1 − x)y(1 − y),

bẼ1,T̃ = 22x(1 − x)(1 − y),

bẼ2,T̃ = 22y(1 − y)x,

bẼ3,T̄ = 22x(1 − x)y,

bẼ4,T̄ = 22y(1 − y)(1 − x).
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Here bT̃ is the reference element bubble function, and bẼi,T̃ , i = 1 : 4 are reference edge

bubble functions. For any T ∈ Th, the element bubble function is bT = bT̃ ◦ FT and the

element edge bubble function is bEi,T = bẼi,T̃ ◦ FT , where FT is the affine map from T̃ to T .

For an interior edge E ∈ εh,Ω and E = T1 ∩ T2, bE is defined as follows,

bE =


bE,T1 in T1,

bE,T2 in T2,

0 in Ω \ (T1 ∪ T2).

For a boundary edge E ∈ εh,D ∪ εh,N , bE = bE,T , where T is the rectangle such that

E ∈ ε(T ). With these bubble functions, Creusé et al. [17, Lemma 4.1] established the

following lemma.

Lemma 3.3.1 Inverse inequalities: let T be an arbitrary rectangle in Th and E ∈ ε(T ).

For any ~vT ∈ Pk0(T ) and ~vE ∈ Pk1(E), the following inequalities hold,

ck‖~vT ‖0,T ≤ ‖~vT b1/2
T ‖0,T ≤ Ck‖~vT ‖0,T , (3.14)

|~vT bT |1,T ≤ Ckh−1
T ‖~vT ‖0,T , (3.15)

ck‖~vE‖0,E ≤ ‖~vEb1/2
E ‖0,E ≤ Ck‖~vE‖0,E, (3.16)

‖~vEbE‖0,T ≤ Ckh
1/2
E ‖~vE‖0,E, (3.17)

|~vEbE |1,T ≤ Ckh
−1/2
E ‖~vE‖0,E, (3.18)

where, ck and Ck are two constants which only depend on the element aspect ratio and the

polynomial degrees k0 and k1.

Here, k0 and k1 are fixed and ck and Ck can be associated with generic constants c and C.

In addition, ~vE which is only defined on the edge E also denotes its natural extension to the

element T .

Second, we recall some quasi-interpolation estimates in the following lemma.

Lemma 3.3.2 Clément interpolation estimate: Given ~v ∈ H1, let ~vh ∈ Xh ⊂ H1 be the

quasi-interpolant of ~v defined by averaging as in [16]. For any T ∈ Th,

‖~v − ~vh‖0,T ≤ ChT |~v |1,ω̃T , (3.19)
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and for all E ∈ ε(T )

‖~v − ~vh‖0,E ≤ Ch1/2
E |~v |1,ω̃E . (3.20)

We are now ready to introduce our three alternative error estimators.

3.3.1 A residual error estimator

The material in this section is well known and can be found in several places, e.g. in

Creusé et al. [17], or [21, section 5.4.2]. The element contribution ηR,T of the residual

error estimator ηR is given by

η2
R,T := h2

T ‖
~RT ‖

2
0,T + ‖RT ‖

2
0,T +

∑
E∈ε(T )

hE ‖~RE‖
2
0,E, (3.21)

and the components in (3.21) are given by

~RT := {∇2~uh − ∇ph}|T , (3.22)

RT := {∇ · ~uh}|T , (3.23)

~RE :=


1
2~∇~uh − phI�E E ∈ εh,Ω

∂~uh
∂~nE,T
− ph~nE,T E ∈ εh,N

0 E ∈ εh,D

, (3.24)

with the key contribution coming from the stress jump associated with an edge E adjoining

elements T and S :

[[∇~uh − ph~I ]] := ((∇~uh − ph~I )|T − (∇~uh − ph~I )|S )~nE,T .

The global residual error estimator is given by ηR :=
√∑

T∈Th
η2

R,T .

Theorem 3.3.3 For any mixed finite element approximation (not necessarily inf-sup sta-

ble) defined on rectangular grids Th, the residual estimator ηR satisfies:

|~e |1 + ‖ε‖0 ≤ CΩ ηR,

ηR,T ≤ C

 ∑
T ′∈ωT

{
|~e |21,T ′ + ‖ε‖20,T ′

}
1/2

.

Note that the constant C in the local lower bound is independent of the domain.
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Proof. We include this for completeness. To establish the upper bound we let [~v, q] ∈

H1
E0
× P and ~vh ∈ Xh

0 be the Clément interpolant of ~v, then

B([~e, ε]; [~v, q]) = B([~e, ε]; [~v − ~vh, q])

= −(∇~uh,∇(~v − ~vh)) + (ph,∇ · (~v − ~vh)) + (q,∇ · ~uh)

=
∑
T∈Th

{
(∇2~uh − ∇ph,~v − ~vh)T −

∑
E∈ε(T )

〈
~RE,~v − ~vh

〉
E

+ (q,∇ · ~uh)T

}
,

where,
〈
~RE,~v − ~vh

〉
E

=
∫

E
~RE · (~v − ~vh). Thus,

|B([~e, ε]; [~v, q])| ≤
∑
T∈Th

{
‖∇2~uh − ∇ph‖0,T ‖~v − ~vh‖0,T +

∑
E∈ε(T )

‖~RE‖0,E‖~v − ~vh‖0,E

+‖q‖0,T ‖∇ · ~uh‖0,T

}

≤ C


∑

T∈Th

h2
T ‖∇

2~uh − ∇ph‖
2
0,T


1/2 ∑

T∈Th

1
h2

T

‖~v − ~vh‖
2
0,T


1/2

+

∑
T∈Th

∑
E∈ε(T )

hE‖~RE‖
2
0,T


1/2 ∑

T∈Th

∑
E∈ε(T )

1
hE
‖~v − ~vh‖

2
0,E


1/2

+

∑
T∈Th

‖q‖20,T


1/2 ∑

T∈Th

‖∇ · ~uh‖
2
0,T


1/2 .

Using Lemma 3.3.2 then gives

|B([~e, ε]; [~v, q])| ≤ C

∑
T∈Th

{
|~v |21,T + ‖q‖0,T

}
1/2

×

∑
T∈Th

{
h2

T ‖
~RT ‖0,T +

∑
E∈ε(T )

hE‖~RE‖
2
0,E + ‖RT ‖

2
0,T

}
1/2

.

Finally, noting that ~e = ~u − ~uh ∈ H1
E0

and using (3.8) gives

|~e |1,Ω + ‖ε‖0,Ω ≤ CΩ

∑
T∈Th

{
h2

T ‖
~RT ‖0,T +

∑
E∈ε(T )

hE‖~RE‖
2
0,E + ‖RT ‖

2
0,T

}
1/2

This establishes the upper bound.

Turn to the local lower bound. First, for the element interior residual part, we set

~wT := ~RT bT . Since ~wT = 0 on ∂T , it can be extended to the whole of Ω by setting ~wT = 0

in Ω \ T to give an extended function that is in H1
E0

. Then,

(∇~u − pI,∇~wT )T = (∇~u − pI,∇~wT )Ω = 0. (3.25)
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With (3.25),

(~RT , ~wT )T = (∇2~uh − ∇ph, ~wT )T

= −(∇~uh − phI,∇~wT )T +
〈
(∇~uh − phI) · ~n, ~wT

〉
∂T (3.26)

= −(∇~uh − phI,∇~wT )T

= −(∇~uh − phI,∇~wT )T + (∇~u − pI,∇~wT )T

= (∇~e − εI,∇~wT )T

≤ (|~e |1,T + ‖ε‖0,T )|~wT |1,T

≤ (|~e |21,T + ‖ε‖20,T )1/2h−1
T ‖

~RT ‖0,T ,

where in (3.26),
〈
(∇~uh − phI)~n, ~wE

〉
∂T =

∫
∂T

(∇~uh − phI)~n · ~wE . In addition, from the inverse

inequality (3.14), (~RT , ~wT )T = ‖~RT b1/2
T ‖

2
0,T ≥ c‖~RT ‖

2
0,T , thus

h2
T ‖
~RT ‖

2
0,T ≤ C

(
|~e |21,T + ‖ε‖20,T

)
. (3.27)

Next comes the divergence part,

‖RT ‖0,T = ‖∇ · ~uh‖0,T = ‖∇ · (~u − ~uh)‖0,T ≤
√

2 |~u − ~uh|1,T =
√

2 |~e |1,T . (3.28)

Finally, we need to estimate the jump term. For an interior edge E = T1 ∩ T2, we set

~wE = ~REbE so that

2
〈
~RE, ~wE

〉
E

=
∑
i=1:2

〈
(∇~uh − phI)~n, ~wE

〉
∂Ti

= (∇~uh − phI,∇~wE)ωE +
∑
i=1:2

(∇2~uh − ∇ph, ~wE)Ti .

Using the same argument as for (3.25), the following equality holds,

(∇~u − pI,∇~wE)ωE = 0, (3.29)

and then, using inverse inequalities gives

2
〈
~RE, ~wE

〉
E

= −(∇~e − εI,∇~wE)ωE +
∑
i=1:2

(∇2~uh − ∇ph, ~wE)Ti

≤ (|~e |1,ωE + ‖ε‖0,ωE )|~wE |1,ωE +
∑
i=1:2

‖~RTi‖0,Ti‖~wE‖0,ωE

≤ C

(|~e |1,ωE + ‖ε‖0,ωE )h−1/2
E ‖~RE‖0,E +

∑
i=1:2

‖~RTi‖0,Tih
1/2
E ‖

~RE‖E


≤ C

(|~e |21,ωE
+ ‖ε‖20,ωE

)1/2
h−1/2

E ‖~RE‖0,E +
∑
i=1:2

‖~RTi‖0,Tih
1/2
E ‖

~RE‖E

 .
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Using (3.27) gives

2
〈
~RE, ~wE

〉
E
≤ C

(
|~e |21,ωE

+ ‖ε‖20,ωE

)1/2
h−1/2

E ‖~RE‖0,E. (3.30)

Using (3.16) gives 〈~RE, ~wE〉E = ‖~REb1/2
E ‖

2
0,E ≥ c‖~RE‖

2
0,E, and thus using (3.30) gives

hE‖~RE‖
2
0,E ≤ C

(
|~e |21,ωE

+ ‖ε‖20,ωE

)
. (3.31)

We also need to show that (3.31) holds for boundary edges. First, for the Dirichlet boundary

edges, the flux jump is set to be zero, thus (3.31) trivially holds. Second, for an edge

En ∈ ε(T ) ∩ εh,N , we again set ~w = ~REnbEn,

〈
~REn, ~wEn

〉
En

=
〈
(∇~uh − phI)~n, ~wEn

〉
∂T

= (∇~uh − phI,∇~wEn)T + (∇2~uh − ∇ph, ~wEn)T .

Thus, as for (3.29), we have that

(∇~u − pI,∇~wEn)T = 0.

Then, using the inverse inequalities and following the argument above gives

hEn‖~REn‖
2
0,En ≤ C

(
|~e |21,T + ‖ε‖20,T

)
. (3.32)

Finally, combining (3.27), (3.28), (3.31) and (3.32) establishes the local lower bound.

Remark 3.3.4 Theorem 3.3.3 also holds for stable (and unstable) mixed approximations

defined on a triangular subdivision. The proof is essentially identical to the rectangular

case. Specifically, the upper bound can be established directly using the Clément inter-

polation for triangular meshes. In order to show the local lower bound, we just need to

repeat the process for rectangular meshes using a cubic element bubble function defined

by taking the value one at the centroid of the triangle and zero on the three edges, together

with an edge bubble function defined by a quadratic polynomial which takes value one at

the midpoint of one edge and is zero on the other two edges.
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3.3.2 A local Stokes problem error estimator

Here our focus is on the Q2–P−1 approximation method. Specifically, a suitable correction

space QT needs to be introduced at this point. For an interior rectangle (i.e. if all four edges

are in εh,Ω ∪ εh,N), QT is the (Q3(T ))2 space excluding the basis functions associated with

the four vertices, and for an element with some edges in εh,D, QT is the (Q3(T ))2 space

excluding the basis functions associated with the four vertices and all the other nodes on

the boundary ∂ΩD. For a rectangle containing edges in εh,D, it is assumed that at most two

neighboring edges are in εh,D. If the rectangle T has only one edge in εh,D, we call it an

edge element, whereas if it has two neighboring edges in εh,D, we call it a corner element.

Fig. 3.1 illustrates the types of correction spaces that can arise.

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦

Figure 3.1: The correction space QT for an interior element (left), for an edge element
(middle) and for a corner element (right).

The local Stokes problem estimator ηS =
√∑

T∈Th
η2

S ,T is then defined as follows,

η2
S ,T = |~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T , (3.33)

where (~eS ,T , εS ,T ) ∈ QT × Q2(T ) satisfies

(∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T = (~RT ,~v )T −
∑

E∈ε(T )

〈
~RE,~v

〉
E
∀~v ∈ QT , (3.34)

(∇ · ~eS ,T , q) = (RT , q)T ∀q ∈ Q2(T ). (3.35)

Note that, (3.34)–(3.35) represents a Stokes problem posed on an element T with a Neu-

mann (zero flux) boundary condition. Although the velocity solution for a Stokes problem

is not uniquely defined when a zero flux condition applies everywhere on the boundary, the

special choice of correction space QT guarantees that the system (3.34)–(3.35) always has

a unique solution.
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We want to establish that the Stokes estimator ηS ,T is equivalent to the residual estimator

ηR,T . The following local inf-sup stability estimate will be crucial in achieving this goal.

Lemma 3.3.5 Local inf-sup stability: for any rectangle T ∈ Th , there exists a positive

constant γL independent of h , such that

min
0,qT∈Q2(T )

max
~0,~vT∈QT

|(qT ,∇ · ~vT )|
|~vT |1 ‖qT ‖0

≥ γL. (3.36)

Proof. Our proof is a generalization of the approach of Verfürth [45, Lem 4.1]. First, for

the reference element T̃ , the local inf-sup stability associated with the three types of QT

can be established by direct computation of the minimum eigenvalue in (1.41). Next, for an

arbitrary element T , we let FT denote the affine map from T̃ to T and denote the Jacobian

determinant of FT by |J| = hT,x hT,y , where hT,x and hT,y are the element sizes in x and y

directions respectively. Thus, for any q ∈ Q2(T ), we define q? := |J|1/2qT ◦ FT ∈ Q2(T̃ ).

Then, there exists a ~u? = (u?, v?)T ∈ QT̃ with |~u?|1,T̃ = ‖q?‖0,T̃ , such that

(∇ · ~u?, q?)T̃ ≥ γ̃‖q?‖
2
0,T̃ (3.37)

where γ̃ is the local inf-sup constant for the reference element T̃ . If we further define

~uT :=

 |J|
1/2 1

hT,y
u? ◦ F−1

T

|J|1/2 1
hT,x

v? ◦ F−1
T

 , (3.38)

then denoting ~uT = (uT , vT ) and using (s, t) to denote the local coordinates for the reference

element, we get

|~uT |
2
1,T =

∫
T

(∂uT

∂x

)2
+

(∂vT

∂y

)2

=

∫
T̃

((
|J|1/2

1
hT,y

∂u?
∂s

1
hT,x

)2
+

(
|J|1/2

1
hT,x

∂v?
∂t

1
hT,y

)2
)
|J|

= |~u?|21,T̃ = ‖q?‖20,T̃ =

∫
T̃

q2
? =

∫
T
(|J|1/2qT )2|J|−1 = ‖qT ‖

2
0,T .

So we see that

|~uT |1,T = ‖qT ‖0,T . (3.39)



CHAPTER 3. A POSTERIORI ERROR ESTIMATION FOR STOKES FLOW 55

Next,

(∇ · ~uT , qT )T =

∫
T

∂uT

∂x
qT +

∂vT

∂y
qT

=

∫
T̃

(
|J|1/2

1
hT,y

∂u?
∂s

1
hT,x
|J|−1/2q? + |J|1/2

1
hT,x

∂v?
∂t

1
hT,y
|J|−1/2q?

)
|J|

=

∫
T̃

(
∂u?
∂s

q? +
∂v?
∂t

q?

)
= (∇ · ~u?, q?)T̃

≥ γ̃ ‖q?‖20,T̃ = γ̃ ‖qT ‖
2
0,T . (3.40)

This establishes the stability bound (3.36) with an inf-sup constant γL = γ̃.

Mirroring the discussion of the stability of the continuous problem in Section 3.2 leads us

to the following result.

Lemma 3.3.6 Local B-stability: if the mixed approximation is locally inf-sup stable, then

for all (~w, s) ∈ QT × Q2(T ), we have that

max
(~v,q)∈QT×Q2(T )

B((~w, s); (~v, q))
|~v |1,T + ‖q‖0,T

≥ γB(|~w|1,T + ‖s‖0,T ), (3.41)

where, γB is a positive constant that only depends on the inf-sup constant γL in (3.36).

Proof. See Elman et al. [21, Lemma 5.2].

The robustness of the Stokes error estimator is established next.

Theorem 3.3.7 For Q2–P−1 approximation on a rectangle T ∈ Th, the estimator ηS ,T is

equivalent to the residual estimator: c ηS ,T ≤ ηR,T ≤ CηS ,T .

Proof. The proof is a generalization of [30, Theorem 3.5]. The details are sketched out

below. First, we need to use (3.41):

ηS ,T =

√
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

≤ |~eS ,T |1,T + ‖εS ,T ‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

B((~eS ,T , εS ,T ); (~v, q))
|~v |1,T + ‖q‖0,T

=
1
γB

max
(~v,q)∈QT×Q2(T )

(~RT ,~v )T −
∑

E∈ε(T )

〈
~RE,~v

〉
E
− (q,∇ · ~uh)T

|~v |1,T + ‖q‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

‖~RT ‖0,T ‖~v ‖0,T +
∑

E∈ε(T ) ‖
~RE‖0,E‖~v ‖0,E + ‖q‖0,T ‖∇ · ~uh‖0,T

|~v |1,T + ‖q‖0,T
.

(3.42)
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Now, since ~v is zero at the four vertices of T , a scaling argument and the usual trace

theorem, see e.g. [21, Lemma 1.5], shows that ~v satisfies

‖~v ‖0,E ≤ Ch1/2
E |~v |1,T , (3.43)

‖~v ‖0,T ≤ ChT |~v |1,T . (3.44)

Combining these two inequalities with (3.42) immediately gives the lower bound in the

equivalence relation. For the upper bound, we first let ~wT = ~RT bT (bT is an element interior

bubble function). From (3.34),

(~RT , ~wT )T = (∇~eS ,T ,∇~wT )T − (εS ,T ,∇ · ~wT )T

≤ |~eS ,T |1,T |~wT |1,T + ‖εS ,T ‖0,T ‖∇ · ~wT ‖0,T

≤
√

2|~wT |1,T (|~eS ,T |1,T + ‖εS ,T ‖0,T )

≤ C
1
hT
‖~RT ‖0,T

(
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

)1/2
(3.45)

In addition, from the inverse inequalities, ‖~RT ‖
2
0,T ≤ C(~RT , ~wT )T , and using (3.45),

h2
T ‖
~RT ‖

2
0,T ≤ C

(
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

)
. (3.46)

Next, we let ~wE = ~REbE (bE is an edge bubble function). Then, from (3.34) and using

(3.46), (3.17), together with the estimate |~wE |1,T ≤ Ch−1
T ‖~wE‖0,T , we get〈

~RE, ~wE

〉
E

= −(∇~eS ,T ,∇~wE)T + (εS ,T ,∇ · ~wE)T + (~RT , ~wE)T

≤ |~eS ,T |1,T |~wE |1,T + ‖εS ,T ‖0,T ‖∇ · ~wE‖0,T + ‖~RT ‖0,T ‖~wE‖0,T

≤ C|~wE |1,T (|~eS ,T |1,T + ‖εS ,T ‖0,T ) + Ch−1
T (|~eS ,T |1,T + ‖εS ,T ‖0,T )‖~wE‖0,T

≤ Ch−1
T ‖~wE‖0,T (|~eS ,T |1,T + ‖εS ,T ‖0,T )

≤ Ch−1/2
E ‖~RE‖0,E(|~eS ,T |1,T + ‖εS ,T ‖0,T ). (3.47)

Then, using ‖~RE‖
2
0,E ≤ C〈~RE, ~wE〉E and (3.47),

hE‖~RE‖
2
0,E ≤ C(|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T ). (3.48)

Finally, from (3.35), since ∇ · ~uh|T ∈ Q2(T ) we have that

(∇ · ~eS ,T ,∇ · ~uh)T = (∇ · ~uh,∇ · ~uh)T ,

‖RT ‖0,T = ‖∇ · ~uh‖0,T ≤ ‖∇ · ~eS ,T ‖0,T ≤
√

2|~eS ,T |1,T . (3.49)
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Combining (3.46), (3.48) and (3.49), establishes the the upper bound in the equivalence

relation.

Remark 3.3.8 The fact that ∇ · ~uh|T ∈ Q2(T ) is crucial for the last step above. If we

wanted to extend this error estimation approach to other mixed approximations then we

would simply need to ensure that the pressure correction space is big enough to contain

the divergence of the original velocity space. The only difficulty with this is that we also

have to ensure that the velocity correction space is big enough to ensure that the local inf-

sup stability condition (3.36) is not compromised. Thus, if we wanted to develop a Stokes

error estimator for the P2∗–P−1 mixed approximation, then the first thing to do is to choose

a pressure augmentation space that is big enough to contain the divergence of P2∗ functions.

The standard quadratic polynomial space P2 would work. We must then choose a velocity

augmentation space that is big enough to ensure that the combination of augmented spaces

is locally stable. This suggests using a reduced P3 space for velocities (that is, with the

vertex basis functions removed).

The Stokes estimator leads to large dimensional local problems. For example, the dimen-

sion of the local Stokes problem that must be solved to estimate the error in the interior

element in Fig. 3.1 is 33 × 33. Our next approach is much simpler and, as we will see in

section 3.4, effective in estimating the error in practice.

3.3.3 A local Poisson problem estimator

The local Poisson problem estimator ηP =
√∑

T∈Th
η2

P,T can be derived from the locally

stable Stokes estimator (3.34)–(3.35) as follows:

η2
P,T = |~eP,T |

2
1,T + ‖εP,T ‖

2
0,T , (3.50)

where, (~eP,T , εP,T ) ∈ QT × Q2(T ) satisfies

(∇~eP,T ,∇~v )T = (~RT ,~v )T −
∑

E∈ε(T )

〈~RE,~v 〉E ∀~v ∈ QT , (3.51)

(εP,T , q) = (RT , q)T ∀q ∈ Q2(T ). (3.52)
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This is much more appealing from a computational perspective. First, (3.51) decouples into

a pair of local Poisson problems, each one of dimension 12 × 12 in the case of the interior

element in Fig. 3.1. Second, since by construction RT = ∇ · ~uh ∈ Q2(T ), the solution of

(3.52) is immediate: εP,T = ∇ · ~uh. The theoretical justification for computing the Poisson

estimator instead of the Stokes estimator is the following equivalence result.

Theorem 3.3.9 Given that the spaces defining the Stokes estimator are locally B–stable,

the estimator ηP,T is equivalent to the Stokes estimator: c ηS ,T ≤ ηP,T ≤ CηS ,T .

Proof. The proof is a straightforward extension of [30, Thm 3.6]. We include it here

for completeness. Combining (3.34), (3.35), (3.51), (3.52), for any T ∈ Th and [~v, q] ∈

QT × Q2(T ) we get

(∇~eP,T ,∇~v )T − (εP,T , q)T = (~RT ,~v )T −
∑

E∈ε(T )

〈
~RE,~v

〉
E
− (∇ · ~uh, q)T

= (∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T − (∇ · ~eS ,T , q)T

= B((~eS ,T , εS ,T ); (~v, q)). (3.53)

Then, using the local B-stability (3.41) gives

|~eS ,T |1,T + ‖εS ,T ‖0,T ≤
1
γB

max
(~v,q)∈QT×Q2(T )

B((~eS ,T , εS ,T ); (~v, q))
|~v |1,T + ‖q‖0,T

=
1
γB

max
(~v,q)∈QT×Q2(T )

(∇~eP,T ,∇~v )T − (εP,T , q)T

|~v |1,T + ‖q‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

|~eP,T |1,T |~v |1,T + ‖εP,T ‖0,T ‖q‖0,T
|~v |1,T + ‖q‖0,T

≤
1
γB

(|~eP,T |1,T + ‖εP,T ‖0,T ). (3.54)

This establishes the lower bound in the equivalence relation. In order to show the upper

bound, we take ~v ∈ QT , and then using (3.34) and (3.51) we get

(∇~eP,T ,∇~v )T = (~RT ,~v )T −
∑

E∈ε(T )

〈
~RE,~v

〉
E

= (∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T . (3.55)

Using (3.35) and (3.52) means that, for any q ∈ Q2(T ),

(εP,T , q)T = (RT , q)T = (∇ · ~eS ,T , q). (3.56)
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Using (3.55) gives

|~eP,T |1,T = max
~v∈QT

(∇~eP,T ,∇~v )T

|~v |1,T

= max
~v∈QT

(∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T

|~v |1,T

≤ max
~v∈QT

|~eS ,T |1,T |~v |1,T + ‖εS ,T ‖0,T ‖∇ · ~v ‖0,T
|~v |1,T

≤ |~eS ,T |1,T +
√

2‖εS ,T ‖0,T , (3.57)

and, using (3.56),

‖εP,T ‖0,T = max
q∈Q2(T )

(εP,T , q)T

‖q‖0,T

= max
q∈Q2(T )

(∇ · ~eS ,T , q)T

‖q‖0,T

≤ max
q∈Q2(T )

‖∇ · ~eS ,T ‖0,T ‖q‖0,T
‖q‖0,T

= ‖∇ · ~eS ,T ‖ ≤
√

2 |~eS ,T |1,T . (3.58)

Finally, combining (3.57) with (3.58) gives the required upper bound.

Remark 3.3.10 If we wanted to extend this error estimation approach to other mixed

approximations then we simply need to ensure that the pressure correction space is big

enough to contain the divergence of the original velocity space. The upshot of this is that

the Poisson estimator is independent of the pressure approximation—we would also solve

(3.51)–(3.52) if we wanted to estimate the error in a solution computed with Q2–Q1 or

Q2–P0 approximation!

3.4 Computational Experiments

In this section two test problems are solved in order to compare the effectivity of three

error estimation strategies: a modified residual estimator η̃R, and the Poisson estimator ηP

as implemented in the IFISS Matlab toolbox [43]; and a local recovery Z–Z estimator ηZ
1

1The Z–Z estimator is introduced in [48]. In brief, we first post-process the velocity solution ~uh to
obtain a more accurate approximation ~u?

h in the sense that ∇~u?
h is more accurate than ∇~uh. Then, ηZ,T :=

‖∇(~u?
h − ~uh)‖0,T and ηZ :=

√∑
T∈Th

η2
Z,T .
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as implemented in the Oomph–lib package [26]. The modified residual error estimator was

introduced by Houston et al. [27], and is defined as follows:

η̃2
R,T :=

(
hT

2

)2

‖~RT ‖
2
0,T + ‖RT ‖

2
0,T +

∑
E∈ε(T )

hE

2
‖~RE‖

2
0,E, (3.59)

and η̃R :=
√∑

T∈Th
η̃2

R,T . We focus on this modified residual estimator η̃R because our

computational experience shows that η̃R is much more accurate than the standard residual

estimator ηR. The Z–Z estimator is a popular error estimation strategy: it is also considered

by practitioners to be one of the best in terms of its simplicity and reliability, especially

when used as a refinement indicator in a self-adaptive refinement setting.

3.4.1 Test problem 1: a smooth solution

Our first test problem is hard-wired into the IFISS package [20, problem S4], and the ve-

locity solution is a quartic polynomial:

~u =

 20xy3

5x4 − 5y4

 , p = 60x2y − 20y3. (3.60)

We solve the problem as an enclosed flow (that is ∂ΩN = ∅) with the boundary data ~g given

by interpolating the exact flow solution at the nodes. We could account for the resulting

“variational crime” by using the methodology introduced by Ainsworth & Kelly [2], but

have not done so in the results reported below.2 The flow problem is solved on a square

domain (−1, 1) × (−1, 1) using a nested sequence of uniformly refined square grids. The

coarsest grid is 8 × 8 and is associated with a mesh parameter of h = 1/4. To interpret the

results that are presented some notation will be needed:

e =

√
|~u − ~uh|

2
1 + ‖p − ph‖

2
0, (3.61)

eT =

√
|~u − ~uh|

2
1,T + ‖p − ph‖

2
0,T , (3.62)

while eωT is defined analogously to eT . Looking first at Table 3.1, we see that the global

error e is decreasing like O(h2) as expected. It is also evident that the Poisson problem

2This means that the error estimation is inaccurate for elements next to the boundary. These effects are
evident in the estimated error plots in Fig. 3.2.
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estimator ηP provides the most accurate estimate of the global error: e
ηP

is close to one,

whereas η̃R is about twice the exact error and ηZ is about three times smaller than the exact

error. Turning to Fig. 3.2 we see that all three error estimators seem to be able to correctly

indicate the structure of the error, although the vertical scale may not be very accurate. As

might be anticipated from the results in Table 3.1, the only estimator that is quantitatively

close to the exact error is ηP,T .

Table 3.1: Comparison of error estimator effectivity.

h e e
η̃R

e
ηP

e
ηZ

1
4 1.0278e+00 5.1508e-01 1.0909e+00 3.7098e+00
1
8 2.5569e-01 4.9210e-01 1.0189e+00 3.2837e+00
1
16 6.3825e-02 4.8148e-01 9.8762e-01 3.0741e+00
1
32 1.5950e-02 4.7638e-01 9.7317e-01 2.9737e+00

Table 3.2: Comparison of effectivity indices.

h e maxT∈Th
eT

eωT
maxT∈Th

η̃R,T

eωT
maxT∈Th

ηP,T

eωT
maxT∈Th

ηZ,T

eωT

1
4 1.0278e+00 6.3048e-01 1.1261e+00 5.2173e-01 1.9083e-01
1
8 2.5569e-01 6.0283e-01 1.1401e+00 5.2674e-01 2.2408e-01
1
16 6.3825e-02 5.8974e-01 1.1327e+00 5.2173e-01 2.3030e-01
1
32 1.5950e-02 5.8346e-01 1.1261e+00 5.1777e-01 2.3134e-01

It is instructive to look at the local error estimates in more detail. In general, if an

error estimator is to be efficient then the constant on the right hand side of (3.13) should be

bounded. An estimate of this constant (e.g. maxT∈Th

η̃R,T

eωT
for η̃R) is provided in Table 3.2,

where we also estimate this constant for the exact error (maxT∈Th
eT

eωT
) and refer to it as

the “exact value”. From the table, although maxT∈Th

η̃R,T

eωT
, maxT∈Th

ηP,T

eωT
and maxT∈Th

ηZ,T

eωT
all

appear to be bounded, only maxT∈Th

ηP,T

eωT
is close to the “exact value”.

Ideally, the local effectivity indices (i.e. η̃R,T

eωT
for η̃R) will be bounded above and below

across the whole domain, so that elements with large errors can be singled out for local
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Figure 3.2: The exact error and estimated errors for test problem 1 with h = 1
16 .

mesh refinement. This is assessed in Fig. 3.3. Looking at the distribution of these indices

it is clear that ηP,T and η̃R,T are closely aligned with the exact error but the Z–Z estimator

is not. In particular the Z–Z estimator has relatively large local effectivity indices in the

“wrong place”, which could lead to the labelling of elements with small error for adaptive

refinement.
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Figure 3.3: The local effectivities of the exact error and the error estimators for test prob-
lem 1 with h = 1

16 .

3.4.2 Test problem 2: channel flow over a backward step

The second example is also hard-wired into the IFISS package [20, problem S2]. The flow

domain is (−1, 5) × (−1, 1) \ (−1, 0] × (−1, 0]. A zero velocity condition applied at the top

and bottom of the channel and fully-developed parabolic velocity profile is specified at the

inflow boundary (x = −1). A natural boundary condition applies at the ouflow(x = 5). Un-

like the first problem, which has a perfectly smooth solution, this problem has a singularity

at the re-entrant corner. We solve it using Q2 − P−1 approximation with a uniform square
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Figure 3.4: The Q2 − P−1 solution of test problem 2 with h = 1
16 .

mesh (with h = 1
16 ). The computed solution is shown in Fig. 3.4 and the profiles of the

estimated error using our three estimators are shown in Fig. 3.5. All three have essentially

the same structure—the estimated errors are dominated by the results in the elements close

to the singularity. Their magnitudes are different however: the residual estimator is the

largest, the Z–Z estimator is the smallest, and the local Poisson estimator is in the middle.

This is consistent with the results obtained from the first test problem.

3.5 Conclusion

In this chapter, the following three error estimators for the Q2 − P−1 approximation are

shown to be equivalent to the true discretisation error,

• the residual estimator ηR;

• the local Stokes problem estimator ηS ;

• the local Poisson problem estimator ηP.

In these three estimators, the Poisson estimator ηP is the cheapest, and from numerical

experiments, it is the most effective. Our numerical results also make it clear that a global

upper bound and a local lower bound on the estimated error does not automatically lead to
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Figure 3.5: Estimated distribution of errors for test problem 2 with h = 1
16 .

an effective error estimator in an adaptive refinement setting. Although there is a theoretical

guarantee that elements with large errors will be flagged by such an estimator, there is no

guarantee that elements that are flagged as having a small discretization error actually have

a small error in reality.



Chapter 4

Error Estimation for Mixed

Approximations Associated with

Anisotropic Meshes

For simplicity, this chapter only considers the Stokes problem (1.1)–(1.3) with a Dirich-

let boundary condition (∂Ω = ∂ΩD). In Section 4.1, some further notation about domain

partitionings will be introduced. This notation is necessarily needed in discussing error es-

timation for anisotropic meshes. Recent analysis results concerning inf-sup stable methods

associated with anisotropic meshes will be reviewed in Section 4.2. Two numerical exam-

ples will be tested to verify these theories—the discrete inf-sup constant of inf-sup stable

methods can degenerate as meshes become highly stretched. These numerical results then

motivate us to use a stabilized Q1 − P0 method which will be introduced in Section 4.3.

In this section, a robust a priori error bound for stabilized Q1 − P0 approximation associ-

ated with anisotropic meshes will be established. Finally, in Section 4.4, a posteriori error

estimation for anisotropic meshes is briefly discussed. A new anisotropic local Poisson

problem error estimator for stabilized Q1 − P0 approximation will be presented at the end

of this section.

66
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TM,1 TM,3

TM,2 TM,4

Figure 4.1: A 2 × 2 macroelement M.

4.1 Macroelement Nomenclature

A 2× 2 macroelement is the union of four neighboring elements sharing a common vertex.

Fig. 4.1 shows a macroelement M which consists of TM,i , i = 1 : 4 (M = ∪i=1:4T M,i,M =

M \ ∂M). For a rectangular partitioning Th, TM denotes its associated 2 × 2 macroelement

partitioning. An example of a rectangular partitioning of a square domain with its associ-

ated macroelement partitioning is shown in Fig. 4.2. Note that throughout this chapter, we

assume that any Th has a unique 2 × 2 macroelement partitioning TM associated with it.

The framework of this chapter can be extended to more general meshes, e.g. the meshes

based on 3×3 or 3×2 macroelements. For simplicity, a “macroelement” in the subsequent

sections just means a 2 × 2 macroelement.

For a macroelement partitioning TM, the following connectivity condition is assumed.

Definition 4.1.1 (Macroelement connectivity). Let M1 and M2 be any two macroele-

ments in TM, and then M1∩M2 can only be an empty set, a single vertex, or two connected

edges in εh.

Another concept in this chapter is the element patch which is defined as follows.

Definition 4.1.2 (Element patch). For a rectangular partitioning Th, the closure of an

element patch P is

P = ∪i∈NPT i, Ti ∈ Th and ∪NPT i is connected and rectangular, (4.1)

whereNP is a subset of {1, 2, 3, ...,N} (N is the number of elements in Th). Then the element
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Figure 4.2: An example of an anisotropic rectangular partitioning Th with its associated
macroelement partitioning TM shown by bold lines.

patch P is

P = P \ ∂P. (4.2)

Note that a macroelement is an element patch. However, an element patch may not be

a macroelement, since it has a more flexible topological structure. A patch partitioning

associated with Th denoted by TP, is defined by insisting that any two different patches

P1, P2 ∈ TP do not overlap. In other words, the mesh Th can be considered to be refined

from a patch partitioning TP.

In stability analysis of inf-sup stable methods for anisotropic meshes1 (see Section 4.2),

patch regularity as defined below is typically required.

Definition 4.1.3 (Patch regularity). A rectangular partitioning Th is patch regular with

respect to a patch partitioning TP if the partitioning TP is regular (no hanging nodes) and

isotropic (its global aspect ratio is bounded by some moderate constant).

The element patches are typically classified into three categories—the interior, edge

and corner patches (PI , PE and PC). These patches are defined to be the images of the

reference patches (P̃I , P̃E and P̃C which are partitionings of (−1, 1)2) by the affine map

from (−1, 1)2 to each patch. The reference patches are defined as follows,

• P̃I: an isotropic partitioning of (−1, 1)2;
1Note that a family of meshes is said to be isotropic if the global aspect ratios of the meshes in this family

are bounded. Otherwise, the mesh family is anisotropic.
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PE PI PI PI

PE PI PI PI

PC PE PE PE

Figure 4.3: A mesh Th and its associated patch partitioning TP shown by bold lines (PC

denotes a corner patch, PE denotes an edge patch and PI denotes an interior patch).

• P̃E := K × K̃, where K is an arbitrary partitioning of (−1, 1) while K̃ equally divides

(−1, 1) into two parts;

• P̃C := K1 × K2, where K1 and K2 are arbitrary partitionings of (−1, 1).

Fig. 4.3 shows a mesh Th which is patch regular with respect to TP, and it shows patches

PI , PE and PC. Note that, the mesh in Fig. 4.2 is not patch regular with respect to TM.

4.2 A Priori Error Estimates for inf-sup Stable Methods

4.2.1 Existing theories

Most of the previous literature on a priori error estimation for the Stokes problem associ-

ated with anisotropic meshes only considers inf-sup stable approximations. For this reason,

we start by reviewing the existing theories for inf-sup stable methods.

As shown in (1.44), the inf-sup constant γh is a key component of the a priori error

estimate for inf-sup stable methods. Ideally, we want γh to be bounded below whenever
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the mesh Th becomes anisotropic. However, γh may be related to the aspect ratio ρ. The

so-called patch technique 2 discussed in Girault and Raviart [24, pp.129–132] is typically

used to analyze the stability of inf-sup stable methods on anisotropic meshes. If a family of

anisotropic rectangular meshes is assumed to be patch regular with respect to some fixed

patch partitioning TP, then the constant γh associated with Xh
0 × Mh is bounded below in

this family if in addition, the mixed approximation satisfies the following two conditions:

• On each P ∈ TP, the local inf-sup constant is bounded below. The local inf-sup

constant γL is defined as follows

min
0,qh∈Mh(P)

max
~0,~vh∈Xh

0 (P)

|(qh,∇ · ~vh)|
|~vh|1 ‖qh‖0

= γL > 0, (4.3)

where Xh
0(P) = Xh

0 |P ∩ H1
0(P)2 and Mh(P) = Mh|P ∩ L2

0(P). Note that

Xh
0 |P =

{
~v
∣∣∣~v = ~w|P, ∀~w ∈ Xh

0

}
, Mh|P =

{
q
∣∣∣ q = q′|P,∀q′ ∈ Mh

}
. (4.4)

• The inf-sup constant for the spaces Xh
0 and M̃h, where M̃h = {q| q ∈ L2

0(Ω), q|P ∈

Q0(P),∀P ∈ TP}, is also bounded below.

For any mixed method, we can choose TP to ensure that the second condition holds. So, the

main issue is the first condition, which is just a local problem on each patch. Schötzau and

Schwab [39] proved the local inf-sup constant of Qk+1 − Qk−1 approximations is bounded

below for edge patches PE, but did not establish stability for arbitrarily anisotropic corner

patches PC. In order to avoid constructing patches PC, we need to design anisotropic

meshes properly. For instance, in some specific mesh cases, we can use the quadrilateral

corner patch shown in Fig. 4.4(b) instead of the simple corner patch shown in Fig. 4.4(a).

In more general situations, some methods for designing stretched meshes are suggested

in [39]. However, the mesh design techniques in [39] are complicated to implement. In

subsequent work, Schötzau et al [40] showed that the Qk+1−Qk−1 approximations are stable

for the family of anisotropic rectangular partitionings containing PE with hanging nodes.

This leads to a more practical implementation.

2The patch technique is referred to as the macroelement technique in this book and elsewhere in the
literature, e.g. [39]. However, the notation of a macroelement in the literature is referred to as the element
patch in this thesis, since we used the word “macroelement” in a different way in Section 4.1.
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Figure 4.4: An example for avoiding PC.

-

6

−1

−1

1

1

0

?6
hs

Figure 4.5: The reference edge macroelement (degenerates as hs → 0).

Nevertheless, in order to simplify mesh design techniques, corner patches play an im-

portant role, e.g. in the mesh shown in Fig. 4.3. So, it is of interest to see how the local

inf-sup constant behaves for corner patches, which will be discussed in detail in the next

section.

4.2.2 Some new results

For simplicity, this section considers two meshes consisting of only four elements. These

are shown in Fig. 4.5 and Fig. 4.6. The mesh in Fig. 4.5 is called the reference edge

macroelement, while the mesh in Fig. 4.6 is called the reference corner macroelement.

As these two meshes become highly stretched (hs → 0), the eigenvalues of the generalized



CHAPTER 4. MIXED APPROXIMATIONS FOR ANISOTROPIC MESHES 72

-

6

−1

−1

1

1

0

?6

�-

hs

hs

Figure 4.6: The reference corner macroelement (degenerates as hs → 0).

eigenvalue problem (1.41) associated with the Q2−P0, Q2−P−1, and Q2−Q1 approximations

are tabulated in Tables 4.1 to 4.6. In addition, 0* in these tables implies some number which

is close to the unit roundoff 10−15.

Table 4.1: Eigenvalues in (1.41), Q2 − P0 on the reference edge macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.4476 0.4793 0.4817 0.4819 0.4819
0.6939 0.8123 0.8311 0.8331 0.8333
0.7738 0.8742 0.8874 0.8887 0.8889

From Table 4.1, the inf-sup constant of the Q2−P0 approximation is obviously bounded

below for the reference edge macroelement (its λ2 is independent of hs), which is consistent

with the theoretical results in [39]. Table 4.2 shows that the inf-sup constant of the Q2−P−1

approximation goes to zero as hs → 0. Also, from Table 4.3, the inf-sup constant of the

Q2 − Q1 approximation is bounded for the reference edge macroelement.

For the reference corner macroelement, we see that the inf-sup constants of all these

methods are not bounded below (see Tables 4.4 to 4.6).

These tables also show that the other eigenvalues λi, i = 3 : np are bounded below

for all three approximations and both of these reference macroelements. This implies that
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Table 4.2: Eigenvalues in (1.41), Q2 − P−1 on the reference edge macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.0448 0.0008 0.0000 0.0000 0.0000
0.2505 0.1790 0.1680 0.1668 0.1667
0.2892 0.4142 0.4154 0.4155 0.4155
0.3986 0.4149 0.4175 0.4177 0.4177
0.4345 0.5071 0.5499 0.5550 0.5555
0.6872 0.6760 0.6680 0.6668 0.6667
0.6934 0.7685 0.7730 0.7732 0.7733
0.8275 0.8285 0.8326 0.8333 0.8333
0.8480 0.8333 0.8333 0.8333 0.8333
0.8849 0.8888 0.8889 0.8889 0.8889
0.9459 0.9931 0.9993 0.9999 1.0000

Table 4.3: Eigenvalues in (1.41), Q2 − Q1 on the reference edge macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.1352 0.0536 0.0417 0.0405 0.0404
0.1619 0.1294 0.1254 0.1250 0.1250
0.3548 0.4145 0.4174 0.4176 0.4177
0.3815 0.5006 0.4981 0.4978 0.4978
0.5232 0.5185 0.5514 0.5551 0.5555
0.5872 0.6184 0.6243 0.6249 0.6250
0.7014 0.6748 0.6677 0.6668 0.6667
0.9740 0.9964 0.9996 1.0000 1.0000

Table 4.4: Eigenvalues in (1.41), Q2 − P0 on the reference corner macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.1343 0.0160 0.0016 0.0002 0.0000
0.7645 0.8502 0.8600 0.8610 0.8611
0.8099 0.8556 0.8606 0.8611 0.8611
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Table 4.5: Eigenvalues in (1.41), Q2 − P−1 on the reference corner macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.0575 0.0066 0.0007 0.0001 0.0000
0.2418 0.3012 0.3146 0.3162 0.3163
0.2678 0.3061 0.3152 0.3162 0.3163
0.4385 0.4198 0.4170 0.4167 0.4167
0.4455 0.4199 0.4170 0.4167 0.4167
0.5023 0.4305 0.4182 0.4168 0.4167
0.5031 0.4309 0.4182 0.4168 0.4167
0.8237 0.8719 0.8775 0.8780 0.8781
0.8828 0.8789 0.8782 0.8781 0.8781
0.8851 0.8886 0.8889 0.8889 0.8889
0.8869 0.8886 0.8889 0.8889 0.8889

Table 4.6: Eigenvalues in (1.41), Q2 − Q1 on the reference corner macroelement.

hs 0.1000 0.0100 0.0010 0.0001 1e-5
eigenvalues 0* 0* 0* 0* 0*

0.0717 0.0083 0.0008 0.0001 0.0000
0.1723 0.1581 0.1564 0.1563 0.1563
0.3261 0.3728 0.3847 0.3864 0.3866
0.3267 0.3733 0.3848 0.3864 0.3866
0.4805 0.4303 0.4185 0.4169 0.4167
0.4824 0.4310 0.4186 0.4169 0.4167
0.8480 0.8925 0.8975 0.8980 0.8981
0.9144 0.8999 0.8983 0.8981 0.8981
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the pressure Schur complement system BA−1BT has only one degenerate eigenvalue and

associated “pressure mode”.

From Definition 1.5.1, computing the inf-sup constant takes the maximum with re-

spect to the velocity approximation space Xh
0 and the minimum with respect to the pressure

approximation space Mh. So, if Xh
0 is enlarged or Mh is reduced properly such that the de-

generate pressure mode of the Schur complement system is removed, the inf-sup constant

can then be bounded. In Ainsworth and Coggins [1], some efficient methods to enhance

the space Xh
0 with high order polynomials are introduced. However, the degrees of the ad-

ditional polynomials to enhance the space Xh
0 are of order ρ1/2 (see [1]). As a result, when

the aspect ratio ρ is very large, the degrees of these additional polynomials are quite high,

which may cause difficulties in practical implementation.

We would like to conclude this section by mentioning the point that, the role of the

inf-sup constant in the a priori error estimate is unclear. In may cases, when the inf-sup

constant decreases, the exact error does not increase. For instance, from our numerical

experience, the exact errors of inf-sup stable approximations for the Stokes problem posed

on the reference edge and corner macroelements do not go up, as their inf-sup constants

degenerate. However, the a priori error bound (the right hand side of (1.44)) can rapidly

increase due to the degeneration of the inf-sup constant, which implies that the a priori

error bound is ineffective. In the next section, we will establish a robust a priori error

bound for a local jump stabilized Q1 − P0 approximation for anisotropic meshes.

4.3 A Priori Error Estimate for a Stabilized Method

4.3.1 Motivation for using the Q1 − P0 approximation

For the right hand side of (1.44), using some proper interpolation for ~u and p, the conver-

gence rates of inf-sup stable methods can be seen clearly. Using the Q2−Q1 approximation

for instance, whenever the exact solution (~u, p) is in H3
E × H2(Ω), employing the stretched

Lagrange interpolation bound introduced in Apel [4, p.69], the following a priori error
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estimate holds,

‖~u − ~uh‖1 + ‖p − ph‖0 ≤ C̃
∑
T∈Th

∑
|α|=2

hαT {|D
α~u |1,T + ‖Dαp‖0,T }, (4.5)

where α = (α1, α2) ∈ N2
0, |α| = α1 + α2, hαT = hα1

T,xh
α2
T,y and Dα(·) =

∂α1 (·)
∂xα1

∂α2 (·)
∂yα2 .

However, the exact solutions (~u, p) are not in H3 × H2(Ω) in many situations, e.g. the

flow in a step domain. In these situations, higher order methods do not lead to higher

accuracy. Thus, the Q1 − P0 approximation is more competitive.

Throughout this section, the spaces Xh
0 , X

h
E and Mh represent the approximation spaces

for Q1 − P0 approximation. The Q1 − P0 approximation is an inf-sup unstable method, be-

cause of the checkboard pressure mode (more information is given in [21, pp.235-237]). In

order to make the problem (1.34)–(1.35) with the Q1−P0 approximation uniquely solvable,

stabilization is needed.

A number of stabilization methods for inf-sup unstable approximations have been de-

veloped during the last three decades. These methods can be classified into two kinds. The

first one is residual based stabilization, e.g. the absolutely stabilized method introduced by

Douglas and Wang [18] and the Galerkin least square methods introduced by Franca and

Hughes [22]. The other one consists of pressure stabilized methods, e.g. the global pres-

sure jump stabilized method (see Hughes and Franca [28]) and the local jump stabilized

method (see Kechkar and Silvester [31]).

Since residual based stabilization typically needs to compute the momentum residual

( ~f − ∇2~uh + ∇ph)T , they are not appropriate for the Q1 − P0 approximation where ∇2~uh

and ∇ph are both zero. As discussed in [31], the global jump stabilized approximation is

complicated to implement in parallel. So, the local jump stabilized method is adopted in

this thesis.

The locally stabilized method [31] is to solve the following problem instead of (1.34)–

(1.35): find ~uh ∈ Xh
E and ph ∈ Mh, such that∫

Ω

∇~uh : ∇~vh −

∫
Ω

ph∇ · ~vh =

∫
Ω

~f · ~vh ∀~vh ∈ Xh
0 , (4.6)

−

∫
Ω

qh∇ · ~uh −
1
4

Υ(ph, qh) = 0 ∀qh ∈ Mh, (4.7)
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where the jump stabilization term Υ(·, ·) (defined in [21, p.259]) is as follows,

ΥM(ph, qh) :=
|M|
4

∑
E∈ΓM

1
hE

∫
E
~ph�E~qh�E, (4.8)

Υ(ph, qh) :=
∑

M∈TM

ΥM(ph, qh), (4.9)

where ΓM is the set consisting of the four interior element edges in the macroelement M,

TM is a macroelement partitioning of the domain Ω, ~·�E is the jump across edge E and

hE is the length of E. In addition, ΥM defined in (4.8) is called the local jump stabilization

term.

4.3.2 Theoretical analysis

For the global jump stabilized Q1 − P0 approximation in [18], Becker [10] has established

an a priori error estimate for anisotropic meshes. However, the result in [10] requires

the global grading factor κ of meshes to be bounded, which may cause inconvenience for

adaptive mesh refinement.

In this section, we assume the rectangular partitioning to be TM uniform, which is

defined as follows.

Definition 4.3.1 (TM uniformity). A rectangular mesh Th is TM uniform if Th is associated

with a unique macroelement partitioning TM which satisfies the connectivity condition, and

all the four elements included in any macroelement M ∈ TM have the same size.

Note that TM uniformity is just a local requirement, and it allows meshes to have arbitrarily

large global aspect ratio and grading factor.

In order to state the main theorems, the following bilinear forms need to be introduced.

Definition 4.3.2 The big bilinear form Bh : (H1, L2(Ω)) × (H1, L2(Ω))→ R is:

Bh((~u, p); (~v, q)) = (∇~u,∇~v) − (p,∇ · ~v) − (q,∇ · ~u) − 1
4Υ(p, q), (4.10)

and B : (H1, L2(Ω)) × (H1, L2(Ω))→ R is (also see Section 3.2):

B((~u, p); (~v, q)) = (∇~u,∇~v) − (p,∇ · ~v) − (q,∇ · ~u). (4.11)
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Obviously, the bilinear form B is continuous from (H1, L2(Ω)) × (H1, L2(Ω)) → R. This

continuity is used in the a priori error estimates for stable methods [21, p.253]). However,

it is not obvious if Bh is continuous from (H1, L2(Ω)) × (H1, L2(Ω)) → R, because of the

jump stabilization term Υ.

Lemma 4.3.3 Let M be a 2 × 2 macroelement with the four included elements having the

same size. The following inequality holds,

ΥM(q, q) ≥ 2‖q‖20,M ∀q ∈ P0,M, (4.12)

where P0,M := {q, q|T ∈ P0(T ),∀T ⊂ M } ∩ L2
0(M), and ΥM is the local jump stabilization

term defined in (4.8).

Proof. Let

C? =



2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


. (4.13)

Any q ∈ P0,M can be expressed as the following vector form,

~q =



qM,1

qM,2

qM,3

qM,4


, (4.14)

where qM,i = q|Mi , i = 1 : 4 (Mi are the four elements included in M).

The eigenvalues and eigenvectors of C? are

{0,q1}, {2,q2}, {2,q3}, {4,q4}, (4.15)

where

q1 =



1

1

1

1


,q2 =



1

0

−1

0


,q3 =



0

1

0

−1


,q1 =



−1

1

−1

1


. (4.16)
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Since {qi}
4
i=1 are linear independent, the vector ~q can be expressed uniquely as

~q = α1q1 + α2q2 + α3q3 + α4q4, αi ∈ R. (4.17)

Note that since q ∈ P0,M,
∑

i=1:4 qM,i = 0. From (4.16), all the eigenvectors except q1 have

zero means. Thus, the contribution of q1 in (4.17) is zero (α1 = 0).

From the definition of ΥM and due to α1 = 0 in (4.17),

ΥM(q, q) = ~qT 1
4
|M|C?~q ≥

1
4
|M|λ2~qT~q, (4.18)

where λ2 = 2 is the smallest nontrivial eigenvalue of the matrix C?. In addition,

‖q‖20,M =

4∑
i=1

q2
M,i|TM,i| =

1
4
|M|~qT~q. (4.19)

From (4.18)–(4.19), we get

ΥM(q, q) ≥ 2‖q‖20,M ∀q ∈ P0,M.

Using Lemma 4.3.3, for any qh ∈ Mh,

Υ(qh, qh) = Υ(qh − Πhqh, qh − Πhqh)

=
∑

M∈TM

ΥM(qh − Πhqh, qh − Πhqh)

≥ 2‖qh − Πhqh‖
2
0, (4.20)

where Πh p|M =

∫
M p
|M| ,∀M ∈ TM.

Following the proofs in [31], and using the connectivity condition of TM and (4.20), the

following lemma can be obtained.

Lemma 4.3.4 For all (~vh, qh) ∈ Xh
0 × Mh, when the mesh Th is TM uniform, there exists a

constant ξ which is independent of h, ρ and κ such that

sup
(~wh,rh)∈Xh

0×Mh

Bh((~vh, qh); (~wh, rh))
‖~wh‖1 + ‖rh‖0

≥ ξ(‖~vh‖1 + ‖qh‖0). (4.21)

Note that, (4.21) is referred to as Bh-stability.

With the above lemmas, Theorem 4.3.5 can then be stated. The proof needs Bh-

stability (4.21).
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Theorem 4.3.5 Let the partitioning Th of Ω be TM uniform. Let (~uh, ph) be the solution of

the stabilized Q1 − P0 approximation (4.6)–(4.7), and (~u, p) ∈ H2 ∩ C0(Ω)2 ×H1 ∩ C0(Ω)

be the solution of (1.18)–(1.19). Then, there exists a constant C0, independent of the mesh

size h and the global aspect ratio ρ and the global grading factor κ, such that,

‖~u − ~uh‖1 + ‖p − ph‖0 ≤ C0

∑
T∈Th

{
hT,x‖~uxx‖0,T + max(hT,x, hT,y)‖~uxy‖0,T

+hT,y‖~uyy‖0,T + hT,x‖px‖0,T + hT,y‖py‖0,T

}
. (4.22)

Proof. First, note that the generic constant C in this proof is independent of h, ρ and κ. Let

~uI be the Lagrange interpolant of ~u in Xh
E agreeing with ~u at the vertices of rectangles in Th,

and pI be the L2 projection of p in Mh. From Apel [4, p.69], and Apel and Randrianarivony

[5], we have

‖~u − ~uI‖1 ≤ C
∑
T∈Th

∑
|α|=1

hαT |D
α~u |1,T

 (4.23)

‖p − pI‖0 ≤ C
∑
T∈Th

∑
|α|=1

hαT ‖D
αp‖0,T

 . (4.24)

|α| = α1 + α2, hαT = hα1
T,xh

α2
T,y and Dα(·) =

∂α1 (·)
∂xα1

∂α2 (·)
∂yα2 .

Then, for all (~wh, rh) ∈ Xh
0 × Mh,

Bh((~uh−~uI , ph−pI); (~wh, rh)) = Bh((~uh, ph); (~wh, rh)) −B((~uI , pI); (~wh, rh)) +
1
4

Υ(pI , rh)

= B((~u, p); (~wh, rh)) −B((~uI , pI); (~wh, rh)) +
1
4

Υ(pI , rh)

= B((~u − ~uI , p − pI); (~wh, rh)) +
1
4

Υ(pI , rh). (4.25)

Since ~uh − ~uI ∈ Xh
0 and ph − pI ∈ Mh, using the Bh-stability (4.21),

‖~uh − ~uI‖1 + ‖ph − pI‖0 ≤ C sup
(~wh,rh)∈Xh

0×Mh

Bh((~uh − ~uI , ph − pI); (~wh, rh))
‖~wh‖1 + ‖rh‖0

. (4.26)

Substituting (4.25) into (4.26)

‖~uh − ~uI‖1 + ‖ph − pI‖0 ≤ C sup
(~wh,rh)∈Xh

0×Mh

B((~u − ~uI , p − pI); (~wh, rh)) + 1
4Υ(pI , rh)

‖~wh‖1 + ‖rh‖0
.

Using the continuity of B,

‖~uh − ~uI‖1 + ‖ph − pI‖0 ≤ C

‖~u − ~uI‖1 + ‖p − pI‖0 + sup
qh∈Mh,‖qh‖0=1

Υ(pI , qh)

 . (4.27)
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Looking at the right hand side of (4.27), the only difficulty is to estimate the stabilization

term Υ(pI , qh) while the other two terms can be estimated by (4.23)–(4.24).

Since Υ(p, qh) = 0 when p is in H1(Ω)∩C0(Ω), we have that Υ(pI , qh) = Υ(pI − p, qh).

Then, following the method in [31], using the triangle and Schwarz inequalities,

Υ(pI , qh) = Υ(pI − p, qh)

≤ C

∑
T∈Th

∑
E∈ε(T )

|M|
4hT,E

∫
E
|p − pI |

2


1/2 ∑

T∈Th

∑
E∈ε(T )

|M|
4hT,E

∫
E
|qh|

2


1/2

.(4.28)

Since a macroelement is assumed to be equally divided into four elements,

|M|
4hT,E

= h⊥T,E. (4.29)

Thus, from (4.28),

Υ(pI , qh) ≤ C

∑
T∈Th

∑
E∈ε(T )

h⊥T,E

∫
E
|p − pI |

2


1/2 ∑

T∈Th

∑
E∈ε(T )

h⊥T,E

∫
E
|qh|

2


1/2

. (4.30)

Since qh is a piecewise constant, (
∑

T∈Th

∑
E∈ε(T ) h⊥T,E

∫
E
|qh|

2)1/2 ≤ C‖q‖0.

For the first term of the right hand side of (4.30),

h⊥T,E

∫
E
|p − pI |

2 = h⊥T,EhT,E

∫
Ẽ
|p − pI |

2 (4.31)

Where Ẽ is an edge of the reference element T̃ = (0, 1)2. Now, applying the trace theorem

to the right hand side of (4.31) gives,

h⊥T,EhT,E

∫
Ẽ
|p − pI |

2 ≤ Ch⊥T,EhT,E‖p − pI‖
2
1,T̃

≤ Ch⊥T,EhT,E

∫
T̃
(p − pI)2 +

∫
T̃

(
∂(p − pI)

∂x̃

)2

+

∫
T̃

(
∂(p − pI)

∂ỹ

)2
≤ Ch⊥T,EhT,E

(
1
|T |
‖p − pI‖

2
0,T +

1
|T |

h2
T,x‖px‖

2
0,T +

1
|T |

h2
T,y‖py‖

2
0,T

)
≤ C

(
‖p − pI‖

2
0,T + h2

T,x‖px‖
2
0,T + h2

T,y‖py‖
2
0,T

)
.

Using (4.24), we can estimate the jump stabilization term as,

Υ(pI , qh) ≤ C

∑
T∈Th

(hT,x‖px‖0,K + hT,y‖py‖0,T )

 ‖qh‖0. (4.32)
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Then, combining (4.23), (4.24), (4.27) and (4.32) gives,

‖~uh − ~uI‖1 + ‖ph − pI‖0 ≤ C
∑
T∈Th

{
hT,x‖~uxx‖0,T + max(hT,x, hT,y)‖~uxy‖0,T

+hT,y‖~uyy‖0,T + hT,x‖px‖0,T + hT,y‖py‖0,T

}
, (4.33)

Adding ‖~u−~uI‖1 +‖p− pI‖0 to both sides of (4.33) and using (4.23)–(4.24), we have proved

Theorem 4.3.5.

4.3.3 Numerical results

From Theorem 4.3.5, in order to reduce the errors of the stabilized Q1 −P0 approximation,

rectangles on which the exact solution changes rapidly need to be refined toward a proper

direction. Let T ′h be the mesh locally refined from Th. We require that there exists a unique

macroelement partitioning T ′M associated with T ′h, and T ′h is T ′M uniform.

For this purpose, we suggest the three local refinement strategies shown in Figure 4.7

to refine macroelements rather than elements. If the exact solution changes rapidly in the

x direction, the local refinement method 1 is recommended; if it changes rapidly in the y

direction, method 2 should be used; if the solution changes rapidly in both of the x and

y directions, refinement method 3 is the right choice. In addition, after these local refine-

ments, hanging nodes may exist on the boundaries of some macroelements. Algorithm 4.1

is advocated to remove the hanging nodes.

Algorithm 4.1
while there is some hanging nodes in T ′h do

find the first macroelement with hanging nodes
if the hanging nodes are on the top and bottom boundaries of the macroelement then

refine this macroelement using the local refinement method 1
else

refine this macroelement using the local refinement method 2
end if

end while

Two test problems with exact solutions on the square domain Ω = (−1, 1)2 are con-

sidered next. For these two test problems, we first solve them with the initial uniform

mesh which equally divides the domain into 8 × 8 elements. Then, we locally refine the
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Figure 4.7: Local refinements for a macroelement.

macroelements which contain the elements whose contribution to ‖~u − ~uh‖
2
1 + ‖p − ph‖

2

exceeds 50% of the largest element contribution. After that, we remove all the hanging

nodes using Algorithm 4.1.

For comparison, a nonconforming finite element method (the so-called rotated Q1 − P0

approximation) introduced by Rannacher and Turek [38] is also tested in this section. Turek

[44, p.113] states that this rotated Q1 − P0 approximation is stable for anisotropic meshes.

The velocity space of the rotated Q1 − P0 approximation on each rectangular element is

locally defined by span{1, x, y, x2 − y2} while that of the standard Q1 − P0 approximation is

span{1, x, y, xy}. The pressure spaces of the rotated and standard Q1 − P0 approximations

are the same—the set of piecewise constant functions. Figure 4.8 shows the degrees of

freedom of the rotated and standard Q1 − P0 approximations.

The following notation is used in the subsequent tables. First, for the stabilized Q1−P0

approximation,

εa
u = ‖~u − ~uh‖1, εa

p = ‖p − ph‖0, εa
u+p =

[(
εa

u
)2

+
(
εa

p

)2
]1/2

.
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Figure 4.8: The left and right pictures are the degrees of freedom for the rotated and the
standard Q1 − P0 approximations respectively (• is a velocity node, while ◦ is a pressure
node).

Second, for the rotated Q1 − P0 approximation,

εb
u =

∑
T∈Th

‖~u − ~uh‖
2
1,T


1/2

, εb
p = ‖p − ph‖0, εb

u+p =

[(
εb

u

)2
+

(
εb

p

)2
]1/2

.

We let L denote the level of local refinement and N denote the number of elements. Note

that only the errors of the stabilized Q1 − P0 approximation are used to determine the

local refinement sequence. Finally, {Th} is the sequence of meshes locally refined from the

initial uniform mesh and {Tnh} is the mesh sequence after a single uniform refinement of

Th (equally dividing each rectangle in {Th} into four).

Test problem 4.3.6 Square domain (−1, 1)2, with the exact solution ~u = (u, v):

u = e3y − 1, v = x2, p = x + y. (4.34)

From (4.34), the velocity solution u changes rapidly in the y direction. Thus, we use

the local refinement method 2 shown in Fig. 4.7. Fig. 4.9 shows the mesh with local

refinement level three associated with this problem. Table 4.7 shows the errors on each

local refinement level. From Table 4.7, the total error on the local refinement level three

is less than a quarter of the initial mesh and the number of elements is around twice that

of the initial mesh. However, from the first row in Table 4.8, the number of elements of

the global refinement is four times that of the initial mesh but the errors only reduce by a

factor of two (as expected for the standard and rotated Q1 − P0 approximations). So, the

local mesh refinement is efficient in this case. After several steps of local refinement, the

errors could become equally distributed in the domain. Then, the global mesh refinement

may be necessary for making future progress.
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Figure 4.9: Mesh corresponding to local refinement level three for test problem 4.3.6.

Table 4.7: Errors for test problem 4.3.6 with the mesh sequence {Th}.

L ρ N εa
u εa

p εa
u+p εb

u εb
p εb

u+p

0 1 64 7.3586 0.2483 7.3628 5.7444 1.5070 5.9388
1 2 80 4.0126 0.2361 4.0195 2.6952 1.3780 3.0270
2 4 96 2.8220 0.2347 2.8318 1.9351 0.7211 2.0651
3 8 144 1.6893 0.2203 1.7036 1.0526 0.3922 1.1233
4 8 176 1.3371 0.2185 1.3549 0.8384 0.3132 0.8949
5 16 224 1.0828 0.2046 1.1019 0.6798 0.2418 0.7215

Table 4.8: Errors for test problem 4.3.6 with the mesh sequence {Tnh}.

L ρ N εa
u εa

p εa
u+p εb

u εb
p εb

u+p

0 1 256 3.7460 0.1207 3.7480 2.9576 0.5768 3.0133
1 2 320 2.0200 0.1148 2.0232 1.3637 0.4899 1.4491
2 4 384 1.4221 0.1141 1.4267 0.9782 0.2399 1.0072
3 8 576 0.8466 0.1071 0.8534 0.5277 0.1352 0.5447
4 8 704 0.6699 0.1062 0.6782 0.4205 0.1183 0.4368
5 16 896 0.5418 0.0995 0.5508 0.3399 0.0984 0.3538
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Figure 4.10: Mesh corresponding to local refinement level three for test problem 4.3.7.

Table 4.9: Errors for test problem 4.3.7 with the mesh sequence {Th}.

L ρ N εa
u εa

p εa
u+p εb

u εb
p εb

u+p

0 1 64 87.5443 8.2768 87.9347 119.4243 4.6338 119.5142
1 2 100 46.8160 3.2450 46.9283 65.6795 3.2776 65.7612
2 4 144 32.8474 2.8202 32.9682 46.7072 4.3049 46.9052
3 8 324 19.3173 0.7809 19.3330 27.4502 2.2982 27.5463
4 16 484 16.0048 0.7708 16.0234 22.8881 2.8770 23.0683
5 32 1156 10.9346 0.6253 10.9525 15.8307 3.3058 16.1722

Test problem 4.3.7 Square domain (−1, 1)2, with the exact solution ~u = (u, v) :

u = e3(x−y), v = e3(x−y), p = x2 + y2 − 2/3. (4.35)

From (4.35), ~u is rapidly varying in the elements close to the corner (1,−1) (the right bot-

tom corner of Ω), and in these elements, ~u varies rapidly in both the x and the y directions.

Thus, the local refinement method 3 is used to refine the macroelements containing ele-

ments with large errors. Fig. 4.10 shows the mesh of the local refinement level three. The

errors for this example are shown in Table 4.9 and 4.10. From these two tables, it still can

be seen that the anisotropic meshes generated from local refinement are more efficient than

the uniform meshes.

From these tables, it can also be seen that the errors of the stabilized and rotated Q1−P0

approximations are similar for both test problems.
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Table 4.10: Errors for test problem 4.3.7 with the mesh sequence {Tnh}.

L ρ N εa
u εa

p εa
u+p εb

u εb
p εb

u+p

0 1 256 43.7149 2.4200 43.7818 61.2259 1.2490 61.2386
1 2 400 23.4113 0.8854 23.4281 33.0695 1.3291 33.0962
2 4 576 16.4365 0.7864 16.4553 23.3371 1.6918 23.3984
3 8 1296 9.6621 0.2279 9.6648 13.6943 0.7923 13.7172
4 16 1936 8.0056 0.2262 8.0088 11.3683 0.9023 11.4041
5 32 4624 5.4677 0.1963 5.4712 7.7859 0.8308 7.8301

4.4 A Posteriori Error Estimation for Stabilized Q1 − P0

4.4.1 Existing theories

This section focuses on a posteriori error estimation for the stabilized Q1 − P0 approxima-

tion associated with anisotropic meshes. Since most of the recent papers on a posteriori

error estimation only consider isotropic meshes, we start with a review of this literature.

After that, the recent relevant papers on a posteriori error estimation for anisotropic meshes

will be reviewed. Finally, an anisotropic local problem error estimator will be presented,

and numerical examples will show that this estimator is reliable in practice. For simplicity,

the forcing term f in (1.1) is assumed to be zero in this section.

The paper [30] by Kay and Silvester provides a residual error estimator and two local

problem error estimators for the stabilized Q1−P0 approximation (4.6)–(4.7). The residual

error estimator is:

η2
R,T = ‖∇ · ~uh‖

2
0,T +

∑
E∈ε(T )

hT,E‖~RE‖
2
0,E, (4.36)

where the stress jump ~RE is defined in Section 3.3.1.

The other two estimators are based on solving local Neumann problems. The first one

is to solve a local Stokes problem: find (eS ,T , εS ,T ) ∈ QT × P1(T ), such that

(∇eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T = −
∑

E∈ε(T )

〈~RE,~v 〉E ∀~v ∈ QT , (4.37)

(∇ · eS ,T , q)T = (∇ · ~uh, q) ∀q ∈ P1(T ), (4.38)

where QT is the space Q2(T )2 with the four vertex nodes removed. Then the local Stokes
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problem estimator is:

η2
S ,T = |eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T . (4.39)

The second one is the local Poisson problem estimator:

η2
P,T = |eP,T |

2
1,T + ‖εP,T ‖

2
0,T , (4.40)

where (eP,T , εP,T ) ∈ QT × P1(T ) satisfies

(∇eP,T ,∇~v )T = −
∑

E∈ε(T )

〈~RE,~v 〉 ∀~v ∈ QT , (4.41)

(εP,T , q) = (∇ · ~uh, q)T ∀q ∈ P1(T ). (4.42)

As discussed in Chapters 2 and 3, to be efficient and reliable, an error estimator ηT needs

to satisfy the following two inequalities,∑
T∈Th

‖~u − ~uh‖
2
1,T


1/2

+ ‖p − ph‖0 ≤ Cup

√∑
T∈Th

η2
T , (4.43)

ClowηT ≤

∑
T∈ωT

‖~u − ~uh‖
2
1,T


1/2

+ ‖p − ph‖ωT , (4.44)

where the local patch ωT is defined in Section 1.4.1.

In [30], the upper bound (4.43) and the local lower bound (4.44) for the residual estima-

tor ηR,T are firstly established with constants Cup and Clow related to the aspect ratio ρ and

the continuous inf-sup constant γ (see Definition 1.3.1). Then, the Stokes estimator ηS ,T

and Poisson estimator ηP,T are shown to be equivalent to ηR,T . However, from numerical

examples, we see that ηS ,T and ηP,T can estimate the exact error much more accurately than

ηR,T . In addition, ηP,T is computationally cheaper than ηS ,T . So, ηP,T is the best of the three

estimators for stabilized Q1 − P0 approximation.

From the original paper introducing the local Neumann problem estimator by Bank and

Weiser [6], the theoretical basis is on a so-called saturation assumption.

Definition 4.4.1 Saturation assumption: let function spaces Xh, Wh and X have the rela-

tionship: Xh ⊂ Wh ⊂ X. The space Wh satisfies the saturation assumption with respect to

X and Xh if there exists a constant 0 ≤ µ < 1 such that:

min
ψh∈Wh

‖∇(v − ψh)‖0 ≤ µ min
φh∈Xh
‖∇(v − φh)‖0 ∀v ∈ X. (4.45)
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Note that, the larger space Wh can be constructed by introducing higher order basis func-

tions to Xh or refining the mesh. In other words, there are two versions of the saturation

assumption: one requires that the higher order method is more accurate than the lower

order method, and the other requires that a given approximation method is more accurate

on a finer mesh than on a coarse mesh. Both these versions of the saturation assumption

are true when the exact solution is smooth enough. For example, when the exact solution

is in H3 × H2(Ω), the Q2 − Q1 approximation is more accurate than Q1 − P0. Also, for

the stabilized Q1 − P0 approximation, due to Theorem 4.3.5, a finer mesh is more accurate

when the solution is in H2 × H1(Ω). However, since the exact solution is not always in

H2 × H1(Ω), then the saturation assumption may fail.

From the discussion above, it can be seen that the saturation assumption is not always

satisfied. Then, the error estimators based on it may not be reliable. Nochetto [36] suggests

that in order to avoid the saturation assumption, the local Neumann problem estimators

should be derived by proving its equivalence to the residual estimators and this is the way

later works followed (e.g. [30]).

In summary, from the literature, the upper and local lower bounds of local problem error

estimators can be established by either using the saturation assumption or by showing their

equivalence to the underling residual estimators.

For the Stokes problem posed on stretched meshes, Randrianarivony [37] provides a

hierachical based estimator which needs the saturation assumption, while Creusé et al [17]

provide a residual error estimator.

The analysis in [37] is based on the saturation assumption. More precisely, the constant

Cup in the upper bound in (4.43) is related to the saturation assumption constant µ in (4.45),

and Cup = O( 1
1−µ ). As we have discussed before, the saturation assumption constant µ

might be close or equal to unity, and then the upper bound is not reliable. In addition,

there is simply a global lower bound but no local lower bound in [37]. Because of this, the

estimator may not be able to identify the right elements for subsequent refinement.

The residual estimator in [17] is:

η2
C,T = ‖∇ · ~uh‖

2
T +

∑
E∈ε(T )

h2
T,min

h⊥T,E
‖~RE‖

2
E. (4.46)
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From [17], the constant Cup for this estimator is dependent on the global grading factor

κ and Cup ∼ (m1(~e,Th) + m1(~vp,Th)), where ~e = ~u − ~uh and m1 is the alignment measure

defined as follows.

Definition 4.4.2 Alignment measure: let ~v ∈ H1,

m1(~v ) :=

∑
T∈Th

h−1
T,min(hT,x‖

∂~v
∂x‖0,T + hT,y‖

∂~v
∂y‖0,T )

‖ ∂~v
∂x‖0 + ‖∂~v

∂y‖0
(4.47)

The function ~vp above is in H1, and is designed to satisfy

‖ep‖0 ≤ C

∫
Ω
ε∇ · ~vp

|~vp|1
, (4.48)

where ε = p − ph and the generic constant C only depends on the shape of the domain .

For the constant m1(~e,Th), if the mesh is refined properly (e.g. if ‖∂~e/∂x‖0,T is large,

then hT,x should be small), m1(~e,Th) can be bounded. However, we do not usually have the

function ~vp. In this case, the constant m1(~vp,Th) can not be estimated. So, this estimator

may not be able to provide a reliable upper bound for the exact error.

From the discussion above, both of these two estimators may not be mathematically

efficient and reliable. This causes difficulty in establishing an efficient and reliable local

problem estimator for anisotropic meshes in the sense of analysis. However, from the

computational point of view, since the local Poisson problem estimator ηP,T is effective for

isotropic meshes, it is of interest to modify it for anisotropic meshes (see the next part of

this section), even though it is an open question to analyze this situation.

4.4.2 An new anisotropic local problem error estimator

From Section 4.4.1, for isotropic meshes, the local Poisson problem estimator for the local

jump stabilized Q1 − P0 approximation is based on solving (4.41)–(4.42). In this section,

we consider anisotropic meshes. Since the contribution of (4.42) is quite small from our

computational experience, the main issue is then to modify (4.41) for anisotropic meshes.

For isotropic meshes the two contributions to the left hand side of (4.41) are equally

weighted. However, for anisotropic meshes, they should have different weights. For this
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purpose, an anisotropic local Poisson estimator is defined as follows,

η∗2P,T = |e∗T |
2
1,T + ‖ε∗T ‖

2
0,T , (4.49)

where e∗T = (e∗T,1, e
∗
T,2) ∈ QT and ε∗T ∈ P1(T ) satisfy

hT,x

hT,y

(
∂e∗T,1
∂x

,
∂v1

∂x

)
T

+
hT,y

hT,x

(
∂e∗T,1
∂y

,
∂v1

∂y

)
T

+
hT,x

hT,y

(
∂e∗T,2
∂x

,
∂v2

∂x

)
T

+
hT,y

hT,x

(
∂e∗T,2
∂y

,
∂v2

∂y

)
T

=
∑

E∈ε(T )

〈
~RE,~v

〉
∀~v = (v1, v2) ∈ QT , (4.50)

(ε∗T , q) = (∇ · ~uh, q)T ∀q ∈ P1(T ). (4.51)

The following test problem will provide an illustration.

Test problem 4.4.3 Square domain (0, 1)2, with the exact solution (this is a test problem

in the MATLAB package IFISS [20]):

u = 20xy3, v = 5x4 − 5y4, p = 60x2y − 20y3. (4.52)

For this test problem, the computational domain is partitioned by a Shishkin mesh, which

in this case is the tensor product of the following one-dimensional grids

xi =
i
4
τ i = 0 : 3, (4.53)

xi+4 = τ +
i
4

(1 − τ) i = 1 : 4, (4.54)

where τ ≥ 1. Note that as the parameter τ increases, the global aspect ratio of the Shishkin

mesh increases quite rapidly.

Table 4.11 shows the ratio between the exact and estimated errors with the following

notation

η =

√
η2

T ,

η∗ =

√
η∗T

2,

eu+p = ‖∇
(
~u − ~uh

)
‖0 + ‖p − ph‖0.

From Table 4.11, it can be seen that the anisotropic estimator η∗ provides an efficient upper

bound for the exact error, since eu+p/η
∗ is essentially constant, independent of the aspect

ratio. However, the original estimator η is dependent on ρ.
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Table 4.11: Error estimators for test problem 4.4.3.

τ ρ
eu+p

η

eu+p

η∗

1 9 2.4765 2.8598
2 99 1.5006 2.9384
3 999 0.5349 2.9469
4 9999 0.1172 2.9470

4.5 Conclusion

In this chapter, we first reviewed the literature on the stability of inf-sup stable methods for

anisotropic meshes. Summarizing these papers and our numerical examples, the following

conclusions can be made,

• Q2 − P0 is stable for mesh families containing edge patches but unstable for families

including corner patches;

• Q2 − Q1 may be stable for edge patches but unstable for corner patches;

• Q2 − P−1 is unstable for edge and corner patches.

Due to the degeneration of the inf-sup constants, all the inf-sup stable methods may have

large error for meshes including corner patches.

Since the inf-sup stable methods may not be accurate for corner patches, we established

a robust a priori estimation in the form of Theorem 4.3.5 for the local jump stabilized

Q1 − P0 approximation. In this theorem, there is only a local uniformity requirement for

meshes: all the rectangles in a macroelement must have the same size. After that, test

problems show that, using anisotropic meshes can lead to more accurate solutions and less

computational cost compared to uniform meshes.

Finally, a posteriori error estimation of mixed approximations for anisotropic meshes

is discussed. It is still an open question to establish a completely efficient and reliable er-

ror estimation strategy of mixed approximations for anisotropic meshes. However, from

numerical experiments, our anisotropic local Poisson problem estimator can provide an ef-

ficient upper bound independently of the global mesh aspect ratio for the stabilized Q1 − P0

approximation.



Chapter 5

Solving Unsteady Flow Problems Using

the Stabilized Q1 − P0 Approximation

5.1 Introduction

5.1.1 The Navier-Stokes equations

The Navier-Stokes equations considered in this chapter are,

∂~u
∂t
− ν∇2~u + ~u · ∇~u + ∇p = 0 in Ω, (5.1)

∇ · ~u = 0 in Ω, (5.2)

~u = ~g on ∂ΩD, (5.3)

∂~u
∂n
− ~np = ~0 on ∂ΩN , (5.4)

~u(0, ~x ) = 0 in Ω, (5.5)

where ν > 0 is the fluid viscosity parameter (ν is assumed to be small—O(10−2), since we

focus on unsteady flow problems in this chapter) and the boundary data ~g in (5.3) is time

dependent.

Note that we consider the equations (5.1)–(5.5) to be dimensionless—ν in (5.1) is used

as a dimensionless number in place of the Reynolds number: Re = ŨL̃/ν. This is due to

our definitions of Ũ and L̃ below. In this chapter, we focus on two test problems which

are described in Section 5.2 and Section 5.3. The reference velocity scale Ũ is defined

93
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by the maximum inlet horizontal velocity as time t → ∞ (that is Ũ = 1 for both test

problems). The length scale for test problem 1 is defined to be half the full channel height:

L̃ := H/2 = 1 (see Section 5.2), while the length scale for test problem 2 is defined to be

twice the cylinder edge length: L̃ := 2B = 1 (see Section 5.3). So, with the definitions of

Ũ and L̃, Re−1 = ν for both test problems.

The aim of this chapter is to show how to solve (5.1)–(5.5) efficiently. For any potential

numerical scheme, there are three important issues: the spatial discretization, the temporal

discretization and the linearization of the quadratic term ~u · ∇~u in (5.1). In this chapter,

the stabilized adaptive TR (Trapezoid Rule) time stepping method introduced by Kay et al.

[29] is adopted for the time discretization. For the linearization, the extrapolated method

discussed in [29] is used. Note that for the spatial discretization, only inf-sup stable meth-

ods are considered in [29]. Thus, it is of interest to extend the methodology in [29] to the

stabilized Q1 − P0 method.

The motivation for using the stabilized Q1 − P0 method is discussed in Section 4.3.

First, higher order methods do not provide more accurate solutions when the exact solution

is not smooth enough (this is often the case, e.g. the problem of flow in a step domain will

be introduced in the next section). Second, in Chapter 4, the a priori error bound of the

stabilized approximation is established for anisotropic meshes (only for steady-state Stokes

problems), but standard inf-sup stable approximations may not be so robust.

For inf-sup stable methods, on each time step, the following fully discretized problem

needs to be solved: we seek (~d n+1, pn+1) ∈ Xh
Et ×Mh, where n + 1 means the time is tn+1 and

Xh
Et is a finite dimensional approximation of the velocity space with boundary data ~g n+1−~g n

kn+1

(kn+1 = tn+1 − tn is the current time step), such that

2(~d n
h ,~vh) + νkn+1(∇~d n

h ,~vh) + kn+1(~w n+1
h · ∇~d n

h ,~vh) − (pn+1
h ,∇ · ~vh)

= (
∂~u n

h

∂t
,~vh) − ν(∇~u n

h ,∇~vh) − (~w n+1
h · ∇~u n

h ,~vh), (5.6)

(∇ · ~d n+1
h , qh) = 0, (5.7)

for all (~vh, qh) ∈ Xh
0 × Mh, where ~w n+1

h = (1 + kn+1
kn

)~u n
h − ( kn+1

kn
)~u n−1

h . The velocity at tn+1 can

then be updated by,

~u n+1
h = ~u n

h + kn+1~d n
h ;

∂~u n+1
h

∂t
= 2~d n

h −
∂~u n

h

∂t
. (5.8)
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As introduced in [29], in order to start (5.6)–(5.7), a potential flow problem is solved to

obtain the initial acceleration at the first time step: find (∂~u
0

∂t , p0) ∈ Xh
Et × Mh such that,

(
∂~u 0

h

∂t
,~vh) − (p0

h,∇ · ~vh) = −ν(∇~u 0
h ,∇vh) − (~u 0

h · ∇~u
0
h ,~vh) ∀~vh ∈ Xh

0 , (5.9)

(∇ ·
∂~u 0

∂t
, qh) = 0 ∀qh ∈ Mh. (5.10)

Alternatively, for the stabilized Q1 − P0 method, on a general TR step, the following

problem needs to be solved,

2(~d n
h ,~vh) + νkn+1(∇~d n

h ,~vh) + kn+1(~w n+1
h · ∇~d n

h ,~vh) − (pn+1
h ,∇ · ~vh)

= (
∂~u n

h

∂t
,~vh) − ν(∇~u n

h ,∇~vh) − (~w n+1
h · ∇~u n

h ,~vh), (5.11)

−(∇ · ~d n+1
h , qh) − βΥ(pn+1

h , qh) = 0, (5.12)

for all (~v h, qh) ∈ X0 × Mh, where β is the stabilization parameter and the stabilization term

Υ(ph, qh) has been introduced in Section 4.3 and [21, p.259], that is

ΥM(ph, qh) :=
|M|
4

∑
E∈ΓM

1
hE

∫
E
~ph�E~qh�E, (5.13)

Υ(ph, qh) :=
∑

M∈TM

ΥM(ph, qh). (5.14)

For the initial step, the stabilized method is to find (∂~u
0

∂t , p0) ∈ Xh
Et × Mh, such that,

(
∂~u 0

∂t
,~vh) − (p0

h,∇ · ~vh) = −ν(∇~u 0
h ,∇vh) − (~u 0

h · ∇~u
0
h ,~vh) ∀~vh ∈ Xh

0 , (5.15)

−(∇ ·
∂~u 0

∂t
, qh) − βΥ(p0

h, qh) = 0 ∀qh ∈ Mh. (5.16)

Remark 5.1.1 The stabilization at the initial step in (5.16) is not mathematically neces-

sary, since the system (5.15)–(5.16) is solvable with β = 0. However, from computational

experiments, including this stabilization can make the time steps increase more quickly at

earlier steps—certainly for time shorter than the initial response time that is referred to in

[29].

5.1.2 Time stepping parameters

The parameters of the stabilized adaptive TR time stepping method (see [29]) used in this

chapter are:



CHAPTER 5. SOLVING UNSTEADY FLOW USING STABILIZEDQ1 − P0 96

• initial time step = 10−9;

• time stepping tolerance = 10−4;

• averaging frequency parameter n? = 10.

Note that the initial time step is quite small (k0 = 10−9). Although our computational

experience never shows any trouble for these small time steps, the stability of stabilized

approximations with respect to time integration is always an important issue when the time

steps are very small. A number of recent articles discuss this issue for transient Stokes

problems, and they typically reach a conclusion that the time steps associated with sta-

bilized methods can not be much smaller than the mesh size. From example, Bochev et

al. [11] show that, for the backward-Euler time stepping method, residual based stabilized

methods are stable only when ∆t > Ch2. Subsequently, a more detailed study by Burman

and Fernández [13] proves that the pressure stabilized methods (including our local jump

stabilized method) is unconditionally stable for the TR time stepping method only when

the initial data is regular enough. However, the paper [13] still only focuses on the Stokes

problem. So, although the initial condition (5.5) is zero and it then satisfies the require-

ment in [13], the stability analysis of the stabilized system (5.11)–(5.12) for very small

time steps remains an open question.

5.1.3 Stabilization parameters

In order to check the performance of the spatial stabilized method (5.11)–(5.12), the fol-

lowing four different finite element methods are tested,

• An inf-sup stable method: the Q2 − P−1 approximation (black);

• The stabilized Q1 − P0 approximation with a stabilization parameter β = 1
4ν (blue);

• The stabilized Q1 − P0 approximation with β = 1
4 (red);

• The stabilized Q1 − P0 approximation with β = 1
4ν (green),

where the colors in the brackets will be used to illuminate the corresponding methods in the

subsequent figures. From Silvester [42], the main idea of the local jump stabilized Q1 − P0
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method is trying to make the pressure approximation constant on each macroelement, so

that the checkerboard pressure mode is controlled. The larger the parameter value β is,

the closer to a constant on each macroelement the pressure approximation becomes. For

this purpose, we test these three choices: small β = 1
4ν (since ν is assumed to be small),

medium β = 1
4 and large β = 1

4ν . We want to clarify that the three stabilization parameters

are dimensionless, since throughout this chapter, the problem (5.1)–(5.5) is considered to

be dimensionless and ν = Re−1 is also dimensionless.

The main objective of this chapter is to find appropriate parameters for the transient

Navier-Stokes problem solved with the adaptive TR time stepping method. Note that, the

Q2 − P−1 method is referred to have the “true” solution and the stabilized solutions are

compared with this reference solution.

In addition, time steps are not involved in the definition of the stabilization parameter.

This is a consequence of our approach to stabilization—that is to control the checkerboard

pressure mode. Thus, the time step size plays no role, which is quite different from the

residual based stabilization methods (see [11]).

In the next sections, two numerical experiments are performed using the MATLAB

package IFISS3.0 [43]. In these numerical tests, the viscosity parameters are both O(10−2).

Very viscous flow problems are not considered here. For very large viscosity cases, Burman

et al. [14] showed that the stabilization parameter should be proportional to the local

Reynolds number (that is ν−1 in this chapter) for stabilized equal order approximations.

The same conclusion is reached for the local jump stabilized Q1−P0 approximation in [21,

p.329].

5.2 Test Problem 1 (Steady Flow): Flow in a Backward

Step Domain with Viscosity ν = 1
600

5.2.1 Introduction and logistics

The backward step domain is shown in Fig. 5.1. In this figure, O is the origin of the
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Figure 5.1: The backward step domain.

cartesian coordinate system. Throughout this section, the dimensions of the domain are,

H = 2; LU = 1; LD = 30.

The boundary condition is as follows. A time dependent velocity ~u = (u, v),

u = (1 − e(−10t))4y(1 − y), v = 0,

is applied on the inflow boundary (the left boundary), (5.4) is applied on the outflow bound-

ary (the right boundary), and the other boundaries are non-slip non-penetration boundaries.

The initial condition is as in (5.5), which implies that the flow is initially at rest.

For the viscosity ν = 1
600

1, the flow solution of this test problem is expected to be

steady. There are two pieces of evidence supporting this expectation. First, Gresho et

al. [25] performed extensive numerical experiments on a closely related problem which is

equivalent to our test problem except that its upstream length LU is set to zero (or in other

words, they do not have an inlet channel). Their results show that the solution reaches

a steady-state. Second, the effect of the inlet channel is investigated in detail by Barton

[9], which shows that for this small viscosity (ν = 1
600 ), the inlet channel has only a small

influence on the flow field away from the corner. Thus, the solution of our test problem

should have a similar behavior to the solution in [25].

However, the paper [9] also pointed out that for very viscous flow, a long inlet channel

could lead to a better agreement between numerical solutions and experimental results.

This motivates us to adopt the backward step domain with LU = 1 rather than LU = 0.

Two uniform meshes are tested in this section: one is referred to as the coarse mesh and

the other as the fine mesh. For the Q2 − P−1 method, the coarse mesh is a uniform mesh

with h = 1
8 (16145 velocity degrees of freedom), while the coarse mesh for the stabilized

1This is Re = 800 with the normal normalization (see [25]).
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Q1 − P0 method is the uniform mesh with h = 1
16 , since we want to keep the same velocity

degrees of freedom. The fine mesh for Q2 −P−1 is the uniform mesh with h = 1
16 , while the

fine mesh for Q1 − P0 is obtained by refining it once (that is, h = 1
32 ).

The structure of this section is: first, some pictures of velocity and pressure fields

computed by stabilized Q1 − P0 with β = 1
4ν will be plotted. After that, the four different

finite element methods will be compared by measuring the following quantities,

• velocity change per time step and global kinetic energy;

• time steps of the adaptive TR method;

• lengths of the upper and lower eddies;

• velocities and pressures at three history points P1 = (0, 0), P2 = (10, 0.75) and

P3 = (28, 0);

• vorticity.

The time interval for computing these history values is [0, 450]. Note that the simulations

in [25] suggest that this time interval is long enough for the solution to reach a steady-state.

5.2.2 The flow field at snap-shot times

The solution fields of this test problem are shown in Fig. 5.2 to Fig. 5.5. These are com-

puted by the stabilized Q1 − P0 approximation with β = 1
4ν on the fine mesh. From

Fig. 5.2(a), at an early time (t ≈ 10), two separation eddies can be seen clearly—one is

the upper eddy and other is the lower eddy. In addition, the upper eddy at this time is quite

small and close to the inlet channel. As the time value increases, Fig. 5.2(b) and Fig. 5.2(c)

show that the main upper eddy moves towards the outflow boundary and the main lower

eddy becomes longer. Also, besides the main eddies, some small eddies appear in these last

two pictures. However, as the time value t becomes very large (larger than 100), in Fig. 5.3,

only the main upper and lower eddies can be seen clearly, and the other small eddies seem

to have dissipated. At time t ≈ 100, the streamlines close to the outflow boundary are not
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parallel to the x−axis. The streamlines become closer to parallel at t ≈ 200, and they seem

to reach a steady-state at t ≈ 450.

The pressure solution is provided in Fig. 5.4 and Fig. 5.5. These pictures show that the

pressure changes rapidly at the beginning and goes to a steady-state at the end of the time

interval.

5.2.3 Time steps

Fig. 5.6 shows the time steps of our four approximation methods. It can be seen that, for

both of the mesh levels, the time steps of the stabilized Q1 − P0 method with β = 1
4 and

β = 1
4ν have a very close agreement with that of the Q2 − P−1 method.

However, for the coarse mesh (see Fig. 5.6(a)), the stabilized Q1 − P0 method with

β = 1
4ν has a quite different time step pattern—its time steps close to the end of the time

interval are much larger than those of the other methods. Large time steps imply that the

flow goes to a steady structure quickly. However, large time steps may also lead to less

accurate solutions.

In addition, for the fine mesh (see Fig. 5.6(b)), the time steps of the stabilized method

with β = 1
4ν are more in line with those of the other methods. In this case, the time steps near

to the steady-state are much smaller. For the other three methods, their time steps do not

have any obvious difference between the two mesh levels. So, just from the information of

the time steps, it might be suspected that the more proper choice of stabilization parameter

is β = 1
4ν or β = 1

4 rather than β = 1
4ν .

5.2.4 The velocity change and kinetic energy

In many articles, the criterion for a time dependent solution becoming steady is the relative

velocity change between two time steps: ‖~u
n+1
h −~u n

h ‖0

‖~u n+1
h ‖0

(see Barrenechea and Blasco [8]). When

the relative velocity change is small enough, the flow problem is then assumed to be steady.

So, it is of interest to see the velocity changes for this test problem (see Fig. 5.7). For the

fine mesh, all four methods finally reach a very small relative velocity change (smaller

than 10−3). However, for the coarse mesh, the velocity change of the stabilized method
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(a) Velocity streamlines at t = 100.20
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(b) Velocity streamlines at t = 200.28

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

(c) Velocity streamlines at t = 449.07

Figure 5.3: Velocity streamlines generalized by stabilized Q1 −P0 with β = 1
4ν (long time).
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(a) Pressure at t = 10.15

(b) Pressure at t = 30.04

(c) Pressure at t = 50.03

Figure 5.4: Pressure generalized by stabilized Q1 − P0 with β = 1
4ν (early time).
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(a) Pressure at t = 100.20

(b) Pressure at t = 200.28

(c) Pressure at t = 449.07

Figure 5.5: Pressure generalized by stabilized Q1 − P0 with β = 1
4ν (long time).
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(a) time steps (coarse mesh) (b) time steps (fine mesh)

Figure 5.6: Time step evaluation: black is Q2 −P−1; blue is stabilized Q1 −P0 with β = 1
4ν;

red is Q1 − P0 with β = 1
4 ; green is Q1 − P0 with β = 1

4ν .
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Figure 5.7: Velocity changes computed by the four methods.

with β = 1
4ν goes up at the end of the time interval. Moreover, by comparing Fig. 5.6 and

Fig. 5.7, the velocity changes are almost independent of the time steps—larger time steps

do not lead to obviously larger velocity changes, except the green curve in Fig. 5.7(a). This

reveals that the adaptive time stepping is effective.

Finally, the kinetic energy is shown in Fig. 5.8. The kinetic energies computed by all

four methods seem to be quite similar. This suggests that the kinetic energy is a relatively

insensitive measure of the spatial accuracy.

5.2.5 Separation eddies

From Fig. 5.3(a), we see that two major separation bubbles exist in the flow field (the lower

eddy and the upper eddy). In this section, the lengths of the two eddies are evaluated.
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Figure 5.8: Kinetic energies computed by the four methods.

First, for each x grid value xk (also, yk denotes a y grid value), some notation is required,

uup
min,xk

= min
yk
{u(x, yk)| x = xk, 0 < yk < 1}, (5.17)

ulow
min,xk

= min
yk
{u(x, yk)| x = xk,−1 < yk < 0}, (5.18)

and

xup
in = {xk| u

up
min,xk

< 0}, (5.19)

xlow
in = {xk| ulow

min,xk
< 0}, (5.20)

where xup
in and xlow

in are the x grids inside of the upper and lower eddies. For the upper eddy,

the starting point is defined by the x grid value which is just smaller than min{xup
in } and the

reattachment point is max{xup
in }. The distance between these two points is referred to as the

length of the upper eddy. The lower eddy is assumed to start at x = 0 and its length is just

defined by max{xlow
in }.

This criterion to evaluate the eddy lengths is not robust. It only works, if there is no

other eddy except the main upper and lower eddies. Indeed, when the flow is not close

to the steady-state and some other small eddies exist, this criterion can break down. As a

result, the lengths of the eddies are only evaluated for relatively large time values (t > 210).

Fig. 5.9 shows lengths of the eddies computed by the four approximation methods.

From these pictures, when the mesh is coarse, the stabilization parameter β = 1
4ν leads

to quite different eddy lengths and upper eddy starting point values from that of the other

methods. As the mesh is refined, the four methods behave similarly but the results for
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β = 1
4ν and β = 1

4 still have a much better agreement with the Q2 − P−1 method than that

obtained with β = 1
4ν .

In addition, some reference values provided by Gartling [23] by directly solving a

steady-state problem for the step domain with LU = 0 are presented in Table 5.1. In

this table, the results of our four methods associated with the fine mesh at t ≈ 450 are also

tabulated. We see that the eddy lengths obtained from the four methods are quite close to

the reference numbers. However, our results are slightly smaller than the reference num-

bers. This is not so surprising, since as discussed in [9], the blunt inlet channel in [23] is

known to give longer separation eddy lengths when the viscosity is small.

Table 5.1: Separation eddies with the fine mesh at t ≈ 450.

Method Lower Upper Upper Upper
length start end length

Gartling [23] 12.20 9.70 20.96 11.26
Q2 − P−1 11.4375 9.2812 20.4375 11.1562

Q1 − P0, with β = 1
4ν 11.4062 9.2500 20.4375 11.1875

Q1 − P0, with β = 1
4 11.4062 9.1562 20.3125 11.1562

Q1 − P0, with β = 1
4ν 11.7500 9.2812 20.3750 11.0938

5.2.6 Velocity at history points

Since the history point P1 is on the non-slip boundary, the velocity at this point is zero.

Fig. 5.10 and Fig. 5.11 provide the time histories for u (horizontal velocity) and v (vertical

velocity) at the history points P2 and P3.

In Fig. 5.10(a), the stabilized Q1 − P0 method with β = 1
4ν and β = 1

4 matches the

reference solution quite well while the stabilized method with β = 1
4ν is far away from it.

In detail, when the time is very early (t < 20), the difference between the four methods

is not obvious, but when the time goes to about 25, the green curve suddenly goes down

while the other three curves go up rapidly. Also, at a time value t slightly larger than 50,

the blue, red and black curves achieve a minimum point which is close to −0.2 while the

green one is about −0.1. Moreover, in the time interval [250, 450], only the green curve

obviously goes up. However, once the mesh is refined (see Fig. 5.10(b)), the green curve
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(a) Upper eddy start (coarse mesh) (b) Upper eddy start (fine mesh)
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Figure 5.9: Separation bubbles: black is Q2 − P−1; blue is stabilized Q1 − P0 with β = 1
4ν;

red is Q1 − P0 with β = 1
4 ; green is Q1 − P0 with β = 1

4ν .
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Figure 5.10: x direction velocity at history points.

is closer to the other three curves. Since P2 is located in the upstream portion of the upper

eddy, the u velocity component should be small at the steady-state, which can be seen from

Fig. 5.10(b). For P3, the u velocity components of the four methods are not so different.

Still, it can be seen that the red and the blue curves match the black curve better.

Comparing Fig. 5.11(b) and Fig. 5.11(d), the oscillation of the v velocity component

on P3 happens a bit later than that on P2. This is because the location of P3 is much farther

from the inflow boundary than P2, and so the flow needs more time to reach P3. Since the

point P3 is close to the outflow boundary, the v velocity there must be close to zero. This is

verified in Fig. 5.11. For the choice of the stabilization parameter, β = 1
4ν and β = 1

4 again

give a better agreement with the reference method than β = 1
4ν .

5.2.7 Pressure at history points

The pressure is a sensitive variable and it always shows the instability of mixed approxi-

mations. In other words, the main objective of stabilized methods is to make the pressure
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Figure 5.11: y direction velocity at history points.

approximation stable (see Section 4.3). Fig. 5.12 shows the pressure at history points. For

the pressure on the step corner (P1) with the coarse mesh (see Fig. 5.12(a)), only the stabi-

lized method with β = 1
4ν gives a visual agreement with that of the Q2 −P−1 method. Once

the mesh is refined (see Fig. 5.12(b)), the solution associated with β = 1
4 also becomes quite

close to the reference solution, whereas the results associated with β = 1
4ν are not so close.

In addition, the largest stabilization parameter forces the pressure to be too smooth. For

example, in Fig. 5.12(e), at t ≈ 100, the pressure associated with β = 1
4ν is quite smooth,

whereas the results computed by the other three methods show strong oscillations in time.

5.2.8 Vorticity

In fluid mechanics, the vorticity is used to measure the rotation of fluids. It is defined by

the curl of the velocity, which is

ω = ∇ × ~u. (5.21)
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Figure 5.12: Pressure at history points.
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In two dimensions, let ~u = (u, v)T and then

∇ × ~u =
∂v
∂x
−
∂u
∂y

(5.22)

with a direction perpendicular to the two dimensional domain.

Fig. 5.13 and Fig. 5.14 show the contour lines of the vorticity computed by the stabi-

lized Q1 − P0 method with β = 1
4ν. From Fig. 5.13(a), at t ≈ 10, the fluid rotation around

the step corner is very strong. At t ≈ 30, it is clear that the vorticity is large in three places:

the step corner, the lower eddy reattachment point and the upper eddy reattachment point.

When the time becomes very large (t ≈ 450), the vorticity contour lines seem to reach a

steady-state while the main rotation of the flow is at the step corner.

In addition, the mean vorticity ωΩ which is defined by

ωΩ =

∫
Ω

ω, (5.23)

is also computed. Note that, using Green’s theorem,∫
∂Ω

~u · ~t =

∫
Ω

ω, (5.24)

where ~t is the unit tangential direction on the boundary. Due to the boundary condition

applied on this test problem, the non-trivial tangential velocity can only appear on the

outflow boundary ∂ΩN . This implies that, for all ~u = (u, v)T ∈ H1
E,

ωΩ =

∫
∂ΩN

v. (5.25)

From (5.25), the mean vorticity shows the outflow boundary effect. Ideally, the mean

vorticity is expected to be close to zero, i.e. the outflow is close to be parallel to the x axis.

In this situation, the natural condition (5.4) is valid and has the correct physical meaning—

zero flow pressure on the out flow boundary. In order to achieve this goal, the downstream

channel should be long enough. Gresho et al. [25] suggests that LD = 30 is enough for this

test problem.

The mean vorticities computed by the four approximations are shown in Fig. 5.15.

From this figure, they do get close to zero (for the fine mesh, their absolute values at

t ≈ 450 are between 5 × 10−4 and 2 × 10−3) as time goes by. In addition, it can be seen

that the results of stabilized Q1 − P0 with β = 1
4ν is the closest one to that of the Q2 − P−1

method.
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Figure 5.13: Vorticity generalized by stabilized Q1 − P0 with β = 1
4ν (early time).
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Figure 5.14: Vorticity generalized by stabilized Q1 − P0 with β = 1
4ν (long time).
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Figure 5.15: Mean vorticity ωΩ.

5.3 Test Problem 2 (Periodic Flow): Flow around a Square

Cylinder with ν = 1
300

The second test problem is that of flow around a square cylinder in a channel domain. This

problem is shown in Fig. 5.16, where the square cylinder is located in the middle of the

channel in the sense of the y direction. For the inflow (left) boundary, the following time

dependent velocity ~u = (u, v) is applied,

u = (1 − e(−10t))(1 + y)(1 − y), v = 0,

a natural boundary condition is applied for the right boundary, and the other boundaries are

non-slip non-permeation boundaries. The viscosity of this test problem is set to be 1
300 and

from Sharma and Eswaran [41], the solution of this test problem is known to be periodic

for 80 < ν < 320.

In order to check the performance of the four finite element methods, the drag and lift

coefficients are computed. The definitions of the drag coefficient Cd and the lift coefficient

Cl are as follows,

Cd =

∫
S
(ν
∂uts

∂n
ny − pnx), Cl = −

∫
S
(ν
∂uts

∂n
nx + pny), (5.26)

where S is the surface of the cylinder, ~n = (nx, ny)T is the normal vector on S , ts =

(ny,−nx)T is the tangential vector and uts is the tangential velocity.

Two kinds of meshes are tested for this problem. The first one is a uniform mesh—for

the Q2 − P−1 approximation, it is the uniform mesh with h = 1
8 (1008 rectangles) while for
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Figure 5.16: A square cylinder in a channel.

the Q1 −P0 approximation, the uniform mesh is obtained by refining the mesh for Q2 −P−1

once. The second one for the Q2−P−1 approximation is a stretched mesh which is shown in

Fig. 5.17 containing 2826 elements, while the stretched mesh for Q1 −P0 approximation is

also obtained by refining it once. The stretched mesh should provide much more accurate

drag and lift coefficients than the uniform mesh.

5.3.1 Numerical results

Fig. 5.18 shows the time steps of the four methods associated with both kinds of meshes.

It can be seen that, the time steps of the stabilized method with β = 1
4ν are much larger than

the other methods. This implies, the solution associated with β = 1
4ν reaches a steady-state

which is not expected.

Fig. 5.19 shows the drag coefficients. For the uniform mesh, the four methods generate

obviously different drag coefficients. Once the mesh is switched to the stretched mesh,

Q2 − P−1 and stabilized Q1 − P0 with β = 1
4ν provide very close values. In detail, from

Fig. 5.19(d), the black curve and the blue curve have similar oscillation amplitudes and

frequencies. The black one oscillates between 0.78 and 0.79, while the blue one oscillates

between 0.79 and 0.80, which implies their difference is less than 3% of their magnitudes.

Fig. 5.20 shows the lift coefficients. From this figure, it is obvious that the lift coef-

ficients of stabilized Q1 − P0 with β = 1
4ν is the closest to that of the Q2 − P−1 method.

The largest parameter β = 1
4ν only provides a steady-state solution, while the lift coefficient

associated with the medium parameter β = 1
4 goes down as the time value increases, which

all contradict the true solution (which should be purely periodic).
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Figure 5.17: A stretched mesh with 2826 rectangles.
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Figure 5.18: Time steps for the four finite element methods, test problem 2.
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Figure 5.19: Drag coefficients.

Finally, the periods of the lift and drag coefficients are computed, which are used to

define the Strouhal number in fluid mechanics. In this chapter, a period is defined by

the length of the time interval between two local minima of the oscillation quantities. In

Tables 5.2 and 5.3, N implies the average of the last N periods up to the final time. Note

that since stabilized Q1 − P0 with β = 1
4ν leads to a steady-state solution, no period is

given for this method. From both tables, the averages of the last 5 and 10 periods are not

significantly different. Looking at Table 5.3, for the stretched mesh, the periods generated

by stabilized Q1 − P0 with β = 1
4ν are very close to that of Q2 − P−1.

5.4 Summary and Conclusions

In this chapter, the stabilized Q1−P0 approximation is applied to the time dependent Navier-

Stokes equations solved with the adaptive TR time stepping method introduced in [29]. The

numerical experiments are performed on two test problems:



CHAPTER 5. SOLVING UNSTEADY FLOW USING STABILIZEDQ1 − P0 119

0 50 100 150 200 250 300

−0.1

−0.05

0

0.05

0.1

Time

L
if
t

280 285 290 295 300

−0.1

−0.05

0

0.05

0.1

Time

L
if
t

(a) Lift coefficients (uniform mesh) (b) Lift (uniform mesh), Zoom in.

0 50 100 150 200 250 300

−0.1

−0.05

0

0.05

0.1

Time

L
if
t

280 285 290 295 300

−0.1

−0.05

0

0.05

0.1

Time

L
if
t

(c) Lift coefficients (stretched mesh) (d) Lift (stretched mesh), Zoom in.

Figure 5.20: Lift coefficients.

Table 5.2: Periods of the drag and lift coefficients on the uniform mesh.

Method Drag Drag Lift Lift
N = 5 N = 10 N = 5 N = 10

Q2 − P−1 1.3723 1.3710 2.7447 2.7434
Q1 − P0, with β = 1

4ν 1.3072 1.3072 2.6143 2.6099
Q1 − P0, with β = 1

4 1.4938 1.4940 2.9895 2.9823
Q1 − P0, with β = 1

4ν N/A N/A N/A N/A

Table 5.3: Periods of the drag and lift coefficients on the stretched mesh.

Method Drag Drag Lift Lift
N = 5 N = 10 N = 5 N = 10

Q2 − P−1 1.3203 1.3177 2.6354 2.6354
Q1 − P0, with β = 1

4ν 1.3226 1.3226 2.6451 2.6464
Q1 − P0, with β = 1

4 1.3693 1.3708 2.7421 2.7366
Q1 − P0, with β = 1

4ν N/A N/A N/A N/A
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• steady flow in the step domain with viscosity ν = 1
600 ;

• unsteady periodic flow around a square cylinder in a channel with ν = 1
300 .

In these two test problems, the flow fields generated by the stabilized Q1 − P0 approxi-

mation and the Q2 − P−1 approximation are compared by computing some important flow

quantities, such as the separation eddy lengths, velocity and pressure history point values,

and the drag and lift coefficients.

Based on these numerical experiments, when v = O(10−2), the best choice of stabiliza-

tion parameter for stabilized Q1 − P0 approximation (5.11)–(5.12) is

β =
1
4
ν. (5.27)

Some other numerical experience (not reported here) reveals that the unstabilized Q1 −

P0 approximation (that is with β = 0) has a strong pressure instability when the viscosity is

large, while if the viscosity becomes small, the instability decreases. This also supports our

conclusion that β = 1
4ν is the right choice, because it avoids over-stabilizing the pressure

approximation.



Chapter 6

Open Questions

Looking to the future, we are left with some open questions that arise from the material in

the thesis.

• How to find the points where the spatial discretization error is relatively small?

• How to establish the upper and lower bounds (see (2.14)–(2.15) or (3.12)–(3.13))

for local problem error estimators in a more direct way rather than showing their

equivalence to residual estimators?

• How to derive reliable bounds of local problem estimators for the Stokes problem

associated with anisotropic meshes?

The first question is the foundation of local problem estimators. When solving local

error equations (see Chapter 2), zero values need to be set at the points where the error is

relatively small. However, most papers discussing pointwise errors typically focus on the

natural pointwise superconvergence, which we do not necessarily need. Although the error

at superconvergence points is definitely small, the error at some other points may also be

relatively small. So, it is of interest to find these non-superconvergence points with small

discretization errors.

From the numerical experiments in Chapters 2 and 3, the local problem error estimators

are more effective than the residual estimators. However, the standard analysis techniques

do not capture this advantage—the upper and lower bounds of local problem estimators

121
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are typically established by showing their equivalence to residual error estimators. So, it

would be interesting to establish the bounds in a more direct way. In addition, although

using the saturation assumption (see Section 4.4.1) is one route to achieve this goal, we

should try to avoid this assumption, since it does not always hold.

The numerical example in Section 4.4.2 shows that our new local problem estimator can

provide a reliable upper bound for the stabilized Q1−P0 approximation. However, with the

standard analysis techniques it is hard to make progress in establishing the upper and lower

bounds, since residual estimators for mixed approximations associated with anisotropic

meshes have not been successfully established (see Section 4.4.1). So, the resolution of the

second question is also key to solving the third question—that is to derive the bounds for

local problem estimators directly.
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Appendix A

MATLAB Functions

The new error estimators for rectangle elements introduced in Chapters 2 and 3 are imple-

mented in version 3.1 of IFISS 1. The functions arising from this thesis are the following:

• diffpost q2 with q4 computes the Q4 estimator for the Q2 approximation. The level

of reduction can be specified by users, with the default being Level c (see Sec-

tion 2.3.3);

• stokespost q2p1 computes local Poisson error estimator for the Q2 − P−1 approxi-

mation for the steady-state Stokes equations with the Q3 correction space;

• stokespost q2q1 computes local Poisson error estimator for the Q2−Q1 approxima-

tion for the steady-state Stokes equations with the Q3 correction space;

• navierpost q2p1 computes local Poisson error estimator for the Q2 − P−1 approxi-

mation for the steady-state Navier-Stokes equations with the Q3 correction space;

• navierpost q2q1 computes local Poisson error estimator for the Q2−Q1 approxima-

tion for the steady-state Navier-Stokes equations with the Q3 correction space.

The triangular version of IFISS (TIFISS 1.0) is currently being developed. We hope to

release it before the end of 2010.

1This is due to be released in November 2010.
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