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USING LABORATORY SAMPLES

Ashley King
The University of Manchester

submitted for the degree of Doctor of Philosophy, September 2010.

     The aim of this thesis is to investigate the effects of interstellar processing 
using  presolar  samples.  Dust  in  the  interstellar  medium is  predicted  to  have 
experienced grain-grain and grain-gas collisions,  cosmic-ray bombardment,  or 
the formation of ices on their  surfaces.  Each process is likely to have altered 
presolar grains. The grains are extracted from meteorites and can be analyzed in 
the laboratory to try and understand these processes. 
     The main  analytical  tool  used in  this  research  was a new time-of-flight 
secondary ion mass spectrometry instrument equipped with a Au-cluster primary 
ion  source.  Analysis  of  presolar  grains  required  that  a  rigorous  experimental 
procedure  was  developed.  A  depth-profiling  technique  for  the  analysis  of 
micron-sized  samples  was  produced  and  the  limitations  of  the  technique 
considered.  Secondary  ion  mass  spectrometry  suffers  from matrix  effects,  so 
homogeneous  silicate  glass  standards  were  analyzed.  The  use  of  Au-cluster 
primary ions was shown to enhance practical  secondary ion yields  relative to 
those  with  Au+,  consistent  with  increased  sputter  rates.  Relative  sensitivity 
factors for major and trace elements in the standards were obtained using both 
normal and delayed secondary ion extraction techniques.
     Depth-profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr and Fe were obtained from 
eleven  presolar  SiC  grains.  In  some  SiC  grains,  the  abundances  of  several 
elements were up to orders-of-magnitude higher in the outer ~200nm relative to 
the grain cores.  This  was attributed  to  the implantation  of  interstellar  matter, 
accelerated to velocities of ~1000kms-1 by supernovae shockwaves. Other SiC 
grains  contained  homogeneously  distributed  trace  elements,  or  evidence  of 
elemental zoning, which could be explained by condensation processes around 
the grains’ parent stars. These grains must have experienced minimal processing 
in the interstellar medium. It is suggested that the two populations represent SiC 
grains whose residence times in the interstellar  medium significantly differed, 
consistent with previous findings of noble gas and Li isotopic studies.
     A further study investigated carbonaceous grains isolated from the Murchison 
meteorite using a size and density procedure adapted for presolar graphite. No 
graphite  grains  were  found  and  possible  reasons  for  this  are  discussed.  The 
structural  and  isotopic  natures  of  thirty-three  carbonaceous  grains  were 
determined by correlated, multi-instrument analyses. The grains contained solar 
C, N and O isotopic compositions. Deuterium was enriched in the grains with δD 
values up to +333 ± 110‰. These enrichments suggest exchange of H with cold 
interstellar gas in the outer part of the early solar nebula or interstellar medium. 
Raman spectroscopic and transmission electron microscopic analysis showed the 
grains to be composed of carbon more structurally disordered and amorphous 
than most carbonaceous phases observed in extra-terrestrial samples. It is argued 
that amorphization of the grains occurred through solar wind ion irradiation in 
the proto-solar nebula. This model is supported by previous studies of terrestrial 
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soot and carbon-rich ices irradiated by H+ and He+ ion doses of ~1015 – 1016 ions 
cm-2.  Implantation and mixing of H+  ions is likely to have diluted the grains’ 
original H isotopic composition.
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Chapter 1

Introduction and Literature Review

1.1 INTRODUCTION

The Solar  System formed from an interstellar  molecular  cloud that  collapsed 

under  its  own gravity  approximately  4.6  billion  years  ago.  The  gravitational 

collapse,  possibly  triggered  by  a  nearby  supernova  explosion  (Cameron  and 

Truran 1977, Boss 1995, Boss et al. 2010), of this dense, cold region of gas and 

dust,  formed  a  proto-Sun  surrounded  by  a  flattened  disc  of  material.  As 

temperatures  in  the  disc  cooled,  the  first  solids  in  the  form  of  calcium-, 

aluminium-rich inclusions (CAIs), began to condense. Dust particles orbiting the 

proto-Sun began to collide and accrete together to create dust aggregates, flash-

heating of which likely formed chondrules. For detailed reviews see Boss and 

Goswami (2006), Montmerle et al. (2006) and Russell (2007).

Over time much of the material in the disc was swept up into the early Sun. The 

continuing  accretion  of  CAIs,  chondrules  and newly formed  grains  produced 

larger bodies known as planetesimals (>1km diameter), cemented together by a 

fine-grained (~1μm) matrix consisting largely of metals  and silicate materials. 

The  formation  of  the  Solar  System  was  completed  as  these  planetesimals 

accreted to form the planets, asteroids and Edgeworth-Kuiper bodies that we see 

today.

For  many  years  it  was  believed  that  Solar  System formation  resulted  in  the 

processing and complete homogenization of the dust and gas contained within 

the  presolar  molecular  cloud  (e.g.  Suess  1965).  However,  the  discovery  of 

isotopic anomalies in the noble gases Xe (Reynolds and Turner 1964) and Ne 

(Black  and  Pepin  1969)  within  primitive  meteorites  indicated  incomplete 

homogenization and the potential survival of presolar material in the least altered 

meteorites.
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Lewis  et  al.  (1987)  were  the  first  to  isolate  a  presolar  phase  from  its  host 

meteorite. This phase, nanodiamonds, was quickly followed by the extraction of 

presolar SiC (Bernatowicz et al. 1987) and graphite (Amari et al. 1990). Other 

presolar phases discovered since include corundum (Al2O3) (Huss et al.  1993, 

Nittler et al. 1997), hibonite (CaAl12O19) (Choi et al. 1999), silicon nitride (Si3N4) 

(Nittler  et  al.  1995),  spinel  (MgAl2O4)  (Nittler  et  al.  1994a;  1994b),  silicates 

(Nguyen and Zinner 2004, Nagashima et al. 2004), plus refractory carbide sub-

grains  (e.g.  TiC)  (Bernatowicz  et  al.  1991,  Croat  et  al.  2005,  Stroud  and 

Bernatowicz 2005). 

Presolar grains are present not only in some meteorites but also other primitive 

Solar System materials, such as interplanetary dust particles (IDPs) (Messenger 

et al. 2003) and cometary samples returned by the Stardust mission (McKeegan 

et al. 2006).

Analysis of presolar grains finds them to be comprised of materials with isotopic 

compositions that vary by up to orders-of-magnitude from solar. For example, 
12C/13C ratios in presolar SiC grains range from 1 – 7000 compared to the solar 

value of 89 (Zinner et al. 1987; 1989, Alexander 1993, Hoppe et al. 1994, Nittler 

et al. 2006). These huge anomalies cannot be produced in the Solar System by 

radioactive decay, cosmic-ray induced spallation or mass fractionation. Instead 

the anomalies are explained by nucleosynthesis in stars.

Presolar  grains  are  condensates  of  material  from  dying  stars.  Before  their 

discovery all  knowledge of stars and interstellar  dust came from astronomical 

observations. The grains formed in the extreme environments around their parent 

stars before passing through the interstellar medium (ISM) and into the presolar 

molecular cloud. They then survived the formation of the Solar System, were 

incorporated  into  meteorite  parent  bodies  and  delivered  to  Earth,  where  this 

“stardust”  can  then  be studied  in  the  laboratory  (Figure  1.1).  Presolar  grains 

provide a wealth of information regarding a range of different environments and 

processing events.
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1.1.1 Stellar Environments

Presolar grains contain material produced by their parent stars. They each carry a 

signature  of  the  nucleosynthetic  processes  that  took  place  within  those  stars. 

Their isotopic compositions indicate that they must have formed in a variety of 

stellar environments, including asymptotic giant branch (AGB) stars, novae and 

supernovae. Analysis of the isotopic compositions of these grains can provide 

insights  into  how  nucleosynthesis  occurs  in  these  very  different  stellar 

environments. This data can then be used to constrain astrophysical models of 

stellar  evolution,  nucleosynthesis  and  galactic  chemical  evolution  (GCE) 

(Gallino  et  al.  1990;  1994,  Lugaro  et  al.  1999;  2003,  Travaglio  et  al.  1999, 

Savina et al. 2004, Yin et al. 2006, Barzyk et al. 2007).

Figure 1.1 Presolar grains formed around asymptotic giant branch (AGB), red giant, novae 
and supernovae stars before being ejected into the ISM. They were present in the presolar 
molecular  cloud  before  surviving  the  formation  of  the  Solar  System  and  becoming 
incorporated into primitive meteorites. Meteorites, and their constituent parts, fall to Earth 
and can be studied in the laboratory (adapted from Lodders and Amari 2005).

Grain  morphologies  are  dependent  upon  the  physical  (pressures  and 

temperatures)  and  chemical  conditions  in  circumstellar  shells  and  stellar 

outflows. For example, despite synthetic SiC forming >250 polytypes (which are 

sensitive  to  formation  conditions),  only  two  of  these  have  been  observed  in 

presolar SiC (cubic 3C and hexagonal 2H), placing limits upon the conditions 

found around stars (Daulton et al. 2002; 2003). The composition of the source 
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gas from which the grains condensed played a significant role in determining the 

mineralogy of presolar grains and their trace element contents.

1.1.2 Interstellar Medium

After formation, grains are driven into the ISM by stellar winds and outflows. 

The ISM consists of many different regions that differ in temperature, density 

and chemical composition.

Whilst in the ISM presolar grains may have experienced several different forms 

of processing. These include, exposure to UV radiation, bombardment with high 

energy  cosmic-rays,  passing  through  shockwaves  generated  by  nearby 

supernovae, grain-grain collisions or formation of ices on their surfaces. Each 

process  is  expected  to  have  at  least  partially  altered  the  grains  prior  to  their 

arrival in the presolar molecular cloud.

Evidence of interstellar processing may include pitting or etching on the surfaces 

of grains, amorphization of grains, the implantation of interstellar material and 

structurally  or chemically distinct  surfaces/rims around grains.  The grains are 

likely to have experienced more than one form of processing in the ISM resulting 

in an overlap of these different affects.

The major aim of this research is to determine the mechanisms by which 

presolar grains were processed in the ISM, and begin to establish the extent 

to which they have been altered. This will further our understanding of the 

material that provided the initial building blocks of the Solar System.

1.1.3 Early Solar Nebula

Most  of  the  dust  present  within  the  presolar  molecular  cloud  was  heated, 

processed and homogenized.  The small  percentage of presolar grains that  did 

survive Solar System formation represents the effects of processing in the early 

solar nebula. Studying the size, abundances and mineralogy of presolar grains in 

a range of primitive Solar System materials can help identify what type of, and to 
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what extent,  processing occurred,  and help determine the homogeneity of the 

disc.

Variations in the sizes and abundances of presolar grains in different meteorite 

groups may result from pre-accretionary events. In the disc, presolar grains are 

likely  to  have  suffered  from varying  degrees  of  accretionary  heating,  shock 

heating, radial mixing and initial grain-grain collisions. 

On  meteorite  parent  bodies  the  grains  will  have  been  exposed  to  aqueous 

alteration  and  thermal  metamorphism,  both  of  which  can  alter  and  destroy 

presolar grains. Presolar grain abundances can therefore be used to constrain the 

alteration histories of primitive meteorites.
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1.2 STELLAR FORMATION AND EVOLUTION

Stars are born when interstellar molecular clouds containing gas and dust suffer 

collapse as the result of gravitational instability. Instabilities may be triggered by 

events  such  as  molecular  cloud  collisions  or  supernovae  shockwaves.  The 

collapsing gas collides with itself, releasing large quantities of energy in the form 

of heat, increasing temperatures and pressures in the cloud. Continued collapse 

drives further increases in temperature and opacity until  the material  starts  to 

glow and a proto-star is created.

The life of a star is dependent upon its starting mass, and to a lesser extent its 

initial  metallicity  (abundance  of  elements  heavier  than He).  As the proto-star 

finishes collapsing it will reach a maximum core temperature related to its mass. 

In proto-stars with a mass ≤0.1 of the solar mass (Mʘ), core temperatures and 

pressures  fail  to  reach  those  required  for  thermonuclear  reactions  to  begin. 

Lacking a source of energy (although the largest can fuse deuterium) these stars, 

known as brown dwarfs, quickly cool.

Proto-stars  with  masses  >0.1Mʘ have  core  temperatures  and  pressures  high 

enough to kick-start thermonuclear reactions and hence further evolution. These 

new stars enter the main sequence, where they will spend the majority of their 

lifetime.  A star’s  main  sequence  stage  is  driven  by the  competing  forces  of 

gravitational  collapse  and  radiation  pressure.  Inward  collapse  of  the  star  is 

countered  by  the  radiation  and  gas  pressure  produced  by  thermonuclear 

reactions, such that the two opposing forces reach a hydrostatic equilibrium.

Astronomical observations allow us to study the formation and evolution of stars. 

Stellar  evolution  is  summarized  by  the  Hertzsprung-Russell  diagram  (Figure 

1.2),  which  shows  the  relationship  between  a  stars  luminosity  and  effective 

temperature.

The following is a brief review of stellar evolution and nucleosynthesis. For a 

more detailed description the reader is referred to Rolfs and Rodney (1988) and 

Meyer and Zinner (2006).
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1.2.1 H-burning

H-burning generates the radiation pressure that prevents a main sequence star 

from collapsing. This is where 1H is fused to form 4He and occurs through one of 

two processes; the proton-proton chain (p-p chain) or the CNO cycle.

The p-p chain is more efficient  at  low core temperatures and is therefore the 

major energy source in low-mass stars. In the p-p chain, two protons are fused 

together to create a deuterium atom (plus a positron and neutrino, see below). 

Deuterium is then available for fusion with further protons, producing 3He, which 

subsequently fuses with a second 3He and generates 4He plus two protons. This 

branch, known as ppI, dominates  4He production in low-mass stars, although it 

should be noted that two alternative paths (ppII and ppIII) also become available 

once 3He is created.

i) p + p → D + υe + e+

ii) D + p → 3He + γ
iii) 3He + 3He → 4He + p + p

Second generation stars (i.e. initial gas of higher metallicity) contain 12C, which 

provides a starting point for the CNO cycle. The cycle begins with the fusion of 
12C with 1H to produce 13N, which quickly β-decays to 13C. The 13C fuses with 1H 

to form 14N, which in turn fuses with 1H to produce 15O. The 15O β-decays to 15N, 

which  combines  with  1H  to  produce  12C  and  4He.  Again,  a  second  path  is 

available  (ON  cycle),  where  the  fusion  of  15N  with  1H produces  16O before 

leading, via 17F and 17O, back to 15N and 4He production.

Stars  progress  along  the  main  sequence  in  relative  stability  until  the  fuel 

available for H-burning is exhausted. As reaction rates increase with temperature, 

larger, and therefore hotter, stars consume their fuel at a greater rate than low-

mass stars. The typical lifetime of a 1Mʘ star is ~10 billion years,  whereas a 

0.2Mʘ star will reside on the main sequence for ~200 billion years, and a 40Mʘ 

star for just one million years. Once H-burning can no longer be sustained the 

star must find alternative sources of energy.
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Figure 1.2 The Hertzsprung-Russell diagram represents the relationship between absolute 
magnitude,  surface temperature  and luminosity throughout the evolutionary stages of  a 
star.  Stars spend the majority of  their lifetime on the main sequence before evolving to 
become red giant branch (RGB) and AGB stars, and white dwarfs (from Richard Powell;  
http://en.wikipedia.org/wiki/File:HRDiagram.png).

1.2.2 Red Giant Branch

When  H-burning  ceases,  a lack  of  energy  production  ends  hydrostatic 

equilibrium and gravitational  collapse begins to dominate.  However, as a star 

contracts  its  internal  temperatures  and  pressure  increase  until  H-burning  is 

triggered in a shell around a now inert H-depleted, He-rich core (Figure 1.3). H-

burning in the shell increases the luminosity of the star, whilst the outer envelope 

becomes convective and expands up to 10 – 50Rʘ. Surface temperatures therefore 

decrease and the star moves into the red giant branch (RGB) phase.

During the  RGB phase  the first  “dredge-up” occurs  (Iben and Renzini  1983, 

Boothroyd  and  Sackmann  1999).  The  convecting  outer  envelope  of  the  star 

penetrates down into the H-burning shell.  By this method, the products of H-

burning  are  transported  into  the  previously  unprocessed  outer  envelope. 

Astronomical observations of RGB stars allow us to witness the first dredge-up 

event  through changes  in  C and O isotopic  compositions  (decreased  12C and 

increased 17O) at the star’s surface (Busso et al. 1999, Abia et al. 2008).
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Figure 1.3 Internal  structure of  a  star during the RGB phase.  The convective  envelope 
transports the products of H-burning to the stellar surface. Image not drawn to scale (after 
Lattanzio and Boothroyd (1996)).

As He is produced by H-burning in the shell, the mass of the inert He core grows. 

Eventually it builds up sufficient mass to reach core temperatures and densities 

high enough for the He to ignite. This “He-flash” sees 4He fused into 12C through 

the triple α process;
4He + 4He + 4He → 12C

If stable He-burning is maintained, 12C may additionally undergo fusion to 16O in 

the core;
12C + 4He → 16O + γ

During the He-buring phase the star will lose ~10% of its mass through stellar 

winds. As the supply of He becomes exhausted the star will again contract. This 

creates a new He-buring shell around a C-O rich core. The new input of energy 

causes the outer envelope to expand. In stars >3.5Mʘ a second dredge-up takes 

place, whereby the products of H-burning are transported to the stellar surface. 

This is typically characterized by an increase in the 14N/15N ratio by a factor of 6 

– 7 (Iben and Renzini 1983, Boothroyd and Sackmann 1999, Busso et al. 1999). 
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On the Hertzsprung-Russell diagram (Figure 1.2) the star moves away from the 

RGB and back towards the main sequence.

1.2.3 Asymptotic Giant Branch

Burning  in  the  AGB  phase  alternates  between  He  and  H  shells,  which  are 

separated by a He-intershell, and surround an inert C-O rich core (Figure 1.4). 

The H-burning shell produces He that is deposited into the inactive He-intershell. 

This causes the temperature and density of the He-shell to increase, forcing rapid 

He-burning to occur for a short period. The He-intershell becomes convective 

and moves the products of nucleosynthesis to the interface between the H and 

He-shells. 

When  the  He-shell  is  ignited  the  resulting  higher  temperatures  cause  the 

overlying shells to expand. Expansion of the H-shell causes it to cool and H-

burning stops. Decreasing temperatures also stop He-shell burning. The lack of 

energy production causes collapse until new H-shell burning begins. This process 

may be repeated many times (10 – 100 cycles) and the star is now referred to as a 

thermally pulsing (TP) AGB star. 

During the TP-AGB phase stars suffer further mass loss through stellar winds, 

providing suitable conditions for the formation of dust containing isotopic and 

elemental  signatures that  reflect the composition of the star at  this  point (see 

Section  1.3.1).  AGB  stars  are  the  largest  contributors  to  our  presolar  grain 

collection (Alexander 1996).

Stars may also undergo a third dredge-up at the end of a pulse (Iben and Renzini 

1983, Busso et al. 1999). An inactive H-burning shell allows the convective outer 

envelope to transport material synthesized in the He-shell i.e.  12C, towards the 

stellar surface. Stars may undergo several third dredge-up events during the TP-

AGB phase, each of which causes the stellar surface to become increasingly C-

rich (i.e. increasing the C/O ratio).
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In stars whose masses are >6Mʘ hot bottom burning (HBB) can take place (e.g. 

Sugimoto  1971).  In  these  stars,  temperatures  at  the  base  of  the  convective 

envelope  exceed  those  required  for  partial  H-burning.  This  involves  proton 

captures on  12C, causing the  12C to be transformed into  14N. In addition, during 

HBB He can also be converted, through 7Be, into 7Li (e.g. Cameron and Fowler 

1971). The major effect of HBB is to alter the chemical composition of a star by 

preventing a build-up of C at its surface; thus delaying its development into a C-

rich star. 

When the abundance of He in the shell has been significantly depleted so that 

He-burning  can  no longer  be  sustained,  a  star  will  again  suffer  gravitational 

collapse.  The temperature of the convective outer envelope starts to decrease, 

providing suitable conditions for the condensation of dust (see Section 1.3). The 

AGB  stage  is  completed  as  material  from  the  convective  outer  envelope  is 

ejected into space (the planetary nebula phase).

Stars whose mass is <8Mʘ are not large enough to produce the temperatures and 

densities  required for  further  element  synthesis.  They eject  so much  material 

during the planetary nebula phase that their lives end as electron degenerate C-O 

white dwarves.

Figure 1.4 Internal structure of a star during the AGB phase. Burning alternates between 
He and H shells separated by a He-intershell. Hot Bottom Burning (HBB) occurs in stars  
whose masses are >6Mʘ. Image not drawn to scale (adapted from Lattanzio and Boothroyd 
(1996)).
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1.2.4 Novae and Supernovae

In some instances white  dwarf stars are found in closed binary systems with 

another star. In this case the white dwarf may accrete H-rich material from the 

other  star,  increasing  its  own  temperature  and  density.  This  allows  nuclear 

reactions  to  take  place,  eventually  leading  to  explosive  mass  loss  in  a  nova 

outburst.

In  stars  >8Mʘ elements  heavier  than  C and O may be  synthesized.  Collapse 

causes  temperatures  and  pressures  in  the  core  to  increase  until  C-burning  is 

initiated.

The input of energy from C-burning increases a star’s temperature. He-burning is 

then  ignited  in  a  new shell  (causing  expansion  to  a  supergiant  star)  and the 

products of C-burning accumulate in a new inert core. Eventually C-burning can 

no longer be sustained and the star will cool and contract until temperatures are 

high enough for Ne-burning.

New H and He-burning shells are ignited and propagate outwards as increasingly 

heavier  elements are burnt and the star develops an “onion shell” appearance 

(Figure 1.5). Each stage of burning produces less energy than the previous one, 

causing the star to exhaust its supply of fuel at an ever greater rate. Once the Fe-

peak elements (i.e.  56Ni,  56Fe) are reached, there are no heavier elements a star 

can synthesize without requiring more energy than the reaction releases. Further 

energy production is therefore prevented and the star’s core will rapidly collapse 

under gravity.

Due to electron degeneracy pressure the core can initially withstand the collapse. 

However at the core’s surface Si-burning continues to create heavier elements. 

These elements are continuously added  to the core until  its  mass exceeds the 

Chandreskar limit of 1.4Mʘ. Above this limit electron degeneracy pressure can 

no longer support the core against gravitational collapse. Protons and electrons 

are forced to create neutrons and a neutron degenerate core, or neutron star, is 

formed.
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Figure  1.5  Onion  shell  model  of  nucleosynthesis  in  massive  stars.  For  each  shell  the  
elements that are burnt and the resulting nuclear products are labeled (from Lodders and 
Amari (2005)). 

As the core collapses  gravitational  potential  energy is  released.  Collapse also 

forces together nuclei in the core, resulting in densities comparable with nuclear 

matter.  Nuclear  matter  is  nearly incompressible  and hence further  collapse  is 

prevented. Instead the core “bounces” back with an outward moving shockwave. 

The shockwave causes the outer shells to become a hot plasma, where neutron 

capture by heavy elements (>56Fe) may take place, before the shells are swept out 

into interstellar space as a Type II supernova explosion.

In the largest stars, where the core is >3Mʘ, even neutron degeneracy pressure 

cannot  support  the  core’s  weight  and the  core  will  continue  to  collapse  to  a 

singularity.  The gravity of this singularity,  better known as a black hole, is so 

strong that nothing within the Schwarzchild radius can escape.
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1.2.5 S- and R-process Nucleosynthesis

S- and r- process nucleosynthesis are responsible for the formation of nearly all 

stable isotopes heavier than  56Fe. Both processes are neutron capture reactions, 

whereby “free” neutrons may be captured by seed nuclei  dependent  upon the 

neutron  capture  cross-section  (i.e.  probability  of  capturing  a  neutron  of  the 

nuclei). In s-process nucleosynthesis the time between these reactions is long (s 

for slow, ~104 years) due to low neutron densities. This means nearly all unstable 

nuclei undergo β-decay before the next neutron capture can occur. In contrast, 

the  r-process  occurs  over  short  timescales,  where  the  time  between  neutron 

captures is far less than the average β-decay half-life.

1.2.5.1 S-process

In  the  s-process,  seed  nuclei  capture  a  neutron  to  produce  new nuclei.   The 

neutron flux is  so low that  stable  nuclei  can exist  for 104  – 105 years  before 

capture of a further neutron. If however the nuclei are unstable, there may be 

sufficient time between neutron captures for β-decay to new nuclei (Figure 1.6). 

Subsequent neutron captures and β-decays produce increasingly heavy isotopes 

until  the  heaviest  stable  isotope,  209Bi,  is  reached (Figure  1.7).  The s-process 

happens  in  environments  with  neutron  densities  of  typically  106  –  1011cm-3 

(Lugaro et al. 2003).

Figure 1.6 Example of the s-process in the Kr-Rb-Sr region of the chart of the nuclides. 
Stable isotopes are in shaded boxes. Arrows pointing right indicate capture of a neutron. 
Diagonal arrows indicate β-decay (from Nicolussi et al. 1998b).
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If the neutron capture time and β-decay half-life are approximately the same then 

branching may occur (Gallino et al. 1996, Lugaro et al. 2003). The s-process will 

follow  both  paths  from  this  point,  resulting  in  distinctive  s-process  isotopic 

signatures.  For  example,  s-process  production  of  86Kr  is  influenced  by  the 

branching point found at  85Kr. Such characteristics of s-process nucleosynthesis 

can be measured in presolar grains (e.g. Lewis et al. 1990; 1994).

Abundances of the isotopes are controlled by the ease with which they can be 

created (dependent upon the parent nucleus’ neutron capture cross-section) and 

destroyed (e.g. by photodisintegration), and a dynamic equilibrium is reached. 

There is also a group of nuclides with particularly stable neutron configurations 

(“magic neutron numbers”) and very small neutron capture cross-sections. These 

isotopes are unlikely to capture a neutron and are either stable, or have β-decay 

half-lives so long, that their abundances build up and elements to their right on 

the chart of the nuclides (i.e. Z=Z, N+1) are produced at exceptionally slow rates.

As  there  are  ~104 years  between  neutron  captures  in  the  s-process,  the 

environment in which it occurs must be stable for at least ~106 years. Also, as 

free neutrons are unstable particles that decay after ~15 minutes, for the s-process 

to continue they must be continuously produced. The s-process is predicted to 

predominantly occur in the He-burning shells of TP-AGB stars (Burbidge et al. 

1957, Iben 1975).

1.2.5.2 R-process

Like  the  s-process,  the  r-process  commences  with  seed  nuclei  capturing  a 

neutron. However, the neutron density is so high that even isotopes with β-decay 

half-lives  as  short  as  10-6  seconds  may  capture  a  neutron.  This  allows  very 

neutron-rich nuclei to be formed. The r-process can occur either as a primary or 

secondary reaction.  The primary (dominant)  reaction involves seed nuclei  and 

neutrons that were produced by nucleosynthesis in the source star. Secondary r-

process utilizes pre-existing, non-processed nuclei already present in the star (i.e. 

second generation stars).
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The  extreme  environments  under  which  the  r-process  operates  often  contain 

abundant γ-rays that breakdown nuclei through photodisintegration. This leads to 

pseudo-equilibrium between the formation and destruction of nuclei. 

The r-process  fuses  neutrons  to  highly  neutron  rich  nuclei  until  eventually  a 

nuclide  with  a  magic  neutron  number  is  reached (Figure  1.7).  As  no further 

neutrons can be added, the nuclei must instead wait at this point for β-decay to 

take place. The resulting nuclei (Z+1) rapidly captures a neutron, returning to a 

stable neutron configuration that will again β-decay to Z+2 and so on towards 

more stable isotopes. This continues until the binding energy is large enough to 

breakthrough this bottle-neck and return to rapid neutron captures.

Figure 1.7 S- and r- process pathways on the chart of the nuclides. Dependent upon the 
neutron density,  neutrons  are  added to  seed  nuclei  either  slowly  or  rapidly,  producing 
heavier nuclei. The s-process proceeds along the stable nuclei, whilst the r-process builds  
neutron-rich nuclei away from the “valley of stability”. Magic neutron numbers occur at 
N=50, 82 and 126 (from Rolfs and Rodney (1988)).

The r-process occurs in environments with neutron densities typically in excess 

of 1020cm-3 (Montes et al. 2007). Candidate sites for the r-process include Type II 

supernovae,  merging  neutron  stars  and  rotating  stellar  cores  (Cowan  and 

Thielemann 2004). At the point when the high neutron density ceases to exist, 

nuclear “freeze out” occurs and the short-lived, neutron-rich nuclei produced by 

the r-process rapidly decay back towards the “valley of stability”.
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1.3 PRESOLAR GRAINS

This research aims to identify evidence of interstellar processing on presolar 

grains  by  studying  their  outer  surfaces,  structures  and  internal 

compositions. 

1.3.1 Formation of Presolar Grains

Astronomical  observations  indicate  the  presence  of  dust  in  the  circumstellar 

shells of AGB stars, and within the ejecta of supernovae explosions (e.g. Gauba 

and Parthasarathy 2004, Lagadec et al. 2007). Chemical and physical conditions 

in  these  environments  must  therefore  be  favourable  for  the  condensation  of 

stellar dust.

Dust is only expected to condense at temperatures <2000K (Lodders and Fegley 

1995), which are likely to be only found in the outer regions of the circumstellar 

shell. Typical pressures in circumstellar envelopes are between 10-3 – 10-7  bars 

(Lodders and Fegley 1995).

A major influence upon the formation of dust in stellar environments is the C/O 

ratio  of  the parent  star.  The C/O ratio  of  AGB stars varies  from 0.5 to  1.76 

(Lodders and Fegley 1995). Those with C/O >1 are classed as C-rich stars, whilst 

C/O  <1  defines  them  as  O-rich.  Spectroscopic  observations  show  that 

carbonaceous phases, such as SiC and graphite, condense in the envelopes of C-

rich stars (e.g. Treffers and Cohen 1974). In comparison, silicates and oxides of 

major elements dominate the dust condensing around O-rich stars.

The density of the circumstellar shell also plays a critical role. Typical mass loss 

rates for AGB stars are estimated at ~10-5Mʘ per year (e.g. Zijlstra et al. 2006). 

Stars that are experiencing significant mass loss provide environments that are 

dense  enough  for  seed  nucleation  and  subsequent  grain  growth.  Condensed 

grains are driven out of circumstellar shells and into the ISM by stellar winds and 

radiation  pressure  from the  star.  Some  of  the  dust  is  destroyed  around stars 

through grain-grain collisions or evaporation from falling back onto the central 

star.
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1.3.2 Interstellar Processing

To be present in primitive meteorites, presolar grains must have travelled from 

their parent star to the early solar nebula via the ISM. The ISM contains ~99% 

ions and molecules in the gas phase and ~1% dust. In the ISM the dust may have 

been  altered  by  a  variety  of  processes  including  interactions  with  galactic 

cosmic-rays, sputtering by, and potential implantation of, ions and atoms, grain-

grain and grain-gas collisions, and vaporization and re-condensation. Evidence of 

this processing should be recorded on the grains surfaces and within their outer 

rims.

Grain sputtering and collisions are expected to produce cratering affects on the 

surfaces  of  presolar  grains  (Jones  et  al.  1996).  However,  Bernatowicz  et  al. 

(2003) reported a lack of evidence for any such processing on the surfaces of 81 

pristine SiC grains (see Section 1.3.3). This led to the suggestion that either the 

residence time of grains in the ISM is very short, or the grains were protected 

from sputtering  by surface coatings.  Expected residence times for dust in the 

ISM are >500Myr  (Jones  et  al.  1996),  whilst  calculated  cosmic-ray exposure 

ages for presolar SiC range from <50Myr to >1Gyr (Lewis et al. 1994, Ott and 

Begemann  2000,  Ott  et  al.  2005,  Heck  et  al.  2009,  Gyngard  et  al.  2009). 

Bernatowicz et al. (2003) noted that ~60% of the pristine SiC grains studied had 

amorphous coatings (<100nm thick) of an unknown material.

Infrared  observations  of  dark  clouds in  the  ISM indicate  that  dust  grains  are 

covered by icy mantles (Ehrenfreund and Charnley 2000). It has been proposed 

that  simple  ices,  such as  H2O, CO, CO2 and CH3OH, can  accrete  onto  grain 

surfaces in the ISM through grain surface reactions (Sandford and Allamandola 

1993, Messenger  et  al.  2006, Nuth et  al.  2006).  Ice mantles  form due to the 

efficient absorption of atoms and molecules from the interstellar gas, followed by 

surface diffusion and reactions with other surface atoms. These ices may then be 

processed, by photolysis and sublimation caused by exposure to UV photons and 

cosmic-rays, to form protective organic mantles. Bernatowicz et al (2003) could 

not rule out that the amorphous coatings seen on presolar SiC grains were not 

organic in nature.
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Supernovae shockwaves in the ISM can result in the acceleration of interstellar 

gas  and ions  to  velocities  of  100s  kms-1 (Jones  et  al.  1996).  Significant  ion 

irradiation of dust could produce amorphization  of the outer rims of presolar 

grains. Material may also become implanted into the grains. Lyon et al. (2007) 

found that Li and B abundances in the outer ~0.5μm of some presolar SiC grains 

were  higher  than  those  within  the  grain  cores.  Lithium  and  B  isotopic 

compositions  were  solar  and  it  was  concluded  that  Li  and  B  ions  had  been 

implanted into the grains at high velocity by supernovae shockwaves in the ISM.

1.3.3 Discovery and Separation of Presolar Grains

The presence of presolar material in primitive meteorites was clearly indicated 

by the anomalous isotopic components Xe-HL (Reynolds and Turner 1964), Xe-

S (Srinivasan and Anders 1978) and Ne-E (Black and Pepin 1969). Xe-HL is 

characterized by excesses in both the heavy and light Xe isotopes, predicted by r- 

and p-process nucleosynthesis respectively. Xe-S is enriched in 128Xe, 130Xe and 
132Xe;  isotopes  created  through s-process  nucleosynthesis.  Ne-E comprises  of 

almost pure  22Ne, which is released at both low (L) and high (H) temperatures 

during stepped heating experiments (Amari et al. 1995b). Ne-E(H) is typically 

found alongside s-process Xe and Kr, inferring an origin in the He-shells of AGB 

stars (Gallino et al. 1990). Ne-E(L) is attributed to the rapid radioactive decay of 
22Na produced by explosive nucleosynthesis in novae and supernovae. 

Although  these  isotopic  anomalies  are  easily  identifiable  within  meteorites, 

locating their carriers proved to be a far greater challenge. It took over 20 years 

of work before presolar nanodiamonds were isolated as the carrier of Xe-HL by 

Lewis et al. (1987). Presolar SiC was discovered to be the carrier of Xe-S and 

Ne-E noble gas signatures (Bernatowicz et al. 1987), while presolar graphite was 

found to contain Ne-E (Amari et al. 1990).

Nearly  all  presolar  grains  analyzed  to  date  were  extracted  from  their  host 

meteorite  using  a  series  of  harsh  acid  treatments.  Astronomical  observations 

predicted that much of the dust condensing around stars was carbonaceous and 

refractory.  Refractory phases can survive treatment  by hydrofluoric  acid,  plus 
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other strong acids and oxidizing reagents. These acids could therefore be used to 

dissolve  >99% of  the  silicate  meteorite  matrix  material,  leaving  residues  of 

refractory minerals such as SiC.

This technique, often referred to as the “Chicago procedure”, is fully described 

by Amari et al.  (1994) and shown in Figure 1.8. Briefly,  Amari et al.  (1994) 

started with a sample of the Murchison (CM2) carbonaceous chondrite. This was 

subjected to alternating treatments of HCl-HF and HCl in order to dissolve the 

silicates  that  dominate  the meteorite  matrix. Next,  kerogen and sulphur  were 

removed using KOH and nanodiamonds were extracted as a colloid. The sample 

only containing SiC, spinel and carbonaceous phases, was then density separated 

into five fractions. To isolate SiC, fractions of densities >2.3gcm-3 (the density of 

SiC  is  ~3.1gcm-3)  were  heated  in  HClO4,  to  destroy  organics  and  graphitic 

carbon, and then in H2SO4 to dissolve spinel and chromite. Graphite is located in 

the untreated lower density fractions (1.6 – 2.2gcm-3). Each density fraction was 

then further separated according to size. Most analyzed presolar SiC and graphite 

grains  either  came from these original  residues  or  were isolated  by a  similar 

procedure.

A major disadvantage of this method is the loss of any non-refractory presolar 

materials.  For example,  presolar silicates,  which are destroyed by acids,  have 

recently been discovered in untreated meteorite matrix and IDPs (Nguyen and 

Zinner 2004, Nagashima et al. 2004, Nguyen et al. 2007, Messenger et al. 2003). 

Nittler  and Alexander (2003) separated presolar SiC grains using a  procedure 

that included CsF instead of HF/HCl. They found a shift in the  12C/13C isotope 

distribution of their SiC grains compared to previous data, and suggested that 

there may be a population of SiC grains preferentially destroyed by the HF/HCL 

treatments.
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Figure 1.8 Flow-chart of the procedure used to separate presolar SiC grains from their host 
meteorites.  Harsh  acids  dissolve  the  bulk  (>99%)  of  the  meteorite  before  grains  are  
separated  into  fractions  (here  KJA-KJI)  dependent  upon  their  size  and  density  (from 
Amari et al. (1994)).

There is also evidence that the use of harsh acids may alter the outer surfaces of 

presolar grains (Stephan et al. 1997, Henkel et al. 2007a). Henkel et al. (2007a) 

reported the loss of AlN inclusions, which are not resistant to acid treatments, 

from the outer regions of presolar SiC grains. Moreover, elevated abundances of 

elements such as Mg, K and Ca at grain surfaces were attributed to deposition of 

meteoritic matrix material in crystal defects potentially etched into grain surfaces 

by acid treatments.

These  problems  have  led  to  attempts  to  study  pristine  presolar  SiC  grains. 

Bernatowicz  et  al.  (2003)  were  the  first  to  develop  a  non-acid,  physical 

disaggregation  technique.  A  30mg  sample  of  Murchison  matrix  was 

ultrasonicated to break up the material before separation by centrifugation into 

five  size  fractions.  Using  secondary  electron  microscopy  (SEM) they  then 

mapped the 1  – 3μm size fraction for SiC grains and located 81 pristine SiC 
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grains. As mentioned, ~60% of the grains were coated in an unknown amorphous 

material that had never previously been reported on acid extracted grains.

Tizard et al. (2005) further developed this idea of “gently separating” presolar 

SiC grains from meteorites. Starting with 32mg of Murchison matrix, this was 

crushed  and  broken  down  by  cycles  of  freeze-thaw  disaggregation.  The 

disaggregated sample was separated into four size fractions before SiC grains 

were isolated by a density separation step. Silicon carbide grains were located by 

mapping with an electron microprobe and abundances were found to be enriched 

from 6ppm in Murchison whole rock to 0.67% in the 0.4 – 1.4µm size range.

1.3.4 Analysis of Presolar Grains

Since the late 1980’s a wide range of analytical techniques and methods have 

been applied to  the study of presolar  grains.  The earliest  work focused upon 

noble gas concentrations in presolar grains (Lewis et al. 1990; 1994, Huss and 

Lewis 1994a; 1994b). However, the most important and widely used technique 

has been secondary ion mass spectrometry (SIMS). 

SIMS is a destructive technique that involves sputtering a sample with primary 

ions  in  order  to  produce  secondary  ions  representative  of  the  sample 

composition. Most previous studies of SiC grains have used direct current (DC) 

beam ion probes that use magnets and electrical fields to separate the secondary 

ions (Zinner et al. 1989, Alexander 1993, Hoppe et al. 1994, Amari et al. 2000). 

These can provide both high spatial resolution and high mass resolution analyses, 

and have been vital  in characterizing the isotopic and elemental  compositions 

that prove the presolar nature of the grains.

Disadvantages  of  DC  beam  ion  probes  are  high  sample  consumption  and 

detection of only 5 – 7 isotopic species at a time. This means that grains must be 

typically  >1μm in  diameter  to  allow both  major  and  trace  element  analysis, 

leading to a bias in the grain sizes analyzed. In presolar grain research there is an 

increasing need for multi-correlated analysis. The intention is to develop a more 

complete understanding of individual presolar grains, a task that requires multi-
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elemental  isotopic and abundance data alongside morphological and structural 

details (Nittler 2006).

One option is time-of-flight secondary ion mass spectrometry (TOFSIMS). In 

TOFSIMS a pulsed primary ion beam is used to generate secondary ions from 

the  sample  that  are  then  separated  according  to  their  time-of-flight.  The 

advantage of TOFSIMS is that an entire mass spectrum can be obtained in a 

single analysis. TOFSIMS will be the main technique used to analyze presolar 

grains in this research (see Chapter 2). 

TOFSIMS has not been frequently used in the study of presolar grains. Stephan 

and Jessberger (1996) and Stephan et al. (1997) used TOFSIMS for high spatial 

resolution imaging, and major and trace element analysis, of presolar SiC, whilst 

Fahey and Messenger (2001) demonstrated its capability for measuring the Si 

isotopic  compositions  of  presolar  SiC  grains.  More  recently,  Henkel  et  al. 

(2007a) and Lyon et al. (2007) have used TOFSIMS to measure trace element 

abundances  and isotopic  compositions  in  presolar  SiC grains  extracted  either 

using different chemical treatments or non-acid separation procedures. 

New resonant ionization mass spectrometry (RIMS) instruments are now being 

utilized  to study trace  elements  in  presolar  grains.  The RIMS technique  uses 

lasers  to  resonantly  ionize  a  specific  element  in  a  sample;  this  boosts 

measurement sensitivity for that element. In particular it has been used to analyze 

the isotopic compositions of heavy elements thought to be produced by s-process 

nucleosynthesis (Nicolussi et al. 1997; 1998a; 1998b; 1998c, Savina et al. 2003; 

2004, Barzyk et al. 2007).

Techniques such as SEM, transmission electron microscopy (TEM) and Raman 

spectroscopy have been widely used to investigate the morphology and structural 

characteristics of presolar grains (Bernatowicz et al.  1991, Zinner et al.  1995, 

Daulton et  al.  2002; 2003, Stroud et  al.  2002; 2003, Stroud and Bernatowicz 

2005, Croat et al. 2005; 2008, Vollmer et al. 2009, Hynes et al. 2010a; 2010b, 

Nguyen et al. 2010). High resolution images of grains and the identification of 

sub-grain inclusions within them (Bernatowicz et  al.  1991, Croat  et  al.  2005, 
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Stroud and Bernatowicz  2005) have provided insights  into  their  formation  in 

circumstellar shells.

1.3.5 Presolar SiC

To date,  several  thousand SiC grains have been studied and found to contain 

isotopic anomalies in almost every major and trace element within them.

The  average  presolar  SiC  grain  size  in  the  Murchison  meteorite  is  ~0.4µm 

(Amari et al. 1994). Grains >60µm in diameter have been discovered, although 

those >10µm are extremely rare (Virag et al. 1992, Gyngard et al. 2009). Many 

presolar  SiC  grains  are  sufficiently  large  that  isotopic  and  elemental 

compositions of single grains can be measured. They contain high trace element 

concentrations that allow for precise elemental and isotopic measurements to be 

made. Combined with their relatively high abundances in primitive meteorites 

(Table  1.1)  and  ease  of  extraction,  this  makes  them  ideal  candidates  for 

investigating interstellar processing (see Chapter 4).

Chondrite 
Group

SiC abundance 
(ppm by mass)

CI 14 – 49
CM 4 – 14
CR 0.6 – 60
CO 1 – 3

CV reduced 0.17 – 0.39
CV oxidized 0.006-0.2

CH 0.41
H 3.4 0.063

L 3.4/3.7 0.008 – 0.08
LL 3.0/3.1 0.39 – 1.52

EH 3-4 1.3 – 1.6
Table 1.1 SiC abundances in primitive meteorites (after Lodders and Amari (2005). Upper 
limits for CI and CR are from Davidson (2010) and Floss and Stadermann (2009).

1.3.5.1 Noble Gases

Presolar SiC is the carrier of the anomalous noble gas components Ne-E(H), Xe-

S and Kr-S. Figure 1.9 shows the noble gas components as measured in bulk 

presolar  SiC grain  samples.  Xenon in  presolar  SiC grains  is  enriched  in  the 

isotopes  128Xe,  130Xe  and  132Xe,  Kr  in  the  isotopes  82Kr  and  86Kr.  These 

enrichments are predicted by nucleosynthetic models of the s-process in stars. As 
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the s-process is expected to occur in the He-burning shells of AGB stars it is 

inferred that some presolar SiC was formed around AGB stars.

The s-process component (referred to as the G component) is often found mixed 

with a second noble gas component, the isotopic composition of which is similar 

to  solar  (Lewis  et  al.  1994).  It  is  hence  referred  to  as  the  normal,  or  “N”, 

component. It is believed to originate in the outer envelopes of AGB stars where 

the products of nucleosynthesis are mixed to near solar compositions.

The inferred origin of presolar SiC grains around AGB stars is consistent with 

astronomical observations. Spectra from such stars contain an 11.3μm emission 

feature that is commonly interpreted as the presence of SiC dust (Treffers and 

Cohen 1974).

Figure 1.9 Noble gas components in bulk presolar SiC grain samples.  Isotope ratios are 
plotted relative to solar (represented by the thinly dashed line). Krypton is enriched in its  
82 and 86 isotopes, Xe in its 128, 130 and 132 isotopes. These patterns are predicted by s-
process models occurring in AGB stars. Presolar SiC grains can therefore be linked to AGB 
stellar sources. Lewis et al. (1994) measured He, Ne, Ar, Kr and Xe, showing them to be a  
mixture of a highly anomalous “G” component, with the isotopic signature of the s-process, 
and “N” component, similar to solar (from Lodders and Amari (2005)). 

1.3.5.2 C, N and Si

Figure 1.10 shows measured C and N isotopic ratios within presolar SiC grains, 

and Figure 1.11 shows their Si isotopic ratios. Based upon the large variations in 

C, N and Si isotopic compositions, presolar SiC grains can be divided into sub-
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groups:  mainstream, A and B, X  grains, and Y  and Z. Presolar SiC grains from 

novae (Amari et al. 2001c), and unusual grains with very extreme enrichments in 
29Si and 30Si (Hoppe et al. 2010) have also been found. The discovery of distinct 

classes of presolar SiC indicates that at least several different stellar sources must 

have contributed SiC grains to the presolar molecular cloud (Alexander 1993, 

Hoppe et al. 1994).

The mainstream group makes up ~90% of all presolar SiC. Figure 1.10 shows 

that they typically contain  14N/15N ratios higher than the solar value (~272) and 
12C/13C lower than solar (~89). Most of them are enriched in both  29Si and  30Si 

(relative to 28Si) (Hoppe et al. 1994, Lugaro et al. 1999). 

The  other  main  diagnostic  feature  of  mainstream  presolar  SiC  grains  is  the 

presence  of  Xe-S  and  Kr-S,  which  combined  with  evidence  from  the  other 

isotope systems (e.g. enrichments in 94Zr or 86Sr, isotopes produced by s-process 

nucleosynthesis),  is consistent with formation around 1 – 3Mʘ AGB stars of 

approximately solar metallcity (Nicolussi et al. 1997; 1998b, Lugaro et al. 2003). 

 

Figure 1.10 Measured C and N isotopic ratios within presolar SiC grains. The grains fall  
into distinct groups, mainstream, A and B, X, Y and Z. Isotopic ratios vary by orders-of-
magnitude  both  between  individual  sub-groups  and  from  solar  values  (dashed  lines).  
Theoretical predictions for C-rich stars, novae, the C-rich zone of type II supernovae and 
burning by the CNO cycle are shown (from Hoppe (2001)). 
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On a Si three-isotope plot (Figure 1.11) the mainstream grains define a line of 

slope ~1.3, which is in disagreement with simple models of GCE (Clayton 1988, 

Timmes  and Clayton 1996).  Standard GCE models  predict  that  the first  stars 

formed in unseeded (only H, He and minor Li from the “Big Bang”) molecular 

clouds and must therefore have produced primary isotopes, including  28Si. The 

next generation of stars formed in a partially seeded (H, He plus some heavier 

elements)  environment,  allowing  nucleosynthetic  production  of  secondary 

isotopes, such as 29Si and 30Si. Therefore GCE dictates that 29Si/28Si and 30Si/28Si 

ratios  will  increase over time and should produce a line of unity on a three-

isotope plot. It has been suggested that deviations from unity indicate that many 

stellar sources, whose initial compositions varied because of GCE, contributed 

SiC grains to the Solar System (Alexander 1993).

Figure 1.11 Silicon three-isotope plot for presolar SiC grains. The mainstream grains are 
enriched in 29Si and 30Si relative to 28Si and define a line of slope m = 1.3. In contrast the X 
grains are depleted in 29Si and 30Si (from Nittler (2003)).

The issue is further complicated however, as the composition of each mainstream 

grain is believed to reflect that of its parent star. By definition the grains were 

created before the formation of the Sun. If this  were true,  according to GCE 

models,  they should be depleted in  29Si and  30Si relative to the Sun (i.e. they 
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formed  from more  primitive  material).  Instead  mainstream grains  Si  isotopic 

compositions suggest that they were formed after the Sun.

Potential solutions to these problems have included the evolution of  30Si being 

faster in low metallicity stars (Alexander and Nittler 1999), an effect of mixing 

high  and  low  metallicity  gas  in  a  presolar  galactic  merger  (Clayton  2003), 

evolution of the star’s orbits within the galaxy (Clayton and Timmes 1997) or 

inhomogeneous chemical evolution of the ISM (Lugaro et al. 1999). 

The A and B sub-group (~3 – 4% of all presolar SiC) have  12C/13C <10 and a 
14N/15N range of 40 – 12000. Their Si isotopic compositions are very similar to 

mainstream grains, although on the three-isotope plot they define a slope of ~1.5. 

Amari et al. (2001a) proposed that the A and B grains originated from C-rich J-

type stars or CH stars. Unfortunately there is little astronomical data regarding 

these stars and current astrophysical models of them do not account for those A 

and B grains that have both low 12C/13C and 14N/15N ratios.

The X grains (~1%) have 12C/13C ratios often significantly higher than solar and 
14N/15N ratios  that  are  lower  than  solar  (Figure  1.10).  They also  contain  28Si 

excesses up to five times the solar value. These isotopic compositions cannot be 

explained  by  nucleosynthesis  in  AGB  or  C-rich  stars.  They  are  however 

qualitatively consistent  with the  explosive  nucleosynthesis  that  takes  place  in 

Type II supernovae (Amari et al. 1992, Nittler et al. 1996, Clayton et al. 1997, 

Amari and Zinner 1996, Hoppe et al. 1996; 2000).

Further evidence for a Type II supernovae origin comes from excesses in the 

minor isotopes  26Mg,  44Ca and  49Ti. Large  26Mg/24Mg excesses in X grains are 

attributed to the radioactive decay of 26Al. From measured 26Mg excesses, initial 
26Al/27Al ratios  of  between  0.1  –  0.6  have  been  inferred  (Amari  et  al.  1992, 

Hoppe et al. 1996; 2000). These are significantly different from the canonical 
26Al/27Al ratio of the Solar System. An excess in 44Ca/40Ca has been attributed to 

the decay of 44Ti, whilst those in 49Ti/48Ti are believed to come from 49V (Hoppe 

and  Besmehn  2002).  As  44Ti  and  49V  can  only  be  formed  by  explosive 
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nucleosynthesis in Type II supernovae, presolar SiC grains must have condensed 

in this environment.

The Y grains  (~1%) have  12C/13C ratios  >100 and  14N/15N ratios  above solar 

(Amari et al. 2001b). Their Si isotopic compositions place them slightly to the 

right of the mainstream grains on a three-isotope plot (Figure 1.11) and indicate 

that they formed around AGB stars whose metallicities were 1/2 that of solar. 

The Z grains  contain  C and N ratios  that  are  similar  to  solar  but  often have 

excesses in 30Si. It has been suggested that the Z grains originated in AGB stars 

of metallicities of up to a 1/3 of solar (Hoppe et al. 1997, Amari et al. 2001b). 

These stars contain less synthesized material within their envelopes. Nucleation 

effects therefore dictate that condensing SiC grains are smaller than those formed 

around stars of higher metallicity. Presolar SiC grains of type Z have been found 

to be particularly rare in the coarser SiC size fractions (Zinner 1998, Hoppe et al. 

2010).

 

Amari et al. (2001c) have also measured five presolar SiC grains that have C and 

N isotopic ratios different  to those seen in any other sub-group. These grains 

contain  12C/13C and  14N/15N ratios <20 and  30Si excesses. This is a signature of 

high temperature H-burning and is believed to take place in novae.

1.3.5.3 Trace Elements

Presolar SiC grains contain several trace elements in substantial abundances. For 

example,  Mg is  found at  levels  of  ~100ppm and Al  can  reach  several  mass 

percent (Amari et al. 1995a). The abundance of trace elements within presolar 

SiC reflects both the composition of the circumstellar gas in which they formed 

and the condensation process itself.

Amari et al. (1995a) measured trace element concentrations in 60 individual SiC 

grains  and three SiC size-sorted aggregates.  Elements  more  volatile  than SiC 

were  shown  to  be  depleted  in  the  grains  (relative  to  solar)  and  refractory 

elements  were  generally  enriched.  In  the  mainstream  grains  heavy  elements 
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(>Fe)  produced  by the  s-process  were  enriched  by  up  to  35  times  the  solar 

abundance.

Lodders  and  Fegley  (1995)  showed  that  their  model  of  trace  element 

condensation  into  SiC  grains  was  consistent  with  the  data  of  Amari  et  al. 

(1995a). Refractory compounds, such as SiC and TiC, condensed out from the 

circumstellar gas first. The more volatile elements, which could not condense at 

high temperatures, remained in the gas and formed compounds of carbides (ZrC, 

MoC), sulfides (MgS, CaS) and nitrides (AlN). As temperatures decreased these 

compounds began to condense in solid solution with SiC and TiC according to 

their volatility and compatibility within the crystal lattice structure.

Silicon carbide  condenses  over  a  range of  temperatures  (Lodders  and Fegley 

1995). This makes it possible for SiC grains originating from the same parent star 

to contain varying trace element abundances. As elements and their compounds 

condense the circumstellar gas becomes depleted in those elements. The first SiC 

grains to condense will therefore obtain their trace elements from a circumstellar 

gas differing in composition to those grains formed at lower temperatures. 

Another factor that plays a role is whether an element condenses as a separate 

phase from SiC. For example, TiC is predicted to condense before SiC (Lodders 

and Fegley 1995). This causes a depletion of Ti in the gas and therefore also in 

the SiC grains. Similarly, any highly refractory elements that condense into the 

TiC prior to SiC (e.g. V) condensation will also be depleted in the SiC grains.

There is evidence that some trace elements may have been implanted into the 

grains. For example, Lyon et al. (2007) reported elevated Li and B abundances 

within the outer regions of grains and argued that this represented interstellar 

material implanted into the grains by supernovae shockwaves. Certainly,  some 

noble gases also appear to have been implanted into SiC grains. Verchovsky et 

al. (2004) noted noble gas isotopic variations with SiC grain size, a feature they 

attributed to the implantation of two isotopically distinct noble gas components 

at different implantation energies in an AGB stellar environment.
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Analytical  constraints  have  restricted  the  ability  to  determine  trace  element 

abundances in presolar SiC grains. SIMS removes atoms from the surface of the 

sample  and  hence  destroys  the  grain.  When  analyzing  presolar  SiC  the  first 

elements  measured  are  often  C,  N  and  Si  (for  classification  purposes  -  see 

Section 1.3.5.2). After this initial  analysis  the grain has been partly destroyed 

leaving less mass available for trace element measurements. In order to obtain 

significant trace element information alongside C, N and Si isotopic data, grains 

must have enough mass remaining for the trace element analysis. Current data 

regarding trace element abundances is biased towards larger grains.

Trace  element  analyses  may  also  be  biased  if  those  elements  are 

inhomogeneously distributed within the grains. High sample consumption during 

measurements  with DC-beam ion probes  means  that  data  often  represents  an 

average over a large volume of the grain. Therefore in this research TOFSIMS 

will be used to measure the distribution of a range of trace elements in presolar 

SiC grains (see Chapter 4).

1.3.5.4 Structure and Morphology

Presolar SiC grains typically have euhedral shapes. Only two polytypes, cubic 

3C (80%) and hexagonal 2H (3%), of presolar SiC have been observed (Daulton 

et al. 2002; 2003). Intergrowths (17%) between the two have also been noted. 

This is surprising as synthetic  SiC forms several hundred different polytypes. 

The limited number of different polytypes that presolar SiC grains form allows 

constraints  to  be  placed  upon  the  environment  in  which  they  condensed. 

Thermochemical  equilibrium calculations  predict  the  formation  cubic  3C and 

hexagonal 2H polytypes at low temperatures (≤1633K), low pressures (<10-4 bar) 

and  when  C/O  ≥1.05  (Daulton  et  al.  2002;  2003).  Such  an  environment  is 

believed to exist in the stellar outflows of C-rich AGB stars.

In studying 81 pristine presolar SiC grains, Bernatowicz et al. (2003) reported 

that  ~90% were of  polytype  cubic  3C.  Polygonal  depressions,  believed to  be 

primary  growth  features,  were  observed  in  crystal  faces  and  suggested  rapid 

formation times.
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Approximately  60% of  the  grains  were  coated  with  an  unknown amorphous 

material.  It  was  speculated  that  these  were  silica  rims,  possibly  created  by 

oxidation  in  the  early  solar  nebula  (Mendybaev  et  al.  2001).  Stroud  and 

Bernatowicz (2005) reported evidence for the presence of silica rims, 10 – 30nm 

thick, on pristine presolar SiC grains, although it is still unknown whether these 

account for the amorphous coatings. Alternatively, it has been suggested that the 

grains may have acquired coatings consisting of organics and simple ices in the 

ISM or early solar nebula (see Messenger et al. 2006, Nuth et al. 2006).

TEM studies of pristine presolar SiC grains and those of type AB have revealed 

the presence of small sub-grains of TiC and AlN (Stroud and Bernatowicz 2005, 

Hynes et al. 2010a). An isotopic study of over 200 randomly selected presolar 

SiC grains also indicated that TiC sub-grains are likely to be present in nearly all 

the  SiC  sub-groups  (Gyngard  et  al.  2006).  This  is  not  surprising  as  TiC  is 

predicted  to  condense as a  separate  phase prior  to  the formation  of SiC (see 

Section 1.3.5.3).

1.3.6 Presolar Graphite

Although  often  larger  in  size  (>1μm  diameter),  and  present  in  comparable 

abundances within meteorites  to presolar SiC grains,  fewer studies have been 

carried out on presolar graphite.

Presolar graphite is the carrier of Ne-E(L). Graphite grains are often divided into 

four sub-groups based upon their densities and C isotopic compositions. Low-

density graphite is often of the “cauliflower” morphological type, consisting of 

aggregates of small grains. In contrast high-density graphite is often shaped like 

an “onion”, with fine-grained crystalline core surrounded by concentric layers of 

carbon (Figure 1.12). Measurements have shown that with increasing density the 

abundance of minor  elements such as H, N, O and Si decrease (Hoppe et  al.  

1995).
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Figure  1.12  Representative  SEM images  of  onion (left)  and cauliflower (right)  presolar 
graphite grains. Presolar graphite grains are typically >1μm in diameter (from Croat et al. 
(2008)).

Their  12C/13C  ratios  show  a  wide  range,  ~2  –  7000  (Hoppe  et  al.  1995, 

Bernatowicz et al. 1996), whereas N isotopic ratios are close to solar. Solar N 

ratios  may  reflect  contamination  (Hoppe  et  al.  1995).  Silicon  isotopic 

compositions are comparable to those observed in presolar SiC, although Wolf-

Rayet  and supernovae stars are thought to have contributed ~60% of presolar 

graphite grains (Hoppe et al. 1995). The presence of Xe-S and Kr-S indicates that 

at least some of the grains formed around AGB stars (Amari et al. 1995b).

Presolar  graphite  grains  also  contain  small  (typically  10’s  nm)  sub-grains  of 

predominantly TiC but also others phases such as Zr-Mo carbide (Bernatowicz et 

al. 1991; 1996, Croat et al. 2005; 2008). Many of these sub-grains are located 

within the core of the main graphite grain and may have acted as nucleation sites 

for graphite growth. Some sub-grains show no crystallographic relationship to 

the  main  graphite  grain  suggesting  that  they  formed  separately  and  were 

incorporated into the graphite at a later stage.  

1.3.7 Presolar Nanodiamonds

Nanodiamonds are the most abundant presolar phase and are typically only ~2nm 

in size. This makes them too small for analysis of individual grains, so isotopic 

and elemental data must be obtained from bulk samples. They are therefore the 

least well understood presolar phase.
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Presolar  nanodiamonds  are  carriers  of  Xe-HL,  indicating  a  supernova  origin. 

This is further supported by the presence of isotopic anomalies in heavy elements 

such  as  Te  and  Pd  (Maas  et  al.  2001).  However,  despite  this  evidence, 

nanodiamonds still  remain controversial  due to bulk analyses of  12C/13C ratios 

that are approximately solar (e.g. Lewis et al. 1987) and N isotopic compositions 

very  similar  to  those  seen  in  Jupiter’s  atmosphere  (Owen  et  al.  2001).  This 

suggests  that  a  significant  fraction  of  the  nanodiamonds  contained  within 

primitive meteorites may have formed in the early Solar System and hence may 

not be presolar in origin.

1.3.8 Presolar Silicates

Despite being widely observed in the ISM and around young, AGB and massive 

stars  (e.g.  Malfait  et  al.  1998)  presolar  silicate  grains  were  only  recently 

discovered in primitive meteorites (Nguyen and Zinner 2004, Nagashima et al. 

2004, Nguyen et al. 2007) and IDPs (Messenger et al. 2003). This is partly due to 

silicates  being  more  susceptible  than  SiC  and  graphite  to  processing  in  the 

meteorite parent body, and also the need to dissolve silicates in the harsh acid 

treatments required for SiC and graphite extraction (see Section 1.3.3). A further 

problem  is  locating  a  presolar  silicate  amongst  meteoritic  material  that  is 

dominated by silicates formed in the Solar System.

The  recent  discovery  of  presolar  silicates  is  the  result  of  the  high  spatial 

resolution of the NanoSIMS (e.g. Nguyen et al. 2007). This allows silicate grains 

containing anomalous isotopic ratios to be easily identified in-situ from those 

with  solar  compositions.  Initial  measurements  of  presolar  silicates  have 

highlighted  anomalous  O isotopic  ratios,  which  point  towards  origins  around 

RGB and AGB stars (Nguyen et al. 2007).

1.3.9 Presolar Oxides

Presolar oxide grains, including corundum, hibonite, spinel and titanium oxide, 

may be extracted from meteorites with acid treatments similar to those used for 

SiC and graphite (Nittler et al. 1997; 2008). Presolar oxide grains have also been 
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analyzed in-situ by searching for isotopically anomalous grains within meteorite 

matrix material (Nguyen et al. 2003).

Presolar oxides are sub-divided into four groups (I-IV) in accordance with their 

O isotopic compositions (Figure 1.13). Their O isotopic compositions, along with 

elements such as Mg and Cr, indicate an origin around RGB stars, O-rich AGB 

stars and Type II supernovae (Zinner et al. 2005).

Figure 1.13 Presolar oxides can be divided into four groups based upon their O isotopic  
compositions.  Groups 1-3 are believed to originate mainly from O-rich giant stars.  The 
origin of group 4 is still unresolved (from Nittler (2003)). 

1.3.10 Presolar Silicon Nitride

Few silicon nitride grains have been analyzed due to their rarity within primitive 

meteorites (~0.002ppm). Their isotopic compositions show 28Si and 15N excesses, 

characteristics  also  observed  in  SiC  X  grains.  They  also  contain  very  high 
26Al/27Al ratios consistent with a Type II supernovae origin (Nittler et al. 1995).
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1.4 CARBON IN THE SOLAR SYSTEM

The major aim of this research is to investigate the processing of presolar grains 

in the ISM. This can be done by studying pristine presolar grains isolated from 

meteorites  without  acids.  Therefore,  one  intention  was  to  use  the  gentle 

separation procedure of Tizard et al. (2005) to isolate pristine presolar graphite. 

To date no presolar graphite grains have been located in the resulting size and 

density fractions.  However,  carbonaceous grains  were present and subsequent 

analyses found them to contain evidence of processing in the early solar nebula. 

This  work  is  presented  in  Chapter  5.  Below  is  a  summary  of  the  current 

understanding of carbonaceous phases in primitive meteorites.

Carbon  is  found  throughout  the  Solar  System,  and  in  the  laboratory  is  now 

routinely analyzed within primitive meteorites (e.g. Brearley 1990, Amari et al. 

1993,  Alexander  et  al.  1998,  Sephton 2002,  Quirico  et  al.  2009),  IDPs  (e.g. 

Wopenka 1988, Flynn et al. 2003, Busemann et al. 2009) and cometary samples 

(e.g. Muñoz Caro et al. 2008, Rotundi et al. 2008). 

It has a large molecular and isotopic diversity that suggests formation through a 

variety of processes. Carbon in primitive samples is therefore thought to reflect a 

mixture of different materials derived from either the ISM or early solar nebula, 

which were subsequently modified on meteorite parent bodies (for reviews see 

Botta and Bada 2002, Sephton 2002, Pizzarello et al. 2006).

In  meteorites  carbon  is  divided  into  soluble  and  insoluble  fractions.  Soluble 

organic carbon in carbonaceous chondrites (meteorites with a carbon-rich matrix) 

comprises of a complex suite of compounds that include species such as aromatic 

and aliphatic hydrocarbons (PAH), amino acids and small methane and formic 

acid molecules.  However, most of the carbon, up to 99% in the Tagish Lake 

(ungrouped) meteorite (Pizzarello et al. 2001), is insoluble and can be extracted 

using HCL, HF and CsF acid treatments. The insoluble organic matter (IOM) is 

largely present as a complex, unstructured macromolecular material  similar to 

terrestrial kerogens (e.g. Kerridge et al. 1987).
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Analysis of the IOM shows it contains elemental and isotopic compositions that 

vary significantly between,  and also sometimes within,  chondrite  classes. The 

differences are believed to represent the effects of parent body processing of a 

potentially common precursor material (e.g. Alexander et al. 2007).

Some  IOM  has  retained  large  enrichments  in  D  and  15N  acquired  prior  to 

accretion  into  meteorite  parent  bodies.  These isotopic  anomalies  indicate  that 

part of the IOM probably originated in the ISM or the cold outer regions of the 

early solar nebula (Robert and Epstein 1982, Yang and Epstein 1983, Kerridge et 

al.  1987,  Busemann  et  al.  2006).  At  low  temperatures  (<50K)  cosmic-ray 

ionization  promotes  ion-molecule  reactions  and  isotopic  mass  fractionation, 

creating interstellar gas enriched in D and  15N (Millar et al. 1989, Aikawa and 

Herbst 1999, Sandford et al. 2001). Interstellar ice analogs can be converted into 

refractory organic compounds by UV radiation (Strazzulla et al. 2003, Ferini et 

al.  2004),  whilst  similar  materials  have  been astronomically  observed around 

newly formed stars (Gibb and Whittet 2002). 

In both acid extracted and untreated IOM residues there also exists a component 

of  more  structured carbon.  Although this  includes  the isotopically  anomalous 

presolar grains (e.g. SiC, graphite and nanodiamonds) described in Section 1.3, 

approximately 10% of IOM also consists of nano-metre sized aromatic carbon 

flakes, hollow or solid globules, and tubes (Garvie and Buseck 2004). 

Garvie and Buseck (2004; 2006) and Garvie et al. (2008) have used SEM and 

TEM  to  study  the  globules  and  tubes  in  carbonaceous  chondrite  matrices. 

Spherical  nano-globules  occur  ubiquitously  throughout  the  carbonaceous 

chondrites. They are present as both single particles, or clustered together, and 

have  either  solid  or  hollow  (possibly  vesicular)  cores.  Most  are  <50nm  in 

diameter although some individual particles up to ~2μm have been observed. The 

surfaces of globules are typically smooth or bumpy in appearance. Nano-tubes 

are less abundant than the globules. They appear “fluffy”, have hollow interiors 

and diameters of <100nm. 
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Nakamura-Messenger et al. (2006) used a NanoSIMS to obtain in-situ isotopic 

compositions of hollow nano-globules within Tagish Lake matrix material. The 

nano-globules  contained  large  D  and  15N  enrichments,  which  as  mentioned 

above, are consistent with an interstellar  or early nebula origin.  As the nano-

globules  had  walls,  ~100  –  200nm thick,  Nakamura-Messenger  et  al.  (2006) 

proposed that they were created by UV radiation from icy mantles condensed 

onto  grain  surfaces.  Exposure  to  radiation  converted  the  mantles  to  organic 

phases whilst the interior grains were shielded. If the interior grains were pre-

existing  ice  particles  then  they  may  have  volatilized  at  a  later  stage  leaving 

organic globules with hollow cores.

The heterogeneous compositions,  sizes and distributions of nano-globules and 

tubes in carbonaceous chondrites indicate that, like most IOM, they formed from 

multiple sources. Indeed, Busemann et al. (2006) and Remusat et al. (2010) have 

reported organic materials within the same meteorite that contain both extreme D 

enrichments  and  lower  δD  values,  possibly  reflecting  the  mixing  of  many 

different sets of organic particles prior to accretion. However, currently there is 

still little information available regarding the nature of the carbonaceous particles 

in IOM and further investigations are required to establish their origins in the 

ISM  or  early  solar  nebula,  and  to  determine  the  effects  of  processing  on 

meteorite parent bodies.
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1.5 THESIS AIMS AND OUTLINE

The main  aim of  this  research  is  to  investigate  processing  in  the  ISM using 

presolar grains extracted from primitive meteorites. As presolar grains condensed 

around stars prior to the formation of the Solar System, they must have been 

subjected to processing in the ISM and are expected to retain evidence of this.

One  way  to  study  the  grains  is  to  use  TOFSIMS,  which  allows  analysis  of 

multiple  elements  within  a  grain  during  a  single  measurement.  Subsequent 

measurements can be combined to give isotopic and elemental abundance depth-

profiles from individual presolar grains. The distribution of trace elements within 

the grains may have been significantly altered by interstellar processing.

Most presolar  grains  are  extracted  from their  host  meteorite  using harsh acid 

treatments. It has been argued that these treatments may also damage the surfaces 

of presolar grains. Any evidence of interstellar processing may therefore have 

been destroyed or altered by the acids, so ideally pristine presolar grains should 

be studied.

Constraining the affects of interstellar processing enables the complete history of 

individual presolar grains to be determined, and improves our understanding of 

the material from which the Solar System formed. 

Chapter 2: Describes the analytical techniques used in this research, including 

the NanoSIMS, SEM, TEM and Raman spectroscopy. The main analytical tool 

used was a new TOFSIMS instrument equipped with a  25kV Aun
+ liquid metal 

ion gun (LMIG). As a newly constructed instrument,  experimental procedures 

had to be developed prior to the analysis of presolar grains.

Chapter 3: Is adapted from a paper published in Rapid Communications in Mass  

Spectrometry. In order to accurately determine elemental abundances in presolar 

grains using TOFSIMS, it is necessary to measure standards similar in structure 

and composition  to  the sample  intended to be analyzed.  This  work describes 

measurements of a series of homogeneous silicate glasses, which were used to 
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calculate  relative  sensitivity  factors  (RSFs)  in  preparation  for  the  analysis  of 

presolar SiC grains. Au-cluster ion sources are rarely used for the analysis  of 

inorganic  samples  and comparisons  between different  Au-cluster  primary  ion 

species are made.

Chapter 4: Is presented as a paper ready for submission. The paper describes 

depth-profiles of a range of trace elements in presolar SiC grains obtained using 

TOFSIMS, in  presolar  SiC  grains.  Presolar  SiC  grains  experienced  several 

different environments; the circumstellar regions of their parent stars, the ISM, 

the  early  solar  nebula,  and  meteorite  parent  bodies,  before  arriving  in  the 

laboratory. The grains are likely to have undergone processing in each of these 

environments, evidence of which should be retained both on grain surfaces and 

within their internal structures and compositions.

Chapter 5: Is presented as a paper ready for submission. The paper describes the 

nature  of  amorphous  carbonaceous  grains  separated  from  the  Murchison 

meteorite  according  to  their  size  and  density.  It  should  be  noted  that  the 

separation  procedure  was  performed  by  Sean  Chapman  at  the  University  of 

Manchester. Based upon isotopic compositions measured using TOFSIMS and 

NanoSIMS,  and  structural  characteristics  determined  by Raman  spectroscopy 

and TEM analysis, possible origins of the amorphous carbonaceous grains are 

discussed.

Chapter 6: Provides a  summary of the thesis,  a  discussion of the research’s 

implications, and suggestions for future work.
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Chapter 2

Methodology and Analytical Techniques

The investigation of presolar grains and carbonaceous phases in the Murchison 

meteorite required the application of a range of analytical techniques. TOFSIMS 

was the main means of analysis, full details of which are provided below. This 

section  is  followed  by  descriptions  of  the  NanoSIMS,  environmental  SEM 

(ESEM), Raman and TEM techniques also used in this research.

2.1 TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY

TOFSIMS has been used in cosmochemistry since the early 1990’s (e.g. Stephan 

et al. 1991). Its ability to detect an entire mass spectrum quasi-simultaneously at 

high spatial resolution makes it a useful tool for element mapping and analyzing 

isotopic and elemental abundance ratios in extra-terrestrial  samples. As it is a 

destructive technique repeated measurements can be made to produce a depth-

profile through a sample. TOFSIMS was the main analytical technique used in 

this study.

2.1.1 Secondary Ion Mass Spectrometry

Figure 2.1 provides a schematic description of a TOFSIMS instrument. During 

SIMS  measurements  samples  are  bombarded  with  high  energy  primary  ions 

initiating the release of secondary particles from near-surface layers in a process 

known  as  sputtering.  The  secondary  particles  include  electrons,  atoms  and 

molecules, of which ≤1% are ionized (Stephan 2001). The secondary ions can be 

extracted away from the sample surface, detected and used to produce secondary 

ion  images.  In  TOFSIMS  secondary  ions  of  different  isotopic  species  are 

separated according to their time-of-flight from the sample to the detector.
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Figure 2.1 A schematic TOFSIMS instrument. A pulsed primary ion source bombards the 
sample, producing secondary ions that are extracted by acceleration in an electric field. The 
reflectron accounts for any spread in ion energies before they are mass separated.

Secondary ions are extracted away from the sample surface by acceleration in an 

electric  field.  The effects  of  acceleration  on  an  ion  species  of  mass  (m)  and 

charge (q) in an electric field with potential difference (V) is described as:

                                                            21
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where E is the energy of an ion and v is its velocity.

As the ions leave the electric field they will therefore have a velocity of:
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The secondary  ions  are  extracted  into  a  field-free  flight  tube  where  those of 

different isotopic species are separated according to their mass-to-charge ratio 

(m/q):

                                                             2
2

2m V t
q s

 =   
                                  (Eq. 2.3)

where t is the time taken by an ion to travel the length of the flight path (s).

Lighter  ions  have  higher  velocities  and  will  arrive  at  the  detector  ahead  of 

heavier ones. This enables all  masses to be detected separately.  The resulting 
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mass spectra consist of the ion m/q versus the number of secondary ions detected 

at each m/q.

Time focusing of secondary ions of any particular mass at the detector assumes 

mono-energetic  ions  (Eq.  2.1).  However,  the  sputtering  process  releases 

secondary ions with a wide spread of kinetic energies (peaking at ~10 – 20eV) 

(Figure 2.2). This causes secondary ions of the same mass to have a range of 

velocities and therefore varying flight times in the flight tube.

This  problem can be compensated  by the introduction  of a reflectron (Figure 

2.1). The reflectron consists of a series of annular rings connected by a chain of 

resistors to produce an evenly graded electric field, plus a guard mesh at the top. 

An opposing voltage to that of the extraction field is used initially to decelerate 

secondary ions and then to invert their flight paths. Secondary ions of the same 

mass but higher energy (and hence velocity) penetrate deeper into the reflectron, 

taking  longer  to  be  reversed  and  delaying  their  arrival  time  at  the  detector 

relative to lower energy ions. In this way ions of the same mass but with different 

energies can be time-focused at the detector.

Figure 2.2 Typical energy spread of atomic secondary ions after sputtering (after Tizard 
(2005)).
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Secondary ions are detected using a micro-channel plate detector (MCP). When a 

secondary ion strikes  the MCP it  is  converted  into an electrical  pulse that  is 

amplified and sent to a time-to-digital converter (TDC) on a computer. Electrical 

noise can be reduced by setting a threshold, over which a signal must be in order 

to be recorded. The TDC registers the arrival time of each pulse and converts 

them into a time-of-flight mass spectrum. 

2.1.2 Primary Ion Gun

The primary ion beam is focused into a spot on the sample using an aperture and 

two  lenses  (Figure  2.3).  The  spot  size  of  the  primary  ion  beam  is  entirely 

determined by the size of the aperture through which it passes. The smaller the 

aperture, the smaller the spot size and hence increased spatial resolution of the 

secondary ion  images.  However  smaller  spot  sizes  lead  to  less  beam current 

hitting  the sample,  which results  in decreased secondary ion yields.  For each 

measurement there must be a trade-off between the required spatial  resolution 

and obtaining useful secondary ion intensities.

Figure 2.3 Schematic diagram of the TOFSIMS primary ion gun and optics. The spot size of 
the beam is controlled by the aperture and focused onto the sample using lens 2. The beam 
is pulsed by applying a voltage to the blanking plates.

TOFSIMS uses a pulsed primary ion beam with lengths of up to several tens of 

nanoseconds. If the time between two primary ion pulses is very short, then it is 

possible for the lightest (i.e. fastest) secondary ions produced by the second pulse 

to overtake the heaviest (i.e. slowest) from the initial pulse. These ions would 

then be incorrectly identified at the detector. The flight time of all secondary ions 

produced  from  a  single  primary  ion  pulse  therefore  dictates  the  maximum 

repetition rate (~10kHz) of a measurement.
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Pulsing  of  the  primary  ion  beam results  in  low duty  cycles,  typically  ~10-4, 

meaning  long  measurement  times  are  required  to  achieve  good  counting 

statistics. However, this is partially compensated by the parallel detection of all 

secondary ions and also produces low sample consumption rates.

The  primary  ion  beam  is  pulsed  by  sending  it  through  two  blanking  plates 

(Figure 2.3). To blank the beam, i.e. prevent it from leaving the ion source, a 

potential difference between the plates is created by holding one plate at 200V 

and the other at ground. The beam is pulsed by applying pulses of 200V (the 

length of which can be altered to suit the operator’s requirements) to the plate at 

ground potential. During the pulse there is a net field across the blanking plates 

of zero that allows the beam to pass through the chamber.

Rapid pulsing of the primary ion beam can degrade the spatial resolution of the 

ion focus on the sample. The spatial resolution can be improved by optimizing 

the  ion  source  for  “minimum motion”.  Achieving  minimum motion  involves 

lessening the movement of the primary ion beam on the sample during beam 

pulsing. This is done by centring the beam crossover focus between the blanking 

plates  (using  lens  1 on  Figure  2.3)  and correctly  positioning  the  path  of  the 

primary ion beam through the blanking aperture until no movement in the image 

is observed when blanking and un-blanking the beam. Once minimum motion is 

complete, final focusing of the beam on the sample can be carried out and any 

stigmatism in the image can be corrected for.

Sample charging can cause the primary ion beam to be perturbed close to the 

sample surface and may also affect the extraction field and kinetic energies of 

secondary ions. To compensate for sample charging an electron flood gun may 

be used. Sample charging was not an issue in this study and charge compensation 

was never applied.

2.1.3 Mass Resolution

Mass resolution refers to the ability to discriminate between two different peaks 

in  a  mass  spectrum  (m/δm).  Interferences  in  the  spectrum  can  come  from 
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hydrocarbons, oxides, hydroxides and hydrides along with isobaric interferences 

(nuclides  of  different  elements  with  the  same  nominal  mass).  Typical 

hydrocarbons  have  δm  (relative  to  an  atomic  species)  of  >0.01  daltons  and 

hydrides δm ~0.007 daltons requiring m/δm of <2000 and ~3000 respectively.

In TOFSIMS the mass resolution is determined by the resolution of the mass 

analyzer (Ran), the time resolution of the detector and electronics system (treg), 

and the length of the ionization event (i.e. length of the primary ion pulse) (tp). 

The mass resolution of an instrument can be described as:
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where  c  is  a  constant  dependent  upon  the  length  of  the  flight  path  and  the 

secondary ion extraction voltage (from Stephan 2001).

For a given mass analyzer and detector, the mass resolution depends upon the 

length of the ionization event. Using shorter primary ion pulses will result  in 

greater mass resolution. In theory mass resolutions of up ~10,000 are possible for 

the mass analyzer used in this research. However in practice, mass resolution was 

limited to 3000 – 4000. This may be due to several factors, including imperfect 

time-focusing of secondary ions in the reflectron, angular spread of secondary 

ions and the wide acceptance cone of the secondary ion extraction optics, or the 

topography of the sample.

Measurements can be performed using either a “normal” or “delayed” secondary 

ion extraction technique. In normal extraction the primary ions impact the sample 

whilst it is held at high potential. Secondary ions are extracted continuously for 

the duration of the primary ion pulse. High mass resolution is achieved using 

very short primary ion pulses (~2 – 3ns), which also lead to decreased secondary 

ion intensities.

In delayed secondary ion extraction, long primary ion pulses (~40ns) impact the 

sample whilst it is at ground potential. Secondary ions formed earlier in the pulse 

travel further from the sample than those formed towards the end. The sample 
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potential can then be switched on with an extremely fast rise-time (<10ns). This 

accelerates the secondary ions, with those formed earliest accelerated the least 

due to their greater height above the sample surface. The secondary ions are then 

time-focused  at  the  detector  by  the  two-stage  reflectron.  Delayed  extraction 

enables high mass resolution and maintains useful secondary ion intensities. The 

longer pulse lengths of the primary ion beam also aid in obtaining high spatial 

resolution.

The use of delayed extraction creates mass fractionation across the secondary ion 

spectrum. During normal extraction the sample potential is on for the duration of 

the primary ion pulse. Under these conditions approximately every secondary ion 

of each mass is extracted into the TOF-analyzer and detected. In contrast, with 

delayed extraction the sample potential is switched on at the end of each primary 

ion pulse. The secondary ions therefore have a period of time in which they can 

become dispersed above the sample. Those no longer below the extraction cone 

are not  extracted  and detected.  The result  is  that  a  smaller  percentage  of the 

lighter  ions,  which  travel  faster  and  become  more  dispersed,  are  extracted 

relative to heavier ions. The effects of this are discussed in Chapter 3.

When the achievable mass resolution is insufficient to resolve interferences,  a 

peak deconvolution technique, such as that described by Stephan (2001), may be 

applied. This involves using an unperturbed isotope of the element that requires 

separation as an internal  standard peak.  For example,  to  separate  the hydride 

peak  24Mg1H+ from  25Mg+,  the  24Mg+ peak  shape  can  be  used  as  the  internal 

standard. The peak is fitted to the low mass edge of the spectrum at 25amu. The 
25Mg/24Mg isotopic ratio is given by the scaling factor between the two peaks.

2.1.4 Isotopic Ratios

Isotopic ratios are often given in the delta notation (δ). This shows the amount of 

deviation of the isotopic ratio in the sample compared to its known value in a 

standard. It is described as:
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where  δ(E) is the isotope ratio in permil (‰),  Emeasured is the measured isotope 

ratio in the sample and Estandard the known isotope ratio of a standard.

As TOFSIMS collects an entire mass spectrum, it is possible to determine many 

isotopic ratios from a sample in a single analysis providing that interferences can 

be  resolved.  These  isotopic  ratios  must,  however,  be  corrected  for  mass 

fractionation.

Mass fractionation in a measurement is largely caused by the sputtering process. 

For  any particular  element  in  a  sample  its  lighter  isotopes  will  have  weaker 

bonding  energies  than  its  heavier  isotopes.  When  sputtered  by  high  energy 

primary  ions  the  lighter  isotopes  are  more  easily  released  from  the  sample 

surface. Also, for a given element’s energy spectrum, the lighter isotopes will 

move faster than the heavier ones.

However, the situation is complicated by the matrix effect. The probability that a 

particular  element  is  ionized  during  sputtering  depends  upon  the  chemical 

environment in which it is bound, the crystalline structure and orientation of a 

sample, and how the energy of the primary ions is dispersed within the sample. 

The relative ionization probabilities  for different  elements,  and in some cases 

even  different  isotopes  of  the  same  element,  can  therefore  vary  significantly 

during analyses. 

Further mass fractionation can also be caused in the instrument by variations in 

the transmission and detection efficiencies of secondary ion species.

 

To correct for mass fractionation it is necessary to measure a series of standards 

with well known isotopic compositions and similar in composition to the samples 

to be analyzed. Differences between the measured isotopic composition of the 

standard and the known values are attributed to mass fractionation effects. These 

deviations can then be used to correct isotopic ratios obtained from unknown 

samples.
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In this study measured isotopic ratios were corrected for mass fractionation using 

the values of  Henkel et al. (2007b), which provides a correction for a range of 

isotopic ratios based upon multiple analyses of several silicate standards.

2.1.5 Elemental Abundances

Due to matrix effects the ionization efficiency of any particular element varies 

for different sample types, making quantitative elemental abundances difficult to 

determine by SIMS. 

In  TOFSIMS  it  is  most  practical  to  determine  elemental  abundance  ratios 

normalized to a reference element (usually Si). These ratios can be quantified 

using RSFs that  are obtained by measuring standards with a known chemical 

composition as similar as possible to the sample to be analyzed. Standards must 

be very homogeneous and contain well known abundances of the elements of 

interest. RSFs can be expressed as:
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where  E is the element of interest,  EREF the reference element,  I the measured 

secondary ion intensity and A the atomic abundance in the standard.

Prior to measuring trace element abundances within presolar SiC grains in this 

study, an important step was to accurately determine RSFs for the elements of 

interest during analysis with Au+ ions. This work is presented in Chapter 3. 

Due to the lack of a SiC standard with a wide range of known trace element 

abundances, seven well characterized silicate standards were analyzed using Au+ 

(along with Au2
+ and Au3

+) ions to obtain RSFs (relative to Si) for Li, B, O, Na, 

Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Rb, Sr, Cs and Ba. These RSFs were used to  

calculate  trace  element  abundances  in  analyzed  presolar  SiC  grains.  A  SiC 

standard,  for  which  only Al,  Ca and Fe abundances  are  quantified,  was also 

analyzed. The effects of using RSFs acquired from silicate and SiC materials to 

quantify  trace  element  abundances  in  presolar  SiC  grains  are  discussed  in 

Chapter 4.
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2.1.6 Interstellar Dust Laser Explorer (IDLE3)

For this study a new TOFSIMS instrument, the Interstellar Dust Laser Explorer  

(IDLE3),  was used (Figure 2.4).  This instrument  was built  within the Isotope 

Geochemistry and Cosmochemistry Group at the School of Earth, Atmospheric 

and Environmental Sciences, University of Manchester, U.K. Earlier versions of 

the instrument based upon the designs of Braun et al. (1998), were previously 

described by Henkel et al. (2006; 2007b).

IDLE3  is  equipped  with  a  25kV  Aun
+ LMIG  (Davies  et  al.  2003,  Hill  and 

Blenkinsopp  2004).  A  Wien  filter  allows  a  choice  of  primary  ion  species 

including Au+,  Au2
+ and Au3

+ (plus AuGe+ and Ge+ as the source is a Au:Ge 

alloy).  Although not  used in  this  study,  the  instrument  also  has  a  5kV Ar/O 

duoplasmatron  source  and  a  fluorine  excimer  laser  for  post-ionization  of 

secondary  neutrals.  Both  ion  sources  were  supplied  by  Ionoptika  Ltd, 

Southampton, U.K.

The use of cluster ion species, such as Au2
+ and Au3

+, can produce significant 

secondary ion yield enhancements for high mass organic molecules (Benguerba 

et al. 1991, Davies et al. 2003). In Chapter 3 it is shown that Au2
+ and Au3

+ also 

boost secondary ion yields  when analyzing inorganic samples  but that  this  is 

counteracted  by  the  lower  primary  ion  currents  achievable  when  using  these 

primary ion species.

Secondary ions are extracted by biasing the sample stage from ground potential 

to 1400V. They are detected using a time-of-flight mass spectrometer  (R-500 

from Kore Technology,  Ely,  U.K.), consisting of a two-stage reflectron and a 

MCP detector biased  to ±2.5kV for  secondary ion post acceleration. The TDC 

has a time resolution of 250ps.

The LMIG can provide primary ion currents between 10pA to 10nA depending 

upon the primary ion species  and aperture size selected.  To obtain both high 

spatial  resolutions  and  secondary  ion  intensities,  all  measurements  of  extra-

terrestrial  samples  in this study were made using Au+ primary ions through a 
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300μm aperture.  This  provided currents  (DC)  on the  sample  of  ~1nA and a 

spatial resolution of ~0.5μm when the primary ion beam was pulsed.

Figure 2.4 highlights the main components of the IDLE3 instrument. Samples 

can be easily transferred and analyzed in the sample analysis chamber (SAC). 

The SAC is kept at pressures of ~10-9  mbar by an ion pump and Ti sublimation 

pump.

The LMIG can be operated in a direct-current (DC) mode. Sputtering with the 

DC-beam produces secondary electrons  from the sample that  can be used for 

imaging. Rastering the DC-beam over the sample can “clean” the sample surface. 

The  subsequent  removal  of  material  allows  depth-profiling  through  samples. 

There is an electron flood gun to compensate sample charging.

Figure 2.4 Sketch of IDLE3 highlighting its main components. Samples pass through the 
preparation  chamber  into  the  sample  analysis  chamber  (SAC),  where  they  can  be 
bombarded  by  primary  ions  from  the  LMIG  or  duoplasmatron.  Secondary  ions  are 
extracted into the time-of-flight analyzer (after Henkel et al. (2007b)).

2.1.7 Depth-Profiling

A major aim of this study is to determine the isotopic compositions and trace 

element distributions in presolar SiC grains using TOFSIMS. As IDLE3 had only 
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recently  been built  at  the start  of  this  research,  time was spent  developing a 

rigorous  experimental  procedure  that  could  be  used  to  analyze  the  grains. 

Initially this involved the measurement of silicate standards in order to calculate 

the RSFs needed to quantify elemental abundances in presolar SiC grains.

A depth-profiling technique was then tested in preparation for SiC analysis by 

applying it to a silicate grain (similar in size to presolar SiC grains) isolated from 

Murchison matrix material. Silicate grains were deposited upon cleaned (through 

ultrasonication in isopropanol and acetone) Au-foils and located using an ESEM, 

i.e. following the same procedure as that required to locate presolar SiC grains 

(see Chapter 4).

A DC-beam was rastered over a large area that included the silicate grain being 

analyzed, to remove hydrocarbons deposited on the sample surface and to also 

start sputtering into the grain. The sputter rate of Au+ primary ions into silicate 

material was determined by sputtering a silicate glass with a known primary ion 

dose and measuring the depth of the resulting crater (see Chapter 3). Using this 

sputter rate, and by recording the primary ion beam current, the length of time 

the beam was applied and the field-of-view over which it was applied, it  was 

possible to estimate the depth to which a grain had been sputtered. Although this 

estimate relies upon assuming sputter rates in silicate glass and SiC were similar, 

this was further calibrated by re-imaging grains that had been partially sputtered 

through using the ESEM.

Data was collected using a pulsed primary ion beam rastered over the silicate 

grain surface. The field-of-view over which the beam was rastered was set as 

small as possible so that the maximum amount of time was spent analyzing the 

grain.  This  meant  that  nearly all  pixels  in  the  resulting  secondary ion  image 

included  mass  spectra  from the  grain  and  not  the  surrounding  Au-foil.  The 

disadvantage was that any significant shift in the measurement could cause the 

grain to leave the field-of-view. Shifts could be caused by drifting of the sample 

stage or instabilities in the electronics moving the position of the primary ion 

beam. The size of the field-of-view was therefore often set slightly larger than 

the grain size to allow for this.
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High mass resolution analyses were required to resolve interferences in the mass 

spectra. To maintain both high mass resolutions and the practical secondary ion 

intensities needed to measure trace elements in presolar SiC grains, long primary 

ion pulses combined with a delayed secondary ion extraction method were used 

(see Section 2.1.3).

After each SIMS measurement a grain was further sputtered using the DC-beam 

before the next measurement was started. This combination of sputtering with 

both  the  DC-beam  and  then  the  pulsed  beam  used  for  data  collection, 

continuously removed material from the grain. Each grain was analyzed until it 

had been destroyed and a complete depth-profile had been obtained.

2.1.8 Data Processing

Data was acquired by rastering a pulsed primary ion beam over a field-of-view 

and collected using the “Bio-TOF” software (initially written by Nick Winograd, 

Penn State University, U.S.A., and since adapted by Andreas Wucher, University 

of Duisberg-Essen, Germany, and Torsten Henkel and Detlef Rost, University of 

Manchester, U.K.). In this software the number of pixels in each secondary ion 

image and the number of primary ion shots per pixel could be set. Each pixel in 

an image contained a  complete  mass  spectrum and each image was recorded 

separately. 

Data  was  processed  offline  using  a  combination  of  the  “TOFCmd”  software 

(written by Detlef  Rost,  University of Manchester,  U.K.) and the “TSTSpec” 

software package (written by Thomas Stephan, University of Chicago, U.S.A.).

The secondary ion images were firstly loaded into TOFCmd. Each secondary ion 

frame was corrected for any shift due to stage movement, temperature changes or 

electronic instabilities that occurred during the measurement. 

During a measurement the primary ion source emission could “drop-out”, i.e. no 

primary ion current was hitting the sample so no secondary ion spectra  were 
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collected during this time. The TOFCmd software could be used to remove any 

of these unwanted frames.

From the remaining frames a Region of Interest  (ROI) was defined and only 

spectra from this area saved as an Ascii.txt file that could be opened in TSTSpec. 

When analyzing presolar SiC grains the application of a ROI ensured that no 

background signal from the Au-foil contributed to the grain spectrum.

In TSTSpec the mass spectrum was analyzed. A mass calibration was performed 

using  well  known  undisturbed  peaks  such  as  23Na+.  Each  peak  in  the  mass 

spectrum  was  assigned  to  a  mass  and  the  peak  integral  was  corrected  for 

background contribution by selecting areas left and right of the peak.

A dead time correction (~40ns, Stephan et al. 1993, Stephan 2001) was applied 

to account for the non-detection of secondary ions arriving in quick succession 

after another counted ion; an effect created by the response time of the mass 

spectrometer.

Measured  isotopic  and  elemental  abundance  ratios  were  then  extracted  from 

TSTSpec for  mass  fractionation  corrections  and application  of  RSFs.  If  peak 

deconvolution techniques were required these could also be performed at this 

stage.
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2.2 NanoSIMS

The recent development of the Cameca NanoSIMS ion probe has led to rapid 

progress in the field of cosmochemistry due to high spatial resolutions and high 

secondary ion transmission (for a review see Hoppe 2006). The NanoSIMS has 

been applied to a wide variety of extra-terrestrial samples including meteoritic 

matrix  components  (e.g.  Mostefaoui  et  al.  2000,  Bland  et  al.  2007,  Ito  and 

Messenger 2008, Remusat et al. 2009), presolar grains (e.g. Besmehn and Hoppe 

2003, Zinner et al. 2003, Nguyen and Zinner 2004, Hoppe et al. 2010), IDPs (e.g. 

Floss et al. 2006, Busemann et al. 2009) and samples returned by the Stardust 

mission (e.g. McKeegan et al. 2006, Stadermann et al. 2008). Here, it has been 

used  to  determine  the  isotopic  composition  of  the  amorphous  carbonaceous 

grains discussed in Chapter 5. The NanoSIMS is a commercial instrument and 

there are now several located at institutions across the world, including the Open 

University, U.K.

Like TOFSIMS, ion  probes, such as the NanoSIMS, use a finely focused high 

energy primary  ion  beam to  produce  secondary  ions  from a  sample  surface. 

During ion microprobe analysis the primary ion beam is constantly applied to the 

sample (i.e. it is not pulsed) resulting in higher signal rates and better precision 

than can be achieved with TOFSIMS. The disadvantage of ion microprobes is 

that only several isotopic species of interest can be analyzed simultaneously so 

not all information can be obtained from a sample.

The NanoSIMS has two primary ion sources: a Cs+ surface ionization source that 

can  provide  spot  sizes  on  the  sample  of  ~50nm,  and  an  O - duo-plasmatron 

source. Secondary ions are extracted away from the sample surface with electric 

fields towards a double-focusing mass spectrometer. 

Isotopic species of interest are separated by the double-focusing magnetic sector 

mass spectrometer and then detected using electron multipliers. The NanoSIMS 

at the Open University is equipped with seven electron multipliers (six of which 

have adjustable positions) for detecting secondary ion signals. There is also a 
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photomultiplier  for secondary electron imaging and several Faraday cups (not 

used in this study) for high precision measurements. 

The  NanoSIMS  provides  significantly  improved  spatial  resolutions  and 

secondary  ion  yields  at  high  mass  resolutions  over  older  generations  of  ion 

probes  (e.g.  the  Cameca IMS-3f).  These improvements  in  the NanoSIMS are 

largely due to the co-axial design of the primary and secondary ion beams. 

Figure 2.5 shows that in the NanoSIMS the primary ion beam impacts the sample 

with  a  normal  angle  of  incidence.  This  allows  the  immersion  lens  of  the 

NanoSIMS, which focuses the primary ion beam and collects the secondary ions, 

to  be placed much  closer  to  the  sample  surface  than  in  previous  ion  probes. 

Smaller  spot  sizes are achievable,  whilst  focusing of the secondary ion beam 

takes place earlier. This decreases the energy spread of the secondary ions and 

leads to higher mass resolutions.

Figure 2.5 Schematic diagram of the co-axial design of the NanoSIMS. The primary ion 
beam impacts the sample at a normal angle of incidence, allowing the extraction optics to be 
placed closer to the sample surface (after Davidson (2010)). 

72



Achievable mass  resolutions  for  the  NanoSIMS  are  m/δm ~6000  making  it 

suitable for determining the 2D/1H, 13C/12C, 15N/14N and 18O/16O ratios required in 

this work.

Analyses can be made either as spot measurements or by rastering the primary 

ion beam over a selected area. The field-of-view, number of pixels in each image 

and the number of scans acquired can be adjusted according to the requirements 

for the sample  being analyzed.  Secondary ion maps for each isotopic species 

analyzed  are  recorded  for  offline  analysis.  Full  details  of  NanoSIMS 

measurements made as part of this study are provided in Chapter 5.

NanoSIMS data was processed using the “L’IMAGE” software (written by Larry 

Nittler,  Carnegie  Institution,  U.S.A).  In  the  software  it  is  possible  to  remove 

anomalous scans, monitor secondary ion count rates over an entire measurement, 

combine all secondary ion images to give a total integrated image and calculate 

isotopic ratios and ratio images. Dead time corrections (~44ns) can be made and 

a  shift  correction  applied  to  each  individual  scan.  Davidson  (2010)  reported 

typical shifts in both the x and y directions of ~200nm during analyses lasting 

approximately one hour. The ROI of each image can be defined so that only 

“useful” spectra are used to calculate isotopic ratios.

As  with  TOFSIMS,  isotopic  ratios  must  be  corrected  for  mass  fractionation 

caused  by  factors  such  as  differential  sample  sputtering,  variations  in 

transmission and the detection efficiencies of electron multipliers. Again this is 

done by measuring known standards that have well characterized isotopic ratios 

and are as similar  as possible  to  the sample being analyzed.  The analyses  of 

standards  and  the  mass  fractionation  corrections  applied  for  NanoSIMS 

measurements in this study are fully described in Chapter 5.
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2.3 ENVIRONMENTAL SCANNING ELECTRON MICROSCOPE (ESEM)

To obtain high resolution images of samples in this study it was necessary to use 

a SEM. The instrument used was a Phillips XL30 ESEM based in the School of 

Earth, Atmospheric and Environmental Sciences at the University of Manchester. 

It  is equipped with detectors for secondary electrons,  back scattered electrons 

(BSE) and energy dispersive X-ray (EDX) analysis. Although not used in this 

study the ESEM also has  a  cryo-stage and is  able  to  operate  at  low vacuum 

pressures to enable analysis of biological samples.

A high energy electron beam focused onto the surface of a sample causes the 

release  of  secondary electrons  and characteristic  X-rays.  Using differences  in 

electric potential the secondary electrons can be directed towards a detector and 

used  to  produce  secondary  electron  images  of  the  sample.  It  is  possible  to 

achieve spatial resolutions of a few nanometres. Electrons from the beam may 

also be back-scattered by the sample and can be used to produce BSE images. 

When the primary electron beam hits an atom within the sample it can eject an 

electron from the inner shell. An electron from a higher energy shell will “fall 

back” to fill this space, with the release of an X-ray. As the energy of these X-

rays is characteristic of the atomic structure from which they originated (i.e. it 

represents  the  difference  in  energy  between  the  two  electron  shells),  energy 

dispersive  X-ray  analysis  can  provide  quantitative  elemental  compositions  of 

samples.

With the ESEM, EDX analysis was routinely used to determine the elemental 

composition of candidate presolar SiC grains and gently separated carbonaceous 

grains. High resolution images of all the grains of interest were acquired prior to 

any analyses. Often images of a grain were also recorded to show the effects of a 

particular  analytical  technique  i.e.  after  TOFSIMS  sputtering  or  Raman 

measurements. Electron beam energies during imaging and EDX analysis were 

kept  low,  typically  10  –  15kV,  in  order  to  minimise  damage  of  the  sample 

surface.
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2.4 RAMAN SPECTROSCOPY

Raman  spectroscopy  can  be  used  to  determine  the  molecular  structure  of  a 

sample. In cosmochemistry it has been used to study the nature of carbonaceous 

chondrites  (Quirico et  al.  2003; 2009,  Matrajt  et  al.  2004, Bonal et  al.  2006; 

2007, Busemann et al. 2007), IDPs (Wopenka 1988,  Muñoz Caro et al. 2006, 

Busemann et al. 2009, Davidson 2010) and cometary material (Muñoz Caro et al. 

2008,  Rotundi  et  al.  2008).  As  it  is  a  relatively  non-destructive  technique, 

analyses  may be combined with other analytical  measurements.  Here,  Raman 

spectroscopy  has  been  employed  to  characterize  the  crystalline  structure  of 

gently separated carbonaceous grains.

In Raman spectroscopy a laser is used to excite the sample surface. Photons of 

the fundamental  laser  frequency interact  with vibrational  modes  of  molecular 

bonds or crystal lattices producing inelastically scattered photons. These photons 

can be detected, with the interactions causing their energy to be shifted either up 

or  down.  Raman  band  positions  are  therefore  given  as  shifts  relative  to  the 

wavelength of the exciting laser. Raman analyses in this study were undertaken 

using a Horiba Scientific LabRAM 300 Raman microscope with a 632nm He:Ne 

exciting laser at  the School of Chemical  Engineering and Analytical  Science, 

University of Manchester, U.K. The spectral resolution was ~1 – 2Δcm-1.

Raman  spectroscopy  is  a  particularly  useful  tool  for  studying  carbonaceous 

materials  (e.g.  Wopenka and Pasteris  1993).  Raman spectra  from carbon rich 

samples are dominated by two bands; the D (“disordered”) and G (“graphitic”) 

bands,  which  occur  at  positions  of  1355cm-1 and  1581cm-1 respectively.  The 

relative intensities of the bands, plus their central peak positions and peak widths 

provide information regarding the structural order of the carbon in the sample. 

For example, pure graphite only produces the G-band. The D-band is created by 

defects, crystal boundary effects, polycrystallinity and small  domain sizes. An 

increase  in  D-band  intensity  is  therefore  an  indication  of  increasing  disorder 

within the carbon structure. If the carbon is significantly disordered then there is 

also a broadening of both the D and G band peak widths, while the presence of 

amorphous carbon causes the D and G bands to merge together. Figure 2.7 shows 
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examples  of  Raman  spectra  from  crystallized  graphite,  through  increasingly 

disordered, to finally amorphous carbon.

Figure  2.6  Raman  carbon  spectra  of  fragments  of  IOM  from  a  selection  of  primitive 
chondrites, amorphous carbon and terrestrial coal. The carbon spectra become increasingly 
ordered from top to bottom (from Busemann et al. (2007)).

Collected Raman spectra were fitted using the Lorentzian profiles for the Raman 

D and G bands described by Busemann et al.  (2007). Cosmic-rays hitting the 

detector during a measurement produced spikes in the Raman spectra that could 

be corrected for during the fitting procedure. Fluorescence can also be an issue in 

Raman studies and leads to steep, irregularly shaped backgrounds. In some cases 

fluorescence  in  the  spectra  prevented  reliable  fitting  of  the  Raman  band 

parameters and these spectra were excluded.
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2.5 FOCUSED ION BEAM (FIB) AND TRANSMISSION ELECTRON 
MICROSCOPY (TEM)

TEM was used to investigate the internal structure of three carbonaceous grains 

and obtain very high resolution images of the grain cores. TEM requires that 

samples are electron transparent i.e. samples are thin enough for electrons to pass 

through  them.  It  was  therefore  not  possible  to  use  TEM on grains  and they 

instead had to be prepared as thin sections. These sections were produced using a 

Focused Ion Beam (FIB) system. Both FIB and TEM techniques were performed 

at the University of Glasgow, U.K. 

In recent years FIB techniques have become widely used to prepare samples in 

cosmochemistry including presolar grains (e.g. Stroud et al. 2002; 2003, Stroud 

and Bernatowicz 2005), IDPs (e.g. Graham et al. 2008, Busemann et al. 2009) 

and  meteoritic  matrix  components  (e.g.  Zega  et  al.  2007).  Often  a  sample 

prepared  using  a  FIB  system  is  suitable  for  combined 

TEM/NanoSIMS/synchrotron studies. For a review of the FIB technique and its 

applications see Wirth (2004) and Lee (2010).

The grains were prepared as thin sections using an FEI Nova 200 DualBeam FIB 

system. As a DualBeam system this instrument is equipped with both an electron 

gun, for secondary electron imaging of the process, and a 30kV Ga+ ion gun. The 

Ga+ ion gun is primarily for the milling and polishing of samples but can also be 

used for sample imaging. There is also a platinum source gas injection system, 

which is used to coat samples in order to protect them from sputtering by the ion 

beam. The procedure used to cut the grains was as follows;

1. Deposition of Pt-strap on the grain surface. Due to the geometric nature 

of  the  grains  there  was  a  shadowing  effect.  Platinum  was  poorly 

deposited between the grain and the substrate on the grain side furthest 

from  the  direction  in  which  the  Pt  was  injected.  This  problem  was 

overcome by rotating the sample so that the grain experienced similar 

levels of Pt deposition on both sides.
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2. 30kV Ga+ ion beam used to mill a trench on either side of the Pt-strap 

(destroying the uncoated sections of the grain). This produced a section 

through the grain approximately 0.5 – 1μm thick.

3. Section tilted to an angle of ~45° to the ion beam allowing it to be cut 

free at the base and along one edge.

4. Mo-needle welded to the Pt-strap on the side of the section not previously 

cut with the ion beam. Once the needle was securely attached this edge 

could also be cut free and the section lifted out and transported to a Cu 

TEM grid. It was then welded to the grid and the needle was cut free from 

the section.

5. Ion  beam used  to  polish  the  section  down  to  a  thickness  of  ~100  – 

200nm. Sputtering with the high energy ion beam can damage the sample 

and potentially lead to amorphization of its surface. The final polishing 

steps were therefore carried out using a 5kV ion beam to remove any 

“damaged” sample material.

An FEI Tecnai T20 TEM with a 200kV LaB6 electron source and Gatan image 

filter  was used to  study the  sections.  TEM works  by transmitting  a  beam of 

electrons through very thin samples to produce an image. Owing to the shorter 

wavelengths  of  electrons  relative  to  photons  it  is  possible  to  achieve  image 

resolutions of a few angstroms. 

Images  were  obtained  using  the  bright  field  mode.  Regions  in  the  sample 

consisting  of  material  of  a  higher  atomic  number,  or  which  are  thicker  than 

others,  transmit  fewer  electrons  and  therefore  appear  darker  in  the  images. 

Electrons  interacting  with  the  sample  also  undergo  Bragg  scattering.  It  is 

therefore possible  to obtain selected-area electron-diffraction (SAED) patterns 

from the sample. Crystalline materials produce characteristic diffraction patterns 

that  can  provide  information  regarding  their  internal  structure.  Diffraction 

patterns from crystalline and poly-crystalline materials are typically comprised of 

series of dots and rings, lacking in those from amorphous materials.  
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Chapter 3

Determination of relative sensitivity factors during secondary ion 
sputtering of silicate glasses by Au+, Au2

+ and Au3
+ ions

Ashley King1, Torsten Henkel1, Detlef Rost1, and Ian C. Lyon1

1The University of Manchester, School of Earth, Atmospheric and Environmental 
Sciences, Oxford Road, Manchester, M13 9PL, UK.

Adapted from: King A., Henkel T., Rost D. and Lyon I.C. (2010) Determination 
of relative sensitivity factors during secondary ion sputtering of silicate glasses 
by Au+, Au2

+, and Au3
+ ions,  Rapid Communications in Mass Spectrometry 24; 

15-20.

In  recent  years,  Au-cluster  ions  have  been  successfully  used  for  organic 

analysis in secondary ion mass spectrometry. Cluster ions, such as Au2
+ and 

Au3
+, can produce secondary ion yield enhancements of up to a factor of 300 

for high mass organic molecules with minimal sample damage. In this study, 

the potential for using Au+, Au2
+, and Au3

+ primary ions for the analysis of 

inorganic  samples  is  investigated  by  analyzing  a  range  of  silicate  glass 

standards. Practical secondary ion yields for both Au2
+ and Au3

+ ions are 

enhanced relative to those for Au+, consistent with their increased sputter 

rates. No elevation in ionization efficiency was found for the cluster primary 

ions.  Relative  sensitivity  factors  for  major  and  trace  elements  in  the 

standards showed no improvement in quantification with Au2
+ and Au3

+ ions 

over the use of Au+ ions. Higher achievable primary ion currents for Au+ 

ions compared to Au2
+ and Au3

+ allow for more precise analyses of elemental 

abundances within inorganic samples, making them the preferred choice, in 

contrast to the choice of Au2
+ and Au3

+ for the analysis of organic samples. 

The use of delayed secondary ion extraction can also boost secondary ion 

signals, although there is a loss of overall sensitivity.

3.1 INTRODUCTION

The need for high spatial resolution analysis of biological materials has driven 

the  development  of  primary ion sources  that  can  deliver  enhanced molecular 

secondary ion yields. One such example is the Au-cluster source, where Au2
+ and 
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Au3
+ ions have been shown to produce secondary ion yield enhancements for 

heavy  organic  molecules  (Benguerba  et  al.  1991,  Davies  et  al.  2003).  In 

particular, Au3
+ ions may produce high mass secondary ion yield enhancements 

of up to a factor of 60 relative to Au+ ions, and a factor of 300 relative to Ga+ 

(Davies et al. 2003) In most cases these increases can be attributed to the higher 

sputter  yields  achieved  with  Au-cluster  ions,  although  for  some  samples 

increased ionization efficiency may play a role (Winograd 2005, Wucher 2006).

In order to utilize Au-cluster ion sources for inorganic analyses, an understanding 

of  the  sputtering  and  ionization  process  during  Au+,  Au2
+,  and  Au3

+ 

measurements  of  such samples  is  required.  This  includes  determining  sputter 

rates, practical secondary ion yields (number of secondary ions per primary ion), 

and the effects  of increased secondary ion cluster formation under Au-cluster 

bombardment.

Accurate  quantification  of  elemental  abundances  in  secondary  ion  mass 

spectrometry (SIMS) can be difficult to achieve as the composition and crystal 

structure  of a  sample  can cause variations  in  sputter  rates  and secondary ion 

yields, the so-called matrix effect (Benninghoven et al. 1987, Wilson et al. 1989). 

It is therefore necessary to analyze standards of similar chemical composition 

and known elemental abundances to determine sensitivity factors relative to a 

major element. These relative sensitivity factors (RSF) may be expressed as:

                                                   )(/)(
)(/)()(

REF

REF

EAEA
EIEIERSF =                           (Eq. 3.1)

where  E is the element of interest,  EREF the reference element,  I the measured 

secondary ion intensity and A the atomic abundance in the standard.

We  have  measured  seven  silicate  glass  standards:  six  MPI-DING  standards, 

prepared by Jochum et al. (2000; 2006), and a NIST glass, SRM 610, in order to 

determine practical secondary ion yields and RSFs for a range of major and trace 

elements when using Au-cluster SIMS. As the abundances of Li, Mg, V, Cr, Cs, 

and Ba are not included on the original NIST certificate for SRM 610, these were 

80



instead taken from Pearce et al. (1997). Sputter rates for Au+, Au2
+, and Au3

+ ions 

have also been determined using standard SRM 610.

3.2 EXPERIMENTAL PROCEDURE

The standards  were  prepared  as  thin  sections  mounted  in  resin  on two glass 

slides.  One  slide  contained  MPI-DING  standards  KL2-G  (Kilauea  tholeiitic 

basalt glass), ATHO-G (Iceland rhyolite glass), and T1-G (Italian Alps quartz 

diorite  glass).  The  other  contained  standards  GOR132-G  (Gorgona  Island 

komatiite glass), StHs6/80-G (St. Helens andesitic ash glass), ML3B-G (Mauna 

Loa  tholeiitic  basalt  glass),  and  NIST  glass  SRM  610  (quartz  glass  matrix 

containing ∼500ppm of 61 elements). 

Standards were coated with a ~20nm layer of gold to ensure uniform electrical 

potential at the sample surface. Prior to analysis, a 1.1nA direct current (DC)-

beam was applied to large areas (up to 200μm × 200μm) of the standard to firstly 

sputter through this coating, and secondly to ensure that the analyzed area was in 

sputter equilibrium. 

For this study a new time-of-flight secondary ion mass spectrometry (TOFSIMS) 

instrument, built to the same design as our previously described Interstellar Dust  

Laser Explorer (IDLE) was used (Henkel et al. 2006; 2007b, see Chapter 2). This 

new instrument  is  equipped with  a  25kV Aun
+ liquid  metal  ion  gun (LMIG) 

constructed  by  Ionoptika  Ltd  (IOG  25Au)  (Davies  et  al.  2003,  Hill  and 

Blenkinsopp 2004).

The primary ion species were selected by mass using a Wien filter. Each standard 

was  analyzed  with  Au+,  Au2
+,  and  Au3

+ ions  with  nominal  currents  (DC)  of 

1.1nA, 0.13nA, and 0.094nA, respectively.  The secondary ions were detected 

using  a  time-of-flight  mass  spectrometer  (R-500  from  Kore  Technology), 

consisting of a two-stage reflectron and micro-channel plate detector (MCP) with 

secondary ion post-acceleration of 2.4kV.
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Sputter rates for Au-cluster ions in silicate glasses were determined by using DC 

beams of Au+, Au2
+, and Au3

+ to sputter uncoated 20μm × 20μm areas on SRM 

610. The primary ion (PI) dose for the Au+ beam was 9.36 × 1016 PI/cm2 (beam 

applied for 45s). For Au2
+ the dose was 2.96 × 1016 PI/cm2 (120s) and for Au3

+ it 

was 5.43 × 1016 PI/cm2 (300s). The depths of the resulting craters were measured 

using an atomic force microscope (AFM).

SIMS measurements involved rastering a pulsed primary ion beam over 20µm × 

20µm areas and recording each scan separately. These scans contained 128 × 128 

pixels, with 30 primary ion shots per pixel and each pixel containing a complete 

mass spectrum. 

High mass resolution (m/δm ~3000) was achieved by using “delayed extraction”. 

Here,  primary  ion  pulses,  ~40ns  long,  hit  the  sample  whilst  it  is  at  ground 

potential. Secondary ions formed early in the pulse travel further from the sample 

than those formed at the end. The sample potential is then switched to 1.5kV at 

~60ns after the start of the primary ion pulse. The secondary ions are accelerated 

towards the extractor, with those formed earliest being accelerated the least as 

they are now at a lower potential relative to earth. The secondary ions are then 

time-focused  at  the  detector  using  the  two-stage  reflectron.  Using  delayed 

extraction therefore allows high mass resolutions to be achieved despite using 

long primary ion pulses in order to boost secondary ion count rates. Longer pulse 

lengths  also  provide  better  spatial  resolution  for  analyses  as  this  normally 

deteriorates slightly when the primary ion beam is switched rapidly to produce 

very short pulses.

Disadvantages  of  the  delayed  extraction  technique  may  include  fractionation 

between different masses, along with varying peak-shapes and a change in mass 

resolution over the mass range. Therefore all standards, except T1-G and SRM 

610, were also measured using Au+ ions and “normal extraction”. Here, primary 

ions hit the sample in short time pulses (~2 – 3ns), with the sample already at 

high potential. Secondary ions are continuously extracted for the duration of the 

primary ion pulse.
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RSFs for  Au+,  Au2
+,  and  Au3

+ using  delayed  extraction,  as  well  as  Au+ with 

normal  extraction  were  calculated  according  to  Eq.  3.1,  with  Si  used  as  the 

reference element.  Measurements using Au2
+ and Au3

+ with normal  extraction 

were not made due to much lower secondary ion signals  and hence the long 

measurement times required. In some instances, several locations on the same 

standard were analyzed (marked in Tables 3.2 – 3.4 with *). In such cases, the 

presented RSFs for these standards are geometric means of those measurements. 

3.3 RESULTS

The depths of the craters produced by DC sputtering of SRM 610 were 28 ± 5nm 

for Au+, 21 ± 3nm for Au2
+, and 33 ± 3nm for Au3

+. These give sputter rates in 

silicate glass of 0.30 ± 0.05nm for 1015 PI/cm2 for Au+, 0.71 ± 0.11nm for Au2
+, 

and 0.61 ± 0.05nm for Au3
+.

Cluster ion sources are known to produce an increase in cluster secondary ion 

formation, which lowers the number of atomic secondary ions detected (Sun et 

al. 2005, Henkel et al. 2009). As the standards consist mainly of Si it may be 

expected that more Si-cluster ions will form compared to minor elements, when 

sputtered with Au2
+ and Au3

+ ions.

The total fraction of Si-ions detected as  28Si+ (reference element for the RSFs) 

decreased with increasing Au-cluster size (Table 3.1). The decrease was a factor 

of 1.52 ± 0.29 (1σ) between Au+ and Au2
+, and 1.84 ± 0.34 (1σ) between Au+ and 

Au3
+ and can be attributed to the observed increase in Si present as Si-cluster ions 

(Sin
+), oxides and hydroxides. Most other elements also formed more clusters in 

the Au2
+ and Au3

+ spectra, although the effects were less significant (Table 3.1).

Table 3.1 also contains practical secondary ion yields (number of secondary ions 

per primary ion) for major elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and 

Fe), determined from analyses of KL2-G with Au+, Au2
+, and Au3

+ ions. As each 

element  in  the  standard  has  a  different  concentration  (e.g.  Si  is  much  more 

abundant  than  other  elements),  practical  secondary  ion  yields  have  been 

normalized by each element’s atomic percent abundance in the standard. 

83



Figure 3.1 shows the practical secondary ion yields for Au2
+ and Au3

+ relative to 

those for Au+ (corrected values from Table 3.1), versus the first ionization energy 

(FIE) of the major elements. The data have also been corrected in order to take 

into account the increased presence of cluster secondary ions for each element 

when using Au2
+ and Au3

+ (i.e. for Si this correction is a factor of 1.52 ± 0.29 for 

Au2
+ and 1.84 ± 0.34 for Au3

+, see above). On average, the practical secondary 

ion yields increased by a factor of 2.16 ± 0.28 for Au2
+, and 2.58 ± 0.81 for Au3

+, 

relative to Au+.
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Figure 3.1 Practical secondary ion yields for Au2
+ and Au3

+ (relative to Au+) versus FIE. The 
data for each element have been corrected for the increased presence of cluster secondary 
ions when using Au2

+ and Au3
+. Dashed lines and associated values represent the relative 

increase in sputter rate measured for Au2
+ and Au3

+ ions. Error bars are 1σ.

Tables 3.2 – 3.5 list RSFs for all standards analyzed using Au+, Au2
+, and Au3

+ 

ions  and delayed  extraction,  and Au+ ions with normal  extraction.  Geometric 

means have been calculated for each data set as they are more suitable for ratios, 

such as the RSFs. Geometric standard deviations are also provided (both absolute 

and  relative  values)  and  reflect  the  variability  of  RSFs  across  the  measured 

standards. 
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In Tables 3.2 – 3.5, RSFs deviating more than 3σ from the geometric mean of a 

data  set  were  considered  to  be  potentially  anomalous.  Reasons  for  such 

anomalous  data  are  described  below  and,  if  appropriate,  these  outliers  were 

excluded from that particular data set and were not used to calculate RSFs.

In Table 3.2, anomalous values for Na, Al, K, and Ca were all associated with the 

measurement  of  standard StHs6/80-G.  Secondary ion images  of  this  standard 

show that all four elements were heterogeneously distributed relative to Si within 

the  measured  area.  Therefore,  all  data  for  these  elements  acquired  from this 

standard have subsequently been excluded.

An anomalous RSF value also occurred for the Au+ measurement of Sr in SRM 

610  (Table  3.2).  Strontium  was  not  found  to  be  heterogeneous  within  the 

measured area, nor were molecular interferences apparent in the mass spectrum. 

The anomalous value is therefore unexplained and has been retained in the data 

set.

RSFs for the major elements during delayed extraction displayed little variation 

across the standards when analyzed with Au+ ions (Table 3.2). Relative standard 

deviations for most of these elements ranged between 10 – 40%. Titanium was 

an exception with a slightly higher relative standard deviation of 69%. Under 

normal extraction conditions the relative standard deviations for most of these 

elements were between 10 – 78% (although Na had a relative standard deviation 

up to 169%, see Table 3.3). 

The trace elements (Li, B, Rb, Sr, Cs, and Ba), by definition, are found in lower 

abundances  within  the  standards.   The  relative  standard  deviations  for  trace 

element RSFs from Au+ ions with delayed extraction were between 19 – 182%. 

However, most elements (Rb, Sr, Cs, and Ba) were actually between 19 – 60%. 

Using normal extraction, most trace elements were between 26 – 86% (while Li 

and Rb extended this range up to 215%).
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Table 3.1 Practical secondary ion yields (number of secondary ions/number of primary ions) from Au +, Au2
+, and Au3

+ analysis of KL2-G. Each practical yield has 
been normalized by the elements atomic percent abundance in the standard. The Au n

+/Au+ ratios for each element have also been corrected for the increased 
presence of cluster secondary ions when using Au2

+ and Au3
+. Errors are 1σ.

Au+

(×10-5)
Au2

+

(×10-5)
Au3

+

(×10-5)
Au2

+/Au+ Cluster 
ions

Corrected
value

Au3
+/Au+ Cluster 

ions
Corrected

value
Na 469 ± 22 1130 ± 51 1420 ± 59 2.41 ± 0.22 1.01 ± 0.17 2.43 ± 0.63 3.03 ± 0.27 1.01 ± 0.19 3.06 ± 0.85
Mg 66.1 ± 3.3 136 ± 6 133 ± 5 2.06 ± 0.19 1.09 ± 0.22 2.25 ± 0.66 2.01 ± 0.18 1.16 ± 0.29 2.33 ± 0.79
Al 129 ± 7 244 ± 12 245 ± 11 1.89 ± 0.20 1.01 ± 0.21 1.91 ± 0.60 1.90 ± 0.19 1.24 ± 0.29 2.36 ± 0.79
Si 27.6 ± 1.5 48.4 ± 2.5 41.1 ± 1.9 1.75 ± 0.19 1.52 ± 0.29 2.66 ± 0.80 1.49 ± 0.15 1.84 ± 0.34 2.74 ± 0.78
K 1400 ± 72 3880 ± 198 6460 ± 306 2.77 ± 0.28 1.07 ± 0.23 2.96 ± 0.94 4.61 ± 0.46 1.08 ± 0.18 4.98 ± 1.33
Ca 154 ± 8 345 ± 19 435 ± 22 2.24 ± 0.24 1.06 ± 0.24 2.37 ± 0.79 2.82 ± 0.29 1.05 ± 0.23 2.96 ± 0.95
Ti 68.1 ± 3.9 143 ± 8 169 ± 9 2.09 ± 0.24 1.02 ± 0.21 2.13 ± 0.68 2.48 ± 0.27 1.05 ± 0.27 2.60 ± 0.95
V 66.8 ± 4.5 158 ± 14 172 ± 23 2.37 ± 0.37 1.02 ± 0.19 2.42 ± 0.83 2.57 ± 0.52 1.02 ± 0.26 2.62 ± 1.20
Cr 74.3 ± 7.7 152 ± 14 166 ± 41 2.05 ± 0.40 1.03 ± 0.21 2.11 ± 0.84 2.23 ± 0.78 1.07 ± 0.26 2.39 ± 1.41
Mn 63.3 ± 3.8 134 ± 9 168 ± 13 2.12 ± 0.27 1.03 ± 0.24 2.18 ± 0.79 2.65 ± 0.36 1.04 ± 0.29 2.76 ± 1.14
Fe 45.4 ± 2.6 92.6 ± 5.5 117 ± 7 2.04 ± 0.24 1.01 ± 0.21 2.06 ± 0.67 2.58 ± 0.30 1.02 ± 0.21 2.63 ± 0.85
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Table 3.2 RSFs for Au+ ions obtained using delayed extraction. All elements were measured as positive secondary ions. Data used to calculate geometric means is  
shown in bold. For reasons of exclusion see text. nd indicates insufficient counts in the mass spectrum and * indicates standards analyzed in more than one location,  
so given values are the geometric means.

 Li B O Na Mg Al Si K Ca Ti V Cr Mn Fe Rb Sr Cs Ba
                   

KL2-G 0.68 2.36 0.00098 16.39 2.85 4.35 1 53.09 5.46 3.10 2.57 2.51 2.19 1.67 54.40 4.12  nd 3.85
ATHO-G 1.23 1.85 0.00045 18.97 4.75 5.97 1 37.55 10.00 5.87 2.62 4.33 3.37 2.07 54.15 5.22 9.39 3.05

T1-G 3.96 3.23 0.00065 23.67 3.28 5.21 1 62.44 7.78 3.79 3.08 2.99 3.09 2.28 32.46 5.37 32.35 2.98
GOR132-G* 21.64 2.05 0.00094 40.78 5.05 4.90 1 72.95 9.50 4.00 3.02 3.20 2.79 1.89 nd nd 24.43 nd
StHs6/80-G 4.67  nd 0.00069 338.35 5.17 20.43 1 427.68 60.32 4.06 3.13 3.66 2.26 1.40 27.59 4.85 22.79 2.72
ML3B-G* 5.70 7.87 0.00092 21.44 4.47 4.90 1 41.24 7.37 3.27 3.14 4.07 2.79 1.93 50.41 4.75 nd 4.54
SRM 610 4.64 0.85 0.0013 28.90 4.99 5.87 1 45.93 13.85 4.08 5.87 5.50 3.40 4.44 67.38 16.75 19.31 4.76

                   
Geometric Mean 3.66 2.41 0.00081 23.89 4.27 5.17 1 50.81 8.63 3.95 3.22 3.64 2.81 2.10 45.57 5.95 20.08 3.57

Lower Stdev 2.36 1.17 0.00023 6.14 0.84 0.54 0 10.48 2.16 0.69 0.73 0.78 0.42 0.60 12.28 2.23 6.82 0.69
Upper Stdev 6.66 2.28 0.00031 8.26 1.05 0.60 0 13.21 2.88 0.83 0.94 1.00 0.50 0.85 16.81 3.57 10.33 0.86

Rel Lower Stdev (%) 65 49 28 26 20 10 0 21 25 21 23 21 15 29 27 38 34 19
Rel Upper Stdev (%) 182 95 39 35 25 12 0 26 33 69 29 27 18 40 37 60 51 24
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Table 3.3 RSFs for Au+ ions using normal extraction (see Table 3.2 for details of data presentation).

 Li B O Na Mg Al Si K Ca Ti V Cr Mn Fe Rb Sr Cs Ba
                   

KL2-G 9.16 6.95 0.0013 17.33 3.09 4.67 1 41.53 4.72 2.60 2.37 2.35 1.52 1.46 30.86 2.73 nd 1.58
ATHO-G 5.00 3.65 0.0013 6.38 6.53 4.98 1 15.51 6.15 2.63 6.13 7.52 2.29 1.65 7.84 3.06 27.38 1.41

GOR132-G* 85.33 1.40 0.0015 76.70 7.79 6.11 1 56.61 9.34 3.56 4.41 3.23 1.85 1.51 nd nd 30.54 nd 
StHs6/80-G 22.32  nd 0.0013 113.99 4.64 4.65 1 103.60 4.31 1.56 1.79 1.94 0.91 0.76 9.71 1.40 7.79 0.59

ML3B-G 84.01 4.20 0.0011 57.23 8.53 6.96 1 70.28 12.14 2.54 3.17 4.28 1.97 1.10 45.40 2.59 nd 1.85
                   

Geometric Mean 23.60 3.49 0.0013 26.39 5.74 5.61 1 40.01 7.57 2.49 3.25 3.43 1.63 1.25 18.07 2.35 18.67 1.25
Lower Stdev 16.10 1.54 0.00013 16.60 1.79 0.83 0 17.57 2.32 0.58 1.15 1.30 0.45 0.31 9.49 0.61 8.63 0.45
Upper Stdev 50.68 2.75 0.00015 44.72 2.59 0.97 0 31.32 3.34 0.76 1.78 2.09 0.61 0.41 19.99 0.83 16.04 0.70

Rel Lower Stdev (%) 68 44 10 63 31 15 0 44 31 23 35 38 27 25 53 26 46 36
Rel Upper Stdev (%) 215 79 11 169 45 17 0 78 44 30 55 61 38 33 111 35 86 56
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Table 3.4 RSFs for Au2
+ ions using delayed extraction (see Table 3.2 for details of data presentation).

 Li B O Na Mg Al Si K Ca Ti V Cr Mn Fe Rb Sr Cs Ba
                   

KL2-G 2.04  nd 0.0016 20.17 3.19 4.56 1 71.94 6.64 3.70 3.55 3.53 2.51 1.91 58.11 5.79 nd 3.70
ATHO-G 5.36 2.84 0.00077 60.99 10.76 13.23 1 303.93 72.99 7.75 nd nd 5.87 11.11 330.36 89.83 nd 21.01

T1-G 13.63 10.59 0.0010 68.60 4.37 9.27 1 218.72 14.97 6.01 6.50 23.29 4.91 4.61 100.06 20.89 nd 5.63
GOR132-G 27.83 2.72 0.0082 170.41 18.50 11.26 1 441.30 49.97 9.54 11.15 8.73 5.91 4.99 nd nd 81.85 nd
StHs6/80-G 16.70 nd 0.0042 187.00 14.25 12.31 1 424.18 53.23 12.93 19.80 29.59 17.85 9.26 240.07 38.55 nd 15.42
ML3B-G* 30.05 nd 0.0057 207.20 10.77 13.29 1 328.23 47.77 5.09 7.48 6.41 4.78 4.26 193.69 10.10 nd 9.61
SRM 610 36.59 2.46 0.0065 152.07 24.27 9.40 1 333.06 49.82 12.37 19.54 13.52 7.98 9.26 409.54 42.75 75.37 20.25

                   
Geometric Mean 13.37 3.77 0.0029 87.64 10.05 9.61 1 247.65 30.86 7.50 9.52 11.07 6.04 5.62 182.20 23.78 78.54 10.46

Lower Stdev 8.31 1.70 0.0017 48.24 4.99 2.92 0 110.33 17.59 2.63 4.36 5.75 2.55 2.44 89.67 14.31 3.17 5.01
Upper Stdev 21.99 3.09 0.0041 107.31 9.90 4.20 0 198.98 40.92 4.05 8.06 11.96 4.43 4.31 176.59 35.95 3.31 9.61

Rel Lower Stdev (%) 62 45 59 55 50 30 0 45 57 35 46 52 42 43 49 60 4 48
Rel Upper Stdev (%) 164 82 143 122 99 44 0 80 133 54 85 108 73 77 97 151 4 92
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Table 3.5 RSFs for Au3
+ ions using delayed extraction (see Table 3.2 for details of data presentation).

 Li B O Na Mg Al Si K Ca Ti V Cr Mn Fe Rb Sr Cs Ba
                   

KL2-G nd nd 0.0013 28.80 3.65 5.44 1 138.71 9.99 5.30 3.52 4.62 3.73 2.82 118.10 12.23 nd 8.33
ATHO-G nd nd 0.00081 38.66 8.18 11.47 1 435.57 53.76 10.48  nd  nd 4.64 2.41 703.82 42.97 nd 62.68

T1-G 12.34 nd 0.0020 77.91 5.33 10.01 1 288.26 17.20 7.77 10.77 nd 5.78 5.18 114.30 19.47 nd 11.38
GOR132-G 79.43 1.96 0.0025 27.67 13.14 9.98 1 411.06 32.83 6.36 5.73 5.61 2.80 4.22 nd nd 71.09 nd
StHs6/80-G 76.38 nd 0.0066 362.78 12.99 11.33 1 525.29 35.64 6.82 11.10 11.66 6.68 5.15 66.75 10.97 nd 4.85

ML3B-G  nd nd 0.0057 23.70 6.12 7.15 1 63.52 22.15 6.80 5.13 5.17 3.88 4.51 nd 30.92 nd nd
SRM 610 50.06 0.62 0.0050 192.43 22.05 11.69 1 590.99 47.60 3.95 7.48 17.93 5.29 7.85 119.87 41.83 78.90 27.89

                   
Geometric Mean 44.00 1.10 0.0027 35.56 8.67 8.97 1 254.03 26.15 6.52 6.73 7.75 4.52 4.30 101.94 22.93 74.89 15.17

Lower Stdev 23.34 0.48 0.0014 12.26 3.79 2.16 0 136.17 11.59 1.60 2.26 3.19 1.08 1.32 22.16 9.69 3.80 9.05
Upper Stdev 49.70 0.86 0.0029 18.72 6.74 2.84 0 293.51 20.83 2.12 3.40 5.42 1.43 1.91 28.32 16.78 4.01 22.46

Rel Lower Stdev (%) 53 44 53 34 44 24 0 54 44 25 34 41 24 31 22 42 5 60
Rel Upper Stdev (%) 113 78 111 53 78 32 0 116 80 33 50 70 32 44 28 73 5 148
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For Au2
+, during delayed extraction, the relative standard deviations for most of 

the major elements were 30 – 99%, although those for O, Na, Ca, and Cr were all  

above 100%. For the trace elements B, Rb, Cs, and Ba the range was 4 – 97%. 

Lithium was higher at 164%, and Sr was also high at 151% (Table 3.4). For Au3
+ 

the relative standard deviations ranged between 24 – 80% for the major elements 

(excluding O at 111% and K at 116%), and 5 – 78% for most trace elements 

(excluding Li at 113% and Ba at 148%, see Table 3.5).

RSFs  for  the  major  elements  obtained  using  Au2
+ and  Au3

+ ions  were 

significantly higher than those from Au+. On average, the increase between Au2
+ 

and Au+ was a factor of 2.8 (calculated as a geometric mean with lower and 

upper limits of 1.7 – 4.7). For Au3
+ the average increase in RSFs was a factor of 

2.4 (0.9 – 6.2) relative to Au+.

Figure 3.2 shows RSFs obtained using Au+ with delayed extraction, normalized 

to those from Au+ with normal extraction, versus element mass. As only five of 

the  seven  standards  were  analyzed  using  normal  extraction  only  the 

corresponding data from the delayed extraction measurements have been used to 

calculate the delayed RSFs plotted in Figure 3.2.

There is a systematic difference between the two sets of RSFs. In general, for the 

elements  lighter  than Si (Li,  B,  O, Na, Mg, and Al) the ratio  between RSFs 

obtained using delayed extraction and those using normal is <1, while for the 

elements heavier than Si (K, Ca, Ti, V, Cr, Mn, Fe, Rb, Sr, Cs, and Ba) this ratio 

is >1.

As  the  initial  kinetic  energies  of  secondary  ions  are  very  similar,  it  can  be 

assumed that their velocities are proportional to the inverse square-root of their 

mass.  The  dispersion  of  the  secondary  ions  above  the  sample  surface  is 

proportional to their velocity and hence any elemental fractionation should be 

proportional  to the square-root of elemental mass.  The data in Figure 3.2 has 

therefore been fitted with a square-root function, which fits reasonably well to 

the data.
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Figure  3.2  RSFs  for  delayed  extraction  relative  to  RSFs  for  normal  extraction,  versus 
element  mass.  The  data  is  taken  from  the  standards  KL2-G,  ATHO-G,  GOR132-G, 
StHs6/80-G, and ML3B-G and has been fitted with a square-root function ( xaxf =)( ). 
For elements lighter than Si the ratio is typically <1, and for heavier elements >1. Error  
bars are 1σ.

3.4 DISCUSSION

The observed increase in the sputter rate of Au2
+ ions relative to Au+ by a factor 

of 2.4 ± 0.7 explains the enhancement in practical secondary ion yields for the 

major elements analyzed with Au2
+, as seen in Figure 3.1. There appears to be no 

significant change in ionization efficiencies. 

For Au3
+ there is an increase by a factor of 2.0 ± 0.5 in sputter rate relative to 

Au+.  Again,  the  practical  secondary  ion  yield  increases  for  nearly  all  major 

elements agree within error with this change in sputter rate. The exception is K 

(Figure 3.1), which has a practical secondary ion yield increase of 4.98 ± 1.33 

times greater  than that  of Au+.  Although we cannot  fully exclude that  this  is 

linked to its low FIE and potentially changing ionization efficiencies this seems 

unlikely as there is still an overlap for the 2σ errors.
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RSFs for major and trace elements in silicate glasses obtained using Au+ primary 

ions were less variable across the standards than those from Au2
+, or Au3

+. Figure 

3.3 shows that the standard deviations for RSFs measured in different silicate 

standards when using Au+ are comparable to those reported for other primary 

ions  sources  such  as  Ga+ (Henkel  et  al.  2007b).  There  appears  to  be  no 

improvement, and similarly no deterioration, in the quantification of elemental 

abundances in the standards when using Au+ rather than Ga+ ions.

The size of the increases in RSFs observed between Au2
+ and Au3

+ relative to the 

Au+ are comparable, within error, to the size of the decrease in the total fraction 

of Si-ions detected as  28Si+. As Si is used as the reference element, the higher 

RSFs measured for Au2
+ and Au3

+ can be explained by their  calculation from 

lower  total  atomic  Si-ion  numbers.  In  comparison  the  other  elements  only 

showed minimal cluster ion formation.
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Figure 3.3 Comparison of  RSFs obtained using Au+ (this  study) and Ga+ (Henkel  et  al. 
2007b) Error bars are 1σ and reflect the variations observed between the silicate glasses.

The systematic  changes  between RSFs determined  using  delayed  and normal 

extraction shown in Figure 3.2 are caused by the variations in the number of 
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secondary ions extracted by each method. Under normal extraction conditions, 

the sample potential is switched on for the duration of the primary ion pulse. To a 

good approximation, every secondary ion of each mass is extracted into the TOF-

analyzer and detected.

During delayed extraction the sample potential is switched on after the primary 

ion pulse.  This provides the resulting secondary ions a period of time during 

which they can travel away from the sample surface. When the sample potential 

is  then  switched  on,  only  secondary  ions  directly  below  the  extractor  are 

accelerated into the TOF-analyzer. As the lighter ion species travel faster, they 

are  more  dispersed  and a  smaller  fraction  of  the  secondary  ions  are  actually 

extracted. The heavier the ion species the less dispersed the secondary ions are, 

with the result of a greater percentage of the respective secondary ion species 

being extracted.

For Si, the number of secondary ions per primary ion was 2.76 × 10-4 during 

delayed extraction and 3.98 × 10-4 with normal extraction.  This indicates that 

~30% of Si-ions were lost using delayed extraction. For the elements lighter than 

Si this percentage is higher, with as much as ~95% of Li-ions lost during delayed 

extraction. Heavy elements such as Rb, Sr, Cs, and Ba appear to suffer no loss 

with delayed extraction.

3.5. CONCLUSION

Higher  order  Au-cluster  ions  are  routinely  used  in  the  analysis  of  organic 

samples by SIMS as they can produce significant secondary ion yield increases 

for high mass organic molecules. In contrast, no improvement was found for the 

ionization efficiencies of inorganic secondary ions. An increase in sputter rate 

(by approximately a factor of 2) is outweighed by the lower primary ion currents 

(approximately a factor of 8 less) for Au-clusters compared to atomic Au+. This 

makes  Au+  the  preferred  choice  for  analysis  of  elemental  abundances  within 

inorganic samples. 
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The use of Au2
+ and Au3

+ ions causes a significant increase in the formation of 

Si-cluster ions. If Si is used as the reference element this results in elevated RSFs 

for Au2
+ and Au3

+ relative to those for Au+.
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Chapter 4

Trace element depth-profiles in presolar silicon carbide grains

Ashley King1, Torsten Henkel1, Detlef Rost1, and Ian C. Lyon1

1The University of Manchester, School of Earth, Atmospheric and Environmental 
Sciences, Oxford Road, Manchester, M13 9PL, UK.

Adapted from: King A., Henkel T., Rost D. and Lyon I.C. (2010) Trace element 
depth-profiles  in  presolar  silicon carbide  grains,  submitted  to  Meteoritics  and 
Planetary Science.

We have analyzed 11 presolar SiC grains  from the Murchison meteorite 

with  time-of-flight  secondary  ion  mass  spectrometry.  The  Si  isotopic 

compositions of the grains indicate that they are probably of an AGB star 

origin. The average abundances of Mg, Fe, Ca, Al, Ti and V are strongly 

influenced  by  their  condensation  behaviour  into  SiC  in  circumstellar 

environments.  Elements  such  as  Mg,  Fe,  Ca  and  Al  are  depleted  in  the 

grains due to their volatility relative to SiC. Depth-profiles of Li, B, Mg, Al, 

K, Ca, Ti, V, Cr and Fe in the SiC grains show that trace elements do not 

always occur homogenously within the grains and we find evidence for two 

distinct  populations  of  presolar  SiC.  In  some  SiC  the  trace  element 

distributions can be explained by condensation processes around the grains’ 

parent stars. These grains must have experienced only minimal processing 

before their arrival in the presolar molecular cloud, probably due to short 

residence times in the interstellar medium. The second population of SiC 

grains contain elevated abundances of several elements within their outer 

~200nm. This is attributed to the implantation of energetic ions accelerated 

to ~1000kms-1 by shockwaves in the interstellar medium. These grains may 

have  spent  a  longer  period  of  time  in  the  interstellar  medium,  hence 

increasing the probability of them passing through a shockfront.  Distinct 

populations of presolar SiC grains, whose residence times in the interstellar 

medium differ, are consistent with previous findings of noble gas studies.   
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4.1 INTRODUCTION

Presolar grains are dust that condensed in the environments of dying stars. The 

grains travelled through the interstellar medium (ISM), survived the formation of 

the  Solar  System and are  present  within  primitive  meteorites.  Nanodiamonds 

were the first type of presolar dust isolated from meteorites (Lewis et al. 1987). 

This was soon followed by the extraction of presolar SiC (Bernatowicz et al.  

1987) and graphite (Amari et al. 1990) grains. Other presolar phases discovered 

since include oxides (Al2O3, spinel and hibonite; Huss et al. 1993, Nittler et al. 

1994b; 1997, Choi et al. 1999), silicon nitride (Nittler et al. 1995) and silicates 

(Messenger et al. 2003, Nguyen and Zinner 2004, Nagashima et al. 2004).

Presolar SiC is the most extensively studied presolar phase, with abundances in 

the Murchison (CM2) meteorite of ~6ppm. Isotopic anomalies in C, N and Si 

define several distinct populations. Most grains (~90%) are “mainstream” and 

condensed in stellar envelopes around asymptotic giant branch (AGB) stars of 1 

– 3Mʘ (Zinner et al.  1989, Alexander 1993, Hoppe et al.  1994, Lugaro et  al. 

2003). The A and B grains (~4%) are likely to come from J-type carbon stars 

(Amari et al. 2001a), whilst X grains (~1%) are from supernovae (Amari et al. 

1992, Nittler et al. 1996, Hoppe et al. 2000), and Y (Amari et al. 2001b) and Z 

grains (Hoppe et al. 1997) (~1%) are from low metallicity AGB stars.

Many  SiC  grains  are  >0.5μm  in  diameter,  making  them  suitable  for 

measurements  of  trace  element  abundances  along  with  isotopic  analyses. 

Despite  this,  there  have  been  few  quantitative  studies  of  trace  element 

abundances  and distributions  within presolar  SiC grains  (Amari  et  al.  1995a, 

Huss et al. 1997, Hoppe et al. 2000; 2010, Kashiv et al. 2001; 2002, Henkel et al. 

2007a,  Lyon et  al.  2007,  Knight  et  al.  2008).  As stellar  condensates  the SiC 

grains  must  have  experienced  several  different  environments  and  processing 

events  before arriving in the laboratory.  Each event may have influenced the 

abundance and distribution of the trace elements contained within the grains.

The  grains  condensed  in  gaseous  envelopes  around  stars,  and abundances  of 

elements such as Al, Mg, Ti, V and Fe within them directly reflect compositions 
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and condensation processes in these environments. Amari et al. (1995a) showed 

that elements (e.g. Al, Mg, Ca, Fe) and compound species more volatile than SiC 

are depleted in the grains. Also, as elements condense they are removed from the 

circumstellar  gas.  This  causes  the  gas  to  become depleted  in  those elements, 

altering its composition over time. Silicon carbide is known to condense over a 

range of temperatures (Lodders and Fegley 1995). Therefore, grains condensing 

at higher temperatures acquire trace elements in different concentrations to those 

that formed later at lower temperatures.

Trace element compositions can also be affected by whether a compound species 

condenses in solid solution with SiC or as a separate phase. For example, TiC 

condenses separately before SiC, resulting in the presence of TiC sub-grains in 

some presolar SiC grains (Stroud and Bernatowicz 2005, Hynes et al. 2010a). 

Similarly,  MgS and CaS have been calculated to condense as coatings on the 

surfaces of presolar SiC grains (Zhukovska and Gail 2008), with the presence of 

MgS used to  explain  the  30μm emission  feature  observed around some stars 

(Forrest et al. 1981, Goebel and Moseley 1985). 

In the ISM the grains are subjected to grain-grain or grain-gas collisions, and ion 

implantation. The grains are predicted to display the effects of this sputtering on 

their surfaces (Jones et al. 1996). Lyon et al. (2007) presented Li and B isotopic 

compositions, and Li/Si and B/Si abundance ratios in 11 acid-extracted and 10 

pristine (isolated using the gentle separation procedure of Tizard et al. (2005)) 

presolar SiC grains. The Li/Si and B/Si ratios in some grains were found to be 

elevated at, or near the surface, to depths of ~200 – 300nm. This was interpreted 

as evidence for the implantation into the grains of Li and B ions accelerated by 

supernova shockwaves in the ISM.

However, Bernatowicz et al. (2003) studied 81 pristine presolar SiC grains and 

found no evidence of any cratering on the grain surfaces. They did report that 

~60% of the grains had amorphous, potentially organic coatings, indicating that 

grain surfaces may have been shielded from sputtering in the ISM. It has been 

suggested  that  grains  could  have  been  protected  by  ices  accreting  onto  their 

98



surfaces that were then broken down into organic mantles by exposure to UV and 

cosmic-ray exposure (Sandford and Allamandola 1993, Gibb and Whittet 2002).

Alternatively, the residence time of presolar SiC grains in the ISM was very short 

and they did not experience significant sputtering. Attempts have been made to 

estimate the time of formation of presolar SiC grains by determining cosmic-ray 

exposure  ages  using  either  noble  gas  analyses  (Lewis  et  al.  1994,  Ott  and 

Begemann 2000, Ott et al. 2005, Heck et al. 2009) or Li isotopic compositions 

(Gyngard et al. 2009). Calculated cosmic-ray exposure ages have a wide range, 

from <50Myr to >1Gyr. The longer exposure ages (>500Myr) are consistent with 

expected grain survival times in the ISM (Jones et al. 1996).

Trace  element  abundances  in  presolar  SiC  grains  may  also  be  affected  by 

contamination in the laboratory.  This could arise from the meteorite matrix or 

through  the  acid  extraction  procedure.  Henkel  et  al.  (2007a)  reported  the 

apparent deposition of meteoritic matrix material in crystal defects etched into 

grain surfaces by the harsh acids used to isolate the grains (Amari et al. 1994). 

Knight et al. (2008) measured abundances of trace elements, including Ti, V, Cr, 

Mn, Fe, Pb and W, in SiC grains isolated using standard acid treatments, and 

with cleaned acids. They found that using cleaned acids caused a decrease in 

contamination of W and Pb on grain surfaces.

Most previous studies of trace elements in presolar SiC have used direct current 

(DC) beam ion probes (Zinner et al. 1989, Alexander 1993, Hoppe et al. 1994, 

Amari  et  al.  1995a;  2000).  The  use  of  a  DC-beam  means  that  sample 

consumption is high during an analysis, so that data represents an average over a 

large volume of a grain. These ion probes use magnetic and electric fields to 

separate  the  secondary  ions  and  often  only  5  –  7  isotopic  species  can  be 

measured in a single analysis. Generally the first measurements are for C, N and 

Si isotopic compositions, leaving only a small amount of material remaining for 

trace element analyses.

Attempts have been made to determine trace element abundances in individual 

SiC grains using synchrotron x-ray fluorescence (SXRF) (Kashiv et  al.  2001; 
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2002,  Knight  et  al.  2008).  This  method  has  the  advantage  of  being  non-

destructive,  so  other  analytical  techniques  may  be  later  applied  to  the  same 

grains. It also does not suffer from the matrix effects associated with secondary 

ion mass spectrometry (SIMS). Several s-process elements, such as Rb, Sr, Y and 

Zr,  have been successfully measured  using SXRF. The disadvantages  include 

measured concentrations representing the bulk grain, beam diameters of ~2.5μm 

and a need to coat the samples with aluminium oxide.

In  this  study  we  have  used  time-of-flight  secondary  ion  mass  spectrometry 

(TOFSIMS).  TOFSIMS allows  for  comprehensive  studies  of  samples,  with  a 

complete mass spectrum for either positive or negative secondary ions acquired 

in a single analysis. Isotopic ratios and trace element abundances can be obtained 

at the same time providing a more efficient sample usage. High spatial resolution 

analyses can be achieved although with a loss of signal. TOFSIMS uses a pulsed 

primary  ion  beam  with  low  duty  cycle  and  a  high  transmission  TOF  mass 

spectrometer, so sample consumption during a single measurement is low. This 

makes it suitable for high resolution depth-profiling of individual presolar grains. 

The effects of heterogeneities such as sub-grains on trace element abundances, 

not detected using DC ion probes or SXRF, may potentially be analyzed.

We have undertaken a series of systematic TOFSIMS analyses to measure trace 

element abundances and distributions in presolar SiC grains. The resulting depth-

profiles can help to constrain the effects of any processing experienced by the 

grains in circumstellar envelopes, the ISM and the Solar System. Here we present 

data for 11 acid-extracted presolar SiC grains. For each grain complete depth-

profiles for a range of trace elements have been obtained.

4.2 EXPERIMENTAL PROCEDURE

4.2.1 Samples

Silicon carbide grains from two residues of the Murchison (CM2) meteorite were 

analyzed. 
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Four of the analyzed grains came from the KJG acid residue prepared according 

to the “Chicago procedure” (Amari et al. 1994). These grains were received as a 

deposit  spread upon a Au-foil.  Grains from this sample were then transferred 

onto a new, cleaned (through ultrasonication in isopropanol and acetone), high-

purity  (>99.999%)  Au-foil,  upon  which  a  copper  finder-grid  (Agar  H15, 

3.05mm, 125mesh)  had been imprinted,  by pressing the foils  together.  These 

grains are referred to as AK-KJG.

The other seven grains analyzed were extracted by John Arden using a procedure 

similar to that described by Amari et al. (1994). Murchison matrix material was 

treated  with  HF/HCl  to  produce  the  sample  “MM”.  Some  of  this  was  then 

oxidized  using  Cr2O7
- followed  by  HClO4 to  give  a  new  sample,  “MM1”. 

Kerogen and sulphur were removed to leave a SiC and spinel rich residue named 

“MM2”.  A  small  aliquot  of  the  MM2  residue,  suspended  in  a  1:1 

isopropanol/water mixture, was distributed upon a second high purity gold foil 

with imprinted finder-grid. These grains are referred to as AK-MM2.

Silicon  carbide  grains  on  both  foils  were  located  using  a  Phillips  XL30 

environmental secondary electron microscope (ESEM). Energy dispersive X-ray 

(EDX) analysis was used to confirm the composition of grains as SiC. Electron 

beam energies were kept low (10 – 15kV) to minimize potential damage on the 

grain  surfaces.  The  grains  were  imaged  using  the  ESEM and  their  locations 

relative to the finder-grid recorded. The average major-axis diameter of the AK-

KJG grains was 1.60μm. The AK-MM2 grains were slightly larger at 2.01μm. 

Grains were named according to their sample name, grid location (letters A-Z, 

numbers 0-9) and numbered sequence within each grid area.

4.2.2 Analytical Procedure

The  SiC  grains  were  analyzed  with  high  mass  resolution  and  high  spatial 

resolution in two separate rounds of measurements. These were performed using 

our  “IDLE”  (Interstellar  Dust  Laser  Explorer)  TOFSIMS  instruments.  The 

instruments  is  based  upon  the  designs  of  Braun  et  al.  (1998)  and  previous 

versions have been described by Henkel et al. (2006; 2007b).

101



The  AK-KJG  grains  were  analyzed  using  “IDLE2”,  which  at  the  time  was 

equipped with a 25kV Ga+ liquid metal ion gun (LMIG) (IOG25 from Ionoptika 

Ltd,  Southampton,  UK). We then built  a new instrument,  “IDLE3”, equipped 

with a 25kV Aun
+ LMIG (IOG 25Au from Ionoptika Ltd,  Southampton,  UK, 

Davies et al. 2003, Hill and Blenkinsopp 2004, see Chapter 2). The AK-MM2 

grains  were  analyzed  using  this  second  instrument.  The  analytical  procedure 

(outlined below) used was the same for both sets of grains.

Grains were analyzed by rastering a pulsed primary ion beam over their surfaces. 

The primary ion beam was typically applied over a 7μm × 7μm area,  although 

this could be adjusted according to grain size.  Sputtered secondary ions were 

extracted from the sample and analyzed using a TOF mass spectrometer (R-500 

from Kore Technology, Ely, UK). Positive secondary ions were detected and a 

single  analysis  often  lasted  several  hours  in  order  to  achieve  good  counting 

statistics for low abundance elements within the grains.

The  measurements  operated  in  a  scanning  mode,  with  each  scan  recorded 

separately.  The  scans  could  then  be  combined  to  give  a  total  secondary  ion 

image. Scans often contained 64 × 64 pixels,  with 150 primary ion shots per 

pixel and each pixel containing a complete mass spectrum (1 – 300amu).

Raw data was collected for offline analysis. The region of interest was defined 

using the  28Si+ secondary ion image to mark the grain area and produce a total 

spectrum for the grain. As only spectra from the region of interest were selected 

for  further  analysis  this  ensured that  the  background signal  from the  Au-foil 

contributing  to  the  spectrum  was  minimal.  During  long  measurements  the 

position of the primary ion beam could shift by up to a few micrometres due to 

temperature changes or electronic instabilities. A shift correction was therefore 

applied prior to combining the individual scans. 

4.2.3 Mass Resolution

Accurate  determination  of  isotopic  ratios  and  quantification  of  trace  element 

abundances within presolar SiC grains required that high mass resolution (e.g. 
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m/δm ~3500 at 28Si) was achieved, so that hydride and oxide interferences could 

be resolved throughout the spectrum. In TOFSIMS high mass resolutions can be 

obtained  by using  very  short  primary  ion  pulses  (~2 –  3ns)  (Stephan  2001). 

However, using such short pulses results in low secondary ion signals and may 

degrade  the  spatial  resolution  of  analyses  due  to  the  rapid  switching  of  the 

primary ion beam. Instead we used a delayed secondary ion extraction technique 

to achieve high mass resolutions.

During delayed extraction, primary ion pulses ~40ns long hit the sample whilst it 

was  at  ground potential.  Secondary  ions  formed  earlier  in  the  pulse  traveled 

further from the sample than those formed towards the end. The sample potential 

was  then  switched  to  1.4kV  accelerating  the  secondary  ions  towards  the 

extractor,  with those formed earliest  accelerated the least  due to their  greater 

height above the sample surface. The secondary ions were then focused at the 

detector using a two-stage reflectron. The major advantage of delayed extraction 

was that high mass resolutions (m/δm of 3000 – 4000) could be achieved despite 

using  long  primary  ion  pulses  to  boost  secondary  ion  signals.  Also,  as  the 

primary ion pulses were long compared to the switching time,  this  helped to 

maintain sub-micron spatial resolutions of the focused ion beam.

Even  at  high  mass  resolutions  the  Si-isotope  analysis  was  affected  by  a 

significant interference on the 29Si-peak from 28SiH+. We therefore used the peak 

deconvolution technique described by Stephan (2001) to determine the Si isotope 

ratios. The same technique was also used to derive δ26Mg values. This method 

involves fitting the peak shape of the major isotope (i.e. 28Si) to that of the minor 

isotope. The isotope ratio is given by the scaling factor between the two peaks. 

Isotopic  ratios  were  corrected  for  instrumental  mass  fractionation  using  an 

average of multiple analyses of silicate standards and these values are given by 

Henkel et al. (2007b).
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4.2.4 Element Quantification

In SIMS, measured elemental abundances can vary when analyzed in samples of 

different mineralogy due to matrix effects (Benninghoven et al. 1987). In order to 

quantify elemental abundances in presolar SiC grains it is therefore necessary to 

calculate  Relative  Sensitivity  Factors  (RSFs)  from  standards  of  similar 

composition. 

We have previously calculated RSFs for Ga+, Au+, Au2
+ and Au3

+ primary ions 

(Henkel et al. 2007b, King et al. 2010, see Chapter 3) using a series of silicate 

glasses (MPI-DING standards (Jochum et al. 2000; 2006)) and NIST reference 

material  SRM  610,  that  have  a  wide  range  of  known  trace  element 

concentrations.  For  this  study  the  SiC  standard  SRM  112b,  for  which  only 

abundances of Al, Ca and Fe are quantified, was also measured for comparison.

Figure  4.1  shows  that  RSFs  measured  in  SiC  with  Au+ primary  ions  were 

elevated (on average by a factor of ~7) relative to their respective values in the 

silicate glasses. This indicates that RSFs from the silicate glasses need correcting 

for quantification of elemental abundances in presolar SiC.

It  has  been  shown  that  sputtering  with  cluster  primary  ions  can  lead  to  an 

increased presence of cluster secondary ion species in the mass spectrum (e.g. 

Lyon et al. 2010, King et al. 2010). For example, during sputtering of silicate 

glass we observed an increase of O cluster ion species (e.g. SiO+, SiO2
+, Si2O+, 

Si2O2
+ etc),  whilst for SiC we instead saw C cluster species (e.g. SiC+, SiC2

+, 

Si2C+,  Si2C2
+ etc).  In  both  cases  Si  tended  to  partition  into  cluster  species, 

resulting in a decrease in the practical secondary ion yield (number of secondary 

ions per primary ion) for Si+.

The practical secondary ion yield for Si in SiC was determined to be 3.09×10-5 

(±6.45×10-6). This is a factor of 8.93 (±1.92) lower than the yield for Si in silicate 

glasses (2.76×10-4 (± 1.5×10-4) from King et al. 2010). As the bond between Si 

and C is stronger than that for Si and O (Krantzman et al.  2007; 2008), it  is 

anticipated  that  the  loss  of  Si  ions  is  less  severe  during  analyses  of  silicate 
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materials than SiC. We therefore attribute lower yields for Si to the increased 

formation of SimCn
+ clusters when analyzing SiC.
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Figure 4.1 Comparison of RSFs obtained from analysis of several silicate glasses (data from 
King et al. 2010, see Chapter 3) and SiC standard SRM 112b. The RSFs for Al (5.99eV), Ca 
(6.11eV) and Fe (7.90eV) in SiC are on average a factor of 7 higher than those in silicate  
glass.

Table 4.1 compares practical secondary ion yields for Al, Ca and Fe obtained 

during  sputtering  of  SiC and silicate  glasses.  In  contrast  to  Si  there  was  no 

significant difference in the yields for Al, Ca and Fe.

Table 4.1 Practical  secondary ion yields (number of  secondary ions/number of  primary 
ions) for Si, Al, Ca and Fe during Au+ analysis of silicate glasses (data from King et al. 2010, 
see Chapter 3) and SiC standard SRM 112b. Practical yields have been normalized by the 
element’s atomic percent abundance in the standards. Errors are 1σ.

The RSFs for trace elements in silicate glasses given by Henkel et al. (2007b) 

and King et al. (2010) are normalized to Si. If a factor of 8.93 more Si is detected 

during analysis of silicates than SiC, then the resulting RSFs will be lower by the 

Sample Silicon (×10-5) Aluminium (×10-5) Calcium (×10-5) Iron (×10-5)
Silicate 27.6 ± 1.5 129 ± 7 154 ± 8 45.4 ± 2.6

SiC 3.1 ± 0.7 151 ± 26 101 ± 18 38.1 ± 5.9
Silicate/SiC 8.9 ± 1.9 0.86 ± 0.15 1.53 ± 0.29 1.19 ± 0.20
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same  amount.  Elemental  abundances  relative  to  Si  measured  within  our  SiC 

grains  were  therefore  quantified  according  to  Eq.  (4.1)  using  the  well 

characterized RSFs for the analyzed elements (Li, B, Mg, Al, K, Ca, Ti, V, Cr 

and Fe) in silicate glass, and then correcting the calculated abundances for the 

change  in  Si  yield  by  a  factor  of  8.93.  The  errors  on  the  RSFs  used  for 

quantification were typically ~30%.  

                                                  
E

REF
REF RSF

EIEIEE )(/)(
/ =                         (Eq. 4.1)

where E is the element of interest, EREF the reference element (Si), I the measured 

secondary ion intensity, and RSF the known sensitivity factor for the element of 

interest.

4.2.5 Depth-Profiling Procedure

Sputtering  during  SIMS measurements  is  a  destructive  process  that  removes 

atoms from the surfaces of samples.  The longer a grain is sputtered the more 

material is removed. Subsequent measurements therefore sample material from a 

greater depth within that grain and a depth-profile can be produced.

Each grain was initially sputtered using a DC-beam that was rastered over a 50 –

100μm area containing the grain for ~1 – 2 minutes. This was sufficient to both 

remove hydrocarbons, which may have become deposited on the sample during 

handling or in the ultra-high vacuum environment, and to start sputtering into the 

grain. The initial sputtering removed an estimated 10 – 30nm from the surface of 

the grains. This “cleaning” was followed by TOFSIMS measurements using a 

pulsed primary ion beam (see Section 4.2.2). 

The low duty cycle of the pulsed beam produces a lower sputter rate than that of 

the DC-beam. However, measurements with the pulsed beam often lasted several 

hours so a significant amount of material was still removed from the grain. The 

grain was then cleaned again with a DC-beam before the next measurement was 

started. This procedure was repeated until approximately half of the grain had 

been sputtered away. At this point some grains were removed, re-imaged using 
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the ESEM, and then returned to the TOFSIMS for analysis until they had been 

completely sputtered away.

By carefully recording the primary ion beam current, length of time the beam 

was applied, field-of-view for each cleaning step and measurement,  and using 

known sputter rates (King et al. 2010, see Chapter 3), it was possible to estimate 

the depth to which a grain had been sputtered. These depths were checked by 

comparing them with the amount of the grain remaining when it was re-imaged 

in the ESEM. 

To test whether this procedure was a reliable method for measuring trace element 

depth-profiles in presolar SiC, we firstly applied it to a silicate grain (1.2μm × 

0.7μm) that had been separated from Murchison matrix material. The resulting 

depth-profile is shown in Figure 4.2. Initially as the grain was sputtered away, 

most  trace  element  abundances  increased  slightly,  with  the  largest  variation 

being a factor of ~6 observed for Fe. However, after this the abundances of all 

trace elements remained relatively constant across the profile. On average the 

trace element abundances only varied by a factor of ~2.2 from this point. 
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Figure 4.2 Trace element depth-profile through a silicate grain from Murchison matrix.  
The grain was depth-profiled using the procedure outlined in the text. The dashed vertical  
line indicates where the grain was removed from the TOFSIMS and re-imaged using the 
ESEM. As the grain was sputtered away trace element abundances displayed little variation 
with depth. The abundances did increase slightly during the first measurement but after 
this depth only varied on average by a factor of ~2.2 across the rest of the profile.
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At ~290nm the grain was removed from the TOFSIMS and re-imaged using the 

ESEM. The abundances for all of the elements in the measurements immediately 

after  this  were  very  similar  to  those  before  removal.  This  indicated  that  re-

imaging using the ESEM and extra sample handling resulted in no significant 

contamination on the grain surface. 

4.2.6 Limitations of Depth-Profiling

For accurate depth-profiling, samples should ideally be flat. Rough samples lead 

to the detection of secondary ions from different depths in the sample during the 

same measurement. The depth resolution of our analyses is therefore affected by 

the rough surfaces of the SiC grains. This also leads to the primary ion beam 

hitting the grain at varying angles of incidence, resulting in differential sputtering 

of the surface (Rost et al. 1999). Preferential sputtering of any sub-grains, known 

to be present in some SiC grains (e.g. Stroud and Bernatowicz 2005, Hynes et al. 

2010a), would further degrade the depth resolution. Depths given for our trace 

element  profiles  are  only estimates,  with the error  on the known sputter  rate 

probably around 20% (King et al. 2010).

The apparent distribution of trace elements shown in our depth-profiles may also 

have  been  affected  by  primary  ion  beam  mixing  of  layers  with  different 

elemental compositions. The Au+ primary ions used in this study have energies 

of 25kV when impacting into a grain surface and they are implanted to depths of 

tens of nanometres. This creates collisions between the primary ions and atoms 

in  the  grain,  which  become  transported  to  greater  depths.  Layers  in  a  grain 

containing different elemental abundances could therefore have become mixed, 

giving an “average” signal. We often observed variations in elemental abundance 

that  appeared  to  change  smoothly  rather  than  displaying  a  clear  transition 

between layers during the analyses.

Evidence has suggested that some SiC grains contain outer layers enriched in 

some  elements  due  to  implantation  in  the  ISM  (Lyon  et  al.  2007).  Depth-

profiling through any such enriched outer layer is difficult as only the initial data 

will represent the outer region of a grain. Eventually enough material  will be 
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sputtered away so that the grain core is exposed. If the thickness of the outer 

region is less than the spatial resolution of the primary ion beam then it cannot be 

resolved from the grain core.

Lyon et al. (2007) measured peaks in Li and B abundances at depths of ~200 – 

300nm, smaller than the spatial resolution of our analyses. Elemental abundances 

from any enriched outer regions in the SiC grains will therefore contribute to 

those  recorded for  the  core.  This  is  particularly  an  issue  if  there  is  a  strong 

gradient in elemental abundances between the outer regions and core and means 

that core abundances in this study are likely upper limits.

In an attempt to account for this effect we have produced a simple geometrical 

model (described in the additional data, Section 4.6) that assumes depth-profiling 

through a spherical grain of 1μm diameter with an outer region, the thickness of 

which  can be varied,  enriched in  any chosen element.  The abundance  of  the 

element is taken as 1 in the enriched outer region and 0 in the grain core. In an 

ideal situation, when sputtering through this grain the depth-profile should show 

a  clear  transition  between  the  two layers  of  differing  composition.  In  reality 

primary ion beam mixing prevents this and the abundance in the core is elevated 

due to a contribution from the enriched outer region. The model indicates that the 

variation measured between the core and enriched region will be determined by 

the thickness of the enriched region relative to the grain core. The thicker the 

outer region, the higher abundances in the grain core will appear.

It is important to note that this is a simple model that assumes a spherical grain 

and constant sputtering rate. It therefore does not take into account other depth-

profiling  issues  such as  irregular  grain  shapes,  preferential  sputtering,  crystal 

orientation or heterogeneous inclusions, and provides only an indication as to the 

depth-profiles we might observe.
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4.3 RESULTS

4.3.1 Isotopes

Individual Si, Mg, Li and B average isotopic values for each grain are given in 
Table 4.2.

The measured δ29Si and δ30Si values were within the range -32‰ to +296‰. 

Figure 4.3 shows that most of the grains were clearly enriched in both 29Si and 
30Si isotopes. This is consistent with the grains belonging to the mainstream SiC 

family having originated around 1 – 3Mʘ AGB stars (Zinner et al. 1989, Hoppe 

et al. 1993; 1994, Lugaro et al. 2003).

However, it is clear from Figure 4.3 that compared to the well defined Si-isotopic 

systematics of mainstream presolar SiC grains (e.g. data taken from Hoppe et al. 

1994 in Figure 4.3) our data is biased towards 29Si, with δ29Si values at the upper 

end  of  those  measured  previously.  This  is  likely  due  to  an  insufficient 

deconvoultuion of the 28SiH+ interference from the 29Si-peak. Lyon et al. (2007) 

showed  that  the  presence  of  the  28SiH+ interference  can  add  a  20  –  30‰ 

uncertainty to the δ29Si value when using the peak deconvolution technique.

Nevertheless, enrichments in both the  29Si and  30Si isotopes, plus the fact that 

>99% of SiC within the Murchison meteorite is presolar in origin (Amari et al. 

1994),  suggests  that  the  grains  reported  here  are  presolar.  Regardless  of  the 
28SiH+ interference, we would still expect to observe a difference between SiC 

grains of type  X, which are depleted in  29Si and  30Si,  and mainstream grains. 

Within the analytical uncertainties we cannot determine between mainstream, A, 

B, Y or Z SiC grains but as the mainstream grains make up ~90% of all presolar 

SiC our grains likely belong to this group.

A further argument against a possible X grain origin is that the δ26Mg values 

were in the range -155‰ to +92‰, with 1σ errors on average of ~50‰. Within 

the analytical uncertainty none of the grains contained a significant 26Mg-excess 

which could be attributed to the decay of 26Al, a characteristic of SiC X grains. 
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Figure  4.3  Three-isotope  plot  of  the  Si  isotopic  compositions  (expressed  as  δ  values) 
measured  in  presolar  SiC grains  as  part  of  this  study.  Dotted  lines  indicate  the  solar 
composition.  The  compositions  are  compared  to  previous  studies  using  both  DC-SIMS 
(Hoppe et al. 1994) and TOFSIMS (Henkel et al. 2007a, Lyon et al. 2007). Mainstream SiC 
grains, as all of those in this study appear to be, are characterized by enrichments in  29Si 
and 30Si relative to solar. Error bars are 1σ.

Table  4.2  also  provides  Li  and B isotopic  compositions  in  the  analyzed  SiC 

grains. No significant 7Li/6Li and 11B/10B isotopic anomalies were detected, with 

all ratios within 3σ of the solar values of ~12 and ~4 respectively.

4.3.2 Average Grain Data

Elemental abundance data for Li, B, Mg, Al, K, Ca, Ti, V, Cr and Fe relative to 

Si for each grain is presented in Table 4.2. An element’s “average” (calculated as 

a geometric mean) abundance within a grain is also provided, along with the size 

of  each  grain  and  the  calculated  depth  sputtered  to  during  each  individual 

measurement.

Figure 4.4 shows the average abundances, relative to Si and normalized to CI 

abundances (Anders and Grevesse 1989), of Mg, Fe, Ca, Al, Ti and V compared 
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to data measured using DC-SIMS by Amari et al. (1995a) (in 60 KJH grains), 

and using TOFSIMS by Henkel et al. (2007a). The abundances of these elements 

are influenced by their condensation behavior into the SiC structure (Amari et al. 

1995a, Lodders and Fegley 1995). For example, Figure 4.4 shows that Mg, Fe, 

Ca and Al are always heavily depleted relative to Si and CI, reflecting their (and 

subsequent compound species) increased volatility relative to SiC. 
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Figure 4.4 Comparison of the average abundances of Mg, Fe, Ca, Al, Ti and V in individual  
presolar SiC grains analyzed by TOFSIMS in this study and Henkel et al. (2007a), and DC-
SIMS by Amari et al. (1995a). The maximum and minimum abundances measured in this 
study are also shown. Abundances are relative to Si and normalized to CI. Elements more 
volatile than SiC, such as Mg and Fe, are depleted in the grains. 

Our average abundances for Mg, Fe, Ca and Al were all approximately an order-

of-magnitude higher than those measured by Amari et al. (1995a) and Henkel et 

al.  (2007a).  However,  Amari  et  al.  (1995a)  did  measure  similarly  high 

abundances of Mg, Fe, Ca and Al in some individual SiC grains, whilst the lower 

range of our measured abundances were comparable to the average abundances 

reported by both Amari et al. (1995a) and Henkel et al. (2007a). 
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The average abundances of Ti and V were similar to those reported by Amari et 

al.  (1995a),  with  the  lower  limit  close  to  the  average  Ti  and  V  abundances 

measured by Henkel et al. (2007a).

The average Li/Si and B/Si ratios for the grains were ~10-3 and ~10-4 respectively. 

Hoppe et al. (2001) measured B/Si ratios of 10-3 – 10-5 in mainstream SiC grains 

from the Murchison meteorite. Huss et al. (1997) measured Li/Si ratios of 10-4 – 

10-6 in  SiC grains from the Orgueil  meteorite,  at  least  an order-of-magnitude 

greater  than  those  reported  here,  whilst  in  large  (>5μm)  presolar  SiC  grains 

Gyngard et al. (2009) measured Li abundances as low as ~10-8. In contrast Lyon 

et al. (2007) did measure Li/Si up to ~10-2 in the outer regions of both acid and 

gently separated SiC grains.

High abundances of Li may be the result of contamination from the meteorite 

matrix or laboratory. The Li/Si ratio in bulk meteorite matrix is ~10-5 (Curtis et 

al. 1980). During depth-profiling of a silicate grain from the Murchison matrix 

no  Li  (or  B)  was  reliably  detected.  This  suggests  that  the  high  abundances 

measured  in  the  SiC  grains  cannot  be  due  to  contamination  with  the  matrix 

material. Furthermore, secondary ion images from the analyses of the SiC grains 

showed measured Li to be strongly localized to the grains, with no significant 

contribution arising from the surrounding Au-foil. We therefore argue that the 

measured  Li  abundances  are  not  from  contamination  and  must  have  been 

produced prior to the grains incorporation into the meteorite parent body.

4.3.3 Depth-Profiles

Due to the variety of factors that can affect the elemental composition of presolar 

SiC grains, trace element depth-profiles for individual grains are complex. Full 

descriptions and figures of individual grains’ depth-profiles are provided in the 

additional data (Section 4.6.2). Increases and decreases of elemental abundances 

in the depth-profiles occur either near the grain surface, (i.e. the surface exposed 

to the primary ion beam during the first few measurements), the grain core, or the 

far side of the grain (i.e. the surface closest to the Au-foil).
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Seven of the grains produced symmetrical trace element depth-profiles, the other 

four  asymmetrical.  This is  either  a true reflection  of the distribution  of  trace 

elements within some grains, or indicates that in some instances cleaning steps 

with the DC-beam (see Section 4.2.5) were too large and information was lost 

from the grains.

The grains have been grouped according to whether any significant variation in 

their trace element abundances occurred either near the grain surface or below it 

(summarized in Table 4.3). In three grains, elemental abundances showed little 

variation  with  depth  and  these  have  been  grouped  separately.  Each  group is 

described below and representative depth-profiles for each group are shown in 

Figure 4.5.

4.3.3.1 Grain Surface

The grains AK-KJG-D-1, AK-KJG-D-2, AK-KJG-M-1, AK-MM2-G-2 and AK-

MM2-delta-2  had  depth-profiles  where  the  highest  trace  element  abundances 

were observed near the grain surfaces.  The abundances then decreased as the 

grain cores were exposed by primary ion beam sputtering.

As the far side of grains AK-KJG-D-2, AK-KJG-M-1 and AK-MM2-G-2 were 

reached,  the  elemental  abundances  then  began to  rise  again.  This  resulted  in 

symmetrical depth-profiles with abundances in the outer regions of these grains 

higher  than  those  measured  in  the  grain  cores  (i.e.  Figure  4.5).  Elemental 

abundances in the grain cores were often a factor 3 – 4 lower than those at the 

grain surfaces, although in one case the Mg/Si and Fe/Si ratios in AK-KJG-G-2 

were up to a factor of 20 lower.
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Table 4.2 Elemental abundances and approximate depths sputtered to during TOFSIMS measurements of presolar SiC grains. Elemental abundances are given as  
atomic-% relative to Si. Errors on the RSFs used for quantification are ~30%. Errors for the isotopic compositions are 1σ. A gap indicates that no data was 
obtained, either due to unresolved interferences or lack of counts in the mass spectra. Values given in bold are the geometric mean abundances for each element  
within a grain. Values given in italics have been excluded from the interpretation of depth-profiles (see text and Section 4.4.2) although these data points are still  
included on Figures 4a.3 – 4a.13.

Grain 
Name

Grain 
Size (μm) 7Li/6Li 11B/10B δ29Si δ30Si δ26Mg

Approx 
Depth 
(nm)

Li/Si
(× 10-2)

B/Si
(× 10-2)

Mg/Si
(× 10-2)

Al/Si
(× 10-2)

K/Si
(× 10-2)

Ca/Si
(× 10-2)

Ti/Si
(× 10-2)

V/Si
(× 10-2)

Cr/Si
(× 10-2)

Fe/Si
(× 10-2)

42 0.024 0.0028 0.085 0.41 0.44 0.34 0.036 0.011 0.037 0.32
MM2-G-1 2.9 × 0.4 15.1 ± 1.6 4.5 ± 0.8 296 ± 19 70 ± 15 -1 ± 21 153 0.51 0.86 49.46 3.26 2.93 3.69 0.67 1.13 1.23

398 0.41 0.013 2.23 3.56 8.47 2.43 1.01 0.76 0.15 5.79
621 0.49 0.0088 0.73 8.41 10.38 3.54 3.35 0.18 0.12 2.82

0.22 0.0069 0.59 4.96 3.34 1.71 0.82 0.18 0.17 1.59

61 0.056 0.0040 1.81 3.25 1.52 1.25 0.40 0.016 0.53 2.58
167 0.18 0.0054 0.16 0.94 0.46 0.33 0.16 0.0040 0.17 0.84

MM2-G-2 1.1 × 0.5 14.0 ± 1.2 4.6 ± 2.6 228 ± 33 62 ± 32 13 ± 19 256 0.17 0.0021 0.33 1.54 0.50 0.23 0.12 0.0042 0.078 0.60
343 0.31 0.011 2.69 3.56 2.00 0.44 0.093 0.018 0.10 0.16
430 0.37 0.013 2.76 3.88 0.61 1.27 0.11 0.014 0.23 0.14
523 0.35 0.0099 3.98 2.69 1.32 1.35 0.36 0.016 0.23 3.39

0.20 0.0063 1.19 2.36 0.91 0.64 0.17 0.010 0.18 0.68

31 0.39 0.010 2.48 3.74 2.87 0.93 0.067 0.022 0.61
84 0.41 2.71 3.51 2.91 0.094 0.043 0.025 0.39

MM2-M-1 1.4 × 0.9 17.2 ± 1.9 185 ± 68 -32 ± 53 4 ± 20 125 0.056 4.04 3.78 1.84 0.50 0.074 0.036 0.36
179 0.0095 0.0046 3.09 1.85 1.07 0.66 0.048 0.19
249 0.26 5.11 1.88 0.24 1.41 0.040 0.012 0.38
350 0.29 1.88 2.70 1.63 2.33 0.14 0.020 0.25

0.14 0.0069 3.05 2.78 1.36 0.68 0.062 0.022 0.34

62 0.41 0.013 1.62 3.44 0.71 0.22 0.020 0.26
179 0.42 0.0094 1.00 1.37 1.16 0.51 0.033 0.0036 0.27

MM2-N-1 1.8 × 1.0 13.9 ± 0.8 2.4 ± 1.5 207 ± 55 146 ± 35 24 ± 15 411 0.21 0.010 4.32 2.23 0.85 1.34 0.054 0.0060 0.11
659 0.28 0.0079 3.54 3.48 1.09 1.50 0.086 0.011 0.16
785 0.15 0.0036 2.31 2.25 1.11 0.69 0.099 0.0066 0.019
920 0.27 4.14 3.20 0.33 1.12 0.049 0.0028 0.027

0.27 0.0081 2.48 2.53 0.81 0.75 0.049 0.0053 0.093
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Table 4.2 Continued.
Grain 
Name

Grain 
Size (μm) 7Li/6Li 11B/10B δ29Si δ30Si δ26Mg

Approx 
Depth 
(nm)

Li/Si
(× 10-2)

B/Si
(× 10-2)

Mg/Si
(× 10-2)

Al/Si
(× 10-2)

K/Si
(× 10-2)

Ca/Si
(× 10-2)

Ti/Si
(× 10-2)

V/Si
(× 10-2)

Cr/Si
(× 10-2)

Fe/Si
(× 10-2)

14 0.0023 0.0037 2.65 0.030 0.0098 0.0094 0.010 0.023 0.58
190 0.45 0.47 3.12 3.46 0.88 0.16 0.025 0.32 2.43

MM2-delta-1 2.0 × 1.4 12.7 ± 1.4 2.9 ± 1.9 197 ± 67 88 ± 53 -81 ± 61 466 0.33 0.0018 0.096 0.34 0.12 0.067 0.033 0.078 0.49
705 0.037 0.0012 0.12 0.63 0.20 1.25 0.10 0.14 0.33
910 0.050 0.0047 0.10 0.47 0.082 0.84 0.041 0.036 0.45

0.057 0.0025 0.27 0.39 0.15 0.23 0.047 0.025 0.079 0.64

30 0.15 0.0033 3.29 9.31 0.26 3.41 0.35 0.011 0.22 3.49
98 0.097 0.0039 2.43 17.13 0.65 5.46 0.88 0.014 0.25 3.13
157 0.13 0.0038 4.12 16.92 0.72 5.14 1.24 0.015 0.38 1.53
206 0.028 3.10 17.51 1.79 2.45 1.60 0.11 2.66

MM2-delta-2 2.4 × 1.6 13.5 ± 0.8 4.4 ± 1.6 75 ± 26 39 ± 26 15 ± 17 294 0.17 0.00061 3.96 18.74 1.39 1.32 6.16 0.018 0.074 1.00
489 0.11 0.0021 0.14 1.00 0.98 0.57 0.034 0.0046 0.24 1.58
677 0.16 0.0026 0.27 0.38 0.31 0.61 0.036 0.044 0.51
801 0.23 0.00089 0.17 0.36 0.27 0.68 0.0090 0.0012 0.024 0.26

1079 0.34 0.0030 0.047 1.08 0.84 0.40 0.35 0.0088 0.12 0.81
0.13 0.0021 0.79 3.70 0.65 1.45 0.29 0.0079 0.12 1.25

106 0.056 0.0059 4.52 0.27 0.65 0.12 0.024 0.011 0.085 0.57
371 0.11 0.48 8.83 1.53 0.25 0.018 0.044 0.23 2.02

MM2-5-1 3.9 × 0.6 13.5 ± 2.2 62 ± 36 72 ± 28 35 ± 20 668 0.087 0.15 11.23 1.45 0.15 0.071 0.029 0.67
826 0.12 0.31 3.77 1.07 9.14 0.10 0.29 0.16 1.15
867 0.058 0.0022 0.15 0.85 0.20 0.97 0.090 0.030 0.050 0.14

0.080 0.0059 0.70 3.00 1.13 0.17 0.021 0.033 0.083 0.92
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Table 4.2 Continued.
Grain 
Name

Grain 
Size (μm) 7Li/6Li 11B/10B δ29Si δ30Si δ26Mg

Approx 
Depth 
(nm)

Li/Si
(× 10-2)

B/Si
(× 10-2)

Mg/Si
(× 10-2)

Al/Si
(× 10-2)

K/Si
(× 10-2)

Ca/Si
(× 10-2)

Ti/Si
(× 10-2)

V/Si
(× 10-2)

Cr/Si
(× 10-2)

Fe/Si
(× 10-2)

21 0.074 0.013 1.56 1.52 14.56 59.34 0.65 0.048 3.59 16.85
70 0.076 0.26 0.84 0.44 0.52 1.10 1.85 6.17

160 0.17 0.65 0.42 0.34 1.63
300 0.060 0.37 0.35 0.15 0.15 0.88 0.34 2.52

KJG-D-1 1.3 × 1.1 10.2 ± 3.1 249 ± 69 277 ± 78 -155 ± 191 460 0.056 0.41 0.37 0.23 1.83 2.84
587 0.0065 0.014 2.11 0.30 0.42 0.35 0.34 1.68
670 0.0091 0.0042 3.95 0.21 0.26 0.54 0.032 0.48 1.91
787 0.0081 0.0084 2.19 0.15 0.14 0.55 0.21 1.55
870 1.68 0.095 0.10 0.57 0.31 1.56
1077 0.0030 0.017 2.27 0.16 0.20 0.43 0.038 0.36 1.70  

0.025 0.0074 0.13 1.17 0.32 0.44 0.68 0.039 0.62 2.78

51 0.24 0.22 1.12 0.44 0.83 2.10 5.10
129 0.24 0.89 0.77 1.12 3.75 3.79

KJG-D-2 2.0 × 1.5 13.7 ± 4.2 237 ± 164 145 0.041 0.12 0.96 6.62 2.08 0.028 0.63
232 0.061 0.19 0.74 2.27 1.32
294 0.070 0.64 2.30 1.20
366 0.34 2.17 1.67 1.89 5.81 6.54

0.12 0.22 0.55 0.80 1.98 2.31 0.028 2.98
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Table 4.2 Continued.
Grain 
Name

Grain 
Size (μm) 7Li/6Li 11B/10B δ29Si δ30Si δ26Mg

Approx 
Depth 
(nm)

Li/Si
(× 10-2)

B/Si
(× 10-2)

Mg/Si
(× 10-2)

Al/Si
(× 10-2)

K/Si
(× 10-2)

Ca/Si
(× 10-2)

Ti/Si
(× 10-2)

V/Si
(× 10-2)

Cr/Si
(× 10-2)

Fe/Si
(× 10-2)

34 0.0042 0.0020 0.010 1.09 0.050 0.049 0.33 0.0084 0.022 0.60
79 0.0039 0.021 2.62 0.034 0.070 0.56 0.010 0.98

124  0.0020 0.021 2.53 0.033 0.068 0.53 0.013 0.19 0.95
152 0.0031 0.019 2.48 0.024 0.055 0.64 0.019 0.21 0.83
237 0.0016 0.0095 2.05 0.024 0.055 0.46 0.020 0.21 0.85
345 0.0019 0.0082 1.71 0.018 0.058 0.55 0.030 0.22 0.82
465 0.0011 0.014 1.43 0.016 0.056 0.54 0.033 0.22 0.86

KJG-M-1 1.6 × 1.5 17.2 ± 4.0 239 ± 22 111 ± 18 48 ± 161 528 0.0012 0.013 1.26 0.016 0.074 0.53 0.021 0.21 0.85
560 0.00094 0.014 1.10 0.019 0.076 0.53 0.026 0.21 0.86
610 0.0013 0.00046 0.011 1.27 0.020 0.095 0.46 0.023 0.19 0.85
755 0.0020 0.012 1.37 0.016 0.057 0.34 0.013 0.23 0.87
826 0.0017 0.012 1.68 0.019 0.073 0.52 0.040 0.23 0.92
912 0.0045 0.017 1.78 0.016 0.075 0.54 0.020 0.26 0.91
947 0.0027 1.49 0.020 0.083 0.49 0.049 0.18 0.62
1001 0.0030 0.0016 0.017 2.26 0.024 0.079 0.37 0.027 0.22 0.79

0.0021 0.0011 0.014 1.67 0.022 0.067 0.49 0.021 0.18 0.83

22 0.0056 0.23 7.01 8.43 1.06 0.62 0.017 0.51
92 0.042 0.0014 0.92 5.85 1.25 4.35 0.45 0.0071 1.20

224 0.067 1.05 9.01 1.48 5.62 0.54 1.58
KJG-6-1 1.5 × 1.1 13.5 ± 1.3 134 ± 54 159 ± 51 92 ± 48 397 0.084 0.97 9.30 1.99 5.18 1.00 0.024 1.46

570 0.16 0.97 10.11 1.69 5.06 0.61 0.024 1.17
750 0.0086 0.044 2.98 0.19 0.15 0.17 0.068
895 0.18 1.45 10.20 3.02 7.01 0.88 1.80
1183 0.10 0.0034 0.24 9.17 0.83 2.21 0.56 0.031 0.32

0.063 0.0022 0.68 8.52 2.01 3.75 0.65 0.018 0.99
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In the grains AK-KJG-D-1 and AK-MM2-delta-2 elemental abundances did not 

increase  again  at  the  far  side  of  the  grains.  Instead  the  abundances  either 

continued to decrease or flattened until the rest of the grain had been sputtered 

away.
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Figure  4.5  Representative  trace  element  depth-profiles.  In  some  presolar  SiC  grains 
variations in trace element abundances occurred from the grain surface. For example trace  
element abundances in AK-KJG-D-1 (top left) and AK-KJG-M-1 (top right) were high at 
the  surface  and decreased  in the grain core.  In other grains,  such as  AK-MM2-delta-1 
(bottom left)  where  abundances  rose  to  a  peak at  ~200nm,  variations  in  trace  element 
abundance took place below the surface. The trace elements in several grains showed no 
abundance variations with depth e.g. AK-MM2-M-1 (bottom right). Dashed vertical lines 
indicate where a grain was removed and re-imaged using the ESEM.  Trace element depth-
profiles for all 11 analyzed grains are provided in Section 4.6.2.

For AK-KJG-D-1 and AK-MM2-delta-2, elemental abundances decreased by a 

factor of 5 – 10 between the surface and core of the grains. The exceptions were 

Mg/Si and Al/Si in AK-MM2-delta-2, and Li/Si in AK-KJG-D-1, which fell by 

factors of 25 and 60 respectively. Also, in grain AK-KJG-D-1 the K/Si and Ca/Si 

ratios  decreased  sharply  from  the  grain  surface  before  remaining  constant 

throughout the rest of the grain.
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Variation? Symmetrical Asymmetrical

At Surface
AK-KJG-D-2
AK-KJG-M-1
AK-MM2-G-2

AK-KJG-D-1
AK-MM2-delta-2

Below Surface AK-MM2-N-1
AK-MM2-G-1

AK-MM2-delta-1

Flat
AK-KJG-6-1

AK-MM2-M-1
AK-MM2-5-1

Table 4.3 Summary of the main characteristics of each presolar SiC grains trace element 
depth-profile. The grains either have symmetrical or asymmetrical depth-profiles. They are 
grouped according to whether any significant changes in trace element abundances occur 
either at, or below, the grain surfaces.

4.3.3.2 Below the Grain Surface

The grains AK-MM2-G-1, AK-MM2-N-1 and AK-MM2-delta-1 each had depth-

profiles where the major changes in elemental abundances occurred below the 

grain surface. 

In  AK-MM2-N-1 the lowest abundances  were measured  at  the grain surface. 

Abundances  increased  as  the  grain  was  sputtered  away and the  core  became 

exposed. At the far side of the grain the abundances then decreased, resulting in a 

symmetrical depth-profile with the highest elemental abundances found within 

the grain core. The Mg/Si, Ca/Si and V/Si abundances were higher in the core by 

a factor of 3 – 6.

Trace element abundances observed at the grain surfaces in AK-MM2-G-1 and 

AK-MM2-delta-1 increased as the grains were sputtered away. They continued 

to rise until peaks in abundances were measured at depths of ~150 – 200nm. 

During subsequent analyses through the grain cores and the far side of the grains, 

the abundances decreased from these peak values.

For AK-MM2-G-1 the Al/Si, Ti/Si, V/Si and Cr/Si increased, on average, by a 

factor of 80, to a peak, before falling by a factor of 15 throughout the rest of the 

grain.  For AK-MM2-delta-1 the increase was even more extreme,  with Li/Si, 

Al/Si, K/Si and Ca/Si rising by an average factor of 190, before falling by up to a 
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factor of 40. The Ti/Si, Cr/Si and Fe/Si ratios also peaked in AK-MM2-delta-1, 

although the following decreases in the grain core were less than a factor of 10.

4.3.3.3 Flat Depth-Profiles

Grains  AK-KJG-6-1,  AK-MM2-M-1  and  AK-MM2-5-1  all  had  “flat”  depth-

profiles. These are profiles where the majority of elemental abundances showed 

very little variation with depth. They rarely changed by any more than a factor of 

2, similar to the differences measured when depth-profiling through a meteoritic 

silicate  grain (see Section 4.2.5).  The small  variations  measured in these SiC 

grains were not significant and were mainly within the errors of the RSFs used to 

quantify the elemental abundances.

4.4 DISCUSSION

4.4.1 Average Abundance Patterns

Amari  et  al.  (1995a)  and  Lodders  and Fegley  (1995)  suggested  that  average 

elemental  abundance  patterns  reflect  the  volatility  of  an  element  and  its 

compound species relative to SiC. Our average elemental abundance patterns for 

Mg, Fe, Ca, Al, Ti and V (Figure 4.4) match qualitatively with those measured 

by Amari et al. (1995a) and Henkel et al. (2007a). The patterns show that the 

more volatile elements (Mg, Fe, Ca and Al) are depleted in the grains relative to 

Si. 

Our average elemental abundances of Ti and V (relative to Si and CI) are close to 

1, similar to the abundances measured by Amari et al. (1995a). Figure 4.4 shows 

that the Ti and V abundances of Henkel et al. (2007a) were approximately an 

order-of-magnitude lower.

Around stars, Ti is predicted to condense as TiC prior to the condensation of SiC 

(Lodders and Fegley 1995). This should result in a depletion of Ti in the gas and 

subsequently in SiC grains. Strong correlations between the abundances of Ti 

and V in presolar SiC suggest that V condenses into TiC (Amari et al. 1995a). 

However, as abundances of Ti in the source gas are expected to be very low, its 
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condensation as TiC is restricted by nucleation effects. The Ti and V will instead 

condense  into  SiC  producing  the  abundances  measured  in  this  study and by 

Amari et al. (1995a).

Generally, the lowest Ti and V abundances are found in presolar SiC grains of 

type X that originate from supernovae (Amari et al. 1995a, Henkel et al. 2007a). 

Gas  surrounding  a  supernova  is  expected  to  be  enriched  in  Si  so  that  other 

elements appear depleted in condensed SiC grains. The X grains comprise only 

~1% of all presolar SiC grains but the data of Henkel et al. (2007a) shown on 

Figure 4.4 was obtained from thirteen presolar SiC grains, three of which were of 

type X. Depletions in Ti and V measured by Henkel et al. (2007a) in these three 

grains causes the average Ti and V abundances to appear lower than our data and 

that of Amari et al. (1995a). 

The average elemental abundance patterns of Amari et al. (1995a), Henkel et al. 

(2007a),  and  those  presented  in  this  work,  indicate  that  the  condensation 

behavior  of  each  element  in  stellar  atmospheres  must  play  a  major  role  in 

controlling their abundances in presolar SiC grains.

The range of our average elemental abundances for Mg, Fe, Ca, Al, Ti and V are 

comparable to those of Amari et al. (1995a) and other similar studies (Huss et al. 

1997, Hoppe et  al.  2000). To measure trace element abundances Amari  et al. 

(1995a)  used  DC-SIMS,  which  sputters  a  much  larger  volume of  each  grain 

during a single analysis than the TOFSIMS technique used here (and also in the 

study  of  Henkel  et  al.  2007a),  which  has  a  depth-resolution  of  tens  of 

nanometres. In the Amari et al. (1995a) study, trace element measurements were 

also  made  after  some  previous  sputtering  of  the  grains  had  taken  place  to 

determine isotopic compositions (Hoppe et al. 1994). The data of Amari et al. 

(1995a)  therefore  represented  an  average  elemental  abundance  over  a  large 

volume  of  each  analyzed  grain.  However,  trace  element  depth-profiles  of 

individual  grains  show  that  the  elements  are  clearly  not  homogeneously 

distributed within SiC grains.
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Below we discuss how processes such as contamination, stellar condensation and 

interstellar processing could have influenced the distribution of trace elements in 

presolar  SiC  grains  and  compare  the  expected  effects  to  the  measured  trace 

element depth-profiles. 

4.4.2 Contamination

The  elements  Mg,  K,  Ca  and  Fe  are  major  constituents  of  meteorite  matrix 

material.  Recent  evidence  indicates  that  the  use  of  harsh  acid  treatments  to 

extract presolar SiC grains from meteorites can etch grain surfaces, leading to a 

high density of surface pits (e.g. Bernatowicz et al. 2003). The acids may also at 

least partially dissolve non-acid resistant phases in SiC such as AlN (Stephan et 

al. 1997, Henkel et al. 2007a). 

Henkel et al. (2007a) suggested that depletions of Al at the surfaces of grains 

plus correlations between the abundances of Al, Mg, K and Ca were caused by 

the dissolution of AlN and subsequent deposition of meteoritic matrix material in 

crystal defects. This could lead to high abundances of Mg, K, Ca and Fe at SiC 

grain surfaces. During analysis of pristine SiC, Stroud and Bernatowicz (2005) 

noted an apparent in-filling of surface pits by meteorite matrix minerals.

The acids used to isolate the grains have also been found to be a source of trace 

element contamination. Knight et al. (2008) measured higher abundances of W 

and  Pb  in  SiC  grains  isolated  using  standard  acids  than  those  isolated  with 

cleaned acids. The abundances of Ti, V, Cr, Mn and Fe were less affected.

If contamination by the acids or meteorite matrix was an issue in this study we 

would  expect  it  to  affect  all  SiC  grains  from  the  same  separation  equally, 

although potentially the effects could vary between the KJG and MM2 samples. 

All  grains  from  the  same  separation  would  probably  have  similar  surface 

abundances of any contaminating elements.  However, we measured orders-of-

magnitude differences in the Mg, K, Ca and Fe abundances near the surfaces of 

SiC grains from each separation. For example, the K/Si ratio at the surface of 

AK-KJG-D-1 was 0.14 but for AK-KJG-M-1 it was 5 × 10-4. Similarly, for AK-
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MM2-5-1 the Mg/Si ratio was 0.05 at the surface, compared to 8.5 × 10-4 in AK-

MM2-G-1.

Structural characteristics could make it more or less difficult for particular SiC 

grains to retain contamination. The grains in this study were all of similar sizes 

and did not appear significantly different in morphology from one another. It is 

possible that some grains had a higher density of surface pits that could allow an 

increased take-up of meteorite matrix material.  However, if these were etched 

into the grains by the acids, again we would expect all grains from the same 

separation to be affected in a similar manner.

During depth-profiling of a silicate grain we observed no significant variation in 

trace element  abundances  in  the immediate  measurements  after  the grain had 

been  re-imaged  in  the  ESEM  (see  Section  4.2.5).  However,  trace  element 

abundances  in  the  SiC  grains  AK-KJG-6-1  and  AK-MM2-5-1  did  decrease 

noticeably in the first measurements after re-imaging, before returning to values 

comparable to those previously recorded in the grains. 

If this were the result of surface contamination from handling we would expect 

the trace element abundances to increase rather than the observed decrease. The 

interaction of the electron beam may have altered the chemical environment (e.g. 

oxidation  state)  on  the  grain  surfaces,  leading  to  a  change  in  ionization 

efficiency. In either case, all analyzed grains should have been affected similarly 

but  this  was not apparent  in any of the other  depth-profiles.  Nevertheless,  as 

elemental abundance decreases in AK-KJG-6-1 and AK-MM2-5-1 occurred in 

the measurements immediately after re-imaging by the ESEM, we cannot rule 

out that this was an artefact of the experimental procedure and the data has been 

excluded. 

If  any  contamination  occurred,  either  from the  extraction  process  or  sample 

handling, it probably affected all SiC grains from the same separation equally. As 

very different surface abundances were measured, the large variations must be 

the result of condensation effects around the grains parent stars or interstellar 

processing. 
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4.4.3 Condensation

Elements  that  condensed  in  solid  solution  with  SiC  are  likely  to  be 

homogeneously distributed within the grains.  However,  SiC grains  condensed 

from the cooling gas around expanding stars. This could have produced not only 

variations in trace element abundances between grains, but also elemental zoning 

within individual grains.  At the time of initial SiC growth, higher temperatures 

would  have  prevented  the  condensation  of  more  volatile  species  causing  the 

grains to be depleted in these trace elements. As the stellar gas cooled, newly 

condensed elements became available for incorporation into the outer regions of 

SiC grains. In this scenario some SiC grains may contain higher trace element 

abundances within their outer regions than in the grain cores.

Compound  species  that  condensed  as  separate  phases,  rather  than  in  solid 

solution with SiC, resulted in the presence of sub-grains in some presolar SiC 

grains  (Stroud and Bernatowicz 2005, Hynes et  al.  2010a).  Sputtering of any 

internal sub-grains, such as TiC or AlN, would produce apparent inhomogeneous 

distributions of those trace elements in presolar SiC. Similarly,  MgS and CaS 

coatings are predicted to condense on SiC (Zhukovska and Gail 2008), although 

if  present  are  likely to  have  been at  least  partially  removed  by alteration  on 

meteorite parent bodies or through the acid extraction process, and could lead to 

grain surface enrichments of Mg, Ca and S.

4.4.4 Interstellar Medium

Dust is expected to have passed through several shockfronts during residence in 

the ISM. Interactions between the shockwaves and ions in the interstellar  gas 

would  have  caused  those  ions  to  be  accelerated  to  the  same  velocity  as  the 

shockwave.  The  accelerated  ions  may  have  then  become  implanted  into  the 

grains,  resulting  in  peaks  in  elemental  abundances  below  the  grain  surfaces. 

Evidence  of  such  implantation  was  presented  by  Lyon  et  al.  (2007),  who 

measured  elevated  abundances  of  Li  and  B  to  depths  of  ~200  –  300nm  in 

presolar SiC grains.
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The  estimated  residence  times  of  some  presolar  SiC  grains  in  the  ISM  are 

<50Myr (Lewis et al. 1994, Ott and Begemann 2000, Ott et al. 2000, Heck et al. 

2009,  Gyngard  et  al.  2009)  and  most  damage  or  alteration  to  grains  in  this 

environment is caused by the fastest shockwaves (>250kms-1). Jones et al. (1996) 

estimated  that  as  the  interval  between  fast  shockwaves  is  ~108 years, 

approximately  10%  of  dust  in  the  ISM  will  have  never  experienced  a  fast 

shockwave. 

This theory is partly supported by the lack of cratering observed by Bernatowicz 

et al. (2003) on pristine presolar SiC. The presence of amorphous coatings on 

some grains suggests that they may have protected the grains from sputtering in 

the ISM. Grains that were shielded in the ISM, or had short ISM residence times, 

may not display any effects of interstellar processing. 

4.4.5 Profiles with Variations beneath the Grain Surface

In grain AK-MM2-G-1 the elements Al, Ti, V and Cr, and in grain AK-MM2-

delta-1 the elements Li, Al, K, Ca, Ti, Cr and Fe, showed peaks in abundance at 

depths within the grains. Unfortunately B was not always reliably detected in 

measurements and its profiles are incomplete.

The depths at which abundance peaks occur in grains AK-MM2-G-1 and AK-

MM2-delta-1,  ~150  –  200nm,  are  well  below  the  grain  surfaces  and  are 

comparable  to  those  reported  by  Lyon  et  al.  (2007).  Whereas  elemental 

abundances in grains AK-MM2-G-1 and AK-MM2-delta-1 increased by up to a 

factor of 190, the largest variation measured when depth-profiling a meteoritic 

silicate grain was only a factor of ~6. We therefore conclude that the peaks in 

abundance  are  not  contamination  or  sputtering  artefacts  and  reflect  true 

variations within the grains. 

The peaks in trace element abundances may have been caused by the sputtering 

of any TiC or AlN sub-grains or inclusions present within the SiC grains. There 

was no evidence of any such grains in the secondary ion images, although they 
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may not have been sufficiently resolved since many sub-grains are <200nm in 

size, smaller than the spatial resolutions achieved in the measurements.

An argument against the TiC or AlN origin for the abundance peaks is that they 

are unlikely to contain significant abundances of elements such as Li or K, which 

also  peak  at  depths  within  grains  AK-MM2-G-1  and  AK-MM2-delta-1. 

Additionally,  the possibility of AlN and TiC being present at  the same depth 

within two different grains is unlikely. 

The peaked depth-profiles appear to support the scenario whereby elements may 

be implanted into presolar SiC grains by supernova shockwaves. Calculations 

using the SRIM code (Ziegler 2004) indicate that the implantation of Li, Al, Ca, 

Ti, Cr ions etc to depths of 150 – 200nm in SiC requires implantation velocities 

on the order of 1000kms-1 (Figure 4.6).  This is  towards the upper end of the 

range  expected  for  supernovae  shockwaves  (Jones  et  al.  1996,  Ellison  et  al. 

1997).

Lyon et al.  (2007) argued that the relative uniformity of  7Li/6Li ~12 recorded 

within a range of extra-terrestrial samples (e.g. Sephton et al. 2004, Chaussidon 

et  al.  2006,  Seitz  et  al.  2007),  and  observed  spectroscopically  in  local  star-

forming  regions  (Knauth  et  al.  2003),  could  only  be  achieved  by mixing  of 

several sources on a molecular cloud scale. This led them to conclude that the 

implantation  of  Li  ions  into  presolar  SiC grains  must  have  taken  place  as  a 

shockwave  passed  through  an  interstellar  molecular  cloud.  The  presolar  SiC 

reported here also contain solar Li isotopic compositions, supporting the model 

outlined by Lyon et al. (2007).

The grain AK-MM2-N-1 contained a peak in elemental abundances at a depth of 

~500 – 600nm. As the grain was ~1µm in diameter this peak occurred within the 

grain core rather than just below the grain surface. Elemental abundances at the 

surface were depleted relative to the core.
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Figure 4.6 SRIM calculations simulating the implantation of Li, B, Al, Ca and Ti ions into a 
1μm SiC grain at a velocity of 1000kms-1.   The ions impact the SiC at normal angle of 
incidence.  At this  velocity most  ions are implanted into the SiC to a depth of  ~200nm,  
consistent with peaks in elemental abundances observed in some presolar SiC grains. Lower 
implantation  velocities  would  lead  to  implantation  to  shallower  depths.  The  same 
calculation for Mg, K, Cr, V and Fe ions produces the same result.

Like the profiles in grains AK-MM2-G-1 and AK-MM2-delta-1, potentially this 

peak would have been caused by ion implantation.  However,  an implantation 

depth of >500nm is larger than those measured both in this study and by Lyon et 

al. (2007). It would require shockwaves with velocities of several 1000’s kms -1. 

Shocks with  such extreme velocities  are  rare  in  the  ISM, indicating  that  ion 

implantation is unlikely to be the cause of high abundances in the core of AK-

MM2-N-1.

 

If the depth profile for AK-MM2-N-1 is not due to processing in the ISM or 

alteration  and  contamination  in  the  laboratory  this  leaves  us  with  the  stellar 

environment. For this grain we cannot exclude sputtering of a sub-grain, which is 

likely to be either TiC or AlN in composition. The Al abundance remains flat 
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throughout the grain but the Ti abundance does increase slightly in the grain 

core.

As  discussed,  SiC  grains  formed  at  high  temperatures  would  have  initially 

acquired low abundances of trace elements in their cores, before cooling of the 

source  gas  allowed  condensation  of  new  elements  in  their  outer  regions. 

However, this situation would have produced grains with higher trace element 

abundances in the outer layers than in the core, the opposite of what is observed 

in AK-MM2-N-1. 

Alternatively,  some  grains  may  have  condensed  in,  or  been  transported  to, 

chemically inhomogeneous regions,  such as high density knots or jets, of the 

circumstellar shell. Silicon carbide grains can condense at temperatures as low as 

~1000K (Lodders and Fegley 1995). We may hypothesize therefore that  AK-

MM2-N-1 may have formed in a cooler region, allowing the condensation of 

many  trace  elements,  before  moving  to  an  area  containing  gas  of  differing 

composition.

4.4.6 Profiles with Variations from the Grain Surface

In AK-KJG-D-2, AK-MM2-G-2 and AK-MM2-delta-2 trace element abundances 

were highest within the outer 50 – 200nm before decreasing in the grain cores. In 

AK-KJG-D-1 and AK-KJG-M-1 they dropped from the grain surface to lower 

abundances in the core. 

The spatial  resolution of the primary ion beam hampered the resolving of the 

enriched  outer  regions  from  the  grain  cores  (see  Sections  4.2.6  and  4.6.1). 

Abundances recorded in the cores must therefore be upper limits due to mixing 

of the layers during analyses of the core. Using our geometrical model we can 

infer that decreases in trace element abundances of a factor of ~4, which were 

typically measured between the outer regions and cores of grains AK-KJG-D-2, 

AK-KJG-M-1, AK-MM2-G-2 and AK-MM2-delta-2, should be consistent with 

abundance enrichments to depths of ~200nm. Enrichments  to this  depth were 

observed in  grains  AK-KJG-D-2 and AK-MM2-delta-2,  although  not  in  AK-
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KJG-M-1  and  AK-MM2-G-2,  possibly  due  to  irregular  sputtering  or  grain 

morphologies.

In  grain  AK-KJG-D-1  trace  element  abundances  decreased  by  orders-of-

magnitude  within  the  first  50nm.  As  this  decrease  is  much  larger  than  that 

predicted by our geometrical model it suggests that the high abundances were 

only present upon the very surface of this grain. The size of the decrease between 

the surface and grain core was more consistent with that observed after peaks in 

elemental abundance in grains AK-MM2-G-1 and AK-MM2-delta-1.

Elemental  zoning  due  to  condensation  of  SiC  in  a  cooling  gas  could  have 

produced the trace element depth profiles seen in grains AK-KJG-D-1, AK-KJG-

D-2,  AK-KJG-M-1,  AK-MM2-G-2  and  AK-MM2-delta-2.  A  test  for  this 

explanation is that Li and B, which due to their high volatilities are unlikely to 

condense  into  SiC in  any significant  quantities,  should  not  display  the  same 

profiles as elements that clearly do condense into SiC, such as Al and Ca.

In  AK-MM2-G-2  and  AK-MM2-delta-2  Li  and  B  profiles  are  relatively  flat 

through the grains with no abundance decreases in the cores. Condensation in a 

cooling gas can therefore be used to explain the trace element depth profiles in 

these  grains.  For  AK-KJG-D-1,  AK-KJG-D-2  and  AK-KJG-M-1  the  Li 

abundance was high in the outer regions of the grains and decreased in the cores. 

This  suggests  that  these  profiles  are  not  the  result  of  changing  condensation 

environments. 

AK-KJG-D-2 and AK-KJG-M-1 have outer regions, up to ~200nm thick that are 

enriched in several elements.  This depth is similar  to the implantation depths 

reported by Lyon et al. (2007). In AK-KJG-D-1 trace element enrichments at the 

grain surface indicate implantation at lower velocities.

If  the  trace  elements  were  implanted,  our  data  suggest  that  peaks  in  these 

elemental abundances should be present below the grain surfaces, which are not 

seen in AK-KJG-D-1, AK-KJG-D-2 and AK-KJG-M-1. However, in Lyon et al. 
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(2007), peaks in Li and B abundances in some SiC grains did occur at the surface 

rather than below it. 

Prior  to  implantation  some  grains  may  have  acquired  surface  coatings  that 

partially protected them from sputtering. These coatings are likely to have been 

removed on the meteorite  parent  body or by the acids  used in the extraction 

process. The acids may have also altered or damaged the grains so that we no 

longer analyze their original surfaces.

4.4.7 Flat Profiles

The abundances of most of the analyzed elements in grains AK-KJG-6-1, AK-

MM2-M-1 and AK-MM2-5-1 did not show any significant variation with depth. 

Elemental  abundances  within  the  grains  were  largely  consistent  with  those 

measured in other SiC grains. The homogeneous distribution of elements is most 

likely due to their condensation in solid solution with the SiC in the atmospheres 

of their parent stars.

The lack of any significant variations in most elemental abundances with depth 

suggests that these grains suffered only minimal alteration prior to their arrival in 

the  laboratory,  although  they  must  have  spent  some  time  in  extreme 

environments around their parent stars, the ISM and the early solar nebula.

As discussed, any coating on the grain surfaces may have shielded AK-KJG-6-1, 

AK-MM2-M-1 and AK-MM2-5-1 from sputtering.  However, despite potential 

coatings we still observe the effects of ion implantation in the grains AK-KJG-D-

1, AK-KJG-D-2 and AK-KJG-M-1, so would expect to also see them for AK-

KJG-6-1, AK-MM2-M-1 and AK-MM2-5-1.

It seems that grains AK-KJG-6-1, AK-MM2-M-1 and AK-MM2-5-1 must have 

spent  only  a  short  period  of  time  in  the  ISM  and  did  not  experience  any 

significant processing. The unaltered grains make up ~30% of our sample size, 

higher  than  the  10%  of  unprocessed  dust  predicted  by  Jones  et  al.  (1996), 

although only 11 grains have been analyzed in this study. Unfortunately within 
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the analytical uncertainties we detected no Li isotopic anomalies that could be 

used to calculate cosmic-ray exposure ages for the grains. 

4.4.8 Implications

Based  upon  our  interpretations  of  trace  element  depth-profiles,  presolar  SiC 

grains can be separated into two distinct populations. The grains AK-KJG-6-1, 

AK-MM2-G-2,  AK-MM2-M-1,  AK-MM2-N-1,  AK-MM2-delta-2,  and  AK-

MM2-5-1 have  trace  element  distributions  consistent  with  those  expected  for 

condensation processes around parent stars. In contrast, the SiC grains AK-KJG-

D-1, AK-KJG-D-2, AK-KJG-M-1, AK-MM2-G-1, and AK-MM2-delta-1 clearly 

display  the  effects  of  significant  processing  in  the  ISM,  with  peaks  in  trace 

element abundances attributed to ion implantation.

For ion implantation into SiC to occur, high velocity shockwaves are required. 

The likely source of these in the ISM is supernovae explosions. At least  one 

grain contains evidence of ion implantation at lower velocities. This grain was 

either hit by the same shockfront as the other grains, although after the front had 

begun to decelerate, or the grain experienced a different shockwave. 

The  two populations  may reflect  the  large  variations  in  ISM residence  times 

previously determined for other presolar SiC grains (Lewis et al. 1994, Ott and 

Begemann 2000, Ott  et  al.  2000, Heck et  al.  2009, Gyngard et  al.  2009).  As 

mentioned, cosmic-ray exposure ages indicate that some grains spent <50Myr in 

the ISM compared to others there for >1Gyr. It seems reasonable to assume that 

the grains present in the ISM for the longest periods of time are more likely to 

have experienced at least one, if not more, shockfronts fast enough to implant 

ions  below  their  surfaces.  Grains  that  do  not  contain  the  products  of  ion 

implantation  probably  did  not  experience  a  significant  shockwave,  perhaps 

because they were only in the ISM for a short time.

Using Si isotopic compositions, Alexander (1993) calculated that 10 – 100 AGB 

stars  must  have  contributed  SiC  grains  to  the  presolar  molecular  cloud. 

Combined with the wide range of cosmic-ray exposure ages measured in presolar 
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SiC, this suggests that not all the SiC grains were formed at the same place or 

time, and that not all grains resided in the ISM for the same period of time. The 

distribution of trace elements within SiC grains appear to be consistent with this 

model, with some grains apparently having experienced very little processing in 

their histories, whilst others must have been altered in the ISM. 

4.5 SUMMARY

We have produced complete depth-profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr 

and  Fe  in  11  acid-extracted  presolar  SiC  grains.  The  average  elemental 

abundance  patterns  of  Mg,  Fe,  Ca,  Al,  Ti  and  V  indicate  that  condensation 

processes heavily dictate the abundances of these elements in presolar SiC. 

We find  evidence  for  two distinct  populations  of  SiC grains  based  upon the 

distribution of trace elements within them. The grains in one group contain either 

homogenous trace element distributions, or evidence of elemental zoning. These 

are explained by condensation processes around the grain’s parent stars. Silicon 

carbide grains belonging to the other group have enrichments of several trace 

elements to depths of up to ~200nm. These are attributed to the implantation of 

ions  at  velocities  of  ~1000kms-1.  Supernova  shockwaves  in  the  ISM are  the 

suggested source of implantation.

The  two  populations  suggest  that  some  SiC  grains  experienced  no,  or  only 

minimal,  processing prior  to  arrival  in  the presolar  molecular  cloud,  whereas 

others  must  have  passed  through  high  velocity  shockwaves.  With  previous 

calculations of residence times ranging from <50Myr to >1Gyr, it is suggested 

that  the youngest  grains may never have seen a significant  shockfront  during 

their time in the ISM. 
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4.6 ADDITIONAL DATA

4.6.1  A geometrical model to estimate the effects of primary ion beam mixing 
when there is a steep elemental abundance gradient between two layers in a grain

Figure 4a.1 shows the set-up of our geometrical model. The model assumes a 

spherical  grain  of  diameter  1μm.  The  model  grain  has  an  outer  rim with  an 

elemental abundance of 1 and inner core with an abundance of 0. The thickness 

of  the outer  rim is  altered  to show the effects  of thicker  or thinner  enriched 

layers.  If such a grain were to be sputtered by a primary ion beam the initial 

secondary ion signal would only come from the rim.

Figure 4a.1 Set-up of our geometrical model that shows the effects of primary ion beam 
mixing when a spherical grain has an outer rim enriched in an element relative to the core. 
The primary ion beam impacts the grain at an angle of 45°. Initial sputtering is through the 
rim until enough material is removed so that part of the grain core becomes exposed to the 
primary ion beam. If the thickness of the rim is less than the achievable spatial resolution 
then the secondary ion signal will now come from both the core and rim.

Eventually  enough  material  would  be  sputtered  so  that  the  core  becomes 

exposed. If the spatial resolution is not sufficient to resolve the two regions, then 

during analysis of the core the overall signal is a combination of both that from 

the rim and also the core. Initially the ratio of exposed rim to core would be high, 

providing a signal dominated by the rim abundance of 1. As the grain continued 

to be sputtered the rim/core ratio decreases and an increased fraction of the signal 

would come from the core. 
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If  R is  the  radius  of  the  model  grain,  r the  radius  of  the  grain  core,  r’ the 

changing  radius  of  the  core  during  sputtering  and  h is  the  depth  to  which 

sputtered, then this effect can be described as;

when h > R-r :-
                                                               hRr −='                                    (Eq. 4a.1)

Observed from the primary ion beam the area of the exposed grain core is given 
by:-

                                                              )'( 22 rr −π                                  (Eq. 4a.2)

and the area of the exposed grain rim:-

                                                              )( 22 rR −π                                  (Eq. 4a.3)

The fraction of exposed outer rim relative to the total area during sputtering is 
given by:-

                                                              
)'(
)(

22

22

rR
rR

−
−

                                  (Eq. 4a.4)

The results of our model are shown in Figure 4a.2. It is important to note that this 

is a simple model that assumes a spherical grain. The model also assumes that 

the sputtering rate remains constant throughout the measurements. It therefore 

does not take into account irregular grain shapes or a changing crystallography, 

which could lead to preferential sputtering.
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Figure 4a.2 Geometrical  model  to show the effects of  primary ion beam mixing when a 
grain  has an  outer  rim enriched in an  element  relative  to  the  grain  core.  The element 
abundance represents the fraction of outer rim exposed to the primary ion beam during 
sputtering (see Eq. 4a.4). In the model the thickness of the enriched outer rim is changed 
(intervals between 50 – 300nm) to show how abundances measured in the grain core are 
upper limits determined by the amount of signal acquired from the rim/core in a single 
analysis. 
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4.6.2 Trace element depth-profiles within individual presolar SiC grains

AK-MM2-G-1

The Al/Si, Ti/Si, V/Si and Cr/Si ratios all rose from the grain surface (on average 

by a factor of 80) to a peak at ~150nm depth. The abundances of these elements 

then decreased, by up to a factor of 15, as we sputtered towards the grain core. 

Li/Si also peaked at this depth but its abundance did not drop within the core of 

the grain.

The Mg/Si and Fe/Si ratios did not show similar peaks in abundance. Instead 

their abundances in the grain core were approximately a factor of 20 greater than 

in the outer regions of the grain.
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Figure 4a.3 Trace element depth-profile through presolar SiC grain AK-MM2-G-1. Dashed 
vertical  lines  indicate  where the grain was removed from the TOFSIMS and re-imaged 
using  the  ESEM.  Depth-profiles  do  not  always  start  from  0nm  as  some  material  was 
sputtered  away  during  the  secondary  ion  imaging  used  to  locate  the  grains  in  the 
TOFSIMS. Error bars are 1σ.
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AK-MM2-G-2

The abundances of Mg, Ca, Ti, V, Cr and Fe were high within the outer 50nm 

before falling to a minimum in the grain core. For Mg/Si and Fe/Si this decrease 

was approximately a factor of 20, whilst for others, such as Ti/Si and V/Si, it was 

only around a factor of 4. The abundances of all of these elements then increased 

by  similar  amounts  as  the  far  side  of  the  grain  was  exposed,  producing 

symmetrical depth-profiles.

In contrast the K depth-profile did not display such a dip. The K/Si ratio peaked 

in the centre of the grain (increasing by a factor of 4) before decreasing at the far 

side.
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Figure  4a.4  Trace  element  depth-profile  through  AK-MM2-G-2  (see  Figure  4a.3  for 
presentation details).
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AK-MM2-M-1

Lithium had a symmetrical depth-profile, with a grain core abundance of a factor 

of  40 lower  than  that  seen  near  the  grain  surface.  K/Si  had a  similar  depth-

profile. However, the minimum K/Si ratio was not observed exactly in the grain 

core, rather towards the far side of the grain (~250nm).

The Ca/Si ratio fell by a factor of 10 from the grain surface before rising again by 

a comparable amount and then remaining similar throughout the rest of the grain. 

The abundances of the other elements did not vary significantly within the grain.
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Figure  4a.5  Trace  element  depth-profile  through  AK-MM2-M-1  (see  Figure  4a.3  for 
presentation details).
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AK-MM2-N-1

The Mg/Si, Ca/Si and V/Si were higher in the core than the surface by factors of 

~6. With the exception of Cr/Si, which decreased by a factor of 8 at ~800nm, the 

other elements had “flat” depth-profiles, with no significant variations in their 

abundances as the grain was sputtered away.
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Figure  4a.6  Trace  element  depth-profile  through  AK-MM2-N-1  (see  Figure  4a.3  for 
presentation details).
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AK-MM2-delta-1

The Li/Si, Al/Si, K/Si and Ca/Si ratios all increased (on average by a factor of 

190) from the grain surface to a peak at ~200nm. Their abundances then fell, by a 

factor of 10 – 40, as the core of the grain was reached. Interestingly the Ca/Si 

ratio  appeared  to  rise  again  to  a  second  corresponding  peak  at  a  depth  of 

~700nm.

The Ti/Si, Cr/Si and Fe/Si ratios also peaked at ~200nm, although the subsequent 

abundance decrease in the grain core was less severe (up to a factor of 10).

The Mg/Si ratio was highest at the grain surface. It then decreased throughout the 

grain. The Mg abundance at the far side of the grain was approximately a factor 

of 25 less than the initial value.
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Figure  4a.7  Trace  element  depth-profile  through AK-MM2-delta-1  (see  Figure  4a.3  for 
presentation details).
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AK-MM2-delta-2

The Ti/Si ratio increased from the grain surface (by a factor of 20) to a peak at 

~300nm. The Ti abundance then decreased by a factor of ~700 in the grain core. 

This may have been caused by sputtering of a small TiC sub-grain, although if 

so,  it  was  not  observed in  the  secondary ion images.  K/Si  rose to  a  peak at 

~200nm but its abundance then fell only slightly in the grain core.

The Li/Si ratio was constant throughout the grain except for a dip in abundance 

(by a factor of 6) seen at ~200nm.

The Mg/Si, Al/Si, Ca/Si, Cr/Si and Fe/Si ratios were high at the grain surface and 

remained so during the first five measurements. From this point their abundances 

then decreased as the grain was sputtered away, eventually falling to a value up 

to a factor of 25 lower than those observed during the first ~200nm. 
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Figure  4a.8  Trace  element  depth-profile  through AK-MM2-delta-2  (see  Figure  4a.3  for 
presentation details).
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AK-MM2-5-1

The abundances of most elements remained consistent throughout the grain until 

showing a dramatic decrease at a depth of ~820nm. This occurred during the two 

measurements immediately after the grain had been removed from the TOFSIMS 

and re-imaged using the ESEM. Although no effect on measured trace element 

abundances  was  observed  when  testing  the  depth-profiling  technique  on  a 

meteoritic silicate grain, it seems likely that this decrease is an effect of either 

sample  handling  or  ESEM  analysis  and  is  not  a  true  variation  in  elemental 

abundances at this depth within the grain (see Section 4.4.2). The data from these 

two measurements has been excluded from the data set.

The Al/Si ratio was higher within the core relative to the outer parts of the grain 

by  a  factor  of  40.  The  Mg/Si  ratio  was  highest  at  the  grain  surface  before 

decreasing as the grain was sputtered away. The abundance at the far side was a 

factor of 30 lower than the original exposed surface. For V the opposite occurred, 

with V/Si lowest at the near side surface and a factor of 25 greater at the far side.
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Figure  4a.9  Trace  element  depth-profile  through  AK-MM2-5-1  (see  Figure  4a.3  for 
presentation details). Data obtained after the grain was re-imaged has been excluded from 
Table 4.2 but is still shown in the figure.
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AK-KJG-D-1

The  Li,  Mg,  Ti,  Cr  and  Fe  abundances  were  highest  at  the  surface  before 

decreasing as the grain was sputtered away. The largest decrease was observed 

for Li/Si, which fell by a factor of 60, whilst the smallest was a factor of 5 for 

Ti/Si.

The K/Si and Ca/Si ratios decreased sharply within the first two measurements 

by factors of 30 and 115 respectively. The K/Si and Ca/Si ratios then remained 

constant.

The Al/Si ratio was flat throughout the first 400nm of the grain before rising by a 

factor of 10. The Al/Si ratio then stayed at this higher value as the rest of the 

grain was sputtered away.
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Figure  4a.10  Trace  element  depth-profile  through  AK-KJG-D-1  (see  Figure  4a.3  for 
presentation details).
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AK-KJG-D-2

The Li/Si, Mg/Si, Ca/Si and Cr/Si ratios were highest within the outer 150nm of 

the grain. Their abundances then fell by a factor 3 – 7 in the grain core before 

showing an increase at the far side of the grain.

The K/Si ratio rose to a peak at ~150nm. This increase, which was by a factor of 

6, was then followed by a decrease by a factor of 4 within the grain core.

The Al/Si ratio showed very little variation as the grain was sputtered away.
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Figure  4a.11  Trace  element  depth-profile  through  AK-KJG-D-2  (see  Figure  4a.3  for 
presentation details). 
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AK-KJG-M-1

The elements  Li,  B, Mg, Al and K all  had symmetrical  depth-profiles where 

abundances in the grain core were lower than those at the outer surfaces of the 

grain. For Li/Si and B/Si the decrease between the surface and the core was a 

factor of 4. For Mg/Si, Al/Si and K/Si it was a factor of 3.

The Ca, Ti, Cr and Fe abundances remained constant throughout this grain. This 

produced flat depth-profiles for these elements.
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Figure  4a.12  Trace  element  depth-profile  through  AK-KJG-M-1  (see  Figure  4a.3  for 
presentation details).
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AK-KJG-6-1

The Li/Si, by a factor of 8, and Mg/Si and Ca/Si by a factor of 4, all rose from 

the  surface  abundance  before  remaining  consistent  throughout  the  grain.  The 

K/Si ratio decreased from the grain surface by a factor of 7 before flattening out. 

All  elements  (excluding  B  and  V  for  which  there  were  insufficient  counts) 

displayed a significant dip (by up to a factor of 35) in their abundances at a depth 

of ~700nm. This depth corresponds with when the sample was removed from the 

TOFSIMS and re-imaged using the ESEM. 

A similar decrease in abundance after re-imaging was observed for grain AK-

MM2-5-1 (see above), although not during the analysis of a meteoritic silicate 

grain  using  the  same  analytical  procedure.  Whereas  the  abundance  decreases 

occurred at the far side of grain AK-MM2-5-1, here there was sufficient material 

left for further measurements. The abundances of all elements increased to the 

values  measured  before the  sample  was re-imaged within  two measurements, 

supporting the idea that the decrease is the result of sample handling or ESEM 

analysis. The data from this measurement has therefore been excluded.
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Figure  4a.13  Trace  element  depth-profile  through  AK-KJG-6-1  (see  Figure  4a.3  for 
presentation details). Data obtained after the grain was re-imaged has been excluded from 
Table 4.2 but is still shown in the figure.
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Amorphous carbon grains in the Murchison meteorite
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A study of micron-sized carbonaceous grains from the Murchison meteorite 

was  undertaken.  The  structural  and  isotopic  nature  of  33  grains  were 

determined  by  using  scanning  and  transmission  electron  microscopy, 

Raman spectroscopy, time-of-flight secondary ion mass spectrometry and 

NanoSIMS analysis.  The grains contain solar  13C/12C,  15N/14N and  18O/16O 

isotopic ratios. Deuterium is enriched in the grains with δD values up to 

+333  ±  110‰.  Raman  characteristics  and  TEM  observations  of  their 

internal  structure  show  them  to  be  composed  of  highly  disordered  and 

amorphous carbon. We hypothesize that the grains may have acquired their 

amorphous  structure  through  irradiation  in  the  proto-solar  nebula,  a 

scenario supported by previous studies of terrestrial soot irradiated by H+ 

and He+ ion fluences of ~1015  – 1016 ions cm-2. The deuterium enrichments 

suggest exchange of H with cold interstellar gas in the outer part of the early 

nebula, although formation in the interstellar medium cannot be excluded. 

If the amorphization of the grains was caused by irradiation with solar wind 

H ions,  then this  is  likely  to  have substantially  lowered any  original  δD 

composition.
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5.1 INTRODUCTION

Determining the nature of carbon in extra-terrestrial samples helps to constrain 

the mechanisms by which carbonaceous materials were formed and processed in 

the interstellar medium (ISM) or early solar nebula.

 

Carbonaceous material  is  present  within primitive meteorites  (for reviews see 

Botta and Bada 2002, Sephton 2002, Pizzarello et al. 2006), interplanetary dust 

particles (IDPs) (e.g. Rietmeijer 1998, Bradley 2003) and cometary dust returned 

by the Stardust mission (Sandford et al. 2006, Muñoz Caro et al. 2008, Rotundi 

et al. 2008). Analysis of these samples indicates that the carbon exists in a variety 

of molecular structures and is isotopically diverse, consistent with its formation 

and processing through several different mechanisms (for a review see Pizzarello 

et al. 2006).

In  carbonaceous  chondrites,  70  –  99%  of  the  carbon  occurs  as  a  complex 

macromolecular  (kerogen-like) material,  often referred to as insoluble organic 

matter (IOM).

Enrichments in D and 15N suggest that at least part of the IOM either formed in 

the ISM or the cold outer regions of the proto-solar nebula (Robert and Epstein 

1982, Yang and Epstein 1983, Kerridge et al. 1987, Busemann et al. 2006). The 

enrichments can be produced through ion-molecule reactions or catalytic mass 

fractionation  processes  at  low  temperatures  (Millar  et  al.  1989,  Aikawa  and 

Herbst 1999, Sandford et al. 2001, Charnley and Rodgers 2008). Differences in 

the size of the enrichments observed between carbonaceous chondrite classes are 

likely  to  have  been  caused  by  varying  degrees  of  parent  body  alteration 

(Alexander et al. 1998; 2007).

The  amount  of  parent  body  processing  is  also  reflected  in  the  structural 

characteristics of the IOM. Much of the carbon present in IOM is structurally 

disordered (Matrajt et al. 2004, Bonal et al. 2006; 2007, Busemann et al. 2007, 

Quirico et al. 2009). However, several studies using Raman spectroscopy have 

shown  that  the  most  disordered  carbon  is  found  within  the  most  primitive 
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meteorites i.e. those which underwent the least amount of alteration (Quirico et 

al. 2003, Bonal et al. 2006; 2007, Busemann et al. 2007). Heating can cause the 

graphitization  of  carbon.  Therefore  meteorite  parent  bodies  that  experienced 

increased levels of thermal metamorphism contain carbon of greater structural 

order.

Similar studies of primitive IDPs and cometary samples have found them to also 

contain carbon of a highly disordered nature (Wopenka 1988, Muñoz Caro et al. 

2006; 2008, Sandford et al. 2006, Rotundi et al. 2008, Busemann et al. 2009). 

Within  the  IOM  there  exists  a  carbon  component  that  is  presolar  in  origin. 

Nanodiamonds and spherical graphite grains contain isotopic anomalies in C, N, 

Ne and Xe that are up to several orders-of-magnitude different from solar ratios, 

but similar to those observed in a range of stellar  environments (Amari et al. 

1993;  1995b,  Hoppe  et  al.  1995,  Zinner  et  al.  1995).  Irregularly  shaped 

carbonaceous grains in meteorites typically contain elements with solar isotopic 

compositions (Amari et al. 1993, Zinner et al. 1995).

Presolar  grains  are  isolated  from meteorites  using  a  series  of  harsh  HF/HCl 

treatments (Amari et al. 1994). Recently, evidence has suggested that the use of 

such acids can alter  or damage the surfaces of presolar grains (Stephan et  al. 

1997,  Henkel  et  al.  2007a).  This  has  led  to  the  development  of  non-acid 

extraction  procedures  in  order  to  provide  pristine  samples  for  analysis 

(Bernatowicz et al. 2003, Tizard et al. 2005).

Amorphous  carbon  has  been  reported  in  IOM  extracted  from  carbonaceous 

chondrites and several ordinary chondrites (Busemann et al. 2007). It has also 

been detected as carbon flakes and nano-tubes in untreated meteorite residues 

(Garvie  and  Buseck  2004;  2006),  hollow  nano-globules  in  meteorite  matrix 

(Nakamura-Messenger  et  al.  2006,  Aoki and Akai  2008, Garvie et  al.  2008), 

IDPs (Wopenka 1988, Muñoz Caro et al. 2006, Busemann et al. 2009, Davidson 

2010) and cometary materials (Sandford et al.  2006, Muñoz Caro et al.  2008, 

Rotundi et al. 2008). 

150



On Earth, amorphous carbon is not usually observed in kerogen-like materials 

(Wopenka and Pasteris 1993). However, Court et al. (2006; 2007) showed that 

increased exposure to ionizing irradiation in U-rich environments leads to greater 

radiolytic  alteration  of  terrestrial  organics.  It  was  found that  the most  altered 

organics contained the most disordered and amorphous carbon, similar to that 

found in primitive extra-terrestrial samples.

In the ISM or early solar nebula, amorphous carbon may have been produced by 

ion irradiation of carbonaceous phases from cosmic-rays  or high energy solar 

wind.

Investigations into the effects of ion irradiation at low temperatures on carbon-

ices such as benzene (C6H6), methane (CH4) or butane (C4H10) show that the ices 

can  be  converted,  firstly  into  refractory  residues  and  then,  under  increasing 

amounts of irradiation,  amorphous carbon (Strazzulla et al.  2003, Ferini et al. 

2004).  Comparisons  between  the  Raman  spectra  obtained  from  frozen 

hydrocarbons (Baratta et al. 2004) and terrestrial soot (Brunetto et al. 2009), used 

as analogs for extra-terrestrial samples, before and after irradiation with H+  and 

He+ ion  fluences  of  ~1015 –  1016 ions  cm-2,  show  that  even  highly  ordered 

crystalline graphite can be altered to an amorphous phase.

Brearley (1990) also found small volumes of amorphous carbon within carbon-

rich aggregates associated with Fe, Ni metal in ordinary chondrites. It was argued 

that Fischer-Tropsch reactions, which convert CO gas to hydrocarbons through 

hydrogenation in the presence of a catalyst, could have produced aggregates of 

Fe, Ni metal embedded in carbonaceous materials in the early solar nebula.

Here, we report combined secondary electron microscopy (SEM), transmission 

electron microscopy (TEM), isotopic and Raman analyses of a set of amorphous 

carbonaceous grains isolated from the Murchison meteorite.  
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5.2 EXPERIMENTAL PROCEDURE

We have previously developed a gentle separation procedure in order to isolate 

pristine  presolar  SiC grains  from host  meteorites  according  to  their  size  and 

density  characteristics  (Tizard  et  al.  2005).  The  grains  described  here  were 

discovered  in  size  and  density  separations  carried  out  following  an  adapted 

version of the Tizard et al. (2005) procedure. The intention was to study pristine 

presolar graphite, although the grains reported here were not graphite grains.  

5.2.1 Adapted Gentle Separation Procedure

One-hundred and sixteen mg of Murchison matrix material, free from chondrules 

and calcium-, aluminium-rich inclusions (CAIs), were crushed using a stainless 

steel mortar and pestle. The sample was then dispersed in ultra-pure water and 

further broken down using freeze-thaw disaggregation. The sample underwent 

138 freeze-thaw cycles by alternately dipping it between liquid N2 (for 90s) and 

hot  water  (45°C for  60s).  A  small  deposit  of  the  disaggregated  sample  was 

examined using an environmental  SEM  (Philips  XL30),  and grain sizes  were 

predominantly <20μm. The remaining sample was dried and then suspended in a 

1:1 mixture of water and isopropanol.

Next, the sample was separated according to grain size using a fixed-angle rotor 

centrifuge. A size separation timetable was calculated according to Stokes’ law 

and assuming a grain density of 1.6gm-3 (see Tizard et al. 2005 for details). Size 

fractions were selected as: A >20μm, B = 7 – 20μm, C = 1 – 7μm, and D <1μm,  

by the corresponding time intervals and g-forces of 465s (at 1g), 633s (at 6g), 

and 620s (at 300g) (see Figure 5.1).

The largest size separation was carried out first. After each size separation the 

sedimented grains were siphoned from the sample. The size separation step was 

then repeated for both the sedimented grains and those still in suspension. Each 

size  separation  was  repeated  for  a  minimum  of  four  times  before  all  of  the 

sediments  from  the  separation  step  were  added  together,  and  similarly  the 
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suspensions accumulated. The size-separated samples were dried before the next 

separation step was begun.

The size fractions B and C were separated by density using a series of organic 

heavy liquids (Cargille Laboratories) of densities 1.6, 2.05, 2.15 and 2.26gcm-3 

(as presolar graphite grains have densities of 1.6 – 2.2gcm-3).

Starting  with  the lowest  density,  the  heavy liquid  was introduced to the  size 

fractions and mixed thoroughly by agitation in an ultrasonic bath for 15 minutes. 

The fractions  were then centrifuged again according to a timetable calculated 

from Stokes’ law. Following centrifugation, the heavy liquid was removed from 

the  fraction,  leaving  behind  only  the  sedimented  grains.  The  sediment  and 

floating separation underwent thorough washing in isopropanol and water, whilst 

also being agitated in the ultrasonic bath.

The  density  step  was  repeated  twice  more,  with  washing  after  each  repeat 

separation, for both the sediment and floating separation. The next heavy liquid 

was then introduced and the process repeated until both size fractions had been 

separated into four density separations (see Figure 5.1).

Figure 5.1 Final size and density fractions from the gentle separation procedure adapted for 
presolar graphite. Only the size fractions B and C were separated according to density. All 
of the grains discussed in this work came from the fractions B4 and C4.
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To determine whether  the heavy liquids  contained any carbonaceous grains a 

small deposit of the 2.15gcm-3 heavy liquid was deposited onto a Au-foil and 

inspected using the ESEM. The heavy liquid appeared as a residue on the foil; 

however no visible grains were discovered. This residue was rarely seen in the 

final  size  and  density  fractions,  indicating  that  the  washing  procedure  was 

effective.

5.2.2 Samples

Two small  aliquots  from the size and density fraction B4 (7 – 20μm, 2.15 – 

2.26gcm-3), and one from C4 (1 – 7μm, 2.15 – 2.26gcm -3) (initially selected as 

they were  fractions  likely  to  contain  presolar  graphite,  see  Figure  5.1),  were 

deposited  over  three  cleaned  (through  ultrasonication  in  isopropanol  and 

acetone),  ultra-pure  (>99.999%)  Au-foils  with  Cu-finder  grids  (Agar  H15, 

3.05mm, 125mesh) imprinted upon them.

No presolar graphite grains were located in the B4 and C4 fractions. In the size 

and  density  separations  of  Tizard  et  al.  (2005),  the  SiC  abundances  in  one 

separation was enriched by a factor of ~1000 from the Murchison whole rock 

abundance of ~6ppm to 0.67%.

In the B4 and C4 fractions in this study only ~2000 grains were on each foil. 

Assuming that the Murchison presolar graphite abundance of ~5ppm (Huss et al. 

2003) was similarly enriched by a factor of 1000, we would expect ~11 of the 

2000 grains to be presolar graphite grains.  However,  in another  separation of 

Tizard  et  al.  (2005),  the  enrichment  factor  was  only  ~360.  A  similar  sized 

enrichment in the graphite separations would result in only ~4 out of the 2000 

grains expected to be presolar graphite.

Carbonaceous grains within the samples, from herein referred to as B4a, B4b and 

C4a,  were located using ESEM and energy dispersive X-ray analysis  (EDX). 

Electron  beam  energies  were  kept  relatively  low  (10  –  15kV)  in  order  to 

minimize damage on grain surfaces. Ten carbonaceous grains were located in 
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sample B4a, 14 in B4b and 9 in C4a. Some examples of the grains are shown in 

Figure 5.2.

The positions of carbonaceous grains relative to the finder-grid were recorded 

and high resolution images taken. Grains were named according to their sample, 

grid location (letters A-Z, numbers 0-9) and numbered sequence within each grid 

area.

 

Figure 5.2 Three different carbonaceous grain morphologies were identified in both the B4 
and C4 fractions. (A) B4a-Q-1 represents a “Flake”. These grains were relatively flat and 
often hexagonal or disc shaped. (B) B4a-X-1 represents an “Elongated” grain that had a 
smooth surface. (C) B4b-1-6 is an example of a “Blocky” grain. These grains were very 
irregular  and  occasionally  angular  in  appearance.  (D)  B4b-1-1  after  SIMS  analysis 
examination  of  the  grain  cores  showed  them  to  be  platy  with  layers  of  carbonaceous 
material. 

5.2.3 TOFSIMS

Secondary  ion  mass  spectrometry  (SIMS)  uses  high  energy  primary  ions  to 

sputter  secondary  ions  from  a  sample.  Time-of-flight  secondary  ion  mass 

spectrometry  (TOFSIMS)  uses  a  pulsed  primary  ion  beam  and  TOF  mass 

spectrometer,  allowing  for  the  simultaneous  detection  of  all  secondary  ion 
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species (either positive or negative ions) during a single analysis (for review see 

Stephan  2001).  The  elemental  and  isotopic  compositions  of  samples  can  be 

analyzed together at sub-micron spatial resolution. Sample consumption rates are 

low,  so  samples  may  be  depth-profiled  or  analyses  combined  with  other 

analytical techniques.

Six of the carbonaceous grains from B4a, and all from C4a, were analyzed for 
12C/13C, 14N/15N and 16O/18O isotopic compositions using a TOFSIMS instrument 

equipped  with  a  25kV Aun
+ liquid  metal  ion  gun  (LMIG)  (IOG 25Au from 

Ionoptika Ltd, Southampton, UK, Davies et al. 2003, Hill and Blenkinsopp 2004) 

at  the  University  of  Manchester.  Previous  versions  of  this  instrument,  which 

instead  utilized  a  Ga+ LMIG, have  been described in  detail  by Henkel  et  al. 

(2006; 2007b).

Measurements  involved  rastering  a  pulsed  Au+ primary  ion  beam over  grain 

surfaces. The field-of-view of each measurement was adjusted according to the 

grain  size.  Sputtered  negative  secondary  ions  were  extracted  away  from the 

sample  and  separated  using  a  TOF  mass  spectrometer  (R-500  from  Kore 

Technology, Ely,  UK). The measurements were run in a scanning mode, with 

each scan recorded separately and then combined to give a total secondary ion 

image. Scans contained 64 x 64 pixels, with 150  – 400 primary ion shots per 

pixel. Each pixel contained a complete negative secondary ion mass spectrum.

A delayed secondary ion extraction technique was used. This bunches together 

secondary  ions  of  the  same  species  by  delaying  their  extraction,  done  by 

switching on the sample potential, until the end of a long primary ion pulse.  In 

this  way high mass  resolutions  (m/δm ~3000) could still  be  achieved despite 

using long primary ion pulses to boost sensitivity. 

The  achieved  mass  resolution  was  insufficient  to  fully  resolve  the  12C1H 

interference from  13C. Attempts  were made to  separate  the  12C1H interference 

from the  13C peak using the peak deconvolution method described by Stephan 

(2001). The low mass edge of the peak at mass 13 was fitted to the 12C peak, with 

the scaling factor between the peaks giving the  12C/13C ratio. However, as the 
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12C1H interference was of similar size to the 12C peak it was not possible to use 

the deconvolution method.

Despite requiring greater mass resolutions (m/δm ~4300 to resolve  12C15N from 
13C14N) the  C and N isotopic ratios  were determined by measuring  CN-.  The 
12C/13C and  14N/15N ratios were calculated from peaks at mass 26 (12C14N), and 

mass 27 (12C15N and 13C14N). The 12C14N peak was fitted to the left edge of the 

peak at mass 27 and the scaling factor between the two peaks gave the 14N/15N 

ratio. Similarly, the 12C14N was also fitted to the right edge of the peak at mass 27 

to give the 12C/13C ratio.

Offline data processing involved removing any unwanted (due to noise or loss of 

primary ion current) scans, applying shift corrections before combining scans, 

deadtime corrections, and defining regions of interest (ROIs). Mass fractionation 

corrections were determined by analyzing terrestrial graphitic grains, comparable 

in size to the carbonaceous grains and assumed to have solar 12C/13C (89), 14N/15N 

(272) and 16O/18O (499) isotopic compositions, under the same conditions.

5.2.4 NanoSIMS

The NanoSIMS can provide high signal rates and spatial  resolutions down to 

50nm (for a review see Hoppe 2006). Mass resolutions up to m/δm ~6000 make 

it suitable for the accurate determination of isotopic ratios in samples. However, 

as  the  secondary  ions  are  separated  using  a  double-focusing  magnetic  sector 

mass  spectrometer,  often  only  seven  isotopic  species  are  detected  during  an 

analysis.

The  2D/1H,  12C/13C,  14N/15N and  16O/18O isotopic compositions of carbonaceous 

grains from B4b were measured using the Cameca NanoSIMS 50L at the Open 

University,  Milton Keynes.  Measurements  were made in a scanning mode by 

rastering a Cs+ primary ion beam over the grain surfaces, with the field-of-view 

dictated by the grain size.
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In the first round of measurements negative secondary ions of 12C, 13C, 16O, 18O, 
12C14N  and  12C15N  were  collected  simultaneously  in  six  electron  multiplier 

detectors.  Secondary  electrons  were  also  collected  for  imaging  during  a 

measurement.  The  primary  ion  beam  current  was  ~2pA  and  recorded  scans 

contained 512 × 512 pixels. 

All grains were initially analyzed without pre-sputtering. Four grains (B4b-1-3, 

B4b-1-4, B4b-5-1 and B4b-7-1) were then analyzed a second time following pre-

sputtering with a de-focused beam that had a current of 400pA. This ensured that 

the  cores  of  the  grains,  where  isotopic  ratios  could  not  be  affected  by  any 

potential  contamination  with  the  organic  heavy  liquids  used  in  the  grain 

separation procedure, were definitely analyzed.

The grains were then analyzed using Raman spectroscopy (see Section 5.2.5) 

before a second round of NanoSIMS measurements. Negative secondary ions of 
1H, 2D and 12C were collected using a primary ion beam current of ~20pA. Scans 

from these measurements contained 256 × 256 pixels.

Data was processed offline, with any unwanted scans (due to noise) removed, 

shifts between scans corrected, deadtime corrections applied, ROIs defined, and 

isotope ratio images produced. 

Mass fractionation of all isotopic ratios was corrected with measurements of well 

characterized terrestrial samples and insoluble organic matter (IOM) (extracted 

from the meteorites Allende, Murchison, EET 92042 and GRO 95577, Alexander 

et al. 2007).

It should be noted that the  12C/13C isotopic ratios were not corrected for quasi-

simultaneous arrival (QSA) of C secondary ions. During NanoSIMS analysis the 

probability that more than one C secondary ion will arrive at the detector at the 

same time is not negligible (Slodzian et al. 2004). When the C secondary ion 

count rate of the standard differs from that of the sample, as was the case here, 

then QSA may have an affect of several percent on the measured  12C/13C ratio. 

However, as presolar graphite grains typically contain  12C/13C ratios orders-of-
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magnitude different from solar,  QSA should not have restricted our ability to 

distinguish grains of presolar origin.

5.2.5 Raman Spectroscopy

Raman spectroscopy provides a relatively non-destructive method by which the 

structure of a sample can be determined. In Raman spectroscopy, photons of the 

fundamental laser frequency interact with vibrational modes of molecular bonds 

or crystal lattices producing inelastically scattered photons. These photons can 

then be detected,  with the interactions causing their energy to be increased or 

decreased.  Raman  band positions  are  therefore  given as  shifts  relative  to  the 

wavelength of the exciting laser.

Carbonaceous materials produce two major bands; the D (“disordered”) and the 

G (“graphitic”), which occur at positions of 1355cm-1 and 1581cm-1 respectively 

(see Wopenka and Pasteris 1993). Depending upon the level of disorder in the 

carbon, minor  D-bands,  such as D2 at  ~1620cm-1,  D3 at  ~1500cm-1 and D4 at 

~1200cm-1, may also occur in the spectrum (Sadezkey et al. 2005). We have not 

attempted to resolve the minor D-bands in this study.  However, it  should be 

noted that these secondary bands can affect the position of the major D and G 

bands; in particular the D2-band causes a broadening of the G-band and a shift in 

its position to higher values. 

The  relative  intensities  of  the  major  D and  G bands,  plus  their  central  peak 

positions and peak widths, can provide information regarding the structural order 

of  the  carbon  in  the  sample.  Pure  graphite  produces  only  the  G-band.  The 

presence  of  increasing  disorder  within  the  carbon  structure,  either  through 

defects,  crystal  boundary  effects,  polycrystallinity  or  small  domain  sizes,  is 

indicated by an increasing D-band intensity (e.g. Tuinstra and Koenig 1970).

Raman analyses of all carbonaceous grains were acquired after they had been 

analyzed either by TOFSIMS or in the NanoSIMS. This allowed us to analyze 

the  interior  of  grains  rather  than  their  outer  surfaces,  which  may  have  been 

coated. Four grains from fraction B4a not sputtered during SIMS analyses were 
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also  analyzed  for  comparison,  but  only  two  of  these  yielded  usable  Raman 

spectra (see below).

Spectra  were  obtained  using  a  Horiba  Scientific  LabRAM  300  Raman 

microscope  with  a  632nm  He:Ne  exciting  laser  at  the  School  of  Chemical 

Engineering and Analytical Science, University of Manchester. A 10x objective 

was used and the spot size of the laser was ~140μm with a power of ~70mW. 

Most grains were sufficiently far apart, so that despite the large spot size, only 

spectra from the grain of interest were recorded. However, in two cases (* in 

Table 5.3) grains had to be analyzed as pairs.

Spectra  were  collected  as  spot  measurements  in  the  spectral  range  800  – 

1800cm1.  Three  spot  measurements  were  taken  from  each  grain  analyzed. 

Reported D and G band values are the mean of the three measurements with 1σ 

errors.

Spectra were fitted with Lorentzian profiles for the Raman D and G bands with a 

linear  background  using  custom  software  (written  in  the  IDL  programming 

language  (Research  Systems,  Inc.))  and  following  the  method  described  in 

Busemann et al. (2007). 

Peak fitting was attempted for each spectrum collected. However, spectra with 

steep and irregularly shaped backgrounds, due to fluorescence resulting from the 

irradiation of the carbonaceous grains by the laser, could not be reliably fitted 

and were therefore excluded. Any spectra whose fitting errors were >100% for 

the  D and G band  peak widths  or  central  positions  were  also  excluded.  For 

several grains no useful Raman spectra were obtained, either due to the fitting 

criteria or a lack of Raman-active carbon. Spikes in the spectra from cosmic-rays 

hitting the detector during a measurement were automatically corrected during 

fitting.

For calibration, and to compare spectra from our instrument to that obtained in 

other laboratories, a terrestrial graphitic grain, along with well characterized IOM 

fragments from the meteorites Murchison (CM2), EET 92042 (CR2), Leoville 
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(CV3.0) and Allende (CV3.2) (Alexander et  al.  2007, Busemann et al.  2007), 

were also analyzed. The determined D and G band parameters (peak widths (Γ) 

and central peak positions (ω)) are presented in Table 5.1.

The IOM fragments, plus the carbonaceous grains in B4b, were pressed into the 

Au-foil prior to any analyses. It should be noted that high pressures (i.e. >5GPa) 

can produce significant  upward shifts  in  Raman band positions (Huang et  al. 

2010a;  2010b).  However,  such pressures  were never  applied  to  the IOM and 

carbonaceous grains, so any pressure induced shift is not thought to be an issue 

here.

Sample ωG ГG ωD ГD D/G
Murchison (CM2) 1571.8 ± 0.8 123.7 ± 2.7 1323.9 ± 0.4 245.7 ± 1.3 1.93 ± 0.05
EET92042 (CR2) 1581.4 ± 2.5 135.3 ± 9.2 1335.7 ± 2.5 286.6 ± 7.3 1.82 ± 0.19
Leoville (CV3.0) 1600.3 ± 3.1 82.4 ± 10.9 1344.8 ± 3.3 224.2 ± 10.0 2.23 ± 0.4
Allende (CV3.2) 1592.0 ± 0.6 75.5 ± 1.8 1329.6 ± 0.4 107.8 ± 1.2 1.78 ± 0.06

Terrestrial Graphite 1581.3 ± 0.2 41.9 ± 0.5 1330.8 ± 0.2 55.4 ± 0.6 1.07 ± 0.02
Table 5.1 D and G band Raman data collected from well  characterized IOM from the  
Murchison, EET92042, Leoville and Allende meteorites. A terrestrial  graphite grain was 
also analyzed. Errors are 1σ.  

Busemann et  al.  (2007) reported that  IOM extracted  from the most  primitive 

meteorites (e.g. CM-type) produced the largest ГD, ωD, and ГG values, and lowest 

ωG values, reflecting the disordered nature of the carbon in the IOM. In contrast, 

IOM from more thermally altered meteorites (e.g. CV) showed the opposite trend 

in D and G band parameters.

In this study, carbon in the IOM from the primitive meteorites, Murchison and 

EET 92042,  was more  disordered  than  that  present  in  the altered  meteorites, 

Leoville and Allende.  Measured D and G band parameters for the IOM were 

comparable to those reported by Busemann et al. (2007). Rotundi et al. (2008) 

performed a similar test at five different Raman laboratories. Results for ГD, ГG 

and ωG from the  different  laboratories  were comparable,  relative  to  the  large 

variations between the meteoritic IOM samples, indicating that the experimental 

set-ups did not cause the trend.
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Analysis  of the terrestrial  graphitic  grain produced much narrower ГD and ГG 

values  than  any of  the  IOM measured  here;  consistent  with  it’s  much  more 

ordered nature (see Figure 5.3).
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Figure 5.3 Comparison of Raman spectra obtained in this study from a terrestrial graphite 
grain (top left), IOM extracted from Allende (top right), amorphous carbonaceous grain 
B4a-W-1 (bottom left), and grain B4b-7-1 containing more ordered carbon (bottom right). 
Both B4a-W-1 and B4b-7-1 are highlighted on Figures 5.4, 5.5 and 5.7. The narrow G-band 
for the terrestrial graphitic grain indicates that it contained the most ordered carbon. In 
contrast grain B4a-W-1 had broad overlapping D and G bands that almost formed a single 
peak.

We note that the D-band peak positions appeared to be shifted to lower values, 

for  both  the  IOM measurements  and  the  terrestrial  graphite,  than  previously 

observed by Busemann et al. (2007). It is known that the D-band peak position 

can vary with exciting photon energy (Ferrari and Robertson 2001, Negri et al. 

2004). For example, Rotundi et al.  (2008) measured IOM with three different 

exciting  wavelengths,  512nm, 532nm and 632nm and showed that  the use of 

increasingly longer wavelengths could shift the D-band peak position to lower 

values but has little affect on the G-band position. The reported downshift in ωD 

was ~5 – 8cm-1 between the 532nm and 514nm excitation wavelengths, although 
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Ferrari and Roberston (2001) showed downshifts >20cm-1 in some carbonaceous 

samples. 

As Busemann et al. (2007) used a 532nm laser we attribute our lower D-band 

peak positions to the use of a longer exciting wavelength in this study, although 

the position of the D-band does not influence our overall interpretation of the 

data.

In summary,  the D and G band parameters  and observed trends measured  in 

meteoritic  IOM and a terrestrial  graphitic  grain,  lead  us to  conclude  that  our 

experimental  set-up  did  not  cause  carbonaceous  phases  to  appear  more 

disordered than they really were.  

5.2.6 TEM

TEM uses a high energy electron beam to obtain high resolution images from 

electron transparent samples. Electrons interacting with the sample also undergo 

Bragg scattering,  producing diffraction  patterns  characteristic  of  the  sample’s 

crystalline structure (for reviews see Wirth 2004, Lee 2010).

Three  carbonaceous  grains,  B4a-Q-1,  B4a-X-1  and  C4a-D-1,  were  analyzed 

using TEM. The grains were prepared as electron transparent sections using an 

FEI Nova 200 DualBeam Focused Ion Beam (FIB) system at the University of 

Glasgow.

Protective  straps  of  Pt  were  deposited  onto  the  grain  surfaces  to  minimize 

damage from implantation during ion sputtering. Sections, up to ~4μm in size, 

were extracted from the grains and milled down to thicknesses of 100 – 200nm 

using a  30kV Ga+ ion beam.  As sputtering with the high energy beam could 

damage the section and potentially lead to amorphization of its surface, the final 

polishing steps were carried out using a 5kV ion beam to remove any “damaged” 

sample material.
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An FEI Tecnai T20 TEM with a 200kV LaB6 electron source and Gatan image 

filter (also at the University of Glasgow) was used to study the three sections. 

Images were obtained using the bright field mode and a selected-area electron-

diffraction pattern (SAED) was collected from the central region of each section.

5.3 RESULTS

5.3.1 Grain Abundances, Sizes and Morphologies

Based upon the total number of grains for which EDX spectra were collected in 

each fraction,  the abundance of the carbonaceous grains in B4 (B4a and B4b 

combined) is 0.13% and 0.22% for C4.

The B4 and C4 fractions also contain a large percentage of silicate grains from 

the meteorite matrix. Silicate grains have densities >2.2gcm-3, the upper end of 

the density range of graphite (1.6 – 2.2gcm-3), and should not be widely present 

within the B4 and C4 fractions (2.15 – 2.26gcm-3). Grains of density >2.26gcm-3 

should  be  sedimented  after  the  first  density  step  and  extracted  from  the 

separation, leaving only grains of density <2.26gcm-3. However, it appears that 

some of the densest material must have remained in the separation, placing it into 

the supposedly lower density fractions. 

Carbonaceous grain sizes in B4 ranged from 1 – 13μm, with an average long axis 

diameter of 6.3μm. For C4 the grain sizes ranged from 1 – 7μm, with an average 

long axis diameter of 2.6μm.

The average carbonaceous grain size in B4 was larger than that within the C4 

fraction indicating that the size separation was successful. Approximately 90% of 

the C4 carbonaceous grains fell into their expected size range of 1 – 7μm. In 

contrast only ~40% of the B4 grains were within the range of 7 – 20μm, with the 

rest having long axis diameters of <7μm. This is likely due to the use of a fixed-

angle centrifuge, which can lead to some deviation from Stokes’ law when size 

separating the grains (see Tizard et al. 2005 for details). The centrifuge causes 

grains to become pushed outwards to the walls of the tube, whilst grains will also 
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sediment  in bulk rather than as single particles.  Smaller  grains may therefore 

sediment in a faster time than that calculated from Stokes’ law. This was partly 

combated with repeated separations for each size fraction; however it seems an 

increased number of repetitions are required.

We have divided the carbonaceous grains  into three groups based upon their 

morphology (see Figure 5.2). The grains were either regarded as: (1) “Flakes”, 

small grains with smooth surfaces, (2) “Elongated”, long grains, again usually 

with  smooth  surfaces,  or  (3)  “Blocky”,  which  had  angular  or  irregular 

appearances.

Many of  the  grains  appeared  to  be  similar  in  morphology to  the  non-round, 

isotopically normal,  grains described by Amari et al.  (1993) and Zinner et al. 

(1995) in presolar graphite acid residues. Those grains were reported to be either 

hexagonal or irregular shapes, including blocky grains and elongated particles 

they referred to as “potatoes”, and often had smooth surfaces.  

Table 5.2 summarizes the abundances of each morphological group within the 

fractions B4a, B4b and C4a. Each of the morphologies was represented in all of 

the  fractions,  and  for  B4a  and  B4b  they  were  found  in  relatively  similar 

abundances. In C4a the blocky grains dominated, comprising almost 70% of the 

carbonaceous grains. Overall however, the flakes and blocky grains were most 

abundant in the fractions at ~40%, whilst the elongated grains made up just over 

20% of all carbonaceous grains.

Morphology B4a B4b C4a Total
Flakes (F) 4 (40%) 7 (50%) 2 (22%) 13 (40%)

Elongated (E) 3 (30%) 4 (29%) 1 (11%) 8 (24%)
Blocky (B) 3 (30%) 3 (21%) 6 (67%) 12 (36%)

Table 5.2 Summary of the distribution of carbonaceous grain morphologies in the size and 
density fractions B4 and C4.

5.3.2 Isotopic Ratios

The measured  H,  C,  N and O isotopic  ratios  of  the  carbonaceous  grains  are 

presented in Table 5.3. The C, N and O isotopic compositions of nearly all of the 
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carbonaceous  grains  were  within  1σ  error  of  the  solar  values.  They  did  not 

contain the large anomalies that are commonly associated with presolar graphite 

grains  (Amari  et  al.  1993;  1995b,  Hoppe  et  al.  1995,  Zinner  et  al.  1995), 

indicating that they are not stellar condensates.

The 12C/13C ratios obtained using TOFSIMS were lower (average of 85 ± 5) than 

those from the NanoSIMS measurements (average of 90 ± 0.7). Despite using a 

peak deconvoltion technique (see Section 5.2.3) it appears that there was still 

some  contribution  from  12C15N to  the  13C14N peak  resulting  in  systematically 

lowered  12C/13C  ratios.  The  NanoSIMS  measurements  were  performed  at 

sufficient  mass resolutions  so that  this  was not  an issue.  However,  all  of the 
12C/13C ratios acquired using TOFSIMS were within 3σ of solar suggesting that 

they are unlikely to be presolar in origin.

The grain B4a-W-1 had a  14N/15N ratio  of 103 ± 44. Enrichments  in  15N are 

predicted to occur through low temperature ion-molecule reactions in the cold 

outer regions of the early solar nebula or the ISM (Millar et al. 1989, Aikawa and 

Herbst 1999, Sandford et al. 2001, Charnley and Rodgers 2008).

The grains were enriched in D relative to SMOW (Standard Mean Ocean Water), 

with δD values between +134 to +333‰, and 1σ errors on average ~110‰. Bulk 

δD values  in  Murchison matrix  are  ~ −30‰ (Pearson et  al.  2001,  Eiler  and 

Kitchen 2004), although D enrichments are found in Murchison IOM, with δD of 

around +780‰ (Alexander et al. 2007).

After  SIMS sputtering,  the  remaining  grains  were  examined  again  using  the 

ESEM.  Most  of  the  grains  had  an  apparent  platy  structure,  with  layers  of 

carbonaceous material (see Figure 5.2).

5.3.3 Raman Spectroscopy

Average D and G band parameters, and D/G intensity ratios for the carbonaceous 

grains, are provided in Table 5.3. Due to the fitting criteria, or lack of Raman-

active carbon, useful Raman spectra were not obtained from every grain.
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Table  5.3 Summary  of  morphology,  isotopic compositions and Raman characteristics  of  carbonaceous grains.  The grains belong to either the “Flakes”  (F),  
“Elongated” (E) or “Blocky” (B) morphological groups. Isotopic compositions were acquired using TOFSIMS (TOF) and NanoSIMS (Nano) analysis and have  
been corrected for mass fractionation (but not QSA). As part of the NanoSIMS analysis the grains B4b-1-3, -1-4, -5-1 and -7-1 were pre-sputtered using a de-
focused 400pA primary ion beam. * indicates that due to the large spot size of the exciting laser these grains were analyzed as pairs. A space in the table indicates  
that no data was obtained (i.e. not all grains were analyzed for H isotopes and the fitting criteria meant no useful Raman spectra were collected from some grains).  
Errors are 1σ.

Name Size (μm) Morphology Technique 12C/13C 14N/15N 16O/18O δD (‰) ωG ГG ωD ГD D/G
B4a-C-1 9 x 3 E
B4a-D-1 11 x 4 E
B4a-E-1 7 x 3 F 1593.5 ± 1.8 92.7 ± 5.7 1346.4 ± 1.6 155.3 ± 4.9 1.51 ± 0.13
B4a-G-1 1 x 1 B 1574.4 ± 2.8 191.2 ± 9.6 1346.8 ± 2.6 257.6 ± 7.0 1.44 ± 0.13
B4a-J-1 8 x 8 B TOF 90 ± 2 287 ± 42 432 ± 61 1565.5 ± 0.5 141.2 ± 2.0 1358.8 ± 0.9 265.3 ± 2.2 1.13 ± 0.03
B4a-Q-1 6 x 5 F TOF 81 ± 3 206 ± 44 513 ± 96 1557.9 ± 0.9 181.7 ± 3.1 1352.1 ± 1.4 254.8 ± 3.5 0.96 ± 0.03
B4a-W-1 3 x 2 F TOF 79 ± 8 103 ± 44 690 ± 213 1546.6 ± 1.8 165.8 ± 5.5 1363.8 ± 2.8 214.9 ± 7.0 0.84 ± 0.06
B4a-W-2 6 x 5 F TOF 77 ± 5 159 ± 45 426 ± 55 1557.0 ± 0.7 148.4 ± 2.5 1358.3 ± 1.2 250.0 ± 3.0 0.98 ± 0.03
B4a-W-3 10 x 8 B TOF 82 ± 2 248 ± 41 546 ± 77 1566.9 ± 1.0 153.3 ± 3.5 1357.0 ± 1.5 232.0 ± 4.1 0.96 ± 0.04
B4a-X-1 7 x 3 E TOF 90 ± 2 214 ± 41 503 ± 51
B4b-0-1 3 x 2 F Nano 90.7 ± 1.1 279 ± 3 517 ± 15 177 ± 115
B4b-1-1 5 x 3 B Nano 91.7 ± 1.1 278 ± 3 497 ± 15
B4b-1-2 7 x 3 E Nano 90.4 ± 1.1 275 ± 3 516 ± 15 203 ± 113 1566.5 ± 1.2 221.0 ± 3.7 1345.1 ± 2.3 281.4 ± 5.5 0.67 ± 0.03
B4b-1-3 6 x 3 F Nano 90.4 ± 1.1 277 ± 4 517 ± 15 287 ± 113
B4b-1-4 5 x 3 F Nano 91.1 ± 1.1 274 ± 4 513 ± 15 333 ± 116
B4b-1-5 4 x 2 F Nano 90.8 ± 1.1 271 ± 3 501 ± 15 230 ± 113
B4b-1-6 9 x 2 E Nano 90.5 ± 1.1 268 ± 3 504 ± 15 286 ± 113 1571.1 ± 2.5 180.5 ± 8.5 1341.3 ± 2.4 210.0 ± 7.3 1.19 ± 0.10
B4b-1-7 13 x 8 B Nano 92.8 ± 1.1 274 ± 3 503 ± 15 314 ± 113
B4b-5-1 9 x 4 E Nano 89.9 ± 1.1 272 ± 4 511 ± 15 235 ± 114
B4b-6-1 6 x 5 F Nano 90.3 ± 1.1 277 ± 3 509 ± 15 134 ± 117 1592.0 ± 0.8 109.6 ± 2.6 1355.4 ± 0.8 217.5 ± 2.6 1.39 ± 0.05
B4b-6-2 6 x 3 E Nano 90.6 ± 1.1 273 ± 3 511 ± 15 246 ± 113
B4b-7-1 4 x 2 B Nano 91.4 ± 1.1 277 ± 4 517 ± 15 275 ± 114 1595.1 ± 0.1 59.5 ± 0.4 1322.1 ± 0.1 213.1 ± 0.4 1.81 ± 0.01
B4b-9-1 2 x 1 F Nano 90.6 ± 1.1 271 ± 4 507 ± 15 321 ± 114 *1585.3 ± 2.1 *152.3 ± 7.7 *1344.4 ± 2.8 *263.6 ± 8.0 *1.18  ± 0.10
B4b-9-2 5 x 2 F Nano 90.1 ± 1.1 265 ± 5 499 ± 17 144 ± 113 *1585.3 ± 2.1 *152.3 ± 7.7 *1344.4 ± 2.8 *263.6 ± 8.0 *1.18  ± 0.10
C4a-D-1 3 x 2 B TOF 84 ± 2 287 ± 46 591 ± 73 1554.2 ± 0.7 132.7 ± 2.5 1353.3 ± 1.2 267.9 ± 2.9 1.12 ± 0.04
C4a-E-1 2 x 1 B TOF 88 ± 3 519 ± 107 511 ± 86 1556.6 ± 2.7 173.2 ± 9.8 1345.5 ± 4.0 294.1 ± 9.2 1.24 ± 0.13
C4a-E-2 2 x 1 F TOF 87 ± 2 545 ± 101 555 ± 81 1547.7 ± 2.1 143.5 ± 7.3 1367.7 ± 4.1 251.3 ± 9.4 0.95 ± 0.10
C4a-G-1 2 x 2 B TOF 89 ± 3 279 ± 48 607 ± 174 1542.0 ± 1.5 145.1 ± 5.4 1343.5 ± 3.0 293.9 ± 6.7 1.05 ± 0.07
C4a-H-1 7 x 3 E TOF 83 ± 2 269 ± 43 553 ± 51 1562.7 ± 3.9 170.0 ± 12.9 1357.8 ± 3.6 207.9 ± 10.7 0.97 ± 0.14
C4a-L-1 4 x 3 B TOF 88 ± 2 254 ± 45 471 ± 125 1565.4 ± 1.3 207.2 ± 4.4 1345.0 ± 2.0 257.1 ± 5.1 0.83 ± 0.04
C4a-Q-1 1 x 1 B TOF 87 ± 3 335 ± 52 548 ± 109 1551.8 ± 2.0 141.2 ± 6.8 1360.3 ± 3.0 195.5 ± 8.8 0.88 ± 0.08
C4a-R-1 1 x 1 F TOF 96 ± 2 275 ± 45 552 ± 81 *1549.9 ± 2.5 *152.8 ± 9.1 *1368.8 ± 4.6 *284.6 ± 9.6 *1.18 ± 0.14
C4a-R-2 2 x 1 B TOF 78 ± 4 231 ± 44 538 ± 67 *1549.9 ± 2.5 *152.8 ± 9.1 *1368.8 ± 4.6 *284.6 ± 9.6 *1.18 ± 0.14
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The majority of grains (including B4a-G-1, which had not been sputtered) had 

very broad ГD and ГG values that were consistent with the presence of highly 

disordered carbon. In many cases the D and G bands overlapped,  a common 

feature  of  amorphous  carbon  (e.g.  Ferrari  and  Robertson  2001).  Figure  5.3 

compares  typical  Raman  spectra  obtained  from  a  terrestrial  graphite  grain, 

meteoritic IOM, amorphous carbonaceous grain B4a-W-1, and the more ordered 

grain B4b-7-1. It shows how, with increasing disorder of the carbon, the intensity 

of the D band relative to the G increases, and both the D and G bands become 

broader.

Figures 5.4 and 5.5 plot the peak widths as a function of peak position for both 

the D and G bands in the carbonaceous grains respectively.  Also included on 

Figures 5.4 and 5.5 are D and G band data from meteoritic IOM (Busemann et al. 

2007),  IDPs  (Busemann  et  al.  2009)  and  cometary  materials  (Rotundi  et  al. 

2008).

Figure  5.4  shows  that  the  grains  had  ГD and  ωD values  comparable  to 

carbonaceous phases present in meteoritic IOM, IDPs and cometary materials. 

However, our analyses of IOM from Murchison and EET 92042, Leoville and 

Allende,  gave ωD values 10 – 20cm-1 lower than those measured in the same 

samples by Busemann et al. (2007), which we attributed to our use of a longer 

exciting  wavelength  (see  Section  5.2.5).  The  ωD values  of  the  carbonaceous 

grains may therefore have also been downshifted by a similar amount.  

Nearly all carbonaceous grains plot in the top left of Figure 5.5, with ГG values 

often  higher  and  ωG values  lower  than  any  previously  reported  for  extra-

terrestrial samples. Three grains, B4a-E-1 (not sputtered), B4b-6-1 and B4b-7-1, 

had G band characteristics similar (lower ГG and higher ωG – bottom right of 

Figure 5.5) to those measured in other primitive samples.
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Figure 5.4 D-band characteristics of Raman spectra collected as part of this study (closed 
symbols) from carbonaceous grains (including those not analyzed by SIMS), IOM (from 
Murchison, EET92042, Leoville and Allende) and a terrestrial graphite grain. The data are 
compared to that previously obtained (open symbols) from meteoritic IOM (Busemann et 
al. 2007), IDPs (Busemann et al. 2009) and cometary materials returned by the Stardust 
mission  (Rotundi  et  al.  2008).  The ГD and ωD values  for  the  carbonaceous grains were 
comparable to those from primitive extra-terrestrial samples. A downshift of 10 – 20cm-1 in 
ωD values  for  the  IOM  from  Murchison,  EET  92042  and  Allende  measured  here  is  
attributed to our use of a longer exciting wavelength (632nm) than the other studies. The ωD 

values for the carbonaceous grains may therefore also have been downshifted by a similar  
amount.

We tested whether contamination with organic heavy liquids could produce the 

bands observed for the carbonaceous grains. Several terrestrial graphitic grains 

were  centrifuged  in  heavy liquid  and washed thoroughly  following  the  same 

procedure used for the gentle separation. The Raman spectra from these “treated” 

grains were identical to those obtained from terrestrial  graphite not washed in 

heavy liquid.  This indicated that the use of the organic heavy liquids did not 

significantly alter the grain’s Raman characteristics.
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Figure 5.5 G-band characteristics of Raman spectra collected as part of this study (closed 
symbols) from carbonaceous grains (including those not analyzed by SIMS), IOM (from 
Murchison, EET92042, Allende and Leoville) and a terrestrial graphite grain. The data are 
compared to that previously obtained (open symbols) from meteoritic IOM (Busemann et 
al. 2007), IDPs (Busemann et al. 2009) and cometary materials returned by the Stardust 
mission  (Rotundi  et  al.  2008).  Most  carbonaceous  grains had ГG values higher,  and ωG 

lower, than those measured in other primitive extra-terrestrial samples.

5.3.4 TEM

Further evidence for the amorphous nature of the carbonaceous grains came from 

the TEM analysis. Figure 5.6 shows TEM images of the three grains prepared 

using the FIB. The grains are featureless and lack any internal  structure.  The 

SAED patterns obtained from each grain contain only very weak rings (Figure 

5.6),  consistent  with them having no crystalline  structure and therefore being 

amorphous.
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Figure 5.6 TEM images from three carbonaceous grains, B4a-X-1 (top left), B4a-Q-1 (top 
right) and C4a-D-1 (bottom left – scale is the same as for B4a-Q-1 image). The grains are 
the light coloured material in the centre of the images, and are surrounded by Pt above and 
Au-foil below, i.e. darker regions. The grains lacked any internal structure, as indicated by 
SAED patterns from the central regions of the sections (e.g. bottom right). 

5.4 DISCUSSION

5.4.1 Contamination

We must  first  consider whether the grains are the result  of contamination.  A 

possible  source  is  from the  organic  heavy liquids.  As  previously  mentioned, 

heavy  liquid  deposited  onto  a  clean  Au-foil  and  examined  with  the  ESEM 

yielded no carbonaceous grains. The only other items that came into contact with 

the Murchison sample were a stainless steel mortar and pestle, plastic test tubes 

and pipette, and the Au-foil. We would not expect any of these items to produce 

such  highly  disordered  and  amorphous  carbonaceous  material,  which  is 

uncommon in terrestrial samples (Wopenka and Pasteris 1993).

 
Another  major  argument  against  contamination  is  that  the  grains  are  slightly 

enriched in  D relative to SMOW, again not an expected  feature of terrestrial 

materials (e.g. Hoefs 1980).
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We  conclude  therefore  that  the  carbonaceous  grains  are  not  contaminants 

introduced by the gentle separation procedure or any other laboratory process 

prior to analysis.

5.4.2 Effects of SIMS and Raman Analyses

The carbonaceous grains were analyzed either by TOFSIMS or NanoSIMS prior 

to any Raman spectroscopic measurements. Sputtering by high energy primary 

ion  beams  causes  ion  implantation  (Au+ from  the  TOFSIMS,  Cs+ from  the 

NanoSIMS)  into  the  outer  tens  of  nanometres  of  a  sample,  leading  to 

amorphization  within  its  top  layers.  The  SIMS  analysis  may  therefore  have 

perturbed the Raman spectra of the grains towards a more disordered nature.

Raman  spectra  from  two  carbonaceous  grains  not  analyzed  by  SIMS  were 

compared to those from grains that had been. One of the grains (B4a-G-1) had ГG 

and ωG consistent with those grains analyzed by SIMS, whilst the other (B4a-E-

1) contained less disordered carbon (higher ωG and lower ГG). 

The  Raman  spectra  of  B4a-E-1  were  comparable  with  those  seen  in  other 

primitive samples but also carbonaceous grains B4b-6-1 and B4b-7-1, both of 

which were analyzed by NanoSIMS. As the peak widths and peak positions of 

B4a-E-1 are within  the range measured  in  the sputtered  grains,  and B4a-G-1 

contains highly disordered carbon, similar to that observed in grains analyzed by 

SIMS, it appears that the SIMS measurements have not had a major influence on 

the Raman characteristics of the carbonaceous grains. 

Furthermore,  Zinner  et  al.  (1995) performed Raman spectroscopy on presolar 

graphite  grains  after  SIMS  measurements  so  that  grain  cores  were  analyzed 

rather than potentially coated or altered outer surfaces. The grains still displayed 

Raman spectra consistent with graphite rather than shifting towards amorphous 

carbon,  indicating  that  the  SIMS had  little  effect  on  carbon  structure  of  the 

grains.
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TEM analysis also indicates that the SIMS measurements have not caused the 

amorphization of the carbonaceous grains. Sputtering by the primary ion beam is 

only expected to cause amorphization of the outer layers of a sample. However, 

the TEM images and diffraction patterns indicate that the cores of sections up to 

4μm in diameter are also lacking crystalline structure and are amorphous.

Laser  induced  thermal  alteration  of  samples  can  be  an  issue  in  Raman 

spectroscopy. Thermal alteration often causes carbonaceous materials to become 

more  processed,  decreasing  ГG,  and  increasing  ωG,  shifting  them towards  the 

bottom right  corner  of  Figure  5.5.  This  is  the  region  opposite  to  where  the 

carbonaceous grains plot. Everall et al. (1991) and Kagi et al. (1994) have shown 

that the ωG for graphite can also be shifted, by 10 – 20cm-1, to lower values by 

laser  induced heating.  However,  the  ωG we obtained from well  characterized 

IOM and a terrestrial graphitic grain are not significantly down-shifted relative to 

previous studies (e.g. Busemann et al. 2007). We therefore conclude that the ωG 

values  of  the  carbonaceous  grains  have  not  been  affected  by  laser  induced 

alteration in our experimental set-up.

5.4.3 Amorphous Carbon

Ruling  out  the  possibility  that  the  carbonaceous  grains  are  terrestrial 

contamination, and that their disordered and amorphous structure is the result of 

any analytical technique, we may discuss how the grains may have been formed 

and processed prior to arrival in the laboratory.

Brearley (1990) suggested that amorphous carbon, located alongside Fe, Ni metal 

particles within carbon-rich aggregates in ordinary chondrites, was formed by a 

combination  of  Fischer-Tropsch  reactions  and  the  direct  precipitation  of 

elemental carbon onto metal grains at low temperatures within the early solar 

nebula.  The resulting amorphous carbon should therefore contain evidence of 

metals such as Fe and Ni. 

Several carbonaceous grains from the B4a fraction were measured by TOFSIMS 

analyzing positive  secondary ions.  No Fe-rich “hotspots” were present  in  the 
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resulting secondary ion images.  This was consistent with the ESEM analyses, 

which also found no signs of metals within the grains, suggesting their formation 

via a different process.

Rotundi et al. (1998) produced amorphous carbon through arc discharge between 

two amorphous carbon electrodes in an inert Ar atmosphere. Most of the carbon 

consisted  of  chain-like  aggregates  of  amorphous  carbon,  but  also  poorly 

graphitized  carbon  and  Buckminster-fullerenes.  The  grains  were  tens  of 

nanometres in size, inconsistent with the carbonaceous grains reported here.

Ion irradiation, from cosmic-rays or high energy solar winds, is predicted to be a 

major cause of the amorphization of extra-terrestrial samples (e.g. Bradley 1994). 

Ion irradiation leads to a disordering of the carbon structure (breakdown of sp2 

bonds) and therefore a shift of ωG to lower, and ГG to higher values (i.e. towards 

the top left of Figure 5.5) (e.g. Baratta et al. 1996).   

Brunetto et al. (2009) compared the Raman spectra of soot, used as an analogy 

for carbonaceous dust observed in the ISM, before and after irradiation with up 

to 400keV H+, He+ and Ar++ ions. Figure 5.7 compares the data of Brunetto et al. 

(2009) to that from the carbonaceous grains analyzed here.

Prior to irradiation the soot had high ωG and low ГG (bottom right of Figure 5.7). 

Upon  irradiation,  with  ion  fluences  of  ~1015 ions  cm-2,  the  soot  became 

disordered  and  eventually  amorphous  (top  left  of  Figure  5.7).  It  developed 

Raman characteristics comparable to primitive IDPs, and remarkably similar to 

those in the carbonaceous grains. The highly disordered and amorphous nature of 

the carbonaceous grains appears to be consistent with the ion irradiation of pre-

existing more ordered carbon grains. Baratta et al. (2004) and Ferini et al. (2004) 

have shown that irradiation by 3 – 30keV He ions at fluences of >1016 ions cm-2 

can transform carbon ices, and even highly ordered graphite,  to carbonaceous 

materials with ωG <1540cm-1 and ГG >150cm-1. 

The effects of ion irradiation can be reversed by thermal metamorphism, which 

causes  graphitization  of  carbon  (Wopenka  and  Pasteris  1993).  Much  of  the 
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carbonaceous material that accreted into meteorite parent bodies is likely to have 

been of a highly disordered nature. However, annealing of amorphous materials 

during  meteorite  parent  body  processing  would  result  in  an  alteration  of  its 

Raman  spectra  towards  a  more  ordered  structure  (Bonal  et  al.  2006;  2007, 

Busemann et al. 2007). It is therefore not surprising that amorphous carbon has 

only  been  observed in  the  most  primitive  samples  that  experienced  the  least 

amount of thermal metamorphism.
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Figure 5.7 Comparison of Raman G-band characteristics from carbonaceous grains (closed 
symbol), meteoritic IOM (Busemann et al. 2007), IDPs (Busemann et al. 2009), cometary 
materials (Rotundi et al. 2008) and ion irradiated soot (data from Brunetto et al. 2009). The 
ГG and ωG of the soot evolve as a function of ion fluence. Prior to irradiation the soot plots  
in the lower right-hand corner. Upon exposure to ion fluences >1014 ions cm-2 the carbon 
becomes disordered (i.e. increasing ГG and decreasing ωG) and shifts towards the top left. At 
ion fluences >1015 ions cm-2 the carbon becomes highly disordered and amorphous and is 
similar to that observed in the carbonaceous grains, plus some IDPs and cometary material.

Three grains (B4a-E-1, B4b-6-1 and B4b-7-1) had ωG and ГG values consistent 

with a more ordered carbon structure, typical of those reported for most extra-

terrestrial  carbonaceous samples.  One scenario is  that  these grains were more 

thermally  metamorphosed  than  the  other  carbonaceous  grains.  However,  the 

Murchison  parent  body  is  not  predicted  to  have  experienced  any  significant 
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thermal alteration (Huss et al. 2006, Busemann et al. 2007, Cody et al. 2008). 

These  grains  must  therefore  have  either  experienced  lower  doses  of  ion 

irradiation, perhaps having formed after the other grains or through shielding in 

the nebula, or increased amounts of heating prior to their incorporation into the 

Murchison parent body.

5.4.4 Origins of Amorphous Carbonaceous Grains

The  isotopic  compositions  of  the  carbonaceous  grains  exclude  circumstellar 

environments  as  their  source.  Potentially,  presolar  graphite  grains  could  be 

converted  to  amorphous carbon by ion irradiation  in  the ISM, but  the grains 

would still be expected to retain isotopic anomalies from their stellar origins.

Organic particles or mantles on grains in the ISM can contain large D and 15N 

enrichments  from  ion-molecule  reactions  and  mass  fractionation  processes 

(Millar et al. 1989, Aikawa and Herbst 1999, Sandford et al. 2001, Charnley and 

Rodgers 2008). Similar processes may have also occurred at the outer edges of 

the collapsing cloud from which the solar nebula was formed. Temperatures in 

this region are predicted to have been as low as ~10K, allowing the condensation 

of gas molecules onto icy grains. It has been suggested that intense UV radiation 

in this environment could create D-rich ionized molecular H gas (Aikawa and 

Herbst  1999).  Rapid  H isotope  exchange with the  ionized  gas  would lead  to 

extreme D enrichments in any organic mantles and icy grains.

Formation in the ISM or the outer proto-planetary disk has been used to explain 

extreme D and  15N  enrichments observed in IOM (Robert and Epstein 1982, 

Yang  and  Epstein  1983,  Kerridge  et  al.  1987,  Busemann  et  al.  2006),  IDPs 

(Keller et al. 2000, Messenger 2000, Floss et al. 2006, Busemann et al. 2009) and 

nanoglobules (Nakamura-Messenger et al. 2006). 

With  the  exception  of  B4a-W-1,  extreme  D  and  15N  enrichments  were  not 

detected in the amorphous carbonaceous grains. However, the grains’ slight D 

enrichments are comparable to those measured in some IDPs (Messenger 2000, 
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Floss et al. 2006, Busemann et al. 2009), indicating that they may have formed in 

similar environments.

Remusat  et  al.  (2010)  have  argued  that  carbon-rich  particles  located  in  the 

matrices  of  carbonaceous  chondrites,  and  containing  a  wide  range  of  D 

enrichments, are remnants of organics synthesized in the cold regions of the early 

solar nebula. In their model, particles that remained in the outer disk underwent 

H isotopic exchange with the ionized gas, leading to extreme D enrichments. The 

inward transport of other carbonaceous particles caused them to spend less time 

in this environment, hence acquiring smaller D enrichments. In the inner regions 

of the disk, higher temperatures  and gas densities  shielded material  from UV 

radiation. Further movement in the turbulent disk (Ciesla 2009) eventually led to 

mixing of all the carbonaceous particles in the meteorite parent body accretion 

zone of the early solar nebula.

A similar  scenario was proposed by Muñoz Caro et  al.  (2006) to explain the 

formation of amorphous carbon in IDPs. They suggested that during the T-tauri 

phase of the early Sun, icy mantles on grains at the outer edge of the disk were 

processed by UV and ion irradiation until turbulent mixing transported the grains 

to the inner disk. Higher temperatures led to sublimation of volatiles,  leaving 

behind amorphous carbon. 

We could expect the amorphous carbonaceous grains to have a wide range of D 

compositions, similar to those observed in other primitive samples. This is not 

the case, with most of the carbonaceous grains having very similar δD values to 

one  another,  although  only  13  of  the  carbonaceous  grains  have  so  far  been 

analyzed for their H isotopic compositions. As discussed, B4a-W-1, for which 

D/H was not obtained, does have a  15N enrichment and is therefore a possible 

candidate for containing an extreme D enrichment.

After formation the carbonaceous grains would have been exposed to UV and ion 

irradiation from the solar wind and cosmic-rays in the early solar nebula. During 

its T-tauri stage the Sun was more active, with estimates suggesting that the solar 
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wind  may  have  been  up to  1000  times  stronger  than  present  day  conditions 

(Wood et al. 2002).

Today the solar wind (energy of 1keV), which consists largely of He+ and H+, has 

an ion flux of ~2 × 108 ions cm-2 s-1 at 1AU. Its strength decays as 1/R2, where R2 

is the distance from the Sun. 

Assuming a 1000 times stronger solar  wind in the early nebula (Wood et  al. 

2002),  at  50AU  the  ion  flux  would  have  been  ~8  ×  107 ions  cm-2 s-1.  The 

experimental work of Baratta et al. (2004) and Brunetto et al. (2009) shows that 

H+ and He+ ion fluences on the order of ~1015 – 1016 ions cm-2 are required to 

transform structurally ordered carbon to an amorphous phase. The carbonaceous 

grains therefore would have needed to spend only ~4 years in this environment to 

acquire  the  necessary  irradiation  dose.  If  the  grains  formed  at  a  distance  of 

100AU then it would still only take ~16 years. An early solar wind only 100, or 

even 10 times stronger, obviously increases the required timescales, to 160 years 

or 1600 years respectively. 

The  calculations  do  not  take  into  account  the  effects  of  solar  flares,  which 

provide  doses  of  higher  energy (>1MeV) particles,  or  cosmic-ray irradiation, 

events that occur in addition to the main solar wind. Models have predicted that 

even under current conditions, irradiation doses are high enough at 40 – 50AU to 

produce  irradiation  mantles  several  metres  thick  in  Edgeworth-Kuiper  belt 

objects  (Gil-Hutton  2002).  It  therefore  seems  likely  that  micron-sized 

carbonaceous phases exposed to irradiation in the early solar nebula could have 

been converted to highly disordered and amorphous phases. 

If amorphization of the carbonaceous grains was due to irradiation in the solar 

wind, then this could explain the lack of extreme D enrichments comparable to 

those  seen  in  IOM  and  IDPs.  The  carbonaceous  grains  may  have  initially 

acquired similarly large D enrichments  that  were subsequently diluted  by the 

implantation and mixing of H+ ions from the solar wind.
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5.5 SUMMARY

We have obtained isotopic  ratios,  alongside  characteristic  Raman spectra  and 

TEM analysis, from 33 carbonaceous grains. The grains were isolated from the 

Murchison meteorite using a size and density procedure originally designed for 

the separation of pristine presolar graphite.

The C, N and O isotopic compositions suggest that the grains are not presolar in 

origin. The grains all contain slight D enrichments, with δD values up to +333‰, 

lower than bulk IOM from Murchison but similar to some IDPs. It is suggested 

that the carbonaceous grains may represent particles that formed in the cold, D 

rich outer regions of the early Solar System, or possibly the ISM. 

Raman  spectra  of  the  carbonaceous  grains  indicate  that  they  contain  highly 

disordered and amorphous carbon. This is supported by the TEM analyses, which 

show  that  the  cores  of  three  examined  grains  lack  any  internal  structure. 

Amorphous Raman spectra were also obtained from a carbonaceous grain not 

previously analyzed for its isotopic composition by SIMS. We therefore rule out 

amorphization of the grains due to SIMS measurements.

Amorphous  carbon  has  previously  been  observed  in  meteoritic  IOM,  IDPs, 

cometary  samples  and  nano-globules.  Although  amorphous  carbon  may  be 

produced  by  Fischer-Tropsch  reactions  or  arc  discharge,  we  favour  ion 

irradiation as the cause of amorphization. Ion irradiation has been shown to lead 

to the disordering of carbon, with a broadening and shift of the Raman G-band to 

lower  wave  numbers,  and  an  overlap  with  the  Raman  D-band.  The  Raman 

spectra of the carbonaceous grains are consistent with materials produced by ion 

irradiation of carbon rich ices or soot with ion fluences of ~1015 – 1016 ions cm-2.

Even at large distances from the Sun, the early solar wind, possibly during the T-

tauri  phase, combined with solar flares and cosmic-rays,  could have provided 

sufficient  ion  doses  to  convert  ordered  carbonaceous  materials  into  more 

structurally disordered and amorphous carbon. The implantation and mixing of 
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solar  H+ ions  is  likely  to  have  diluted  any extreme D enrichment  the  grains 

originally had.
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Chapter 6

Summary and Future Work

This chapter reviews the research presented in this thesis. A summary of each 

research topic is provided, followed by a discussion of the implications of the 

work and suggestions for future research.

6.1 ANALYTICAL DEVELOPMENTS

The main analytical tool used in this work was a newly constructed TOFSIMS 

instrument equipped with a 25kV Aun
+ LMIG. In order to achieve the aim of this 

research,  which  was  to  investigate  the  effects  of  interstellar  processing  on 

presolar  samples;  it  was necessary to measure a series  of standards with this 

instrument.  Data  from these measurements  was then used for  calibration  and 

quantification of extra-terrestrial samples.

Over  recent  years,  Au-cluster  primary  ions  have  primarily  been used for  the 

analysis of organic samples, as they provide enhanced molecular secondary ion 

yields. In this research Au-cluster ions were used to study inorganic samples by 

analyzing a series of well characterized silicate glasses with Au+, Au2
+ and Au3

+ 

primary ions. 

Practical secondary ion yields for inorganic ions when sputtering with Au2
+ and 

Au3
+ were  enhanced  by  a  factor  of  ~2  relative  to  those  for  Au+.  This  was 

attributed to a similar sized increase in sputter rate when analyzing with Au2
+ and 

Au3
+ ions,  and  not  an  increase  in  ionization  efficiency  for  secondary  ions. 

However, Au2
+ and Au3

+ primary ion beams provide a factor of ~8 lower currents 

on the sample, making them largely unsuitable for analysis of inorganic samples.

Analysis  of  the  silicate  glass  standards  allowed  the  determination  of  RSFs 

required for quantification of trace element abundances in presolar SiC grains. 

Ideally, standards should be as structurally and chemically similar as possible to 
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the sample intended for analysis. Therefore a SiC standard, for which only Al, Ca 

and Fe abundances were known, was also measured. 

It  was  found  that  the  increased  formation  of  SimCn
+ clusters and  subsequent 

decrease in the abundance of  28Si+  in the mass spectra, results in elevated RSFs 

when sputtering SiC. RSFs for trace elements in silicate glass therefore require 

correction if used to quantify elemental abundances in presolar SiC grains.

The  effects  of  using  a  delayed  secondary  ion  extraction  technique  were  also 

investigated  during  analysis  of  the  standards.  During  normal  extraction, 

approximately  every  secondary  ion  is  extracted  and  detected.  Using  delayed 

extraction introduces fractionation between masses in the spectrum. A smaller 

fraction of the lighter ions are extracted relative to the heavier ions, although this 

is compensated by the use of longer primary ion pulses.

A  depth-profiling  procedure  for  the  analysis  of  micron-sized  grains  was 

developed. Initially applied to a meteoritic silicate grain, it was eventually used 

for obtaining trace element depth-profiles in presolar SiC grains. A DC beam 

was used to sputter material from a grain before measurements using a pulsed 

primary ion beam. By using known sputter rates, primary ion currents, length of 

time the primary ion beam was applied,  and field-of-view over which it  was 

applied, it was possible to estimate the amount of material removed from a grain. 

Re-imaging  of  grains  with  an  ESEM  aided  in  calibrating  sputter  depths. 

Limitations of the depth-profiling procedure have been considered and a simple 

model used to infer potential trace element depth-profiles.

6.2 TRACE ELEMENTS IN PRESOLAR SiC

Complete depth-profiles for the trace elements  Li, B, Mg, Al, K, Ca, Ti, V, Cr 

and Fe have been obtained from 11 presolar SiC grains.

The  average  elemental  abundances  of  Mg,  Fe,  Ca,  Al,  Ti  and  V  were 

qualitatively consistent with those reported by DC beam ion probe studies. The 

elements Mg, Fe,  Ca and Al were depleted relative to Si and CI abundances 
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(Anders and Grevesse 1989) in the presolar SiC grains. This is due to their high 

volatilities, meaning that they condense at much lower temperatures than SiC. In 

contrast, average Ti and V abundances in the grains were close to 1. Nucleation 

effects must have inhibited their formation as TiC so that they instead condensed 

in solid solution with SiC. 

Elevated  abundances  of  several  elements  within  the  outer  ~200nm  of  some 

presolar SiC grains provide evidence that material was implanted into the grains 

by supernovae shockwaves in the ISM. However, some SiC grains display no 

effects of interstellar processing, and instead their trace element depth-profiles 

can  be  explained  by  condensation  processes  around  the  grains  parent  stars. 

Evidence  was  found  of  elemental  zoning  in  grains  resulting  from  changing 

chemical environments during SiC condensation.

The significant difference between the two populations of SiC grains is likely 

their residence times in the ISM. This is consistent with the findings of noble gas 

(Lewis et al. 1994, Ott and Begemann 2000, Ott et al. 2005, Heck et al. 2009) 

and Li isotopic studies (Gyngard et al. 2009), which have shown that some of 

grains resided in the ISM for <50Myr, whilst others were there for >1Gyr, before 

accretion into the presolar molecular cloud from which the Solar System formed. 

Fast shockwaves, the expected mechanism through which grain-grain and grain-

gas  collisions  arise  in  the  ISM,  only  occur  every  ~108 years,  therefore  the 

youngest grains are unlikely to have passed through a high velocity shockwave 

(Jones et al. 1996).

6.3 AMORPHOUS CARBONACEOUS GRAINS

Carbonaceous  grains  were  separated  as  part  of  an  attempt  to  isolate  pristine 

presolar graphite grains from the Murchison meteorite according to their size and 

density  characteristics.  No presolar  graphite  grains  were discovered,  although 

this may be due to an insufficient number of grains mapped in the resulting size 

and density fractions. The carbonaceous grains that were found contributed up to 

0.22% of the total number of grains in the mapped fractions. They have been 
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analyzed using TOFSIMS, NanoSIMS, ESEM, Raman spectroscopy, TEM and 

SEM.

The C, N and O isotopic compositions of the carbonaceous grains were close to 

the solar values, indicating that they were not presolar in origin. Nearly all of the 

grains were enriched in D, with δD values up to +333‰. Although similar to 

some δD values reported in IDPs, this is lower than the extreme D enrichments 

often measured in IOM and IDPs. The carbonaceous grains may have formed in 

the ISM, or the cold outer regions of the early solar nebula, where  H isotopic 

exchange with ionized gas produced extreme D enrichments. 

Raman  spectroscopy  showed  the  carbonaceous  grains  to  contain  highly 

disordered and amorphous carbon, with broad, and often overlapping, major D 

and G band features. The amorphous nature of the grains was confirmed by TEM 

analysis with no visible diffraction pattern. The  grains consisted of carbon that 

was  more  structurally  disordered  than  values  reported  for  almost  all  IOM 

extracted from primitive meteorites, IDPs and cometary samples.

Previous studies have shown that amorphous carbon can be produced by Fischer-

Tropsch reactions (Brearley 1990) or arc discharge (Rotundi et al.  1998). The 

morphological, textural and structural characteristics of the carbonaceous grains 

in this research were inconsistent with these processes and they were ruled out.

Ion  irradiation  by  the  solar  wind and  cosmic-rays  is  the  proposed  source  of 

amorphization.  Previous experiments have shown that  irradiation of terrestrial 

soot and carbon-rich ices with ion fluences of ~1015 – 1016 ions cm-2 can produce 

carbon  phases,  whose  Raman  characteristics  are  very  similar  to  those  of  the 

carbonaceous grains (Baratta et al. 2004, Brunetto et al. 2009).

 

Such doses could easily be provided by the solar wind, which is predicted to 

have been up to 1000 times more active during its T-tauri phase (Woods et al. 

2002). It is shown that even at large distances from the Sun, the solar wind, in 

combination  with  solar  flare  events  and  cosmic-rays,  could  have  converted 
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carbonaceous materials in the early solar nebula into more structurally disordered 

and amorphous carbon. 

Amorphization of the carbonaceous grains due to irradiation in the solar wind 

may explain the lack of extreme D enrichments within them. Implantation and 

mixing of solar wind H+ ions is likely to have severely lowered the 2D/1H ratios 

of the grains.  

6.4 DISCUSSION AND FUTURE WORK

The  major  aim  of  this  research  was  to  investigate  the  effects  of  interstellar 

processing  on  presolar  samples.  One  way  in  which  this  was  done  was  by 

analyzing  the  distribution  of  trace  elements  in  presolar  SiC  grains  using 

TOFSIMS.

Presolar  grains  are  expected  to  display the effects  of  processing  in  the ISM. 

Sputtering  from  high  energy  ions  and  grain-grain  collisions  should  lead  to 

cratering on grain surfaces. This cratering has not been observed on the faces of 

presolar  SiC  grains,  leading  to  suggestions  that  the  grains  may  have  been 

shielded from sputtering  by coatings  of  possibly organic  phases  or  MgS/CaS 

(e.g. Bernatowicz et al. 2003). Although no signs of cratering are reported here, 

evidence for the implantation of matter into some SiC indicates that not all grains 

were completely protected. 

However, the presence of any coatings on the SiC grains in this research cannot 

be  entirely  ruled  out,  with  several  of  the  grains  containing  no  evidence  for 

implantation. Most analyzed presolar SiC grains, including all of those reported 

here, were extracted from their host meteorite using harsh acid treatments. It is 

probable these treatments removed or altered any coatings originally present on 

the grains. 

A significant step forward will be the analysis of pristine presolar SiC grains that  

should retain any coatings. This will allow the coatings to be identified and their 

effects on interstellar processing to be constrained. In this research TOFSIMS 
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has  proven to  be  a  useful  tool  for  measuring  a  wide  range of  trace  element 

abundances  and  isotopic  compositions  in  individual  micron-sized  SiC  grains. 

Several studies have already looked at pristine presolar SiC grains (Bernatowicz 

et al. 2003, Tizard et al. 2005, Stroud and Bernatowicz 2005, Lyon et al. 2007), 

and  the  depth-profiling  procedure  developed  here  should  provide  a 

comprehensive method by which a large amount of information can be extracted 

from rare pristine presolar samples.

In order for research into pristine presolar samples to progress, during this work 

an  attempt  was  made  to  study  pristine  presolar  graphite.  Unfortunately  no 

graphite grains were discovered. However, amorphous carbonaceous grains were 

present in size and density separations. 

The  carbonaceous  grains  were  isotopically  and  structurally  different  to  IOM 

present  within  the  Murchison  meteorite.  This  suggests  that  the  parent  body 

accreted  a  variety  of  different  carbonaceous  materials  that  were  formed  and 

processed  by  several  mechanisms.  This  is  unsurprising,  as  studies  of  the 

carbonaceous  phases  in  meteorites  find  them  to  be  a  diverse  collection  of 

materials that reflect the wide range of processes that occurred in the early solar 

nebula.  The  carbonaceous  grains  reported  here  provide  new  insights  into 

conditions in this environment.

The  carbonaceous  grains  contained  isotopic  compositions  that  indicated  they 

were not presolar in origin. It was argued that slight enrichments in D were due 

to the grains having formed in the outer regions of the early solar nebula before 

being transported to the inner regions of the disk. This is consistent with models 

that indicate a large-scale inward movement of materials in the early solar nebula 

(e.g. Ciesla 2009).

  

It  appears ion irradiation from the solar wind and cosmic-rays  has played an 

important  role  in  processing  materials  in  the  Solar  System.  Carbonaceous 

materials  in the early solar  nebula exposed to irradiation would have become 

increasingly  disordered.  It  could  be  expected  that  highly  amorphous  and 

disordered  carbon  should  be  widely  present  in  extra-terrestrial  samples. 
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However, it is often only observed in the most primitive materials, such as IDPs, 

cometary  samples  and  very  primitive  meteorites.  As  thermal  metamorphism 

increases the structural order of carbon, it reverses the effects of ion irradiation. 

Highly disordered and amorphous carbon should only be observed in the samples 

that experienced the least amount of heating.

To further constrain the origins of the amorphous carbonaceous grains, and hence 

conditions in the nebula, the size and density separation procedure needs to be 

applied to a wider number of meteorites. It is necessary to determine whether the 

grains  are  only  present  within  Murchison,  or  can  also  be  found  in  other 

meteorites. The abundances of the grains within different meteorite types could 

potentially  be  used  as  an  indicator  of  the  degree  of  parent  body processing. 

Similarities  and  differences  between  the  isotopic  compositions  and  structural 

characteristics of carbonaceous grains isolated from other meteorites may give 

clues as to the exact location and method of formation.
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