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Abstract

Evolutionary �nance studies �nancial markets from an evolutionary point of

view. A �nancial market can be interpreted in the context of its evolution: it can

be understood as a dynamical system in which frequently interacting investment

strategies compete for market capital. We are mainly interested in the long-run

performance of investment strategies.

This thesis explores the "Darwinian theory" of portfolio selection. An asset

market can be modelled by a game-theoretic evolutionary model in which asset

prices are endogenously determined by market clearing condition. A general ver-

sion of the Kelly rule is shown to allow an investor to "survive" in the asset market.

We then investigate the stochastic model with independent and identical distributed

states of the world from a different, game-theoretic, angle and examine Nash equi-

librium strategies, satisfying equilibrium conditions with probability one. Evolu-

tionary �nance and asset market games also provide new angles to present fun-

damental facts of capital growth theory. Relations between �nancial growth and

the property of "survival" of investment strategies are established in the market

selection process.
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Chapter 1 Introduction

1.1 Motivation and background of evolutionary �nance

Evolutionary �nance studies �nancial markets from an evolutionary point of

view. A �nancial market, like a living system, can be interpreted in the context of

its evolution: market change is the consequence of mutation and selection, which

are two important concepts in evolutionary theory (Nowak, 2006). According to

the Darwinian theory, selection among species occurs when some species repro-

duce faster than the other, and mutation emerges when some unusual gene trans-

fer, resulting in different species. The two forces also work in �nancial markets.

A market can be understood as being populated by a group of heterogeneous in-

vestors (Evstigneev et al. 2009, p.513). These investors select investment strate-

gies at each trading date. And the investment strategies interact with each other

and lead to the wealth dynamics on the investors. On the one hand, the market

selection mechanism makes the population of investment strategy simpler since

strategies with poor performances will be driven out of the market, but on the other

hand, mutation creates new types of investment strategies for �ghting against in-

cumbent rules. An analogy between biology and �nance has been drawn in the

paper of Hens et al. (2005): certain animals are �ghting for food or other re-

sources for survival, whilst investors in �nancial markets are competing for one
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sort of food which can be viewed as money; species but not individual animals

count for evolution, while investment strategies but not individual investors man-

age wealth dynamics. An asset market therefore can be understood as a dynamical

system in which frequently interacting investment strategies compete for market

capital.

Evolutionary �nance is an interdisciplinary research, involving �nancial eco-

nomics, economic theory, mathematical �nance, and dynamical systems theory

(Evstigneev et al. 2009, p.513). It generally aims at developing the "Darwinian

theory" of portfolio selection (Hens et al., 2004). The application of evolutionary

idea to economics can be traced back to at least 60 years ago with the publication

of Alchian (1950). Alchian writes:

Realized pro�ts, not maximum pro�ts, are the mark of success and viability. It does not matter

through what process of reasoning or motivation such success was achieved. The fact of its accom-

plishment is suf�cient. This is the criterion by which the economic system selects survivors: those

who realize positive pro�ts are the survivors; those who suffer losses disappear.

The descriptive approach to �nancial markets attracted much discussion. In

particular, great developments have been made in the 1990s with the publications

of Arthur et al.(1997), LeBaron et al. (1999), Farmer and Lo (1999), Blume and

Easley (1992), Sandroni (2000). Their research laid the foundations for our line

of research. The recent progress in the theory and application of evolutionary

�nance models has been made with the publications of Evstigneev et al. (2002,
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2006, 2008, 2009), Amir et al. (2005, 2008) and Hens et al. (2004, 2005a, 2005b,

2006). Their studies played an inspirational and motivational role in our work on

evolutionary �nance.

The evolutionary modelling principle does not rely on any notion of utility and

its maximization that are very commonly used in traditional economics (Evstigneev

et al., 2009, p.510). Instead it mainly focuses on actual wealth dynamics man-

aged by interactive investment strategies and uncertain asset payoffs. Evstigneev

et al.(2009, p.511) has commented:"This approach lets actions speak louder than

intentions and money speak louder than happiness." Evolutionary �nance aims

at developing models which are better to describe the dynamic nature of �nan-

cial markets through the application of Darwinian ideas (Evstigneev et al., 2009,

p.510).

The evolutionary approach to study �nancial markets has quite successfully

challenged sophisticated equilibrium concepts and the assumption of a high de-

gree of rationality on investors that play an important role in classic �nance and

�nancial economics (Evstigneev et al., 2009, p.511). One of most commonly used

equilibrium proposed by Radner (1972) requires market participants have "per-

fect foresight". In particular, investors have to agree on the price of each asset of

the possible future realization of the states of the world. In addition, investors do

not always behave as those extreme rationality hypothesis due to some technical

limitations in practical markets. Evolutionary �nance, in sharp contrast, is con-

9



cerned only with the observable dynamics of wealth distribution and attempts to

make as less restrictions on market behavior as possible1. It is thus closer to prac-

tical markets than traditional models2. The only one equilibrium involved in the

dynamical system is the market clearing condition: asset supply equals to asset

demand at each trading date. The principle objective of the evolutionary approach

consists in developing new models that would constitute a plausible alternative to

conventional general equilibrium.

1.2 Evolutionary model

A stochastic dynamic model is employed to describe the evolution of an asset

market3. This model exhibits the interaction of investment strategies and its ef-

fect on changes in the distribution of wealth between investors. The dynamics of

the market is modelled in terms of the Marshallian principle of temporary equilib-

rium4. The ideas of Marshall were developed in the framework of mathematical

models in economics by Samuelson (1947, p.321-323). He writes about this ap-

proach:

I, myself, �nd it convenient to visualize equilibrium processes of quite different speed, some very

slow compared to others. Within each long run there is a shorter run, and within each shorter run there

is a still shorter run, and so forth in an in�nite regression. For analytic purposes it is often convenient

1 Usually investment strategies are de�ned through myopic mean-variance optimization (Evstigneev
et al., 2009, p.511).

2 Concepts involved in evolutionary �nance are observable and can be estimated empirically.
3 The application of random dynamical systems theory in economics has been believed to be
more than a fashionable trend to the description of economic phenomenon (see the survey of
Schenk-Hoppé (2001)).

4 This concept is in much detail analyzed in an economics context by Schlicht (1985).
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to treat slow processes as data and concentrate upon the processes of interest. For example, in a short

run study of the level of investment, income, and employment, it is often convenient to assume that

the stock of capital is perfectly or sensibly �xed.

Due to the hypothesis of the hierarchy of equilibrium processes in the market,

the set of variables in our models can be divided into two groups according to dif-

ferent speeds. The set of investors' portfolios can be temporarily �xed, while the

asset prices can be assumed to rapidly reach the unique state of short-run equilib-

rium.

Evolutionary �nance models, generally, can be divided into two classes accord-

ing to the life span of the assets: short-lived assets and long-lived assets. Short-

lived assets refer to those living for one period (i.e., the assets pay random payoffs

at the end of the trading date and disappear then, e.g., horse racing bets, one-period

options). The model is discussed in detail in Evstigneev et al. (2002) and Amir et

al. (2005, 2008). Long-lived assets correspond to the opposite situation in which

they live for eternity. These assets pay dividends at each trading date and have

their own values so that they can be traded between investors, e.g., stocks (see

the discussion about the model in Evstigneev et al. (2008)). Another difference

between these two model classes lies in investors' income. For short-lived asset

models each investor obtains income from asset payoffs, while in long-lived asset

models the resources of investors' budget are not only from asset payoffs but also

from capital gains (or loss).
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The characteristics of evolutionary �nance models, such as heterogeneous in-

vestment strategies, dynamic interaction, market selection and stability, are dis-

cussed in the survey of Evstigneev et al. (2009). Investment strategies employed

to represent investment decisions, play a key role in evolutionary models. In the �-

nance context what matters is not "who does what but how much capital is behind

a particular investment style" (Evstigneev et al., 2009, p.513). Heterogeneity of

strategies can be viewed as a cornerstone of evolutionary �nance, which makes it

possible for investors to analyze the performance of different investment types. In-

vestors with the same investment strategies can be regarded as a class of investors5.

Two forces�selection and mutation therefore work and drive the evolution of the

market: investment strategies with better-performance are selected while, at the

same time, some new investment types are introduced to the market in competi-

tion with old ones for market capital.

The dynamic interaction between heterogeneous investment strategies deter-

mines each investor's return (i.e., the performance of an investor is also affected

by the market decisions made by the others through asset pricing system). There

are thus no optimal investment strategies in evolutionary �nance models. One

thing that only matters in evolutionary models is questions of survival and extinc-

tion in the long run. By this criterion, market selection occurs. Since the selection

results can only be observed in the long term, the stability of dynamical systems
5 For proving theorems in the 2nd and 3rd chapter those investors with the same investment
strategies are viewed as an investor.
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must be taken into account 6. The stability lays the foundation for the evolutionary

asset-pricing theory7.

In addition, the performance of each investor in the evolutionary model with

long-lived assets is usually related to his/her consumption rate. The consumption

rate is the proportion of wealth consumed during each trading date (e.g., in the

model with long-lived assets, the consumption rate lies in (0; 1)). In the evolution-

ary model, however, the consumption rate of each investor usually is required to

be the same for all the investors because a seemingly worse performance of a port-

folio rule in the long run might be simply due to a higher consumption rate of the

investor.

1.3 The Kelly rule

The Kelly rule is of importance in studying questions of survival and extinction

of portfolio rules. This investment portfolio rule was �rstly proposed by Kelly,

who drew the model from the real-life situation of gambling for studying the rate

of transmission over a communication channel (Kelly, 1956). He discovered that

in a pari-mutuel betting market, the gambler who decides to "betting your beliefs"

will maximize the exponential rate of growth of his/her capital. His discovery laid

the foundation for capital growth theory. And it has been developed and extended

by various authors, in particular by Breiman (1961), Algoet and Cover (1988) and

6 The stability of evolutionary models refers to a steady state that the distribution of wealth is stable
even though a mutant is introduced. For the discussion of this question see Hens et al.(2005) and
Evstigneev et al. (2008).

7 Empirical applications in this �eld have been studied by Hens et al. (2004, 2005, 2006).
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Hakansson and Ziemba (1995). Recent studies have shown that the Kelly rule has

the remarkable property of survival in evolutionary �nance models where survival

is equivalent to the fastest growth of wealth (see i.e., Evstigneev et al.(2002, 2008,

2009); Amir et al. (2005,2008)). This section will elaborate the Kelly rule through

a horse racing model.

Consider a race with K horses. This horse race is assumed to repeat in�nitely

and in each of them, only one horse wins. Denote by p(k) > 0 the probability of

the bet "horse k wins" and let p = (p(1); p(2); ::; :p(K)). The odds8 of the bet of

"horse k wins" are 1 : W (W > 0 is a constant) (i.e., the bettor who bets y pounds

on the horse will gain Wy when it wins and receive nothing otherwise). Denote

by st 2 f1; 2; :::; Kg the outcome of the horse race at time t and let st = k if horse

k wins at time t. The states of the world s1; s2; :::are independent and identical

distributed with probabilities Pfst = kg = p(k): De�ne

Zkt (st) =

�
W
0

if st = k;
otherwise,

and letZt = (Z1t ; :::; ZKt ). Given aK�dimensional betting strategy � = (�1; �2; :::; �K)

(�k � 0; and
P

k �k = 1) and initial wealth w0 > 0, the bettor distributes his/her

initial wealth across theK horses in the proportions �1; �2; :::; �K at the beginning

and receives payoffs at the end of the race. Suppose the bettor �xes this portfolio

rule and always reinvests all his/her payoffs into the next race. Then the wealth of

8 The odds express the rates obtained when horse k wins.
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the bettor after t races is given by

wt = w0 h�; Z1i h�; Z2i ::: h�; Zti ; (1.1)

where the scalar product h�; Zti =
X

k
�kZ

k
t (st) is �kW when st = k. The

average logarithmic growth rate over t periods therefore is

1

t
ln

�
wt
w0

�
=
1

t

tX
d=1

ln h�; Zdi (1.2)

The strong law of large numbers9 implies that the t�period growth rate (1.2) con-

verges almost surely to

E ln h�; Zti =
X
k

p(k) ln h�; Zti

=
X
k

p(k) ln�kW

= lnW +
X
k

p(k) ln�k: (1.3)

as t!1:

The maximum of (1.3) is attained at �� = (p(1); p(2); :::p(K)). It follows fromX
k

p(k) ln p(k) >
X
k

p(k) ln�k;

where � = (�1; �2; :::; �K) 6= ��(�k > 0 and
P

k �k = 1). And the vector of

investment proportions �� = (p(1); p(2); :::p(K)) is called the Kelly rule. The

Kelly rule �� can guarantee the bettor experiences a strictly positive growth rate10

only ifW 6= K, because E ln h�; Zti = 0 whenW = K = 1=�1 = ::: = 1=�K .

9 (Law of large numbers) Let X1; X2; :::Xn be an independent trials process, with �nite expected
value � = E(Xi) and �nite variance �2 = V ar(Xi). Let Sn = X1+X2+ :::+Xn. Then for any
" > 0; P (jSn=n� �j � ")! 0 as n!1: Equivalently, P (jSn=n� �j < ")! 1 as n!1:

10 (Theorem) Let the vector �� in the unit simplex maximize the function U(�) = E ln h�;Zt(st)i
(st are i.i.d. and U(x) does not depend on t). Consider the simple betting strategy � 6= ��and
initial wealth w0 > 0: Then we have w

�

T =wT !1 with probability one.
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From the horse racing model it can be observed that the survival investment

strategy does not depend on the odds. Bettors who bet their wealth across assets

according to p will overtake the others who choose different strategies. If the odds

equal to the true probabilities of events, it will not produce positive growth in the

game. And bettors with the Kelly rule have no growth of wealth and any other

bettor' wealth tends to be zero.

Bettors with the Kelly rule survive through the market selection mechanism in

the long run, because they have better performance than the others. In a practical

market, however, bettors usually do not know the objective probabilities and have

to estimate them according to their beliefs. The Kelly rule is thus called as "betting

your beliefs". A gambler who has a more accurate estimation of the probability

of the event that horse k win will get the faster growth of the wealth than the one

with the inferior estimation (Evstigneev et al., 2009, p.518).

Despite the fact that the Kelly rule can do better than any other investment rules

and has the remarkable property of survival in asset markets, it still causes some

controversy in �nancial economics. For instance, Samuelson (1979) argued stren-

uously against it, mainly because he believed one should maximize one's utility

function rather than make one's decision based on some other criterion. But he

ignored that the approach of investment is not necessarily normative but rather de-

scriptive (Evstigneev, 2009, p.518). Further, if an individual has a logarithmic util-

ity, the Kelly bet will maximize the utility. So there is no con�ict between them in
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this case. In the second chapter, a new form of the Kelly rule is generalized, which

is proved to be more applicable in real asset markets.

1.4 Structure of the Thesis

Chapter 2 examines a game-theoretic evolutionary model of an asset market

with endogenous equilibrium asset prices. We attempt to identify strategies allow-

ing an investor to survive in the market selection process, i.e., to maintain a posi-

tive, bounded away from zero, share of total wealth over the in�nite time horizon,

irrespective of the portfolio rules used by the other traders. Chapter 3 discusses

the evolutionary model from a different, game-theoretic, angle and examine Nash

equilibrium strategies, satisfying equilibrium conditions with probability one. We

consider a different (stronger) solution concept: almost sure Nash equilibrium.

According to our de�nition of an equilibrium strategy, any unilateral deviation

from it leads to a decrease in the random payoff with probability one, and not only

to a decrease in the expected payoff. Chapter 4 presents relations between evo-

lutionary �nance and capital growth theory. We attempt to present fundamental

facts of capital growth theory from a new angle suggested by recent studies on

evolutionary �nance and asset market games. Chapter 5 summaries this thesis.
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Chapter 2 Evolutionary Finance and Dynamic Games

2.1 Introduction

2.1.1 The model and results

This chapter11 investigates a �nancial market with long-lived assets and fo-

cuses on analyzing its wealth dynamics induced by investment strategies (portfolio

rules). We employ a game-theoretic evolutionary model developed by Evstigneev

et al. (2006, 2008, 2009) to describe the market. In the evolutionary model the

numbers of assets and investors are �nite and �xed. The prices of the assets are

endogenously determined by a short-run equilibrium of supply and demand. The

behavior of the investors is characterized by a strategy pro�le, leading to the dy-

namics of the market. Randomness is modelled in terms of a discrete-time stochas-

tic process of "states of the world" with a given probability distribution. Given the

realization of this process assets pay dividends at each time. The dividends to-

gether with capital gains form investors' budgets, which are partially consumed

and partially reinvested. Investors distribute their available budgets across the as-

sets at each trading date according to their investment strategies. The random

dynamical system exhibits the process of the evolution of a �nancial market, in

which investors' strategies interact with each other and the interaction results in a
11 The content of this chapter is based on the paper by R. Amir, I. Evstigneev, T. Hens and L. Xu

"Evolutionary �nance and dynamic games," Swiss Finance Institute Research Paper No 09-49,
January 2010 (the previous version of this Research Paper was entitled "Strategies of survival in
dynamic asset market games").
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sequence of time-dependent market shares (fractions of total wealth) of each in-

vestor.

The main goal of the study is to identify strategies allowing an investor to sur-

vive in the market selection process, i.e., to maintain a positive, bounded away

from zero, share of total wealth over the in�nite time horizon, irrespective of the

portfolio rules used by the other traders. A general version of the Kelly rule of

"betting your belief" is recommended in this chapter. It turns out that this port-

folio rule possesses the remarkable property of unconditional survival. Moreover,

the strategy possessing this property is shown essentially unique: any other strat-

egy of this kind (belonging to a certain class) is asymptotically similar to the RES

strategy. The result on asymptotic uniqueness may be regarded as an analogue of

turnpike theorems12, stating that all optimal or quasi-optimal paths of economic

dynamics converge to each other in the long run.

2.1.2 Evolutionary �nance

The approach employed in this study is to apply evolutionary dynamics�mutation

and selection�to the analysis of the long-run performance of investment strate-

gies. A stock market can be considered as being populated by a group of heteroge-

neous investment strategies. These strategies interact with each other and compete

for market capital.

The application of evolutionary approach in economics and �nance can be

12 See, e.g., Nikaido (1968) and McKenzie (1986).
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traced back at least to 60 years ago. Alchian (1950) argued that realized pro�ts

rather than maximum pro�ts are the mark of investment success, which laid the

foundation for evolutionary �nance. This interdisciplinary research experienced

great developments during 1980s and 1990s. Blume and Easley (1992) studied the

questions of survival and extinction of portfolio rules in an arrow market, showing

that the unique survivor of the market selection process is "betting your beliefs".

Arthur et al. (1997) proposed a theory of asset pricing based on heterogeneous

agents, presenting a computational platform for analyzing stock markets. Their

results have been extended by LeBaron et al. (1999). They mainly focused on

time series features of arti�cial markets. In the review paper of Farmer and Lo

(1999), they commented the bright future of the approach to the analysis of �nan-

cial systems from a biological perspective.

The above studies play an inspirational role in the line of our work. Our ap-

proach to evolutionary �nance marks a shift from theirs not only in the modelling

frameworks and in the speci�c problems analyzed, but also in the general objec-

tives of work. In particular, we deal with models based on random dynamical

systems, rather than on the conventional general equilibrium settings where agents

maximize discounted sums of expected utilities. We mainly focus on the wealth

dynamics of investors in the market and attempt to �nd explicit formulas for sur-

viving portfolio rules with the view to making the theory closer to practical ap-

plications. In contrast with a number of the above-mentioned papers, we use the
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rigorous mathematical approach, rather than computer simulations, to justify our

conclusions. Considerable efforts are aimed at obtaining results in most general

situations, without imposing restrictive assumptions to simplify the analysis. This

requires the consideration of models having a rich mathematical structure and ex-

ploiting advanced mathematical tools.

In our work, the approach to de�ne the equilibrium concept dispenses with the

traditional paradigm of how markets work. One of the most commonly used equi-

librium frameworks is that proposed by Radner (1972)�involving agents' plans,

prices and price expectations. A well-known drawback of that framework is the ne-

cessity of agents' "perfect foresight" to establish an equilibrium. In particular, the

market participants have to agree on the future prices for each of the possible future

realizations of the states of the world (without knowing which particular state will

be realized). The evolutionary approach avoids this assumption and only needs

previous observations and the current state of the world to determine investment

decisions. Another feature of the approach, in comparison with the conventional

frameworks, is the data of the model we assume to be given. We avoid using unob-

servable agents' characteristics such as individual utilities or subjective beliefs and

attempt to constitute a plausible alternative to conventional general equilibrium.

The approach to asset pricing can be viewed as another characteristic of the

evolutionary model. The asset prices in the model we deal with are not dependent

on commodity money. They are endogenously formed by simultaneous actions of
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all players through an internal equilibrium in terms of the market clearing price

condition. The internal equilibrium can be regarded as a medium of trade through

which market capital �ows across investors. In this sense, investors may naturally

avoid dealing with "end effect" which might be introduced by �at money13.

In addition, the evolutionary model is constructed in terms of the Marshallian

principle of temporary equilibrium14. In the process of the market dynamics there

coexists at least two sets of economic variables changing with different speed: the

one with slower speed can be temporarily �xed and the other with faster speed

can be assumed to rapidly reach the unique state of short-run equilibrium. In the

model under consideration the set of investors' portfolios is regarded as changing

slower, and the asset prices can be obtained from the market clearing equilibrium

at each date.

2.1.3 Evolutionary �nance and game theory

Game theory is one of the main general tools in mathematics-based research

in economics and �nance. It studies behavior in strategic situations, in which an

individual's performance depends on not only his/her own decision, but also the

choices of others' behavior (see Dutta, 1999, p.4). The model under consider-

ation is a game-theoretic version of the evolutionary model, which analyzes the

interaction between investors in a �nancial market. The study can be linked to the

paradigm of market behavior of non-cooperative market games.

13 See related discussion in the paper of Shubik (1972).
14 The modeling principle is discussed in detail in Evstigneev et al. (2008,2009).
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Nash equilibrium is prevalent to study strategic behavior in market games. Our

work, however, does not explicitly involve any Nash equilibrium15 or any speci�c

payoff functions for maximization. What we are concerned with is survival port-

folio rules that guarantee almost surely a strictly positive share of market wealth

in the long run. All variables involved in the model are observable or can be

estimated empirically. This approach therefore is much closer to reality, where

typically quantitative information about investors' utilities is lacking.

The solution concept in evolutionary �nance also can be linked to various no-

tions of evolutionary stable strategies in evolutionary game theory, including the

celebrated concepts in evolutionary game theory by Maynard Smith (1982), as-

ymptotically stable steady states of replicator dynamics processes (Samuelson,

1997), and others. Although these theories concentrate on issues of survival and

extinction in selection process, they are typically based on a given static game

and random matching in a population of players, in terms of which an evolution-

ary process leading to survival or extinction of its participants is de�ned. But our

model relies on market primitives, mainly focusing on wealth accumulation of in-

vestors in a stochastic dynamic �nance model. And the model makes it possible to

address directly those questions that are of interest in the context of the modelling

of asset market dynamics.

Another model involving concepts of survival and extinction is zero-sum game
15 For the relationship between evolutionary �nance and almost sure Nash equilibrium is discussed

in 3rd chapter.
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theory. In a survival game, there exits two players starting with a �xed level of

wealth w = w1 + w2(w1and w2 are initial wealth of player 1 and 2, for each).

At each time, they play a zero-sum game and part of one's wealth will transit to

the other, leading their wealth become w1 � b and w2 + b or w1 + b and w2 � b

respectively. They keep playing this game until one of players loses all of wealth

and becomes bankruptcy. The Nash equilibria (or minmax/maxmin strategies) are

de�ned in terms of the probabilities of survival, which can be understood in that

context, in contrast with this paper, as avoiding bankruptcy at a random (�nite)

moment of time.

The structure of the chapter is as follows. Section 2.2 describes the model.

Section 2.3 states the main results (Theorems 2.1 and 2.2). Section 2.4 contains

the proofs of the results. And the Appendix 2.5 contains technical details of the

proofs.

2.2 The model

2.2.1 Asset market

Consider a market with K assets and N investors (K � 2 and N � 2). Mar-

ket uncertainty is modelled in terms of an exogenous stochastic process s1; s2; :::,

where st is a random element of a measurable space St. At each date t = 1; 2; :::,

asset k = 1; 2; :::; K pay dividends Dt;k. And the dividends Dt;k are supposed to

be the functions of the history st := (s1; :::; st) of states of the world up to date t

Dt;k = Dt;k(s
t) � 0 (k = 1; :::; K; t = 1; 2; :::):
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The functions Dt;k(s
t) � 0 are measurable and satisfy

KX
k=1

Dt;k(s
t) > 0 for all t; st: (2.1)

This condition means that at least one asset yields a strictly positive dividend at

each date in each random situation. Otherwise, investors will not have motivations

to allocate their wealth to the assets in the market. The total amount (the number

of units) of asset k available in the market at date t is Vt;k(st) > 0 for all t; st; k:

For t = 0, Vt;k(st) is a strictly positive constant number, and for t � 1, Vt;k(st) is

a measurable function of st.

The market prices of the assets are denoted by a K dimensional vector

pt = (pt;1; :::; pt;K) 2 RK+ ;

where the coordinate pt;k of pt stands for the price of one unit of asset k at date

t. In an asset market, each investor needs to decide what amount of what asset

to buy. In other words, investors should select their portfolios at each trading

date. A portfolio of investor i at date t = 0; 1; ::: is characterized by a vector

xit = (x
i
t;1; :::; x

i
t;K) 2 RK+ where xit;k is the amount (the number of physical units)

of asset k in the portfolio xit. The coordinates of xit are non-negative, which means

short sellings are not allowed. The value of the investor i's portfolio is expressed

by the scalar product of asset prices pt and the investor i's portfolio xit at date t

hpt; xiti =
KX
k=1

pt;kx
i
t;k:

The state of the market at each date t is characterized by a set of vectors (pt; x1t ; :::; xNt ),
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where pt is the price vector and x1t ; :::; xNt are the traders' portfolios.

At time t = 0 investor i = 1; 2; :::; N have initial wealth wi0 > 0 that form

their budgets at date 0. At time t � 1, trader i's budget can be characterized

by a scalar product hDt(s
t) + pt; x

i
t�1i, where Dt(s

t) := (Dt;1(s
t); :::; Dt;K(s

t))

refers to dividends paid by K assets at date t. It consists of two components: the

dividends hDt(s
t); xit�1i paid by the portfolio xit�1 and the market value hpt; xit�1i

of the portfolio xit�1 expressed in terms of the today's prices pt. Assume that

the budget is partially reinvested and partially consumed. A fraction �t := �t(st)

expresses the investment rate and 1��t represents the fraction of the budget saved

to support investors' life or business at time t. The fraction 1��t can be interpreted

as the tax rate or the consumption rate. The investment rate 1 � �t 2 (0; 1) is

assumed to be the same for all the investors, although it may vary in terms of time

and random factors in reality. This assumption is indispensable in this work since

we focus on the analysis of the performance of competitive trading strategies in the

long run. Without this assumption, an analysis of this kind does not make sense: a

seemingly worse performance of a portfolio rule in the long run might be simply

due to a higher consumption rate of the investor.

Further, suppose that the function �t(st) is measurable (for t = 0 it is constant)

and satis�es the following condition:

�t(s
t) < Vt;k(s

t)=Vt�1;k(s
t): (2.2)
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This condition holds, in particular, when the total mass Vt;k(st) of each asset k

does not decrease, i.e., when the right-hand side (2.2) is not less than one. But

(2.2) does not exclude the situation when Vt;k(st) decreases at some rate, not faster

than �t.

2.2.2 Investment strategies

In �nancial markets, investment strategies can be used as guides for investors

to make investment decisions. Each trader i = 1; 2; :::; N selects a vector of

investment proportions �it = (�it;1; :::; �
i
t;K) at each t � 0, according to which

he/she distributes the available wealth between assets. Vectors �it belong to the

unit simplex

�K := f(a1; :::; aK) � 0 : a1 + :::+ aK = 1g:

In terms of the game we deal with, the vectors �it describe the investors'actions or

control variables. Suppose N investors are non-cooperative with each other and

select the investment proportions simultaneously and independently at each date

t � 0. Then the model we consider can be viewed as a simultaneous-move N -

person dynamic game. For t � 1, players' actions might depend, generally, on the

history st := (s1; :::; st) of the process of states of the world and the history of the

game (pt�1; xt�1; �t�1), where pt�1 = (p0; :::; pt�1) is the sequence of asset price

vectors up to time t� 1, and

xt�1 := (x0; x1; :::; xt�1); xl = (x
1
l ; :::; x

N
l );
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�t�1 := (�0; �1; :::; �t�1); �l = (�
1
l ; :::; �

N
l );

are the sets of vectors describing the investors' portfolios and investment propor-

tions at all the dates up to t � 1. The history of the game assembles information

about all the market history, including the sequence (p0; x0); :::; (pt�1; xt�1) of the

states of the market and the actions �il of all the investors i = 1; :::; N at all the

dates l = 0; :::; t� 1. An investment (trading) strategy �i of trader i is formed by

a vector �i0 2 �K and a sequence of measurable functions with values in �K

�it(s
t; pt�1; xt�1; �t�1); t = 1; 2; :::,

specifying a portfolio rule according to which trader i selects investment propor-

tions at each date t � 0. This is a general game-theoretic de�nition of a strategy,

assuming full information about the history of the game which includes the play-

ers' previous actions, and the knowledge of all the past and present states of the

world.

Among general portfolio rules, we will distinguish those for which �it depends

only on st, and not on the market history (pt�1; xt�1; �t�1). This class of portfolio

rules plays an important role in the present work: the survival strategy we construct

belongs to this class.

2.2.3 Dynamic equilibrium

Suppose at the very beginning t = 0 each trader i has selected some invest-

ment proportions �i0 = (�
i
0;1; :::; �

i
0;K) 2 �K . Then each of them has the amount

�0�
i
0;kw

i
0 invested in asset k and the total amount invested in asset k is �0

PN
i=1 �

i
0;kw

i
0.
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It is assumed that at each trading date t the market reaches to market clearing equi-

librium (asset supply is equal to asset demand). Prices obtained from this equilib-

rium are called market clearing equilibrium prices. And the equilibrium price p0;k

of each asset k is determined by the following equation

p0;kV0;k = �0

NX
i=1

�i0;kw
i
0; k = 1; 2; :::; K: (2.3)

The left-hand side p0;kV0;k indicates the total value of all the assets of the type k in

the market (recall that the amount of each asset k at date 0 is V0;k). On the right-

hand side of (2.3) �0
PN

i=1 �
i
0;kw

i
0 represents the total amount of money invested

in asset k by all the investors.

The portfolios xi0 = (xi0;1; :::; x
i
0;K) of each investor i are determined by the

investment proportions �i0 = (�
i
0;1; :::; �

i
0;K) at date 0 by the formula

xi0;k =
�0�

i
0;kw

i
0

p0;k
; k = 1; 2; :::; K; i = 1; :::; N: (2.4)

This formula states that the current market value p0;kxi0;k of the kth position of

the portfolio xi0 of investor i is equal to the fraction �
i
0;k of the i's investment

budget �0wi0. It can be veri�ed that the total demand is equal to the total supply

by aggregating (2.4) over N investors
NX
i=1

xi0;k = V0;k =

NX
i=1

�0�
i
0;kw

i
0

p0;k
: (2.5)

Assume that all the traders have decided their investment proportion vectors

�it = (�it;1; :::; �
i
t;K) at date t � 1. The market clearing prices pt are implicitly
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determined by

pt;kVt;k = �t

NX
i=1

�it;khDt(s
t) + pt; x

i
t�1i; k = 1; :::; K: (2.6)

The above equations implicitly determine the price pt;k of asset k at date t: It

can be shown that under assumption (2.2) there always exists a non-negative and

unique vector pt satisfying these equations (for any st and any feasible xit�1 and

�it;k)�see Proposition 2.1 in Section 2.4.

The investors' budgets �thDt(s
t) + pt; x

i
t�1i of traders i = 1; 2; :::; N are dis-

tributed between assets in the proportions �it;k, so that the kth position of the trader

i's portfolio xit = (xit;1; :::; xit;K) is

xit;k =
�t�

i
t;khDt(s

t) + pt; x
i
t�1i

pt;k
; k = 1; :::; K; i = 1; :::; N: (2.7)

Analogously, by summing up equations (2.7) over investor i = 1; :::; N , we also

have
NX
i=1

xit;k =

PN
i=1 �t�

i
t;khDt(s

t) + pt; x
i
t�1i

pt;k
=
pt;kVt;k
pt;k

= Vt;k: (2.8)

Given a strategy pro�le (�1; :::;�N) of investors and their initial endowments

w10; :::; w
N
0 , we can generate a path of the market game by setting

�i0 = �
i
0; i = 1; :::; N; (2.9)

�it = �
i
t(s

t; pt�1; xt�1; �t�1); t = 1; 2; :::; i = 1; :::; N (2.10)

and by de�ning pt and xit recursively according to equations (2.3)�(2.7). The ran-
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dom dynamical system described de�nes step by step the vectors of investment

proportions �it(st), the equilibrium prices pt(st) and the investors' portfolios xit(st)

as measurable vector functions of st for each moment of time t � 0 (for t = 0 these

vectors are constant). Thus we obtain a random path of the game

(pt(s
t);x1t (s

t); :::; xNt (s
t);�1t (s

t); :::; �Nt (s
t)); (2.11)

as a vector stochastic process in RK+ � RKN+ � RKN+ .

Note that equations (2.4) and (2.7) make sense only if pt;k > 0 for all k, or

equivalently, if the aggregate demand for each asset (under the equilibrium prices)

is strictly positive. Those strategy pro�les which guarantee that the recursive pro-

cedure described above leads at each step to strictly positive equilibrium prices

will be called admissible. In what follows, we will deal only with such strategy

pro�les. The hypothesis of admissibility guarantees that the random dynamical

system under consideration is well-de�ned. Under this hypothesis, we obtain by

induction that on the equilibrium path all the portfolios xit = (xit;1; xit;2; :::xit;K) are

non-zero and the wealth

wit := hDt + pt; x
i
t�1i (2.12)

of each investor is strictly positive. Thus for every equilibrium states of the market

(pt; x
1
t ; :::; x

N
t ), we have pt > 0 and xit 6= 0.

A simple suf�cient condition is provided to guarantee a strategy pro�le to be ad-

missible. This condition will hold for all the strategy pro�les under consideration
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in this chapter, and in this sense it does not restrict generality. Suppose at least one

trader, say trader 1, uses a strictly positive portfolio rule (distributes his/her money

into all the assets in strictly positive proportions �1t;k). Then a strategy pro�le con-

taining this portfolio rule is admissible. Indeed, for t = 0, we get from (2.3) that

p0;k � �0V �10;k �
1
0;kw

1
0 > 0 and from (2.4) that x10 = (x10;1; :::; x1t;k) > 0. Assuming

that x1t�1 > 0 and arguing by induction, we obtain hDt+pt; x
i
t�1i � hDt; x

i
t�1i > 0

in view of (2.1), which in turn yields pt > 0 and x1t > 0 by virtue of (2.6) and

(2.7), as long as �1t;k > 0.

2.2.4 Comments on the model

The model we deal with describes an asset market with long-lived dividend

paying assets. It employs investment proportions to characterize investors' be-

havior. In the investment process investors actively select investment proportions

at date t in terms of the market information and history prior to trading date t.

This approach re�ects the principle of active portfolio management (antipodal to

a passive, buy-and hold strategy). The "less active" strategy in the framework was

discussed by Evstigneev et al. (2008), in which traders use �xed-mix investment

strategies�allocating their wealth in constant, time-independent, proportions�

rebalancing the portfolios with the view to adjusting the weights of different assets

in accordance with changing relative prices.

The evolutionary model under consideration in this chapter allows investors to

select investment proportions to distribute their wealth and maintain these pro-

32



portions over each of the time periods (t � 1; t]. This can be linked to portfolio

rebalancing which is a quite common fund management approach in practical mar-

kets. As the asset prices change in terms of market clearing condition at each time

t, each investor's portfolio will be rebalanced on a periodic basis. In practical mar-

kets, the period of maintaining a type of asset allocation may be a day, a month

or when a substantial deviation (exceeding some �xed percentage) from the given

proportions occurs owing to changes in asset prices.

The investment proportions selected by an investor specify his/her asset allo-

cations at each trading date. And his/her portfolio is rebalanced during a periodic

time. This approach is convenient and ef�cient for traders to manage their wealth.

But it still has dif�culty in representing some portfolio rules that are quite naturally

de�ned in terms of "physical units" of assets (e.g., the buy-and-hold strategy) in

the framework of investment proportions. It is not a problem when asset prices are

known. In particular, the prices in the evolutionary model are endogenous. Fur-

ther, although the buy-and-hold strategy makes investors have higher returns than

the others, it has been shown that in a volatile market, it is quite often inferior to

any completely diversi�ed constant-proportions strategy involving periodic port-

folio rebalancing (Dempster et al., 2008). In our setting, the investors who select

the buy-and-hold strategy would be driven out of the market if the numbers of as-

sets are increased (e.g., when t =  > 1, see (2.15) below), irrespective of the

dynamics of their �nancial values.
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The model at hand, in its present form, does not aim at comparing the per-

formance of active and passive investment strategies. Its purpose is different:

to re�ect�in quantitative terms�the process of active trading characteristic for

contemporary �nancial industry and to develop a framework more suitable in the

present context than the conventional general equilibrium theory. Extensions of

the model focusing on other theoretical and applied questions will constitute the

subject of further research.

2.3 The main results

2.3.1 The notion of survival

Consider an admissible strategy pro�le of the investors (�1; :::;�N) and initial

endowments wi0; i = 1; 2; :::; N . Then the path (2.11) of the random dynamical

system can be generated through (2.3) to (2.7). Let wit (t � 0) be the investor i's

wealth available for consumption and investment at date t. If t = 0, the initial

endowment wi0 of investor i is a constant number. If t > 0; then wit = wit(s
t) is

a measurable function of st given by formula (2.12). As we have noted above,

wit(s
t) > 0.

We are primarily interested in the long-run behavior of the relative wealth or

the market shares rit := wit=Wt of the traders, where Wt :=
PN

i=1w
i
t is the to-

tal market wealth. Recall that we are concerned with the property of survival of

investment strategies, rather than comparing the performances between different

types of strategies.

34



De�nition 2.1. We shall say that the portfolio rule �1 (or investor 1 using it)

survives with probability one if inft�0 r1t > 0 (a.s.).

This means that for almost all realizations of the process of states of the world

s1; s2; :::, the market share of the �rst investor is bounded away from zero by a

strictly positive random constant. Alternatively, survival can be de�ned by the

requirement that lim inft!1 r1t > 0, which is equivalent, as long as the numbers

r1t are strictly positive, to the condition that inft�0 r1t > 0.

De�nition 2.2 A portfolio rule �1 is de�ned as a survival strategy if investor 1

using it survives with probability one regardless of what portfolio rules are used

by the other investors.

Alternatively, the notion of a survival strategy can be reformulated in terms of

the wealth processes wit(i = 1; 2; :::; N). Survival of a portfolio rule �1 used by

investor 1 means that w1t � c
PN

i=1w
i
t (a.s.), where c is a strictly positive random

constant. Indeed, since we de�ne survival by the condition that inft�0 r1t > 0 (a.s.),

we have

r1t � inf
t�0
r1t > 0 (a.s.):

Let inft�0 r1t = c(c > 0), we obtain

r1t =
w1tPN
i=1w

i
t

� c (a.s.);

and

w1t � c
NX
i=1

wit (a.s.). (2.13)
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The above inequality holds if and only if

wit � Cw1t ; i = 1; :::; N; (a.s.); (2.14)

where C is some strictly positive random constant. By observing (2.13), we �nd

w1t � cwit (a.s.);

because wit > 0. Put c to the left-hand side of the above inequality, we get

wit �
1

c

w1t ; i = 1; :::; N; (a.s.):

Let 1=c = C, we obtain (2.14).

Further, by summing up (2.14) over i = 2; :::; N and the inequality w1t � w1t ,

we have
NX
i=1

wit � [(N � 1)C + 1]w1t ; i = 1; :::; N (a.s.).

Put c = 1= [(N � 1)C + 1], then we get (2.13).

Property (2.14) indicates that the wealth of any investor i using any strategy

�i cannot grow asymptotically faster than the wealth of investor 1 who uses the

strategy �1. Thus, the strategy �1 is competitive: it cannot be beaten (in terms

of the asymptotic growth rate of wealth) in competition with any set of strategies

used by the investor 1's rivals.

2.3.2 The Kelly rule and its generalizations

Assume that the total mass of each asset grows (or decreases) at the same rate

t = t(s
t) > 0

Vt;k=Vt�1;k = t(t � 1): (2.15)
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Thus

Vt;k = t:::1Vk; (2.16)

where Vk > 0 (k = 1; 2; :::; K) are the initial amounts of the assets. In the case of

real dividened-paying assets�involving long-term investments in the real econ-

omy (e.g., real estate, transportation, media, infrastructure, etc.)�the above as-

sumption means that the economic system under consideration is on a balanced

growth path:

De�ne the relative dividends of the assets k = 1; :::; K by

Rt;k = Rt;k(s
t) :=

Dt;k(s
t)Vt�1;k(s

t�1)PK
m=1Dt;m(st)Vt�1;m(st�1)

; k = 1; :::; K; t � 1; (2.17)

and put Rt(st) = (Rt;1(st); :::; Rt;K(st)). By virtue of (2.16), we have

Rt;k(s
t) :=

Dt;k(s
t)VkPK

m=1Dt;m(st)Vm
: (2.18)

Further, de�ne

�t := �t=t;

�lt :=

�
1� �t+l; if l = 1;

�t+1�t+2:::�t+l�1(1� �t+l) if l > 1; (2.19)

and assume that

�t < 1� �; (2.20)

where � is a strictly positive constant. Consider the portfolio rule �� with the

vectors of investment proportions ��t (st) = (�
�
t;1(s

t); :::; ��t;K(s
t)) given by

��t;k = Et

1X
l=1

�ltRt+l;k; (2.21)
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where Et(�) = Et(�jst) is the conditional expectation given st. If t = 0, then

Et(�) = E0(�) stands for the unconditional expectation E(�). In view of (2.20), the

series of random variables
1X
l=1

�lt = (1� �t+1) + �t+1(1� �t+2) + �t+1�t+2(1� �t+3) + :::

converges uniformly16, and its sum is equal to one. Therefore the series of random

vectors
P1

l=1 �
l
tRt+l;k in (2.21) converges uniformly17 to a random vector belong-

ing the unit simplex 184K , and so ��t;k is well-de�ned.

The expected �ow of discounted future relative dividends is used to specify the

portfolio rule in (2.21). According to this portfolio rule, investors will distribute

wealth across assets. The discount factors �lt are de�ned in terms of the invest-

ment rate �t and the growth rate t in terms of formula (2.19). It should be em-

phasized that the investment proportions ��t;k(st) prescribed by the portfolio rule

�� generally depend on time t and the sequence of exogenous states of the world

st = (s1; :::st), but do not depend on the history of the game (pt�1; xt�1; �t�1), so

16 (Uniformly Convergency) Suppose S is a set and fn: S ! R are real-valued functions for
every natural number n. We say that the sequence (fn) is uniformly convergent with limit f :
S ! R if for every " > 0, there exists a natural number N such that for all x in S and all n � N ,
jfn(x)� f(x)j < ".

17 Weierstrass M-test is used to prove this argument. In mathematics, the Weierstrass M-test is
an analogue of the comparison test for in�nite series, and applies to a series whose terms are
themselves functions with real or complex values.
(Weierstrass M-test) Suppose (fn) is a sequence of real- or complex-valued functions de�ned
on a set A, and that there exist positive constantsMn such that jfn(x)j � Mn for all n � 1 and
all x in A. Suppose further that the series

P1
n=1Mn converges. Then, the series

P1
n=1 fn(x)

converges uniformly on A.
18 By summing up

P1
l=1 �

l
tRt+l;k over k = 1; :::;K, we have
KX
k=1

1X
l=1

�ltRt+l;k =
1X
l=1

�lt

KX
k=1

Rt+l;k =
1X
l=1

�lt = 1:
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that the strategy �� is basic.

The strategy �� is a generalization of the Kelly portfolio rule of "betting your

beliefs", playing an important role in capital growth theory�see Kelly (1956),

Breiman (1961), Algoet and Cover (1988), and Hakansson and Ziemba (1995).

Since the conditional expectations in (2.21) are taken with respect to the probabil-

ity measure on the space of paths of the process of states of the world known to all

the market participants (rational expectations hypothesis), it is natural to call the

generalized the Kelly portfolio rule �� rational expectations strategy (RES).

If � = �t is constant, then formula (2.21) can be written as

��t;k = Et

1X
l=1

[(1� �)�l�1Rt+l;k]:

Further, if the random elements st are independent and identically distributed and

the relative dividends Rt;k(st) = Rk(st) depend only on the current state st and do

not explicitly depend on t; then EtRk(st+l) = EtRk(st)(l � 1), and so

��t;k = ERk(st); (2.22)

which means that the strategy �� is formed by the sequence of constant vectors

(ER1(st); :::; ERK(st)) (independent of t and st). Note that it does not include

the factor �. In the general case, however, even when � is constant, one has to take

into account the expected discounted sum of all the relative dividends at all the

future dates after t.
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2.3.3 The Kelly rule is a survival strategy

Assume that for all k and t we have

EtRt+1;k > 0 (a.s.). (2.23)

This assumption implies that the conditional expectation in (2.21), which is not

less than Et(�Rt+1;k) is strictly positive a.s.. Indeed, according to the inequality

(2.20), we have

��t;k = Et

1X
l=1

�ltRt+l;k � Et�1tRt+l;k > Et(�Rt+1;k) > 0 (a.s.).

So we can select a version of this conditional expectation that is strictly positive

for all st. This version will be used in the de�nition of the strategy ��:

A central result is as follows.

Theorem 2.1 The portfolio rule �� is a survival strategy.

An analogous result has been established in the framework of a model with

one-period, "short-lived" assets19 in Amir et al. (2008). That framework may be

regarded as a limiting case as � ! 0 (with constant �t = �) of the one consid-

ered in the present chapter. It has been proved that investors who use the Kelly

rule (��t;k = EtRt+1;k) survive in the case of short lived assets. These proportions

are limits of those in (2.21) as � ! 0: The analysis of the model with long-lived

assets in which general strategies are allowed and no assumptions on the process

of states of the world are imposed is much more demanding. It requires a substan-

19 Models of this kind were considered by Blume and Easley (1992), Amir et al. (2005), and others;
see surveys in Blume and Easley (2008) and Evstigneev et al. (2009).

40



tial generalization of the concept of the Kelly portfolio rule, taking into account

the discounting of the future dividends, and it is based on new techniques (relying

upon stochastic Lyapunov functions) designed for the analysis of random dynam-

ical systems arising in connection with the dynamic market games at hand.

As we have noted above, if the states of the world st are i.i.d. and the func-

tions Rt;k(s) = Rk(s) do not depend on t, then the investment proportions ��k =

ERk(st) of the strategy �� are constant: they depend neither on time nor on the

states of the world (such strategies are called simple). A version of the asset market

model with long-lived assets in which all the investors use only simple portfolio

rules and the states of the world are i.i.d. is considered in Evstigneev et al. (2008).

It is shown in that context that the strategy �� not only survives, but also outper-

forms all other simple strategies. Those investors who use�� dominate the market,

i.e., gather in the limit total market wealth, while those who use simple strategies

distinct from �� vanish: their market shares tend to zero with probability one. This

is not so in the model considered in the present paper, where general, not neces-

sarily simple, portfolio rules are allowed. Here, ��-investors survive, i.e., keep

market shares bounded away from zero a.s., but they do not necessarily dominate

the market.

2.3.4 Asymptotic uniqueness of the survival strategy.

Theorem 2.1 shows that the strategy �� is a survival strategy in the model under

consideration. The strategy �� belongs to the class of basic portfolio rules: the

41



investment proportions ��t (st) depend only on the history st of the process of states

of the world, and do not depend on the market history. The following theorem

shows that in this class the survival strategy �� = (��t ) is essentially unique: any

other basic survival strategy is asymptotically similar to ��:

Theorem 2.2 If � = (�t) is a basic survival strategy, then
1X
t=0

jj��t � �tjj2 <1 (a.s.).

Here, we denote by jj�jj the Euclidean norm20 in a �nite-dimensional space.

Theorem 2.2 is akin to various turnpike results in the theory of economic dynam-

ics, expressing the idea that all optimal or asymptotically optimal paths of an eco-

nomic system follow in the long run essentially the same route: the turnpike (See,

e.g., Arkin and Evstigneev (1987), p.12-27). Survival strategies � can be charac-

terized by the property that the wealth wjt of any investor j cannot grow in�nitely

faster (with strictly positive probability) than the wealth of investor i using �. The

class of such investment strategies is similar to the class of "good" paths of eco-

nomic dynamics, as introduced by Gale (1967)�paths that cannot be "in�nitely

worse" than the turnpike. Theorem 2.2 is a direct analogue of Gale's turnpike the-

orem for good paths (Gale, 1967, Theorem 8); for a stochastic version of this result

see Arkin and Evstigneev (1987, Chapter 4, Theorem 621).

20 (Euclidean norm) OnRn, the intuitive notion of Euclidean norm of the vector x = (x1; x2; :::; xn)
can be de�ned by the formula

jjxjj :=
q
x21 + x

2
2 + :::+ x

2
n:

21 (Convergence of good in�nite programmes to the turnpike) If fztg is a good programme, then
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Note that the class of basic strategies is suf�cient in the following sense. Any

sequence of vectors rt = (r1t ; :::; rNt ) (rt = rt(st)) of market shares generated by

some strategy pro�le (�1; :::;�N) can be generated by a strategy pro�le (�1t (st); :::;

�Nt (s
t)) consisting of basic portfolio rules. The corresponding vector functions

�it(s
t) can be de�ned recursively by (2.9) and (2.10), using (2.3)-(2.7). Thus it is

suf�cient to prove Theorem 2.1 only for basic portfolio rules; this will imply that

the portfolio rule (2.21) survives in competition with any, not necessarily basic

strategies. Such considerations cannot be automatically applied to the problem of

asymptotic characterization of general survival strategies. This problem remains

open; it indicates an interesting direction for further research.

2.4 Proofs

In this section the program of proving Theorems 2.1 and 2.2 is established step

by step. We begin with some auxiliary propositions whose proofs are routine and

relegated to the Appendix 2.5. Based on these auxiliary results, we present at the

end of the section the �nal steps of the proofs of Theorems 2.1 and 2.2. The �rst

proposition establishes the existence and uniqueness of an equilibrium price vector

at each date t � 0.

Proposition 2.1 Let assumption (2.2) hold. Let xt�1 = (x1t�1; :::; x
N
t�1) be a

set of vectors xit�1 2 RK+ satisfying (2.8). Then for any st there exists a unique

lim
t!1

Ejzt � ztj = 0:
And a sequence of vectors fz1; z2; :::g, zt := (xt�1; yt)��nite or in�nite�is called a programme
if zt 2 Qt, yt � xt (t � 1).
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solution pt 2 RK+ to equations (2.6). This solution is measurable with respect to

all the parameters involved in (2.6).

This proposition guarantees our dynamic model well-de�ned. It indicates the

equilibrium price vector always exists at each trading date t no matter what the

state of world is. In the next proposition, we derive a system of equations gov-

erning the dynamics of the market shares of the investors given their admissible

strategy pro�le (�1; :::;�N). Consider the path (2.11) of the random dynamical

system generated by (�1; :::;�N) and the sequence of vectors rt = (r1t ; :::r
N
t ),

where rit is the investor i0s market share at date t.

Proposition 2.2 The following equations hold:

rit+1 =
KX
k=1

[�t+1h�t+1;k; rt+1i+ (1� �t+1)Rt+1;k]
�it;kr

i
t

h�t;k; rti
; i = 1; :::; N; t � 0:

(2.24)

The above proposition avoids the complex process of the evolution of an asset

market and obtains market shares of investors recursively. The next proposition

shows that it is suf�cient to prove Theorem 2.1 when N = 2, i.e., the general

model can be reduced to the case of two investors. De�ne

~�
2

t;k =
�2t;kr

2
t + :::+ �

N
t;kr

N
t

1� r1t
: (2.25)

Note that 1� r1t = r2t + :::+ rNt > 0 and so ~�
2

t;k is well-de�ned. Furthermore,
KX
k=1

~�
2

t;k =
r2t + :::+ r

N
t

1� r1t
= 1;

which means that the vector ~�
2

t := (
~�
2

t;1; :::;
~�
2

t;K) belongs to the unit simplex �K .
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Thus the sequence of vectors ~�
2

t =
~�
2

t (s
t) de�nes a portfolio rule, which will be

denoted by ~�. De�ne

~r1t = r
1
t ; ~r

2
t = 1� r1t ; ~rt = (~r1t ; ~r2t ); ~�

1

t;k = �
1
t;k;

~�t;k = (~�
1

t;k;
~�
2

t;k):

Proposition 2.3 We have

~rit+1 =
KX
k=1

[�t+1h~�t+1;k; ~rt+1i+ (1� �t+1)Rt+1;k]
~�
i

t;k~r
i
t

h~�t;k; ~rti
; i = 1; 2; t � 0:

Thus in the model with two investors i = 1; 2 using the strategies � and ~�,

respectively, the market share ~r1t of the �rst investor coincides with r1t (coming

from the original model) and the market share ~r2t of the second is equal to 1� r1t .

Consider the model with two traders (N = 2) using strategies�i = (�it;k(st)); i =

1; 2; and denote by zt the ratio r1t =r2t of their market shares.

Proposition 2.4 The process zt is governed by the following random dynamical

system:

zt+1 = zt

PK
k=1[�t+1�

2
t+1;k + (1� �t+1)Rt+1;k]

�1t;k

�1t;kzt + �
2
t;kPK

k=1[�t+1�
1
t+1;k + (1� �t+1)Rt+1;k]

�2t;k

�1t;kzt + �
2
t;k

: (2.26)

In the next proposition, we derive an equation which can be used as an equiva-

lent de�nition of the portfolio rule ��.

Proposition 2.5 The portfolio rule �� = (��t;k) satis�es

Et[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k] = ��t;k (a.s.): (2.27)

It can be shown (by using a contraction principle) that �� is a unique solution

to (2.27), but this fact will not be needed in what follows.
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For proving Theorem 2.1, we �rstly simplify the random dynamic model with

N players to that with two players. Proposition 2.3 shows that without loss of

generality, it is suf�cient to consider two dimensional random dynamical system.

Secondly, we attempt to use one variable zt = r1t =r2t to describe the evolution of

the market shares of the two investors. Proposition 2.4 provides one dimensional

system to describe the wealth dynamics of the two investors.

Assume that investor 1 plays the investment proportions �1t;k = ��t;k(s
t) pre-

scribed by the portfolio rule �� and investor 2 uses investment proportions �2t;k =

�t;k(s
t) speci�ed by some other portfolio rule �. The ratio zt of the market shares

of the two investors can be obtained from (2.26). Our goal is to show that the ran-

dom sequence (zt) de�ned recursively by (2.26) is bounded away from zero a.s..

To this end we introduce the following change of variables

ykt = �t;k=zt; k = 1; :::; K; (2.28)

and de�ne yt := (y1t ; :::; y
K
t ): We examine the dynamics of the random vectors

yt = yt(s
t) implied by the system (2.26). The norm jytj :=

P
k jykt j of the vector

yt � 0 is equal to
P

k j�t;k=ztj = 1=zt, and what we need is to show that 1=jytj is

bounded away from zero a.s.. To prove this, we construct a stochastic Lyapunov

function�a function of yt which forms a non-negative supermartingale (�t) along

a path (yt) of the system at hand (see Lemma 2.3 below). By applying the super-

martingale convergence theorem, we prove that the stochastic process �t converges
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a.s., which implies that it is bounded a.s.. The proof of Theorem 2.1 is completed

by showing that the boundness of �t implies that zt = 1=jytj is bounded away from

zero.

Three lemmas are introduced to realize the plan of the proof of Theorem 2.1.

These three lemmas contain inequalities involving the variables ykt de�ned by

(2.28). De�ne the non-negative random variables

Yt := ln(1 + jytj) = � ln r1t ; (2.29)

Zt;k := ln

�
1 +

ykt
��t;k

�
= ln

�
1 +

r2t�t;k
r1t�

�
t;k

�
; Zt :=

KX
k=1

��t;kZt;k; (2.30)

and put

Ut := Yt � Zt: (2.31)

Lemma 2.1 The following inequality holds:

�t+1Zt+1 + (1� �t+1)Yt+1 �
KX
k=1

[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k]Zt;k: (2.32)

Lemma 2.2 We have

Ut =
KX
k=1

��t;k ln
��t;k

r1t�
�
t;k + r

2
t�t;k

� 0: (2.33)

From the above results, we derive the following fact.

Lemma 2.3 The random sequence

�t := �tZt + (1� �t)Yt (2.34)

is a non-negative supermartingale satisfying

�t � Et�t+1 � (1� �t)Ut: (2.35)
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The following two lemmas will be used in proof of Theorem 2.2.

Lemma 2.4 Let �t be a supermartingale such that inftE�t > �1. Then the

series of non-negative random variables
P1

t=0(�t � Et�t+1) converges a.s..

Lemma 2.5 For any vectors (a1; :::; aK) > 0 and (b1; :::; bK) > 0 satisfyingP
ak =

P
bk = 1; the following inequality holds

KX
k=1

ak ln ak �
KX
k=1

ak ln bk �
1

4

KX
k=1

(ak � bk)2: (2.36)

Proof of theorem 2.1. Since �t is a non-negative supermartingale22, the sequence

�t converges23 a.s., and hence it is bounded above a.s. by some random constant

C. This implies (see (2.34) and (2.20)) that (1� �t)Yt � �t � C a.s., and so

� ln r1t = Yt � �t=(1� �t) � B (a.s.);

where B := C=�. Therefore r1t � e�Ba.s.. �

Proof of theorem 2.2. Let � = (�t) be a basic survival strategy. Suppose that

investors i = 1; 2; :::; N � 1 use the strategy �� = (��t ) and investor N uses �: By

summing up equations (2.24) with �it = �
�
t over i = 1; :::; N � 1, we obtain

br1t+1
=

KX
k=1

�
�t+1

�
��t+1;kbr1t+1 + �t+1;k �1� br1t+1��+ (1� �t+1)Rt+1;k	 ��t;kbr1t

��t;kbr1t + �t;k (1� br1t ) ;
22 (Supermartingale) Let (
;F ; P ) be a given probability space and (Fn) be a family of

��algebras Fn, n � 0, such that F0 � F1 �...� Fn. A stochastic sequence X = (Xn;Fn) is a
supermartingale if for all n � 0;

EjXnj <1;
and

E(Xn+1jFn) � Xn:

23 (Supermartingal convergence corollary) If Xn is a non-negative supermartingale, then with
probability 1 the limit limXn exists and is �nite.
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where br1t := r1t + ::: + r
N�1
t is the market share of the group of investors i =

1; 2; :::; N � 1 and 1 � br1t = rNt is the market share of investor N . We used here
the fact that

h�t;k; rti =
NX
i=1

�it;kr
i
t =

N�1X
i=1

��t;kr
i
t + �t;kr

N
t =

��t;k

N�1X
i=1

rit + �t;kr
N
t = �

�
t;kbr1t + �t;k �1� br1t � :

Further, we have

1� br1t+1
=

KX
k=1

�
�t+1

�
��t+1;kbr1t+1 + �t+1;k �1� br1t+1��+ (1� �t+1)Rt+1;k	 �t;k (1� br1t )

��t;kbr1t + �t;k (1� br1t ) :
Thus the dynamics of the market shares br1t = r1t + ::: + r

N�1
t , 1 � br1t = rNt

is exactly the same as the dynamics of the market shares br1t ; br2t = 1 � br1t of two
investors i = 1; 2 (N = 2) using the strategies (�1t ) = (��t ) and (�

2
t ) = (�t),

respectively. Since (�t) is a survival strategy, the random sequence rNt = 1�br1t =
br2t is bounded away from zero almost surely.
Since investor 1 uses the strategy ��, by virtue of Lemma 2.3 the sequence �t

de�ned by (2.34) is a non-negative supermartingale, and inequality (2.35) holds.

Since �t is greater than 0, in view of Lemma 2.4, the series
P1

t=0 (�t � Et�t) of

non-negative random variables converges a.s.. The inequality

�t � Et�t � (1� �t)
KX
k=1

��t;k ln
��t;kbr1t��t;k + br2t�t;k <1 (a.s.)
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established in Lemmas 2.2 and 2.3 and assumption (2.20) imply that
1X
t=1

KX
k=1

��t;k ln
��t;kbr1t��t;k + br2t�t;k <1 (a.s.). (2.37)

Finally, according to Lemma 2.5, we observe that
KX
k=1

��t;k ln
��t;kbr1t��t;k + br2t�t;k =

KX
k=1

��t;k ln�
�
t;k �

KX
k=1

��t;k ln
�br1t��t;k + br2t�t;k� �

1

4

KX
k=1

�
��t;k �

�
1� br2t ���t;k � br2t�t;k�2 = 1

4

KX
k=1

�br2t��t;k � br2t�t;k�2 =
1

4

�br2t �2 KX
k=1

(��t;k � �t;k)2 =
1

4

�br2t �2 jj��t;k � �t;kjj2; (2.38)

where the sequence br2t is bounded away from zero a.s., as long as (�t) is a survival
strategy. Therefore

br2t � c > 0 (a.s.), (2.39)

where c is a random constant. From relation (2.37)-(2.39) we conclude that the

series
P1

t=0 jj�
�
t;k � �t;kjj2 converges a.s., which completes the proof of Theorem

2.2. �

2.5 Appendix

Proof of Proposition 2.1. Fix some t and st and consider the operator trans-

forming a vector p = (p1; :::; pK) 2 RK+ into the vector q = (q1; :::; qK) 2 RK+

with coordinates

qk = �tV
�1
t;k

NX
i=1

�it;khDt + p; x
i
t�1i:

This operator is contracting in the norm jjpjjV =
P

k jpkjVt�1;k. Indeed, by virtue
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of (2.2) we have

e� := max
k=1;:::;K

�
�tV

�1
t;k Vt�1;k

	
< 1

jjq � q0jjV =
kX
k=1

jqk � q
0

kjVt�1;k �

�t

KX
k=1

V �1t;k Vt�1;k

NX
i=1

�it;kjhp� p0; xit�1ij � e� NX
i=1

KX
k=1

�it;kjhp� p0; xit�1ij =

e� NX
i=1

jhp� p0; xit�1ij � e� NX
i=1

KX
m=1

jpm � p0mjxit�1;m =

e� KX
m=1

NX
i=1

jpm � p0mjxit�1;m = e� KX
m=1

jpm � p0mjVt�1;m = e�jjp� p0jjV ;
where the last but on equality follows from (2.8). By using the contraction princi-

ple, we obtain the existence, uniqueness and measurability of a solution to (2.6).

�

Proof of proposition 2.2. From (2.6) and (2.7) we get

pt;k = �tV
�1
t;k

NX
i=1

�it;khpt +Dt; x
i
t�1i (2.40)

= �tV
�1
t;k

NX
i=1

�it;kw
i
t = �tV

�1
t;k h�t;k; wti;

xit;k =
�t�

i
t;khDt(s

t) + pt; x
i
t�1i

pt;k
= (2.41)

�t�
i
t;khDt(s

t) + pt; x
i
t�1i

�tV
�1
t;k

PN
i=1 �

i
t;khpt +Dt; xit�1i

=
Vt;k�

i
t;kw

i
t

h�t;k; wti
;

where t � 1, wt := (w1t ; :::; wNt ) and �t;k := (�1t;k; :::; �Nt;k). The analogous formu-

las for t = 0,

p0;k = �0V
�1
0;k h�0;k; w0i; xi0;k =

V0;k�
i
0;kw

i
0

h�0;k; w0i
; (2.42)
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follow from (2.3) and (2.4). Consequently, we have

wit+1 =
KX
k=1

(pt+1;k +Dt+1;k)x
i
t;k =

KX
k=1

(�t+1V
�1
t+1;kh�t+1;k; wt+1i+Dt+1;k)

Vt;k�
i
t;kw

i
t

h�t;k; wti
=

KX
k=1

(�t+1V
�1
t+1;kVt;kh�t+1;k; wt+1i+Dt+1;kVt;k)

�it;kw
i
t

h�t;k; wti
; t � 0: (2.43)

By summing up these equations over i = 1; :::; N , we obtain

Wt+1 =
KX
k=1

�
�t+1V

�1
t+1;kVt;kh�t+1;k; wt+1i+Dt+1;kVt;k

� PN
i=1 �

i
t;kw

i
t

h�t;k; wti
=

KX
k=1

(�t+1V
�1
t+1;kVt;kh�t+1;k; wt+1i+Dt+1;kVt;k):

As long as

Vt+1;k=Vt;k = �t+1 > 0 (2.44)

(see(2.2)), we have

Wt+1 =
KX
k=1

(�t+1V
�1
t+1;kVt;kh�t+1;k; wt+1i+Dt+1;kVt;k) =

�t+1�
�1
t+1Wt+1 +

KX
k=1

Dt+1;kVt;k:

This implies the formula

Wt+1 =
1

1� �t+1��1t+1

KX
m=1

Dt+1;mVt;m; (2.45)

where �t+1��1t+1 = �t+1:From (2.43) and (2.44), we �nd

wit+1 =
KX
k=1

(�t+1V
�1
t+1;kVt;kh�t+1;k; wt+1i+Dt+1;kVt;k)

�it;kw
i
t

h�t;k; wti
t � 0:
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Dividing both sides of this equation byWt+1 and using (2.45), we get

rit+1 =
KX
k=1

"
�t+1h�t+1;k; rt+1i+ (1� �t+1)

Dt+1;kVt;kPK
m=1Dt+1;mVt;m

#
�it;kw

i
t=Wt

h�t;k; wti=Wt

;

which yields (2.24) by virtue of (2.15) and (2.18). �

Proof of proposition 2.3. In view of (2.24) and (2.25) we have

r1t+1 =

KX
k=1

n
�t+1

h
�1t+1;kr

1
t+1 + (1� r1t+1)e�2t+1;ki+ (1� �t+1)Rt+1;ko �1t;kr

1
t

�1t;kr
1
t + e�2t;k(1� r1t ) :

By summing up equations (2.24) over i = 2; :::; N , we �nd

er2t+1 = 1�r1t+1 = KX
k=1

[�t+1 h�t+1;k; rt+1i+(1��t+1)Rt+1;k]
e�2t;k(1� r1t )

�1t;kr
1
t + e�2t;k(1� r1t ) :

Thus we obtain

er2t+1 = KX
k=1

n
�t+1

h
�1t+1;kr

1
t+1 + (1� r1t+1)e�2t+1;ki+ (1� �t+1)Rt+1;ko e�2t;k(1� r1t )

�1t;kr
1
t + e�2t;k(1� r1t ) ;

which completes the proof. �

Proof of proposition 2.4. By using (2.24) with N = 2; we get

rit+1 =
KX
k=1

�
�t+1

�
�it+1;kr

i
t+1 + (1� rit+1)�

j
t+1;k

�
+ (1� �t+1)Rt+1;k

	 �it;kr
i
t

�it;kr
i
t + �

j
t;kr

j
t

;

where i; j 2 f1; 2g and i 6= j: Setting Cijt;k := �
i
t;kr

i
t=(�

i
t;kr

i
t + �

j
t;kr

j
t ); we have

rit+1 =
KX
k=1

�
�t+1�

i
t+1;kr

i
t+1 + �t+1(1� rit+1)�

j
t+1;k + (1� �t+1)Rt+1;k

�
Cijt;k =

KX
k=1

�t+1
�
�it+1;k � �

j
t+1;k

�
rit+1C

ij
t;k +

KX
k=1

�
�t+1�

j
t+1;k + (1� �t+1)Rt+1;k

�
Cijt;k;

which implies

rit+1

"
1 + �t+1

KX
k=1

�
�jt+1;k � �

i
t+1;k

�
Cijt;k

#
=

KX
k=1

�
�t+1�

j
t+1;k + (1� �t+1)Rt+1;k

�
Cijt;k:

Thus
rit+1

rjt+1
=
Aijt+1=B

ij
t+1

Ajit+1=B
ji
t+1

;
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where

Aijt+1 :=

KX
k=1

�
�t+1�

j
t+1;k + (1� �t+1)Rt+1;k

�
Cijt;k,

Bijt+1 := 1 + �t+1

KX
k=1

�
�jt+1;k � �

i
t+1;k

�
Cijt;k:

Observe that Bijt+1 = B
ji
t+1. Indeed,

Bijt+1 �B
ji
t+1 = �t+1

KX
k=1

��
�jt+1;k � �

i
t+1;k

�
Cijt;k �

�
�it+1;k � �

j
t+1;k

�
Cjit;k
�
=

�t+1

KX
k=1

�
�jt+1;k � �

i
t+1;k

�
= 0

because Cjit;k + C
ij
t;k = 1: Consequently,

r1t+1
r2t+1

=
A12t+1
A21t+1

=
r1t
r2t

PK
k=1

�
�t+1�

2
t+1;k + (1� �t+1)Rt+1;k

� �1t;k

�1t;kr
1
t =r

2
t + �

2
t;kPK

k=1

�
�t+1�

1
t+1;k + (1� �t+1)Rt+1;k

� �2t;k

�1t;kr
1
t =r

2
t + �

2
t;k

;

which yields (2.26). �

Proof of proposition 2.5. By virtue of (2.21), we have

Et(�t+1�
�
t+1;k) = Et

 
�t+1Et+1

1X
l=1

�lt+1Rt+l+1;k

!
=

Et

 
Et+1

1X
l=1

�t+1�
l
t+1Rt+l+1;k

!
= Et

1X
l=1

�t+1�
l
t+1Rt+l+1;k;

and so

Et[�t+1�
�
t+1;k+(1��t+1)Rt+1;k] = Et

" 1X
l=1

�t+1�
l
t+1Rt+l+1;k + (1� �t+1)Rt+1;k

#
=

Et

 1X
l=1

�l+1t Rt+l+1;k + �
1
tRt+1;k

!
= Et

1X
l=1

�ltRt+l;k = �
�
t;k

because 1� �t+1 = �1t and

�t+1�
l
t+1 = �t+1�t+2:::�t+l(1� �t+l+1) = �l+1t

for l � 1. �
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Proof of Lemma 2.1. From formula (2.26) with �1t;k = �
�
t;k and �

2
t;k = �t;k; we

get
KX
k=1

[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k]

�t;k
��t;kzt + �t;k

=

KX
k=1

�
�t+1

�t+1;k
zt+1

+ (1� �t+1)
Rt+1;k
zt+1

�
��t;kzt

��t;kzt + �t;k
:

By using the notation ykt = �t;k=zt and the fact that jytj = 1=zt, we write
KX
k=1

[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k]

ykt
��t;k + y

k
t

=

KX
k=1

�
�t+1y

k
t+1 + (1� �t+1)Rt+1;kjyt+1j

� ��t;k
��t;k + y

k
t

;

which implies

�t+1

KX
k=1

��t;ky
k
t+1 � ��t+1;kykt
��t;k + y

k
t

+ (1� �t+1)
KX
k=1

Rt+1;k
��t;kjyt+1j � ykt
��t;k + y

k
t

= 0: (2.46)

We have

��t;ky
k
t+1 � ��t+1;kykt
��t;k + y

k
t

= ��t+1;k
��t;ky

k
t+1=�

�
t+1;k � ykt

��t;k + y
k
t

= ��t+1;k
ykt+1=�

�
t+1;k � ykt =��t;k
1 + ykt =�

�
t;k

=

��t+1;k

 
1 + ykt+1=�

�
t+1;k

1 + ykt =�
�
t;k

� 1
!
� ��t+1;k ln

1 + ykt+1=�
�
t+1;k

1 + ykt =�
�
t;k

; (2.47)

where the last relation follows from the inequality a � 1 � ln a(a > 0):By using

(2.47), we �nd
KX
k=1

��t;ky
k
t+1 � ��t+1;kykt
��t;k + y

k
t

�
KX
k=1

��t+1;k

�
ln

�
1 +

ykt+1
��t+1;k

�
� ln

�
1 +

ykt
��t;k

��
=

KX
k=1

��t+1;k(Zt+1;k � Zt;k) = Zt+1 �
KX
k=1

��t+1;kZt;k: (2.48)
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Further, we have

��t;kjyt+1j � ykt
��t;k + y

k
t

=
��t;kjyt+1j+ ��t;k
��t;k + y

k
t

� 1 �

ln
��t;kjyt+1j+ ��t;k
��t;k + y

k
t

= ln
jyt+1j+ 1
1 + ykt =�

�
t;k

;

and so
KX
k=1

Rt+1;k
��t;kjyt+1j � ykt
��t;k + y

k
t

�
KX
k=1

Rt+1;k ln
1 + jyt+1j
1 + ykt =�

�
t;k

=

ln(1 + jyt+1j)�
KX
k=1

Rt+1;k ln(1 + y
k
t =�

�
t;k) = Yt+1 �

KX
k=1

Rt+1;kZt;k

(see (2.29) and (2.30)), which yields
KX
k=1

Rt+1;k
��t;kjyt+1j � ykt
��t;k + y

k
t

� Yt+1 �
KX
k=1

Rt+1;kZt;k (2.49)

By combining (2.46), (2.47) and (2.49), we �nd

0 � �t+1

 
Zt+1 �

KX
k=1

��t+1;kZt;k

!
+ (1� �t+1)

 
Yt+1 �

KX
k=1

Rt+1;kZt;k

!
=

�t+1Zt+1 + (1� �t+1)Yt+1 �
KX
k=1

[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k]Zt;k

which proves (2.32). �

Proof of Lemma 2.2. To prove the �rst relation in (2.33) we proceed as follows:

Ut = Yt � Zt = � ln r1t �
KX
k=1

��t;k ln

�
1 +

r2t�t;k
r1t�

�
t;k

�
=

KX
k=1

��t;k ln
1

r1t
+

KX
k=1

��t;k ln
r1t�

�
t;k

r1t�
�
t;k + r

2
t�t;k

=
KX
k=1

��t;k ln
��t;k

r1t�
�
t;k + r

2
t�t;k

:

The last relation in (2.33) follows from the elementary inequality
PK

k=1 ak ln ak �PK
k=1 ak ln bk � 0, which is presented in a somewhat re�ned form in Lemma 2.5.

�
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Proof of Lemma 2.3. It is clear that �t � 0. Indeed, from (2.34), we have

�t := �tZt + (1� �t)Yt =

�t

KX
k=1

��t;k ln

�
1 +

r2t�t;k
r1t�

�
t;k

�
� (1� �t) ln r1t � 0;

because ln
�
1 + r2t�t;k=r

1
t�
�
t;k

�
� 0 and ln r1t � 0: By taking the conditional ex-

pectation Et(�) of both sides of inequality (2.32) and using (2.27), we obtain

Et�t+1 �
KX
k=1

Zt;kEt[�t+1�
�
t+1;k + (1� �t+1)Rt+1;k] =

KX
k=1

Zt;k�
�
t;k = Zt: (2.50)

In view of (2.31), we get

Et�t+1 + (1� �t)Ut � Zt + (1� �t)Yt � (1� �t)Zt =

�tZt + (1� �t)Yt = �t;

which proves (2.35). Thus Et�t+1 � �t � (1� �t+1)Ut � �t because Ut � 0 (see

Lemma 2.4). The last inequality implies E�t � E�0 = �0 < +1. Since �t � 0;

we have Ej�tj <1, and so �t is a non-negative supermartingale. �

Proof of Lemma 2.4. The random variables �t := �t � Et�t+1 are non-negative

by the de�nition of a supermartingale. Further, we have
T�1X
t=0

E�t =

T�1X
t=0

(E�t � E�t+1) = E�0 � E�T ;

and so the sequence
PT�1

t=0 E�t is bounded because supT (�E�T ) = � inf E�T <

+1: According to the property of non-negative series24, the series of the expecta-

tions
P1

t=0E�t of the non-negative random variables �t converges, which implies

24 When an is a non-negative real number for every n, the sequence Sn of partial sums is
non-decreasing. It follows that a series

P
an with non-negative terms converges if and only if the

sequence Sn of partial sums is bounded.
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P1
t=0 �t < 1 a.s. because

P1
t=0E�t = E

P1
t=0 �t (the last equality holds25 for

any sequence �t � 0). �

Proof of Lemma 2.5. We have lnx � x� 1; which implies (lnx)=2 �
p
x� 1;

and so � lnx � 2� 2
p
x: By using this inequality, we get

KX
k=1

ak(ln ak � ln bk) = �
KX
k=1

ak ln
bk
ak
�

KX
k=1

ak

�
2� 2

p
bkp
ak

�
=

2� 2
KX
k=1

p
akbk =

KX
k=1

�
ak � 2

p
akbk + bk

�
=

KX
k=1

�p
ak �

p
bk

�2
:

This yields (2.36) because
�p
ak �

p
bk
�2 � (ak � bk)2=4 for 0 � ak; bk � 126. �

25 If (Zk) is a sequence of non-negative random variables such that
P
E(Zk) <1; then

P
Zk <1

(a.s.) and Zk ! 0 (a.s.).
26 �p

ak �
p
bk
�2 � �pak �pbk�2 �pak +pbk�2 =4

= (ak � bk)2=4; because 0 � ak; bk � 1 and
�p
ak +

p
bk
�2
=4 � 1:
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Chapter 3 Almost sure Nash equilibrium strategies in evolutionary models
of asset markets

3.1 Introduction

This chapter27 examines a stochastic model of a �nancial market with long-lived

dividend-paying assets and endogenous market clearing asset prices. This model is

a version of that proposed in Evstigneev et al.(2006), and then analyzed primarily

in the context of evolutionary �nance (for a survey of the �eld see Evstigneev et al.

(2009)). The main focus in evolutionary �nance is on questions of "survival and

extinction" of investment strategies (portfolio rules). In this chapter we analyze

the model from a different perspective and treat its decision-theoretic framework

as a game in which the payoffs of the players (investors) are de�ned in terms of the

growth rates of their relative wealth. We show that in the game under consideration

the Kelly (1956) portfolio rule of "betting your beliefs" forms with probability one

a unique symmetric Nash equilibrium strategy.

Game-theoretic models of asset markets dealing with relative wealth of in-

vestors have been put forth by Bell and Cover (1980,1988). In the one-shot, two-

person zero-sum models, each investor wishes to outperform any other investor.

The solution concept used in their models is a Nash equilibrium de�ned in terms

27 This chapter is based on the material of the paper by W. Bahsoun, I. Evstigneev and L. Xu "Almost
sure Nash equilibrium strategies in evolutionary models of asset markets," Working paper No
10-08 of the Mathematics Department of the University of Loughborough, February 2010.
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of the expectations of random payoff functions. It is shown that anyone who devi-

ates the log-optimal strategy results in a fall in the expected payoff. In this chapter,

we consider a different (stronger) solution concept: almost sure Nash equilibrium.

Any unilateral deviation from the Kelly rule leads to a decrease in the random

payoff with probability one.

Another work which can be linked to this chapter is the paper of Alós-Ferrer and

a Ania (2004). Both of us employ a game-theoretic asset market model and focus

on the performance of investment strategies. But their model is limited in �nitely

many states of the world and allows for redundant assets. Whilst our model deals

with in�nitely states of the world and does not allow for redundant assets. Another

difference between our works lies in the solution concept. They de�ne a pure-

strategy Nash equilibrium in terms of expected payoff as a game solution concept,

but we employ a (stronger) solution concept�almost sure Nash equilibrium with

respect to the random payoff.

The present chapter focuses on optimality almost surely, which is character-

istic for capital growth theory (Kelly (1956), Breiman (1961), Algoet and Cover

(1988), Hakansson and Ziemba (1995), Maclean et al. (2010)). Most of the previ-

ous research deals with asset market models with exogenous asset prices. Results

related to evolutionary �nance may be regarded as analogues, and in certain cases

as generalizations, of those pertaining to classical models of capital growth. The

main difference between the two modelling frameworks lies in the fact that in
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the former the accumulation of wealth of each investor might depend (via the en-

dogenous price formation mechanism) not only on his/her strategy, but also on the

strategies used by the other investors. Therefore in the present context a game-

theoretic model, rather than a single-agent optimization framework, is a suitable

setting for the analysis of questions related to capital growth.

This chapter is organized as follows. Section 3.2 is the model description, Sec-

tion 3.3 states the main results and Section 3.4 provides the proof of the main

theorem. The Appendix 3.5 contains the proof of a technical lemma.

3.2 The model

We consider a general asset market with K � 2 assets and N � 2 investors

(traders) acting in the market. The market is in�uenced by random factors mod-

elled in terms of independent identically distributed random elements s1; s2; :::

in a measurable space S. At each trading date t = 1; 2; ::: one unit of asset

k = 1; 2; :::; K yields nonnegative dividends Dk(st) � 0 depending on the �state

of the world� st at date t. The dividends Dk(st) are measurable and satisfy
KX
k=1

Dk(s) > 0 for all s: (3.1)

This condition means that in each random situation at least one asset yields a

strictly positive dividend. The total volume (the number of units) of asset k traded

in the market at date t is

Vt;k = Vt;k(s
t) > 0;

where st := (s1; :::; st) is the history of the process (st) from time 1 to time t. For
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t = 0, Vt;k is a constant number, and for t � 1, Vt;k(st) is a measurable function of

st.

Denote by pt 2 RK+ the vector of market prices of the assets. For each k =

1; :::; K, the coordinate pt;k of pt = (pt;1; :::; pt;K) stands for the price of one unit

of asset k at date t. A portfolio of investor i at date t = 0; 1; ::: is speci�ed by a

vector xit = (xit;1; :::; x
i
t;K) 2 RK+ where xit;k is the amount (the number of units)

of asset k. It means the numbers of units of all assets purchased by investor i.

The scalar product hpt; xiti =
PK

k=1 pt;kx
i
t;k expresses the value of the investor i's

portfolio xit at date t in terms of the prices pt;k.

At date t = 0 investor i has initial endowments wi0 > 0 that can be viewed as

his/her budget at date 0. Investor i's budget (wealth) at date t � 1 consists of two

components: the dividends hDt; x
i
t�1i paid by the portfolio xit�1 and the market

value hpt; xit�1i of the portfolio xit�1 expressed in terms of the today's prices pt

wit := hDt + pt; x
i
t�1i; (3.2)

where

Dt := D(st) := (D1(st); :::; DK(st)):

Let �t = �t(st�1) be a fraction of the budget invested into assets. Suppose that the

investment rate 0 < �t(st�1) < 1 is the same for all the traders, although in general

it may depend on time and random factors. We assume that �t is predictable: it

depends on the history st�1 of the process (st) up to time t�1 (not t). The number
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1 � �t can represent a fraction of money used for supporting investors's life or

business, which can also be understood as the tax rate or the consumption rate.

The assumption that 1 � �t is the same for all the investors is quite natural in the

former case. In the latter case it is indispensable since we focus in this work on

the analysis of the comparative performance of trading strategies (portfolio rules)

in the long run. Without this assumption, an analysis of this kind does not make

sense: a seemingly worse performance of a portfolio rule in the long run might be

simply due to a higher consumption rate of the investor.

Suppose that the function �t(st�1) is measurable (for t = 0; 1 it is constant)

and not greater than the supply growth rate of each asset k, i.e., that satis�es the

following condition

�t(s
t�1) < Vt;k(s

t)=Vt�1;k(s
t�1): (3.3)

This condition holds, in particular, when the total mass Vt;k(st) of each asset k

does not decrease, i.e., when the right-hand side of (3.3) is not less than one. But

(3.3) does not exclude the situation when Vt;k decreases at some rate, not faster

than �t.

An investment strategy (portfolio rule) is speci�ed by a vector of investment

proportions �it = (�
i
1; :::; �

i
K) 2 �K according to which he/she plans to distribute

the available budget between assets at each date t. Vector �it belongs to the unit

63



simplex

�K := f(a1; :::; aK) � 0 : a1 + :::+ aK = 1g:

Strategies of this kind are called �xed-mix, or constant proportions, portfolio rules:

they prescribe to select investment proportions at time 0 and keep them �xed over

the whole in�nite time horizon.

The class of �xed-mix investment strategies is quite widely used in �nancial

theory and practice, playing an important role in portfolio theory; see, e.g., Per-

old and Sharpe (1988) and Browne (1998). Investors continuously rebalance their

portfolios in order to keep �xed constant investment proportions. Under certain

conditions, strategies with constant investment proportions lead to the growth of

the portfolio value (�volatility pumping�� Luenberger (1998)). From the theo-

retical standpoint, this class of portfolio rules provides a convenient laboratory for

the analysis of questions we are interested in. It makes it possible to formalize in

a clear and compact way the concept of the type of an investor which determines

the performance of his/her portfolio rule in the long run.

In the model at hand, the asset market evolves in time, remaining in the state of

a dynamic short-run (temporary) equilibrium28. The notion of market equilibrium

is de�ned as follows. Suppose each investor i = 1; :::; N has selected a strategy�

a vector of investment proportions �i = (�i1; :::; �
i
K) 2 �K at each date t. Then

28 In this paper, we use the term �equilibrium� in two different meanings. Here it is related to market
equilibrium: a situation when asset supply is equal to asset demand. Later, the same term will
appear in a game-theoretic context. It will pertain to Nash equilibrium strategies in a certain
dynamic game.
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at date t � 0, the amount of wealth allocated to asset k by trader i is �t�ikwit.

By summing up all traders wealth invested in asset k, we have the total amount

demand of asset k, �t
PN

i=1 �
i
kw

i
t, where wit is investor i's budget at time t. At

each trading date t, the market satis�es the market clearing condition: asset supply

is equal to asset demand, making it possible to determine the equilibrium price pt;k

of each asset k from the following equations

pt;kVt;k = �t

NX
i=1

�ikw
i
t; k = 1; :::; K: (3.4)

The left-hand side of (3.4) is the total market value of the supply of asset k at

date t (recall that the amount of each asset k at date t is Vt;k). The right-hand side

represents the total wealth invested in asset k by all the investors. Equilibrium

implies the equality in (3.4). The portfolios xit = (xit;1; :::; x
i
t;K) are determined

by the investment proportions �i1; :::; �
i
K chosen by the traders at time t by the

formulas

xit;k =
�t�

i
kw

i
t

pt;k
; k = 1; :::; K; i = 1; :::; N: (3.5)

Note that for t � 1, investor i's budget can be expressed by (3.2) and the price

vector pt is determined implicitly as the solution to the system of equations (3.4),

which can be written as

pt;kVt;k = �t

NX
i=1

�ikhDt + pt; x
i
t�1i; k = 1; :::; K: (3.6)

It can be shown that under assumption (3.3) a non-negative vector pt satisfying

these equations exists and is unique (for any st and any feasible xit�1 and �
i)�see
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Proposition 2.1).

Equations (3.5) make sense only if pt;k > 0, or equivalently, if the aggregate

demand for each asset (under the equilibrium prices) is strictly positive. We say

a strategy pro�le (�1; :::; �N) is admissible if it guarantees that each asset k has a

strictly positive equilibrium price through the above recursive procedure described

step by step from (3.4)�(3.5). In what follows, we will deal only with such strategy

pro�les so as to guarantee the random dynamical system under consideration is

well-de�ned.

A path of market dynamics can be generated recursively according to a strategy

pro�le (�1; :::; �N) of all the investors and their initial wealth w10; :::; wN0

(pt;x
1
t ; :::; x

N
t ); (3.7)

where pt = pt(s
t) is the price vectors and xit = xit(s

t) is investor i's portfolio

(i.e., the amounts of units of all assets purchased by investor i). Since the hypoth-

esis of admissibility is throughout this chapter, we obtain that all the portfolios

xit = (x
i
t;1; :::; x

i
t;K) are non-zero and the wealth wit = hDt + pt; x

i
t�1i of each in-

vestor is strictly positive from the above equilibrium path. Further, by summing

up equations (3.5) over i = 1; :::; N , we �nd that
NX
i=1

xit;k =

PN
i=1 �t�

i
kw

i
t

pt;k
=
pt;kVt;k
pt;k

= Vt;k (3.8)

(the market clears) for every asset k and each date t � 1. Thus for every equilib-

rium state of the market (pt; x1t ; :::; xNt ), we have pt > 0, xit 6= 0 and (3.8).
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We shall provide a simple suf�cient condition for making a strategy pro�le

admissible which can guarantee asset prices are strictly positive and market dy-

namics are well de�ned. Suppose that some trader, say trader 1, selects a com-

pletely mixed portfolio rule to invest into all the assets, i.e., each coordinate of the

investment strategy vector of trader 1 at time t = 0; 1; ::: must be strictly posi-

tive. Then a strategy pro�le containing this portfolio rule is admissible. Indeed,

for t = 0, we get from (3.4) that p0;k � �0V
�1
0;k �

1
kw

1
0 > 0 and from (3.5) that

x10 = (x
1
0;1; :::; x

1
0;K) > 0 (coordinatewise). Assuming that x1t�1 > 0 and arguing

by induction, we obtain hDt + pt; x
1
t�1i � hDt; x

1
t�1i > 0 in view of (3.1), which

in turn yields pt > 0 and x1t > 0 by virtue of (3.4) and (3.5), as long as �
1
k > 0.

3.3 The main results

Let (�1; :::; �N) be an admissible strategy pro�le of the investors. Given this

strategy pro�le and initial endowments, a path of market dynamics (3.7) can be

generated in accordance with the equations (3.4)�(3.5). As above, let wit denote

the investor i's wealth available at date t � 0. If t = 0, then the initial endowment

wi0 of investor i is assumed as a constant number. If t � 1, then wit = wit(s
t) is

de�ned as a measurable function of st given by formula (3.2). As we have noted

above, wit(st) > 0.

We are primarily interested in the long-run behavior of the relative wealth of
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the investors. The relative wealth of investor i; i = 1; 2; :::N are given by

rit =
wit
Wt

;

whereWt :=
PN

i=1w
i
t is the total market wealth. Given a strategy pro�le (�

1; :::; �N)

the performance of a strategy �i used by investor i can be characterized by the ra-

tio between investor i's relative wealth and the coalition fj : j 6= ig of i's rivals in

the game under consideration

�i := lim supt!1
1

t
ln

ritP
j 6=i r

j
t

: (3.9)

The random variable �i = �i(s1;�1; :::; �N) depends on the strategy pro�le (�1; :::; �N)

and on the whole history s1 := (s1; s2; :::) of states of the world from time 1 to

1; playing the role of the (random) payoff function of player i. Further, this pay-

off function re�ects the fact that the performance of investor i is in�uenced not

only by his/her investment strategy, but also his/her rivals'.

De�nition 3.1. We shall say that a strategy �� forms a symmetric Nash equilib-

rium almost surely (a.s.) if

�i(s1; ��; :::; ��) � �i(s1; ��; :::; �; :::; ��) (a.s.) (3.10)

for every i, each strategy � of investor i and each set of initial endowments w10 >

0; :::; wN0 > 0. The Nash equilibrium is called strict if the inequality in (3.10) is

strict.

The strategy pro�le
�
��; :::; ��

�
is admissible (recall that we consider only ad-

missible strategy pro�les) if and only if the vector �� is strictly positive. This
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observation is immediate from (3.6).

Assume that the total mass Vt;k of each asset k grows (or decreases) at the same

rate t = t(st�1) > 0:

Vt;k=Vt�1;k = t (t � 1): (3.11)

Thus

Vt;k(s
t�1) = t(s

t�1):::2(s1)1Vk; (3.12)

where Vk > 0 (k = 1; 2; :::; K) are the initial amounts of the assets. The growth

rate process t (like the investment rate process �t) is predictable: t depends only

on the history st�1 of the states of the world up to time t�1. In the case of dividend-

paying assets involving investments in the real economy, assumption (3.11) means

that the economic system under consideration is on a balanced growth path.

De�ne the relative dividends of the assets k = 1; :::; K by

Rk(st) =
Dk(st)VkPK

m=1Dm(st)Vm
(3.13)

It follows from (3.12) that

Rt;k =
Dt;kVt�1;kPK

m=1Dt;mVt�1;m
:

where Rt;k = Rk(st) and Dt;k = Dk(st). Indeed, from (3.12), we have

Rk(st) =
Dt;kVt�1;kPK

m=1Dt;mVt�1;m

=
Dt;kt�1(s

t�2):::2(s1)1VkPK
m=1Dt;mt�1(s

t�2):::2(s1)1Vm

=
Dk(st)VkPK

m=1Dm(st)Vm
:
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De�ne

��k = ERk(st); k = 1; 2; :::; K (3.14)

and put �� = (��1; :::; �
�
K). The investment strategy speci�ed by (3.14) may be

regarded as a generalization of the Kelly portfolio rule of �betting your beliefs�.

In this context it takes on the form of a rational expectations strategy (see Chap-

ter 2). It is expressed in terms of the expected relative dividends, according to

which investors distribute wealth across assets in accordance with the proportions

of the expected relative dividends (which do not depend on t because the random

elements st are i.i.d.).

Assume that the following conditions hold.

(R1) For each k, the expectation ERk(st) is strictly positive.

(R2) The functions R1(s); :::; RK(s) are linearly independent with respect to

the probability distribution of st, i.e., the equality
P
�kRk(st) = 0 holding a.s.

for some constants �k implies that �1 = ::: = �K = 0.

(R3) There exist constants 0 < �0 < �00 < 1 such that the process

�t(s
t�1) := �t(s

t�1)=t(s
t�1)

satis�es �0 � �t(st�1) � �00.

Condition (R1) implies that the vector �� has strictly positive coordinates. Hy-

pothesis (R2) can be interpreted as the absence of redundant assets. Condition

(R3) states that the discount factor �t cannot be too close to 0 and 1. Under these
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assumptions, the following theorem holds.

Theorem 3.1 The portfolio rule �� is a unique strategy forming a symmetric

Nash equilibrium a.s.. This equilibrium is strict.

This result implies the following property of the portfolio rule ��. If all the

investors except one, say investor i, use the strategy �� and i uses any other strategy

� distinct from ��, then the relative wealth rit=
P

j 6=i r
j
t of i tends to zero at the

exponential rate �i < 0 (a.s.). In other words, the coalition of the Kelly investors

drives the non-Kelly one out of the market. We note that this result (without an

exponential estimate of the convergence rate) can be derived from Theorem 1 in

Evstigneev et al. (2008) under the assumptions that the state space S is �nite and

all the strategies under consideration are completely mixed.

3.4 Proofs

For the proof of Theorem 3.1 we begin with a system of equations governing

the dynamics of the market shares rit := wit=
P

j w
j
t . Consider the path (3.7) of the

random dynamical system generated by (�1; :::; �N) and the sequence of vectors

rt = (r1t ; :::; r
N
t ) of the market shares of the investors at date t. Proposition 2.2

states the following equations hold

rit+1 =

KX
k=1

[�t+1h�k; rt+1i+ (1� �t+1)Rt+1;k]
�ikr

i
t

h�k; rti
; (3.15)

i = 1; :::; N , t � 0. From the above equations we observe that the market share of

investor i evolves in terms of the interaction of the strategies �1; :::; �N .

Secondly, it suf�ces to prove Theorem 3.1 in an asset market with only two
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investors. The above system can be reduced to the case of two investors. And the

ratio of the market shares of investors 1 and 2 at date t is

zt := r
1
t =r

2
t = w

1
t =w

2
t ;

where investor 1 and investor 2 select the Kelly rule �� = (��1; :::; �
�
K) and � =

(�1; :::; �K); respectively. The dynamics of zt are described by the following equa-

tion

zt+1 = zt

PK
k=1[�t+1�k + (1� �t+1)Rt+1;k]

��k
��kzt+�kPK

k=1[�t+1�
�
k + (1� �t+1)Rt+1;k] �k

��kzt+�k

: (3.16)

For a proof of (3.16), see the proof of proposition 2.4 in Appendix 2.5.

Consider any measurable relative dividend vector functionR(s) = (R1(s); :::; RK(s))

on S satisfying (R1) and (R2). For any � = (�1; :::; �K) 2 �K , �0 � � � �00 (see

(R3)) and � 2 (0; 1], de�ne

F�(�; �; s) :=

PK
k=1[��k + (1� �)Rk(s)]

��k
��k�+�k(1��)PK

k=1[��
�
k + (1� �)Rk(s)] �k

��k�+�k(1��)

; (3.17)

where ��k = ERk(s) (E(�) is the unconditional expectation with respect to the

given probability P on S). The function F�(�; �; s) is well-de�ned and takes on

�nite strictly positive values.

Lemma 3.1 For any � 2 �K distinct from ��there exist constants H > 0 and

� > 0 such that

EminfH; lnF�(�; �; s)g � � (3.18)

for all � 2 (0; 1] and all � 2 [�0; �00].

Lemma 3.1 plays a key role in the proof of Theorem 3.1. The proof of this
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lemma is routine, but rather lengthy, and we relegate it to the Appendix 3.5.

Proof of Theorem 3.1. To demonstrate that �� forms a strict symmetric Nash

equilibrium a.s. it is suf�cient to consider the case of two investors 1 and 2, using

�� and �, and show that

lim inft!1
1

t
ln zt > 0 (a.s.); (3.19)

where zt is the ratio of the market shares of 1 and 2.

To prove that the problem reduces to the caseN = 2, let us �rst observe that by

virtue of symmetry, it is suf�cient to verify the property (3.10) for i = N . Suppose

investors i = 1; 2; :::; N � 1 use �� and investor N uses � 6= ��. Then the total

market share r�t := r1t + :::+ r
N�1
t of i = 1; 2; :::; N � 1 satis�es

r�t+1 =
KX
k=1

�
�t+1(�

�
kr
�
t+1 + �kr

N
t+1) + (1� �t+1)Rt+1;k

� ��kr
�
t

��kr
�
t + �kr

N
t

: (3.20)

This relation is obtained by summing up equations (3.15) over i = 1; 2; :::; N � 1.

At the same time, by virtue of (3.15), we have

rNt+1 =
KX
k=1

[�t+1(�
�
kr
�
t+1 + �kr

N
t+1) + (1� �t+1)Rt+1;k]

�kr
N
t

��kr
�
t + �kr

N
t

: (3.21)

Thus the vector (r�t ; rNt ) evolves in time as the vector (~r1t ; ~r2t ) of market shares of

two investors using the strategies �� and �, respectively. If (3.19) holds, then

�N(��; :::; ��; �) = lim supt!1
1

t
ln
wNt
w�t

=

lim supt!1
1

t
ln
rNt
r�t
= lim supt!1

1

t
ln
~r2t
~r1t
=

lim supt!1

�
�1
t
ln zt

�
= � lim inf

t!1

�
1

t
ln zt

�
< 0 = �N(��; :::; ��; ��) (a.s.);

where the last equality holds because the market shares of all the investors remain
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constant, as long as all of them use the same strategy. Indeed, if all N investors

use the same strategy, say ��, rit; i = 1; 2; :::; N has the following equation from

(3.15)

rit+1 =
KX
k=1

[�t+1h��k; rt+1i+ (1� �t+1)Rt+1;k]
��kr

i
t

h��k; rti

= rit

KX
k=1

[�t+1h��k; rt+1i+ (1� �t+1)Rt+1;k]
��k

��k
PN

i=1 r
i
t

= rit

KX
k=1

[�t+1�
�
k + (1� �t+1)Rt+1;k]

= rit = ::: = r
i
0:

Let us verify (3.19). Put Gt = ln(zt=zt�1). Then
TX
t=1

Gt =
TX
t=1

(ln zt � ln zt�1) = ln zT � ln z0:

Therefore it suf�ces to prove that lim infT!1 T�1
PT

t=1Gt > 0 a.s.: For any con-

stant H de�ne GHt := minfGt; Hg. Since GHt � Gt it is suf�cient to prove that

lim inf
T!1

1

T

TX
t=1

GHt > 0 (a.s.) (3.22)

for some H .

Observe that

Gt+1 = ln
zt+1
zt

= ln

PK
k=1[�t+1�k + (1� �t+1)Rt+1;k]

��k
��kzt+�kPK

k=1[�t+1�
�
k + (1� �t+1)Rt+1;k] �k

��kzt+�k

=

ln

PK
k=1[�t+1�k + (1� �t+1)Rk(st+1)]

��k
��kr

1
t+�k(1�r1t )PK

k=1[�t+1�
�
k + (1� �t+1)Rk(st+1)] �k

��kr
1
t+�k(1�r1t )

= lnF�t+1(�; r
1
t ; st+1);

(3.23)

where r1t = r1t (st) and �t+1 = �t+1(st) (recall that the process �t is predictable).
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By virtue of Lemma 3.1, there exist H > 0 and � > 0 such that EtGHt+1 � �,

where Et(�) = E(�jst) is the conditional expectation given st and

GHt+1(s
t+1) = minfH; lnF�t+1(st)(�; r

1
t (s

t); st+1)g:

When computing EtGHt+1we �x st and take the unconditional expectation of GHt+1

with respect to st+1, which is justi�ed because st and st+1 are independent.

Finally, we have

1

T

TX
t=1

GHt =
1

T

TX
t=1

Et�1G
H
t +

1

T

TX
t=1

(GHt � Et�1GHt ):

SinceGHt is uniformly bounded, we can apply to the processBHt := GHt �Et�1GHt

the strong law of large numbers for martingale differences (see, e.g., Hall and

Heyde (1980)), which yields 1
T

PT
t=1B

H
t ! 0 (a.s.). Therefore lim inf T�1

PT
t=1G

H
t �

�, which proves (3.22).

Suppose a strategy � 6= �� forms a symmetric Nash equilibrium with probabil-

ity one. Then

0 = �N(s1;�; :::; �) � �N(s1;�; :::; �; ��) (a.s.); (3.24)

where

�N(s1;�; :::; �; ��) = lim supt!1
1

t
ln

rNt
1� rNt

:

By interchanging � and �� in formulas (3.20) and (3.21), we obtain that the vector

(r1t + :::+ r
N�1
t ; rNt ) evolves in time as the vector (r̂1t ; r̂2t ) of market shares of two

investors using the strategies � and ��, respectively. As we have proved above,
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this implies

lim inft!1
1

t
ln

rNt
1� rNt

> 0 (a.s.).

Therefore �N(s1;�; :::; �; ��) > 0 (a.s.), because lim sup � lim inf, which yields

the inequality "<" in (3.24). This is a contradiction. �

3.5 Appendix

Proof of Lemma 3.1. We observe that the function F�(�; �; s) is bounded below

F�(�; �; s) � c2; (3.25)

where c := mink ��k(> 0): Indeed, F�(�; �; s) = A=B, where

A =
KX
k=1

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)
;

B =
KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
:

We observe

A �
KX
k=1

[��k + (1� �)Rk(s)]min
k

��k
��k�+ �k(1� �)

� min
k

��k
��k�+ �k(1� �)

� mink �
�
k

maxk[�
�
k�+ �k(1� �)]

� min
k
��k;

since max[��k�+ �k(1� �)] � 1:

And B is bounded. Indeed, we have the following inequalities

B �
KX
k=1

���k
�k

��k�+ �k(1� �)
� �0c

KX
k=1

�k � �0c;

and

B � max
k

�k
��k�+ �k(1� �)

� max
k

1

��k�+ (1� �)
� 1

mink �
�
k

=
1

c
; (3.26)

since 0 � �k � 1; and ��k�+ (1� �) � ��k:

Assume that at least one of the coordinates of the vector � is zero, so that the
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setK := fk : �k = 0g is not empty. Then

A = (1� �) 1
�

X
k2K

Rk(s) +
X
k=2K

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)

and

B =
KX
k=2K

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
:

By virtue of (R1), there exists � > 0 such that
P

k2KRk(s) � � for all s in a set �S

with P ( �S) > 0. We have

(1� �00) �
�
1 �S(s) � (1� �)

1

�

X
k2K

Rk(s) � A

� max
k=2K

��k
��k�+ �k(1� �)

+ (1� �) 1
�
� 1

mink=2K �k

1

�
+
1

�
:

Therefore

d1
�
1 �S(s) � A �

D1

�
;

where 1 �S(s) is the indicator function of the set �S, d1 := (1 � �00)� and D1 :=

1 + (mink=2K �k)
�1.

Also, we can see B is bounded. Indeed, we have

�
0
cmin
k=2K

�k � �
0
c

KX
k=2K

�k
��k�+ �k(1� �)

�
KX
k=2K

���k
�k

��k�+ �k(1� �)

� B � max �k
��k�+ �k(1� �)

� 1

c
:

Therefore

d2 � B � D2;

where d2 := �0cmink=2K �k and D2 := c
�1 (see (3.26)). And

d

�
1 �S(s) � F�(�; �; s) �

D

�
; (3.27)

77



where d := d1=D2 and D := D1=d2.

From the �rst of these inequalities and (3.25) we obtain

(ln d� ln�)1 �S(s) + (2 ln c)(1� 1 �S(s)) � lnF�(�; �; s); (3.28)

and so

Emin[H; lnF�(�; �; s)] � 2 ln c+min(H; ln d� ln�)P ( �S) (3.29)

for any H > 0.

Put

� := exp

�
ln d� 1� 2 ln c

P ( �S)

�
; H := lnD � ln�; (3.30)

and if 0 < � < �, then we have

Emin[H; lnF�(�; �; s)] � 2 ln c+min(H; ln d� ln�)P ( �S)

� 2 ln c+ (ln d� ln�)P ( �S) � 1 (3.31)

by virtue of (3.29), (3.30) and the inequality d � D (following from (3.27)). If � �

�, then lnF�(�; �; s) � lnD�ln� � lnD�ln� = H , and somin[H; lnF�(�; �; s)] =

lnF�(�; �; s). Thus in order to complete the proof of the lemma in the case when

� has zero coordinates it remains to show that

inf
�2[��;1]; �2[�0;�00]

E lnF�(�; �; s) > 0 (3.32)

for each �� 2 (0; 1].

By virtue of (3.25) and (3.27), the function lnF�(�; �; s) is continuous with

respect to (�; �) 2 [�0; �00] � [��; 1] for each s and uniformly bounded. Therefore
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the function E lnF�(�; �; s) is continuous on the compact set [�0; �00] � [��; 1] and

hence it attains its minimum on this set. Thus, in order to establish (3.32) it is

suf�cient to prove that E lnF�(�; �; s) > 0 for each � 2 [0; 1) and � 2 (0; 1].

According to (3.23), we have

E lnF�(�; �; s)

= E ln

KX
k=1

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)

�E ln
KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
:

By applying Jensen's inequality twice, we �nd

E ln
KX
k=1

[��k + (1� �)Rk(s)]
��k

��k�+ �k(1� �)
�

�E ln
KX
k=1

�k
��k

��k�+ �k(1� �)
+ (1� �)E ln

KX
k=1

Rk(s)
��k

��k�+ �k(1� �)
�

� ln
KX
k=1

�k
��k

��k�+ �k(1� �)
+ (1� �)

KX
k=1

��k ln
��k

��k�+ �k(1� �)
; (3.33)

where the second inequality holds because
PK

k=1Rk(s) = 1 and Rk(s) � 0:

Note that all the expression in the last chain of relations are well-de�ned and �nite

because � > 0 and ��k > 0: By applying Jensen's inequality again, we �nd

E ln
KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
<

ln
KX
k=1

[���k+(1��)ERk(s)]
�k

��k�+ �k(1� �)
= ln

KX
k=1

��k�k
��k�+ �k(1� �)

: (3.34)

(Here�1 � E ln(�) < +1.) The inequality in (3.34) is strict because there is no
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constant  such that
KX
k=1

[���k + (1� �)Rk(s)]
�k

��k�+ �k(1� �)
=  (a.s.): (3.35)

Indeed, if (3.35) holds, then
KX
k=1

[���k + (1� �)Rk(s)]
�

�k
��k�+ �k(1� �)

� 
�
= 0 (a.s.):

Observe that at least one of the numbers k := �k[�
�
k� + �k(1� �)]�1 �  is not

equal to zero. Indeed, otherwise �k = [��k� + �k(1� �)] for all k. By summing

up these equations over k, we have  = 1, which yields �k = ��k� + �k(1 � �),

��k� = �k�, and ��k = �k (recall that � 6= 0). This is a contradiction because

� 6= ��. Thus
KX
k=1

[���k + (1� �)Rk(s)]k = 0 (a.s.); (3.36)

where  = (1; :::; K) 6= 0. Consequently,
PK

k=1Rk(s)k = b (a.s.), where b is

some constant. This constant is not zero because the functions Rk(s) are linearly

independent. By setting 0k := k=b, we obtain that the non-zero vector 0 =

(01; :::; 
0
K) satis�es

PK
k=1Rk(s)

0
k = 1 (a.s.), which yields

PK
k=1Rk(s)(

0
k �

1) = 0 (a.s.). In view of the linear independence of Rk(s), this implies 01 = ::: =

0K = 1. Since k = b0k = b, we obtain that the left-hand side of (3.36) is equal

to b 6= 0, which is a contradiction.

From (3.33) and (3.34) we get

E lnF�(�; �; s) > (1��)
"
KX
k=1

��k ln
��k

��k�+ (1� �)�k
� ln

KX
k=1

�k�
�
k

��k�+ �k(1� �)

#
:

(3.37)
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Denote the expression in the square brackets in (3.37) by ��(�). It is proved in

Evstigneev et al. (2002), p. 337-338, that if � > 0, the following

��(�) � 0 for each � 2 [0; 1] (3.38)

holds. Therefore ��(�(1 � ") + "��) > 0 for each " > 0. The function ��(�) is

�nite and continuous on�K (because ��k > 0 and � > 0). Consequently, ��(�) =

lim"#0��(�(1� ") + "��) � 0. By using (3.37), we obtain that E lnF�(�; �) > 0

for all � 2 [0; 1) and � 2 (0; 1]. This completes the proof of the lemma in the case

when the vector � has zero coordinates.

Now assume that �k > 0 for each k. Then the function lnF�(�; �; s) is well-

de�ned, �nite, continuous with respect to (�; �) on the set [�0; �00]�[0; 1] (including

� = 0) and uniformly bounded. The lower bound for this function is 2 ln c (see

(3.25)) and the upper bound is obtained from the inequalities

lnF�(�; �; s) � ln
maxk

��k
��k�+�k(1��)

mink
�k

��k�+�k(1��)
� ln(min

k
�k)

�2.

To complete the proof it is suf�cient to show that the in�mum in (3.32) with �� =

0 is strictly positive (then � can be de�ned as this in�mum and H as 2j ln cj +

2j lnmin�kj). In view of the continuity of E lnF�(�; �; s) this will be proved if

we establish the inequality E lnF�(�; �; s) > 0 for each � 2 [0; 1) and � 2 [0; 1].

If � > 0, this inequality is proved by exactly the same arguments as above�by

deriving relations (3.33), (3.34), (3.37) and using (3.38). If � = 0, we change the

above arguments as follows: instead of strict, we establish non-strict inequalities in
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(3.34) and show that the right-hand side of (3.37) is strictly positive, which follows

from the relation

�0(�) =

KX
k=1

��k ln
��k
�k
=

KX
k=1

��k ln�
�
k �

KX
k=1

��k ln�k > 0:
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Chapter 4 Growth-Optimal Investments and Asset Market Games

4.1 Introduction

The theory of growth-optimal investments or capital growth theory is a fasci-

nating subject, having a rich and in a sense dramatic history. The central question

in this �eld is: how to invest in order to achieve the highest (asymptotic) growth

rate of wealth in the long run? The �rst publication on capital growth theory was

that by Kelly (1956), who considered the case of Arrow securities (the payoff of

security i is 1 if the �state of the world� is i and 0 otherwise), interpreted as a

�horse race model�. It was shown that the growth optimal investment strategy

could be found by the maximization of the expected logarithm of the portfolio re-

turn. In the case of the horse race model, this has led to the famous Kelly portfolio

rule��betting your beliefs�� allocating wealth in the proportions equal to the

probabilities of winning. Kelly arrived at his results from information theory, and

his paper was entitled �A new interpretation of information rate�. The history of

Kelly's discovery is described in various papers and books, including popular ones

(see, e.g., Poundstone 2005). This discovery has been developed and extended by

various authors, in particular by Breiman (1961), Algoet and Cover (1988) and

Hakansson and Ziemba (1995). The paper by Algoet and Cover (1988) contains

the most advanced and general mathematical treatment of capital growth theory.
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When speaking of those who contributed to capital growth theory, one must

necessarily mention the name of Claude Shannon�the famous founder of the

mathematical theory of information. Although he did not publish on investment-

related issues, his ideas, expressed in his lectures on investment problems, strongly

in�uenced his collaborators: Kelly, Breiman, Cover and others, whose publica-

tions initiated the strand of literature on growth optimal investments. For the his-

tory of these ideas and a related discussion see Cover (1998).

Cover's (1998) biographical note on Shannon contains interesting recollections

about a discussion between Shannon and another famous scholar, Paul Samuelson.

Cover writes:

... In the mid 1960s, Shannon gave a lecture on maximizing the growth rate of wealth and gave a

geometric Wiener example.

At about this time, Shannon and Samuelson (a Nobel Prize winner-to-be in economics) held a

number of evening discussion meetings on information theory and economics. It is not clear what

was said in these meetings, but Samuelson seems to have become set in his views. He published sev-

eral papers arguing strongly against maximizing the expected logarithm as an acceptable investment

criterion. (It happens that maximizing the expected logarithm is the prescription for the growth-rate

optimal portfolio.)

For example, Samuelson (1969) wrote: Our analysis enables us to dispel a fallacy that has been

borrowed into portfolio theory from information theory of the Shannon type. Samuelson goes on to

argue that growth rate optimal policies do not achieve maximum utility unless one has a logarithmic

utility for money. Of course this is the case, but it does not deny the fact that log optimal wealth

has an objective property: it has a better growth rate than that achieved by any other strategy. Since

growth rate optimal policies achieve a demonstrably desirable goal, growth rate optimal portfolios
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should only have a utility interpretation as an afterthought. In fact, Samuelson (1979) wrote a paper

entitled �Why we should not make mean log of wealth big though years to act are long.� This is a two

page paper in words of one syllable that makes the point that maximizing the expected log of wealth

is not appropriate. The growth optimal portfolio literature has been slow to develop. It is possible that

Samuelson's eloquent admonitions had their effect.

In this discussion, Samuelson and those who followed his views later, pre-

sumed (implicitly or explicitly) that the problem of growth-optimal investments

was equivalent to the problem of the maximization of logarithmic utility function-

als. By and large this presumption was true in those models which were consid-

ered at the time of the above discussion�half a century ago. More recent studies

have shown that this is not the case in more advanced and realistic models, e.g.,

those describing �nancial markets with frictions�transaction costs and trading

constraints (Bahsoun et al. 2009). And of course this is not true in evolutionary

�nance models (with endogenous equilibrium prices), where survival is equiva-

lent to the fastest growth of wealth and where the problem of the identi�cation of

survival strategies cannot be reduced to any single-agent optimization problem, in

particular, to the maximization of logarithmic utilities.

In this chapter we revisit the classical capital growth theory with exogenous

asset prices, viewing it from new angles and using achievements of evolutionary

�nance and game theory. This makes it possible to throw a new light on known

results, obtain their new versions and generalizations, and moreover, consider ab-
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solutely new questions leading to new insights. Moreover, we hope that the novel

treatment of classical capital growth theory might be helpful for developing meth-

ods of analysis which could �nd applications in �elds of current research that

emerged as its variants and generalizations.

4.2 Growth-optimal investments

4.2.1 Model description

In the model under consideration, we are given a stochastic process s1; s2; :::

with values in a measurable space S representing random factors in�uencing the

economic system. The random element st 2 S represents the state of the world at

date t = 0; 1; :::. There are K assets in the market. Each asset is characterized by

its (gross) return

At;k = At;k(s
t) � 0 (t � 1)

over a time period t� 1; t, depending on the sequence

st := (s1; :::; st)

of states of the world up to time t. The functions At;k(st), as well as all the other

functions of st we consider in what follows, are assumed to be measurable. The

return At;k on asset k is expressed through the asset prices pt;k > 0 and pt�1;k > 0

(if they are given) by the formula

At;k =
pt;k
pt�1;k

: (4.1)

Note that the return speci�ed above is different from the one in �nance. We are

interested in gross return rather than the rate of return.
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An investor (trader) acting in the market possesses an initial endowmentw0 > 0

at date 0. At each date t � 1 (t � 1), the trader makes an investment decision

speci�ed by a vector of investment proportions

�t�1 = (�t�1;1; :::; �t�1;K) � 0;
KX
k=1

�t�1;k = 1; (4.2)

according to which the investor's wealth wt�1 available at date t� 1 is distributed

across the assets k = 1; 2; :::; K. The set of vectors �t�1 in the K-dimensional

Euclidean space RK satisfying (4.2) (the unit simplex) will be denoted by �K .

Given the decision �t�1, the investor wealthwt at date t can be computed according

to the formula

wt = hAt; �t�1iwt�1; (4.3)

where

At = (At;1; :::; At;K)

stands for the vector of asset returns and hAt; �t�1i denotes the scalar product

hAt; �t�1i =
KX
k=1

At;k�t�1;k:

This scalar product expresses the return on the portfolio constructed according to

the investment proportions �t�1 = (�t�1;1; :::; �t�1;K). The formula (4.3) comes

from the following equations

xt�1;k =
wt�1�t�1;k
pt�1;k

;

and

wt =

KX
k=1

wt;k =

KX
k=1

pt;kxt�1;k =

KX
k=1

pt;k
wt�1�t�1;k
pt�1;k

=
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KX
k=1

At;kwt�1�t�1;k = wt�1

KX
k=1

At;k�t�1;k = hAt; �t�1iwt�1:

An investor's strategy (portfolio rule)� is a rule prescribing what decision to make

at each date t � 0 and in each random situation, characterized by the state of the

world at date t and all the previous dates. Formally, � is de�ned by a sequence of

measurable functions

�t(s
t); t � 0;

with values in �K . (We write �0(s0) for a constant vector �0.) If the investor

possessing the initial endowment w0 > 0 at date 0 has chosen a strategy � =

(�t)
1
t=0, then his/her wealth at each date t � 1 can be computed recursively by

using formula (4.3).

We are primarily interested in those strategies which guarantee the (asymptoti-

cally) fastest growth of wealth.

De�nition 4.1We shall say that a portfolio rule �� = (��t )1t=0 is growth-optimal

(or asymptotically optimal) if for any other portfolio rule � = (�t)1t=0 there exists

a random variable C > 0 such that

wt � Cw�t (a.s.) for all t, (4.4)

where (w�t ) and (wt) are the wealth processes generated by the strategies ��;�

and any initial endowments w�0 > 0; w0 > 0, respectively.

Property (4.4) expresses the fact that the wealth of an investor using any strategy

� cannot grow asymptotically faster than the wealth of an investor employing
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the strategy ��. It is clear from (4.3) that (4.4) holds for any initial endowments

w�0 > 0; w0 > 0 if it holds for some pair of strictly positive initial endowments

w�0; w0, for example w�0 = w0 = 1. Indeed. If w�0 = w0 = 1 and (4.3) holds, then

we have

hAt; �t�1ihAt�1; �t�2i:::hA1; �0i � ChAt; ��t�1ihAt�1; ��t�2i:::hA1; ��0i:

Put w�0C
0
=w0 = C (w

�
0 > 0 and w0 > 0), we get

hAt; �t�1ihAt�1; �t�2i:::hA1; �0i �
C

0

w0
w�0hAt; ��t�1ihAt�1; ��t�2i:::hA1; ��0i:

Thus we get

w0hAt; �t�1ihAt�1; �t�2i:::hA1; �0i � C
0hAt; ��t�1ihAt�1; ��t�2i:::hA1; ��0iw�0;

which make (4.4) holds for any initial endowments w�0 > 0; w0 > 0:

4.2.2 Log-optimal portfolio rules

Wewill provide a method for constructing growth optimal investment strategies

based on certain optimization problems involving expected logarithms of portfolio

returns. We shall assume that for any t � 1 and st
KX
k=1

At;k(s
t) > 0: (4.5)

This condition means that at each date and in each random situation at least one

asset yields strictly positive return. Under this condition, we can de�ne the nor-

malized (relative) returns on assets k = 1; 2; :::; K by

Rt;k(s
t) =

At;k(s
t)PK

m=1At;m(s
t)
: (4.6)

De�nition 4.2. Consider a portfolio rule �� = (��t )1t=0.We shall say that �� is
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log-optimal if for any t � 0 and any measurable vector function �t(st) with values

in the unit simplex �K the following inequality holds

E lnh�t; Rt+1i � E lnh��t ; Rt+1i: (4.7)

According to this de�nition, the vector of investment proportions ��t (�) maxi-

mizes (for each t) the expected logarithm of the return h�t; Rt+1i on the portfolio

de�ned by the vector of investment proportions �t.

Note that the expectations in (4.7) are well-de�ned and take values in [�1; 0].

Indeed, we have h�t; Rt+1i � 1 because both vectors �t and Rt+1 belong to

�K . Further, observe that for the vector �t := (1=K; :::; 1=K) the expectation

E lnh�t; Rt+1i = ln(1=K) is �nite, which implies (see (4.7)) thatE lnh��t ; Rt+1i >

�1. This, in turn, implies that with probability one the random variables h��t ; Rt+1i

and h��t ; At+1i are strictly positive.

The following technical comment is in order. When analyzing properties of a

log-optimal portfolio rule ��t , it will be convenient to assume that the random vari-

ables h��t (st); Rt+1(st+1)i and h��t (st); At+1(st+1)i are strictly positive for all st+1,

and not only for almost all st+1. This can be achieved by a suitable change of the

given random vectorsAt+1(st+1) on the set of those st+1 where h��t (st); At+1(st+1)i

= 0 (e.g., by rede�ning At+1(st+1) as (K�1; :::; K�1) for such st+1). This change

will not lead to a loss of generality because all the properties of log-optimal portfo-

lio rules we establish are formulated in terms of assertions holding with probability
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one.

Remark 4.1. Algoet and Cover (1988) de�ne the notion of a log-optimal port-

folio rule ��t in terms of the original, not normalized, asset returns At by the rela-

tion

E ln
h�t; At+1i
h��t ; At+1i

� 0 (4.8)

holding for all �t(st), implicitly assuming that h��t ; At+1i > 0 (otherwise the frac-

tion in (4.8) does not make sense). The inequality (4.8) is assumed to hold for all

�t for which the expectation involved is well-de�ned. This de�nition is equivalent

to that we deal with in this paper. Indeed, since

h�t; At+1i
h��t ; At+1i

=
h�t; Rt+1i
h��t ; Rt+1i

under assumption (4.5), condition (4.8) is equivalent to

E ln
h�t; Rt+1i
h��t ; Rt+1i

� 0: (4.9)

If ��t is log-optimal in the sense of De�nition 4.2, i.e., condition (4.7) holds, then

(4.9) holds as well because (as we have noted) E lnh��t ; Rt+1i > �1, and so

E lnh�t; Rt+1i � E lnh��t ; Rt+1i = E ln
h�t; Rt+1i
h��t ; Rt+1i

:

Conversely, observe that for �t := (1=K; :::; 1=K),

h�t; At+1i
h��t ; At+1i

=
h�t; Rt+1i
h��t ; Rt+1i

=
1=K

h��t ; Rt+1i
� 1=K;

and so for this vector �t, the expectation in (4.9) is well-de�ned, (4.9) yields

0 � E ln 1=K

h��t ; Rt+1i
= ln 1=K � E lnh��t ; Rt+1i;
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and so

E lnh��t ; Rt+1i � ln 1=K > �1:

Thus the expectationE lnh��t ; Rt+1i is �nite, and consequently, (4.9) implies (4.7).

Theorem 4.1 A log-optimal portfolio rule exists.

The result below (Theorem 4.2) provides two other, equivalent, de�nitions of

a log-optimal portfolio rule. Let us write Et(�) = E(�jst) for the conditional

expectation with respect to st. Let �t(st; dx) denote the conditional distribution

of the random vector Rt+1 given st. By the de�nition, �t(st; B) is a probability

measure on Borel sets B � �K for each st, a measurable function of st for each

B, and

Etf(s
t; Rt+1) =

Z
�K

�t(s
t; dx)f(st; x)

for any jointly measurable function f(st; x) for which the expressions on both

sides of the above formula are well-de�ned. The existence of conditional distribu-

tions is proved in Arkin and Evstigneev (1987), Appendix II, Theorem 1.

Put

�t(s
t; a) :=

Z
�K

�t(s
t; dx) lnha; xi: (4.10)

The jointly measurable function de�ned by (4.10) is the regular conditional expec-

tation29 of the random variable lnha;Rt+1i given st, characterized by the property

�t(s
t; a(st)) = Et lnha(st); Rt+1i (a.s.) (4.11)

29 See I.V. Evstigneev (1986), Regular conditional expectations of random variables depending on
parameters.
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holding for any measurable mapping a(st) with values in �K .

Theorem 4.2 Let �� = (��t (st))1t=0 be a portfolio rule. The following conditions

are equivalent:

(a) �� is log-optimal;

(b) the inequality

Et lnh�t; Rt+1i � Et lnh��t ; Rt+1i (a.s.) (4.12)

holds for every function �t(st) with values in �K;

(c) with probability one, we have

max
a2�K

�t(s
t; a) = �t(s

t; ��t (s
t)): (4.13)

Although a log-optimal portfolio rule need not be unique, its return h��t ; Rt+1i

is a uniquely de�ned random variable. The following theorem is valid.

Theorem 4.3 If �0t(st) and �
00
t (s

t) are two vectors of investment proportions

maximizing the function E lnh�t; Rt+1i, then h�0t; Rt+1i = h�00t ; Rt+1i a.s..

The following theorem provides a suf�cient condition for the uniqueness of the

log-optimal portfolio rule. Speaking of uniqueness, we do not distinguish between

two random vectors if they coincide with probability one.

Theorem 4.4 If the support of the conditional distribution �t(st; dx) of the

random vector Rt+1 given st is not contained in any (proper) hyperplane of the

spaceRK for almost all st, then a log-optimal portfolio rule is unique.

The condition stated in the above theorem expresses the fact that the conditional
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distribution of Rt+1 given st is non-degenerate. This assumption can be equiva-

lently formulated as follows: if Eth�0t � �t; Rt+1i2 = 0 a.s., then �0t = �t a.s.

Indeed, if

0 = Eth�0t � �t; Rt+1i2 =
Z
�t(s

t; dx)h�0t(st)� �t(st); xi2

and �0t(st) 6= �t(s
t) with strictly positive probability, then for a set of histories

st having strictly positive measure, the support of the distribution �t(st; dx) is

contained in the proper hyperplane

fx : h�0t(st)� �t(st); xi = 0g:

Later, we will need a stronger version of the above property (see (ND) below), the

meaning of which will be explained in more detail.

4.2.3 Asymptotic optimality and log-optimality

The central result of this section is as follows.

Theorem 4.5 A log-optimal portfolio rule is asymptotically optimal.

With any strategy (�t)1t=0, we associate the sequence of portfolio returns (h�t; Rt+1i)1t=0

which it generates. It can be shown that for any asymptotically optimal strategy,

its sequence of returns (h�t; Rt+1i)1t=0 is asymptotically similar to the sequence

(h��t ; Rt+1i)1t=0 generated by the log-optimal portfolio rule (��t )1t=0. The following

theorem holds.

Theorem 4.6 If (�t)1t=0 is an asymptotically optimal strategy, then
1X
t=0

(h��t ; Rt+1i � h�t; Rt+1i)2 <1 (a.s.): (4.14)
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This result implies that h��t ; Rt+1i � h�t; Rt+1i ! 0, i.e. the random variables

h��t ; Rt+1i and h�t; Rt+1i converge to each other a.s. as t ! 1. Moreover, the

rate of this convergence is fast enough, so that the sum in (4.14) is a.s. �nite.

As we have seen, the log-optimal portfolio rule is unique when the conditional

distribution of the asset returns is non-degenerate. Under a somewhat stronger

non-degeneracy condition, we can show that any asymptotically optimal strategy

is similar in an asymptotic sense to the log-optimal one, �� = (��t (st))1t=0.

Theorem 4.7 Let the following condition hold:

(ND) For any two vectors of investment proportions �t(st) and �0t(st),

jj�t � �0tjj2 � BEth�t � �0t; Rt+1i2 (a.s.), (4.15)

where B > 0 is a non-random constant. Then for any asymptotically optimal

strategy � = (�t(st))1t=0, we have
1X
t=0

jj��t � �tjj2 <1 (a.s.) (4.16)

Here, we denote by jj � jj the Euclidean norm in RK . By virtue of Theorem

4.7, any asymptotically optimal strategy (�t) gets closer to the log-optimal one

(��t ) a.s., and moreover, the distance between �
�
t and �t tends to zero suf�ciently

fast, so that the series in (4.16) converges. Theorem 4.7 is a direct analogue of the

"turnpike theorem" (Theorem 2.2) obtained in Chapter 2.

Some comments regarding condition (ND) are in order. Suppose that the returns

h�0t; Rt+1i and h�t; Rt+1i corresponding to two portfolios �0t(st) and �t(st) coin-
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cide for �t(st; dx)-almost all values ofRt+1 and almost all st (recall that �t(st; dx)

is the conditional distribution of Rt+1 given st). Then Eth�0t��t; Rt+1i2 = 0, and

so by virtue of (4.15), �t and �0t coincide a.s.. This consequence of assumption

(ND) was used in Theorem 4.4 (see the comments after the statement of that the-

orem). Assumption (ND) represents a stronger requirement: it states that if the

returns h�0t; Rt+1i and h�t; Rt+1i are close to each other in the sense of the condi-

tional L2 norm, then the corresponding portfolios �0t and �t must be close to each

other for almost all st. It has to be emphasized that the property described is uni-

form with respect to time t and history st, since the constant B in (4.15) does not

depend on t and st.

4.3 Growth-optimal investments: proofs of the results

Let us begin with Theorem 4.2

Proof of Theorem 4.2 If ��t satis�es (c), then

�t(s
t; �t(s

t)) � �t(st; ��t (st)) (a.s.)

for every measurable function �t(st) with values in �K . By virtue of (4.11), we

have �t(st; �t(st)) = Et lnh�t(st); Rt+1i (a.s.) and �t(st; ��t (st)) = Et lnh��t (st); Rt+1i

(a.s.), which proves (4.12). By taking the expectations of both sides of (4.12), we

obtain (a). Thus we have proved the implications (c))(b))(a).

Before proving the remaining implication (a))(c), let us show that a measur-

able vector function ��t (st) satisfying (4.13) for almost all st exists. For each �xed
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st, if �K 3 ak ! a, then

lim sup

Z
�t(s

t; dx) lnhak; xi �
Z
�t(s

t; dx) lnha; xi

by Fatou's lemma (recall that lnhak; xi � 0), and so the function �t(st; a) de�ned

by (4.10) is upper semicontinuous. Consequently, the set At(st) of those points

a 2 �K where it attains its maximum is not empty. Since �t(st; a) is jointly mea-

surable, we can select for each st a vector ��t (st) in �K such that ��t (st) 2 At(st)

for almost all st and the function ��t (st) is measurable. This fact is a consequence

of Aumann's measurable selection theorem (see, e.g., Arkin and Evstigneev 1987,

Appendix I, Corollary 3). Thus ��t (st) is the vector of investment proportions sat-

isfying (4.13) for almost all st.

Consider another (possibly distinct from ��t (st)) vector of log-optimal invest-

ment proportions �̂t(st). Then

E lnh�̂t; Rt+1i = E lnh��t ; Rt+1i;

and so

EEt lnh�̂t; Rt+1i = EEt lnh��t ; Rt+1i;

which implies

E�t(s
t; �̂t(s

t)) = E�t(s
t; ��t (s

t)):

The expectations of the non-positive random variables �t(st; �
�
t (s

t)) and �t(st; �̂t(st))

are �nite, consequently, we get

E
h
�t(s

t; ��t (s
t))� �t(st; �̂t(st))

i
= 0:
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But the random variable �t(st; �
�
t (s

t))� �t(st; �̂t(st)) is non-negative by the de�-

nition of ��t (st). Thus

�t(s
t; �̂t(s

t)) = �t(s
t; ��t (s

t)) = max
a2�K

�t(s
t; a) (a.s.),

which proves (c). �

Proof of Theorem 4.1 In the course of the proof of Theorem 4.2, we constructed

a measurable vector function ��t (st) for which assertion (c) holds. The implication

(c))(a) shows that the vector of investment proportions ��t (st) is log-optimal.

This proves Theorem 4.1. �

Proof of Theorem 4.3 Since both portfolio rules (�0t) and (�
00
t ) are log-optimal,

we have

E lnh�0t; Rt+1i = E lnh�00t ; Rt+1i > �1 (a.s.):

De�ne

�t :=
�0t + �

00
t

2
:

By virtue of concavity of the function lnx, we obtain

lnh�t; Rt+1i �
lnh�0t; Rt+1i+ lnh�00t ; Rt+1i

2
; (4.17)

with strict inequality when

h�0t; Rt+1i 6= h�00t ; Rt+1i: (4.18)

Suppose (4.18) holds with strictly positive probability. Then we have a strict in-

equality in (4.17) with strictly positive probability. Therefore

E lnh�t; Rt+1i > E
lnh�0t; Rt+1i+ lnh�00t ; Rt+1i

2
= E lnh�00t ; Rt+1i
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(because all the expectations involved are �nite). Thus the portfolio rule �t yields

a greater expected logarithmic return than �00t , which is a contradiction. The con-

tradiction obtained proves that h�0t; Rt+1i = h�00t ; Rt+1i (a.s.). �

Proof of Theorem 4.4 Consider two log-optimal portfolio rules (�0t) and (�
00
t ).

As before, let �t(st; dx) be the conditional distribution of the random vector Rt+1

given st. As we have proved in Theorem 4.3, h�0t; Rt+1i = h�00t ; Rt+1i (a.s.). There-

fore for almost all st the equality h�0t(st); xi = h�00t (st); xi holds for almost all

x 2 RK with respect to the conditional distribution �t(st; dx)30. Consequently,

for these st the support of the probability measure �t(st; �) is contained in the set

fx 2 RK : h�0t(st)� �00t (st); xi = 0g:

If Pf�0t(st) 6= �00t (s
t)g > 0, then with strictly positive probability the support of

�t(s
t; �) is contained in a proper hyperplane inRK .Thus if with probability one the

support of �t(st; �) is not contained in a proper hyperplane in RK , then the vector

of log-optimal proportions is essentially unique. �

Proof of Theorem 4.5. Let �� = (��t (s
t))1t=0 be a log-optimal portfolio rule

and � = (�t(st))1t=0 any other portfolio rule. Denote by (w�t ) and (wt) the wealth

processes generated by ��; /� and some initial endowments w�0 > 0 and w0 >

0. We �rst note that w�t > 0 (a.s.), which follows from formula (4.3) because

30 Indeed, the equality jh�0t � �00t ; Rt+1ij = 0 (a.s.) implies
0 = Etjh�0t � �00t ; Rt+1ij =Z
�t(s

t; dx)jh�0t(st)� �00t (st); xij
for almost all st, which yields the assertion.
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hRt; ��t�1i > 0 and hence hAt; ��t�1i > 0 (recall that h��t (st); Rt+1(st+1)i and

h��t (st); At+1(st+1)i are assumed to be strictly positive for all st+1). Further, we

de�ne r�t := w�t =(w
�
t + wt) and observe that r�t evolves according to the random

dynamical system

r�t =
hRt; ��t�1ir�t�1

hRt; �t�1i(1� r�t�1) + hRt; ��t�1ir�t�1
: (4.19)

Indeed, by using (4.3), we write

r�t =
w�t

w�t + w
=

hAt; ��t�1iw�t�1
hAt; ��t�1iw�t�1 + hAt; �t�1iwt�1

=

hRt; ��t�1iw�t�1
hRt; ��t�1iw�t�1 + hRt; �t�1iwt�1

=
hRt; ��t�1ir�t�1

hRt; ��t�1ir�t�1 + hRt; �t�1i(1� r�t�1)
:

The initial state r�0 of the random dynamical system (4.19) is w�0=(w�0 + w0) > 0.

By using formula (4.19), we get

ln r�t = lnhRt; ��t�1i+ ln r�t�1�

ln[hRt; �t�1i(1� r�t�1) + hRt; ��t�1ir�t�1]

(where all the logarithms are �nite). From this we obtain

Et�1 ln r
�
t = ln r

�
t�1+

Et�1flnhRt; ��t�1i � ln[hRt; �t�1i(1� r�t�1) + hRt; ��t�1ir�t�1]g =

Et�1 lnhRt; ��t�1i � Et�1 ln[hRt; �t�1i(1� r�t�1) + hRt; ��t�1ir�t�1i]; (4.20)

where the last equality is valid because Et�1 lnhRt; ��t�1i > �1. By using (4.20)

and (4.12), we �nd

Et�1 ln r
�
t � ln r�t�1: (4.21)
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This inequality by induction gives E ln r�t � ln r�0 > �1 because r�0 is a strictly

positive non-random number. Since ln r�t � 0, we conclude that Ej ln r�t j < 1.

Consequently, the random sequence ln r�t is a non-positive submartingale, and

hence it has a.s. a �nite limit

l := lim ln r�t :

Therefore

r�t ! el > 0 (a.s.);

and so

c := inf r�t > 0 (a.s.):

From this we �nd (r�t )�1 � 1 + (1=c), which yields

1 + (1=c) � (w�t + wt)=w�t = 1 + wt=w�t ;

Finally, we get wt � (1=c)w�t , which completes the proof. �

Proof of Theorem 4.6 Let � = (�t) be an asymptotically optimal strategy and

�� = (��t ) the log-optimal one. Let w�t , wt and r�t denote the same random vari-

ables as in the proof of Theorem 4.5. In the course of the proof of Theorem 4.5

we have shown that the sequence ln r�t is a non-positive submartingale satisfying

(4.20). By virtue of Lemma 4.1 (see below), the series
P
E(Et�1 ln r

�
t � ln r�t�1)

converges a.s.. Consequently, we get
1X
t=1

E(lnhRt; ��t�1i � lnhRt; �t�1i) <1; (a.s.) (4.22)
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where

�t�1 := �
�
t�1r

�
t�1 + �t�1(1� r�t�1):

The following relations are valid

1

2
E(lnhRt; ��t�1i � lnhRt; �t�1i) =

E lnhRt; ��t�1i �
1

2
E(lnhRt; ��t�1i+ lnhRt; �t�1i) �

E ln

�
Rt;

��t�1 + �t�1
2

�
� 1
2
E(lnhRt; ��t�1i+ lnhRt; �t�1i) =

E

�
ln
�+ �

2
� ln�+ ln �

2

�
; (4.23)

where � := hRt; ��t�1i and � := hRt; �t�1i. In this chain of relations, the �rst

inequality holds because ��t�1 is the vector of log-optimal proportions, and so

E lnhRt; ��t�1i � E lnhRt; (��t�1 + �t�1)=2i.

We are going to use the elementary inequality

ln
x+ y

2
� lnx+ ln y

2
� 1

4
(x� y)2 (4.24)

holding for x; y 2 (0; 1]. To prove it we write

ln
2
p
xy

x+ y
�
2
p
xy

x+ y
� 1

and observe that the left hand side of (4.24) can be estimated as follows

ln
x+ y

2
� lnx+ ln y

2
= � ln

2
p
xy

x+ y
�

1�
2
p
xy

x+ y
=
x+ y � 2pxy

x+ y
=

�p
x�py

�2
x+ y

�
1

2

�p
x�py

�2 � 1

4
(x� y)2;

which yields (4.24). In this chain of relations, the last inequality holds because
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�p
x�py

�2 � 1
2
(x� y)2: Indeed, we have the following relations

2 �
�p
x+

p
y
�2
;

2
�p
x�py

�2 � �px�py�2 �px+py�2 ;
and �p

x�py
�2 � 1

2
(x� y)2;

where the �rst inequality holds because 0 � x; y � 1:

By using relations (4.23) and inequality (4.24) with x = � and y = �, we

obtain

�t�1 := �
�
t�1r

�
t�1 + �t�1(1� r�t�1);

2E(lnhRt; ��t�1i � lnhRt; �t�1i) � E(hRt; ��t�1i � hRt; �t�1i)2 =

E[hRt; ��t�1 � ��t�1r�t�1 � �t�1(1� r�t�1)i]2 =

E[hRt; ��t�1 � �t�1i(1� r�t�1)]2: (4.25)

By combining (4.25) and (4.22), we �nd
1X
t=1

E[hRt; ��t�1 � �t�1i(1� r�t�1)]2 <1; (a.s.) (4.26)

and so
1X
t=1

[hRt; ��t�1 � �t�1i(1� r�t�1)]2 <1 (a.s.). (4.27)

(If the sum of a series of expectations of non-negative random variables is �nite,

then the series of these random variables converges a.s..) This implies
1X
t=1

hRt; ��t�1 � �t�1i2 <1 (a.s.); (4.28)
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since (�t) is an asymptotically optimal strategy. Indeed, the asymptotic optimality

of (�t) implies that w�t � Cwt, where C > 0 as a random constant, and from this

we obtain

1� r�t�1 = 1�
w�t

w�t + wt
=

wt
w�t + wt

� wt
Cwt + wt

=
1

C + 1
: (4.29)

Thus 1�r�t�1 is bounded away from zero a.s. by a strictly positive random constant,

and so (4.28) follows from (4.27). This proves (4.14).�

Proof of Theorem 4.7 By using the fact of convergence of the series (4.22), we

get
1X
t=1

EfEt�1[hRt; ��t�1 � �t�1i(1� r�t�1)]2g <1; (a.s.)

and so
1X
t=1

Et�1[hRt; ��t�1 � �t�1i(1� r�t�1)]2 <1 (a.s.):

Consequently,
1X
t=1

(1� r�t�1)2Et�1hRt; ��t�1 � �t�1i2 <1 (a.s.);

where the random variables 1 � r�t�1 are bounded away from zero by a strictly

positive constant (see (4.29)), which implies that
1X
t=1

Et�1hRt; ��t�1 � �t�1i2 <1 (a.s.): (4.30)

By combining (4.15) and (4.30), we obtain (4.16). �

In the course of the proof of Theorem 4.6, we used the following lemma.

Lemma 4.1 Let �t be a submartingale such that suptE�t < 1. Then the sumP1
t=0E(Et�t+1 � �t) is �nite and the series of non-negative random variables
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P1
t=0(Et�t+1 � �t) converges a.s.

To conclude this section we provide an example where condition (ND) is satis-

�ed.

Proposition 4.1 Let the process st be formed by a sequence of independent

identically distributed random elements of the space S distributed according to

some probability measure Q(ds). If the vectors of asset returns Rt(st) depend

only on the current state st and do not explicitly depend on t,

Rt(s
t) = R(st) = (R1(st); :::; RK(st));

and if the functions R1(s); :::; RK(s) are linearly independent modQ then, condi-

tion (ND) holds.

IfR1(s); :::; RK(s) are measurable functions on a space S with measureQ, they

are said to be linearly independent modQ if the relation

b1R1(s) + :::+ bKRK(s) = 0

holding for Q-almost all s for some numbers b1; :::; bK implies that b1 = ::: =

bK = 0.

The proofs of Lemma 4.1 and Proposition 4.1 are relegated to the Appendix

4.6.

4.4 Asset market games

4.4.1 Investment strategies: a game-theoretic approach

In this section, we will consider game-theoretic models of an asset market,

for the analysis of which we shall apply the previous results on growth-optimal
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investments. Consider a market in which K assets k = 1; 2; :::; K are traded.

We will use the same framework as the one introduced in Section 4.2, in which a

random process st 2 S, t = 0; 1; :::, of "states of the world" is given, and the asset

returns At;k = At;k(st) � 0 (t � 1) depend on the history st := (s1; :::; st) of this

process up to time t.

Suppose there areN � 2 investors (traders) acting in the market. Every investor

i = 1; 2; :::; N possesses an initial endowment wi0 > 0 at date 0. At each date

t � 1 (t � 1), every trader i makes an investment decision speci�ed by a vector

of investment proportions �it�1 = (�it�1;1; :::; �
i
t�1;K) 2 �K . Given the decision

�it�1, investor i's wealth wit at date t can be expressed through his/her wealth wit�1

at date t� 1 and the vector At of asset returns by formula (4.3).

In this section we will use a more general notion of an investment strategy than

that considered before.

De�nition 4.3 An investor i's strategy (portfolio rule) �i is de�ned by a vector

�i0 2 �K and a sequence of measurable functions

�it(s
t; �(t�1)); t � 1; (4.31)

with values in �K , where

�(t�1) := (�jl )l=0;1;:::;t�1; j=1;:::;N

is the set of the decisions made by all the investors j = 1; :::; N at all the dates

l = 0; 1; :::; t� 1.

106



All the functions under consideration are assumed to be jointly measurable with

respect to their arguments (with the Borel measurable structure on�K). According

to the above de�nition, a strategy is a rule prescribing what decision to make at

each date t � 0 and in each random situation st, depending on the history of all

the previous actions of all the investors. This is the most general notion of a (pure)

strategy in the framework of dynamic stochastic games.

In the class of general strategies, we distinguish those for which the functions

�it(�) do not depend on �(t�1):

�it(s
t; �(t�1)) = �it(s

t);

they will be called basic. Such strategies play an important role in this context:

the solutions of the games we shall deal with will belong to this class. Note that

up to now (in Sections 4.2-4.4) we considered only this class of strategies; here we

consider a new, more general class, and in order to distinguish it from the old one,

we introduce the term "basic".

Suppose all the investors have chosen their strategies �i, i = 1; :::; N . Then the

strategy pro�le (�1; :::;�N) determines recursively by the formulas

�i0 := �
i
0; (4.32)

�it(s
t) := �it(s

t; �(t�1)(st�1)) (4.33)

the vectors �it(st) of investment proportions of all the traders at each date t � 0.
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In turn, formulas

wit = hAt; �it�1iwit�1; (4.34)

together with the initial endowmentswi0; i = 1; :::; N de�ne step by step from t�1

to t investor i's wealth wit(st) for each date t = 0; 1; ::: and each random situation

st. The random dyanmical system thus de�ned describes the market dynamics

modelled in terms of the stochastic game under consideration. The wealth process

wit(s
t), t = 0; 1; :::, characterizes the outcome of the game for player i. In general,

investment decisions of each trader might depend on the previous actions of all

the others, and so the wealth process (wit) of each investor i depends on the whole

strategy pro�le (�1; :::;�N), and not only on his/her strategy �i. But of course,

if all the players use only basic strategies, their wealth processes are determined

only by their own decisions.

To complete the description of a game-theoretic model we have to de�ne a

solution concept, that would specify the goals of the players/investors and cri-

teria which would allow one to judge whether (or to what extent) these goals

are achieved. We will consider in this work several solution concepts, center-

ing around the idea of growth-optimal investments. The �rst one is described in

the following de�nition.

De�nition 4.4 Let us say that a strategy �1 is competitive if it possesses the

following property. Suppose some investor, say investor 1, uses this strategy, and

the others use some other strategies �2; :::;�N . Then for each i = 2; :::; N , there
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exists a random constant Ci > 0 such that

wit � Ciw1t a.s. for all t. (4.35)

Relation (4.35) means that with probability one, the wealth wit of any investor i

cannot grow faster than the wealth of investor 1 using the strategy�1. In this sense,

the portfolio rule �1 guarantees that the trader employing it cannot be beaten in

competition with the rivals, irrespective of what strategies the rivals use. If (4.35)

holds for some Ci > 0, we shall write (wit) � (w1t ), which de�nes a preference

relation on the set of sequences of non-negative random variables.

Our results will be based on the following simple observation.

Proposition 4.2 A basic strategy is competitive if and only if it is asymptotically

optimal.

By using Proposition 4.2 and the results in subsection 4.2, we obtain the fol-

lowing.

Theorem 4.8 A log-optimal strategy is competitive. A basic competitive strat-

egy is asymptotically unique in the sense of Theorems 4.6 and 4.7.

Remark 4.2We emphasize that the asymptotic uniqueness results contained in

the above theorem are established only for the class of basic strategies. There are

examples showing that these results cannot be extended to the class of general,

game-theoretic strategies in a straightforward way. The problem of asymptotic

uniqueness (or more generally, characterization) of general portfolio rules, as de-
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�ned in de�nition 4.3, remains open.

Consider a version of the above game in which the outcome for each player i

is speci�ed not in terms of i's (absolute) wealth wit, but in terms of his/her relative

wealth, or market share, de�ned by

rit :=
wit

w1t + w
2
t + :::+ w

N
t

; i = 1; :::; N: (4.36)

From now on, we will impose the following assumption.

Assumption 4.1 In what follows, we will consider only those strategies (port-

folio rules) which generate vectors of investment proportions satisfying

hRt(st); �it�1(st�1)i > 0 (4.37)

for all t; i and almost all st.

This assumption will guarantee that with probability one the wealth of each

investor at each moment of time is strictly positive (bankruptcy is excluded). As

we noted, a log-optimal portfolio rule satis�es this condition. Under the above

assumption, the market shares rit are well-de�ned (a.s.) since the denominator of

the fraction in (4.36) is strictly positive with probability one. To de�ne rit on the

remaining set of measure zero, where w1t + w2t + :::+ wNt = 0, we put rit = 1=N .

De�nition 4.5 A portfolio rule �1 of investor 1 is called a survival strategy if

for any strategies �2; :::;�N of investors i = 2; :::; N; we have

inf
t
r1t > 0 (a.s.): (4.38)

According to this de�nition, the trader using the portfolio rule �1 survives al-
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most surely, i.e., keeps with probability one a strictly positive and bounded away

from zero share of market wealth over an in�nite time horizon, irrespective of the

strategies of all the other traders.

Remark 4.3 It is easily seen that the de�nitions of a survival strategy and a

competitive strategy are equivalent. Indeed, suppose a strategy of investor 1 is

competitive. Then for any strategy pro�le in which investor 1 uses this strategy,

we have wit � Ciw1t (a.s.) for some Ci > 0, and so

Nw1t �
NX
i=1

(Ci)�1wit; (a.s.)

where C1 := 1. Consequently,

w1t � N�1
NX
i=1

ciwit � N�1min ci
NX
i=1

wit (a.s.):

where ci := (Ci)�1. Thus r1t � N�1min ci (a.s.). Conversely, suppose a strategy

of investor 1 guarantees survival. Then r1t � c > 0 (a.s.), where c is a strictly

positive random constant. The last inequality implies

w1t � c
NX
i=1

wit � cwit for each i (a.s.); (4.39)

which yields (4.35) for Ci = c�1. Thus a survival strategy is competitive.

In view of the equivalence of survival and competitive strategies, we can refor-

mulate Theorem 4.1 as follows.

Theorem 4.9 A log-optimal portfolio rule is a survival strategy. A basic sur-

vival strategy is asymptotically unique in the sense of Theorems 4.6 and 4.7.
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4.4.2 Games de�ned in terms of utilities of market shares

The game solution concepts considered above (competitive and survival strate-

gies) were de�ned in terms of the long-run performance of investment strategies.

Now we will follow a more conventional approach, characterizing the perfor-

mance of strategies in terms of numerical criteria�expected utilities. For each

i = 1; 2; :::; N , let ui(r) be a concave, continuous and increasing function de�ned

on [0; 1], taking values in [�1;+1) and �nite on (0; 1]. Denote the class of all

such functions by U . Let ri0 > 0; i = 1; 2; :::; N; be initial market shares of the

investors. They can be expressed through the initial endowments wi0 by

r0 = (r
1
0; :::; r

N
0 ); r

i
0 = w

i
0=(w

1
0 + :::+ w

N
0 ): (4.40)

Consider a strategy pro�le �1; :::;�N of the N investors and the random se-

quences (rit); i = 1; 2; :::; N , of their market shares generated by this strategy pro-

�le. Recall that the strategy pro�le generates a sequence of vectors of investment

proportions �it(st) according to formulas (4.32) and (4.33). In turn, the investment

proportions �it(st) and initial endowments wi0 > 0 de�ne the sequences wit(st)

(wealth of investor i at time t) and rit(st) (the market share of i at time t) by for-

mula (4.36). It follows from (4.36) and (4.34) that the dynamics of the vectors of

market shares rt = (r1t ; :::; rNt ) is governed by the random dynamical system

rit =
hRt; �it�1irit�1

hRt; �1t�1ir1t�1 + hRt; �2t�1ir2t�1 + :::+ hRt; �Nt�1irNt�1
(a.s.);
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which can be written as

rt = ft(s
t; rt�1) (a.s.); (4.41)

where ft = (f 1t ; :::; fNt ) and

f it (s
t; rt�1) =

hRt; �it�1irit�1
hRt; �1t�1ir1t�1 + hRt; �2t�1ir2t�1 + :::+ hRt; �Nt�1irNt�1

if the denominator of this fraction is strictly positive, and ft(st; rt�1) = (1=N; :::; 1=N)

otherwise. The initial state of this system is the vector r0 = (r10; :::; rN0 ) given by

(4.40).

To derive (4.41), we assume that

Wt :=
NX
i=1

wit =
NX
i=1

hAt; �it�1iwit�1 > 0

for all t (which is true with probability one) and proceed by induction using the

relation wit = hAt; �it�1iwit�1 (see (4.3)). SinceWt > 0, we can write

rit = w
i
t=Wt =

hAt; �it�1iwit�1
hAt; �1t�1iw1t�1 + hAt; �2t�1iw2t�1 + :::+ hAt; �Nt�1iwNt�1

(4.42)

Here At can be replaced by Rt because we can divide the nominator and denomi-

nator of the fraction (4.42) by
P

k At;k > 0 (see (4.5)). Therefore

rit = w
i
t=Wt =

hRt; �it�1iwit�1
hRt; �1t�1iw1t�1 + hRt; �2t�1iw2t�1 + :::+ hRt; �Nt�1iwNt�1

:

Dividing the nominator and denominator by Wt�1 =
P

iw
i
t�1 > 0, we replace

wit�1 by rit�1, which leads to formula (4.41).

De�ne

ri1 := lim inf
t
rit (4.43)
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and

F i1 := Eu
i(ri1): (4.44)

The expectations appearing here are well-de�ned and take values in [�1;+1)

because the functions ui are bounded above. We will consider a stochastic dynamic

game over an in�nite time horizon in which

F i1 = F
i
1(�

1; :::;�N) = Eui(ri1); i = 1; :::; N; (4.45)

will be the payoff functions of the players.

We can also consider a version of the above game in which the time horizon

is �nite: t = 0; 1; :::; T . In this case strategies (4.31) have to be de�ned only for

t = 0; :::; T � 1. The payoff functions of the players in the �nite-horizon case are

given by

F iT = F
i
T (�

1; :::;�N) = Eui(riT ); i = 1; :::; N: (4.46)

We will denote the games de�ned above by G1 and GT (T <1), respectively.

Theorem 4.10 The log-optimal investment strategy �� forms a symmetric ro-

bust Nash equilibrium in each of the games GT (1 � T � 1).

We use the term robust equilibrium to emphasize that one and the same strategy

�� possesses the Nash equilibrium property for the whole class of expected utilities

of the investors and all strictly positive vectors of their initial endowments.

Proof of Theorem 4.10. Let �� = (��t (st)) be the log-optimal strategy. Accord-

ing to the general de�nition of a symmetric Nash equilibrium, we have to prove
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that

FNT (�
�; :::;��;�) � FNT (��; :::;��); 1 � T � +1; (4.47)

for any strategy � of investor N . The dynamical system describing the game is

symmetric31, and so the validity of inequality (4.47) for i = N will automatically

imply the analogous inequality for each i = 1; :::; N . For the strategy pro�le

��; :::;��;�, the total market share r�t of the group of investors i = 1; 2; :::; N � 1

can be recursively computed according to the formulas

r�t =
N�1X
i=1

rit =
N�1X
i=1

hRt; ��t�1irit�1
hRt; ��t�1ir1t�1 + :::+ hRt; ��t�1irN�1t�1 + hRt; �Nt�1irNt�1

=

hRt; ��t�1ir�t�1
hRt; ��t�1ir�t�1 + hRt; �Nt�1i(1� r�t�1)

(a.s.);

where (�t(st)) is the sequence of vectors of investment proportions for trader N

generated by the strategy pro�le ��; :::;��;�. The number 1 � r�t is the market

share rNt of the investorN using the strategy (�t(st)). In the course of the proof of

Theorem 4.2.5, we have proved that the random sequence ln r�t is a non-positive

submartingale, and hence it has a.s. a �nite limit ln r�1. Further, the submartingale

inequality Et(ln r�t+1) � ln r�t implies

Etr
�
t+1 = Et exp(ln r

�
t+1) � exp[Et(ln r�t+1)] �

exp(ln r�t ) = r
�
t :

by virtue of Jensen's inequality (since the function exp is convex and increasing).

31 However, the utilities and the initial endowments are not necessarily symmetric.
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Consequently,

Et(1� r�t+1) � 1� r�t ;

and so the market share of rNt = 1 � r�t investor N forms a supermartingale with

values in [0; 1). Consequently,

Etu
N(rNt+1) � uN(EtrNt+1) � uN(rNt ) (4.48)

because uN : [0; 1] ! [�1;+1) is a concave and increasing function. Note

that all the conditional expectations are well-de�ned (but may be equal to �1)

because uN(�) � uN(1). If T < +1, then from (4.48), we get

FNT (�
�; :::;��;�) = EuN(rNT ) �

EuN(rN0 ) = F
N
T (�

�; :::;��;��)

The last equality holds since rit = ri0, as long as all the investors use the same

strategy. Suppose now that T = +1. By using the fact that rNt is a bounded

supermartingale, we obtain that the limit rN1 = lim rNt exists a.s. and

E0r
N
1 = E0 lim r

N
t = limE0r

N
t � rN0 ; (4.49)

where the last inequality holds because rNt is a supermartingale. The function

uNconcave and increasing, and so (4.49) implies

E0u
N(rN1) � uN(E0rN1) � uN(rN0 ):

Thus

FN1(�
�; :::;��;�) = EuN(rN1) �

EuN(rN0 ) = F
N
1(�

�; :::;��;��);
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which completes the proof. �

4.4.3 Subgames and subgame-perfect robust Nash equilibria

We have shown that the strategy �� = (��t (st)) forms a symmetric robust Nash

equilibrium in each of the games GT (T � 1). Our next goal is to show that it

is a unique subgame-perfect symmetric robust Nash equilibrium in each of these

games. Fix some moment of time l > 0, a sequence of states of the world sl =

(s1; :::; sl) up to time l and a history

�(l�1) := (�jl )l=0;1;:::;l�1; j=1;:::;N

of actions (investment decisions) of all the investors j = 1; :::; N from time 0 to

time l � 1. Denote by Pl(sl; d�l+1) the conditional distribution32 of the sequence

of states of the world

�l+1 := (sl+1; sl+2; :::)

given the history sl of the process (st) from time 1 to time l. Consider the subgame

GlT = GlT (sl; �(l�1)) (0 < l < T � 1)

of the original game de�ned as follows. The game (de�ned for each sl and �(l�1))

starts at time l. The market shares ril = ril(sl; �
(l�1)) of the players at time l (the

32 By de�nition, Pl(sl; d�l+1) has the following properties:
(i) for each sl, Pl(sl; �) is a probability measure on the space of sequences �l+1;
(ii) for each measurable set � in the space of these sequences, Pl(�;�) is a measurable function of
sl;
(iii) for every bounded measurable function �(�) of � = (s0; s1; :::), we have

E[�(�)jsl] =
Z
Pl(s

l; d�l+1)�(�) (a.s.)

where � = (sl; �l+1). We assume that such a conditional distribution exists. The existence can be
guaranteed if the space of states of the world is standard Borel.
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initial moment of time for the subgame) are determined by the �xed sequence of

states of the world sl and the �xed history of investment decisions �(l�1). Decisions

at dates l; l + 1; ::: of the N players i = 1; 2; :::; N are vectors �it; t � l, of

investment proportions. In the subgame GlT , an investor i's strategy (portfolio rule)

�i is de�ned by a vector �il 2 �K and a sequence of measurable functions

�it(s
t
l+1; �

(l;t�1)); t > l;

with values in �K , where

stl+1 = (sl+1; :::; st)

is the history of states of the world from time l + 1 to time t and

�(l;t�1) := (�jm)m=l;:::;t�1; j=1;:::;N

is the set of the decisions made by all the investors j = 1; :::; N at all the dates

m = l+1; :::; t�1. As in the original game, those strategies for which the functions

�it(�) do not depend on �(l;t�1)

�it(s
t
l+1; �

(l;t�1)) = �it(s
t
l+1);

will be called basic.

A strategy pro�le (�1; :::;�N) of the investors determines recursively by the

formulas

�il := �
i
l; (4.50)

�it(s
t
l+1) := �

i
t(s

t
l+1; �

(l;t�1)(st�1l+1)) (4.51)
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the vectors �it(stl+1) of investment proportions of all the traders at each date t � l.

In turn, formulas (4.41) together with the initial market shares ril > 0, i = 1; :::; N ,

at date l de�ne step by step (according to the random dynamical system (4.41))

investor i's market share rit(st) for each date t = l + 1; l + 2; ::: and each random

situation stl+1. As before, we de�ne ri1 := lim inft rit and put

F i1 := Elu
i(ri1);

where El is the expectation of the random variable

ui(ri1(�
l+1)); �l+1 := (sl+1; sl+2; :::);

with respect to the conditional distribution Pl(sl; d�l+1), that is

El[u
i(ri1)jsl] =

Z
Pl(s

l; d�l+1)ui(ri1(�
l+1)) (a.s.)

The payoff functions of the players in the subgame Gl1 are de�ned by

F i1 = F
i
1(�

1; :::;�N) = Elu
i(ri1); i = 1; :::; N:

For the analogous game GlT over a �nite time horizon T <1, we de�ne the payoff

functions by

F iT = F
i
T (�

1; :::;�N) = Elu
i(riT ); i = 1; :::; N:

De�nition 4.6 We say that a basic strategy � = (�t(s
t)) forms a symmetric

subgame-perfect robust Nash equilibrium in the game GT (1 � T � 1) if for

any moment of time l, any almost all histories of states of the world sl and for

any history of the players' actions �(l�1) = (�jl )l=0;1;:::;l�1; j=1;:::;N , the strategy l�

119



de�ned by

�l(s
l); �l+1(s

l; sl+1); :::; �t(s
l; stl+1); :::

(where sl is held �xed, "frozen"), forms a symmetric robust Nash equilibrium in

the game GlT = GlT (sl; �(l�1)).

Having in mind the above de�nitions of the subgames GlT and subgame-perfect

strategies, we can obtain the following re�nement of Theorem 4.10.

Theorem 4.11 The log-optimal investment strategy �� = (��t (s
t))1t=0 forms

a subgame-perfect symmetric robust Nash equilibrium in each of the games GT

(1 � T � 1).

Proof of Theorem 4.11 Observe that the subgame GlT has a similar structure

as the game GT . The random dynamical system which governs the evolution

of investors' market shares rit is the same: it is given by equations (4.41). The

distinctions are only in the initial moment of time l, the initial market shares

ril = r
i
l(s

l; �(l�1)) (which are determined by the previous play and random factors),

and a different probability measure on the space of paths �l+1 := (sl+1; sl+2; :::)

of the stochastic process sl+1; sl+2; :::, which is given by the conditional distrib-

ution Pl(sl; d�l+1). Thus, in order to prove part (a) of Theorem 4.11 it is suf�-

cient, in view of Theorem 4.10, to show that for almost all sl the strategy l�� =

(��t (s
l; stl+1)) is log-optimal with respect to the conditional distribution Pl(sl; d�l+1),

that is

El lnh�l; Rl+1(sl; sl+1)i � El lnh��l (sl); Rl+1(sl; sl+1)i; (4.52)
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for every vector �l of investment proportions and

El lnh�t(stl+1); Rt+1(sl; st+1l+1)i � El lnh�
�
t (s

l; stl+1); Rt+1(s
l; st+1l+1)i; t > l;

(4.53)

for every measurable vector �t(stl+1) of investment proportions. Inequality (4.52)

follows from the fact that

El lnha;Rl+1(sl; sl+1)i = �l(sl; a) (4.54)

(see (4.10)) and assertion (c) of Theorem 4.2. Inequality (4.53) is proved analo-

gously by using the rule of iterations of conditional expectations, which yields

El lnh�t(stl+1); Rt+1(sl; st+1l+1)i = El[Et lnh�t(stl+1); Rt+1(st; st+1)i];

El lnh��t (sl; stl+1); Rt+1(sl; st+1l+1)i = El[Et lnh�
�
t (s

l; stl+1); Rt+1(s
t; st+1)i]:

4.5 Numeraire portfolios (benchmark strategies)

In what follows, we shall consider only basic portfolio rules (omitting the word

"basic" everywhere). Following Long (1990), we shall say that a strategy (�t) is

a numeraire portfolio if wt > 0 (a.s.) and for any other strategy (�t), the process

wt=wt is a supermartingale. Here, we denote by wt and wt the wealth processes

generated by the strategies (�t) and (�t), respectively. In another terminology,

which we will follow, numeraire portfolios are termed benchmark strategies (see

Platen and Heath, 2006).

Theorem 4.12 A portfolio rule is a benchmark strategy if and only if it is a

log-optimal strategy.
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Proof of theorem 4.12 "Only if". Consider any strategy (�t) for which h�t�1; Rti >

0 (a.s.). By the de�nition of a benchmark strategy, the process wt=wt is a super-

martingale, and so

Et�1
wt
wt
� wt�1
wt�1

; (4.55)

which implies

wt�1
wt�1

Et�1
h�t�1; Rti
h�t�1; Rti

= Et�1
h�t�1; Rtiwt�1
h�t�1; Rtiwt�1

� wt�1
wt�1

: (4.56)

Here,wt�1=wt�1 > 0 because h�t�1; Rti > 0, and consequently, the last inequality

is equivalent to

Et�1
h�t�1; Rti
h�t�1; Rti

� 1: (4.57)

By using Jensen's inequality, we �nd:

Et�1 ln
h�t�1; Rti
h�t�1; Rti

� lnEt�1
h�t�1; Rti
h�t�1; Rti

� 0;

and, by taking the expectations, we get

E ln
h�t�1; Rti
h�t�1; Rti

� 0: (4.58)

If �t�1 = (1=K; :::; 1=K), then this inequality becomes

E[ln(1=K)� lnh�t�1; Rti] � 0;

from which we can conclude that E lnh�t�1; Rti > �1 and

E lnh�t�1; Rti � E lnh�t�1; Rti: (4.59)

Inequality (4.59) has been obtained under the assumption that h�t�1; Rti > 0.

Let us now consider any vector of proportions �t�1(st�1), and for eachm = 1; 2; :::
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de�ne

�
(m)
t�1 =

1

m
�t�1 +

�
1� 1

m

�
�t�1:

Here,
D
�
(m)
t�1; Rt

E
� h�t�1; Rti=m > 0 (a.s.) because, as we have shown,E lnh�t�1; Rti >

�1. Consequently, we can apply (4.59) to �(m)t�1, which gives

E lnh�t�1; Rti � E ln
D
�
(m)
t�1; Rt

E
= E ln

�
1

m
�t�1 +

�
1� 1

m

�
�t�1; Rt

�
�

1

m
E lnh�t�1; Rti+

�
1� 1

m

�
E lnh�t�1; Rti

by virtue of Jensen's inequality. By passing to the limit as m ! 1, we obtain

that E lnh�t�1; Rti � E lnh�t�1; Rti, and so �t�1 is the vector of log-optimal

proportions.

"If." Suppose (�t) is a log-optimal strategy, i.e., (4.58) holds. We know that

for a log-optimal strategy h�t�1; Rti > 0 and hence wt > 0. Consider any vector

of investment proportions �t�1 such that all its coordinates are not less than some

" > 0. By virtue of (4.12), we have

Et�1 ln
h��t�1 + (1� �)�t�1; Rti

h�t�1; Rti
� 0

for every � 2 (0; 1). From the above inequality, we obtain

0 � ��1Et�1 ln
�
1� � + � h�t�1; Rti

h�t�1; Rti

�
=

Et�1

�
��1 ln

�
1 + �

�
h�t�1; Rti
h�t�1; Rti

� 1
���

:

By using the Fatou lemma, we write

0 � lim inf
�!0

Et�1

�
��1 ln

�
1 + �

�
h�t�1; Rti
h�t�1; Rti

� 1
���

�
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Et�1 lim inf
�!0

�
��1 ln

�
1 + �

�
h�t�1; Rti
h�t�1; Rti

� 1
���

=

Et�1
h�t�1; Rti
h�t�1; Rti

� 1:

To justify the use of the Fatou lemma, we observe that

1

�
ln
h��t�1 + (1� �)�t�1; Rti

h�t�1; Rti
�

1

�
[� lnh�t�1; Rti+ (1� �) lnh�t�1; Rti � lnh�t�1; Rti] =

lnh�t�1; Rti � lnh�t�1; Rti � lnh�t�1; Rti � ln ":

Thus we have obtained (4.57) under the additional assumption that all the co-

ordinates of �t�1 are not less than " > 0. Now consider any vector of proportions

�t�1(s
t�1) and de�ne

�
[m]
t�1 =

1

m
b+ (1� 1

m
)�t�1;

where b = (1=K; :::; 1=K). By applying (4.57) to �[m]t�1 and using the Fatou lemma,

we obtain

1 � lim inf
m!1

Et�1

D
�
[m]
t�1; Rt

E
h�t�1; Rti

�

Et�1 lim inf
m!1

D
�
[m]
t�1; Rt

E
h�t�1; Rti

= Et�1
h�t�1; Rti
h�t�1; Rti

;

which yields (4.57) for any �t�1. Property (4.57) implies (4.56) and (4.55), and so

(since w0=w0 is a positive constant) wt=wt is a supermartingale. �

Suppose that the asset returns At;k given in the model are de�ned in terms of

strictly positive asset prices pt;k by formula (4.1). Then the following proposition

holds.

Proposition 4.3 A strategy (�t) generating a strictly positive wealth process wt
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is a benchmark strategy if and only if for every asset k = 1; :::; K the process

pt;k
wt

(4.60)

is a supermartingale.
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4.6 Appendix

Proof of Lemma 4.1 We have �t := Et�t+1 � �t � 0 by the de�nition of a

submartingale. Further, we have
T�1X
t=0

E�t =
T�1X
t=0

(E�t+1 � E�t) = E�T � E�0;

and so the sequence
PT�1

t=0 E�t is bounded because supT E�T < 133. Therefore

the series of the expectations
P1

t=0E�t of the non-negative random variables �t

converges, which implies
P1

t=0 �t <1 a.s. because E
P1

t=0 �t =
P1

t=0E�t. �

Proof of Proposition 4.1 Since the random elements st are independent, we have

Eth�0t � �t; Rt+1i2 =
Z
Q(ds)h�0t(st)� �t(st); R(s)i2:

In order to prove (ND), it is suf�cient to show that

inf
b6=0
�(b) := inf

b6=0

R
Q(ds)hb; R(s)i2

jjbjj2 > 0:

Suppose the contrary: there exists a sequence of vectors bn 2 RK such that

�(bn)! 0. Since �(bn) = �(bn=jjbnjj), we may assume that jjbnjj = 1. By pass-

ing to a convergent subsequence, we may further assume that bn ! b = (b1; :::; bK)

with jjbjj = 1. Then, by using the Lebesgue theorem, we obtain

�(bn) =

Z
Q(ds)hbn; R(s)i2 !

Z
Q(ds)hb; R(s)i2;

and so Z
Q(ds)hb; R(s)i2 = 0;

33 It follows that a series
P
an with non-negative terms converges if and only if the sequence

SN =
PN

n=1 an of partial sums is bounded.

126



which implies

hb; R(s)i = b1R1(s) + :::+ bKRK(s) = 0

for Q-almost all s. Since the functions R1(s); :::; RK(s) are linearly independent

modQ, we get b1 = ::: = bK = 0. But this cannot be true since jjbjj = 1. A

contradiction. �

Proof of proposition 4.2. Consider a basic strategy �1 de�ned by a sequence

(�1t ) of vectors of investment proportions. Suppose it is asymptotically optimal in

the sense of De�nition 4.1. Let �2; :::;�N be any strategies of investors 2; :::; N .

Let (�2t ); :::; (�
N
t ) be the sequences of vectors of proportions generated by the strat-

egy pro�le �1;�2; :::;�N . Then for any i, the wealth process (wit) can be de�ned

recursively by (4.34), which means that it is generated by the basic strategy (�it).

By using the property of asymptotic optimality of (�1t ) we obtain that (4.35) holds

for some random constant Ci > 0.

Conversely, let �1 = (�1t ) be a basic competitive strategy in the dynamic game

described above. Consider the strategy pro�le �2; :::;�N of player 1's rivals such

that the strategies �2; :::;�N are the same and coincide with some (arbitrary) basic

strategy (�t). By virtue of (4.35), the wealth processes (wt) and (w1t ) generated by

(�t); (�
1
t ) and starting from the given w0 > 0; w10 > 0 satisfy wt � Cw1t a.s. for

some random constant C. This implies (see De�nition 4.1 and the comments after

it) that �1 is asymptotically optimal. �

Proof of proposition 4.3. Assume that (�t) is a benchmark strategy. Consider
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the sequence of vectors of proportions �t;k = ek (where ek is the vector whose

coordinates are 0 except the ith coordinate which is 1). Then the value wt of the

portfolio generated by this strategy is given recursively by

wt = hAt; �t�1iwt�1 = At;kwt�1 =
pt;k
pt�1;k

wt�1

and so

wt = pt;k=p0;k:

Consequently, the process

pt;k
p0;kwt

is a supermartingale, and thus pt;k=wt is a supermartingale too, because p0;k is a

constant.

Conversely, suppose that the process (4.60) is a supermartingale. Consider any

strategy (�t) and the corresponding wealth process (wt). We have

Et�1
wt
wt
= Et�1

hAt; �t�1iwt�1
hAt; �t�1iwt�1

=
wt�1
wt�1

Et�1
hAt; �t�1i
hAt; �t�1i

:

Here,

Et�1
hAt; �t�1i
hAt; �t�1i

=
KX
k=1

Et�1
At;k�t�1;k

hAt; �t�1i
;

and so it is suf�cient to verify that

Et�1
At;k

hAt; �t�1i
� 1

for each k. This inequality can be written as

Et�1
pt;k=pt�1;k

hAt; �t�1i
� 1;
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which is equivalent to

Et�1
pt;k

hAt; �t�1i
� pt�1;k:

The last inequality, in turn, is equivalent to the following one

Et�1
pt;k
wt

� pt�1;k
wt�1

because wt = hAt; �t�1iwt�1. But this relation is valid as long as the process

(4.60) is a supermartingale. �
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Chapter 5 Conclusion

This thesis analyzes asset markets in the context of evolutionary �nance. A

stock market can be understood as a heterogeneous population of frequently in-

teracting portfolio rules in competition for market capital. The general approach

is to apply evolutionary dynamics�mutation and selection�to the analysis of the

long-run performance of investment strategies. Our aim is to contribute to a "Dar-

winian theory" of portfolio selection.

A game-theoretic evolutionary model of an asset market with endogenous equi-

librium asset prices was investigated in second chapter. The assets pay dividends

at each time period that are partially consumed and partially reinvested. Only one

equilibrium involved in this model is market clearing equilibrium which are used

as endogenously generating asset prices. The investors select general, adaptive

strategies according to which their wealth are distributed among the assets. We

were mainly concerned with the long-run performance of the strategies with the

goal of identifying survival strategies, i.e., allowing an investor to survive in the

long run.

Relations between evolutionary �nance and Nash equilibrium were explored

and presented in Chapter 3. We considered a long-lived dividend-paying asset

market with independent and identical distributed states of the world. It turned out
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that in the game under consideration the Kelly rule of "betting your beliefs" forms

with probability one a unique symmetric Nash equilibrium strategy.

Fundamental facts of capital growth theory were examined from a new angle

suggested by recent studies on evolutionary �nance and asset market games in

Chapter 4. This new view makes it possible to establish relations between �nan-

cial growth and the property of "survival" of investment strategies in the market

selection process. This study stressed the role of log-optimal investments as a

means for achieving asymptotically optimal growth with probability one.

Generally, evolutionary �nance, in comparison with conventional paradigm�

maximizing individual utility function, has an advantage in expressing the dy-

namic nature of an asset market. And the robustness of the evolutionary models

lays a foundation for establishing a new portfolio selection theory. But many chal-

lenging topics within this research �eld need to be done in the future. As high-

lighted in the chapters, all the results obtained are established in the class of basic

strategies. Whether or not these results can pertain to general strategies is still an

open question.
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