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Abstract 

 

 

The Grid has been recognised as the next-generation distributed computing paradigm 

by seamlessly integrating heterogeneous resources across administrative domains as a 

single virtual system. There are an increasing number of scientific and business projects 

that employ Grid computing technologies for large-scale resource sharing and 

collaborations. Early adoptions of Grid computing technologies have custom middleware 

implemented to bridge gaps between heterogeneous computing backbones. These custom 

solutions form the basis to the emerging Open Grid Service Architecture (OGSA), which 

aims at addressing common concerns of Grid systems by defining a set of interoperable 

and reusable Grid services. One of common concerns as defined in OGSA is the Grid 

accounting service. The main objective of the Grid accounting service is to ensure 

resources to be shared within a Grid environment in an accountable manner by metering 

and logging accurate resource usage information. This thesis discusses the origins and 

fundamentals of Grid computing and accounting service in the context of OGSA profile. 

A prototype was developed and evaluated based on OGSA accounting-related standards 

enabling sharing accounting data in a multi-Grid environment, the World-wide Large 

Hadron Collider Grid (WLCG). Based on this prototype and lessons learned, a generic 

middleware solution was also implemented as a toolkit that eases migration of existing 

accounting system to be standard compatible. 
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Chapter 1 

Introduction 

 

The Grid has been recognised as the next-generation distributed computing technology. 

The basic idea of the Grid is to virtualise heterogeneous resources, including computing 

power, data storage, application and instruments, across administrative domains as an 

integrated system. The emergence of Grid technologies is by no means a coincidence but 

driven by two main factors: supply and demand. On the one side, grand-challenge 

problems require large-scale collaborations and a great number of computer processing 

cycles. A typical example would be the Large Hadron Collider (LHC), a facility built to 

perform particle physics experiments in Geneva.  Each experiment involves collaboration 

of over 3000 physicists from hundreds of world-wide institutions. It is also estimated that 

individual experiment will generate several PetaBytes of data annually. Thousands of 

physicists need access to, and analyse immense amounts of experimental data in near real 

time. On the other side, considerable computational and storage resources are distributed 

inside individual participant institute, and can potentially supply unprecedented 

processing and storage capacities over the Internet. The Grid middleware is therefore the 

bridge of the gap between application-level demands and distributed IT fabrics supplied 

by using state-of-art distributed computing technologies. 

 

Compared to traditional distributed computing systems, a Grid system requires the 

assurance of Qualities of Service (QoS) at different levels, including security, 

performance, responsiveness, etc. In order to ensure system-level QoS, a Grid system 

need to analyse resource usage status, and take appropriate actions, such as resource 

reallocation, job migration, or blocking a suspicious user account, to ensure agreed QoS. 

The major task of Grid accounting service is to meter and log resource usage information 

of the underlying Grid environment. Accounting data can be also used for Grid economy 

by providing proofs for charging and billing. This thesis discusses the development of 

Grid accounting systems in a standard compatible manner to enable interoperability of 
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heterogeneous accounting systems in such multi-Grid environment that consists of 

multiple Grid infrastructures managed by various middleware software stacks. 

 

As an introduction, the content of this chapter is intended to establish the context of 

Grid computing and Grid accounting. Detailed technical issues and solutions are to be 

discussed in following chapters step by step. 
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1.1 Evolution 

 

Since the birth of computing, performance has always been one of the leading factors 

driving the evolution of computing technologies. This section discusses historic 

progresses of computers and computing technologies that contributed to the emergence of 

Grid computing.  

 

1.1.1 Computer Generations 

 

As the timeline given in figure 1.1, the history of computer can be traced back to 

1940s. The first-generation (1946-1953) computers were characterised by the use of 

vacuum tubes. A vacuum tube acts as a switch or amplifier by controlling electric currents. 

For example, the 5th of ten vacuum tubes can be switched on for representation of 

numeric five. The first electronic computer, Numerical Integrator And Computer 

(ENIAC)[1], was built at University of Pennsylvania in 1946 using vacuum tubes instead 

of mechanical switches of the Mark I. The ENIAC was capable of executing 5,000 

 

 
 

Figure 1.1: The timeline of computer evolution including selected events of each 

generation. 
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operations per second. Other vacuum-tube computers include Electronic Discrete 

Variable Automatic Computer (EDVAC)[3] and UNIversal Automatic Computer 

(UNIVAC)[4]. Considering thousands of integrated vacuum tubes that give off so much 

heat, these early computers were unreliable due to broken vacuum tubes.  

 
 

Figure 1.2: The Moore’s Law predicated the number of transistors integrated in a 

single chip doubles very two years. From[2] 

 

Although the transistor was invented early in 1947, it was not widely used in 

computers until late 1950s. The replacement of vacuum tube with transistor makes 

computer smaller, faster and more reliable. The first full transistorized super computer 

was built at Control Data Corp. in 1958, indicating the beginning of “transistors era” as 

the second-generation computers. Programming on the second-generation computers 

moved from cryptic binary machine language to symbolic languages, so that 

programmers can code in high-level natural programming languages, such as early-

version FORTRAN and COBOL. 

 

The invention of the Integrated Circuit (IC) formed the basis for third-generation 

(1964-1970) computers. The size of computers became significantly smaller and faster by 

integrating in-cooperated transistors within a semiconductor chip. The first integrated 
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circuitry computer, IBM 360, was built by IBM in 1965.  It is capable of processing over 

6,000 operations per second. In the meantime, advanced storage technologies contributed 

a new computer design with an internal memory. External storage devices, magnetic tapes 

and floppy disks, enable data input directly into the computers rather than using punch 

cards.   

 

The development of Large-Scale Integration (LSI) and Very-Large-Scale Integration 

(VLSI) was the hallmark of the fourth-generation (1971-present) computers. A VLSI 

allows integration of millions of transistors into a single IC chip, and makes the fourth-

generation computers smaller in size and faster in processing speed. Another 

revolutionary technology contributed in fourth-generation computers was the invention of 

microprocessor that incorporates almost all functions of a Central Processing Unit (CPU) 

into a single IC. A CPU or processor contains only one core, the part of the processor that 

actually processes an instruction at one time. In 1965, the co-founder, Gordon E. Moore, 

envisioned that the number of transistors on a chip would double every two years. The 

Moore’s Law [5], as described in figure 1.2, was proposed based on empirical 

observations. The predication of the Moore’s Law remains accurate so far and can be best 

demonstrated by the multi-core technologies. Since 1990s, Intel initiated and led the 

multi-core technology until present, by integrating multiple symmetric or identical cores 

within a single processing unit such that multiple instructions can be processed in parallel 

at same time. The multi-core technologies, such as Dual-Core and Quad-Core processors, 

have been widely used in modern commodity computers, making it possible to cope with 

complex problems across application domains by leverage parallel processing capacities 

of a single computer.  

 

1.1.2 High Performance Computing 

“It can't continue forever. The nature of exponentials is that you push them out 

and eventually disaster happens” 

 –Gordon Moore, April 13, 2005 

 

According to Moore’s Law, it is expected the number of transistors integrated within a 

single chip would reach over 15 billion, pushing computer engineering into the molecular 

and atomic era. Although relevant research[6][7][8][9] have been undertaken for decades, 

there is no guarantee that development of these advanced technologies will be applied to 
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computer engineering in the coming decades. The effectiveness of Moore’s law will 

eventually come to the ultimate limit in the next decade. 

 

Computer engineers, however, never give up their ambition to pursue higher 

performance. The concept of High Performance Computing (HPC) was firstly suggested 

by Charles Babbage in the 19th century in order to solve the “Grand-Challenge” problems 

by employing multiple processing units or processors in parallel. Such “Grand-Challenge” 

problems as applied fluid dynamics, ecosystem simulation and weather forecasting are 

too complex to be solved in a reasonable amount of time using a single processor. 

 

 

 

Figure 1.3: Flynn’s Taxonomy classifies computer architecture into four types 

according to the number of instructions and data stream to be processed concurrently. 

From [10] 

Flynn’s Taxonomy 

 

According to the Flynn’s taxonomy [11] proposed by Michael Flynn in 1966, 

computer architecture is classified into four types (figure 1.3) based upon two 

dimensional factors: the number of concurrent instructions and the number of data 

streams operated concurrently. Traditional computer architecture falls into the Single-
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Instruction-Single-Data (SISD) classification, involving a single processing unit that 

exploits no parallelism in either instruction or data stream. A Single-Instruction-Multiple-

Data (SIMD) computer enables data parallelism by execution of the same instruction 

upon different data streams concurrently. Multiple-Instruction-Simple-Data (MISD) 

architecture is an uncommon architecture generally used mainly for fault-tolerance 

through agreed results of execution of different instructions set upon same data stream. 

Multiple-Instruction-Multiple-Data (MIMD) architecture employs multiple processors 

simultaneously executing different instructions on different data streams.  

 

According to architectural relationship between processors and memories, the MIMD 

architecture can be further divided into two subtypes, Symmetric Multi-Processing (SMP) 

and Massive Parallel Processing (MPP). A SMP machine involves two or more identical 

processors connected via bus to access shared memory. Multiple processing units in a 

SMP computer therefore have access to all memory spaces with equal latency and 

bandwidth. In contrast, a Massive Parallel Processing (MPP) MIMD machine is equipped 

with a large number of processing units, normally over 100, each of which has access to 

its own physical memory or logically allocated memory spaces, therefore also known as 

Non-Uniform Memory Access (NUMA) [12] system.  

 

Supercomputer 

 

A supercomputer is a computer with multiple processing units and custom design 

based upon SIMD or MIMD architecture providing high performance processing capacity, 

approaching Tera-FLoating point Operation Per Second (TeraFLOPS). Vector or Array 

computers, formed the basis of most supercomputers throughout 1980s and into 1990s, 

applied SIMD architecture to execute mathematical calculations on vectorised data set 

simultaneously. Examples of Vector machines include the early CRAY X-MP [13], 

Maspar MP-1[14] and the Distributed Array Processor for ATM (ATM DAP) [15]. 

Modern supercomputers, as top ten supercomputers on the Top 500 list [16], are 

architected with a cluster of MIMD multiprocessors.  

 

In order to exploit the high-performance of supercomputers, applications are required 

to be coded differently and divided into pieces that can be executed in parallel. There are 

parallel programming languages roughly categorised into two classes according to the 

communication patterns among processes based on underlying memory architecture. For 
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tightly coordinated shared-memory machines, programming languages or libraries, such 

as OpenMP [17] and Portable Operating System Interface for Unix (POSIX) threads, are 

mainly used for manipulation and synchronization of shared memory variables.  For 

loosely-coupled memory architecture, communication among multiple processes is 

realized through message passing APIs. The most commonly used APIs include 

Messaging Passing Interface (MPI)[18] and Parallel Virtual Machine (PVM)[19].  

 

Cluster Computing 

 

Specialised Supercomputers, built at huge cost to deliver magnitude greater floating 

point performance, however have been perceived to be too hard, too expensive and of too 

narrow interests. Rather than developing specialty-class supercomputer architectures, 

commodity clusters have rapidly grown as HPC systems by harnessing commercial-off-

the-shelf (COTS) computer nodes. A commodity cluster comprises computer nodes 

interconnected by Local Area Network (LAN) within a local administrative domain. It 

allows flexible system configuration in terms of number of nodes, number of processors 

and memory capacity. Since 1990s, an increasing number of environments had emerged 

ranging from commercial SMP servers to self-assembled PC clusters, such as Beowulf 

[20] cluster. 

 

1.1.3 Distributed Computing 

 

The Internet 

 

Prior to the Internet, communications between computers were prevalently based on 

mainframe method, simply allowing communications among terminals via local physical 

connections. In order to enabling interconnection of computers from different local 

networks, the idea of Packet Switching was proposed by Leonard Kleinrock from 

Stanford University in the 1960s. Following the successful demonstration of packet 

switching work at APRANET in 1969, the first packet-switching standard, ITU X.25 [21], 

was released by the International Telecommunication Union (ITU) based on the concept 

of virtual circuit. The emergence of the TCP/IP protocol in 1978 enabled unifying 

different network protocols by using a common inter-network protocol. The Internet was 

then officially defined as a global system of interconnected computer networks that 
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interchange data by packet switching using the standard TCP/IP protocol. The Internet 

carries various information,  which  however could not be shared in a uniform format 

until the introduction of World Wide Web, or the Web, by Tim Berners-Lee in 1989 [22]. 

The Web is a huge set of interlinked documents accessible through Hypertext Transfer 

Protocol (HTTP) [23].  

 

Middleware 

 

The emergence of the Internet and the Web contributed to a large-scale computing 

model that aims to communicate and coordinate software components on interconnected 

computers. This type of computing model is defined as distributed computing, allowing a 

program to be split up into parts that run on multiple computers interconnected under a 

loosely controlled regime. Two typical paradigms of distributed computing are the client-

server (C/S) model and peer-to-peer (P2P) model. The C/S model is the most cited model 

used in distributed computing with server processes carrying out activities and client 

processes initializing activities. In P2P model, all distributed processes plays similar roles 

without clear distinction between client and server. These distributed processes act 

cooperatively as peers take both the role of client and server depending on initializing or 

provision of activities. 

  

In order to enable distributed computing in a platform-independent manner, an 

additional software layer, known as middleware, is required to mask heterogeneity of 

underlying platform. Middleware-oriented solutions provide a high-level abstraction over 

underlying networking, hardware, and operating systems. The foundation for 

communication of distributed parts is the Remote Procedure Call (RPC)[24], which was 

superseded by the introduction of the object-oriented programming model middleware, 

such as Java Remote Method Invocation (RMI)[25], Common Object Request Broker 

Architecture (CORBA)[26] and Distributed Component Object Model (DCOM)[27].  

 

Web Service 

 

Middleware-oriented solutions, however, are normally developed in a language-

specific pattern and lack of interoperability. A Java RMI client process, for example, 

cannot interact with DCOM server processes. Besides, distributed applications relying on 

middleware are typically used for intranet usage and hard for communication across 
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firewalls. Web service overcomes limits of traditional middleware solution by introducing 

a stack of Web-oriented standards based upon eXtensible Markup Language (XML), 

which enable platform- and language-neutral communication via HTTP.   

 

 
 

Figure 1.4: Service-Oriented Architecture and Internal Interactions through standard 

Web service communication protocols 

As shown in figure 1.4, abstract Service-Oriented Architecture (SOA) is composed of 

three major components, service requester, service provider and registry, which 

communicate with each other through the standard communication protocol, Simple 

Object Access Protocol (SOAP)[28]. The SOAP defines XML-formatted encoding rules 

for exchanging structured information between service requesters and providers, as well 

as binding rules for data transferring upon other networking and application protocols, 

most notably RPC and HTTP. The registry component maintains a repository of 

registered services and acts as a coordinator between service requestors and providers. 

The registry itself can be implemented as a Web service endpoint by exhibiting a set of 

well-defined interfaces for service query and registration. The Universal Description, 

Discovery and Integration (UDDI)[29] is such a service definition that specifies standard 

registration-related interfaces and messaging format. A Web service is required to be self-

describable using the Web Service Description Language (WSDL)[30] before getting 

registered. A WSDL file describes inter-operate contracts of a particular service, such as 

allowed operations, messaging formats, and enabled networking bindings.  
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1.1.4 The Grid 

 

“A computational Grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end 

computational capabilities.”[31] 

 

Ian Foster and Carl Kesselman, 1998 

 

The evolution of the Grid was driven primarily by the ever-growing demands on 

computational power. The Grid was defined as a computational Grid that aims at 

providing HPC facilities in a cost-effective manner through interconnection of existing 

computational resources. There are two prerequisites for Grid deployment: reasonable 

communication latency and tremendous computational resources. As with Gilder’s Law, 

the growth of network bandwidth had been observed faster than computer power at least 

as much as three times. This law indicates the communication bandwidth via internetwork 

doubles every six months, if computer power doubles every eighteen months. It has been 

observed that the bandwidth of Internet backbone had been updated continuously during 

1980s and 1990s, from 56 kilobyte/sec to 45 megabyte/sec. In addition, the state-of-art 

10G Ethernet technology provides fastest communication network reaching 10 

 

 

Figure 1.5: Internet Host Statistics. From[32] 
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gigabyte/sec. On the other hand, the number of computer hosts (as fig. 1.5) connected to 

the Internet have dramatically increased to over 625 million up to Jan. 2009. These 

computational resources are becoming potentially large-scale computational resource 

pool, which provides unprecedented processing power than ever, either through dedicated 

gigabyte/sec Ethernet for computation-intensive applications or through Wide Area 

Network (WAN) in pursuit of global collaborations. 

 

“The real and specific problem that underlies the Grid concept is coordinated 

resource sharing and problem solving in dynamic, multi-institutional virtual 

organizations.”[33] 

 

Ian Foster, Carl Kesselman, Steven Tuecke, 2001 

 

The concept of Grid was refined in 2001 and highlights advanced features as follows. 

Rather than computation oriented only, some experimental science projects, such as 

Particle Physics and Earthquake simulation, requires instrumental resources to be shared, 

including sensors, detectors, etc. These experimental instruments accompany with 

compute, storage and others are collectively known as Grid resources. A Grid system is 

therefore required to address heterogeneity of underlying resource though  a set of open 

protocols and interfaces that address fundamental issues as authentication, authorisation, 

resource access, discovery, etc. Considering Grid resources may be shared from different 

administrative domains, it is important for a Grid system to ensure shared resources not 

be subject to localised control, but are subject to the control at Virtual Organisation (VO) 

level, which defines a set of resource-sharing rules and conditions of a dynamic of 

individual or institutions.  

 

However, the Grid computing is only one branch of the evolving distributed 

computing technologies. In the meanwhile of the evolution of the Grid computing, we 

have witnessed many other distributed computing technologies, which were driven by 

different problem scopes, although some underlying technologies and issues are 

overlapped. The following lists some example distributed computing models and 

highlights their differences or relations to Grid computing.  

 

Volunteer Computing 
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Volunteer computing is a type of distributed computing model where computing 

resources (i.e. processing powers and storage capacities) are provided by one or more 

computer owners. These resources can be harnessed for one specific application or 

various applications through a general-purpose middleware solution. The basic idea 

behind volunteering computing is to use spare processing or storage capacities of 

computing resources connected to the Internet.  In order to participate in a volunteer 

computing application, computer owners are need to trust the application and agree to 

install a piece of client-side software, normally lightweight and only active when 

computer volunteers are free or underutilised. As the SETI@home project [189], a 

volunteer computing project using internet-connected computers to analyse radio signals 

and search for signs of extra terrestrial intelligence.  

 

Given its volunteer nature, the volunteering computing differentiates from the Grid 

computing in following aspects: 

• A Grid application owns computing resources shared by one or more 

organisations, while a volunteer computing application does not has ownership 

of participating computing resources, 

• Grid computing requires delivering QoS at different levels, such as availability, 

security, etc. These QoS are hard to be ensured in volunteering computing, given 

the fact the ad-hoc nature of volunteer computing resources.  

• Grid computing middleware are general-purpose and provide well-defined APIs 

for resource sharing across application domains, while volunteering computing 

middleware are designed for a specific application or a specific application 

domain. 

 

Autonomic Computing 

 

Autonomic computing was initiated by IBM in 2001, which aimed at developing an 

intelligent computing system that is capable of self management, and reducing the 

complexity of system management particularly for large-scale computing environments. 

An autonomic system is able to monitor, make decisions, and adjust underlying system 

environment on behalf of system administrators in order to fulfill pre-defined Quality of 

Service (QoS). IBM defines four core technical features [190] that enable the ability of an 

autonomic system to adapt to change in accordance with business policies and objectives. 

These features include: 
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• Self-optimisation: the ability to automatic monitoring and control of system 

resources to ensure the optimal functioning with respect to the defined 

requirements according to dynamic changes; 

• Self-healing: the ability to recover from system errors without human 

intervention; 

• Self-configuration: the ability to automatic configuring system components to 

adopt to changes in the system; 

• Self-protecting: the ability to proactively anticipation and protection from 

arbitrary intrusions  

 

A Grid computing system can make use of autonomic computing facilities to enhance 

self-manageability and ensure QoS attainments at different service layers. Further details 

of self-management of Grid computing are given in section 2.3.6. 

  

Utility Computing 

 

The utility computing is analogy to traditional public utility with a metering and 

paying service running at backend. The basic idea of the utility computing requires low or 

no initial investment on hardware, while providing pay-and-run facilities through 

virtualization of computational and storage resources at backend. Utility computing was 

firstly proposed in the 1960s by John McCarthy, who envisioned that future organisations 

would simply plug in to a computing grid for computational resources rather than 

providing their own computing powers, just like connecting to an electrical grid, and 

paying based on what is used. 

 

It is worth noting that the utility computing is not a specific computing technologies 

but a vision of next-generation computing. The Grid computing is one of such enabling 

technologies that enable the vision the utility computing.  

 

Cloud computing 

 

Cloud computing is an emerging distributed computing paradigm that aims at 

providing an elastic, self-service and pay-per-usage computing facilities. As an emerging 

concept, the concept of cloud along with its enabling technologies is still confusing many. 
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According to the definition from National Institute of Standards and Technology (NIST), 

the Cloud computing is defined as “a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources, such as networks, servers, 

storage, application and services, which can be rapidly provisioned and released with 

minimal management efforts or service provider interaction”[34].  

 

The recent published review report [196] uses an analogue to Web 2.0 and defines 

cloud computing as a business model other than a new computing technology. Cloud 

computing facilities can theoretically deliver any type of computing capacities to end 

users including the Grid computing. Technically speaking, cloud computing and grid 

computing differs and relates to each other in many aspects: 

• The cloud computing resources are predominately provided by a single 

organisation and located in a large-scale data centre, in contrast to Grid 

computing resources shared across multiple, normally geographically distributed 

organisations.  

• The key enabling technology of cloud computing is the virtualisation technology 

to maximise resource utilisation, while Grid computing is more concerned about 

load balancing among distributed computing resources.  

• Grid computing and cloud computing share high-level technical challenges, such 

as resource management, data management, security, QoS management, etc. 

• By using cloud computing facilities, the management tasks are delegated to the 

service providers’ side, i.e. end users does not need to worry about resource 

management. The current Grid implementations still require end users to have 

certain knowledge of the execution environment for capacity planning, resource 

management and security.  

• Cloud computing can potentially provide Grid facilities or using Grid computing 

technologies at backend. 

 

1.2 e-Science Grid 

 

"e-Science is about global collaboration in key areas of science and the 

next generation of infrastructure that will enable it."[35] 

 

Dr John Taylor, Director General of Research Councils, 2000 
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"The term ‘e-Science’ denotes the systematic development of research 

methods that exploits advanced computing thinking. Such methods 

enable new research by giving researches access to resources held on 

widely-dispersed computers as though they were on their own desktops. 

The resources can include data collections, very large-scale computing 

resources, scientific instruments and high performance visualization.” 

[36] 

 

Prof. Malcolm Atkinson, e-Science Envoy 

 

The evolution of computing and networking technology is leading to the revolution in 

the conduct of scientific research. Scientists from different disciplines started using 

computing technologies, electronic data storage, and networking to replace or extend 

traditional efforts. Classic scientific researches, both theoretical and experimental, are 

using computer-aided simulation to explore new possibilities and achieve new precisions. 

HPC computers or clusters have been widely deployed at institutions enabling the 

speedup of simulation and visualization. A group of scientists from the same research 

fields meet and collaborate online without time and geographic limits.  

 

During the past decades, scientific research had also experienced changes affected by 

the “e”, abbreviation of the “electronic”, such as e-Social, e-Publishing, and e-Conference. 

These “e-” technologies somehow did not enable fundamental, but profound, 

transformation of research methodologies in science, until the advocating of the “e-

Science”. The term was coined by John Taylor, the director general of the office of 

science and technology in the UK, at the time of announcement of a major funding 

program, the UK e-Science program in 2001. The definition of e-Science was moderately 

refined by Prof. Malcolm Atkinson with clarified objectives. With e-Science, researchers 

are expected to have a set of value-added tools, software, and applications to access 

world-wide experimental results, to access global computing resources for real-time 

simulation and visualization, and collaboration on a grand project. 

 

 All these visions of future sciences depend on an e-infrastructure that provides tools, 

software and applications enabling coordinated problem solving. During the past five 

years, there were over 100 projects funded to UK e-Science program for developing an e-
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infrastructure, including SuperJANET project for constructing high bandwidth academic 

network, National Grid Service (NGS) project facilitating research activities to access 

distributed computational and data resources throughout the UK, Open Middleware 

Infrastructure Institute UK (OMII-UK) providing open source software to e-Research 

communities, etc. In Europe, the Enabling Grid for E-sciencE (EGEE) project was 

founded by European Commission in 2004 aiming at providing a Grid-enabled e-

Infrastructure for various scientific domains, including earth science, high energy physics, 

bioinformatics and astrophysics.  

 

1.3 World-wide LHC Computing Grid 

 

The Large Hadron Collider (LHC) is the world’s largest particle accelerator built by 

the European Organisation for Nuclear Research (CERN). It is intended to test various 

predications of high-energy physics through collision of opposite particle beams. Four 

main detectors have been constructed at the LHC to record events triggered by collisions. 

Two large and general-purpose detectors, the A Toroidal LHC ApparatuS (ATLAS)[37] 

and Compact Muon Solenoid (CMS)[38], are used to search for signs of new particles 

clues to the nature of dark matter. Other two medium detectors, LHC-beauty (LHCb)[39] 

 

Figure 1.6: LHC layout, four main experimental detectors chained by 27km ring 

accelerating tunnel. From[41] 
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and A Large Ion Collider Experiment (ALICE)[40], focus on investigations of events just 

after the Big Bang. As LHC layout given in figure 1.6, these detectors are chained and 

located at four collision points of main circular ring of LHC. Protons are firstly 

accelerated by linear accelerator to 50 Megaelectron Volt (MeV) before entering into 

three successive synchrotrons, including the Proton Synchrotron (PS) and Super Proton 

Synchrotron (SPS). Protons ultimately enter into the LHC main ring, where collisions 

take place 40 million times per second. 

 

It is estimated there will be huge amount of data to be generated by LHC experiments, 

approximately 15 PetaBytes a year. These data is intended to be analysed by thousands of 

scientists around the world. Based on an initial survey[42] on anticipated computing 

requirements for LHC experiments submitted in early 2001, CERN approved and 

launched the Worldwide LHC Computing Grid (WLCG) project. One of the objectives of 

the WLCG project is to develop a Grid infrastructure upon that distributed computing and 

data storage resources from 140 computer centres in 34 countries. These distributed 

computer centres are organised into three tiers. When collision triggered, event data are 

collected by experiment-specific trigger and acquisition systems [43][44][45][46].  Event 

data are then filtered by local computer farms so that only interesting events are kept into 

local persistent storage. Four experiments send their filtered raw data simultaneously to 

the CERN computer centre, so-called Tier-0 centre. When raw data arrives at Tier-0 

centre, they are processed initially and backed up on tape at CERN. Subsets or all raw 

data are then sent out globally to eleven large Tier-1 computer centres that are 

interconnected by the general-purpose research network with dedicated 10 Gbit/s links. 

There are more than 150 Tier-2 centres, mainly university and research institutes, which 

allow physicists to perform analysis and simulations. The WLCG is supported by three 

major Grid infrastructure projects, Open Science Grid project of US, EGEE project, and 

Nordic Data Grid Facility (NDGF) project. Each project supplies custom, while 

interoperable, Grid middleware solution, through open standards and interfaces. 

 

1.4 Grid Accounting 

 

For large-scale complex system as the Grid, resource usage is required to be 

accurately accounted. Resource usage information is important in the sense of Grid 

system administration and policy enforcement. In scientific Grid environment, resources 
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are predominately shared for one or more non-profitable research projects. Each project 

has fixed resource quotas, computational cycles and storage spaces for instance. A Grid 

system is committed to prevent overexploitation of resources by checking historic 

resource usage of individual or project against allocated quotas. Resource usage 

information enriches the understanding of resource utilisation in a Grid system, so that 

system administrators can determine how to reallocate resource for better system 

performance, maximising resource utilisation. Resource usage information also helps 

discover and track abuses or configuration issues of a Grid infrastructure. Commercial 

Grid allows users to access resources on “pay-per-use” basis. Resource usage information 

therefore is used as proofs for charging. The Grid accounting is such a service that aims at 

providing a consistent Grid-wide view of resource usage. Many production Grids have 

accounting systems deployed for various purposes. The accounting system in UK e-

Science Grid, the National Grid Service (NGS) for example, is being developed mainly 

for resource usage monitoring against individual users. Accounting systems in 

EGEE/WLCG projects are mainly for statistic usage reporting for Virtual Organisations 

(VOs) and participating sites. 

 

1.5 Summary 

 

This chapter sets the scene for following detailed discussion. The chapter discussed 

Grid computing and Grid accounting at high level, including historic driver factors that 

enables the emergence of Grid computing; its impacts on revolutions of scientific 

research patterns by giving two example usage scenarios of ‘e-Science’ projects; and a 

brief introduction of Grid accounting. In following chapters, more technical details are to 

be discussed. The rest of this thesis is organised as follows. Chapter 2 concentrates on 

technical aspects of the Grid and reviews of a selection of middleware solutions 

implemented by production Grid projects. Technical reviews of Grid accounting is 

presented in Chapter 3. In Chapter 4, an accounting system prototype is presented and 

shows how a standard-compatible solution contributes to a consistent way to share 

accounting data in such multi-Grid environment as WLCG with different accounting 

systems deployed. Chapter 5 demonstrates the implementation of a generic Grid 

accounting middleware that is used as a toolkit to ease the migration of existing 

accounting systems to be standards compatible. Finally conclusion and future work are 

given at chapter 6 as the ending of the whole thesis. 
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Chapter 2                 

The Grid 

 

A Grid system integrates heterogeneous and distributed resources across 

administrative domains a virtual system. Since 1990s, extensive efforts have been put on 

development Grid middleware and software for diverse research projects. Early Grid 

middleware solutions were built upon existing Internet protocols and aimed at providing a 

Grid infrastructure for specific projects. These early adoptions to the Grid are too 

implementation-specific to be used by others. Based on these initial efforts, the Grid had 

received increasing attentions and evolved as a standard distributed computing paradigms. 

In 2001, the first architectural standard, Open Grid Service Architecture (OGSA), was 

released and formed the basis of constructing interoperable Grid systems. The OGSA 

standard identifies a set of key functional components of a Grid system based on 

emerging Web service architecture. Since then, a great number of Grid projects were 

founded to develop OGSA-compatible middleware and software tools. These production 

Grids are serving thousands of scientific research projects around the world. 

 

The success of the Grid to date comes from a combination of factors, including early 

implementation experiences, the emergence of clear architectural principles, 

standardisations, de factor standard software, etc. This chapter reviews and discusses 

these factors that combined to make the Grid possible. 
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2.1 Concept 

 

For a long time, the term Grid was used for a computing Grid that provides 

unprecedented computational capacities by harnessing inter-connected computers. Based 

on increasing use cases gathered from both scientific and business applications using Grid 

technologies, the concept of Grid has been refined as a distributed computing paradigm 

with following essences [33]: 

 

• “coordinated resource sharing that are not subject to central control” 

 

• “using open, standard, general-purpose protocols and interfaces” 

 

• “delivering nontrivial qualities of service (QoS)” 

 

One of the key objectives of constructing a Grid system is to enable seamless resource 

sharing across administrative domains. These heterogeneous resources are coordinated to 

achieve an application-oriented goal in a trustful and controlled manner governed by a set 

of sharing rules, which are not subject to any specific administrative domain. Such 

sharing rules include security, user membership, payment, and application-specific 

policies. A set of individuals and resources governed by same sharing rules forms the so-

called Virtual Organisation (VO).  

 

A Grid system is built upon multi-purpose protocols and interfaces that address 

fundamental issues relating to resource access, resource management, resource 

introspection, authorisation, etc. A piece of software that implements these protocols and 

interfaces is known as Grid middleware. It is important these protocols and interfaces are 

open and standard such that Grid applications can be developed in a consistent manner 

and migrated from one Grid middleware to the other.  

 

Finally Grid resources are used in a coordinated pattern in order to accommodate 

requirements for diverse usage modes and deliver various non-functional characteristics, 

known as Qualities of Service (QoS), such as advanced resource reservation, security 

semantics, system throughout, responsiveness, etc. 
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2.2 Architecture  

 

In order to identify general requirements on constructing a Grid system, a layered 

architecture (figure 2.1) is defined following principles of “hourglass model”. Each layer 

abstracts a set of core components and protocols, through which actions of high-level 

applications can be mediated and mapped onto underlying technologies of resources to be 

shared. 

 

2.2.1 Fabric 

 

The fabric layer, as the base of “hourglass”, provides resources to be shared in a Grid 

environment. These resources may be either physical entities or local entities, such as 

distributed file system, computer pool or database systems, which involve internal 

protocols defined by fabric components and deliver resource-specific QoS. Fabric 

resources that intended to be accessible through Grid protocols must supply two 

mandatory mechanisms: introspection and management mechanisms. Introspection 

mechanisms allows discovery of underlying resource structure, state and capability, while 

management mechanisms provide control over delivered QoS. 

 

 
 

Figure 2.1: “Hourglass” architecture identifies requirements on definition of Grid 

protocols at each layer. From [47] 
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2.2.2 Connectivity 

 

The connectivity layer defines a set of core communication protocols and 

authentication protocols required for Grid-specific transactions. Communication 

protocols are used to transport and route messages among fabric-layer resources involved 

within a Grid transaction. It is common to assume that these communication protocols are 

based upon, but not limited to, existing Internet-layered protocols, such as TCP/IP and 

other application-layer protocols.  

 

Authentication protocols at connectivity layer establish a binary trustful link between 

communication endpoints by verifying the identity of user and resources. Although there 

are many security standards built upon Internet protocol suite, they do not satisfy all 

security problems in a Grid environment. Participants in a Grid environment often need to 

coordinate multiple resources to accomplish a complex task. By using existing Internet 

authentication protocols, individual user is required to be authenticated on per resource 

access basis. It is necessary to have a single sign-on mechanism that ensures user-

transparent access to multiple resources coordinated for a single task. Besides, a user may 

endow a program with ability to execute on behalf the user. A user, for example, submits 

a job request to an execution service, which need to transfer an input file for the job 

execution from a remote storage resource. In this case, the remote storage access must be 

authenticated by verifying job requestor’s identity rather than execution service’s identity. 

This process is known as delegation. 

 

2.2.3 Resource 

 

Having defined connectivity-layer protocols, users can communicate underlying 

shared resource in a secure way. As discussed in section 2.1.1, fabric resources to be 

shared in a Grid environment must provide introspection and management mechanisms. 

However, these mechanisms are implemented in a resource-specific manner. The role of 

resource layer is therefore to abstract a set of common protocols that capture the 

fundamental mechanisms of sharing across many different resource types. 

Implementations on resource-layer protocols are supposed to call fabric resource 

functions to access and control local resources.  
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 There are two primary classes of protocols as defined at resource layer: information 

protocols and management protocols. Information protocols define a set of common 

interfaces that interrogate local resource introspection mechanisms to obtain information 

about resource configuration, state, current load, etc. A set of common management 

protocols are used to negotiate resource access, specify runtime requirements, initiate 

operations, monitor execution status, and account resource usages. Definition of 

management protocols should be limited to a small and focused set, which apply to at 

least a range of resources that share common management requirements therefore 

forming the bottle neck of the hourglass model. Protocols defined within resource layer 

differentiate from those of collective layer in that resource-layer protocols target at an 

individual resource without concerning about coordinated actions across multiple 

resources. 

 

2.2.4 Collective 

 

While the connectivity and resource layers focus on low-level protocols for 

introspection and management of a single resource, the collective layer provides 

protocols and shared services at the Virtual Organisation (VO) level enabling coordinated 

resource sharing in a Grid environment. Typical collective services include: 

• The community authorisation service that maintains and enforces security 

policies of one or more VOs. 

• The directory service that allows VO members to discover the existence and 

properties of VO resources;  

• Resource allocation and brokering service that allocates VO-member requests to 

one or more appropriate VO resources; 

• Data replication service that maintains and manages copies of data among 

multiple VO storage resources;  

• Community accounting service metering, gathering and provisioning VO 

resource usage information; 

• Community monitoring service reporting real-time status of VO resources, 

mainly for detection of resource failure, intrusion, overload, etc; 

• And community economic services that realises Grid economic through pricing 

and charging VO members according to actual resource usage. 
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2.2.5 Application 

 

The final layer, application layer, comprises applications that operate within a VO 

environment. Development of applications may invocate well-defined low layer protocols 

or APIs. Alternatively, applications may develop sophisticated application-specific 

protocols and APIs.  

 

 
 

Figure 2.2: OGSA standard stacks and relationships to layered architecture 

2.3 Standards  

 

Open Grid Service Architecture is the standard that provides a high-level definition of 

core capabilities required to support Grid systems and applications. As figure 2.2, these 

capabilities include execution management, data service, resource management, security, 
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information, and self management so that diverse components can be discovered, 

managed and integrated as a virtualised system. The OGSA standard [48] was proposed 

2001 by the Global Grid Forum, GGF, which merged with Enterprise Grid Alliance (EGA) 

and formed the current Open Grid Forum (OGF). Thousands of individuals from over 400 

organisations in more than 50 countries are currently active in different domain-expert 

OGF working groups and providing inputs to fulfil OGSA functionalities. There are two 

types of document inputs being produced by OGF working groups in order to maintain 

coherence around OGSA and Grid-related standards. The informational documents 

provide use cases, guidelines and information about OGSA architecture process. OGSA 

specifications and profiles are a collection of normative documents that define technical 

details on functional interfaces and protocols as well as their usage to ensure 

interoperability. The following content of this section discusses details of emerging 

OGSA specifications and profiles in the context OGSA. 

 

2.3.1 Infrastructure Services 

 

The main goal of infrastructure services is to provide coherent and integrated 

components that collectively address Grid requirements as demonstrated in section 2.2. A 

primary assumption is that OGSA systems and applications are built upon the Web 

Service Architecture (WSA) [49] and aligned with emerging Web-service technical 

specification in order to ensure interoperability through standard Web service messaging 

framework (i.e. SOAP)[28] and normative service description (i.e. WSDL)[30]. However, 

it is clear that currently defined Web service standards are not sufficient to meet all Grid 

requirements. 

 

Basic Manageability Model 

 

A Grid system requires resources to be shared in a manageable manner. One of the key 

objectives of OGSA infrastructure services is therefore to provide a basic manageability 

model that forms the basis for both resource management and management of OGSA 

environment. The basic manageability model at infrastructure level abstracts core 

manageability interfaces that are common to all resource/services implementing OGSA 

capabilities.  
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In early 2002 OGF proposed the Open Grid Service Infrastructure (OGSI) [193] 

specification that extends Web service capabilities and introduces the idea of “stateful” 

Web services, particularly concerned with creating, addressing, managing the lifetime of 

“stateful” Grid services and notification of service state changes. The OGSI specification 

is then refactored into a framework of Web service standards in 2004, in particular the 

family of Web Service Resource Framework (WSRF) [50] and Web Service Notification 

(WSN) [51], given the fact that the OGSI specification tried to integrate a number of 

independently reusable Web service functionalities into one specification. These 

specifications were defined to address specific problems and exploited other Web service 

standards, the Web Service Addressing (WS-Addressing) [57] for example. The collection 

of WSRF and WSN standards were originally proposed by OGF and then accepted by 

Organisation of Advanced Standards for the Information Society (OASIS) as the basis of 

Web Service Distributed Management (WSDM) [194] standards. In 2006, OGF further 

proposed a normative profile specification, the OGSA WSRF Basic Profile (WSRF-BP) 

[53], which aims at addressing interoperability issues of using WSRF specifications for 

distributed Grid resource management in the context of OGSA.  

 

It is however worth noting that the WSDM specifications received increasing 

controversial debates mainly because of its Grid nature and incompatibility to WS-* 

mainstreams. In 2005, a competing specification, the Web Service Management (WS-

Management) [52] was proposed by Distributed Management Task Force (DMTF). This 

specification is defined based on three main WS-* standards, including Web Service 

Transfer (WS-Transfer) [59], Web Service Enumeration (WS-Enum) [60], and Web 

Service Eventing (WS-Eventing) [61]. As shown in Table 2.1, these specifications 

provide functional counterparts of those defined in WSRF and WSN specifications.  

 

In order to enable interoperability of separately developed Grid resources, a future 

convergence was planned in 2006 to converge WSDM and WS-Management 

specifications. As shown in Figure 3.2, the plan is to use WS-* standards as basis while 

defining extensions to support features that defined in the WSRF and WSN specifications, 

and eventually contribute to the convergence of WSDM and WS-Management 

specifications.  Given the fact that future convergence is more WS-management oriented 

and based on its three underlying Web service standards, the development of Grid 

accounting solutions is based on WS-management framework rather than WSRF 

framework. 
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Table 2-1: Distributed Web Service Management (WS-RF vs. WS-Management) 

Function WSDM WS-Management 

State Representation  WS-Resource Properties  XML 

State Lifecycle Management  WS-Resource Lifetime WS-Transfer 

Collection  WS-Service Group WS-Enumeration 

State Transition Notification  WS-Notification WS-Eventing 

Addressing WS-Addressing WS-Addressing 

Fault Handling  WS-Base Faults [58] SOAP Fault [28] 

 

 

 
Figure 2.3: Roadmap of convergence of WSDM and WS-Management stacks 

Naming 

 

Resources in OGSA environment are represented as services, which are instantiated on 

demand and assigned a global unique address. The Endpoint Reference (EPR) model 

defined in the Web Service Addressing (WS-Addressing) specification [57] is used as the 

architectural construct for an address in OGSA. These addressable EPRs constitute a 
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complex runtime environment of a Grid system. In order to simplify development high-

level applications that utilise underlying complex environment, a three-level naming 

scheme of traditional distributed systems is employed in OGSA.  Every named entity is 

associated with multiple user-defined names, a global unique abstract name, and one or 

more addresses. Two specifications, the OGSA-Resource Namespace Service (OGSA-

RNS)[62] and Web Service Naming (WS-Naming) profile[63], defines standard protocols 

for resolving and rebinding of a user-defined name to an address by extending the 

endpoint reference model as defined in Web Service Addressing (WS-Addressing) 

specification [57]. 

 

Security 

 

Another important issue to be solved at infrastructure level is the secure access to 

shared resources across different administrative domains. Considering there might be 

different security mechanisms adopted at classic organisations to accommodate specific 

security requirements, security at OGSA infrastructural layer is therefore required to 

ensure interoperability among domain-specific security mechanisms. Interoperability can 

be achieved at two levels ensuring authenticated and confidential communications. 

Transport Layer Security (TLS) is the commonly used security protocol in distributed 

computing by providing endpoint authentication and communication confidentiality. 

Emerging Web service security specifications offers advanced features and addresses 

secure communication at message level. At message level, authentication and trust 

relationship can be established using the Web Service Secure Conversation (WS-

SecureConversation) [64] and the Web Service Trust (WS-Trust) [65] protocols. During 

message transfer over the network, data privacy and integrity are ensured by applying 

standard encryption encoding and security token exchange as defined in specifications of 

Web Service Security (WS-Security) [66], XML Encryption [67], and XML Digital 

Signature (XML-DSIG) [68].  

 

Existing Web service security protocols, however, are used to secure stateless Web 

service transactions. In order to enable secure access to Grid service/resource instances, 

the OGSA working group proposed a Basic Security Profile (OGSA-BSP) [69] that 

declares a set of statements on how to ensure security interoperability at Web service 

resource level in conformance to existing Web service security protocols. This profile 

links two other profiles, the OGSA Secure Addressing Profile [70] that defines a set of 
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conformance statements for discovery of security requirements of a particular 

service/resource instance by extending the WS-Addressing [57] schema and the OGSA 

Secure Communication Profile [71] that facilitates secure communication to Web service 

resource instances. 

 

2.3.2 Execution Management Services 

 

Execution Management Services (EMS) defines a set of services, which aim at 

addressing issues related to execution of Units of Work (UoW), ranging from simple 

batch job to complex workflows. In particular, the issues include, but not limited to, 

resource provisioning, UoW placement, and UoW lifetime management. As shown in 

Figure 2.4, the solution of OGSA EMS is decomposed into multiple abstract and reusable 

services, each of which targets at specific issue. The following gives details of individual 

service and its roles in the context OGSA EMS. 

 

 

 

 
 

Figure 2.4: OGSA Execution Management Services (EMS) and interactive relations  
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Job Management  

 

In the context of OGSA EMS, the term, job, represents the manageability aspects of a 

UoW. It is the smallest manageable unit and implements a manageability interface as 

defined within WSRF-BP [53]. A job has a limited lifetime traversing a set of discrete 

states (e.g. pending, running, completion, etc). A job can be submitted by end users or 

spawned by a Grid service with specific runtime requirements, and/or QoS commitments 

(e.g. reliability, completion deadline, etc). The information related to job submission and 

job state, along with other metadata (e.g. job owner), is known as the job properties that 

should be traceable and monitored by clients. OGF defines two specifications related to 

job submission: the Job Submission Description Language (JSDL) [74] that is a language 

used to describe the resource requirements of computational jobs for submission to Grid 

resources, and the emerging Web Service Level Agreement (WSLA) [191], another 

language specification that is used to describe the job submission with additional agreed 

QoS terms at service level (such as availability, response time, etc.).    

 

As shown in Figure 2.4, the job manager is defined as the high-level service that 

provides job manageability facilities. A job manager accepts job submission requests, i.e. 

JSDL or WSLA instances, and is responsible for orchestrating one or more Grid services 

necessary to start a job or a set of jobs, for example, negotiating service-level agreements, 

matchmaking job requests against available resource candidates, optimising resource 

selection, staging jobs to computational resources and job status monitoring. Job manager 

may be implemented in various ways. Example job manager implementations include but 

not limited to: 

• a Web portal that allows users to view available Grid resources and perform 

matchmaking; 

• a queuing system that caches job submission requests and distributed them to 

different resources by applying certain matchmaking algorithm;  

• and a workflow manager that receives a number of jobs as a workflow and 

manage the workflow until completion; 

 

Selection Services 

 

On receiving a job submission request, a job manager is required to determine where 

to execute a job among a collection of execution resources. The resource selection is a 
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two-stage process involving finding resource candidates and optimise objective functions. 

Accordingly OGF Resource Selection Service (RSS) working group defines two services 

related to the resource selection process: 

• Candidate Set Generator (CSG) [73]:  The CSG service is in charge of the 

selection of a set of computing resource candidates by applying certain match-

making algorithms. It mainly deal with low-level technical resource requirements 

such as CPU type, storage capacity, networking rate. For example, an execution 

request may specify a list of resource requirements for a target UoW. On 

receiving the request, the CSG service then returns a list of matched VO 

resources by interrogating information services (see section 2.3.4). 

• Execution Planning Services (EPS) [75]:  The EPS service takes the match-

making results, the outputs of CSG service, and attempts to optimise object 

function such as execution time, cost, reliability, etc. However both EPS and 

CSG services do not perform the scheduling process, but returning optimised 

resources to job manager.  

 

Execution Environment Management 

 

In the context of OGSA, an execution environment consists of every aspect necessary 

for job execution, particularly including a job container and underlying computational 

Grid resources. A job container, as its name indicated, contains running jobs, and 

manages job lifecycles. Example job containers include a queuing service, J2EE hosting 

environment, batch system, etc. These containers provide common functionalities for 

creation, monitoring and management of running entities, but in heterogeneous ways and 

with various interaction interfaces. In order to enable the job manager to interact with 

various execution environment in a consistent manner, OGF proposed a Basic Execution 

Service (BES) specification [72] that defines a set of well-defined service interfaces and 

information models based on the WSRF-BP [53] profile, through which clients can send 

requests to initiate, monitor and manage computational jobs upon different underlying 

execution environments.  

 

Besides basic functionalities as specified in the BES specification, a resource provider 

might also provide optional advanced features. One of such advanced features is the 

reservation service. State-of-the-art execution environments, such as Portable Batch 

System (PBS) [192], have advanced reservation facilities implemented to ensure 

 
 



 
33 3BThe Grid 

availability of a set of resources to users at a given period. The reservation service 

proposed in the context OGSA EMS is to define a common interface for creation and 

management of resource reservations. 

 

2.3.3 Data Services 

 

A variety of data services have proved to be useful to facilitate high-level applications 

to locate and utilised distributed data resources. These collective services provide 

primitive mechanisms for management, access, and federation of data resources shared 

across administrative domains. 

 

Data Resource 

 

A data resource acts as a sink or source of data. There are different types of data 

resources in a Grid environment, including relational database, XML database, flat files, 

data stream, etc. Most of data resources are managed by existing systems such as 

Relational Database Management System (RDBMS) or file systems. Existing data 

management systems provide similar manageability interfaces mainly for data access and 

lifetime management but using different manageability interfaces. One of key objectives 

of OGSA data services is therefore to provide a high-level functional and manageability 

interfaces upon existing data management systems. 

 

The OGF Data Access and Integration (DAI) working group proposed a stack of 

standards for data access and management. The Web Service Data Access and Integration 

Service (WS-DAI)[76] is the core specification that defines a collection of generic service 

interfaces for uniform data access and manipulation. The WS-DAI specification 

distinguishes data resources that are managed by external management systems from 

those to be managed by WS-DAI service. In the case of service managed data resources, 

the WS-DAI specification recommends implementations to use WS-RF compatible 

solution for lifetime management. The working group also proposed three additional 

specifications, the WS-DAIR[77], WS-DAIX[78], WS-DAI-RDF(S) [79][80] which 

extends core properties defined in WS-DAI core interfaces for realisation of access 

service to relational, XML, and Resource Description Framework (RDF) [81] data 

resources respectively.  
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Storage Resource 

 

 Considering some data resources, such as relational database and files, are storage 

based, it is necessary for OGSA data services to provide functional and manageability 

interfaces for storage resources as well. Like data resources, most storage resources are 

managed by existing storage management systems. These storage management systems 

provide custom solutions to control and provision of raw storage or space in a file system 

as well as custom file access protocols. OGSA data services are intended to provide an 

abstract manageability interface for storage management over heterogeneous storage 

management systems. 

 

The OGF Grid Storage Management (GSM) working group focus on the definition of 

standard interfaces of a middleware component, the OGSA Storage Resource Manager 

(OGSA-SRM)[80], which provides dynamic storage resource allocation and file 

management facilities to storage resources shared in the Grid. File access to storage 

resources can be achieved through two standard mechanisms as proposed by OGF 

working groups. The OGF GridFTP working group proposed a standard file access 

protocol, the Grid File Transfer Protocol (GridFTP) [82], which extends from File 

Transfer Protocols with enhanced security and performance. Remote files can be 

alternatively accessed through a set of standard interfaces defined within the OGSA Byte 

Input/Output (OGSA ByteIO) specification [83], which provides “POSIX-like” file 

functionalities. These standardisation efforts make it possible to implement advanced data 

features of OGSA data services. File replication, for example, is an important feature than 

enhances system performance and fault tolerance in a Grid system. The OGSA Data 

Movement Interface (OGSA-DMI) [84] is a recent specification proposed by the OGF 

DMI working group and simplifies data transfer across multiple storage and data 

resources through a set of standard interfaces. 

 

2.3.4 Information Services 

 

The Grid environment consists of a huge amount of highly distributed and 

heterogeneous resources, which are coordinated to accomplish complex application goals. 

The OGSA defines a set of collective capabilities that hide low-level complexity of a Grid 

environment. Information services exhibit one of such high-level capabilities by 
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providing efficient access to information about resource/services, applications and events 

in a Grid environment. The information supplied by an information service is intended to 

be used for various purposes including resource/service discovery, system performance 

tuning, fault detection, and accounting. There are two main components of information 

services, the logging service and discovery service. Logging services work at the 

infrastructure layer and produce dynamic status information of individual resources. 

Discovery services are likely to be deployed in every Grid system and act as registry 

maintaining static resource information as well as dynamic information collected from 

multiple logging service instances. 

 

Rather than defining a single information service to support all usage scenarios, which 

is impossible, current standardisation efforts on OGSA information services are at highly 

abstract level without compromising service usability. The OGSA Grid Monitoring 

Architecture (OGSA-GMA)[85] specification defines essential interactions among three 

abstract components in a Grid monitoring architecture, the information provider, 

information consumer and directory. Another important point issue relating to OGSA 

information services is resource information models. Resource information models 

describe resource-specific semantics by defining resource-specific properties, operations 

and relations to other resources. There are many other industry standards for resource 

modelling, such as the Common Information Model (CIM) [86] defined by DMTF, the 

resource model proposed by Java Management Extensions (JMX) [87] framework, etc. It 

is likely that implementations of information services of different Grid projects may 

apply these standards for resource modelling. In order to enable interoperability between 

Grid-specific information services, the OGF Grid Laboratory for a Uniform Environment 

(GLUE) working group defines an abstract information model, known as the GLUE 

schema[88], as a legacy schema that can be mapped to concrete schema employed by a 

Grid information service.  

 

2.3.5 Security Services 

 

OGSA security services provide facilities to enforce security policies in a VO. From 

security perspectives, a VO maintains certain security policies that is outsourced by 

resource providers and coordinates their resource sharing and usage in a consistent 

manner. To be more specific, VO-specific security policies pulls together user participants 
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and resource/services from disparate domains into a common trust domain. Compare to 

traditional means of security administration that involves a centralized policy databases of 

user credentials, administration of VO security policies in the OGSA environment is 

complicated by the dynamic nature of VO. A VO needs to establish trusts between users 

and Grid resource/services. Theses trust domains spans multiple user participants that 

dynamically join and leaving and multiple resource/services that are dynamically 

deployed or created over the lifetime of a VO. The establishment of dynamic trust 

domains of a VO requires a delegation mechanism that allows one entity to grant rights to 

another (e.g. newly created resource or services) to perform actions on its behalf. Besides, 

user participants in a Grid environment may need to coordinate multiple resource/services 

to accomplish a single task. OGSA security services are also required to provide a single 

sign-on mechanism to ensure that the user is authenticated exactly once and need not to 

be re-authenticated upon following access to Grid resource/service during a period of 

time. Access to Grid resource/services must be authorized by security policies specified 

by resource/service providers as well as those from VOs. OGSA security services need to 

provide a standard authorization framework that accommodates various access control 

models and implementations deployed by service providers.  

  

Within OGF, an OGSA security working group has been founded to enumerate and 

address aforementioned security issues in the context of OGSA.  The initial profile 

specification, Grid Certification Policy (GCP) [89], provides a guidance for the use of 

attributes and extensions of the Internet X.509 Public Key Infrastructure Certificate [89] 

to accommodate advanced security requirements such as delegation and single sign-on in 

OGSA environment. Another security-specific working group, the OGSA Authorisation 

working group, focuses on addressing interoperability issues among multiple 

authorisation domains by defining a generic authorisation framework. The recent released 

informational document, Functional Components of Grid Service Provider Authorisation 

Service Middleware [90], proposed two OGSA authorisation models from the 

resource/service providers’ point of view, the pull model and push model. By push model, 

user credentials and authorisation assertion of a VO are attached with request message to 

service provider. On receiving access requestors, resource/service providers are required 

to validate assertion and apply local authorisation policies. On the other hand, a 

resource/service provider is required to call VO authorisation decision point to get user 

attributes or authorisation assertions before applying local authorisation polices. This 

model is known as the pull model. Based on proposed authorisation framework, the 
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working groups are working on defining standard authorisation protocols compatible to 

XML Access Control Markup Language (XACML) [91] and Security Assertion Markup 

Language (SAML) [92] proposed by OASIS. 

 

2.3.6 Self-management Services 

 

Self management capabilities have received increasing attentions in OGSA. A self-

management Grid environment composed of autonomous services (see section 1.1.4) that 

are self-configurable, self-healing, and self-optimising. One of the major objectives of 

self-management in a Grid is the support service-level attainment for OGSA 

resource/service through a conceptual component, the Service Level Manager (SLM). 

The SLM component is modelled after a generic control loop pattern, which consists of 

monitoring, analysis and projection, and action phases. A SLM may be used to control 

and adjust service activities at different levels. Grid system-level SLMs, for example, can 

be used for improving resource utilisation by dynamically enrolling resources or releasing 

surplus resource depending on current system load. Although identified as a significant 

part of OGSA, standardisation efforts self-management services are still at a preliminary 

stage. 

 

Figure 2.5: Evolution of Grid Middleware Technologies. From [33] 
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2.4 Middleware  

 

Having identified requirements and capabilities that are fundamental to the success of 

Grid applications, considerable progresses have been made during past ten years in 

developing Grid middleware. As illustrated in figure 2.5, the evolution of Grid 

middleware is divided into four phases. Starting from early 1990s, Grid technologies 

concentrated on addressing meta-computing [93] issues through linking heterogeneous 

computational resources in such a way that are transparent to users as a single computer. 

Middleware development uses various solutions to achieve a limited set of functionalities, 

security and scalability in particular, therefore not concerning about interoperability. The 

emergence of Globus Toolkit version 2 (GT2) in 1999 became the first de factor standard 

and pioneered the creation of interoperable Grid middle. Services and protocols defined 

within GT2, however, are based on internet protocols and implementation-oriented. It is 

not possible to have different implementations of Grid middleware until 2002 when a 

community of standards released based on OGSA profile, which aligns Grid computing 

with broad Web service protocols. Since then, a great number of standard-compatible 

Grid middleware released. It is also envisioned that the evolution of OGSA-compatible 

middleware will eventually lead Grid computing in another stage with enhanced features 

on autonomy and self management. The section reviews Grid-middleware solutions both 

OGSA compatible and OGSA non-compatible.  

 

2.4.1 Globus Toolkit 

  

Globus Toolkit (GT) is an open-source toolkit that forms a fundamental technology 

enabling Grid computing. The project was founded in late 1990s and originated from the 

US national project, I-WAY [95], which aimed at providing inter-connection between 

eleven high-speed research networks. Since version 1.0 release in 1998, version 2.0 in 

2002 and recent release Web service compatible version 4.0, GT has evolved rapidly as a 

standard Grid middleware and forms foundation for thousands of Grid projects worldwide 

in both scientific and industry fields. However early adoptions, such as gLite (see section 

2.4.2), are mainly based on GT2, which addresses issues relating to security, resource 

management, monitoring, discovery and file transfer at resource layer.  These projects 

have various custom solutions developed upon GT2 components to address high-level 

issues for coordinated resource access and VO management. As presented in figure 2.5, 
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the Web service-based GT4 provides significant improvements in terms of community 

functionalities and OGSA standard compliance. 

 
 

Figure 2.6: Globus Toolkit Components (Pre-WS vs. WS releases). From [94] 

 

Common Runtime Environment 

 

Common runtime environment of GT consists of a set of components that abstract 

low-level connectivity protocols in a platform independent manner. The pre-Web service 

release of GT provides two runtime tools, the eXtensible Input/Output (XIO) [96] and C 

command library. The XIO represents a simple Open/Close/Read/Write (OCRW) 

interface that provides an abstract layer upon transport protocols, such as TCP and UDP. 

A common library written in C programming language implements most infrastructure 

functionalities of GT2, including security, introspection and management facilities for 
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development of custom services in a platform independent manner. GT4 leverages Web 

service stacks and provides WS-RF compatible runtime environments. There are three-

version containers available for service development in Java, C, and Python programming 

languages. 

 

Execution Management 

 

Execution management in GT is realised by the Grid Resource Allocation and 

Management (GRAM) [97] component, which defines standard protocols allowing 

initialising, monitoring, and managing execution of jobs on remote computational 

resources. However GRAM is not a job scheduler, but abstracts a single protocol for 

communicating with the Local Resource Management System (LRMS) and allows a 

client to specify resource requirements using Resource Specification Language (RSL) 

[98]. The GRAM component also provides operations for monitoring status of execution 

resources.  

 

The GRAM component is refactored in GT4 and provides standard Web service 

interfaces for job submission and management, therefore also known as WS-GRAM. Two 

additional functional sub-components are added in WS-GRAM. The workspace 

management service functions as a sandbox and dynamically allocates local Unix 

accounts to execution requestors. A more general protocol, Grid TeleControl Protocol, is 

also provided in WS-GRAM mainly for instrumentation management, such as 

management of earthquake engineering facilities and microscopes.  

 

Data Management 

 

Data Management components of GT provides facilities to data access, transfer, and 

replication. GT’s implementation of GridFTP [82] protocol enables secure and high-

performance file transfer over Wide Area Network. The Replica Location Service 

(RLS)[99] acts as a registry of file replicas and provides two-level naming mechanism 

allowing mapping multiple user-defined logic file names to target physical file location. 

However the RLS itself does not guarantee either file consistency or filename uniqueness. 

It is expected high-level services would provide these advanced features.  
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Data management in GT4 is enhanced by introducing two high-level manageability 

interfaces for data transfer and replication. The Reliable File Transfer (RFT)[100] service 

provides Web service interfaces for management and reliability of multiple file transfers 

using GridFTP protocols. A prototype service, Data Replication Service (DRS)[101], is 

expected to hide the complexity of the overall processes of data replication by allowing 

users to identify a set of desired files in the Grid environment, to make local replicas of 

those files by transferring files from one or more source locations through RFT service, 

and to register the new replicas in a RLS. A third-party tool developed by UK e-Science 

program, the OGSA Data Access and Integration (OGSA-DAI) [102], is integrated within 

GT4 as a data management component providing access and management facilities to 

other structured data, relational and XML data in particular.  

 

Information Services 

 

 Information services in GT are enforced by the Monitoring and Discovery System 

(MDS) for collection, indexing, discovery of resource/service information in a Grid. 

MDS implemented in GT2, called MDS2, is based on Lightweight Directory Access 

Protocol (LDAP) and consists of three hierarchical components:  Grid Information Index 

Service (GIIS), Grid Resource Information Service (GRIS), and Information Providers 

(IPs). Resource/service providers may have multi-purpose monitoring sensors running on 

a resource/service to collect information data such as CPU load, system configuration, etc. 

The IPs provides an abstract interface layer upon local monitoring sensors so that 

resource-specific data can be collected and published in a consistent manner. The GRIS 

runs on a resource/service and acts as a modular content gateway for a resource. GRIS 

instances are registered to a GIIS endpoint, where information data are indexed and 

cached. Information consumer may optionally query information of a specific resource 

directly to GRIS or talk to GIIS to obtain collective information. MDS2[103] defines a 

resource information model for computational resources only, known as MDS schema. 

Information providers may also publish GLUE-compatible information model by 

configuring a LDAP implementation of GLUE schema.  

 

The MDS2 is no longer maintained and replaced by a Web service compatible solution, 

known as MDS4, in GT4. MDS4 is built upon standard query, subscription and 

notification protocols as defined in WS-RF and WSN specifications. Based on these 

standard protocols, a range of GT4 components, such as WS-GRAM and RFT, are 

 
 



 
42 3BThe Grid 

implemented as information providers for collection of information from specific 

resource/services. An adapter interface is also provided for those information providers 

that are not WSRF compatible. MDS4 also provides two high-level services, the 

aggregator services and trigger services, for collection and publishing aggregated 

information from information providers.  Both services are implemented based upon a 

generic aggregation framework. Finally a Web-based interface, WebMDS, provides a 

visualisation interface for user to view information data. MDS4 uses GLUE schema 

natively and provides an XML mapping of the GLUE schema.  

 

Security 

 

GT provides a Grid Security Infrastructure (GSI) [104] based on X.509 PKI, which 

assumes every user and host involved in a Grid has an X.509 end entity certificate signed 

by trusted CAs. Each Grid transactions is mutually authenticated and encrypted. In order 

to support Grid-specific requirements on single sign-on and delegation, GSI also supports 

proxy certificates that are derived from X.509 end entity certificates. User participants 

may issue a self-signed proxy certificate delegating their rights to another entity within a 

limited period of time. An online credential management service, MyProxy server[105], 

is used for generating, querying, and renewing such proxy certificates. Resource access is 

protected by a simple resource-level authorisation mechanism defined in GSI by mapping 

the subject of a user certificate to local execution environment, Unix user account for 

example. In the case, the Grid user has the same access rights of the local account.  

 

Based on GSI, GT4 provides messaging-level security mechanisms by implementing 

WS-Security[66] and WS-SecureConversation[64] protocols to protect SOAP messages. 

A high-level authorisation service, the Community Authorisation Service (CAS)[106], is 

also implemented in GT4 allowing separation of resource providers’ security policies and 

VO security policies. In another word, resource providers may delegate a subset of 

security policies to the VO. In this sense, CAS provides fine-grain mechanisms for a VO 

to manage these delegated policies and ensures user requestors are authorised across 

multiple security domains in a consistent manner. 

 

2.4.2 gLite 
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The gLite, a lightweight Grid middleware solution produced by EGEE project, 

provides a framework to build Grid applications for diverse research communities. The 

gLite middleware combines component distributions from a number of other projects, 

including Virtual Data Toolkit (VDT) [107], European Data Grid (EDG) [108] and 

World-wide LHC Computing Grid (WLCG)[109] projects. Since EGEE project and 

WLCG project share a large part of infrastructure consisting of computing and storage 

resources shared over 200 distributed sites around the world, the gLite middleware [110] 

is primary deployed on participating sites in EGEE/WLCG project.  

 

As figure 2.7, current release gLite middleware, gLite3, follows SOA design patterns 

and is evolving to be OGSA compatible where possible. Meanwhile it also reuses some 

GT2 components for backward-compatibility to LCG deployments.   

 

Access Services 

 

The User Interface (UI) is the entry point to a gLite-enabled Grid. A user accesses 

gLite resources or services by logging on a UI machine, where user certificates are 

installed. The UI provides Command-Line Interfaces (CLIs) allowing users to interrogate 

high-level gLite services. From a UI, a user may submit a job execution request, 

monitoring job status, get job output, transfer files, etc.  

 

Computing Element 

 

The Computing Element (CE) is a generic terminology defined in EGEE/WLCG 

referring to a set of computing resource at a site. A CE provides a generic interface, 

known as the Grid Gate (GG), which is responsible for scheduling jobs to a collection of 

Worker Nodes (WNs) via a LRMS. The gLite version 3 supports a wide range of LRMS 

including Portable Batch System (PBS)[111], Condor[112], Load Sharing Facility 

(LFS)[113], etc. As demonstrated in figure 2.5, there are three implementation of GG in 

gLite: the gLite CE, LCG CE, and Computing Resource Execution and Management 

(CREAM)[114] CE. 

 

LCG CE was developed by EDG project [108] and used in LCG. The LCG CE runs a 

GT2’s GRAM gatekeeper and reuse GRAM job manager interface as GG. A site may 

choose to configure one or more job managers according to LRMS deployed. There is 
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one gatekeeper per CE. The gatekeeper will publish available job managers to the gLite 

information system. On receiving a job request, the gatekeeper forks a job manager 

instance after authenticating user identity and mapping it onto a local user account. The 

job manager instance then dispatches the job to WNs via corresponding LRMS.  

 

The LCG CE processes job requests on per process per user basis, resulting in 

scalability issues. In EGEE/WLCG project that involves thousands of users, it is very 

likely that multiple users send job requests to a LCG CE simultaneously. In order to cope 

with this issue, the gLite introduces a three-tier CE architecture, so-called gLite CE, 

based on gatekeeper, Condor-C[115] job manager and Batch Local ASCII Helper (BLAH) 

protocol[116]. The Condor-C is a Condor-to-Condor job scheduler that allows jobs in one 

Condor queue to be moved to another Condor queue. For those LRMS other than Condor, 

Condor-C job manager makes uses of the BLAH command for job submission and 

management. The BLAH protocol defines a set of plain ASCII commands to manage jobs 

on the batch systems. A lightweight BLAH protocol daemon (BLAHPD) is responsible 

for converting BLAHP commands into LRMS commands, trigger those commands and 

report results back in BLAHP format. 

 

Finally the recently developed CREAM CE provides an alternative solution of job 

submission and management at CE level. The CREAM CE implements OGSA BES 

specification and uses BLAHPD for job scheduling and management to LRMS including 

Condor. The CREAM backend is a permanent memory space for storing data related to 

all cached and executing jobs. 

 

gLite also defines a CE Monitoring (CEMon) service that is deployed at individual 

CEs and responsible for providing characteristic and status information of the CE. The 

major consumer of CEMon service is the Workload Manager System (WMS) that 

performs job submissions by matchmaking job requirements and dynamic CE status 

information obtained via CEMon services. The CEMon service provides an extension 

point through which custom CEMon sensor can be plugged in to generate other 

information. The CREAM sensor, for example, is plugged into CEMon service to 

generate job status information. 

 

Storage Element 
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The Storage Element (SE) as defined in gLite provides data access and manageability 

facilities to storage resources localised at a site. Most of sites participating in 

EGEE/WLCG project normally provide at least one SE. There are three widely used 

storage management systems in EGEE/WLCG, the CERN Advanced STORage manager 

(CASTOR) [117], dCache [118], and the Disk Pool Manager (DPM) [119]. As figure 2.5, 

these storage management systems have different protocols defined for file access. The 

Remote File Input/Output (RFIO) provides POSIX-like interface for access files through 

CASTOR and DPM management system, while dCache uses a GSI-enabled data access 

protocol, the gsidcap. A high-level abstract, the OGSA SRM service, is implemented by 

these storage management systems in order to ensure file access through heterogeneous 

storage management systems in a consistence manner. In addition to system-specific file 

access protocols, gLite requires all SEs must support a GSI-enabled FTP protocol, the 

GSI-FTP . 

Workload Management System 

 

The Workload Management System (WMS) [120] component provides Grid-wide 

resource management facilities hiding complex gLite environment from users. The main 

purpose of WMS is to satisfy user requests by taking appropriate actions on job 

submission and management on behalf of users. It accepts job execution requests from UI, 

selects CE candidates, places job execution, and notifies execution results. A user request 

specifies job and resource requirements in JDL (Job Description Language) [121], which 

is the Condor ClassAd language therefore legitimate to be used directly to Condor APIs 

for job management. The JDL allows the description of three request types including 

simple job request, Direct Acyclic Graph (DAG) job request, and a collection of 

independent jobs that can be executed in parallel. WMS exhibits two entry points for 

users, the Network Server (NS) and Workload Manager Proxy (WMProxy). The NS is a 

generic network daemon that keeps listening to user request from a well-know port. 

WMProxy provides a Web service interface to access WMS functionalities. Both services 

check user authorisations and forward JDL to the Workload Manager component. 

 

Workload Manager (WM) is the core component of WMS. On receiving a JDL, the 

WM spawns a matchmaking process, which evaluates JDL items against Information 

Super Market (ISM). The ISM consists of a repository of CE information. In order to 

ensure information is up-to-date, a lightweight process, ISM updater, contacts CEMon 

service and refreshes ISM repository periodically, approximately every two minutes. 
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Alternative, ISM may subscribe to CEMon services to receive notifications encompassing 

needed CE information.  

 

Once a CE candidate identified, the JDL is forwarded to a Job Submission and 

Monitoring component, which is responsible for creating a wrapper script that creates the 

appropriate execution environment in the CE worker node. The Interface to CREAM 

Environment (ICE) is used by WM when interacting with CREAM based CEs. In the case 

of no matched CEs found immediately, the WM component caches the job request into an 

internal Task Queue (TQ) for a while. Under this circumstance, the jobs held by WM can 

be either asking for RB to perform matchmaking periodically (eager scheduling policy) or 

waiting for an appropriate CE to pull job request from TQ when available (lazy 

scheduling policy). During a job lifetime, changes of job status are maintained and 

updated within the Logging and Bookkeeping (LB) service.  

 

Data Management 

 

Two high-level services are provided within gLite3 for file transfer and replica 

management. The File Transfer Service (FTS) provides low level data movement service 

that can schedule asynchronous and reliable file replication from source to destination 

SEs. It also allows participant sites can control the network usage. The FTS interacts 

between source and destination SEs through standard SRM interfaces and GridFTP 

protocol. Users and applications locate files or replicas through the LCG File Catalogue 

service (LFC), which maintains mappings between user-defined Logical File Names 

(LFN), a Global Unique IDentity (GUID) and physical Storage URL(s) of replicas. The 

LFC service publishes its service URL in gLite3 Information Services so that it can be 

discovered by data management tools and other services. 

 

Information Services 

 

There are two Information Services (IS) in gLite3, the pre-WS MDS of GT2 and 

Relational Grid Monitoring Architecture (R-GMA)[122], a relational database 

implementation of OGSA-GMA[85] specification. For MDS service, a Generic 

Information Provider (GIP) runs at resource layer and generates relevant information 

about computational and storage resources. This information is stored and cached in a 

GRIS server for each resource. Each GRIS is registered with a site-level Berkeley 
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Database Information Index (BDII) and populates the database with resource information. 

The site-level DBIIs are then registered to a top-level BDII used as the top of the 

hierarchy of a VO. R-GMA is an alternative information service mainly used for 

accounting purpose and is discussed in more detail in Chapter 3. 

 

Security 

 

The gLite3 middleware uses GSI and MyProxy server for use authentication, single 

sign-on, and delegation. The authorisation framework in gLite3 composed of a centralised 

community-based authorisation service, the Virtual Organisation Management Service 

(VOMS)[123], and site access control suite comprising Local Centre Authorisation 

Service (LCAS) and Local Credential Mapping Service (LCMAPS). The VOMS 

organises user information and privileges in a hierarchical structure. Each user in a VO is 

assigned to a subgroup, a role, and granted capabilities. This information is represented 

via an extension to user proxy certificate. At the time a VOMS is contacted, a VOMS 

proxy certificate that encapsulates user’s group membership and associated roles into 

standard proxy certificate is signed by VOMS public key and returned. The VOMS proxy 

certificate is push into CEs together with job requests. At CE level, the LCAS service is 

called by gatekeeper to make an authorisation decision based upon user subject name and 

VO attributes embedded within a proxy certificate. Once authorized, the LCMAPS 

service takes care of translating grid credentials into Unix credentials local to the site. 

 

2.4.3 UNICORE  

 

The Uniform Interface to COmputing REsources (UNICORE) project [124] was 

established in 1997 to provide an easy-to-use platform that enables secure access to 

supercomputer sites in German. After twelve-year development, the UNICORE project 

has evolved as a SOA Grid middleware for secure access mainly to computational 

resources. As figure 2.8, the recent released UNICORE version 6, called UNICORE6, is 

characterised as a vertically integrated Grid system that comprises components of three 

tiers, the client tier, service tier, and target system tier. 
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Client Tier 

 

The UNICORE client tier provides a variety of client interfaces to exploit the entire 

set of services offered by the service tier. The UNICORE Command-line Client (UCC) 

provides a versatile Command Line Interface (CLI) that allows users to access all service-

tier features in a shell or scripting environment. The UNICORE client tier also consists of 

two programming APIs. The UNICORE rich client is an eclipse-based Grid Programming 

Environment (GPE) developed by Intel. The co-called “rich” client provides graphical 

user interface and interoperable GridBeans [125] for Grid application development. 

Alternatively, application developer can use the single interface of High Level API for 

Grid applications (HiLA) to implement complex application with just a few lines of codes. 

Finally UNICORE services can also be accessed from third-party portals, GridSphere[126] 

for example.   

 

Service Tier 

 

The UNICORE service tier comprises all services and SOA components based on WS-

RF and WS-I standards. A site level, UNICORE services consist of two main functional 

components, the Gateway and enhanced Network Job Supervisor (NJS). The Gateway 

component acts as a site firewall and performs the authentication of all incoming requests 

to underlying site resources. The NJS component is the job management and execution 

engine of UNICORE6. Its functions include storage resource management, file stage in or 

out and job management. The functionality of the NJS is accessible via two Web service 

interfaces: The UNICORE Atomic Services (UAS) and OGSA-BES. The UNICORE job 

definition is compliant with the JSDL standard. A variety of protocols, such as HTTPs, 

OGSA ByteIO and GridFTP, are also available for staging files between sites or between 

client and sites. On receiving a job request, the NJS component delegate the JDSL file to 

the IDB (Incarnation Data Base) component that performs the job incarnation and maps 

the abstract job description in JSDL to the concrete job description for a specific resource. 

Information about available applications and resource characteristics has to be defined in 

this database. For authorisation, the NJS uses the X.509-baed UNICORE User DataBase 

(XUUDB) to map the subject name of user X.509 certificate into the actual user account 

and group. XUUDB based authorisation can accommodate all access control 

requirements within a single site. For resource access cross sites, file transfer from 

different sites for example, UNICORE6 supports proxy certificates and provides an 
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XACML entity that can be triggered to delegate access decision to a VO management 

system, the UNICORE VO service (UVOS) [127].  

 

Like many Grid middleware, UNICORE6 also provides several collective services. 

Firstly, a single service registry is available to build-up and to operate a distributed 

UNICORE infrastructure. This service registry is contacted by the clients in order to 

connect to the Grid. The UNICORE Common Information Service (CIS) is the 

information service, which gathers and stores both static and dynamic information from 

all connected XNJS into GLUE 2.0 [88] format. UNICORE also supports workflow 

management using a two-layered architecture consisting of a workflow engine and the 

service orchestrator. The workflow engine allows different workflow description dialects 

to be plugged in according to site requirements. The main responsibility of the service 

orchestrator is to execute the individual tasks in a workflow, handle job execution and 

monitor the Grid.  

 

System Tier 

 

The system tier provides an abstract non-WS interface, the Target System Interface 

(TSI), between UNICORE and underlying LRMS of Grid resources. Communication 

between XNJS and TSI is through text-based protocols, which are interpreted into 

system-specific commands. In addition, the TSI component is extended for supporting the 

DRMAA standard enabling a standardized interface between the TSI and the batch 

system in UNICORE6. The UNICORE Space (USpace) is the space for job directories. A 

separate directory created on a per job basis, where the XNJS and TSI stores all input, 

output and error data. GridFTP can be used for site-to-site file transfer, in particular for 

data transfer from/to external storages.  

 

2.4.4 Others 

 

The middleware solutions discussed above are widely deployed as production Grids 

for a variety of research communities. There are some other Grid projects that have 

custom middleware developed to accommodate local deployment environment. Here list 

two other common Grid middleware that are being deployed at some participating sites of 

EGEE/WLCG projects.  
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Advanced Resource Connector 

 

Advanced Resource Connector (ARC) [128] is the middleware developed by Nordic 

Grid, a project that aims at providing a Grid infrastructure for Nordic countries. The 

major design goal of ARC middleware is to provide innovative solutions that are essential 

for a production quality middleware. The ARC middleware consists of three main 

components: Grid services, Indexing services, and user interface. ARC Grid services are a 

collection of services running on resources. Grid jobs are submitted to ARC resources 

through GridFTP protocol. Each site has a GridFTP server that keeps listening to 

incoming job requests. A Grid manager is responsible for computational resource 

management and takes care of job execution and input data cache. Information services 

are implemented as a “cron” script that periodically updates local resource information to 

the Indexing service backend. Indexing services (IS) uses GT2 GIIS and maintains a list 

of local information services and other IS endpoints. The ARC user interface is a set of 

tools for job submission, monitoring and management. An intelligent resource broker is 

built in the user interface, which is able to select the best matched resource for user jobs.  

 

Virtual Data Toolkit 

 

The Open Science Grid Project (OSG) aims at bringing together computing and 

storage resources interconnected over research networks from campuses and research 

communities in the US into a common, shared infrastructure via a common set of 

software stack. The OSG software stack relies on Virtual Data Toolkit (VDT)[107] 

middleware, which ensembles GT2, Condor, EDG and other open source software. The 

goal of VDT is to make it as easy as possible for users to deploy, maintain and use Grid 

software rather than defining Grid middleware.  

 

2.5 Tools  

 

Grid middleware provides fundamental services that allow resource access, 

management and manipulation through well-defined interfaces. However these low-level 

service interfaces are too complex making the Grid elusive for many users. For example, 

a scientist must learn details of gLite’s execution services to submit and monitoring a job 

request. Besides, development of a Grid-enabled application becomes even more 
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complicated and requires developers to become familiar with detailed interfaces. There is 

a clear need for tools that allow application developers to use, to write Grid-enabled 

applications, and allows users to easily deploy and run applications on the Grid. These 

tools should build upon the Grid infrastructure and lie at the application layer (as shown 

in figure 2.1) therefore known as application tools. 

 

For application developers, Grid application tools should provide high-level 

abstractions and support a broad class of applications development. This can be achieved 

by evolving traditional multi-purpose programming models, such as Remote Procedure 

Call (RPC), message passing, and parallel programming models, to take advantage of the 

Grid platform. The OGF Grid RPC working group is working on defining a standard 

Grid-RPC [129] API for both middleware developers and end-users, while ensuring 

interoperability among domain-specific middleware. The GridRPC model also provides a 

mechanism for task parallelism by partitioning a complex job into multiple processes to 

be executed in parallel on multiple Grid resources. Finally, message-passing 

programming model is the most general model for parallel computing. Grid-enabled 

implementations of the messaging-passing model have been pursued by many research 

groups. The MPICH-G2 [130] is such a Grid-enabled implementation of MPI standard 

based on GT infrastructure.  

 

The second class of Grid application tools is to provide Grid application execution 

environments allowing user to easily interrogate different services of underlying Grid 

middleware. There are two common classes of such environments, Grid workflow system 

and portal, available in most existing Grid middleware. The WMS of gLite3, for example, 

uses DAGMan [131] as a workflow manager that allows representation of a collection of 

job dependencies as a directed acyclic graph. A more generic workflow engine in 

UNICORE, as discussed in section 2.4.2, supports flexible workflow management and 

enables different workflow dialects to be plugged in. Another effective means of Grid 

application execution is the Web portal, which is linked with middleware services and 

provides graphic interfaces. 
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2.6 Summary 

 

This chapter discussed the concept, architectural principles, standards, middleware 

solutions and software tools, which makes it possible to develop interoperable and 

versatile Grid systems. In addition, the content of this chapter also implies future 

development in Grid applications and technologies. First of all, most of the existing Grid 

middleware solutions, such as VDT, gLite, and ARC, are based on tools and experiences 

established over past years, which are not OGSA compatible. The wide deployment of 

these middleware solutions in production Grid projects makes them hard to be OGSA 

compatible. One feasible solution would be to implement OGSA components while 

keeping backward compatibility to existing counterparts. The CREAM project sets a 

good example by introducing OGSA BES service into gLite. Besides, the OGSA 

architecture is evolving over time. It is very likely that more features would be added in 

OGSA architecture. Therefore extensive standardisation efforts should be continuously 

contributed. Finally, as discussed in section 2.5, Grid application tools play an important 

role in making Grid technologies user- and developer-friendly. 
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Chapter 3                 

Grid Accounting 

 

Grid accounting plays an important role in system administration, resource usage 

policing and enforcing Grid economic models. The main purpose of Grid accounting is to 

meter and supply usage information of resources shared in a Grid environment. Collective 

usage information helps enrich system administrator’s understanding and enhance overall 

resource utilisation in a Grid system. For most e-Science Grids, computing resources are 

predominately provided from academic institutes for one or more non-profitable research 

projects. Individual project and participants are granted a fixed quota, such as 

computational cycles and storage spaces. Accounting in such e-Science Grid environment 

enables usage policing that prevents Grid resources from over exploitation by checking 

the actual resource usage against allocated resource quota of individual project. 

Resources or services provided by a business Grid are to be utilised in the “pay-per-use” 

pattern. Accounting in this case is mainly used to provide usage proofs for charging users 

based on actual resource usage. Besides, Grid accounting can also be used for 

strengthening security, guaranteeing Quality of Service (QoS), etc.  

 

Having identified the importance of Grid accounting, there are increasing Grid 

projects that have accounting systems developed and deployed. These accounting systems, 

however, were designed in various ways to accommodate Grid-specific usage scenarios. 

In order to provide a consistent and interoperable solution to Grid accounting in the 

context of OGSA profile, this chapter discusses the concept of Grid accounting, reviews 

existing accounting solutions in operational Grid projects, and proposes an generic 

accounting framework. I conducted all the research carried out within this chapter and 

published in [132].  
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3.1 Concept 

 

The concept of Grid accounting was firstly proposed as “a process that provides a 

consistent and Grid-wide view of VO members’ resource utilization” [133] at the time of 

designing accounting system for Sweden Grid (SweGrid), a national Grid project that 

provides computational resources to scientific projects in Sweden. This definition, 

however, merely highlights SweGrid-specific requirements on accounting. It is 

worthwhile to review the concept of accounting in order to give a more generic definition. 

 

 The terminology, accounting, originates from business and financial field as “the 

system of recording and summarizing business and financial transactions and analyzing, 

verifying and reporting the results” [134]. Accounting is by no means a new concept in 

computing either. In a UNIX system, the usage of individual system resources is 

accurately recorded and maintained. The process accounting, for example, logs every 

single command run by every single user through the PACCT script. The UNIX operating 

system can also be configured to enable disk accounting by periodically scanning each 

file system and finding out its disk usage.  

 
 

Figure 3.1: Classification of accountable resources in the Grid 
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Accounting in Grid is similar to UNIX accounting except the heterogeneity of 

underlying resources and large scale. As illustrated in figure 3.1, accountable resources in 

a Grid system can be classified into two main categories: the resource and services. 

Resource accounting is a process that meters and logs usage of physical resources or 

application-specific resources such as e-journals, digital maps, etc.  According to the 

types of physical resources, resource accounting can be further divided into CPU 

accounting, storage accounting and network accounting. Service accounting is a process 

that meters and logs usage of logical services. In an OGSA-compatible system, Grid 

resources are accessible through OGSA core services. A domain-specific application may 

define custom services and consume Grid resources through OGSA service interfaces. A 

map searching service may, for example, enrol multiple computing resources to perform 

the rendering tasks in parallel through the OGSA-EMS service. Service accounting, in 

this sense, involves a collection of individual resource usage during the transaction of a 

particular application service. Based on the classification, the concept of Grid accounting 

in this thesis is defined as: 

A process that logs and provides usage information of resources and 

services shared in the Grid environment to accommodate requirements of 

stakeholders and end users within a grid community. 

 

During the course of review, it is learned that the concept of Grid accounting is still 

confusing to many, particularly its difference from Grid monitoring service, since both 

services share many common characteristics. First of all, both Grid accounting and 

monitoring services act at collective layer that provides VO view of Grid resource usage. 

Moreover both services require gathering and reporting resource usage statistics to enrich 

system administrator’s understanding of Grid resource usage status. Finally Grid 

accounting and monitoring services can both used for intrusion detection, auditing, 

system performance tuning, etc. 

 

However Grid accounting and monitoring services differs in many aspects. Generally 

speaking, Grid accounting and monitoring services are two different services with 

different purposes. For monitoring service, its major goal is to provide a view of status of 

Grid resources, such as current system load, the number of running jobs, job status, etc. 

Accounting service on the other hand is mainly used for provisioning historic statistics of 

Grid resource usage as a basis mainly for charging and billing purposes. The main 
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consumers of a monitoring system in the context of OGSA include EMS and Information 

Service. Monitoring data therefore are resource-centric and require minimal delay to 

ensure up-to-date resource status information for EMS, for example, to make quick 

decision where a job should be placed. Compared to monitoring data, accounting data 

encapsulate more information than resource usage, such as user information, VO 

information and other event information related to a transaction. In another word, an 

accounting record is composed of various pieces of information after events, therefore 

reasonable delay is acceptable. However accounting data need to be as accurate as 

possible, while small numerical errors and inaccuracy of monitoring data can be tolerant. 

For example, the CPU utilisation at 70% or 75% may not quite different for EMS to make 

a decision on job scheduling. Finally considering its timing essence, monitoring data has 

limited lifetime and does not need to be persistent in database, while historic accounting 

data are important to be stored safely for economic reporting and auditing purposes. 

These fundamental differences between Grid monitoring and accounting services are 

summarised in Table 3-1. 

 

Table 3-1: Comparisons between Grid monitoring and accounting 

 Monitoring Accounting 

Purpose  

To monitor system status, 

debugging, system profiling, 

etc. 

To keep track of Grid 

resource usage. 

Consumer 
System administrator, EMS, 

Information Service, etc. 

VO members, Economic 

services, etc. 

Data delay LOW HIGH 

Date accuracy LOW HIGH 

Data persistence NO YES 

 

3.2 Usage Scenarios 

 

In order to identify common requirements and issues of an Grid accounting service, 

the author spent three month to review current practices on developing Grid accounting 
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systems by interviewing stakeholders from various groups, including national Grid 

service, campus Grid services, regional Grid services, Grid software providers, solution 

deployers, standard bodies, and end users. The interview was conducted through visits, 

teleconferences, email, and via a questionnaire. Feedback has been received from over 

forty people, and summarised in Appendix A. Based on the interview results, there are 

four common usage scenarios were identified and are discussed in this section along with 

stakeholder’s interests or requirements. 

 

Individual use scenario summarised in this section is structured with a template 

composed of following three main elements: 

• Description: a domain-specific description that briefly describes the high-level 

overview of the scenario. 

• Actors & Goal:  enumerating entities, including human users, organisations and 

software agents, which play a role in the scenario and their goals. 

• Stakeholders and Interests: enumerating stakeholders and their interests in the 

scenario. 

 

3.2.1 Statistical Usage Reporting 

 

Description 

 

GridPP [135] is a collaboration of particle physicists and computer scientists from the 

UK and CERN, with distributed compute resources spanning 17 UK institutions. GridPP 

is also the UK’s contribution to WLCG project, overseeing the Tier 1 facility at 

Rutherford Appleton Laboratory (RAL) and the Tier 2 organisations including ScotGrid, 

NorthGrid, London and SouthGrid. WLCG is a production-level Grid and GridPP has a 

contractual obligation to provide resource usage data as part of the WLCG project. At 

present over 200 sites worldwide provide resource usage data to the Grid Operations 

Centre (GOC) at RAL making aggregation and generates usage statistics. 

 

Actors & Goals 

 

The WLCG Grid operation manager is the main actor for this scenario in the context 

of system administration. A Grid operational manager is responsible for ensuring fairness 
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and effectiveness of Grid-wide resource utilisation by reviewing usage statistics of 

resources shared in the Grid.  

 

Stakeholders & Interests 

Stakeholders in this scenario include VO managers (e.g. GridPP), resource providers, 

and end users. From the perspective of resource providers, site-specific resource usage is 

required to understand how hosted resources are being used, whether they are 

underutilised or over-exploited for example. At the resource consumer’s side, VO 

managers are interested in reviewing resource usage statistics at VO level, and make sure 

there are enough resources allocated to accomplish project tasks. A VO manager is also 

required to review resource usage on a per user basis to prevent allocated resources from 

malicious usages. Finally, VO members or users are interested in reviewing a summary 

usage report periodically. 

 

3.2.2 Usage Policing 

 

Description 

 

The National Grid Service (NGS) in UK aims to provide computational and data 

based resources and facilities to UK researchers, independent of resource or researcher 

location. This is currently achieved using resources (both compute and data) at four core 

sites (RAL, Oxford, Leeds and Manchester), and a growing number of partner and 

affiliate sites, together with the provision of software and services, to enable a consistent 

method of access to any resource from any location. As fixed resource quotas are granted 

to a number of non-profitable e-Science projects, it is essential there is a reliable 

mechanism to account for all aspect of use and enforce usage policing by comparing 

actual resource usage against allocated quota. 

 

Actor and Goals 

 

The main actors of the usage policing scenario are the NGS’s Execution Management 

Service (EMS) and user account management service. As policing-enabled Grid 

environment, each user has a registered account associated with granted quota and used 
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quota. The NGS EMS is required to verify the availability of enough quota by comparing 

remaining quota against historic usage statistics on a per-request and per-user basis. Once 

a user runs out of the granted quota, the user account management service is triggered to 

block the user account and send a notification email to the user.  

 

Stakeholders and Interests 

 

Major stakeholders of the NGS scenario in the context of Grid accounting are Grid 

Operation Support Centre (GOSC), VO manager and end users. There are limited 

resource quotas allocated to large project as VOs or individual users for education 

purposes. There resource consumers are interested in knowing how much resource quotas 

are allocated, being used, and remaining. The GOSC is also required to be aware of 

resource utilization status and user activities for management purposes. 

 

3.2.3 Grid Economy 

 

Description 

 

Development of accounting systems contributes to the adoption of Grid technologies 

by industry and the emergence of Business Grids, resources of which are intended to be 

utilised in a “pay-and-run” manner. In order to enable economic compensation, it is 

necessary to have other facilities for pricing, charging and billing based on resource usage 

data generated by accounting systems. The process of accounting together with other 

economic activities is collectively known as economic accounting.  

 

Actors and Goals 

 

There are three main actors in the Grid economic scenario: the resource management 

service, pricing and charging service. Compared to traditional resource management 

services, resource management service within an economy-enabled Grid environment 

involves an extra process, known as economic authorisation, before allocating resources 

to service requests. The process can be implemented within an accounting system that 

estimates resource usage of current service requests and generates resource usage data. 

Resource management service then checks whether the requestor has enough credits for 

 
 



 
60 4BGrid Accounting 

current request. On completing service execution, the accounting system meters the actual 

resource usage and generates final resource usage data, which is fed into pricing and 

charging services for financial transactions.  

 

Stakeholders and Interests 

 

From the commercial perspectives, there are two main stakeholders in the scenario of 

Grid economy, the resource providers and end users. End users are paying for their 

computational work to be done or storage capacity to be used. End users therefore are 

interested in detailed resource usage and charging information of individual paid 

transactions. Resource providers sell computational resources and storage spaces, and are 

interested in total resource usage history for making decisions on investing additional 

resources to increase financial incomes. Resource providers are also interested in profits 

over a period of time, a financial year for example.   

 

3.2.4 Quality of Service 

 

Description 

 

Current Grid infrastructure operates on a best-effort basis without guaranteed 

delivered Quality of Service (QoS). Unlike traditional Grid resource management 

services, which pay more attention to addressing abstraction of management interfaces to 

low-level and heterogeneous Grid resources, a higher level solution is needed to ensure 

delivering QoS-enabled services to users, especially for those who have invested a large 

amount of money. The Service-Level Agreement (SLA) [136] has been considered as the 

protocol that describes QoS and other business-value commitments by service/resource 

providers in exchange for financial commitments by consumers against agreed terms, 

including finishing deadlines, charge and penalties. In order to enable an SLA-oriented 

management system, resource usage needs to be tracked. This is typically done by an 

accounting system. 

 

Actor and Goals 

 

The key actor in this scenario is the SLA management system, which aims at 
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performing functions related to the process of agreeing, monitoring and enforcing an SLA 

between resource providers and consumers. A SLA management system may record the 

resource usage of a service invocation and optionally constrains and/or charges for the 

usage. An SLA can contain any number of constraints defined by the service provider, 

including the placement of usage limits, for instance, maximum amount of CPU time of a 

particular service invocation. In this case, a SLA management system is required to 

monitor resource usage status in real time and acts according to service provider policies 

when usage exceeds a constraint. The real time usage information can be obtained from 

an accounting system which provides runtime usage accounting facilities. In addition, the 

cumulative usage, aggregated from all related resource usages, should be reported to the 

SLA management system by an accounting system on completion of a service invocation.  

 

Stakeholders and Interests 

 

There are two main stakeholders, service consumers and service providers. Detailed 

service usage information helps service providers to adjust pricing and resource allocation 

strategies to increase financial incomes. End users pay for services and are interested in 

knowing how invested money was spent.  

 

3.2.5 Putting Together 

 

These example use case scenarios underlined by Grid accounting services contributed 

to the vision of Grid economics, provides guaranteed QoS on the pay-per-use basis. The 

Grid economic model can be built but placing additional layer, upon existing OGSA 

architecture. This additional layer consists of two main services, the economic services 

and SLA management services. Economic services provides functionalities related to 

economic activities, including banking, charging, and billing services, while the SLA 

management services ensures Grid computing services to be delivered in a QoS-

guaranteed manner. In an economic-aware Grid environment, a job submission requires 

interactions among economic services, SLA management services, accounting services 

and EMS. An example workflow of a job submission (as Figure 3.2) to economic-aware 

Grid environment may involves, but not limited to, following steps: 

a). A user interacts the SLA management services and instantiates an SLA instance 

specifying certain QoS metrics and service-level guarantees. Users may also add custom 
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guaranteed terms, such as response time and availability as well. 

b). During the SLA instantiation process, SLA management services may need to see 

whether an agreement can be reached with given user-specified QoS terms and business 

objectives. This estimation can be implemented by SLA negoation services using 

simulation tools and applying objective functions, or by the Execution Planning Service 

(EPS) of EMS (see 2.3.2 for more details). 

c). Once an agreement instantiated, it is returned to a user and used as a job 

submission request to EMS. An SLA instance may specify job runtime specification (i.e. 

computational, storage, and networking specification), total costs estimated, and other 

QoS guaranteed terms.  

d). EMS then plans, schedules and management the job lifecycle. Before staging a job 

for execution, the EMC need to perform economic authorisation to make sure the user has 

enough credits to run the job, and reserve the estimated costs from the user’s account. 

e). On the completion of the job, a job usage record is generated and fulfilled with the 

actual resource usage information. 

f). The accounted resource usage is then fed into economic services for charging and 

billing purpose.  

g). A user then can view the billing information through economic services. 

 

 
Figure 3.2: Job submission workflow of economic-aware Grid environment 
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3.3 Accounting Model 

 

As illustrated in Figure 3.3, the Grid accounting process commences from metering 

and logging usage information of a particular resource or service. These pieces of usage 

information are then fed into the collection process and composed into well-formatted 

usage records. 

 

 
 

Figure 3.3: Abstract Accounting Processing Model 

3.3.1 Usage Metering 

 

As discussed in section 3.1, Grid accounting can be roughly divided into two 

categories, resource accounting and service accounting. Since resource accounting is 

resource-oriented, it is possible to define standard measurable metrics of a specific type 

of resources, such as CPU cycle time of computational resources and disk spaces of 

storage resources. The standardisation of usage metrics is helpful to ensure data 

interoperability between different accounting systems. Service accounting differentiates 

from resource accounting in that it is domain-specific. Metric definitions of a specific 

application domain are most likely to be different from definitions of another. Besides, 

service providers of an application domain may specify various usage metrics according 

to local accounting purposes. In this sense, service provider may define different metrics 

of services of same application domain making it hard to standardise service accounting 

metrics.  
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The metering process can be triggered in two patterns: the passive pattern and active 

pattern. As with usage scenarios of “usage policing” (section 3.2) and “QoS-enabled 

resource management” (section 3.4), usage information is required to be metered in real 

time during resource utilisation or service invocation. Under this circumstance, the 

metering process of an accounting system is triggered by high-level services, therefore 

known as the passive metering. For other cases when real-time usage information is not 

critical, metering process can be scheduled to parse resource/service usage actively 

during a period of time. This pattern of usage metering, known as active pattern, 

periodically scans resource/service usage information by parsing system log files.  

 

3.3.2 Usage Collection 

 

Once usage has been metered, pieces of usage information are to be gathered by the 

collection process and formatted as usage records. A usage record is a well-formatted 

representation consisting of a list of usage metrics targeting a particular Unit of Work 

(UoW), ranging from finest-grained batch jobs to coarse-grained service invocations. The 

collection process at coarse-grained level involves an extra aggregation process, which 

summarises usage records of atomic batch jobs related to the service invocation.  

 

As metering process, the collection process has two accordingly process patterns as 

well. Aligned with active metering process, collection process can be scheduled in as a 

“cron” job, which periodically consumes the output of metering process and generates 

usage records. Active collection process normally involves a separate data persistence 

layer that saves usage records. Alternatively, the collection process can be invoked 

passively by high-level applications to generate usage record in real time. The passive 

collection process caches usage records in memory only. 

 

3.3.3 Classification 

 

Based on two dimensional factors, the triggering pattern of the metering process and 

granularity of UoW, accounting models can be classified into four categories (Figure 3.4) 

as follows: 
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• Fine-grained active accounting 

In the fine-grained active accounting model, the metering process is scheduled to 

periodically parse and generate usage records at atomic UoW level.  

• Fine-grained passive accounting model 

The metering process of the fine-grained passive accounting model is triggered by 

a third party to generate usage records at UoW level. For example, a user may be 

interested in knowing the current resource usage status of a long-running job to 

ensure there is enough quota left until job completion.  

• Aggregate active accounting model 

The aggregate active accounting model automatically meters usage information of 

all UoWs, both completed and running UoWs, and generates summarised usage 

records only. 

• Aggregate passive accounting model 

The aggregate passive accounting model generates summarised usage records only 

when a high-level request triggers the metering process.  

 

 
Figure 3.4: Accounting model classification 

 

3.4  Standards 

There are two accounting-related standards proposed by OGF Usage Record and 

Resource Usage Service working groups to ensure data and service interoperability 

between accounting systems. 
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Figure 3.5: OGF Usage Record Information Model 
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3.4.1 Usage Record Format 

 

As discussed in section 3.3, usage metric definitions vary from accounting systems to 

accounting systems depending on local deployment requirements and local accounting 

polices specific resource or service providers. In order to enable data interoperability 

among independently developed accounting systems, extensive work has been done by 

OGF usage record working group on defining standard usage metrics and representation 

format. In 2003, a usage record (UR) format recommendation specification [137] was 

released and defines a set of well-defined usage metrics and XML format for 

representation of computational usage of a single batch job. From the information model 

demonstrated in figure 3.5, the usage metrics defined within UR consists of batch job 

properties, job owner or user properties, resource properties, computing related usage 

properties, economic properties, and an extension framework for definitions of custom 

metrics or properties. These usage metrics are collectively to be represented as a single 

usage record, with a global unique record identity and other common properties, such as 

creation timestamp and creator of the usage record.  

 

3.4.2 Resource Usage Service 

 

Another accounting-related draft specification, the Resource Usage Service (RUS) 

proposed by OGF RUS working group, enables service-level interoperability between 

different accounting systems through a set of core Web service interfaces. These service 

interface definitions enable sharing and manipulation of standard OGF UR instances in a 

standard manner. Rather than providing a monolithic solution to Grid accounting, the 

RUS is intended to be implemented to support either active or passive accounting models. 

Since current RUS specification depends on the OGF UR standard, it only allows 

accounting at atomic level, the batch-job level. 

 

Apart from core functionalities as defined in current RUS specification (version 1.7) 

[138], the RUS working group has a clear roadmap (figure 3.6) for advanced features 

including server-side aggregation and hierarchical deployment. It is expected that these 

advanced features would enable four accounting models and resource/service accounting 

in a standard manner.  
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Figure 3.6: OGF-RUS Standardization Roadmap, from [138] 

3.5 Accounting Systems  

 

There are many operational grids having accounting systems developed and deployed, 

some of which are standard compatible while others provide custom solutions. The 

interoperability, however, has received increasing importance in accounting among grid 

environments, and contributed to more and more standard non-compatible solutions 

transiting to be standard compatible. A list of accounting systems (Table 3-2) developed 

by production Grid projects is reviewed in this section.   
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Table 3-2: A List of Accounting Systems of Production Grid Projects 

Name  Project  Description  Affiliation  

APEL  EGEE/WLCG  

An accounting tool used in the LCG 

project, and is a part of the gLite 

middleware  

STFC RAL  

DGAS  EGEE  

DGAS (Distributed Grid Accounting 

System) previously known as the 

DataGrid accounting system was 

developed within the EU DataGrid 

project and is currently being re-

engineered by EGEE and OMII-Europe.  

Istituto 

Nazionale di 

Fisica Nucleare 

(INFN)  

SGAS  SweGrid  

SGAS (SweGrid Accounting System), 

developed for SweGrid, is a Java 

implementation based on OGSA 

architecture that is now integrated as a 

Grid service in Globus Toolkit 4. SGAS 

has been used in NorduGrid as a standard 

accounting service.  

The Royal 

Institute of 

Technology 

(KTH)  

UNICORE 

Accounting 

service  

UNICORE  

The UNICORE accounting system is an 

OMII-Europe component that provides a 

WS-RF compatible RUS implementation 

for real-time usage monitoring.  

Forschungszentr

um Juelich-FZJ 

Gratia  
Open  Science 

Grid  

Gratia is the Grid accounting system 

being developed for Open Science Grid, a 

scientific Grid project funded by National 

Science Foundation 

SLAC National 

Accelerator 

Laboratory and 

Fermilab  

User 

Accounting 

System  

UK National 

Grid Service  

An accounting service developed by UK 

National Grid Service project for 

reporting resource usage at user level. 

Manchester 

University 
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3.5.1 User Accounting System 

 

The User Accounting System (UAS) [139] deployed within most National Grid 

Service (NGS) sites in UK was originally designed for the Market for Computation 

Service (MCS) project [140]. The UAS aims at metering and collection of usage 

information from computational centres around UK.  

 

As illustrated in figure 3.7, the system is composed of two major components for 

usage metering, the Batch2UR and JBMDB, both of which reside at resource provider 

site. The JBMDB module is deployed as a “cron” job and scheduled to generate global 

job-user identity mapping information daily by parsing GRAM log files. Batch2UR 

component is deployed at Local Resource Management System (LRMS) node and meters 

usage information on completion of a batch job and compose OGF URF instances that are 

then fed into the centralised RUS service instance running at Manchester site, through 

RUS client interfaces. The RUS service also renders and store received URF instances 

into Oracle Relational Database Management System (RDBMS) with custom relational 

data model. Metric mappings of this relational data model are given in the Table A-1 of 

Appendix A. The data schema  which are summarized and synchronised on per user basis 

to Oracle database maintain by Grid Operation Service Centre (GOSC) at Rutherford 

through Oracle synchronisation protocol. User summary usage information is used to 

enforce usage policing against allocated quota. A Web portal is also provided and allows 

user to query how much quota remains so that users can plan resource usage before job 

submissions. 

 

 
 

Figure 3.7: NGS User Accounting System Deployment Diagram 
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3.5.2 Accounting Processor for Event Logs 

 

Accounting Processor for Event Logs (APEL) [141] is the accounting system 

developed by the WLCG project, and aims at streaming metered resource usage 

information from participant site to Grid Operation Centre (GOC) at Rutherford Appleton 

Laboratory (RAL), where an aggregation process is enforced for reporting resource usage 

statistics on per VO, per site, and per month basis.  

 

 
 

Figure 3.8: WLCG Accounting Processor for Event Logs (APEL) System Deployment 

Diagram 

 

As illustrated in Figure 3.8, APEL system comprises a variety of log processors, which 

are scheduled as “cron” jobs and aims at meter resource usage by parsing log files 

produced by different runtime components, batch systems and Globus gatekeeper in 

particular. A site-level Relational Grid Monitoring Architecture (R-GMA) [142] server is 

also deployed at site level to cache metered usage data and compose usage records on per 

batch job basis in WLCG accounting schema [143] by a lightweight process, the join 

processor. Metric mappings between WLCG accounting schema and standard OGF-UR 

schema are outlined as illustrated in Table A-2 at Appendix A. The join processor is also 

required to contact a site-level information service, the Grid Information Index Service 

(GIIS), to look up performance for the computational resources where jobs were executed. 
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This performance information is to be used for normalisation and is of particular 

importance when dealing with VO applications that run over heterogeneous resources. 

Job usage records of a particular site are then published through R-GMA protocol and 

archived in a centralised relational database maintained at the Grid Operation Centre in 

Rutherford Appleton Laboratory (RAL), where job usage records are aggregated to a 

separate summary usage database. Aggregate usage information is synchronised to 

database at Centro de Supercomputación de Galicia (CESGA) site in Spain and accessible 

by end users through a graphic front-end Web portal. 

 

3.5.3 Distributed Grid Accounting System  

 

Distributed Grid Accounting System (DGAS) [144] is another grid accounting tool 

developed by EGEE project and widely deployed at participants sites involved in both 

EGEE and WLCG projects. DGAS is targeted at providing job-level resource usage 

metering in a client/server infrastructure. 

 

 
 

Figure 3.9: Distributed Grid Accounting System Deployment Diagram 

 

The accounting process of DGAS is enforced by two main components, as 

demonstrated in Figure 3.9, the lightweight usage meter, Gianduia, and the distributed 

Home Location Registry (HLR), which acts as a repository for usage information related 

to registered users or resources. Each site has a Gianduia meter deployed and publishes 
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metered usage information to a registered resource HLR, from which usage information 

can be retrieved for both individual jobs and in aggregate/summary form on per CE basis. 

Metric mappings between relational accounting schema of resource HLR and standard 

OGF-UR schema are given in table A-3 of Appendix A. A transaction manager keeps 

listening to incoming job usage records and is triggered to forward resource-specific job 

usage records to User HLR, where additional user information is to be added into job 

usage records. It is also understood that a preliminary RUS prototype, known as DGAS-

RUS [145], is being developed for the DGAS system. The RUS interface will enable 

insertion and persistence usage records from user HLR through RUS client interface into 

a centralised XML database.  

 

3.5.4 SweGrid Accounting System 

 

The SweGrid Accounting System (SGAS) [146] is an accounting system developed 

the national Grid test-bed in Sweden, and has been integrated as accounting service of 

Globus Toolkit. 

 

 
 

Figure 3.10: SweGrid Accounting System Deployment Diagram 

 

As shown in Figure 3.10, the usage metering is realized through the Job Account 

Resource Management (JARM) component, which is responsible for providing the 

accounting system with information from local batch systems. Each user requires a valid 
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account with credits in a banking service. When submitting a job, the JARM computes a 

maximum cost and reserves that amount of credit on the user’s account through the 

banking service. On completion, the JARM reports the actual resource consumption in 

the form of a usage record and the associated charge is made to the user’s account. The 

usage record is then populated into the Logging and Usage Tracing Service (LUTS), a 

RUS instance, for centralized storage. Any query on job usage information is directly sent 

to LUTS via an authorization service that protects usage data from invalid access. The 

SGAS exhibits a full standard-compatible solution for Grid accounting. The only 

extension, as Appendix A.2.3, to URF proposed within SGAS also highlights the 

importance of VO information. 

 

 
 

Figure 3.11: Gratia Accounting System Deployment Diagram 

 

3.5.5 Gratia 

 

The Gratia [147] is the accounting system being developed within OSG project. The 

current implementation of Gratia accounting system is composed of three functional 

components as illustrated in figure 3.11: the probe, collector and publisher. Usage 

information of a cluster is kept being logged by a utility script, the PSACCT, for 

monitoring process activities. At head node, a translator process is running periodically 

and merges log information of both head and work nodes into complete usage records, 
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which are fed into the probe component and published into remote collector machine 

through well-defined Web service interfaces. These usage records are stored centrally in a 

relational database of the collector machine.  Metric mappings between Gratia accounting 

schema and standard OGF-UR schema are listed in table A-4 of Appendix A.  

 

3.5.6 UINCORE Accounting System 

 

The accounting system in the UNICORE project provides a RUS implementation 

based on WSRF profile [50]. The RUS is integrated within UNICORE infrastructure 

aiming at exposing usage records generated at the batch system level in real time.  

 

As shown in figure 3.12, the UNICORE accounting system is composed of two 

components: the URF generator and RUS endpoint. A graphic front-end client, LLView 

[148], is provided for users to get real-time site-level resource usage on demand. Once 

triggered, the LLView client interacts with RUS service endpoint and query through the 

“RUS::extractUsageRecord” interface. Rather than maintaining persistent resource usage 

information, the RUS service endpoint interrogates the usage record generator and returns 

resource usage information of queued and active batch jobs. Since current RUS 

implementation however does not enable data persistence, it is not possible to provide 

historic usage statistics.  

 

 
 

Figure 3.12: UNICORE Accounting System Deployment Diagram 
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3.5.7 Comparison 

 

As detailed comparisons summarised in Table 3-3, existing accounting systems 

employed in the production Grid projects are implemented in heterogenous ways with 

project-specific purposes. Most usages of these accounting systems fall into the four 

usage scenarios discussed in section 3.2, except the UNICORE accounting system which 

is used for site-level usage monitoring purposes. Although some accounting systems are 

used for the scenario, for example both DGAS and SGAS designed for realisation of Grid 

economic model, theire accounting process are different from each other. DGAS uses 

active metering pattern that parses job usage information mainly for charging and billing 

purposes, while the metering process of SGAS is triggered by EMS to perform economic 

authorisation before staging a job request to local resources. Besides these accounting 

system uses different data presentation format and data persistence strategies.  

 

Table 3-3: Comparison of Grid Accounting Tools Employed In Production Grids 

 
 

Given their heterogeneous essence, it is hard for these accounting systems to 

interoperate with each other to fulfill the requirements on sharing accounting data across 

Grid infrastructures, unless two accounting systems exhibt common service interfaces and 

exchange accounting data in a common format. Standardisation therefore is of increasing 

importance in this sense. However standardisation is a time-consuming process because it 

is difficult to define a single standard to accommodate various and evolving accounting 
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requirements. Standardisation is further complicated by conerns from additional re-

engineering tasks while not breaking existing accounting processes. At the end of the 

review, there are only two accounting systems, SGAS and UNICORE accounting system, 

which provide standard compatible solutions to both OGF UR and OGF RUS.    

 

3.5.8 Others 

 

Having recognised the importance of accounting service in Grid systems, there are 

many commercial Grid products that have custom accounting solutions implemented. The 

Accounting and Reporting Console (ARCo) [149] of Sun Grid Engine (SGE) [150], for 

example, enables users to gather live reporting data from the SGE as well as storing 

accounting data for historic analysis in the reporting database. Besides aforementioned 

accounting systems developed for large-scale distributed Grid systems, there are also 

many cluster and High Performance Computing (HPC) systems that have accounting 

systems embedded. Such examples as Gold Allocation Manager [151] is an open source 

accounting system designed to dynamically interact LRMS to provide job quotations at 

job submission time, hold on accounts during job execution, and charge on completion of 

jobs according to actual resource usage. SAFE is another example accounting tool 

developed by EPCC for accounting purposes of national HPC services HPCx [152] and 

HECToR [153] as well as local EPCC machines. A Java-based web interface to SAFE 

provides graphical usage monitoring and allows Principal Investigators to administer their 

projects’ users and resources. 

 

3.6 A Generic Accounting Framework 

 

Based on reviews of existing accounting tools, both standards compatible and 

incompatible, there are several common issues identified. First of all, these accounting 

systems are implemented in a Grid or project-specific manner, making it hard to be 

reused across project domains. Interoperability is another challenge in the sense of 

lacking a standard way of mapping custom usage metrics to those standardised within the 

OGF-UR schema. Custom metric definitions using OGF UR extension framework further 

complicates the interoperability issue. As Table A-5 given in Appendix A, most 

accounting systems have similar metric extensions defined in different way. Although 
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there are some standard-compatible accounting solutions available, such as SGAS, 

UNICORE accounting system and preliminary implementation of DGAS-RUS, a native 

XML database is widely used to save OGF usage records instances natively, making it 

hard to implement a standard compatible accounting solution especially for those that  use 

relational database for data persistence. There are also several other non-functional issues 

that should be considered when developing an accounting system for large-scale 

distributed systems as the Grid, including responsiveness, flexibility, fault tolerance, and 

security.  

 

In order to avoid duplicate efforts and provide an integrated and widely adopted 

approach to accounting in real production Grids, a generic accounting framework is 

proposed to JISC as one of the outputs of our review efforts described in this chapter. As 

Figure 3.13, the proposed framework abstracts basic functionalities of an accounting tool 

based on a Client/Server (C/S) infrastructure.  

 

 
Figure 3.13: Generic Accounting Framework (Component Architecture) 

 

At the client-side, a general-purpose UR generator component is defined and used to 

meter accounting metrics and compose accounting data in standard UR format. The UR 

generator component exhibits an abstract layer and allows different implementations 

upon usage meters of underlying systems. Accounting data instances are then streamed 

into a RUS service endpoint through RUS client interfaces. 

 

The RUS service endpoint at server side consists of a set of abstract functional 

components to be added as required within an RUS implementation. The access control 

module acts as a gateway to RUS logics and protects accounting data from unauthorised 
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accesses. A RUS service must provide an implementation of this module and apply local 

security policies to guarantee data privacy. A RUS implementation may choose to 

implement one or more RUS logics or operations. By implementing two optional 

modules, the UR mapping module and Data Access Object (DAO) module, a RUS 

implementation can be developed without changing existing accounting data model and 

persistent storage types. In order to ensure system QoS, a session is required to maintain 

the accumulation of transaction information on per user per transaction basis. A RUS 

implementation may define their own data structures inside a session for various purposes. 

When a user query a huge amount of accounting data, for example, the session can be 

used to maintain an enumeration context and allows user to iterate query results through 

multiple interactions. A session normally has a limited lifetime. The session management 

module is thereafter defined and responsible for lifetime management of sessions. Finally 

the configuration manager component is used to provide configuration facilities for a 

RUS system.  

 

3.7 Summary 

 

This chapter investigated the philosophy of accounting in the Grid environment, and 

reviewed the state-of-art standardisation and development efforts on accounting systems 

of operational Grid projects and commercial Grid products. However, these accounting 

systems were developed in a variety of ways depending on Grid-specific understanding of 

accounting and customised high-level usages. Having identified the importance of 

interoperability for sharing usage data across accounting systems in particular, there are 

an increasing number of accounting systems being developed or migration to be 

compatible to OGF UR and OGF RUS standards. Early adoptions of these standards, 

however, are implemented upon specific accounting systems, making it hard to be reused 

for others. In order to enable a consistent solution and avoid duplicate efforts, this chapter 

proposed a generic accounting framework with identified key features, which ensures 

interoperability while allowing maximum customisation to accommodate local 

deployment requirements. This proposed accounting framework forms the basis of the 

rest chapters of this thesis.  
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Chapter 4                 

Design of Resource Usage Service for World‐wide 

LHC Grid 

 

According to the Memorandum of Understanding (MoU) [154], participating sites of 

the World-wide LHC Grid (WLCG) project are required to provide resource usage or 

accounting information to the Grid Operational Centre (GOC) for the purpose of overall 

project operation and management. As a composite Grid environment, the accounting 

process of WLCG is currently empowered by four accounting systems, APEL and DGAS, 

SGAS and Graita developed by WLCG/EGEE collaborative project, Nordic Data Grid 

Facilities (NDGF), and Open Science Grid (OSG) project respectively. These project-

specific accounting systems were designed and implemented based on project-specific 

accounting requirements and purposes, therefore lacking interoperability and portability. 

In order to automate accounting process in WLCG, three transportation methods are 

being introduced for streaming accounting data metered by Grid-specific accounting 

system into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting 

data are aggregated and accumulated throughout the year. These transportation methods, 

however, are introduced on per accounting system basis, i.e. targeting a particular 

accounting system, making it hard to customise. This chapter describes a standard-

compatible solution, the WLCG-RUS as an alternative method for sharing accounting 

data, while ensuring interoperability, portability and customisability. Relevant 

publications related to this chapter have been published in[155][156][157][158]. 
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4.1 Introduction 

 

Accounting activities within WLCG requires collection of accounting data from all 

participating sites in EGEE and WLCG projects as well as from sites of other 

collaborating Grid projects into a central accounting database in GOC at RAL. These 

accounting data are to be processed offline to generate statistical summaries that are 

reportable through EGEE/WLCG accounting portal[159].  There are two main accounting 

processes introduced within EGEE/WLCG accounting framework[160]: the job 

accounting and aggregate accounting. The job accounting process generates accounting 

records describing the resources consumed by a single executing job. Job accounting 

records are composed at sites and streamed into a central database at GOC, where offline 

aggregate processes take effect to summarise resource usage consumed by a collection of 

jobs. These two types of accounting processes fall into categories of the “fine-grained 

active accounting” and “aggregate active accounting” models as classified in section 3.3.3.  

 

Job accounting process in WLCG is mainly enforced by accounting systems of 

EGEE/WLCG and other collaborative Grid projects. These project-specific accounting 

systems are being deployed at sites to meter and generate accounting records in 

heterogeneous formats. In order to share job usage records within the GOC centre, there 

are three transportation methods (Figure 4.1) introduced, each of which was designed to 

provide accounting system-specific solution. For most EGEE/WLCG sites, APEL[141] 

has been deployed as one of main accounting systems, which generates accounting 

records in WLCG accounting schema. The job accounting records metered at sites by 

APEL therefore can be automatically synchronized to the centralised job accounting 

database maintain at GOC centre through R-GMA[122] protocol. Another accounting 

system widely deployed at EGEE/WLCG sites is the DGAS [144], which generates job 

accounting records in a format different from WLCG accounting schema. Before 

streaming accounting data to GOC, DGAS accounting records are required to be 

transformed into WLCG accounting data format. A lightweight component, 

DGAS2APEL, transforms DGAS accounting records into the WLCG accounting data 

format and streams them into GOC through R-GMA protocol. The third and most 

straightforward transportation method is called “direct SQL insertion”. Rather than 

automating data sharing process, this method requires extra administrative efforts to 

manually populate accounting records by executing Structured Query Language (SQL) 

insertion statement. The “direct SQL insertion” method has been widely adopted by sites 
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from collaborative Grid projects, OSG and NDGF in particular, to share aggregate 

accounting data only applying to local security policies. An offline aggregation process is 

scheduled at GOC and summarises resource usage data daily.   

 

There are three accounting data formats, collectively known as WLCG schemas[143], 

defined in WLCG for data persistence on relational databases, the WLCG job record 

schema, anonymous aggregate record schema, which represents summarised resource 

usage information on per site, per VO, per month, and per year basis, and user aggregate 

accounting record schema, which represents summarised resource usage information on 

per site, per VO, per user, per group per role, per month and per year basis.  

 

 
 

 

Figure 4.1: Current EGEE/WLCG accounting deployment scenarios with three 

transportation methods introduced in WLCG accounting 
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This chapter describe the design and implementation details of WLCG-RUS, as an 

alternative, but standard-compatible method to share accounting data. 

 

 

 
 

Figure 4.2: The main use cases that the WLCG-RUS is expected to implement in 

conjunction with the actors generalised from existing WLCG accounting scenarios. 
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4.2 Requirement Analysis 

 

This section discusses the requirements that shaped the design of the WLCG-RUS 

system. 

 

4.2.1 Use Cases  

 

In order to identify system design requirements, a use case analysis was carried out 

based on three generalised roles in the context of existing WLCG accounting: the site 

manager, site hosts, and system administrator. Detailed use cases are illustrated in Figure 

4.2 and listed in Appendix B.1. 

 

Site manager 

 

A site manager is the manager of a participating site, normally an institution or 

research centre, in the provision of the WLCG with a Tier1 and/or Tier2 computing 

centre. An actor taking the role of site manager should hold a valid X.509 certificate. A 

site manger in the context of WLCG-RUS system has the privilege to register one or 

more hosts to the WLCG RUS system so that these hosts can upload accounting data. A 

site manger is also able to manage host account through WLCG-RUS interface. 

 

Host 

 

The host is the head node of EGEE/WLCG computing element and holds a valid host 

certificate signed by a recognised Certificate Authority (CA). A host is able to publish 

host-specific or site-specific accounting data to WLCG-RUS system only if it has a valid 

account registered by owned site manager and activated by system administrator.  

 

System Administrator 

 

The system administrator is senior to other roles and takes the responsibility of system 

management. A system administrator has views and controls over all hosts registered to 

WLCG-RUS system. Besides, a system administrator takes care of user management and 

role assignment. Finally a system administrator is required to have administrative rights 
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on WLCG-RUS system configurations. 

 

4.2.2 Requirements 

 

Capability or Functional Requirements 

 

Based upon review of identified use cases, key functional requirements of the WLCG-

RUS system are summarised as follows. 

 

1. Data Publishing 

 

The key functionality of WLCG-RUS system is to provide a data publishing 

mechanism through which participating sites can upload accounting data. The design of 

data publishing is required to enable both fine-grained at batch job level and aggregate 

accounting models, to facilitate various data sharing in the context of WLCG accounting.  

In the case of aggregate accounting model, the aggregation process should be triggered at 

the same time of data publishing. The design of data publishing facility in WLCG-RUS 

system is also required to support various aggregation strategies in a customisable manner 

making it easy to adapt existing WLCG anonymous aggregate strategy, user aggregate 

strategy and new aggregate strategies. 

 

2. Host Management 

 

From perspective of site managers, the WLCG-RUS system is required to provide host 

management facilities for host registration, view registered hosts, and edit host profiles. 

  

3. User Account Management 

 

User management is an important functionality for system administrator. The WLCG-

RUS system is designed to provide user account management facilities for system 

administrator to view user registration requests, and grant and revoke privileges to site 

managers. 

 

 Interface Requirements 
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There are three different interfaces intended to be provided in the WLCG-RUS system, 

the internal, external and user interfaces.  The following provides a list of requirements 

on interface design. 

 

4. Internal Interface  

 

The WLCG-RUS system must exhibit well-defined internal interfaces for 

customisation and extensibility, so that new features can be implemented independently 

and plugged, without affecting fundamental architectural design.  

 

5. External Interface 

 

The external interface is the client-side interface used for hosts uploading accounting 

data through standard RUS interfaces. In this case, the design of external interface should 

be command line oriented, in particular scripting language based, so that the uploading 

process can be automated in a scheduled manner (e.g. cron job).  

 

6. User Interface 

 

The design of the WLCG-RUS system needs to provide user-friendly interfaces for 

site managers and system administrators to perform management tasks. 

 

Data Requirements 

 

Data representation in the WLCG-RUS system is a two-folded issue. On the one hand 

WLCG-RUS is intended to be deployed upon existing WLCG accounting data without 

fundamental schema changes. In this sense, the relational WLCG schema must be reused. 

On the other hand, when hosts upload accounting data to WLCG-RUS system, standard 

and XML-based usage records are streamed as SOAP message payloads as defined in 

RUS specification. A consistent set of mapping rules should be applied to transform 

standard usage record instances into appropriate WLCG accounting data formats. 

 

7. Internal Data 

 

Accounting data uploaded from hosts must be represented in a compatible format to 
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the WLCG schemas and persistent in relational database.  

 

8. External Data 

 

Since WLCG-RUS system is intended to provide OGF RUS compatible solution, 

usage records must be presented in OGF UR format when streaming into WLCG-RUS 

system.  

 

Security and Privacy Requirements 

 

Security is of highest importance in the design of the WLCG RUS system in order to 

ensure authenticated and authorised data sharing as well as preventing accounting data 

from being compromised during network transportation.  

 

9. Authentication 

 

The WLCG-RUS must provide X.509 certificate based authentication. Compared to 

traditional user/password authentication, the certificate-based authentication provides a 

higher level of security to prevent the system from unrecognised accesses. 

 

10. Authorisation 

 

The design of WLCG-RUS system should provide Role-Based Access Control (RBAC) 

and ensure fine-grained access control on operation and per usage record basis. The role-

based access control should also apply to host management and user management 

facilities. 

 

11. Data Integrity 

 

Data integrity ensures that accounting data or usage records are not compromised 

during network transmission from remote hosts to WLCG-RUS server. 

 

Other Requirements 

 

Besides the above requirements, following requirements should also be put into 
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consideration during the design of WLCG-RUS system. 

 

12. Interoperability 

 

The system must provide a standard compatible solution, in particular compatible to 

OGF RUS[138] and OGF UR[137] standards, as a consistent mechanism for data sharing 

other than introducing specific transportation mechanism to individual accounting system 

as current WLCG accounting process. A standard compatible solution also ensures 

interoperability to other standard compatible accounting systems in an implementation 

transparent manner.  

 

13. Performance 

 

It is witnessed that an increasing number of sites, over 200 until now, are participating 

in the WLCG project and share resource usage data to GOC. It is critically important for 

the WLCG-RUS system to ensure efficient performance and serve simultaneous requests 

within reasonable time.  

 

14. Fault Tolerance 

 

The WLCG-RUS system must be tolerant to runtime and service failures without 

breaking data consistency. 

 

4.3 Design 

 

This section discusses the design of WLCG-RUS system architecture and details of 

composite subsystem designs.  

 

4.3.1 System Architecture 

  

The WLCG-RUS architecture, as the deployment diagram illustrated in Figure 4.3, 

consists of two subsystems: the RUS service and WLCG-RUS Admin. 

The RUS service implements two RUS interfaces: the “RUS::insertUsageRecord” and 
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“RUS::listMandatoryUsageRecordElements” interfaces, through which site-specific hosts 

query the mandatory element configurations and populate usage records. In order to 

automate data uploading process, it also provides a command-line client that can be 

scheduled to execute periodically. The communication protocols between RUS client and 

service is based on SOAP over HTTPS, which ensures data integrity and mutual 

authentication. On receiving a request, the RUS service endpoint delegates the request to 

a sequence of runtime components for fine-grained access control on per usage record 

basis, validation of received usage records against mandatory element configuration, 

rendering usage record instance to WLCG accounting data format, and saving accounting 

records into local relational database. In the case of active aggregate accounting, an 

additional aggregation strategy is triggered during the command execution. In order to 

enhance customisation and extensibility, the design of RUS services is based on a set of 

loose-coupled internal components, each of which exhibits well-defined internal 

interfaces.  

 

The WLCG-RUS Admin is a Web application that provides management facilities for 

 

 

 

Figure 4.3: The Major Components of WLCG-RUS System and interactions 
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both the system administrator and site managers. Specifically, the design of WLCG-RUS 

Admin is intended to provide three management facilities: user management, host 

management, and system administration. A user becomes a site manager candidate only 

when the user registers an account to the WLCG-RUS Admin system. The registration 

request is queued and to be activated by the system administrator. When activated, the 

site manager receives a confirmation email and can create one or more host accounts, 

which are required to be approved by system administrator before sharing usage records 

through RUS service. The WLCG-RUS Admin also keeps system configuration of RUS 

service, such as mandatory elements as well as custom implementation of internal 

components. System administrator can specify and change these system configurations at 

runtime without restarting the system.  Because WLCG accounting data formats are 

reused within WLCG-RUS system, existing EGEE accounting portal can still be used as a 

Web-based graphic interface for resource usage reporting.  

 

4.3.2 Detailed System Design 

 

This section describes the design details of WLCG-RUS subsystems and individual 

composite components. 

  

External Aggregate Data Representation 

 

The design of WLCG-RUS system is intended to enable both active fine-grained and 

aggregate accounting models. With fine-grained accounting model, the OGF UR is used 

as the standard external accounting data representation. However, there was no standard 

aggregate data format available at the design time of the system. In 2006, we collaborated 

with researchers from Fermilab and CCLRC, and proposed a standard Aggregate Usage 

Record (AUR) schema, which had been submitted to OGF UR working group as a draft 

specification [158] for public review. This recommended aggregate usage record schema 

is adopted as an external data presentation for aggregate usage records.  

 

An AUR instance represents resource usage of more than one Unit of Work (UoW) 

summarized according to a specific grouping criterion, also known as aggregation 

strategy. As shown in figure 4.4, the content model of AUR reuses most of usage metrics 

of URF and defines a category of aggregate properties. The common aggregate properties  
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Figure 4.4: Proposed content model of aggregate usage record schema 
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are used to represent common metrics of a usage record instance, including total number 

of jobs aggregated, aggregation interval from the start time of earliest job to the end time 

of the lasted job, and overall status of jobs aggregated. These common properties are 

allowed to appear exactly once. User properties define ownership of aggregated jobs 

within a record instance. Besides user properties defined within OGF UR, AUR 

introduces additional user-related properties, Virtual Organization (VO) and Full 

Qualified Attribute Name (FQAN). Resource-related properties are encapsulated within a 

resource identity element, and are divided into local and global resource properties. Local 

resource properties include site-specific machine name, queue name and execution host 

name, which are defined within OGF UR , while global resource properties defines Grid-

wide properties such as global resource identity, cluster identity and participating site 

name. User and resource aggregate properties can appear more than once within a record 

instance, depicting certain aggregation strategy. The WLCG anonymous summary record, 

for example, defines aggregation strategy that summarizes resource usage of jobs on per 

VO, per site, per month and per year basis. For an aggregation strategy requires custom 

properties not defined with aggregate properties of AUR, the grouping extension property 

can be used. 

 

Design of Resource Usage Service 

 

In order to enhance customisation and extensibility, the design of RUS service is 

based on component architecture, consisting of a set of loose-coupled and reusable 

components. Each component realises certain functionality and exhibits well-defined 

interfaces. These components have been designed to be loosely coupled, so that they can 

be easily customised, upgraded and replaced to adapt to local deployment requirements.  

 

As the class diagram illustrated in Figure 4.5, there are four major functional 

components defined within RUS service. The “Command” component is the main 

functional component that encapsulates all required information associated with 

execution of RUS logic operations. A single common interface, “execute()”, decouples 

completely between RUS service endpoint and various “Command” component 

implementations. With a single interface, a RUS service can delegate incoming requests 

to different “Command” implementations in a consistent manner. A RUS service may 

chose to implement a single “Command” implementation that serves all RUS requests or 

to have multiple “Command” implementations that serve individual  
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Figure 4.5: Class diagram of RUS service runtime components 

 

RUS service interfaces. The execution of various “Command” component shares 

common requirements, including checking user permissions, data persistence, and 

runtime aggregation. These common requirements can be realised through other three 

components defined within RUS service. The authorisation service component provides 

an interface for fine-grained access control over per operation and per usage record. 

Different authorisation mechanisms can be applied by implementing authorisation service. 

Data Access Object (DAO) component provides a higher-level abstraction upon 
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underlying data persistent storage, and can be potentially implemented for XML:DB[161], 

relational database, file systems and other storage format. Considering that various 

relational databases might be used for usage record persistence, a separate DAO 

component, the Hibernate [162] DAO, is also implemented by extending the generic 

DAO component and places another abstraction upon heterogeneous relational database 

engines. For runtime aggregation, different aggregation algorithms can be implemented 

by extending the aggregate strategy interface.  Each component of RUS service has an 

associated factory class that creates and instantiates appropriate component instances 

dynamically. These component and factory implementations are snapped together to 

provide a complete solution of RUS service.  

 

Design of Administrative Web Application 

 

The design of the WLCG-RUS admin Web application is based on Model-View-

Controller (MVC) pattern, with models encapsulating domain-specific representation of 

data, controllers representing domain-specific logics operating upon to data, and views 

providing Web-based interfaces allowing end-user interactions. As Figure 4.6, the 

WLCG-RUS admin Web application is intended to provide administrative and host 

management facilities for the WLCG-RUS system administrator and site managers.  

 

In order to access the WLCG-RUS admin system, a user must have a valid and 

recognised X.509 user certificate, and has a valid user account. Each user is directed to 

specific view according to granted role. Site manager only have access to host 

management facilities, which allows host registration, exploring host status, and deleting 

a host. Newly registered host cannot share accounting data or usage records through RUS 

service endpoint until its registration request is approved by the system administrator. A 

site manager only has management authority of owned hosts. System administrator has an 

administrative view, which provides user management facilities and host management 

facilities. A system administrator can create a new role, grant a role to registered users, 

revoke a user, publish system announcements, and have full control over all hosts 

registered by site managers. Another important usage of WLCG-RUS admin system is to 

specify RUS service configurations, including factory of RUS service functional 

components and mandatory elements for validating incoming usage records. 
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4.4 Implementation 

 

The implementation of WLCG-RUS system is based on Service-Oriented Architecture 

(SOA) in the profile of Web Service Interoperability (WS-I) version 1.2[163]. The 

development of RUS service makes use of Apache Axis version 1.4[164] as SOAP engine, 

which has proved to be a stable and reliable system, and is widely used for commercial 

application servers. Java was chosen as the language for the system because it is platform 

independent and has well-defined design patterns.  The development of WLCG-RUS 

Admin is based on Grails[165], an open source Web application framework, and ideal for 

developing MVC Web applications. The Grails leverages the Groovy[166] programming 

language, which is based on Java platform as well, making it easy for communication 

between RUS service and WLCG-RUS Admin. By using Grails, the WLCG-RUS Admin 

and RUS service are packaged as a single software release. This section discusses 

implementation details of WLCG-RUS system and its subsystems. 

 

 

 
 

Figure 4.7: Internal data model of RUS service reuses existing WLCG accounting 

schema with additional record history model 
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4.4.1 Resource Usage Service 

 

External-Internal Data Mapping 

 

In order to ensure ease of uploading accounting data through standard RUS interface, 

a data mapping mechanism is required to enable dynamic transformation from external 

data represented in standard OGF usage record and aggregate usage record formats into 

corresponding WLCG accounting formats (Figure 4.7). The mapping rules of OGF UR 

and WLCG schema have been discussed in section 3.5.2 and given in Appendix A-2. 

Similar mapping rules are also introduced for mapping between proposed standard AUR 

properties and WLCG summary schema as Appendix A-6. 

 

Apart from mapping rules between standard usage and WLCG usage metrics, another 

important issue to be solved is the data consistency, when uploading accounting data to 

RUS service endpoint, in particular for time synchronisation and storage units, which are 

summarised as follows: 

• Considering the fact that WLCG accounting usage records might come from sites 

of countries in different time zones, the default implementation of RUS service 

requires every timestamp-related usage properties to be expressed in ISO8601[167] 

format (e.g. 2008-10-01T20:39:28Z or 2008-10-01T21:39:28+01:00), and 

transforms timestamp values to Coordinated Universal Time (UTC) values 

therefore ensuring time consistency.   

• For volume resource usage properties, such as memory and disk usage, the default 

storage unit is KB, unless it is explicitly specified as the RUS service 

configuration property, “storage.unit”.  

• During fine-grained aggregate accounting process, individual usage records are to 

be summarised before being stored a into local database. WLCG aggregate 

strategies involve a normalisation process that normalise the CPU usage 

information across disparate sites into a common reference scale based on 

SpecInt2000 benchmark.  

 

The mapping and data consistency rules between standard usage record instances are 

implemented and ensured by three entity classes. Each entity class has two constructors, 

the default constructor instantiating an empty entity instance, and the constructor that 

takes a usage record instance as a parameter and instantiates an entity instance by 
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applying mapping rules and data consistency constraints. 

 

Job Accounting Model 

 

The job accounting model is implemented within WLCG-RUS system by extending 

the internal components of RUS service. As Figure 4.8, the “LcgRecord” class is the 

object model that represents WLCG relational job accounting data model. The 

“LcgRecordDAO” component extends the internal “GenericDAO” interface with typed 

parameters referring to “LcgRecord” object model and its identity data type. The WLCG-

RUS job accounting model uses Hibernate Object-Relation Mapping (ORM) engine for 

mapping and saving Java objects to MySQL relational database.  

 

As shown in Figure 4.9, in the processing of job accounting information in the 

WLCG-RUS system involves the following steps and a sequence of interactions between 

internal components of RUS service: 

1) A client sends a “RUS::insertUsageRecords” SOAP request message to RUS 

service endpoint. 

2) On receiving insertion request, the RUS service endpoint loads command factory, 

DAO factory, authorisation service factory, and mandatory elements from RUS 

service configuration. The RUS service endpoint then instantiates an 

“LcgRecordInsertCommand” instance and set DAO instance, authorisation service 

instance and mandatory elements to the command instance. 

3) The RUS service endpoint delegates insertion request to the command through the 

“execute()” interface.  

4) For each usage record, the execution of command firstly checks user authority to 

perform insertion operation upon the usage record. 

5) Once authorised, the command then validates the current usage record against 

mandatory element configuration. 

6) If validated, the command creates an LcgRecord instance by passing the current 

usage record to LcgRecord constructor.  

7) The command then invokes the save method of LcgRecordHibernateDAO and 

passes the instantiated LcgRecord instance. 

8) The DAO object makes the LcgRecord instance persistent into local relational 

database and returns a record identity. 
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Figure 4.8: WLCG-RUS job accounting model implementation (UML Class diagram) 
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Aggregate Accounting Model 

 

Aggregate accounting model implemented in WLCG-RUS system accepts pre-

aggregated usage records in OGF AUR format as well as job usage records in OGF UR 

format, which are to be aggregated during execution of insertion. In the latter case, an 

aggregate strategy should be applied to generate appropriate AUR instances. As Figure 

4.10, there are two aggregate strategy classes implementing WLCG anonymous and user 

aggregate strategies respectively. These aggregate strategies are to be triggered by 

corresponding command implementations, and generate instances of either WLCG 

anonymous aggregate records or WLCG user aggregate records, which are to be stored 

into relational databases through DAO implementations.  

 

Aggregate accounting processing models implemented within WLCG-RUS is given in 

Figure 4.11, and involving following processing steps: 

1)  A client sends a “RUS::insertUsageRecords” SOAP request message to an RUS 

service endpoint. 

2) On receiving insertion request, the RUS service endpoint instantiates command, 

authorisation service, DAO and aggregate strategy instances through configured 

factory classes, and loads mandatory element configurations into runtime. 

3) The RUS service endpoint delegate insertion request to the command through 

execute( ) interface.  

4) For each usage record instance, the execution of command firstly checks user 

authority to perform insertion. 

5) Once authorised, the command then validates the current usage record against 

mandatory element configurations. 

6) If received usage records are OGF UR instances, an aggregate strategy is triggered 

and generates one or more instances of target aggregate object model, instances of 

WLCG anonymous aggregate records in this example. 

6.1 )  Otherwise, the command creates an instance of target aggregate object model by 

passing the current OGF AUR instance to “LcgSumRecord” constructor.  

7) The insert command then invokes the save method of “LcgSumRecordDAO” and 

passes the “LcgSumRecord” instance. 

8) The DAO object makes the “LcgSumRecord” instance persistst into a local 

relational database and returns a record identity. 
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Figure 4.10: Class diagram of RUS default implementation for aggregate accounting  
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4.4.2 WLCG-RUS Admin 

 

WLCG-RUS Admin Web application is implemented based on Grails framework and 

use the Groovy script language. The implementation adopts the passive MVC model with 

one controller exclusively manipulating one model and refreshing changes of model to 

views.  

 

Host Management 

 

As illustrated in Figure 4.12, the implementation of host management consists of a 

host controller, a host model class, and a set of view pages. The host controller class 

defines a list of methods that serve HTTP GET and POST requests. On receiving HTTP 

request, the hosting server of WLCG-RUS system invokes an appropriate method defined 

in the host controller, which then evaluates conditions using host model class if required. 

The host controller also decides which view should be built with the required data 

obtained from model class and renders the view to HTML for display.  

 

An instance of host model class encapsulates meta-information of a host as a registry 

entry, including the host name, host certificate distinguished name as displayed in host 

certificate, the site name it belongs to site manager, registration date, and status. There are 

four “do-GET” methods defined within the host controller, “list”, “create”, “edit”, and 

“show”. Each “do-GET” method has an associated view to display for user interaction. 

The “list” method is used to display all host registry entries. The “list” method is 

triggered to display host registry entries owned by the site manager, while displaying all 

host registry entries maintained inside the WLCG-RUS system to the system 

administrator. The “list” view also connects to the “show” view and the “edit” view, for 

displaying detailed registration information of individual host and updating registration 

details except the host’s distinguished name. A site manager may create a new host entry 

by filling the form as displayed by “create” view. On submission of the form, the “do-

POST” method “save” is triggered to create a new instance of host model and make it 

persistence into local relational database. Other “do-POST” methods defined within host 

controller include “delete”, “update”, “enable” and “disable”. A site manager may update 

host registration information except its enabling status. Every newly registered host is 

disabled by default. Only the system administrator has the authority to approve or 

disapprove a host through the “enable” or “disable” methods defined in the host controller. 
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User Management 

 

 
 

Figure 4. 12: Class Diagram of the Host Management Implementation 

 

 

The user management facilities implemented within WLCG-RUS Admin is based on 

the default security plug-in for the Spring framework [170], called Acegi[171], which 

manages most of the complexity of role-based authorisation, user login, and request-URL 

mapping issues. As shown in Figure 4.13, the Acegi plug-in generates two main model 

classes that can be used for user management tasks of WLCG-RUS system. Each model 

class has an exclusive controller class dealing with HTTP requests for creation, deletion, 

modification, and listing of user accounts, and role definitions.  

 

However, the default Acegi security implementation only provides simple user-

password authentication. The implementation of WLCG-RUS Admin adds a certificate-

based authentication. In this sense, a user can access WLCG-RUS Admin only if the user 

holds a valid X.509 certificate signed by a recognised CA. When entering into the main 

page, the user is required to be registered and assigned to a role. There are two predefined 

roles in WLCG-RUS Admin system, the site manager and system administrator. User 
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registration requests are pending for system administrator to approve. The system 

administrator can approve or disapprove a user through the “enable” and “disable” 

interfaces defined within user controller. Enabled users should receive an email 

notification when their accounts are approved by system administrator. 

 

 
 

Figure 4.13: Class Diagram of the Host Management Implementation 

 

 

System Management 

 

As discussed in section 4.4.1, the RUS service runtime involves interactions between a 

sequence of implementations of internal components. These components are required to 

be configured properly and be instantiated appropriately to perform job and aggregate 

accounting processes. The system management facilities provided by WLCG-RUS Admin 

system allows system administrator to specify, or modify, or delete RUS service runtime 

configurations. 
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As Figure 4.14, the “AppConfig” model class represents a single name-value 

configuration property. RUS service configurations can be divided into two categories, 

instantiatable properties, such as factories of runtime components, and uninstantiatable 

properties, the mandatory usage record elements for example. Instantiatable properties 

use the “instantiate ()” method defined with the model class. Same as other model classes, 

the “AppConfig” model has an exclusive controller class, which serves incoming HTTP 

requests and directs users to difference views.  

 

 
 

Figure 4.14: Class Diagram of the System Management Implementation 

 

 

4.4.3 User Interface 

 

WLCG-RUS system provides two user interfaces for both RUS service and WLCG-

RUS Admin Web application.  

 

Command Line Interface 
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The RUS service provides client-side interfaces and implementations for interaction 

with WLCG-RUS system through standard RUS interfaces, in particular 

“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”. The 

RUS service client is implemented using Java programming language, and is wrapped by 

a shell script. The client accepts arguments as shown in Appendix B. The client defines 

two actions, the “list” and “insert”, both must specify a “service URI” parameter setting 

the value of target RUS service endpoint address. For the “insert” action, either a single 

file location, or a directory, or a list of files is required to be specified for the actual usage 

record files or directories. The usage of an optional parameter, “delete-after-insertion” 

tells the client whether to delete the usage record files after successful insertion. Another 

optional parameter is the “max-elements” that is used to specify the maximum number of 

usage records per insertion. If this parameter is omitted, the default maximum number is 

set to 10. If any errors are encountered during execution of insertion, the target file name 

is changed and appended with an “ERROR” suffix. The RUS service client is to be used 

by host machines to upload usage records to WLCG-RUS system. The shell client can run 

as a “cron” job to be scheduled to populate usage records periodically. 

 

Web Interface 

 

WLCG-RUS Admin also provides a Web interface for site manger and system 

administrator to perform management tasks. This Web-based interface exhibits two views, 

the manager view to site manager, and admin view for system administrator. Once a user 

logs in successfully, the WLCG-RUS Admin system redirects the user to a different view 

according to user’s granted role.  

 

As Figure 4.15, the admin view provides navigation to user management and system 

management facilities. The screen shot also gives the list of RUS service configurations, 

including the authorisation factory class name, command factory class name, DAO 

factory name, as well as other configurations such as mandatory usage record elements. 

These mandatory element configurations are represented as XPath [170] expressions, 

which are to be evaluated against received usage records. As Figure 4.16, the manager 

view provides the link to host management. The manager view also allows a site manager 

to view and edit personal profile. However, a site manager is not allowed to modify 

account status, and user certificate distinguished name that is parsed by the system and 

not modifiable.  

 
 



 
109 5BDesign of Resource Usage Service for World-wide LHC Grid 

 

 

 

 
 

Figure 4.15: WLCG-RUS Admin View 

 

 

 
 

Figure 4.16: WLCG-RUS Site Manager View 
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4.5 Performance 

 

This section provides details on performance evaluation of the WLCG-RUS system. 

The test results are intended to provide reference guidance for deployment of WLCG-

RUS system with optimal performance. 

 

4.5.1 Testbed 

 

In order to evaluate the performance of WLCG-RUS system, a testbed is set up in the 

Brunel Information Technology Laboratory (BITLab) at Brunel University to simulate the 

accounting process in production Grid environments. The testbed consists of two 

workstations in BITLab and are interconnected by Local Area Network (LAN). One 

dedicated workstation is used to host WLCG-RUS server, which keeps listening insertion 

requests from clients. The hardware and runtime environment details of the WLCG-RUS 

server are listed in Table 4-1. On the other workstation, a number of clients along with a 

usage record generator are deployed to simulate the accounting process at Grid 

participating sites. The usage record generator simulates the metering process and 

generates standard OGF UR and AUR instances into the local file system. One or more 

WLCG-RUS clients can be scheduled to read usage record instances from the directory 

and populate them to the WLCG-RUS server simultaneously through the standard 

RUS::InsertUsageRecords interface. A thread pool is also provided to hold multiple 

WLCG-RUS client threads and ensure a fixed number of threads that interrogate the 

WLCG-RUS server at a time.  

 

 

Table 4-1: Test server machine specification and runtime environment 

 Description Version 

Central Processing Unit Genuine Intel (R) Duo Core 1.66 GHz - 

Random Access Memory 1024 MB - 

Operating Ssytem Ubuntu 32-bit 9.04 

Web Container Apache Tomcat 5.5.23 

Service Container Apache Axis 1.4 

DBMS MySQL Community Server 5.1 
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In the accounting scenario of the largest world-wide Grid environment, the WLCG 

environment, there are over 100 participating or Tier-2 sites that reports usage 

information to 12 regional or Tier-1 sites. These collected usage records at regional sites 

are then shipped to the GOC site at RAL and generate statistic usage reports. As 

illustrated in Table 4-2, there were over 30,000,000 jobs submitted to WLCG across four 

Virtual Organisations (VOs) in 2007, approximately 80,000 jobs executed at Tier-2 sites.  

 

Table 4-2: WLCG job statistics from four VOs and 12 Tier-1 or regional sites. From[159] 

  
 

Therefore the testbed is designed to evaluate the WLCG-RUS system performance by 

simulating the hierarchical deployment of WLCG-RUS server at both WLCG regional 

sites and the GOC site. 

• The deployment of WLCG-RUS system at each regional site to collect job usage 

from region-wide Tier-2 sites. 

• The deployment of WLCG-RUS system at WLCG GOC site to collect job usage 

from 12 regional sites. 

 

Accordingly the evaluation objectives include: 

• Unit performance evaluation: to evaluate the performance of individual WLCG-

RUS runtime components (section 4.3.2), the result of which is to be used by 

deployers to have a detailed picture on how WLCG-RUS system perform, and by 

developer to improve system performance through custom implementation of 

particular runtime components. 
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• Insertion performance evaluation: to evaluate how the WLCG-RUS system 

performance varies with different deployment options, in particular the number of 

usage records per insertion transaction, known as bulk size, and the number of 

client threads. The result of the insertion performance test is expected to be used 

by deployers to make decisions on how to deploy WLCG-RUS system to obtain 

optimal performance. 

 

4.5.2 Unit Performance 

 

Figure 4.17 plots the performance of runtime component units of different accounting 

models, both job accounting and aggregation accounting models. Multithreading is 

intentionally avoided in these tests so that overall time of a series of runtime steps of 

various enabled accounting models within WLCG-RUS system can be fairly observed 

and compared. 

 

There are four common processing steps for both fine-grained job and aggregate 

accounting models as follows: 

• On receiving a usage record, the Axis SOAP engine de-serialises received SOAP 

request message, and forward a request object to command component.  

• On completion of insertion, the command returns a response object back to Axis 

SOAP engine, which then serialises the response object and sends response 

message to WLCG-RUS client. The de-serialisation and serialisation processing 

enabled by Axis SOAP engine are collectively defined as messaging process.  

o The execution of insertion command can further be divided into additional 

three sub-processes: delegating request to authorization service to check 

user’s authority to perform insertion on per usage record basis; validating 

usage record against mandatory element configuration; rendering usage 

record node into an appropriate persistent object and making data 

persistence.  

• An extra process, the aggregation process, is triggered when job usage record is 

detected during aggregate accounting process.  

 

As summarised in Table 4.3, the average performance of authorisation, messaging and 

validation processes are similar with slight difference less than 0.008 second. Comparing 
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to job accounting model, aggregate accounting models exhibits worse performance 

mainly because of additional complexity introduced on the data persistence process. On 

receiving an insertion request of an aggregate usage record, the WLCG-RUS system 

runtime requires check whether there is an existing aggregate usage record using same 

aggregate strategy. In the case of WLCG anonymous aggregate strategy for example, the 

WLCG-RUS runtime is required to the existence of an aggregate usage record with 

certain month/year, certain VO and certain executing site. If an existing record found, the 

WLCG-RUS runtime is then add usage information to the existing record, and change the 

aggregation starting and ending time accordingly. Therefore the data persistence process 

introduces average 0.02 second overhead. In the aggregate accounting model with 

runtime aggregation, additional 0.003-second overhead is introduced by the enforcement 

of the WLCG anonymous aggregation strategy. However this figure can be quite different 

depending on the complexity of an aggregation strategy implementation.  

 

 

Table 4-3: Comparison of unit performance of job accounting model, aggregate 

accounting (without runtime aggregation) and aggregate accounting (with runtime 

aggregation) 
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(a) 

 

 

 
(b) 
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 (c) 

 

Figure 4.17:   (a) Unit performance of job accounting model (b) Unit performance of 

aggregate accounting model (no runtime aggregation) (c) Unit performance of aggregate 

accounting model with runtime aggregation.  

 

4.5.3 Insertion Performance 

 

As discussed in section 4.4.1, the WLCG-RUS system runtime can be configured to 

accept one or more usage records per insertion transaction. The number of usage records 

per transaction is also called bulk size. The first part of the insertion performance test is to 

evaluate the WLCG-RUS system performance with different bulk size. In this test, the 

client machine continuously inserts 35,000 job usage records to the WLCG-RUS server. 

Successive execution time is logged when finishing insertion of 5,000, 10,000, 15,000, 

20,000 25,000, 30,000 and 35,000 usage records. As the performance plot described in 

Figure 4.18 and Figure 4.19, the insertion time decreases gradually with the increasing 

bulk size until the bulk size is 10, and then increases exponentially. Based on the test 

results, the maximum elements should be set between 10 and 15 in order to gain optimal 

insertion performance.  
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Figure 4.18: Comparisons of insertion time against different granularities of usage 

records per transaction. 
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(d) 

 

 

 
(e) 
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(f) 

 

 
 (g) 

 

Figure 4.19: (a) insertion performance of 5,000 usage records against bulk size (b) 

insertion performance of 10,000 against bulk size (c) insertion performance of 15,000 

usage records against bulk size (d) insertion performance of 20,000 against bulk size (e) 

insertion performance of 25,000 usage records against bulk size (f) insertion performance 

of 30,000 against bulk size (g) insertion performance of 30,000 usage records against 

bulk size. 
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The WLCG-RUS system can be deployed in two ways in the context of the WLCG 

accounting process. It can be either deployed at the GOC centre as a singleton entry point 

or hierarchically deployed at each regional site responsible for region-wide accounting 

purposes while streaming accounting data to the main WLCG-RUS server at GOC. For 

both cases, the WLCG-RUS system is required to serve multiple client requests at a time. 

In order to figure out the performance of WLCG-RUS system when dealing with multiple 

client requests simultaneously, and find out which way is of best performance for the 

WLCG accounting process, a multi-threading test is conduced to evaluate WLCG-RUS 

system performance against different number of client threads. As the performance plot 

illustrated in Figure 4.20, the WLCG-RUS system performance decreases with the 

increasing number of client threads. In the case of 100 client threads insert usage records 

at same time, the total time cost for insertion of 35,000 usage records reaches 2.6 hours 

(0.27 second per transaction), comparing to 1.26 hours (0.13 second per transaction) 

when using a single client thread. In the case of WLCG accounting, it is better to adopt 

the hierarchical deployment manner, with multiple WLCG-RUS server deployed at 

regional sites and one central WLCG-RUS server deployed at GOC site to accept requests 

from regional sites only. It is worth noting that the performance of WLCG-RUS system 

may gain better performance when deployed on modem server machine with multi-core 

or multi-CPUs supports.  

 

 
Figure 4.20: insertion performance against the number of simultaneous client threads 
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4.6 Summary 

 

This chapter described the design and implementation of WLCG-RUS system, which 

provides an alternative, but standard-compatible, solution for sharing WLCG accounting 

data from participating sites to GOC centre. The WLCG-RUS system is composed of two 

subsystems, the RUS service and the WLCG-RUS Admin. The RUS service provides an 

implementation of OGF RUS service interface definitions. The current RUS service only 

provides implementations of two RUS service interfaces, the 

“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”, which 

are mainly used for accounting data uploading. The design of RUS service in WLCG-

RUS system consists of a set of loose-coupled runtime components, which uses a set of 

well-defined design patterns, such as factory, strategy, and command design patterns, and 

exhibits well-defined internal interfaces for custom implementation. Rather than 

performing off-line aggregation as current WLCG accounting process, the RUS service 

also allows runtime aggregation and proposed a standard aggregate usage record 

representation. The WLCG-RUS provides a Web-based administrative interface for site 

managers and the WLCG-RUS system administrator to performance host management, 

user management and system management activities. This chapter also provided detailed 

performance evaluations, which provide development guidance for developers who are 

intended to use WLCG-RUS framework while providing custom implementations of 

runtime component units, as well as deployment guidance for decision makers who are 

considering deploying the WLCG-RUS system as part of an accounting system. 
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Chapter 5                 

Design of Grid Resource Usage System Middleware 

 

Standardisation is of high importance on enabling interoperability between 

independently developed accounting systems. The development of the WLCG-RUS 

system has presented an exemplary standard-compatible solution for sharing accounting 

data across heterogeneous accounting systems in the multi-Grid environment of WLCG 

project. The WLCG-RUS system implemented some functional components as defined in 

the JISC-proposed accounting framework [132] mainly for uploading accounting data, 

which is however not functional enough to support various high-level application 

scenarios, such as usage monitoring, Grid economy, and usage policing. Besides, the 

design of the WLCG-RUS system uses reverse engineering upon existing WLCG 

accounting schema making it limited to be reused for accounting purposes on other Grid 

projects. Lessons were also learned from the RUS specification based on implementation 

of the WLCG-RUS system. Particularly there are no standard supports to aggregate 

accounting models in the current RUS specification. The content of this chapter aims at 

addressing these issues by introducing a refined RUS specification and an implementation 

of JISC-proposed framework as a middleware solution, the Grid Resource Usage System 

(GRUS), which makes it easy to migrate custom accounting system to be standard 

compatible with minimum re-engineering efforts. The design of GRUS middleware 

reuses WLCG-RUS system components where appropriate. Relevant publications of the 

work conducted in this chapter include [171] [172]. 
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5.1 Introduction 

 

The JISC proposed generic accounting framework (section 3.6) is a recommendation 

based on an analysis of stakeholders and their requirements. It was designed to assist 

development and deployment of a Grid accounting system based on standard 

specifications. Standardisation is of high importance in the sense of maximising 

interoperability between independently developed accounting systems, especially for 

accounting in such Multi-Grid environment as WLCG. The development of the WLCG-

RUS system presented how a standard-compatible solution contributed to exchanging 

accounting data across heterogeneous accounting systems in a consistent manner. 

Standardisation also makes it easy to migrate high-level applications from one accounting 

system to another through exhibiting a set of public and common service interfaces. Since 

most production Grid projects have their own accounting system deployed, the JISC 

proposed accounting framework (see section 3.6) recommended a loosely coupled 

component architecture that allows extensions and customisations for adaption to local 

accounting environment while preventing duplicate efforts on common functional 

requirements. 

 

Although the WLCG-RUS system implemented some functional components as 

defined in the JISC-proposed accounting framework mainly for uploading accounting 

data, which is however not functional enough to support various high-level application 

scenarios, such as usage monitoring, Grid economy, and usage policing as listed in 

section 3.2. Besides the aggregate accounting enabled within the WLCG-RUS system 

only allows specific and predefined aggregate strategy to be applied for streaming 

accounting data into the RUS service. Higher flexibilities should be allowed to enable 

custom aggregate strategies to be defined on per transaction basis, especially for query 

transactions. For example, a VO manager may be interested in getting query results of 

total CPU usage of a specific VO for last month, while it is also able to get query results 

of how much memory quota is used as a Grid user. In this case, different aggregate 

strategies should be automatically generated and applied to individual query transaction. 

Moreover, the WLCG-RUS system was motivated to reuse WLCG accounting data model, 

making it limiting to be reused for accounting purposes on other Grid projects, which 

have custom accounting data formats defined. 

 

Lessons were also learned from the RUS specification based on implementation of the 
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WLCG-RUS system. Particularly there are no standard supports to aggregate accounting 

models in the current RUS specification. This chapter proposes a refined RUS service 

interface definitions, as published in the draft Resource Usage Service Core WS-I 

rendering specification [171], which deals with observed issues of the current standard, 

and provides a middleware solution, the Grid Resource Usage System (GRUS)[172], 

which makes it easy to migrate custom accounting system to be standard compatible and 

minimises re-engineering efforts on existing accounting systems. The design of the 

GRUS middleware extends and reuses WLCG-RUS system components where 

appropriate.   

 

5.2 Requirement Analysis 

 

This section discusses refined and advanced design requirements that are necessary to 

provide a middleware solution for the JISC proposed accounting framework. 

 

5.2.1 Use Cases  

 

Besides roles and use cases discussed in section 4.2, two additional roles were 

identified from the perspective of query usage records and are intended to be supported in 

the GRUS system as extensions to WLCG-RUS system in particular for query of resource 

usage. Detailed use cases are illustrated in Figure 5.1 and listed in Appendix B.2. 

 

Grid User 

 

A Grid user, the end user of a Grid computing system, can be an ad-hoc user or 

belongs to a Virtual Organisation (VO). In latter case, the Grid user is also known as the 

VO member. In order to use the GRUS system, a Grid user must hold a valid X.509 

certificate signed by CAs that are recognised by a GRUS system instance.  A Grid user in 

the context of the GRUS system has privileges to query resource usage records of jobs 

owned by the user through standard RUS interface definitions. 

 

Virtual Organisation Manager 
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The Virtual Organisation (VO) manager has been recognsied as an important role who 

is reponisble for managing user membership of a particular VO. In the context of 

accounting, the VO manager has authority to view resource usage information of jobs 

executed by members of a managed VO, as well as historic resource usage summaries.  

 

 

 
 

Figure 5.1: Additional use cases that the GRUS system is expected to implement based 

on existing WLCG-RUS framework 

 

5.2.2 Requirements  

 

From the above advanced use cases, the following design requirements for the GRUS 

middleware are extracted in addition to those of the WLCG-RUS system as discussed in 

section 4.2.1. 
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Capability or Functional Requirements 

 

Apart from functional requirements identified in the design of WLCG-RUS, the 

following capabilities are to be enabled in GRUS middleware. 

 

1. Query Accounting data 

 

Key to the design of GRUS system is to allow the Virtual Organisation manager and 

Grid end users to query usage records through standard RUS service interface definition, 

specifically the “RUS::extractUsageRecords” service interface. This RUS extraction logic 

should ensure certain flexibility in two senses. In the case of query without runtime 

aggregation, the query operation should allow flexible queries on both complete usage 

record instances and partial usage information set. The query operation should also 

provide runtime aggregation facilities. Rather than applying a predefined and specific 

aggregation strategy, the query operation should allow the requestor to define or specify a 

preferred aggregation strategy for a particular transaction. Finally, the query operation 

design of the GRUS system needs to provide a solution to deal with the situation of 

potentially large volumes of query results triggered by a complex query. Under this 

circumstance, the query operation should allow returning query results to the clients 

through multiple transactions by dividing results into chunks. 

 

2. Virtual Organisation Management 

 

A VO manager is able to query VO-specific usage records through the GRUS system. 

In order to enforce authorisation policies at runtime, the GRUS system must provide a 

registry mechanism enabling a VO manager to register one or more managed VO 

accounts. The VO management facility is also expected to provide manageability 

interfaces for system administrator to view, edit, and remove VO registry entries.  

 

Interface Requirements 

 

3. Internal Interface  

 

In accordance with internal interfaces defined in the WLCG-RUS system for custom 

implementation of the RUS insertion runtime, the GRUS system is intended to define 
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internal interfaces for custom implementations of RUS extraction runtime. 

 

4. Service Interface  

 

Besides interface requirements identified for the WLCG-RUS system design, another 

important design goal of the GRUS system is to cope with the deficiencies of RUS 

service interfaces, in particular for integration of aggregate accounting facilities. Also 

additional service interfaces are to be defined where necessary. 

 

Data Requirements 

 

5. Internal Data 

 

Rather than reusing the WLCG accounting schema as an internal data representation, 

the GRUS system should be able to adapt to any accounting data representation as 

defined by local accounting systems, and allows implementation of custom mapping rules 

for runtime transformations between internal and external standard formats.  

 

Security and Privacy Requirements 

 

The security design requirements of the GRUS system share the requirements as 

specified in section 4.2 for the WLCG-RUS system design.  

 

Other Requirements 

 

6. Usability 

 

In addition to other requirements listed in WLCG-RUS system design, the design of 

GRUS system exhibits an extra requirement on usability. As a middleware solution the 

GRUS system should be not only end user oriented but also developer oriented. In this 

sense, the GRUS middleware must provide easy-to-implement facilities for development 

of custom solutions upon local accounting environment. 
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Figure 5.2: Layered component architecture of GRUS middleware 

5.3 Design 

 

This section discusses the design details of the GRUS middleware, including the 

system architecture design and composing subsystems or components.  

 

5.3.1 System Architecture 

 

In accordance to the WLCG-RUS system design, GRUS system is composed of two 

subsystems, the GRUS Admin Web application and the GRUS service. The GRUS Admin 

application extends WLCG-RUS Admin and provides VO management facilities for VO 

managers. The GRUS service provides a development framework for customising the 

implementation of the RUS service endpoint. The design of the GRUS system is based on 

a layered component architecture as presented in Figure 5.2, and consisting of runtime 
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components across five bottom-up layers: the persistence layer, the data model layer, the 

logic layer, the presentation layer, and the client layer. 

 

Persistence Layer 

 

The persistence layer contains the data structures, including the accounting data 

structures of the GRUS service and management data structures of GRUS Admin 

subsystem. This persistence layer is designed to use a relational database for data 

persistence. Custom implementations may also use other types of data storages, e.g. XML 

databases, for accounting data.  

 

Data Model Layer 

 

The data model layer contains necessary elements that link object data to the relational 

database structures. Rather than using specific internal usage data representations, the 

GRUS service is intended to enable automated persistence of data model objects to 

various internal accounting data structures of relational databases through the Object-

Relational Mapping (ORM) mechanism. The design of the data model layer also exhibits 

a higher level abstraction using Data Access Object (DAO) pattern. Each data model 

object has an associated DAO, which exhibits common and primitive Create, Read, 

Update, and Delete (CRUD) data operations. Customised data operations can be defined 

by extending abstract DAO interfaces. By using DAO design pattern, it is also possible to 

define custom DAO implementation upon data stores other than relational database, the 

native XML database for example. In order to ease custom implementations, a utility tool, 

the Entity Model Compiler (EMC), is also provided to take any XML standard schema 

and generate data models and DAO source codes. 

 

A set of domain objects are also defined at the data model layer for the GRUS Admin 

Web application, which extends manageability facilities defined in WLCG-RUS Admin 

system with additional VO management functionality.  

 

Logic Layer 

 

The logic layer defines a GRUS core framework, which provides runtime support of 

the RUS logics. The core framework consists of a set of runtime components, the design 
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of which utilises object-oriented design patterns and exhibits well-defined internal 

interfaces. The pluggable design of the GRUS core framework allows implementations to 

choose to customise one or more runtime components according to local accounting 

requirements. 

 

The logic layer also shows a GRUS Admin component that extends WLCG-RUS 

Admin and defines controllers for VO management facilities. The controllers act upon the 

underlying model objects and refresh changes of domain objects to the GRUS Admin 

views. 

 

Presentation Layer 

 

The presentation layer defines views for GRUS Admin Web application and provides a 

Web-based interface to end users, VO managers, site managers, and system administrator. 

The GRUS Admin views consist of a sequence of Web pages and presentation style sheets. 

 

Client Layer 

Both the GRUS Admin and the GRUS service provide client-side interfaces. The 

GRUS client provides command-line interfaces mainly for sharing and querying 

accounting data through standard RUS Web service interfaces. Authorised users may also 

execute appropriate management tasks through the GRUS Admin Web portal and Web 

browser. 

 

5.3.2 Detailed System Design 

 

This section describes the design details of the GRUS system components, including 

redesign of RUS service interfaces, messaging protocols for runtime aggregate query, 

EMC code generator, GRUS core framework, and the GRUS Admin Web application. 

 

Redesign of RUS Interface Definitions 

 

Based on the developmental experiences on the WLCG-RUS system and feedbacks 

from other RUS implementations, i.e. SGAS and DGAS-RUS, there are some non-trivial 
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issues identified and summarised as follows: 

• The current RUS service interface definitions are too reliable on OGF UR 

specification making it hard to use the other standard usage record representations, 

in particular OGF AUR draft specification that has been recognised as an 

important data representation for aggregate accounting purposes. Besides, the 

OGF UR specification has a narrowed scope based only on batch job CPU usage 

metrics. It is understood that a single OGF UR is not enough to accommodate 

accounting representation of other resource types, such as storage, network, and 

even application-specific resources. Therefore the RUS service interface 

definitions should be flexible to accept various usage record formats in compatible 

to existing, as well as emerging, standard resource usage schemas.   

 

• Although the current RUS specification does not restrict internal storage format 

for usage record persistence, it does specify individual usage records retrieved 

from a RUS endpoint should in the Resource Usage Record Format (RURF), 

which encapsulates a RUS-wide unique global identity, an OGF UR instance, and 

record modification histories. This data type definition as query result implies 

potential issues. First of all, the query operation results add more transportation 

payloads with additional record histories appended to individual usage record 

even though the client are not interested in. Performance can be further 

undermined when a complex query returns a large number of usage records. 

Secondly, the insertion operation as defined in the RUS specification returns a list 

of RUS record identities raised by a RUS endpoint for successfully inserted usage 

records. The list of RUS record identities are not meaningful to the client in the 

sense of indicating unsuccessfully inserted usage records. 

 

• The query interface definition, “RUS::extractRUSUsageRecords”, only returns the 

complete RURF instance. In many cases, query clients only interested in partial or 

fragmental usage information set, CPU usage information for example. Therefore 

the query interface definition of RUS should allow flexible query on both 

complete usage records and partial information sets. Furthermore, the current 

query operation returns all usage records evaluated against the query term within a 

single transaction, which is inappropriate for complex query with large volumes of 

query results. 

 

 
 



 
132 6BDesign of Grid Resource Usage System Middleware 

• There have been long discussions about the usefulness of encapsulating 

modification operations within the RUS specification, since the most important 

feature of accounting is to provide accurate resource usage information, which 

provides a proof of how Grid resources had been utilised. In reality, it is unlikely 

these generated accounting data will be changed or updated. Since most sites or 

GOC keeps a local repository of collected accounting data, it is more 

straightforward and secure for a system administrator to update or remove 

accounting data through local database management system. 

 

Having identified issues of current RUS Service Interface Definitions (SIDs), we 

collaborated with OGF RUS working group and refined RUS SIDs as the outcomes of 

group discussion in OGF 20. In the middle of 2007, the first proposed draft of the RUS 

Core Interface Definition Language (IDL) specification [173] was released with changes 

or add-on features applied to observed issues. Major changes of SIDs made within the 

proposed RUS Core specification are listed in Table 5-1 and summarised as follows. 

 

• Rather than defining a separate RUS usage record representation, the RUS service 

is intended to reuse existing OGF UR and ensure flexibility on other emerging 

standard usage record schemas. 

 

• Insertion request message defines an extension element, the “<xsd:any>” element, 

that can used to pass any usage records in the format other than OGF UR to a RUS 

service endpoint. 

 

• The extraction service interface is renamed as “RUS::extractUsageRecords” and 

accepts a filter expression that can be constrained to be a Boolean predicate as 

well as ad-doc support projections depending on a RUS endpoint implementation. 

The extraction service interface definition also allows iteration through query 

result set in a similar way as defined in WS-Enumeration specification [174]. 

 

• The interface definition, “RUS::extractRUSRecordIds”, is removed from RUS 

specification. 

 

• Service interfaces related to modifying usage records are simplified with a single 

service interface definition, the “RUS::modifyUsageRecords”, which accepts an 
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updating expression, e.g. XQueryUpdate[175], and returns operational results. 

 

• A single service interface is also defined for deleting usage records matched by 

evaluation filter expression input.  

 

• A RUS service endpoint may apply different standard or custom dialects for query, 

updating and deleting usage records. For example, a RUS service endpoint may be 

implemented using XQuery[176] dialect for query, XQueryUpdate and SQL 

dialects for updating, and XPath dialect for expressing a Boolean predicate for 

deletion. A client may get supported operation-dialect pairs of a RUS service 

endpoint through proposed “RUS::listSupportedDialects” interface. 

 

• A new operation is also proposed in RUS Core specification and allows a client to 

audit record creation or modification history through the 

“RUS::extractRecordHistory” interface. 

 

Table 5- 1: A Comparison of Service Interface Definition between RUS specification (version 

1.7) and Proposed RUS Core specification 

Service Interface Definition 

Function 
RUS Specification (version 1.7)  RUS Core Specification 

configuration  RUS::Lis lementstMandatoryUsageRecordE
RUS::Lis ementstMandatoryUsageRecordEl

RUS::listSupportedDialects

Insertion  RUS::insertUsageRecords RUS::insertUsageRecords

Extraction  
RU sS::extractRUSUsageRecord

RUS::extractUsageRecords 
RUS::extractRUSRecordIds

R rtUS::incrementUsageRecordPa

Updating  RUS::modifyUsageRecords R tUS::modifyUsageRecordPar

RUS rds::replaceUsageReco

RUS::deleteRecords
Deletion  RUS::deleteUsageRecords 

RUS::deleteSpecificRecords

Auditing  ‐ RUS::extractRecordHistory
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Messaging Extensions for Aggregate Accounting 

 

In order to qualify RUS Core specification in particular in the sense of integrating 

aggregate accounting at RUS runtime and query fragmental usage information sets, the 

GRUS messaging framework defines a set of SOAP header data types and reuses some of 

the control headers and WS-Enumeration extensions defined within Web Service 

Management (WS-Management) specification proposed by Distributed Management Task 

Force (DMTF). Definitions and usages of these extensions together with RUS service 

interface definitions are described as follows. 

 

 
 

Figure 5.3: Runtime Aggregation Process at RUS Insertion and Extraction Runtime 

 

Aggregation processes typically take place at RUS insertion and extraction runtime. 

As Figure 5.3, the runtime aggregation process at RUS insertion runtime accepts multiple 

job usage records in the OGF UR format and aggregates them into one or more OGF 

AUR instances by applying a specific aggregate strategy, while the runtime aggregate 

process during RUS extraction runtime summarises filtered job usage records using a 

specific aggregate strategy and returns standard OGF AUR instances to the client. 

Compared to runtime aggregation at RUS insertion runtime, further flexibility should 
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allow the client to define custom aggregation rules that apply to current query transaction 

only.  

In order to enable runtime aggregation in a RUS compatible way, the GRUS message 

framework defined a “grus:AggregateStrategy” element, which is used to specify a pre-

defined aggregate strategy or  ad-hoc aggregation rules. A client initiates a RUS request 

with runtime aggregation by placing the “grus:AggregateStrategy” element inside the 

SOAP header section as follows: 

 

 

Example: In the following example template, runtime aggregation is enforced by a RUS 

service with proper aggregate strategy information attached to request message header. 

The following definitions provide additional, normative constraints on the 

“grus:AggregateStrategy” information model: 

 

• grus:AggregateStrategy 

The optional header element contains a global unique identity of a specific 

aggregate strategy, and child elements for specifying aggregation rules. On 

receiving a request with runtime aggregation, a RUS service endpoint must apply a 

pre-existing aggregate strategy identified by the identity value of this header 

element or composing an aggregate strategy dynamically. Dynamic aggregate 

strategy allows a client to define custom aggregate rules for a particular extraction 

transaction. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsa:Action mustUnderstand=”true”> 

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordRequest”> 

<grus:AggregateStrategy id=”strategy-id”> 

<grus:Interval>”{hour|week|day|month|year}”</grus:Interval> 

<grus:Entity ...>xsd:QName</grus:Entity>* 

</grus:AggregateStrategy> 

</s:Header> 

<s:Body ...> 

<rus:ExtractUsageRecordsRequest> 

... 

</rus:ExtractUsageRecordsRequest> 

</s:Body> 

</s:Envelolpe> 
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• grus:Interval 

This element defines the aggregation intervals. There are five defined intervals 

including day, week, month, year, and hours. 

 

• grus:Entity 

This element may occur more than once to declare the qualified name of one or 

more Grid resource entities to be grouped. The element can be further restricted by 

placing attribute values.  

 

The definition of aggregation strategy header introduces flexibility in specifying a 

specific aggregation strategy as well as defining custom aggregate stragety at runtime. 

The aggregation strategy header can be specified along with RUS insertion and extraction 

logics. The following gives example request messages in the context of WLCG 

accounting allowing: 

• a host to populate job usage records to the WLCG anonymous summary usage 

repository by specifying the WLCG anonymous aggregation strategy in the 

RUS::insertUsageRecords request message. Each aggregation strategy 

implementation has a global unique identity (e.g. 

urn:grus:strategy:aggregation:wlcg-user). On receiving the request message, the 

RUS service runtime looks up and instantiates an aggregate strategy instance, 

which then performs runtime aggregation upon job usage records embedded 

within the request message.  

 

Example: insertion request message with aggregation strategy header 
(1) 

(2) 

(3) 

(4) 

(5) 

 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsa:Action mustUnderstand=”true”> 

http://schemas.ogf.org/rus/2007/09/core/insertUsageRecordR

equest”> 

<grus:AggregateStrategy 

id=”urn:grus:strategy:aggregation:wlcg-user” /> 

</s:Header> 

<s:Body ...> 

</s:Body> 

</s:Envelolpe> 
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• a VO manager to query WLCG job usage repository and generate summry usage 

information by specifying custom aggregation rules. A general-purpose 

aggregation strategy (urn:grus:strategy:aggregation:dynamic) is defined to apply 

user-defined aggregation rules upon query results. On receiving the following 

extraction request, a RUS endpoint firstly filters usage records of jobs in the VO 

name of CMS, and creates an instance of the general-purpose aggregation strategy, 

which then generates aggregate usage records summarised on the per-user, per-VO, 

and per-month basis.  

 

Example: extraction request message with custom aggregation rules 
(1) 

(2) 

(3) 

(4) 

(5) 

 

(6) 

 

(7) 

(8) 

(9) 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsa:Action mustUnderstand=”true”> 

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordR

equest”> 

<grus:AggregateStrategy 

id=”urn:grus:strategy:aggregation:dynamic” /> 

<grus:Interval>Month</grus:Interval> 

<grus:Entity>urf:UserIdentity</grus:Entity> 

<grus:Entity 

urf:description=”VOName”>urf:Resource</grus:Entity> 

</s:Header> 

<s:Body ...> 

<rus:ExtractUsageRecordsRequest> 

<rus:Filter dialect=”http://www.w3.org/TR/1999/REC-xpath-

19991116”> 

/urf:UsageRecord[urf:Resource[@urf:description=’VOName’] 

</rus:Filter> 

</rus:ExtractUsageRecordsRequest> 

</s:Body> 

</s:Envelolpe> 

 

The GRUS messaging also reuses some non-functional control headers and extension 

elements to WS-Enumeration as defined within WS-Management specification mainly for 

the purpose of fragmental and optimised query usage records. A RUS implementation 

may restrict appearance of following control header and extension elements as 

demonstrated in following example request message. 
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Example: The following example request message integrates control headers and 

enumeration extensions as defined within WS-Management specification 
(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsman:OperationTimeout>xsd:long</wsman:OperationTimeout> 

<wsman:RequestTotalItemsCountEstimate /> 

</s:Header> 

<s:Body> 

<rus:ExtractUsageRecordRequest> 

<rus:EndTo>wsa:EndpointReferenceType</rus:EndTo> 

<rus:Expires>wsen:ExpirationType</rus:Expires> 

<rus:Filter dialect=”xsd:anyURI”>xsd:any</rus:Filter> 

<rus:MaxElements>xsd:PositiveInteger</rus:MaxElements> 

<rus:EnumerationContext>wsen:EnumerationContextType 

</rus:EnumerationContext> 

<wsman:Filter dialect=”xsd:anyURI”>xsd:any</rus:Filter> 

{xsd:any} 
</rus:ExtractUsageRecordRequest> 

</s:Body> 

</s:Envelope> 

 

The following definitions provide additional, normative constraints on the usage and 

interpretation of control headers and enumeration extensions embedded within request 

messages: 

 

• wsman:OperationTimeout 

This optional header element defined within WS-Management specification is 

reused as a quality-of-service constraint. A RUS implementation may define a 

default maximum operational timeout to prevent system performance from being 

undermined by complex requests. The value of timeout can also be specified by a 

client for time-critical requests. If a RUS service endpoint does not support this 

element, the endpoint may either ignore this control header or return a 

“rus::UnsupportedFault” message if it must be understood. When a request is 

processed beyond the  specified interval limit, a RUS service endpoint should kill 

the server process and return a “rus:ProcessingFault” with the “time-out” reason.  

 

• wsman:RequestTotalItemsCountEstimate 

 
 



 
139 6BDesign of Grid Resource Usage System Middleware 

This optional element is the control header defined by WS-Management 

specification to indicate a RUS service endpoint should return an estimate of total 

number of items associated with a specific RUS extraction transaction.  

 

• rus:EnumerationContext 

If a RUS service endpoint supports iterative query results, an enumeration context 

should be established and encapsulating necessary information for iterative query 

results. Usage of this element in a RUS extraction request results in the return of 

query result sets made by previous transaction.  

 

• wsman:Filter 

Although RUS Core specification explained that the expression specified by 

“rus:Filter” may either be a Boolean predicate to return complete usage records or 

support ad-hoc projections to return fragmental usage information set, the GRUS 

message framework restricted the “rus:Filter” expression to be a Boolean predicate 

only to filter complete usage record instances, while reusing the “wsman:Filter” 

extension to specify projection information. The definition of “wsman:Filter” by 

WS-Management specification is same as “rus:Filter”.  

 

On successful execution of above example request message, a RUS service endpoint 

composes a response message as following example:  

 

Example: The example response message that integrates control headers and 

enumeration extensions as defined within WS-Management specification 
(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsman:TotalItemsCountEstimate> 

xsd:nonNegativeInteger 

</wsman:TotalItemsCountEstimate> 

</s:Header> 

<s:Body> 

<rus:ExtractUsageRecordResponse> 

<rus:OperationResult> 

... 

</rus:OperationResult> 

<urf:UsageRecords /> 

<rus:EnumerateContext> 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

wsen:EnumerationContextType 

<rus:EumerateContext> 

<rus:Expires>xsd:DateTime|xsd:Duration<rus:Expires> 

<wsman:Items> 

<wsman:XmlFragment> 

... 

</wsman:XmlFragment> 

</wsman:Items> 

<wsman:EndOfSequence /> 

{xsd:any} 

</rus:ExtractUsageRecordResponse> 

</s:Body> 

</s:Envelope> 

 

The following definitions provide additional, normative constraints on the 

interpretation and processing of control headers and enumeration extensions as a RUS 

extraction response message. 

 

• wsman:TotalItemsCountEstimate 

This optional header indicates that the client requested the total item count in 

request message, and includes the estimated total number of query results within 

the response message. 

• rus:EnumerationContext 

If a RUS service endpoint supports enumeration, an enumeration context is 

established at service side and returned to the client with necessary information for 

follow-up query transactions. 

 

• rus:Expires 

An instance of enumeration context has a limited lifetime, which is specified by the 

client in a RUS extraction request message or defaulted by a RUS service endpoint. 

Embedding this element in a response message helps the client understand how 

long the query results made would live. 

  

• wsman:Items 

This optional element is defined as a container of one or more enumerable 

elements in WS-Management specification. The element used in GRUS message 

framework to contain fragmental query results only. Other complete usage records 

as query results should be placed in a schema-specific container. For example, 
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OGF UR instances should use “urf:UsageRecords” element, while OGF AUR 

instances should use “aur:AggregateUsageRecords” element. 

 

• wsman:XmlFragment 

This optional element is used to contain a single fragmental query result. The main 

usage of this element in GRUS messaging framework is to wrap text fragments. A 

“wsman:XmlFragment” can only be a single fragment, and embedded as a child 

element of the “wsman:Items” element. 

 

• wsman:EndOfSequence 

This element defined within WS-Management specification is used in GRUS 

message framework to notify the client that all query result set have been iterated.  

 

Apart from these extensions of RUS messaging, GRUS messaging framework also 

defined a new service interface, the “GRUS::listSupportedAggregateStrategies”, which is 

used query operation-strategy pairs implemented within a RUS service endpoint. The 

detailed GRUS messaging data type schema and Web service interface schema are given 

in Appendix D. 

 

Entity Model Compiler 

      

The implementation of WLCG-RUS system defined three data model objects, which 

are constructed by accepting standard OGF UR or OGF AUR instances, and are mapped 

to three predefined WLCG accounting schema through ORM.  Each data model object 

has an associated DAO implementation that is triggered to save instantiated data model 

objects into relational database at the RUS insertion runtime. However these three data 

model objects are reversely engineered and hard coded based on WLCG accounting 

schemas, making them hard to be reused for other accounting systems. Besides, WLCG-

RUS data model objects merely realise one-way transformation, i.e. transforming 

standard usage record instances into WLCG accounting data for the purpose of publishing 

accounting data. Rather than defining specific internal accounting data representation, the 

design of GRUS system is intended to enable high-level flexibility in allowing a RUS 

service endpoint to reuse any custom accounting data representations. To be more specific, 

a RUS implementation based upon GRUS framework should be able to transform usage 

record instances in XML format into relational accounting data representation at RUS 
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insertion runtime, and render relational accounting data representation into standard 

external XML representation at RUS extraction runtime.  

      

The GRUS system introduced a utility tool, the Entity Model Compiler (EMC), which 

provides a solution to XML persistence into relational backend. The EMC tool 

concentrates on following requirement and functionalities:  

 

XSD Driven XML instances must be validated against certain XML schema. 

Relational Backend XML data are to be persistent in a relational database. 

Entity Oriented A data model object must be of entity type, which has its own 

database identity. An entity may have one or more relationships to 

other entities, in particular one-to-one, many-to-one, one-to-many, 

many-to-many relationships.  

Auto Generation The EMC is a code generation engine that produces a list of 

interfaces, abstract classes that encapsulate runtime rendering 

functions, and DAO artefacts on per entity basis. 

Customisation Generated artefacts can be customised by developers to provide 

default entity model implementations and ORM mappings to local 

relational data formats. 

There are two widely adopted techniques for code generation: active generation and 

passive generation. Both techniques involve a code generator component, that accepts an 

input and produce source code files, also known as artefacts. Common input sources 

includes code model represented in Unified Modelling Language (UML), data files (e.g. 

 

Figure 5.4: The EMC code generation pattern in combination with the active code 

generation pattern of JAXB binding compiler 
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XML files), and source code files.  In an active generation system, the generated artefacts 

are only affected by modification of input source. Passive code generation, on the other 

hand, refers to the code generation process being one off and non-repeatable. The 

generated codes are normally imported into a project to be extended by developers. As 

Figure 5.4, the design of EMC uses passive code generation pattern that takes artefacts 

generated by JAXB compiler. Although JAXB compiles an XML schema into a set of 

Java classes, which are essential Plain Old Java Objects (POJO), these Java classes are 

not customisable. Therefore the EMC is intended to generate following extensible entity 

artefacts: 

• An interface that contains a list of getter and setter methods; 

• An abstract class contains: 

o Zero or more entity fields that have “one-to-one”, “one-to-many”, “many-

to-one” or “many-to-many” relationships to current entity; 

o An empty constructor; 

o A constructor that takes the JAXB typed object as parameter; 

o A “toJaxbBindingType” method that returns JAXB binding type; 

• An entity DAO interface; 

• A DAO Factory abstract class with creator methods of each generated entity DAO; 

 

The code generation process enforced by EMC is composed of two sub-processes, 

entity model generation and DAO model generation process. As Figure 5.5, the process of 

entity model generation starts from loading user inputs, including a list of entity qualified 

names, target full package path, and namespace-package mappings. The process tries to 

load the JAXB-generated Java class into memory and process JAXB field or property 

annotations by iterating every declared field in the JAXB class model. The processing of 

individual field and associated annotations results in adding setter and getter methods to 

the entity interface model, establishing relationships to other entities, and adding 

appropriate statements to constructor and “toJaxbBindingType” methods of abstract class 

model. The process of generating DAO models produces a DAO interface for each 

declared entity, and an abstract DAO factory class that contains creator methods for each 

generated entity DAO model. Finally these generated DAO and factory source codes are 

written into a specific source code directory specified by the user inputs. 
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Figure 5.5: Flowchart of entity model generation process 
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Figure 5. 6: Flowchart of DAO model generation process 

 

 

 

GRUS Core 

 

The GRUS Core provides a development framework consisting of a package of 

abstract functional and loose-coupled components, each of which exhibits well-defined 

internal interfaces. A RUS service endpoint may provide custom RUS logic 
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implementations by customising one or more functional components. As the class 

diagram given in Figure 5.7, these components are categorised and organised into five 

packages, each of which targets at accomplishing certain functionality. Like the design of 

WLCG-RUS runtime, the key component of GRUS core framework is the command, 

which interacts with other internal component implementations to fulfil RUS runtime 

logics, in particular RUS insertion, extraction, modification, and deletion operations. 

Therefore, the command factory class defines four creator methods to instantiate RUS 

operation-specific command implementations. A command exception class is also defined 

and throwable during the execution of a command instance. The GRUS core framework 

reuses the Authorisation and DAO components defined in WLCG-RUS system, with 

additional abstract methods defined within the Generic DAO interface mainly for data 

updating and deletion. Filter component introduced within GRUS core framework can be 

used in combination with RUS extraction, updating and deletion logics. There are two 

types of general-purpose filters defined, the query filter and update filter. The query filter 

can be further divided into two subcategories, projection-oriented filter and predicate 

filter. A predicate filter is used usage records according to certain predicate expressions, 

while the projection-oriented filter is used to get fragmental information set from filtered 

usage records. An implementation of predicate filter acts upon a DAO object and returns 

completed usage records by applying certain query terms. A SQL filter, for example, can 

be triggered at RUS extraction runtime to query usage records matched by evaluation of 

one or more “where” statements. The returned usage records can be further processed by 

a projection-oriented filter, e.g. XPath filter, to get fragmental usage information. 

 

GRUS Admin 

 

The design of GRUS Admin extends WLCG-RUS and provides additional VO 

management facilities for both system administrator and VO manager. As Figure 5.8, a 

user that takes the role of VO manager is redirected to VO management view through 

which new VO accounts can be created, managed, and deleted. These VO registration 

entries are to be fed into authorisation service at RUS extraction runtime, i.e. a VO 

manager can only access usage records of managed VOs. The system manager only also 

access VO management facilities and have full control of all registered VO accounts in a 

GRUS system.  
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5.4 Implementation 

 

This section describes implementation details of composite components of GRUS 

system.  

 

5.4.1 Entity Model Compiler  

 

Synopsis 

 

The EMC tool is implemented as a custom Ant [177] task that is to be invoked from 

the Ant build tool. The EMC task supports the following parameter attributes (Table 5-5). 

 

Table 5-2: Parameter attribute list of EMC task 

Attribute  Data Type  Description  Required 

destDir  String 
The  root directory of  source  codes 

or artefacts to be generated 
Yes 

entityModelPkg  String 
The package name of  entity model 

artefacts 
Yes 

daoModelPkg  String  The package name of DAO artefacts No 

generateDAO  Boolean 

If specific, the DAO artefacts will be 

generated  and  placed  in  specified 

DAO model package. 

No 

 

The EMC task also supports the following nested element parameters: 

classpath The nested <classpath> element(s) is used to specify locations of 

JAXB-generated classes.  

Example Syntax: 
<classpath> 

<pathelement path=”${classpath}”/> 

<pathelement location=”lib/example.jar”/> 

<classpath> 

 

entity The nested <entity> element(s) is used to declare qualified names 

of target entities. These elements are loaded by EMC task to locate 
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JAXB-generated class models. The qualified name of an entity is a 

combination of a namespace and JAXB-generated class model 

name.  

Example Syntax: 
<entity namespace=”urn:namespace”> 

Name of JAXB class name 

</entity> 

 

NsPkgMapping 

 

The element is used to declare custom JAXB namespace-package 

mappings. The syntax functions exactly as JAXB namespace-

package mappings to declare custom packages other than reasoned 

from namespaces using default package name converter. Values of 

this element help the EMC compiler to locate appropriate JAXB 

class model. If this element is omitted, the default package name 

converter of JAXB is used. 

Example Syntax: 
<NsPkgMapping  

namespace=”urn:namespace” prefix=”prefix” 

package=”package.full.path” /> 

 

 

Worked Example 

 

In order to use EMC tool in Ant build tool, the EMC Java ARchive (JAR) file is 

required to add class path in a build file and declare a task definition with following 

statements: 

 

Example: EMC task definition of a build file requires specifying the class path referring 

to GRUS EMC package file. 
(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

<taskdef  

name=”emc” 

classname=”uk.ac.brunel.services.accounting.grus.tool.emc.EMCTask” 

<classpath> 

 <pathelement path=”${lib.dir}/grus-emc-1.0-SNAPSHOT.jar” /> 

<classpath> 

</taskdef> 
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After defining the EMC task in a build file, an Ant target can be defined to generate 

entity model and DAO model artefacts by invoking EMC tasks, which accepts a set of 

user-defined parameters and embedded element parameters. The example below defines a 

“generateEntityDAOModels” target with following statements: 

 

Example: The following example target definition uses EMC task to generate entity 

model and DAO model artefacts. 

 
(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

... 

<target name=”genenateEntityDAOModels”  

description=”generate Java entity and DAO artefacts”> 

<emc destDir=”${src.dir}”  

generateDAO=”true”  

entityModelPkg=”uk.ac.brunel.services.accounting.grus.datamodel.

urf” 

daoModelPkg=”uk.ac.brunel.services.accounting.grus.dao.urf”> 

<classpath> 

<fileset dir=”${build.dir}/classes” /> 

<include name=”*.class” /> 

</fileset> 

</classpath> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

UsageRecordType</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

Host</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

SubmitHost</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

UserIdentity</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

RecordIdentity</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

JobIdentity</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

Resource</entity> 
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(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54)

(55) 

(56) 

(57) 

(58) 

(59) 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

ProjectName</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

MachineName</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

Queue</entity> 

<entity  

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”> 

Queue</entity> 

<entity  

namespace=”http://schemas.ogf.org/rus/2007/09/core/types” 

prefix=”rus”> 

RecordHistoryType</entity> 

</emc> 

</target> 

... 

 

 

The execution of the above example results in the generation of a set of entity and 

DAO model artefacts as the class model described in Figure 5.9. The example EMC task 

defines eleven embedded entities, including entities defined within the OGF UR schema 

and the record history entity defined within the RUS schema. For each entity, the EMC 

task generates an entity model interface and an abstract class model, which provides a 

runtime mapping framework between the instance of an entity model and the JAXB class 

model. The EMC task also establishes relationship between entities. In this example, a 

usage record entity has one-to-one relationship to the record identity entity, the job 

identity entity, and record history entity, while has many-to-many relationships to other 

generated entities. The DAO generation process also generated a DAO interface on per 

entity basis and added an associated factory method to the abstract DAO factory class. 
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Figure 5.9: Exam
ple class m

odels of artefacts generated by EM
C
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5.4.2 GRUS Core 

 

The implementation of GRUS core is based on WiseMan (version 1.0) [178] platform, 

an open source JavaTM implementation of WS-Management specification. It provides a 

development framework as well as runtime environment for hosting WS-Management 

compatible Web services. Rather than using third-part Web service hosting environment, 

such as Axis or Java Web Service Developer Pack (JWSDP) [179], the WiseMan provides 

its own hosting environment in order to support WS-Addressing[57] compatible SOAP 

messaging framework and delegate incoming SOAP requests to appropriate request 

handler using WS-Addressing information. The implementation of GRUS Core extended 

Wiseman runtime framework and provided a set of support classes that help developers 

focus on designing custom RUS solutions without dealing with low-level messaging.  

These support classes provide following functionalities to the developer: 

• Providing messaging facilities to marshal and unmarshal RUS messages and 

GRUS extensions; 

• Managing lifecycle of requests being served; 

• Runtime aggregation either by applying predefined aggregate strategies or 

instantiating dynamic aggregate strategy according to user inputs; 

• Enumerating large volume of query results; 

• Monitoring lifetime of enumeration context and perform clean up when expired; 

• Filter query results; 

• Mutual authentication and fine-grained access control on per usage records basis; 

• Using custom XML-formatted accounting schema other than OGF UR and OGF 

AUR.  

 

As Figure 5.10, the GRUS Core consists of a set of runtime components (items in blue) 

and abstract function components to be implemented by developers (items in red). The 

following list provides an overview of generic runtime events: 

• The GRUS servlet keeps listening to transport-level requests. At startup, the 

servlet loads RUS Core schema and dependencies including GRUS extension 

schema, OGF UR, OGF AUR schema, etc. and instantiates a singleton GRUS 

agent instance. The servlet is responsible for serving both HTTP GET and POST 

requests. Client may query schema and WSDL files through HTTP GET request, 

while interrogating RUS logics through HTTP POST requests. On receiving a 

RUS request, the servlet forwards incoming request to the instantiated agent 
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instance and passes a context object that encapsulates necessary information 

related to current transaction, including the client principal, GRUS handler object, 

command factory object, DAO factory object, etc., by loading system 

configurations. 

• The GRUS agent acts as a request scheduler and maintains an internal pool for 

asynchronous tasks. When a RUS request is received, the agent validates request 

messages against loaded schemas. Once validated, a request dispatcher task is 

scheduled and placed into the task pool. The lifetime of the request dispatcher task 

is monitored by a specific timer task, which clean up the task and compose a 

“wsman:timeoutFault” message returned to the client when the  task did not 

completed until the end of timeout value specified by the 

“wsman:OperationTimeout” control header. 

• GRUS request dispatcher is implemented as a callable task. Its main responsibility 

is to delegate received requests to appropriate a GRUS handler implementation 

specified within the context object passed by GRUS servlet. 

 

 
 

Figure 5.10: GRUS server architecture containing runtime implementations and 

interactions 
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• A GRUS handler provides a set of internal interfaces that are triggered according 

to the action specified within WS-Addressing [57] header information. Developer 

may provide custom handler solution by implementing the GRUS handler 

interface. A GRUS handler implementation may use support classes provided by 

WiseMan framework for real-time resource usage monitoring through standard 

RUS Core interfaces, or make use of utility functions supplied by GRUS support 

class for persistent accounting. 

• The GRUS support is the main support class used by developers to provide 

support for their custom handler implementation in the context of persistent 

accounting. The support class interrogates GRUS runtime component 

implementations and provide utility functions.  

• Finally the GRUS framework also provides a messaging framework consisting of 

Java representation of RUS Core messages and GRUS header blocks. A utility 

class is also provided and facilitate implementation developers to create RUS 

request and response messages.  

 

5.4.3 GRUS Annotations 

 

According to the RUS Core specification, a RUS compatible implementation must as 

least support XPath (version 1.0) [170] dialect for RUS extraction logic. In order to 

bridge the gap between XPath and relational backend, GRUS Core provides an 

XPath2Hql filter that implemented the Filter interface and converted standard XPath 

expression into Hibernate Query Language (HQL) [180] at runtime by consuming custom 

mapping of program elements of an entity model implementation to XML Schema 

construct. GRUS defined a set of mapping annotations based on the Java Specification 

Request 175 (JSR175) [181], a metadata facility for JavaTM programming language. The 

retention policy of all defined mapping annotations is the RetentionPolicy.RUNTIME, 

which allows introspection of mapping annotations by XPath2Hql Filter at runtime. 

These annotations are used in an entity model implementation for: 

• Customising the mapping of an entity model to a global XML element; 

• Referencing an entity property to another entity model; 

• Customising the mapping of a non-entity property to a simple-typed XML element; 

• Customising the mapping of a non-entity component to a complex-typed XML 

element; 
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The following gives detailed normative synopsis and mapping constraints of defined 

annotations. 

 

@Entity 

 

This class-level annotation is used to map an entity model class to an XML global 

element.  

 

Synopsis @Target(ElementType.TYPE) 

@Retention(RetentionPolicy.RUNTIME) 

public @interface Entity{ 

String name(); 

String namespace (); 

Boolean isRoot () default false; 

} 

 

Mapping The following mapping constraints must be enforced: 

• This annotation is used as a class level annotation. A class model 

annotated with this annotation must be an entity class that extends 

one of abstract entity models generated by GRUS EMC. 

• The @Entity.name () must be specified to the local name of the 

target global element. 

• The @Entity. namespace () must be specified to the namespace of 

target global element. 

• If isRoot ( ) is true, the entity class model is mapped to a root 

element. 

 

@EntityRef 

 

This property-level annotation is used to reference an entity property to another entity 

model. 

 

Synopsis @Target(ElementType.FIELD) 

@Retention(RetentionPolicy.RUNTIME) 

public @interface EntityRef{ 

Class<?> type () 

} 
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Mapping The following mapping constraints must be enforced: 

• The @EntityRef.type( ) must specify the full class path of 

referenced entity model class. 

 

@Property 

 

This annotation is a property-level annotation that is used to map a non-entity property 

to an XML simple content. 

  

Synopsis @Target(ElementType.FIELD) 

@Retention(RetentionPolicy.RUNTIME) 

public @interface Property { 

String name ()default “##default” 

String namespace () default “##default” 

PropertyType type ( ) default PropertyType.CHILD; 

} 

 

Mapping The following mapping constraints must be enforced: 

• The @Property.name( ) may be specified to the local name (e.g. 

attribute name or child element name) of simple content to which 

the property is mapped. If @Property.name( ) is “##default”, the 

current property is the value of XML content model mapped to the 

parent entity class. 

• The @Property.namespace( ) is used to specify the namespace of a 

simple content. If @Property.namespace ( ) is “##default”, the target 

namespace of this property is same as the @Entity.namespace (). 

• The @Property.type ( ) is used to define the relationship between 

the simple XML content the property mapped to and the XML 

content model the parent entity class mapped to. The value of 

@Property.type( ) must be of the PropertyType, a Java enumeration 

class that defines three enumeration constants: attribute, value and 

the child. The default value of @Propety.type( ) is the 

PropetyType.CHILD. 

 

@Component 

 

This annotation is a property-level annotation that is used to map a non-entity property 
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to an XML complex content. 

 

Synopsis @Target(ElementType.FIELD) 

@Retention(RetentionPolicy.RUNTIME) 

public @interface Component{ 

String relativeLocationPath () default “##default”; 

String name ()“##default”; 

String namespace () default “##default”; 

Property[] properties () default {}; 

} 

 

Mapping The following mapping constraints must be enforced: 

• The component property of an entity model implementation must be 

a JAXB binding type. 

• The @Component.name() may be specified to the local name of the 

complex content to which the non-entity property is mapped to. 

• The @Component.namespace( ) is used to specify the namespace of 

a simple content. If @Property.namespace ( ) is “##default”, target 

namespace of the complex content same as the 

@Entity.namespace(). 

• The only other additional GRUS mapping annotations allowed with 

@Component is the @Property to define the mapping annotations 

of properties defined within the JAXB binding type. 

• An entity model implementation may alternatively use 

@Component.relativeLocationPath to define the location path 

relative to the context node the entity is mapped to.   

 

The XPath language provides a common syntax and semantics mainly for addressing 

parts of an XML document by modelling it as a tree of nodes, while HQL is a full object-

oriented query language. There are fundamental differences between these two languages. 

First of all, the XPath language defined a group axis names that allows flexible traversal 

over a tree of XML nodes. These axis names can be divided into two groups, the forward 

and reverse axes. Forward axes are used to traverse a specific context node to its children, 

descendants, and siblings, and reverse axes allows traversal from a specific context node 

to its parents and ancestors. However HQL takes the similar grammar as SQL, and only 

supports querying properties defined within a specified entity model class. In another 

word, a HQL only supports successive XPath axes, such as child and attribute. Besides, 
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XPath also defines a set of functional call expressions, including node-set functions, 

string functions, boolean functions and number functions, most of which are not 

supported in HQL language. Finally there are no equivalent operators in HQL to some of 

those defined in XPath, in particular node-set operators and numeric operators. The 

supported features of XPath implemented in XPath2Hql filter are summarised in the table 

below (Table 5-3). 
 

Table 5-3: Features of the XPath language supported in GRUS XPath2Hql filter 

XPath Feature Items 

Axes attribute, child 

Abbreviated Axes @ 

Relational Operators = >=, <=, >, <, != 

Boolean Operators AND, OR, | 

Node-set Function text ( ) 

 

Therefore, the XPath2Hql facility enforces a set of restrictions on standard XPath 

expression. These restrictions are rendered as following formulas: 

 

[1] Expr  :=  OrExpr 

 

[2] OrExpr   ::=  AndExpr | OrExpr 'or' AndExpr 

 

[3] AndExpr  ::=  EqualityExpr  

                     | AndExpr 'and' EqualityExpr 

 

[4] EqualityExpr   ::=   NonAdditiveRelationalExpr  

                              | EqualityExpr '=' NonAdditiveRelationalExpr  

                              | EqualityExpr '!=' NonAdditiveRelationalExpr 

 

[5] NonAdditiveRelationalExpr  ::=  UnionExpr 

                               | NonAdditiveRelationalExpr '>' UnionExpr 

                               | NonAdditiveRelationalExpr '<' UnionExpr 

                               | NonAdditiveRelationalExpr '>=' UnionExpr 

                               | NonAdditiveRelationalExpr '<=' UnionExpr 
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[6] UnionExpr ::= Location 

                      | UnionExpr '|' LocationPath 

 

[7] LocationPath ::= RelativeLocationPath 

                      | AbsoluteLocationPath 

 

[8] AbsoluteLocationPath ::=   '/' RelativeLocationPath?  

                                   | AbbreviatedAbsoluteLocationPath 

 

[9] RelativeLocationPath   ::=   Step  

                                   | RelativeLocationPath '/' Step  

                                   | AbbreviatedRelativeLocationPath 

 

[10] Step   ::=   AxisSpecifier NodeTest Predicate*  

 

[11] AxisSpecifier   ::=   AxisName '::'  | AbbreviatedAxisSpecifier 

 

[12] AxisName ::= 'attribute'  | 'child' 

 

[13] AbbreviatedAxisSpecifier  ::=   '@'? 

 

[14] NodeTest   ::=   NameTest  | NodeType '(' ')' 

 

[15] NameTest ::= QName 

 

[16] NodeType ::= 'text'  | 'node' 

 

[17] Predicate   ::=   '[' PredicateExpr ']' 

 

[18] PredicateExpr   ::=   Expr 

 

[19] AbbreviatedAbsoluteLocationPath   ::=   '//' RelativeLocationPath 

 

[20] AbbreviatedRelativeLocationPath   ::=   RelativeLocationPath '/' Step 
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In order to demonstrate how the XPath2Hql filter works, the following gives an 

example usage of the XPath2Hql facility that enables XPath query upon relational usage 

data repository. As discussed in section 5.4.1, the GRUS EMC provides an utility tool 

that generates a number of abstract entity and DAO artefacts. Implementations of some of 

generated artefacts with GRUS annotations are given to establish the mapping rules 

between XPath and HQL query languages. 

 

Example: UsageRecordEntity implementation with GRUS annotation 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

@Entity (name=”UsageRecord”,  

         namespace=”http://schema.ogf.org/urf/2003/09/urf”, 

         isRoot=true) 

public class UsageRecordEntity <UserEntity, HostEntity> extends 

Abstract UsageRecordEntity<UserEntity, HostEntity>{ 

   

  @Component(name=”status”,  

      Properties{ 

        @Property (name=“description”, type=PropertyType.ATTR), 

        @Property (name=“value”, type=PropertyType.VALUE)}) 

  Status status 

 

  @EntityRef (type=UserEntity.class) 

  UserEntity user; 

   

  @EntityRef (type=HostEntity.class) 

  Host host; 

 

 

Example: UserEntity implementation with GRUS annotation 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

@Entity (name=”UserIdentity”,  

         namespace=”http://schema.ogf.org/urf/2003/09/urf”) 

public class UserEntity <UsageRecordEntity> extends Abstract 

UserEntity<UsageRecordEntity>{ 

   

  @Property (name=”GlobalUserName”  

             namespace=” http://schema.ogf.org/urf/2003/09/urf” 

             type=PropertyType.CHILD) 
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(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

  String globalUserName; 

 

  @Property (name=”LocalUserId”  

             namespace=” http://schema.ogf.org/urf/2003/09/urf” 

             type=PropertyType.CHILD) 

  String localUserId; 

    

@Component(relativeLocationPath=”ds:KeyInfo/ds:X509Data/ds:X509S

ubjectName”) 

  String userDN; 

... 

} 

 

Example: HostEntity implementation with GRUS annotation 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

@Entity (name=”Host”,  

         namespace=”http://schema.ogf.org/urf/2003/09/urf”) 

public class HostEntity <UsageRecordEntity> extends Abstract 

HostEntity<UsageRecordEntity>{ 

   

  @Property (name=”description”  

             namespace=” http://schema.ogf.org/urf/2003/09/urf” 

             type=PropertyType.ATTR) 

  String description; 

 

  @Property (name=”primary”  

             namespace=” http://schema.ogf.org/urf/2003/09/urf” 

             type=PropertyType.ATTR) 

  Boolean isPrimary 

   

  @Property (type=PropertyType.VALUE) 

  String value; 

  ... 

} 

 

A client query request must specify the XPath2Hql filter in the RUS:extract request 

message as the example below. In the GRUS system, each filter has an assigned global 

unique name. The XPath2Hql filter name is “urn:grus:filter:xpath-to-hql”. 
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Example: RUS::extract request message using XPath2Hql filter 

(1) 

(2) 

(3) 

(4) 

(5) 

 

(6) 

 

(7) 

(8) 

(9) 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

<s:Envelope ...> 

<s:Header ...> 

... 

<wsa:Action mustUnderstand=”true”> 

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordReque

st”> 

... 

</s:Header> 

<s:Body ...> 

<rus:ExtractUsageRecordsRequest> 

<rus:Filter dialect=”urn:grus:filter:xpath-to-hql”> 

/urf:UsageRecord[urf:Status=”finished”][urf:UserIdentity/ds:Key

Info/ds:X509Data/ds:X509SubjectName=”xiaoyu 

chen”][urf:Host[@primary=true]=’octopussy.brunal.ac.uk’] 

</rus:Filter> 

</rus:ExtractUsageRecordsRequest> 

</s:Body> 

</s:Envelolpe> 

On receiving the request message, the GRUS endpoint is create an XPath2Hql filter 

instance, which is then render the XPath expression into HQL expression step-by-step: 

• An XPath2Hql filter instance firstly normalise an XPath expression as:  

 

 

/urf:UsageRecord[urf:Status=”finished”][urf:UserIdentity/ds:KeyIn

fo/ds:X509Data/ds:X509SubjectName=”xiaoyu 

chen”][urf:Host/@primary=true][urf:Host.text()=’octopussy.brunel.

ac.uk’] 

• The filter then finds the implementation of root element (i.e. urf:UsageRecord) 

and generates an initial HQL statement: 

 
SELECT FROM UsageRecordEntity AS entity

• For each XPath predicates, the filter generates conditional clauses and appends 

them to the genreated HQL statement. In this example, it traverses the GRUS 

annotations of the “UsageRecordEntity” class and learns mapping rules. If the 

@EntityRef annotation encountered, it loads the referenced entity class into 

memory and analyses in-depth mapping rules. Finally the filter generates an HQL 

expression as: 
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SELECT FROM UsageRecordEntity AS entity 

   WHERE entity.status.value=’finished’ AND 
    entity.user.userDN=’xiaoyu chen’ AND 

   entity.host.isPrimary=true AND 

   entity.host.value=’octopussy.brunel.ac.uk’  

 

The XPath2Hql facility of GRUS is implemented based on Simple API for XPath 

(SAXPath) [182] and Java APIs for XPath engine (Jaxen)[183]. SAXPath is modeled 

closely on the structure used by Simple API for XML (SAX)[184], and involves two 

generic interfaces, including a reader that parses an XPath expression and a handler that 

receives handles parse events received from the reader. Jaxen is an open source XPath 

engine that leverages various object models, such as Document Object Model 

(DOM)[185], XML Object Model (XOM)[186], and so on. Jaxen uses SAXPath and 

provides default SAXPath reader and handler implementation that parse textual XPath 

expression and build Jaxen expression trees that can walk through different object models. 

As the components and runtime events outlined in Figure 5.11, to start the XPath2Hql 

process, an instance of the XPath2Hql factory class that implements the FilterFactory 

 

 
 

Figure 5.11: The components and runtime events implemented based on Jaxen and 

SAXPath for rendering an XPath expression to HQL statement. 
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interface is used to create an instance of XPath2Hql filter that implements the Filter 

interface. The XPath2Hql filter instance wraps a SAXPath reader object provided by 

Jaxen. When the filter instance is invoked, the reader parses textual XPath expressions 

and triggers one of several callback methods implemented within in the XPath2Hql 

handler. These methods, such as “startXPath”, “startAbsoluteLocationPath”, 

“startRelativeLocationPath” and so on, are implemented by the default Jaxen handler and 

are overridden by the XPath2Hql handler to render the Jaxen expression trees into HQL 

expression trees by processing mapping annotations of entity model classes. During the 

parsing process, when an unsupported Axis or XPath expression is detected, the 

XPath2Hql handler stops the parsing process and throws an UnsupportedAxisException 

and XPathSyntaxException. On successful completion, the XPathHandler instance 

returns an HQL expression that is used by XPath2Hql filter instance to query usage 

records through the “findByQueryTerm( )” interface of an GenericDAO object. 

 

 
 

Figure 5.12: Class Diagram of the VO Management Implementation 
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5.4.4 GRUS Admin 

 

The implementation of GRUS Admin reuses and extends the WLCG-RUS Admin Web 

application with additional VO management facilities.  

 

VO Management 

 

In consistent to other management functionalities implemented in WLCG-RUS Admin, 

the VO management is implemented based on MVC pattern. As illustrated in Figure 5.12, 

the implementation of VO management consists of a VO controller, a VO model class, 

and a set of view pages. An instance of VO model encapsulates meta-information of a VO 

as a registry entry, including the VO name, owned VO manager, registration date, and 

status. Similar to Host management facility implemented within WLCG-RUS Admin, the 

VO controller provided four “do-GET” methods in the host controller, which allows a VO 

manager to “list”, “create”, “edit”, and “show” managed VO accounts. Each “do-GET” 

method has also has a view page that provides a Web-based interface to end users. The 

implementation of VO management defined distinguished authorities for VO managers 

and the system administrator. For example, a system administrator has full view 

authorities of all VO accounts registered to a GRUS endpoint, while a VO manager can 

only view managed VO accounts. Besides, the status of newly created VO account is set 

to “disabled” and can only be “enabled” by the system administrator. 

 

5.4.5 User Interface 

 

Like the design of WLCG-RUS system, the GRUS provides a command-line interface 

for interacting RUS service endpoint and a Web-based interface for GRUS system 

administration. 

 

Command Interface 

 

The implementation of GRUS command interface extends WLCG-RUS command-

line client and allows a user to view configuration information of a RUS service endpoint, 

in particular supported aggregate strategies, operation-dialect pairs, and mandatory usage 

record elements, insert, query, modify, delete and audit usage records through standard  
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Figure 5.13: VO manager view of GRUS Admin Web application 

 

 

 

 

Figure 5.14: System administrator view of GRUS Admin Web application 
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RUS core and GRUS extension interfaces. The Java client is wrapped by a shell script, 

which accepts arguments as shown in Appendix D.2. At least one of the set of options: list, 

insert, extract, modify, delete, and audit must be used every time along with the target 

service endpoint URI. An example command is as shown below to query aggregate 

strategy list supported by a GRUS endpoint. 

 

grus -s <service-endpiont-uri> –list --aggregate-strategies 

 

Web Interface 

 

The GRUS Web interface provided enhanced VO management facilities for a VO 

manager and system administrator. As the screen shot presented in Figure 5.13, a VO 

manager is redirected to the VO management view where a VO account can be added or 

removed. By default, a newly created VO account is not enabled until the system 

administrator approved its validity. Once approved, the VO manager may query usage 

records belong to owned VOs through a RUS service endpoint. The GRUS system 

administrator has full view and control of all VO accounts registered. As illustrated in 

Figure 5.14, the system administrator can edit, delete, create, activate and deactivate a 

VO account through the administrator view. The presentation of GRUS Admin Web 

application shares the same layout of WLCG-RUS Admin except replacing WLCG-RUS 

logo with a new GRUS logo. 

 

5.5 Summary 

 

This chapter presented a middleware solution, the GRUS, which aims at assisting 

developers in implementing a RUS compatible accounting service. The GRUS design is 

based on the JISC-proposed accounting framework and consists of four main components: 

the GRUS EMC, GRUS Core, GRUS annotations, and GRUS Admin Web applications. 

The EMC is implemented as a utility class that is used to generate abstract entity models 

and DAO objects. Generated artefacts provide runtime mapping between implementation 

of entity models and JAXB binding types, and are to be implemented by developers and 

bounded to custom relational backends through ORM mapping configurations. The 

GRUS Core provides RUS messaging framework and contains a set of abstract functional 
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components for authorisation, data access, filtering and runtime aggregation. A RUS 

service endpoint may implement one or more GRUS Core components to provide a 

custom RUS implementation. GRUS Core also provides implementations of some 

components, such as the XPath2Hql filter that enables query relational usage data using 

standard XPath expression, and the dynamic aggregate strategy that is mainly used to 

summarise query results according to the grouping criteria specified by a user. In order to 

save development effort, a RUS implementation can reuse functionalities implemented by 

a helper class, the GrusSupport. GRUS framework defined a set of mapping annotations 

that are used to customise mapping rules of entity program elements to XML schema 

constructs. These annotations are embedded within an entity model implementation and 

fed into XPath2Hql filter that renders standard an XPath expression to HQL statement. 

The GRUS Admin extended functions implemented by WLCG-RUS Admin with 

additional VO management facilities allowing a VO manager or system administrator to 

manage owned or system-wide VO accounts. The GRUS software stacks1 are hosted at 

the SourceForge.net as open source software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
1 http://grus.sourceforge.net/ 
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Chapter 6 

Conclusions 

 

This thesis presented systematic researches on Grid accounting including reviews of 

accounting in the Grid, prototypical development of RUS system in such multi-Grid 

environment as WLCG, and design and implementation of GRUS middleware. This 

chapter concludes the research results of this thesis and recommended future works on 

standards and possible further implementations according to the evolvement of those 

standards. Relevant publications of this chapter include [188]. 
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6.1 Research Outcomes 

 

This thesis presented a three-year research on design and implementation of Grid 

accounting systems in multi-Grid environments. The following summarises research 

outcomes including lessons learned and reflections of research outputs. 

 

6.1.1 Lessons Learned 

 

Throughout researches conducted in this thesis towards developing a standard and 

interoperable Grid accounting system, there were many problems encountered mainly due 

to four main factors: lacking of comprehensive understanding of accounting requirements; 

diverse project-specific requirements; confusion of interoperability and interoperation; 

tremendous duplicate re-engineering tasks. This section summarises lessons learned 

during the course of this research. 

 

At the beginning of this research, Grid accounting along with its concept and usage 

scenarios was new to many. Although there were many definitions and concepts proposed, 

they were defined based on certain use cases identified in a project-specific manner. 

Lacking of comprehensive understanding of accounting requirements on heterogeneous 

usage scenarios across Grid project boundaries was the first and most significant issue in 

building interoperable accounting systems. Early efforts on developing Grid accounting 

systems focused on diverse Grid-specific requirements and resulted in the complexity of 

enabling interoperability between these Grid accounting systems. However the 

emergence of ever-increasing collaborations requires resource sharing across Grid 

infrastructures and provisioning a multi-Grid view of resource usage.  

 

In order to cope with the interoperability issue, significant efforts have been put on 

standardisation. In 2003, the first standard accounting data format was proposed by OGF 

UR working group, aiming at provisioning common representation usage information at 

batch job level. The first RUS specification emerged in 2005 and re-designed in 2007 to 

provide standard interface definitions of a Grid accounting system. These two standards 

contributed to data and service interoperability between heterogeneous accounting 

systems. However the adoption of these standards is not as easy as it seems to be. This is 

because of three main reasons. First of all, the current status of both OGF UR and OGF 
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RUS specifications are not mature enough to accommodate various accounting usage 

scenarios. Besides, the evolving nature of these standards slows down the adoption 

process. Finally and most importantly, the enablement of interoperation is far more than 

defining interoperable accounting data representation and service interfaces. It also 

involves a lot of re-engineering tasks, which can break current accounting process 

enforced by pre-existing accounting systems. This could be better explained by the 

WLCG accounting process. The current WLCG accounting process involves metering 

and streaming accounting data from three Grid infrastructures, each of which has custom 

accounting solution deployed. The interoperation between these accounting systems is 

enabled by three different communication protocols (section 4.1). The migration to be 

OGF standard compatible would result in tremendous re-engineering tasks for each pre-

existing accounting systems as well as communication protocols and risking existing 

accounting processes. Therefore such migration becomes a hard decision unless there is 

an obvious reason and a consistent solution to minimise re-engineering tasks while ensure 

data consistency.   

 

6.1.2 Reflections 

 

This thesis starts from reviewing current practices by interviewing stakeholders from 

different groups, including international and national Grid service providers, regional 

Grid service providers, campus Grid service providers, standard bodies, accounting 

solution developers, and end users, through face-to-face meetings, Tele-conferences, and 

questionnaires. During the three-month interview, a list of use cases were identified and 

categorised into four major usage scenarios (section 3.2). Such review that has not done 

by others before contributed to a comprehensive view of Grid accounting, including its 

technical concept, classifications of accounting models, and technical requirements. It 

also provides systematic reviews of current accounting solutions deployed in production 

Grid projects as well as standardisation efforts. The review ends up with a proposed 

accounting framework that abstracts common accounting requirements while 

customisable to accommodate advanced accounting purposes in a standard compatible 

manner. In the final review report, a list of prioritised recommendations were proposed to 

JISC to fund further efforts on standardisation and development tasks for fulfilment of the 

functionalities of the proposed accounting framework. These recommendations along 

with the proposed accounting framework were completely accepted by JISC such that 
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following funding calls were released exactly as recommended.  

 

The thesis further described the WLCG-RUS prototype system (section 4), an OGF-

RUS implementation based on a loosely-coupled component architecture, which is 

similar to the proposed accounting framework. The WLCG-RUS prototype system is 

designed to provide an alternative, but standard compatible, solution for sharing WLCG 

accounting data across Grid infrastructures to GOC. The deployment of WLCG-RUS 

system in the WLCG, a production multi-Grid environment, successfully proved the 

concept that standardisation is of great importance in the interoperability among 

heterogeneous Grid systems. However the development of WLCG-RUS system also 

exposed the inefficiency of current standards. The main issue is that both OGF UR and 

OGF RUS standards were designed for job accounting purpose, therefore does not 

support the WLCG aggregate accounting models. Besides, there are some common usage 

properties missing in the OGF UR standard, such as VO name and executing site 

information, which are important for VO- and site-level accounting. 

 

Based on the experiences gained during the development of WLCG-RUS prototype 

system, the thesis finally presented the GRUS middleware (section 5), which provides a 

full implementation of features defined within the proposed accounting framework [132]. 

Rather than provide a homogeneous accounting solution, the GRUS is intended to 

provide a development platform for custom implementation of a RUS service endpoint. 

By using GRUS middleware, existing accounting systems can be easily migrated to be 

standard compatible with minimum re-engineering efforts, while ensuring back-

compatibility to existing accounting processes. Given the evolving nature of accounting 

standards, the GRUS is designed in a schema-independent manner. In this sense, the 

GRUS middleware is adaptive to changes of existing accounting schemas as well as 

emergence of new accounting schemas.  

 

Finally the research work of this thesis also contributed to the evolution of accounting 

standards. In 2006, the first draft of the Aggregate Usage Record (AUR) presentation 

specification [158] was submitted to the OGF UR working group. It was then refined 

according to initial user feedbacks in 2007. At the end of 2007, a new RUS core 

specification [171] was also proposed based on the implementation of GRUS middleware, 

making it more flexible to enable various accounting models.  
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6.2 Recommendations 

 

This section recommends possible future works for both standardisation and 

development. 

 

6.2.1 Recommendations on Standards  

 

In order to investigate the effectiveness of existing OGF UR [137] standard, the OGF 

UR working group conducted an evaluation according to user experiences [188] inputs 

from production Grid projects that uses the OGF UR format for accounting data 

representation. Based on initial evaluation results, there are some significant issues 

observed. First of all, the OGF UR format focuses on usage representation of the finest 

UoW, the “batch” job. Besides, there are still many base properties absent, typically 

executing site and general VO information. Although these properties can be defined 

using OGF UR extension framework, they are semantically incorrect. Furthermore using 

UR extension framework undermines interoperability. Moreover usage metrics defined in 

OGF UR format 1.0 are not enough to support accounting of resource types other than 

computational resource, such as data, network and application service resources. Finally 

most of commercial Grid or cluster systems are using industry accounting data model, for 

example, the metric sub-model as defined within the DMTF’s Common Information 

Model (CIM) [86]. It is difficult make these industry standard adopters to use OGF UR to 

achieve interoperability. 

 

Based on feedbacks received from user experiences, the OGF UR working group 

defined a new roadmap towards OGF UR 2.0 in OGF 21 conference. As illustrated in 

Figure 6.1, the OGF UR 2.0 proposed a hierarchical data model with a core information 

model that abstract common properties including record creator, resource/service 

consumer, time period and charges information. This core model forms the basis of usage 

information models of computational, storage and network resource usage records. A 

composite usage information model is also proposed to representation consumption of a 

single UoW, which could be a single batch job, a workflow or service transaction. The 

summary/aggregate usage information model is used to represent total resource usage and 

costs by summarising multiple composite records. Definitions of various data models in 

the UR 2.0 roadmap will reuse existing usage metrics and properties defined in current 
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OGF UR standard where appropriate to ensure backward compatibility. 

Although the newly proposed RUS Core specification solved the issues related to 

system performances and fault tolerance by introducing enumerating query results, the 

specification cannot be finalised unless other issues are solved. One of the significant 

issues would be enabling higher flexibility on the RUS service interface definitions so 

that a RUS service endpoint is able to accept emerging OGF UR 2.0 compatible record 

instances. Runtime aggregation is another important feature that should be enabled along 

with RUS insertion or extraction logics. This can be realised either through specific 

aggregation service interface definitions or normative header information as proposed by 

GRUS messaging framework. Finally, the usefulness of RUS updating and deletion 

should be carefully evaluated. If these two service interfaces are not necessary for 

common use cases, they should be removed from RUS Core specification and defined as 

an optional or advanced RUS features. 

 

 

Figure 6.1: The Diagram of UR 2.0 Zoo. 

6.2.2 Recommendations on Development 

 

The GRUS framework implemented RUS Core messaging and exhibits an extensible 

framework for developers to provide custom RUS solutions. With the evolution of RUS 
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Core specification, the GRUS messaging framework is likely to be changed so as to adapt 

to possible changes of the RUS Core specification. Besides, the current helper class, the 

GRUS support, can be used by a RUS implementation for passive accounting models 

only on relational backend. In the future, possible extensions may be implemented to 

provide supports for implementing active accounting models as well depending on user 

feedbacks. Other possible further works that can be done based on GRUS framework 

include advanced aggregate strategy for OGF UR 2.0 summary record model, filter 

implementations that support emerging XUpdate Query facility [195], and etc. 
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Appendix A 

Stakeholder Reviews 

 

The following lists the review results of use cases in production Grid projects through 

interviewing different group of stakeholders. 

 

A.1 National Grid Service  

 
NGS aims to provide computational and data based resources and facilities to UK researchers, 

independent of resource or researcher location. This is currently achieved using resources (both 

compute and data) at four core sites (RAL, Oxford, Leeds and Manchester), and a growing number 

of partner and affiliate sites, together with the provision of software and services, to enable a 

consistent method of access to any resource from any location. As resources may have different 

'owners', each of whom may have different charging policies, it is essential there is a reliable 

mechanism to account for all aspects of use, in an environment with dynamically varying 

resources and services.  

 

The NGS already has a sophisticated accounting system in operation and needs to extend the 

functionality and scope to meet its objectives and address future service requirements. There is a 

strong desire to use a standard approach maximizing interoperability with other services, and 

enabling straightforward deployment on sites wishing to partner with the NGS. Major stakeholders 

to the NGS in the context of accounting and usage monitoring are the grid operations support 

centre, software developers and standards bodies, current and potential partner and affiliate sites 

(including campus grids and SRIF funded clusters), funding bodies and end users. 

 

Key requirements 

• Performance 

• Interoperability – clearly defined APIs or protocols to enable exchange of 

information with:  

o partner/affiliate sites and dataset providers  
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o large scale grid projects such as GridPP/WLCG  

• Ease of deployment  

• Ability to trace individual jobs; legal requirement for auditability to an individual 

• Ability to view historical usage data at user, VO and resource levels 

• Metrics: 

o Required – CPU time, Wall time, permanent storage, data services  

o Desirable – executable, memory usage, network usage, QoS  

o Not generally of concern – temporary storage 

• Resource allocation and policing  

• Custom charge rates for QoS, e.g. advanced reservation  

• Integration with user/project management system  

• Integrity of accounting data through automated monitoring/notification systems 

 

Key concerns/issues 

• RUS querying currently not functional  

• Current accounting methodologies and practices are batch job centric  

• Interfaces alone should be standardized, allowing site-specific implementation  

• Significant investment in current system – would need to see clear benefit in 

change  

• Partner/affiliates not wishing to entrust their data to a centralized site 

 

A.2 Grid for Particle Physics  

 

GridPP is a collaboration of particle physicists and computer scientists from the UK 

and CERN, with distributed compute resources spanning 17 UK institutions. GridPP has 

a number of key stakeholders – it is the UK’s contribution to worldwide Large Hadron 

Collider (LHC) Grid (WLCG), overseeing the Tier 1 facility at RAL and the Tier 2 

organisations of ScotGrid, NorthGrid, London and SouthGrid, and also contributes to the 

interdisciplinary project EGEE - Enabling Grids for E-sciencE.  

 

LCG is a production-level grid and GridPP has a contractual obligation to provide 

accounting data as part of the LCG project. At present over 150 sites worldwide are 

publishing accounting data to the Grid Operations Centre (GOC) at RAL making 

aggregation, scalability and validation of accounting data critical concerns.  
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Key requirements 

• Performance and scalability  

• Ability to view historical usage data at VO, resource, country and EGEE region 

levels  

• Metrics: 

o Required – CPU (normalized to reflect “work done”)/Wall time  

o Desirable – permanent storage  

o Not generally of concern – memory usage, network usage 

• Interoperability across international production grids  

• Integrity of accounting information through automated monitoring/notification 

systems  

• Ability to modify records e.g. SiteName change does not break historical querying 

 

Key concerns/issues 

• Significant investment in current system – 150 sites publishing via APEL/R-GMA  

• Scalability of RUS – XML only useful as an exchange format  

• CPU normalization and benchmarking needs to be addressed 

• Sharing of accounting data across different grids poses difficulties in terms of data 

protection  

• Charging mechanism should be separate and require digital signatures and 

auditability. 

 

A.3 Campus Grids  

 

The accounting requirements of campus grids across the UK academic sector range 

from simple “best effort” usage statistics from condor pools to sophisticated job-level 

accounting across a range of disparate resources. In cases where departmental resources 

or SRIF-funded hardware are available to the grid there is a more urgent requirement for 

accounting as a direct consequence of the fEC model (see Other Compute Services, to 

follow). Less mature campus grids can see immediate benefit from the development of a 

clearly defined accounting framework and tools to prevent further duplicity of effort. 
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Key requirements 

• Performance  

• Interoperability with NGS / other grids but flexibility to allow site-specific access 

control policies 

• Ability to trace individual jobs  

• Ability to view historical usage data at user, project, School, and resource levels  

• Resource allocation and policing  

• Charging mechanisms for fEC (especially HPC component) 

• Metrics: 

o Required – CPU time, Wall time, permanent storage  

o Desirable – memory usage, full job command line 

o Not generally of concern – temporary storage, network usage  

 

Key concerns/issues 

• Performance of XML database  

• Interfaces alone should be standardized, allowing site-specific implementations  

• RUS aggregation needs attention  

• Wide range of job managers: Linux/Windows Condor, Windows Compute Cluster, 

PBS, TORQUE, LSF 

• Solution should be lightweight and not be tied to a specific project 

 

A.4 Regional Grids  

 

Most regional grids currently operate fairly homogeneous systems at different sites 

and thus can provide the service with a limited range of software such as a single batch 

system, and therefore do not, as yet, require the same degree of flexibility as NGS or 

some campus grids.  

 

Key requirements 

• Contractual obligations to provide accounting data to specific large scale projects, 

e.g. GridPP  

• Interoperability with campus grids  

• Ability to trace individual jobs  
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• Ability to view historical usage data at user, project/VO, University, and resource 

levels 

• Resource allocation and policing  

• Devolution of allocation management to PIs  

• Charging mechanisms required in the future  

• Required metrics: 

o Required – CPU time, Wall time  

o Desirable – permanent storage  

o Not generally of concern – temporary storage, network usage 

 

Key concerns/issues 

• Data protection 

 

A.5 Other Compute Services 

 

There is an increasing number of universities providing or starting to provide large 

scale local compute services, particularly after the recent SRIF funding programmes. In 

many cases this has resulted in a ‘standalone’ service, typically for local high 

performance computing (HPC), even at sites where there is or has been campus grid 

activity, such as Oxford, Cambridge and UCL. Many such services are influenced by fEC 

and thus need to manage and report on usage. While it may be relatively simple for such 

services to use resource management or batch engine software to address the accounting 

requirements, it may be at the cost of interoperability or extensibility for future services. 

Nevertheless some such services are developing their own accounting and user 

management systems not tied to a specific supplier, thus providing greater long-term 

flexibility, but also requiring significant development effort. Thus the objectives for the 

grid communities, in providing a standard approach for usage data metering, storage and 

sharing, could be of great value to these other specialist services.  

 

It is recognised that where significant effort has already been invested and the service 

requirements fully met, such as the national HPC services, there is unlikely to be a good 

reason for changing existing practices in the short-term. However it would be hoped that 

such services would see the long-term benefit of a co-ordinated approach, ideally 

resulting in convergence in development. It is known for example that the developers of 
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the ‘SAFE’ system used by the national HPC services, are developing a generator for 

converting SAFE-specific usage information into OGF-UR records, and are in the process 

of implementing a RUS service. It should be made clear that the UR format is not useful 

only for grid environments – it is a standard format for storing job usage information, 

which may be used for accounting on any system.  
 

Key requirements 

• Job tracing  

• Historical usage monitoring at project and user levels 

• Management of project resources (sub-allocation) 

• Automated policing 

• Integration with user management system 

• Accuracy of accounting data critical – charging  

• Auditability 
 

 Key concerns/issues 

• Independent contractual arrangements regarding data protection  

• Significant investment in current accounting system(s)  

 

A.6 End user 

 

Key requirements 

• Intuitive interface, preferably integrated with user management interface  

• Job tracing  

• Historical usage monitoring at VO and user levels  

• Management of project/VO resources (sub-allocation) 

• Confidence in the accuracy of accounting data – critical if being charged  

 

A.7 Standard Bodies 

 

There appears to be general support in the grid communities for the OGF-UR and 

RUS specifications as standards for storing and sharing usage information. OMII-Europe, 

who is concerned with interoperability between different Grid systems through the implementation 
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of common standard interfaces, are evaluating the implementation of RUS interfaces for the gLite, 

Globus and UNICORE middleware stacks. To this end, preliminary design documents have been 

prepared for the SGAS, DGAS and UNICORE accounting systems.  

 

Key requirements 

• Acceptance and rollout of OGF usage record format  

• Support for development and adoption of aggregated usage record format  

• Support for development and adoption of storage usage record format 

• Support for development and adoption of network usage record format  

• Understanding of more complex use cases  

• Hierarchical and P2P RUS deployments 
 

 Key concerns/issues 

• Site implementations not strictly standards compliant  

• Standards not flexible enough to cater for individual accounting requirements  

• Standards too bloated for individual requirements 

• Issues regarding RUS specification querying interface  

• Is Xpath querying expressive enough?  

 

A.8 Data Service Providers 

 

There are a large number of data based services funded by JISC, including the 

MIMAS and EDINA services. There is an increasing interest in the ‘grid enablement’ of 

these services, which includes the management of security through grid mechanisms; the 

ability to combine and analyse data in distributed datasets; and the ability to access grid 

based (compute) resources dynamically at periods of high loads. There have been a 

number of grid enablement pilot projects including Gemeda, GEMS (1 and 2), GESSE 

and SEE-GEO but there are few if any production grid based data services. 

Authentication and authorisation are key issues in this context – the services currently use 

ATHENS or Shibboleth, rather than grid certificate authentication. 

 

Most of the data services are required to provide accounting details to JISC on a 

regular basis as defined by SLAs. The statistics reported are primarily concerned with the 

number of accesses and searches, on a per site basis, as well as service availability. In 
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addition the service providers need to ensure that accesses are restricted to licensed users 

(whether individual or site based), so the ability to identify the user of the service is 

crucial.  

 

Thus most of the data based services are required to provide service usage accounting, 

rather than resource usage accounting typically required by grid (and other compute 

based) services; However there are some specialist services, such as the satellite image 

service, which do have significant resource usage requirements.  

 

While the NGS, for example, does see a long term need for service usage accounting, 

recognising that such services may be provided through NGS itself, even though the data 

is hosted elsewhere, there is little in the present standards framework to address this type 

of accounting. It is not clear to the reviewers how best this should be addressed. It should 

in principle be possible to define such metrics, but whether it is appropriate or desirable 

to extend the UR specification, for example, for this purpose is certainly questionable: the 

UR has been designed with resource based accounting in mind, not service accounting.  

 

In addition, it is clear that many of the current services are well established, and the 

mechanisms used for collecting the statistics frequently closely integrated with the service 

itself. The adoption of a new approach for the collection of the statistics across a range of 

services would probably not be considered favourably. Thus, the reviewers believe it is 

outside the scope of this review to provide tangible recommendations in this context, 

although it is felt that such issues should be addressed through further exploratory 

projects in setting up ‘grid enabled’ services, and subsequently establishing new grid 

based services as required, rather than adapting accounting mechanisms in existing 

services. 

 

With respect to some services such as the satellite image service, very large amounts 

of data must be stored, analysed, and possibly downloaded, and JISC may request 

information on resource usage to demonstrate a requirement of the service, in order to 

justify funding streams. The focus is on service access to justify the provision of the 

service. It is likely that there will be an increase in resource usage associated with these 

and other data based services, particularly when utilising multiple distributed datasets – 

something that has not easily been possible previously. This is likely to result in 

additional accounting requirements, although it does depend (at least partly) on the 
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funding bodies - for example on whether JISC continues to focus on service usage 

accounting, with little direct interest in details of compute, storage and network usage. 

However if the service is grid based, with significant storage, network traffic, and high 

compute requirements possibly at hosts determined dynamically, the owner of the 

resources will need to be able to charge for use of these resources. Thus it seems essential 

in the long-term that a mechanism is developed to account for all of these activities. The 

approaches adopted in the grid accounting context should be applicable to these types of 

services, bearing in mind the work and time still required to address usage of resources 

involving storage and network activities.  

 

Key requirements 

• Data security, authentication/authorization 

• Accounting in workflows: single access/instance may involve multiple services 

• Metrics: 

o Required: number of logins, searches, amount of data downloaded, nature of 

data downloaded 

o Desirable: permanent storage (resource provider end) and network usage 

if significant downloads are performed  

o Not generally of concern : temporary storage  
 

 Key concerns/issues 

• Charging model does not fit easily in job-level accounting schema 

• Distribution of datasets presents difficulties with respect to licensing  

• Grid enablement still in its infancy  
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Appendix B 

Accounting Schema Mapping and Extensions 

 

 

Table A-1: NGS UAS Accounting Schema mapping to OGF-UR 

OGF UR NGS UAS Schema 

Metric Context Node (XML) Metric Name 
Base Data Type 

(SQL) 

//urf:RecordIdentity@urf:recordId RecordId VARCHAR 

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR 

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR 

//urf:UserIdentity/ds:KeyInfo/ds:X509Data/

ds:X509SubjectName 
X509SubjectName VARCHAR 

//urf:JobName JobName VARCHAR 

//urf:Status Status VARCHAR 

//urf:WallDuration WallDuration NUMBER 

wallTimeRequested NUMBER 

//urf:CpuDuration CpuDuration NUMBER 

cpuTimeRequested NUMBER 
//urf:EndTime pbsLogDate DATE 

//urf:StartTime timeGlobusSubmitted DATE 

//urf:MachineName MachineName VARCHAR 

//urf:SubmitHost SubmitHost VARCHAR 

//urf:Processors Processors NUMBER 
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Table A-2: APEL Accounting Schema mapping to OGF-UR 

OGF UR Schema APELSchema 

Metric Context Node (XML) Metric Name 
Base Data Type 

(SQL) 

//urf:RecordIdentity@urf:recordId RecordIdentity VARCHAR 

//urf:RecordIdentity@createTime 
MeasurementDate DATE 

MeasurementTime TIME 

//urf:JobIdentity/urf:GlobalJobId LCGJobID VARCHAR 

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR 

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR 

//urf:Useridentity/GlobalUserName LCGUserID VARCHAR 

//urf:WallDuration 
ElapsedTime VARCHAR 

ElapsedTimeSeconds INT 

//urf:CpuDuration 
BaseCpuTime VARCHAR 

BaseCpuTimeSeconds INT 

//urf:EndTime 

StopTime VARCHAR 

StopTimeUTC VARCHAR 

StopTimeEpoch INT 

//urf:StartTime 

StartTime VARCHAR 

StartTimeUTC VARCHAR 

StartTimeEpoach INT 

//urf:Host ExecutingCE VARCHAR 

//urf:Memory 
MemoryReal INT 

MemoryVirtual INT 

//urf:TimeInstant 
EventDate DATE 

EventTime TIME 
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Table A- 3: DGAS Accounting Schema mapping to OGF-UR 

OGF UR Schema DGAS Schema 

Context Node (XML) Metric Name 
Base Data Type 

(SQL) 

//urf:RecordIdentity@urf:recordId id BIGINT 

//urf:RecordIdentity@createTime date DATETIME 

//urf:Charge amount SMALLINT 

//urf:JobIdentity/urf:GlobalJobId LCGJobID VARCHAR 

//urf:JobIdentity/urf:LocalJobId lrmsId VARCHAR 

//urf:UserIdentity/ds:KeyInfo/ds:X509Data/

ds:X509SubjectName 
acl VARCHAR 

//urf:UserIdentity/urf:GlobalUserName gridUser VARCHAR 

//urf:UserIdentity/urf:LocalUserId localUserId VARCHAR 

//urf:WallDuration wallTime INT 

//urf:CpuDuration cpuTime INT 

//urf:EndTime end INT 

//urf:StartTime start INT 

//urf:MachineName gridResource VARCHAR 

//urf:Memory 
pmem INT 

vmem INT 
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Table A-4: Gratia Accounting Schema mapping to OGF-UR

OGF UR Schema Gratia Schema 

Metric Context Node (XML) Metric Name 
Base Data 

Type (SQL) 

//urf:RecordIdentity@urf:recordId recordId BIGINT 

//urf:RecordIdentity@createTime 
CreateTime DATETIME 

CreateTimeDescription VARCHAR 

//urf:JobIdentity/urf:GlobalJobId GlobalJobId VARCHAR 

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR 

//urf:Jobidentity/urf:ProcessId ProcessIds VARCHAR 

//urf:JobName JobName VARCHAR 

//urf:JobName@urf:description JobNameDescription VARCHAR 

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR 

//urf:Useridentity/GlobalUserName GlobalUserName VARCHAR 

//urf:UserIdentity/ds:KeyInfo@ds:id KeyInfoId VARCHAR 

//urf:UserIdentity/ds:KeyInfo KeyInfoContent BLOG 

//urf:Charge Charge FLOAT 

//urf:Charge@urf:unit ChargeUnit VARCHAR 

//urf:Charge@urf:formula ChargeFormula VARCHAR 

//urf:Charge@urf:description ChargeDescription VARCHAR 

//urf:Status Status VARCHAR 

//urf:Status@urf:description StatusDescription VARCHAR 

//urf:WallDuration WallDuration VARCHAR 

//urf:WallDuration@urf:description WallDurationDescription VARCHAR 

//urf:CpuDuration 
CpuUserDuration VARCHAR 

CpuSystemDuration VARCHAR 

//urf:CpuDuration@urf:description 
CpuUserDurationDescription VARCHAR 

CpuSystemDurationDescription VARCHAR 
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//urf:NodeCount NodeCount VARCHAR 

//urf:NodeCount@urf:metric NodeCountMetric VARCHAR 

//urf:NodeCount@urf:description NodeCountDescription VARCHAR 

//urf:Processors Processors INT 

//urf:Processors@urf:metric ProcessorsMetric VARCHAR 

//urf:Processors@urf:consumptionRate ProcessorsConsumptionRate FLOAT 

//urf:Processors@urf:description ProcesorsDescription VARCHAR 

//urf:StartTime StartTime DATETIME 

//urf:StartTime@urf:description StartTimeDescription VARCHAR 

//urf:EndTime EndTime DATETIME 

//urf:EndTime@urf:description EndTimeDescription VARCHAR 

//urf:MachineName MachineName VARCHAR 

//urf:MachineName@urf:description MachienNameDescription VARCHAR 

//urf:SubmitHost SubmitHost VARCHAR 

//urf:SubmitHost@urf:description SubmitHostDescription VARCHAR 

//urf:Queue Queue VARCHAR 

//urf:Queue@urf:description QueueDescription VARCHAR 

//urf:Host Host VARCHAR 

//urf:Host@urf:description HostDescription VARCHAR 
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Table A-5: Custom Metrics as Extensions to OGF-UR 
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LCGUserVO UserVO VOName VOName VOName 
Virtual organisation 

identity 

  
Reportable 

VOName 
  

VO Name that is 

actually when 

reporting the usage 

records 

  ProbeName   

The probe identity 

that meters resource 

usage 

ExecutingSite SiteName SiteName SiteName SiteName 

The site name on 

which the job 

recorded is 

executed 

 iBenchType    

(Integer) 

performance 

benchmark 

specification type 

The GLUE host 

benchmark (SI00) 
SpecInt2000 iBench    

 fBenchType    

(float) performance 

benchmark 

specification type 

The GLUE host 

benchmark (SF00) 
SpecFloat2000 fBench    

 userGroup    
The user group 

name 

Full Qualified 

Attribute Name 
UserFQAN userFQAN    

 localGroup    Local group name 

 remoteHlr    

Home Local 

Resource server 

URL 
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Table A-6: WLCG summary schema mapping to proposed OGF-AUR draft 

OGF AUR Schema WLCG Summary Schema 

 

Metric Context Node (XML) 
Base Data 

Metric Name 
Type (SQL) 

//urf:RecordIdentity@urf:recordId recordId BIGINT 

CreateTime DATETIME 
//urf:RecordIdentity@createTime 

CreateTimeDescription VARCHAR 

//urf:JobIdentity/urf:GlobalJobId GlobalJobId VARCHAR 

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR 

//urf:Jobidentity/urf:ProcessId VARCHAR ProcessIds 

//urf:JobName JobName VARCHAR 

//urf:JobName@urf:description JobNameDescription VARCHAR 

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR 

//urf:Useridentity/GlobalUserName GlobalUserName VARCHAR 

//urf:UserIdentity/ds:KeyInfo@ds:id KeyInfoId VARCHAR 

//urf:UserIdentity/ds:KeyInfo KeyInfoContent BLOG 

//urf:Charge Charge FLOAT 

//urf:Charge@urf:unit ChargeUnit VARCHAR 

//urf:Charge@urf:formula ChargeFormula VARCHAR 

//urf:Charge@urf:description ChargeDescription VARCHAR 

//urf:Status Status VARCHAR 

//urf:Status@urf:description StatusDescription VARCHAR 

//urf:WallDuration WallDuration VARCHAR 

//urf:WallDuration@urf:description WallDurationDescription VARCHAR 

CpuUserDuration VARCHAR 
//urf:CpuDuration 

CpuSystemDuration VARCHAR 

VARCHAR CpuUserDurationDescription 
//urf:CpuDuration@urf:description 

VARCHAR CpuSystemDurationDescription 
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Appendix C 

Use Cases 

 

B.1 WLCG-RUS Use Cases 

 

Use Case Insert usage records 

Description 
Publish resource usage information to WLCG RUS through 

standard RUS::insertUsageRecords interface. 

Actors Host 

Assumptions 
• Requestor holds a valid grid certificate; 

• Accounting data to be uploaded are correct and trustworthy; 

Steps 

1. check host’s permission to execute “RUS::insertUsageRecord” 

operation on per usage record basis; 

2. validate usage record inputs against mandatory elements 

configuration; 

3. render standard usage record format to appropriate data format; 

4. save usage records into database; 

5. compose response message with operation results; 

Variations 
5.  if trying to insert job usage records into summary record 

database, appropriate aggregate strategy must be applied 

Non-Functional 
Security: authorisation and data privacy 

Performance: usage records should be inserted in bulk if possible. 

Issues 1. Trying to insert usage records that already exist; 
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Use Case List mandatory usage record elements 

Description 
Query mandatory element configuration of a specific WLCG RUS 

instance. 

Actors Host, Administrator, Site Manager, Grid User, VO Manager 

Assumptions 1. Requestor holds a valid grid certificate; 

Steps 

1. Find out mandatory usage record element configuration; 

2. Compose RUS::listMandatoryUsageRecordElements response 

message; 

Variations  

Non-Functional  

Issues Mandatory usage record element configuration infoset not found 

 

 

 

Use Case Create a host account 

Description Register a new host account 

Actors Site Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission to register; 

2. Check validity of requestor’s account;  

3. Create a new host account 

4. Email requestor a confirmation message 

Variations  

Non-Functional 
Security: only registered user with an active account is allowed to 

create a new host account 

Issues 1. The registry entry of host account already exists; 
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Use Case Delete a host account 

Description Remove a host account from registry entry 

Actors Site Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission to register; 

2. Check validity of requestor’s account;  

3. Find out host account on requestor’s account; 

4. Remove the host account from registry; 

Variations  

Non-Functional 
Security: only registered user and the owner of an active host 

account is allowed to remove a new host account  

Issues Trying to delete an host account that is publishing data 

 

 

 

Use Case View host account information  

Description View registration details of host accounts 

Actors Site Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission to register; 

2. Check validity of requestor’s account;  

3. Find out host account on requestor’s account; 

4. Display host account details; 

Variations  

Non-Functional 
Security: administrator can view all host account details, while site 

manger can only view owned host account details; 

Issues The registry entry of specific host account does not exist. 
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Use Case Activate a host account  

Description Activate a host account 

Actors Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission ; 

2. Find host account on requestor’s account; 

3. Activate the host account; 

4. Email host owner an activation message; 

Variations  

Non-Functional 
Performance: activation should be completed in reasonable short 

period. 

Issues The registry entry of specific host account does not exist. 

 

 

Use Case Edit host account 

Description Edit host account’s details 

Actors Site manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check requestor’s permission to edit a host account; 

2. Edit host account; 

3. Set activeness of current host account to false; 

4. Email  host owner a confirmation message 

Variations  

Non-Functional 
Security: Administrator can edit all user account details while  

account owner can edit its own user account details;  

Issues  
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Use Case User account registration 

Description Register a new user account 

Actors Site manager 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check requestor’s permission to execute user registration; 

2. Create a new user account 

3. Email  registered user confirmation message 

Variations  

Non-Functional 
Performance: user registration should be completed in reasonable 

short period. 

Issues 1. A registry entry of user account already exists; 

 

 

 

Use Case Delete a user account 

Description Remove a user account from registry 

Actors Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission; 

2. Find user account; 

3. Remove the user account from registry; 

4. Email deleted user; 

Variations  

Non-Functional 
Security: only administrator is allowed to remove a new user 

account  

Issues Trying to delete a non-existent user account  

 

 

 
 



 
199 10BAppendix C 

 

 

Use Case View user account information  

Description View detailed user account information 

Actors Site Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission to view user account(s) 

2. Find user account; 

3. Display user account details; 

Variations  

Non-Functional 
Security: Administrator can view all user accounts’ details, while 

site manager can only view its own account details. 

Issues The registry entry of specific user account does not exist. 

 

 

Use Case Activate a user account  

Description Activate a host account 

Actors Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission ; 

2. Find user account; 

3. Activate the user account; 

4. Email account owner an activation message; 

Variations  

Non-Functional 
Performance: activation should be completed in reasonable short 

period. 

Issues The registry entry of specific user account does not exist. 
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Use Case Edit a user account  

Description Update a user account’s details 

Actors Administrator, Site Manager 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission ; 

2. Find user account; 

3. Update user account details; 

4. Email account owner a confirmation message; 

Variations  

Non-Functional 
Security: administrator can edit any user accounts, while site 

manager can edit its own account only. 

Issues The registry entry of specific user account does not exist. 
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B.2 GRUS Use Cases 

 

Use Case List supported aggregate strategies 

Description Query supported aggregate strategies of a RUS service endpoint 

Actors Administrator, Site manage, VO manager, Grid  User 

Assumptions 1. Requestor holds a valid grid certificate; 

Steps 
1. Find out supported aggregate strategies configuration; 

2. Compose a response message and return to client; 

Variations  

Non-Functional  

Issues Supported dialects configuration not found 

 

Use Case Query job usage records 

Description 
Query OGF UR instances through the RUS::extractUsageRecord 

interface of a RUS service endpoint 

Actors Administrator, Site manage, VO manager, Grid  User 

Assumptions 1. Requestor holds a valid grid certificate; 

Steps 

1. Check specified query dialect against supported dialects of a 

RUS service endpoint;  

2. Get query results that match query term from underlying 

persistent storage; 

3. Rendering query results into OGF UR instances; 

4. Check user permission on individual OGF UR instance; 

5. Compose a response message and send it back to client; 

Variations 
5. Compose a response message and returns a context for 

enumeration 

Non-Functional 

Security: authorisation and data privacy 

Performance: enumerating query results if the value of maximum 

elements is specified within the request message. 

Issues Supported dialects configuration not found 
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Use Case Query aggregate usage records 

Description 
Query OGF AUR instances through the RUS::extractUsageRecord 

interface of a RUS service endpoint 

Actors Administrator, Site manage, VO manager, Grid  User 

Assumptions 1. Requestor holds a valid grid certificate; 

Steps 

1. Check specified query dialect against supported dialects of a 

RUS service endpoint;  

2. Get query results that match query term from underlying 

persistent storage; 

3. if underlying accounting data type is job usage records, apply 

aggregate strategy specified in the request message; 

4. Rendering aggregate results into OGF AUR instances; 

5. Check user permission on individual OGF AUR instance; 

6. Compose a response message and send it back to client; 

Variations 
6. Compose a response message and returns a context for 

enumeration 

Non-Functional 

Security: authorisation and data privacy 

Performance: enumerating query results if the value of maximum 

elements is specified within the request message. 

Issues Supported dialects configuration not found 
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Use Case Audit 

Description Query history of a specific usage record 

Actors Host, Administrator, Site Manager, VO manager 

Assumptions 1. Requestor holds a valid grid certificate; 

Steps 

1. Get usage record identified by record identity specified in the 

request message; 

2. Check user’s permission on the usage record; 

3. Get record history associate with the usage record; 

4. Compose response message and return it to the client; 

Variations  

Non-Functional Security: authorisation and data privacy 

Issues The requested usage record does not exist. 

 

 

Use Case create a VO account 

Description Add a new VO account 

Actors Host Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check user’s permission; 

2. Check mandatory VO account information; 

3. Create a new VO account; 

4. Email client a confirmation message 

Variations  

Non-Functional 
Security: only registered user with an active account is allowed to 

create a new VO account 

Issues 1. The VO account already exists; 
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Use Case View VO account 

Description View account information of a specific created VO 

Actors VO Manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 
1. Check user’s permission; 

2. Display VO account details on screen; 

Variations  

Non-Functional 
Security: administrator can view all host account details, while a VO 

manger can only view an owned VO account; 

Issues The specific VO account does not exist. 

 

 

 

Use Case Edit VO account(s) 

Description Edit a VO account information 

Actors VO manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

1. Check requestor’s permission to edit a VO account; 

2. Edit VO account details; 

3. Set activeness of current VO account to false; 

4. Email  VO owner a confirmation message 

Variations 
Security: Administrator can edit all VO account details while  

account owner can edit its own user account details;  

Non-Functional  

Issues VO manager is not allowed to change owner; 
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Use Case Activate a VO account 

Description 
Query mandatory element configuration of a specific WLCG RUS 

instance. 

Actors Administrator 

Assumptions Client hold a valid grid certificate; 

Steps 

5. Check user’s permission; 

6. Find VO account; 

7. Activate the VO account; 

8. Email VO owner an activation message; 

Variations  

Non-Functional 
Performance: activation should be completed in reasonable short 

period. 

Issues The VO account does not exist. 

 

 

Use Case Delete a VO account 

Description 
Query mandatory element configuration of a specific WLCG RUS 

instance. 

Actors VO manager, Administrator 

Assumptions Requestor hold a valid grid certificate; 

Steps 

5. Check user’s permission; 

6. Find VO account; 

7. Remove the VO account; 

8. Email VO account owner; 

Variations  

Non-Functional Security: VO manager can only remove a owned VO account 

Issues Trying to delete a non-existent user account  

 

 

 
 



 
206 11BAppendix D 

 

 

 

 

Appendix D 

Command Line Parameters 

 

C.1 WLCG-RUS Command Line Parameters 

July 2007(User Commands)                  July 2007(User Commands) 

 

NAME 

       wlcgrus - manual page 

 

DESCRIPTION 

       usage: wlcgrus [-h<help> | -list | -insert] 

 

              [-s<service-endpiont>] 

 

       WLCG-RUS version 0.1 CLI, copyright 2007 Brunel. 

 

       -h,--help 

              print usage information 

 

       -insert,--insert 

              insert usage records 

 

       -list,--list 

              list mandatory elements 

        

       --max-elements 

              The maximum number of usage records per insertion 

 

       -s,--service-endpoint 
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              service endpoint address 

    

       usage: wlcgrus [-h<help> | -list | -insert] 

 

              [-s<service-endpiont>] 

 

       WLCG-RUS version 0.1 CLI, copyright 2007 Brunel. 

 

SEE ALSO 

       The full documentation for WLCG RUS is maintained as a Text 

info manual. 

       If the info and WLCG RUS programs are properly installed at 

your  site, the command 

              man wlcgrus 

       should give you access to the complete manual. 

 

                                         July 2007(User Commands) 
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C.2 GRUS Command Line Parameters 

 
June 2009(User Commands)                   June 2009(User Commands) 

 

NAME 

       grus - manual page 

 

DESCRIPTION 

       usage: grus [-h<help> | -list | -insert | -extract | -

modify | -delete] 

 

              [-s<service-endpiont>] [-t<timeout>] 

 

       GRUS version 1.0 CLI, copyright 2009 Brunel. 

 

       -audit,--audit 

              extract record history 

 

  -delete,--delete 

              delete usage records 

 

       -extract,--extract 

              extract usage records 

 

       -h,--help 

              print usage information 

 

       -insert,--insert 

              insert usage records 

 

       -list,--list 

              list GRUS configuration information 

   

  -modify,--modify 

              modify usage records 

 

       -s,--service_endpoint 

              service endpoint address 
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       -t,--timeout <arg> 

              timeout in millisecs 

 

       for more instructions, see http://grus.sourceforge.net 

 

       usage: grus [-h<help> | -list | -insert | -extract | -

modify | -delete] 

 

              [-s<service-endpiont>] [-t<timeout>] 

 

       GRUS version 1.0 CLI, copyright 2009 Brunel. 

 

       for more instructions, see grus.sourforge.org 

 

SEE ALSO 

       The full  documentation for invalid is maintained as a 

Texinfo manual. 

       If the info and invalid programs are properly installed at  

your  site, 

       the command 

 

              man grus 

 

       should give you access to the complete manual. 

 

                                      September 2009(User Commands) 
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Appendix E 

Schemas 

 

D.1 GRUS Data Type Definitions 

 
<?xml version="1.0" encoding="utf-8" ?> 

 

<!--*************************************************************  

Copyright @ 2007-2009 Brunel University. All rights reserved.  

Permission to copy, display, perform, modify and distribute  

the GRUS extensions to OGF RUS-Core WS-I rendering specification. 

**************************************************************--> 

 

<xsd:schema  

    

targetNamespace="http://schemas.brunel.ac.uk/services/accounting/grus/typ

es" 

        

xmlns:grus="http://schemas.brunel.ac.uk/services/accounting/grus/types" 

        xmlns:xacml="urn:oasis:names:tc:xacml:1.0:policy" 

        xmlns:urf="http://schema.ogf.org/urf/2003/09/urf" 

        xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

        attributeFormDefault="qualified" elementFormDefault="qualified"> 

 

<xsd:annotation> 

<xsd:documentation xml:lang="en"> 

The data type and elements defined in this schema document provides 

header extensions to the RUS::insertUsageRecords and  

RUS::extractUsageRecords messages as defined in OGF RUS-Core WS-I  

rendering specification. Using headers defined here allows runtime 

aggregation during the execution of RUS insertion and extraction  

operations.  
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</xsd:documentation> 

</xsd:annotation> 

 

<xsd:import namespace="http://schema.ogf.org/urf/2003/09/urf"  

                        schemaLocation="urf.xsd" /> 

<xsd:element name="AggregateStrategies"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element ref="grus:AggregateStrategy" minOccurs="0"  

maxOccurs="unbounded" /> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

 

<xsd:element name="AggregateStrategy" 

             type="grus:AggregateStrategyType" /> 

 

<xsd:complexType name="AggregateStrategyType"> 

<xsd:sequence> 

<xsd:element name=”Interval”> 

<xsd:simpleContent> 

<xsd: 

<xsd:element name="Entity"  

             type="grus:EntityType"  

             maxOccurs="unbounded"  

             minOccurs="0" /> 

</xsd:sequence> 

<xsd:attribute name="AggregateStrategyId"  

               type="xsd:anyURI"  

               use="optional" /> 

</xsd:complexType> 

 

<xsd:complexType name="EntityType"> 

<xsd:simpleContent> 

<xsd:extension base="xsd:QName"> 

<xsd:anyAttribute namespace="##any" processContents="lax"/> 

</xsd:extension> 

</xsd:simpleContent> 

</xsd:complexType> 

 

<xsd:element name="ListSupportedAggregateStrategiesRequest" 

        type="grus:ListSupportedAggregateStrategiesRequestType" /> 
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<xsd:complexType name="ListSupportedAggregateStrategiesRequestType"> 

<xsd:sequence> 

<xsd:any namespace="##other"  

         minOccurs="0"  

         maxOccurs="unbounded" 

         processContents="lax" /> 

</xsd:sequence> 

</xsd:complexType> 

 

<xsd:element name="SupportedAggregateStrategy"> 

<xsd:complexType> 

<xsd:sequence> 

<xsd:element name="Operation" type="xsd:anyURI" /> 

<xsd:element name="AggregateStrategy"  

             type="grus:AggregateStrategyType"  

             minOccurs="1"  

             maxOccurs="unbounded" /> 

</xsd:sequence> 

</xsd:complexType> 

</xsd:element> 

 

 

<xsd:element name="ListSupportedAggregateStrategiesResponse" 

       type="grus:ListSupportedAggregateStrategiesResponseType" /> 

 

<xsd:complexType name="ListSupportedAggregateStrategiesResponseType"> 

<xsd:sequence> 

<xsd:element ref="grus:SupportedAggregateStrategy"  

             minOccurs="0" 

             maxOccurs="unbounded"/> 

</xsd:sequence> 

</xsd:complexType> 

 

</xsd:schema> 
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D.2 GRUS Service Interface Definitions 

 
<?xml version="1.0" encoding="UTF-8"?> 
 
<definitions 
xmlns:tns="http://schemas.brunel.ac.uk/services/accounting/grus" 
              
xmlns:types="http://schemas.brunel.ac.uk/services/accounting/gru 
s/types" 
        
xmlns:wsen="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 
        xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing" 
        
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 
xmlns:rus="http://schemas.ogf.org/rus/2007/09/core/types" 
xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/" 
        
targetNamespace="http://schemas.brunel.ac.uk/services/accounting/g
rus"> 
         
         
<!--************************************************************** 
*              Import third-party WSDL files                     * 
***************************************************************--> 
         
<import 
namespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration" 
location="enumeration.wsdl" /> 
<import  
namespace="http://schemas.ogf.org/rus/2007/09/core/types" 
location="rus-core.wsdl" /> 
<!-- ************************************************************* 
*                         Type definitions                       * 
************************************************************** --> 
<types> 
<xsd:schema 
targetNamespace="http://schemas.brunel.ac.uk/services/accounting/g
rus" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"                        
xmlns:types="http://schemas.brunel.ac.uk/services/accounting/grus/
types">  
              
<xsd:import  
namespace="http://schemas.ogf.org/rus/2007/09/core/types" 
schemaLocation="../schemas/rus-core.xsd" /> 
 
<xsd:import  
namespace="http://schemas.brunel.ac.uk/services/accounting/grus/ty
pes" 
schemaLocation="../schemas/grus.xsd" /> 
 
<xsd:import  
namespace="http://schema.ogf.org/urf/2006/07/aur" 
schemaLocation="../schemas/aur.xsd" /> 
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</xsd:schema> 
</types> 
        
         
<!--************************************************************ 
*                     Message Definitions                      * 
*************************************************************--> 
<message name="ListSupportedAggregateStrategiesRequestMessage"> 
<part  
name="ListSupportedAggregateStrategiesRequest" 
element="types:ListSupportedAggregateStrategiesRequest" /> 
</message> 
        
<message name="ListSupportedAggregateStrategiesResponseMessage"> 
<part name="ListSupportedAggregateStrategiesResponse"  
element="types:ListSupportedAggregateStrategiesResponse" /> 
</message> 
 
<!--************************************************************* 
*                  Port Type Definitions                        * 
**************************************************************--> 
         
<portType name="GridResourceUsageServicePortType"> 
<operation name="ListSupportedAggregateStrategies"> 
<input  
message="tns:ListSupportedAggregateStrategiesRequestMessage" 
wsa:Action="http://schemas.brunel.ac.uk/services/accounting/grus/l
istSupportedAggregateStrategies" /> 
<output 
message="tns:ListSupportedAggregateStrategiesResponseMessage" 
wsa:Action="http://schemas.brunel.ac.uk/services/accounting/grus/l
istSupportedAggregateStrategiesResponse" /> 
</operation> 
</definitions> 
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