Research and Development of Accounting

System in Grid Environment

A thesis submitted for the degree of Doctor of Philosophy

by
Xiaoyu Chen

School of Engineering and Design
Brunel University

November 2009

The piece of work is dedicated to my family and friends who
had given peculiar supports and encourages during the

period of my three-year researches.

Acknowledgement

There are many people who contributed financial, technical and moral supports that
made this thesis possible. First of all, | am grateful for the supervision and guidance that |
received from my supervisors, Prof. Akram Khan and Prof. Richard E. Taylor (Stanford
University). | really appreciate the three-year studentship funded by Engineering and
Physical Sciences Research Council (EPSRC) and Stanford University.

The majority of the work for this thesis was performed in cooperation with research
groups outside Brunel. As considerable supports received, | would like to give my
gratitude to JISC communities for their generous funding to our review tasks as
demonstrated in Chapter 3, and to Dr. Michael A. Pettipher and Mr Tim W. Robinson for
their close collaborations on the review tasks. | would also like to thank Dr. John Gordon
and Dr. Dave Kant from Rutherford Appleton Laboratory (RAL) for their supports to the
WLCG-RUS project discussed in Chapter 4.

I would also give my special thanks to all members and chairs of Usage Record (UR)
and Resource Usage Service (RUS) working groups of Open Grid Forum for their

supports to my chairship and efforts on specifications.

Finally, my parents definitely deserve my special acknowledgement to their endless

supports making all possible.

Abstract

The Grid has been recognised as the next-generation distributed computing paradigm
by seamlessly integrating heterogeneous resources across administrative domains as a
single virtual system. There are an increasing number of scientific and business projects
that employ Grid computing technologies for large-scale resource sharing and
collaborations. Early adoptions of Grid computing technologies have custom middleware
implemented to bridge gaps between heterogeneous computing backbones. These custom
solutions form the basis to the emerging Open Grid Service Architecture (OGSA), which
aims at addressing common concerns of Grid systems by defining a set of interoperable
and reusable Grid services. One of common concerns as defined in OGSA is the Grid
accounting service. The main objective of the Grid accounting service is to ensure
resources to be shared within a Grid environment in an accountable manner by metering
and logging accurate resource usage information. This thesis discusses the origins and
fundamentals of Grid computing and accounting service in the context of OGSA profile.
A prototype was developed and evaluated based on OGSA accounting-related standards
enabling sharing accounting data in a multi-Grid environment, the World-wide Large
Hadron Collider Grid (WLCG). Based on this prototype and lessons learned, a generic
middleware solution was also implemented as a toolkit that eases migration of existing

accounting system to be standard compatible.

Contents

ACKNOWIEAGEMENT ...ttt sa e be e sreene et e iii
AADSTFACT ...t iv
(O00] 41 (<] | TP TP P PP UP T PRPPPPRPIO i
LISt OF TADIES.....c.eoeicee e vii
[0 T U 2SS viii
LISt OF ANONYIMS ...ttt sttt e st e et st eeteestesbeereesbesreenee e xi
LiSt Of PUDIICALIONS ... Xvi
Chapter 1 INrOUCTIONecveeie et e e e e e reenree e 1
1.1 BEVOIULION...cooiiiiiiiiicc e 3
111 ComPULEr GENEIALIONSoviiveeiecieeie et ees 3
1.1.2 High Performance COMPULINGccvovviiiiriiireieieeeees e 5
1.13 Distributed COMPULING.......cceriiriieieieiese e 8
114 B I 4=] T OSSPSR 11

1.2 €-SCIBNCE GIil.....ciuiiiiiieeeiee s 15
1.3 World-wide LHC Computing Gridccoceeiiiiiiiieiiee e 17
1.4 Grid ACCOUNTING ...ccviiieiiiite ettt st re bt s reer e be e sreees 18
15 SUMMAIY ..ttt e e st e et e st e e ss e e srte e et e e snteeesseeesnaeeanteeennteeannenans 19
Chapter 2 ThE GEid ...c.eceeieece et sreens 20
2.1 (@00 000 o A PSSP TRSOPRN 21
2.2 ATCNITECIUIE. ...ttt b 22
221 FADIIC oot 22
2.2.2 (@0 o] 1T £ 1Y/ SRS 23

2.2.3 RESOUICE ... ettt bbb bbb bbb abbbabbbabababebababsbsbarsrsrnrnnnnes 23

224 COHBCHIVE ... 24
2.2.5 F AN o] o] [Tox: 11 To] o 1SR 25
2.3 SEANOAITS....ceeeieiici s 25
231 INFraStrUCTUIE SEIVICESccviviiieiiieiiicirc e 26
2.3.2 Execution Management SEIVICESccuuviirireninenieeeee s 30
2.3.3 DAt SEIVICES ..ottt 33
234 INFOrMALION SEIVICESeiviiiiiiiiiiiteree e 34
2.35 SBCUMEY SEIVICESeeiiieieeiieee ettt ee e 35
2.3.6 Self-Management SEIVICESccvi et 37
2.4 MIAAIBWANE ..o 38
24.1 GIODUS TOOIKIL......oeviccce e 38
2.4.2 DLt et re e 42
24.3 UNICORE ...t bbb 48
244 (@1 0TSSR 51
P28 o To] OSSR 52
2.6 SUMMIAIY ...ttt s et e e st e e st e e s ste e aste e e teeeanteeesneeesneeeateeeaneeeanenens 54
Chapter 3 Grid ACCOUNTINGcoueeieteieeieeeee sttt se ettt e aesreeneeseesneenee e 53
3.1 (00 0001 o SRR U VPR UPTURUPOPRON 54
3.2 USAQE SCENAMOScvecveiii ittt sttt re et s te et be et e be e b e sbeeta e besteeneesre e 56
3.2.1 Statistical Usage RePOItiNGccevvvveriiriie i see e 57
3.2.2 USage POLICING ...cvveiiiieeceee e 58
3.2.3 (€] o ol] 1011 | SO SPS 59
3.24 QUANILY OF SEIVICE ... 60
3.25 PULEING TOGETNET ... 61
3.3 ACCOUNEING MOUEL ... e s 63
3.3.1 (0L Vo [(=1 (=T T o S 63
3.3.2 USage COBCTION ...t e 64

3.3.3 (O P TXY 1 1[07: L[] OO TTTPRTURRRT 64

34 STANCANS.......ceeieiiieee e 65
34.1 Usage RECOrd FOMMAL.........cccueiiiiiiieii e se et 67
3.4.2 ReSOUICEe USAJE SEIVICE.......ciiieeiecieiieecie sttt 67

3.5 ACCOUNTING SYSBMS.....cviiieiiiieitie et sttt be e be e renre e 68
351 User ACCOUNTING SYSTEIMoiuiiiiieieieieiesie s 70
3.5.2 Accounting Processor for EVENt LOGS........ccocvuvrereneieinieisesc e 71
3.5.3 Distributed Grid Accounting SYStEMccoveriviieie e 72
3.54 SWeGrid ACCOUNTING SYSIEMoiiiiieiiie e 73
3.55 GALIAL ...t 74
3.5.6 UINCORE AcCCOUNtING SYSIEM.....ciiiiiieeiec et 75
3.5.7 (@01 471 071 £ 1510 o SRS 76
3538 OBNEIS ... 77

3.6 AGeneric Accounting Frameworkccccceviiieiiiniie e 77

BT SUMIMAIY ittt r et b et b b e e e bt enb e b e e nbe e e nne e 79

Chapter 4 Design of Resource Usage Service for World-wide LHC Grid..........c..c.c....... 80

4.1 INEFOAUCTION ... s 81

4.2 Requirement ANAIYSISccoiieiiiiee et e 84
421 USE CASES ...ttt sttt r e 84
4.2.2 REQUITEMENTS ...ttt st s ae e b srees 85

4.3 = [] SR 88
4.3.1 SYStEM AFChItECIUEviiece e 88
4.3.2 Detailed SyStem DESIONcceveiieieie e 90

4.4 IMPIEMENTATION ..ot 96
441 RESOUICE USAQE SEIVICE.c.veuiiiiiiiiiiiitite e 97
4.4.2 WLCG-RUS AGMIN ...t 104
4.4.3 USEI INTEITACE ... 107

4.5 PerfOrMANCEc.ociiiiiiiiiiie e 110

45.1 L] 1o T=To PR 110

452 UNit PErforManCecovoiiiiiiiicecc s 112
453 INSErtion PerfOrmManCecccovviiiiiriiicceeee e 115

O IS 11 {001 0 1T 1SS 121
Chapter 5 Design of Grid Resource Usage System Middlewarecccccevvvvevenns 122
51 INEFOAUCTION ...ttt 123
52 RequIrement ANAIYSIScooiiiiiiiiiiiieieeee e s 124
521 USE CASESvereieereriee et n e nre e 124
5.2.2 REQUITEMENTS ...ttt seeeneas 125

TR B 1] T | o SR 128
53.1 SYStEM AFCHITECIUIE ..o s 128
5.3.2 Detailed System DeSigNc.coivviiieieeieeiecree e e s e nee s 130

5.4 IMPIEMENTALION ... 149
54.1 Entity Model COMPIIENoooviiieice e 149
54.2 GRUS COrE ..t 154
543 GRUS ANNOTALIONS.cvviiieiiiiiiisiesieiee st 156
544 GRUS AGMIN 1.ttt 167
5.4.5 USEI INTEITACE ... 167

5.5 SUMMANY .o 169
Chapter 6 CONCIUSIONSccuveiiiieciecie st re s be e sbeeraesresne s 171
6.1 ReSEArch OULCOMES........cociiiiiieieeee s 172
6.1.1 LeSSONS LEAINEM. ..ot s 172
6.1.2 REFIECTIONS ... e 173

6.2 RECOMMENUALIONS........iiiiiiiicieeie s 175
6.2.1 Recommendations on Standardsccocverereneneieisissee e 175
6.2.2 Recommendations on Developmentccccceveeevieevieviesie e e 176

AN o] 0L 00 1D SR 178
Al National Grid SEIVICE........ccviiiiiiiee e 178

A2 Grid for Particle PRYSICScoveiiiiieccee et 179

YN B O 1o] o TU 3 € [R 180
N S (< To o] o L] 4 o SR 181
A5 Other COMPULE SEIVICESviivveviiiiiiiiteste ettt ene 182
A BN USEE . 183
A7 SEANAArd BOGIES ..ot 183
A.8 Data SErVICe PrOVIAEIS.oiiiiiiirieiieieeee st 184
APPENAIX B ..ttt nae e 187
N 0] 013 0L SR 194
B.1 WLCG-RUS USE CaSESveiieeririeeiieniesieeiesiesee s 194
B.2 GRUS USE CASESveiveieiiriiiee et 201
AN o] 011 T | Gl SR 206
C.1 WLCG-RUS Command Line Parameters..........coeirveirennreiinieiisenseieienas 206
C.2 GRUS Command Line Parameterscccueriieriiiniinieineisesee s 208
APPENTIX E oo 210
D.1 GRUS Data Type Definitions..........ccocoiriiiiiriiienieiesise s 210
D.2 GRUS Service Interface Definitions..........ccocovvrrererieiiiiniiniic e 213
(271 o] [ToT o] =T o] 0 2SS 215

Vi

List of Tables

Table 2-1: Distributed Web Service Management (WS-RF vs. WS-Management) 28
Table 3-1: Comparisons between Grid monitoring and acCcountingccocceeevereriernne 56
Table 3-2: A List of Accounting Systems of Production Grid Projects.........ccccceevevuenenn. 69
Table 3-3: Comparison of Grid Accounting Tools Employed In Production Grids.......... 76
Table 4-1: Test server machine specification and runtime environment 110
Table 4-2: WLCG job statistics from four VOs and 12 Tier-1 or regional sites. From[159]
.. 111

Table 4-3: Comparison of unit performance of job accounting model, aggregate

accounting (without runtime aggregation) and aggregate accounting (with runtime

L0 o (=0 LT o) SRR 113
Table 5- 1: A Comparison of Service Interface Definition between RUS specification

(version 1.7) and Proposed RUS Core specification.........c.cccvvvviivivineniecviec s 133
Table 5-2: Parameter attribute list Of EMC taskccccovoviviiiienrieee e 149

Table 5-3: Features of the XPath language supported in GRUS XPath2Hq|l filter......... 160

Vil

List of Figures

Figure 2.1: “Hourglass™ architecture identifies requirements on definition of Grid

protocols at each layer. FrOM [A7] ..o 22
Figure 2.2: OGSA standard stacks and relationships to layered architecture.................... 25
Figure 2.3: Roadmap of convergence of WSDM and WS-Management stacks............... 28
Figure 2.4: OGSA Execution Management Services (EMS) and interactive relations..... 30
Figure 3.1: Classification of accountable resources in the Gridcccccoevevevvciciennns 54
Figure 3.2: Job submission workflow of economic-aware Grid environment.................. 62
Figure 3.3: Abstract Accounting Processing Modelccccovviiieeiee v, 63
Figure 3.4: Accounting model classifiCationccccccvviieiii i 65
Figure 3.5: OGF Usage Record Information Modelcccooeeieiiin i, 66
Figure 3.6: OGF-RUS Standardization Roadmap, from [138]ccceviviviinnieeieennenn, 68
Figure 3.7: NGS User Accounting System Deployment Diagramccccoevevveieennnnnn, 70
Figure 3.8: WLCG Accounting Processor for Event Logs (APEL) System Deployment

(DT To] £ o | E ST U PRSP UP PR PSPPI 71
Figure 3.9: Distributed Grid Accounting System Deployment Diagram................ccc.c..... 72
Figure 3.10: SweGrid Accounting System Deployment Diagram...........cccccoovvvneriennennnn. 73
Figure 3.11: Gratia Accounting System Deployment Diagramccoovevvivreneneniennnn. 74
Figure 3.12: UNICORE Accounting System Deployment Diagramc.ccocevvrennenen. 75
Figure 3.13: Generic Accounting Framework (Component Architecture)cc........ 78

Figure 4.1: Current EGEE/WLCG accounting deployment scenarios with three
transportation methods introduced in WLCG accountingccocevveveveiecieseseesneenenn, 82
Figure 4.2: The main use cases that the WLCG-RUS is expected to implement in

conjunction with the actors generalised from existing WLCG accounting scenarios....... 83

Figure 4.3: The Major Components of WLCG-RUS System and interactions................. 89
Figure 4.4: Proposed content model of aggregate usage record schemac.ccceueuee. 91
Figure 4.5: Class diagram of RUS service runtime COmponentscccocvviveeieenreennnenns 93
Figure 4.6: WLCG-RUS AdmIin MVC MOdEL........ccccooiviiiiiiiiie e 95

Figure 4.7: Internal data model of RUS service reuses existing WLCG accounting schema
with additional record hiStory MOGElcccvvvviiiiii i e 96
Figure 4.8: WLCG-RUS job accounting model implementation (UML Class diagram) . 99
Figure 4.9:WLCG-RUS Job Accounting Model (UML Sequence Diagram)................. 100

Figure 4.10: Class diagram of RUS default implementation for aggregate accounting.. 102

viii

Figure 4. 11: WLCG-RUS Aggregate Accounting Process Model (UML Sequence

[T | 0 o) S 103
Figure 4. 12: Class Diagram of the Host Management Implementation......................... 105
Figure 4.13: Class Diagram of the Host Management Implementation................c..c...... 106
Figure 4.14: Class Diagram of the System Management Implementation 107
Figure 4.15: WLCG-RUS AdMIN VIBWooiiiiiiiiiieieieise s 109
Figure 4.16: WLCG-RUS Site Manager VIEWccceieiririninenieneeeeeese s 109

Figure 4.17: (a) Unit performance of job accounting model (b) Unit performance of
aggregate accounting model (no runtime aggregation) (c) Unit performance of aggregate
accounting model with runtime aggregation............ccoccvvveieviesieere s 115
Figure 4.18: Comparisons of insertion time against different granularities of usage
FECOrAS PEI TFANSACLION. ...cviiiiciieiie ettt e e st e e saesre e s e sreene e eenreens 116
Figure 4.19: (a) insertion performance of 5,000 usage records against bulk size (b)
insertion performance of 10,000 against bulk size (c) insertion performance of 15,000
usage records against bulk size (d) insertion performance of 20,000 against bulk size (e)
insertion performance of 25,000 usage records against bulk size (f) insertion performance
of 30,000 against bulk size (g) insertion performance of 30,000 usage records against
DUIK SIZE. ...ttt e eeenee e 119
Figure 4.20: insertion performance against the number of simultaneous client threads. 120
Figure 5.1: Additional use cases that the GRUS system is expected to implement based on
existing WLCG-RUS frameWOrK...........ccciiiiiriiieieieisise e 125
Figure 5.2: Layered component architecture of GRUS middleware..............cc.cccenenene. 128
Figure 5.3: Runtime Aggregation Process at RUS Insertion and Extraction Runtime ... 134

Figure 5.4: The EMC code generation pattern in combination with the active code

generation pattern of JAXB binding COMPIler..........ccooviiiiiiiiiiec e 142
Figure 5.5: Flowchart of entity model generation proCess..........c.ccoerervevnenenenieniennenns 144
Figure 5. 6: Flowchart of DAO model generation ProCesscooevereeeeresenenieneenns 145
Figure 5.7: GRUS Core Runtime Component Class Diagram...........c.ccccoevevvevvieennennnnn, 147
Figure 5.8: GRUS Admin MVC MOUEL.........cccoiiiiieiecece e 148
Figure 5.9: Example class models of artefacts generated by EMC...........cccccovvivinenenn, 153

Figure 5.10: GRUS server architecture containing runtime implementations and
11T = Yo 1o OSSPSR 155
Figure 5.11: The components and runtime events implemented based on Jaxen and
SAXPath for rendering an XPath expression to HQL statement.c.cccceeevieeenenee. 165
Figure 5.12: Class Diagram of the VO Management Implementationc........... 166

Figure 5.13: VO manager view of GRUS Admin Web application

Figure 5.14: System administrator view of GRUS Admin Web application

List of Anonyms

Abbreviation
ALICE
APEL
ARC
ATLAS
BDII
BES
BLAH
CA
CAS
CE
CERN
CIM
CMS
CLI
CPU
CREAM
CORBA
CRUD
DAO
DAI
DCOM
DGAS
DMTF
DOM
DPM
DRS
EDG
EDVAC
EGA
EGEE
EMC

Full Notation

A Large lon Collider Experiment
Accounting Processor for Event Logs
Advanced Resource Connector

A Toroidal LHC Apparatu S

Berkeley Database Information Index

Basic Execution Service

Batch Local ASCII Helper

Certificate Authority

Community Authorisation Service
Computing Element

European Organisation for Nuclear Research
Common Information Model

Compact Muon Solenoid

Command-Line Interface

Central Processing Unit

Computing Resource Execution and Management
Common Object Request Broker Architecture
Create, Read, Update, and Delete

Data Access Object

Data Access and Integration

Distributed Component Object Model
Distributed Grid Accounting System
Distributed Management Task Force
Document Object Model

Disk Pool Manager

Data Replication Service

European Data Grid

Electronic Discrete Variable Automatic Computer
European Grid Alliance

Enabling Grid for E-sciencE

Entity Model Compiler

Xi

Abbreviation
EMS
ENIAC
EPCC
EPR
FQAN
FTS
GlIS
GLUE
GMA
GOC
GOSC
GPE
GRAM
GRIS
GridRPC
GSlI
GT
GUID
GRUS
HLR
HPC
HQL
HTTP
IC
ITU
JAR
JARM
JDL
JISC
JMX
JSDL
JSR
JWSDP
LAN

Full Notation

Execution Management Service
Numerical Integrator And Computer
Edinburgh Parallel Computing Centre
Endpoint Reference

Full Qualified Attribute Name

File Transfer Service

Grid Index Information Service

Grid Laboratory for a Uniform Environment
Grid Monitoring Architecture

Grid Operational Centre

Grid Operation Support Centre

Grid Programming Environment
Grid Resource Allocation Manager
Grid Resource Information Service
Grid Remote Procedure Call

Grid Security Infrastructure

Global Toolkit

Global Unique Identity

Grid Resource Usage System

Home Location Registry

High Performance Computing
Hibernate Query Language
HyperText Transfer Protocol
Integrated Circuit

International Telecommunication Union
Java Archive

Job Account Resource Management
Job Description Language

Joint Information System Committee
Java Management eXtensions

Job Submission Description Language
Java Specification Request

Java Web Service Development Pack

Local Area Network

xii

Abbreviation Full Notation

LB Logging and Bookkeeping

LCAS Local Centre Authorisation Service
LCMAPS Local Credential Mapping Service
LDAP Lightweight Directory Access Protocol
LFC LCG File Catalogue service

LFN Logical File Names

LFS Load Sharing Facility

LHC Large Hadrons Collider

LHCb LHC-beauty

LRMS Local Resource Management Service
LSl Large-Scale Integration

LUTS Logging and Usage Tracing Service
MCS Market for Computation Service

MDS Monitoring and Directory Service
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data

MPI Message Passing Interface

MPP Massive Parallel Processing

MVC Model-Viewer-Controller

NDGF Nordic Data Grid Facility

NIST National Institute of Standards and Technology
NGS National Grid Service

NUMA Non-Uniform Memory Access

OASIS Organisation of Advanced Standards for the Information Society
OGF Open Grid Forum

OGSA Open Grid Service Architecture

ORM Object-Relational Mapping

0SG Open Science Grid

PBS Portable Batch System

POJO Plain Old Java Object

PVM Parallel Virtual Machine

RAL Rutherford Appleton Laboratory
RBAC Role-Based Access Control

RDBMS Relational DataBase Management System

Xiii

Abbreviation

RDF
RFIO
RFT
RMI
RPC
RSL
RURF
RUS
R-GMA
RGOC
RSS
SAML
SAX
SE
SGAS
SID
SIMD
SISD
SLA
SLM
SMP
SOA
SOAP
TLS
UAS
uDDI
ul
UML
UR
UNICORE
UNIVAC
VDT
VLSI
VO

Full Notation

Resource Description Framework
Remote File Input/Output

Reliable File Transfer

Remote Method Interface

Remote Procedure Call

Resource Specification Language
RUS Usage Record Format
Resource Usage Service

Relational Grid Monitoring Architecture
Regional Grid Operation Centre
Resource Selection Service

Security Assertion Markup Language
Simple API for XML

Storage Element

SweGrid Accounting System

Service Interface Definition

Single Instruction Multiple Data
Single Instruction Single Data
Service Level Agreement

Service Level Manager

Symmetric Multi-Processing

Service Oriented Architecture
Simple Object Access Protocol
Transport Level Security

UNICORE Atomic Service

Universal Description, Discovery and Integration
User Interface

Unified Modelling Language

Usage Record

Uniform Interface to COmputing REsources
UNIversal Automatic Computer
Virtual Data Toolkit
Very-Large-Scale Integration

Virtual Organisation

Xiv

Abbreviation
VOMS
WAN
WAR
WLCG
WSDL
WMS
WSN
WSRF
XACML
XI0
XML
XNJS
XOM

Full Notation

Virtual Organisation Management System
Wide Area Network

Web Archive

World-wide LHC Computing Grid

Web Service Description Language
Workload Management Service

Web Service Notification

Web Service Resource Framework
eXtensible Access Control Markup Language
eXtensible Input/Output

eXtensible Markup Language

enhanced Network Job Supervisor

XML Object Model

XV

List of Publications

M. A. Pettipher, A. Khan, T. W. Robinson, and X. Chen, “Review of Accounting and
Usage Monitoring (final Report)”, JISC Final Report, Jul. 2007.

X. Chen and A. Khan, “Aggregative accounting service enabling economic modelling for
commercial grid”, Conf. on Grid technology for financial modelling and simulation, Feb.
3-4, 2006, Palermo, Italy.

X. Chen and A. Khan, “Development and Performance of Resource Usage Service in
WLCG”, Conf. on IEEE Nuclear Science Symposium, Oct. 2006. pp.603-606.

X. Chen and A. Khan, “Development of Multi-Grid Resource Usage Service in LCG”,
Conf. of International Symposium on Grid Computing (ISGC) 2007, Mar. 26-29, 2007,

Taiwan.

X. Chen, R. M. Piro, P. Canal, et. al, “Aggregate Usage Representation Version 1.0”,
OGF Usage Record working group, Dec. 2006. Available online at:
https://forge.gridfourm.org/projects/ur-wg/

X. Chen, “OGSA Resource Usage Service IDL WS-I Rendering”, OGF Resource Usage
Service working group, Dec. 2007. Available online at:

https://forge.ggf.org/sf/sfmain/do/go/artf6090?nav=1&selected Tab=attachments

X. Chen and A. Khan, “GRUS: An Extensive Solution to Resource Usage Service”, Conf.
on IEEE Nuclear Science Symposium, Dresden, Germany, Oct. 2008.

S. Crouch, D. Fellows, X. “Experiences of Using Usage Record (UR) Version 1.0”, OGF
Usage Record Working Group, Oct. 2009, Available online at:

http://forge.gridforum.org/projects/ur-wg

X. Chen, A. Khan, G. Willis, and L. Gilbert, “Developing Resource Usage Service in
WLCG” IEEE Trans. on Nuclear Science, Submitted on 25" June, 2010.

XVi

2BIntroduction

Chapter 1

Introduction

The Grid has been recognised as the next-generation distributed computing technology.
The basic idea of the Grid is to virtualise heterogeneous resources, including computing
power, data storage, application and instruments, across administrative domains as an
integrated system. The emergence of Grid technologies is by no means a coincidence but
driven by two main factors: supply and demand. On the one side, grand-challenge
problems require large-scale collaborations and a great number of computer processing
cycles. A typical example would be the Large Hadron Collider (LHC), a facility built to
perform particle physics experiments in Geneva. Each experiment involves collaboration
of over 3000 physicists from hundreds of world-wide institutions. It is also estimated that
individual experiment will generate several PetaBytes of data annually. Thousands of
physicists need access to, and analyse immense amounts of experimental data in near real
time. On the other side, considerable computational and storage resources are distributed
inside individual participant institute, and can potentially supply unprecedented
processing and storage capacities over the Internet. The Grid middleware is therefore the
bridge of the gap between application-level demands and distributed IT fabrics supplied

by using state-of-art distributed computing technologies.

Compared to traditional distributed computing systems, a Grid system requires the
assurance of Qualities of Service (QoS) at different levels, including security,
performance, responsiveness, etc. In order to ensure system-level QoS, a Grid system
need to analyse resource usage status, and take appropriate actions, such as resource
reallocation, job migration, or blocking a suspicious user account, to ensure agreed QoS.
The major task of Grid accounting service is to meter and log resource usage information
of the underlying Grid environment. Accounting data can be also used for Grid economy
by providing proofs for charging and billing. This thesis discusses the development of

Grid accounting systems in a standard compatible manner to enable interoperability of

2BIntroduction

heterogeneous accounting systems in such multi-Grid environment that consists of

multiple Grid infrastructures managed by various middleware software stacks.

As an introduction, the content of this chapter is intended to establish the context of
Grid computing and Grid accounting. Detailed technical issues and solutions are to be

discussed in following chapters step by step.

2BIntroduction

1.1 Evolution

Since the birth of computing, performance has always been one of the leading factors
driving the evolution of computing technologies. This section discusses historic
progresses of computers and computing technologies that contributed to the emergence of
Grid computing.

1.1.1 Computer Generations

As the timeline given in figure 1.1, the history of computer can be traced back to
1940s. The first-generation (1946-1953) computers were characterised by the use of
vacuum tubes. A vacuum tube acts as a switch or amplifier by controlling electric currents.
For example, the 5™ of ten vacuum tubes can be switched on for representation of
numeric five. The first electronic computer, Numerical Integrator And Computer
(ENITAC)[1], was built at University of Pennsylvania in 1946 using vacuum tubes instead

of mechanical switches of the Mark I. The ENIAC was capable of executing 5,000

Figure 1.1: The timeline of computer evolution including selected events of each

generation.

2BIntroduction

transistors
10,000,000,000
Dual-Core Intel® [tanium™ 2 Processor
/‘ 1,000,000,000
MOORE'S LAW intel® Itaniom® 2 Processar "
Intel tanium® Processor o
Intel* Pentium® 4 Processor / 100,000,000
Intel Pentium® B Prar_s?‘z
Intel* Pentium* Il Processor 4 10,000,000
Intel* Pentium® Proce ssorl__,-"")
Intel 486" Processer L
- 1,000,000
Intel386™ Progessor /'/
286
= 100,000
B0EG ‘/
8080 ,,/ 10,000
goos_ &
4004 @~

1,000
1970 1975 1980 1985 1990 19485 2000 2005 2010

Figure 1.2: The Moore’s Law predicated the number of transistors integrated in a

single chip doubles very two years. From[2]

operations per second. Other vacuum-tube computers include Electronic Discrete
Variable Automatic Computer (EDVAC)[3] and UNIversal Automatic Computer
(UNIVAC)[4]. Considering thousands of integrated vacuum tubes that give off so much

heat, these early computers were unreliable due to broken vacuum tubes.

Although the transistor was invented early in 1947, it was not widely used in
computers until late 1950s. The replacement of vacuum tube with transistor makes
computer smaller, faster and more reliable. The first full transistorized super computer
was built at Control Data Corp. in 1958, indicating the beginning of “transistors era” as
the second-generation computers. Programming on the second-generation computers
moved from cryptic binary machine language to symbolic languages, so that
programmers can code in high-level natural programming languages, such as early-
version FORTRAN and COBOL.

The invention of the Integrated Circuit (IC) formed the basis for third-generation
(1964-1970) computers. The size of computers became significantly smaller and faster by

integrating in-cooperated transistors within a semiconductor chip. The first integrated

2BIntroduction

circuitry computer, IBM 360, was built by IBM in 1965. It is capable of processing over
6,000 operations per second. In the meantime, advanced storage technologies contributed
a new computer design with an internal memory. External storage devices, magnetic tapes
and floppy disks, enable data input directly into the computers rather than using punch
cards.

The development of Large-Scale Integration (LSI) and Very-Large-Scale Integration
(VLSI) was the hallmark of the fourth-generation (1971-present) computers. A VLSI
allows integration of millions of transistors into a single 1C chip, and makes the fourth-
generation computers smaller in size and faster in processing speed. Another
revolutionary technology contributed in fourth-generation computers was the invention of
microprocessor that incorporates almost all functions of a Central Processing Unit (CPU)
into a single IC. A CPU or processor contains only one core, the part of the processor that
actually processes an instruction at one time. In 1965, the co-founder, Gordon E. Moore,
envisioned that the number of transistors on a chip would double every two years. The
Moore’s Law [5], as described in figure 1.2, was proposed based on empirical
observations. The predication of the Moore’s Law remains accurate so far and can be best
demonstrated by the multi-core technologies. Since 1990s, Intel initiated and led the
multi-core technology until present, by integrating multiple symmetric or identical cores
within a single processing unit such that multiple instructions can be processed in parallel
at same time. The multi-core technologies, such as Dual-Core and Quad-Core processors,
have been widely used in modern commodity computers, making it possible to cope with
complex problems across application domains by leverage parallel processing capacities

of a single computer.

1.1.2 High Performance Computing

“It can't continue forever. The nature of exponentials is that you push them out
and eventually disaster happens”
—Gordon Moore, April 13, 2005

According to Moore’s Law, it is expected the number of transistors integrated within a
single chip would reach over 15 billion, pushing computer engineering into the molecular
and atomic era. Although relevant research[6][7][8][9] have been undertaken for decades,

there is no guarantee that development of these advanced technologies will be applied to

2BIntroduction

computer engineering in the coming decades. The effectiveness of Moore’s law will

eventually come to the ultimate limit in the next decade.

Computer engineers, however, never give up their ambition to pursue higher
performance. The concept of High Performance Computing (HPC) was firstly suggested
by Charles Babbage in the 19™ century in order to solve the “Grand-Challenge” problems

by employing multiple processing units or processors in parallel. Such “Grand-Challenge”

problems as applied fluid dynamics, ecosystem simulation and weather forecasting are

too complex to be solved in a reasonable amount of time using a single processor.

SI1s5D
SISD Instruction Pool
=
fa
|—[Ful
=
o
=
SIMDr
SIMD Instruction Pool
[
-
=
(=]
2 7o)
——[rg

MIsSD
MISD Instruction Pool]
= J
=
MIR D
NIINI D | Instruction Pool
—[Fol-| -[Fol
z|—[Fol-| -[Ful
S| —[Fol- -[Fol
_ . [pul- I_.._

Figure 1.3: Flynn’s Taxonomy classifies computer architecture into four types

according to the number of instructions and data stream to be processed concurrently.

From [10]

Flynn’s Taxonomy

According to the Flynn’s taxonomy [11] proposed by Michael Flynn in 1966,
computer architecture is classified into four types (figure 1.3) based upon two
dimensional factors: the number of concurrent instructions and the number of data

streams operated concurrently. Traditional computer architecture falls into the Single-

2BIntroduction

Instruction-Single-Data (SISD) classification, involving a single processing unit that
exploits no parallelism in either instruction or data stream. A Single-Instruction-Multiple-
Data (SIMD) computer enables data parallelism by execution of the same instruction
upon different data streams concurrently. Multiple-Instruction-Simple-Data (MISD)
architecture is an uncommon architecture generally used mainly for fault-tolerance
through agreed results of execution of different instructions set upon same data stream.
Multiple-Instruction-Multiple-Data (MIMD) architecture employs multiple processors

simultaneously executing different instructions on different data streams.

According to architectural relationship between processors and memories, the MIMD
architecture can be further divided into two subtypes, Symmetric Multi-Processing (SMP)
and Massive Parallel Processing (MPP). A SMP machine involves two or more identical
processors connected via bus to access shared memory. Multiple processing units in a
SMP computer therefore have access to all memory spaces with equal latency and
bandwidth. In contrast, a Massive Parallel Processing (MPP) MIMD machine is equipped
with a large number of processing units, normally over 100, each of which has access to
its own physical memory or logically allocated memory spaces, therefore also known as
Non-Uniform Memory Access (NUMA) [12] system.

Supercomputer

A supercomputer is a computer with multiple processing units and custom design
based upon SIMD or MIMD architecture providing high performance processing capacity,
approaching Tera-FLoating point Operation Per Second (TeraFLOPS). Vector or Array
computers, formed the basis of most supercomputers throughout 1980s and into 1990s,
applied SIMD architecture to execute mathematical calculations on vectorised data set
simultaneously. Examples of Vector machines include the early CRAY X-MP [13],
Maspar MP-1[14] and the Distributed Array Processor for ATM (ATM DAP) [15].
Modern supercomputers, as top ten supercomputers on the Top 500 list [16], are

architected with a cluster of MIMD multiprocessors.

In order to exploit the high-performance of supercomputers, applications are required
to be coded differently and divided into pieces that can be executed in parallel. There are
parallel programming languages roughly categorised into two classes according to the

communication patterns among processes based on underlying memory architecture. For

2BIntroduction ﬂ

tightly coordinated shared-memory machines, programming languages or libraries, such
as OpenMP [17] and Portable Operating System Interface for Unix (POSIX) threads, are
mainly used for manipulation and synchronization of shared memory variables. For
loosely-coupled memory architecture, communication among multiple processes is
realized through message passing APIs. The most commonly used APIs include
Messaging Passing Interface (MPI)[18] and Parallel Virtual Machine (PVM)[19].

Cluster Computing

Specialised Supercomputers, built at huge cost to deliver magnitude greater floating
point performance, however have been perceived to be too hard, too expensive and of too
narrow interests. Rather than developing specialty-class supercomputer architectures,
commodity clusters have rapidly grown as HPC systems by harnessing commercial-off-
the-shelf (COTS) computer nodes. A commodity cluster comprises computer nodes
interconnected by Local Area Network (LAN) within a local administrative domain. It
allows flexible system configuration in terms of number of nodes, number of processors
and memory capacity. Since 1990s, an increasing number of environments had emerged
ranging from commercial SMP servers to self-assembled PC clusters, such as Beowulf
[20] cluster.

1.1.3 Distributed Computing

The Internet

Prior to the Internet, communications between computers were prevalently based on
mainframe method, simply allowing communications among terminals via local physical
connections. In order to enabling interconnection of computers from different local
networks, the idea of Packet Switching was proposed by Leonard Kleinrock from
Stanford University in the 1960s. Following the successful demonstration of packet
switching work at APRANET in 1969, the first packet-switching standard, ITU X.25 [21],
was released by the International Telecommunication Union (ITU) based on the concept
of virtual circuit. The emergence of the TCP/IP protocol in 1978 enabled unifying
different network protocols by using a common inter-network protocol. The Internet was

then officially defined as a global system of interconnected computer networks that

2BIntroduction “

interchange data by packet switching using the standard TCP/IP protocol. The Internet
carries various information, which however could not be shared in a uniform format
until the introduction of World Wide Web, or the Web, by Tim Berners-Lee in 1989 [22].
The Web is a huge set of interlinked documents accessible through Hypertext Transfer
Protocol (HTTP) [23].

Middleware

The emergence of the Internet and the Web contributed to a large-scale computing
model that aims to communicate and coordinate software components on interconnected
computers. This type of computing model is defined as distributed computing, allowing a
program to be split up into parts that run on multiple computers interconnected under a
loosely controlled regime. Two typical paradigms of distributed computing are the client-
server (C/S) model and peer-to-peer (P2P) model. The C/S model is the most cited model
used in distributed computing with server processes carrying out activities and client
processes initializing activities. In P2P model, all distributed processes plays similar roles
without clear distinction between client and server. These distributed processes act
cooperatively as peers take both the role of client and server depending on initializing or

provision of activities.

In order to enable distributed computing in a platform-independent manner, an
additional software layer, known as middleware, is required to mask heterogeneity of
underlying platform. Middleware-oriented solutions provide a high-level abstraction over
underlying networking, hardware, and operating systems. The foundation for
communication of distributed parts is the Remote Procedure Call (RPC)[24], which was
superseded by the introduction of the object-oriented programming model middleware,
such as Java Remote Method Invocation (RMI)[25], Common Object Request Broker
Architecture (CORBA)[26] and Distributed Component Object Model (DCOM)[27].

Web Service

Middleware-oriented solutions, however, are normally developed in a language-
specific pattern and lack of interoperability. A Java RMI client process, for example,
cannot interact with DCOM server processes. Besides, distributed applications relying on

middleware are typically used for intranet usage and hard for communication across

2BIntroduction

firewalls. Web service overcomes limits of traditional middleware solution by introducing
a stack of Web-oriented standards based upon eXtensible Markup Language (XML),
which enable platform- and language-neutral communication via HTTP.

uDDI
Registry

Binding using
Reguester SOAP Provider

Figure 1.4: Service-Oriented Architecture and Internal Interactions through standard

Web service communication protocols

As shown in figure 1.4, abstract Service-Oriented Architecture (SOA) is composed of
three major components, service requester, service provider and registry, which
communicate with each other through the standard communication protocol, Simple
Object Access Protocol (SOAP)[28]. The SOAP defines XML-formatted encoding rules
for exchanging structured information between service requesters and providers, as well
as binding rules for data transferring upon other networking and application protocols,
most notably RPC and HTTP. The registry component maintains a repository of
registered services and acts as a coordinator between service requestors and providers.
The registry itself can be implemented as a Web service endpoint by exhibiting a set of
well-defined interfaces for service query and registration. The Universal Description,
Discovery and Integration (UDDI)[29] is such a service definition that specifies standard
registration-related interfaces and messaging format. A Web service is required to be self-
describable using the Web Service Description Language (WSDL)[30] before getting
registered. A WSDL file describes inter-operate contracts of a particular service, such as

allowed operations, messaging formats, and enabled networking bindings.

2BIntroduction

1.1.4 The Grid

“A computational Grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities.”[31]

lan Foster and Carl Kesselman, 1998

The evolution of the Grid was driven primarily by the ever-growing demands on
computational power. The Grid was defined as a computational Grid that aims at
providing HPC facilities in a cost-effective manner through interconnection of existing
computational resources. There are two prerequisites for Grid deployment: reasonable
communication latency and tremendous computational resources. As with Gilder’s Law,
the growth of network bandwidth had been observed faster than computer power at least
as much as three times. This law indicates the communication bandwidth via internetwork
doubles every six months, if computer power doubles every eighteen months. It has been
observed that the bandwidth of Internet backbone had been updated continuously during
1980s and 1990s, from 56 kilobyte/sec to 45 megabyte/sec. In addition, the state-of-art

10G Ethernet technology provides fastest communication network reaching 10

7.00E+08
625,226,456
P

6.00E+08

5.00E108 /

4.00E408 /(

3.00E+08 /

2.00E+08 /(

1.00E+08)/ /(")(

0.00E400
1998 2000 2002 2004 2006 2008 2010

Number of Internet Hosts

Year

Figure 1.5: Internet Host Statistics. From[32]

2BIntroduction

gigabyte/sec. On the other hand, the number of computer hosts (as fig. 1.5) connected to
the Internet have dramatically increased to over 625 million up to Jan. 2009. These
computational resources are becoming potentially large-scale computational resource
pool, which provides unprecedented processing power than ever, either through dedicated
gigabyte/sec Ethernet for computation-intensive applications or through Wide Area
Network (WAN) in pursuit of global collaborations.

“The real and specific problem that underlies the Grid concept is coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual

organizations.”[33]

lan Foster, Carl Kesselman, Steven Tuecke, 2001

The concept of Grid was refined in 2001 and highlights advanced features as follows.
Rather than computation oriented only, some experimental science projects, such as
Particle Physics and Earthquake simulation, requires instrumental resources to be shared,
including sensors, detectors, etc. These experimental instruments accompany with
compute, storage and others are collectively known as Grid resources. A Grid system is
therefore required to address heterogeneity of underlying resource though a set of open
protocols and interfaces that address fundamental issues as authentication, authorisation,
resource access, discovery, etc. Considering Grid resources may be shared from different
administrative domains, it is important for a Grid system to ensure shared resources not
be subject to localised control, but are subject to the control at Virtual Organisation (VO)
level, which defines a set of resource-sharing rules and conditions of a dynamic of

individual or institutions.

However, the Grid computing is only one branch of the evolving distributed
computing technologies. In the meanwhile of the evolution of the Grid computing, we
have witnessed many other distributed computing technologies, which were driven by
different problem scopes, although some underlying technologies and issues are
overlapped. The following lists some example distributed computing models and

highlights their differences or relations to Grid computing.

Volunteer Computing

2BIntroduction

Volunteer computing is a type of distributed computing model where computing
resources (i.e. processing powers and storage capacities) are provided by one or more
computer owners. These resources can be harnessed for one specific application or
various applications through a general-purpose middleware solution. The basic idea
behind volunteering computing is to use spare processing or storage capacities of
computing resources connected to the Internet. In order to participate in a volunteer
computing application, computer owners are need to trust the application and agree to
install a piece of client-side software, normally lightweight and only active when
computer volunteers are free or underutilised. As the SETI@home project [189], a
volunteer computing project using internet-connected computers to analyse radio signals

and search for signs of extra terrestrial intelligence.

Given its volunteer nature, the volunteering computing differentiates from the Grid

computing in following aspects:

e A Grid application owns computing resources shared by one or more
organisations, while a volunteer computing application does not has ownership
of participating computing resources,

e Grid computing requires delivering QoS at different levels, such as availability,
security, etc. These QoS are hard to be ensured in volunteering computing, given
the fact the ad-hoc nature of volunteer computing resources.

e Grid computing middleware are general-purpose and provide well-defined APIs
for resource sharing across application domains, while volunteering computing
middleware are designed for a specific application or a specific application

domain.

Autonomic Computing

Autonomic computing was initiated by IBM in 2001, which aimed at developing an
intelligent computing system that is capable of self management, and reducing the
complexity of system management particularly for large-scale computing environments.
An autonomic system is able to monitor, make decisions, and adjust underlying system
environment on behalf of system administrators in order to fulfill pre-defined Quality of
Service (QoS). IBM defines four core technical features [190] that enable the ability of an
autonomic system to adapt to change in accordance with business policies and objectives.

These features include:

2BIntroduction

e Self-optimisation: the ability to automatic monitoring and control of system
resources to ensure the optimal functioning with respect to the defined
requirements according to dynamic changes;

e Self-healing: the ability to recover from system errors without human
intervention;

e Self-configuration: the ability to automatic configuring system components to
adopt to changes in the system;

e Self-protecting: the ability to proactively anticipation and protection from

arbitrary intrusions

A Grid computing system can make use of autonomic computing facilities to enhance
self-manageability and ensure QoS attainments at different service layers. Further details

of self-management of Grid computing are given in section 2.3.6.

Utility Computing

The utility computing is analogy to traditional public utility with a metering and
paying service running at backend. The basic idea of the utility computing requires low or
no initial investment on hardware, while providing pay-and-run facilities through
virtualization of computational and storage resources at backend. Utility computing was
firstly proposed in the 1960s by John McCarthy, who envisioned that future organisations
would simply plug in to a computing grid for computational resources rather than
providing their own computing powers, just like connecting to an electrical grid, and

paying based on what is used.

It is worth noting that the utility computing is not a specific computing technologies
but a vision of next-generation computing. The Grid computing is one of such enabling

technologies that enable the vision the utility computing.

Cloud computing

Cloud computing is an emerging distributed computing paradigm that aims at
providing an elastic, self-service and pay-per-usage computing facilities. As an emerging

concept, the concept of cloud along with its enabling technologies is still confusing many.

2BIntroduction

According to the definition from National Institute of Standards and Technology (NIST),

the Cloud computing is defined as “a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources, such as networks, servers,

storage, application and services, which can be rapidly provisioned and released with

minimal management efforts or service provider interaction”[34].

The recent published review report [196] uses an analogue to Web 2.0 and defines

cloud computing as a business model other than a new computing technology. Cloud

computing facilities can theoretically deliver any type of computing capacities to end

users including the Grid computing. Technically speaking, cloud computing and grid

computing differs and relates to each other in many aspects:

1.2

The cloud computing resources are predominately provided by a single
organisation and located in a large-scale data centre, in contrast to Grid
computing resources shared across multiple, normally geographically distributed
organisations.

The key enabling technology of cloud computing is the virtualisation technology
to maximise resource utilisation, while Grid computing is more concerned about
load balancing among distributed computing resources.

Grid computing and cloud computing share high-level technical challenges, such
as resource management, data management, security, QoS management, etc.

By using cloud computing facilities, the management tasks are delegated to the
service providers’ side, i.e. end users does not need to worry about resource
management. The current Grid implementations still require end users to have
certain knowledge of the execution environment for capacity planning, resource
management and security.

Cloud computing can potentially provide Grid facilities or using Grid computing

technologies at backend.

e-Science Grid

"e-Science is about global collaboration in key areas of science and the

next generation of infrastructure that will enable it."[35]

Dr John Taylor, Director General of Research Councils, 2000

2BIntroduction

"The term ‘e-Science’ denotes the systematic development of research
methods that exploits advanced computing thinking. Such methods
enable new research by giving researches access to resources held on
widely-dispersed computers as though they were on their own desktops.
The resources can include data collections, very large-scale computing
resources, scientific instruments and high performance visualization.”
[36]

Prof. Malcolm Atkinson, e-Science Envoy

The evolution of computing and networking technology is leading to the revolution in
the conduct of scientific research. Scientists from different disciplines started using
computing technologies, electronic data storage, and networking to replace or extend
traditional efforts. Classic scientific researches, both theoretical and experimental, are
using computer-aided simulation to explore new possibilities and achieve new precisions.
HPC computers or clusters have been widely deployed at institutions enabling the
speedup of simulation and visualization. A group of scientists from the same research

fields meet and collaborate online without time and geographic limits.

During the past decades, scientific research had also experienced changes affected by

the “e”, abbreviation of the “electronic”, such as e-Social, e-Publishing, and e-Conference.

These “e-” technologies somehow did not enable fundamental, but profound,
transformation of research methodologies in science, until the advocating of the “e-
Science”. The term was coined by John Taylor, the director general of the office of
science and technology in the UK, at the time of announcement of a major funding
program, the UK e-Science program in 2001. The definition of e-Science was moderately
refined by Prof. Malcolm Atkinson with clarified objectives. With e-Science, researchers
are expected to have a set of value-added tools, software, and applications to access
world-wide experimental results, to access global computing resources for real-time

simulation and visualization, and collaboration on a grand project.

All these visions of future sciences depend on an e-infrastructure that provides tools,
software and applications enabling coordinated problem solving. During the past five

years, there were over 100 projects funded to UK e-Science program for developing an e-

2BIntroduction

infrastructure, including SuperJANET project for constructing high bandwidth academic
network, National Grid Service (NGS) project facilitating research activities to access
distributed computational and data resources throughout the UK, Open Middleware
Infrastructure Institute UK (OMII-UK) providing open source software to e-Research
communities, etc. In Europe, the Enabling Grid for E-sciencE (EGEE) project was
founded by European Commission in 2004 aiming at providing a Grid-enabled e-
Infrastructure for various scientific domains, including earth science, high energy physics,

bioinformatics and astrophysics.

1.3 World-wide LHC Computing Grid

Figure 1.6: LHC layout, four main experimental detectors chained by 27km ring
accelerating tunnel. From[41]

The Large Hadron Collider (LHC) is the world’s largest particle accelerator built by
the European Organisation for Nuclear Research (CERN). It is intended to test various
predications of high-energy physics through collision of opposite particle beams. Four
main detectors have been constructed at the LHC to record events triggered by collisions.
Two large and general-purpose detectors, the A Toroidal LHC ApparatuS (ATLAS)[37]
and Compact Muon Solenoid (CMS)[38], are used to search for signs of new particles
clues to the nature of dark matter. Other two medium detectors, LHC-beauty (LHCb)[39]

2BIntroduction

and A Large lon Collider Experiment (ALICE)[40], focus on investigations of events just
after the Big Bang. As LHC layout given in figure 1.6, these detectors are chained and
located at four collision points of main circular ring of LHC. Protons are firstly
accelerated by linear accelerator to 50 Megaelectron Volt (MeV) before entering into
three successive synchrotrons, including the Proton Synchrotron (PS) and Super Proton
Synchrotron (SPS). Protons ultimately enter into the LHC main ring, where collisions

take place 40 million times per second.

It is estimated there will be huge amount of data to be generated by LHC experiments,
approximately 15 PetaBytes a year. These data is intended to be analysed by thousands of
scientists around the world. Based on an initial survey[42] on anticipated computing
requirements for LHC experiments submitted in early 2001, CERN approved and
launched the Worldwide LHC Computing Grid (WLCG) project. One of the objectives of
the WLCG project is to develop a Grid infrastructure upon that distributed computing and
data storage resources from 140 computer centres in 34 countries. These distributed
computer centres are organised into three tiers. When collision triggered, event data are
collected by experiment-specific trigger and acquisition systems [43][44][45][46]. Event
data are then filtered by local computer farms so that only interesting events are kept into
local persistent storage. Four experiments send their filtered raw data simultaneously to
the CERN computer centre, so-called Tier-O centre. When raw data arrives at Tier-0
centre, they are processed initially and backed up on tape at CERN. Subsets or all raw
data are then sent out globally to eleven large Tier-1 computer centres that are
interconnected by the general-purpose research network with dedicated 10 Gbit/s links.
There are more than 150 Tier-2 centres, mainly university and research institutes, which
allow physicists to perform analysis and simulations. The WLCG is supported by three
major Grid infrastructure projects, Open Science Grid project of US, EGEE project, and
Nordic Data Grid Facility (NDGF) project. Each project supplies custom, while

interoperable, Grid middleware solution, through open standards and interfaces.

1.4 Grid Accounting

For large-scale complex system as the Grid, resource usage is required to be
accurately accounted. Resource usage information is important in the sense of Grid

system administration and policy enforcement. In scientific Grid environment, resources

2BIntroduction

are predominately shared for one or more non-profitable research projects. Each project
has fixed resource quotas, computational cycles and storage spaces for instance. A Grid
system is committed to prevent overexploitation of resources by checking historic
resource usage of individual or project against allocated quotas. Resource usage
information enriches the understanding of resource utilisation in a Grid system, so that
system administrators can determine how to reallocate resource for better system
performance, maximising resource utilisation. Resource usage information also helps
discover and track abuses or configuration issues of a Grid infrastructure. Commercial
Grid allows users to access resources on “pay-per-use” basis. Resource usage information
therefore is used as proofs for charging. The Grid accounting is such a service that aims at
providing a consistent Grid-wide view of resource usage. Many production Grids have
accounting systems deployed for various purposes. The accounting system in UK e-
Science Grid, the National Grid Service (NGS) for example, is being developed mainly
for resource usage monitoring against individual users. Accounting systems in
EGEE/WLCG projects are mainly for statistic usage reporting for Virtual Organisations
(VOs) and participating sites.

1.5 Summary

This chapter sets the scene for following detailed discussion. The chapter discussed
Grid computing and Grid accounting at high level, including historic driver factors that
enables the emergence of Grid computing; its impacts on revolutions of scientific
research patterns by giving two example usage scenarios of ‘e-Science’ projects; and a
brief introduction of Grid accounting. In following chapters, more technical details are to
be discussed. The rest of this thesis is organised as follows. Chapter 2 concentrates on
technical aspects of the Grid and reviews of a selection of middleware solutions
implemented by production Grid projects. Technical reviews of Grid accounting is
presented in Chapter 3. In Chapter 4, an accounting system prototype is presented and
shows how a standard-compatible solution contributes to a consistent way to share
accounting data in such multi-Grid environment as WLCG with different accounting
systems deployed. Chapter 5 demonstrates the implementation of a generic Grid
accounting middleware that is used as a toolkit to ease the migration of existing
accounting systems to be standards compatible. Finally conclusion and future work are

given at chapter 6 as the ending of the whole thesis.

3BThe Grid

Chapter 2

The Grid

A Grid system integrates heterogeneous and distributed resources across
administrative domains a virtual system. Since 1990s, extensive efforts have been put on
development Grid middleware and software for diverse research projects. Early Grid
middleware solutions were built upon existing Internet protocols and aimed at providing a
Grid infrastructure for specific projects. These early adoptions to the Grid are too
implementation-specific to be used by others. Based on these initial efforts, the Grid had
received increasing attentions and evolved as a standard distributed computing paradigms.
In 2001, the first architectural standard, Open Grid Service Architecture (OGSA), was
released and formed the basis of constructing interoperable Grid systems. The OGSA
standard identifies a set of key functional components of a Grid system based on
emerging Web service architecture. Since then, a great number of Grid projects were
founded to develop OGSA-compatible middleware and software tools. These production
Grids are serving thousands of scientific research projects around the world.

The success of the Grid to date comes from a combination of factors, including early
implementation experiences, the emergence of clear architectural principles,
standardisations, de factor standard software, etc. This chapter reviews and discusses

these factors that combined to make the Grid possible.

3BThe Grid

2.1 Concept

For a long time, the term Grid was used for a computing Grid that provides
unprecedented computational capacities by harnessing inter-connected computers. Based
on increasing use cases gathered from both scientific and business applications using Grid
technologies, the concept of Grid has been refined as a distributed computing paradigm

with following essences [33]:

e ““coordinated resource sharing that are not subject to central control”

e “‘using open, standard, general-purpose protocols and interfaces”

o ““delivering nontrivial qualities of service (QoS)”

One of the key objectives of constructing a Grid system is to enable seamless resource
sharing across administrative domains. These heterogeneous resources are coordinated to
achieve an application-oriented goal in a trustful and controlled manner governed by a set
of sharing rules, which are not subject to any specific administrative domain. Such
sharing rules include security, user membership, payment, and application-specific
policies. A set of individuals and resources governed by same sharing rules forms the so-
called Virtual Organisation (VO).

A Grid system is built upon multi-purpose protocols and interfaces that address
fundamental issues relating to resource access, resource management, resource
introspection, authorisation, etc. A piece of software that implements these protocols and
interfaces is known as Grid middleware. It is important these protocols and interfaces are
open and standard such that Grid applications can be developed in a consistent manner

and migrated from one Grid middleware to the other.

Finally Grid resources are used in a coordinated pattern in order to accommodate
requirements for diverse usage modes and deliver various non-functional characteristics,
known as Qualities of Service (QoS), such as advanced resource reservation, security

semantics, system throughout, responsiveness, etc.

3BThe Grid

2.2 Architecture

In order to identify general requirements on constructing a Grid system, a layered
architecture (figure 2.1) is defined following principles of “hourglass model”. Each layer
abstracts a set of core components and protocols, through which actions of high-level

applications can be mediated and mapped onto underlying technologies of resources to be
shared.

2.2.1 Fabric

The fabric layer, as the base of “hourglass”, provides resources to be shared in a Grid
environment. These resources may be either physical entities or local entities, such as
distributed file system, computer pool or database systems, which involve internal
protocols defined by fabric components and deliver resource-specific QoS. Fabric
resources that intended to be accessible through Grid protocols must supply two
mandatory mechanisms: introspection and management mechanisms. Introspection
mechanisms allows discovery of underlying resource structure, state and capability, while
management mechanisms provide control over delivered QoS.

Application and Tools u

=
-\n ’J
- ,
LY
|1

Collective
{Resource Coordination Services, Community
authorization}

™~

-~

-
-y

- iy

L]
-

w

Resource
{Introspection and Management Protocols)

L]

*
-

M
4
'3

Connectivity
({Communication and Authentication Protocols)

Fabric
{physical and logic resource entities)

Figure 2.1: “Hourglass” architecture identifies requirements on definition of Grid
protocols at each layer. From [47]

3BThe Grid

2.2.2 Connectivity

The connectivity layer defines a set of core communication protocols and
authentication protocols required for Grid-specific transactions. Communication
protocols are used to transport and route messages among fabric-layer resources involved
within a Grid transaction. It is common to assume that these communication protocols are
based upon, but not limited to, existing Internet-layered protocols, such as TCP/IP and

other application-layer protocols.

Authentication protocols at connectivity layer establish a binary trustful link between
communication endpoints by verifying the identity of user and resources. Although there
are many security standards built upon Internet protocol suite, they do not satisfy all
security problems in a Grid environment. Participants in a Grid environment often need to
coordinate multiple resources to accomplish a complex task. By using existing Internet
authentication protocols, individual user is required to be authenticated on per resource
access basis. It is necessary to have a single sign-on mechanism that ensures user-
transparent access to multiple resources coordinated for a single task. Besides, a user may
endow a program with ability to execute on behalf the user. A user, for example, submits
a job request to an execution service, which need to transfer an input file for the job
execution from a remote storage resource. In this case, the remote storage access must be
authenticated by verifying job requestor’s identity rather than execution service’s identity.

This process is known as delegation.

2.2.3 Resource

Having defined connectivity-layer protocols, users can communicate underlying
shared resource in a secure way. As discussed in section 2.1.1, fabric resources to be
shared in a Grid environment must provide introspection and management mechanisms.
However, these mechanisms are implemented in a resource-specific manner. The role of
resource layer is therefore to abstract a set of common protocols that capture the
fundamental mechanisms of sharing across many different resource types.
Implementations on resource-layer protocols are supposed to call fabric resource

functions to access and control local resources.

3BThe Grid

There are two primary classes of protocols as defined at resource layer: information
protocols and management protocols. Information protocols define a set of common
interfaces that interrogate local resource introspection mechanisms to obtain information
about resource configuration, state, current load, etc. A set of common management
protocols are used to negotiate resource access, specify runtime requirements, initiate
operations, monitor execution status, and account resource usages. Definition of
management protocols should be limited to a small and focused set, which apply to at
least a range of resources that share common management requirements therefore
forming the bottle neck of the hourglass model. Protocols defined within resource layer
differentiate from those of collective layer in that resource-layer protocols target at an
individual resource without concerning about coordinated actions across multiple

resources.

2.2.4 Collective

While the connectivity and resource layers focus on low-level protocols for
introspection and management of a single resource, the collective layer provides
protocols and shared services at the Virtual Organisation (VO) level enabling coordinated
resource sharing in a Grid environment. Typical collective services include:

e The community authorisation service that maintains and enforces security

policies of one or more VOs.

e The directory service that allows VO members to discover the existence and

properties of VO resources;

o Resource allocation and brokering service that allocates VO-member requests to

one or more appropriate VO resources;

o Data replication service that maintains and manages copies of data among

multiple VO storage resources;

e Community accounting service metering, gathering and provisioning VO

resource usage information;

e Community monitoring service reporting real-time status of VO resources,

mainly for detection of resource failure, intrusion, overload, etc;

e And community economic services that realises Grid economic through pricing

and charging VO members according to actual resource usage.

3BThe Grid

2.2.5 Application

The final layer, application layer, comprises applications that operate within a VO
environment. Development of applications may invocate well-defined low layer protocols
or APIs. Alternatively, applications may develop sophisticated application-specific
protocols and APlIs.

Application and Tools U
Execution Management - Information . B J|f
Servi Data Management Services Servi Security Services Sell-
ervices ervices Management
@ @ @ @ OGESA-Grid Service Provider Services
OGSA-ASS CS6 vi.0 OGSA-DMI WS-DAI-RDF(S] OGSA-GM Authorisation Service @
B | L B L 1S Middlcware :
) 3| O oo weod | we QL _SE L
GGSA-RSS B-EPS vid GGSA-SRM ViS-DAIR™T WS-DAIK R Ceriificaic GASIS-SARIL
|| , : rotie
‘ JSDL vl.l]c? chjjli\uBLS (?J Gr[d'Fqu BytelQ \|’1.S9 WS-DAI @ DMTE CIM RFC 3280 OASIS-XACML
Infrastructure Services
- =
RNS v1.0 @ U 0G5A Basic Secure Profile va.0 @ u
r - - = %
WS-Naming ul.@ Secure Communication Profile v1.0 SE(::ExTﬁ;ing @ DG;:‘:-EERF @ U
OASIS WSRF/DMTF WS-Management u
WS5-Architecture
(Ws-%)
Fabric Resources
@ DGSA Inkrmational Document | Connectivity-Layer Companent J
@ 0GSA NnrmaﬂveSpec‘lﬂcaﬂun [Resource-Layer Component U
@ DG5A Normative Proflle Collective Layer Companent

Figure 2.2: OGSA standard stacks and relationships to layered architecture

2.3 Standards

Open Grid Service Architecture is the standard that provides a high-level definition of
core capabilities required to support Grid systems and applications. As figure 2.2, these

capabilities include execution management, data service, resource management, security,

3BThe Grid

information, and self management so that diverse components can be discovered,
managed and integrated as a virtualised system. The OGSA standard [48] was proposed
2001 by the Global Grid Forum, GGF, which merged with Enterprise Grid Alliance (EGA)
and formed the current Open Grid Forum (OGF). Thousands of individuals from over 400
organisations in more than 50 countries are currently active in different domain-expert
OGF working groups and providing inputs to fulfil OGSA functionalities. There are two
types of document inputs being produced by OGF working groups in order to maintain
coherence around OGSA and Grid-related standards. The informational documents
provide use cases, guidelines and information about OGSA architecture process. OGSA
specifications and profiles are a collection of normative documents that define technical
details on functional interfaces and protocols as well as their usage to ensure
interoperability. The following content of this section discusses details of emerging

OGSA specifications and profiles in the context OGSA.

2.3.1 Infrastructure Services

The main goal of infrastructure services is to provide coherent and integrated
components that collectively address Grid requirements as demonstrated in section 2.2. A
primary assumption is that OGSA systems and applications are built upon the Web
Service Architecture (WSA) [49] and aligned with emerging Web-service technical
specification in order to ensure interoperability through standard Web service messaging
framework (i.e. SOAP)[28] and normative service description (i.e. WSDL)[30]. However,
it is clear that currently defined Web service standards are not sufficient to meet all Grid

requirements.

Basic Manageability Model

A Grid system requires resources to be shared in a manageable manner. One of the key
objectives of OGSA infrastructure services is therefore to provide a basic manageability
model that forms the basis for both resource management and management of OGSA
environment. The basic manageability model at infrastructure level abstracts core
manageability interfaces that are common to all resource/services implementing OGSA

capabilities.

3BThe Grid

In early 2002 OGF proposed the Open Grid Service Infrastructure (OGSI) [193]
specification that extends Web service capabilities and introduces the idea of “stateful”
Web services, particularly concerned with creating, addressing, managing the lifetime of
“stateful” Grid services and notification of service state changes. The OGSI specification
is then refactored into a framework of Web service standards in 2004, in particular the
family of Web Service Resource Framework (WSRF) [50] and Web Service Notification
(WSN) [51], given the fact that the OGSI specification tried to integrate a number of
independently reusable Web service functionalities into one specification. These
specifications were defined to address specific problems and exploited other Web service
standards, the Web Service Addressing (WS-Addressing) [57] for example. The collection
of WSRF and WSN standards were originally proposed by OGF and then accepted by
Organisation of Advanced Standards for the Information Society (OASIS) as the basis of
Web Service Distributed Management (WSDM) [194] standards. In 2006, OGF further
proposed a normative profile specification, the OGSA WSRF Basic Profile (WSRF-BP)
[53], which aims at addressing interoperability issues of using WSRF specifications for

distributed Grid resource management in the context of OGSA.

It is however worth noting that the WSDM specifications received increasing
controversial debates mainly because of its Grid nature and incompatibility to WS-*
mainstreams. In 2005, a competing specification, the Web Service Management (WS-
Management) [52] was proposed by Distributed Management Task Force (DMTF). This
specification is defined based on three main WS-* standards, including Web Service
Transfer (WS-Transfer) [59], Web Service Enumeration (WS-Enum) [60], and Web
Service Eventing (WS-Eventing) [61]. As shown in Table 2.1, these specifications

provide functional counterparts of those defined in WSRF and WSN specifications.

In order to enable interoperability of separately developed Grid resources, a future
convergence was planned in 2006 to converge WSDM and WS-Management
specifications. As shown in Figure 3.2, the plan is to use WS-* standards as basis while
defining extensions to support features that defined in the WSRF and WSN specifications,
and eventually contribute to the convergence of WSDM and WS-Management
specifications. Given the fact that future convergence is more WS-management oriented
and based on its three underlying Web service standards, the development of Grid
accounting solutions is based on WS-management framework rather than WSRF

framework.

3BThe Grid

Table 2-1: Distributed Web Service Management (WS-RF vs. WS-Management)

State Representation

WS-Resource Properties XML

State Lifecycle Management WS-Resource Lifetime WS-Transfer
Collection WS-Service Group WS-Enumeration
State Transition Notification ~ WS-Notification WS-Eventing
Addressing WS-Addressing WS-Addressing
Fault Handling WS-Base Faults [58] SOAP Fault [28]
s
i

“common management spec” (TBA)

WS-EventingNotification N————————— .

f————————— -l,‘ WS- ‘

T g * | WS-Resource
WS-ResourceTransfer |s.- -------------------- 2 ramework
. New Spec. .
WS-Transfer H WS-Metadata ‘
_Addendum Exchange Existing Spec.
(‘I_ﬂer_ge_tu"
LT
‘ WS-Transfer H WS-Eventing H WS-Enum ‘ ‘:_Enu-“taa;t;",
ST

Figure 2.3: Roadmap of convergence of WSDM and WS-Management stacks

Naming

Resources in OGSA environment are represented as services, which are instantiated on

demand and assigned a global unique address. The Endpoint Reference (EPR) model
defined in the Web Service Addressing (WS-Addressing) specification [57] is used as the

architectural construct for an address in OGSA. These addressable EPRs constitute a

3BThe Grid

complex runtime environment of a Grid system. In order to simplify development high-
level applications that utilise underlying complex environment, a three-level naming
scheme of traditional distributed systems is employed in OGSA. Every named entity is
associated with multiple user-defined names, a global unique abstract name, and one or
more addresses. Two specifications, the OGSA-Resource Namespace Service (OGSA-
RNS)[62] and Web Service Naming (WS-Naming) profile[63], defines standard protocols
for resolving and rebinding of a user-defined name to an address by extending the
endpoint reference model as defined in Web Service Addressing (WS-Addressing)

specification [57].

Security

Another important issue to be solved at infrastructure level is the secure access to
shared resources across different administrative domains. Considering there might be
different security mechanisms adopted at classic organisations to accommodate specific
security requirements, security at OGSA infrastructural layer is therefore required to
ensure interoperability among domain-specific security mechanisms. Interoperability can
be achieved at two levels ensuring authenticated and confidential communications.
Transport Layer Security (TLS) is the commonly used security protocol in distributed
computing by providing endpoint authentication and communication confidentiality.
Emerging Web service security specifications offers advanced features and addresses
secure communication at message level. At message level, authentication and trust
relationship can be established using the Web Service Secure Conversation (WS-
SecureConversation) [64] and the Web Service Trust (WS-Trust) [65] protocols. During
message transfer over the network, data privacy and integrity are ensured by applying
standard encryption encoding and security token exchange as defined in specifications of
Web Service Security (WS-Security) [66], XML Encryption [67], and XML Digital
Signature (XML-DSIG) [68].

Existing Web service security protocols, however, are used to secure stateless Web
service transactions. In order to enable secure access to Grid service/resource instances,
the OGSA working group proposed a Basic Security Profile (OGSA-BSP) [69] that
declares a set of statements on how to ensure security interoperability at Web service
resource level in conformance to existing Web service security protocols. This profile
links two other profiles, the OGSA Secure Addressing Profile [70] that defines a set of

3BThe Grid

conformance statements for discovery of security requirements of a particular
service/resource instance by extending the WS-Addressing [57] schema and the OGSA
Secure Communication Profile [71] that facilitates secure communication to Web service

resource instances.

2.3.2 Execution Management Services

Execution Management Services (EMS) defines a set of services, which aim at
addressing issues related to execution of Units of Work (UoW), ranging from simple
batch job to complex workflows. In particular, the issues include, but not limited to,
resource provisioning, UoW placement, and UoW lifetime management. As shown in
Figure 2.4, the solution of OGSA EMS is decomposed into multiple abstract and reusable

services, each of which targets at specific issue. The following gives details of individual

service and its roles in the context OGSA EMS.

Best Resource Execution

Job Manager) .
e Planning Service

Information
Services

[TEL: N

WSRF Cantainer

Basic Execution Reservation

)) Candidate Set
Service service

Generator

Figure 2.4: OGSA Execution Management Services (EMS) and interactive relations

3BThe Grid

Job Management

In the context of OGSA EMS, the term, job, represents the manageability aspects of a
UoW. It is the smallest manageable unit and implements a manageability interface as
defined within WSRF-BP [53]. A job has a limited lifetime traversing a set of discrete
states (e.g. pending, running, completion, etc). A job can be submitted by end users or
spawned by a Grid service with specific runtime requirements, and/or QoS commitments
(e.g. reliability, completion deadline, etc). The information related to job submission and
job state, along with other metadata (e.g. job owner), is known as the job properties that
should be traceable and monitored by clients. OGF defines two specifications related to
job submission: the Job Submission Description Language (JSDL) [74] that is a language
used to describe the resource requirements of computational jobs for submission to Grid
resources, and the emerging Web Service Level Agreement (WSLA) [191], another
language specification that is used to describe the job submission with additional agreed

QoS terms at service level (such as availability, response time, etc.).

As shown in Figure 2.4, the job manager is defined as the high-level service that
provides job manageability facilities. A job manager accepts job submission requests, i.e.
JSDL or WSLA instances, and is responsible for orchestrating one or more Grid services
necessary to start a job or a set of jobs, for example, negotiating service-level agreements,
matchmaking job requests against available resource candidates, optimising resource
selection, staging jobs to computational resources and job status monitoring. Job manager
may be implemented in various ways. Example job manager implementations include but
not limited to:

e a Web portal that allows users to view available Grid resources and perform
matchmaking;

e a queuing system that caches job submission requests and distributed them to
different resources by applying certain matchmaking algorithm;

e and a workflow manager that receives a number of jobs as a workflow and

manage the workflow until completion;

Selection Services

On receiving a job submission request, a job manager is required to determine where

to execute a job among a collection of execution resources. The resource selection is a

3BThe Grid

two-stage process involving finding resource candidates and optimise objective functions.
Accordingly OGF Resource Selection Service (RSS) working group defines two services
related to the resource selection process:

e Candidate Set Generator (CSG) [73]: The CSG service is in charge of the
selection of a set of computing resource candidates by applying certain match-
making algorithms. It mainly deal with low-level technical resource requirements
such as CPU type, storage capacity, networking rate. For example, an execution
request may specify a list of resource requirements for a target UoW. On
receiving the request, the CSG service then returns a list of matched VO
resources by interrogating information services (see section 2.3.4).

e Execution Planning Services (EPS) [75]: The EPS service takes the match-
making results, the outputs of CSG service, and attempts to optimise object
function such as execution time, cost, reliability, etc. However both EPS and
CSG services do not perform the scheduling process, but returning optimised

resources to job manager.

Execution Environment Management

In the context of OGSA, an execution environment consists of every aspect necessary
for job execution, particularly including a job container and underlying computational
Grid resources. A job container, as its name indicated, contains running jobs, and
manages job lifecycles. Example job containers include a queuing service, J2EE hosting
environment, batch system, etc. These containers provide common functionalities for
creation, monitoring and management of running entities, but in heterogeneous ways and
with various interaction interfaces. In order to enable the job manager to interact with
various execution environment in a consistent manner, OGF proposed a Basic Execution
Service (BES) specification [72] that defines a set of well-defined service interfaces and
information models based on the WSRF-BP [53] profile, through which clients can send
requests to initiate, monitor and manage computational jobs upon different underlying

execution environments.

Besides basic functionalities as specified in the BES specification, a resource provider
might also provide optional advanced features. One of such advanced features is the
reservation service. State-of-the-art execution environments, such as Portable Batch

System (PBS) [192], have advanced reservation facilities implemented to ensure

3BThe Grid

availability of a set of resources to users at a given period. The reservation service
proposed in the context OGSA EMS is to define a common interface for creation and

management of resource reservations.

2.3.3 Data Services

A variety of data services have proved to be useful to facilitate high-level applications
to locate and utilised distributed data resources. These collective services provide
primitive mechanisms for management, access, and federation of data resources shared

across administrative domains.

Data Resource

A data resource acts as a sink or source of data. There are different types of data
resources in a Grid environment, including relational database, XML database, flat files,
data stream, etc. Most of data resources are managed by existing systems such as
Relational Database Management System (RDBMS) or file systems. EXxisting data
management systems provide similar manageability interfaces mainly for data access and
lifetime management but using different manageability interfaces. One of key objectives
of OGSA data services is therefore to provide a high-level functional and manageability

interfaces upon existing data management systems.

The OGF Data Access and Integration (DAI) working group proposed a stack of
standards for data access and management. The Web Service Data Access and Integration
Service (WS-DAI)[76] is the core specification that defines a collection of generic service
interfaces for uniform data access and manipulation. The WS-DAI specification
distinguishes data resources that are managed by external management systems from
those to be managed by WS-DAI service. In the case of service managed data resources,
the WS-DAI specification recommends implementations to use WS-RF compatible
solution for lifetime management. The working group also proposed three additional
specifications, the WS-DAIR[77], WS-DAIX[78], WS-DAI-RDF(S) [79][80] which
extends core properties defined in WS-DAI core interfaces for realisation of access
service to relational, XML, and Resource Description Framework (RDF) [81] data

resources respectively.

3BThe Grid

Storage Resource

Considering some data resources, such as relational database and files, are storage
based, it is necessary for OGSA data services to provide functional and manageability
interfaces for storage resources as well. Like data resources, most storage resources are
managed by existing storage management systems. These storage management systems
provide custom solutions to control and provision of raw storage or space in a file system
as well as custom file access protocols. OGSA data services are intended to provide an
abstract manageability interface for storage management over heterogeneous storage

management systems.

The OGF Grid Storage Management (GSM) working group focus on the definition of
standard interfaces of a middleware component, the OGSA Storage Resource Manager
(OGSA-SRM)[80], which provides dynamic storage resource allocation and file
management facilities to storage resources shared in the Grid. File access to storage
resources can be achieved through two standard mechanisms as proposed by OGF
working groups. The OGF GridFTP working group proposed a standard file access
protocol, the Grid File Transfer Protocol (GridFTP) [82], which extends from File
Transfer Protocols with enhanced security and performance. Remote files can be
alternatively accessed through a set of standard interfaces defined within the OGSA Byte
Input/Output (OGSA BytelO) specification [83], which provides “POSIX-like” file
functionalities. These standardisation efforts make it possible to implement advanced data
features of OGSA data services. File replication, for example, is an important feature than
enhances system performance and fault tolerance in a Grid system. The OGSA Data
Movement Interface (OGSA-DMI) [84] is a recent specification proposed by the OGF
DMI working group and simplifies data transfer across multiple storage and data

resources through a set of standard interfaces.

2.3.4 Information Services

The Grid environment consists of a huge amount of highly distributed and
heterogeneous resources, which are coordinated to accomplish complex application goals.
The OGSA defines a set of collective capabilities that hide low-level complexity of a Grid

environment. Information services exhibit one of such high-level capabilities by

3BThe Grid

providing efficient access to information about resource/services, applications and events
in a Grid environment. The information supplied by an information service is intended to
be used for various purposes including resource/service discovery, system performance
tuning, fault detection, and accounting. There are two main components of information
services, the logging service and discovery service. Logging services work at the
infrastructure layer and produce dynamic status information of individual resources.
Discovery services are likely to be deployed in every Grid system and act as registry
maintaining static resource information as well as dynamic information collected from

multiple logging service instances.

Rather than defining a single information service to support all usage scenarios, which
is impossible, current standardisation efforts on OGSA information services are at highly
abstract level without compromising service usability. The OGSA Grid Monitoring
Architecture (OGSA-GMA)[85] specification defines essential interactions among three
abstract components in a Grid monitoring architecture, the information provider,
information consumer and directory. Another important point issue relating to OGSA
information services is resource information models. Resource information models
describe resource-specific semantics by defining resource-specific properties, operations
and relations to other resources. There are many other industry standards for resource
modelling, such as the Common Information Model (CIM) [86] defined by DMTF, the
resource model proposed by Java Management Extensions (JMX) [87] framework, etc. It
is likely that implementations of information services of different Grid projects may
apply these standards for resource modelling. In order to enable interoperability between
Grid-specific information services, the OGF Grid Laboratory for a Uniform Environment
(GLUE) working group defines an abstract information model, known as the GLUE
schema[88], as a legacy schema that can be mapped to concrete schema employed by a

Grid information service.

2.3.5 Security Services

OGSA security services provide facilities to enforce security policies in a VO. From
security perspectives, a VO maintains certain security policies that is outsourced by
resource providers and coordinates their resource sharing and usage in a consistent

manner. To be more specific, VO-specific security policies pulls together user participants

3BThe Grid

and resource/services from disparate domains into a common trust domain. Compare to
traditional means of security administration that involves a centralized policy databases of
user credentials, administration of VO security policies in the OGSA environment is
complicated by the dynamic nature of VO. A VO needs to establish trusts between users
and Grid resource/services. Theses trust domains spans multiple user participants that
dynamically join and leaving and multiple resource/services that are dynamically
deployed or created over the lifetime of a VO. The establishment of dynamic trust
domains of a VO requires a delegation mechanism that allows one entity to grant rights to
another (e.g. newly created resource or services) to perform actions on its behalf. Besides,
user participants in a Grid environment may need to coordinate multiple resource/services
to accomplish a single task. OGSA security services are also required to provide a single
sign-on mechanism to ensure that the user is authenticated exactly once and need not to
be re-authenticated upon following access to Grid resource/service during a period of
time. Access to Grid resource/services must be authorized by security policies specified
by resource/service providers as well as those from VOs. OGSA security services need to
provide a standard authorization framework that accommodates various access control

models and implementations deployed by service providers.

Within OGF, an OGSA security working group has been founded to enumerate and
address aforementioned security issues in the context of OGSA. The initial profile
specification, Grid Certification Policy (GCP) [89], provides a guidance for the use of
attributes and extensions of the Internet X.509 Public Key Infrastructure Certificate [89]
to accommodate advanced security requirements such as delegation and single sign-on in
OGSA environment. Another security-specific working group, the OGSA Authorisation
working group, focuses on addressing interoperability issues among multiple
authorisation domains by defining a generic authorisation framework. The recent released
informational document, Functional Components of Grid Service Provider Authorisation
Service Middleware [90], proposed two OGSA authorisation models from the
resource/service providers’ point of view, the pull model and push model. By push model,
user credentials and authorisation assertion of a VO are attached with request message to
service provider. On receiving access requestors, resource/service providers are required
to validate assertion and apply local authorisation policies. On the other hand, a
resource/service provider is required to call VO authorisation decision point to get user
attributes or authorisation assertions before applying local authorisation polices. This

model is known as the pull model. Based on proposed authorisation framework, the

3BThe Grid

working groups are working on defining standard authorisation protocols compatible to
XML Access Control Markup Language (XACML) [91] and Security Assertion Markup
Language (SAML) [92] proposed by OASIS.

2.3.6 Self-management Services

Self management capabilities have received increasing attentions in OGSA. A self-
management Grid environment composed of autonomous services (see section 1.1.4) that
are self-configurable, self-healing, and self-optimising. One of the major objectives of
self-management in a Grid is the support service-level attainment for OGSA
resource/service through a conceptual component, the Service Level Manager (SLM).
The SLM component is modelled after a generic control loop pattern, which consists of
monitoring, analysis and projection, and action phases. A SLM may be used to control
and adjust service activities at different levels. Grid system-level SLMs, for example, can
be used for improving resource utilisation by dynamically enrolling resources or releasing
surplus resource depending on current system load. Although identified as a significant
part of OGSA, standardisation efforts self-management services are still at a preliminary
stage.

=

ontology /
Knowledge management_ - — — © ==

Self- managed_ E

=
=] ’
5 Artificial intelligence * | wvirtual systern
2 —
E Web services (OGSA "
Z ===
=
-] Intermnet e
5 Protocols ¢~ Slobus ™,
< ~,__Toolkit__~
E /'/J
| = = il
=] e e
& Custom

S Elitiores

o

1990 1995 2000 2005 2010

Figure 2.5: Evolution of Grid Middleware Technologies. From [33]

3BThe Grid

2.4 Middleware

Having identified requirements and capabilities that are fundamental to the success of
Grid applications, considerable progresses have been made during past ten years in
developing Grid middleware. As illustrated in figure 2.5, the evolution of Grid
middleware is divided into four phases. Starting from early 1990s, Grid technologies
concentrated on addressing meta-computing [93] issues through linking heterogeneous
computational resources in such a way that are transparent to users as a single computer.
Middleware development uses various solutions to achieve a limited set of functionalities,
security and scalability in particular, therefore not concerning about interoperability. The
emergence of Globus Toolkit version 2 (GT2) in 1999 became the first de factor standard
and pioneered the creation of interoperable Grid middle. Services and protocols defined
within GT2, however, are based on internet protocols and implementation-oriented. It is
not possible to have different implementations of Grid middleware until 2002 when a
community of standards released based on OGSA profile, which aligns Grid computing
with broad Web service protocols. Since then, a great number of standard-compatible
Grid middleware released. It is also envisioned that the evolution of OGSA-compatible
middleware will eventually lead Grid computing in another stage with enhanced features
on autonomy and self management. The section reviews Grid-middleware solutions both
OGSA compatible and OGSA non-compatible.

2.4.1 Globus Toolkit

Globus Toolkit (GT) is an open-source toolkit that forms a fundamental technology
enabling Grid computing. The project was founded in late 1990s and originated from the
US national project, I-WAY [95], which aimed at providing inter-connection between
eleven high-speed research networks. Since version 1.0 release in 1998, version 2.0 in
2002 and recent release Web service compatible version 4.0, GT has evolved rapidly as a
standard Grid middleware and forms foundation for thousands of Grid projects worldwide
in both scientific and industry fields. However early adoptions, such as gL.ite (see section
2.4.2), are mainly based on GT2, which addresses issues relating to security, resource
management, monitoring, discovery and file transfer at resource layer. These projects
have various custom solutions developed upon GT2 components to address high-level

issues for coordinated resource access and VO management. As presented in figure 2.5,

3BThe Grid
Community
Scheduler
Community
Grid Telecontrol Data Python W5
Autherisation WebhDS
Sevices e e o
F
delegation AN OGSA-DAI Index WS Core
Grid Rescrurce C t
A.thhentlh'.a‘tlm piy M:::::h — S OMponen
Authorisatio Banapement
Pre-ws Resource
suthentication Specification IMP“H MDS 2 Cm MNon-Ws
Sutheriswdon Language Component
A Pre- WS Geid =
Credential B GrldFTP extenible 10 l
Management Allacaticn and (X0}
. Msnagement
. Execution Data Information Common
; v Management Management Services Runtime

Deprecated Component: not support; will be dropped in a future release

Core GT component: public interface frozen between incremental releases; best effort support

Contribution/Tech Preview: public interface may change between incremental releases

Figure 2.6: Globus Toolkit Components (Pre-WS vs. WS releases). From [94]

the Web service-based GT4 provides significant improvements in terms of community

functionalities and OGSA standard compliance.

Common Runtime Environment

Common runtime environment of GT consists of a set of components that abstract

low-level connectivity protocols in a platform independent manner. The pre-Web service

release of GT provides two runtime tools, the eXtensible Input/Output (XIO) [96] and C

command library. The XIO represents a simple Open/Close/Read/Write (OCRW)

interface that provides an abstract layer upon transport protocols, such as TCP and UDP.

A common library written in C programming language implements most infrastructure

functionalities of GT2, including security, introspection and management facilities for

3BThe Grid [40 |

development of custom services in a platform independent manner. GT4 leverages Web
service stacks and provides WS-RF compatible runtime environments. There are three-
version containers available for service development in Java, C, and Python programming

languages.

Execution Management

Execution management in GT is realised by the Grid Resource Allocation and
Management (GRAM) [97] component, which defines standard protocols allowing
initialising, monitoring, and managing execution of jobs on remote computational
resources. However GRAM is not a job scheduler, but abstracts a single protocol for
communicating with the Local Resource Management System (LRMS) and allows a
client to specify resource requirements using Resource Specification Language (RSL)
[98]. The GRAM component also provides operations for monitoring status of execution

resources.

The GRAM component is refactored in GT4 and provides standard Web service
interfaces for job submission and management, therefore also known as WS-GRAM. Two
additional functional sub-components are added in WS-GRAM. The workspace
management service functions as a sandbox and dynamically allocates local Unix
accounts to execution requestors. A more general protocol, Grid TeleControl Protocol, is
also provided in WS-GRAM mainly for instrumentation management, such as

management of earthquake engineering facilities and microscopes.

Data Management

Data Management components of GT provides facilities to data access, transfer, and
replication. GT’s implementation of GridFTP [82] protocol enables secure and high-
performance file transfer over Wide Area Network. The Replica Location Service
(RLS)[99] acts as a registry of file replicas and provides two-level naming mechanism
allowing mapping multiple user-defined logic file names to target physical file location.
However the RLS itself does not guarantee either file consistency or filename uniqueness.

It is expected high-level services would provide these advanced features.

3BThe Grid

Data management in GT4 is enhanced by introducing two high-level manageability
interfaces for data transfer and replication. The Reliable File Transfer (RFT)[100] service
provides Web service interfaces for management and reliability of multiple file transfers
using GridFTP protocols. A prototype service, Data Replication Service (DRS)[101], is
expected to hide the complexity of the overall processes of data replication by allowing
users to identify a set of desired files in the Grid environment, to make local replicas of
those files by transferring files from one or more source locations through RFT service,
and to register the new replicas in a RLS. A third-party tool developed by UK e-Science
program, the OGSA Data Access and Integration (OGSA-DAI) [102], is integrated within
GT4 as a data management component providing access and management facilities to

other structured data, relational and XML data in particular.

Information Services

Information services in GT are enforced by the Monitoring and Discovery System
(MDS) for collection, indexing, discovery of resource/service information in a Grid.
MDS implemented in GT2, called MDS2, is based on Lightweight Directory Access
Protocol (LDAP) and consists of three hierarchical components: Grid Information Index
Service (GIIS), Grid Resource Information Service (GRIS), and Information Providers
(IPs). Resource/service providers may have multi-purpose monitoring sensors running on
a resource/service to collect information data such as CPU load, system configuration, etc.
The IPs provides an abstract interface layer upon local monitoring sensors so that
resource-specific data can be collected and published in a consistent manner. The GRIS
runs on a resource/service and acts as a modular content gateway for a resource. GRIS
instances are registered to a GIIS endpoint, where information data are indexed and
cached. Information consumer may optionally query information of a specific resource
directly to GRIS or talk to GIIS to obtain collective information. MDS2[103] defines a
resource information model for computational resources only, known as MDS schema.
Information providers may also publish GLUE-compatible information model by

configuring a LDAP implementation of GLUE schema.

The MDS2 is no longer maintained and replaced by a Web service compatible solution,
known as MDS4, in GT4. MDS4 is built upon standard query, subscription and
notification protocols as defined in WS-RF and WSN specifications. Based on these

standard protocols, a range of GT4 components, such as WS-GRAM and RFT, are

3BThe Grid

implemented as information providers for collection of information from specific
resource/services. An adapter interface is also provided for those information providers
that are not WSRF compatible. MDS4 also provides two high-level services, the
aggregator services and trigger services, for collection and publishing aggregated
information from information providers. Both services are implemented based upon a
generic aggregation framework. Finally a Web-based interface, WebMDS, provides a
visualisation interface for user to view information data. MDS4 uses GLUE schema

natively and provides an XML mapping of the GLUE schema.

Security

GT provides a Grid Security Infrastructure (GSI) [104] based on X.509 PKI, which
assumes every user and host involved in a Grid has an X.509 end entity certificate signed
by trusted CAs. Each Grid transactions is mutually authenticated and encrypted. In order
to support Grid-specific requirements on single sign-on and delegation, GSI also supports
proxy certificates that are derived from X.509 end entity certificates. User participants
may issue a self-signed proxy certificate delegating their rights to another entity within a
limited period of time. An online credential management service, MyProxy server[105],
is used for generating, querying, and renewing such proxy certificates. Resource access is
protected by a simple resource-level authorisation mechanism defined in GSI by mapping
the subject of a user certificate to local execution environment, Unix user account for

example. In the case, the Grid user has the same access rights of the local account.

Based on GSI, GT4 provides messaging-level security mechanisms by implementing
WS-Security[66] and WS-SecureConversation[64] protocols to protect SOAP messages.
A high-level authorisation service, the Community Authorisation Service (CAS)[106], is
also implemented in GT4 allowing separation of resource providers’ security policies and
VO security policies. In another word, resource providers may delegate a subset of
security policies to the VO. In this sense, CAS provides fine-grain mechanisms for a VO
to manage these delegated policies and ensures user requestors are authorised across

multiple security domains in a consistent manner.

2.4.2 gLite

43

3BThe Gri

User

MyProxy

User Interface

WhMProsy

WMProxy

WS Host Environment

i)

FTS

WS Host Environment

Waorkload Manager

Job Subrmssion &
MhMonitoring

CREAM CE
\l LCAS I
o

st | CREAM
Manager

LCWAPS

Gateleeper
(GT2.g)

manager

LCMAPS K

|
I
|
W
I
\\\\\\\\\\\\\ = LFC !
I
notify |
I
Logging and _ I
—=>»| Bookkeeping Service 1 Top BDII |
|
|
[I it L) i
| | |
I
I " I ,
I i | ,
I 2l I ,
! |
i ,
—_— :
|||||| h I Site Boundary
! I|| SiteBDII |
I
| I
I
o
[!
1 SE |
{ aris || !
i

BLAHPD _ il
I Condor job LSF job PBS/ Torque
raanager roanager job ranager
| T T T
t & L i i meis S [e T
[0 = TET S TESLE B e e s R s T s B DA s e E s i s e s aliediee it T i b
= ! I
I ,1 ! : I . T , I I
| |
I y , v , y , ,
| s
|
] Condor LRMS |l — — — — — — LSF LRMS

Work Nodes

PBS/Torque LRLIS

Worl: Nodes

Wark Nodes

o]

Trwirorment

GSIETP

gsidCap

DPM

dCache

Figure 2.7: gLite3 Component Architecture and Internal Interactions

3BThe Grid [44 |

The gLite, a lightweight Grid middleware solution produced by EGEE project,
provides a framework to build Grid applications for diverse research communities. The
gLite middleware combines component distributions from a number of other projects,
including Virtual Data Toolkit (VDT) [107], European Data Grid (EDG) [108] and
World-wide LHC Computing Grid (WLCG)[109] projects. Since EGEE project and
WLCG project share a large part of infrastructure consisting of computing and storage
resources shared over 200 distributed sites around the world, the gLite middleware [110]

is primary deployed on participating sites in EGEE/WLCG project.

As figure 2.7, current release gLite middleware, gLite3, follows SOA design patterns
and is evolving to be OGSA compatible where possible. Meanwhile it also reuses some

GT2 components for backward-compatibility to LCG deployments.

Access Services

The User Interface (Ul) is the entry point to a gLite-enabled Grid. A user accesses
gLite resources or services by logging on a Ul machine, where user certificates are
installed. The Ul provides Command-Line Interfaces (CLIs) allowing users to interrogate
high-level gLite services. From a Ul, a user may submit a job execution request,

monitoring job status, get job output, transfer files, etc.

Computing Element

The Computing Element (CE) is a generic terminology defined in EGEE/WLCG
referring to a set of computing resource at a site. A CE provides a generic interface,
known as the Grid Gate (GG), which is responsible for scheduling jobs to a collection of
Worker Nodes (WNs) via a LRMS. The gLite version 3 supports a wide range of LRMS
including Portable Batch System (PBS)[111], Condor[112], Load Sharing Facility
(LFS)[113], etc. As demonstrated in figure 2.5, there are three implementation of GG in
gLite: the gLite CE, LCG CE, and Computing Resource Execution and Management
(CREAM)[114] CE.

LCG CE was developed by EDG project [108] and used in LCG. The LCG CE runs a
GT2’s GRAM gatekeeper and reuse GRAM job manager interface as GG. A site may

choose to configure one or more job managers according to LRMS deployed. There is

3BThe Grid

one gatekeeper per CE. The gatekeeper will publish available job managers to the gLite
information system. On receiving a job request, the gatekeeper forks a job manager
instance after authenticating user identity and mapping it onto a local user account. The

job manager instance then dispatches the job to WNs via corresponding LRMS.

The LCG CE processes job requests on per process per user basis, resulting in
scalability issues. In EGEE/WLCG project that involves thousands of users, it is very
likely that multiple users send job requests to a LCG CE simultaneously. In order to cope
with this issue, the gLite introduces a three-tier CE architecture, so-called gLite CE,
based on gatekeeper, Condor-C[115] job manager and Batch Local ASCII Helper (BLAH)
protocol[116]. The Condor-C is a Condor-to-Condor job scheduler that allows jobs in one
Condor queue to be moved to another Condor queue. For those LRMS other than Condor,
Condor-C job manager makes uses of the BLAH command for job submission and
management. The BLAH protocol defines a set of plain ASCII commands to manage jobs
on the batch systems. A lightweight BLAH protocol daemon (BLAHPD) is responsible
for converting BLAHP commands into LRMS commands, trigger those commands and

report results back in BLAHP format.

Finally the recently developed CREAM CE provides an alternative solution of job
submission and management at CE level. The CREAM CE implements OGSA BES
specification and uses BLAHPD for job scheduling and management to LRMS including
Condor. The CREAM backend is a permanent memory space for storing data related to
all cached and executing jobs.

gLite also defines a CE Monitoring (CEMon) service that is deployed at individual
CEs and responsible for providing characteristic and status information of the CE. The
major consumer of CEMon service is the Workload Manager System (WMS) that
performs job submissions by matchmaking job requirements and dynamic CE status
information obtained via CEMon services. The CEMon service provides an extension
point through which custom CEMon sensor can be plugged in to generate other
information. The CREAM sensor, for example, is plugged into CEMon service to

generate job status information.

Storage Element

3BThe Grid [46 |

The Storage Element (SE) as defined in gLite provides data access and manageability
facilities to storage resources localised at a site. Most of sites participating in
EGEE/WLCG project normally provide at least one SE. There are three widely used
storage management systems in EGEE/WLCG, the CERN Advanced STORage manager
(CASTOR) [117], dCache [118], and the Disk Pool Manager (DPM) [119]. As figure 2.5,
these storage management systems have different protocols defined for file access. The
Remote File Input/Output (RFIO) provides POSIX-like interface for access files through
CASTOR and DPM management system, while dCache uses a GSl-enabled data access
protocol, the gsidcap. A high-level abstract, the OGSA SRM service, is implemented by
these storage management systems in order to ensure file access through heterogeneous
storage management systems in a consistence manner. In addition to system-specific file
access protocols, gLite requires all SEs must support a GSl-enabled FTP protocol, the
GSI-FTP.

Workload Management System

The Workload Management System (WMS) [120] component provides Grid-wide
resource management facilities hiding complex gLite environment from users. The main
purpose of WMS is to satisfy user requests by taking appropriate actions on job
submission and management on behalf of users. It accepts job execution requests from Ul,
selects CE candidates, places job execution, and notifies execution results. A user request
specifies job and resource requirements in JDL (Job Description Language) [121], which
is the Condor ClassAd language therefore legitimate to be used directly to Condor APIs
for job management. The JDL allows the description of three request types including
simple job request, Direct Acyclic Graph (DAG) job request, and a collection of
independent jobs that can be executed in parallel. WMS exhibits two entry points for
users, the Network Server (NS) and Workload Manager Proxy (WMProxy). The NS is a
generic network daemon that keeps listening to user request from a well-know port.
WMProxy provides a Web service interface to access WMS functionalities. Both services

check user authorisations and forward JDL to the Workload Manager component.

Workload Manager (WM) is the core component of WMS. On receiving a JDL, the
WM spawns a matchmaking process, which evaluates JDL items against Information
Super Market (ISM). The ISM consists of a repository of CE information. In order to
ensure information is up-to-date, a lightweight process, ISM updater, contacts CEMon

service and refreshes ISM repository periodically, approximately every two minutes.

3BThe Grid

Alternative, ISM may subscribe to CEMon services to receive notifications encompassing

needed CE information.

Once a CE candidate identified, the JDL is forwarded to a Job Submission and
Monitoring component, which is responsible for creating a wrapper script that creates the
appropriate execution environment in the CE worker node. The Interface to CREAM
Environment (ICE) is used by WM when interacting with CREAM based CEs. In the case
of no matched CEs found immediately, the WM component caches the job request into an
internal Task Queue (TQ) for a while. Under this circumstance, the jobs held by WM can
be either asking for RB to perform matchmaking periodically (eager scheduling policy) or
waiting for an appropriate CE to pull job request from TQ when available (lazy
scheduling policy). During a job lifetime, changes of job status are maintained and

updated within the Logging and Bookkeeping (LB) service.

Data Management

Two high-level services are provided within gLite3 for file transfer and replica
management. The File Transfer Service (FTS) provides low level data movement service
that can schedule asynchronous and reliable file replication from source to destination
SEs. It also allows participant sites can control the network usage. The FTS interacts
between source and destination SEs through standard SRM interfaces and GridFTP
protocol. Users and applications locate files or replicas through the LCG File Catalogue
service (LFC), which maintains mappings between user-defined Logical File Names
(LFN), a Global Unique IDentity (GUID) and physical Storage URL(S) of replicas. The
LFC service publishes its service URL in gLite3 Information Services so that it can be

discovered by data management tools and other services.

Information Services

There are two Information Services (IS) in gLite3, the pre-WS MDS of GT2 and
Relational Grid Monitoring Architecture (R-GMA)[122], a relational database
implementation of OGSA-GMA[85] specification. For MDS service, a Generic
Information Provider (GIP) runs at resource layer and generates relevant information
about computational and storage resources. This information is stored and cached in a

GRIS server for each resource. Each GRIS is registered with a site-level Berkeley

3BThe Grid [48 |

Database Information Index (BDII) and populates the database with resource information.
The site-level DBIIs are then registered to a top-level BDII used as the top of the
hierarchy of a VO. R-GMA is an alternative information service mainly used for
accounting purpose and is discussed in more detail in Chapter 3.

Security

The gLite3 middleware uses GSI and MyProxy server for use authentication, single
sign-on, and delegation. The authorisation framework in gLite3 composed of a centralised
community-based authorisation service, the Virtual Organisation Management Service
(VOMS)[123], and site access control suite comprising Local Centre Authorisation
Service (LCAS) and Local Credential Mapping Service (LCMAPS). The VOMS
organises user information and privileges in a hierarchical structure. Each user in a VO is
assigned to a subgroup, a role, and granted capabilities. This information is represented
via an extension to user proxy certificate. At the time a VOMS is contacted, a VOMS
proxy certificate that encapsulates user’s group membership and associated roles into
standard proxy certificate is signed by VOMS public key and returned. The VOMS proxy
certificate is push into CEs together with job requests. At CE level, the LCAS service is
called by gatekeeper to make an authorisation decision based upon user subject name and
VO attributes embedded within a proxy certificate. Once authorized, the LCMAPS
service takes care of translating grid credentials into Unix credentials local to the site.

2.4.3 UNICORE

The Uniform Interface to COmputing REsources (UNICORE) project [124] was
established in 1997 to provide an easy-to-use platform that enables secure access to
supercomputer sites in German. After twelve-year development, the UNICORE project
has evolved as a SOA Grid middleware for secure access mainly to computational
resources. As figure 2.8, the recent released UNICORE version 6, called UNICORES, is
characterised as a vertically integrated Grid system that comprises components of three

tiers, the client tier, service tier, and target system tier.

Grid Access Protal

URC Echpse

Programmning

HiLa

3BThe Grid

{e.g. GridSphere hagin
g T) P }@u API
| A
- - e = =l
| | | |
| | | |
I | | |
| | | |
| [worldflow [[
I | engine | |
LI CORE
1 | WS-RF Hase Env = service L _
| | | orchestrator | |
1 1 1 UINMICORE WS-RF Hose | |
| | CIS info. | = _ :
: _ service | . - : _
UNICORE UWios
| | WS -RF Haose Env, I VO service _ _
1 1 1 1
- == UNTCORE
_ WS-RF Host Env. =
Gateway A Gateway
T T L T T
47 f 1o : :
| |
UNICORE —_— | | UMNICORE
N || [oesa] e
Services ! [Services
| |
| |
XS I
| |
E_ ./rb.ﬁ.?:u O . o o o s s i sn o) e e e HACKIL
entity entity
LM CORE WS-RF Host Env. UM CORE WS-RE Host Env.

HUUDE

Target Target
meerace T| B SHAETE_ snarTr, e
_ I
LRLS _ Uspace _ | T - —

Site Boundaiy Site Boundary

Figure 2.8: UNICORE6 Component Architecture. From [124]

3BThe Grid

Client Tier

The UNICORE client tier provides a variety of client interfaces to exploit the entire
set of services offered by the service tier. The UNICORE Command-line Client (UCC)
provides a versatile Command Line Interface (CLI) that allows users to access all service-
tier features in a shell or scripting environment. The UNICORE client tier also consists of
two programming APIs. The UNICORE rich client is an eclipse-based Grid Programming
Environment (GPE) developed by Intel. The co-called “rich” client provides graphical
user interface and interoperable GridBeans [125] for Grid application development.
Alternatively, application developer can use the single interface of High Level API for
Grid applications (HiLA) to implement complex application with just a few lines of codes.
Finally UNICORE services can also be accessed from third-party portals, GridSphere[126]

for example.

Service Tier

The UNICORE service tier comprises all services and SOA components based on WS-
RF and WS-I standards. A site level, UNICORE services consist of two main functional
components, the Gateway and enhanced Network Job Supervisor (NJS). The Gateway
component acts as a site firewall and performs the authentication of all incoming requests
to underlying site resources. The NJS component is the job management and execution
engine of UNICORES. Its functions include storage resource management, file stage in or
out and job management. The functionality of the NJS is accessible via two Web service
interfaces: The UNICORE Atomic Services (UAS) and OGSA-BES. The UNICORE job
definition is compliant with the JSDL standard. A variety of protocols, such as HTTPs,
OGSA BytelO and GridFTP, are also available for staging files between sites or between
client and sites. On receiving a job request, the NJS component delegate the JDSL file to
the IDB (Incarnation Data Base) component that performs the job incarnation and maps
the abstract job description in JSDL to the concrete job description for a specific resource.
Information about available applications and resource characteristics has to be defined in
this database. For authorisation, the NJS uses the X.509-baed UNICORE User DataBase
(XUUDB) to map the subject name of user X.509 certificate into the actual user account
and group. XUUDB based authorisation can accommodate all access control
requirements within a single site. For resource access cross sites, file transfer from

different sites for example, UNICOREG6 supports proxy certificates and provides an

3BThe Grid

XACML entity that can be triggered to delegate access decision to a VO management
system, the UNICORE VO service (UVOS) [127].

Like many Grid middleware, UNICOREG6 also provides several collective services.
Firstly, a single service registry is available to build-up and to operate a distributed
UNICORE infrastructure. This service registry is contacted by the clients in order to
connect to the Grid. The UNICORE Common Information Service (CIS) is the
information service, which gathers and stores both static and dynamic information from
all connected XNJS into GLUE 2.0 [88] format. UNICORE also supports workflow
management using a two-layered architecture consisting of a workflow engine and the
service orchestrator. The workflow engine allows different workflow description dialects
to be plugged in according to site requirements. The main responsibility of the service
orchestrator is to execute the individual tasks in a workflow, handle job execution and

monitor the Grid.

System Tier

The system tier provides an abstract non-WS interface, the Target System Interface
(TSI), between UNICORE and underlying LRMS of Grid resources. Communication
between XNJS and TSI is through text-based protocols, which are interpreted into
system-specific commands. In addition, the TSI component is extended for supporting the
DRMAA standard enabling a standardized interface between the TSI and the batch
system in UNICOREG6. The UNICORE Space (USpace) is the space for job directories. A
separate directory created on a per job basis, where the XNJS and TSI stores all input,
output and error data. GridFTP can be used for site-to-site file transfer, in particular for

data transfer from/to external storages.

2.4.4 Others

The middleware solutions discussed above are widely deployed as production Grids
for a variety of research communities. There are some other Grid projects that have
custom middleware developed to accommodate local deployment environment. Here list
two other common Grid middleware that are being deployed at some participating sites of
EGEE/WLCG projects.

3BThe Grid

Advanced Resource Connector

Advanced Resource Connector (ARC) [128] is the middleware developed by Nordic
Grid, a project that aims at providing a Grid infrastructure for Nordic countries. The
major design goal of ARC middleware is to provide innovative solutions that are essential
for a production quality middleware. The ARC middleware consists of three main
components: Grid services, Indexing services, and user interface. ARC Grid services are a
collection of services running on resources. Grid jobs are submitted to ARC resources
through GridFTP protocol. Each site has a GridFTP server that keeps listening to
incoming job requests. A Grid manager is responsible for computational resource
management and takes care of job execution and input data cache. Information services
are implemented as a “cron” script that periodically updates local resource information to
the Indexing service backend. Indexing services (IS) uses GT2 GIIS and maintains a list
of local information services and other IS endpoints. The ARC user interface is a set of
tools for job submission, monitoring and management. An intelligent resource broker is

built in the user interface, which is able to select the best matched resource for user jobs.

Virtual Data Toolkit

The Open Science Grid Project (OSG) aims at bringing together computing and
storage resources interconnected over research networks from campuses and research
communities in the US into a common, shared infrastructure via a common set of
software stack. The OSG software stack relies on Virtual Data Toolkit (VDT)[107]
middleware, which ensembles GT2, Condor, EDG and other open source software. The
goal of VDT is to make it as easy as possible for users to deploy, maintain and use Grid

software rather than defining Grid middleware.

25 Tools

Grid middleware provides fundamental services that allow resource access,
management and manipulation through well-defined interfaces. However these low-level
service interfaces are too complex making the Grid elusive for many users. For example,
a scientist must learn details of gLite’s execution services to submit and monitoring a job

request. Besides, development of a Grid-enabled application becomes even more

3BThe Grid

complicated and requires developers to become familiar with detailed interfaces. There is
a clear need for tools that allow application developers to use, to write Grid-enabled
applications, and allows users to easily deploy and run applications on the Grid. These
tools should build upon the Grid infrastructure and lie at the application layer (as shown
in figure 2.1) therefore known as application tools.

For application developers, Grid application tools should provide high-level
abstractions and support a broad class of applications development. This can be achieved
by evolving traditional multi-purpose programming models, such as Remote Procedure
Call (RPC), message passing, and parallel programming models, to take advantage of the
Grid platform. The OGF Grid RPC working group is working on defining a standard
Grid-RPC [129] API for both middleware developers and end-users, while ensuring
interoperability among domain-specific middleware. The GridRPC model also provides a
mechanism for task parallelism by partitioning a complex job into multiple processes to
be executed in parallel on multiple Grid resources. Finally, message-passing
programming model is the most general model for parallel computing. Grid-enabled
implementations of the messaging-passing model have been pursued by many research
groups. The MPICH-G2 [130] is such a Grid-enabled implementation of MPI standard
based on GT infrastructure.

The second class of Grid application tools is to provide Grid application execution
environments allowing user to easily interrogate different services of underlying Grid
middleware. There are two common classes of such environments, Grid workflow system
and portal, available in most existing Grid middleware. The WMS of gLite3, for example,
uses DAGMan [131] as a workflow manager that allows representation of a collection of
job dependencies as a directed acyclic graph. A more generic workflow engine in
UNICORE, as discussed in section 2.4.2, supports flexible workflow management and
enables different workflow dialects to be plugged in. Another effective means of Grid
application execution is the Web portal, which is linked with middleware services and

provides graphic interfaces.

3BThe Grid

2.6 Summary

This chapter discussed the concept, architectural principles, standards, middleware
solutions and software tools, which makes it possible to develop interoperable and
versatile Grid systems. In addition, the content of this chapter also implies future
development in Grid applications and technologies. First of all, most of the existing Grid
middleware solutions, such as VDT, gLite, and ARC, are based on tools and experiences
established over past years, which are not OGSA compatible. The wide deployment of
these middleware solutions in production Grid projects makes them hard to be OGSA
compatible. One feasible solution would be to implement OGSA components while
keeping backward compatibility to existing counterparts. The CREAM project sets a
good example by introducing OGSA BES service into gLite. Besides, the OGSA
architecture is evolving over time. It is very likely that more features would be added in
OGSA architecture. Therefore extensive standardisation efforts should be continuously
contributed. Finally, as discussed in section 2.5, Grid application tools play an important

role in making Grid technologies user- and developer-friendly.

4BGrid Accounting

Chapter 3

Grid Accounting

Grid accounting plays an important role in system administration, resource usage
policing and enforcing Grid economic models. The main purpose of Grid accounting is to
meter and supply usage information of resources shared in a Grid environment. Collective
usage information helps enrich system administrator’s understanding and enhance overall
resource utilisation in a Grid system. For most e-Science Grids, computing resources are
predominately provided from academic institutes for one or more non-profitable research
projects. Individual project and participants are granted a fixed quota, such as
computational cycles and storage spaces. Accounting in such e-Science Grid environment
enables usage policing that prevents Grid resources from over exploitation by checking
the actual resource usage against allocated resource quota of individual project.
Resources or services provided by a business Grid are to be utilised in the “pay-per-use”
pattern. Accounting in this case is mainly used to provide usage proofs for charging users
based on actual resource usage. Besides, Grid accounting can also be used for
strengthening security, guaranteeing Quality of Service (Qo0S), etc.

Having identified the importance of Grid accounting, there are increasing Grid
projects that have accounting systems developed and deployed. These accounting systems,
however, were designed in various ways to accommodate Grid-specific usage scenarios.
In order to provide a consistent and interoperable solution to Grid accounting in the
context of OGSA profile, this chapter discusses the concept of Grid accounting, reviews
existing accounting solutions in operational Grid projects, and proposes an generic
accounting framework. | conducted all the research carried out within this chapter and
published in [132].

4BGrid Accounting

3.1 Concept

The concept of Grid accounting was firstly proposed as “a process that provides a
consistent and Grid-wide view of VO members’ resource utilization” [133] at the time of
designing accounting system for Sweden Grid (SweGrid), a national Grid project that
provides computational resources to scientific projects in Sweden. This definition,
however, merely highlights SweGrid-specific requirements on accounting. It is

worthwhile to review the concept of accounting in order to give a more generic definition.

The terminology, accounting, originates from business and financial field as “the
system of recording and summarizing business and financial transactions and analyzing,
verifying and reporting the results” [134]. Accounting is by no means a new concept in
computing either. In a UNIX system, the usage of individual system resources is
accurately recorded and maintained. The process accounting, for example, logs every
single command run by every single user through the PACCT script. The UNIX operating
system can also be configured to enable disk accounting by periodically scanning each

file system and finding out its disk usage.

Accountable

Grid

Application
Application B Grid Core
Resource mened Services
(digital map,
video, e-
journal...)

Physical

Resource Grid Application

Service (Physics
analysis, search
engine...)

(information
service, Data
senvice ...

Netwark
resources (byte
transferred,
conmnaction
duration)

Services

Computational Storage

resources (CPU resources [disk

cycles, memory spaces,
WCT) database, cache|

Figure 3.1: Classification of accountable resources in the Grid

4BGrid Accounting

Accounting in Grid is similar to UNIX accounting except the heterogeneity of
underlying resources and large scale. As illustrated in figure 3.1, accountable resources in
a Grid system can be classified into two main categories: the resource and services.
Resource accounting is a process that meters and logs usage of physical resources or
application-specific resources such as e-journals, digital maps, etc. According to the
types of physical resources, resource accounting can be further divided into CPU
accounting, storage accounting and network accounting. Service accounting is a process
that meters and logs usage of logical services. In an OGSA-compatible system, Grid
resources are accessible through OGSA core services. A domain-specific application may
define custom services and consume Grid resources through OGSA service interfaces. A
map searching service may, for example, enrol multiple computing resources to perform
the rendering tasks in parallel through the OGSA-EMS service. Service accounting, in
this sense, involves a collection of individual resource usage during the transaction of a
particular application service. Based on the classification, the concept of Grid accounting

in this thesis is defined as:

A process that logs and provides usage information of resources and
services shared in the Grid environment to accommodate requirements of

stakeholders and end users within a grid community.

During the course of review, it is learned that the concept of Grid accounting is still
confusing to many, particularly its difference from Grid monitoring service, since both
services share many common characteristics. First of all, both Grid accounting and
monitoring services act at collective layer that provides VO view of Grid resource usage.
Moreover both services require gathering and reporting resource usage statistics to enrich
system administrator’s understanding of Grid resource usage status. Finally Grid
accounting and monitoring services can both used for intrusion detection, auditing,

system performance tuning, etc.

However Grid accounting and monitoring services differs in many aspects. Generally
speaking, Grid accounting and monitoring services are two different services with
different purposes. For monitoring service, its major goal is to provide a view of status of
Grid resources, such as current system load, the number of running jobs, job status, etc.
Accounting service on the other hand is mainly used for provisioning historic statistics of

Grid resource usage as a basis mainly for charging and billing purposes. The main

4BGrid Accounting

consumers of a monitoring system in the context of OGSA include EMS and Information
Service. Monitoring data therefore are resource-centric and require minimal delay to
ensure up-to-date resource status information for EMS, for example, to make quick
decision where a job should be placed. Compared to monitoring data, accounting data
encapsulate more information than resource usage, such as user information, VO
information and other event information related to a transaction. In another word, an
accounting record is composed of various pieces of information after events, therefore
reasonable delay is acceptable. However accounting data need to be as accurate as
possible, while small numerical errors and inaccuracy of monitoring data can be tolerant.
For example, the CPU utilisation at 70% or 75% may not quite different for EMS to make
a decision on job scheduling. Finally considering its timing essence, monitoring data has
limited lifetime and does not need to be persistent in database, while historic accounting
data are important to be stored safely for economic reporting and auditing purposes.
These fundamental differences between Grid monitoring and accounting services are

summarised in Table 3-1.

Table 3-1: Comparisons between Grid monitoring and accounting

I O

To monitor system status,)
To keep track of Grid

resource usage.

Purpose debugging, system profiling,

etc.

System administrator, EMS, VO members, Economic

Consumer
Information Service, etc. services, etc.
Data delay LOW HIGH
Date accuracy LOW HIGH
Data persistence NO YES

3.2 Usage Scenarios

In order to identify common requirements and issues of an Grid accounting service,

the author spent three month to review current practices on developing Grid accounting

4BGrid Accounting

systems by interviewing stakeholders from wvarious groups, including national Grid
service, campus Grid services, regional Grid services, Grid software providers, solution
deployers, standard bodies, and end users. The interview was conducted through visits,
teleconferences, email, and via a questionnaire. Feedback has been received from over
forty people, and summarised in Appendix A. Based on the interview results, there are
four common usage scenarios were identified and are discussed in this section along with

stakeholder’s interests or requirements.

Individual use scenario summarised in this section is structured with a template
composed of following three main elements:
e Description: a domain-specific description that briefly describes the high-level
overview of the scenario.
e Actors & Goal: enumerating entities, including human users, organisations and
software agents, which play a role in the scenario and their goals.
o Stakeholders and Interests: enumerating stakeholders and their interests in the

scenario.

3.2.1 Statistical Usage Reporting

Description

GridPP [135] is a collaboration of particle physicists and computer scientists from the
UK and CERN, with distributed compute resources spanning 17 UK institutions. GridPP
is also the UK’s contribution to WLCG project, overseeing the Tier 1 facility at
Rutherford Appleton Laboratory (RAL) and the Tier 2 organisations including ScotGrid,
NorthGrid, London and SouthGrid. WLCG is a production-level Grid and GridPP has a
contractual obligation to provide resource usage data as part of the WLCG project. At
present over 200 sites worldwide provide resource usage data to the Grid Operations

Centre (GOC) at RAL making aggregation and generates usage statistics.

Actors & Goals

The WLCG Grid operation manager is the main actor for this scenario in the context

of system administration. A Grid operational manager is responsible for ensuring fairness

4BGrid Accounting

and effectiveness of Grid-wide resource utilisation by reviewing usage statistics of

resources shared in the Grid.

Stakeholders & Interests

Stakeholders in this scenario include VO managers (e.g. GridPP), resource providers,
and end users. From the perspective of resource providers, site-specific resource usage is
required to understand how hosted resources are being used, whether they are
underutilised or over-exploited for example. At the resource consumer’s side, VO
managers are interested in reviewing resource usage statistics at VO level, and make sure
there are enough resources allocated to accomplish project tasks. A VO manager is also
required to review resource usage on a per user basis to prevent allocated resources from
malicious usages. Finally, VO members or users are interested in reviewing a summary

usage report periodically.

3.2.2 Usage Policing

Description

The National Grid Service (NGS) in UK aims to provide computational and data
based resources and facilities to UK researchers, independent of resource or researcher
location. This is currently achieved using resources (both compute and data) at four core
sites (RAL, Oxford, Leeds and Manchester), and a growing number of partner and
affiliate sites, together with the provision of software and services, to enable a consistent
method of access to any resource from any location. As fixed resource quotas are granted
to a number of non-profitable e-Science projects, it is essential there is a reliable
mechanism to account for all aspect of use and enforce usage policing by comparing

actual resource usage against allocated quota.
Actor and Goals
The main actors of the usage policing scenario are the NGS’s Execution Management

Service (EMS) and user account management service. As policing-enabled Grid
environment, each user has a registered account associated with granted quota and used

4BGrid Accounting

quota. The NGS EMS is required to verify the availability of enough quota by comparing
remaining quota against historic usage statistics on a per-request and per-user basis. Once
a user runs out of the granted quota, the user account management service is triggered to

block the user account and send a notification email to the user.

Stakeholders and Interests

Major stakeholders of the NGS scenario in the context of Grid accounting are Grid
Operation Support Centre (GOSC), VO manager and end users. There are limited
resource quotas allocated to large project as VOs or individual users for education
purposes. There resource consumers are interested in knowing how much resource quotas
are allocated, being used, and remaining. The GOSC is also required to be aware of

resource utilization status and user activities for management purposes.

3.2.3 Grid Economy

Description

Development of accounting systems contributes to the adoption of Grid technologies
by industry and the emergence of Business Grids, resources of which are intended to be
utilised in a “pay-and-run” manner. In order to enable economic compensation, it is
necessary to have other facilities for pricing, charging and billing based on resource usage
data generated by accounting systems. The process of accounting together with other

economic activities is collectively known as economic accounting.

Actors and Goals

There are three main actors in the Grid economic scenario: the resource management
service, pricing and charging service. Compared to traditional resource management
services, resource management service within an economy-enabled Grid environment
involves an extra process, known as economic authorisation, before allocating resources
to service requests. The process can be implemented within an accounting system that
estimates resource usage of current service requests and generates resource usage data.

Resource management service then checks whether the requestor has enough credits for

4BGrid Accounting | 60 |

current request. On completing service execution, the accounting system meters the actual
resource usage and generates final resource usage data, which is fed into pricing and

charging services for financial transactions.

Stakeholders and Interests

From the commercial perspectives, there are two main stakeholders in the scenario of
Grid economy, the resource providers and end users. End users are paying for their
computational work to be done or storage capacity to be used. End users therefore are
interested in detailed resource usage and charging information of individual paid
transactions. Resource providers sell computational resources and storage spaces, and are
interested in total resource usage history for making decisions on investing additional
resources to increase financial incomes. Resource providers are also interested in profits

over a period of time, a financial year for example.

3.2.4 Quality of Service

Description

Current Grid infrastructure operates on a best-effort basis without guaranteed
delivered Quality of Service (QoS). Unlike traditional Grid resource management
services, which pay more attention to addressing abstraction of management interfaces to
low-level and heterogeneous Grid resources, a higher level solution is needed to ensure
delivering QoS-enabled services to users, especially for those who have invested a large
amount of money. The Service-Level Agreement (SLA) [136] has been considered as the
protocol that describes QoS and other business-value commitments by service/resource
providers in exchange for financial commitments by consumers against agreed terms,
including finishing deadlines, charge and penalties. In order to enable an SLA-oriented
management system, resource usage needs to be tracked. This is typically done by an

accounting system.

Actor and Goals

The key actor in this scenario is the SLA management system, which aims at

4BGrid Accounting

performing functions related to the process of agreeing, monitoring and enforcing an SLA
between resource providers and consumers. A SLA management system may record the
resource usage of a service invocation and optionally constrains and/or charges for the
usage. An SLA can contain any number of constraints defined by the service provider,
including the placement of usage limits, for instance, maximum amount of CPU time of a
particular service invocation. In this case, a SLA management system is required to
monitor resource usage status in real time and acts according to service provider policies
when usage exceeds a constraint. The real time usage information can be obtained from
an accounting system which provides runtime usage accounting facilities. In addition, the
cumulative usage, aggregated from all related resource usages, should be reported to the

SLA management system by an accounting system on completion of a service invocation.

Stakeholders and Interests

There are two main stakeholders, service consumers and service providers. Detailed
service usage information helps service providers to adjust pricing and resource allocation
strategies to increase financial incomes. End users pay for services and are interested in

knowing how invested money was spent.

3.2.5 Putting Together

These example use case scenarios underlined by Grid accounting services contributed
to the vision of Grid economics, provides guaranteed QoS on the pay-per-use basis. The
Grid economic model can be built but placing additional layer, upon existing OGSA
architecture. This additional layer consists of two main services, the economic services
and SLA management services. Economic services provides functionalities related to
economic activities, including banking, charging, and billing services, while the SLA
management services ensures Grid computing services to be delivered in a QoS-
guaranteed manner. In an economic-aware Grid environment, a job submission requires
interactions among economic services, SLA management services, accounting services
and EMS. An example workflow of a job submission (as Figure 3.2) to economic-aware
Grid environment may involves, but not limited to, following steps:

a). A user interacts the SLA management services and instantiates an SLA instance

specifying certain QoS metrics and service-level guarantees. Users may also add custom

4BGrid Accounting

guaranteed terms, such as response time and availability as well.

b). During the SLA instantiation process, SLA management services may need to see
whether an agreement can be reached with given user-specified QoS terms and business
objectives. This estimation can be implemented by SLA negoation services using
simulation tools and applying objective functions, or by the Execution Planning Service
(EPS) of EMS (see 2.3.2 for more details).

c). Once an agreement instantiated, it is returned to a user and used as a job
submission request to EMS. An SLA instance may specify job runtime specification (i.e.
computational, storage, and networking specification), total costs estimated, and other
QoS guaranteed terms.

d). EMS then plans, schedules and management the job lifecycle. Before staging a job
for execution, the EMC need to perform economic authorisation to make sure the user has
enough credits to run the job, and reserve the estimated costs from the user’s account.

e). On the completion of the job, a job usage record is generated and fulfilled with the
actual resource usage information.

). The accounted resource usage is then fed into economic services for charging and
billing purpose.

g). A user then can view the billing information through economic services.

Services

{c) Job submission fe} Record Usoge

=
2
Q
=
3
o
g
=]
i
e
Q
=
=)
3

Figure 3.2: Job submission workflow of economic-aware Grid environment

4BGrid Accounting

3.3 Accounting Model

As illustrated in Figure 3.3, the Grid accounting process commences from metering
and logging usage information of a particular resource or service. These pieces of usage
information are then fed into the collection process and composed into well-formatted

usage records.

=
.f_r]n'.br s&h
Resource %ﬁﬂn

Usage
Metering

Usage Usage
data Record

Usage Application

Collection

Figure 3.3: Abstract Accounting Processing Model

3.3.1 Usage Metering

As discussed in section 3.1, Grid accounting can be roughly divided into two
categories, resource accounting and service accounting. Since resource accounting is
resource-oriented, it is possible to define standard measurable metrics of a specific type
of resources, such as CPU cycle time of computational resources and disk spaces of
storage resources. The standardisation of usage metrics is helpful to ensure data
interoperability between different accounting systems. Service accounting differentiates
from resource accounting in that it is domain-specific. Metric definitions of a specific
application domain are most likely to be different from definitions of another. Besides,
service providers of an application domain may specify various usage metrics according
to local accounting purposes. In this sense, service provider may define different metrics
of services of same application domain making it hard to standardise service accounting

metrics.

4BGrid Accounting | 64 |

The metering process can be triggered in two patterns: the passive pattern and active
pattern. As with usage scenarios of “usage policing” (section 3.2) and “QoS-enabled
resource management” (section 3.4), usage information is required to be metered in real
time during resource utilisation or service invocation. Under this circumstance, the
metering process of an accounting system is triggered by high-level services, therefore
known as the passive metering. For other cases when real-time usage information is not
critical, metering process can be scheduled to parse resource/service usage actively
during a period of time. This pattern of usage metering, known as active pattern,

periodically scans resource/service usage information by parsing system log files.

3.3.2 Usage Collection

Once usage has been metered, pieces of usage information are to be gathered by the
collection process and formatted as usage records. A usage record is a well-formatted
representation consisting of a list of usage metrics targeting a particular Unit of Work
(UoW), ranging from finest-grained batch jobs to coarse-grained service invocations. The
collection process at coarse-grained level involves an extra aggregation process, which

summarises usage records of atomic batch jobs related to the service invocation.

As metering process, the collection process has two accordingly process patterns as
well. Aligned with active metering process, collection process can be scheduled in as a
“cron” job, which periodically consumes the output of metering process and generates
usage records. Active collection process normally involves a separate data persistence
layer that saves usage records. Alternatively, the collection process can be invoked
passively by high-level applications to generate usage record in real time. The passive

collection process caches usage records in memory only.

3.3.3 Classification

Based on two dimensional factors, the triggering pattern of the metering process and
granularity of UoW, accounting models can be classified into four categories (Figure 3.4)

as follows:

4BGrid Accounting

Fine-grained active accounting

In the fine-grained active accounting model, the metering process is scheduled to
periodically parse and generate usage records at atomic UoW level.

Fine-grained passive accounting model

The metering process of the fine-grained passive accounting model is triggered by
a third party to generate usage records at UoW level. For example, a user may be
interested in knowing the current resource usage status of a long-running job to
ensure there is enough quota left until job completion.

Aggregate active accounting model

The aggregate active accounting model automatically meters usage information of
all UoWs, both completed and running UoWs, and generates summarised usage
records only.

Aggregate passive accounting model

The aggregate passive accounting model generates summarised usage records only

when a high-level request triggers the metering process.

m - =

Fine-grained i
E Brs Aggregate Passive
; Passive T
o Accounting
=
@ |
=
% Fine-grained Aggregate Active
= Active Accounting Accounting

 J

UoW granularity

Figure 3.4: Accounting model classification

3.4 Standards

There are two accounting-related standards proposed by OGF Usage Record and

Resource Usage Service working groups to ensure data and service interoperability

between accounting systems.

4BGrid Accounting

curce Properties Resource Extension Framework
Machine Name Queue Host
I value Phase Resource Consumable Resource
wvalue . ~value
. . val
:description :description -description :‘a! u.plmn walue
:primary -pt units “units
Submit Host Project Name “description
. value Volume Resource
f;‘;l,:_i i dacnphon wvalue Resource
- «description ~alue
n sstorage units : o
n
User Properties
User Identity Jab Proparties
-global user name n
Jocal user id Record Definition Job Identity StartTime
suser key info. R I ldent -Global job id ~value
“local job id :description
record Id : processid[]
create time
creator key info
Job Name End Time
¥ B 1 1 1 value value
Charge U —.p.._ description :description
value 1 1 ‘1 1 1
sdescription
“unit
formula
n
Usaga Properties
CPU Duration Wall Duration Dick Memory
wvalue ~value wvalue wvalue
slescription - . “units ‘units
:description
:description :metric
description
Node Count Swap Network
wvalue “I"'E_ . wvalue
-gescription -description -description
‘metric ‘metric “metric
Type -phase unit Processsors
Storage unit walue
:description
Time Instant Service Level Time Duration -metri :
wvalue wvalue wvalue “consumption rate
type :description type

Figure 3.5: OGF Usage Record Information Model

4BGrid Accounting

3.4.1 Usage Record Format

As discussed in section 3.3, usage metric definitions vary from accounting systems to
accounting systems depending on local deployment requirements and local accounting
polices specific resource or service providers. In order to enable data interoperability
among independently developed accounting systems, extensive work has been done by
OGF usage record working group on defining standard usage metrics and representation
format. In 2003, a usage record (UR) format recommendation specification [137] was
released and defines a set of well-defined usage metrics and XML format for
representation of computational usage of a single batch job. From the information model
demonstrated in figure 3.5, the usage metrics defined within UR consists of batch job
properties, job owner or user properties, resource properties, computing related usage
properties, economic properties, and an extension framework for definitions of custom
metrics or properties. These usage metrics are collectively to be represented as a single
usage record, with a global unique record identity and other common properties, such as

creation timestamp and creator of the usage record.

3.4.2 Resource Usage Service

Another accounting-related draft specification, the Resource Usage Service (RUS)
proposed by OGF RUS working group, enables service-level interoperability between
different accounting systems through a set of core Web service interfaces. These service
interface definitions enable sharing and manipulation of standard OGF UR instances in a
standard manner. Rather than providing a monolithic solution to Grid accounting, the
RUS is intended to be implemented to support either active or passive accounting models.
Since current RUS specification depends on the OGF UR standard, it only allows

accounting at atomic level, the batch-job level.

Apart from core functionalities as defined in current RUS specification (version 1.7)
[138], the RUS working group has a clear roadmap (figure 3.6) for advanced features
including server-side aggregation and hierarchical deployment. It is expected that these
advanced features would enable four accounting models and resource/service accounting

in a standard manner.

4BGrid Accounting

Openg?urum
0GSA - Resource Usage
Service (RUS)
Roadmap
version 1.00 (M.Riedel)

I,‘---Currern Implementationg -~

pr—

WS |- Basic Profile 1.0

S0AP 11
WsDL1.1
upDI2.0

XML 1.0

,-

/

/
indevelopment process
’

: - Emerging Standards Independent ----...

--Considered Implementations -

',f---Considered‘ pl ions

idered Implementations -

—

o WS - | Basic Profile v smmsssnse.

. WS - Resource Framework ..,

L+ W5 - Management Convergence ...

OGSA-RUS
stack not relies on
any particular
emerging standards
connection technology
or

XML Schema

HTTP 1.1

It

WS | - Basic Profile 1.0

WS - Management Convergence

SOAP 1.1 | | WS - Resource | | WS - Transfer \
WSDL 1.1 | | WS - ResourceProperties | \ WS - ResourceTransfer \
UDDI2Q | [WS RecoussLieime | [WS Eventing \
AML 1.0 | | WS - SenviceGroups | \ WS - Eventiatification \
XML Schema | | WS - BaseFaults | | WS - Enumeration ‘
HTTP 1.1 | | WS- MetaDataDescrptor | | WS- ResourceEnumerstion |

Figure 3.6: OGF-RUS Standardization Roadmap, from [138]

3.5 Accounting Systems

There are many operational grids having accounting systems developed and deployed,

some of which are standard compatible while others provide custom solutions. The

interoperability, however, has received increasing importance in accounting among grid

environments, and contributed to more and more standard non-compatible solutions

transiting to be standard compatible. A list of accounting systems (Table 3-2) developed

by production Grid projects is reviewed in this section.

4BGrid Accounting [69 |

Table 3-2: A List of Accounting Systems of Production Grid Projects

An accounting tool used in the LCG
APEL EGEE/WLCG project, and is a part of the gLite STFC RAL
middleware

DGAS (Distributed Grid Accounting
System) previously known as the Istituto

DataGrid accounting system was Nazionale di

DGAS EGEE .) o
developed within the EU DataGrid Fisica Nucleare
project and is currently being re- (INFN)
engineered by EGEE and OMII-Europe.
SGAS (SweGrid Accounting System),
developed for SweGrid, is a Java
)) The Royal
implementation based on OGSA)
)) .) Institute of
SGAS SweGrid architecture that is now integrated as a
) .] Technology
Grid service in Globus Toolkit 4. SGAS
. . (KTH)
has been used in NorduGrid as a standard
accounting service.
The UNICORE accounting system is an
UNICORE _
) OMII-Europe component that provides a ~ Forschungszentr
Accounting UNICORE))))
) WS-RF compatible RUS implementation um Juelich-FZJ
service

for real-time usage monitoring.

Gratia is the Grid accounting system SLAC National

Open Science being developed for Open Science Grid, a Accelerator

Gratia
Grid scientific Grid project funded by National Laboratory and
Science Foundation Fermilab
User . An accounting service developed by UK
. UK National . i) . Manchester
Accounting)) National Grid Service project for o
Grid Service University

System reporting resource usage at user level.

4BGrid Accounting

3.5.1 User Accounting System

The User Accounting System (UAS) [139] deployed within most National Grid
Service (NGS) sites in UK was originally designed for the Market for Computation
Service (MCS) project [140]. The UAS aims at metering and collection of usage

information from computational centres around UK.

As illustrated in figure 3.7, the system is composed of two major components for
usage metering, the Batch2UR and JBMDB, both of which reside at resource provider
site. The JBMDB module is deployed as a “cron” job and scheduled to generate global
job-user identity mapping information daily by parsing GRAM log files. Batch2UR
component is deployed at Local Resource Management System (LRMS) node and meters
usage information on completion of a batch job and compose OGF URF instances that are
then fed into the centralised RUS service instance running at Manchester site, through
RUS client interfaces. The RUS service also renders and store received URF instances
into Oracle Relational Database Management System (RDBMS) with custom relational
data model. Metric mappings of this relational data model are given in the Table A-1 of
Appendix A. The data schema which are summarized and synchronised on per user basis
to Oracle database maintain by Grid Operation Service Centre (GOSC) at Rutherford
through Oracle synchronisation protocol. User summary usage information is used to
enforce usage policing against allocated quota. A Web portal is also provided and allows
user to query how much guota remains so that users can plan resource usage before job

submissions.

<NGS Site> ~Manchester Computing Centre =

. Service Container
Gatekeeper -

service

RUS iw
-

£
------ >| RDBMS

]
jbmdb |- >

<<Oracle Synchronisation protocol>>

=GOSC=

<<deos>>

Computing Node

Web server

H Wser Accoun! tE]]
B G R Management | ______ RDBMS

System

v

£]
RUIS client

£]
Batch2UR |~ >

Figure 3.7: NGS User Accounting System Deployment Diagram

4BGrid Accounting

3.5.2 Accounting Processor for Event Logs

Accounting Processor for Event Logs (APEL) [141] is the accounting system
developed by the WLCG project, and aims at streaming metered resource usage
information from participant site to Grid Operation Centre (GOC) at Rutherford Appleton
Laboratory (RAL), where an aggregation process is enforced for reporting resource usage
statistics on per VO, per site, and per month basis.

<Gnd Operation Centre
<WLCG Site>
:Gatekeeper ‘R-GMA Server
Koz £ n & f]
GKlog 1| CAT1T7| RDBMS RDBMS
processor 2 : —
R-GMA Server 'z : a |
I Ea Lo aggregator b0
] P2 = E A
: £ : g =
:Batch System ;-------‘--? RDBMS g g;% é
i — [RGMASD Ly viz. =
Batchlog € 1} s Publisher vig
proceszor v . i
]y Join <CESGASite> |3
N processor t
(GIIS ‘Web server i
‘ v
g Accotntingg |]
APl Furtal ' l RDBMS

Figure 3.8: WLCG Accounting Processor for Event Logs (APEL) System Deployment
Diagram

As illustrated in Figure 3.8, APEL system comprises a variety of log processors, which
are scheduled as “cron” jobs and aims at meter resource usage by parsing log files
produced by different runtime components, batch systems and Globus gatekeeper in
particular. A site-level Relational Grid Monitoring Architecture (R-GMA) [142] server is
also deployed at site level to cache metered usage data and compose usage records on per
batch job basis in WLCG accounting schema [143] by a lightweight process, the join
processor. Metric mappings between WLCG accounting schema and standard OGF-UR
schema are outlined as illustrated in Table A-2 at Appendix A. The join processor is also
required to contact a site-level information service, the Grid Information Index Service

(GIIS), to look up performance for the computational resources where jobs were executed.

4BGrid Accounting

This performance information is to be used for normalisation and is of particular
importance when dealing with VO applications that run over heterogeneous resources.
Job usage records of a particular site are then published through R-GMA protocol and
archived in a centralised relational database maintained at the Grid Operation Centre in
Rutherford Appleton Laboratory (RAL), where job usage records are aggregated to a
separate summary usage database. Aggregate usage information is synchronised to
database at Centro de Supercomputacion de Galicia (CESGA) site in Spain and accessible

by end users through a graphic front-end Web portal.

3.5.3 Distributed Grid Accounting System

Distributed Grid Accounting System (DGAS) [144] is another grid accounting tool
developed by EGEE project and widely deployed at participants sites involved in both
EGEE and WLCG projects. DGAS is targeted at providing job-level resource usage

metering in a client/server infrastructure.

<Resource HLR~ <DGAS-RUS>
<EGEE Site~ “Web server Service Container
claemong: g RDBMS ©]\ XML DE

A

R

; ransaction®] £]
Computing Element CUT Manager | RUS service

£y

GRAM sil.,mm,wm,] . §<<soap>>
gatekeeper ¥ P .]

Usger HLR>

. . &1 s
Granduia 0 &

a ! 3

LRMS ~ [----memeeeeesi i h i

I: “Web server ,>—RUS { i

; — a1 | client 11T

i — l RDBMS | ——
1=

Figure 3.9: Distributed Grid Accounting System Deployment Diagram

The accounting process of DGAS is enforced by two main components, as
demonstrated in Figure 3.9, the lightweight usage meter, Gianduia, and the distributed
Home Location Registry (HLR), which acts as a repository for usage information related

to registered users or resources. Each site has a Gianduia meter deployed and publishes

4BGrid Accounting

metered usage information to a registered resource HLR, from which usage information
can be retrieved for both individual jobs and in aggregate/summary form on per CE basis.
Metric mappings between relational accounting schema of resource HLR and standard
OGF-UR schema are given in table A-3 of Appendix A. A transaction manager keeps
listening to incoming job usage records and is triggered to forward resource-specific job
usage records to User HLR, where additional user information is to be added into job
usage records. It is also understood that a preliminary RUS prototype, known as DGAS-
RUS [145], is being developed for the DGAS system. The RUS interface will enable
insertion and persistence usage records from user HLR through RUS client interface into

a centralised XML database.

3.5.4 SweGrid Accounting System

The SweGrid Accounting System (SGAS) [146] is an accounting system developed
the national Grid test-bed in Sweden, and has been integrated as accounting service of
Globus Toolkit.

=SweCnd Site> ‘Service Container

al---=

XML DB

.-

LUTS

{Computing Element

Account]
Manager

Service Container

&=
el

Bank
| Service

—...»| RDBMS™

Figure 3.10: SweGrid Accounting System Deployment Diagram

As shown in Figure 3.10, the usage metering is realized through the Job Account
Resource Management (JARM) component, which is responsible for providing the

accounting system with information from local batch systems. Each user requires a valid

4BGrid Accounting

account with credits in a banking service. When submitting a job, the JARM computes a
maximum cost and reserves that amount of credit on the user’s account through the
banking service. On completion, the JARM reports the actual resource consumption in
the form of a usage record and the associated charge is made to the user’s account. The
usage record is then populated into the Logging and Usage Tracing Service (LUTS), a
RUS instance, for centralized storage. Any query on job usage information is directly sent
to LUTS via an authorization service that protects usage data from invalid access. The
SGAS exhibits a full standard-compatible solution for Grid accounting. The only
extension, as Appendix A.2.3, to URF proposed within SGAS also highlights the

importance of VO information.

<8G5 Site=
‘Head Node _
g] [$J 4 <<506FJ}} . L‘Ollt}ch.ﬁl'g_' e--s RDBMS €]
PSACCT ‘ Probe
: A File 2]
* - T Syste
File | O] B
Syatem “o# Translator | i
-)?‘ —'._
- Web zerver
Work Node Report &) 4
M E Fortal
‘I’SA(_"(ITL ereneey File &
| system

Figure 3.11: Gratia Accounting System Deployment Diagram

3,55 Gratia

The Gratia [147] is the accounting system being developed within OSG project. The
current implementation of Gratia accounting system is composed of three functional
components as illustrated in figure 3.11: the probe, collector and publisher. Usage
information of a cluster is kept being logged by a utility script, the PSACCT, for
monitoring process activities. At head node, a translator process is running periodically

and merges log information of both head and work nodes into complete usage records,

4BGrid Accounting

which are fed into the probe component and published into remote collector machine
through well-defined Web service interfaces. These usage records are stored centrally in a
relational database of the collector machine. Metric mappings between Gratia accounting
schema and standard OGF-UR schema are listed in table A-4 of Appendix A.

3.5.6 UINCORE Accounting System

The accounting system in the UNICORE project provides a RUS implementation
based on WSRF profile [50]. The RUS is integrated within UNICORE infrastructure
aiming at exposing usage records generated at the batch system level in real time.

As shown in figure 3.12, the UNICORE accounting system is composed of two
components: the URF generator and RUS endpoint. A graphic front-end client, LLView
[148], is provided for users to get real-time site-level resource usage on demand. Once
triggered, the LLView client interacts with RUS service endpoint and query through the
“RUS::extractUsageRecord” interface. Rather than maintaining persistent resource usage
information, the RUS service endpoint interrogates the usage record generator and returns
resource usage information of queued and active batch jobs. Since current RUS
implementation however does not enable data persistence, it is not possible to provide

historic usage statistics.

SUNICORE Site
Service CConfanen et
RIS D A
’ £ § LINiew
=]
1 o ' r
; LY RS L. -]
TAI El i lient [~ !
UEF &
eneratar .
Bt enior
=
LEMS {l
acue and @] |
Lo St o
AFI

Figure 3.12: UNICORE Accounting System Deployment Diagram

4BGrid Accounting

3.5.7 Comparison

As detailed comparisons summarised in Table 3-3, existing accounting systems
employed in the production Grid projects are implemented in heterogenous ways with
project-specific purposes. Most usages of these accounting systems fall into the four
usage scenarios discussed in section 3.2, except the UNICORE accounting system which
is used for site-level usage monitoring purposes. Although some accounting systems are
used for the scenario, for example both DGAS and SGAS designed for realisation of Grid
economic model, theire accounting process are different from each other. DGAS uses
active metering pattern that parses job usage information mainly for charging and billing
purposes, while the metering process of SGAS is triggered by EMS to perform economic
authorisation before staging a job request to local resources. Besides these accounting

system uses different data presentation format and data persistence strategies.

Table 3-3: Comparison of Grid Accounting Tools Employed In Production Grids

Data Persistence Standard Compatibility
Accounting System Usage Scenario Model

Schema Type | Storage Type OGFRUS
. . Fine-grained/ Relational
APEL Statistical Reporting : SQL NO NO
Agpregate Active Database
. . Fine-grained Relational
DGAS Economic Modelling) SQL NO NO
Active Database
: : Fine-grained XML:DB
SGAS Economic Modelling . XML . YES YES
Passive eXist
UNICORE Accounting _ Fine-grained Relational
. Usage Monitoring . XML YES YES
service Passive Database
Fine-grained .
Relational
Gratia Statistical Reporting /Aggrepate SQL NO NO
) Database
Active
User Accounting - Fine-grained Relational
Usage Policing) SQL NO NO
System Active Database

Given their heterogeneous essence, it is hard for these accounting systems to
interoperate with each other to fulfill the requirements on sharing accounting data across
Grid infrastructures, unless two accounting systems exhibt common service interfaces and
exchange accounting data in a common format. Standardisation therefore is of increasing
importance in this sense. However standardisation is a time-consuming process because it

is difficult to define a single standard to accommodate various and evolving accounting

4BGrid Accounting

requirements. Standardisation is further complicated by conerns from additional re-
engineering tasks while not breaking existing accounting processes. At the end of the
review, there are only two accounting systems, SGAS and UNICORE accounting system,
which provide standard compatible solutions to both OGF UR and OGF RUS.

3.5.8 Others

Having recognised the importance of accounting service in Grid systems, there are
many commercial Grid products that have custom accounting solutions implemented. The
Accounting and Reporting Console (ARCo) [149] of Sun Grid Engine (SGE) [150], for
example, enables users to gather live reporting data from the SGE as well as storing
accounting data for historic analysis in the reporting database. Besides aforementioned
accounting systems developed for large-scale distributed Grid systems, there are also
many cluster and High Performance Computing (HPC) systems that have accounting
systems embedded. Such examples as Gold Allocation Manager [151] is an open source
accounting system designed to dynamically interact LRMS to provide job quotations at
job submission time, hold on accounts during job execution, and charge on completion of
jobs according to actual resource usage. SAFE is another example accounting tool
developed by EPCC for accounting purposes of national HPC services HPCx [152] and
HECToR [153] as well as local EPCC machines. A Java-based web interface to SAFE
provides graphical usage monitoring and allows Principal Investigators to administer their

projects’ users and resources.

3.6 A Generic Accounting Framework

Based on reviews of existing accounting tools, both standards compatible and
incompatible, there are several common issues identified. First of all, these accounting
systems are implemented in a Grid or project-specific manner, making it hard to be
reused across project domains. Interoperability is another challenge in the sense of
lacking a standard way of mapping custom usage metrics to those standardised within the
OGF-UR schema. Custom metric definitions using OGF UR extension framework further
complicates the interoperability issue. As Table A-5 given in Appendix A, most

accounting systems have similar metric extensions defined in different way. Although

4BGrid Accounting

there are some standard-compatible accounting solutions available, such as SGAS,
UNICORE accounting system and preliminary implementation of DGAS-RUS, a native
XML database is widely used to save OGF usage records instances natively, making it
hard to implement a standard compatible accounting solution especially for those that use
relational database for data persistence. There are also several other non-functional issues
that should be considered when developing an accounting system for large-scale
distributed systems as the Grid, including responsiveness, flexibility, fault tolerance, and

security.

In order to avoid duplicate efforts and provide an integrated and widely adopted
approach to accounting in real production Grids, a generic accounting framework is
proposed to JISC as one of the outputs of our review efforts described in this chapter. As
Figure 3.13, the proposed framework abstracts basic functionalities of an accounting tool

based on a Client/Server (C/S) infrastructure.

Client Server

Resource Usage Service Instance

UR Generator RUS Operation Logics
Access Control

OcF (XACML, VOMS, UR Data Sessi
UR p CAS, PERMIS,...) schema Access Manzssg':ent
Mapping Object L

Lhent SOAP Configuration Manager

Figure 3.13: Generic Accounting Framework (Component Architecture)

At the client-side, a general-purpose UR generator component is defined and used to
meter accounting metrics and compose accounting data in standard UR format. The UR
generator component exhibits an abstract layer and allows different implementations
upon usage meters of underlying systems. Accounting data instances are then streamed

into a RUS service endpoint through RUS client interfaces.

The RUS service endpoint at server side consists of a set of abstract functional
components to be added as required within an RUS implementation. The access control
module acts as a gateway to RUS logics and protects accounting data from unauthorised

4BGrid Accounting

accesses. A RUS service must provide an implementation of this module and apply local
security policies to guarantee data privacy. A RUS implementation may choose to
implement one or more RUS logics or operations. By implementing two optional
modules, the UR mapping module and Data Access Object (DAO) module, a RUS
implementation can be developed without changing existing accounting data model and
persistent storage types. In order to ensure system QoS, a session is required to maintain

the accumulation of transaction information on per user per transaction basis. A RUS

implementation may define their own data structures inside a session for various purposes.

When a user query a huge amount of accounting data, for example, the session can be
used to maintain an enumeration context and allows user to iterate query results through
multiple interactions. A session normally has a limited lifetime. The session management
module is thereafter defined and responsible for lifetime management of sessions. Finally
the configuration manager component is used to provide configuration facilities for a

RUS system.

3.7 Summary

This chapter investigated the philosophy of accounting in the Grid environment, and
reviewed the state-of-art standardisation and development efforts on accounting systems
of operational Grid projects and commercial Grid products. However, these accounting
systems were developed in a variety of ways depending on Grid-specific understanding of
accounting and customised high-level usages. Having identified the importance of
interoperability for sharing usage data across accounting systems in particular, there are
an increasing number of accounting systems being developed or migration to be
compatible to OGF UR and OGF RUS standards. Early adoptions of these standards,
however, are implemented upon specific accounting systems, making it hard to be reused
for others. In order to enable a consistent solution and avoid duplicate efforts, this chapter
proposed a generic accounting framework with identified key features, which ensures
interoperability while allowing maximum customisation to accommodate local
deployment requirements. This proposed accounting framework forms the basis of the

rest chapters of this thesis.

5BDesign of Resource Usage Service for World-wide LHC Grid E

Chapter 4

Design of Resource Usage Service for World-wide

LHC Grid

According to the Memorandum of Understanding (MoU) [154], participating sites of
the World-wide LHC Grid (WLCG) project are required to provide resource usage or
accounting information to the Grid Operational Centre (GOC) for the purpose of overall
project operation and management. As a composite Grid environment, the accounting
process of WLCG is currently empowered by four accounting systems, APEL and DGAS,
SGAS and Graita developed by WLCG/EGEE collaborative project, Nordic Data Grid
Facilities (NDGF), and Open Science Grid (OSG) project respectively. These project-
specific accounting systems were designed and implemented based on project-specific
accounting requirements and purposes, therefore lacking interoperability and portability.
In order to automate accounting process in WLCG, three transportation methods are
being introduced for streaming accounting data metered by Grid-specific accounting
system into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting
data are aggregated and accumulated throughout the year. These transportation methods,
however, are introduced on per accounting system basis, i.e. targeting a particular
accounting system, making it hard to customise. This chapter describes a standard-
compatible solution, the WLCG-RUS as an alternative method for sharing accounting
data, while ensuring interoperability, portability and customisability. Relevant
publications related to this chapter have been published in[155][156][157][158].

5BDesign of Resource Usage Service for World-wide LHC Grid

4.1 Introduction

Accounting activities within WLCG requires collection of accounting data from all
participating sites in EGEE and WLCG projects as well as from sites of other
collaborating Grid projects into a central accounting database in GOC at RAL. These
accounting data are to be processed offline to generate statistical summaries that are
reportable through EGEE/WLCG accounting portal[159]. There are two main accounting
processes introduced within EGEE/WLCG accounting framework[160]: the job
accounting and aggregate accounting. The job accounting process generates accounting
records describing the resources consumed by a single executing job. Job accounting
records are composed at sites and streamed into a central database at GOC, where offline
aggregate processes take effect to summarise resource usage consumed by a collection of
jobs. These two types of accounting processes fall into categories of the “fine-grained

active accounting” and “aggregate active accounting” models as classified in section 3.3.3.

Job accounting process in WLCG is mainly enforced by accounting systems of
EGEE/WLCG and other collaborative Grid projects. These project-specific accounting
systems are being deployed at sites to meter and generate accounting records in
heterogeneous formats. In order to share job usage records within the GOC centre, there
are three transportation methods (Figure 4.1) introduced, each of which was designed to
provide accounting system-specific solution. For most EGEE/WLCG sites, APEL[141]
has been deployed as one of main accounting systems, which generates accounting
records in WLCG accounting schema. The job accounting records metered at sites by
APEL therefore can be automatically synchronized to the centralised job accounting
database maintain at GOC centre through R-GMA[122] protocol. Another accounting
system widely deployed at EGEE/WLCG sites is the DGAS [144], which generates job
accounting records in a format different from WLCG accounting schema. Before
streaming accounting data to GOC, DGAS accounting records are required to be
transformed into WLCG accounting data format. A lightweight component,
DGAS2APEL, transforms DGAS accounting records into the WLCG accounting data
format and streams them into GOC through R-GMA protocol. The third and most
straightforward transportation method is called “direct SQL insertion”. Rather than
automating data sharing process, this method requires extra administrative efforts to
manually populate accounting records by executing Structured Query Language (SQL)

insertion statement. The “direct SQL insertion” method has been widely adopted by sites

5BDesign of Resource Usage Service for World-wide LHC Grid

from collaborative Grid projects, OSG and NDGF in particular, to share aggregate

accounting data only applying to local security policies. An offline aggregation process is

scheduled at GOC and summarises resource usage data daily.

There are three accounting data formats, collectively known as WLCG schemas[143],

defined in WLCG for data persistence on relational databases, the WLCG job record

schema, anonymous aggregate record schema, which represents summarised resource

usage information on per site, per VO, per month, and per year basis, and user aggregate

accounting record schema, which represents summarised resource usage information on

per site, per VO, per user, per group per role, per month and per year basis.

=WLCG/ESEE Siter = OES GO =
o e rOEMT Cratia ©
Host] RDE
e ok
ackmii ator
I !
| o |
]
| _g |
I <WLCT GOC> '_g___,
| 13
- — - = [= (o] 3 a2
— [HAPEL -~ " |rRDBME [E Z |Z| &
r | offlise 1 E
l a‘égeganm i | 'E_. WL C G user
= £ ? T]
| 2 FDEMS [T — — — =|RDEBM 5. SIMIMATY 1154k
E - | g Tepos bory
! |
I WLCGE job usage | [
_____ | Tepos kory |
I
' |
= WLCOGEGEE Gites | ke d GO
ol o —j;
RDEMS D ek admirdsirator
[
ol
noas o Host L DF S0A3

Figure 4.1: Current EGEE/WLCG accounting deployment scenarios with three

transportation methods introduced in WLCG accounting

5BDesign of Resource Usage Service for World-wide LHC Grid

This chapter describe the design and implementation details of WLCG-RUS, as an

alternative, but standard-compatible method to share accounting data.

WLCG-RUS System

delete & user
account wigw User
3 account (=)
ol
g
7
é\) R 0BT
S 4_1.1'(@1(?; =

<<include>_>_ ot o

-
h

Uszer Account
Maragern ert

0
A

Systemn
Administrator

activate &
. host account
& o~ delete hosts
(g\\ip - & e T
s —~
.L’f’ -~ @)5 /

255

Q Host Accourt _ _=<jhclyde== _ _ _ edit host
| Managem ert accourt {5
/\ A
A —_
. by
Site Manager gy

Ty

-
-
—
N
reigster & host
accourt

vieww host
account [£

Insert Anonyrmous
Summary usage

records

Ty
(tg?
Huost iy, & £
i jfcvm =
Insert User
<<E}(t9ng_3>3_ Surnmary usage
records
S ™
K "
%-& -

Ly

f heert Job
U=age Record

Figure 4.2: The main use cases that the WLCG-RUS is expected to implement in

conjunction with the actors generalised from existing WLCG accounting scenarios.

5BDesign of Resource Usage Service for World-wide LHC Grid N

4.2 Requirement Analysis

This section discusses the requirements that shaped the design of the WLCG-RUS
system.

4.2.1 Use Cases

In order to identify system design requirements, a use case analysis was carried out
based on three generalised roles in the context of existing WLCG accounting: the site
manager, site hosts, and system administrator. Detailed use cases are illustrated in Figure
4.2 and listed in Appendix B.1.

Site manager

A site manager is the manager of a participating site, normally an institution or
research centre, in the provision of the WLCG with a Tierl and/or Tier2 computing
centre. An actor taking the role of site manager should hold a valid X.509 certificate. A
site manger in the context of WLCG-RUS system has the privilege to register one or
more hosts to the WLCG RUS system so that these hosts can upload accounting data. A

site manger is also able to manage host account through WLCG-RUS interface.
Host

The host is the head node of EGEE/WLCG computing element and holds a valid host
certificate signed by a recognised Certificate Authority (CA). A host is able to publish
host-specific or site-specific accounting data to WLCG-RUS system only if it has a valid

account registered by owned site manager and activated by system administrator.
System Administrator

The system administrator is senior to other roles and takes the responsibility of system
management. A system administrator has views and controls over all hosts registered to
WLCG-RUS system. Besides, a system administrator takes care of user management and

role assignment. Finally a system administrator is required to have administrative rights

5BDesign of Resource Usage Service for World-wide LHC Grid

on WLCG-RUS system configurations.

4.2.2 Requirements

Capability or Functional Requirements

Based upon review of identified use cases, key functional requirements of the WLCG-

RUS system are summarised as follows.

1. Data Publishing

The key functionality of WLCG-RUS system is to provide a data publishing
mechanism through which participating sites can upload accounting data. The design of
data publishing is required to enable both fine-grained at batch job level and aggregate
accounting models, to facilitate various data sharing in the context of WLCG accounting.
In the case of aggregate accounting model, the aggregation process should be triggered at
the same time of data publishing. The design of data publishing facility in WLCG-RUS
system is also required to support various aggregation strategies in a customisable manner
making it easy to adapt existing WLCG anonymous aggregate strategy, user aggregate

strategy and new aggregate strategies.

2. Host Management

From perspective of site managers, the WLCG-RUS system is required to provide host

management facilities for host registration, view registered hosts, and edit host profiles.

3. User Account Management

User management is an important functionality for system administrator. The WLCG-
RUS system is designed to provide user account management facilities for system
administrator to view user registration requests, and grant and revoke privileges to site

managers.

Interface Requirements

5BDesign of Resource Usage Service for World-wide LHC Grid [86 |

There are three different interfaces intended to be provided in the WLCG-RUS system,
the internal, external and user interfaces. The following provides a list of requirements

on interface design.

4. Internal Interface

The WLCG-RUS system must exhibit well-defined internal interfaces for
customisation and extensibility, so that new features can be implemented independently

and plugged, without affecting fundamental architectural design.

5. External Interface

The external interface is the client-side interface used for hosts uploading accounting
data through standard RUS interfaces. In this case, the design of external interface should
be command line oriented, in particular scripting language based, so that the uploading

process can be automated in a scheduled manner (e.g. cron job).

6. User Interface

The design of the WLCG-RUS system needs to provide user-friendly interfaces for

site managers and system administrators to perform management tasks.

Data Requirements

Data representation in the WLCG-RUS system is a two-folded issue. On the one hand
WLCG-RUS is intended to be deployed upon existing WLCG accounting data without
fundamental schema changes. In this sense, the relational WLCG schema must be reused.
On the other hand, when hosts upload accounting data to WLCG-RUS system, standard
and XML-based usage records are streamed as SOAP message payloads as defined in
RUS specification. A consistent set of mapping rules should be applied to transform

standard usage record instances into appropriate WLCG accounting data formats.

7. Internal Data

Accounting data uploaded from hosts must be represented in a compatible format to

5BDesign of Resource Usage Service for World-wide LHC Grid

the WLCG schemas and persistent in relational database.

8. External Data

Since WLCG-RUS system is intended to provide OGF RUS compatible solution,
usage records must be presented in OGF UR format when streaming into WLCG-RUS
system.
Security and Privacy Requirements

Security is of highest importance in the design of the WLCG RUS system in order to
ensure authenticated and authorised data sharing as well as preventing accounting data
from being compromised during network transportation.

9. Authentication

The WLCG-RUS must provide X.509 certificate based authentication. Compared to
traditional user/password authentication, the certificate-based authentication provides a
higher level of security to prevent the system from unrecognised accesses.

10. Authorisation

The design of WLCG-RUS system should provide Role-Based Access Control (RBAC)
and ensure fine-grained access control on operation and per usage record basis. The role-
based access control should also apply to host management and user management
facilities.

11. Data Integrity

Data integrity ensures that accounting data or usage records are not compromised

during network transmission from remote hosts to WLCG-RUS server.

Other Requirements

Besides the above requirements, following requirements should also be put into

5BDesign of Resource Usage Service for World-wide LHC Grid

consideration during the design of WLCG-RUS system.
12. Interoperability

The system must provide a standard compatible solution, in particular compatible to
OGF RUS[138] and OGF UR[137] standards, as a consistent mechanism for data sharing
other than introducing specific transportation mechanism to individual accounting system
as current WLCG accounting process. A standard compatible solution also ensures
interoperability to other standard compatible accounting systems in an implementation

transparent manner.

13. Performance

It is witnessed that an increasing number of sites, over 200 until now, are participating
in the WLCG project and share resource usage data to GOC. It is critically important for
the WLCG-RUS system to ensure efficient performance and serve simultaneous requests
within reasonable time.

14. Fault Tolerance

The WLCG-RUS system must be tolerant to runtime and service failures without
breaking data consistency.

4.3 Design

This section discusses the design of WLCG-RUS system architecture and details of

composite subsystem designs.

4.3.1 System Architecture

The WLCG-RUS architecture, as the deployment diagram illustrated in Figure 4.3,
consists of two subsystems: the RUS service and WLCG-RUS Admin.

The RUS service implements two RUS interfaces: the “RUS::insertUsageRecord” and

5BDesign of Resource Usage Service for World-wide LHC Grid [89 |

“RUS::listMandatoryUsageRecordElements” interfaces, through which site-specific hosts
query the mandatory element configurations and populate usage records. In order to
automate data uploading process, it also provides a command-line client that can be
scheduled to execute periodically. The communication protocols between RUS client and
service is based on SOAP over HTTPS, which ensures data integrity and mutual
authentication. On receiving a request, the RUS service endpoint delegates the request to
a sequence of runtime components for fine-grained access control on per usage record
basis, validation of received usage records against mandatory element configuration,
rendering usage record instance to WLCG accounting data format, and saving accounting
records into local relational database. In the case of active aggregate accounting, an
additional aggregation strategy is triggered during the command execution. In order to
enhance customisation and extensibility, the design of RUS services is based on a set of
loose-coupled internal components, each of which exhibits well-defined internal

interfaces.

<Sites <WLCG-RUS server=

HTTPS+504P TR
| etiers Service

il A

[} i [
RDBMS RDBEMS RDBMS

WLLE b Arimrmann Agzregae
Whage Bpprrgaie Unags Uhage
v

SR DARTaZEr

Web Container

~ Web Browser HTTPS !
c | wiesRus £ » RDBMS
T Audrin

Sysbem Admanastrabor

Figure 4.3: The Major Components of WLCG-RUS System and interactions

The WLCG-RUS Admin is a Web application that provides management facilities for

5BDesign of Resource Usage Service for World-wide LHC Grid [90 |

both the system administrator and site managers. Specifically, the design of WLCG-RUS
Admin is intended to provide three management facilities: user management, host
management, and system administration. A user becomes a site manager candidate only
when the user registers an account to the WLCG-RUS Admin system. The registration
request is queued and to be activated by the system administrator. When activated, the
site manager receives a confirmation email and can create one or more host accounts,
which are required to be approved by system administrator before sharing usage records
through RUS service. The WLCG-RUS Admin also keeps system configuration of RUS
service, such as mandatory elements as well as custom implementation of internal
components. System administrator can specify and change these system configurations at
runtime without restarting the system. Because WLCG accounting data formats are
reused within WLCG-RUS system, existing EGEE accounting portal can still be used as a

Web-based graphic interface for resource usage reporting.

4.3.2 Detailed System Design

This section describes the design details of WLCG-RUS subsystems and individual

composite components.

External Aggregate Data Representation

The design of WLCG-RUS system is intended to enable both active fine-grained and
aggregate accounting models. With fine-grained accounting model, the OGF UR is used
as the standard external accounting data representation. However, there was no standard
aggregate data format available at the design time of the system. In 2006, we collaborated
with researchers from Fermilab and CCLRC, and proposed a standard Aggregate Usage
Record (AUR) schema, which had been submitted to OGF UR working group as a draft
specification [158] for public review. This recommended aggregate usage record schema
is adopted as an external data presentation for aggregate usage records.

An AUR instance represents resource usage of more than one Unit of Work (UoW)
summarized according to a specific grouping criterion, also known as aggregation
strategy. As shown in figure 4.4, the content model of AUR reuses most of usage metrics

of URF and defines a category of aggregate properties. The common aggregate properties

5BDesign of Resource Usage Service for World-wide LHC Grid

Resoamres Propertiss

Resource ldentity
-global resource id
scluster id
site name
-urf-MachineName
urf-Queue
:urf-Host
curf:SubmitHost

Group Extension

unit
formula

CPU Duration

value

Node Count

value

-description

Time Instant

value
type

¥ User Properties
StartTime End Time User Identity
value value :global user name
-description -description -Jocal user id
-user key info.
Number of Jobs Status VOName
‘Project Name
value value -User FOAN
:description :description
1 n
1
Racourcs Bxbandon Framewark
Phase Resource Consumable Resource
Value wvalue
descnptor;l units
:phase un Jescription
Volume Resource
~alue Resource
:description wvalue
:storage units description
n
Usags Propertiec
Wall Duration Disk Memory
ke s i
ption type type
:description ‘metric
:description
Swap Network
value ~alue
‘metric ‘metric
type -phase unit Processsors
:storage unit value
description
Service Level Time Duration “metric
~value ~alue consumption rate
description type

Figure 4.4: Proposed content model of aggregate usage record schema

5BDesign of Resource Usage Service for World-wide LHC Grid

are used to represent common metrics of a usage record instance, including total number
of jobs aggregated, aggregation interval from the start time of earliest job to the end time
of the lasted job, and overall status of jobs aggregated. These common properties are
allowed to appear exactly once. User properties define ownership of aggregated jobs
within a record instance. Besides user properties defined within OGF UR, AUR
introduces additional user-related properties, Virtual Organization (VO) and Full
Qualified Attribute Name (FQAN). Resource-related properties are encapsulated within a
resource identity element, and are divided into local and global resource properties. Local
resource properties include site-specific machine name, queue name and execution host
name, which are defined within OGF UR , while global resource properties defines Grid-
wide properties such as global resource identity, cluster identity and participating site
name. User and resource aggregate properties can appear more than once within a record
instance, depicting certain aggregation strategy. The WLCG anonymous summary record,
for example, defines aggregation strategy that summarizes resource usage of jobs on per
VO, per site, per month and per year basis. For an aggregation strategy requires custom
properties not defined with aggregate properties of AUR, the grouping extension property

can be used.

Design of Resource Usage Service

In order to enhance customisation and extensibility, the design of RUS service is
based on component architecture, consisting of a set of loose-coupled and reusable
components. Each component realises certain functionality and exhibits well-defined
interfaces. These components have been designed to be loosely coupled, so that they can

be easily customised, upgraded and replaced to adapt to local deployment requirements.

As the class diagram illustrated in Figure 4.5, there are four major functional
components defined within RUS service. The “Command” component is the main
functional component that encapsulates all required information associated with
execution of RUS logic operations. A single common interface, “execute()”, decouples
completely between RUS service endpoint and various “Command” component
implementations. With a single interface, a RUS service can delegate incoming requests
to different “Command” implementations in a consistent manner. A RUS service may
chose to implement a single “Command” implementation that serves all RUS requests or

to have multiple “Command” implementations that serve individual

5BDesign of Resource Usage Service for World-wide LHC Grid

Command
{abstract}

+ abstract execufef):void

+ setAuthorizationService (service AuthotizationService)void
+ setDAO (daoGenerieDAC):void

+ setA garegateitategystrate gy A paregateltrate gy void

+ sethlandatoryElements(mes Steng] Jrvoid

+ getOperationRsult

CommandFaciory
{abstract}

+ abstract createfnsertCommand().Command

<<interfaces:
AuthorizationService:

AwthorizationServiceFactory
{abstract}

+ authorize (prinFrincipal, opld3tting, record Element) hoolean

+ abstract creafeAuthorizationService[) AuthorizafionService

<<interface>>
GenericDAQ-<T, ID=

+ fhush()void
+ cleat()void

+ getPetsistentClass(Clagsc™>

+ save(entity T) 1D

+ findByldid 1D, lockboolear) T

+ findByExample(entity. T, excludeProperties:teing|) List<T>

;

GeneticHibermaie DAO<T, ID>

{abstract}

<<interfaces>
Asaregate Strategy=T-

+ abstract geffrafegyld ():Sring
+abstract aggregate (nodes: Node[]): List<T>

DAGFacion
{abstract}

+ebstract getRecordDADY): GenericDAQ
+ abstract getRecordHistoryDAC() GeneticDAD

AggreguiirniegyFariory
{abstract}

+abstract created goregateitate gy A zaregateltate gy

Figure 4.5: Class diagram of RUS service runtime components

RUS service interfaces. The execution of various “Command” component shares

common requirements, including checking user permissions, data persistence, and

runtime aggregation. These common requirements can be realised through other three

components defined within RUS service. The authorisation service component provides

an interface for fine-grained access control over per operation and per usage record.

Different authorisation mechanisms can be applied by implementing authorisation service.

Data Access Object (DAO) component provides a higher-level abstraction upon

5BDesign of Resource Usage Service for World-wide LHC Grid Kk

underlying data persistent storage, and can be potentially implemented for XML:DBJ[161],
relational database, file systems and other storage format. Considering that various
relational databases might be used for usage record persistence, a separate DAO
component, the Hibernate [162] DAO, is also implemented by extending the generic
DAO component and places another abstraction upon heterogeneous relational database
engines. For runtime aggregation, different aggregation algorithms can be implemented
by extending the aggregate strategy interface. Each component of RUS service has an
associated factory class that creates and instantiates appropriate component instances
dynamically. These component and factory implementations are snapped together to

provide a complete solution of RUS service.

Design of Administrative Web Application

The design of the WLCG-RUS admin Web application is based on Model-View-
Controller (MVC) pattern, with models encapsulating domain-specific representation of
data, controllers representing domain-specific logics operating upon to data, and views
providing Web-based interfaces allowing end-user interactions. As Figure 4.6, the
WLCG-RUS admin Web application is intended to provide administrative and host
management facilities for the WLCG-RUS system administrator and site managers.

In order to access the WLCG-RUS admin system, a user must have a valid and
recognised X.509 user certificate, and has a valid user account. Each user is directed to
specific view according to granted role. Site manager only have access to host
management facilities, which allows host registration, exploring host status, and deleting
a host. Newly registered host cannot share accounting data or usage records through RUS
service endpoint until its registration request is approved by the system administrator. A
site manager only has management authority of owned hosts. System administrator has an
administrative view, which provides user management facilities and host management
facilities. A system administrator can create a new role, grant a role to registered users,
revoke a user, publish system announcements, and have full control over all hosts
registered by site managers. Another important usage of WLCG-RUS admin system is to
specify RUS service configurations, including factory of RUS service functional

components and mandatory elements for validating incoming usage records.

95

5BDesign of Resource Usage Service for World-wide LHC Grid

Controller r - - - T 7 7= oo T -
1
1
] £] g1
-—_—_—_———— - - - - = = - LostPasswd User — —; |announcement Host |
Controller Controller _ Controller Controller
K R 5
1 |) |
AppConfigg] L Register 211 | Login B Role]
= ™ controller 1| controller || : Controller ! r Controller
1 1
| +
| ! ! 1 1
! |
1 I ! 1
1
! I
B L smess soold
1 1
1
1

administrator

site manager

Figure 4.6: WLCG-RUS Admin MVC Model

!
User
AppConf] ﬁﬂ

5BDesign of Resource Usage Service for World-wide LHC Grid [96 |

4.4 Implementation

The implementation of WLCG-RUS system is based on Service-Oriented Architecture
(SOA) in the profile of Web Service Interoperability (WS-I) version 1.2[163]. The
development of RUS service makes use of Apache Axis version 1.4[164] as SOAP engine,
which has proved to be a stable and reliable system, and is widely used for commercial
application servers. Java was chosen as the language for the system because it is platform
independent and has well-defined design patterns. The development of WLCG-RUS
Admin is based on Grails[165], an open source Web application framework, and ideal for
developing MVVC Web applications. The Grails leverages the Groovy[166] programming
language, which is based on Java platform as well, making it easy for communication
between RUS service and WLCG-RUS Admin. By using Grails, the WLCG-RUS Admin
and RUS service are packaged as a single software release. This section discusses
implementation details of WLCG-RUS system and its subsystems.

kgrecoid | leqeumrecords - kegusersumrecard -
Y iy VAR i ExecutngSite; VARCHER(255) § ExecutingSite; VARCHAR (50)

@ Executingsite: VARCHAR(S0) ; CEUseryC VARCHAR(SD)

5 LocallobiD: VARCHARIEO) ¥ LCGUservO: VARCHAR(255) (] L_ (50

@ LEGkbiD; vmcw&téssj ¥ Month: INTEGER(11) ¥ LG kserID: VARCHAR(235)

o LocalkerlD: VARCHAR (50) i Vear: INTEGER(11) 1 Group: VARCHAR(30)

@ LEGRKeriD:; VARCHAR(ZSS) @ hurnber0flobs: INTEGER{11) ¥ Rola: VARCHAR(30)

& LCOUserVO: VARCHAR(295) & SumCPL: DECIMAL(19,2) ¥ Month: INTEGER(11)

v BagedTime: VARCHAR(0) & NormEUmCPU: DECIMAL(19,2) i Year: INTEGER(11)

o BasaCouiTme: VARCHAR(30) . & SUMWCT: DECMAL(19,2) & MNjobs: INTEGER(11)
e RS CEIARE 1y ¢ SOVTEALSD)

3 StartTeme: VARCHAR(3D) @ RecordStart: DATETIVE \ NormSumCPU: DECIMAL(19,2)
3 StepTmme: VARCHAR(3D) ¢ RecordEnd: DATETIME |9 SumWCT: DECMAL(192)

& StatTarelUTC: VARCHAR(30) @ MormSumWCT: DECIMAL(19,2)
& StopTMeUITC: VARCHAR(3D) | 1 & RecordStart: DATETIME

& StatTimeEpoch: INTEGER(11) & & RecordEnd; DATETIME

@ StopTmeepodh: INTEGER(11)

& ExecutngCE: VARCHAR(255) 11

@ Memeryiled: INTEGER(11) nemecced_modfication_ history v

e s # RUSRecord_ID: BIGINT(20) reccecbetary -
» SpecFioat 2000: INTEGER(11) & Modified_By: VARCHAR(255) N ¥ RUSRecord_ID: BIGINT(20)

& EveritDate: DATE @ TmeStamp: DATETIME @ UBAGE_RECORD_ID: WARCHAR{2SS)
o EvertTima: TIME W POSITION: INTEGER(11) 0 @ Stored_By: VARCHAR(ZSS)

@ MegremantDate: DATE |3 ABORRDARRERARERC @ TimeStamp: DATETIME

& M remont Timi: TIME | '] ;,..h:p,-_.-,::,:_-__“_'

Figure 4.7: Internal data model of RUS service reuses existing WLCG accounting

schema with additional record history model

5BDesign of Resource Usage Service for World-wide LHC Grid

4.4.1 Resource Usage Service

External-Internal Data Mapping

In order to ensure ease of uploading accounting data through standard RUS interface,
a data mapping mechanism is required to enable dynamic transformation from external
data represented in standard OGF usage record and aggregate usage record formats into
corresponding WLCG accounting formats (Figure 4.7). The mapping rules of OGF UR
and WLCG schema have been discussed in section 3.5.2 and given in Appendix A-2.
Similar mapping rules are also introduced for mapping between proposed standard AUR

properties and WLCG summary schema as Appendix A-6.

Apart from mapping rules between standard usage and WLCG usage metrics, another
important issue to be solved is the data consistency, when uploading accounting data to
RUS service endpoint, in particular for time synchronisation and storage units, which are
summarised as follows:

e Considering the fact that WLCG accounting usage records might come from sites
of countries in different time zones, the default implementation of RUS service
requires every timestamp-related usage properties to be expressed in 1ISO8601[167]
format (e.g. 2008-10-01T20:39:28Z or 2008-10-01T21:39:28+01:00), and
transforms timestamp values to Coordinated Universal Time (UTC) values
therefore ensuring time consistency.

o For volume resource usage properties, such as memory and disk usage, the default
storage unit is KB, unless it is explicitly specified as the RUS service
configuration property, “storage.unit”.

e During fine-grained aggregate accounting process, individual usage records are to
be summarised before being stored a into local database. WLCG aggregate
strategies involve a normalisation process that normalise the CPU usage
information across disparate sites into a common reference scale based on
SpeclInt2000 benchmark.

The mapping and data consistency rules between standard usage record instances are
implemented and ensured by three entity classes. Each entity class has two constructors,
the default constructor instantiating an empty entity instance, and the constructor that

takes a usage record instance as a parameter and instantiates an entity instance by

5BDesign of Resource Usage Service for World-wide LHC Grid

applying mapping rules and data consistency constraints.

Job Accounting Model

The job accounting model is implemented within WLCG-RUS system by extending

the internal components of RUS service. As Figure 4.8, the “LcgRecord” class is the

object model that represents WLCG relational job accounting data model. The

“LcgRecordDAO” component extends the internal “GenericDAQO” interface with typed

parameters referring to “LcgRecord” object model and its identity data type. The WLCG-

RUS job accounting model uses Hibernate Object-Relation Mapping (ORM) engine for

mapping and saving Java objects to MySQL relational database.

As shown in Figure 4.9, in the processing of job accounting information in the

WLCG-RUS system involves the following steps and a sequence of interactions between

internal components of RUS service:

1)

2)

3)

4)

5)

6)

7)

8)

A client sends a “RUS::insertUsageRecords” SOAP request message to RUS
service endpoint.

On receiving insertion request, the RUS service endpoint loads command factory,
DAO factory, authorisation service factory, and mandatory elements from RUS
service configuration. The RUS service endpoint then instantiates an
“LcgRecordInsertCommand” instance and set DAO instance, authorisation service
instance and mandatory elements to the command instance.

The RUS service endpoint delegates insertion request to the command through the
“execute()” interface.

For each usage record, the execution of command firstly checks user authority to
perform insertion operation upon the usage record.

Once authorised, the command then validates the current usage record against
mandatory element configuration.

If validated, the command creates an LcgRecord instance by passing the current
usage record to LcgRecord constructor.

The command then invokes the save method of LcgRecordHibernateDAO and
passes the instantiated LcgRecord instance.

The DAO object makes the LcgRecord instance persistent into local relational

database and returns a record identity.

5BDesign of Resource Usage Service for World-wide LHC Grid

<<Createx>
LegRecordinsertCommand ittt LegRecordInsertCommandFactory
Command
{abstract}
+ abstract execite!) void CommandFactory
[radai s o .i:f.-\llTl.mu.‘Z.‘nIh_\llﬁﬂ\'u;: (pervice AuthotzationBervies pvold fabstract}
! + setDACHdaoGenete DA voud
: Ly +setAggiegateStiategyistrategy Aggregate Shategy void + abstract ereatesertCommand!) Commeand
i + setMandatorvElzments{mes Rijmg[]}\'aul
[+ getOperationResult
oy
[
(!
[
(!
: : <<create>>
i AR SRR Wlegrus AuthorizationService <= - - - -------- - Wlegrus AuthorizationService Factory
T
" <<cimplements>
! <<gxtends>>
v
<<interface=> duth un'.‘.:rfl'rmSem'('eFu('frn}'
AuthorizationService> {abstract}
+ authoriz (prun Prneipal. opld: Stiing. icoid Elsment khoolean + abstract createduthorizationService () AuthorzationService
<<interface>>
—rd GenericDAO<T, ID>

+ getPersistentClass() Class <7
+save(entity TyID
+ find Byld(ud 1D, lock boolzan) T

+ findBy Eample(zntity T, exclndeProperties :Stnng[[)List<T= DAOFactory

+clzari) voud {abstract}
A
0 + abstract geifecord DACY) -Generic[I40
+ abstract getRecotdHistory DA O Genene DA
<<interface>> I\
LegRecordDAO<LegRecord, Long>
<<implements>
7 <cextends>>
i}
. GenericHibernateDAO<T, [D>
: {abstract}
<<implements> LegRecordHibe rnateDAOFactory
: 7
<<extends>>

1
I
1
I
I
1
1
1
I
I
I
1
I
I
1
1
1
I
I
1
I
1
1
1
1
I
I
1
I
1
| + thish(vord
1
1
I
1
I
I
1
1
1
I
I
I
1
I
I
1
I
1
1
I
1
I
1
1
I
1
I
I
1
I

<<create>>
------- LegRecordHibernateDAO<LegRecord, Long> <= - - - -~ - ---------------------------~

Figure 4.8: WLCG-RUS job accounting model implementation (UML Class diagram)

100

5BDesign of Resource Usage Service for World-wide LHC Grid

_ LcgRe cord Beert Comm atad _

_ T Frus daxth orimtdonSenTic ¢

_ Li gRe cord Hiberriate DA O

1) T et mnmhwmmmmm

e 0
S04 PTe spotise

3 badsystem

corfizurition

and i tantiste
Fitemalc omporets

.

3) epecitte|)

for mwnwcmmmm record

2

loop

.lm —_— —_— — —_—
Op erationa 1 Re suk

| i

4) wathoorgmal)

8 datapers e e

Figure 4.9:WLCG-RUS Job Accounting Model (UML Sequence Diagram)

5BDesign of Resource Usage Service for World-wide LHC Grid

Aggregate Accounting Model

Aggregate accounting model implemented in WLCG-RUS system accepts pre-
aggregated usage records in OGF AUR format as well as job usage records in OGF UR
format, which are to be aggregated during execution of insertion. In the latter case, an
aggregate strategy should be applied to generate appropriate AUR instances. As Figure
4.10, there are two aggregate strategy classes implementing WLCG anonymous and user
aggregate strategies respectively. These aggregate strategies are to be triggered by
corresponding command implementations, and generate instances of either WLCG
anonymous aggregate records or WLCG user aggregate records, which are to be stored

into relational databases through DAO implementations.

Aggregate accounting processing models implemented within WLCG-RUS is given in
Figure 4.11, and involving following processing steps:

1) Aclient sends a “RUS::insertUsageRecords” SOAP request message to an RUS
service endpoint.

2) On receiving insertion request, the RUS service endpoint instantiates command,
authorisation service, DAO and aggregate strategy instances through configured
factory classes, and loads mandatory element configurations into runtime.

3) The RUS service endpoint delegate insertion request to the command through
execute() interface.

4) For each usage record instance, the execution of command firstly checks user
authority to perform insertion.

5) Once authorised, the command then validates the current usage record against
mandatory element configurations.

6) If received usage records are OGF UR instances, an aggregate strategy is triggered
and generates one or more instances of target aggregate object model, instances of
WLCG anonymous aggregate records in this example.

6.1) Otherwise, the command creates an instance of target aggregate object model by
passing the current OGF AUR instance to “LcgSumRecord” constructor.

7) The insert command then invokes the save method of “LcgSumRecordDAO™ and
passes the “LcgSumRecord” instance.

8) The DAO object makes the “LcgSumRecord” instance persistst into a local

relational database and returns a record identity.

101

5BDesign of Resource Usage Service for World-wide LHC Grid 102

<<create>
it e e
v <«reate> ;
LegUser SumRecord InsertCommand LegSumRecond[nsentCommand < — - - - — — LegSumRecord[nsertCommandFactory LegUserSumRecordInsertCommandFactory
% s <<extends>
F-----
Command
‘ Lo {abstract) CommendFactory
| r {abstract)
+ abstract executef) void
| ‘ B ot (service:Auth dog)vold ke - — — — — — | + abstract createlsert Command(): Command
! + selDA0 (dao CenericDAC) vaid
| st teStrate gy(stoat oid |
| ‘ | oA [+ sethlandatoryElements(mes:teing]] void |
| | | | + getOperationResull |
I I
I | | <create>
| | | ‘ Wiegrus AuthorizationService € — - — — - - 4 Wlegrus AuthorizationServiceFactory
|
| ‘ | ‘ T
| | | <<implements> <<extends>
I I
\ [
o 7 v
‘ | I | <<nterface> AuthorigationServieeFactory
| ‘ | AuthorizationService> {abstract}
|
‘ | | | [+ authorize (prinPrincipel, apld:Steing, tecord Blement) baalean +abstract A icef}-A
\ [
\ [
‘ [
I I
\ [
| ! | ‘
! ;o “interface: DAOFuciay
| | GenerieDAO<T, ID: {abstract)
‘ | ‘ | [+ getPersistentClass() Class<?> -+ abstract getRecardDACY): Ganerie DAD
I | [+ save(pntity T) 1D +abstract getRecordHistoryDAQY) GenericDAQ
! | + indBylai D, lockhoalea) T
| | [+ findByFxampleentity T, excludeProperties Steing] List<T>
I | + hysh) void [‘
gy ¢ vt
| ‘ | I A LegSumReconHibernateDAOFactory LegUserSurRecordHiberuateDAOFactory
| | :
I | 1 I E
| [
\ [: I [
| | | <<interface=> ; <<interface=>
. | Leglser AD<Legl LegSunRecordDAO<LegtmnRecond, : ‘
\ P Loglser I 3 L 1d I I
|
‘ [; I [
‘ |
P! : I [
! ! A <<implements> | A | |
I I : — i
| | g GenericHiberneteDAO<T, ID> : | | | |
| | | | <cimplements> : (abstract)] | “fereate |
| | |
| ‘ | | . <<implements> | |
b ! : I [
|
‘ | | | <<extends> <<axtends> | |
| | : | !
| ‘ | I _ _|LegUserSumRecordHibernateDAO<LcgUser SumR LegStunRecordibernateDAO<LegSunRecord, | . _ _ <reate> '
| | ecort, LegUserSumRecord Id> LegSumRecord Id>
| | A ‘ :
L I L ol o ol l e oo _____ o e _______
|
|
| | <<interface>> oo e s AggrequeSirtegeFactory
‘ | AgaregateStrategy<T: {abstract)
| [+ abstract getSrategyld ():String
| : +abstractaggpegate rodes Node [y Lit<T> +abstract ceated garegatedtrategy() AgaegateStrategy
|
| ‘ 4 <cimplements>
| |
b Fr--""""~~=-=- 1
‘ ‘ [[
|
| ik LeglserSumAgeregateStratecy LegSmmAggegateStiatesy < — — — — - LegSumAgaregateStrategyFactory LegUserSumAggregateStrategyFactory
________________ - - ------ T

Figure 4.10: Class diagram of RUS default implementation for aggregate accounting

103

5BDesign of Resource Usage Service for World-wide LHC Grid

_.m..w _demmawm msn_ﬁ_o.nﬁi _H.nmmbnouﬂwmmﬁnoﬂ.sﬁ&i 7 Ik frus fanthoriationSerrice 7 L zEumPBle cordd e e ate Srte o 7 _ Ic cord 7 _ Ic Ee cord Hibernate DA 0 _ _.|H N
RDELIS
I 2 ad system | | I _ _ _
] corfizumtion I _ _
Ljfus et SOAP Requeg and Hetaiate | | |
Fitertia 1 omporerts I _ _
for bachusage recordloop _ _
H_ | | | _ _ _
— | | ! ! !
| _ _ |
3 moerite) o | | | |
Ll
| | ! ! !
| | ! ! !
1

Alt _ [is Job Usage Record] ! : ! !
S ate () 4 [_ !

T Ll
lens e e o maie _ba s owe _ _ _

memnnau#ﬁbbhm_
|||||||| s o w= o e = 2 — T B —leE e ! _
[else] 6.1 rewr Legfm Becord ()
- | |
R PR QL SR e L - 0 [X Lo R i g | |
LegSmEec ord detance

| |
|

|
|
]
Tisamel)
o _ “_I.l_ B1data perskterce

| |
||||||| r|||||tA|§mmmE|D

S0LP respors e |

| |

i | |
.m — - ptiy —

| [[

I | |

1 1

Figure 4. 11: WLCG-RUS Aggregate Accounting Process Model (UML Sequence Diagram)

5BDesign of Resource Usage Service for World-wide LHC Grid

442 WLCG-RUS Admin

WLCG-RUS Admin Web application is implemented based on Grails framework and
use the Groovy script language. The implementation adopts the passive MVC model with
one controller exclusively manipulating one model and refreshing changes of model to

views.

Host Management

As illustrated in Figure 4.12, the implementation of host management consists of a
host controller, a host model class, and a set of view pages. The host controller class
defines a list of methods that serve HTTP GET and POST requests. On receiving HTTP
request, the hosting server of WLCG-RUS system invokes an appropriate method defined
in the host controller, which then evaluates conditions using host model class if required.
The host controller also decides which view should be built with the required data

obtained from model class and renders the view to HTML for display.

An instance of host model class encapsulates meta-information of a host as a registry
entry, including the host name, host certificate distinguished name as displayed in host
certificate, the site name it belongs to site manager, registration date, and status. There are
four “do-GET” methods defined within the host controller, “list”, “create”, “edit”, and
“show”. Each “do-GET” method has an associated view to display for user interaction.
The “list” method is used to display all host registry entries. The “list” method is
triggered to display host registry entries owned by the site manager, while displaying all
host registry entries maintained inside the WLCG-RUS system to the system
administrator. The “list” view also connects to the “show” view and the “edit” view, for
displaying detailed registration information of individual host and updating registration
details except the host’s distinguished name. A site manager may create a new host entry
by filling the form as displayed by “create” view. On submission of the form, the “do-
POST” method “save” is triggered to create a new instance of host model and make it
persistence into local relational database. Other “do-POST” methods defined within host
controller include “delete”, “update”, “enable” and “disable”. A site manager may update
host registration information except its enabling status. Every newly registered host is

disabled by default. Only the system administrator has the authority to approve or

disapprove a host through the “enable” or “disable” methods defined in the host controller.

104

5BDesign of Resource Usage Service for World-wide LHC Grid

HITFequest
Create View
=
I —
-
I -
—
1 -
-
i
HostClontroller EdicView
—_— = sl - -;b'
+ list
+ create
+ save P
+ shonar o
+ delete R =%
+ edit ——
+ update T ListWView
+ enable > <2
+ disable
T e
0
| -
W .
Ho -
st
Ty Shows Viesw
hosthame String
hostZ ertDM String
enabled:boolean
site:Strinng
date:Date
owier: 1 Tser

Figure 4. 12: Class Diagram of the Host Management Implementation

User Management

The user management facilities implemented within WLCG-RUS Admin is based on
the default security plug-in for the Spring framework [170], called Acegi[171], which
manages most of the complexity of role-based authorisation, user login, and request-URL
mapping issues. As shown in Figure 4.13, the Acegi plug-in generates two main model
classes that can be used for user management tasks of WLCG-RUS system. Each model
class has an exclusive controller class dealing with HTTP requests for creation, deletion,

modification, and listing of user accounts, and role definitions.

However, the default Acegi security implementation only provides simple user-
password authentication. The implementation of WLCG-RUS Admin adds a certificate-
based authentication. In this sense, a user can access WLCG-RUS Admin only if the user
holds a valid X.509 certificate signed by a recognised CA. When entering into the main
page, the user is required to be registered and assigned to a role. There are two predefined
roles in WLCG-RUS Admin system, the site manager and system administrator. User

105

5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.13: Class Diagram of the Host Management Implementation

HITPRequest
CreateView i CreateView
[7 . L
- / N
~ &
RoleController UserController
EditView EditView
- + list +list T N
<o~ + show + show
+ delete +delete
[+ edit +edit
+update +updite
+ create toteate ~ 2
ListView e + save +save 3 ListView
- T +enable ~
- + disable .
l I
- ! I ~
- | | \ .
-
i i’ V V e -
Shorkis £ Role User ShowView
athority Sing U H: SWE]
description Steing 1 o [useReallame Sring
_____ passwdStting
enabledboolesn
email String
emailhowboolean

registration requests are pending for system administrator to approve. The system
administrator can approve or disapprove a user through the “enable” and “disable”
interfaces defined within user controller. Enabled users should receive an email

notification when their accounts are approved by system administrator.

System Management

As discussed in section 4.4.1, the RUS service runtime involves interactions between a
sequence of implementations of internal components. These components are required to
be configured properly and be instantiated appropriately to perform job and aggregate
accounting processes. The system management facilities provided by WLCG-RUS Admin
system allows system administrator to specify, or modify, or delete RUS service runtime

configurations.

106

5BDesign of Resource Usage Service for World-wide LHC Grid

HTTPEeqguest

I
L = Create Viesww
|

M —
App ConfigController

+ list T EditView
+ show =
+ delete -
+ edit =
+ update
+ create e
+ sawve ~ —
I o i) ListView
| T
|
|

' ~
AppConfic 2y Show View
iathie Strin g
mralue String
rdescoription:iString
dAnstatitiatable boolean

+ instantiate])1:Object

Figure 4.14: Class Diagram of the System Management Implementation

As Figure 4.14, the “AppConfig” model class represents a single name-value
configuration property. RUS service configurations can be divided into two categories,
instantiatable properties, such as factories of runtime components, and uninstantiatable
properties, the mandatory usage record elements for example. Instantiatable properties
use the “instantiate ()” method defined with the model class. Same as other model classes,
the “AppConfig” model has an exclusive controller class, which serves incoming HTTP

requests and directs users to difference views.

4.4.3 User Interface

WLCG-RUS system provides two user interfaces for both RUS service and WLCG-
RUS Admin Web application.

Command Line Interface

107

5BDesign of Resource Usage Service for World-wide LHC Grid

The RUS service provides client-side interfaces and implementations for interaction
with WLCG-RUS system through standard RUS interfaces, in particular
“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”. The
RUS service client is implemented using Java programming language, and is wrapped by
a shell script. The client accepts arguments as shown in Appendix B. The client defines
two actions, the “list” and “insert”, both must specify a “service URI” parameter setting
the value of target RUS service endpoint address. For the “insert” action, either a single
file location, or a directory, or a list of files is required to be specified for the actual usage
record files or directories. The usage of an optional parameter, “delete-after-insertion”
tells the client whether to delete the usage record files after successful insertion. Another
optional parameter is the “max-elements” that is used to specify the maximum number of
usage records per insertion. If this parameter is omitted, the default maximum number is
set to 10. If any errors are encountered during execution of insertion, the target file name
is changed and appended with an “ERROR” suffix. The RUS service client is to be used
by host machines to upload usage records to WLCG-RUS system. The shell client can run

as a “cron” job to be scheduled to populate usage records periodically.

Web Interface

WLCG-RUS Admin also provides a Web interface for site manger and system
administrator to perform management tasks. This Web-based interface exhibits two views,
the manager view to site manager, and admin view for system administrator. Once a user
logs in successfully, the WLCG-RUS Admin system redirects the user to a different view

according to user’s granted role.

As Figure 4.15, the admin view provides navigation to user management and system
management facilities. The screen shot also gives the list of RUS service configurations,
including the authorisation factory class name, command factory class name, DAO
factory name, as well as other configurations such as mandatory usage record elements.
These mandatory element configurations are represented as XPath [170] expressions,
which are to be evaluated against received usage records. As Figure 4.16, the manager
view provides the link to host management. The manager view also allows a site manager
to view and edit personal profile. However, a site manager is not allowed to modify
account status, and user certificate distinguished name that is parsed by the system and

not modifiable.

108

5BDesign of Resource Usage Service for World-wide LHC Grid

i D

ADMINISTRATION

; Welcome to WLCG RUS, xiaoyu chen €3 Logout {3 Help

WLCG-RUS Admin 4 Home [New Apptonfig

%
i fi i ") .
AN service tonfiourstion oo Confiquration Parammisters

w" Arncirerienis Id Name Value Instantiatable
1 factory.authorizer wlegrusAuthorizationService true
& User Admin 2 factory command uk.ac.brunel services.accounting wlcgrus .command LegRecordCommandFactary true
3 factory.dao uk.ac.brunel.services.accounting wicgrus.dao.hibernate LegRecordHibernateDAGFactory true
@ Role:fidmin 4 mandatory element furf:UsageRecord/urf:JobIdentity/urf: GloballobId false
(ﬂ i i 5 mandatory.element /urf:UsageRecord/urf;Userldentity/urf: GlobalUsertlame false
6 mandatory.element /urf:UsageRecord/urf:Resource[@urf: description="SiteName'] false
% Security Configuration 7 mandatory.elernent /urfiUsageRecord/urfiResource[@urfidescription="8pecint2000'] false
8 mandatory element furf:UsageRecord/urf:Resource[@urf:description="vOName"] false
9 mandatory elerment furf:UsageRecord/urfiHost false
10 mandatory element JurfiUsageRecord/urf: StartTime false

1.2 Mext

@ 2009 Brunel University

Figure 4.15: WLCG-RUS Admin View

wremmanes RS
ADMINISTRATION

‘ Welcome to WLCG RUS, test site

Site Manager Home
My Hosts 4

('ﬂ pilias User Profile

; My Account User Certificate DN: CH=test site, OU=rus, O=wlcg, L=london, ST=S0me-State, C=uk
Full Hame: test site
Enabled: true
Ermail: willis chan1027@gmail.com
Show Emnail: true
Roles; e site_manager
Edit

© 2009 Brunel University

Figure 4.16: WLCG-RUS Site Manager View

Show
Show
Show
Show
Show
Show
Show
Show
Show
Show

€9 Logout ¢} Help

109

5BDesign of Resource Usage Service for World-wide LHC Grid

45 Performance

This section provides details on performance evaluation of the WLCG-RUS system.
The test results are intended to provide reference guidance for deployment of WLCG-

RUS system with optimal performance.

45.1 Testbed

In order to evaluate the performance of WLCG-RUS system, a testbed is set up in the
Brunel Information Technology Laboratory (BITLab) at Brunel University to simulate the
accounting process in production Grid environments. The testbed consists of two
workstations in BITLab and are interconnected by Local Area Network (LAN). One
dedicated workstation is used to host WLCG-RUS server, which keeps listening insertion
requests from clients. The hardware and runtime environment details of the WLCG-RUS
server are listed in Table 4-1. On the other workstation, a number of clients along with a
usage record generator are deployed to simulate the accounting process at Grid
participating sites. The usage record generator simulates the metering process and
generates standard OGF UR and AUR instances into the local file system. One or more
WLCG-RUS clients can be scheduled to read usage record instances from the directory
and populate them to the WLCG-RUS server simultaneously through the standard
RUS::InsertUsageRecords interface. A thread pool is also provided to hold multiple
WLCG-RUS client threads and ensure a fixed number of threads that interrogate the
WLCG-RUS server at a time.

Table 4-1: Test server machine specification and runtime environment

I L

Central Processing Unit Genuine Intel (R) Duo Core 1.66 GHz -
Random Access Memory 1024 MB -
Operating Ssytem Ubuntu 32-bit 9.04
Web Container Apache Tomcat 5.5.23
Service Container Apache Axis 1.4
DBMS MySQL Community Server 5.1

110

5BDesign of Resource Usage Service for World-wide LHC Grid 111

In the accounting scenario of the largest world-wide Grid environment, the WLCG
environment, there are over 100 participating or Tier-2 sites that reports usage
information to 12 regional or Tier-1 sites. These collected usage records at regional sites
are then shipped to the GOC site at RAL and generate statistic usage reports. As
illustrated in Table 4-2, there were over 30,000,000 jobs submitted to WLCG across four
Virtual Organisations (VOs) in 2007, approximately 80,000 jobs executed at Tier-2 sites.

Table 4-2: WLCG job statistics from four VOs and 12 Tier-1 or regional sites. From[159]

Total number of jobs run by REGION and VO
[ReGION [alice [_atles | _coms | oo _J Total [% |

AsiaPacific 4011 595637 204 537 26405 867,890 2.83%
CentralEurope 468,734 709,083 341851 95 480 1,616,128 5.28%
CERN 719,540 1,650,200 1,551 968 500,447 4,442,155 14.51%
France 954 542 2444173 930,541 234,780 4,563,986 14.91%
GermanySwitzerland 530,324 1271362 1,401 479 161 656 3,354,821 10.96%
Italy 1,251 565 1,149 060 1,407 938 309,102 4,127,665 13.48%
NorthernEurape 492 635 1,179,653 592,127 142,680 2,407,145 7.86%
ROC_Canada 0 91728 0 0 91,725 0.30%
Russia 594,232 22,329 209,344 135,148 1,291,103 4.22%
SouthEasternEurope 431 407 677 776 49075 152 350 1,310,608 4.28%
SouthWestemEurope 3476 573,508 787 356 261 951 1,626,301 5.31%
UKI 207 416 3186535 868,303 577,766 4,920,020 16.07%
5,804,182 13,771,941 8,354,669 2,688,755 30,619,547

18.96% 44.98% 21.29% 8.78%

Click here for a csv dump of this table
Click here for a EXTENDED csv dump

Therefore the testbed is designed to evaluate the WLCG-RUS system performance by
simulating the hierarchical deployment of WLCG-RUS server at both WLCG regional
sites and the GOC site.

e The deployment of WLCG-RUS system at each regional site to collect job usage

from region-wide Tier-2 sites.

e The deployment of WLCG-RUS system at WLCG GOC site to collect job usage

from 12 regional sites.

Accordingly the evaluation objectives include:

e Unit performance evaluation: to evaluate the performance of individual WLCG-
RUS runtime components (section 4.3.2), the result of which is to be used by
deployers to have a detailed picture on how WLCG-RUS system perform, and by
developer to improve system performance through custom implementation of

particular runtime components.

5BDesign of Resource Usage Service for World-wide LHC Grid

e Insertion performance evaluation: to evaluate how the WLCG-RUS system
performance varies with different deployment options, in particular the number of
usage records per insertion transaction, known as bulk size, and the number of
client threads. The result of the insertion performance test is expected to be used
by deployers to make decisions on how to deploy WLCG-RUS system to obtain

optimal performance.

45.2 Unit Performance

Figure 4.17 plots the performance of runtime component units of different accounting
models, both job accounting and aggregation accounting models. Multithreading is
intentionally avoided in these tests so that overall time of a series of runtime steps of
various enabled accounting models within WLCG-RUS system can be fairly observed

and compared.

There are four common processing steps for both fine-grained job and aggregate

accounting models as follows:

e On receiving a usage record, the Axis SOAP engine de-serialises received SOAP
request message, and forward a request object to command component.

e On completion of insertion, the command returns a response object back to Axis
SOAP engine, which then serialises the response object and sends response
message to WLCG-RUS client. The de-serialisation and serialisation processing
enabled by Axis SOAP engine are collectively defined as messaging process.

0 The execution of insertion command can further be divided into additional
three sub-processes: delegating request to authorization service to check
user’s authority to perform insertion on per usage record basis; validating
usage record against mandatory element configuration; rendering usage
record node into an appropriate persistent object and making data
persistence.

e An extra process, the aggregation process, is triggered when job usage record is

detected during aggregate accounting process.

As summarised in Table 4.3, the average performance of authorisation, messaging and

validation processes are similar with slight difference less than 0.008 second. Comparing

112

5BDesign of Resource Usage Service for World-wide LHC Grid

to job accounting model, aggregate accounting models exhibits worse performance
mainly because of additional complexity introduced on the data persistence process. On
receiving an insertion request of an aggregate usage record, the WLCG-RUS system
runtime requires check whether there is an existing aggregate usage record using same
aggregate strategy. In the case of WLCG anonymous aggregate strategy for example, the
WLCG-RUS runtime is required to the existence of an aggregate usage record with
certain month/year, certain VO and certain executing site. If an existing record found, the
WLCG-RUS runtime is then add usage information to the existing record, and change the
aggregation starting and ending time accordingly. Therefore the data persistence process
introduces average 0.02 second overhead. In the aggregate accounting model with
runtime aggregation, additional 0.003-second overhead is introduced by the enforcement
of the WLCG anonymous aggregation strategy. However this figure can be quite different

depending on the complexity of an aggregation strategy implementation.

Table 4-3: Comparison of unit performance of job accounting model, aggregate

accounting (without runtime aggregation) and aggregate accounting (with runtime

aggregation)

113

=) Average Costs (Time in Milliseconds)
§ Authorisation | Validation | Aggregation | Persistence | Messaging
<
g
2 § 6.334 13.330 - 3.858 18.924 42.446
2 —~
Eeged
o 2 B s 6.266 12.542 - 28.880 18.146 65.834
()
éf) ©
2] ~
g 2E§
g S § s 6.194 13.298 3.48 30.868 18.492 72.332
88 s 5
< 8 é =

5BDesign of Resource Usage Service for World-wide LHC Grid

Insertion Time In Miliseconds

Insertion Time in Milliseconds

100

a0

Maximum Element=1

B rmessaging

W persistence

80

W validation

70

W authorization

&0

30 A

40 A

30

20

10

| ||l

[

L

101

201

(@)

301

401

501

100

90

Maximum Element=1

80

|l| I

Ll

70

I

I ‘I k

|

il.ll |

60

50

40

30

20

10

101

201

301

(b)

401

W messaging
W persistence
Myalidation

M zuthorisation

501

114

5BDesign of Resource Usage Service for World-wide LHC Grid

100
Maximum Element=1

90 mi

% A T .\l'l‘

‘ B messaging
il

70 - | W aggregation

W persistence

60 -
B validation

50 W authorisetion

40

30

Insertion Time in Milliseconds

20

10

(©)

Figure 4.17: (a) Unit performance of job accounting model (b) Unit performance of
aggregate accounting model (no runtime aggregation) (c) Unit performance of aggregate

accounting model with runtime aggregation.

45.3 Insertion Performance

As discussed in section 4.4.1, the WLCG-RUS system runtime can be configured to
accept one or more usage records per insertion transaction. The number of usage records
per transaction is also called bulk size. The first part of the insertion performance test is to
evaluate the WLCG-RUS system performance with different bulk size. In this test, the
client machine continuously inserts 35,000 job usage records to the WLCG-RUS server.
Successive execution time is logged when finishing insertion of 5,000, 10,000, 15,000,
20,000 25,000, 30,000 and 35,000 usage records. As the performance plot described in
Figure 4.18 and Figure 4.19, the insertion time decreases gradually with the increasing
bulk size until the bulk size is 10, and then increases exponentially. Based on the test
results, the maximum elements should be set between 10 and 15 in order to gain optimal

insertion performance.

115

5BDesign of Resource Usage Service for World-wide LHC Grid

Insertion Performance (in Millseconds)

10000000
1000000 —
100000 -
5000 10000 15000 20000 25000 30000 35000

Number of Job Usage Records

g Bulk

e Bk 10

Bulks0

e Bl 100

Figure 4.18: Comparisons of insertion time against different granularities of usage

records per transaction.

Insetion performance {in milliseconds)

10000000

1000000

100000

Total Number of Usage Records Inserted = 5000

L

Q

&

I IR . - I A SRR RN I - R I

Bulk size

(@)

5BDesign of Resource Usage Service for World-wide LHC Grid

Insetion performance {in milliseconds)

Insetion performance {in milliseconds)

10000000

1000000

100000

10000000

1000000

100000

Total Number of Usage Records Inserted = 10000

L I . R R S TR IR I S RN
Bulk size

(b)

Total Number of Usage Records Inserted = 15000

Bulk size

(©

117

5BDesign of Resource Usage Service for World-wide LHC Grid

Insetion performance {in milliseconds)

Insetion performance {in milliseconds)

10000000

1000000

Total Number of Usage Records Inserted = 20000

100000

————

10000000

1000000

100000

Bulk size

(d)

T R e P PP PR PR LR ER P E P PP

Total Number of Usage Records Inserted = 25000
s,
_____..-—0"-'-__
5 10 15 20 25 30 35 40 45 50 55 60 65 70 V5 80 85 90 95 100

Bulk size

©)

118

5BDesign of Resource Usage Service for World-wide LHC Grid 119

10000000

Total Number of Usage Records Inserted = 30000

1000000 /

Insetion performance {in milliseconds)

100000 T T T T T
0 5% 10 15 20 25 30 35 40 45 50 5 60 65 70 75 80 8 90 95 100

Bulk size

10000000
Total Number of Usage Records Inserted = 35000

W

=

C

a e—
i

z

£

g 1000000

C

m

E

(=]

k=

[+F]

o

=

s

g

=

100000 T T T T T T T T T T T T T T T T T T

0 5 10 15 20 23 30 35 40 45 50 55 60 65 ¥0 75 80 85 90 95 100

Bulk size

(9)

Figure 4.19: (a) insertion performance of 5,000 usage records against bulk size (b)
insertion performance of 10,000 against bulk size (c) insertion performance of 15,000
usage records against bulk size (d) insertion performance of 20,000 against bulk size (e)
insertion performance of 25,000 usage records against bulk size (f) insertion performance
of 30,000 against bulk size (g) insertion performance of 30,000 usage records against

bulk size.

5BDesign of Resource Usage Service for World-wide LHC Grid

The WLCG-RUS system can be deployed in two ways in the context of the WLCG
accounting process. It can be either deployed at the GOC centre as a singleton entry point
or hierarchically deployed at each regional site responsible for region-wide accounting
purposes while streaming accounting data to the main WLCG-RUS server at GOC. For
both cases, the WLCG-RUS system is required to serve multiple client requests at a time.
In order to figure out the performance of WLCG-RUS system when dealing with multiple
client requests simultaneously, and find out which way is of best performance for the
WLCG accounting process, a multi-threading test is conduced to evaluate WLCG-RUS
system performance against different number of client threads. As the performance plot
illustrated in Figure 4.20, the WLCG-RUS system performance decreases with the
increasing number of client threads. In the case of 100 client threads insert usage records
at same time, the total time cost for insertion of 35,000 usage records reaches 2.6 hours
(0.27 second per transaction), comparing to 1.26 hours (0.13 second per transaction)
when using a single client thread. In the case of WLCG accounting, it is better to adopt
the hierarchical deployment manner, with multiple WLCG-RUS server deployed at
regional sites and one central WLCG-RUS server deployed at GOC site to accept requests
from regional sites only. It is worth noting that the performance of WLCG-RUS system
may gain better performance when deployed on modem server machine with multi-core

or multi-CPUs supports.

10000000

B No. of Threads =1

2000000

B No. of Threads =10

8000000
No. of Threads =50

7000000

B No. of Threads =100

6000000

5000000

4000000

3000000

Insertion performance {in milliseconds)

2000000

1000000

o -

3000 10000 15000 20000 25000 30000 33000

Number of Usage Records

Figure 4.20: insertion performance against the number of simultaneous client threads

120

5BDesign of Resource Usage Service for World-wide LHC Grid

4.6 Summary

This chapter described the design and implementation of WLCG-RUS system, which
provides an alternative, but standard-compatible, solution for sharing WLCG accounting
data from participating sites to GOC centre. The WLCG-RUS system is composed of two
subsystems, the RUS service and the WLCG-RUS Admin. The RUS service provides an
implementation of OGF RUS service interface definitions. The current RUS service only
provides implementations of two RUS service interfaces, the
“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”, which
are mainly used for accounting data uploading. The design of RUS service in WLCG-
RUS system consists of a set of loose-coupled runtime components, which uses a set of
well-defined design patterns, such as factory, strategy, and command design patterns, and
exhibits well-defined internal interfaces for custom implementation. Rather than
performing off-line aggregation as current WLCG accounting process, the RUS service
also allows runtime aggregation and proposed a standard aggregate usage record
representation. The WLCG-RUS provides a Web-based administrative interface for site
managers and the WLCG-RUS system administrator to performance host management,
user management and system management activities. This chapter also provided detailed
performance evaluations, which provide development guidance for developers who are
intended to use WLCG-RUS framework while providing custom implementations of
runtime component units, as well as deployment guidance for decision makers who are

considering deploying the WLCG-RUS system as part of an accounting system.

121

6BDesign of Grid Resource Usage System Middleware

Chapter 5

Design of Grid Resource Usage System Middleware

Standardisation is of high importance on enabling interoperability between
independently developed accounting systems. The development of the WLCG-RUS
system has presented an exemplary standard-compatible solution for sharing accounting
data across heterogeneous accounting systems in the multi-Grid environment of WLCG
project. The WLCG-RUS system implemented some functional components as defined in
the JISC-proposed accounting framework [132] mainly for uploading accounting data,
which is however not functional enough to support various high-level application
scenarios, such as usage monitoring, Grid economy, and usage policing. Besides, the
design of the WLCG-RUS system uses reverse engineering upon existing WLCG
accounting schema making it limited to be reused for accounting purposes on other Grid
projects. Lessons were also learned from the RUS specification based on implementation
of the WLCG-RUS system. Particularly there are no standard supports to aggregate
accounting models in the current RUS specification. The content of this chapter aims at
addressing these issues by introducing a refined RUS specification and an implementation
of JISC-proposed framework as a middleware solution, the Grid Resource Usage System
(GRUS), which makes it easy to migrate custom accounting system to be standard
compatible with minimum re-engineering efforts. The design of GRUS middleware
reuses WLCG-RUS system components where appropriate. Relevant publications of the
work conducted in this chapter include [171] [172].

122

6BDesign of Grid Resource Usage System Middleware

5.1 Introduction

The JISC proposed generic accounting framework (section 3.6) is a recommendation
based on an analysis of stakeholders and their requirements. It was designed to assist
development and deployment of a Grid accounting system based on standard
specifications. Standardisation is of high importance in the sense of maximising
interoperability between independently developed accounting systems, especially for
accounting in such Multi-Grid environment as WLCG. The development of the WLCG-
RUS system presented how a standard-compatible solution contributed to exchanging
accounting data across heterogeneous accounting systems in a consistent manner.
Standardisation also makes it easy to migrate high-level applications from one accounting
system to another through exhibiting a set of public and common service interfaces. Since
most production Grid projects have their own accounting system deployed, the JISC
proposed accounting framework (see section 3.6) recommended a loosely coupled
component architecture that allows extensions and customisations for adaption to local
accounting environment while preventing duplicate efforts on common functional

requirements.

Although the WLCG-RUS system implemented some functional components as
defined in the JISC-proposed accounting framework mainly for uploading accounting
data, which is however not functional enough to support various high-level application
scenarios, such as usage monitoring, Grid economy, and usage policing as listed in
section 3.2. Besides the aggregate accounting enabled within the WLCG-RUS system
only allows specific and predefined aggregate strategy to be applied for streaming
accounting data into the RUS service. Higher flexibilities should be allowed to enable
custom aggregate strategies to be defined on per transaction basis, especially for query
transactions. For example, a VO manager may be interested in getting query results of
total CPU usage of a specific VO for last month, while it is also able to get query results
of how much memory quota is used as a Grid user. In this case, different aggregate
strategies should be automatically generated and applied to individual query transaction.
Moreover, the WLCG-RUS system was motivated to reuse WLCG accounting data model,
making it limiting to be reused for accounting purposes on other Grid projects, which

have custom accounting data formats defined.

Lessons were also learned from the RUS specification based on implementation of the

123

6BDesign of Grid Resource Usage System Middleware

WLCG-RUS system. Particularly there are no standard supports to aggregate accounting
models in the current RUS specification. This chapter proposes a refined RUS service
interface definitions, as published in the draft Resource Usage Service Core WS-I
rendering specification [171], which deals with observed issues of the current standard,
and provides a middleware solution, the Grid Resource Usage System (GRUS)[172],
which makes it easy to migrate custom accounting system to be standard compatible and
minimises re-engineering efforts on existing accounting systems. The design of the
GRUS middleware extends and reuses WLCG-RUS system components where

appropriate.

5.2 Requirement Analysis

This section discusses refined and advanced design requirements that are necessary to

provide a middleware solution for the JISC proposed accounting framework.

5.2.1 Use Cases

Besides roles and use cases discussed in section 4.2, two additional roles were
identified from the perspective of query usage records and are intended to be supported in
the GRUS system as extensions to WLCG-RUS system in particular for query of resource

usage. Detailed use cases are illustrated in Figure 5.1 and listed in Appendix B.2.
Grid User

A Grid user, the end user of a Grid computing system, can be an ad-hoc user or
belongs to a Virtual Organisation (VO). In latter case, the Grid user is also known as the
VO member. In order to use the GRUS system, a Grid user must hold a valid X.509
certificate signed by CAs that are recognised by a GRUS system instance. A Grid user in
the context of the GRUS system has privileges to query resource usage records of jobs

owned by the user through standard RUS interface definitions.

Virtual Organisation Manager

124

6BDesign of Grid Resource Usage System Middleware 125

The Virtual Organisation (VO) manager has been recognsied as an important role who
is reponisble for managing user membership of a particular VO. In the context of
accounting, the VO manager has authority to view resource usage information of jobs

executed by members of a managed VO, as well as historic resource usage summaries.

GRUS System

list supported
aggregate strategies

fuery aggregate
usage records

GK

oo
T4
L S =
‘“qa,_frs"?ds>>
Resource N query job usage
g Usage Service ¢ records
"-'?c."{,b-s‘ﬁ)
H)
WO Manage
create a Vo
account
S/
-~ edit a0
L(g . -n-\da.\dcf?’_ e account

System _ Wcmqrws»
G SRR e delete a w0
v‘@pq, = account
- xﬁvﬁ.&_&

Administrator
{ activate a

W0 account
igwy Wi
accounts

Figure 5.1: Additional use cases that the GRUS system is expected to implement based
on existing WLCG-RUS framework

organisation
management

5.2.2 Requirements

From the above advanced use cases, the following design requirements for the GRUS
middleware are extracted in addition to those of the WLCG-RUS system as discussed in

section 4.2.1.

6BDesign of Grid Resource Usage System Middleware

Capability or Functional Requirements

Apart from functional requirements identified in the design of WLCG-RUS, the

following capabilities are to be enabled in GRUS middleware.

1. Query Accounting data

Key to the design of GRUS system is to allow the Virtual Organisation manager and
Grid end users to query usage records through standard RUS service interface definition,
specifically the “RUS::extractUsageRecords” service interface. This RUS extraction logic
should ensure certain flexibility in two senses. In the case of query without runtime
aggregation, the query operation should allow flexible queries on both complete usage
record instances and partial usage information set. The query operation should also
provide runtime aggregation facilities. Rather than applying a predefined and specific
aggregation strategy, the query operation should allow the requestor to define or specify a
preferred aggregation strategy for a particular transaction. Finally, the query operation
design of the GRUS system needs to provide a solution to deal with the situation of
potentially large volumes of query results triggered by a complex query. Under this
circumstance, the query operation should allow returning query results to the clients
through multiple transactions by dividing results into chunks.

2. Virtual Organisation Management

A VO manager is able to query VO-specific usage records through the GRUS system.
In order to enforce authorisation policies at runtime, the GRUS system must provide a
registry mechanism enabling a VO manager to register one or more managed VO
accounts. The VO management facility is also expected to provide manageability
interfaces for system administrator to view, edit, and remove VO registry entries.
Interface Requirements

3. Internal Interface

In accordance with internal interfaces defined in the WLCG-RUS system for custom

implementation of the RUS insertion runtime, the GRUS system is intended to define

126

6BDesign of Grid Resource Usage System Middleware

internal interfaces for custom implementations of RUS extraction runtime.

4. Service Interface

Besides interface requirements identified for the WLCG-RUS system design, another
important design goal of the GRUS system is to cope with the deficiencies of RUS
service interfaces, in particular for integration of aggregate accounting facilities. Also

additional service interfaces are to be defined where necessary.
Data Requirements

5. Internal Data

Rather than reusing the WLCG accounting schema as an internal data representation,
the GRUS system should be able to adapt to any accounting data representation as
defined by local accounting systems, and allows implementation of custom mapping rules
for runtime transformations between internal and external standard formats.

Security and Privacy Requirements

The security design requirements of the GRUS system share the requirements as
specified in section 4.2 for the WLCG-RUS system design.

Other Requirements

6. Usability

In addition to other requirements listed in WLCG-RUS system design, the design of
GRUS system exhibits an extra requirement on usability. As a middleware solution the
GRUS system should be not only end user oriented but also developer oriented. In this
sense, the GRUS middleware must provide easy-to-implement facilities for development

of custom solutions upon local accounting environment.

127

6BDesign of Grid Resource Usage System Middleware

‘ GRUS Client Client Layer

| GRUsadmin | HTTPS + SOAP Presentation
{Views) Layer
" - Y
GRUS Admin GRUS Core .
Controllers) Logic Layer
(Custom Impls

Layer
Custom Impls EMC

Persistence

Layer

Figure 5.2: Layered component architecture of GRUS middleware

5.3 Design

This section discusses the design details of the GRUS middleware, including the

system architecture design and composing subsystems or components.

5.3.1 System Architecture

In accordance to the WLCG-RUS system design, GRUS system is composed of two
subsystems, the GRUS Admin Web application and the GRUS service. The GRUS Admin
application extends WLCG-RUS Admin and provides VO management facilities for VO
managers. The GRUS service provides a development framework for customising the
implementation of the RUS service endpoint. The design of the GRUS system is based on

a layered component architecture as presented in Figure 5.2, and consisting of runtime

128

6BDesign of Grid Resource Usage System Middleware

components across five bottom-up layers: the persistence layer, the data model layer, the

logic layer, the presentation layer, and the client layer.

Persistence Layer

The persistence layer contains the data structures, including the accounting data
structures of the GRUS service and management data structures of GRUS Admin
subsystem. This persistence layer is designed to use a relational database for data
persistence. Custom implementations may also use other types of data storages, e.g. XML

databases, for accounting data.

Data Model Layer

The data model layer contains necessary elements that link object data to the relational
database structures. Rather than using specific internal usage data representations, the
GRUS service is intended to enable automated persistence of data model objects to
various internal accounting data structures of relational databases through the Object-
Relational Mapping (ORM) mechanism. The design of the data model layer also exhibits
a higher level abstraction using Data Access Object (DAO) pattern. Each data model
object has an associated DAO, which exhibits common and primitive Create, Read,
Update, and Delete (CRUD) data operations. Customised data operations can be defined
by extending abstract DAO interfaces. By using DAO design pattern, it is also possible to
define custom DAO implementation upon data stores other than relational database, the
native XML database for example. In order to ease custom implementations, a utility tool,
the Entity Model Compiler (EMC), is also provided to take any XML standard schema

and generate data models and DAO source codes.

A set of domain objects are also defined at the data model layer for the GRUS Admin
Web application, which extends manageability facilities defined in WLCG-RUS Admin
system with additional VO management functionality.

Logic Layer

The logic layer defines a GRUS core framework, which provides runtime support of

the RUS logics. The core framework consists of a set of runtime components, the design

129

6BDesign of Grid Resource Usage System Middleware

of which utilises object-oriented design patterns and exhibits well-defined internal
interfaces. The pluggable design of the GRUS core framework allows implementations to
choose to customise one or more runtime components according to local accounting

requirements.

The logic layer also shows a GRUS Admin component that extends WLCG-RUS
Admin and defines controllers for VO management facilities. The controllers act upon the
underlying model objects and refresh changes of domain objects to the GRUS Admin

views.

Presentation Layer

The presentation layer defines views for GRUS Admin Web application and provides a

Web-based interface to end users, VO managers, site managers, and system administrator.

The GRUS Admin views consist of a sequence of Web pages and presentation style sheets.

Client Layer

Both the GRUS Admin and the GRUS service provide client-side interfaces. The
GRUS client provides command-line interfaces mainly for sharing and querying
accounting data through standard RUS Web service interfaces. Authorised users may also
execute appropriate management tasks through the GRUS Admin Web portal and Web

browser.

5.3.2 Detailed System Design

This section describes the design details of the GRUS system components, including
redesign of RUS service interfaces, messaging protocols for runtime aggregate query,

EMC code generator, GRUS core framework, and the GRUS Admin Web application.

Redesign of RUS Interface Definitions

Based on the developmental experiences on the WLCG-RUS system and feedbacks

from other RUS implementations, i.e. SGAS and DGAS-RUS, there are some non-trivial

130

6BDesign of Grid Resource Usage System Middleware

issues identified and summarised as follows:

The current RUS service interface definitions are too reliable on OGF UR
specification making it hard to use the other standard usage record representations,
in particular OGF AUR draft specification that has been recognised as an
important data representation for aggregate accounting purposes. Besides, the
OGF UR specification has a narrowed scope based only on batch job CPU usage
metrics. It is understood that a single OGF UR is not enough to accommodate
accounting representation of other resource types, such as storage, network, and
even application-specific resources. Therefore the RUS service interface
definitions should be flexible to accept various usage record formats in compatible

to existing, as well as emerging, standard resource usage schemas.

Although the current RUS specification does not restrict internal storage format
for usage record persistence, it does specify individual usage records retrieved
from a RUS endpoint should in the Resource Usage Record Format (RURF),
which encapsulates a RUS-wide unique global identity, an OGF UR instance, and
record modification histories. This data type definition as query result implies
potential issues. First of all, the query operation results add more transportation
payloads with additional record histories appended to individual usage record
even though the client are not interested in. Performance can be further
undermined when a complex query returns a large number of usage records.
Secondly, the insertion operation as defined in the RUS specification returns a list
of RUS record identities raised by a RUS endpoint for successfully inserted usage
records. The list of RUS record identities are not meaningful to the client in the

sense of indicating unsuccessfully inserted usage records.

The query interface definition, “RUS::extractRUSUsageRecords”, only returns the
complete RURF instance. In many cases, query clients only interested in partial or
fragmental usage information set, CPU usage information for example. Therefore
the query interface definition of RUS should allow flexible query on both
complete usage records and partial information sets. Furthermore, the current
query operation returns all usage records evaluated against the query term within a
single transaction, which is inappropriate for complex query with large volumes of

query results.

131

6BDesign of Grid Resource Usage System Middleware

e There have been long discussions about the usefulness of encapsulating
modification operations within the RUS specification, since the most important
feature of accounting is to provide accurate resource usage information, which
provides a proof of how Grid resources had been utilised. In reality, it is unlikely
these generated accounting data will be changed or updated. Since most sites or
GOC keeps a local repository of collected accounting data, it is more
straightforward and secure for a system administrator to update or remove

accounting data through local database management system.

Having identified issues of current RUS Service Interface Definitions (SIDs), we
collaborated with OGF RUS working group and refined RUS SIDs as the outcomes of
group discussion in OGF 20. In the middle of 2007, the first proposed draft of the RUS
Core Interface Definition Language (IDL) specification [173] was released with changes
or add-on features applied to observed issues. Major changes of SIDs made within the
proposed RUS Core specification are listed in Table 5-1 and summarised as follows.

o Rather than defining a separate RUS usage record representation, the RUS service
is intended to reuse existing OGF UR and ensure flexibility on other emerging

standard usage record schemas.

o Insertion request message defines an extension element, the “<xsd:any>" element,
that can used to pass any usage records in the format other than OGF UR to a RUS

service endpoint.

e The extraction service interface is renamed as “RUS::extractUsageRecords” and
accepts a filter expression that can be constrained to be a Boolean predicate as
well as ad-doc support projections depending on a RUS endpoint implementation.
The extraction service interface definition also allows iteration through query

result set in a similar way as defined in WS-Enumeration specification [174].

e The interface definition, “RUS::extractRUSRecordlds”, is removed from RUS

specification.

e Service interfaces related to modifying usage records are simplified with a single

service interface definition, the “RUS::modifyUsageRecords”, which accepts an

132

6BDesign of Grid Resource Usage System Middleware 133

updating expression, e.g. XQueryUpdate[175], and returns operational results.

e A single service interface is also defined for deleting usage records matched by

evaluation filter expression input.

e ARUS service endpoint may apply different standard or custom dialects for query,
updating and deleting usage records. For example, a RUS service endpoint may be
implemented using XQuery[176] dialect for query, XQueryUpdate and SQL
dialects for updating, and XPath dialect for expressing a Boolean predicate for
deletion. A client may get supported operation-dialect pairs of a RUS service
endpoint through proposed “RUS::listSupportedDialects” interface.

e Anew operation is also proposed in RUS Core specification and allows a client to
audit record creation or modification history through the

“RUS::extractRecordHistory” interface.

Table 5- 1: A Comparison of Service Interface Definition between RUS specification (version

1.7) and Proposed RUS Core specification

Service Interface Definition
Function

RUS Specification (version 1.7) RUS Core Specification

RUS::ListMandatoryUsageRecordElements

configuration | RUS::ListMandatoryUsageRecordElements
RUS::listSupportedDialects

Insertion RUS::insertUsageRecords RUS::insertUsageRecords

RUS::extractRUSUsageRecords
Extraction RUS::extractUsageRecords
RUS::extractRUSRecordlds

RUS::incrementUsageRecordPart

Updating RUS::modifyUsageRecordPart RUS::modifyUsageRecords

RUS::replaceUsageRecords

RUS::deleteRecords
Deletion RUS::deleteUsageRecords
RUS::deleteSpecificRecords

Auditing - RUS::extractRecordHistory

6BDesign of Grid Resource Usage System Middleware

Messaging Extensions for Aggregate Accounting

In order to qualify RUS Core specification in particular in the sense of integrating
aggregate accounting at RUS runtime and query fragmental usage information sets, the
GRUS messaging framework defines a set of SOAP header data types and reuses some of
the control headers and WS-Enumeration extensions defined within Web Service
Management (WS-Management) specification proposed by Distributed Management Task
Force (DMTF). Definitions and usages of these extensions together with RUS service

interface definitions are described as follows.

uR ; AUR =
RUS storage
RUS; insertUsageRecornds

Aggregate
strategy

AUR uR ==
RUS:extractUsagpeRecords

Aggregate
strategy

Figure 5.3: Runtime Aggregation Process at RUS Insertion and Extraction Runtime

Aggregation processes typically take place at RUS insertion and extraction runtime.
As Figure 5.3, the runtime aggregation process at RUS insertion runtime accepts multiple
job usage records in the OGF UR format and aggregates them into one or more OGF
AUR instances by applying a specific aggregate strategy, while the runtime aggregate
process during RUS extraction runtime summarises filtered job usage records using a
specific aggregate strategy and returns standard OGF AUR instances to the client.
Compared to runtime aggregation at RUS insertion runtime, further flexibility should

134

6BD

esign of Grid Resource Usage System Middleware

allow

only.

the client to define custom aggregation rules that apply to current query transaction

In order to enable runtime aggregation in a RUS compatible way, the GRUS message

framework defined a “grus:AggregateStrategy” element, which is used to specify a pre-

define

d aggregate strategy or ad-hoc aggregation rules. A client initiates a RUS request

with runtime aggregation by placing the “grus:AggregateStrategy” element inside the

SOAP

header section as follows:

Example: In the following example template, runtime aggregation is enforced by a RUS

servi
@
@
(€))
(C))
©)
(©)
@)
()
®
(10)
11
12
(13)
4
(15)
(16)

ce with proper aggregate strategy information attached to request message header.
<s:Envelope ...>
<s:Header ...>

<wsa:Action mustUnderstand=""true”>
http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordRequest”>
<grus:AggregateStrategy id="strategy-id”>
<grus:Interval>"{hour|week]|day|month]year}’</grus: Interval>
<grus:Entity ...>xsd:QName</grus:Entity>*

</grus:AggregateStrategy>

</s:Header>

<s:Body ...>

<rus:ExtractUsageRecordsRequest>

</rus:ExtractUsageRecordsRequest>
</s:Body>
</s:Envelolpe>

The following definitions provide additional, normative constraints on the

“grus:

AggregateStrategy” information model:

grus:AggregateStrategy

The optional header element contains a global unique identity of a specific
aggregate strategy, and child elements for specifying aggregation rules. On
receiving a request with runtime aggregation, a RUS service endpoint must apply a
pre-existing aggregate strategy identified by the identity value of this header
element or composing an aggregate strategy dynamically. Dynamic aggregate
strategy allows a client to define custom aggregate rules for a particular extraction

transaction.

135

6BDesign of Grid Resource Usage System Middleware 136

e grus:Interval
This element defines the aggregation intervals. There are five defined intervals

including day, week, month, year, and hours.

e grus:.Entity
This element may occur more than once to declare the qualified name of one or
more Grid resource entities to be grouped. The element can be further restricted by

placing attribute values.

The definition of aggregation strategy header introduces flexibility in specifying a
specific aggregation strategy as well as defining custom aggregate stragety at runtime.
The aggregation strategy header can be specified along with RUS insertion and extraction
logics. The following gives example request messages in the context of WLCG
accounting allowing:

e a host to populate job usage records to the WLCG anonymous summary usage
repository by specifying the WLCG anonymous aggregation strategy in the
RUS::insertUsageRecords request message. [Each aggregation strategy
implementation has a global unique identity (e.q.
urn:grus:strategy:aggregation:wlcg-user). On receiving the request message, the
RUS service runtime looks up and instantiates an aggregate strategy instance,
which then performs runtime aggregation upon job usage records embedded

within the request message.

Example: insertion request message with aggregation strategy header

(€D <s:Envelope ...>

@) <s:Header ...>

(€))

(C)) <wsa:Action mustUnderstand=""true’’>

5) http://schemas.ogf.org/rus/2007/09/core/insertUsageRecordR
equest’>

(6) <grus:AggregateStrategy

(@) id=urn:grus:strategy:aggregation:wlcg-user” />
(3) </s:Header>

(€©)) <s:Body ...>

(10) </s:Body>

(11) </s:Envelolpe>

6BDesign of Grid Resource Usage System Middleware 137

o a VO manager to query WLCG job usage repository and generate summry usage
information by specifying custom aggregation rules. A general-purpose
aggregation strategy (urn:grus:strategy:aggregation:dynamic) is defined to apply
user-defined aggregation rules upon query results. On receiving the following
extraction request, a RUS endpoint firstly filters usage records of jobs in the VO
name of CMS, and creates an instance of the general-purpose aggregation strategy,
which then generates aggregate usage records summarised on the per-user, per-VO,

and per-month basis.

Example: extraction request message with custom aggregation rules

(€)) <s:Envelope ...>
(@)) <s:Header ...>
©)

(C)) <wsa:Action mustUnderstand=""true’”>

5) http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordR
equest”’>

(6) <grus:AggregateStrategy
id="urn:grus:strategy:aggregation:dynamic” />

@) <grus:Interval>Month</grus: Interval>

(3) <grus:Entity>urf:Userldentity</grus:Entity>

(©)) <grus:Entity
urf:description="VOName”>urf:Resource</grus:Entity>

(10) </s:Header>

(11) <s:Body ...>

(12) <rus:ExtractUsageRecordsRequest>

(13) <rus:Filter dialect="http://www._w3.0rg/TR/1999/REC-xpath-

(14) 199911167>

(15) /urf:UsageRecord[urf:Resource[@urf:description="VOName~]

(16) </rus:Filter>

(17) </rus:ExtractUsageRecordsRequest>

(18) </s:Body>
</s:Envelolpe>

The GRUS messaging also reuses some non-functional control headers and extension
elements to WS-Enumeration as defined within WS-Management specification mainly for
the purpose of fragmental and optimised query usage records. A RUS implementation
may restrict appearance of following control header and extension elements as

demonstrated in following example request message.

6BDesign of Grid Resource Usage System Middleware 138

Example: The following example request message integrates control headers and

enumeration extensions as defined within WS-Management specification

(@D <s:Envelope ...>
@) <s:Header ...>
€))

(@) <wsman :OperationTimeout>xsd: long</wsman:OperationTimeout>
5) <wsman:RequestTotal I temsCountEstimate />

(6) </s:Header>

(@) <s:Body>

(8) <rus:ExtractUsageRecordRequest>

(€©)) <rus:EndTo>wsa:EndpointReferenceType</rus:EndTo>

(10) <rus:Expires>wsen:ExpirationType</rus:Expires>

(11) <rus:Filter dialect="xsd:anyURI’>xsd:any</rus:Filter>
(12) <rus:MaxElements>xsd:Positivelnteger</rus:MaxElements>
(13) <rus:EnumerationContext>wsen:EnumerationContextType
(14) </rus:EnumerationContext>

(15) <wsman:Filter dialect="xsd:anyURI”’>xsd:any</rus:Filter>
(16) {xsd:any}

(17) </rus:ExtractUsageRecordRequest>

(18) </s:Body>

(19) </s:Envelope>

The following definitions provide additional, normative constraints on the usage and
interpretation of control headers and enumeration extensions embedded within request

messages:

e wsman:OperationTimeout
This optional header element defined within WS-Management specification is
reused as a quality-of-service constraint. A RUS implementation may define a
default maximum operational timeout to prevent system performance from being
undermined by complex requests. The value of timeout can also be specified by a
client for time-critical requests. If a RUS service endpoint does not support this
element, the endpoint may either ignore this control header or return a
“rus::UnsupportedFault” message if it must be understood. When a request is
processed beyond the specified interval limit, a RUS service endpoint should kill

the server process and return a “rus:ProcessingFault” with the “time-out” reason.

e wsman:RequestTotalltemsCountEstimate

6BDesign of Grid Resource Usage System Middleware

This optional element is the control header defined by WS-Management
specification to indicate a RUS service endpoint should return an estimate of total

number of items associated with a specific RUS extraction transaction.

rus:EnumerationContext

If a RUS service endpoint supports iterative query results, an enumeration context
should be established and encapsulating necessary information for iterative query
results. Usage of this element in a RUS extraction request results in the return of

query result sets made by previous transaction.

wsman:Filter

Although RUS Core specification explained that the expression specified by
“rus:Filter” may either be a Boolean predicate to return complete usage records or
support ad-hoc projections to return fragmental usage information set, the GRUS
message framework restricted the “rus:Filter” expression to be a Boolean predicate
only to filter complete usage record instances, while reusing the “wsman:Filter”
extension to specify projection information. The definition of “wsman:Filter” by

WS-Management specification is same as “rus:Filter”.

On successful execution of above example request message, a RUS service endpoint

composes a response message as following example:

Example: The example response message that integrates control headers and

enumeration extensions as defined within WS-Management specification

€Y
@
€))
C))
®
)
Q)
C))
€C))
(10)
an
12
(13)
(14)

<s:Envelope ...>

<s:Header ...>

<wsman:Total ItemsCountEstimate>
xsd:nonNegativelnteger
</wsman:Total ItemsCountEstimate>
</s:Header>

<s:Body>
<rus:ExtractUsageRecordResponse>

<rus:OperationResult>

</rus:OperationResult>
<urf:UsageRecords />

<rus:EnumerateContext>

139

6BDesign of Grid Resource Usage System Middleware

(15)
(16)
an
(18)
(19
(20)
1)
22)
(23)
(24)
(25)
(26)
@7

wsen:EnumerationContextType

<rus:EumerateContext>
<rus:Expires>xsd:DateTime|xsd:Duration<rus:Expires>
<wsman: I tems>

<wsman :XmlFragment>

</wsman: XmlFragment>
</wsman: I tems>
<wsman:EndOfSequence />

{xsd:any}
</rus:ExtractUsageRecordResponse>
</s:Body>

</s:Envelope>

The following definitions provide additional, normative constraints on the

interpretation and processing of control headers and enumeration extensions as a RUS

extraction response message.

wsman: TotalltemsCountEstimate

This optional header indicates that the client requested the total item count in
request message, and includes the estimated total number of query results within
the response message.

rus:EnumerationContext

If a RUS service endpoint supports enumeration, an enumeration context is
established at service side and returned to the client with necessary information for

follow-up query transactions.

rus:Expires

An instance of enumeration context has a limited lifetime, which is specified by the
client in a RUS extraction request message or defaulted by a RUS service endpoint.
Embedding this element in a response message helps the client understand how

long the query results made would live.

wsman:Items

This optional element is defined as a container of one or more enumerable
elements in WS-Management specification. The element used in GRUS message
framework to contain fragmental query results only. Other complete usage records

as query results should be placed in a schema-specific container. For example,

140

6BDesign of Grid Resource Usage System Middleware

OGF UR instances should use “urf:UsageRecords” element, while OGF AUR

instances should use “aur:AggregateUsageRecords” element.

e wsman:XmlFragment
This optional element is used to contain a single fragmental query result. The main
usage of this element in GRUS messaging framework is to wrap text fragments. A
“wsman:XmlFragment” can only be a single fragment, and embedded as a child

element of the “wsman:Iltems” element.

¢ wsman:EndOfSequence
This element defined within WS-Management specification is used in GRUS
message framework to notify the client that all query result set have been iterated.

Apart from these extensions of RUS messaging, GRUS messaging framework also
defined a new service interface, the “GRUS::listSupportedAggregateStrategies”, which is
used query operation-strategy pairs implemented within a RUS service endpoint. The
detailed GRUS messaging data type schema and Web service interface schema are given

in Appendix D.

Entity Model Compiler

The implementation of WLCG-RUS system defined three data model objects, which
are constructed by accepting standard OGF UR or OGF AUR instances, and are mapped
to three predefined WLCG accounting schema through ORM. Each data model object
has an associated DAO implementation that is triggered to save instantiated data model
objects into relational database at the RUS insertion runtime. However these three data
model objects are reversely engineered and hard coded based on WLCG accounting
schemas, making them hard to be reused for other accounting systems. Besides, WLCG-
RUS data model objects merely realise one-way transformation, i.e. transforming
standard usage record instances into WLCG accounting data for the purpose of publishing
accounting data. Rather than defining specific internal accounting data representation, the
design of GRUS system is intended to enable high-level flexibility in allowing a RUS
service endpoint to reuse any custom accounting data representations. To be more specific,
a RUS implementation based upon GRUS framework should be able to transform usage

record instances in XML format into relational accounting data representation at RUS

141

6BDesign of Grid Resource Usage System Middleware
insertion runtime, and render relational accounting data representation into standard
external XML representation at RUS extraction runtime.

The GRUS system introduced a utility tool, the Entity Model Compiler (EMC), which
provides a solution to XML persistence into relational backend. The EMC tool
concentrates on following requirement and functionalities:

XSD Driven XML instances must be validated against certain XML schema.

Relational Backend XML data are to be persistent in a relational database.

Entity Oriented A data model object must be of entity type, which has its own
database identity. An entity may have one or more relationships to
other entities, in particular one-to-one, many-to-one, one-to-many,
many-to-many relationships.

Auto Generation The EMC is a code generation engine that produces a list of

interfaces, abstract classes that encapsulate runtime rendering
functions, and DAO artefacts on per entity basis.

Customisation Generated artefacts can be customised by developers to provide
default entity model implementations and ORM mappings to local

relational data formats.

18XB ;
>E-o@o o @

LI

¥ML Schiema
edit
edit : ; : .]
] Active Code Generation Passive Code Generation . I&‘
e

Figure 5.4: The EMC code generation pattern in combination with the active code

generation pattern of JAXB binding compiler

There are two widely adopted techniques for code generation: active generation and
passive generation. Both techniques involve a code generator component, that accepts an
input and produce source code files, also known as artefacts. Common input sources

includes code model represented in Unified Modelling Language (UML), data files (e.g.

142

6BDesign of Grid Resource Usage System Middleware

XML files), and source code files. In an active generation system, the generated artefacts
are only affected by modification of input source. Passive code generation, on the other
hand, refers to the code generation process being one off and non-repeatable. The
generated codes are normally imported into a project to be extended by developers. As
Figure 5.4, the design of EMC uses passive code generation pattern that takes artefacts
generated by JAXB compiler. Although JAXB compiles an XML schema into a set of
Java classes, which are essential Plain Old Java Objects (POJO), these Java classes are
not customisable. Therefore the EMC is intended to generate following extensible entity
artefacts:
e An interface that contains a list of getter and setter methods;
e An abstract class contains:
0 Zero or more entity fields that have “one-to-one”, “one-to-many”, “many-
to-one” or “many-to-many” relationships to current entity;
0 An empty constructor;
0 A constructor that takes the JAXB typed object as parameter;
o0 A*“toJaxbBindingType” method that returns JAXB binding type;
¢ An entity DAO interface;

e A DAO Factory abstract class with creator methods of each generated entity DAO;

The code generation process enforced by EMC is composed of two sub-processes,
entity model generation and DAO model generation process. As Figure 5.5, the process of
entity model generation starts from loading user inputs, including a list of entity qualified
names, target full package path, and namespace-package mappings. The process tries to
load the JAXB-generated Java class into memory and process JAXB field or property
annotations by iterating every declared field in the JAXB class model. The processing of
individual field and associated annotations results in adding setter and getter methods to
the entity interface model, establishing relationships to other entities, and adding
appropriate statements to constructor and “toJaxbBindingType” methods of abstract class
model. The process of generating DAO models produces a DAO interface for each
declared entity, and an abstract DAO factory class that contains creator methods for each
generated entity DAO model. Finally these generated DAO and factory source codes are

written into a specific source code directory specified by the user inputs.

143

6BDesign of Grid Resource Usage System Middleware

load entity ’
e 4= === ol
nammes ‘
createa
package
t
Loap
through
each entily
NO YES
has more cleate entity
entty? ™ code models
load JAXB |, .
class model
Loop through each
declared flled
wit generaled solirce code
NO
source codes repastory ha;i more
field?

End

annotatio

YES

ntype?

!

¢

!

!

|

'

process
@XmlAtribute

process
@XmlValue

process
@XmlElement

process
@XmiElements

process
@XmlElementRef

process
@XmlElementRefs

l

l

process
@XmiList

pracess
@miD

Figure 5.5: Flowchart of entity model generation process

144

6BDesign of Grid Resource Usage System Middleware

generate
dao 7

package

'

create abstract
DA Factory
mociel

l

loop through
each entity

has mare
ertity

write genersted |

DAD antefacts EOUFCE Cocle

repositary

0l

create abstract
ertity DAO End
iterface

'

add a creatar
methad to DA
Factary model

Figure 5. 6: Flowchart of DAO model generation process

GRUS Core

The GRUS Core provides a development framework consisting of a package of
abstract functional and loose-coupled components, each of which exhibits well-defined

internal interfaces. A RUS service endpoint may provide custom RUS logic

145

6BDesign of Grid Resource Usage System Middleware

implementations by customising one or more functional components. As the class
diagram given in Figure 5.7, these components are categorised and organised into five
packages, each of which targets at accomplishing certain functionality. Like the design of
WLCG-RUS runtime, the key component of GRUS core framework is the command,
which interacts with other internal component implementations to fulfil RUS runtime
logics, in particular RUS insertion, extraction, modification, and deletion operations.
Therefore, the command factory class defines four creator methods to instantiate RUS
operation-specific command implementations. A command exception class is also defined
and throwable during the execution of a command instance. The GRUS core framework
reuses the Authorisation and DAO components defined in WLCG-RUS system, with
additional abstract methods defined within the Generic DAO interface mainly for data
updating and deletion. Filter component introduced within GRUS core framework can be
used in combination with RUS extraction, updating and deletion logics. There are two
types of general-purpose filters defined, the query filter and update filter. The query filter
can be further divided into two subcategories, projection-oriented filter and predicate
filter. A predicate filter is used usage records according to certain predicate expressions,
while the projection-oriented filter is used to get fragmental information set from filtered
usage records. An implementation of predicate filter acts upon a DAO object and returns
completed usage records by applying certain query terms. A SQL filter, for example, can
be triggered at RUS extraction runtime to query usage records matched by evaluation of
one or more “where” statements. The returned usage records can be further processed by

a projection-oriented filter, e.g. XPath filter, to get fragmental usage information.

GRUS Admin

The design of GRUS Admin extends WLCG-RUS and provides additional VO
management facilities for both system administrator and VO manager. As Figure 5.8, a
user that takes the role of VO manager is redirected to VO management view through
which new VO accounts can be created, managed, and deleted. These VO registration
entries are to be fed into authorisation service at RUS extraction runtime, i.e. a VO
manager can only access usage records of managed VOs. The system manager only also
access VO management facilities and have full control of all registered VO accounts in a
GRUS system.

146

6BDesign of Grid Resource Usage System Middleware

luk.ac.brunel services. accounting. grus.dao
CommandFaciory
<<interface=> . {abstract} i
Command e semloriaces "
et GeneritDAO<T, ID> implomens | Soneriiiiemaed A0
+execute ():vod ? abstact
U +instance (factory: Class):CommandFactory -+ getPersistentClass) Class<T> i)
+abstract createlnsertCommand (request: RUSMessageErtensions, +save (entity T)1D
contert: Handler Context, response: RUSMessageBxtensions). Command + Byl 1D, loekbooleer) T
+ abstract createExfractCommand frequest RUSMessageExtensions, +finByQueryTerm
AbsreciComimand contert: Handler Context, response: RUSMessageBxtensions). Command (query T etncSteing) Query
{abstract} + abstract createModify Command (request RUSMessageBrfansions, + delete (ntity T) 1D
it acAuthorzeFectory contert:Handler Context, response: RUSMessage Extensions).Command + modfy(expr Strng) void
||||||||| = piPriipel + absfract createDeleteCommand (request: RUSMessage Exfensions, +flusty void e S
daFarDAOFaciory contert: Handler Context, response: RUSMessageBrtensions).Command + cear)i Generated by EMC
ﬁcmm_mmmﬁ_%m_m&mmmﬁmm‘_maa T I DAOFeciary g I
fesponse; essageBtensions [e T s s s
filtesF ac:FiltetFactory , {nbstract)
+setduthorizetFactory (factory AuthorzerF actory)void S eatn [+ instancefactory Class) commandFactory
+ setPrincipal (prinPrineipal) void CommandFseeption | [+ <creators>
+ setRequest (request:RUSM Fxt void |
'+ selDAOFactorylfactory DAOFactoty)woid
+ setFilterF actory (Factory FitetFactory)void
+ getResponse ()RUSMessageExtensions i
h e e
I
I |
| Lo goron sany marar o o g joon i BpL GOSN N ML GO UM Mo QN b ML GCON W ML GO I MU g s !
I
I
I
f
I i
" SraieepFacto “<interface:: :
, AdhorztFaciy %ﬁa‘_ﬂ " iy FillrFactory
<interface=> bl {etract ieriacers — I {ahstract)
5 Auil SR cresie AgaregateStrategy m_.mmmml [+ evaluate (nodeNode JNodeList oredle
IE0IGer - - +aggegde{nodesNode) Hode] [+ evaluate (daoGenericDA) Hodelist 1= — — —
+ authorize(request RUSMessageBrtensions, ’ i e -+ geSttegyld () Shing +instance (factory: Class):CommandFactory +update(dao GenerieDAC) void + instance (factory:Class): CommandFactory
princFrincipel, record Flement) boolean +isbace factoryChass : 4 +abstract creafeAggregateSirategy() AggregateSirategy [+ geiDialect) Stoing +abstract new Fllter fcontent.List,
+ abstract creafe/bthorizer() Authorizer + getEaptession () Shig wslfap Namespacelap)
+islpdateSupported, Thoolean

Figure 5.7: GRUS Core Runtime Component Class Diagram

148

6BDesign of Grid Resource Usage System Middleware

Contreller T — &= &= = T 7 =T e e T— — — —]
! 1
1
||||||||||||| > LostPasswel 21 User £] L _ b::o::ﬂmam_.mnm_ Host & o £] 1
~ Controller Controller 1 Controller controller Controller L
¥ S ¥ £
| 1 1 1 |
i~ AppConfigE] 1 zmmwmﬁmqﬂ 1 | Login &1 | Role 7] | 1
[controller [: 1| centroller] : Controller L Controller i
_ ! 5 ' $ L
L e s e omm mmoen v mmomeaeas ae mmoTaaraee R B | |

r- -7 _ ; I _ I : I I
1 | 1 1 _ 1 1 | _ |
Ly FEHSHRESHEE A , i) ! I [
- g M ey A loes . mumijes =e sus ey = sueske be sue gee :
! ! I | | o h :

I e T T s i Rt SR I
1 |
! 1

=
_.:M:W@m r site manager

administrator yo

Figure 5.8: GRUS Admin MVC Model

6BDesign of Grid Resource Usage System Middleware

54 Implementation

This section describes implementation details of composite components of GRUS

system.

5.4.1 Entity Model Compiler

Synopsis

The EMC tool is implemented as a custom Ant [177] task that is to be invoked from
the Ant build tool. The EMC task supports the following parameter attributes (Table 5-5).

Table 5-2: Parameter attribute list of EMC task

Attribute ‘ Data Type Description Required

The root directory of source codes

destDir String Yes
or artefacts to be generated
The package name of entity model
entityModelPkg | String Yes
artefacts
daoModelPkg String The package name of DAO artefacts No
If specific, the DAO artefacts will be
generateDAO Boolean generated and placed in specified No

DAO model package.

The EMC task also supports the following nested element parameters:

classpath

entity

The nested <classpath> element(s) is used to specify locations of
JAXB-generated classes.

Example Syntax:

<classpath>

<pathelement path="${classpath}”/>
<pathelement location="lib/example.jar”/>
<classpath>

The nested <entity> element(s) is used to declare qualified names

of target entities. These elements are loaded by EMC task to locate

149

6BDesign of Grid Resource Usage System Middleware

NsPkgMapping

Worked Example

JAXB-generated class models. The qualified name of an entity is a
combination of a namespace and JAXB-generated class model
name.

Example Syntax:

<entity namespace=""urn:namespace’>

Name of JAXB class name

</entity>

The element is used to declare custom JAXB namespace-package
mappings. The syntax functions exactly as JAXB namespace-
package mappings to declare custom packages other than reasoned
from namespaces using default package name converter. Values of
this element help the EMC compiler to locate appropriate JAXB
class model. If this element is omitted, the default package name
converter of JAXB is used.

Example Syntax:

<NsPkgMapping

namespace=""urn:namespace” prefix="prefix”

package=""package.full _path” />

In order to use EMC tool in Ant build tool, the EMC Java ARchive (JAR) file is

required to add class path in a build file and declare a task definition with following

statements:

Example: EMC task definition of a build file requires specifying the class path referring
to GRUS EMC package file.

@
@
€))
C))
®
)
@

<taskdef

name=""emc”’

classname=""uk.ac.brunel _.services.accounting.grus.tool _emc_.EMCTask”

<classpath>

<pathelement path="${lib.dir}/grus-emc-1.0-SNAPSHOT. jar” />

<classpath>
</taskdef>

150

6BDesign of Grid Resource Usage System Middleware 151

After defining the EMC task in a build file, an Ant target can be defined to generate
entity model and DAO model artefacts by invoking EMC tasks, which accepts a set of
user-defined parameters and embedded element parameters. The example below defines a

“generateEntityDAOModels” target with following statements:

Example: The following example target definition uses EMC task to generate entity

model and DAO model artefacts.

)

(©)) <target name="’genenateEntityDAOModels”

(10) description="generate Java entity and DAO artefacts”>

(11) <emc destDir="${src.dir}”

(12) generateDAO=""true”

(13) entityModelPkg="uk.ac.brunel.services.accounting.grus.datamodel.
(14) urt”

(15) daoModelPkg="uk.ac.brunel_services.accounting.grus.dao.urf’>
(16) <classpath>

@a7) <fFfileset dir="${build.dir}/classes” />

(18) <include name="*_class” />

(19) </fileset>

(20) </classpath>

(21) <entity

(22) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(23) UsageRecordType</entity>

(24) <entity

(25) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(26) Host</entity>

(27) <entity

(28) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(29) SubmitHost</entity>

(30) <entity

(31) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(32) Userldentity</entity>

(33) <entity

(34) namespace="http://schema.ogf.org/urf/2003/709/urf” prefix="urf’>
(35) Recordldentity</entity>

(36) <entity

(37) namespace="http://schema.ogf.org/urf/2003/709/urft” prefix="urf’>
(38) Jobldentity</entity>

(39) <entity

(40) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(41) Resource</entity>

6BDesign of Grid Resource Usage System Middleware

(42) <entity

(43) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(44) ProjectName</entity>

(45) <entity

(46) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(47) MachineName</entity>

(48) <entity

(49) namespace="http://schema.ogf.org/urf/2003/709/urf” prefix="urf’>
(50) Queue</entity>

(51) <entity

(52) namespace="http://schema.ogf.org/urf/2003/09/urf” prefix="urf’>
(53) Queue</entity>

(54) <entity

(55) namespace="http://schemas.ogf.org/rus/2007/09/core/types”

(56) prefix="rus”’>

(57) RecordHistoryType</entity>

(58) </emc>

(59) </target>

The execution of the above example results in the generation of a set of entity and
DAO model artefacts as the class model described in Figure 5.9. The example EMC task
defines eleven embedded entities, including entities defined within the OGF UR schema
and the record history entity defined within the RUS schema. For each entity, the EMC
task generates an entity model interface and an abstract class model, which provides a
runtime mapping framework between the instance of an entity model and the JAXB class
model. The EMC task also establishes relationship between entities. In this example, a
usage record entity has one-to-one relationship to the record identity entity, the job
identity entity, and record history entity, while has many-to-many relationships to other
generated entities. The DAO generation process also generated a DAO interface on per

entity basis and added an associated factory method to the abstract DAO factory class.

152

153

6BDesign of Grid Resource Usage System Middleware

; <<interfaces=
AbstractProjectNameEnsiyy | implements ProjectNameEntity n
{abstract}
T
<<interface=> L _ _ _ _ _ _
ProjectNameEntityDAO DAO of
- - ===
|
n
L
<<interfaces:
AbstractResource Entity ResourceEntity
{abstract} e
implements
I
<<interface=> | _ _ _ _ _ !
ResomrceEntityDAQ DAO of
AbstraciSubmitHostEntity |
{abstract} i
implements n
I
|
<<imterface=> | _ _ _ _ _ it
SubmitHostEntitcyDAO DAO of
n
|
<<interface==
HostEntity
implements -
|
AbstractHostEntity
{abstract} ,
|
,U>O of
<<interface=:
HostEntityD AQ

<<interfaces: implements]
QueueEntity AbstractQuene Entiyy
{absiract}
AbstractliserRecord Entity T
{abstract) | DAD of
frmmmmey | peogmimmasmegeit, PFediTreew s ES Shaeiien e oo =<interface=>
implements QueueEntityDAO
IIIIIIIIIIIIII 11
11
11 <<interface:: .
I RecordldentityEntity | \MPIEMeNts | spguncsRocordilentity Entiyy
<<interrface== {abstract}
UserRecordEntityDACQ I
11 T
11 | S
= A e <<interface=:=
I DAC of RecordIdentityEntityD AQ
11
oy B vl Sy B WA Shr B WA S b Wi She Be WS S b (]
ﬂ. IIIIIIIIIIII _ _ n
1 DAO of
<<interface:= <<interface=: .3l 4l L, <<mmterface-= | ==interface=:
UserldentityEntity JobIdentityEntity MachineNameEntity MachineNameEntityDAO
T T
implements | implements | e s implements
el 1 DAOFactory
AbstractUserEntity I AbsiractfobldentitvEntity ; MachineNameEntity fabstract}
{abstract} | {abstract} | {abstract} + ahstract gethl achineEntityDAO GenericDAC
,U)O of | + ahstract getRecordl dentityEntity DAD
DAO of +ahstract gethl achineN ameEntityDAD
! ! + shstract getlobl dentityEatityDAD
<<interface=> “<interface:: +ahstract getRecordHistoryEntityDAC

UserIdentityEntityDAQ

-<interface:: implements : .
RecordHistoryEntity AbsiractRecord History Eniify
{abstract}
T
| <<interface=:>
i A mipg s Aok al RecondHistoryEntityDAOQ

JobIdentityEntityDAQ

Figure 5.9: Example class models of artefacts generated by EMC

+ahstract getllserd dentityEntityTIAQ
+ahstract getHostEntityDAC
+abstract getSubmitHostEntityDAO
+ahstract getQueneEntityDAC

+ ahsiract getUsageRecordEntityDAO
+ahstract getProjectl ameEntityDAQ

6BDesign of Grid Resource Usage System Middleware

5.4.2 GRUS Core

The implementation of GRUS core is based on WiseMan (version 1.0) [178] platform,

an open source Java™ implementation of WS-Management specification. It provides a

development framework as well as runtime environment for hosting WS-Management

compatible Web services. Rather than using third-part Web service hosting environment,
such as Axis or Java Web Service Developer Pack (JWSDP) [179], the WiseMan provides
its own hosting environment in order to support WS-Addressing[57] compatible SOAP

messaging framework and delegate incoming SOAP requests to appropriate request

handler using WS-Addressing information. The implementation of GRUS Core extended

Wiseman runtime framework and provided a set of support classes that help developers

focus on designing custom RUS solutions without dealing with low-level messaging.

These support classes provide following functionalities to the developer:

As Figure 5.10, the GRUS Core consists of a set of runtime components (items in blue)

Providing messaging facilities to marshal and unmarshal RUS messages and
GRUS extensions;

Managing lifecycle of requests being served;

Runtime aggregation either by applying predefined aggregate strategies or
instantiating dynamic aggregate strategy according to user inputs;

Enumerating large volume of query results;

Monitoring lifetime of enumeration context and perform clean up when expired;
Filter query results;

Mutual authentication and fine-grained access control on per usage records basis;
Using custom XML-formatted accounting schema other than OGF UR and OGF
AUR.

and abstract function components to be implemented by developers (items in red). The

following list provides an overview of generic runtime events:

The GRUS servlet keeps listening to transport-level requests. At startup, the
servlet loads RUS Core schema and dependencies including GRUS extension
schema, OGF UR, OGF AUR schema, etc. and instantiates a singleton GRUS
agent instance. The servlet is responsible for serving both HTTP GET and POST
requests. Client may query schema and WSDL files through HTTP GET request,
while interrogating RUS logics through HTTP POST requests. On receiving a
RUS request, the servlet forwards incoming request to the instantiated agent

154

6BDesign of Grid Resource Usage System Middleware 155

instance and passes a context object that encapsulates necessary information
related to current transaction, including the client principal, GRUS handler object,
command factory object, DAO factory object, etc., by loading system
configurations.

e The GRUS agent acts as a request scheduler and maintains an internal pool for
asynchronous tasks. When a RUS request is received, the agent validates request
messages against loaded schemas. Once validated, a request dispatcher task is
scheduled and placed into the task pool. The lifetime of the request dispatcher task
is monitored by a specific timer task, which clean up the task and compose a
“wsman:timeoutFault” message returned to the client when the task did not
completed until the end of timeout value specified by the
“wsman:OperationTimeout” control header.

o GRUS request dispatcher is implemented as a callable task. Its main responsibility
is to delegate received requests to appropriate a GRUS handler implementation

specified within the context object passed by GRUS servlet.

Servet Container
fust 4 e -
B § GRUS Servat - ||
!) Configuraton RUS Wassage
ety
. RUS Message
1 » - L d
GRUSA {'.l:us.rtqlzﬂ 1‘\'-\"‘1'"!" Lty
1 nestanbabs
| RS Werssage
x ' Extensions
— GRUS Handle * o— Command
LT 1 Hibernate
I _ Enumerabon
I ' % z wrator Factony
I iy K=]
QUL DAD fasciony R [® nalanEale
instariale GRUS Support errmerale Hib#mata
» Efuiiin
GenaricDAD —O - Hersior
LHUD opsrations
spregale
Lppgregate i i Suthorizes
Sralegy Faciory : Filter Faciory & Facory
Aggregnie Fimar = Aumorizer -
S alegy Instanfiste [R— Fritantiste

Figure 5.10: GRUS server architecture containing runtime implementations and

interactions

6BDesign of Grid Resource Usage System Middleware

e A GRUS handler provides a set of internal interfaces that are triggered according
to the action specified within WS-Addressing [57] header information. Developer
may provide custom handler solution by implementing the GRUS handler
interface. A GRUS handler implementation may use support classes provided by
WiseMan framework for real-time resource usage monitoring through standard
RUS Core interfaces, or make use of utility functions supplied by GRUS support
class for persistent accounting.

e The GRUS support is the main support class used by developers to provide
support for their custom handler implementation in the context of persistent
accounting. The support class interrogates GRUS runtime component
implementations and provide utility functions.

¢ Finally the GRUS framework also provides a messaging framework consisting of
Java representation of RUS Core messages and GRUS header blocks. A utility
class is also provided and facilitate implementation developers to create RUS

request and response messages.

5.4.3 GRUS Annotations

According to the RUS Core specification, a RUS compatible implementation must as
least support XPath (version 1.0) [170] dialect for RUS extraction logic. In order to
bridge the gap between XPath and relational backend, GRUS Core provides an
XPath2Hql filter that implemented the Filter interface and converted standard XPath
expression into Hibernate Query Language (HQL) [180] at runtime by consuming custom
mapping of program elements of an entity model implementation to XML Schema
construct. GRUS defined a set of mapping annotations based on the Java Specification
Request 175 (JSR175) [181], a metadata facility for Java'™ programming language. The
retention policy of all defined mapping annotations is the RetentionPolicy.RUNTIME,
which allows introspection of mapping annotations by XPath2Hqgl Filter at runtime.
These annotations are used in an entity model implementation for:

e Customising the mapping of an entity model to a global XML element;

e Referencing an entity property to another entity model,

e Customising the mapping of a non-entity property to a simple-typed XML element;

e Customising the mapping of a non-entity component to a complex-typed XML

element;

156

6BDesign of Grid Resource Usage System Middleware

The following gives detailed normative synopsis and mapping constraints of defined

annotations.

@Entity

This class-level annotation is used to map an entity model class to an XML global

element.

Synopsis @Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)

public @interface Entity{

String name();

String namespace ();

Boolean isRoot () default false;

}

Mapping The following mapping constraints must be enforced:

@EntityRef

This annotation is used as a class level annotation. A class model
annotated with this annotation must be an entity class that extends
one of abstract entity models generated by GRUS EMC.

The @Entity.name () must be specified to the local name of the
target global element.

The @Entity. namespace () must be specified to the namespace of
target global element.

If isRoot () is true, the entity class model is mapped to a root

element.

This property-level annotation is used to reference an entity property to another entity

model.

Synopsis @Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)

public @interface EntityRef{
Class<?> type QO

}

157

6BDesign of Grid Resource Usage System Middleware

Mapping The following mapping constraints must be enforced:

@Property

The @EntityRef.type() must specify the full class path of

referenced entity model class.

This annotation is a property-level annotation that is used to map a non-entity property

to an XML simple content.

Synopsis @Target(ElementType.FIELD)
@Retention(RetentionPolicy . RUNTIME)

public @interface Property {
String name (Qdefault “##default”
String namespace () default “##default”

PropertyType type () default PropertyType.CHILD;

}

Mapping The following mapping constraints must be enforced:

@Component

The @Property.name() may be specified to the local name (e.g.
attribute name or child element name) of simple content to which
the property is mapped. If @Property.name() is “##default”, the
current property is the value of XML content model mapped to the
parent entity class.

The @Property.namespace() is used to specify the namespace of a
simple content. If @Property.namespace () is “##default”, the target
namespace of this property is same as the @Entity.namespace ().
The @Property.type () is used to define the relationship between
the simple XML content the property mapped to and the XML
content model the parent entity class mapped to. The value of
@Property.type() must be of the PropertyType, a Java enumeration
class that defines three enumeration constants: attribute, value and
the child. The default value of @Propety.type() is the
Propety Type.CHILD.

This annotation is a property-level annotation that is used to map a non-entity property

158

6BDesign of Grid Resource Usage System Middleware

to an XML complex content.

Synopsis @Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)

public @interface Component{

String relativelLocationPath () default “##default”;
String name QQ“##default”;

String namespace () default “##default”;

Property[] properties () default {};

}

Mapping The following mapping constraints must be enforced:

The component property of an entity model implementation must be
a JAXB binding type.

The @Component.name() may be specified to the local name of the
complex content to which the non-entity property is mapped to.

The @Component.namespace() is used to specify the namespace of
a simple content. If @Property.namespace () is “##default”, target
namespace of the complex content same as the
@Entity.namespace().

The only other additional GRUS mapping annotations allowed with
@Component is the @Property to define the mapping annotations
of properties defined within the JAXB binding type.

An entity model implementation may alternatively use
@Component.relativeLocationPath to define the location path

relative to the context node the entity is mapped to.

The XPath language provides a common syntax and semantics mainly for addressing

parts of an XML document by modelling it as a tree of nodes, while HQL is a full object-

oriented query language. There are fundamental differences between these two languages.

First of all, the XPath language defined a group axis names that allows flexible traversal

over a tree of XML nodes. These axis names can be divided into two groups, the forward

and reverse axes. Forward axes are used to traverse a specific context node to its children,

descendants, and siblings, and reverse axes allows traversal from a specific context node

to its parents and ancestors. However HQL takes the similar grammar as SQL, and only

supports querying properties defined within a specified entity model class. In another

word, a HQL only supports successive XPath axes, such as child and attribute. Besides,

159

6BDesign of Grid Resource Usage System Middleware 160

XPath also defines a set of functional call expressions, including node-set functions,
string functions, boolean functions and number functions, most of which are not
supported in HQL language. Finally there are no equivalent operators in HQL to some of
those defined in XPath, in particular node-set operators and numeric operators. The
supported features of XPath implemented in XPath2Hql filter are summarised in the table
below (Table 5-3).

Table 5-3: Features of the XPath language supported in GRUS XPath2Hq| filter

Axes attribute, child
Abbreviated Axes @

Relational Operators =>= <=, > <, 1=
Boolean Operators AND, OR, |
Node-set Function text ()

Therefore, the XPath2Hqgl facility enforces a set of restrictions on standard XPath

expression. These restrictions are rendered as following formulas:

[1] Expr := OrExpr

[2] OrExpr ::= AndExpr | OrExpr 'or' AndExpr

[3] AndExpr ::= EqualityExpr
| AndExpr 'and' EqualityExpr

[4] EqualityExpr ::= NonAdditiveRelationalExpr
| EqualityExpr '=" NonAdditiveRelational Expr
| EqualityExpr 'I=" NonAdditiveRelationalExpr

[5] NonAdditiveRelationalExpr ::= UnionExpr
| NonAdditiveRelational Expr '>' UnionExpr
| NonAdditiveRelational Expr '<' UnionExpr
| NonAdditiveRelational Expr ">=" UnionExpr
| NonAdditiveRelational Expr ‘<=" UnionExpr

6BDesign of Grid Resource Usage System Middleware

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

UnionExpr ::= Location

| UnionExpr '|' LocationPath

LocationPath ::= RelativeLocationPath
| AbsoluteLocationPath

AbsoluteLocationPath ::= '/ RelativeLocationPath?
| AbbreviatedAbsoluteLocationPath

RelativeLocationPath ::= Step

| RelativeLocationPath '/ Step

| AbbreviatedRelativeLocationPath

Step ::= AxisSpecifier NodeTest Predicate*

AxisSpecifier ::= AxisName "::' | AbbreviatedAxisSpecifier

AxisName ::="attribute’ | 'child'

AbbreviatedAxisSpecifier ;= '@'?

NodeTest ::= NameTest | NodeType '("")’

NameTest ::= QName

NodeType ::='text' | 'node’

Predicate ::= '[' PredicateExpr '

PredicateExpr ::= EXpr

AbbreviatedAbsoluteLocationPath ::= '//' RelativeLocationPath

AbbreviatedRelativeLocationPath ::= RelativeLocationPath '/ Step

161

6BDesign of Grid Resource Usage System Middleware

In order to demonstrate how the XPath2Hqgl filter works, the following gives an
example usage of the XPath2Hql facility that enables XPath query upon relational usage
data repository. As discussed in section 5.4.1, the GRUS EMC provides an utility tool
that generates a number of abstract entity and DAO artefacts. Implementations of some of
generated artefacts with GRUS annotations are given to establish the mapping rules
between XPath and HQL query languages.

Example: UsageRecordEntity implementation with GRUS annotation

(¢H) @Entity (name="UsageRecord”,

) namespace="http://schema.ogf.org/urf/2003/09/urf”’,

(€)) isRoot=true)

(C)) public class UsageRecordEntity <UserEntity, HostEntity> extends
B) Abstract UsageRecordEntity<UserEntity, HostEntity>{

©)

@ @Component(name="status”,

(3) Properties{

(©)) @Property (name=*“description”, type=PropertyType.ATTR),
(10) @Property (name=*“value”, type=PropertyType.VALUE)})
(11) Status status

a2

13) @EntityRef (type=UserEntity.class)

14 UserEntity user;

@as)

(16) @EntityRef (type=HostEntity.class)

an Host host;

Example: UserEntity implementation with GRUS annotation

(¢H) @Entity (name=”Userldentity”,

) namespace="http://schema.ogf.org/urf/2003/09/urf’)

(€)) public class UserEntity <UsageRecordEntity> extends Abstract
(C)) UserEntity<UsageRecordEntity>{

©)
(6) @Property (name=GlobalUserName”
@ namespace="" http://schema.ogf.org/urf/2003/09/urf”

(¢)) type=PropertyType.CHILD)

162

6BDesign of Grid Resource Usage System Middleware 163

(€©)) String globalUserName;

(10)

(11) @Property (name="LocalUserld”

(12) namespace="" http://schema.ogf.org/urf/2003/09/urf”
13) type=PropertyType.CHILD)

(@) String localUserld;

(15)

(16) @Component(relativelLocationPath="ds:Keylnfo/ds:X509Data/ds:X509S
an ubjectName™)

(18) String userDN;

(19

0 1}

Example: HostEntity implementation with GRUS annotation

(¢H) @Entity (name="Host”,

) namespace=""http://schema.ogf.org/urf/2003/09/urf’)

(€)) public class HostEntity <UsageRecordEntity> extends Abstract
(€)) HostEntity<UsageRecordEntity>{

©))

(6) @Property (name="description”

@) namespace="" http://schema.ogf.org/urf/2003/09/urf”
@®) type=PropertyType.ATTR)

(©)) String description;

(10)

(1) @Property (name="primary”’

(12) namespace="" http://schema.ogf.org/urf/2003/09/urf”
(13) type=PropertyType.ATTR)

14 Boolean isPrimary

(5)

(16) @Property (type=PropertyType.VALUE)
an String value;

(18)

as 1}

A client query request must specify the XPath2Hql filter in the RUS:extract request
message as the example below. In the GRUS system, each filter has an assigned global

unique name. The XPath2Hgq| filter name is “urn:grus:filter:xpath-to-hgl”.

6BDesign of Grid Resource Usage System Middleware

Example: RUS::extract request message using XPath2Hql filter

@
@
©)
@
©)

®

)
C))
®

(10
an
a2
s
as
as)

<s:Envelope ...>

<s:Header ...>

<wsa:Action mustUnderstand=""true”’>
http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordReque
st”>

</s:Header>

<s:Body ...>

<rus:ExtractUsageRecordsRequest>

<rus:Filter dialect="urn:grus:filter:xpath-to-hql”>
/urf:UsageRecord[urf:Status="finished”][urf:Userldentity/ds:Key
Info/ds:X509Data/ds : X509SubjectName=""xiaoyu

chen”] [urf:Host[@primary=true]="octopussy.brunal .ac.uk”]
</rus:Filter>

</rus:ExtractUsageRecordsRequest>

</s:Body>

</s:Envelolpe>

On receiving the request message, the GRUS endpoint is create an XPath2Hql filter

instance, which is then render the XPath expression into HQL expression step-by-step:

An XPath2Hql filter instance firstly normalise an XPath expression as:

/urf:UsageRecord[urf:Status="finished”][urf:Userldentity/ds:Keyln
fo/ds:X509Data/ds: X509SubjectName=""xiaoyu
chen”] [urf:Host/@primary=true][urf:Host.text()="octopussy.brunel.

ac.uk?]

The filter then finds the implementation of root element (i.e. urf:UsageRecord)

and generates an initial HQL statement:

SELECT FROM UsageRecordEntity AS entity

For each XPath predicates, the filter generates conditional clauses and appends
them to the genreated HQL statement. In this example, it traverses the GRUS
annotations of the “UsageRecordEntity” class and learns mapping rules. If the
@EntityRef annotation encountered, it loads the referenced entity class into
memory and analyses in-depth mapping rules. Finally the filter generates an HQL

expression as:

164

6BDesign of Grid Resource Usage System Middleware

SELECT FROM UsageRecordEntity AS entity
WHERE entity.status.value="finished” AND
entity.user._userDN="xiaoyu chen” AND
entity.host.isPrimary=true AND
entity.host.value="octopussy.brunel .ac.uk’

The XPath2Hql facility of GRUS is implemented based on Simple API for XPath
(SAXPath) [182] and Java APIs for XPath engine (Jaxen)[183]. SAXPath is modeled
closely on the structure used by Simple API for XML (SAX)[184], and involves two
generic interfaces, including a reader that parses an XPath expression and a handler that
receives handles parse events received from the reader. Jaxen is an open source XPath
engine that leverages various object models, such as Document Object Model
(DOM)[185], XML Object Model (XOM)[186], and so on. Jaxen uses SAXPath and
provides default SAXPath reader and handler implementation that parse textual XPath
expression and build Jaxen expression trees that can walk through different object models.
As the components and runtime events outlined in Figure 5.11, to start the XPath2Hqgl
process, an instance of the XPath2Hql factory class that implements the FilterFactory

XPathi2Hgl Un red
Fifter i
» Aurs Exception

o XPath2Hg! Unresolvable
Handler Exception

XPath2Hgl
Filter

XPath Syntax
Exception

SAXPath

Figure 5.11: The components and runtime events implemented based on Jaxen and
SAXPath for rendering an XPath expression to HQL statement.

165

6BDesign of Grid Resource Usage System Middleware

interface is used to create an instance of XPath2Hql filter that implements the Filter
interface. The XPath2Hql filter instance wraps a SAXPath reader object provided by
Jaxen. When the filter instance is invoked, the reader parses textual XPath expressions
and triggers one of several callback methods implemented within in the XPath2Hql
These “startXPath”,

“startRelativeLocationPath” and so on, are implemented by the default Jaxen handler and

handler. methods, such as “startAbsoluteLocationPath”,
are overridden by the XPath2Hql handler to render the Jaxen expression trees into HQL
expression trees by processing mapping annotations of entity model classes. During the
parsing process, when an unsupported Axis or XPath expression is detected, the
XPath2Hqgl handler stops the parsing process and throws an UnsupportedAxisException
and XPathSyntaxException. On successful completion, the XPathHandler instance
returns an HQL expression that is used by XPath2Hgl filter instance to query usage

records through the “findByQueryTerm()” interface of an GenericDAO object.

HTTERequest
Create Viesyw
=
I el
—
I —_
-
| -
—
y
VOController EditViess
pu—— el = - }

+ list
+ create
+ sawe -
+ shonar - -
+ delete B =
+ edit —
+update Ty ListView
+ enable E 52
+ disahle

I -

~
| .
W "
.
Vi
Ty STow Vieww

wwoblathe String
etnabledhoolean
date:Date
ownerTser

Figure 5.12: Class Diagram of the VO Management Implementation

166

6BDesign of Grid Resource Usage System Middleware

5.4.4 GRUS Admin

The implementation of GRUS Admin reuses and extends the WLCG-RUS Admin Web

application with additional VO management facilities.

VO Management

In consistent to other management functionalities implemented in WLCG-RUS Admin,
the VO management is implemented based on MVC pattern. As illustrated in Figure 5.12,
the implementation of VO management consists of a VO controller, a VO model class,
and a set of view pages. An instance of VO model encapsulates meta-information of a VO
as a registry entry, including the VO name, owned VO manager, registration date, and
status. Similar to Host management facility implemented within WLCG-RUS Admin, the
VO controller provided four “do-GET” methods in the host controller, which allows a VO
manager to “list”, “create”, “edit”, and “show” managed VO accounts. Each “do-GET”
method has also has a view page that provides a Web-based interface to end users. The
implementation of VO management defined distinguished authorities for VO managers
and the system administrator. For example, a system administrator has full view
authorities of all VO accounts registered to a GRUS endpoint, while a VO manager can
only view managed VO accounts. Besides, the status of newly created VO account is set

to “disabled” and can only be “enabled” by the system administrator.

5.45 User Interface

Like the design of WLCG-RUS system, the GRUS provides a command-line interface
for interacting RUS service endpoint and a Web-based interface for GRUS system

administration.

Command Interface

The implementation of GRUS command interface extends WLCG-RUS command-
line client and allows a user to view configuration information of a RUS service endpoint,
in particular supported aggregate strategies, operation-dialect pairs, and mandatory usage
record elements, insert, query, modify, delete and audit usage records through standard

167

6BDesign of Grid Resource Usage System Middleware

GRUS Admin

A Welcome to Grid Resource Usage Sarvice, test vo

VO Manager {it Home |4 New Virtual Organisation
My VOs ¥ . . .
% VlirtualOrganisation List
x My Account Id VO name Date Description
1 CMs 04/01/2008 WLCG CMS virtual organisation

© 2009 Brurel Uriversity

Figure 5.13: VO manager view of GRUS Admin Web application

GRUS Admin

‘ Welcome to Grid Resource Usage Service, xiaoyu chen

WLCG-RUS Admin fa Home u Virtual Organlsation List & Mew Virtual Organisation

%
Service Configuration . i i
A Show Virtual Organisations

A i
w nneuncements i ;

3 Ua Adiin VO Name: CMs

Description: WLCG CMS virtual organisation
@ flole hemin Enablect fake
(ﬂ”“‘M""" o Edit [Delete 8 Enahleh B Disable

%ﬁ VO Admin

4%
N Security Configuration

© 2008 Brurel Uriversity

€9 Logout {} Help

Enabled

fake Show

€) Logout £} Help

Figure 5.14: System administrator view of GRUS Admin Web application

168

6BDesign of Grid Resource Usage System Middleware 169

RUS core and GRUS extension interfaces. The Java client is wrapped by a shell script,
which accepts arguments as shown in Appendix D.2. At least one of the set of options: list,
insert, extract, modify, delete, and audit must be used every time along with the target
service endpoint URI. An example command is as shown below to query aggregate
strategy list supported by a GRUS endpoint.

grus -s <service-endpiont-uri> —list --aggregate-strategies

Web Interface

The GRUS Web interface provided enhanced VO management facilities for a VO
manager and system administrator. As the screen shot presented in Figure 5.13, a VO
manager is redirected to the VO management view where a VO account can be added or
removed. By default, a newly created VO account is not enabled until the system
administrator approved its validity. Once approved, the VO manager may query usage
records belong to owned VOs through a RUS service endpoint. The GRUS system
administrator has full view and control of all VO accounts registered. As illustrated in
Figure 5.14, the system administrator can edit, delete, create, activate and deactivate a
VO account through the administrator view. The presentation of GRUS Admin Web
application shares the same layout of WLCG-RUS Admin except replacing WLCG-RUS
logo with a new GRUS logo.

5.5 Summary

This chapter presented a middleware solution, the GRUS, which aims at assisting
developers in implementing a RUS compatible accounting service. The GRUS design is
based on the JISC-proposed accounting framework and consists of four main components:
the GRUS EMC, GRUS Core, GRUS annotations, and GRUS Admin Web applications.
The EMC is implemented as a utility class that is used to generate abstract entity models
and DAO objects. Generated artefacts provide runtime mapping between implementation
of entity models and JAXB binding types, and are to be implemented by developers and
bounded to custom relational backends through ORM mapping configurations. The

GRUS Core provides RUS messaging framework and contains a set of abstract functional

6BDesign of Grid Resource Usage System Middleware

components for authorisation, data access, filtering and runtime aggregation. A RUS
service endpoint may implement one or more GRUS Core components to provide a
custom RUS implementation. GRUS Core also provides implementations of some
components, such as the XPath2Hq|l filter that enables query relational usage data using
standard XPath expression, and the dynamic aggregate strategy that is mainly used to
summarise query results according to the grouping criteria specified by a user. In order to
save development effort, a RUS implementation can reuse functionalities implemented by
a helper class, the GrusSupport. GRUS framework defined a set of mapping annotations
that are used to customise mapping rules of entity program elements to XML schema
constructs. These annotations are embedded within an entity model implementation and
fed into XPath2Hql filter that renders standard an XPath expression to HQL statement.
The GRUS Admin extended functions implemented by WLCG-RUS Admin with
additional VO management facilities allowing a VO manager or system administrator to
manage owned or system-wide VO accounts. The GRUS software stacks® are hosted at

the SourceForge.net as open source software.

! http://grus.sourceforge.net/

170

7BConclusions

Chapter 6

Conclusions

This thesis presented systematic researches on Grid accounting including reviews of
accounting in the Grid, prototypical development of RUS system in such multi-Grid
environment as WLCG, and design and implementation of GRUS middleware. This
chapter concludes the research results of this thesis and recommended future works on
standards and possible further implementations according to the evolvement of those

standards. Relevant publications of this chapter include [188].

171

7BConclusions 172

6.1 Research Outcomes

This thesis presented a three-year research on design and implementation of Grid
accounting systems in multi-Grid environments. The following summarises research

outcomes including lessons learned and reflections of research outputs.

6.1.1 Lessons Learned

Throughout researches conducted in this thesis towards developing a standard and
interoperable Grid accounting system, there were many problems encountered mainly due
to four main factors: lacking of comprehensive understanding of accounting requirements;
diverse project-specific requirements; confusion of interoperability and interoperation;
tremendous duplicate re-engineering tasks. This section summarises lessons learned

during the course of this research.

At the beginning of this research, Grid accounting along with its concept and usage
scenarios was new to many. Although there were many definitions and concepts proposed,
they were defined based on certain use cases identified in a project-specific manner.
Lacking of comprehensive understanding of accounting requirements on heterogeneous
usage scenarios across Grid project boundaries was the first and most significant issue in
building interoperable accounting systems. Early efforts on developing Grid accounting
systems focused on diverse Grid-specific requirements and resulted in the complexity of
enabling interoperability between these Grid accounting systems. However the
emergence of ever-increasing collaborations requires resource sharing across Grid

infrastructures and provisioning a multi-Grid view of resource usage.

In order to cope with the interoperability issue, significant efforts have been put on
standardisation. In 2003, the first standard accounting data format was proposed by OGF
UR working group, aiming at provisioning common representation usage information at
batch job level. The first RUS specification emerged in 2005 and re-designed in 2007 to
provide standard interface definitions of a Grid accounting system. These two standards
contributed to data and service interoperability between heterogeneous accounting
systems. However the adoption of these standards is not as easy as it seems to be. This is

because of three main reasons. First of all, the current status of both OGF UR and OGF

7BConclusions

RUS specifications are not mature enough to accommodate various accounting usage
scenarios. Besides, the evolving nature of these standards slows down the adoption
process. Finally and most importantly, the enablement of interoperation is far more than
defining interoperable accounting data representation and service interfaces. It also
involves a lot of re-engineering tasks, which can break current accounting process
enforced by pre-existing accounting systems. This could be better explained by the
WLCG accounting process. The current WLCG accounting process involves metering
and streaming accounting data from three Grid infrastructures, each of which has custom
accounting solution deployed. The interoperation between these accounting systems is
enabled by three different communication protocols (section 4.1). The migration to be
OGF standard compatible would result in tremendous re-engineering tasks for each pre-
existing accounting systems as well as communication protocols and risking existing
accounting processes. Therefore such migration becomes a hard decision unless there is
an obvious reason and a consistent solution to minimise re-engineering tasks while ensure

data consistency.

6.1.2 Reflections

This thesis starts from reviewing current practices by interviewing stakeholders from
different groups, including international and national Grid service providers, regional
Grid service providers, campus Grid service providers, standard bodies, accounting
solution developers, and end users, through face-to-face meetings, Tele-conferences, and
questionnaires. During the three-month interview, a list of use cases were identified and
categorised into four major usage scenarios (section 3.2). Such review that has not done
by others before contributed to a comprehensive view of Grid accounting, including its
technical concept, classifications of accounting models, and technical requirements. It
also provides systematic reviews of current accounting solutions deployed in production
Grid projects as well as standardisation efforts. The review ends up with a proposed
accounting framework that abstracts common accounting requirements while
customisable to accommodate advanced accounting purposes in a standard compatible
manner. In the final review report, a list of prioritised recommendations were proposed to
JISC to fund further efforts on standardisation and development tasks for fulfilment of the
functionalities of the proposed accounting framework. These recommendations along

with the proposed accounting framework were completely accepted by JISC such that

173

7BConclusions

following funding calls were released exactly as recommended.

The thesis further described the WLCG-RUS prototype system (section 4), an OGF-
RUS implementation based on a loosely-coupled component architecture, which is
similar to the proposed accounting framework. The WLCG-RUS prototype system is
designed to provide an alternative, but standard compatible, solution for sharing WLCG
accounting data across Grid infrastructures to GOC. The deployment of WLCG-RUS
system in the WLCG, a production multi-Grid environment, successfully proved the
concept that standardisation is of great importance in the interoperability among
heterogeneous Grid systems. However the development of WLCG-RUS system also
exposed the inefficiency of current standards. The main issue is that both OGF UR and
OGF RUS standards were designed for job accounting purpose, therefore does not
support the WLCG aggregate accounting models. Besides, there are some common usage
properties missing in the OGF UR standard, such as VO name and executing site

information, which are important for VO- and site-level accounting.

Based on the experiences gained during the development of WLCG-RUS prototype
system, the thesis finally presented the GRUS middleware (section 5), which provides a
full implementation of features defined within the proposed accounting framework [132].
Rather than provide a homogeneous accounting solution, the GRUS is intended to
provide a development platform for custom implementation of a RUS service endpoint.
By using GRUS middleware, existing accounting systems can be easily migrated to be
standard compatible with minimum re-engineering efforts, while ensuring back-
compatibility to existing accounting processes. Given the evolving nature of accounting
standards, the GRUS is designed in a schema-independent manner. In this sense, the
GRUS middleware is adaptive to changes of existing accounting schemas as well as

emergence of new accounting schemas.

Finally the research work of this thesis also contributed to the evolution of accounting
standards. In 2006, the first draft of the Aggregate Usage Record (AUR) presentation
specification [158] was submitted to the OGF UR working group. It was then refined
according to initial user feedbacks in 2007. At the end of 2007, a new RUS core
specification [171] was also proposed based on the implementation of GRUS middleware,

making it more flexible to enable various accounting models.

174

7BConclusions

6.2 Recommendations

This section recommends possible future works for both standardisation and

development.

6.2.1 Recommendations on Standards

In order to investigate the effectiveness of existing OGF UR [137] standard, the OGF
UR working group conducted an evaluation according to user experiences [188] inputs
from production Grid projects that uses the OGF UR format for accounting data
representation. Based on initial evaluation results, there are some significant issues
observed. First of all, the OGF UR format focuses on usage representation of the finest
UoW, the “batch” job. Besides, there are still many base properties absent, typically
executing site and general VO information. Although these properties can be defined
using OGF UR extension framework, they are semantically incorrect. Furthermore using
UR extension framework undermines interoperability. Moreover usage metrics defined in
OGF UR format 1.0 are not enough to support accounting of resource types other than
computational resource, such as data, network and application service resources. Finally
most of commercial Grid or cluster systems are using industry accounting data model, for
example, the metric sub-model as defined within the DMTF’s Common Information
Model (CIM) [86]. It is difficult make these industry standard adopters to use OGF UR to

achieve interoperability.

Based on feedbacks received from user experiences, the OGF UR working group
defined a new roadmap towards OGF UR 2.0 in OGF 21 conference. As illustrated in
Figure 6.1, the OGF UR 2.0 proposed a hierarchical data model with a core information
model that abstract common properties including record creator, resource/service
consumer, time period and charges information. This core model forms the basis of usage
information models of computational, storage and network resource usage records. A
composite usage information model is also proposed to representation consumption of a
single UoW, which could be a single batch job, a workflow or service transaction. The
summary/aggregate usage information model is used to represent total resource usage and
costs by summarising multiple composite records. Definitions of various data models in

the UR 2.0 roadmap will reuse existing usage metrics and properties defined in current

175

7BConclusions

OGF UR standard where appropriate to ensure backward compatibility.

Although the newly proposed RUS Core specification solved the issues related to
system performances and fault tolerance by introducing enumerating query results, the
specification cannot be finalised unless other issues are solved. One of the significant
issues would be enabling higher flexibility on the RUS service interface definitions so
that a RUS service endpoint is able to accept emerging OGF UR 2.0 compatible record
instances. Runtime aggregation is another important feature that should be enabled along
with RUS insertion or extraction logics. This can be realised either through specific
aggregation service interface definitions or normative header information as proposed by
GRUS messaging framework. Finally, the usefulness of RUS updating and deletion
should be carefully evaluated. If these two service interfaces are not necessary for
common use cases, they should be removed from RUS Core specification and defined as

an optional or advanced RUS features.

UR Core

Creataor
Consumer
Time Period
Charge

A

i

Compute Record Data Record Network Record Summary Record Composite Record
CPLU Time Dizk Space Endpaint A ?
Peak Memory Availability Endpoint B
. Latency Bandwidth
- Latency

Jitter

Figure 6.1: The Diagram of UR 2.0 Zoo.

6.2.2 Recommendations on Development

The GRUS framework implemented RUS Core messaging and exhibits an extensible
framework for developers to provide custom RUS solutions. With the evolution of RUS

176

7BConclusions

Core specification, the GRUS messaging framework is likely to be changed so as to adapt
to possible changes of the RUS Core specification. Besides, the current helper class, the
GRUS support, can be used by a RUS implementation for passive accounting models
only on relational backend. In the future, possible extensions may be implemented to
provide supports for implementing active accounting models as well depending on user
feedbacks. Other possible further works that can be done based on GRUS framework
include advanced aggregate strategy for OGF UR 2.0 summary record model, filter

implementations that support emerging XUpdate Query facility [195], and etc.

177

8BAppendix A

Appendix A

Stakeholder Reviews

The following lists the review results of use cases in production Grid projects through

interviewing different group of stakeholders.

A.1 National Grid Service

NGS aims to provide computational and data based resources and facilities to UK researchers,
independent of resource or researcher location. This is currently achieved using resources (both
compute and data) at four core sites (RAL, Oxford, Leeds and Manchester), and a growing humber
of partner and affiliate sites, together with the provision of software and services, to enable a
consistent method of access to any resource from any location. As resources may have different
‘owners', each of whom may have different charging policies, it is essential there is a reliable
mechanism to account for all aspects of use, in an environment with dynamically varying

resources and services.

The NGS already has a sophisticated accounting system in operation and needs to extend the
functionality and scope to meet its objectives and address future service requirements. There is a
strong desire to use a standard approach maximizing interoperability with other services, and
enabling straightforward deployment on sites wishing to partner with the NGS. Major stakeholders
to the NGS in the context of accounting and usage monitoring are the grid operations support
centre, software developers and standards bodies, current and potential partner and affiliate sites

(including campus grids and SRIF funded clusters), funding bodies and end users.

Key requirements
e Performance
o Interoperability — clearly defined APIs or protocols to enable exchange of
information with:

o0 partner/affiliate sites and dataset providers

178

8BAppendix A

o large scale grid projects such as GridPP/WLCG
e Ease of deployment
e Ability to trace individual jobs; legal requirement for auditability to an individual
e Ability to view historical usage data at user, VO and resource levels
e Metrics:
0 Required — CPU time, Wall time, permanent storage, data services
o0 Desirable — executable, memory usage, network usage, QoS
0 Not generally of concern — temporary storage
e Resource allocation and policing
e Custom charge rates for QoS, e.g. advanced reservation
e Integration with user/project management system

o Integrity of accounting data through automated monitoring/notification systems

Key concerns/issues
e RUS querying currently not functional
e Current accounting methodologies and practices are batch job centric
¢ Interfaces alone should be standardized, allowing site-specific implementation
e Significant investment in current system — would need to see clear benefit in
change

o Partner/affiliates not wishing to entrust their data to a centralized site

A.2 Grid for Particle Physics

GridPP is a collaboration of particle physicists and computer scientists from the UK
and CERN, with distributed compute resources spanning 17 UK institutions. GridPP has
a number of key stakeholders — it is the UK’s contribution to worldwide Large Hadron
Collider (LHC) Grid (WLCG), overseeing the Tier 1 facility at RAL and the Tier 2
organisations of ScotGrid, NorthGrid, London and SouthGrid, and also contributes to the

interdisciplinary project EGEE - Enabling Grids for E-sciencE.

LCG is a production-level grid and GridPP has a contractual obligation to provide
accounting data as part of the LCG project. At present over 150 sites worldwide are
publishing accounting data to the Grid Operations Centre (GOC) at RAL making

aggregation, scalability and validation of accounting data critical concerns.

179

8BAppendix A

Key requirements

Performance and scalability
Ability to view historical usage data at VO, resource, country and EGEE region
levels
Metrics:

0 Required — CPU (normalized to reflect “work done”)/Wall time

o Desirable — permanent storage

0 Not generally of concern — memory usage, network usage
Interoperability across international production grids
Integrity of accounting information through automated monitoring/notification
systems

Ability to modify records e.g. SiteName change does not break historical querying

Key concerns/issues

Significant investment in current system — 150 sites publishing via APEL/R-GMA
Scalability of RUS — XML only useful as an exchange format

CPU normalization and benchmarking needs to be addressed

Sharing of accounting data across different grids poses difficulties in terms of data
protection

Charging mechanism should be separate and require digital signatures and

auditability.

A.3 Campus Grids

The accounting requirements of campus grids across the UK academic sector range

from simple “best effort” usage statistics from condor pools to sophisticated job-level

accounting across a range of disparate resources. In cases where departmental resources

or SRIF-funded hardware are available to the grid there is a more urgent requirement for

accounting as a direct consequence of the fEC model (see Other Compute Services, to

follow). Less mature campus grids can see immediate benefit from the development of a

clearly defined accounting framework and tools to prevent further duplicity of effort.

180

8BAppendix A

Key requirements

Performance
Interoperability with NGS / other grids but flexibility to allow site-specific access
control policies
Ability to trace individual jobs
Ability to view historical usage data at user, project, School, and resource levels
Resource allocation and policing
Charging mechanisms for fEC (especially HPC component)
Metrics:
0 Required — CPU time, Wall time, permanent storage
o Desirable — memory usage, full job command line

o0 Not generally of concern — temporary storage, network usage

Key concerns/issues

Performance of XML database

Interfaces alone should be standardized, allowing site-specific implementations
RUS aggregation needs attention

Wide range of job managers: Linux/Windows Condor, Windows Compute Cluster,
PBS, TORQUE, LSF

Solution should be lightweight and not be tied to a specific project

A.4 Regional Grids

Most regional grids currently operate fairly homogeneous systems at different sites

and thus can provide the service with a limited range of software such as a single batch

system, and therefore do not, as yet, require the same degree of flexibility as NGS or

some campus grids.

Key requirements

Contractual obligations to provide accounting data to specific large scale projects,
e.g. GridPP
Interoperability with campus grids

Ability to trace individual jobs

181

8BAppendix A

e Ability to view historical usage data at user, project/\VO, University, and resource
levels
o Resource allocation and policing
e Devolution of allocation management to Pls
e Charging mechanisms required in the future
e Required metrics:
0 Required — CPU time, Wall time
o0 Desirable — permanent storage

o0 Not generally of concern — temporary storage, network usage

Key concerns/issues

o Data protection

A5 Other Compute Services

There is an increasing number of universities providing or starting to provide large
scale local compute services, particularly after the recent SRIF funding programmes. In
many cases this has resulted in a ‘standalone’ service, typically for local high
performance computing (HPC), even at sites where there is or has been campus grid
activity, such as Oxford, Cambridge and UCL. Many such services are influenced by fEC
and thus need to manage and report on usage. While it may be relatively simple for such
services to use resource management or batch engine software to address the accounting
requirements, it may be at the cost of interoperability or extensibility for future services.
Nevertheless some such services are developing their own accounting and user
management systems not tied to a specific supplier, thus providing greater long-term
flexibility, but also requiring significant development effort. Thus the objectives for the

grid communities, in providing a standard approach for usage data metering, storage and

sharing, could be of great value to these other specialist services.

It is recognised that where significant effort has already been invested and the service
requirements fully met, such as the national HPC services, there is unlikely to be a good
reason for changing existing practices in the short-term. However it would be hoped that
such services would see the long-term benefit of a co-ordinated approach, ideally

resulting in convergence in development. It is known for example that the developers of

182

8BAppendix A 183

the ‘SAFE’ system used by the national HPC services, are developing a generator for
converting SAFE-specific usage information into OGF-UR records, and are in the process
of implementing a RUS service. It should be made clear that the UR format is not useful
only for grid environments — it is a standard format for storing job usage information,
which may be used for accounting on any system.

Key requirements
e Job tracing
e Historical usage monitoring at project and user levels
e Management of project resources (sub-allocation)
e Automated policing
e Integration with user management system
e Accuracy of accounting data critical — charging

o Auditability

Key concerns/issues
¢ Independent contractual arrangements regarding data protection

e Significant investment in current accounting system(s)

A.6 End user

Key requirements
o Intuitive interface, preferably integrated with user management interface
e Job tracing
e Historical usage monitoring at VO and user levels
e Management of project/VVO resources (sub-allocation)

e Confidence in the accuracy of accounting data — critical if being charged

A.7 Standard Bodies

There appears to be general support in the grid communities for the OGF-UR and

RUS specifications as standards for storing and sharing usage information. OMII-Europe,

who is concerned with interoperability between different Grid systems through the implementation

8BAppendix A

of common standard interfaces, are evaluating the implementation of RUS interfaces for the gL.ite,
Globus and UNICORE middleware stacks. To this end, preliminary design documents have been
prepared for the SGAS, DGAS and UNICORE accounting systems.

Key requirements
e Acceptance and rollout of OGF usage record format
e Support for development and adoption of aggregated usage record format
e Support for development and adoption of storage usage record format
e Support for development and adoption of network usage record format
e Understanding of more complex use cases

o Hierarchical and P2P RUS deployments

Key concerns/issues
e Site implementations not strictly standards compliant
e Standards not flexible enough to cater for individual accounting requirements
e Standards too bloated for individual requirements
o Issues regarding RUS specification querying interface

e Is Xpath querying expressive enough?

A.8 Data Service Providers

There are a large number of data based services funded by JISC, including the
MIMAS and EDINA services. There is an increasing interest in the ‘grid enablement’ of
these services, which includes the management of security through grid mechanisms; the
ability to combine and analyse data in distributed datasets; and the ability to access grid
based (compute) resources dynamically at periods of high loads. There have been a
number of grid enablement pilot projects including Gemeda, GEMS (1 and 2), GESSE
and SEE-GEO but there are few if any production grid based data services.
Authentication and authorisation are key issues in this context — the services currently use
ATHENS or Shibboleth, rather than grid certificate authentication.

Most of the data services are required to provide accounting details to JISC on a
regular basis as defined by SLAs. The statistics reported are primarily concerned with the

number of accesses and searches, on a per site basis, as well as service availability. In

184

8BAppendix A

addition the service providers need to ensure that accesses are restricted to licensed users
(whether individual or site based), so the ability to identify the user of the service is

crucial.

Thus most of the data based services are required to provide service usage accounting,
rather than resource usage accounting typically required by grid (and other compute
based) services; However there are some specialist services, such as the satellite image

service, which do have significant resource usage requirements.

While the NGS, for example, does see a long term need for service usage accounting,
recognising that such services may be provided through NGS itself, even though the data
is hosted elsewhere, there is little in the present standards framework to address this type
of accounting. It is not clear to the reviewers how best this should be addressed. It should
in principle be possible to define such metrics, but whether it is appropriate or desirable
to extend the UR specification, for example, for this purpose is certainly questionable: the

UR has been designed with resource based accounting in mind, not service accounting.

In addition, it is clear that many of the current services are well established, and the
mechanisms used for collecting the statistics frequently closely integrated with the service
itself. The adoption of a new approach for the collection of the statistics across a range of
services would probably not be considered favourably. Thus, the reviewers believe it is
outside the scope of this review to provide tangible recommendations in this context,
although it is felt that such issues should be addressed through further exploratory
projects in setting up ‘grid enabled’ services, and subsequently establishing new grid
based services as required, rather than adapting accounting mechanisms in existing

services.

With respect to some services such as the satellite image service, very large amounts
of data must be stored, analysed, and possibly downloaded, and JISC may request
information on resource usage to demonstrate a requirement of the service, in order to
justify funding streams. The focus is on service access to justify the provision of the
service. It is likely that there will be an increase in resource usage associated with these
and other data based services, particularly when utilising multiple distributed datasets —
something that has not easily been possible previously. This is likely to result in

additional accounting requirements, although it does depend (at least partly) on the

185

8BAppendix A

funding bodies - for example on whether JISC continues to focus on service usage
accounting, with little direct interest in details of compute, storage and network usage.
However if the service is grid based, with significant storage, network traffic, and high
compute requirements possibly at hosts determined dynamically, the owner of the
resources will need to be able to charge for use of these resources. Thus it seems essential
in the long-term that a mechanism is developed to account for all of these activities. The
approaches adopted in the grid accounting context should be applicable to these types of
services, bearing in mind the work and time still required to address usage of resources
involving storage and network activities.

Key requirements
e Data security, authentication/authorization
e Accounting in workflows: single access/instance may involve multiple services
e Metrics:

0 Required: number of logins, searches, amount of data downloaded, nature of
data downloaded

o Desirable: permanent storage (resource provider end) and network usage
if significant downloads are performed

0 Not generally of concern : temporary storage

Key concerns/issues
e Charging model does not fit easily in job-level accounting schema
o Distribution of datasets presents difficulties with respect to licensing

e Grid enablement still in its infancy

186

9BAppendix B

Appendix B

Accounting Schema Mapping and Extensions

Table A-1: NGS UAS Accounting Schema mapping to OGF-UR

OGF UR NGS UAS Schema
_ _ Base Data Type
Metric Context Node (XML) Metric Name
(SQL)
[lurf:Recordldentity@urf:recordld Recordld VARCHAR
[lurf:Jobldentity/urf:LocalJobld LocalJobID VARCHAR
[lurf:Userldentity/urf:LocalUserld LocalUserld VARCHAR
[lurf:Userldentity/ds:KeylInfo/ds: X509Data/]
. X509SubjectName VARCHAR
ds:X509SubjectName
[lurf:JobName JobName VARCHAR
[lurf:Status Status VARCHAR
[lurf:WallDuration WallDuration NUMBER
wallTimeRequested NUMBER
[lurf:CpuDuration CpuDuration NUMBER
cpuTimeRequested NUMBER
[lurf:EndTime pbsLogDate DATE
[lurf:StartTime timeGlobusSubmitted DATE
[lurf:MachineName MachineName VARCHAR
[lurf:SubmitHost SubmitHost VARCHAR
[lurf:Processors Processors NUMBER

187

9BAppendix B

Table A-2: APEL Accounting Schema mapping to OGF-UR

OGF UR Schema APELSchema
. . Base Data Type
Metric Context Node (XML) Metric Name
(SQL)
[lurf:Recordldentity@urf:recordld Recordldentity VARCHAR
MeasurementDate DATE
[lurf:Recordldentity@createTime
MeasurementTime TIME
[lurf:Jobldentity/urf:GlobalJobld LCGJoblD VARCHAR
[lurf:Jobldentity/urf:LocalJobld LocallobID VARCHAR
[lurf:Userldentity/urf:LocalUserld LocalUserld VARCHAR
[lurf:Useridentity/GlobalUserName LCGUserID VARCHAR
ElapsedTime VARCHAR
[lurf:WallDuration
ElapsedTimeSeconds INT
BaseCpuTime VARCHAR
[lurf:CpuDuration
BaseCpuTimeSeconds INT
StopTime VARCHAR
[lurf.EndTime StopTimeUTC VARCHAR
StopTimeEpoch INT
StartTime VARCHAR
[lurf:StartTime StartTimeUTC VARCHAR
StartTimeEpoach INT
[/lurf:Host ExecutingCE VARCHAR
MemoryReal INT
[lurf:Memory
MemoryVirtual INT
EventDate DATE
[lurf:Timelnstant
EventTime TIME

188

9BAppendix B

Table A- 3: DGAS Accounting Schema mapping to OGF-UR

OGF UR Schema DGAS Schema
. Base Data Type
Context Node (XML) Metric Name
(SQL)

[lurf:Recordldentity@urf:recordld id BIGINT
[lurf:Recordldentity@createTime date DATETIME
[lurf:Charge amount SMALLINT
[urf:Jobldentity/urf:GlobalJobld LCGJobID VARCHAR
[lurf:Jobldentity/urf:LocalJobld Irmsld VARCHAR
[lurf:Userldentity/ds:KeylInfo/ds: X509Data/

acl VARCHAR
ds:X509SubjectName
[lurf:Userldentity/urf:GlobalUserName gridUser VARCHAR
[lurf:Userldentity/urf:LocalUserld localUserld VARCHAR
[/lurf:WallDuration wallTime INT
[furf:CpuDuration cpuTime INT
lurf:EndTime end INT
[lurf:StartTime start INT
[lurf:MachineName gridResource VARCHAR

pmem INT
[furf:Memory
vmem INT

189

9BAppendix B

Table A-4: Gratia Accounting Schema mapping to OGF-UR

OGF UR Schema Gratia Schema
. . Base Data
Metric Context Node (XML) Metric Name
Type (SQL)
/lurf:Recordldentity@urf:recordld recordld BIGINT
CreateTime DATETIME
/lurf:Recordldentity@create Time
CreateTimeDescription VARCHAR
[lurf:Jobldentity/urf:GlobalJobld GlobalJobld VARCHAR
/lurf:Jobldentity/urf:LocalJobld LocalJoblD VARCHAR
[furf:Jobidentity/urf:Processld Processlds VARCHAR
[lurf:JobName JobName VARCHAR
[lurf:JobName@urf:description JobNameDescription VARCHAR
[lurf:Userldentity/urf:LocalUserld LocalUserld VARCHAR
/lurf:Useridentity/GlobalUserName GlobalUserName VARCHAR
/lurf:Userldentity/ds:KeylInfo@ds:id KeylInfold VARCHAR
/lurf:Userldentity/ds:KeylInfo KeylInfoContent BLOG
[lurf:Charge Charge FLOAT
[lurf:Charge@urf:unit ChargeUnit VARCHAR
[lurf:Charge@urf:formula ChargeFormula VARCHAR
[lurf:Charge@urf:description ChargeDescription VARCHAR
[lurf:Status Status VARCHAR
[urf:Status@urf:description StatusDescription VARCHAR
/lurf:WallDuration WallDuration VARCHAR
[lurf:WallDuration@urf:description WallDurationDescription VARCHAR
CpuUserDuration VARCHAR
{lurf:CpuDuration -
CpuSystemDuration VARCHAR
CpuUserDurationDescription | VARCHAR
/lurf:CpuDuration@urf:description
VARCHAR

CpuSystemDurationDescription

9BAppendix B

/lurf:NodeCount NodeCount VARCHAR
[lurf:NodeCount@urf:metric NodeCountMetric VARCHAR
/lurf:NodeCount@urf:description NodeCountDescription VARCHAR
/lurf:Processors Processors INT
[lurf:Processors@urf:metric ProcessorsMetric VARCHAR
Iurf:Processors@urf:consumptionRate ProcessorsConsumptionRate FLOAT
[lurf:Processors@urf:description ProcesorsDescription VARCHAR
[lurf:StartTime StartTime DATETIME
[lurf:StartTime@urf:description StartTimeDescription VARCHAR
/furf:EndTime EndTime DATETIME
[lurf:EndTime@urf:description EndTimeDescription VARCHAR
/lurf:MachineName MachineName VARCHAR
[lurf:MachineName@urf:description MachienNameDescription VARCHAR
/furf:SubmitHost SubmitHost VARCHAR
[lurf:SubmitHost@urf:description SubmitHostDescription VARCHAR
[lurf:Queue Queue VARCHAR
[lurf:Queue@urf:description QueueDescription VARCHAR
lurf:Host Host VARCHAR
[lurf:Host@urf:description HostDescription VARCHAR

9BAppendix B

Table A-5: Custom Metrics as Extensions to OGF-UR

/lurf;Resource

LCGUservVO

UservO

VOName

VOName

VOName

Virtual organisation

identity

Reportable
VOName

VO Name that is
actually when
reporting the usage
records

ProbeName

The probe identity
that meters resource

usage

ExecutingSite

SiteName

SiteName

SiteName

SiteName

The site name on
which the job
recorded is

executed

iBenchType

(Integer)
performance
benchmark

specification type

Specint2000

iBench

The GLUE host
benchmark (S100)

fBenchType

(float) performance
benchmark

specification type

SpecFloat2000

fBench

The GLUE host
benchmark (SF00)

userGroup

The user group

name

UserFQAN

userFQAN

Full Qualified
Attribute Name

localGroup

Local group name

remoteHIr

Home Local
Resource server
URL

9BAppendix B

Table A-6: WLCG summary schema mapping to proposed OGF-AUR draft

CpuSystemDurationDescription

OGF AUR Schema WLCG Summary Schema
. . Base Data
Metric Context Node (XML) Metric Name
Type (SQL)
/lurf:Recordldentity@urf:recordld recordld BIGINT
CreateTime DATETIME
/lurf:Recordldentity@create Time
CreateTimeDescription VARCHAR
[lurf:Jobldentity/urf:GlobalJobld GlobalJobld VARCHAR
/lurf:Jobldentity/urf:LocalJobld LocalJoblD VARCHAR
[furf:Jobidentity/urf:Processld Processlds VARCHAR
[lurf:JobName JobName VARCHAR
[lurf:JobName@urf:description JobNameDescription VARCHAR
[lurf:Userldentity/urf:LocalUserld LocalUserld VARCHAR
/lurf:Useridentity/GlobalUserName GlobalUserName VARCHAR
/lurf:Userldentity/ds:KeylInfo@ds:id KeylInfold VARCHAR
/lurf:Userldentity/ds:KeylInfo KeylInfoContent BLOG
[lurf:Charge Charge FLOAT
[lurf:Charge@urf:unit ChargeUnit VARCHAR
[/lurf:Charge@urf:formula ChargeFormula VARCHAR
[lurf:Charge@urf:description ChargeDescription VARCHAR
[lurf:Status Status VARCHAR
[urf:Status@urf:description StatusDescription VARCHAR
/lurf:WallDuration WallDuration VARCHAR
[lurf:WallDuration@urf:description WallDurationDescription VARCHAR
CpuUserDuration VARCHAR
[lurf:CpuDuration -
CpuSystemDuration VARCHAR
CpuUserDurationDescription | VARCHAR
/lurf:CpuDuration@urf:description
VARCHAR

193

10BAppendix C

Appendix C

Use Cases

B.1 WLCG-RUS Use Cases

Use Case Insert usage records
o Publish resource usage information to WLCG RUS through
Description]]
standard RUS::insertUsageRecords interface.
Actors Host

Assumptions

e Requestor holds a valid grid certificate;

e Accounting data to be uploaded are correct and trustworthy;

1. check host’s permission to execute “RUS::insertUsageRecord”
operation on per usage record basis;

2. validate usage record inputs against mandatory elements

Steps configuration;
3. render standard usage record format to appropriate data format;
4. save usage records into database;
5. compose response message with operation results;

Variations 5. if trying to insert job usage records into summary record

database, appropriate aggregate strategy must be applied

Non-Functional

Security: authorisation and data privacy

Performance: usage records should be inserted in bulk if possible.

Issues

1. Trying to insert usage records that already exist;

194

10BAppendix C

Use Case List mandatory usage record elements
o Query mandatory element configuration of a specific WLCG RUS
Description]
instance.
Actors Host, Administrator, Site Manager, Grid User, VO Manager

Assumptions

1. Requestor holds a valid grid certificate;

Steps

1. Find out mandatory usage record element configuration;
2. Compose RUS::listMandatoryUsageRecordElements response

message;

Variations

Non-Functional

Issues Mandatory usage record element configuration infoset not found
Use Case Create a host account

Description Register a new host account

Actors Site Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;
3. Create a new host account
4

Email requestor a confirmation message

Variations

Non-Functional

Security: only registered user with an active account is allowed to

create a new host account

Issues

1. The registry entry of host account already exists;

195

10BAppendix C

Use Case Delete a host account
Description Remove a host account from registry entry
Actors Site Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;

3. Find out host account on requestor’s account;
4

Remove the host account from registry;

Variations

Non-Functional

Security: only registered user and the owner of an active host

account is allowed to remove a new host account

Issues Trying to delete an host account that is publishing data
Use Case View host account information

Description View registration details of host accounts

Actors Site Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;

3. Find out host account on requestor’s account;
4

Display host account details;

Variations

Non-Functional

Security: administrator can view all host account details, while site

manger can only view owned host account details;

Issues

The registry entry of specific host account does not exist.

196

10BAppendix C

Use Case Activate a host account
Description Activate a host account
Actors Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;

2. Find host account on requestor’s account;
3. Activate the host account;
4

Email host owner an activation message;

Variations

Non-Functional

Performance: activation should be completed in reasonable short

period.
Issues The registry entry of specific host account does not exist.
Use Case Edit host account
Description Edit host account’s details
Actors Site manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to edit a host account;
2. Edit host account;

3. Set activeness of current host account to false;

4

Email host owner a confirmation message

Variations

Non-Functional

Security: Administrator can edit all user account details while

account owner can edit its own user account details;

Issues

197

10BAppendix C

Use Case User account registration
Description Register a new user account
Actors Site manager

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to execute user registration;
2. Create a new user account

3. Email registered user confirmation message

Variations

Non-Functional

Performance: user registration should be completed in reasonable

short period.

Issues 1. Aregistry entry of user account already exists;
Use Case Delete a user account

Description Remove a user account from registry

Actors Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission;

2. Find user account;

3. Remove the user account from registry;
4

Email deleted user;

Variations

Non-Functional

Security: only administrator is allowed to remove a new user

account

Issues

Trying to delete a non-existent user account

198

10BAppendix C

Use Case View user account information
Description View detailed user account information
Actors Site Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to view user account(s)
2. Find user account;

3. Display user account details;

Variations

Non-Functional

Security: Administrator can view all user accounts’ details, while

site manager can only view its own account details.

Issues The registry entry of specific user account does not exist.
Use Case Activate a user account

Description Activate a host account

Actors Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;
2. Find user account;

3. Activate the user account;
4

Email account owner an activation message;

Variations

Non-Functional

Performance: activation should be completed in reasonable short

period.

Issues

The registry entry of specific user account does not exist.

199

10BAppendix C

Use Case Edit a user account
Description Update a user account’s details
Actors Administrator, Site Manager

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;

2. Find user account;

3. Update user account details;
4

Email account owner a confirmation message;

Variations

Non-Functional

Security: administrator can edit any user accounts, while site

manager can edit its own account only.

Issues

The registry entry of specific user account does not exist.

200

10BAppendix C 201

B.2 GRUS Use Cases

Use Case List supported aggregate strategies
Description Query supported aggregate strategies of a RUS service endpoint
Actors Administrator, Site manage, VO manager, Grid User
Assumptions 1. Requestor holds a valid grid certificate;
Steps 1. Find out supported aggregate strategies configuration;

2. Compose a response message and return to client;
Variations

Non-Functional

Issues Supported dialects configuration not found
Use Case Query job usage records
o Query OGF UR instances through the RUS::extractUsageRecord
Description]]]
interface of a RUS service endpoint
Actors Administrator, Site manage, VO manager, Grid User
Assumptions 1. Requestor holds a valid grid certificate;
1. Check specified query dialect against supported dialects of a
RUS service endpoint;
2. Get query results that match query term from underlying
Steps persistent storage;
3. Rendering query results into OGF UR instances;
4. Check user permission on individual OGF UR instance;
5. Compose a response message and send it back to client;
o 5. Compose a response message and returns a context for
Variations

enumeration

Security: authorisation and data privacy
Non-Functional Performance: enumerating query results if the value of maximum

elements is specified within the request message.

Issues Supported dialects configuration not found

10BAppendix C

Use Case Query aggregate usage records
o Query OGF AUR instances through the RUS::extractUsageRecord
Description]]]
interface of a RUS service endpoint
Actors Administrator, Site manage, VO manager, Grid User
Assumptions 1. Requestor holds a valid grid certificate;
1. Check specified query dialect against supported dialects of a
RUS service endpoint;
2. Get query results that match query term from underlying
persistent storage;
Steps 3. if underlying accounting data type is job usage records, apply
aggregate strategy specified in the request message;
4. Rendering aggregate results into OGF AUR instances;
5. Check user permission on individual OGF AUR instance;
6. Compose a response message and send it back to client;
o 6. Compose a response message and returns a context for
Variations

enumeration

Non-Functional

Security: authorisation and data privacy

Performance: enumerating query results if the value of maximum

elements is specified within the request message.

Issues

Supported dialects configuration not found

202

10BAppendix C

Use Case Audit
Description Query history of a specific usage record
Actors Host, Administrator, Site Manager, VO manager

Assumptions

1. Requestor holds a valid grid certificate;

1. Get usage record identified by record identity specified in the

request message;

Steps 2. Check user’s permission on the usage record;
Get record history associate with the usage record;
4. Compose response message and return it to the client;
Variations

Non-Functional

Security: authorisation and data privacy

Issues The requested usage record does not exist.
Use Case create a VO account

Description Add a new VO account

Actors Host Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission;

2. Check mandatory VO account information;
3. Create a new VO account;
4

Email client a confirmation message

Variations

Non-Functional

Security: only registered user with an active account is allowed to

create a new VO account

Issues

1. The VO account already exists;

203

10BAppendix C

Use Case View VO account
Description View account information of a specific created VO
Actors VO Manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check user’s permission;

2. Display VO account details on screen;

Variations

Non-Functional

Security: administrator can view all host account details, while a VO

manger can only view an owned VO account;

Issues The specific VO account does not exist.
Use Case Edit VO account(s)

Description Edit a VO account information

Actors VO manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to edit a VO account;
2. Edit VO account details;

3. Set activeness of current VO account to false;

4

Email VO owner a confirmation message

Variations

Security: Administrator can edit all VO account details while

account owner can edit its own user account details;

Non-Functional

Issues

VO manager is not allowed to change owner;

204

10BAppendix C

Use Case Activate a VO account
o Query mandatory element configuration of a specific WLCG RUS
Description]
instance.
Actors Administrator

Assumptions

Client hold a valid grid certificate;

Steps

5. Check user’s permission;
6. Find VO account;

7. Activate the VO account;
8

Email VO owner an activation message;

Variations

Non-Functional

Performance: activation should be completed in reasonable short

period.
Issues The VO account does not exist.
Use Case Delete a VO account
o Query mandatory element configuration of a specific WLCG RUS
Description]
instance.
Actors VO manager, Administrator

Assumptions

Requestor hold a valid grid certificate;

Steps

5. Check user’s permission;
6. Find VO account;

7. Remove the VO account;
8

Email VO account owner;

Variations

Non-Functional

Security: VO manager can only remove a owned VO account

Issues

Trying to delete a non-existent user account

205

11BAppendix D 206

Appendix D

Command Line Parameters

C.1 WLCG-RUS Command Line Parameters

July 2007 (User Commands) July 2007(User Commands)

NAME

wlcgrus - manual page

DESCRIPTION

usage: wlcgrus [-h<help> | -list | -insert]
[-s<service-endpiont>]
WLCG-RUS version 0.1 CLI, copyright 2007 Brunel.

-h,--help

print usage information

-insert,--insert

insert usage records

-list,--list

list mandatory elements

--max-elements

The maximum number of usage records per insertion

-s,--service-endpoint

11BAppendix D

service endpoint address

usage: wlcgrus [-h<help> | -list | -insert]

[-s<service-endpiont>]

WLCG-RUS version 0.1 CLI, copyright 2007 Brunel.

SEE ALSO
The full documentation for WLCG RUS is maintained as a Text
info manual.
IT the info and WLCG RUS programs are properly installed at
your site, the command
man wlcgrus

should give you access to the complete manual.

July 2007(User Commands)

207

11BAppendix D

C.2 GRUS Command Line Parameters

June 2009(User Commands) June 2009(User Commands)

NAME

grus - manual page
DESCRIPTION
usage: grus [-h<help> | -list | -insert | -extract | -
modify | -delete]
[-s<service-endpiont>] [-t<timeout>]

GRUS version 1.0 CLI, copyright 2009 Brunel.

—audit,--audit

extract record history

-delete,--delete
delete usage records

-extract, --extract

extract usage records

-h,--help

print usage information

-insert,--insert

insert usage records

-list,--list
list GRUS configuration information

-modify,--modify
modify usage records

-s,--service_endpoint

service endpoint address

208

11BAppendix D 209

-t,--timeout <arg>

timeout in millisecs

for more instructions, see http://grus.sourceforge.net

usage: grus [-h<help> | -list | -insert | -extract | -
modify | -delete]

[-s<service-endpiont>] [-t<timeout>]
GRUS version 1.0 CLI, copyright 2009 Brunel.
for more instructions, see grus.sourforge.org
SEE ALSO
The full documentation for invalid is maintained as a
Texinfo manual .
IT the info and invalid programs are properly installed at
your site,
the command
man grus

should give you access to the complete manual.

September 2009(User Commands)

12BAppendix E 210

Appendix E

Schemas

D.1 GRUS Data Type Definitions

<?xml version="1.0" encoding="utf-8" ?>

Copyright @ 2007-2009 Brunel University. All rights reserved.
Permission to copy, display, perform, modify and distribute
the GRUS extensions to OGF RUS-Core WS-1 rendering specification.

*hkdkhk *hkh__ >

<xsd:schema

targetNamespace=""http://schemas.brunel .ac.uk/services/accounting/grus/typ

es

xmIns:grus="http://schemas.brunel .ac.uk/services/accounting/grus/types"
xmIns:xacml="urn:oasis:names:tc:xacml:1.0:policy"
xmIns:urf="http://schema.ogf.org/urf/2003/09/urf"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="qualified" elementFormbDefault="qualified">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The data type and elements defined in this schema document provides
header extensions to the RUS::insertUsageRecords and

RUS: :extractUsageRecords messages as defined in OGF RUS-Core WS-1
rendering specification. Using headers defined here allows runtime
aggregation during the execution of RUS iInsertion and extraction

operations.

12BAppendix E

</xsd:documentation>

</xsd:annotation>

<xsd: import namespace="http://schema.ogf.org/urf/2003/09/urf"
schemalLocation=""urf.xsd" />

<xsd:element name="AggregateStrategies'>

<xsd:complexType>

<xsd:sequence>

<xsd:element ref=""grus:AggregateStrategy' minOccurs="0"

maxOccurs=""unbounded />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="AggregateStrategy"
type="'grus:AggregateStrategyType" />

<xsd:complexType name="AggregateStrategyType">

<xsd:sequence>

<xsd:element name="Interval”>

<xsd:simpleContent>

<xsd:

<xsd:element name="Entity"
type="grus:EntityType"
maxOccurs=""unbounded"*
minOccurs="0" />

</xsd:sequence>

<xsd:attribute name="‘AggregateStrategyld"

type=""xsd:anyURI""

use=""optional" />

</xsd:complexType>

<xsd:complexType name="EntityType''>

<xsd:simpleContent>

<xsd:extension base=""xsd:QName">

<xsd:anyAttribute namespace="##any" processContents="lax"/>
</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="ListSupportedAggregateStrategiesRequest"
type="'grus:ListSupportedAggregateStrategiesRequestType" />

211

12BAppendix E

<xsd:complexType name="ListSupportedAggregateStrategiesRequestType''>
<xsd:sequence>
<xsd:any namespace="'##other""
minOccurs="0"
maxOccurs="unbounded"
processContents="lax" />
</xsd:sequence>

</xsd:complexType>

<xsd:element name="SupportedAggregateStrategy">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Operation" type=''xsd:anyURI" />
<xsd:element name="AggregateStrategy"
type="‘grus:AggregateStrategyType"
minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ListSupportedAggregateStrategiesResponse"’
type="grus:ListSupportedAggregateStrategiesResponseType" />

<xsd:complexType name="ListSupportedAggregateStrategiesResponseType' >
<xsd:sequence>
<xsd:element ref="grus:SupportedAggregateStrategy"’
minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

212

12BAppendix E 213

D.2 GRUS Service Interface Definitions

<?xml version="1.0" encoding=""UTF-8"?>

<definitions
xmIns:tns="http://schemas.brunel.ac.uk/services/accounting/grus"

xmIns:types="http://schemas.brunel .ac.uk/services/accounting/gru
s/types"

xmIns:wsen="http://schemas.xmlsoap.org/ws/2004/09/enumeration"
xmIns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"

xmIns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlIns:rus="http://schemas.ogf.org/rus/2007/09/core/types"
xmIns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmIns:wsoapl2=""http://schemas.xmlsoap.org/wsdl/soapl2/"

targetNamespace="http://schemas.brunel .ac.uk/services/accounting/g
rus'>

< ! e KA A A A AR A AAA A AR A AAAAARAAAAAAARAAAAAAAAAAAAAAXAAAAAAAXAANAXAAAAXAAAXKAAK
* Import third-party WSDL files *

nnnnnn >
<import

namespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration™
location=""enumeration.wsdl" />

<import
namespace=""http://schemas.ogf.org/rus/2007/09/core/types"
location=""rus-core.wsdl" />

< I FEEEAEXEAAXAAAAAAAAAXAAAXAAAXAAAXAAAAAXAAAXAAAAAAAAAXAAAXAAAXAAAXAAXAAXAx*k
* M M M *
Type definitions
nnnnn >
<types>

<xsd:schema

targetNamespace="http://schemas.brunel .ac.uk/services/accounting/g
rus’

xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmlns:types="http://schemas.brunel .ac.uk/services/accounting/grus/
types''>

<xsd:import
namespace=""http://schemas.ogf.org/rus/2007/09/core/types"
schemalocation="../schemas/rus-core.xsd" />

<xsd: import
namespace="http://schemas.brunel.ac.uk/services/accounting/grus/ty
pes"

schemalLocation=""../schemas/grus.xsd" />

<xsd: import
namespace="http://schema.ogf.org/urf/2006/07/aur""
schemalLocation=""../schemas/aur.xsd" />

12BAppendix E

</xsd:schema>
</types>

QI Fekoh ook koo ke de ek ke ek ke ode ek ok ode ek ok ke ek ok ok ek ok ke ek ok ok ek koo ok ok ke ek ok ke ek ke ok ek ok ok
* Message Definitions *
AEAEXAAXXAAAAXAAAXAAAAXAAXAXAAAAAAAXAAAAXAAXAXAAAAXAAXAXAAAXAXAAXAXAAAXAAAXAXAAAAAK K _ ->
<message hame="'ListSupportedAggregateStrategiesRequestMessage'>
<part

name=""ListSupportedAggregateStrategiesRequest"
element=""types:ListSupportedAggregateStrategiesRequest" />
</message>

<message hame="'ListSupportedAggregateStrategiesResponseMessage"'>
<part name="ListSupportedAggregateStrategiesResponse"
element=""types:ListSupportedAggregateStrategiesResponse’ />
</message>

< I - _FFrhdkdkdhhhhhkhhkhhhhhhhii

* Port Type Definitions *

FTEAEEAAITAAITEAAXTEAAXEAAXAEAAXAAAXAAIAXAAIAXAAITXAAITXAAITXAAITXAAXAXAIXhAdhidrhidhidihii _ ->

<portType name=""GridResourceUsageServicePortType'>

<operation name="ListSupportedAggregateStrategies'>

<input
message=""tns:ListSupportedAggregateStrategiesRequestMessage™
wsa:Action=""http://schemas.brunel _ac.uk/services/accounting/grus/I
istSupportedAggregateStrategies™ />

<output
message=""tns:ListSupportedAggregateStrategiesResponseMessage"
wsa:Action="http://schemas.brunel _ac.uk/services/accounting/grus/I
istSupportedAggregateStrategiesResponse™ />

</operation>

</definitions>

214

13BBibliography

Bibliography

[1] H. H. Goldstine, and A. Goldstine, “The Electronic Numerical Integrator and
Computer (ENIAC)”, 1946 (reprinted in The Origins of Digital Computers: Selected
Papers, Springer-Verlag, New York, 1982, pp. 359-373)

[2] Moore’s Law- Wikipedia, http://en.wikipedia.org/wiki/Moores_law

[3] M. V. Wilkes. “Automatic Digital Computers”, New York: John Wiley & Sons. pp. 305
pages. QA76.W5 1956.

[4] N. Beth Stern, “From Eniac to UNIVAC: An Appraisal of the Eckert-Mauchy
Computers”, ISBN 0932376142.

[5] R. R. Schaller, “Moore's law: past, present and future”, Spectrum IEEE, Vol.34, Jun.
1997, pp.52-59.

[6] T. Aita and Y. Husimi, “Fitness landcape of biopolymers and efficient optimization
strategy in evolutionary molecular engineering”, Proc. of 6th Int. Sympo. on A-life and
Robotics, Vol.6, 2001, pp.365-368.

[7]1S. Lee, L. R. Hook, “Towards the Design of a Nanocomputer”, Proc. of Electrical and
Computer Engineering Conference 2006 (CCECE “06°), May 2006, pp.74-77.

[8] S. E. Lysheyski, “Nanotechnology, quantum information theory and quantum
computing”, Proc. of 2" IEEE Nanotechnology 2002 (IEEE-NANO 2002), 26-28 August,
2002, pp.309-314.

[9] C. Joach, “Towards a molecule-computer? Resources and Technologies to compute
within a single molecule”, Proc. of 31th Solid-State Circuits Conference 2005 (ESSCIRC

215

13BBibliography 216

2005), France, September 2005, pp.27-28.
[10] Flynn’s taxonomy-Wikipedia, http://en.wikipedia.org/wiki/Flynn’s_taxonomy

[11] M. J. Flynn, “Some Computer Organizations and Their Effectiveness”, IEEE Trans.
on Computers, Vol. C-21, pp.948-960, 1972.

[12] G. Amdahl, “The validity of the single processor approach to achieving large-scale
computing capabilities”, Proc. of AFIPS Spring Joint Computer Conference, Atlantic City,
N. J. AFIPS Press, pp.483-485.

[13] M. C. August, G. M. Brost, C. C Hsiung and A. J. Schiffleger, “Cray X-MP: the birth
of a supercomputer”, Trans. on IEEE computer, vol. 22, pp. 45-52, January 1989.

[14] T. Blank, “The MasPar MP-1 architecture”, Proc. of 35" IEEE Computer Society
International Conference, pp.20-24, March 1990.

[15] S. F. Reddaway, “DAP - a distributed array processor”, Proc. of the 1st annual
symposium on Computer Architecture, ACM Press New York, Gainesville, Florida, pp 61-
65, 1973.

[16] Top 500 Supercomputing Sites. http://top500.0rg

[17] B.Chapman, G. Jost, R. vanderPas, D.J. Kuck, Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, October 31, 2007.

[18] M. Snir, S. Otto; S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete
Reference. The MIT Press, 1995.

[19] P. L. Springer, “PVM Support for Clusters”, Proc. of International Conference on
Cluster Computing, 2001, pp.183-186.

[20] P. Uthayonpas, T. Angskun, and J. Maneesilp, “On the Building of the Next
Generation Integrated Environment for Beowulf Clusters”, Proc. of International
Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), pp.139-144,
2002

13BBibliography 217

[21] C. Motorola, The Basics Book of X.25 Packet Switching, 2nd edition, Addison
Wesley Press, 1992.

[22] T. Berner-Lee and R. Cailliau, “WorldWideWeb: Proposal for a HyperText Project”,
1990. Available: http://www.w3.org/Proposal.html

[23] R. Fielding, J. Getty, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616, Jun. 1999. Available online at:
http://www.ietf.org/rfc/rfc2616.txt

[24] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specification version 2”, RFC
1831, August, 1995. Available online at: http://tools.ietf.org/html/rfc1831

[25] W. Grosso, Java RMI, O’Reilly, October 2001. ISBN: 1-56592-452-5

[26] OMG, “Common Object Request Broker Architecture: Core Specification”, March
2004, available: http://www.omg.org/docs/formal/04-03-12.pdf

[27] T. L. Thai, “Learning DCOM”, O’Reilly Press, April 1999. ISBN:978-1-56592-581-
6

[28] D. Box, D. Ehnebuske, G. Kakivaya, et. al, “Simple Object Access Protocol 1.17,
W3C, May 2000. Available online at: http://www.w3.0rg/TR/2000/NOTE-SOAP-
20000508/

[29] T. Bellwood, “UDDI version 2.04 API specification”, OASIS UDDI TC, July 2002,
Availabe online at: http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf

[30] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Service
Description Language 1.1, W3C, March 2001, Awvailable online at:
http://www.w3.org/TR/wsdl

[31] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Architecture,
1998. ISBN: 978-1558604759.

13BBibliography

[32] Internet System Consortium, http://www.isc.org/

[33] I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing Architecture,
The Elsevier Press, November 2003. ISBN: 978-1558609334.

[34] NIST, “Definition of Cloud Computing”, NIST, Available online at:
http://csrc.nist.gov/groups/SNS/cloud-computing/

[35] J. Taylor, “Defining e-Science”, Research Council e-Science Core Programme, 2000.

Available online at: http://www.nesc.ac.uk/nesc/define.html

[36] M. Atkinson, “What is e-Science?”, e-Science Envoy, 2001, Available online at:

http://www.rcuk.ac.uk/escience/default.htm

[37] ATLAS Experiment, Available online at: http://cern.ch/atlas

[38] CMS Experiment, Available online at: http://cmsdoc.cern.ch.

[39] LHCb Experiment, Available online at: http://cern.ch/lhcb

[40] ALICE Experiment, Available online at: http://aliceinfo.cern.ch

[41] Large Hadron Collider - Wikipedia, online available at:
http://en.wikipedia.org/wiki/Large_Hadron_Collider

[42] S. Bethke, M. Calvetti, H. F. Hoffmann, D. Jacobs, M. Kasemann, and D. Linglin,
“Report of The Steering Group of the LHC Computing Review”, CERN-LHCC/2001-
2004, February 2001.

[43] T. Anticic, F. Carena and et.al, “The ALICE Data-Acquisition System”, Record of
IEEE Nuclear Science Symposium Conference2005, October, 2005.

[44] J. Troska, E. Corrin, Y. Kojevnikov, T. Rohlev and J. Varela, “Implementation of the
Timing, Trigger and Control System of the CMS Experiment”, Trans. of IEEE Nuclear

218

13BBibliography

Science, Vol. 53, June 2006, pp.834-837.

[45] R. Stoica, M. Frank, N. Neufeld, and A. C. Smith, “Data Handling and Transfer in
the LHCb Experiment”, Trans. of IEEE Nuclear Science, vol. 55, February 2008, pp. 272-
277.

[46] G. Lehmann, J. Bogaerts, M. Ciobotaru, E. Palencia Cortezon and et. al, “The
DataFlow System of the ATLAS Trigger and DAQ”, Proc. of Computing in High Energy
and Nuclear Physics Conference 2003 (CHEPO03), La Jolla, California, March, 2003.

[47] I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid: Enabling
Scalable Virtual Organisation”, International Journal of High Performance Computing
Application, 15(3):200-222, 2001.

[48] I. Foster, H. Kishimoto, et. al, “Open Grid Service Architecture version 1.5”, Open
Grid Forum OGSA working group, GFD-1.080, Jul. 2006. Available online at:
http://forge.gridforum.org/projects/ogsa-wg

[49] D. Booth, H. Hass, et. al, “Web Service Architecture”, W3C, Feb. 2004. Available
online at: http://www.w3.org/TR/ws-arch/

[50] T. Banks, “Web Service Resource Framework version 1.2”, OASIS WSRF TC, May
2006. Awvailable online at: http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-
02.pdf

[51] S. Graham, “Web Service Base Notification 1.3”, OASIS WSN TC, Oct. 2006.
Available online at http://docs.oasis-open.org/wsn/wsn-ws_base notification-1.3-spec-

o0s.pdf

[52] DMTF, “Web Service for Management Specification”, Distributed Management Task
Force, DSP0226, Feb. 2008. Available online at:
http://www.dmtf.org/standards/published_documents/DSP0226 1.0.0.pdf

[53] I. Foster, T. Maguire, and D. Snelling, “OGSA™ WSRF Basic Profile 1.0”, OGF
OGSA working group, May, 2006. Available online at:
http://forge.gridforum.org/projects/ogsa-wg

219

13BBibliography

[54] S. Graham and J. Treadwell, “Web Services Resource Properties version 1.2”, OASIS
WSRF TC, Apr. 2006, Available online at: http://docs.oasis-open.org/wsrf/wsrf-
Wws_resource_properties-1.2-spec-o0s.pdf

[55] L. Srinivasan, and T. Banks, “Web Service Resource Lifetime version 1.2”, OASIS
WSRF TC, Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-

ws_resource_lifetime-1.2-spec-os.pdf

[56] T. Maguire, D. Snelling, and T. Banks, “Web Services Service Group version 1.2”,
OASIS WSRF TC, Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-

ws_service_group-1.2-spec-os.pdf

[57] D. Box, E. Christensen, et. al, “Web Service Addressing 1.0”, W3C, Aug. 2004.

Available online at: http://www.w3.org/Submission/ws-addressing/

[58] L. Liu, and S. Meder, “Web Services Base Faults version 1.2”, OASIS WSRF TC,
Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-ws_base fault-1.2-

spec-0s.pdf

[59] J. Alexander, D. Box, et. al, “Web Services Transfer”, W3C, Sept. 2006. Available
online at: http://www.w3.org/Submission/WS-Transfer/

[60] J. Alexander, D. Box, et. al, “Web Services Enumeration”, W3C, Mar. 2006.

Available online at: http://www.w3.0org/Submission/WS-Enumeration/

[61] D. Box, L. Felipe, et. al, “Web Services Eventing”, W3C, Mar. 2006. Available

online at; http://www.w3.0rg/Submission/WS-Eventing/

[62] M. Pereira, O. Tatebe, et. al, “Resource Namespace Service Specification”, OGF
RNS working group, May, 2006. Available online at:

http://forge.gridforum.org/sf/projects/ogsa-naming-wg

[63] A. Grimshaw, and D. Snelling, “Web Service Naming”, OGF RNS working group,

Dec. 2006. Available online at: http://forge.gridforum.org/projects/ogas-naming-wg

220

13BBibliography

[64] A. Nadalin, M. Goodner, et. al, “Web Service Secure Conversation”, OASIS Web
Services Secure Exchange TC, Mar. 2007. Available online at: http://docs.oasis-

open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-o0s.html

[65] A. Nadalin, M. Goodner, et. al, “Web Service Trust”, OASIS Web Service Secure
Exchange TC, Mar. 2007. Available online at: http://docs.oasis-open.org/ws-sx/ws-
trust/200512

[66] A. Nadalin, C. Kaler, et. al, “Web Service Security: SOAP Message Security version
1.1”, OASIS Web Service Security TC, Feb. 2006. Available online at: http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-0s-SOAPMessageSecurity.pdf

[67] T. Imamura, B. Dillaway, and E. Simon, “XML Encryption Syntax and Processing”,
W3C XML Encryption Working Group, Dec. 2002. Available online at:

http://mvww.w3.0org/TR/xmlenc-core/

[68] M. Bartel, J. Boyer, et. al, “XML Signature Syntax and Processing”, W3C, Jun. 2008.

Available online at: http://www.w3.0rg/TR/xmldsig-core/

[69] D. Snelling, D. Merril. And A. Savva, “OGSA Basic Security Profile 2.0”, OGF
OGSA working group, Jul. 2008. Available online at:
http://forge.gridforum.org/projects/ogsa-wg

[70] D. Merrill, “OGSA Basic Security Profile 2.0 —Secure Addressing”, OGF OGSA
working group, Oct. 2007. Available online at: http://forge.gridforum.org/projects/ogsa-

w9

[71] D. Merrill, “Secure Communication Profile 1.0”, OGF OGSA working group, Dec.
2007. Available online at: https://forge.gridforum.org/sf/go/artf6105

[72] I. Foster, A. Grimshaw, et. al, “OGSA Basic Execution Service Version 1.0”, OGF
OGSA Basic Execution Service working group, Nov. 2008, Available online at:

http://forge.gridforum.org/sf/projects/ogsa-bes-wg

221

13BBibliography

[73] D. K. Fellows, and A. Papaspyrou, “OGSA Resource Selection Services Candidate
Set Generator Specification”, OGF OGSA Resource Selection Services working group,
Mar. 2009, Available online at: http://forge.gridforum.org/sf/projects/ogsa-rss-wg

[74] A. Anjomshoaa, F. Brisard, et. al, “Job Submission Description Language (JSDL)
specification Version 1.0”, OGF Job Submission Description Language working group,

Nov. 2005, Available online at: http://forge.gridforum.org/sf/projects/jsdl-wg/

[75] D. K. Fellows, A. Papasyrou, “OGSA Resource Selection Services Basic Execution
Planning Service Specification”, OGF OGSA Resource Selection Services working group,

Available online at: http://forge.gridforum.org/sf/projects/ogsa-rss-wg

[76] M. Antonioletti, M. Atkinson, et. al, “Web Services Data Access and Integration-The
Core(WS-DAI) Specification Version 1.0”, OGF Data Access and Integration Services
Working Group, Jun. 2006. Available online at: https://forge.gridforum.org/projects/dais-

w9

[77] M. Antonioletti, B. Collins, et. al, “Web Service Data Access and Integration-The
Relational Realisation(WS-DAIR) Specification Version 1.0”, OGF Data Access and
Integration Services Working Group, Jun. 2006. Awvailable online at:
https://forge.gridforum.org/projects/dais-wg

[78] M. Antonioletti, S. Hastings, et. al, “Web Service Data Access and Integration-The
XML Realisation(WS-DAIX) Specification Version 1.0”, OGF Data Access and
Integration Services Working Group, Jun. 2006. Available online at:

https://forge.gridforum.org/projects/dais-wg

[79] M. Antonioletti, C. B. Aranda, et. al, “Web Services Data Access and Integration-The
RDF(S) Realization (WS-DAIRDFS) RDF(S) Querying Specification Version 0.9”, OGF
Data Access and Integration Services Working Group, May. 2009. Available online at:

https://forge.gridforum.org/projects/dais-wg

[80] M. E. Gutierrez, and A. G. Perez, “Web Services Data Access and Integration-The
RDF(S) Realization (WS-DAI-RDF(S)) Ontology Specification”, OGF Data Access and
Integration Services Working Group, Arp. 2009. Available online at:

222

13BBibliography

https://forge.gridforum.org/projects/dais-wg

[81] G. Klyne, J. J. Carroll, and B. McBride, “Resource Description Framework (RDF):
Concepts and Abstract Syntax”, W3C Semantic Web Activity, Feb. 2004. Available online
at: http://www.w3.org/RDF/

[82] 1. Mandrichenko, W. Allcock, and T. Perelmutov, “GridFTP v2 Protocol
Description”, OGF Grid File Transfer Protocol Working Grid Working Group, May 2005.
Available online at: http://forge.gridforum.org/projects/gridftp-wg/

[83] N. P. C. Hong, M. Drescher, et.al, “OGSA Byte Input/Output Specification V1.0”,
OGF BytelO Working Group, Oct. 2005. Available online at:
https://forge.gridforum.org/projects/byteio-wg/

[84] M. Antonioletti, M. Drescher, et, al., “OGSA Data Movement Interface Specification
Version 1.0”, OGF Data Movement Interface Working Group, Aug. 2008. Available

online at: http://forge.gridforum.org/sf/projects/ogsa-dmi-wg

[85] R. Aydt, D. Gunter, et. al., “A Grid Monitoring Architecture”, OGF Grid Monitoring
Architecture Working Group, Jul. 2001. Awvailable online at: http://www-
didc.Ibl.gov/GGF-PERF/GMA-WG/

[86] DMTF, “Common Information Model (CIM) Infrastructure”, Distributed
Management Task Force Inc, May 2009. Awvailable online at
http://www.dmtf.org/standards/cim/

[87] JSR 255, “Java™ Management Extensions (JMX) Specification version 2.0”, Sun
Microsystems, Dec. 2007, Available online at: http://www.jcp.org/en/jsr/detail?id=255

[88] S. ANDREOZZI, S. Burke, et. al, “GLUE Specification version 2.0”, OGF GLUE
Working Group, Mar. 20009. Available online at:
http://forge.gridforum.org/sf/projects/glue-wg

[89] R. Butler, and T. J. Genovese, “Certificate Policy Model”, OGF Grid Certificate
Policy Working Group, Jun. 2003. Available online at
http://forge.gridforum.org/sf/projects/gcp-wg

223

13BBibliography

[90] D. Chadwick, “Functional Components of Grid service Provider Authorisation
Service Middleware”, OGF Grid Authorization Working Group, Apr. 2008.

[91] T. Moses, “eXtensible Accesss Control Markup Language (XACML) Version 2.0”,
OASIS eXtensible Access Control Markup Language (XACML) TC, Feb. 2005.

[92] E. Maler, P. Mishra, and R. Philpott, “Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) Version 2.0”, OASIS Security Assertion
Markup Language TC”, Feb. 2007. Available online at: http://saml.xml.org/saml-

specifications

[93] L. Smarr, and C. E. Catlett, “Metacomputing”, Communications of the ACM, 35(6),
June 1992. pp.44-52.

[94] 1. Foster, “Globus Toolkit Version 4. Software for Service-Oriented Systems”.
Journal of Computer Science and Technology, 21(4), 2006. pp513-520

[95] t. DeFanti, I. Foster, et. al, “Overview of the I-WAY: Wide Area Visual
Supercomputing”. International Journal of Supercomputing Applications, 10(2), 1996.

[96] W. Allcock, J. Bresnahan, et. al, “The globus extensible input/output system (XI10): a
protocol independent 10 system for the grid”, Proc. of 19" IEEE International Parallel
and Distributed Processing Symposium, Apr. 2005. pp.8

[97] K. Czajkowski, I. Foster, et. al. “A Resource Management Architecture for
Metacomputing Systems”, Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies
for Parallel Processing, pg. 62-82, 1998.

[98] Globus, “The Globus Resource Specification Language v1.0”, online available at:

http://www.globus.org/toolkit/docs/2.4/gram/rsl_specl.html

[99] M. Ripeanu, I. Foster, “A Decentralized, Adaptive, Replica Location Service”, 11th
IEEE International Symposium on High Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, July 24-16, 2002.

224

13BBibliography 225

[100] B. Allcock, J. Bester, et. al, “Data Management and Transfer in High Performance
Computational Grid Environments”, Parallel Computing Journal, Vol. 28 (5), May 2002,
pp. 749-771.

[101] H. Stockinger, A. Samar, et. al, “File and Object Replication in Data Grids”,
Journal of Cluster Computing, 5(3)305-314, 2002.

[102] M. Antonioletti, M.P. Atkinson, et. al., “OGSA-DAI Status Report and Future
Directions”, Procs. of the UK e-Science All Hands Meeting 2004, September 2004.

[103] X. Zhang and J. Schopf, “Performance Analysis of the Globus Toolkit Monitoring
and Discovery Service, MDS2”, Procs. of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Workshop (IPCCC), April 2004.

[104] 1. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Architecture for
Computational Grids”, Proc. 5th ACM Conference on Computer and Communications

Security Conference, pp. 83-92, 1998.

[105] J. Novotny, S. Tuecke, and V. Welch, “An Online Credential Repository for the
Grid: MyProxy”, Procs. of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

[106] lan Foster, Carl Kesselman, Laura Pearlman, et.al. “The Community Authorization
Service: Status and Future”, Procs. of Computing in High Energy Physics 03 (CHEP '03),
2003.

[107] The Virtual Data Toolkit web site http://vdt.cs.wisc.edu

[108] B. Seqal, L. Robertson, F. Gagliardi, and F. Carminati, “Grid Computing: the

European Data Grid Project”, Conf. of IEEE Nuclear Science Symposium, Lyon, France.

[109] I. Bird, L. Robertson, and J. Shiers, “Deploying the LHC computing grid-the LCG

service challenges”, appears in Local to Global Data Interoperability-Challenges and

13BBibliography 226

Technologies, Jun. 2005. pp.160-165.
[110] gLite Middleware. http://cern.ch/glite.

[111] Portable Batch System, http://www.pbsgridworks.com/Product.aspx?id=11

[112] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", Grid Computing:
Making The Global Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[113] M. Q. Xu, “Effective metacomputing using LSF Multicluster”, Proc. of First
IEEE/ACM International Symposium on Cluster Computing and the Grid, Australia,
May 2001. pp.100-105.

[114] C. Aiftimiei, P. Andreetto, et. al., “Design and Implementation of the gLite CREAM
Job Management Service”, INFN Technical Note, May, 2009. Available online at:
http://www.Inf.infn.it/sis/preprint/detail.php?id=5147

[115] Condor-C, http://www.cs.wisc.edu/condor/

[116] Batch Local ASCIl Helper, http://egee-jral-wm.mi.infn.it/egee-jral-
wm/blah_porting_notes.txt

[117] CERN Advanced STORage manager, http://castor.web.cern.ch/castor/

[118] M. Ernst, P. Fuhrmann, and T. Mkrtchyan, “Managed data storage and data access
services for data Grids”, Conf. on Computing in High Energy and Nuclear Physics
(CHEP), Mumbai, India, Oct, 2004.

[119] G. A. Steward, D. Cameron, G. A. Cowan, and G. McCance, “Storage and data
management in EGEE”, Procs. of the fifth Australian symposium on ACSW frontiers,
Darlinghurst, Australia, Australia, 2007. pp.69-77.

[120] G. Avellino, S. Beco, B. Cantalupo, et. al., “The Data-Grid Workload Management
System: Challenges and Results”, Journal of Grid Computing, 2(4):353-367, 2004.

[121] F. Pacini, “Job Description Language Attributes Specification”, Available online at:
https://edms.cern.ch/document/555796/1

13BBibliography

[122] B. Coghlan, A. W. Cooke, A. Datta, et. al., “R-GMA: A Grid Information and
Monitoring System” Conf. on UK e-Science all hands, Sheffield, 2-4 September 2002.

[123] R. Alfieri, R. Cecchini, V. Ciaschini, et. al, “VOMS: an Authorisation System for

Virtual Organisations”, Procs. of Computing in High Energy Physics (CHEP), India, 2004.

[124] M. Romberg, “The UNICORE architecture: seamless access to distributed
resources”, Procs. of 8" International Symposium on High Performance Distributed
Computing, Redondo, USA, 1999. pp.287-293.

[125] R. Ratering, A. Lukichev, M. Riedel, et. al, “GridBeans: Support e-Science and
Grid Applications”, Procs. of 2" IEEE internal conference on e-Science and Grid

computing, Dec. 2006. pp.45.

[126] J. Novotny, M. Russell, and O. Wehrens, “GridSphere: an advanced portal
framework”, Procs. of 30™ Euromicro Conference, Aug. 2004. pp.412-419.

[127] V. Venturi et al. “Using SAML-based VOMS for Authorization within Web
Services-based UNICORE Grids”, Proc.UNICORE Summit at Euro-Par 2007, Rennes,
France, 2007.

[128] M. Ellert, M. Grnager, A. Konstantinov, et. al, “Advanced Resource Connector
middleware for lightweight computational Grids”, Future Generation Computer Systems,
23:219-240, 2007.

[129] H. Nakada, S. Matsuoka, K. Seymour, et. al, “A GridRPC Model and API for
Advanced and Middleware Applications”, OGF Grid Remote Procedure Call Working
Group, Available online at: https://forge.gridforum.org/projects/gridrpc-wg/

[130] MPICH-G2, http://www.globus.org/grid_software/computation/mpich-g2.php
[131] Directed Acyclic Graph Manager, http://www.cs.wisc.edu/condor/dagman/

[132] M. A. Pettipher, A. Khan, T. W. Robinson, and X. Chen, “Review of Accounting
and Usage Monitoring (final Report)”, JISC Final Report, Jul. 2007.

227

13BBibliography

[133] P. Garfjall, “Accounting in Grid Environments, an architectural proposal and a
prototype implementation”, Master Thesis, 27 May 2004, Umea University, Sweden,
available at: http://www.cs.umu.se/~peterg/thesis/thesis.pdf

[134] Webster, “Definition of Accounting”, Available online at: http://www.merriam-

webster.com/dictionary/accounting

[135] J. Coles, “The evolving grid deployment and operations model with EGEE, LCG
and Gridpp”, Proceedings of 1% International Conf. on e-Science and Grid computing,
Dec. 2005, pp8

[136] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, et. al., “Web Services Agreement
Specification”, Open Grid Forum GRAAP WG, GFD.107, March 2007, available at:
http://www.ogf.org/documents/GFD.107.pdf

[137] L. McGinnis, R. Mach, R. Lepro-Mez, and S. Jackson, “Usage Record-Format
Recommendation version 1.0”, Open Grid Forum Usage Record Working Group,GFD.58,

September 2006. Available online at: https://forge.gridfourm.org/projects/ur-wg/

[138] J. Ainsworth, S. Newhouse, and J. MacLaren, “Resource Usage Service Based on
WS-I Basic Profile 1.0 (draft)”, Open Grid Forum Resource Usage Service Working
Group, August, 2006.

[139] K. Weeks, “The National Grid Service User Accounting System”, Proc. of UK e-
Science All Hands Meeting 2007, September, 2007.

[140] J. D. Ainsworth, J. MacLaren, J. M. Brooke, Implementing a Secure, Service

Oriented Accounting System for Computational Economics, CCGrid, 2005.

[141] R. Byrom, R. Cordenonsi, and L. Cornwall, “APEL: An implementation of Grid
accounting using R-GMA”, UK e-Science All Hands Conference, Nottingham, September
2005.

[142] S. Fisher, “Building the e-Science Grid in UK: Grid Information Service”, Proc. Of
UK e-Science All Hands Meeting 2003, Nottingham, September 2003.

228

13BBibliography

[143] R. Byrom and D. Kant, “LCG Accounting Schema”, EGEE Support and
Management Activity (SA1) document, Oct. 19" 2004. Available online at:
http://www.egee.cesga.es/EGEE-SA1-SWE/accounting/guides/apel-schema.pdf.

[144] R. M. Piro, A. Guarise, and A. Werbrouck, “An economy-based accounting
infrastructure for the datagrid”, Proceedings of Fourth International Workshop on Grid
Computing (IEEE, 2004), pp 202-204

[145] R. M. Piro, M. Pace, A. Ghiselli, A. Guarise, E. Luppi, G. Patania, L. Tomassetti,
and A. Werbrouck, “Tracing Resource Usage over Heterogeneous Grid Platforms: A
Prototype RUS interface for DGAS”, Proceedings of International Conf. on e-Science
and Grid Computing, Dec. 2007, pp93-101

[146] P. Gardfjall, E. EImroth, L. Johnsson, and O. Mulmo, “Scalable Gridwide
capacity allocation with SweGrid Accounting System” Concurrency and Computation:

Practice and Experience, John Wiley and Sons Ltd, June 2008.

[147] P. Canal, S. Borra, M. Melani, “GRATIA, a resource accounting system for OSG”,
Proc. of Computing in High Energy and Nuclear Science 2006 (CHEPO06), Mumbai, Inida,
February 2006.

[148] W. Frings, M. Riedel, A. Streit, D. Mallmann, D. Snelling and V. Li, “LLview:
User-Level Monitoring in Computational Grids and e-Science Infrastructure”, German

eScience 2007 conference, May 2007.

[149] “ARCO: N1 Grid Engine 6 Accounting and Reporting Console (white paper)”, Sun
Microsystems. Inc. May 2005.

[150] W. Gentzsch, “Sun Grid Engine: towards creating a compute power grid”, Proc. of
1" IEEE/ACM International Symposium on Cluster Computing and the Grid 2001
(CCGrid2001), May 2001.

[151] Gold Allocation Manager, http://www.clusterresources.com/pages/products/glod-

acllocation-manager.php

229

13BBibliography

[152] HPCX, http://www.hpcx.ac.uk/

[153] HECTOR, http://www.epcc.ed.ac.uk/msc/hpc-systems/hector/

[154] J. Shiers, “Memorandum of Understanding for Collaboration in the Deployment
and Exploitation of the Worldwide LHC Computing Grid”, Jan. 13", 2009. Available

online at “http://lcg.web.cern.ch/lcg/mou.htm”.

[155] X. Chen and A. Khan, “Aggregative accounting service enabling economic
modelling for commercial grid”, Conf. on Grid technology for financial modelling and

simulation, Feb. 3-4, 2006, Palermo, Italy.

[156] X. Chen and A. Khan, “Development and Performance of Resource Usage Service
in WLCG”, Conf. on IEEE Nuclear Science Symposium, Oct. 2006. pp.603-606.

[157] X. Chen and A. Khan, “Development of Multi-Grid Resource Usage Service in
LCG”, Conf. of International Symposium on Grid Computing (ISGC) 2007, Mar. 26-29,
2007, Taiwan.

[158] X. Chen, R. M. Piro, P. Canal, et. al, “Aggregate Usage Representation Version 1.0”,
OGF Usage Record working group, Dec. 2006. Available online at:
https://forge.gridfourm.org/projects/ur-wg/

[159] I. Bird and D. Kant, “EGEE-1l Operational Accounting Portal”, EGEE
Management Service Activity (MSA) document, July 19" 2007, online available at:
“https://edms.cern.ch/document/726137/4”

[160] P. Rey, J. Lopez, C. Fernadez, D. Kant and J. Gordon, “The Accounting
Infrastructure in EGEE”, Proc. of 1% Iberian Grid Infrastructure Conference, May 14-16"
2007, Spain.

[161] XML:DB API, http://xmldb-org.sourceforge.net/xapi/

[162] Hibernate, https://www.hibernate.org/

230

13BBibliography 231

[163] Web Service Interoperability, http://www.ws-i.org/

[164] Apache Axis Project, online available at: “http://ws.apache.org/axis/”.
[165] Grails, http://www.grails.org/

[166] Groovy, http://groovy.codehaus.org/

[167] I1SO 8601, “Date Elements and Interchange formats — Information Interchange

Representation of Dates and Times”, International Standard Organization, Dec. 3", 2004.
[168] Spring Framework, http://www.springsource.org/
[169] Acegi, http://www.grails.org/AcegiSecurity+Plugin

[170] J. Clark and S. DeRose, “XML Path Language Version 1.0”, Nov. 1999. Available
online at: http://www.w3.0rg/TR/xpath

[171] X. Chen, “OGSA Resource Usage Service IDL WS-l Rendering”, OGF Resource
Usage Service working group, Dec. 2007. Available online at:
https://forge.ggf.org/sf/sfmain/do/go/artf6090?nav=1&selected Tab=attachments

[172] X. Chen and A. Khan, “GRUS: An Extensive Solution to Resource Usage Service”,

Conf. on IEEE Nuclear Science Symposium, Dresden, Germany, Oct. 2008.

[173] G. Netzer, “OGSA Resource Usage Service-Core IDL Specification Draft Version
1.0”, OGF Resource Usage Service working group, Sept. 2007. Available online at:
https://forge.gridforum.org/sf/go/artf6015

[174] J. Alexander, D. Box, L. F. Cabrera, et. al., “Web Service Enumeration”, W3C, Mar.

2006. Available online at: http://www.w3.0rg/Submission/WS-Enumeration/

[175] D. Chamberlin, M. Dyck, D. Florescu, et. al., “XQuery Update facility 1.0”, W3C
XML Activity, Jun. 2009. Available online at: http://www.w3.0rg/TR/xquery-update-10/

13BBibliography 232

[176] S. Boag, D. Chamberlin, M. F. Fernandez, et. al., “XQuery 1.0: An XML Query
Language”, W3C XML Query, Jan. 2007. Available online at:
http://www.w3.org/TR/xquery/

[177] Apache Ant, http://ant.apache.org/

[178] Wiseman, “Java Implementation of Web Service Management”. Available online at:

https://wiseman.dev.java.net/

[179] Java Web Services Developer Pack,

http://java.sun.com/webservices/downloads/previous/index.jsp

[180] Hibernate Query Language,
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhgl.html

[181] JSR 175, “A Metadata Facility for the Java™ Programming Language”, Sun Inc.
Available online at: http://jcp.org/en/jsr/detail?id=175

[182] Simple API for XPath, http://sourceforge.net/projects/saxpath/

[183] Jaxen, http://jaxen.org/

[184] Simple API for XML, http://www.saxproject.org/

[185] Document Object Model, http://www.w3.org/DOM/

[186] XML Object Model, http://ws.apache.org/commons/axiom/

[187] K. Ballinger, D. Ehnebuske, M. Gudgin, et. al., “WS-1 Basic Profile Version 1.0”,
WS-I Interoperability Organisation, Apr. 2004. Available online at: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html

[188] S. Crouch, D. Fellows, X. “Experiences of Using Usage Record (UR) Version 1.0,

OGF Usage Record Working Group, Oct. 2009, Available online at:
http://forge.gridforum.org/projects/ur-wg

13BBibliography

[189] Korpela, E., D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. "SETI@home
- Massively distributed computing for SETI", Computing in Science and Engineering,
3(1), p. 79, 2001.

[190] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin, “A Practical Guide to
the IBM Autonomic Computing Toolkit”, IBM Redbook Series, Apr. 2004, Available
online at: http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf.

[191] A. Andrieux, K. Czajkowski, et. al, “Web Services Agreement Specification (WS-
Agreement)”, OGF Grid Resource Allocation Agreement Protocol Working Group,
March 14, 2007, Available online at: http://forge.gridforum.org/sf/projects/graap-wg.

[192] Portable Batch System (PBS), http://www.pbsworks.com/

[193] S. Tuecke, K. Czajkowski, I. Foster, et. al, “Open Grid Service Infrastructure
(OGSI) Version 1.0”, Open Grid Forum Open Grid Service Infrastructure Working
Group, June 27, 2003. Available online at: http://www.globus.org/toolkit/draft-ggf-ogsi-
gridservice-33_2003-06-27.pdf.

[194] V. Bullard, B. Murray, and K. Wilson, “An Introduction to Web Service
Distributed Management (WSDM)”, OASIS Web Service Distributed Management
(WSDM) TC, Feb. 24, 2006. Available online at: http://www.oasis-

open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc.

[195] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie, and J. Simeon, “Xquery
Update Facility 1.0”, World Wide Web Candidate Recommendation, June 2009. Avaiable
online at: http://www.w3.0rg/TR/xquery-update-10/.

[196] X. Chen, G. Wills, L. Gilbert, and D. Bacigalupo, “TeciRes: A Technical Review
of Using Cloud for Research”, JISC Documents and MultiMedia Repository, June, 2010.

Online available at: http://tecires.ecs.soton.ac.uk/publications.

233

	List of Anonyms
	List of Publications
	Introduction
	1.1 Evolution
	1.1.1 Computer Generations
	High Performance Computing
	1.1.3 Distributed Computing
	1.1.4 The Grid

	1.2 e-Science Grid
	1.3 World-wide LHC Computing Grid
	1.4 Grid Accounting
	1.5 Summary

	The Grid
	2.1 Concept
	2.2 Architecture
	2.2.1 Fabric
	2.2.2 Connectivity
	2.2.3 Resource
	2.2.4 Collective
	2.2.5 Application

	2.3 Standards
	2.3.1 Infrastructure Services
	2.3.2 Execution Management Services
	2.3.3 Data Services
	2.3.4 Information Services
	2.3.5 Security Services
	2.3.6 Self-management Services

	2.4 Middleware
	2.4.1 Globus Toolkit
	2.4.2 gLite
	2.4.3 UNICORE
	2.4.4 Others

	2.5 Tools
	2.6 Summary

	Grid Accounting
	3.1 Concept
	3.2 Usage Scenarios
	3.2.1 Statistical Usage Reporting
	3.2.2 Usage Policing
	3.2.3 Grid Economy
	3.2.4 Quality of Service
	3.2.5 Putting Together

	3.3 Accounting Model
	3.3.1 Usage Metering
	3.3.2 Usage Collection
	3.3.3 Classification

	3.4 Standards
	3.4.1 Usage Record Format
	3.4.2 Resource Usage Service

	3.5 Accounting Systems
	3.5.1 User Accounting System
	3.5.2 Accounting Processor for Event Logs
	3.5.3 Distributed Grid Accounting System
	3.5.4 SweGrid Accounting System
	3.5.5 Gratia
	3.5.6 UINCORE Accounting System
	3.5.7 Comparison
	3.5.8 Others

	3.6 A Generic Accounting Framework
	3.7 Summary

	Design of Resource Usage Service for World-wide LHC Grid
	4.1 Introduction
	4.2 Requirement Analysis
	4.2.1 Use Cases
	4.2.2 Requirements

	4.3 Design
	4.3.1 System Architecture
	4.3.2 Detailed System Design

	4.4 Implementation
	4.4.1 Resource Usage Service
	4.4.2 WLCG-RUS Admin
	4.4.3 User Interface

	4.5 Performance
	4.5.1 Testbed
	4.5.2 Unit Performance
	4.5.3 Insertion Performance

	4.6 Summary

	Design of Grid Resource Usage System Middleware
	5.1 Introduction
	5.2 Requirement Analysis
	5.2.1 Use Cases
	5.2.2 Requirements

	5.3 Design
	5.3.1 System Architecture
	5.3.2 Detailed System Design

	5.4 Implementation
	5.4.1 Entity Model Compiler
	5.4.2 GRUS Core
	5.4.3 GRUS Annotations
	5.4.4 GRUS Admin
	5.4.5 User Interface

	5.5 Summary

	Conclusions
	6.1 Research Outcomes
	6.1.1 Lessons Learned
	6.1.2 Reflections

	6.2 Recommendations
	6.2.1 Recommendations on Standards
	6.2.2 Recommendations on Development

	Appendix A
	A.1 National Grid Service
	A.2 Grid for Particle Physics
	A.3 Campus Grids
	A.4 Regional Grids
	A.5 Other Compute Services
	A.6 End user
	A.7 Standard Bodies
	A.8 Data Service Providers

	Appendix B
	Appendix C
	B.1 WLCG-RUS Use Cases
	B.2 GRUS Use Cases

	Appendix D
	C.1 WLCG-RUS Command Line Parameters
	C.2 GRUS Command Line Parameters

	Appendix E
	D.1 GRUS Data Type Definitions
	D.2 GRUS Service Interface Definitions

	Bibliography

