

Research and Development of Accounting

System in Grid Environment

A thesis submitted for the degree of Doctor of Philosophy

by

Xiaoyu Chen

School o Design f Engineering and

B runel University

November 2009

The piece of work is dedicated to my family and friends who

had given peculiar supports and encourages during the

period of my three­year researches.

Acknowledgement

There are many people who contributed financial, technical and moral supports that

made this thesis possible. First of all, I am grateful for the supervision and guidance that I

received from my supervisors, Prof. Akram Khan and Prof. Richard E. Taylor (Stanford

University). I really appreciate the three-year studentship funded by Engineering and

Physical Sciences Research Council (EPSRC) and Stanford University.

The majority of the work for this thesis was performed in cooperation with research

groups outside Brunel. As considerable supports received, I would like to give my

gratitude to JISC communities for their generous funding to our review tasks as

demonstrated in Chapter 3, and to Dr. Michael A. Pettipher and Mr Tim W. Robinson for

their close collaborations on the review tasks. I would also like to thank Dr. John Gordon

and Dr. Dave Kant from Rutherford Appleton Laboratory (RAL) for their supports to the

WLCG-RUS project discussed in Chapter 4.

I would also give my special thanks to all members and chairs of Usage Record (UR)

and Resource Usage Service (RUS) working groups of Open Grid Forum for their

supports to my chairship and efforts on specifications.

Finally, my parents definitely deserve my special acknowledgement to their endless

supports making all possible.

Abstract

The Grid has been recognised as the next-generation distributed computing paradigm

by seamlessly integrating heterogeneous resources across administrative domains as a

single virtual system. There are an increasing number of scientific and business projects

that employ Grid computing technologies for large-scale resource sharing and

collaborations. Early adoptions of Grid computing technologies have custom middleware

implemented to bridge gaps between heterogeneous computing backbones. These custom

solutions form the basis to the emerging Open Grid Service Architecture (OGSA), which

aims at addressing common concerns of Grid systems by defining a set of interoperable

and reusable Grid services. One of common concerns as defined in OGSA is the Grid

accounting service. The main objective of the Grid accounting service is to ensure

resources to be shared within a Grid environment in an accountable manner by metering

and logging accurate resource usage information. This thesis discusses the origins and

fundamentals of Grid computing and accounting service in the context of OGSA profile.

A prototype was developed and evaluated based on OGSA accounting-related standards

enabling sharing accounting data in a multi-Grid environment, the World-wide Large

Hadron Collider Grid (WLCG). Based on this prototype and lessons learned, a generic

middleware solution was also implemented as a toolkit that eases migration of existing

accounting system to be standard compatible.

Contents

Acknowledgement ... iii

Abstract .. iv

Contents .. ii

List of Tables ... vii

List of Figures .. viii

List of Anonyms ... xi

List of Publications .. xvi

Chapter 1 Introduction .. 1

1.1 Evolution ... 3

1.1.1 Computer Generations .. 3

1.1.2 High Performance Computing .. 5

1.1.3 Distributed Computing .. 8

1.1.4 The Grid .. 11

1.2 e-Science Grid ... 15

1.3 World-wide LHC Computing Grid ... 17

1.4 Grid Accounting .. 18

1.5 Summary ... 19

Chapter 2 The Grid ... 20

2.1 Concept ... 21

2.2 Architecture ... 22

2.2.1 Fabric .. 22

2.2.2 Connectivity .. 23

ii

2.2.3 Resource .. 23

2.2.4 Collective .. 24

2.2.5 Application .. 25

2.3 Standards ... 25

2.3.1 Infrastructure Services .. 26

2.3.2 Execution Management Services .. 30

2.3.3 Data Services .. 33

2.3.4 Information Services ... 34

2.3.5 Security Services ... 35

2.3.6 Self-management Services .. 37

2.4 Middleware ... 38

2.4.1 Globus Toolkit ... 38

2.4.2 gLite .. 42

2.4.3 UNICORE ... 48

2.4.4 Others .. 51

2.5 Tools .. 52

2.6 Summary ... 54

Chapter 3 Grid Accounting ... 53

3.1 Concept ... 54

3.2 Usage Scenarios .. 56

3.2.1 Statistical Usage Reporting ... 57

3.2.2 Usage Policing .. 58

3.2.3 Grid Economy ... 59

3.2.4 Quality of Service ... 60

3.2.5 Putting Together .. 61

3.3 Accounting Model .. 63

3.3.1 Usage Metering ... 63

3.3.2 Usage Collection ... 64

iii

3.3.3 Classification ... 64

3.4 Standards ... 65

3.4.1 Usage Record Format .. 67

3.4.2 Resource Usage Service .. 67

3.5 Accounting Systems .. 68

3.5.1 User Accounting System ... 70

3.5.2 Accounting Processor for Event Logs ... 71

3.5.3 Distributed Grid Accounting System .. 72

3.5.4 SweGrid Accounting System .. 73

3.5.5 Gratia ... 74

3.5.6 UINCORE Accounting System ... 75

3.5.7 Comparison ... 76

3.5.8 Others .. 77

3.6 A Generic Accounting Framework ... 77

3.7 Summary ... 79

Chapter 4 Design of Resource Usage Service for World-wide LHC Grid 80

4.1 Introduction ... 81

4.2 Requirement Analysis ... 84

4.2.1 Use Cases .. 84

4.2.2 Requirements .. 85

4.3 Design ... 88

4.3.1 System Architecture .. 88

4.3.2 Detailed System Design .. 90

4.4 Implementation ... 96

4.4.1 Resource Usage Service .. 97

4.4.2 WLCG-RUS Admin .. 104

4.4.3 User Interface .. 107

4.5 Performance .. 110

iv

4.5.1 Testbed .. 110

4.5.2 Unit Performance .. 112

4.5.3 Insertion Performance ... 115

4.6 Summary ... 121

Chapter 5 Design of Grid Resource Usage System Middleware 122

5.1 Introduction ... 123

5.2 Requirement Analysis ... 124

5.2.1 Use Cases .. 124

5.2.2 Requirements .. 125

5.3 Design ... 128

5.3.1 System Architecture .. 128

5.3.2 Detailed System Design .. 130

5.4 Implementation ... 149

5.4.1 Entity Model Compiler ... 149

5.4.2 GRUS Core ... 154

5.4.3 GRUS Annotations .. 156

5.4.4 GRUS Admin .. 167

5.4.5 User Interface .. 167

5.5 Summary ... 169

Chapter 6 Conclusions .. 171

6.1 Research Outcomes ... 172

6.1.1 Lessons Learned .. 172

6.1.2 Reflections .. 173

6.2 Recommendations ... 175

6.2.1 Recommendations on Standards ... 175

6.2.2 Recommendations on Development ... 176

Appendix A ... 178

A.1 National Grid Service.. 178

v

A.2 Grid for Particle Physics ... 179

A.3 Campus Grids .. 180

A.4 Regional Grids .. 181

A.5 Other Compute Services ... 182

A.6 End user .. 183

A.7 Standard Bodies .. 183

A.8 Data Service Providers .. 184

Appendix B ... 187

Appendix C ... 194

B.1 WLCG-RUS Use Cases .. 194

B.2 GRUS Use Cases .. 201

Appendix D ... 206

C.1 WLCG-RUS Command Line Parameters ... 206

C.2 GRUS Command Line Parameters ... 208

Appendix E ... 210

D.1 GRUS Data Type Definitions .. 210

D.2 GRUS Service Interface Definitions ... 213

Bibliography ... 215

vi

List of Tables

Table 2-1: Distributed Web Service Management (WS-RF vs. WS-Management) 28

Table 3-1: Comparisons between Grid monitoring and accounting 56

Table 3-2: A List of Accounting Systems of Production Grid Projects 69

Table 3-3: Comparison of Grid Accounting Tools Employed In Production Grids 76

Table 4-1: Test server machine specification and runtime environment 110

Table 4-2: WLCG job statistics from four VOs and 12 Tier-1 or regional sites. From[159]

 .. 111

Table 4-3: Comparison of unit performance of job accounting model, aggregate

accounting (without runtime aggregation) and aggregate accounting (with runtime

aggregation) .. 113

Table 5- 1: A Comparison of Service Interface Definition between RUS specification

(version 1.7) and Proposed RUS Core specification ... 133

Table 5-2: Parameter attribute list of EMC task ... 149

Table 5-3: Features of the XPath language supported in GRUS XPath2Hql filter 160

vii

List of Figures

Figure 2.1: “Hourglass” architecture identifies requirements on definition of Grid

protocols at each layer. From [47] .. 22

Figure 2.2: OGSA standard stacks and relationships to layered architecture 25

Figure 2.3: Roadmap of convergence of WSDM and WS-Management stacks 28

Figure 2.4: OGSA Execution Management Services (EMS) and interactive relations..... 30

Figure 3.1: Classification of accountable resources in the Grid 54

Figure 3.2: Job submission workflow of economic-aware Grid environment 62

Figure 3.3: Abstract Accounting Processing Model ... 63

Figure 3.4: Accounting model classification .. 65

Figure 3.5: OGF Usage Record Information Model ... 66

Figure 3.6: OGF-RUS Standardization Roadmap, from [138] ... 68

Figure 3.7: NGS User Accounting System Deployment Diagram 70

Figure 3.8: WLCG Accounting Processor for Event Logs (APEL) System Deployment

Diagram .. 71

Figure 3.9: Distributed Grid Accounting System Deployment Diagram 72

Figure 3.10: SweGrid Accounting System Deployment Diagram 73

Figure 3.11: Gratia Accounting System Deployment Diagram .. 74

Figure 3.12: UNICORE Accounting System Deployment Diagram 75

Figure 3.13: Generic Accounting Framework (Component Architecture) 78

Figure 4.1: Current EGEE/WLCG accounting deployment scenarios with three

transportation methods introduced in WLCG accounting .. 82

Figure 4.2: The main use cases that the WLCG-RUS is expected to implement in

conjunction with the actors generalised from existing WLCG accounting scenarios. 83

Figure 4.3: The Major Components of WLCG-RUS System and interactions 89

Figure 4.4: Proposed content model of aggregate usage record schema 91

Figure 4.5: Class diagram of RUS service runtime components 93

Figure 4.6: WLCG-RUS Admin MVC Model .. 95

Figure 4.7: Internal data model of RUS service reuses existing WLCG accounting schema

with additional record history model .. 96

Figure 4.8: WLCG-RUS job accounting model implementation (UML Class diagram) . 99

Figure 4.9:WLCG-RUS Job Accounting Model (UML Sequence Diagram) 100

Figure 4.10: Class diagram of RUS default implementation for aggregate accounting.. 102

viii

Figure 4. 11: WLCG-RUS Aggregate Accounting Process Model (UML Sequence

Diagram) ... 103

Figure 4. 12: Class Diagram of the Host Management Implementation 105

Figure 4.13: Class Diagram of the Host Management Implementation 106

Figure 4.14: Class Diagram of the System Management Implementation 107

Figure 4.15: WLCG-RUS Admin View ... 109

Figure 4.16: WLCG-RUS Site Manager View ... 109

Figure 4.17: (a) Unit performance of job accounting model (b) Unit performance of

aggregate accounting model (no runtime aggregation) (c) Unit performance of aggregate

accounting model with runtime aggregation. .. 115

Figure 4.18: Comparisons of insertion time against different granularities of usage

records per transaction. ... 116

Figure 4.19: (a) insertion performance of 5,000 usage records against bulk size (b)

insertion performance of 10,000 against bulk size (c) insertion performance of 15,000

usage records against bulk size (d) insertion performance of 20,000 against bulk size (e)

insertion performance of 25,000 usage records against bulk size (f) insertion performance

of 30,000 against bulk size (g) insertion performance of 30,000 usage records against

bulk size. ... 119

Figure 4.20: insertion performance against the number of simultaneous client threads . 120

Figure 5.1: Additional use cases that the GRUS system is expected to implement based on

existing WLCG-RUS framework.. 125

Figure 5.2: Layered component architecture of GRUS middleware 128

Figure 5.3: Runtime Aggregation Process at RUS Insertion and Extraction Runtime ... 134

Figure 5.4: The EMC code generation pattern in combination with the active code

generation pattern of JAXB binding compiler .. 142

Figure 5.5: Flowchart of entity model generation process .. 144

Figure 5. 6: Flowchart of DAO model generation process ... 145

Figure 5.7: GRUS Core Runtime Component Class Diagram .. 147

Figure 5.8: GRUS Admin MVC Model ... 148

Figure 5.9: Example class models of artefacts generated by EMC 153

Figure 5.10: GRUS server architecture containing runtime implementations and

interactions .. 155

Figure 5.11: The components and runtime events implemented based on Jaxen and

SAXPath for rendering an XPath expression to HQL statement. 165

Figure 5.12: Class Diagram of the VO Management Implementation 166

ix

Figure 5.13: VO manager view of GRUS Admin Web application 168

Figure 5.14: System administrator view of GRUS Admin Web application 168

x

List of Anonyms

Abbreviation Full Notation

ALICE A Large Ion Collider Experiment

APEL Accounting Processor for Event Logs

ARC Advanced Resource Connector

ATLAS A Toroidal LHC Apparatu S

BDII Berkeley Database Information Index

BES Basic Execution Service

BLAH Batch Local ASCII Helper

CA Certificate Authority

CAS Community Authorisation Service

CE Computing Element

CERN European Organisation for Nuclear Research

CIM Common Information Model

CMS Compact Muon Solenoid

CLI Command-Line Interface

CPU Central Processing Unit

CREAM Computing Resource Execution and Management

CORBA Common Object Request Broker Architecture

CRUD Create, Read, Update, and Delete

DAO Data Access Object

DAI Data Access and Integration

DCOM Distributed Component Object Model

DGAS Distributed Grid Accounting System

DMTF Distributed Management Task Force

DOM Document Object Model

DPM Disk Pool Manager

DRS Data Replication Service

EDG European Data Grid

EDVAC Electronic Discrete Variable Automatic Computer

EGA European Grid Alliance

EGEE Enabling Grid for E-sciencE

EMC Entity Model Compiler

xi

Abbreviation Full Notation

EMS Execution Management Service

ENIAC Numerical Integrator And Computer

EPCC Edinburgh Parallel Computing Centre

EPR Endpoint Reference

FQAN Full Qualified Attribute Name

FTS File Transfer Service

GIIS Grid Index Information Service

GLUE Grid Laboratory for a Uniform Environment

GMA Grid Monitoring Architecture

GOC Grid Operational Centre

GOSC Grid Operation Support Centre

GPE Grid Programming Environment

GRAM Grid Resource Allocation Manager

GRIS Grid Resource Information Service

GridRPC Grid Remote Procedure Call

GSI Grid Security Infrastructure

GT Global Toolkit

GUID Global Unique Identity

GRUS Grid Resource Usage System

HLR Home Location Registry

HPC High Performance Computing

HQL Hibernate Query Language

HTTP HyperText Transfer Protocol

IC Integrated Circuit

ITU International Telecommunication Union

JAR Java Archive

JARM Job Account Resource Management

JDL Job Description Language

JISC Joint Information System Committee

JMX Java Management eXtensions

JSDL Job Submission Description Language

JSR Java Specification Request

JWSDP Java Web Service Development Pack

LAN Local Area Network

xii

Abbreviation Full Notation

LB Logging and Bookkeeping

LCAS Local Centre Authorisation Service

LCMAPS Local Credential Mapping Service

LDAP Lightweight Directory Access Protocol

LFC LCG File Catalogue service

LFN Logical File Names

LFS Load Sharing Facility

LHC Large Hadrons Collider

LHCb LHC-beauty

LRMS Local Resource Management Service

LSI Large-Scale Integration

LUTS Logging and Usage Tracing Service

MCS Market for Computation Service

MDS Monitoring and Directory Service

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI Message Passing Interface

MPP Massive Parallel Processing

MVC Model-Viewer-Controller

NDGF Nordic Data Grid Facility

NIST National Institute of Standards and Technology

NGS National Grid Service

NUMA Non-Uniform Memory Access

OASIS Organisation of Advanced Standards for the Information Society

OGF Open Grid Forum

OGSA Open Grid Service Architecture

ORM Object-Relational Mapping

OSG Open Science Grid

PBS Portable Batch System

POJO Plain Old Java Object

PVM Parallel Virtual Machine

RAL Rutherford Appleton Laboratory

RBAC Role-Based Access Control

RDBMS Relational DataBase Management System

xiii

Abbreviation Full Notation

RDF Resource Description Framework

RFIO Remote File Input/Output

RFT Reliable File Transfer

RMI Remote Method Interface

RPC Remote Procedure Call

RSL Resource Specification Language

RURF RUS Usage Record Format

RUS Resource Usage Service

R-GMA Relational Grid Monitoring Architecture

RGOC Regional Grid Operation Centre

RSS Resource Selection Service

SAML Security Assertion Markup Language

SAX Simple API for XML

SE Storage Element

SGAS SweGrid Accounting System

SID Service Interface Definition

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SLA Service Level Agreement

SLM Service Level Manager

SMP Symmetric Multi-Processing

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TLS Transport Level Security

UAS UNICORE Atomic Service

UDDI Universal Description, Discovery and Integration

UI User Interface

UML Unified Modelling Language

UR Usage Record

UNICORE Uniform Interface to COmputing REsources

UNIVAC UNIversal Automatic Computer

VDT Virtual Data Toolkit

VLSI Very-Large-Scale Integration

VO Virtual Organisation

xiv

Abbreviation Full Notation

VOMS Virtual Organisation Management System

WAN Wide Area Network

WAR Web Archive

WLCG World-wide LHC Computing Grid

WSDL Web Service Description Language

WMS Workload Management Service

WSN Web Service Notification

WSRF Web Service Resource Framework

XACML eXtensible Access Control Markup Language

XIO eXtensible Input/Output

XML eXtensible Markup Language

XNJS enhanced Network Job Supervisor

XOM XML Object Model

xv

xvi

List of Publications

M. A. Pettipher, A. Khan, T. W. Robinson, and X. Chen, “Review of Accounting and

Usage Monitoring (final Report)”, JISC Final Report, Jul. 2007.

X. Chen and A. Khan, “Aggregative accounting service enabling economic modelling for

commercial grid”, Conf. on Grid technology for financial modelling and simulation, Feb.

3-4, 2006, Palermo, Italy.

X. Chen and A. Khan, “Development and Performance of Resource Usage Service in

WLCG”, Conf. on IEEE Nuclear Science Symposium, Oct. 2006. pp.603-606.

X. Chen and A. Khan, “Development of Multi-Grid Resource Usage Service in LCG”,

Conf. of International Symposium on Grid Computing (ISGC) 2007, Mar. 26-29, 2007,

Taiwan.

X. Chen, R. M. Piro, P. Canal, et. al, “Aggregate Usage Representation Version 1.0”,

OGF Usage Record working group, Dec. 2006. Available online at:

https://forge.gridfourm.org/projects/ur-wg/

X. Chen, “OGSA Resource Usage Service IDL WS-I Rendering”, OGF Resource Usage

Service working group, Dec. 2007. Available online at:

https://forge.ggf.org/sf/sfmain/do/go/artf6090?nav=1&selectedTab=attachments

X. Chen and A. Khan, “GRUS: An Extensive Solution to Resource Usage Service”, Conf.

on IEEE Nuclear Science Symposium, Dresden, Germany, Oct. 2008.

S. Crouch, D. Fellows, X. “Experiences of Using Usage Record (UR) Version 1.0”, OGF

Usage Record Working Group, Oct. 2009, Available online at:

http://forge.gridforum.org/projects/ur-wg

X. Chen, A. Khan, G. Willis, and L. Gilbert, “Developing Resource Usage Service in

WLCG” IEEE Trans. on Nuclear Science, Submitted on 25th June, 2010.

1 2BIntroduction

Chapter 1

Introduction

The Grid has been recognised as the next-generation distributed computing technology.

The basic idea of the Grid is to virtualise heterogeneous resources, including computing

power, data storage, application and instruments, across administrative domains as an

integrated system. The emergence of Grid technologies is by no means a coincidence but

driven by two main factors: supply and demand. On the one side, grand-challenge

problems require large-scale collaborations and a great number of computer processing

cycles. A typical example would be the Large Hadron Collider (LHC), a facility built to

perform particle physics experiments in Geneva. Each experiment involves collaboration

of over 3000 physicists from hundreds of world-wide institutions. It is also estimated that

individual experiment will generate several PetaBytes of data annually. Thousands of

physicists need access to, and analyse immense amounts of experimental data in near real

time. On the other side, considerable computational and storage resources are distributed

inside individual participant institute, and can potentially supply unprecedented

processing and storage capacities over the Internet. The Grid middleware is therefore the

bridge of the gap between application-level demands and distributed IT fabrics supplied

by using state-of-art distributed computing technologies.

Compared to traditional distributed computing systems, a Grid system requires the

assurance of Qualities of Service (QoS) at different levels, including security,

performance, responsiveness, etc. In order to ensure system-level QoS, a Grid system

need to analyse resource usage status, and take appropriate actions, such as resource

reallocation, job migration, or blocking a suspicious user account, to ensure agreed QoS.

The major task of Grid accounting service is to meter and log resource usage information

of the underlying Grid environment. Accounting data can be also used for Grid economy

by providing proofs for charging and billing. This thesis discusses the development of

Grid accounting systems in a standard compatible manner to enable interoperability of

2 2BIntroduction

heterogeneous accounting systems in such multi-Grid environment that consists of

multiple Grid infrastructures managed by various middleware software stacks.

As an introduction, the content of this chapter is intended to establish the context of

Grid computing and Grid accounting. Detailed technical issues and solutions are to be

discussed in following chapters step by step.

3 2BIntroduction

1.1 Evolution

Since the birth of computing, performance has always been one of the leading factors

driving the evolution of computing technologies. This section discusses historic

progresses of computers and computing technologies that contributed to the emergence of

Grid computing.

1.1.1 Computer Generations

As the timeline given in figure 1.1, the history of computer can be traced back to

1940s. The first-generation (1946-1953) computers were characterised by the use of

vacuum tubes. A vacuum tube acts as a switch or amplifier by controlling electric currents.

For example, the 5th of ten vacuum tubes can be switched on for representation of

numeric five. The first electronic computer, Numerical Integrator And Computer

(ENIAC)[1], was built at University of Pennsylvania in 1946 using vacuum tubes instead

of mechanical switches of the Mark I. The ENIAC was capable of executing 5,000

Figure 1.1: The timeline of computer evolution including selected events of each

generation.

4 2BIntroduction

operations per second. Other vacuum-tube computers include Electronic Discrete

Variable Automatic Computer (EDVAC)[3] and UNIversal Automatic Computer

(UNIVAC)[4]. Considering thousands of integrated vacuum tubes that give off so much

heat, these early computers were unreliable due to broken vacuum tubes.

Figure 1.2: The Moore’s Law predicated the number of transistors integrated in a

single chip doubles very two years. From[2]

Although the transistor was invented early in 1947, it was not widely used in

computers until late 1950s. The replacement of vacuum tube with transistor makes

computer smaller, faster and more reliable. The first full transistorized super computer

was built at Control Data Corp. in 1958, indicating the beginning of “transistors era” as

the second-generation computers. Programming on the second-generation computers

moved from cryptic binary machine language to symbolic languages, so that

programmers can code in high-level natural programming languages, such as early-

version FORTRAN and COBOL.

The invention of the Integrated Circuit (IC) formed the basis for third-generation

(1964-1970) computers. The size of computers became significantly smaller and faster by

integrating in-cooperated transistors within a semiconductor chip. The first integrated

5 2BIntroduction

circuitry computer, IBM 360, was built by IBM in 1965. It is capable of processing over

6,000 operations per second. In the meantime, advanced storage technologies contributed

a new computer design with an internal memory. External storage devices, magnetic tapes

and floppy disks, enable data input directly into the computers rather than using punch

cards.

The development of Large-Scale Integration (LSI) and Very-Large-Scale Integration

(VLSI) was the hallmark of the fourth-generation (1971-present) computers. A VLSI

allows integration of millions of transistors into a single IC chip, and makes the fourth-

generation computers smaller in size and faster in processing speed. Another

revolutionary technology contributed in fourth-generation computers was the invention of

microprocessor that incorporates almost all functions of a Central Processing Unit (CPU)

into a single IC. A CPU or processor contains only one core, the part of the processor that

actually processes an instruction at one time. In 1965, the co-founder, Gordon E. Moore,

envisioned that the number of transistors on a chip would double every two years. The

Moore’s Law [5], as described in figure 1.2, was proposed based on empirical

observations. The predication of the Moore’s Law remains accurate so far and can be best

demonstrated by the multi-core technologies. Since 1990s, Intel initiated and led the

multi-core technology until present, by integrating multiple symmetric or identical cores

within a single processing unit such that multiple instructions can be processed in parallel

at same time. The multi-core technologies, such as Dual-Core and Quad-Core processors,

have been widely used in modern commodity computers, making it possible to cope with

complex problems across application domains by leverage parallel processing capacities

of a single computer.

1.1.2 High Performance Computing

“It can't continue forever. The nature of exponentials is that you push them out

and eventually disaster happens”

 –Gordon Moore, April 13, 2005

According to Moore’s Law, it is expected the number of transistors integrated within a

single chip would reach over 15 billion, pushing computer engineering into the molecular

and atomic era. Although relevant research[6][7][8][9] have been undertaken for decades,

there is no guarantee that development of these advanced technologies will be applied to

6 2BIntroduction

computer engineering in the coming decades. The effectiveness of Moore’s law will

eventually come to the ultimate limit in the next decade.

Computer engineers, however, never give up their ambition to pursue higher

performance. The concept of High Performance Computing (HPC) was firstly suggested

by Charles Babbage in the 19th century in order to solve the “Grand-Challenge” problems

by employing multiple processing units or processors in parallel. Such “Grand-Challenge”

problems as applied fluid dynamics, ecosystem simulation and weather forecasting are

too complex to be solved in a reasonable amount of time using a single processor.

Figure 1.3: Flynn’s Taxonomy classifies computer architecture into four types

according to the number of instructions and data stream to be processed concurrently.

From [10]

Flynn’s Taxonomy

According to the Flynn’s taxonomy [11] proposed by Michael Flynn in 1966,

computer architecture is classified into four types (figure 1.3) based upon two

dimensional factors: the number of concurrent instructions and the number of data

streams operated concurrently. Traditional computer architecture falls into the Single-

7 2BIntroduction

Instruction-Single-Data (SISD) classification, involving a single processing unit that

exploits no parallelism in either instruction or data stream. A Single-Instruction-Multiple-

Data (SIMD) computer enables data parallelism by execution of the same instruction

upon different data streams concurrently. Multiple-Instruction-Simple-Data (MISD)

architecture is an uncommon architecture generally used mainly for fault-tolerance

through agreed results of execution of different instructions set upon same data stream.

Multiple-Instruction-Multiple-Data (MIMD) architecture employs multiple processors

simultaneously executing different instructions on different data streams.

According to architectural relationship between processors and memories, the MIMD

architecture can be further divided into two subtypes, Symmetric Multi-Processing (SMP)

and Massive Parallel Processing (MPP). A SMP machine involves two or more identical

processors connected via bus to access shared memory. Multiple processing units in a

SMP computer therefore have access to all memory spaces with equal latency and

bandwidth. In contrast, a Massive Parallel Processing (MPP) MIMD machine is equipped

with a large number of processing units, normally over 100, each of which has access to

its own physical memory or logically allocated memory spaces, therefore also known as

Non-Uniform Memory Access (NUMA) [12] system.

Supercomputer

A supercomputer is a computer with multiple processing units and custom design

based upon SIMD or MIMD architecture providing high performance processing capacity,

approaching Tera-FLoating point Operation Per Second (TeraFLOPS). Vector or Array

computers, formed the basis of most supercomputers throughout 1980s and into 1990s,

applied SIMD architecture to execute mathematical calculations on vectorised data set

simultaneously. Examples of Vector machines include the early CRAY X-MP [13],

Maspar MP-1[14] and the Distributed Array Processor for ATM (ATM DAP) [15].

Modern supercomputers, as top ten supercomputers on the Top 500 list [16], are

architected with a cluster of MIMD multiprocessors.

In order to exploit the high-performance of supercomputers, applications are required

to be coded differently and divided into pieces that can be executed in parallel. There are

parallel programming languages roughly categorised into two classes according to the

communication patterns among processes based on underlying memory architecture. For

8 2BIntroduction

tightly coordinated shared-memory machines, programming languages or libraries, such

as OpenMP [17] and Portable Operating System Interface for Unix (POSIX) threads, are

mainly used for manipulation and synchronization of shared memory variables. For

loosely-coupled memory architecture, communication among multiple processes is

realized through message passing APIs. The most commonly used APIs include

Messaging Passing Interface (MPI)[18] and Parallel Virtual Machine (PVM)[19].

Cluster Computing

Specialised Supercomputers, built at huge cost to deliver magnitude greater floating

point performance, however have been perceived to be too hard, too expensive and of too

narrow interests. Rather than developing specialty-class supercomputer architectures,

commodity clusters have rapidly grown as HPC systems by harnessing commercial-off-

the-shelf (COTS) computer nodes. A commodity cluster comprises computer nodes

interconnected by Local Area Network (LAN) within a local administrative domain. It

allows flexible system configuration in terms of number of nodes, number of processors

and memory capacity. Since 1990s, an increasing number of environments had emerged

ranging from commercial SMP servers to self-assembled PC clusters, such as Beowulf

[20] cluster.

1.1.3 Distributed Computing

The Internet

Prior to the Internet, communications between computers were prevalently based on

mainframe method, simply allowing communications among terminals via local physical

connections. In order to enabling interconnection of computers from different local

networks, the idea of Packet Switching was proposed by Leonard Kleinrock from

Stanford University in the 1960s. Following the successful demonstration of packet

switching work at APRANET in 1969, the first packet-switching standard, ITU X.25 [21],

was released by the International Telecommunication Union (ITU) based on the concept

of virtual circuit. The emergence of the TCP/IP protocol in 1978 enabled unifying

different network protocols by using a common inter-network protocol. The Internet was

then officially defined as a global system of interconnected computer networks that

9 2BIntroduction

interchange data by packet switching using the standard TCP/IP protocol. The Internet

carries various information, which however could not be shared in a uniform format

until the introduction of World Wide Web, or the Web, by Tim Berners-Lee in 1989 [22].

The Web is a huge set of interlinked documents accessible through Hypertext Transfer

Protocol (HTTP) [23].

Middleware

The emergence of the Internet and the Web contributed to a large-scale computing

model that aims to communicate and coordinate software components on interconnected

computers. This type of computing model is defined as distributed computing, allowing a

program to be split up into parts that run on multiple computers interconnected under a

loosely controlled regime. Two typical paradigms of distributed computing are the client-

server (C/S) model and peer-to-peer (P2P) model. The C/S model is the most cited model

used in distributed computing with server processes carrying out activities and client

processes initializing activities. In P2P model, all distributed processes plays similar roles

without clear distinction between client and server. These distributed processes act

cooperatively as peers take both the role of client and server depending on initializing or

provision of activities.

In order to enable distributed computing in a platform-independent manner, an

additional software layer, known as middleware, is required to mask heterogeneity of

underlying platform. Middleware-oriented solutions provide a high-level abstraction over

underlying networking, hardware, and operating systems. The foundation for

communication of distributed parts is the Remote Procedure Call (RPC)[24], which was

superseded by the introduction of the object-oriented programming model middleware,

such as Java Remote Method Invocation (RMI)[25], Common Object Request Broker

Architecture (CORBA)[26] and Distributed Component Object Model (DCOM)[27].

Web Service

Middleware-oriented solutions, however, are normally developed in a language-

specific pattern and lack of interoperability. A Java RMI client process, for example,

cannot interact with DCOM server processes. Besides, distributed applications relying on

middleware are typically used for intranet usage and hard for communication across

10 2BIntroduction

firewalls. Web service overcomes limits of traditional middleware solution by introducing

a stack of Web-oriented standards based upon eXtensible Markup Language (XML),

which enable platform- and language-neutral communication via HTTP.

Figure 1.4: Service-Oriented Architecture and Internal Interactions through standard

Web service communication protocols

As shown in figure 1.4, abstract Service-Oriented Architecture (SOA) is composed of

three major components, service requester, service provider and registry, which

communicate with each other through the standard communication protocol, Simple

Object Access Protocol (SOAP)[28]. The SOAP defines XML-formatted encoding rules

for exchanging structured information between service requesters and providers, as well

as binding rules for data transferring upon other networking and application protocols,

most notably RPC and HTTP. The registry component maintains a repository of

registered services and acts as a coordinator between service requestors and providers.

The registry itself can be implemented as a Web service endpoint by exhibiting a set of

well-defined interfaces for service query and registration. The Universal Description,

Discovery and Integration (UDDI)[29] is such a service definition that specifies standard

registration-related interfaces and messaging format. A Web service is required to be self-

describable using the Web Service Description Language (WSDL)[30] before getting

registered. A WSDL file describes inter-operate contracts of a particular service, such as

allowed operations, messaging formats, and enabled networking bindings.

11 2BIntroduction

1.1.4 The Grid

“A computational Grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities.”[31]

Ian Foster and Carl Kesselman, 1998

The evolution of the Grid was driven primarily by the ever-growing demands on

computational power. The Grid was defined as a computational Grid that aims at

providing HPC facilities in a cost-effective manner through interconnection of existing

computational resources. There are two prerequisites for Grid deployment: reasonable

communication latency and tremendous computational resources. As with Gilder’s Law,

the growth of network bandwidth had been observed faster than computer power at least

as much as three times. This law indicates the communication bandwidth via internetwork

doubles every six months, if computer power doubles every eighteen months. It has been

observed that the bandwidth of Internet backbone had been updated continuously during

1980s and 1990s, from 56 kilobyte/sec to 45 megabyte/sec. In addition, the state-of-art

10G Ethernet technology provides fastest communication network reaching 10

Figure 1.5: Internet Host Statistics. From[32]

12 2BIntroduction

gigabyte/sec. On the other hand, the number of computer hosts (as fig. 1.5) connected to

the Internet have dramatically increased to over 625 million up to Jan. 2009. These

computational resources are becoming potentially large-scale computational resource

pool, which provides unprecedented processing power than ever, either through dedicated

gigabyte/sec Ethernet for computation-intensive applications or through Wide Area

Network (WAN) in pursuit of global collaborations.

“The real and specific problem that underlies the Grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations.”[33]

Ian Foster, Carl Kesselman, Steven Tuecke, 2001

The concept of Grid was refined in 2001 and highlights advanced features as follows.

Rather than computation oriented only, some experimental science projects, such as

Particle Physics and Earthquake simulation, requires instrumental resources to be shared,

including sensors, detectors, etc. These experimental instruments accompany with

compute, storage and others are collectively known as Grid resources. A Grid system is

therefore required to address heterogeneity of underlying resource though a set of open

protocols and interfaces that address fundamental issues as authentication, authorisation,

resource access, discovery, etc. Considering Grid resources may be shared from different

administrative domains, it is important for a Grid system to ensure shared resources not

be subject to localised control, but are subject to the control at Virtual Organisation (VO)

level, which defines a set of resource-sharing rules and conditions of a dynamic of

individual or institutions.

However, the Grid computing is only one branch of the evolving distributed

computing technologies. In the meanwhile of the evolution of the Grid computing, we

have witnessed many other distributed computing technologies, which were driven by

different problem scopes, although some underlying technologies and issues are

overlapped. The following lists some example distributed computing models and

highlights their differences or relations to Grid computing.

Volunteer Computing

13 2BIntroduction

Volunteer computing is a type of distributed computing model where computing

resources (i.e. processing powers and storage capacities) are provided by one or more

computer owners. These resources can be harnessed for one specific application or

various applications through a general-purpose middleware solution. The basic idea

behind volunteering computing is to use spare processing or storage capacities of

computing resources connected to the Internet. In order to participate in a volunteer

computing application, computer owners are need to trust the application and agree to

install a piece of client-side software, normally lightweight and only active when

computer volunteers are free or underutilised. As the SETI@home project [189], a

volunteer computing project using internet-connected computers to analyse radio signals

and search for signs of extra terrestrial intelligence.

Given its volunteer nature, the volunteering computing differentiates from the Grid

computing in following aspects:

• A Grid application owns computing resources shared by one or more

organisations, while a volunteer computing application does not has ownership

of participating computing resources,

• Grid computing requires delivering QoS at different levels, such as availability,

security, etc. These QoS are hard to be ensured in volunteering computing, given

the fact the ad-hoc nature of volunteer computing resources.

• Grid computing middleware are general-purpose and provide well-defined APIs

for resource sharing across application domains, while volunteering computing

middleware are designed for a specific application or a specific application

domain.

Autonomic Computing

Autonomic computing was initiated by IBM in 2001, which aimed at developing an

intelligent computing system that is capable of self management, and reducing the

complexity of system management particularly for large-scale computing environments.

An autonomic system is able to monitor, make decisions, and adjust underlying system

environment on behalf of system administrators in order to fulfill pre-defined Quality of

Service (QoS). IBM defines four core technical features [190] that enable the ability of an

autonomic system to adapt to change in accordance with business policies and objectives.

These features include:

14 2BIntroduction

• Self-optimisation: the ability to automatic monitoring and control of system

resources to ensure the optimal functioning with respect to the defined

requirements according to dynamic changes;

• Self-healing: the ability to recover from system errors without human

intervention;

• Self-configuration: the ability to automatic configuring system components to

adopt to changes in the system;

• Self-protecting: the ability to proactively anticipation and protection from

arbitrary intrusions

A Grid computing system can make use of autonomic computing facilities to enhance

self-manageability and ensure QoS attainments at different service layers. Further details

of self-management of Grid computing are given in section 2.3.6.

Utility Computing

The utility computing is analogy to traditional public utility with a metering and

paying service running at backend. The basic idea of the utility computing requires low or

no initial investment on hardware, while providing pay-and-run facilities through

virtualization of computational and storage resources at backend. Utility computing was

firstly proposed in the 1960s by John McCarthy, who envisioned that future organisations

would simply plug in to a computing grid for computational resources rather than

providing their own computing powers, just like connecting to an electrical grid, and

paying based on what is used.

It is worth noting that the utility computing is not a specific computing technologies

but a vision of next-generation computing. The Grid computing is one of such enabling

technologies that enable the vision the utility computing.

Cloud computing

Cloud computing is an emerging distributed computing paradigm that aims at

providing an elastic, self-service and pay-per-usage computing facilities. As an emerging

concept, the concept of cloud along with its enabling technologies is still confusing many.

15 2BIntroduction

According to the definition from National Institute of Standards and Technology (NIST),

the Cloud computing is defined as “a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources, such as networks, servers,

storage, application and services, which can be rapidly provisioned and released with

minimal management efforts or service provider interaction”[34].

The recent published review report [196] uses an analogue to Web 2.0 and defines

cloud computing as a business model other than a new computing technology. Cloud

computing facilities can theoretically deliver any type of computing capacities to end

users including the Grid computing. Technically speaking, cloud computing and grid

computing differs and relates to each other in many aspects:

• The cloud computing resources are predominately provided by a single

organisation and located in a large-scale data centre, in contrast to Grid

computing resources shared across multiple, normally geographically distributed

organisations.

• The key enabling technology of cloud computing is the virtualisation technology

to maximise resource utilisation, while Grid computing is more concerned about

load balancing among distributed computing resources.

• Grid computing and cloud computing share high-level technical challenges, such

as resource management, data management, security, QoS management, etc.

• By using cloud computing facilities, the management tasks are delegated to the

service providers’ side, i.e. end users does not need to worry about resource

management. The current Grid implementations still require end users to have

certain knowledge of the execution environment for capacity planning, resource

management and security.

• Cloud computing can potentially provide Grid facilities or using Grid computing

technologies at backend.

1.2 e-Science Grid

"e-Science is about global collaboration in key areas of science and the

next generation of infrastructure that will enable it."[35]

Dr John Taylor, Director General of Research Councils, 2000

16 2BIntroduction

"The term ‘e-Science’ denotes the systematic development of research

methods that exploits advanced computing thinking. Such methods

enable new research by giving researches access to resources held on

widely-dispersed computers as though they were on their own desktops.

The resources can include data collections, very large-scale computing

resources, scientific instruments and high performance visualization.”

[36]

Prof. Malcolm Atkinson, e-Science Envoy

The evolution of computing and networking technology is leading to the revolution in

the conduct of scientific research. Scientists from different disciplines started using

computing technologies, electronic data storage, and networking to replace or extend

traditional efforts. Classic scientific researches, both theoretical and experimental, are

using computer-aided simulation to explore new possibilities and achieve new precisions.

HPC computers or clusters have been widely deployed at institutions enabling the

speedup of simulation and visualization. A group of scientists from the same research

fields meet and collaborate online without time and geographic limits.

During the past decades, scientific research had also experienced changes affected by

the “e”, abbreviation of the “electronic”, such as e-Social, e-Publishing, and e-Conference.

These “e-” technologies somehow did not enable fundamental, but profound,

transformation of research methodologies in science, until the advocating of the “e-

Science”. The term was coined by John Taylor, the director general of the office of

science and technology in the UK, at the time of announcement of a major funding

program, the UK e-Science program in 2001. The definition of e-Science was moderately

refined by Prof. Malcolm Atkinson with clarified objectives. With e-Science, researchers

are expected to have a set of value-added tools, software, and applications to access

world-wide experimental results, to access global computing resources for real-time

simulation and visualization, and collaboration on a grand project.

 All these visions of future sciences depend on an e-infrastructure that provides tools,

software and applications enabling coordinated problem solving. During the past five

years, there were over 100 projects funded to UK e-Science program for developing an e-

17 2BIntroduction

infrastructure, including SuperJANET project for constructing high bandwidth academic

network, National Grid Service (NGS) project facilitating research activities to access

distributed computational and data resources throughout the UK, Open Middleware

Infrastructure Institute UK (OMII-UK) providing open source software to e-Research

communities, etc. In Europe, the Enabling Grid for E-sciencE (EGEE) project was

founded by European Commission in 2004 aiming at providing a Grid-enabled e-

Infrastructure for various scientific domains, including earth science, high energy physics,

bioinformatics and astrophysics.

1.3 World-wide LHC Computing Grid

The Large Hadron Collider (LHC) is the world’s largest particle accelerator built by

the European Organisation for Nuclear Research (CERN). It is intended to test various

predications of high-energy physics through collision of opposite particle beams. Four

main detectors have been constructed at the LHC to record events triggered by collisions.

Two large and general-purpose detectors, the A Toroidal LHC ApparatuS (ATLAS)[37]

and Compact Muon Solenoid (CMS)[38], are used to search for signs of new particles

clues to the nature of dark matter. Other two medium detectors, LHC-beauty (LHCb)[39]

Figure 1.6: LHC layout, four main experimental detectors chained by 27km ring

accelerating tunnel. From[41]

18 2BIntroduction

and A Large Ion Collider Experiment (ALICE)[40], focus on investigations of events just

after the Big Bang. As LHC layout given in figure 1.6, these detectors are chained and

located at four collision points of main circular ring of LHC. Protons are firstly

accelerated by linear accelerator to 50 Megaelectron Volt (MeV) before entering into

three successive synchrotrons, including the Proton Synchrotron (PS) and Super Proton

Synchrotron (SPS). Protons ultimately enter into the LHC main ring, where collisions

take place 40 million times per second.

It is estimated there will be huge amount of data to be generated by LHC experiments,

approximately 15 PetaBytes a year. These data is intended to be analysed by thousands of

scientists around the world. Based on an initial survey[42] on anticipated computing

requirements for LHC experiments submitted in early 2001, CERN approved and

launched the Worldwide LHC Computing Grid (WLCG) project. One of the objectives of

the WLCG project is to develop a Grid infrastructure upon that distributed computing and

data storage resources from 140 computer centres in 34 countries. These distributed

computer centres are organised into three tiers. When collision triggered, event data are

collected by experiment-specific trigger and acquisition systems [43][44][45][46]. Event

data are then filtered by local computer farms so that only interesting events are kept into

local persistent storage. Four experiments send their filtered raw data simultaneously to

the CERN computer centre, so-called Tier-0 centre. When raw data arrives at Tier-0

centre, they are processed initially and backed up on tape at CERN. Subsets or all raw

data are then sent out globally to eleven large Tier-1 computer centres that are

interconnected by the general-purpose research network with dedicated 10 Gbit/s links.

There are more than 150 Tier-2 centres, mainly university and research institutes, which

allow physicists to perform analysis and simulations. The WLCG is supported by three

major Grid infrastructure projects, Open Science Grid project of US, EGEE project, and

Nordic Data Grid Facility (NDGF) project. Each project supplies custom, while

interoperable, Grid middleware solution, through open standards and interfaces.

1.4 Grid Accounting

For large-scale complex system as the Grid, resource usage is required to be

accurately accounted. Resource usage information is important in the sense of Grid

system administration and policy enforcement. In scientific Grid environment, resources

19 2BIntroduction

are predominately shared for one or more non-profitable research projects. Each project

has fixed resource quotas, computational cycles and storage spaces for instance. A Grid

system is committed to prevent overexploitation of resources by checking historic

resource usage of individual or project against allocated quotas. Resource usage

information enriches the understanding of resource utilisation in a Grid system, so that

system administrators can determine how to reallocate resource for better system

performance, maximising resource utilisation. Resource usage information also helps

discover and track abuses or configuration issues of a Grid infrastructure. Commercial

Grid allows users to access resources on “pay-per-use” basis. Resource usage information

therefore is used as proofs for charging. The Grid accounting is such a service that aims at

providing a consistent Grid-wide view of resource usage. Many production Grids have

accounting systems deployed for various purposes. The accounting system in UK e-

Science Grid, the National Grid Service (NGS) for example, is being developed mainly

for resource usage monitoring against individual users. Accounting systems in

EGEE/WLCG projects are mainly for statistic usage reporting for Virtual Organisations

(VOs) and participating sites.

1.5 Summary

This chapter sets the scene for following detailed discussion. The chapter discussed

Grid computing and Grid accounting at high level, including historic driver factors that

enables the emergence of Grid computing; its impacts on revolutions of scientific

research patterns by giving two example usage scenarios of ‘e-Science’ projects; and a

brief introduction of Grid accounting. In following chapters, more technical details are to

be discussed. The rest of this thesis is organised as follows. Chapter 2 concentrates on

technical aspects of the Grid and reviews of a selection of middleware solutions

implemented by production Grid projects. Technical reviews of Grid accounting is

presented in Chapter 3. In Chapter 4, an accounting system prototype is presented and

shows how a standard-compatible solution contributes to a consistent way to share

accounting data in such multi-Grid environment as WLCG with different accounting

systems deployed. Chapter 5 demonstrates the implementation of a generic Grid

accounting middleware that is used as a toolkit to ease the migration of existing

accounting systems to be standards compatible. Finally conclusion and future work are

given at chapter 6 as the ending of the whole thesis.

20 3BThe Grid

Chapter 2

The Grid

A Grid system integrates heterogeneous and distributed resources across

administrative domains a virtual system. Since 1990s, extensive efforts have been put on

development Grid middleware and software for diverse research projects. Early Grid

middleware solutions were built upon existing Internet protocols and aimed at providing a

Grid infrastructure for specific projects. These early adoptions to the Grid are too

implementation-specific to be used by others. Based on these initial efforts, the Grid had

received increasing attentions and evolved as a standard distributed computing paradigms.

In 2001, the first architectural standard, Open Grid Service Architecture (OGSA), was

released and formed the basis of constructing interoperable Grid systems. The OGSA

standard identifies a set of key functional components of a Grid system based on

emerging Web service architecture. Since then, a great number of Grid projects were

founded to develop OGSA-compatible middleware and software tools. These production

Grids are serving thousands of scientific research projects around the world.

The success of the Grid to date comes from a combination of factors, including early

implementation experiences, the emergence of clear architectural principles,

standardisations, de factor standard software, etc. This chapter reviews and discusses

these factors that combined to make the Grid possible.

21 3BThe Grid

2.1 Concept

For a long time, the term Grid was used for a computing Grid that provides

unprecedented computational capacities by harnessing inter-connected computers. Based

on increasing use cases gathered from both scientific and business applications using Grid

technologies, the concept of Grid has been refined as a distributed computing paradigm

with following essences [33]:

• “coordinated resource sharing that are not subject to central control”

• “using open, standard, general-purpose protocols and interfaces”

• “delivering nontrivial qualities of service (QoS)”

One of the key objectives of constructing a Grid system is to enable seamless resource

sharing across administrative domains. These heterogeneous resources are coordinated to

achieve an application-oriented goal in a trustful and controlled manner governed by a set

of sharing rules, which are not subject to any specific administrative domain. Such

sharing rules include security, user membership, payment, and application-specific

policies. A set of individuals and resources governed by same sharing rules forms the so-

called Virtual Organisation (VO).

A Grid system is built upon multi-purpose protocols and interfaces that address

fundamental issues relating to resource access, resource management, resource

introspection, authorisation, etc. A piece of software that implements these protocols and

interfaces is known as Grid middleware. It is important these protocols and interfaces are

open and standard such that Grid applications can be developed in a consistent manner

and migrated from one Grid middleware to the other.

Finally Grid resources are used in a coordinated pattern in order to accommodate

requirements for diverse usage modes and deliver various non-functional characteristics,

known as Qualities of Service (QoS), such as advanced resource reservation, security

semantics, system throughout, responsiveness, etc.

22 3BThe Grid

2.2 Architecture

In order to identify general requirements on constructing a Grid system, a layered

architecture (figure 2.1) is defined following principles of “hourglass model”. Each layer

abstracts a set of core components and protocols, through which actions of high-level

applications can be mediated and mapped onto underlying technologies of resources to be

shared.

2.2.1 Fabric

The fabric layer, as the base of “hourglass”, provides resources to be shared in a Grid

environment. These resources may be either physical entities or local entities, such as

distributed file system, computer pool or database systems, which involve internal

protocols defined by fabric components and deliver resource-specific QoS. Fabric

resources that intended to be accessible through Grid protocols must supply two

mandatory mechanisms: introspection and management mechanisms. Introspection

mechanisms allows discovery of underlying resource structure, state and capability, while

management mechanisms provide control over delivered QoS.

Figure 2.1: “Hourglass” architecture identifies requirements on definition of Grid

protocols at each layer. From [47]

23 3BThe Grid

2.2.2 Connectivity

The connectivity layer defines a set of core communication protocols and

authentication protocols required for Grid-specific transactions. Communication

protocols are used to transport and route messages among fabric-layer resources involved

within a Grid transaction. It is common to assume that these communication protocols are

based upon, but not limited to, existing Internet-layered protocols, such as TCP/IP and

other application-layer protocols.

Authentication protocols at connectivity layer establish a binary trustful link between

communication endpoints by verifying the identity of user and resources. Although there

are many security standards built upon Internet protocol suite, they do not satisfy all

security problems in a Grid environment. Participants in a Grid environment often need to

coordinate multiple resources to accomplish a complex task. By using existing Internet

authentication protocols, individual user is required to be authenticated on per resource

access basis. It is necessary to have a single sign-on mechanism that ensures user-

transparent access to multiple resources coordinated for a single task. Besides, a user may

endow a program with ability to execute on behalf the user. A user, for example, submits

a job request to an execution service, which need to transfer an input file for the job

execution from a remote storage resource. In this case, the remote storage access must be

authenticated by verifying job requestor’s identity rather than execution service’s identity.

This process is known as delegation.

2.2.3 Resource

Having defined connectivity-layer protocols, users can communicate underlying

shared resource in a secure way. As discussed in section 2.1.1, fabric resources to be

shared in a Grid environment must provide introspection and management mechanisms.

However, these mechanisms are implemented in a resource-specific manner. The role of

resource layer is therefore to abstract a set of common protocols that capture the

fundamental mechanisms of sharing across many different resource types.

Implementations on resource-layer protocols are supposed to call fabric resource

functions to access and control local resources.

24 3BThe Grid

 There are two primary classes of protocols as defined at resource layer: information

protocols and management protocols. Information protocols define a set of common

interfaces that interrogate local resource introspection mechanisms to obtain information

about resource configuration, state, current load, etc. A set of common management

protocols are used to negotiate resource access, specify runtime requirements, initiate

operations, monitor execution status, and account resource usages. Definition of

management protocols should be limited to a small and focused set, which apply to at

least a range of resources that share common management requirements therefore

forming the bottle neck of the hourglass model. Protocols defined within resource layer

differentiate from those of collective layer in that resource-layer protocols target at an

individual resource without concerning about coordinated actions across multiple

resources.

2.2.4 Collective

While the connectivity and resource layers focus on low-level protocols for

introspection and management of a single resource, the collective layer provides

protocols and shared services at the Virtual Organisation (VO) level enabling coordinated

resource sharing in a Grid environment. Typical collective services include:

• The community authorisation service that maintains and enforces security

policies of one or more VOs.

• The directory service that allows VO members to discover the existence and

properties of VO resources;

• Resource allocation and brokering service that allocates VO-member requests to

one or more appropriate VO resources;

• Data replication service that maintains and manages copies of data among

multiple VO storage resources;

• Community accounting service metering, gathering and provisioning VO

resource usage information;

• Community monitoring service reporting real-time status of VO resources,

mainly for detection of resource failure, intrusion, overload, etc;

• And community economic services that realises Grid economic through pricing

and charging VO members according to actual resource usage.

25 3BThe Grid

2.2.5 Application

The final layer, application layer, comprises applications that operate within a VO

environment. Development of applications may invocate well-defined low layer protocols

or APIs. Alternatively, applications may develop sophisticated application-specific

protocols and APIs.

Figure 2.2: OGSA standard stacks and relationships to layered architecture

2.3 Standards

Open Grid Service Architecture is the standard that provides a high-level definition of

core capabilities required to support Grid systems and applications. As figure 2.2, these

capabilities include execution management, data service, resource management, security,

26 3BThe Grid

information, and self management so that diverse components can be discovered,

managed and integrated as a virtualised system. The OGSA standard [48] was proposed

2001 by the Global Grid Forum, GGF, which merged with Enterprise Grid Alliance (EGA)

and formed the current Open Grid Forum (OGF). Thousands of individuals from over 400

organisations in more than 50 countries are currently active in different domain-expert

OGF working groups and providing inputs to fulfil OGSA functionalities. There are two

types of document inputs being produced by OGF working groups in order to maintain

coherence around OGSA and Grid-related standards. The informational documents

provide use cases, guidelines and information about OGSA architecture process. OGSA

specifications and profiles are a collection of normative documents that define technical

details on functional interfaces and protocols as well as their usage to ensure

interoperability. The following content of this section discusses details of emerging

OGSA specifications and profiles in the context OGSA.

2.3.1 Infrastructure Services

The main goal of infrastructure services is to provide coherent and integrated

components that collectively address Grid requirements as demonstrated in section 2.2. A

primary assumption is that OGSA systems and applications are built upon the Web

Service Architecture (WSA) [49] and aligned with emerging Web-service technical

specification in order to ensure interoperability through standard Web service messaging

framework (i.e. SOAP)[28] and normative service description (i.e. WSDL)[30]. However,

it is clear that currently defined Web service standards are not sufficient to meet all Grid

requirements.

Basic Manageability Model

A Grid system requires resources to be shared in a manageable manner. One of the key

objectives of OGSA infrastructure services is therefore to provide a basic manageability

model that forms the basis for both resource management and management of OGSA

environment. The basic manageability model at infrastructure level abstracts core

manageability interfaces that are common to all resource/services implementing OGSA

capabilities.

27 3BThe Grid

In early 2002 OGF proposed the Open Grid Service Infrastructure (OGSI) [193]

specification that extends Web service capabilities and introduces the idea of “stateful”

Web services, particularly concerned with creating, addressing, managing the lifetime of

“stateful” Grid services and notification of service state changes. The OGSI specification

is then refactored into a framework of Web service standards in 2004, in particular the

family of Web Service Resource Framework (WSRF) [50] and Web Service Notification

(WSN) [51], given the fact that the OGSI specification tried to integrate a number of

independently reusable Web service functionalities into one specification. These

specifications were defined to address specific problems and exploited other Web service

standards, the Web Service Addressing (WS-Addressing) [57] for example. The collection

of WSRF and WSN standards were originally proposed by OGF and then accepted by

Organisation of Advanced Standards for the Information Society (OASIS) as the basis of

Web Service Distributed Management (WSDM) [194] standards. In 2006, OGF further

proposed a normative profile specification, the OGSA WSRF Basic Profile (WSRF-BP)

[53], which aims at addressing interoperability issues of using WSRF specifications for

distributed Grid resource management in the context of OGSA.

It is however worth noting that the WSDM specifications received increasing

controversial debates mainly because of its Grid nature and incompatibility to WS-*

mainstreams. In 2005, a competing specification, the Web Service Management (WS-

Management) [52] was proposed by Distributed Management Task Force (DMTF). This

specification is defined based on three main WS-* standards, including Web Service

Transfer (WS-Transfer) [59], Web Service Enumeration (WS-Enum) [60], and Web

Service Eventing (WS-Eventing) [61]. As shown in Table 2.1, these specifications

provide functional counterparts of those defined in WSRF and WSN specifications.

In order to enable interoperability of separately developed Grid resources, a future

convergence was planned in 2006 to converge WSDM and WS-Management

specifications. As shown in Figure 3.2, the plan is to use WS-* standards as basis while

defining extensions to support features that defined in the WSRF and WSN specifications,

and eventually contribute to the convergence of WSDM and WS-Management

specifications. Given the fact that future convergence is more WS-management oriented

and based on its three underlying Web service standards, the development of Grid

accounting solutions is based on WS-management framework rather than WSRF

framework.

28 3BThe Grid

Table 2-1: Distributed Web Service Management (WS-RF vs. WS-Management)

Function WSDM WS-Management

State Representation WS-Resource Properties XML

State Lifecycle Management WS-Resource Lifetime WS-Transfer

Collection WS-Service Group WS-Enumeration

State Transition Notification WS-Notification WS-Eventing

Addressing WS-Addressing WS-Addressing

Fault Handling WS-Base Faults [58] SOAP Fault [28]

Figure 2.3: Roadmap of convergence of WSDM and WS-Management stacks

Naming

Resources in OGSA environment are represented as services, which are instantiated on

demand and assigned a global unique address. The Endpoint Reference (EPR) model

defined in the Web Service Addressing (WS-Addressing) specification [57] is used as the

architectural construct for an address in OGSA. These addressable EPRs constitute a

29 3BThe Grid

complex runtime environment of a Grid system. In order to simplify development high-

level applications that utilise underlying complex environment, a three-level naming

scheme of traditional distributed systems is employed in OGSA. Every named entity is

associated with multiple user-defined names, a global unique abstract name, and one or

more addresses. Two specifications, the OGSA-Resource Namespace Service (OGSA-

RNS)[62] and Web Service Naming (WS-Naming) profile[63], defines standard protocols

for resolving and rebinding of a user-defined name to an address by extending the

endpoint reference model as defined in Web Service Addressing (WS-Addressing)

specification [57].

Security

Another important issue to be solved at infrastructure level is the secure access to

shared resources across different administrative domains. Considering there might be

different security mechanisms adopted at classic organisations to accommodate specific

security requirements, security at OGSA infrastructural layer is therefore required to

ensure interoperability among domain-specific security mechanisms. Interoperability can

be achieved at two levels ensuring authenticated and confidential communications.

Transport Layer Security (TLS) is the commonly used security protocol in distributed

computing by providing endpoint authentication and communication confidentiality.

Emerging Web service security specifications offers advanced features and addresses

secure communication at message level. At message level, authentication and trust

relationship can be established using the Web Service Secure Conversation (WS-

SecureConversation) [64] and the Web Service Trust (WS-Trust) [65] protocols. During

message transfer over the network, data privacy and integrity are ensured by applying

standard encryption encoding and security token exchange as defined in specifications of

Web Service Security (WS-Security) [66], XML Encryption [67], and XML Digital

Signature (XML-DSIG) [68].

Existing Web service security protocols, however, are used to secure stateless Web

service transactions. In order to enable secure access to Grid service/resource instances,

the OGSA working group proposed a Basic Security Profile (OGSA-BSP) [69] that

declares a set of statements on how to ensure security interoperability at Web service

resource level in conformance to existing Web service security protocols. This profile

links two other profiles, the OGSA Secure Addressing Profile [70] that defines a set of

30 3BThe Grid

conformance statements for discovery of security requirements of a particular

service/resource instance by extending the WS-Addressing [57] schema and the OGSA

Secure Communication Profile [71] that facilitates secure communication to Web service

resource instances.

2.3.2 Execution Management Services

Execution Management Services (EMS) defines a set of services, which aim at

addressing issues related to execution of Units of Work (UoW), ranging from simple

batch job to complex workflows. In particular, the issues include, but not limited to,

resource provisioning, UoW placement, and UoW lifetime management. As shown in

Figure 2.4, the solution of OGSA EMS is decomposed into multiple abstract and reusable

services, each of which targets at specific issue. The following gives details of individual

service and its roles in the context OGSA EMS.

Figure 2.4: OGSA Execution Management Services (EMS) and interactive relations

31 3BThe Grid

Job Management

In the context of OGSA EMS, the term, job, represents the manageability aspects of a

UoW. It is the smallest manageable unit and implements a manageability interface as

defined within WSRF-BP [53]. A job has a limited lifetime traversing a set of discrete

states (e.g. pending, running, completion, etc). A job can be submitted by end users or

spawned by a Grid service with specific runtime requirements, and/or QoS commitments

(e.g. reliability, completion deadline, etc). The information related to job submission and

job state, along with other metadata (e.g. job owner), is known as the job properties that

should be traceable and monitored by clients. OGF defines two specifications related to

job submission: the Job Submission Description Language (JSDL) [74] that is a language

used to describe the resource requirements of computational jobs for submission to Grid

resources, and the emerging Web Service Level Agreement (WSLA) [191], another

language specification that is used to describe the job submission with additional agreed

QoS terms at service level (such as availability, response time, etc.).

As shown in Figure 2.4, the job manager is defined as the high-level service that

provides job manageability facilities. A job manager accepts job submission requests, i.e.

JSDL or WSLA instances, and is responsible for orchestrating one or more Grid services

necessary to start a job or a set of jobs, for example, negotiating service-level agreements,

matchmaking job requests against available resource candidates, optimising resource

selection, staging jobs to computational resources and job status monitoring. Job manager

may be implemented in various ways. Example job manager implementations include but

not limited to:

• a Web portal that allows users to view available Grid resources and perform

matchmaking;

• a queuing system that caches job submission requests and distributed them to

different resources by applying certain matchmaking algorithm;

• and a workflow manager that receives a number of jobs as a workflow and

manage the workflow until completion;

Selection Services

On receiving a job submission request, a job manager is required to determine where

to execute a job among a collection of execution resources. The resource selection is a

32 3BThe Grid

two-stage process involving finding resource candidates and optimise objective functions.

Accordingly OGF Resource Selection Service (RSS) working group defines two services

related to the resource selection process:

• Candidate Set Generator (CSG) [73]: The CSG service is in charge of the

selection of a set of computing resource candidates by applying certain match-

making algorithms. It mainly deal with low-level technical resource requirements

such as CPU type, storage capacity, networking rate. For example, an execution

request may specify a list of resource requirements for a target UoW. On

receiving the request, the CSG service then returns a list of matched VO

resources by interrogating information services (see section 2.3.4).

• Execution Planning Services (EPS) [75]: The EPS service takes the match-

making results, the outputs of CSG service, and attempts to optimise object

function such as execution time, cost, reliability, etc. However both EPS and

CSG services do not perform the scheduling process, but returning optimised

resources to job manager.

Execution Environment Management

In the context of OGSA, an execution environment consists of every aspect necessary

for job execution, particularly including a job container and underlying computational

Grid resources. A job container, as its name indicated, contains running jobs, and

manages job lifecycles. Example job containers include a queuing service, J2EE hosting

environment, batch system, etc. These containers provide common functionalities for

creation, monitoring and management of running entities, but in heterogeneous ways and

with various interaction interfaces. In order to enable the job manager to interact with

various execution environment in a consistent manner, OGF proposed a Basic Execution

Service (BES) specification [72] that defines a set of well-defined service interfaces and

information models based on the WSRF-BP [53] profile, through which clients can send

requests to initiate, monitor and manage computational jobs upon different underlying

execution environments.

Besides basic functionalities as specified in the BES specification, a resource provider

might also provide optional advanced features. One of such advanced features is the

reservation service. State-of-the-art execution environments, such as Portable Batch

System (PBS) [192], have advanced reservation facilities implemented to ensure

33 3BThe Grid

availability of a set of resources to users at a given period. The reservation service

proposed in the context OGSA EMS is to define a common interface for creation and

management of resource reservations.

2.3.3 Data Services

A variety of data services have proved to be useful to facilitate high-level applications

to locate and utilised distributed data resources. These collective services provide

primitive mechanisms for management, access, and federation of data resources shared

across administrative domains.

Data Resource

A data resource acts as a sink or source of data. There are different types of data

resources in a Grid environment, including relational database, XML database, flat files,

data stream, etc. Most of data resources are managed by existing systems such as

Relational Database Management System (RDBMS) or file systems. Existing data

management systems provide similar manageability interfaces mainly for data access and

lifetime management but using different manageability interfaces. One of key objectives

of OGSA data services is therefore to provide a high-level functional and manageability

interfaces upon existing data management systems.

The OGF Data Access and Integration (DAI) working group proposed a stack of

standards for data access and management. The Web Service Data Access and Integration

Service (WS-DAI)[76] is the core specification that defines a collection of generic service

interfaces for uniform data access and manipulation. The WS-DAI specification

distinguishes data resources that are managed by external management systems from

those to be managed by WS-DAI service. In the case of service managed data resources,

the WS-DAI specification recommends implementations to use WS-RF compatible

solution for lifetime management. The working group also proposed three additional

specifications, the WS-DAIR[77], WS-DAIX[78], WS-DAI-RDF(S) [79][80] which

extends core properties defined in WS-DAI core interfaces for realisation of access

service to relational, XML, and Resource Description Framework (RDF) [81] data

resources respectively.

34 3BThe Grid

Storage Resource

 Considering some data resources, such as relational database and files, are storage

based, it is necessary for OGSA data services to provide functional and manageability

interfaces for storage resources as well. Like data resources, most storage resources are

managed by existing storage management systems. These storage management systems

provide custom solutions to control and provision of raw storage or space in a file system

as well as custom file access protocols. OGSA data services are intended to provide an

abstract manageability interface for storage management over heterogeneous storage

management systems.

The OGF Grid Storage Management (GSM) working group focus on the definition of

standard interfaces of a middleware component, the OGSA Storage Resource Manager

(OGSA-SRM)[80], which provides dynamic storage resource allocation and file

management facilities to storage resources shared in the Grid. File access to storage

resources can be achieved through two standard mechanisms as proposed by OGF

working groups. The OGF GridFTP working group proposed a standard file access

protocol, the Grid File Transfer Protocol (GridFTP) [82], which extends from File

Transfer Protocols with enhanced security and performance. Remote files can be

alternatively accessed through a set of standard interfaces defined within the OGSA Byte

Input/Output (OGSA ByteIO) specification [83], which provides “POSIX-like” file

functionalities. These standardisation efforts make it possible to implement advanced data

features of OGSA data services. File replication, for example, is an important feature than

enhances system performance and fault tolerance in a Grid system. The OGSA Data

Movement Interface (OGSA-DMI) [84] is a recent specification proposed by the OGF

DMI working group and simplifies data transfer across multiple storage and data

resources through a set of standard interfaces.

2.3.4 Information Services

The Grid environment consists of a huge amount of highly distributed and

heterogeneous resources, which are coordinated to accomplish complex application goals.

The OGSA defines a set of collective capabilities that hide low-level complexity of a Grid

environment. Information services exhibit one of such high-level capabilities by

35 3BThe Grid

providing efficient access to information about resource/services, applications and events

in a Grid environment. The information supplied by an information service is intended to

be used for various purposes including resource/service discovery, system performance

tuning, fault detection, and accounting. There are two main components of information

services, the logging service and discovery service. Logging services work at the

infrastructure layer and produce dynamic status information of individual resources.

Discovery services are likely to be deployed in every Grid system and act as registry

maintaining static resource information as well as dynamic information collected from

multiple logging service instances.

Rather than defining a single information service to support all usage scenarios, which

is impossible, current standardisation efforts on OGSA information services are at highly

abstract level without compromising service usability. The OGSA Grid Monitoring

Architecture (OGSA-GMA)[85] specification defines essential interactions among three

abstract components in a Grid monitoring architecture, the information provider,

information consumer and directory. Another important point issue relating to OGSA

information services is resource information models. Resource information models

describe resource-specific semantics by defining resource-specific properties, operations

and relations to other resources. There are many other industry standards for resource

modelling, such as the Common Information Model (CIM) [86] defined by DMTF, the

resource model proposed by Java Management Extensions (JMX) [87] framework, etc. It

is likely that implementations of information services of different Grid projects may

apply these standards for resource modelling. In order to enable interoperability between

Grid-specific information services, the OGF Grid Laboratory for a Uniform Environment

(GLUE) working group defines an abstract information model, known as the GLUE

schema[88], as a legacy schema that can be mapped to concrete schema employed by a

Grid information service.

2.3.5 Security Services

OGSA security services provide facilities to enforce security policies in a VO. From

security perspectives, a VO maintains certain security policies that is outsourced by

resource providers and coordinates their resource sharing and usage in a consistent

manner. To be more specific, VO-specific security policies pulls together user participants

36 3BThe Grid

and resource/services from disparate domains into a common trust domain. Compare to

traditional means of security administration that involves a centralized policy databases of

user credentials, administration of VO security policies in the OGSA environment is

complicated by the dynamic nature of VO. A VO needs to establish trusts between users

and Grid resource/services. Theses trust domains spans multiple user participants that

dynamically join and leaving and multiple resource/services that are dynamically

deployed or created over the lifetime of a VO. The establishment of dynamic trust

domains of a VO requires a delegation mechanism that allows one entity to grant rights to

another (e.g. newly created resource or services) to perform actions on its behalf. Besides,

user participants in a Grid environment may need to coordinate multiple resource/services

to accomplish a single task. OGSA security services are also required to provide a single

sign-on mechanism to ensure that the user is authenticated exactly once and need not to

be re-authenticated upon following access to Grid resource/service during a period of

time. Access to Grid resource/services must be authorized by security policies specified

by resource/service providers as well as those from VOs. OGSA security services need to

provide a standard authorization framework that accommodates various access control

models and implementations deployed by service providers.

Within OGF, an OGSA security working group has been founded to enumerate and

address aforementioned security issues in the context of OGSA. The initial profile

specification, Grid Certification Policy (GCP) [89], provides a guidance for the use of

attributes and extensions of the Internet X.509 Public Key Infrastructure Certificate [89]

to accommodate advanced security requirements such as delegation and single sign-on in

OGSA environment. Another security-specific working group, the OGSA Authorisation

working group, focuses on addressing interoperability issues among multiple

authorisation domains by defining a generic authorisation framework. The recent released

informational document, Functional Components of Grid Service Provider Authorisation

Service Middleware [90], proposed two OGSA authorisation models from the

resource/service providers’ point of view, the pull model and push model. By push model,

user credentials and authorisation assertion of a VO are attached with request message to

service provider. On receiving access requestors, resource/service providers are required

to validate assertion and apply local authorisation policies. On the other hand, a

resource/service provider is required to call VO authorisation decision point to get user

attributes or authorisation assertions before applying local authorisation polices. This

model is known as the pull model. Based on proposed authorisation framework, the

37 3BThe Grid

working groups are working on defining standard authorisation protocols compatible to

XML Access Control Markup Language (XACML) [91] and Security Assertion Markup

Language (SAML) [92] proposed by OASIS.

2.3.6 Self-management Services

Self management capabilities have received increasing attentions in OGSA. A self-

management Grid environment composed of autonomous services (see section 1.1.4) that

are self-configurable, self-healing, and self-optimising. One of the major objectives of

self-management in a Grid is the support service-level attainment for OGSA

resource/service through a conceptual component, the Service Level Manager (SLM).

The SLM component is modelled after a generic control loop pattern, which consists of

monitoring, analysis and projection, and action phases. A SLM may be used to control

and adjust service activities at different levels. Grid system-level SLMs, for example, can

be used for improving resource utilisation by dynamically enrolling resources or releasing

surplus resource depending on current system load. Although identified as a significant

part of OGSA, standardisation efforts self-management services are still at a preliminary

stage.

Figure 2.5: Evolution of Grid Middleware Technologies. From [33]

38 3BThe Grid

2.4 Middleware

Having identified requirements and capabilities that are fundamental to the success of

Grid applications, considerable progresses have been made during past ten years in

developing Grid middleware. As illustrated in figure 2.5, the evolution of Grid

middleware is divided into four phases. Starting from early 1990s, Grid technologies

concentrated on addressing meta-computing [93] issues through linking heterogeneous

computational resources in such a way that are transparent to users as a single computer.

Middleware development uses various solutions to achieve a limited set of functionalities,

security and scalability in particular, therefore not concerning about interoperability. The

emergence of Globus Toolkit version 2 (GT2) in 1999 became the first de factor standard

and pioneered the creation of interoperable Grid middle. Services and protocols defined

within GT2, however, are based on internet protocols and implementation-oriented. It is

not possible to have different implementations of Grid middleware until 2002 when a

community of standards released based on OGSA profile, which aligns Grid computing

with broad Web service protocols. Since then, a great number of standard-compatible

Grid middleware released. It is also envisioned that the evolution of OGSA-compatible

middleware will eventually lead Grid computing in another stage with enhanced features

on autonomy and self management. The section reviews Grid-middleware solutions both

OGSA compatible and OGSA non-compatible.

2.4.1 Globus Toolkit

Globus Toolkit (GT) is an open-source toolkit that forms a fundamental technology

enabling Grid computing. The project was founded in late 1990s and originated from the

US national project, I-WAY [95], which aimed at providing inter-connection between

eleven high-speed research networks. Since version 1.0 release in 1998, version 2.0 in

2002 and recent release Web service compatible version 4.0, GT has evolved rapidly as a

standard Grid middleware and forms foundation for thousands of Grid projects worldwide

in both scientific and industry fields. However early adoptions, such as gLite (see section

2.4.2), are mainly based on GT2, which addresses issues relating to security, resource

management, monitoring, discovery and file transfer at resource layer. These projects

have various custom solutions developed upon GT2 components to address high-level

issues for coordinated resource access and VO management. As presented in figure 2.5,

39 3BThe Grid

the Web service-based GT4 provides significant improvements in terms of community

functionalities and OGSA standard compliance.

Figure 2.6: Globus Toolkit Components (Pre-WS vs. WS releases). From [94]

Common Runtime Environment

Common runtime environment of GT consists of a set of components that abstract

low-level connectivity protocols in a platform independent manner. The pre-Web service

release of GT provides two runtime tools, the eXtensible Input/Output (XIO) [96] and C

command library. The XIO represents a simple Open/Close/Read/Write (OCRW)

interface that provides an abstract layer upon transport protocols, such as TCP and UDP.

A common library written in C programming language implements most infrastructure

functionalities of GT2, including security, introspection and management facilities for

40 3BThe Grid

development of custom services in a platform independent manner. GT4 leverages Web

service stacks and provides WS-RF compatible runtime environments. There are three-

version containers available for service development in Java, C, and Python programming

languages.

Execution Management

Execution management in GT is realised by the Grid Resource Allocation and

Management (GRAM) [97] component, which defines standard protocols allowing

initialising, monitoring, and managing execution of jobs on remote computational

resources. However GRAM is not a job scheduler, but abstracts a single protocol for

communicating with the Local Resource Management System (LRMS) and allows a

client to specify resource requirements using Resource Specification Language (RSL)

[98]. The GRAM component also provides operations for monitoring status of execution

resources.

The GRAM component is refactored in GT4 and provides standard Web service

interfaces for job submission and management, therefore also known as WS-GRAM. Two

additional functional sub-components are added in WS-GRAM. The workspace

management service functions as a sandbox and dynamically allocates local Unix

accounts to execution requestors. A more general protocol, Grid TeleControl Protocol, is

also provided in WS-GRAM mainly for instrumentation management, such as

management of earthquake engineering facilities and microscopes.

Data Management

Data Management components of GT provides facilities to data access, transfer, and

replication. GT’s implementation of GridFTP [82] protocol enables secure and high-

performance file transfer over Wide Area Network. The Replica Location Service

(RLS)[99] acts as a registry of file replicas and provides two-level naming mechanism

allowing mapping multiple user-defined logic file names to target physical file location.

However the RLS itself does not guarantee either file consistency or filename uniqueness.

It is expected high-level services would provide these advanced features.

41 3BThe Grid

Data management in GT4 is enhanced by introducing two high-level manageability

interfaces for data transfer and replication. The Reliable File Transfer (RFT)[100] service

provides Web service interfaces for management and reliability of multiple file transfers

using GridFTP protocols. A prototype service, Data Replication Service (DRS)[101], is

expected to hide the complexity of the overall processes of data replication by allowing

users to identify a set of desired files in the Grid environment, to make local replicas of

those files by transferring files from one or more source locations through RFT service,

and to register the new replicas in a RLS. A third-party tool developed by UK e-Science

program, the OGSA Data Access and Integration (OGSA-DAI) [102], is integrated within

GT4 as a data management component providing access and management facilities to

other structured data, relational and XML data in particular.

Information Services

 Information services in GT are enforced by the Monitoring and Discovery System

(MDS) for collection, indexing, discovery of resource/service information in a Grid.

MDS implemented in GT2, called MDS2, is based on Lightweight Directory Access

Protocol (LDAP) and consists of three hierarchical components: Grid Information Index

Service (GIIS), Grid Resource Information Service (GRIS), and Information Providers

(IPs). Resource/service providers may have multi-purpose monitoring sensors running on

a resource/service to collect information data such as CPU load, system configuration, etc.

The IPs provides an abstract interface layer upon local monitoring sensors so that

resource-specific data can be collected and published in a consistent manner. The GRIS

runs on a resource/service and acts as a modular content gateway for a resource. GRIS

instances are registered to a GIIS endpoint, where information data are indexed and

cached. Information consumer may optionally query information of a specific resource

directly to GRIS or talk to GIIS to obtain collective information. MDS2[103] defines a

resource information model for computational resources only, known as MDS schema.

Information providers may also publish GLUE-compatible information model by

configuring a LDAP implementation of GLUE schema.

The MDS2 is no longer maintained and replaced by a Web service compatible solution,

known as MDS4, in GT4. MDS4 is built upon standard query, subscription and

notification protocols as defined in WS-RF and WSN specifications. Based on these

standard protocols, a range of GT4 components, such as WS-GRAM and RFT, are

42 3BThe Grid

implemented as information providers for collection of information from specific

resource/services. An adapter interface is also provided for those information providers

that are not WSRF compatible. MDS4 also provides two high-level services, the

aggregator services and trigger services, for collection and publishing aggregated

information from information providers. Both services are implemented based upon a

generic aggregation framework. Finally a Web-based interface, WebMDS, provides a

visualisation interface for user to view information data. MDS4 uses GLUE schema

natively and provides an XML mapping of the GLUE schema.

Security

GT provides a Grid Security Infrastructure (GSI) [104] based on X.509 PKI, which

assumes every user and host involved in a Grid has an X.509 end entity certificate signed

by trusted CAs. Each Grid transactions is mutually authenticated and encrypted. In order

to support Grid-specific requirements on single sign-on and delegation, GSI also supports

proxy certificates that are derived from X.509 end entity certificates. User participants

may issue a self-signed proxy certificate delegating their rights to another entity within a

limited period of time. An online credential management service, MyProxy server[105],

is used for generating, querying, and renewing such proxy certificates. Resource access is

protected by a simple resource-level authorisation mechanism defined in GSI by mapping

the subject of a user certificate to local execution environment, Unix user account for

example. In the case, the Grid user has the same access rights of the local account.

Based on GSI, GT4 provides messaging-level security mechanisms by implementing

WS-Security[66] and WS-SecureConversation[64] protocols to protect SOAP messages.

A high-level authorisation service, the Community Authorisation Service (CAS)[106], is

also implemented in GT4 allowing separation of resource providers’ security policies and

VO security policies. In another word, resource providers may delegate a subset of

security policies to the VO. In this sense, CAS provides fine-grain mechanisms for a VO

to manage these delegated policies and ensures user requestors are authorised across

multiple security domains in a consistent manner.

2.4.2 gLite

43 3BThe Grid

Figure 2.7: gLite3 C
om

ponent A
rchitecture and Internal Interactions

44 3BThe Grid

The gLite, a lightweight Grid middleware solution produced by EGEE project,

provides a framework to build Grid applications for diverse research communities. The

gLite middleware combines component distributions from a number of other projects,

including Virtual Data Toolkit (VDT) [107], European Data Grid (EDG) [108] and

World-wide LHC Computing Grid (WLCG)[109] projects. Since EGEE project and

WLCG project share a large part of infrastructure consisting of computing and storage

resources shared over 200 distributed sites around the world, the gLite middleware [110]

is primary deployed on participating sites in EGEE/WLCG project.

As figure 2.7, current release gLite middleware, gLite3, follows SOA design patterns

and is evolving to be OGSA compatible where possible. Meanwhile it also reuses some

GT2 components for backward-compatibility to LCG deployments.

Access Services

The User Interface (UI) is the entry point to a gLite-enabled Grid. A user accesses

gLite resources or services by logging on a UI machine, where user certificates are

installed. The UI provides Command-Line Interfaces (CLIs) allowing users to interrogate

high-level gLite services. From a UI, a user may submit a job execution request,

monitoring job status, get job output, transfer files, etc.

Computing Element

The Computing Element (CE) is a generic terminology defined in EGEE/WLCG

referring to a set of computing resource at a site. A CE provides a generic interface,

known as the Grid Gate (GG), which is responsible for scheduling jobs to a collection of

Worker Nodes (WNs) via a LRMS. The gLite version 3 supports a wide range of LRMS

including Portable Batch System (PBS)[111], Condor[112], Load Sharing Facility

(LFS)[113], etc. As demonstrated in figure 2.5, there are three implementation of GG in

gLite: the gLite CE, LCG CE, and Computing Resource Execution and Management

(CREAM)[114] CE.

LCG CE was developed by EDG project [108] and used in LCG. The LCG CE runs a

GT2’s GRAM gatekeeper and reuse GRAM job manager interface as GG. A site may

choose to configure one or more job managers according to LRMS deployed. There is

45 3BThe Grid

one gatekeeper per CE. The gatekeeper will publish available job managers to the gLite

information system. On receiving a job request, the gatekeeper forks a job manager

instance after authenticating user identity and mapping it onto a local user account. The

job manager instance then dispatches the job to WNs via corresponding LRMS.

The LCG CE processes job requests on per process per user basis, resulting in

scalability issues. In EGEE/WLCG project that involves thousands of users, it is very

likely that multiple users send job requests to a LCG CE simultaneously. In order to cope

with this issue, the gLite introduces a three-tier CE architecture, so-called gLite CE,

based on gatekeeper, Condor-C[115] job manager and Batch Local ASCII Helper (BLAH)

protocol[116]. The Condor-C is a Condor-to-Condor job scheduler that allows jobs in one

Condor queue to be moved to another Condor queue. For those LRMS other than Condor,

Condor-C job manager makes uses of the BLAH command for job submission and

management. The BLAH protocol defines a set of plain ASCII commands to manage jobs

on the batch systems. A lightweight BLAH protocol daemon (BLAHPD) is responsible

for converting BLAHP commands into LRMS commands, trigger those commands and

report results back in BLAHP format.

Finally the recently developed CREAM CE provides an alternative solution of job

submission and management at CE level. The CREAM CE implements OGSA BES

specification and uses BLAHPD for job scheduling and management to LRMS including

Condor. The CREAM backend is a permanent memory space for storing data related to

all cached and executing jobs.

gLite also defines a CE Monitoring (CEMon) service that is deployed at individual

CEs and responsible for providing characteristic and status information of the CE. The

major consumer of CEMon service is the Workload Manager System (WMS) that

performs job submissions by matchmaking job requirements and dynamic CE status

information obtained via CEMon services. The CEMon service provides an extension

point through which custom CEMon sensor can be plugged in to generate other

information. The CREAM sensor, for example, is plugged into CEMon service to

generate job status information.

Storage Element

46 3BThe Grid

The Storage Element (SE) as defined in gLite provides data access and manageability

facilities to storage resources localised at a site. Most of sites participating in

EGEE/WLCG project normally provide at least one SE. There are three widely used

storage management systems in EGEE/WLCG, the CERN Advanced STORage manager

(CASTOR) [117], dCache [118], and the Disk Pool Manager (DPM) [119]. As figure 2.5,

these storage management systems have different protocols defined for file access. The

Remote File Input/Output (RFIO) provides POSIX-like interface for access files through

CASTOR and DPM management system, while dCache uses a GSI-enabled data access

protocol, the gsidcap. A high-level abstract, the OGSA SRM service, is implemented by

these storage management systems in order to ensure file access through heterogeneous

storage management systems in a consistence manner. In addition to system-specific file

access protocols, gLite requires all SEs must support a GSI-enabled FTP protocol, the

GSI-FTP .

Workload Management System

The Workload Management System (WMS) [120] component provides Grid-wide

resource management facilities hiding complex gLite environment from users. The main

purpose of WMS is to satisfy user requests by taking appropriate actions on job

submission and management on behalf of users. It accepts job execution requests from UI,

selects CE candidates, places job execution, and notifies execution results. A user request

specifies job and resource requirements in JDL (Job Description Language) [121], which

is the Condor ClassAd language therefore legitimate to be used directly to Condor APIs

for job management. The JDL allows the description of three request types including

simple job request, Direct Acyclic Graph (DAG) job request, and a collection of

independent jobs that can be executed in parallel. WMS exhibits two entry points for

users, the Network Server (NS) and Workload Manager Proxy (WMProxy). The NS is a

generic network daemon that keeps listening to user request from a well-know port.

WMProxy provides a Web service interface to access WMS functionalities. Both services

check user authorisations and forward JDL to the Workload Manager component.

Workload Manager (WM) is the core component of WMS. On receiving a JDL, the

WM spawns a matchmaking process, which evaluates JDL items against Information

Super Market (ISM). The ISM consists of a repository of CE information. In order to

ensure information is up-to-date, a lightweight process, ISM updater, contacts CEMon

service and refreshes ISM repository periodically, approximately every two minutes.

47 3BThe Grid

Alternative, ISM may subscribe to CEMon services to receive notifications encompassing

needed CE information.

Once a CE candidate identified, the JDL is forwarded to a Job Submission and

Monitoring component, which is responsible for creating a wrapper script that creates the

appropriate execution environment in the CE worker node. The Interface to CREAM

Environment (ICE) is used by WM when interacting with CREAM based CEs. In the case

of no matched CEs found immediately, the WM component caches the job request into an

internal Task Queue (TQ) for a while. Under this circumstance, the jobs held by WM can

be either asking for RB to perform matchmaking periodically (eager scheduling policy) or

waiting for an appropriate CE to pull job request from TQ when available (lazy

scheduling policy). During a job lifetime, changes of job status are maintained and

updated within the Logging and Bookkeeping (LB) service.

Data Management

Two high-level services are provided within gLite3 for file transfer and replica

management. The File Transfer Service (FTS) provides low level data movement service

that can schedule asynchronous and reliable file replication from source to destination

SEs. It also allows participant sites can control the network usage. The FTS interacts

between source and destination SEs through standard SRM interfaces and GridFTP

protocol. Users and applications locate files or replicas through the LCG File Catalogue

service (LFC), which maintains mappings between user-defined Logical File Names

(LFN), a Global Unique IDentity (GUID) and physical Storage URL(s) of replicas. The

LFC service publishes its service URL in gLite3 Information Services so that it can be

discovered by data management tools and other services.

Information Services

There are two Information Services (IS) in gLite3, the pre-WS MDS of GT2 and

Relational Grid Monitoring Architecture (R-GMA)[122], a relational database

implementation of OGSA-GMA[85] specification. For MDS service, a Generic

Information Provider (GIP) runs at resource layer and generates relevant information

about computational and storage resources. This information is stored and cached in a

GRIS server for each resource. Each GRIS is registered with a site-level Berkeley

48 3BThe Grid

Database Information Index (BDII) and populates the database with resource information.

The site-level DBIIs are then registered to a top-level BDII used as the top of the

hierarchy of a VO. R-GMA is an alternative information service mainly used for

accounting purpose and is discussed in more detail in Chapter 3.

Security

The gLite3 middleware uses GSI and MyProxy server for use authentication, single

sign-on, and delegation. The authorisation framework in gLite3 composed of a centralised

community-based authorisation service, the Virtual Organisation Management Service

(VOMS)[123], and site access control suite comprising Local Centre Authorisation

Service (LCAS) and Local Credential Mapping Service (LCMAPS). The VOMS

organises user information and privileges in a hierarchical structure. Each user in a VO is

assigned to a subgroup, a role, and granted capabilities. This information is represented

via an extension to user proxy certificate. At the time a VOMS is contacted, a VOMS

proxy certificate that encapsulates user’s group membership and associated roles into

standard proxy certificate is signed by VOMS public key and returned. The VOMS proxy

certificate is push into CEs together with job requests. At CE level, the LCAS service is

called by gatekeeper to make an authorisation decision based upon user subject name and

VO attributes embedded within a proxy certificate. Once authorized, the LCMAPS

service takes care of translating grid credentials into Unix credentials local to the site.

2.4.3 UNICORE

The Uniform Interface to COmputing REsources (UNICORE) project [124] was

established in 1997 to provide an easy-to-use platform that enables secure access to

supercomputer sites in German. After twelve-year development, the UNICORE project

has evolved as a SOA Grid middleware for secure access mainly to computational

resources. As figure 2.8, the recent released UNICORE version 6, called UNICORE6, is

characterised as a vertically integrated Grid system that comprises components of three

tiers, the client tier, service tier, and target system tier.

49 3BThe Grid

Figure 2.8: U
N

IC
O

R
E6 C

om
ponent A

rchitecture. From
 [124]

50 3BThe Grid

Client Tier

The UNICORE client tier provides a variety of client interfaces to exploit the entire

set of services offered by the service tier. The UNICORE Command-line Client (UCC)

provides a versatile Command Line Interface (CLI) that allows users to access all service-

tier features in a shell or scripting environment. The UNICORE client tier also consists of

two programming APIs. The UNICORE rich client is an eclipse-based Grid Programming

Environment (GPE) developed by Intel. The co-called “rich” client provides graphical

user interface and interoperable GridBeans [125] for Grid application development.

Alternatively, application developer can use the single interface of High Level API for

Grid applications (HiLA) to implement complex application with just a few lines of codes.

Finally UNICORE services can also be accessed from third-party portals, GridSphere[126]

for example.

Service Tier

The UNICORE service tier comprises all services and SOA components based on WS-

RF and WS-I standards. A site level, UNICORE services consist of two main functional

components, the Gateway and enhanced Network Job Supervisor (NJS). The Gateway

component acts as a site firewall and performs the authentication of all incoming requests

to underlying site resources. The NJS component is the job management and execution

engine of UNICORE6. Its functions include storage resource management, file stage in or

out and job management. The functionality of the NJS is accessible via two Web service

interfaces: The UNICORE Atomic Services (UAS) and OGSA-BES. The UNICORE job

definition is compliant with the JSDL standard. A variety of protocols, such as HTTPs,

OGSA ByteIO and GridFTP, are also available for staging files between sites or between

client and sites. On receiving a job request, the NJS component delegate the JDSL file to

the IDB (Incarnation Data Base) component that performs the job incarnation and maps

the abstract job description in JSDL to the concrete job description for a specific resource.

Information about available applications and resource characteristics has to be defined in

this database. For authorisation, the NJS uses the X.509-baed UNICORE User DataBase

(XUUDB) to map the subject name of user X.509 certificate into the actual user account

and group. XUUDB based authorisation can accommodate all access control

requirements within a single site. For resource access cross sites, file transfer from

different sites for example, UNICORE6 supports proxy certificates and provides an

51 3BThe Grid

XACML entity that can be triggered to delegate access decision to a VO management

system, the UNICORE VO service (UVOS) [127].

Like many Grid middleware, UNICORE6 also provides several collective services.

Firstly, a single service registry is available to build-up and to operate a distributed

UNICORE infrastructure. This service registry is contacted by the clients in order to

connect to the Grid. The UNICORE Common Information Service (CIS) is the

information service, which gathers and stores both static and dynamic information from

all connected XNJS into GLUE 2.0 [88] format. UNICORE also supports workflow

management using a two-layered architecture consisting of a workflow engine and the

service orchestrator. The workflow engine allows different workflow description dialects

to be plugged in according to site requirements. The main responsibility of the service

orchestrator is to execute the individual tasks in a workflow, handle job execution and

monitor the Grid.

System Tier

The system tier provides an abstract non-WS interface, the Target System Interface

(TSI), between UNICORE and underlying LRMS of Grid resources. Communication

between XNJS and TSI is through text-based protocols, which are interpreted into

system-specific commands. In addition, the TSI component is extended for supporting the

DRMAA standard enabling a standardized interface between the TSI and the batch

system in UNICORE6. The UNICORE Space (USpace) is the space for job directories. A

separate directory created on a per job basis, where the XNJS and TSI stores all input,

output and error data. GridFTP can be used for site-to-site file transfer, in particular for

data transfer from/to external storages.

2.4.4 Others

The middleware solutions discussed above are widely deployed as production Grids

for a variety of research communities. There are some other Grid projects that have

custom middleware developed to accommodate local deployment environment. Here list

two other common Grid middleware that are being deployed at some participating sites of

EGEE/WLCG projects.

52 3BThe Grid

Advanced Resource Connector

Advanced Resource Connector (ARC) [128] is the middleware developed by Nordic

Grid, a project that aims at providing a Grid infrastructure for Nordic countries. The

major design goal of ARC middleware is to provide innovative solutions that are essential

for a production quality middleware. The ARC middleware consists of three main

components: Grid services, Indexing services, and user interface. ARC Grid services are a

collection of services running on resources. Grid jobs are submitted to ARC resources

through GridFTP protocol. Each site has a GridFTP server that keeps listening to

incoming job requests. A Grid manager is responsible for computational resource

management and takes care of job execution and input data cache. Information services

are implemented as a “cron” script that periodically updates local resource information to

the Indexing service backend. Indexing services (IS) uses GT2 GIIS and maintains a list

of local information services and other IS endpoints. The ARC user interface is a set of

tools for job submission, monitoring and management. An intelligent resource broker is

built in the user interface, which is able to select the best matched resource for user jobs.

Virtual Data Toolkit

The Open Science Grid Project (OSG) aims at bringing together computing and

storage resources interconnected over research networks from campuses and research

communities in the US into a common, shared infrastructure via a common set of

software stack. The OSG software stack relies on Virtual Data Toolkit (VDT)[107]

middleware, which ensembles GT2, Condor, EDG and other open source software. The

goal of VDT is to make it as easy as possible for users to deploy, maintain and use Grid

software rather than defining Grid middleware.

2.5 Tools

Grid middleware provides fundamental services that allow resource access,

management and manipulation through well-defined interfaces. However these low-level

service interfaces are too complex making the Grid elusive for many users. For example,

a scientist must learn details of gLite’s execution services to submit and monitoring a job

request. Besides, development of a Grid-enabled application becomes even more

53 3BThe Grid

complicated and requires developers to become familiar with detailed interfaces. There is

a clear need for tools that allow application developers to use, to write Grid-enabled

applications, and allows users to easily deploy and run applications on the Grid. These

tools should build upon the Grid infrastructure and lie at the application layer (as shown

in figure 2.1) therefore known as application tools.

For application developers, Grid application tools should provide high-level

abstractions and support a broad class of applications development. This can be achieved

by evolving traditional multi-purpose programming models, such as Remote Procedure

Call (RPC), message passing, and parallel programming models, to take advantage of the

Grid platform. The OGF Grid RPC working group is working on defining a standard

Grid-RPC [129] API for both middleware developers and end-users, while ensuring

interoperability among domain-specific middleware. The GridRPC model also provides a

mechanism for task parallelism by partitioning a complex job into multiple processes to

be executed in parallel on multiple Grid resources. Finally, message-passing

programming model is the most general model for parallel computing. Grid-enabled

implementations of the messaging-passing model have been pursued by many research

groups. The MPICH-G2 [130] is such a Grid-enabled implementation of MPI standard

based on GT infrastructure.

The second class of Grid application tools is to provide Grid application execution

environments allowing user to easily interrogate different services of underlying Grid

middleware. There are two common classes of such environments, Grid workflow system

and portal, available in most existing Grid middleware. The WMS of gLite3, for example,

uses DAGMan [131] as a workflow manager that allows representation of a collection of

job dependencies as a directed acyclic graph. A more generic workflow engine in

UNICORE, as discussed in section 2.4.2, supports flexible workflow management and

enables different workflow dialects to be plugged in. Another effective means of Grid

application execution is the Web portal, which is linked with middleware services and

provides graphic interfaces.

54 3BThe Grid

2.6 Summary

This chapter discussed the concept, architectural principles, standards, middleware

solutions and software tools, which makes it possible to develop interoperable and

versatile Grid systems. In addition, the content of this chapter also implies future

development in Grid applications and technologies. First of all, most of the existing Grid

middleware solutions, such as VDT, gLite, and ARC, are based on tools and experiences

established over past years, which are not OGSA compatible. The wide deployment of

these middleware solutions in production Grid projects makes them hard to be OGSA

compatible. One feasible solution would be to implement OGSA components while

keeping backward compatibility to existing counterparts. The CREAM project sets a

good example by introducing OGSA BES service into gLite. Besides, the OGSA

architecture is evolving over time. It is very likely that more features would be added in

OGSA architecture. Therefore extensive standardisation efforts should be continuously

contributed. Finally, as discussed in section 2.5, Grid application tools play an important

role in making Grid technologies user- and developer-friendly.

53 4BGrid Accounting

Chapter 3

Grid Accounting

Grid accounting plays an important role in system administration, resource usage

policing and enforcing Grid economic models. The main purpose of Grid accounting is to

meter and supply usage information of resources shared in a Grid environment. Collective

usage information helps enrich system administrator’s understanding and enhance overall

resource utilisation in a Grid system. For most e-Science Grids, computing resources are

predominately provided from academic institutes for one or more non-profitable research

projects. Individual project and participants are granted a fixed quota, such as

computational cycles and storage spaces. Accounting in such e-Science Grid environment

enables usage policing that prevents Grid resources from over exploitation by checking

the actual resource usage against allocated resource quota of individual project.

Resources or services provided by a business Grid are to be utilised in the “pay-per-use”

pattern. Accounting in this case is mainly used to provide usage proofs for charging users

based on actual resource usage. Besides, Grid accounting can also be used for

strengthening security, guaranteeing Quality of Service (QoS), etc.

Having identified the importance of Grid accounting, there are increasing Grid

projects that have accounting systems developed and deployed. These accounting systems,

however, were designed in various ways to accommodate Grid-specific usage scenarios.

In order to provide a consistent and interoperable solution to Grid accounting in the

context of OGSA profile, this chapter discusses the concept of Grid accounting, reviews

existing accounting solutions in operational Grid projects, and proposes an generic

accounting framework. I conducted all the research carried out within this chapter and

published in [132].

54 4BGrid Accounting

3.1 Concept

The concept of Grid accounting was firstly proposed as “a process that provides a

consistent and Grid-wide view of VO members’ resource utilization” [133] at the time of

designing accounting system for Sweden Grid (SweGrid), a national Grid project that

provides computational resources to scientific projects in Sweden. This definition,

however, merely highlights SweGrid-specific requirements on accounting. It is

worthwhile to review the concept of accounting in order to give a more generic definition.

 The terminology, accounting, originates from business and financial field as “the

system of recording and summarizing business and financial transactions and analyzing,

verifying and reporting the results” [134]. Accounting is by no means a new concept in

computing either. In a UNIX system, the usage of individual system resources is

accurately recorded and maintained. The process accounting, for example, logs every

single command run by every single user through the PACCT script. The UNIX operating

system can also be configured to enable disk accounting by periodically scanning each

file system and finding out its disk usage.

Figure 3.1: Classification of accountable resources in the Grid

55 4BGrid Accounting

Accounting in Grid is similar to UNIX accounting except the heterogeneity of

underlying resources and large scale. As illustrated in figure 3.1, accountable resources in

a Grid system can be classified into two main categories: the resource and services.

Resource accounting is a process that meters and logs usage of physical resources or

application-specific resources such as e-journals, digital maps, etc. According to the

types of physical resources, resource accounting can be further divided into CPU

accounting, storage accounting and network accounting. Service accounting is a process

that meters and logs usage of logical services. In an OGSA-compatible system, Grid

resources are accessible through OGSA core services. A domain-specific application may

define custom services and consume Grid resources through OGSA service interfaces. A

map searching service may, for example, enrol multiple computing resources to perform

the rendering tasks in parallel through the OGSA-EMS service. Service accounting, in

this sense, involves a collection of individual resource usage during the transaction of a

particular application service. Based on the classification, the concept of Grid accounting

in this thesis is defined as:

A process that logs and provides usage information of resources and

services shared in the Grid environment to accommodate requirements of

stakeholders and end users within a grid community.

During the course of review, it is learned that the concept of Grid accounting is still

confusing to many, particularly its difference from Grid monitoring service, since both

services share many common characteristics. First of all, both Grid accounting and

monitoring services act at collective layer that provides VO view of Grid resource usage.

Moreover both services require gathering and reporting resource usage statistics to enrich

system administrator’s understanding of Grid resource usage status. Finally Grid

accounting and monitoring services can both used for intrusion detection, auditing,

system performance tuning, etc.

However Grid accounting and monitoring services differs in many aspects. Generally

speaking, Grid accounting and monitoring services are two different services with

different purposes. For monitoring service, its major goal is to provide a view of status of

Grid resources, such as current system load, the number of running jobs, job status, etc.

Accounting service on the other hand is mainly used for provisioning historic statistics of

Grid resource usage as a basis mainly for charging and billing purposes. The main

56 4BGrid Accounting

consumers of a monitoring system in the context of OGSA include EMS and Information

Service. Monitoring data therefore are resource-centric and require minimal delay to

ensure up-to-date resource status information for EMS, for example, to make quick

decision where a job should be placed. Compared to monitoring data, accounting data

encapsulate more information than resource usage, such as user information, VO

information and other event information related to a transaction. In another word, an

accounting record is composed of various pieces of information after events, therefore

reasonable delay is acceptable. However accounting data need to be as accurate as

possible, while small numerical errors and inaccuracy of monitoring data can be tolerant.

For example, the CPU utilisation at 70% or 75% may not quite different for EMS to make

a decision on job scheduling. Finally considering its timing essence, monitoring data has

limited lifetime and does not need to be persistent in database, while historic accounting

data are important to be stored safely for economic reporting and auditing purposes.

These fundamental differences between Grid monitoring and accounting services are

summarised in Table 3-1.

Table 3-1: Comparisons between Grid monitoring and accounting

 Monitoring Accounting

Purpose

To monitor system status,

debugging, system profiling,

etc.

To keep track of Grid

resource usage.

Consumer
System administrator, EMS,

Information Service, etc.

VO members, Economic

services, etc.

Data delay LOW HIGH

Date accuracy LOW HIGH

Data persistence NO YES

3.2 Usage Scenarios

In order to identify common requirements and issues of an Grid accounting service,

the author spent three month to review current practices on developing Grid accounting

57 4BGrid Accounting

systems by interviewing stakeholders from various groups, including national Grid

service, campus Grid services, regional Grid services, Grid software providers, solution

deployers, standard bodies, and end users. The interview was conducted through visits,

teleconferences, email, and via a questionnaire. Feedback has been received from over

forty people, and summarised in Appendix A. Based on the interview results, there are

four common usage scenarios were identified and are discussed in this section along with

stakeholder’s interests or requirements.

Individual use scenario summarised in this section is structured with a template

composed of following three main elements:

• Description: a domain-specific description that briefly describes the high-level

overview of the scenario.

• Actors & Goal: enumerating entities, including human users, organisations and

software agents, which play a role in the scenario and their goals.

• Stakeholders and Interests: enumerating stakeholders and their interests in the

scenario.

3.2.1 Statistical Usage Reporting

Description

GridPP [135] is a collaboration of particle physicists and computer scientists from the

UK and CERN, with distributed compute resources spanning 17 UK institutions. GridPP

is also the UK’s contribution to WLCG project, overseeing the Tier 1 facility at

Rutherford Appleton Laboratory (RAL) and the Tier 2 organisations including ScotGrid,

NorthGrid, London and SouthGrid. WLCG is a production-level Grid and GridPP has a

contractual obligation to provide resource usage data as part of the WLCG project. At

present over 200 sites worldwide provide resource usage data to the Grid Operations

Centre (GOC) at RAL making aggregation and generates usage statistics.

Actors & Goals

The WLCG Grid operation manager is the main actor for this scenario in the context

of system administration. A Grid operational manager is responsible for ensuring fairness

58 4BGrid Accounting

and effectiveness of Grid-wide resource utilisation by reviewing usage statistics of

resources shared in the Grid.

Stakeholders & Interests

Stakeholders in this scenario include VO managers (e.g. GridPP), resource providers,

and end users. From the perspective of resource providers, site-specific resource usage is

required to understand how hosted resources are being used, whether they are

underutilised or over-exploited for example. At the resource consumer’s side, VO

managers are interested in reviewing resource usage statistics at VO level, and make sure

there are enough resources allocated to accomplish project tasks. A VO manager is also

required to review resource usage on a per user basis to prevent allocated resources from

malicious usages. Finally, VO members or users are interested in reviewing a summary

usage report periodically.

3.2.2 Usage Policing

Description

The National Grid Service (NGS) in UK aims to provide computational and data

based resources and facilities to UK researchers, independent of resource or researcher

location. This is currently achieved using resources (both compute and data) at four core

sites (RAL, Oxford, Leeds and Manchester), and a growing number of partner and

affiliate sites, together with the provision of software and services, to enable a consistent

method of access to any resource from any location. As fixed resource quotas are granted

to a number of non-profitable e-Science projects, it is essential there is a reliable

mechanism to account for all aspect of use and enforce usage policing by comparing

actual resource usage against allocated quota.

Actor and Goals

The main actors of the usage policing scenario are the NGS’s Execution Management

Service (EMS) and user account management service. As policing-enabled Grid

environment, each user has a registered account associated with granted quota and used

59 4BGrid Accounting

quota. The NGS EMS is required to verify the availability of enough quota by comparing

remaining quota against historic usage statistics on a per-request and per-user basis. Once

a user runs out of the granted quota, the user account management service is triggered to

block the user account and send a notification email to the user.

Stakeholders and Interests

Major stakeholders of the NGS scenario in the context of Grid accounting are Grid

Operation Support Centre (GOSC), VO manager and end users. There are limited

resource quotas allocated to large project as VOs or individual users for education

purposes. There resource consumers are interested in knowing how much resource quotas

are allocated, being used, and remaining. The GOSC is also required to be aware of

resource utilization status and user activities for management purposes.

3.2.3 Grid Economy

Description

Development of accounting systems contributes to the adoption of Grid technologies

by industry and the emergence of Business Grids, resources of which are intended to be

utilised in a “pay-and-run” manner. In order to enable economic compensation, it is

necessary to have other facilities for pricing, charging and billing based on resource usage

data generated by accounting systems. The process of accounting together with other

economic activities is collectively known as economic accounting.

Actors and Goals

There are three main actors in the Grid economic scenario: the resource management

service, pricing and charging service. Compared to traditional resource management

services, resource management service within an economy-enabled Grid environment

involves an extra process, known as economic authorisation, before allocating resources

to service requests. The process can be implemented within an accounting system that

estimates resource usage of current service requests and generates resource usage data.

Resource management service then checks whether the requestor has enough credits for

60 4BGrid Accounting

current request. On completing service execution, the accounting system meters the actual

resource usage and generates final resource usage data, which is fed into pricing and

charging services for financial transactions.

Stakeholders and Interests

From the commercial perspectives, there are two main stakeholders in the scenario of

Grid economy, the resource providers and end users. End users are paying for their

computational work to be done or storage capacity to be used. End users therefore are

interested in detailed resource usage and charging information of individual paid

transactions. Resource providers sell computational resources and storage spaces, and are

interested in total resource usage history for making decisions on investing additional

resources to increase financial incomes. Resource providers are also interested in profits

over a period of time, a financial year for example.

3.2.4 Quality of Service

Description

Current Grid infrastructure operates on a best-effort basis without guaranteed

delivered Quality of Service (QoS). Unlike traditional Grid resource management

services, which pay more attention to addressing abstraction of management interfaces to

low-level and heterogeneous Grid resources, a higher level solution is needed to ensure

delivering QoS-enabled services to users, especially for those who have invested a large

amount of money. The Service-Level Agreement (SLA) [136] has been considered as the

protocol that describes QoS and other business-value commitments by service/resource

providers in exchange for financial commitments by consumers against agreed terms,

including finishing deadlines, charge and penalties. In order to enable an SLA-oriented

management system, resource usage needs to be tracked. This is typically done by an

accounting system.

Actor and Goals

The key actor in this scenario is the SLA management system, which aims at

61 4BGrid Accounting

performing functions related to the process of agreeing, monitoring and enforcing an SLA

between resource providers and consumers. A SLA management system may record the

resource usage of a service invocation and optionally constrains and/or charges for the

usage. An SLA can contain any number of constraints defined by the service provider,

including the placement of usage limits, for instance, maximum amount of CPU time of a

particular service invocation. In this case, a SLA management system is required to

monitor resource usage status in real time and acts according to service provider policies

when usage exceeds a constraint. The real time usage information can be obtained from

an accounting system which provides runtime usage accounting facilities. In addition, the

cumulative usage, aggregated from all related resource usages, should be reported to the

SLA management system by an accounting system on completion of a service invocation.

Stakeholders and Interests

There are two main stakeholders, service consumers and service providers. Detailed

service usage information helps service providers to adjust pricing and resource allocation

strategies to increase financial incomes. End users pay for services and are interested in

knowing how invested money was spent.

3.2.5 Putting Together

These example use case scenarios underlined by Grid accounting services contributed

to the vision of Grid economics, provides guaranteed QoS on the pay-per-use basis. The

Grid economic model can be built but placing additional layer, upon existing OGSA

architecture. This additional layer consists of two main services, the economic services

and SLA management services. Economic services provides functionalities related to

economic activities, including banking, charging, and billing services, while the SLA

management services ensures Grid computing services to be delivered in a QoS-

guaranteed manner. In an economic-aware Grid environment, a job submission requires

interactions among economic services, SLA management services, accounting services

and EMS. An example workflow of a job submission (as Figure 3.2) to economic-aware

Grid environment may involves, but not limited to, following steps:

a). A user interacts the SLA management services and instantiates an SLA instance

specifying certain QoS metrics and service-level guarantees. Users may also add custom

62 4BGrid Accounting

guaranteed terms, such as response time and availability as well.

b). During the SLA instantiation process, SLA management services may need to see

whether an agreement can be reached with given user-specified QoS terms and business

objectives. This estimation can be implemented by SLA negoation services using

simulation tools and applying objective functions, or by the Execution Planning Service

(EPS) of EMS (see 2.3.2 for more details).

c). Once an agreement instantiated, it is returned to a user and used as a job

submission request to EMS. An SLA instance may specify job runtime specification (i.e.

computational, storage, and networking specification), total costs estimated, and other

QoS guaranteed terms.

d). EMS then plans, schedules and management the job lifecycle. Before staging a job

for execution, the EMC need to perform economic authorisation to make sure the user has

enough credits to run the job, and reserve the estimated costs from the user’s account.

e). On the completion of the job, a job usage record is generated and fulfilled with the

actual resource usage information.

f). The accounted resource usage is then fed into economic services for charging and

billing purpose.

g). A user then can view the billing information through economic services.

Figure 3.2: Job submission workflow of economic-aware Grid environment

63 4BGrid Accounting

3.3 Accounting Model

As illustrated in Figure 3.3, the Grid accounting process commences from metering

and logging usage information of a particular resource or service. These pieces of usage

information are then fed into the collection process and composed into well-formatted

usage records.

Figure 3.3: Abstract Accounting Processing Model

3.3.1 Usage Metering

As discussed in section 3.1, Grid accounting can be roughly divided into two

categories, resource accounting and service accounting. Since resource accounting is

resource-oriented, it is possible to define standard measurable metrics of a specific type

of resources, such as CPU cycle time of computational resources and disk spaces of

storage resources. The standardisation of usage metrics is helpful to ensure data

interoperability between different accounting systems. Service accounting differentiates

from resource accounting in that it is domain-specific. Metric definitions of a specific

application domain are most likely to be different from definitions of another. Besides,

service providers of an application domain may specify various usage metrics according

to local accounting purposes. In this sense, service provider may define different metrics

of services of same application domain making it hard to standardise service accounting

metrics.

64 4BGrid Accounting

The metering process can be triggered in two patterns: the passive pattern and active

pattern. As with usage scenarios of “usage policing” (section 3.2) and “QoS-enabled

resource management” (section 3.4), usage information is required to be metered in real

time during resource utilisation or service invocation. Under this circumstance, the

metering process of an accounting system is triggered by high-level services, therefore

known as the passive metering. For other cases when real-time usage information is not

critical, metering process can be scheduled to parse resource/service usage actively

during a period of time. This pattern of usage metering, known as active pattern,

periodically scans resource/service usage information by parsing system log files.

3.3.2 Usage Collection

Once usage has been metered, pieces of usage information are to be gathered by the

collection process and formatted as usage records. A usage record is a well-formatted

representation consisting of a list of usage metrics targeting a particular Unit of Work

(UoW), ranging from finest-grained batch jobs to coarse-grained service invocations. The

collection process at coarse-grained level involves an extra aggregation process, which

summarises usage records of atomic batch jobs related to the service invocation.

As metering process, the collection process has two accordingly process patterns as

well. Aligned with active metering process, collection process can be scheduled in as a

“cron” job, which periodically consumes the output of metering process and generates

usage records. Active collection process normally involves a separate data persistence

layer that saves usage records. Alternatively, the collection process can be invoked

passively by high-level applications to generate usage record in real time. The passive

collection process caches usage records in memory only.

3.3.3 Classification

Based on two dimensional factors, the triggering pattern of the metering process and

granularity of UoW, accounting models can be classified into four categories (Figure 3.4)

as follows:

65 4BGrid Accounting

• Fine-grained active accounting

In the fine-grained active accounting model, the metering process is scheduled to

periodically parse and generate usage records at atomic UoW level.

• Fine-grained passive accounting model

The metering process of the fine-grained passive accounting model is triggered by

a third party to generate usage records at UoW level. For example, a user may be

interested in knowing the current resource usage status of a long-running job to

ensure there is enough quota left until job completion.

• Aggregate active accounting model

The aggregate active accounting model automatically meters usage information of

all UoWs, both completed and running UoWs, and generates summarised usage

records only.

• Aggregate passive accounting model

The aggregate passive accounting model generates summarised usage records only

when a high-level request triggers the metering process.

Figure 3.4: Accounting model classification

3.4 Standards

There are two accounting-related standards proposed by OGF Usage Record and

Resource Usage Service working groups to ensure data and service interoperability

between accounting systems.

66 4BGrid Accounting

Figure 3.5: OGF Usage Record Information Model

67 4BGrid Accounting

3.4.1 Usage Record Format

As discussed in section 3.3, usage metric definitions vary from accounting systems to

accounting systems depending on local deployment requirements and local accounting

polices specific resource or service providers. In order to enable data interoperability

among independently developed accounting systems, extensive work has been done by

OGF usage record working group on defining standard usage metrics and representation

format. In 2003, a usage record (UR) format recommendation specification [137] was

released and defines a set of well-defined usage metrics and XML format for

representation of computational usage of a single batch job. From the information model

demonstrated in figure 3.5, the usage metrics defined within UR consists of batch job

properties, job owner or user properties, resource properties, computing related usage

properties, economic properties, and an extension framework for definitions of custom

metrics or properties. These usage metrics are collectively to be represented as a single

usage record, with a global unique record identity and other common properties, such as

creation timestamp and creator of the usage record.

3.4.2 Resource Usage Service

Another accounting-related draft specification, the Resource Usage Service (RUS)

proposed by OGF RUS working group, enables service-level interoperability between

different accounting systems through a set of core Web service interfaces. These service

interface definitions enable sharing and manipulation of standard OGF UR instances in a

standard manner. Rather than providing a monolithic solution to Grid accounting, the

RUS is intended to be implemented to support either active or passive accounting models.

Since current RUS specification depends on the OGF UR standard, it only allows

accounting at atomic level, the batch-job level.

Apart from core functionalities as defined in current RUS specification (version 1.7)

[138], the RUS working group has a clear roadmap (figure 3.6) for advanced features

including server-side aggregation and hierarchical deployment. It is expected that these

advanced features would enable four accounting models and resource/service accounting

in a standard manner.

68 4BGrid Accounting

Figure 3.6: OGF-RUS Standardization Roadmap, from [138]

3.5 Accounting Systems

There are many operational grids having accounting systems developed and deployed,

some of which are standard compatible while others provide custom solutions. The

interoperability, however, has received increasing importance in accounting among grid

environments, and contributed to more and more standard non-compatible solutions

transiting to be standard compatible. A list of accounting systems (Table 3-2) developed

by production Grid projects is reviewed in this section.

69 4BGrid Accounting

Table 3-2: A List of Accounting Systems of Production Grid Projects

Name Project Description Affiliation

APEL EGEE/WLCG

An accounting tool used in the LCG

project, and is a part of the gLite

middleware

STFC RAL

DGAS EGEE

DGAS (Distributed Grid Accounting

System) previously known as the

DataGrid accounting system was

developed within the EU DataGrid

project and is currently being re-

engineered by EGEE and OMII-Europe.

Istituto

Nazionale di

Fisica Nucleare

(INFN)

SGAS SweGrid

SGAS (SweGrid Accounting System),

developed for SweGrid, is a Java

implementation based on OGSA

architecture that is now integrated as a

Grid service in Globus Toolkit 4. SGAS

has been used in NorduGrid as a standard

accounting service.

The Royal

Institute of

Technology

(KTH)

UNICORE

Accounting

service

UNICORE

The UNICORE accounting system is an

OMII-Europe component that provides a

WS-RF compatible RUS implementation

for real-time usage monitoring.

Forschungszentr

um Juelich-FZJ

Gratia
Open Science

Grid

Gratia is the Grid accounting system

being developed for Open Science Grid, a

scientific Grid project funded by National

Science Foundation

SLAC National

Accelerator

Laboratory and

Fermilab

User

Accounting

System

UK National

Grid Service

An accounting service developed by UK

National Grid Service project for

reporting resource usage at user level.

Manchester

University

70 4BGrid Accounting

3.5.1 User Accounting System

The User Accounting System (UAS) [139] deployed within most National Grid

Service (NGS) sites in UK was originally designed for the Market for Computation

Service (MCS) project [140]. The UAS aims at metering and collection of usage

information from computational centres around UK.

As illustrated in figure 3.7, the system is composed of two major components for

usage metering, the Batch2UR and JBMDB, both of which reside at resource provider

site. The JBMDB module is deployed as a “cron” job and scheduled to generate global

job-user identity mapping information daily by parsing GRAM log files. Batch2UR

component is deployed at Local Resource Management System (LRMS) node and meters

usage information on completion of a batch job and compose OGF URF instances that are

then fed into the centralised RUS service instance running at Manchester site, through

RUS client interfaces. The RUS service also renders and store received URF instances

into Oracle Relational Database Management System (RDBMS) with custom relational

data model. Metric mappings of this relational data model are given in the Table A-1 of

Appendix A. The data schema which are summarized and synchronised on per user basis

to Oracle database maintain by Grid Operation Service Centre (GOSC) at Rutherford

through Oracle synchronisation protocol. User summary usage information is used to

enforce usage policing against allocated quota. A Web portal is also provided and allows

user to query how much quota remains so that users can plan resource usage before job

submissions.

Figure 3.7: NGS User Accounting System Deployment Diagram

71 4BGrid Accounting

3.5.2 Accounting Processor for Event Logs

Accounting Processor for Event Logs (APEL) [141] is the accounting system

developed by the WLCG project, and aims at streaming metered resource usage

information from participant site to Grid Operation Centre (GOC) at Rutherford Appleton

Laboratory (RAL), where an aggregation process is enforced for reporting resource usage

statistics on per VO, per site, and per month basis.

Figure 3.8: WLCG Accounting Processor for Event Logs (APEL) System Deployment

Diagram

As illustrated in Figure 3.8, APEL system comprises a variety of log processors, which

are scheduled as “cron” jobs and aims at meter resource usage by parsing log files

produced by different runtime components, batch systems and Globus gatekeeper in

particular. A site-level Relational Grid Monitoring Architecture (R-GMA) [142] server is

also deployed at site level to cache metered usage data and compose usage records on per

batch job basis in WLCG accounting schema [143] by a lightweight process, the join

processor. Metric mappings between WLCG accounting schema and standard OGF-UR

schema are outlined as illustrated in Table A-2 at Appendix A. The join processor is also

required to contact a site-level information service, the Grid Information Index Service

(GIIS), to look up performance for the computational resources where jobs were executed.

72 4BGrid Accounting

This performance information is to be used for normalisation and is of particular

importance when dealing with VO applications that run over heterogeneous resources.

Job usage records of a particular site are then published through R-GMA protocol and

archived in a centralised relational database maintained at the Grid Operation Centre in

Rutherford Appleton Laboratory (RAL), where job usage records are aggregated to a

separate summary usage database. Aggregate usage information is synchronised to

database at Centro de Supercomputación de Galicia (CESGA) site in Spain and accessible

by end users through a graphic front-end Web portal.

3.5.3 Distributed Grid Accounting System

Distributed Grid Accounting System (DGAS) [144] is another grid accounting tool

developed by EGEE project and widely deployed at participants sites involved in both

EGEE and WLCG projects. DGAS is targeted at providing job-level resource usage

metering in a client/server infrastructure.

Figure 3.9: Distributed Grid Accounting System Deployment Diagram

The accounting process of DGAS is enforced by two main components, as

demonstrated in Figure 3.9, the lightweight usage meter, Gianduia, and the distributed

Home Location Registry (HLR), which acts as a repository for usage information related

to registered users or resources. Each site has a Gianduia meter deployed and publishes

73 4BGrid Accounting

metered usage information to a registered resource HLR, from which usage information

can be retrieved for both individual jobs and in aggregate/summary form on per CE basis.

Metric mappings between relational accounting schema of resource HLR and standard

OGF-UR schema are given in table A-3 of Appendix A. A transaction manager keeps

listening to incoming job usage records and is triggered to forward resource-specific job

usage records to User HLR, where additional user information is to be added into job

usage records. It is also understood that a preliminary RUS prototype, known as DGAS-

RUS [145], is being developed for the DGAS system. The RUS interface will enable

insertion and persistence usage records from user HLR through RUS client interface into

a centralised XML database.

3.5.4 SweGrid Accounting System

The SweGrid Accounting System (SGAS) [146] is an accounting system developed

the national Grid test-bed in Sweden, and has been integrated as accounting service of

Globus Toolkit.

Figure 3.10: SweGrid Accounting System Deployment Diagram

As shown in Figure 3.10, the usage metering is realized through the Job Account

Resource Management (JARM) component, which is responsible for providing the

accounting system with information from local batch systems. Each user requires a valid

74 4BGrid Accounting

account with credits in a banking service. When submitting a job, the JARM computes a

maximum cost and reserves that amount of credit on the user’s account through the

banking service. On completion, the JARM reports the actual resource consumption in

the form of a usage record and the associated charge is made to the user’s account. The

usage record is then populated into the Logging and Usage Tracing Service (LUTS), a

RUS instance, for centralized storage. Any query on job usage information is directly sent

to LUTS via an authorization service that protects usage data from invalid access. The

SGAS exhibits a full standard-compatible solution for Grid accounting. The only

extension, as Appendix A.2.3, to URF proposed within SGAS also highlights the

importance of VO information.

Figure 3.11: Gratia Accounting System Deployment Diagram

3.5.5 Gratia

The Gratia [147] is the accounting system being developed within OSG project. The

current implementation of Gratia accounting system is composed of three functional

components as illustrated in figure 3.11: the probe, collector and publisher. Usage

information of a cluster is kept being logged by a utility script, the PSACCT, for

monitoring process activities. At head node, a translator process is running periodically

and merges log information of both head and work nodes into complete usage records,

75 4BGrid Accounting

which are fed into the probe component and published into remote collector machine

through well-defined Web service interfaces. These usage records are stored centrally in a

relational database of the collector machine. Metric mappings between Gratia accounting

schema and standard OGF-UR schema are listed in table A-4 of Appendix A.

3.5.6 UINCORE Accounting System

The accounting system in the UNICORE project provides a RUS implementation

based on WSRF profile [50]. The RUS is integrated within UNICORE infrastructure

aiming at exposing usage records generated at the batch system level in real time.

As shown in figure 3.12, the UNICORE accounting system is composed of two

components: the URF generator and RUS endpoint. A graphic front-end client, LLView

[148], is provided for users to get real-time site-level resource usage on demand. Once

triggered, the LLView client interacts with RUS service endpoint and query through the

“RUS::extractUsageRecord” interface. Rather than maintaining persistent resource usage

information, the RUS service endpoint interrogates the usage record generator and returns

resource usage information of queued and active batch jobs. Since current RUS

implementation however does not enable data persistence, it is not possible to provide

historic usage statistics.

Figure 3.12: UNICORE Accounting System Deployment Diagram

76 4BGrid Accounting

3.5.7 Comparison

As detailed comparisons summarised in Table 3-3, existing accounting systems

employed in the production Grid projects are implemented in heterogenous ways with

project-specific purposes. Most usages of these accounting systems fall into the four

usage scenarios discussed in section 3.2, except the UNICORE accounting system which

is used for site-level usage monitoring purposes. Although some accounting systems are

used for the scenario, for example both DGAS and SGAS designed for realisation of Grid

economic model, theire accounting process are different from each other. DGAS uses

active metering pattern that parses job usage information mainly for charging and billing

purposes, while the metering process of SGAS is triggered by EMS to perform economic

authorisation before staging a job request to local resources. Besides these accounting

system uses different data presentation format and data persistence strategies.

Table 3-3: Comparison of Grid Accounting Tools Employed In Production Grids

Given their heterogeneous essence, it is hard for these accounting systems to

interoperate with each other to fulfill the requirements on sharing accounting data across

Grid infrastructures, unless two accounting systems exhibt common service interfaces and

exchange accounting data in a common format. Standardisation therefore is of increasing

importance in this sense. However standardisation is a time-consuming process because it

is difficult to define a single standard to accommodate various and evolving accounting

77 4BGrid Accounting

requirements. Standardisation is further complicated by conerns from additional re-

engineering tasks while not breaking existing accounting processes. At the end of the

review, there are only two accounting systems, SGAS and UNICORE accounting system,

which provide standard compatible solutions to both OGF UR and OGF RUS.

3.5.8 Others

Having recognised the importance of accounting service in Grid systems, there are

many commercial Grid products that have custom accounting solutions implemented. The

Accounting and Reporting Console (ARCo) [149] of Sun Grid Engine (SGE) [150], for

example, enables users to gather live reporting data from the SGE as well as storing

accounting data for historic analysis in the reporting database. Besides aforementioned

accounting systems developed for large-scale distributed Grid systems, there are also

many cluster and High Performance Computing (HPC) systems that have accounting

systems embedded. Such examples as Gold Allocation Manager [151] is an open source

accounting system designed to dynamically interact LRMS to provide job quotations at

job submission time, hold on accounts during job execution, and charge on completion of

jobs according to actual resource usage. SAFE is another example accounting tool

developed by EPCC for accounting purposes of national HPC services HPCx [152] and

HECToR [153] as well as local EPCC machines. A Java-based web interface to SAFE

provides graphical usage monitoring and allows Principal Investigators to administer their

projects’ users and resources.

3.6 A Generic Accounting Framework

Based on reviews of existing accounting tools, both standards compatible and

incompatible, there are several common issues identified. First of all, these accounting

systems are implemented in a Grid or project-specific manner, making it hard to be

reused across project domains. Interoperability is another challenge in the sense of

lacking a standard way of mapping custom usage metrics to those standardised within the

OGF-UR schema. Custom metric definitions using OGF UR extension framework further

complicates the interoperability issue. As Table A-5 given in Appendix A, most

accounting systems have similar metric extensions defined in different way. Although

78 4BGrid Accounting

there are some standard-compatible accounting solutions available, such as SGAS,

UNICORE accounting system and preliminary implementation of DGAS-RUS, a native

XML database is widely used to save OGF usage records instances natively, making it

hard to implement a standard compatible accounting solution especially for those that use

relational database for data persistence. There are also several other non-functional issues

that should be considered when developing an accounting system for large-scale

distributed systems as the Grid, including responsiveness, flexibility, fault tolerance, and

security.

In order to avoid duplicate efforts and provide an integrated and widely adopted

approach to accounting in real production Grids, a generic accounting framework is

proposed to JISC as one of the outputs of our review efforts described in this chapter. As

Figure 3.13, the proposed framework abstracts basic functionalities of an accounting tool

based on a Client/Server (C/S) infrastructure.

Figure 3.13: Generic Accounting Framework (Component Architecture)

At the client-side, a general-purpose UR generator component is defined and used to

meter accounting metrics and compose accounting data in standard UR format. The UR

generator component exhibits an abstract layer and allows different implementations

upon usage meters of underlying systems. Accounting data instances are then streamed

into a RUS service endpoint through RUS client interfaces.

The RUS service endpoint at server side consists of a set of abstract functional

components to be added as required within an RUS implementation. The access control

module acts as a gateway to RUS logics and protects accounting data from unauthorised

79 4BGrid Accounting

accesses. A RUS service must provide an implementation of this module and apply local

security policies to guarantee data privacy. A RUS implementation may choose to

implement one or more RUS logics or operations. By implementing two optional

modules, the UR mapping module and Data Access Object (DAO) module, a RUS

implementation can be developed without changing existing accounting data model and

persistent storage types. In order to ensure system QoS, a session is required to maintain

the accumulation of transaction information on per user per transaction basis. A RUS

implementation may define their own data structures inside a session for various purposes.

When a user query a huge amount of accounting data, for example, the session can be

used to maintain an enumeration context and allows user to iterate query results through

multiple interactions. A session normally has a limited lifetime. The session management

module is thereafter defined and responsible for lifetime management of sessions. Finally

the configuration manager component is used to provide configuration facilities for a

RUS system.

3.7 Summary

This chapter investigated the philosophy of accounting in the Grid environment, and

reviewed the state-of-art standardisation and development efforts on accounting systems

of operational Grid projects and commercial Grid products. However, these accounting

systems were developed in a variety of ways depending on Grid-specific understanding of

accounting and customised high-level usages. Having identified the importance of

interoperability for sharing usage data across accounting systems in particular, there are

an increasing number of accounting systems being developed or migration to be

compatible to OGF UR and OGF RUS standards. Early adoptions of these standards,

however, are implemented upon specific accounting systems, making it hard to be reused

for others. In order to enable a consistent solution and avoid duplicate efforts, this chapter

proposed a generic accounting framework with identified key features, which ensures

interoperability while allowing maximum customisation to accommodate local

deployment requirements. This proposed accounting framework forms the basis of the

rest chapters of this thesis.

80 5BDesign of Resource Usage Service for World-wide LHC Grid

Chapter 4

Design of Resource Usage Service for World‐wide

LHC Grid

According to the Memorandum of Understanding (MoU) [154], participating sites of

the World-wide LHC Grid (WLCG) project are required to provide resource usage or

accounting information to the Grid Operational Centre (GOC) for the purpose of overall

project operation and management. As a composite Grid environment, the accounting

process of WLCG is currently empowered by four accounting systems, APEL and DGAS,

SGAS and Graita developed by WLCG/EGEE collaborative project, Nordic Data Grid

Facilities (NDGF), and Open Science Grid (OSG) project respectively. These project-

specific accounting systems were designed and implemented based on project-specific

accounting requirements and purposes, therefore lacking interoperability and portability.

In order to automate accounting process in WLCG, three transportation methods are

being introduced for streaming accounting data metered by Grid-specific accounting

system into GOC at Rutherford Appleton Laboratory (RAL) in the UK, where accounting

data are aggregated and accumulated throughout the year. These transportation methods,

however, are introduced on per accounting system basis, i.e. targeting a particular

accounting system, making it hard to customise. This chapter describes a standard-

compatible solution, the WLCG-RUS as an alternative method for sharing accounting

data, while ensuring interoperability, portability and customisability. Relevant

publications related to this chapter have been published in[155][156][157][158].

81 5BDesign of Resource Usage Service for World-wide LHC Grid

4.1 Introduction

Accounting activities within WLCG requires collection of accounting data from all

participating sites in EGEE and WLCG projects as well as from sites of other

collaborating Grid projects into a central accounting database in GOC at RAL. These

accounting data are to be processed offline to generate statistical summaries that are

reportable through EGEE/WLCG accounting portal[159]. There are two main accounting

processes introduced within EGEE/WLCG accounting framework[160]: the job

accounting and aggregate accounting. The job accounting process generates accounting

records describing the resources consumed by a single executing job. Job accounting

records are composed at sites and streamed into a central database at GOC, where offline

aggregate processes take effect to summarise resource usage consumed by a collection of

jobs. These two types of accounting processes fall into categories of the “fine-grained

active accounting” and “aggregate active accounting” models as classified in section 3.3.3.

Job accounting process in WLCG is mainly enforced by accounting systems of

EGEE/WLCG and other collaborative Grid projects. These project-specific accounting

systems are being deployed at sites to meter and generate accounting records in

heterogeneous formats. In order to share job usage records within the GOC centre, there

are three transportation methods (Figure 4.1) introduced, each of which was designed to

provide accounting system-specific solution. For most EGEE/WLCG sites, APEL[141]

has been deployed as one of main accounting systems, which generates accounting

records in WLCG accounting schema. The job accounting records metered at sites by

APEL therefore can be automatically synchronized to the centralised job accounting

database maintain at GOC centre through R-GMA[122] protocol. Another accounting

system widely deployed at EGEE/WLCG sites is the DGAS [144], which generates job

accounting records in a format different from WLCG accounting schema. Before

streaming accounting data to GOC, DGAS accounting records are required to be

transformed into WLCG accounting data format. A lightweight component,

DGAS2APEL, transforms DGAS accounting records into the WLCG accounting data

format and streams them into GOC through R-GMA protocol. The third and most

straightforward transportation method is called “direct SQL insertion”. Rather than

automating data sharing process, this method requires extra administrative efforts to

manually populate accounting records by executing Structured Query Language (SQL)

insertion statement. The “direct SQL insertion” method has been widely adopted by sites

82 5BDesign of Resource Usage Service for World-wide LHC Grid

from collaborative Grid projects, OSG and NDGF in particular, to share aggregate

accounting data only applying to local security policies. An offline aggregation process is

scheduled at GOC and summarises resource usage data daily.

There are three accounting data formats, collectively known as WLCG schemas[143],

defined in WLCG for data persistence on relational databases, the WLCG job record

schema, anonymous aggregate record schema, which represents summarised resource

usage information on per site, per VO, per month, and per year basis, and user aggregate

accounting record schema, which represents summarised resource usage information on

per site, per VO, per user, per group per role, per month and per year basis.

Figure 4.1: Current EGEE/WLCG accounting deployment scenarios with three

transportation methods introduced in WLCG accounting

83 5BDesign of Resource Usage Service for World-wide LHC Grid

This chapter describe the design and implementation details of WLCG-RUS, as an

alternative, but standard-compatible method to share accounting data.

Figure 4.2: The main use cases that the WLCG-RUS is expected to implement in

conjunction with the actors generalised from existing WLCG accounting scenarios.

84 5BDesign of Resource Usage Service for World-wide LHC Grid

4.2 Requirement Analysis

This section discusses the requirements that shaped the design of the WLCG-RUS

system.

4.2.1 Use Cases

In order to identify system design requirements, a use case analysis was carried out

based on three generalised roles in the context of existing WLCG accounting: the site

manager, site hosts, and system administrator. Detailed use cases are illustrated in Figure

4.2 and listed in Appendix B.1.

Site manager

A site manager is the manager of a participating site, normally an institution or

research centre, in the provision of the WLCG with a Tier1 and/or Tier2 computing

centre. An actor taking the role of site manager should hold a valid X.509 certificate. A

site manger in the context of WLCG-RUS system has the privilege to register one or

more hosts to the WLCG RUS system so that these hosts can upload accounting data. A

site manger is also able to manage host account through WLCG-RUS interface.

Host

The host is the head node of EGEE/WLCG computing element and holds a valid host

certificate signed by a recognised Certificate Authority (CA). A host is able to publish

host-specific or site-specific accounting data to WLCG-RUS system only if it has a valid

account registered by owned site manager and activated by system administrator.

System Administrator

The system administrator is senior to other roles and takes the responsibility of system

management. A system administrator has views and controls over all hosts registered to

WLCG-RUS system. Besides, a system administrator takes care of user management and

role assignment. Finally a system administrator is required to have administrative rights

85 5BDesign of Resource Usage Service for World-wide LHC Grid

on WLCG-RUS system configurations.

4.2.2 Requirements

Capability or Functional Requirements

Based upon review of identified use cases, key functional requirements of the WLCG-

RUS system are summarised as follows.

1. Data Publishing

The key functionality of WLCG-RUS system is to provide a data publishing

mechanism through which participating sites can upload accounting data. The design of

data publishing is required to enable both fine-grained at batch job level and aggregate

accounting models, to facilitate various data sharing in the context of WLCG accounting.

In the case of aggregate accounting model, the aggregation process should be triggered at

the same time of data publishing. The design of data publishing facility in WLCG-RUS

system is also required to support various aggregation strategies in a customisable manner

making it easy to adapt existing WLCG anonymous aggregate strategy, user aggregate

strategy and new aggregate strategies.

2. Host Management

From perspective of site managers, the WLCG-RUS system is required to provide host

management facilities for host registration, view registered hosts, and edit host profiles.

3. User Account Management

User management is an important functionality for system administrator. The WLCG-

RUS system is designed to provide user account management facilities for system

administrator to view user registration requests, and grant and revoke privileges to site

managers.

 Interface Requirements

86 5BDesign of Resource Usage Service for World-wide LHC Grid

There are three different interfaces intended to be provided in the WLCG-RUS system,

the internal, external and user interfaces. The following provides a list of requirements

on interface design.

4. Internal Interface

The WLCG-RUS system must exhibit well-defined internal interfaces for

customisation and extensibility, so that new features can be implemented independently

and plugged, without affecting fundamental architectural design.

5. External Interface

The external interface is the client-side interface used for hosts uploading accounting

data through standard RUS interfaces. In this case, the design of external interface should

be command line oriented, in particular scripting language based, so that the uploading

process can be automated in a scheduled manner (e.g. cron job).

6. User Interface

The design of the WLCG-RUS system needs to provide user-friendly interfaces for

site managers and system administrators to perform management tasks.

Data Requirements

Data representation in the WLCG-RUS system is a two-folded issue. On the one hand

WLCG-RUS is intended to be deployed upon existing WLCG accounting data without

fundamental schema changes. In this sense, the relational WLCG schema must be reused.

On the other hand, when hosts upload accounting data to WLCG-RUS system, standard

and XML-based usage records are streamed as SOAP message payloads as defined in

RUS specification. A consistent set of mapping rules should be applied to transform

standard usage record instances into appropriate WLCG accounting data formats.

7. Internal Data

Accounting data uploaded from hosts must be represented in a compatible format to

87 5BDesign of Resource Usage Service for World-wide LHC Grid

the WLCG schemas and persistent in relational database.

8. External Data

Since WLCG-RUS system is intended to provide OGF RUS compatible solution,

usage records must be presented in OGF UR format when streaming into WLCG-RUS

system.

Security and Privacy Requirements

Security is of highest importance in the design of the WLCG RUS system in order to

ensure authenticated and authorised data sharing as well as preventing accounting data

from being compromised during network transportation.

9. Authentication

The WLCG-RUS must provide X.509 certificate based authentication. Compared to

traditional user/password authentication, the certificate-based authentication provides a

higher level of security to prevent the system from unrecognised accesses.

10. Authorisation

The design of WLCG-RUS system should provide Role-Based Access Control (RBAC)

and ensure fine-grained access control on operation and per usage record basis. The role-

based access control should also apply to host management and user management

facilities.

11. Data Integrity

Data integrity ensures that accounting data or usage records are not compromised

during network transmission from remote hosts to WLCG-RUS server.

Other Requirements

Besides the above requirements, following requirements should also be put into

88 5BDesign of Resource Usage Service for World-wide LHC Grid

consideration during the design of WLCG-RUS system.

12. Interoperability

The system must provide a standard compatible solution, in particular compatible to

OGF RUS[138] and OGF UR[137] standards, as a consistent mechanism for data sharing

other than introducing specific transportation mechanism to individual accounting system

as current WLCG accounting process. A standard compatible solution also ensures

interoperability to other standard compatible accounting systems in an implementation

transparent manner.

13. Performance

It is witnessed that an increasing number of sites, over 200 until now, are participating

in the WLCG project and share resource usage data to GOC. It is critically important for

the WLCG-RUS system to ensure efficient performance and serve simultaneous requests

within reasonable time.

14. Fault Tolerance

The WLCG-RUS system must be tolerant to runtime and service failures without

breaking data consistency.

4.3 Design

This section discusses the design of WLCG-RUS system architecture and details of

composite subsystem designs.

4.3.1 System Architecture

The WLCG-RUS architecture, as the deployment diagram illustrated in Figure 4.3,

consists of two subsystems: the RUS service and WLCG-RUS Admin.

The RUS service implements two RUS interfaces: the “RUS::insertUsageRecord” and

89 5BDesign of Resource Usage Service for World-wide LHC Grid

“RUS::listMandatoryUsageRecordElements” interfaces, through which site-specific hosts

query the mandatory element configurations and populate usage records. In order to

automate data uploading process, it also provides a command-line client that can be

scheduled to execute periodically. The communication protocols between RUS client and

service is based on SOAP over HTTPS, which ensures data integrity and mutual

authentication. On receiving a request, the RUS service endpoint delegates the request to

a sequence of runtime components for fine-grained access control on per usage record

basis, validation of received usage records against mandatory element configuration,

rendering usage record instance to WLCG accounting data format, and saving accounting

records into local relational database. In the case of active aggregate accounting, an

additional aggregation strategy is triggered during the command execution. In order to

enhance customisation and extensibility, the design of RUS services is based on a set of

loose-coupled internal components, each of which exhibits well-defined internal

interfaces.

The WLCG-RUS Admin is a Web application that provides management facilities for

Figure 4.3: The Major Components of WLCG-RUS System and interactions

90 5BDesign of Resource Usage Service for World-wide LHC Grid

both the system administrator and site managers. Specifically, the design of WLCG-RUS

Admin is intended to provide three management facilities: user management, host

management, and system administration. A user becomes a site manager candidate only

when the user registers an account to the WLCG-RUS Admin system. The registration

request is queued and to be activated by the system administrator. When activated, the

site manager receives a confirmation email and can create one or more host accounts,

which are required to be approved by system administrator before sharing usage records

through RUS service. The WLCG-RUS Admin also keeps system configuration of RUS

service, such as mandatory elements as well as custom implementation of internal

components. System administrator can specify and change these system configurations at

runtime without restarting the system. Because WLCG accounting data formats are

reused within WLCG-RUS system, existing EGEE accounting portal can still be used as a

Web-based graphic interface for resource usage reporting.

4.3.2 Detailed System Design

This section describes the design details of WLCG-RUS subsystems and individual

composite components.

External Aggregate Data Representation

The design of WLCG-RUS system is intended to enable both active fine-grained and

aggregate accounting models. With fine-grained accounting model, the OGF UR is used

as the standard external accounting data representation. However, there was no standard

aggregate data format available at the design time of the system. In 2006, we collaborated

with researchers from Fermilab and CCLRC, and proposed a standard Aggregate Usage

Record (AUR) schema, which had been submitted to OGF UR working group as a draft

specification [158] for public review. This recommended aggregate usage record schema

is adopted as an external data presentation for aggregate usage records.

An AUR instance represents resource usage of more than one Unit of Work (UoW)

summarized according to a specific grouping criterion, also known as aggregation

strategy. As shown in figure 4.4, the content model of AUR reuses most of usage metrics

of URF and defines a category of aggregate properties. The common aggregate properties

91 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.4: Proposed content model of aggregate usage record schema

92 5BDesign of Resource Usage Service for World-wide LHC Grid

are used to represent common metrics of a usage record instance, including total number

of jobs aggregated, aggregation interval from the start time of earliest job to the end time

of the lasted job, and overall status of jobs aggregated. These common properties are

allowed to appear exactly once. User properties define ownership of aggregated jobs

within a record instance. Besides user properties defined within OGF UR, AUR

introduces additional user-related properties, Virtual Organization (VO) and Full

Qualified Attribute Name (FQAN). Resource-related properties are encapsulated within a

resource identity element, and are divided into local and global resource properties. Local

resource properties include site-specific machine name, queue name and execution host

name, which are defined within OGF UR , while global resource properties defines Grid-

wide properties such as global resource identity, cluster identity and participating site

name. User and resource aggregate properties can appear more than once within a record

instance, depicting certain aggregation strategy. The WLCG anonymous summary record,

for example, defines aggregation strategy that summarizes resource usage of jobs on per

VO, per site, per month and per year basis. For an aggregation strategy requires custom

properties not defined with aggregate properties of AUR, the grouping extension property

can be used.

Design of Resource Usage Service

In order to enhance customisation and extensibility, the design of RUS service is

based on component architecture, consisting of a set of loose-coupled and reusable

components. Each component realises certain functionality and exhibits well-defined

interfaces. These components have been designed to be loosely coupled, so that they can

be easily customised, upgraded and replaced to adapt to local deployment requirements.

As the class diagram illustrated in Figure 4.5, there are four major functional

components defined within RUS service. The “Command” component is the main

functional component that encapsulates all required information associated with

execution of RUS logic operations. A single common interface, “execute()”, decouples

completely between RUS service endpoint and various “Command” component

implementations. With a single interface, a RUS service can delegate incoming requests

to different “Command” implementations in a consistent manner. A RUS service may

chose to implement a single “Command” implementation that serves all RUS requests or

to have multiple “Command” implementations that serve individual

93 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.5: Class diagram of RUS service runtime components

RUS service interfaces. The execution of various “Command” component shares

common requirements, including checking user permissions, data persistence, and

runtime aggregation. These common requirements can be realised through other three

components defined within RUS service. The authorisation service component provides

an interface for fine-grained access control over per operation and per usage record.

Different authorisation mechanisms can be applied by implementing authorisation service.

Data Access Object (DAO) component provides a higher-level abstraction upon

94 5BDesign of Resource Usage Service for World-wide LHC Grid

underlying data persistent storage, and can be potentially implemented for XML:DB[161],

relational database, file systems and other storage format. Considering that various

relational databases might be used for usage record persistence, a separate DAO

component, the Hibernate [162] DAO, is also implemented by extending the generic

DAO component and places another abstraction upon heterogeneous relational database

engines. For runtime aggregation, different aggregation algorithms can be implemented

by extending the aggregate strategy interface. Each component of RUS service has an

associated factory class that creates and instantiates appropriate component instances

dynamically. These component and factory implementations are snapped together to

provide a complete solution of RUS service.

Design of Administrative Web Application

The design of the WLCG-RUS admin Web application is based on Model-View-

Controller (MVC) pattern, with models encapsulating domain-specific representation of

data, controllers representing domain-specific logics operating upon to data, and views

providing Web-based interfaces allowing end-user interactions. As Figure 4.6, the

WLCG-RUS admin Web application is intended to provide administrative and host

management facilities for the WLCG-RUS system administrator and site managers.

In order to access the WLCG-RUS admin system, a user must have a valid and

recognised X.509 user certificate, and has a valid user account. Each user is directed to

specific view according to granted role. Site manager only have access to host

management facilities, which allows host registration, exploring host status, and deleting

a host. Newly registered host cannot share accounting data or usage records through RUS

service endpoint until its registration request is approved by the system administrator. A

site manager only has management authority of owned hosts. System administrator has an

administrative view, which provides user management facilities and host management

facilities. A system administrator can create a new role, grant a role to registered users,

revoke a user, publish system announcements, and have full control over all hosts

registered by site managers. Another important usage of WLCG-RUS admin system is to

specify RUS service configurations, including factory of RUS service functional

components and mandatory elements for validating incoming usage records.

95 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.6: W
L

C
G

-R
U

S A
dm

in M
V

C
 M

odel

96 5BDesign of Resource Usage Service for World-wide LHC Grid

4.4 Implementation

The implementation of WLCG-RUS system is based on Service-Oriented Architecture

(SOA) in the profile of Web Service Interoperability (WS-I) version 1.2[163]. The

development of RUS service makes use of Apache Axis version 1.4[164] as SOAP engine,

which has proved to be a stable and reliable system, and is widely used for commercial

application servers. Java was chosen as the language for the system because it is platform

independent and has well-defined design patterns. The development of WLCG-RUS

Admin is based on Grails[165], an open source Web application framework, and ideal for

developing MVC Web applications. The Grails leverages the Groovy[166] programming

language, which is based on Java platform as well, making it easy for communication

between RUS service and WLCG-RUS Admin. By using Grails, the WLCG-RUS Admin

and RUS service are packaged as a single software release. This section discusses

implementation details of WLCG-RUS system and its subsystems.

Figure 4.7: Internal data model of RUS service reuses existing WLCG accounting

schema with additional record history model

97 5BDesign of Resource Usage Service for World-wide LHC Grid

4.4.1 Resource Usage Service

External-Internal Data Mapping

In order to ensure ease of uploading accounting data through standard RUS interface,

a data mapping mechanism is required to enable dynamic transformation from external

data represented in standard OGF usage record and aggregate usage record formats into

corresponding WLCG accounting formats (Figure 4.7). The mapping rules of OGF UR

and WLCG schema have been discussed in section 3.5.2 and given in Appendix A-2.

Similar mapping rules are also introduced for mapping between proposed standard AUR

properties and WLCG summary schema as Appendix A-6.

Apart from mapping rules between standard usage and WLCG usage metrics, another

important issue to be solved is the data consistency, when uploading accounting data to

RUS service endpoint, in particular for time synchronisation and storage units, which are

summarised as follows:

• Considering the fact that WLCG accounting usage records might come from sites

of countries in different time zones, the default implementation of RUS service

requires every timestamp-related usage properties to be expressed in ISO8601[167]

format (e.g. 2008-10-01T20:39:28Z or 2008-10-01T21:39:28+01:00), and

transforms timestamp values to Coordinated Universal Time (UTC) values

therefore ensuring time consistency.

• For volume resource usage properties, such as memory and disk usage, the default

storage unit is KB, unless it is explicitly specified as the RUS service

configuration property, “storage.unit”.

• During fine-grained aggregate accounting process, individual usage records are to

be summarised before being stored a into local database. WLCG aggregate

strategies involve a normalisation process that normalise the CPU usage

information across disparate sites into a common reference scale based on

SpecInt2000 benchmark.

The mapping and data consistency rules between standard usage record instances are

implemented and ensured by three entity classes. Each entity class has two constructors,

the default constructor instantiating an empty entity instance, and the constructor that

takes a usage record instance as a parameter and instantiates an entity instance by

98 5BDesign of Resource Usage Service for World-wide LHC Grid

applying mapping rules and data consistency constraints.

Job Accounting Model

The job accounting model is implemented within WLCG-RUS system by extending

the internal components of RUS service. As Figure 4.8, the “LcgRecord” class is the

object model that represents WLCG relational job accounting data model. The

“LcgRecordDAO” component extends the internal “GenericDAO” interface with typed

parameters referring to “LcgRecord” object model and its identity data type. The WLCG-

RUS job accounting model uses Hibernate Object-Relation Mapping (ORM) engine for

mapping and saving Java objects to MySQL relational database.

As shown in Figure 4.9, in the processing of job accounting information in the

WLCG-RUS system involves the following steps and a sequence of interactions between

internal components of RUS service:

1) A client sends a “RUS::insertUsageRecords” SOAP request message to RUS

service endpoint.

2) On receiving insertion request, the RUS service endpoint loads command factory,

DAO factory, authorisation service factory, and mandatory elements from RUS

service configuration. The RUS service endpoint then instantiates an

“LcgRecordInsertCommand” instance and set DAO instance, authorisation service

instance and mandatory elements to the command instance.

3) The RUS service endpoint delegates insertion request to the command through the

“execute()” interface.

4) For each usage record, the execution of command firstly checks user authority to

perform insertion operation upon the usage record.

5) Once authorised, the command then validates the current usage record against

mandatory element configuration.

6) If validated, the command creates an LcgRecord instance by passing the current

usage record to LcgRecord constructor.

7) The command then invokes the save method of LcgRecordHibernateDAO and

passes the instantiated LcgRecord instance.

8) The DAO object makes the LcgRecord instance persistent into local relational

database and returns a record identity.

99 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.8: WLCG-RUS job accounting model implementation (UML Class diagram)

100 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.9:W
L

C
G

-R
U

S Job A
ccounting M

odel (U
M

L Sequence D
iagram

)

101 5BDesign of Resource Usage Service for World-wide LHC Grid

Aggregate Accounting Model

Aggregate accounting model implemented in WLCG-RUS system accepts pre-

aggregated usage records in OGF AUR format as well as job usage records in OGF UR

format, which are to be aggregated during execution of insertion. In the latter case, an

aggregate strategy should be applied to generate appropriate AUR instances. As Figure

4.10, there are two aggregate strategy classes implementing WLCG anonymous and user

aggregate strategies respectively. These aggregate strategies are to be triggered by

corresponding command implementations, and generate instances of either WLCG

anonymous aggregate records or WLCG user aggregate records, which are to be stored

into relational databases through DAO implementations.

Aggregate accounting processing models implemented within WLCG-RUS is given in

Figure 4.11, and involving following processing steps:

1) A client sends a “RUS::insertUsageRecords” SOAP request message to an RUS

service endpoint.

2) On receiving insertion request, the RUS service endpoint instantiates command,

authorisation service, DAO and aggregate strategy instances through configured

factory classes, and loads mandatory element configurations into runtime.

3) The RUS service endpoint delegate insertion request to the command through

execute() interface.

4) For each usage record instance, the execution of command firstly checks user

authority to perform insertion.

5) Once authorised, the command then validates the current usage record against

mandatory element configurations.

6) If received usage records are OGF UR instances, an aggregate strategy is triggered

and generates one or more instances of target aggregate object model, instances of

WLCG anonymous aggregate records in this example.

6.1) Otherwise, the command creates an instance of target aggregate object model by

passing the current OGF AUR instance to “LcgSumRecord” constructor.

7) The insert command then invokes the save method of “LcgSumRecordDAO” and

passes the “LcgSumRecord” instance.

8) The DAO object makes the “LcgSumRecord” instance persistst into a local

relational database and returns a record identity.

102 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.10: Class diagram of RUS default implementation for aggregate accounting

103 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4. 11: W
LC

G
-R

U
S A

ggregate A
ccounting Process M

odel (U
M

L Sequence D
iagram

)

104 5BDesign of Resource Usage Service for World-wide LHC Grid

4.4.2 WLCG-RUS Admin

WLCG-RUS Admin Web application is implemented based on Grails framework and

use the Groovy script language. The implementation adopts the passive MVC model with

one controller exclusively manipulating one model and refreshing changes of model to

views.

Host Management

As illustrated in Figure 4.12, the implementation of host management consists of a

host controller, a host model class, and a set of view pages. The host controller class

defines a list of methods that serve HTTP GET and POST requests. On receiving HTTP

request, the hosting server of WLCG-RUS system invokes an appropriate method defined

in the host controller, which then evaluates conditions using host model class if required.

The host controller also decides which view should be built with the required data

obtained from model class and renders the view to HTML for display.

An instance of host model class encapsulates meta-information of a host as a registry

entry, including the host name, host certificate distinguished name as displayed in host

certificate, the site name it belongs to site manager, registration date, and status. There are

four “do-GET” methods defined within the host controller, “list”, “create”, “edit”, and

“show”. Each “do-GET” method has an associated view to display for user interaction.

The “list” method is used to display all host registry entries. The “list” method is

triggered to display host registry entries owned by the site manager, while displaying all

host registry entries maintained inside the WLCG-RUS system to the system

administrator. The “list” view also connects to the “show” view and the “edit” view, for

displaying detailed registration information of individual host and updating registration

details except the host’s distinguished name. A site manager may create a new host entry

by filling the form as displayed by “create” view. On submission of the form, the “do-

POST” method “save” is triggered to create a new instance of host model and make it

persistence into local relational database. Other “do-POST” methods defined within host

controller include “delete”, “update”, “enable” and “disable”. A site manager may update

host registration information except its enabling status. Every newly registered host is

disabled by default. Only the system administrator has the authority to approve or

disapprove a host through the “enable” or “disable” methods defined in the host controller.

105 5BDesign of Resource Usage Service for World-wide LHC Grid

User Management

Figure 4. 12: Class Diagram of the Host Management Implementation

The user management facilities implemented within WLCG-RUS Admin is based on

the default security plug-in for the Spring framework [170], called Acegi[171], which

manages most of the complexity of role-based authorisation, user login, and request-URL

mapping issues. As shown in Figure 4.13, the Acegi plug-in generates two main model

classes that can be used for user management tasks of WLCG-RUS system. Each model

class has an exclusive controller class dealing with HTTP requests for creation, deletion,

modification, and listing of user accounts, and role definitions.

However, the default Acegi security implementation only provides simple user-

password authentication. The implementation of WLCG-RUS Admin adds a certificate-

based authentication. In this sense, a user can access WLCG-RUS Admin only if the user

holds a valid X.509 certificate signed by a recognised CA. When entering into the main

page, the user is required to be registered and assigned to a role. There are two predefined

roles in WLCG-RUS Admin system, the site manager and system administrator. User

106 5BDesign of Resource Usage Service for World-wide LHC Grid

registration requests are pending for system administrator to approve. The system

administrator can approve or disapprove a user through the “enable” and “disable”

interfaces defined within user controller. Enabled users should receive an email

notification when their accounts are approved by system administrator.

Figure 4.13: Class Diagram of the Host Management Implementation

System Management

As discussed in section 4.4.1, the RUS service runtime involves interactions between a

sequence of implementations of internal components. These components are required to

be configured properly and be instantiated appropriately to perform job and aggregate

accounting processes. The system management facilities provided by WLCG-RUS Admin

system allows system administrator to specify, or modify, or delete RUS service runtime

configurations.

107 5BDesign of Resource Usage Service for World-wide LHC Grid

As Figure 4.14, the “AppConfig” model class represents a single name-value

configuration property. RUS service configurations can be divided into two categories,

instantiatable properties, such as factories of runtime components, and uninstantiatable

properties, the mandatory usage record elements for example. Instantiatable properties

use the “instantiate ()” method defined with the model class. Same as other model classes,

the “AppConfig” model has an exclusive controller class, which serves incoming HTTP

requests and directs users to difference views.

Figure 4.14: Class Diagram of the System Management Implementation

4.4.3 User Interface

WLCG-RUS system provides two user interfaces for both RUS service and WLCG-

RUS Admin Web application.

Command Line Interface

108 5BDesign of Resource Usage Service for World-wide LHC Grid

The RUS service provides client-side interfaces and implementations for interaction

with WLCG-RUS system through standard RUS interfaces, in particular

“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”. The

RUS service client is implemented using Java programming language, and is wrapped by

a shell script. The client accepts arguments as shown in Appendix B. The client defines

two actions, the “list” and “insert”, both must specify a “service URI” parameter setting

the value of target RUS service endpoint address. For the “insert” action, either a single

file location, or a directory, or a list of files is required to be specified for the actual usage

record files or directories. The usage of an optional parameter, “delete-after-insertion”

tells the client whether to delete the usage record files after successful insertion. Another

optional parameter is the “max-elements” that is used to specify the maximum number of

usage records per insertion. If this parameter is omitted, the default maximum number is

set to 10. If any errors are encountered during execution of insertion, the target file name

is changed and appended with an “ERROR” suffix. The RUS service client is to be used

by host machines to upload usage records to WLCG-RUS system. The shell client can run

as a “cron” job to be scheduled to populate usage records periodically.

Web Interface

WLCG-RUS Admin also provides a Web interface for site manger and system

administrator to perform management tasks. This Web-based interface exhibits two views,

the manager view to site manager, and admin view for system administrator. Once a user

logs in successfully, the WLCG-RUS Admin system redirects the user to a different view

according to user’s granted role.

As Figure 4.15, the admin view provides navigation to user management and system

management facilities. The screen shot also gives the list of RUS service configurations,

including the authorisation factory class name, command factory class name, DAO

factory name, as well as other configurations such as mandatory usage record elements.

These mandatory element configurations are represented as XPath [170] expressions,

which are to be evaluated against received usage records. As Figure 4.16, the manager

view provides the link to host management. The manager view also allows a site manager

to view and edit personal profile. However, a site manager is not allowed to modify

account status, and user certificate distinguished name that is parsed by the system and

not modifiable.

109 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.15: WLCG-RUS Admin View

Figure 4.16: WLCG-RUS Site Manager View

110 5BDesign of Resource Usage Service for World-wide LHC Grid

4.5 Performance

This section provides details on performance evaluation of the WLCG-RUS system.

The test results are intended to provide reference guidance for deployment of WLCG-

RUS system with optimal performance.

4.5.1 Testbed

In order to evaluate the performance of WLCG-RUS system, a testbed is set up in the

Brunel Information Technology Laboratory (BITLab) at Brunel University to simulate the

accounting process in production Grid environments. The testbed consists of two

workstations in BITLab and are interconnected by Local Area Network (LAN). One

dedicated workstation is used to host WLCG-RUS server, which keeps listening insertion

requests from clients. The hardware and runtime environment details of the WLCG-RUS

server are listed in Table 4-1. On the other workstation, a number of clients along with a

usage record generator are deployed to simulate the accounting process at Grid

participating sites. The usage record generator simulates the metering process and

generates standard OGF UR and AUR instances into the local file system. One or more

WLCG-RUS clients can be scheduled to read usage record instances from the directory

and populate them to the WLCG-RUS server simultaneously through the standard

RUS::InsertUsageRecords interface. A thread pool is also provided to hold multiple

WLCG-RUS client threads and ensure a fixed number of threads that interrogate the

WLCG-RUS server at a time.

Table 4-1: Test server machine specification and runtime environment

 Description Version

Central Processing Unit Genuine Intel (R) Duo Core 1.66 GHz -

Random Access Memory 1024 MB -

Operating Ssytem Ubuntu 32-bit 9.04

Web Container Apache Tomcat 5.5.23

Service Container Apache Axis 1.4

DBMS MySQL Community Server 5.1

111 5BDesign of Resource Usage Service for World-wide LHC Grid

In the accounting scenario of the largest world-wide Grid environment, the WLCG

environment, there are over 100 participating or Tier-2 sites that reports usage

information to 12 regional or Tier-1 sites. These collected usage records at regional sites

are then shipped to the GOC site at RAL and generate statistic usage reports. As

illustrated in Table 4-2, there were over 30,000,000 jobs submitted to WLCG across four

Virtual Organisations (VOs) in 2007, approximately 80,000 jobs executed at Tier-2 sites.

Table 4-2: WLCG job statistics from four VOs and 12 Tier-1 or regional sites. From[159]

Therefore the testbed is designed to evaluate the WLCG-RUS system performance by

simulating the hierarchical deployment of WLCG-RUS server at both WLCG regional

sites and the GOC site.

• The deployment of WLCG-RUS system at each regional site to collect job usage

from region-wide Tier-2 sites.

• The deployment of WLCG-RUS system at WLCG GOC site to collect job usage

from 12 regional sites.

Accordingly the evaluation objectives include:

• Unit performance evaluation: to evaluate the performance of individual WLCG-

RUS runtime components (section 4.3.2), the result of which is to be used by

deployers to have a detailed picture on how WLCG-RUS system perform, and by

developer to improve system performance through custom implementation of

particular runtime components.

112 5BDesign of Resource Usage Service for World-wide LHC Grid

• Insertion performance evaluation: to evaluate how the WLCG-RUS system

performance varies with different deployment options, in particular the number of

usage records per insertion transaction, known as bulk size, and the number of

client threads. The result of the insertion performance test is expected to be used

by deployers to make decisions on how to deploy WLCG-RUS system to obtain

optimal performance.

4.5.2 Unit Performance

Figure 4.17 plots the performance of runtime component units of different accounting

models, both job accounting and aggregation accounting models. Multithreading is

intentionally avoided in these tests so that overall time of a series of runtime steps of

various enabled accounting models within WLCG-RUS system can be fairly observed

and compared.

There are four common processing steps for both fine-grained job and aggregate

accounting models as follows:

• On receiving a usage record, the Axis SOAP engine de-serialises received SOAP

request message, and forward a request object to command component.

• On completion of insertion, the command returns a response object back to Axis

SOAP engine, which then serialises the response object and sends response

message to WLCG-RUS client. The de-serialisation and serialisation processing

enabled by Axis SOAP engine are collectively defined as messaging process.

o The execution of insertion command can further be divided into additional

three sub-processes: delegating request to authorization service to check

user’s authority to perform insertion on per usage record basis; validating

usage record against mandatory element configuration; rendering usage

record node into an appropriate persistent object and making data

persistence.

• An extra process, the aggregation process, is triggered when job usage record is

detected during aggregate accounting process.

As summarised in Table 4.3, the average performance of authorisation, messaging and

validation processes are similar with slight difference less than 0.008 second. Comparing

113 5BDesign of Resource Usage Service for World-wide LHC Grid

to job accounting model, aggregate accounting models exhibits worse performance

mainly because of additional complexity introduced on the data persistence process. On

receiving an insertion request of an aggregate usage record, the WLCG-RUS system

runtime requires check whether there is an existing aggregate usage record using same

aggregate strategy. In the case of WLCG anonymous aggregate strategy for example, the

WLCG-RUS runtime is required to the existence of an aggregate usage record with

certain month/year, certain VO and certain executing site. If an existing record found, the

WLCG-RUS runtime is then add usage information to the existing record, and change the

aggregation starting and ending time accordingly. Therefore the data persistence process

introduces average 0.02 second overhead. In the aggregate accounting model with

runtime aggregation, additional 0.003-second overhead is introduced by the enforcement

of the WLCG anonymous aggregation strategy. However this figure can be quite different

depending on the complexity of an aggregation strategy implementation.

Table 4-3: Comparison of unit performance of job accounting model, aggregate

accounting (without runtime aggregation) and aggregate accounting (with runtime

aggregation)

A
cc

ou
nt

in
g

M
od

el

Average Costs (Time in Milliseconds)

Authorisation Validation Aggregation Persistence Messaging TOTAL

jo
b

ac
co

un
tin

g

6.334 13.330 - 3.858 18.924 42.446

A
gg

re
ga

te

A
cc

ou
nt

in
g

(n
o

ru
nt

im
e

ag
gr

eg
at

io
n)

6.266 12.542 - 28.880 18.146 65.834

A
gg

re
ga

te

ac
co

un
tin

g

(w
ith

 r
un

tim
e

ag
gr

eg
at

io
n)

6.194 13.298 3.48 30.868 18.492 72.332

114 5BDesign of Resource Usage Service for World-wide LHC Grid

(a)

(b)

115 5BDesign of Resource Usage Service for World-wide LHC Grid

 (c)

Figure 4.17: (a) Unit performance of job accounting model (b) Unit performance of

aggregate accounting model (no runtime aggregation) (c) Unit performance of aggregate

accounting model with runtime aggregation.

4.5.3 Insertion Performance

As discussed in section 4.4.1, the WLCG-RUS system runtime can be configured to

accept one or more usage records per insertion transaction. The number of usage records

per transaction is also called bulk size. The first part of the insertion performance test is to

evaluate the WLCG-RUS system performance with different bulk size. In this test, the

client machine continuously inserts 35,000 job usage records to the WLCG-RUS server.

Successive execution time is logged when finishing insertion of 5,000, 10,000, 15,000,

20,000 25,000, 30,000 and 35,000 usage records. As the performance plot described in

Figure 4.18 and Figure 4.19, the insertion time decreases gradually with the increasing

bulk size until the bulk size is 10, and then increases exponentially. Based on the test

results, the maximum elements should be set between 10 and 15 in order to gain optimal

insertion performance.

116 5BDesign of Resource Usage Service for World-wide LHC Grid

Figure 4.18: Comparisons of insertion time against different granularities of usage

records per transaction.

(a)

117 5BDesign of Resource Usage Service for World-wide LHC Grid

(b)

(c)

118 5BDesign of Resource Usage Service for World-wide LHC Grid

(d)

(e)

119 5BDesign of Resource Usage Service for World-wide LHC Grid

(f)

 (g)

Figure 4.19: (a) insertion performance of 5,000 usage records against bulk size (b)

insertion performance of 10,000 against bulk size (c) insertion performance of 15,000

usage records against bulk size (d) insertion performance of 20,000 against bulk size (e)

insertion performance of 25,000 usage records against bulk size (f) insertion performance

of 30,000 against bulk size (g) insertion performance of 30,000 usage records against

bulk size.

120 5BDesign of Resource Usage Service for World-wide LHC Grid

The WLCG-RUS system can be deployed in two ways in the context of the WLCG

accounting process. It can be either deployed at the GOC centre as a singleton entry point

or hierarchically deployed at each regional site responsible for region-wide accounting

purposes while streaming accounting data to the main WLCG-RUS server at GOC. For

both cases, the WLCG-RUS system is required to serve multiple client requests at a time.

In order to figure out the performance of WLCG-RUS system when dealing with multiple

client requests simultaneously, and find out which way is of best performance for the

WLCG accounting process, a multi-threading test is conduced to evaluate WLCG-RUS

system performance against different number of client threads. As the performance plot

illustrated in Figure 4.20, the WLCG-RUS system performance decreases with the

increasing number of client threads. In the case of 100 client threads insert usage records

at same time, the total time cost for insertion of 35,000 usage records reaches 2.6 hours

(0.27 second per transaction), comparing to 1.26 hours (0.13 second per transaction)

when using a single client thread. In the case of WLCG accounting, it is better to adopt

the hierarchical deployment manner, with multiple WLCG-RUS server deployed at

regional sites and one central WLCG-RUS server deployed at GOC site to accept requests

from regional sites only. It is worth noting that the performance of WLCG-RUS system

may gain better performance when deployed on modem server machine with multi-core

or multi-CPUs supports.

Figure 4.20: insertion performance against the number of simultaneous client threads

121 5BDesign of Resource Usage Service for World-wide LHC Grid

4.6 Summary

This chapter described the design and implementation of WLCG-RUS system, which

provides an alternative, but standard-compatible, solution for sharing WLCG accounting

data from participating sites to GOC centre. The WLCG-RUS system is composed of two

subsystems, the RUS service and the WLCG-RUS Admin. The RUS service provides an

implementation of OGF RUS service interface definitions. The current RUS service only

provides implementations of two RUS service interfaces, the

“RUS::ListMandatoryUsageRecordElements” and “RUS::InsertUsageRecords”, which

are mainly used for accounting data uploading. The design of RUS service in WLCG-

RUS system consists of a set of loose-coupled runtime components, which uses a set of

well-defined design patterns, such as factory, strategy, and command design patterns, and

exhibits well-defined internal interfaces for custom implementation. Rather than

performing off-line aggregation as current WLCG accounting process, the RUS service

also allows runtime aggregation and proposed a standard aggregate usage record

representation. The WLCG-RUS provides a Web-based administrative interface for site

managers and the WLCG-RUS system administrator to performance host management,

user management and system management activities. This chapter also provided detailed

performance evaluations, which provide development guidance for developers who are

intended to use WLCG-RUS framework while providing custom implementations of

runtime component units, as well as deployment guidance for decision makers who are

considering deploying the WLCG-RUS system as part of an accounting system.

122 6BDesign of Grid Resource Usage System Middleware

Chapter 5

Design of Grid Resource Usage System Middleware

Standardisation is of high importance on enabling interoperability between

independently developed accounting systems. The development of the WLCG-RUS

system has presented an exemplary standard-compatible solution for sharing accounting

data across heterogeneous accounting systems in the multi-Grid environment of WLCG

project. The WLCG-RUS system implemented some functional components as defined in

the JISC-proposed accounting framework [132] mainly for uploading accounting data,

which is however not functional enough to support various high-level application

scenarios, such as usage monitoring, Grid economy, and usage policing. Besides, the

design of the WLCG-RUS system uses reverse engineering upon existing WLCG

accounting schema making it limited to be reused for accounting purposes on other Grid

projects. Lessons were also learned from the RUS specification based on implementation

of the WLCG-RUS system. Particularly there are no standard supports to aggregate

accounting models in the current RUS specification. The content of this chapter aims at

addressing these issues by introducing a refined RUS specification and an implementation

of JISC-proposed framework as a middleware solution, the Grid Resource Usage System

(GRUS), which makes it easy to migrate custom accounting system to be standard

compatible with minimum re-engineering efforts. The design of GRUS middleware

reuses WLCG-RUS system components where appropriate. Relevant publications of the

work conducted in this chapter include [171] [172].

123 6BDesign of Grid Resource Usage System Middleware

5.1 Introduction

The JISC proposed generic accounting framework (section 3.6) is a recommendation

based on an analysis of stakeholders and their requirements. It was designed to assist

development and deployment of a Grid accounting system based on standard

specifications. Standardisation is of high importance in the sense of maximising

interoperability between independently developed accounting systems, especially for

accounting in such Multi-Grid environment as WLCG. The development of the WLCG-

RUS system presented how a standard-compatible solution contributed to exchanging

accounting data across heterogeneous accounting systems in a consistent manner.

Standardisation also makes it easy to migrate high-level applications from one accounting

system to another through exhibiting a set of public and common service interfaces. Since

most production Grid projects have their own accounting system deployed, the JISC

proposed accounting framework (see section 3.6) recommended a loosely coupled

component architecture that allows extensions and customisations for adaption to local

accounting environment while preventing duplicate efforts on common functional

requirements.

Although the WLCG-RUS system implemented some functional components as

defined in the JISC-proposed accounting framework mainly for uploading accounting

data, which is however not functional enough to support various high-level application

scenarios, such as usage monitoring, Grid economy, and usage policing as listed in

section 3.2. Besides the aggregate accounting enabled within the WLCG-RUS system

only allows specific and predefined aggregate strategy to be applied for streaming

accounting data into the RUS service. Higher flexibilities should be allowed to enable

custom aggregate strategies to be defined on per transaction basis, especially for query

transactions. For example, a VO manager may be interested in getting query results of

total CPU usage of a specific VO for last month, while it is also able to get query results

of how much memory quota is used as a Grid user. In this case, different aggregate

strategies should be automatically generated and applied to individual query transaction.

Moreover, the WLCG-RUS system was motivated to reuse WLCG accounting data model,

making it limiting to be reused for accounting purposes on other Grid projects, which

have custom accounting data formats defined.

Lessons were also learned from the RUS specification based on implementation of the

124 6BDesign of Grid Resource Usage System Middleware

WLCG-RUS system. Particularly there are no standard supports to aggregate accounting

models in the current RUS specification. This chapter proposes a refined RUS service

interface definitions, as published in the draft Resource Usage Service Core WS-I

rendering specification [171], which deals with observed issues of the current standard,

and provides a middleware solution, the Grid Resource Usage System (GRUS)[172],

which makes it easy to migrate custom accounting system to be standard compatible and

minimises re-engineering efforts on existing accounting systems. The design of the

GRUS middleware extends and reuses WLCG-RUS system components where

appropriate.

5.2 Requirement Analysis

This section discusses refined and advanced design requirements that are necessary to

provide a middleware solution for the JISC proposed accounting framework.

5.2.1 Use Cases

Besides roles and use cases discussed in section 4.2, two additional roles were

identified from the perspective of query usage records and are intended to be supported in

the GRUS system as extensions to WLCG-RUS system in particular for query of resource

usage. Detailed use cases are illustrated in Figure 5.1 and listed in Appendix B.2.

Grid User

A Grid user, the end user of a Grid computing system, can be an ad-hoc user or

belongs to a Virtual Organisation (VO). In latter case, the Grid user is also known as the

VO member. In order to use the GRUS system, a Grid user must hold a valid X.509

certificate signed by CAs that are recognised by a GRUS system instance. A Grid user in

the context of the GRUS system has privileges to query resource usage records of jobs

owned by the user through standard RUS interface definitions.

Virtual Organisation Manager

125 6BDesign of Grid Resource Usage System Middleware

The Virtual Organisation (VO) manager has been recognsied as an important role who

is reponisble for managing user membership of a particular VO. In the context of

accounting, the VO manager has authority to view resource usage information of jobs

executed by members of a managed VO, as well as historic resource usage summaries.

Figure 5.1: Additional use cases that the GRUS system is expected to implement based

on existing WLCG-RUS framework

5.2.2 Requirements

From the above advanced use cases, the following design requirements for the GRUS

middleware are extracted in addition to those of the WLCG-RUS system as discussed in

section 4.2.1.

126 6BDesign of Grid Resource Usage System Middleware

Capability or Functional Requirements

Apart from functional requirements identified in the design of WLCG-RUS, the

following capabilities are to be enabled in GRUS middleware.

1. Query Accounting data

Key to the design of GRUS system is to allow the Virtual Organisation manager and

Grid end users to query usage records through standard RUS service interface definition,

specifically the “RUS::extractUsageRecords” service interface. This RUS extraction logic

should ensure certain flexibility in two senses. In the case of query without runtime

aggregation, the query operation should allow flexible queries on both complete usage

record instances and partial usage information set. The query operation should also

provide runtime aggregation facilities. Rather than applying a predefined and specific

aggregation strategy, the query operation should allow the requestor to define or specify a

preferred aggregation strategy for a particular transaction. Finally, the query operation

design of the GRUS system needs to provide a solution to deal with the situation of

potentially large volumes of query results triggered by a complex query. Under this

circumstance, the query operation should allow returning query results to the clients

through multiple transactions by dividing results into chunks.

2. Virtual Organisation Management

A VO manager is able to query VO-specific usage records through the GRUS system.

In order to enforce authorisation policies at runtime, the GRUS system must provide a

registry mechanism enabling a VO manager to register one or more managed VO

accounts. The VO management facility is also expected to provide manageability

interfaces for system administrator to view, edit, and remove VO registry entries.

Interface Requirements

3. Internal Interface

In accordance with internal interfaces defined in the WLCG-RUS system for custom

implementation of the RUS insertion runtime, the GRUS system is intended to define

127 6BDesign of Grid Resource Usage System Middleware

internal interfaces for custom implementations of RUS extraction runtime.

4. Service Interface

Besides interface requirements identified for the WLCG-RUS system design, another

important design goal of the GRUS system is to cope with the deficiencies of RUS

service interfaces, in particular for integration of aggregate accounting facilities. Also

additional service interfaces are to be defined where necessary.

Data Requirements

5. Internal Data

Rather than reusing the WLCG accounting schema as an internal data representation,

the GRUS system should be able to adapt to any accounting data representation as

defined by local accounting systems, and allows implementation of custom mapping rules

for runtime transformations between internal and external standard formats.

Security and Privacy Requirements

The security design requirements of the GRUS system share the requirements as

specified in section 4.2 for the WLCG-RUS system design.

Other Requirements

6. Usability

In addition to other requirements listed in WLCG-RUS system design, the design of

GRUS system exhibits an extra requirement on usability. As a middleware solution the

GRUS system should be not only end user oriented but also developer oriented. In this

sense, the GRUS middleware must provide easy-to-implement facilities for development

of custom solutions upon local accounting environment.

128 6BDesign of Grid Resource Usage System Middleware

Figure 5.2: Layered component architecture of GRUS middleware

5.3 Design

This section discusses the design details of the GRUS middleware, including the

system architecture design and composing subsystems or components.

5.3.1 System Architecture

In accordance to the WLCG-RUS system design, GRUS system is composed of two

subsystems, the GRUS Admin Web application and the GRUS service. The GRUS Admin

application extends WLCG-RUS Admin and provides VO management facilities for VO

managers. The GRUS service provides a development framework for customising the

implementation of the RUS service endpoint. The design of the GRUS system is based on

a layered component architecture as presented in Figure 5.2, and consisting of runtime

129 6BDesign of Grid Resource Usage System Middleware

components across five bottom-up layers: the persistence layer, the data model layer, the

logic layer, the presentation layer, and the client layer.

Persistence Layer

The persistence layer contains the data structures, including the accounting data

structures of the GRUS service and management data structures of GRUS Admin

subsystem. This persistence layer is designed to use a relational database for data

persistence. Custom implementations may also use other types of data storages, e.g. XML

databases, for accounting data.

Data Model Layer

The data model layer contains necessary elements that link object data to the relational

database structures. Rather than using specific internal usage data representations, the

GRUS service is intended to enable automated persistence of data model objects to

various internal accounting data structures of relational databases through the Object-

Relational Mapping (ORM) mechanism. The design of the data model layer also exhibits

a higher level abstraction using Data Access Object (DAO) pattern. Each data model

object has an associated DAO, which exhibits common and primitive Create, Read,

Update, and Delete (CRUD) data operations. Customised data operations can be defined

by extending abstract DAO interfaces. By using DAO design pattern, it is also possible to

define custom DAO implementation upon data stores other than relational database, the

native XML database for example. In order to ease custom implementations, a utility tool,

the Entity Model Compiler (EMC), is also provided to take any XML standard schema

and generate data models and DAO source codes.

A set of domain objects are also defined at the data model layer for the GRUS Admin

Web application, which extends manageability facilities defined in WLCG-RUS Admin

system with additional VO management functionality.

Logic Layer

The logic layer defines a GRUS core framework, which provides runtime support of

the RUS logics. The core framework consists of a set of runtime components, the design

130 6BDesign of Grid Resource Usage System Middleware

of which utilises object-oriented design patterns and exhibits well-defined internal

interfaces. The pluggable design of the GRUS core framework allows implementations to

choose to customise one or more runtime components according to local accounting

requirements.

The logic layer also shows a GRUS Admin component that extends WLCG-RUS

Admin and defines controllers for VO management facilities. The controllers act upon the

underlying model objects and refresh changes of domain objects to the GRUS Admin

views.

Presentation Layer

The presentation layer defines views for GRUS Admin Web application and provides a

Web-based interface to end users, VO managers, site managers, and system administrator.

The GRUS Admin views consist of a sequence of Web pages and presentation style sheets.

Client Layer

Both the GRUS Admin and the GRUS service provide client-side interfaces. The

GRUS client provides command-line interfaces mainly for sharing and querying

accounting data through standard RUS Web service interfaces. Authorised users may also

execute appropriate management tasks through the GRUS Admin Web portal and Web

browser.

5.3.2 Detailed System Design

This section describes the design details of the GRUS system components, including

redesign of RUS service interfaces, messaging protocols for runtime aggregate query,

EMC code generator, GRUS core framework, and the GRUS Admin Web application.

Redesign of RUS Interface Definitions

Based on the developmental experiences on the WLCG-RUS system and feedbacks

from other RUS implementations, i.e. SGAS and DGAS-RUS, there are some non-trivial

131 6BDesign of Grid Resource Usage System Middleware

issues identified and summarised as follows:

• The current RUS service interface definitions are too reliable on OGF UR

specification making it hard to use the other standard usage record representations,

in particular OGF AUR draft specification that has been recognised as an

important data representation for aggregate accounting purposes. Besides, the

OGF UR specification has a narrowed scope based only on batch job CPU usage

metrics. It is understood that a single OGF UR is not enough to accommodate

accounting representation of other resource types, such as storage, network, and

even application-specific resources. Therefore the RUS service interface

definitions should be flexible to accept various usage record formats in compatible

to existing, as well as emerging, standard resource usage schemas.

• Although the current RUS specification does not restrict internal storage format

for usage record persistence, it does specify individual usage records retrieved

from a RUS endpoint should in the Resource Usage Record Format (RURF),

which encapsulates a RUS-wide unique global identity, an OGF UR instance, and

record modification histories. This data type definition as query result implies

potential issues. First of all, the query operation results add more transportation

payloads with additional record histories appended to individual usage record

even though the client are not interested in. Performance can be further

undermined when a complex query returns a large number of usage records.

Secondly, the insertion operation as defined in the RUS specification returns a list

of RUS record identities raised by a RUS endpoint for successfully inserted usage

records. The list of RUS record identities are not meaningful to the client in the

sense of indicating unsuccessfully inserted usage records.

• The query interface definition, “RUS::extractRUSUsageRecords”, only returns the

complete RURF instance. In many cases, query clients only interested in partial or

fragmental usage information set, CPU usage information for example. Therefore

the query interface definition of RUS should allow flexible query on both

complete usage records and partial information sets. Furthermore, the current

query operation returns all usage records evaluated against the query term within a

single transaction, which is inappropriate for complex query with large volumes of

query results.

132 6BDesign of Grid Resource Usage System Middleware

• There have been long discussions about the usefulness of encapsulating

modification operations within the RUS specification, since the most important

feature of accounting is to provide accurate resource usage information, which

provides a proof of how Grid resources had been utilised. In reality, it is unlikely

these generated accounting data will be changed or updated. Since most sites or

GOC keeps a local repository of collected accounting data, it is more

straightforward and secure for a system administrator to update or remove

accounting data through local database management system.

Having identified issues of current RUS Service Interface Definitions (SIDs), we

collaborated with OGF RUS working group and refined RUS SIDs as the outcomes of

group discussion in OGF 20. In the middle of 2007, the first proposed draft of the RUS

Core Interface Definition Language (IDL) specification [173] was released with changes

or add-on features applied to observed issues. Major changes of SIDs made within the

proposed RUS Core specification are listed in Table 5-1 and summarised as follows.

• Rather than defining a separate RUS usage record representation, the RUS service

is intended to reuse existing OGF UR and ensure flexibility on other emerging

standard usage record schemas.

• Insertion request message defines an extension element, the “<xsd:any>” element,

that can used to pass any usage records in the format other than OGF UR to a RUS

service endpoint.

• The extraction service interface is renamed as “RUS::extractUsageRecords” and

accepts a filter expression that can be constrained to be a Boolean predicate as

well as ad-doc support projections depending on a RUS endpoint implementation.

The extraction service interface definition also allows iteration through query

result set in a similar way as defined in WS-Enumeration specification [174].

• The interface definition, “RUS::extractRUSRecordIds”, is removed from RUS

specification.

• Service interfaces related to modifying usage records are simplified with a single

service interface definition, the “RUS::modifyUsageRecords”, which accepts an

133 6BDesign of Grid Resource Usage System Middleware

updating expression, e.g. XQueryUpdate[175], and returns operational results.

• A single service interface is also defined for deleting usage records matched by

evaluation filter expression input.

• A RUS service endpoint may apply different standard or custom dialects for query,

updating and deleting usage records. For example, a RUS service endpoint may be

implemented using XQuery[176] dialect for query, XQueryUpdate and SQL

dialects for updating, and XPath dialect for expressing a Boolean predicate for

deletion. A client may get supported operation-dialect pairs of a RUS service

endpoint through proposed “RUS::listSupportedDialects” interface.

• A new operation is also proposed in RUS Core specification and allows a client to

audit record creation or modification history through the

“RUS::extractRecordHistory” interface.

Table 5- 1: A Comparison of Service Interface Definition between RUS specification (version

1.7) and Proposed RUS Core specification

Service Interface Definition

Function
RUS Specification (version 1.7) RUS Core Specification

configuration RUS::Lis lementstMandatoryUsageRecordE
RUS::Lis ementstMandatoryUsageRecordEl

RUS::listSupportedDialects

Insertion RUS::insertUsageRecords RUS::insertUsageRecords

Extraction
RU sS::extractRUSUsageRecord

RUS::extractUsageRecords
RUS::extractRUSRecordIds

R rtUS::incrementUsageRecordPa

Updating RUS::modifyUsageRecords R tUS::modifyUsageRecordPar

RUS rds::replaceUsageReco

RUS::deleteRecords
Deletion RUS::deleteUsageRecords

RUS::deleteSpecificRecords

Auditing ‐ RUS::extractRecordHistory

134 6BDesign of Grid Resource Usage System Middleware

Messaging Extensions for Aggregate Accounting

In order to qualify RUS Core specification in particular in the sense of integrating

aggregate accounting at RUS runtime and query fragmental usage information sets, the

GRUS messaging framework defines a set of SOAP header data types and reuses some of

the control headers and WS-Enumeration extensions defined within Web Service

Management (WS-Management) specification proposed by Distributed Management Task

Force (DMTF). Definitions and usages of these extensions together with RUS service

interface definitions are described as follows.

Figure 5.3: Runtime Aggregation Process at RUS Insertion and Extraction Runtime

Aggregation processes typically take place at RUS insertion and extraction runtime.

As Figure 5.3, the runtime aggregation process at RUS insertion runtime accepts multiple

job usage records in the OGF UR format and aggregates them into one or more OGF

AUR instances by applying a specific aggregate strategy, while the runtime aggregate

process during RUS extraction runtime summarises filtered job usage records using a

specific aggregate strategy and returns standard OGF AUR instances to the client.

Compared to runtime aggregation at RUS insertion runtime, further flexibility should

135 6BDesign of Grid Resource Usage System Middleware

allow the client to define custom aggregation rules that apply to current query transaction

only.

In order to enable runtime aggregation in a RUS compatible way, the GRUS message

framework defined a “grus:AggregateStrategy” element, which is used to specify a pre-

defined aggregate strategy or ad-hoc aggregation rules. A client initiates a RUS request

with runtime aggregation by placing the “grus:AggregateStrategy” element inside the

SOAP header section as follows:

Example: In the following example template, runtime aggregation is enforced by a RUS

service with proper aggregate strategy information attached to request message header.

The following definitions provide additional, normative constraints on the

“grus:AggregateStrategy” information model:

• grus:AggregateStrategy

The optional header element contains a global unique identity of a specific

aggregate strategy, and child elements for specifying aggregation rules. On

receiving a request with runtime aggregation, a RUS service endpoint must apply a

pre-existing aggregate strategy identified by the identity value of this header

element or composing an aggregate strategy dynamically. Dynamic aggregate

strategy allows a client to define custom aggregate rules for a particular extraction

transaction.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

<s:Envelope ...>

<s:Header ...>

...

<wsa:Action mustUnderstand=”true”>

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordRequest”>

<grus:AggregateStrategy id=”strategy-id”>

<grus:Interval>”{hour|week|day|month|year}”</grus:Interval>

<grus:Entity ...>xsd:QName</grus:Entity>*

</grus:AggregateStrategy>

</s:Header>

<s:Body ...>

<rus:ExtractUsageRecordsRequest>

...

</rus:ExtractUsageRecordsRequest>

</s:Body>

</s:Envelolpe>

136 6BDesign of Grid Resource Usage System Middleware

• grus:Interval

This element defines the aggregation intervals. There are five defined intervals

including day, week, month, year, and hours.

• grus:Entity

This element may occur more than once to declare the qualified name of one or

more Grid resource entities to be grouped. The element can be further restricted by

placing attribute values.

The definition of aggregation strategy header introduces flexibility in specifying a

specific aggregation strategy as well as defining custom aggregate stragety at runtime.

The aggregation strategy header can be specified along with RUS insertion and extraction

logics. The following gives example request messages in the context of WLCG

accounting allowing:

• a host to populate job usage records to the WLCG anonymous summary usage

repository by specifying the WLCG anonymous aggregation strategy in the

RUS::insertUsageRecords request message. Each aggregation strategy

implementation has a global unique identity (e.g.

urn:grus:strategy:aggregation:wlcg-user). On receiving the request message, the

RUS service runtime looks up and instantiates an aggregate strategy instance,

which then performs runtime aggregation upon job usage records embedded

within the request message.

Example: insertion request message with aggregation strategy header
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

<s:Envelope ...>

<s:Header ...>

...

<wsa:Action mustUnderstand=”true”>

http://schemas.ogf.org/rus/2007/09/core/insertUsageRecordR

equest”>

<grus:AggregateStrategy

id=”urn:grus:strategy:aggregation:wlcg-user” />

</s:Header>

<s:Body ...>

</s:Body>

</s:Envelolpe>

137 6BDesign of Grid Resource Usage System Middleware

• a VO manager to query WLCG job usage repository and generate summry usage

information by specifying custom aggregation rules. A general-purpose

aggregation strategy (urn:grus:strategy:aggregation:dynamic) is defined to apply

user-defined aggregation rules upon query results. On receiving the following

extraction request, a RUS endpoint firstly filters usage records of jobs in the VO

name of CMS, and creates an instance of the general-purpose aggregation strategy,

which then generates aggregate usage records summarised on the per-user, per-VO,

and per-month basis.

Example: extraction request message with custom aggregation rules
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

<s:Envelope ...>

<s:Header ...>

...

<wsa:Action mustUnderstand=”true”>

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordR

equest”>

<grus:AggregateStrategy

id=”urn:grus:strategy:aggregation:dynamic” />

<grus:Interval>Month</grus:Interval>

<grus:Entity>urf:UserIdentity</grus:Entity>

<grus:Entity

urf:description=”VOName”>urf:Resource</grus:Entity>

</s:Header>

<s:Body ...>

<rus:ExtractUsageRecordsRequest>

<rus:Filter dialect=”http://www.w3.org/TR/1999/REC-xpath-

19991116”>

/urf:UsageRecord[urf:Resource[@urf:description=’VOName’]

</rus:Filter>

</rus:ExtractUsageRecordsRequest>

</s:Body>

</s:Envelolpe>

The GRUS messaging also reuses some non-functional control headers and extension

elements to WS-Enumeration as defined within WS-Management specification mainly for

the purpose of fragmental and optimised query usage records. A RUS implementation

may restrict appearance of following control header and extension elements as

demonstrated in following example request message.

138 6BDesign of Grid Resource Usage System Middleware

Example: The following example request message integrates control headers and

enumeration extensions as defined within WS-Management specification
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

<s:Envelope ...>

<s:Header ...>

...

<wsman:OperationTimeout>xsd:long</wsman:OperationTimeout>

<wsman:RequestTotalItemsCountEstimate />

</s:Header>

<s:Body>

<rus:ExtractUsageRecordRequest>

<rus:EndTo>wsa:EndpointReferenceType</rus:EndTo>

<rus:Expires>wsen:ExpirationType</rus:Expires>

<rus:Filter dialect=”xsd:anyURI”>xsd:any</rus:Filter>

<rus:MaxElements>xsd:PositiveInteger</rus:MaxElements>

<rus:EnumerationContext>wsen:EnumerationContextType

</rus:EnumerationContext>

<wsman:Filter dialect=”xsd:anyURI”>xsd:any</rus:Filter>

{xsd:any}
</rus:ExtractUsageRecordRequest>

</s:Body>

</s:Envelope>

The following definitions provide additional, normative constraints on the usage and

interpretation of control headers and enumeration extensions embedded within request

messages:

• wsman:OperationTimeout

This optional header element defined within WS-Management specification is

reused as a quality-of-service constraint. A RUS implementation may define a

default maximum operational timeout to prevent system performance from being

undermined by complex requests. The value of timeout can also be specified by a

client for time-critical requests. If a RUS service endpoint does not support this

element, the endpoint may either ignore this control header or return a

“rus::UnsupportedFault” message if it must be understood. When a request is

processed beyond the specified interval limit, a RUS service endpoint should kill

the server process and return a “rus:ProcessingFault” with the “time-out” reason.

• wsman:RequestTotalItemsCountEstimate

139 6BDesign of Grid Resource Usage System Middleware

This optional element is the control header defined by WS-Management

specification to indicate a RUS service endpoint should return an estimate of total

number of items associated with a specific RUS extraction transaction.

• rus:EnumerationContext

If a RUS service endpoint supports iterative query results, an enumeration context

should be established and encapsulating necessary information for iterative query

results. Usage of this element in a RUS extraction request results in the return of

query result sets made by previous transaction.

• wsman:Filter

Although RUS Core specification explained that the expression specified by

“rus:Filter” may either be a Boolean predicate to return complete usage records or

support ad-hoc projections to return fragmental usage information set, the GRUS

message framework restricted the “rus:Filter” expression to be a Boolean predicate

only to filter complete usage record instances, while reusing the “wsman:Filter”

extension to specify projection information. The definition of “wsman:Filter” by

WS-Management specification is same as “rus:Filter”.

On successful execution of above example request message, a RUS service endpoint

composes a response message as following example:

Example: The example response message that integrates control headers and

enumeration extensions as defined within WS-Management specification
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

<s:Envelope ...>

<s:Header ...>

...

<wsman:TotalItemsCountEstimate>

xsd:nonNegativeInteger

</wsman:TotalItemsCountEstimate>

</s:Header>

<s:Body>

<rus:ExtractUsageRecordResponse>

<rus:OperationResult>

...

</rus:OperationResult>

<urf:UsageRecords />

<rus:EnumerateContext>

140 6BDesign of Grid Resource Usage System Middleware

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

wsen:EnumerationContextType

<rus:EumerateContext>

<rus:Expires>xsd:DateTime|xsd:Duration<rus:Expires>

<wsman:Items>

<wsman:XmlFragment>

...

</wsman:XmlFragment>

</wsman:Items>

<wsman:EndOfSequence />

{xsd:any}

</rus:ExtractUsageRecordResponse>

</s:Body>

</s:Envelope>

The following definitions provide additional, normative constraints on the

interpretation and processing of control headers and enumeration extensions as a RUS

extraction response message.

• wsman:TotalItemsCountEstimate

This optional header indicates that the client requested the total item count in

request message, and includes the estimated total number of query results within

the response message.

• rus:EnumerationContext

If a RUS service endpoint supports enumeration, an enumeration context is

established at service side and returned to the client with necessary information for

follow-up query transactions.

• rus:Expires

An instance of enumeration context has a limited lifetime, which is specified by the

client in a RUS extraction request message or defaulted by a RUS service endpoint.

Embedding this element in a response message helps the client understand how

long the query results made would live.

• wsman:Items

This optional element is defined as a container of one or more enumerable

elements in WS-Management specification. The element used in GRUS message

framework to contain fragmental query results only. Other complete usage records

as query results should be placed in a schema-specific container. For example,

141 6BDesign of Grid Resource Usage System Middleware

OGF UR instances should use “urf:UsageRecords” element, while OGF AUR

instances should use “aur:AggregateUsageRecords” element.

• wsman:XmlFragment

This optional element is used to contain a single fragmental query result. The main

usage of this element in GRUS messaging framework is to wrap text fragments. A

“wsman:XmlFragment” can only be a single fragment, and embedded as a child

element of the “wsman:Items” element.

• wsman:EndOfSequence

This element defined within WS-Management specification is used in GRUS

message framework to notify the client that all query result set have been iterated.

Apart from these extensions of RUS messaging, GRUS messaging framework also

defined a new service interface, the “GRUS::listSupportedAggregateStrategies”, which is

used query operation-strategy pairs implemented within a RUS service endpoint. The

detailed GRUS messaging data type schema and Web service interface schema are given

in Appendix D.

Entity Model Compiler

The implementation of WLCG-RUS system defined three data model objects, which

are constructed by accepting standard OGF UR or OGF AUR instances, and are mapped

to three predefined WLCG accounting schema through ORM. Each data model object

has an associated DAO implementation that is triggered to save instantiated data model

objects into relational database at the RUS insertion runtime. However these three data

model objects are reversely engineered and hard coded based on WLCG accounting

schemas, making them hard to be reused for other accounting systems. Besides, WLCG-

RUS data model objects merely realise one-way transformation, i.e. transforming

standard usage record instances into WLCG accounting data for the purpose of publishing

accounting data. Rather than defining specific internal accounting data representation, the

design of GRUS system is intended to enable high-level flexibility in allowing a RUS

service endpoint to reuse any custom accounting data representations. To be more specific,

a RUS implementation based upon GRUS framework should be able to transform usage

record instances in XML format into relational accounting data representation at RUS

142 6BDesign of Grid Resource Usage System Middleware

insertion runtime, and render relational accounting data representation into standard

external XML representation at RUS extraction runtime.

The GRUS system introduced a utility tool, the Entity Model Compiler (EMC), which

provides a solution to XML persistence into relational backend. The EMC tool

concentrates on following requirement and functionalities:

XSD Driven XML instances must be validated against certain XML schema.

Relational Backend XML data are to be persistent in a relational database.

Entity Oriented A data model object must be of entity type, which has its own

database identity. An entity may have one or more relationships to

other entities, in particular one-to-one, many-to-one, one-to-many,

many-to-many relationships.

Auto Generation The EMC is a code generation engine that produces a list of

interfaces, abstract classes that encapsulate runtime rendering

functions, and DAO artefacts on per entity basis.

Customisation Generated artefacts can be customised by developers to provide

default entity model implementations and ORM mappings to local

relational data formats.

There are two widely adopted techniques for code generation: active generation and

passive generation. Both techniques involve a code generator component, that accepts an

input and produce source code files, also known as artefacts. Common input sources

includes code model represented in Unified Modelling Language (UML), data files (e.g.

Figure 5.4: The EMC code generation pattern in combination with the active code

generation pattern of JAXB binding compiler

143 6BDesign of Grid Resource Usage System Middleware

XML files), and source code files. In an active generation system, the generated artefacts

are only affected by modification of input source. Passive code generation, on the other

hand, refers to the code generation process being one off and non-repeatable. The

generated codes are normally imported into a project to be extended by developers. As

Figure 5.4, the design of EMC uses passive code generation pattern that takes artefacts

generated by JAXB compiler. Although JAXB compiles an XML schema into a set of

Java classes, which are essential Plain Old Java Objects (POJO), these Java classes are

not customisable. Therefore the EMC is intended to generate following extensible entity

artefacts:

• An interface that contains a list of getter and setter methods;

• An abstract class contains:

o Zero or more entity fields that have “one-to-one”, “one-to-many”, “many-

to-one” or “many-to-many” relationships to current entity;

o An empty constructor;

o A constructor that takes the JAXB typed object as parameter;

o A “toJaxbBindingType” method that returns JAXB binding type;

• An entity DAO interface;

• A DAO Factory abstract class with creator methods of each generated entity DAO;

The code generation process enforced by EMC is composed of two sub-processes,

entity model generation and DAO model generation process. As Figure 5.5, the process of

entity model generation starts from loading user inputs, including a list of entity qualified

names, target full package path, and namespace-package mappings. The process tries to

load the JAXB-generated Java class into memory and process JAXB field or property

annotations by iterating every declared field in the JAXB class model. The processing of

individual field and associated annotations results in adding setter and getter methods to

the entity interface model, establishing relationships to other entities, and adding

appropriate statements to constructor and “toJaxbBindingType” methods of abstract class

model. The process of generating DAO models produces a DAO interface for each

declared entity, and an abstract DAO factory class that contains creator methods for each

generated entity DAO model. Finally these generated DAO and factory source codes are

written into a specific source code directory specified by the user inputs.

144 6BDesign of Grid Resource Usage System Middleware

Figure 5.5: Flowchart of entity model generation process

145 6BDesign of Grid Resource Usage System Middleware

Figure 5. 6: Flowchart of DAO model generation process

GRUS Core

The GRUS Core provides a development framework consisting of a package of

abstract functional and loose-coupled components, each of which exhibits well-defined

internal interfaces. A RUS service endpoint may provide custom RUS logic

146 6BDesign of Grid Resource Usage System Middleware

implementations by customising one or more functional components. As the class

diagram given in Figure 5.7, these components are categorised and organised into five

packages, each of which targets at accomplishing certain functionality. Like the design of

WLCG-RUS runtime, the key component of GRUS core framework is the command,

which interacts with other internal component implementations to fulfil RUS runtime

logics, in particular RUS insertion, extraction, modification, and deletion operations.

Therefore, the command factory class defines four creator methods to instantiate RUS

operation-specific command implementations. A command exception class is also defined

and throwable during the execution of a command instance. The GRUS core framework

reuses the Authorisation and DAO components defined in WLCG-RUS system, with

additional abstract methods defined within the Generic DAO interface mainly for data

updating and deletion. Filter component introduced within GRUS core framework can be

used in combination with RUS extraction, updating and deletion logics. There are two

types of general-purpose filters defined, the query filter and update filter. The query filter

can be further divided into two subcategories, projection-oriented filter and predicate

filter. A predicate filter is used usage records according to certain predicate expressions,

while the projection-oriented filter is used to get fragmental information set from filtered

usage records. An implementation of predicate filter acts upon a DAO object and returns

completed usage records by applying certain query terms. A SQL filter, for example, can

be triggered at RUS extraction runtime to query usage records matched by evaluation of

one or more “where” statements. The returned usage records can be further processed by

a projection-oriented filter, e.g. XPath filter, to get fragmental usage information.

GRUS Admin

The design of GRUS Admin extends WLCG-RUS and provides additional VO

management facilities for both system administrator and VO manager. As Figure 5.8, a

user that takes the role of VO manager is redirected to VO management view through

which new VO accounts can be created, managed, and deleted. These VO registration

entries are to be fed into authorisation service at RUS extraction runtime, i.e. a VO

manager can only access usage records of managed VOs. The system manager only also

access VO management facilities and have full control of all registered VO accounts in a

GRUS system.

147 6BDesign of Grid Resource Usage System Middleware

Figure 5.7: G
R

U
S C

ore R
untim

e C
om

ponent C
lass D

iagram

148 6BDesign of Grid Resource Usage System Middleware

Figure 5.8: G
R

U
S A

dm
in M

V
C

 M
odel

149 6BDesign of Grid Resource Usage System Middleware

5.4 Implementation

This section describes implementation details of composite components of GRUS

system.

5.4.1 Entity Model Compiler

Synopsis

The EMC tool is implemented as a custom Ant [177] task that is to be invoked from

the Ant build tool. The EMC task supports the following parameter attributes (Table 5-5).

Table 5-2: Parameter attribute list of EMC task

Attribute Data Type Description Required

destDir String
The root directory of source codes

or artefacts to be generated
Yes

entityModelPkg String
The package name of entity model

artefacts
Yes

daoModelPkg String The package name of DAO artefacts No

generateDAO Boolean

If specific, the DAO artefacts will be

generated and placed in specified

DAO model package.

No

The EMC task also supports the following nested element parameters:

classpath The nested <classpath> element(s) is used to specify locations of

JAXB-generated classes.

Example Syntax:
<classpath>

<pathelement path=”${classpath}”/>

<pathelement location=”lib/example.jar”/>

<classpath>

entity The nested <entity> element(s) is used to declare qualified names

of target entities. These elements are loaded by EMC task to locate

150 6BDesign of Grid Resource Usage System Middleware

JAXB-generated class models. The qualified name of an entity is a

combination of a namespace and JAXB-generated class model

name.

Example Syntax:
<entity namespace=”urn:namespace”>

Name of JAXB class name

</entity>

NsPkgMapping

The element is used to declare custom JAXB namespace-package

mappings. The syntax functions exactly as JAXB namespace-

package mappings to declare custom packages other than reasoned

from namespaces using default package name converter. Values of

this element help the EMC compiler to locate appropriate JAXB

class model. If this element is omitted, the default package name

converter of JAXB is used.

Example Syntax:
<NsPkgMapping

namespace=”urn:namespace” prefix=”prefix”

package=”package.full.path” />

Worked Example

In order to use EMC tool in Ant build tool, the EMC Java ARchive (JAR) file is

required to add class path in a build file and declare a task definition with following

statements:

Example: EMC task definition of a build file requires specifying the class path referring

to GRUS EMC package file.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

<taskdef

name=”emc”

classname=”uk.ac.brunel.services.accounting.grus.tool.emc.EMCTask”

<classpath>

 <pathelement path=”${lib.dir}/grus-emc-1.0-SNAPSHOT.jar” />

<classpath>

</taskdef>

151 6BDesign of Grid Resource Usage System Middleware

After defining the EMC task in a build file, an Ant target can be defined to generate

entity model and DAO model artefacts by invoking EMC tasks, which accepts a set of

user-defined parameters and embedded element parameters. The example below defines a

“generateEntityDAOModels” target with following statements:

Example: The following example target definition uses EMC task to generate entity

model and DAO model artefacts.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

...

<target name=”genenateEntityDAOModels”

description=”generate Java entity and DAO artefacts”>

<emc destDir=”${src.dir}”

generateDAO=”true”

entityModelPkg=”uk.ac.brunel.services.accounting.grus.datamodel.

urf”

daoModelPkg=”uk.ac.brunel.services.accounting.grus.dao.urf”>

<classpath>

<fileset dir=”${build.dir}/classes” />

<include name=”*.class” />

</fileset>

</classpath>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

UsageRecordType</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

Host</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

SubmitHost</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

UserIdentity</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

RecordIdentity</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

JobIdentity</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

Resource</entity>

152 6BDesign of Grid Resource Usage System Middleware

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

ProjectName</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

MachineName</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

Queue</entity>

<entity

namespace=”http://schema.ogf.org/urf/2003/09/urf” prefix=”urf”>

Queue</entity>

<entity

namespace=”http://schemas.ogf.org/rus/2007/09/core/types”

prefix=”rus”>

RecordHistoryType</entity>

</emc>

</target>

...

The execution of the above example results in the generation of a set of entity and

DAO model artefacts as the class model described in Figure 5.9. The example EMC task

defines eleven embedded entities, including entities defined within the OGF UR schema

and the record history entity defined within the RUS schema. For each entity, the EMC

task generates an entity model interface and an abstract class model, which provides a

runtime mapping framework between the instance of an entity model and the JAXB class

model. The EMC task also establishes relationship between entities. In this example, a

usage record entity has one-to-one relationship to the record identity entity, the job

identity entity, and record history entity, while has many-to-many relationships to other

generated entities. The DAO generation process also generated a DAO interface on per

entity basis and added an associated factory method to the abstract DAO factory class.

153 6BDesign of Grid Resource Usage System Middleware

Figure 5.9: Exam
ple class m

odels of artefacts generated by EM
C

154 6BDesign of Grid Resource Usage System Middleware

5.4.2 GRUS Core

The implementation of GRUS core is based on WiseMan (version 1.0) [178] platform,

an open source JavaTM implementation of WS-Management specification. It provides a

development framework as well as runtime environment for hosting WS-Management

compatible Web services. Rather than using third-part Web service hosting environment,

such as Axis or Java Web Service Developer Pack (JWSDP) [179], the WiseMan provides

its own hosting environment in order to support WS-Addressing[57] compatible SOAP

messaging framework and delegate incoming SOAP requests to appropriate request

handler using WS-Addressing information. The implementation of GRUS Core extended

Wiseman runtime framework and provided a set of support classes that help developers

focus on designing custom RUS solutions without dealing with low-level messaging.

These support classes provide following functionalities to the developer:

• Providing messaging facilities to marshal and unmarshal RUS messages and

GRUS extensions;

• Managing lifecycle of requests being served;

• Runtime aggregation either by applying predefined aggregate strategies or

instantiating dynamic aggregate strategy according to user inputs;

• Enumerating large volume of query results;

• Monitoring lifetime of enumeration context and perform clean up when expired;

• Filter query results;

• Mutual authentication and fine-grained access control on per usage records basis;

• Using custom XML-formatted accounting schema other than OGF UR and OGF

AUR.

As Figure 5.10, the GRUS Core consists of a set of runtime components (items in blue)

and abstract function components to be implemented by developers (items in red). The

following list provides an overview of generic runtime events:

• The GRUS servlet keeps listening to transport-level requests. At startup, the

servlet loads RUS Core schema and dependencies including GRUS extension

schema, OGF UR, OGF AUR schema, etc. and instantiates a singleton GRUS

agent instance. The servlet is responsible for serving both HTTP GET and POST

requests. Client may query schema and WSDL files through HTTP GET request,

while interrogating RUS logics through HTTP POST requests. On receiving a

RUS request, the servlet forwards incoming request to the instantiated agent

155 6BDesign of Grid Resource Usage System Middleware

instance and passes a context object that encapsulates necessary information

related to current transaction, including the client principal, GRUS handler object,

command factory object, DAO factory object, etc., by loading system

configurations.

• The GRUS agent acts as a request scheduler and maintains an internal pool for

asynchronous tasks. When a RUS request is received, the agent validates request

messages against loaded schemas. Once validated, a request dispatcher task is

scheduled and placed into the task pool. The lifetime of the request dispatcher task

is monitored by a specific timer task, which clean up the task and compose a

“wsman:timeoutFault” message returned to the client when the task did not

completed until the end of timeout value specified by the

“wsman:OperationTimeout” control header.

• GRUS request dispatcher is implemented as a callable task. Its main responsibility

is to delegate received requests to appropriate a GRUS handler implementation

specified within the context object passed by GRUS servlet.

Figure 5.10: GRUS server architecture containing runtime implementations and

interactions

156 6BDesign of Grid Resource Usage System Middleware

• A GRUS handler provides a set of internal interfaces that are triggered according

to the action specified within WS-Addressing [57] header information. Developer

may provide custom handler solution by implementing the GRUS handler

interface. A GRUS handler implementation may use support classes provided by

WiseMan framework for real-time resource usage monitoring through standard

RUS Core interfaces, or make use of utility functions supplied by GRUS support

class for persistent accounting.

• The GRUS support is the main support class used by developers to provide

support for their custom handler implementation in the context of persistent

accounting. The support class interrogates GRUS runtime component

implementations and provide utility functions.

• Finally the GRUS framework also provides a messaging framework consisting of

Java representation of RUS Core messages and GRUS header blocks. A utility

class is also provided and facilitate implementation developers to create RUS

request and response messages.

5.4.3 GRUS Annotations

According to the RUS Core specification, a RUS compatible implementation must as

least support XPath (version 1.0) [170] dialect for RUS extraction logic. In order to

bridge the gap between XPath and relational backend, GRUS Core provides an

XPath2Hql filter that implemented the Filter interface and converted standard XPath

expression into Hibernate Query Language (HQL) [180] at runtime by consuming custom

mapping of program elements of an entity model implementation to XML Schema

construct. GRUS defined a set of mapping annotations based on the Java Specification

Request 175 (JSR175) [181], a metadata facility for JavaTM programming language. The

retention policy of all defined mapping annotations is the RetentionPolicy.RUNTIME,

which allows introspection of mapping annotations by XPath2Hql Filter at runtime.

These annotations are used in an entity model implementation for:

• Customising the mapping of an entity model to a global XML element;

• Referencing an entity property to another entity model;

• Customising the mapping of a non-entity property to a simple-typed XML element;

• Customising the mapping of a non-entity component to a complex-typed XML

element;

157 6BDesign of Grid Resource Usage System Middleware

The following gives detailed normative synopsis and mapping constraints of defined

annotations.

@Entity

This class-level annotation is used to map an entity model class to an XML global

element.

Synopsis @Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

public @interface Entity{

String name();

String namespace ();

Boolean isRoot () default false;

}

Mapping The following mapping constraints must be enforced:

• This annotation is used as a class level annotation. A class model

annotated with this annotation must be an entity class that extends

one of abstract entity models generated by GRUS EMC.

• The @Entity.name () must be specified to the local name of the

target global element.

• The @Entity. namespace () must be specified to the namespace of

target global element.

• If isRoot () is true, the entity class model is mapped to a root

element.

@EntityRef

This property-level annotation is used to reference an entity property to another entity

model.

Synopsis @Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface EntityRef{

Class<?> type ()

}

158 6BDesign of Grid Resource Usage System Middleware

Mapping The following mapping constraints must be enforced:

• The @EntityRef.type() must specify the full class path of

referenced entity model class.

@Property

This annotation is a property-level annotation that is used to map a non-entity property

to an XML simple content.

Synopsis @Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Property {

String name ()default “##default”

String namespace () default “##default”

PropertyType type () default PropertyType.CHILD;

}

Mapping The following mapping constraints must be enforced:

• The @Property.name() may be specified to the local name (e.g.

attribute name or child element name) of simple content to which

the property is mapped. If @Property.name() is “##default”, the

current property is the value of XML content model mapped to the

parent entity class.

• The @Property.namespace() is used to specify the namespace of a

simple content. If @Property.namespace () is “##default”, the target

namespace of this property is same as the @Entity.namespace ().

• The @Property.type () is used to define the relationship between

the simple XML content the property mapped to and the XML

content model the parent entity class mapped to. The value of

@Property.type() must be of the PropertyType, a Java enumeration

class that defines three enumeration constants: attribute, value and

the child. The default value of @Propety.type() is the

PropetyType.CHILD.

@Component

This annotation is a property-level annotation that is used to map a non-entity property

159 6BDesign of Grid Resource Usage System Middleware

to an XML complex content.

Synopsis @Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Component{

String relativeLocationPath () default “##default”;

String name ()“##default”;

String namespace () default “##default”;

Property[] properties () default {};

}

Mapping The following mapping constraints must be enforced:

• The component property of an entity model implementation must be

a JAXB binding type.

• The @Component.name() may be specified to the local name of the

complex content to which the non-entity property is mapped to.

• The @Component.namespace() is used to specify the namespace of

a simple content. If @Property.namespace () is “##default”, target

namespace of the complex content same as the

@Entity.namespace().

• The only other additional GRUS mapping annotations allowed with

@Component is the @Property to define the mapping annotations

of properties defined within the JAXB binding type.

• An entity model implementation may alternatively use

@Component.relativeLocationPath to define the location path

relative to the context node the entity is mapped to.

The XPath language provides a common syntax and semantics mainly for addressing

parts of an XML document by modelling it as a tree of nodes, while HQL is a full object-

oriented query language. There are fundamental differences between these two languages.

First of all, the XPath language defined a group axis names that allows flexible traversal

over a tree of XML nodes. These axis names can be divided into two groups, the forward

and reverse axes. Forward axes are used to traverse a specific context node to its children,

descendants, and siblings, and reverse axes allows traversal from a specific context node

to its parents and ancestors. However HQL takes the similar grammar as SQL, and only

supports querying properties defined within a specified entity model class. In another

word, a HQL only supports successive XPath axes, such as child and attribute. Besides,

160 6BDesign of Grid Resource Usage System Middleware

XPath also defines a set of functional call expressions, including node-set functions,

string functions, boolean functions and number functions, most of which are not

supported in HQL language. Finally there are no equivalent operators in HQL to some of

those defined in XPath, in particular node-set operators and numeric operators. The

supported features of XPath implemented in XPath2Hql filter are summarised in the table

below (Table 5-3).

Table 5-3: Features of the XPath language supported in GRUS XPath2Hql filter

XPath Feature Items

Axes attribute, child

Abbreviated Axes @

Relational Operators = >=, <=, >, <, !=

Boolean Operators AND, OR, |

Node-set Function text ()

Therefore, the XPath2Hql facility enforces a set of restrictions on standard XPath

expression. These restrictions are rendered as following formulas:

[1] Expr := OrExpr

[2] OrExpr ::= AndExpr | OrExpr 'or' AndExpr

[3] AndExpr ::= EqualityExpr

 | AndExpr 'and' EqualityExpr

[4] EqualityExpr ::= NonAdditiveRelationalExpr

 | EqualityExpr '=' NonAdditiveRelationalExpr

 | EqualityExpr '!=' NonAdditiveRelationalExpr

[5] NonAdditiveRelationalExpr ::= UnionExpr

 | NonAdditiveRelationalExpr '>' UnionExpr

 | NonAdditiveRelationalExpr '<' UnionExpr

 | NonAdditiveRelationalExpr '>=' UnionExpr

 | NonAdditiveRelationalExpr '<=' UnionExpr

161 6BDesign of Grid Resource Usage System Middleware

[6] UnionExpr ::= Location

 | UnionExpr '|' LocationPath

[7] LocationPath ::= RelativeLocationPath

 | AbsoluteLocationPath

[8] AbsoluteLocationPath ::= '/' RelativeLocationPath?

 | AbbreviatedAbsoluteLocationPath

[9] RelativeLocationPath ::= Step

 | RelativeLocationPath '/' Step

 | AbbreviatedRelativeLocationPath

[10] Step ::= AxisSpecifier NodeTest Predicate*

[11] AxisSpecifier ::= AxisName '::' | AbbreviatedAxisSpecifier

[12] AxisName ::= 'attribute' | 'child'

[13] AbbreviatedAxisSpecifier ::= '@'?

[14] NodeTest ::= NameTest | NodeType '(' ')'

[15] NameTest ::= QName

[16] NodeType ::= 'text' | 'node'

[17] Predicate ::= '[' PredicateExpr ']'

[18] PredicateExpr ::= Expr

[19] AbbreviatedAbsoluteLocationPath ::= '//' RelativeLocationPath

[20] AbbreviatedRelativeLocationPath ::= RelativeLocationPath '/' Step

162 6BDesign of Grid Resource Usage System Middleware

In order to demonstrate how the XPath2Hql filter works, the following gives an

example usage of the XPath2Hql facility that enables XPath query upon relational usage

data repository. As discussed in section 5.4.1, the GRUS EMC provides an utility tool

that generates a number of abstract entity and DAO artefacts. Implementations of some of

generated artefacts with GRUS annotations are given to establish the mapping rules

between XPath and HQL query languages.

Example: UsageRecordEntity implementation with GRUS annotation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

@Entity (name=”UsageRecord”,

 namespace=”http://schema.ogf.org/urf/2003/09/urf”,

 isRoot=true)

public class UsageRecordEntity <UserEntity, HostEntity> extends

Abstract UsageRecordEntity<UserEntity, HostEntity>{

 @Component(name=”status”,

 Properties{

 @Property (name=“description”, type=PropertyType.ATTR),

 @Property (name=“value”, type=PropertyType.VALUE)})

 Status status

 @EntityRef (type=UserEntity.class)

 UserEntity user;

 @EntityRef (type=HostEntity.class)

 Host host;

Example: UserEntity implementation with GRUS annotation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

@Entity (name=”UserIdentity”,

 namespace=”http://schema.ogf.org/urf/2003/09/urf”)

public class UserEntity <UsageRecordEntity> extends Abstract

UserEntity<UsageRecordEntity>{

 @Property (name=”GlobalUserName”

 namespace=” http://schema.ogf.org/urf/2003/09/urf”

 type=PropertyType.CHILD)

163 6BDesign of Grid Resource Usage System Middleware

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

 String globalUserName;

 @Property (name=”LocalUserId”

 namespace=” http://schema.ogf.org/urf/2003/09/urf”

 type=PropertyType.CHILD)

 String localUserId;

@Component(relativeLocationPath=”ds:KeyInfo/ds:X509Data/ds:X509S

ubjectName”)

 String userDN;

...

}

Example: HostEntity implementation with GRUS annotation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

@Entity (name=”Host”,

 namespace=”http://schema.ogf.org/urf/2003/09/urf”)

public class HostEntity <UsageRecordEntity> extends Abstract

HostEntity<UsageRecordEntity>{

 @Property (name=”description”

 namespace=” http://schema.ogf.org/urf/2003/09/urf”

 type=PropertyType.ATTR)

 String description;

 @Property (name=”primary”

 namespace=” http://schema.ogf.org/urf/2003/09/urf”

 type=PropertyType.ATTR)

 Boolean isPrimary

 @Property (type=PropertyType.VALUE)

 String value;

 ...

}

A client query request must specify the XPath2Hql filter in the RUS:extract request

message as the example below. In the GRUS system, each filter has an assigned global

unique name. The XPath2Hql filter name is “urn:grus:filter:xpath-to-hql”.

164 6BDesign of Grid Resource Usage System Middleware

Example: RUS::extract request message using XPath2Hql filter

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

<s:Envelope ...>

<s:Header ...>

...

<wsa:Action mustUnderstand=”true”>

http://schemas.ogf.org/rus/2007/09/core/extractUsageRecordReque

st”>

...

</s:Header>

<s:Body ...>

<rus:ExtractUsageRecordsRequest>

<rus:Filter dialect=”urn:grus:filter:xpath-to-hql”>

/urf:UsageRecord[urf:Status=”finished”][urf:UserIdentity/ds:Key

Info/ds:X509Data/ds:X509SubjectName=”xiaoyu

chen”][urf:Host[@primary=true]=’octopussy.brunal.ac.uk’]

</rus:Filter>

</rus:ExtractUsageRecordsRequest>

</s:Body>

</s:Envelolpe>

On receiving the request message, the GRUS endpoint is create an XPath2Hql filter

instance, which is then render the XPath expression into HQL expression step-by-step:

• An XPath2Hql filter instance firstly normalise an XPath expression as:

/urf:UsageRecord[urf:Status=”finished”][urf:UserIdentity/ds:KeyIn

fo/ds:X509Data/ds:X509SubjectName=”xiaoyu

chen”][urf:Host/@primary=true][urf:Host.text()=’octopussy.brunel.

ac.uk’]

• The filter then finds the implementation of root element (i.e. urf:UsageRecord)

and generates an initial HQL statement:

SELECT FROM UsageRecordEntity AS entity

• For each XPath predicates, the filter generates conditional clauses and appends

them to the genreated HQL statement. In this example, it traverses the GRUS

annotations of the “UsageRecordEntity” class and learns mapping rules. If the

@EntityRef annotation encountered, it loads the referenced entity class into

memory and analyses in-depth mapping rules. Finally the filter generates an HQL

expression as:

165 6BDesign of Grid Resource Usage System Middleware

SELECT FROM UsageRecordEntity AS entity

 WHERE entity.status.value=’finished’ AND
 entity.user.userDN=’xiaoyu chen’ AND

 entity.host.isPrimary=true AND

 entity.host.value=’octopussy.brunel.ac.uk’

The XPath2Hql facility of GRUS is implemented based on Simple API for XPath

(SAXPath) [182] and Java APIs for XPath engine (Jaxen)[183]. SAXPath is modeled

closely on the structure used by Simple API for XML (SAX)[184], and involves two

generic interfaces, including a reader that parses an XPath expression and a handler that

receives handles parse events received from the reader. Jaxen is an open source XPath

engine that leverages various object models, such as Document Object Model

(DOM)[185], XML Object Model (XOM)[186], and so on. Jaxen uses SAXPath and

provides default SAXPath reader and handler implementation that parse textual XPath

expression and build Jaxen expression trees that can walk through different object models.

As the components and runtime events outlined in Figure 5.11, to start the XPath2Hql

process, an instance of the XPath2Hql factory class that implements the FilterFactory

Figure 5.11: The components and runtime events implemented based on Jaxen and

SAXPath for rendering an XPath expression to HQL statement.

166 6BDesign of Grid Resource Usage System Middleware

interface is used to create an instance of XPath2Hql filter that implements the Filter

interface. The XPath2Hql filter instance wraps a SAXPath reader object provided by

Jaxen. When the filter instance is invoked, the reader parses textual XPath expressions

and triggers one of several callback methods implemented within in the XPath2Hql

handler. These methods, such as “startXPath”, “startAbsoluteLocationPath”,

“startRelativeLocationPath” and so on, are implemented by the default Jaxen handler and

are overridden by the XPath2Hql handler to render the Jaxen expression trees into HQL

expression trees by processing mapping annotations of entity model classes. During the

parsing process, when an unsupported Axis or XPath expression is detected, the

XPath2Hql handler stops the parsing process and throws an UnsupportedAxisException

and XPathSyntaxException. On successful completion, the XPathHandler instance

returns an HQL expression that is used by XPath2Hql filter instance to query usage

records through the “findByQueryTerm()” interface of an GenericDAO object.

Figure 5.12: Class Diagram of the VO Management Implementation

167 6BDesign of Grid Resource Usage System Middleware

5.4.4 GRUS Admin

The implementation of GRUS Admin reuses and extends the WLCG-RUS Admin Web

application with additional VO management facilities.

VO Management

In consistent to other management functionalities implemented in WLCG-RUS Admin,

the VO management is implemented based on MVC pattern. As illustrated in Figure 5.12,

the implementation of VO management consists of a VO controller, a VO model class,

and a set of view pages. An instance of VO model encapsulates meta-information of a VO

as a registry entry, including the VO name, owned VO manager, registration date, and

status. Similar to Host management facility implemented within WLCG-RUS Admin, the

VO controller provided four “do-GET” methods in the host controller, which allows a VO

manager to “list”, “create”, “edit”, and “show” managed VO accounts. Each “do-GET”

method has also has a view page that provides a Web-based interface to end users. The

implementation of VO management defined distinguished authorities for VO managers

and the system administrator. For example, a system administrator has full view

authorities of all VO accounts registered to a GRUS endpoint, while a VO manager can

only view managed VO accounts. Besides, the status of newly created VO account is set

to “disabled” and can only be “enabled” by the system administrator.

5.4.5 User Interface

Like the design of WLCG-RUS system, the GRUS provides a command-line interface

for interacting RUS service endpoint and a Web-based interface for GRUS system

administration.

Command Interface

The implementation of GRUS command interface extends WLCG-RUS command-

line client and allows a user to view configuration information of a RUS service endpoint,

in particular supported aggregate strategies, operation-dialect pairs, and mandatory usage

record elements, insert, query, modify, delete and audit usage records through standard

168 6BDesign of Grid Resource Usage System Middleware

Figure 5.13: VO manager view of GRUS Admin Web application

Figure 5.14: System administrator view of GRUS Admin Web application

169 6BDesign of Grid Resource Usage System Middleware

RUS core and GRUS extension interfaces. The Java client is wrapped by a shell script,

which accepts arguments as shown in Appendix D.2. At least one of the set of options: list,

insert, extract, modify, delete, and audit must be used every time along with the target

service endpoint URI. An example command is as shown below to query aggregate

strategy list supported by a GRUS endpoint.

grus -s <service-endpiont-uri> –list --aggregate-strategies

Web Interface

The GRUS Web interface provided enhanced VO management facilities for a VO

manager and system administrator. As the screen shot presented in Figure 5.13, a VO

manager is redirected to the VO management view where a VO account can be added or

removed. By default, a newly created VO account is not enabled until the system

administrator approved its validity. Once approved, the VO manager may query usage

records belong to owned VOs through a RUS service endpoint. The GRUS system

administrator has full view and control of all VO accounts registered. As illustrated in

Figure 5.14, the system administrator can edit, delete, create, activate and deactivate a

VO account through the administrator view. The presentation of GRUS Admin Web

application shares the same layout of WLCG-RUS Admin except replacing WLCG-RUS

logo with a new GRUS logo.

5.5 Summary

This chapter presented a middleware solution, the GRUS, which aims at assisting

developers in implementing a RUS compatible accounting service. The GRUS design is

based on the JISC-proposed accounting framework and consists of four main components:

the GRUS EMC, GRUS Core, GRUS annotations, and GRUS Admin Web applications.

The EMC is implemented as a utility class that is used to generate abstract entity models

and DAO objects. Generated artefacts provide runtime mapping between implementation

of entity models and JAXB binding types, and are to be implemented by developers and

bounded to custom relational backends through ORM mapping configurations. The

GRUS Core provides RUS messaging framework and contains a set of abstract functional

170 6BDesign of Grid Resource Usage System Middleware

components for authorisation, data access, filtering and runtime aggregation. A RUS

service endpoint may implement one or more GRUS Core components to provide a

custom RUS implementation. GRUS Core also provides implementations of some

components, such as the XPath2Hql filter that enables query relational usage data using

standard XPath expression, and the dynamic aggregate strategy that is mainly used to

summarise query results according to the grouping criteria specified by a user. In order to

save development effort, a RUS implementation can reuse functionalities implemented by

a helper class, the GrusSupport. GRUS framework defined a set of mapping annotations

that are used to customise mapping rules of entity program elements to XML schema

constructs. These annotations are embedded within an entity model implementation and

fed into XPath2Hql filter that renders standard an XPath expression to HQL statement.

The GRUS Admin extended functions implemented by WLCG-RUS Admin with

additional VO management facilities allowing a VO manager or system administrator to

manage owned or system-wide VO accounts. The GRUS software stacks1 are hosted at

the SourceForge.net as open source software.

1 http://grus.sourceforge.net/

171 7BConclusions

Chapter 6

Conclusions

This thesis presented systematic researches on Grid accounting including reviews of

accounting in the Grid, prototypical development of RUS system in such multi-Grid

environment as WLCG, and design and implementation of GRUS middleware. This

chapter concludes the research results of this thesis and recommended future works on

standards and possible further implementations according to the evolvement of those

standards. Relevant publications of this chapter include [188].

172 7BConclusions

6.1 Research Outcomes

This thesis presented a three-year research on design and implementation of Grid

accounting systems in multi-Grid environments. The following summarises research

outcomes including lessons learned and reflections of research outputs.

6.1.1 Lessons Learned

Throughout researches conducted in this thesis towards developing a standard and

interoperable Grid accounting system, there were many problems encountered mainly due

to four main factors: lacking of comprehensive understanding of accounting requirements;

diverse project-specific requirements; confusion of interoperability and interoperation;

tremendous duplicate re-engineering tasks. This section summarises lessons learned

during the course of this research.

At the beginning of this research, Grid accounting along with its concept and usage

scenarios was new to many. Although there were many definitions and concepts proposed,

they were defined based on certain use cases identified in a project-specific manner.

Lacking of comprehensive understanding of accounting requirements on heterogeneous

usage scenarios across Grid project boundaries was the first and most significant issue in

building interoperable accounting systems. Early efforts on developing Grid accounting

systems focused on diverse Grid-specific requirements and resulted in the complexity of

enabling interoperability between these Grid accounting systems. However the

emergence of ever-increasing collaborations requires resource sharing across Grid

infrastructures and provisioning a multi-Grid view of resource usage.

In order to cope with the interoperability issue, significant efforts have been put on

standardisation. In 2003, the first standard accounting data format was proposed by OGF

UR working group, aiming at provisioning common representation usage information at

batch job level. The first RUS specification emerged in 2005 and re-designed in 2007 to

provide standard interface definitions of a Grid accounting system. These two standards

contributed to data and service interoperability between heterogeneous accounting

systems. However the adoption of these standards is not as easy as it seems to be. This is

because of three main reasons. First of all, the current status of both OGF UR and OGF

173 7BConclusions

RUS specifications are not mature enough to accommodate various accounting usage

scenarios. Besides, the evolving nature of these standards slows down the adoption

process. Finally and most importantly, the enablement of interoperation is far more than

defining interoperable accounting data representation and service interfaces. It also

involves a lot of re-engineering tasks, which can break current accounting process

enforced by pre-existing accounting systems. This could be better explained by the

WLCG accounting process. The current WLCG accounting process involves metering

and streaming accounting data from three Grid infrastructures, each of which has custom

accounting solution deployed. The interoperation between these accounting systems is

enabled by three different communication protocols (section 4.1). The migration to be

OGF standard compatible would result in tremendous re-engineering tasks for each pre-

existing accounting systems as well as communication protocols and risking existing

accounting processes. Therefore such migration becomes a hard decision unless there is

an obvious reason and a consistent solution to minimise re-engineering tasks while ensure

data consistency.

6.1.2 Reflections

This thesis starts from reviewing current practices by interviewing stakeholders from

different groups, including international and national Grid service providers, regional

Grid service providers, campus Grid service providers, standard bodies, accounting

solution developers, and end users, through face-to-face meetings, Tele-conferences, and

questionnaires. During the three-month interview, a list of use cases were identified and

categorised into four major usage scenarios (section 3.2). Such review that has not done

by others before contributed to a comprehensive view of Grid accounting, including its

technical concept, classifications of accounting models, and technical requirements. It

also provides systematic reviews of current accounting solutions deployed in production

Grid projects as well as standardisation efforts. The review ends up with a proposed

accounting framework that abstracts common accounting requirements while

customisable to accommodate advanced accounting purposes in a standard compatible

manner. In the final review report, a list of prioritised recommendations were proposed to

JISC to fund further efforts on standardisation and development tasks for fulfilment of the

functionalities of the proposed accounting framework. These recommendations along

with the proposed accounting framework were completely accepted by JISC such that

174 7BConclusions

following funding calls were released exactly as recommended.

The thesis further described the WLCG-RUS prototype system (section 4), an OGF-

RUS implementation based on a loosely-coupled component architecture, which is

similar to the proposed accounting framework. The WLCG-RUS prototype system is

designed to provide an alternative, but standard compatible, solution for sharing WLCG

accounting data across Grid infrastructures to GOC. The deployment of WLCG-RUS

system in the WLCG, a production multi-Grid environment, successfully proved the

concept that standardisation is of great importance in the interoperability among

heterogeneous Grid systems. However the development of WLCG-RUS system also

exposed the inefficiency of current standards. The main issue is that both OGF UR and

OGF RUS standards were designed for job accounting purpose, therefore does not

support the WLCG aggregate accounting models. Besides, there are some common usage

properties missing in the OGF UR standard, such as VO name and executing site

information, which are important for VO- and site-level accounting.

Based on the experiences gained during the development of WLCG-RUS prototype

system, the thesis finally presented the GRUS middleware (section 5), which provides a

full implementation of features defined within the proposed accounting framework [132].

Rather than provide a homogeneous accounting solution, the GRUS is intended to

provide a development platform for custom implementation of a RUS service endpoint.

By using GRUS middleware, existing accounting systems can be easily migrated to be

standard compatible with minimum re-engineering efforts, while ensuring back-

compatibility to existing accounting processes. Given the evolving nature of accounting

standards, the GRUS is designed in a schema-independent manner. In this sense, the

GRUS middleware is adaptive to changes of existing accounting schemas as well as

emergence of new accounting schemas.

Finally the research work of this thesis also contributed to the evolution of accounting

standards. In 2006, the first draft of the Aggregate Usage Record (AUR) presentation

specification [158] was submitted to the OGF UR working group. It was then refined

according to initial user feedbacks in 2007. At the end of 2007, a new RUS core

specification [171] was also proposed based on the implementation of GRUS middleware,

making it more flexible to enable various accounting models.

175 7BConclusions

6.2 Recommendations

This section recommends possible future works for both standardisation and

development.

6.2.1 Recommendations on Standards

In order to investigate the effectiveness of existing OGF UR [137] standard, the OGF

UR working group conducted an evaluation according to user experiences [188] inputs

from production Grid projects that uses the OGF UR format for accounting data

representation. Based on initial evaluation results, there are some significant issues

observed. First of all, the OGF UR format focuses on usage representation of the finest

UoW, the “batch” job. Besides, there are still many base properties absent, typically

executing site and general VO information. Although these properties can be defined

using OGF UR extension framework, they are semantically incorrect. Furthermore using

UR extension framework undermines interoperability. Moreover usage metrics defined in

OGF UR format 1.0 are not enough to support accounting of resource types other than

computational resource, such as data, network and application service resources. Finally

most of commercial Grid or cluster systems are using industry accounting data model, for

example, the metric sub-model as defined within the DMTF’s Common Information

Model (CIM) [86]. It is difficult make these industry standard adopters to use OGF UR to

achieve interoperability.

Based on feedbacks received from user experiences, the OGF UR working group

defined a new roadmap towards OGF UR 2.0 in OGF 21 conference. As illustrated in

Figure 6.1, the OGF UR 2.0 proposed a hierarchical data model with a core information

model that abstract common properties including record creator, resource/service

consumer, time period and charges information. This core model forms the basis of usage

information models of computational, storage and network resource usage records. A

composite usage information model is also proposed to representation consumption of a

single UoW, which could be a single batch job, a workflow or service transaction. The

summary/aggregate usage information model is used to represent total resource usage and

costs by summarising multiple composite records. Definitions of various data models in

the UR 2.0 roadmap will reuse existing usage metrics and properties defined in current

176 7BConclusions

OGF UR standard where appropriate to ensure backward compatibility.

Although the newly proposed RUS Core specification solved the issues related to

system performances and fault tolerance by introducing enumerating query results, the

specification cannot be finalised unless other issues are solved. One of the significant

issues would be enabling higher flexibility on the RUS service interface definitions so

that a RUS service endpoint is able to accept emerging OGF UR 2.0 compatible record

instances. Runtime aggregation is another important feature that should be enabled along

with RUS insertion or extraction logics. This can be realised either through specific

aggregation service interface definitions or normative header information as proposed by

GRUS messaging framework. Finally, the usefulness of RUS updating and deletion

should be carefully evaluated. If these two service interfaces are not necessary for

common use cases, they should be removed from RUS Core specification and defined as

an optional or advanced RUS features.

Figure 6.1: The Diagram of UR 2.0 Zoo.

6.2.2 Recommendations on Development

The GRUS framework implemented RUS Core messaging and exhibits an extensible

framework for developers to provide custom RUS solutions. With the evolution of RUS

177 7BConclusions

Core specification, the GRUS messaging framework is likely to be changed so as to adapt

to possible changes of the RUS Core specification. Besides, the current helper class, the

GRUS support, can be used by a RUS implementation for passive accounting models

only on relational backend. In the future, possible extensions may be implemented to

provide supports for implementing active accounting models as well depending on user

feedbacks. Other possible further works that can be done based on GRUS framework

include advanced aggregate strategy for OGF UR 2.0 summary record model, filter

implementations that support emerging XUpdate Query facility [195], and etc.

178 8BAppendix A

Appendix A

Stakeholder Reviews

The following lists the review results of use cases in production Grid projects through

interviewing different group of stakeholders.

A.1 National Grid Service

NGS aims to provide computational and data based resources and facilities to UK researchers,

independent of resource or researcher location. This is currently achieved using resources (both

compute and data) at four core sites (RAL, Oxford, Leeds and Manchester), and a growing number

of partner and affiliate sites, together with the provision of software and services, to enable a

consistent method of access to any resource from any location. As resources may have different

'owners', each of whom may have different charging policies, it is essential there is a reliable

mechanism to account for all aspects of use, in an environment with dynamically varying

resources and services.

The NGS already has a sophisticated accounting system in operation and needs to extend the

functionality and scope to meet its objectives and address future service requirements. There is a

strong desire to use a standard approach maximizing interoperability with other services, and

enabling straightforward deployment on sites wishing to partner with the NGS. Major stakeholders

to the NGS in the context of accounting and usage monitoring are the grid operations support

centre, software developers and standards bodies, current and potential partner and affiliate sites

(including campus grids and SRIF funded clusters), funding bodies and end users.

Key requirements

• Performance

• Interoperability – clearly defined APIs or protocols to enable exchange of

information with:

o partner/affiliate sites and dataset providers

179 8BAppendix A

o large scale grid projects such as GridPP/WLCG

• Ease of deployment

• Ability to trace individual jobs; legal requirement for auditability to an individual

• Ability to view historical usage data at user, VO and resource levels

• Metrics:

o Required – CPU time, Wall time, permanent storage, data services

o Desirable – executable, memory usage, network usage, QoS

o Not generally of concern – temporary storage

• Resource allocation and policing

• Custom charge rates for QoS, e.g. advanced reservation

• Integration with user/project management system

• Integrity of accounting data through automated monitoring/notification systems

Key concerns/issues

• RUS querying currently not functional

• Current accounting methodologies and practices are batch job centric

• Interfaces alone should be standardized, allowing site-specific implementation

• Significant investment in current system – would need to see clear benefit in

change

• Partner/affiliates not wishing to entrust their data to a centralized site

A.2 Grid for Particle Physics

GridPP is a collaboration of particle physicists and computer scientists from the UK

and CERN, with distributed compute resources spanning 17 UK institutions. GridPP has

a number of key stakeholders – it is the UK’s contribution to worldwide Large Hadron

Collider (LHC) Grid (WLCG), overseeing the Tier 1 facility at RAL and the Tier 2

organisations of ScotGrid, NorthGrid, London and SouthGrid, and also contributes to the

interdisciplinary project EGEE - Enabling Grids for E-sciencE.

LCG is a production-level grid and GridPP has a contractual obligation to provide

accounting data as part of the LCG project. At present over 150 sites worldwide are

publishing accounting data to the Grid Operations Centre (GOC) at RAL making

aggregation, scalability and validation of accounting data critical concerns.

180 8BAppendix A

Key requirements

• Performance and scalability

• Ability to view historical usage data at VO, resource, country and EGEE region

levels

• Metrics:

o Required – CPU (normalized to reflect “work done”)/Wall time

o Desirable – permanent storage

o Not generally of concern – memory usage, network usage

• Interoperability across international production grids

• Integrity of accounting information through automated monitoring/notification

systems

• Ability to modify records e.g. SiteName change does not break historical querying

Key concerns/issues

• Significant investment in current system – 150 sites publishing via APEL/R-GMA

• Scalability of RUS – XML only useful as an exchange format

• CPU normalization and benchmarking needs to be addressed

• Sharing of accounting data across different grids poses difficulties in terms of data

protection

• Charging mechanism should be separate and require digital signatures and

auditability.

A.3 Campus Grids

The accounting requirements of campus grids across the UK academic sector range

from simple “best effort” usage statistics from condor pools to sophisticated job-level

accounting across a range of disparate resources. In cases where departmental resources

or SRIF-funded hardware are available to the grid there is a more urgent requirement for

accounting as a direct consequence of the fEC model (see Other Compute Services, to

follow). Less mature campus grids can see immediate benefit from the development of a

clearly defined accounting framework and tools to prevent further duplicity of effort.

181 8BAppendix A

Key requirements

• Performance

• Interoperability with NGS / other grids but flexibility to allow site-specific access

control policies

• Ability to trace individual jobs

• Ability to view historical usage data at user, project, School, and resource levels

• Resource allocation and policing

• Charging mechanisms for fEC (especially HPC component)

• Metrics:

o Required – CPU time, Wall time, permanent storage

o Desirable – memory usage, full job command line

o Not generally of concern – temporary storage, network usage

Key concerns/issues

• Performance of XML database

• Interfaces alone should be standardized, allowing site-specific implementations

• RUS aggregation needs attention

• Wide range of job managers: Linux/Windows Condor, Windows Compute Cluster,

PBS, TORQUE, LSF

• Solution should be lightweight and not be tied to a specific project

A.4 Regional Grids

Most regional grids currently operate fairly homogeneous systems at different sites

and thus can provide the service with a limited range of software such as a single batch

system, and therefore do not, as yet, require the same degree of flexibility as NGS or

some campus grids.

Key requirements

• Contractual obligations to provide accounting data to specific large scale projects,

e.g. GridPP

• Interoperability with campus grids

• Ability to trace individual jobs

182 8BAppendix A

• Ability to view historical usage data at user, project/VO, University, and resource

levels

• Resource allocation and policing

• Devolution of allocation management to PIs

• Charging mechanisms required in the future

• Required metrics:

o Required – CPU time, Wall time

o Desirable – permanent storage

o Not generally of concern – temporary storage, network usage

Key concerns/issues

• Data protection

A.5 Other Compute Services

There is an increasing number of universities providing or starting to provide large

scale local compute services, particularly after the recent SRIF funding programmes. In

many cases this has resulted in a ‘standalone’ service, typically for local high

performance computing (HPC), even at sites where there is or has been campus grid

activity, such as Oxford, Cambridge and UCL. Many such services are influenced by fEC

and thus need to manage and report on usage. While it may be relatively simple for such

services to use resource management or batch engine software to address the accounting

requirements, it may be at the cost of interoperability or extensibility for future services.

Nevertheless some such services are developing their own accounting and user

management systems not tied to a specific supplier, thus providing greater long-term

flexibility, but also requiring significant development effort. Thus the objectives for the

grid communities, in providing a standard approach for usage data metering, storage and

sharing, could be of great value to these other specialist services.

It is recognised that where significant effort has already been invested and the service

requirements fully met, such as the national HPC services, there is unlikely to be a good

reason for changing existing practices in the short-term. However it would be hoped that

such services would see the long-term benefit of a co-ordinated approach, ideally

resulting in convergence in development. It is known for example that the developers of

183 8BAppendix A

the ‘SAFE’ system used by the national HPC services, are developing a generator for

converting SAFE-specific usage information into OGF-UR records, and are in the process

of implementing a RUS service. It should be made clear that the UR format is not useful

only for grid environments – it is a standard format for storing job usage information,

which may be used for accounting on any system.

Key requirements

• Job tracing

• Historical usage monitoring at project and user levels

• Management of project resources (sub-allocation)

• Automated policing

• Integration with user management system

• Accuracy of accounting data critical – charging

• Auditability

 Key concerns/issues

• Independent contractual arrangements regarding data protection

• Significant investment in current accounting system(s)

A.6 End user

Key requirements

• Intuitive interface, preferably integrated with user management interface

• Job tracing

• Historical usage monitoring at VO and user levels

• Management of project/VO resources (sub-allocation)

• Confidence in the accuracy of accounting data – critical if being charged

A.7 Standard Bodies

There appears to be general support in the grid communities for the OGF-UR and

RUS specifications as standards for storing and sharing usage information. OMII-Europe,

who is concerned with interoperability between different Grid systems through the implementation

184 8BAppendix A

of common standard interfaces, are evaluating the implementation of RUS interfaces for the gLite,

Globus and UNICORE middleware stacks. To this end, preliminary design documents have been

prepared for the SGAS, DGAS and UNICORE accounting systems.

Key requirements

• Acceptance and rollout of OGF usage record format

• Support for development and adoption of aggregated usage record format

• Support for development and adoption of storage usage record format

• Support for development and adoption of network usage record format

• Understanding of more complex use cases

• Hierarchical and P2P RUS deployments

 Key concerns/issues

• Site implementations not strictly standards compliant

• Standards not flexible enough to cater for individual accounting requirements

• Standards too bloated for individual requirements

• Issues regarding RUS specification querying interface

• Is Xpath querying expressive enough?

A.8 Data Service Providers

There are a large number of data based services funded by JISC, including the

MIMAS and EDINA services. There is an increasing interest in the ‘grid enablement’ of

these services, which includes the management of security through grid mechanisms; the

ability to combine and analyse data in distributed datasets; and the ability to access grid

based (compute) resources dynamically at periods of high loads. There have been a

number of grid enablement pilot projects including Gemeda, GEMS (1 and 2), GESSE

and SEE-GEO but there are few if any production grid based data services.

Authentication and authorisation are key issues in this context – the services currently use

ATHENS or Shibboleth, rather than grid certificate authentication.

Most of the data services are required to provide accounting details to JISC on a

regular basis as defined by SLAs. The statistics reported are primarily concerned with the

number of accesses and searches, on a per site basis, as well as service availability. In

185 8BAppendix A

addition the service providers need to ensure that accesses are restricted to licensed users

(whether individual or site based), so the ability to identify the user of the service is

crucial.

Thus most of the data based services are required to provide service usage accounting,

rather than resource usage accounting typically required by grid (and other compute

based) services; However there are some specialist services, such as the satellite image

service, which do have significant resource usage requirements.

While the NGS, for example, does see a long term need for service usage accounting,

recognising that such services may be provided through NGS itself, even though the data

is hosted elsewhere, there is little in the present standards framework to address this type

of accounting. It is not clear to the reviewers how best this should be addressed. It should

in principle be possible to define such metrics, but whether it is appropriate or desirable

to extend the UR specification, for example, for this purpose is certainly questionable: the

UR has been designed with resource based accounting in mind, not service accounting.

In addition, it is clear that many of the current services are well established, and the

mechanisms used for collecting the statistics frequently closely integrated with the service

itself. The adoption of a new approach for the collection of the statistics across a range of

services would probably not be considered favourably. Thus, the reviewers believe it is

outside the scope of this review to provide tangible recommendations in this context,

although it is felt that such issues should be addressed through further exploratory

projects in setting up ‘grid enabled’ services, and subsequently establishing new grid

based services as required, rather than adapting accounting mechanisms in existing

services.

With respect to some services such as the satellite image service, very large amounts

of data must be stored, analysed, and possibly downloaded, and JISC may request

information on resource usage to demonstrate a requirement of the service, in order to

justify funding streams. The focus is on service access to justify the provision of the

service. It is likely that there will be an increase in resource usage associated with these

and other data based services, particularly when utilising multiple distributed datasets –

something that has not easily been possible previously. This is likely to result in

additional accounting requirements, although it does depend (at least partly) on the

186 8BAppendix A

funding bodies - for example on whether JISC continues to focus on service usage

accounting, with little direct interest in details of compute, storage and network usage.

However if the service is grid based, with significant storage, network traffic, and high

compute requirements possibly at hosts determined dynamically, the owner of the

resources will need to be able to charge for use of these resources. Thus it seems essential

in the long-term that a mechanism is developed to account for all of these activities. The

approaches adopted in the grid accounting context should be applicable to these types of

services, bearing in mind the work and time still required to address usage of resources

involving storage and network activities.

Key requirements

• Data security, authentication/authorization

• Accounting in workflows: single access/instance may involve multiple services

• Metrics:

o Required: number of logins, searches, amount of data downloaded, nature of

data downloaded

o Desirable: permanent storage (resource provider end) and network usage

if significant downloads are performed

o Not generally of concern : temporary storage

 Key concerns/issues

• Charging model does not fit easily in job-level accounting schema

• Distribution of datasets presents difficulties with respect to licensing

• Grid enablement still in its infancy

187 9BAppendix B

Appendix B

Accounting Schema Mapping and Extensions

Table A-1: NGS UAS Accounting Schema mapping to OGF-UR

OGF UR NGS UAS Schema

Metric Context Node (XML) Metric Name
Base Data Type

(SQL)

//urf:RecordIdentity@urf:recordId RecordId VARCHAR

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR

//urf:UserIdentity/ds:KeyInfo/ds:X509Data/

ds:X509SubjectName
X509SubjectName VARCHAR

//urf:JobName JobName VARCHAR

//urf:Status Status VARCHAR

//urf:WallDuration WallDuration NUMBER

wallTimeRequested NUMBER

//urf:CpuDuration CpuDuration NUMBER

cpuTimeRequested NUMBER
//urf:EndTime pbsLogDate DATE

//urf:StartTime timeGlobusSubmitted DATE

//urf:MachineName MachineName VARCHAR

//urf:SubmitHost SubmitHost VARCHAR

//urf:Processors Processors NUMBER

188 9BAppendix B

Table A-2: APEL Accounting Schema mapping to OGF-UR

OGF UR Schema APELSchema

Metric Context Node (XML) Metric Name
Base Data Type

(SQL)

//urf:RecordIdentity@urf:recordId RecordIdentity VARCHAR

//urf:RecordIdentity@createTime
MeasurementDate DATE

MeasurementTime TIME

//urf:JobIdentity/urf:GlobalJobId LCGJobID VARCHAR

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR

//urf:Useridentity/GlobalUserName LCGUserID VARCHAR

//urf:WallDuration
ElapsedTime VARCHAR

ElapsedTimeSeconds INT

//urf:CpuDuration
BaseCpuTime VARCHAR

BaseCpuTimeSeconds INT

//urf:EndTime

StopTime VARCHAR

StopTimeUTC VARCHAR

StopTimeEpoch INT

//urf:StartTime

StartTime VARCHAR

StartTimeUTC VARCHAR

StartTimeEpoach INT

//urf:Host ExecutingCE VARCHAR

//urf:Memory
MemoryReal INT

MemoryVirtual INT

//urf:TimeInstant
EventDate DATE

EventTime TIME

189 9BAppendix B

Table A- 3: DGAS Accounting Schema mapping to OGF-UR

OGF UR Schema DGAS Schema

Context Node (XML) Metric Name
Base Data Type

(SQL)

//urf:RecordIdentity@urf:recordId id BIGINT

//urf:RecordIdentity@createTime date DATETIME

//urf:Charge amount SMALLINT

//urf:JobIdentity/urf:GlobalJobId LCGJobID VARCHAR

//urf:JobIdentity/urf:LocalJobId lrmsId VARCHAR

//urf:UserIdentity/ds:KeyInfo/ds:X509Data/

ds:X509SubjectName
acl VARCHAR

//urf:UserIdentity/urf:GlobalUserName gridUser VARCHAR

//urf:UserIdentity/urf:LocalUserId localUserId VARCHAR

//urf:WallDuration wallTime INT

//urf:CpuDuration cpuTime INT

//urf:EndTime end INT

//urf:StartTime start INT

//urf:MachineName gridResource VARCHAR

//urf:Memory
pmem INT

vmem INT

190 9BAppendix B

Table A-4: Gratia Accounting Schema mapping to OGF-UR

OGF UR Schema Gratia Schema

Metric Context Node (XML) Metric Name
Base Data

Type (SQL)

//urf:RecordIdentity@urf:recordId recordId BIGINT

//urf:RecordIdentity@createTime
CreateTime DATETIME

CreateTimeDescription VARCHAR

//urf:JobIdentity/urf:GlobalJobId GlobalJobId VARCHAR

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR

//urf:Jobidentity/urf:ProcessId ProcessIds VARCHAR

//urf:JobName JobName VARCHAR

//urf:JobName@urf:description JobNameDescription VARCHAR

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR

//urf:Useridentity/GlobalUserName GlobalUserName VARCHAR

//urf:UserIdentity/ds:KeyInfo@ds:id KeyInfoId VARCHAR

//urf:UserIdentity/ds:KeyInfo KeyInfoContent BLOG

//urf:Charge Charge FLOAT

//urf:Charge@urf:unit ChargeUnit VARCHAR

//urf:Charge@urf:formula ChargeFormula VARCHAR

//urf:Charge@urf:description ChargeDescription VARCHAR

//urf:Status Status VARCHAR

//urf:Status@urf:description StatusDescription VARCHAR

//urf:WallDuration WallDuration VARCHAR

//urf:WallDuration@urf:description WallDurationDescription VARCHAR

//urf:CpuDuration
CpuUserDuration VARCHAR

CpuSystemDuration VARCHAR

//urf:CpuDuration@urf:description
CpuUserDurationDescription VARCHAR

CpuSystemDurationDescription VARCHAR

191 9BAppendix B

//urf:NodeCount NodeCount VARCHAR

//urf:NodeCount@urf:metric NodeCountMetric VARCHAR

//urf:NodeCount@urf:description NodeCountDescription VARCHAR

//urf:Processors Processors INT

//urf:Processors@urf:metric ProcessorsMetric VARCHAR

//urf:Processors@urf:consumptionRate ProcessorsConsumptionRate FLOAT

//urf:Processors@urf:description ProcesorsDescription VARCHAR

//urf:StartTime StartTime DATETIME

//urf:StartTime@urf:description StartTimeDescription VARCHAR

//urf:EndTime EndTime DATETIME

//urf:EndTime@urf:description EndTimeDescription VARCHAR

//urf:MachineName MachineName VARCHAR

//urf:MachineName@urf:description MachienNameDescription VARCHAR

//urf:SubmitHost SubmitHost VARCHAR

//urf:SubmitHost@urf:description SubmitHostDescription VARCHAR

//urf:Queue Queue VARCHAR

//urf:Queue@urf:description QueueDescription VARCHAR

//urf:Host Host VARCHAR

//urf:Host@urf:description HostDescription VARCHAR

192 9BAppendix B

Table A-5: Custom Metrics as Extensions to OGF-UR

Fr
am

ew
or

k

D
es

cr
ip

tio
n

A
cc

ou
nt

in
g

U
N

IC
O

R
E

E
xt

en
si

on
s

E
xt

en
si

on

E
xt

en
si

on

E
xt

en
si

on

E
xt

en
si

on

E
xt

en
si

on

O
G

F-
U

R

G
ra

tia

D
G

A
S

SG
A

S

A
PE

L

//u
rf

:R
es

ou
rc

e

LCGUserVO UserVO VOName VOName VOName
Virtual organisation

identity

Reportable

VOName

VO Name that is

actually when

reporting the usage

records

 ProbeName

The probe identity

that meters resource

usage

ExecutingSite SiteName SiteName SiteName SiteName

The site name on

which the job

recorded is

executed

 iBenchType

(Integer)

performance

benchmark

specification type

The GLUE host

benchmark (SI00)
SpecInt2000 iBench

 fBenchType

(float) performance

benchmark

specification type

The GLUE host

benchmark (SF00)
SpecFloat2000 fBench

 userGroup
The user group

name

Full Qualified

Attribute Name
UserFQAN userFQAN

 localGroup Local group name

 remoteHlr

Home Local

Resource server

URL

193 9BAppendix B

Table A-6: WLCG summary schema mapping to proposed OGF-AUR draft

OGF AUR Schema WLCG Summary Schema

Metric Context Node (XML)
Base Data

Metric Name
Type (SQL)

//urf:RecordIdentity@urf:recordId recordId BIGINT

CreateTime DATETIME
//urf:RecordIdentity@createTime

CreateTimeDescription VARCHAR

//urf:JobIdentity/urf:GlobalJobId GlobalJobId VARCHAR

//urf:JobIdentity/urf:LocalJobId LocalJobID VARCHAR

//urf:Jobidentity/urf:ProcessId VARCHAR ProcessIds

//urf:JobName JobName VARCHAR

//urf:JobName@urf:description JobNameDescription VARCHAR

//urf:UserIdentity/urf:LocalUserId LocalUserId VARCHAR

//urf:Useridentity/GlobalUserName GlobalUserName VARCHAR

//urf:UserIdentity/ds:KeyInfo@ds:id KeyInfoId VARCHAR

//urf:UserIdentity/ds:KeyInfo KeyInfoContent BLOG

//urf:Charge Charge FLOAT

//urf:Charge@urf:unit ChargeUnit VARCHAR

//urf:Charge@urf:formula ChargeFormula VARCHAR

//urf:Charge@urf:description ChargeDescription VARCHAR

//urf:Status Status VARCHAR

//urf:Status@urf:description StatusDescription VARCHAR

//urf:WallDuration WallDuration VARCHAR

//urf:WallDuration@urf:description WallDurationDescription VARCHAR

CpuUserDuration VARCHAR
//urf:CpuDuration

CpuSystemDuration VARCHAR

VARCHAR CpuUserDurationDescription
//urf:CpuDuration@urf:description

VARCHAR CpuSystemDurationDescription

194 10BAppendix C

Appendix C

Use Cases

B.1 WLCG-RUS Use Cases

Use Case Insert usage records

Description
Publish resource usage information to WLCG RUS through

standard RUS::insertUsageRecords interface.

Actors Host

Assumptions
• Requestor holds a valid grid certificate;

• Accounting data to be uploaded are correct and trustworthy;

Steps

1. check host’s permission to execute “RUS::insertUsageRecord”

operation on per usage record basis;

2. validate usage record inputs against mandatory elements

configuration;

3. render standard usage record format to appropriate data format;

4. save usage records into database;

5. compose response message with operation results;

Variations
5. if trying to insert job usage records into summary record

database, appropriate aggregate strategy must be applied

Non-Functional
Security: authorisation and data privacy

Performance: usage records should be inserted in bulk if possible.

Issues 1. Trying to insert usage records that already exist;

195 10BAppendix C

Use Case List mandatory usage record elements

Description
Query mandatory element configuration of a specific WLCG RUS

instance.

Actors Host, Administrator, Site Manager, Grid User, VO Manager

Assumptions 1. Requestor holds a valid grid certificate;

Steps

1. Find out mandatory usage record element configuration;

2. Compose RUS::listMandatoryUsageRecordElements response

message;

Variations

Non-Functional

Issues Mandatory usage record element configuration infoset not found

Use Case Create a host account

Description Register a new host account

Actors Site Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;

3. Create a new host account

4. Email requestor a confirmation message

Variations

Non-Functional
Security: only registered user with an active account is allowed to

create a new host account

Issues 1. The registry entry of host account already exists;

196 10BAppendix C

Use Case Delete a host account

Description Remove a host account from registry entry

Actors Site Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;

3. Find out host account on requestor’s account;

4. Remove the host account from registry;

Variations

Non-Functional
Security: only registered user and the owner of an active host

account is allowed to remove a new host account

Issues Trying to delete an host account that is publishing data

Use Case View host account information

Description View registration details of host accounts

Actors Site Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to register;

2. Check validity of requestor’s account;

3. Find out host account on requestor’s account;

4. Display host account details;

Variations

Non-Functional
Security: administrator can view all host account details, while site

manger can only view owned host account details;

Issues The registry entry of specific host account does not exist.

197 10BAppendix C

Use Case Activate a host account

Description Activate a host account

Actors Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;

2. Find host account on requestor’s account;

3. Activate the host account;

4. Email host owner an activation message;

Variations

Non-Functional
Performance: activation should be completed in reasonable short

period.

Issues The registry entry of specific host account does not exist.

Use Case Edit host account

Description Edit host account’s details

Actors Site manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to edit a host account;

2. Edit host account;

3. Set activeness of current host account to false;

4. Email host owner a confirmation message

Variations

Non-Functional
Security: Administrator can edit all user account details while

account owner can edit its own user account details;

Issues

198 10BAppendix C

Use Case User account registration

Description Register a new user account

Actors Site manager

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to execute user registration;

2. Create a new user account

3. Email registered user confirmation message

Variations

Non-Functional
Performance: user registration should be completed in reasonable

short period.

Issues 1. A registry entry of user account already exists;

Use Case Delete a user account

Description Remove a user account from registry

Actors Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission;

2. Find user account;

3. Remove the user account from registry;

4. Email deleted user;

Variations

Non-Functional
Security: only administrator is allowed to remove a new user

account

Issues Trying to delete a non-existent user account

199 10BAppendix C

Use Case View user account information

Description View detailed user account information

Actors Site Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission to view user account(s)

2. Find user account;

3. Display user account details;

Variations

Non-Functional
Security: Administrator can view all user accounts’ details, while

site manager can only view its own account details.

Issues The registry entry of specific user account does not exist.

Use Case Activate a user account

Description Activate a host account

Actors Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;

2. Find user account;

3. Activate the user account;

4. Email account owner an activation message;

Variations

Non-Functional
Performance: activation should be completed in reasonable short

period.

Issues The registry entry of specific user account does not exist.

200 10BAppendix C

Use Case Edit a user account

Description Update a user account’s details

Actors Administrator, Site Manager

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission ;

2. Find user account;

3. Update user account details;

4. Email account owner a confirmation message;

Variations

Non-Functional
Security: administrator can edit any user accounts, while site

manager can edit its own account only.

Issues The registry entry of specific user account does not exist.

201 10BAppendix C

B.2 GRUS Use Cases

Use Case List supported aggregate strategies

Description Query supported aggregate strategies of a RUS service endpoint

Actors Administrator, Site manage, VO manager, Grid User

Assumptions 1. Requestor holds a valid grid certificate;

Steps
1. Find out supported aggregate strategies configuration;

2. Compose a response message and return to client;

Variations

Non-Functional

Issues Supported dialects configuration not found

Use Case Query job usage records

Description
Query OGF UR instances through the RUS::extractUsageRecord

interface of a RUS service endpoint

Actors Administrator, Site manage, VO manager, Grid User

Assumptions 1. Requestor holds a valid grid certificate;

Steps

1. Check specified query dialect against supported dialects of a

RUS service endpoint;

2. Get query results that match query term from underlying

persistent storage;

3. Rendering query results into OGF UR instances;

4. Check user permission on individual OGF UR instance;

5. Compose a response message and send it back to client;

Variations
5. Compose a response message and returns a context for

enumeration

Non-Functional

Security: authorisation and data privacy

Performance: enumerating query results if the value of maximum

elements is specified within the request message.

Issues Supported dialects configuration not found

202 10BAppendix C

Use Case Query aggregate usage records

Description
Query OGF AUR instances through the RUS::extractUsageRecord

interface of a RUS service endpoint

Actors Administrator, Site manage, VO manager, Grid User

Assumptions 1. Requestor holds a valid grid certificate;

Steps

1. Check specified query dialect against supported dialects of a

RUS service endpoint;

2. Get query results that match query term from underlying

persistent storage;

3. if underlying accounting data type is job usage records, apply

aggregate strategy specified in the request message;

4. Rendering aggregate results into OGF AUR instances;

5. Check user permission on individual OGF AUR instance;

6. Compose a response message and send it back to client;

Variations
6. Compose a response message and returns a context for

enumeration

Non-Functional

Security: authorisation and data privacy

Performance: enumerating query results if the value of maximum

elements is specified within the request message.

Issues Supported dialects configuration not found

203 10BAppendix C

Use Case Audit

Description Query history of a specific usage record

Actors Host, Administrator, Site Manager, VO manager

Assumptions 1. Requestor holds a valid grid certificate;

Steps

1. Get usage record identified by record identity specified in the

request message;

2. Check user’s permission on the usage record;

3. Get record history associate with the usage record;

4. Compose response message and return it to the client;

Variations

Non-Functional Security: authorisation and data privacy

Issues The requested usage record does not exist.

Use Case create a VO account

Description Add a new VO account

Actors Host Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check user’s permission;

2. Check mandatory VO account information;

3. Create a new VO account;

4. Email client a confirmation message

Variations

Non-Functional
Security: only registered user with an active account is allowed to

create a new VO account

Issues 1. The VO account already exists;

204 10BAppendix C

Use Case View VO account

Description View account information of a specific created VO

Actors VO Manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps
1. Check user’s permission;

2. Display VO account details on screen;

Variations

Non-Functional
Security: administrator can view all host account details, while a VO

manger can only view an owned VO account;

Issues The specific VO account does not exist.

Use Case Edit VO account(s)

Description Edit a VO account information

Actors VO manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

1. Check requestor’s permission to edit a VO account;

2. Edit VO account details;

3. Set activeness of current VO account to false;

4. Email VO owner a confirmation message

Variations
Security: Administrator can edit all VO account details while

account owner can edit its own user account details;

Non-Functional

Issues VO manager is not allowed to change owner;

205 10BAppendix C

Use Case Activate a VO account

Description
Query mandatory element configuration of a specific WLCG RUS

instance.

Actors Administrator

Assumptions Client hold a valid grid certificate;

Steps

5. Check user’s permission;

6. Find VO account;

7. Activate the VO account;

8. Email VO owner an activation message;

Variations

Non-Functional
Performance: activation should be completed in reasonable short

period.

Issues The VO account does not exist.

Use Case Delete a VO account

Description
Query mandatory element configuration of a specific WLCG RUS

instance.

Actors VO manager, Administrator

Assumptions Requestor hold a valid grid certificate;

Steps

5. Check user’s permission;

6. Find VO account;

7. Remove the VO account;

8. Email VO account owner;

Variations

Non-Functional Security: VO manager can only remove a owned VO account

Issues Trying to delete a non-existent user account

206 11BAppendix D

Appendix D

Command Line Parameters

C.1 WLCG-RUS Command Line Parameters

July 2007(User Commands) July 2007(User Commands)

NAME

 wlcgrus - manual page

DESCRIPTION

 usage: wlcgrus [-h<help> | -list | -insert]

 [-s<service-endpiont>]

 WLCG-RUS version 0.1 CLI, copyright 2007 Brunel.

 -h,--help

 print usage information

 -insert,--insert

 insert usage records

 -list,--list

 list mandatory elements

 --max-elements

 The maximum number of usage records per insertion

 -s,--service-endpoint

207 11BAppendix D

 service endpoint address

 usage: wlcgrus [-h<help> | -list | -insert]

 [-s<service-endpiont>]

 WLCG-RUS version 0.1 CLI, copyright 2007 Brunel.

SEE ALSO

 The full documentation for WLCG RUS is maintained as a Text

info manual.

 If the info and WLCG RUS programs are properly installed at

your site, the command

 man wlcgrus

 should give you access to the complete manual.

 July 2007(User Commands)

208 11BAppendix D

C.2 GRUS Command Line Parameters

June 2009(User Commands) June 2009(User Commands)

NAME

 grus - manual page

DESCRIPTION

 usage: grus [-h<help> | -list | -insert | -extract | -

modify | -delete]

 [-s<service-endpiont>] [-t<timeout>]

 GRUS version 1.0 CLI, copyright 2009 Brunel.

 -audit,--audit

 extract record history

 -delete,--delete

 delete usage records

 -extract,--extract

 extract usage records

 -h,--help

 print usage information

 -insert,--insert

 insert usage records

 -list,--list

 list GRUS configuration information

 -modify,--modify

 modify usage records

 -s,--service_endpoint

 service endpoint address

209 11BAppendix D

 -t,--timeout <arg>

 timeout in millisecs

 for more instructions, see http://grus.sourceforge.net

 usage: grus [-h<help> | -list | -insert | -extract | -

modify | -delete]

 [-s<service-endpiont>] [-t<timeout>]

 GRUS version 1.0 CLI, copyright 2009 Brunel.

 for more instructions, see grus.sourforge.org

SEE ALSO

 The full documentation for invalid is maintained as a

Texinfo manual.

 If the info and invalid programs are properly installed at

your site,

 the command

 man grus

 should give you access to the complete manual.

 September 2009(User Commands)

210 12BAppendix E

Appendix E

Schemas

D.1 GRUS Data Type Definitions

<?xml version="1.0" encoding="utf-8" ?>

<!--***

Copyright @ 2007-2009 Brunel University. All rights reserved.

Permission to copy, display, perform, modify and distribute

the GRUS extensions to OGF RUS-Core WS-I rendering specification.

**-->

<xsd:schema

targetNamespace="http://schemas.brunel.ac.uk/services/accounting/grus/typ

es"

xmlns:grus="http://schemas.brunel.ac.uk/services/accounting/grus/types"

 xmlns:xacml="urn:oasis:names:tc:xacml:1.0:policy"

 xmlns:urf="http://schema.ogf.org/urf/2003/09/urf"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The data type and elements defined in this schema document provides

header extensions to the RUS::insertUsageRecords and

RUS::extractUsageRecords messages as defined in OGF RUS-Core WS-I

rendering specification. Using headers defined here allows runtime

aggregation during the execution of RUS insertion and extraction

operations.

211 12BAppendix E

</xsd:documentation>

</xsd:annotation>

<xsd:import namespace="http://schema.ogf.org/urf/2003/09/urf"

 schemaLocation="urf.xsd" />

<xsd:element name="AggregateStrategies">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="grus:AggregateStrategy" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="AggregateStrategy"

 type="grus:AggregateStrategyType" />

<xsd:complexType name="AggregateStrategyType">

<xsd:sequence>

<xsd:element name=”Interval”>

<xsd:simpleContent>

<xsd:

<xsd:element name="Entity"

 type="grus:EntityType"

 maxOccurs="unbounded"

 minOccurs="0" />

</xsd:sequence>

<xsd:attribute name="AggregateStrategyId"

 type="xsd:anyURI"

 use="optional" />

</xsd:complexType>

<xsd:complexType name="EntityType">

<xsd:simpleContent>

<xsd:extension base="xsd:QName">

<xsd:anyAttribute namespace="##any" processContents="lax"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:element name="ListSupportedAggregateStrategiesRequest"

 type="grus:ListSupportedAggregateStrategiesRequestType" />

212 12BAppendix E

<xsd:complexType name="ListSupportedAggregateStrategiesRequestType">

<xsd:sequence>

<xsd:any namespace="##other"

 minOccurs="0"

 maxOccurs="unbounded"

 processContents="lax" />

</xsd:sequence>

</xsd:complexType>

<xsd:element name="SupportedAggregateStrategy">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Operation" type="xsd:anyURI" />

<xsd:element name="AggregateStrategy"

 type="grus:AggregateStrategyType"

 minOccurs="1"

 maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ListSupportedAggregateStrategiesResponse"

 type="grus:ListSupportedAggregateStrategiesResponseType" />

<xsd:complexType name="ListSupportedAggregateStrategiesResponseType">

<xsd:sequence>

<xsd:element ref="grus:SupportedAggregateStrategy"

 minOccurs="0"

 maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

213 12BAppendix E

D.2 GRUS Service Interface Definitions

<?xml version="1.0" encoding="UTF-8"?>

<definitions
xmlns:tns="http://schemas.brunel.ac.uk/services/accounting/grus"

xmlns:types="http://schemas.brunel.ac.uk/services/accounting/gru
s/types"

xmlns:wsen="http://schemas.xmlsoap.org/ws/2004/09/enumeration"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:rus="http://schemas.ogf.org/rus/2007/09/core/types"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"

targetNamespace="http://schemas.brunel.ac.uk/services/accounting/g
rus">

<!--**
* Import third-party WSDL files *
***-->

<import
namespace="http://schemas.xmlsoap.org/ws/2004/09/enumeration"
location="enumeration.wsdl" />
<import
namespace="http://schemas.ogf.org/rus/2007/09/core/types"
location="rus-core.wsdl" />
<!-- ***
* Type definitions *
** -->
<types>
<xsd:schema
targetNamespace="http://schemas.brunel.ac.uk/services/accounting/g
rus"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:types="http://schemas.brunel.ac.uk/services/accounting/grus/
types">

<xsd:import
namespace="http://schemas.ogf.org/rus/2007/09/core/types"
schemaLocation="../schemas/rus-core.xsd" />

<xsd:import
namespace="http://schemas.brunel.ac.uk/services/accounting/grus/ty
pes"
schemaLocation="../schemas/grus.xsd" />

<xsd:import
namespace="http://schema.ogf.org/urf/2006/07/aur"
schemaLocation="../schemas/aur.xsd" />

214 12BAppendix E

</xsd:schema>
</types>

<!--**
* Message Definitions *
***-->
<message name="ListSupportedAggregateStrategiesRequestMessage">
<part
name="ListSupportedAggregateStrategiesRequest"
element="types:ListSupportedAggregateStrategiesRequest" />
</message>

<message name="ListSupportedAggregateStrategiesResponseMessage">
<part name="ListSupportedAggregateStrategiesResponse"
element="types:ListSupportedAggregateStrategiesResponse" />
</message>

<!--***
* Port Type Definitions *
**-->

<portType name="GridResourceUsageServicePortType">
<operation name="ListSupportedAggregateStrategies">
<input
message="tns:ListSupportedAggregateStrategiesRequestMessage"
wsa:Action="http://schemas.brunel.ac.uk/services/accounting/grus/l
istSupportedAggregateStrategies" />
<output
message="tns:ListSupportedAggregateStrategiesResponseMessage"
wsa:Action="http://schemas.brunel.ac.uk/services/accounting/grus/l
istSupportedAggregateStrategiesResponse" />
</operation>
</definitions>

215 13BBibliography

Bibliography

[1] H. H. Goldstine, and A. Goldstine, “The Electronic Numerical Integrator and

Computer (ENIAC)”, 1946 (reprinted in The Origins of Digital Computers: Selected

Papers, Springer-Verlag, New York, 1982, pp. 359-373)

[2] Moore’s Law- Wikipedia, http://en.wikipedia.org/wiki/Moores_law

[3] M. V. Wilkes. “Automatic Digital Computers”, New York: John Wiley & Sons. pp. 305

pages. QA76.W5 1956.

[4] N. Beth Stern, “From Eniac to UNIVAC: An Appraisal of the Eckert-Mauchy

Computers”, ISBN 0932376142.

[5] R. R. Schaller, “Moore's law: past, present and future”, Spectrum IEEE, Vol.34, Jun.

1997, pp.52-59.

[6] T. Aita and Y. Husimi, “Fitness landcape of biopolymers and efficient optimization

strategy in evolutionary molecular engineering”, Proc. of 6th Int. Sympo. on A-life and

Robotics, Vol.6, 2001, pp.365-368.

[7] S. Lee, L. R. Hook, “Towards the Design of a Nanocomputer”, Proc. of Electrical and

Computer Engineering Conference 2006 (CCECE ‘06’), May 2006, pp.74-77.

[8] S. E. Lysheyski, “Nanotechnology, quantum information theory and quantum

computing”, Proc. of 2nd IEEE Nanotechnology 2002 (IEEE-NANO 2002), 26-28 August,

2002, pp.309-314.

[9] C. Joach, “Towards a molecule-computer? Resources and Technologies to compute

within a single molecule”, Proc. of 31th Solid-State Circuits Conference 2005 (ESSCIRC

216 13BBibliography

2005), France, September 2005, pp.27-28.

[10] Flynn’s taxonomy-Wikipedia, http://en.wikipedia.org/wiki/Flynn’s_taxonomy

[11] M. J. Flynn, “Some Computer Organizations and Their Effectiveness”, IEEE Trans.

on Computers, Vol. C-21, pp.948-960, 1972.

[12] G. Amdahl, “The validity of the single processor approach to achieving large-scale

computing capabilities”, Proc. of AFIPS Spring Joint Computer Conference, Atlantic City,

N. J. AFIPS Press, pp.483-485.

[13] M. C. August, G. M. Brost, C. C Hsiung and A. J. Schiffleger, “Cray X-MP: the birth

of a supercomputer”, Trans. on IEEE computer, vol. 22, pp. 45-52, January 1989.

[14] T. Blank, “The MasPar MP-1 architecture”, Proc. of 35th IEEE Computer Society

International Conference, pp.20-24, March 1990.

[15] S. F. Reddaway, “DAP - a distributed array processor”, Proc. of the 1st annual

symposium on Computer Architecture, ACM Press New York, Gainesville, Florida, pp 61-

65, 1973.

[16] Top 500 Supercomputing Sites. http://top500.org

[17] B.Chapman, G. Jost, R. vanderPas, D.J. Kuck, Using OpenMP: Portable Shared

Memory Parallel Programming. The MIT Press, October 31, 2007.

[18] M. Snir, S. Otto; S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete

Reference. The MIT Press, 1995.

[19] P. L. Springer, “PVM Support for Clusters”, Proc. of International Conference on

Cluster Computing, 2001, pp.183-186.

[20] P. Uthayonpas, T. Angskun, and J. Maneesilp, “On the Building of the Next

Generation Integrated Environment for Beowulf Clusters”, Proc. of International

Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), pp.139-144,

2002

217 13BBibliography

[21] C. Motorola, The Basics Book of X.25 Packet Switching, 2nd edition, Addison

Wesley Press, 1992.

[22] T. Berner-Lee and R. Cailliau, “WorldWideWeb: Proposal for a HyperText Project”,

1990. Available: http://www.w3.org/Proposal.html

[23] R. Fielding, J. Getty, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,

“Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616, Jun. 1999. Available online at:

http://www.ietf.org/rfc/rfc2616.txt

[24] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specification version 2”, RFC

1831, August, 1995. Available online at: http://tools.ietf.org/html/rfc1831

[25] W. Grosso, Java RMI, O’Reilly, October 2001. ISBN: 1-56592-452-5

[26] OMG, “Common Object Request Broker Architecture: Core Specification”, March

2004, available: http://www.omg.org/docs/formal/04-03-12.pdf

[27] T. L. Thai, “Learning DCOM”, O’Reilly Press, April 1999. ISBN:978-1-56592-581-

6

[28] D. Box, D. Ehnebuske, G. Kakivaya, et. al, “Simple Object Access Protocol 1.1”,

W3C, May 2000. Available online at: http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/

[29] T. Bellwood, “UDDI version 2.04 API specification”, OASIS UDDI TC, July 2002,

Availabe online at: http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf

[30] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Service

Description Language 1.1”, W3C, March 2001, Available online at:

http://www.w3.org/TR/wsdl

[31] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Architecture,

1998. ISBN: 978-1558604759.

218 13BBibliography

[32] Internet System Consortium, http://www.isc.org/

[33] I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing Architecture,

The Elsevier Press, November 2003. ISBN: 978-1558609334.

[34] NIST, “Definition of Cloud Computing”, NIST, Available online at:

http://csrc.nist.gov/groups/SNS/cloud-computing/

[35] J. Taylor, “Defining e-Science”, Research Council e-Science Core Programme, 2000.

Available online at: http://www.nesc.ac.uk/nesc/define.html

[36] M. Atkinson, “What is e-Science?”, e-Science Envoy, 2001, Available online at:

http://www.rcuk.ac.uk/escience/default.htm

[37] ATLAS Experiment, Available online at: http://cern.ch/atlas

[38] CMS Experiment, Available online at: http://cmsdoc.cern.ch.

[39] LHCb Experiment, Available online at: http://cern.ch/lhcb

[40] ALICE Experiment, Available online at: http://aliceinfo.cern.ch

[41] Large Hadron Collider - Wikipedia, online available at:

http://en.wikipedia.org/wiki/Large_Hadron_Collider

[42] S. Bethke, M. Calvetti, H. F. Hoffmann, D. Jacobs, M. Kasemann, and D. Linglin,

“Report of The Steering Group of the LHC Computing Review”, CERN-LHCC/2001-

2004, February 2001.

[43] T. Anticic, F. Carena and et.al, “The ALICE Data-Acquisition System”, Record of

IEEE Nuclear Science Symposium Conference2005, October, 2005.

[44] J. Troska, E. Corrin, Y. Kojevnikov, T. Rohlev and J. Varela, “Implementation of the

Timing, Trigger and Control System of the CMS Experiment”, Trans. of IEEE Nuclear

219 13BBibliography

Science, Vol. 53, June 2006, pp.834-837.

[45] R. Stoica, M. Frank, N. Neufeld, and A. C. Smith, “Data Handling and Transfer in

the LHCb Experiment”, Trans. of IEEE Nuclear Science, vol. 55, February 2008, pp. 272-

277.

[46] G. Lehmann, J. Bogaerts, M. Ciobotaru, E. Palencia Cortezon and et. al, “The

DataFlow System of the ATLAS Trigger and DAQ”, Proc. of Computing in High Energy

and Nuclear Physics Conference 2003 (CHEP03), La Jolla, California, March, 2003.

[47] I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid: Enabling

Scalable Virtual Organisation”, International Journal of High Performance Computing

Application, 15(3):200-222, 2001.

[48] I. Foster, H. Kishimoto, et. al, “Open Grid Service Architecture version 1.5”, Open

Grid Forum OGSA working group, GFD-I.080, Jul. 2006. Available online at:

http://forge.gridforum.org/projects/ogsa-wg

[49] D. Booth, H. Hass, et. al, “Web Service Architecture”, W3C, Feb. 2004. Available

online at: http://www.w3.org/TR/ws-arch/

[50] T. Banks, “Web Service Resource Framework version 1.2”, OASIS WSRF TC, May

2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-

02.pdf

[51] S. Graham, “Web Service Base Notification 1.3”, OASIS WSN TC, Oct. 2006.

Available online at http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-

os.pdf

[52] DMTF, “Web Service for Management Specification”, Distributed Management Task

Force, DSP0226, Feb. 2008. Available online at:

http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf

[53] I. Foster, T. Maguire, and D. Snelling, “OGSATM WSRF Basic Profile 1.0”, OGF

OGSA working group, May, 2006. Available online at:

http://forge.gridforum.org/projects/ogsa-wg

220 13BBibliography

[54] S. Graham and J. Treadwell, “Web Services Resource Properties version 1.2”, OASIS

WSRF TC, Apr. 2006, Available online at: http://docs.oasis-open.org/wsrf/wsrf-

ws_resource_properties-1.2-spec-os.pdf

[55] L. Srinivasan, and T. Banks, “Web Service Resource Lifetime version 1.2”, OASIS

WSRF TC, Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-

ws_resource_lifetime-1.2-spec-os.pdf

[56] T. Maguire, D. Snelling, and T. Banks, “Web Services Service Group version 1.2”,

OASIS WSRF TC, Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-

ws_service_group-1.2-spec-os.pdf

[57] D. Box, E. Christensen, et. al, “Web Service Addressing 1.0”, W3C, Aug. 2004.

Available online at: http://www.w3.org/Submission/ws-addressing/

[58] L. Liu, and S. Meder, “Web Services Base Faults version 1.2”, OASIS WSRF TC,

Apr. 2006. Available online at: http://docs.oasis-open.org/wsrf/wsrf-ws_base_fault-1.2-

spec-os.pdf

[59] J. Alexander, D. Box, et. al, “Web Services Transfer”, W3C, Sept. 2006. Available

online at: http://www.w3.org/Submission/WS-Transfer/

[60] J. Alexander, D. Box, et. al, “Web Services Enumeration”, W3C, Mar. 2006.

Available online at: http://www.w3.org/Submission/WS-Enumeration/

[61] D. Box, L. Felipe, et. al, “Web Services Eventing”, W3C, Mar. 2006. Available

online at; http://www.w3.org/Submission/WS-Eventing/

[62] M. Pereira, O. Tatebe, et. al, “Resource Namespace Service Specification”, OGF

RNS working group, May, 2006. Available online at:

http://forge.gridforum.org/sf/projects/ogsa-naming-wg

[63] A. Grimshaw, and D. Snelling, “Web Service Naming”, OGF RNS working group,

Dec. 2006. Available online at: http://forge.gridforum.org/projects/ogas-naming-wg

221 13BBibliography

[64] A. Nadalin, M. Goodner, et. al, “Web Service Secure Conversation”, OASIS Web

Services Secure Exchange TC, Mar. 2007. Available online at: http://docs.oasis-

open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html

[65] A. Nadalin, M. Goodner, et. al, “Web Service Trust”, OASIS Web Service Secure

Exchange TC, Mar. 2007. Available online at: http://docs.oasis-open.org/ws-sx/ws-

trust/200512

[66] A. Nadalin, C. Kaler, et. al, “Web Service Security: SOAP Message Security version

1.1”, OASIS Web Service Security TC, Feb. 2006. Available online at: http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

[67] T. Imamura, B. Dillaway, and E. Simon, “XML Encryption Syntax and Processing”,

W3C XML Encryption Working Group, Dec. 2002. Available online at:

http://www.w3.org/TR/xmlenc-core/

[68] M. Bartel, J. Boyer, et. al, “XML Signature Syntax and Processing”, W3C, Jun. 2008.

Available online at: http://www.w3.org/TR/xmldsig-core/

[69] D. Snelling, D. Merril. And A. Savva, “OGSA Basic Security Profile 2.0”, OGF

OGSA working group, Jul. 2008. Available online at:

http://forge.gridforum.org/projects/ogsa-wg

[70] D. Merrill, “OGSA Basic Security Profile 2.0 –Secure Addressing”, OGF OGSA

working group, Oct. 2007. Available online at: http://forge.gridforum.org/projects/ogsa-

wg

[71] D. Merrill, “Secure Communication Profile 1.0”, OGF OGSA working group, Dec.

2007. Available online at: https://forge.gridforum.org/sf/go/artf6105

[72] I. Foster, A. Grimshaw, et. al, “OGSA Basic Execution Service Version 1.0”, OGF

OGSA Basic Execution Service working group, Nov. 2008, Available online at:

http://forge.gridforum.org/sf/projects/ogsa-bes-wg

222 13BBibliography

[73] D. K. Fellows, and A. Papaspyrou, “OGSA Resource Selection Services Candidate

Set Generator Specification”, OGF OGSA Resource Selection Services working group,

Mar. 2009, Available online at: http://forge.gridforum.org/sf/projects/ogsa-rss-wg

[74] A. Anjomshoaa, F. Brisard, et. al, “Job Submission Description Language (JSDL)

specification Version 1.0”, OGF Job Submission Description Language working group,

Nov. 2005, Available online at: http://forge.gridforum.org/sf/projects/jsdl-wg/

[75] D. K. Fellows, A. Papasyrou, “OGSA Resource Selection Services Basic Execution

Planning Service Specification”, OGF OGSA Resource Selection Services working group,

Available online at: http://forge.gridforum.org/sf/projects/ogsa-rss-wg

[76] M. Antonioletti, M. Atkinson, et. al, “Web Services Data Access and Integration-The

Core(WS-DAI) Specification Version 1.0”, OGF Data Access and Integration Services

Working Group, Jun. 2006. Available online at: https://forge.gridforum.org/projects/dais-

wg

[77] M. Antonioletti, B. Collins, et. al, “Web Service Data Access and Integration-The

Relational Realisation(WS-DAIR) Specification Version 1.0”, OGF Data Access and

Integration Services Working Group, Jun. 2006. Available online at:

https://forge.gridforum.org/projects/dais-wg

[78] M. Antonioletti, S. Hastings, et. al, “Web Service Data Access and Integration-The

XML Realisation(WS-DAIX) Specification Version 1.0”, OGF Data Access and

Integration Services Working Group, Jun. 2006. Available online at:

https://forge.gridforum.org/projects/dais-wg

[79] M. Antonioletti, C. B. Aranda, et. al, “Web Services Data Access and Integration-The

RDF(S) Realization (WS-DAIRDFS) RDF(S) Querying Specification Version 0.9”, OGF

Data Access and Integration Services Working Group, May. 2009. Available online at:

https://forge.gridforum.org/projects/dais-wg

[80] M. E. Gutierrez, and A. G. Perez, “Web Services Data Access and Integration-The

RDF(S) Realization (WS-DAI-RDF(S)) Ontology Specification”, OGF Data Access and

Integration Services Working Group, Arp. 2009. Available online at:

223 13BBibliography

https://forge.gridforum.org/projects/dais-wg

[81] G. Klyne, J. J. Carroll, and B. McBride, “Resource Description Framework (RDF):

Concepts and Abstract Syntax”, W3C Semantic Web Activity, Feb. 2004. Available online

at: http://www.w3.org/RDF/

[82] I. Mandrichenko, W. Allcock, and T. Perelmutov, “GridFTP v2 Protocol

Description”, OGF Grid File Transfer Protocol Working Grid Working Group, May 2005.

Available online at: http://forge.gridforum.org/projects/gridftp-wg/

[83] N. P. C. Hong, M. Drescher, et.al, “OGSA Byte Input/Output Specification V1.0”,

OGF ByteIO Working Group, Oct. 2005. Available online at:

https://forge.gridforum.org/projects/byteio-wg/

[84] M. Antonioletti, M. Drescher, et, al., “OGSA Data Movement Interface Specification

Version 1.0”, OGF Data Movement Interface Working Group, Aug. 2008. Available

online at: http://forge.gridforum.org/sf/projects/ogsa-dmi-wg

[85] R. Aydt, D. Gunter, et. al., “A Grid Monitoring Architecture”, OGF Grid Monitoring

Architecture Working Group, Jul. 2001. Available online at: http://www-

didc.lbl.gov/GGF-PERF/GMA-WG/

[86] DMTF, “Common Information Model (CIM) Infrastructure”, Distributed

Management Task Force Inc., May 2009. Available online at:

http://www.dmtf.org/standards/cim/

[87] JSR 255, “JavaTM Management Extensions (JMX) Specification version 2.0”, Sun

Microsystems, Dec. 2007, Available online at: http://www.jcp.org/en/jsr/detail?id=255

[88] S. ANDREOZZI, S. Burke, et. al, “GLUE Specification version 2.0”, OGF GLUE

Working Group, Mar. 2009. Available online at:

http://forge.gridforum.org/sf/projects/glue-wg

[89] R. Butler, and T. J. Genovese, “Certificate Policy Model”, OGF Grid Certificate

Policy Working Group, Jun. 2003. Available online at

http://forge.gridforum.org/sf/projects/gcp-wg

224 13BBibliography

[90] D. Chadwick, “Functional Components of Grid service Provider Authorisation

Service Middleware”, OGF Grid Authorization Working Group, Apr. 2008.

[91] T. Moses, “eXtensible Accesss Control Markup Language (XACML) Version 2.0”,

OASIS eXtensible Access Control Markup Language (XACML) TC, Feb. 2005.

[92] E. Maler, P. Mishra, and R. Philpott, “Assertions and Protocols for the OASIS

Security Assertion Markup Language (SAML) Version 2.0”, OASIS Security Assertion

Markup Language TC”, Feb. 2007. Available online at: http://saml.xml.org/saml-

specifications

[93] L. Smarr, and C. E. Catlett, “Metacomputing”, Communications of the ACM, 35(6),

June 1992. pp.44-52.

[94] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems”.

Journal of Computer Science and Technology, 21(4), 2006. pp513-520

[95] t. DeFanti, I. Foster, et. al, “Overview of the I-WAY: Wide Area Visual

Supercomputing”. International Journal of Supercomputing Applications, 10(2), 1996.

[96] W. Allcock, J. Bresnahan, et. al, “The globus extensible input/output system (XIO): a

protocol independent IO system for the grid”, Proc. of 19th IEEE International Parallel

and Distributed Processing Symposium, Apr. 2005. pp.8

[97] K. Czajkowski, I. Foster, et. al. “A Resource Management Architecture for

Metacomputing Systems”, Proc. IPPS/SPDP '98 Workshop on Job Scheduling Strategies

for Parallel Processing, pg. 62-82, 1998.

[98] Globus, “The Globus Resource Specification Language v1.0”, online available at:

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html

[99] M. Ripeanu, I. Foster, “A Decentralized, Adaptive, Replica Location Service”, 11th

IEEE International Symposium on High Performance Distributed Computing (HPDC-11),

Edinburgh, Scotland, July 24-16, 2002.

225 13BBibliography

[100] B. Allcock, J. Bester, et. al, “Data Management and Transfer in High Performance

Computational Grid Environments”, Parallel Computing Journal, Vol. 28 (5), May 2002,

pp. 749-771.

[101] H. Stockinger, A. Samar, et. al, “File and Object Replication in Data Grids”,

Journal of Cluster Computing, 5(3)305-314, 2002.

[102] M. Antonioletti, M.P. Atkinson, et. al., “OGSA-DAI Status Report and Future

Directions”, Procs. of the UK e-Science All Hands Meeting 2004, September 2004.

[103] X. Zhang and J. Schopf, “Performance Analysis of the Globus Toolkit Monitoring

and Discovery Service, MDS2”, Procs. of the International Workshop on Middleware

Performance (MP 2004), part of the 23rd International Performance Computing and

Communications Workshop (IPCCC), April 2004.

[104] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Architecture for

Computational Grids”, Proc. 5th ACM Conference on Computer and Communications

Security Conference, pp. 83-92, 1998.

[105] J. Novotny, S. Tuecke, and V. Welch, “An Online Credential Repository for the

Grid: MyProxy”, Procs. of the Tenth International Symposium on High Performance

Distributed Computing (HPDC-10), IEEE Press, August 2001.

[106] Ian Foster, Carl Kesselman, Laura Pearlman, et.al. “The Community Authorization

Service: Status and Future”, Procs. of Computing in High Energy Physics 03 (CHEP '03),

2003.

[107] The Virtual Data Toolkit web site http://vdt.cs.wisc.edu

[108] B. Seqal, L. Robertson, F. Gaqliardi, and F. Carminati, “Grid Computing: the

European Data Grid Project”, Conf. of IEEE Nuclear Science Symposium, Lyon, France.

[109] I. Bird, L. Robertson, and J. Shiers, “Deploying the LHC computing grid-the LCG

service challenges”, appears in Local to Global Data Interoperability-Challenges and

226 13BBibliography

Technologies, Jun. 2005. pp.160-165.

[110] gLite Middleware. http://cern.ch/glite.

[111] Portable Batch System, http://www.pbsgridworks.com/Product.aspx?id=11

[112] D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", Grid Computing:

Making The Global Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[113] M. Q. Xu, “Effective metacomputing using LSF Multicluster”, Proc. of First

IEEE/ACM International Symposium on Cluster Computing and the Grid, Australia,

May 2001. pp.100-105.

[114] C. Aiftimiei, P. Andreetto, et. al., “Design and Implementation of the gLite CREAM

Job Management Service”, INFN Technical Note, May, 2009. Available online at:

http://www.lnf.infn.it/sis/preprint/detail.php?id=5147

[115] Condor-C, http://www.cs.wisc.edu/condor/

[116] Batch Local ASCII Helper, http://egee-jra1-wm.mi.infn.it/egee-jra1-

wm/blah_porting_notes.txt

[117] CERN Advanced STORage manager, http://castor.web.cern.ch/castor/

[118] M. Ernst, P. Fuhrmann, and T. Mkrtchyan, “Managed data storage and data access

services for data Grids”, Conf. on Computing in High Energy and Nuclear Physics

(CHEP), Mumbai, India, Oct, 2004.

[119] G. A. Steward, D. Cameron, G. A. Cowan, and G. McCance, “Storage and data

management in EGEE”, Procs. of the fifth Australian symposium on ACSW frontiers,

Darlinghurst, Australia, Australia, 2007. pp.69-77.

[120] G. Avellino, S. Beco, B. Cantalupo, et. al., “The Data-Grid Workload Management

System: Challenges and Results”, Journal of Grid Computing, 2(4):353-367, 2004.

[121] F. Pacini, “Job Description Language Attributes Specification”, Available online at:

https://edms.cern.ch/document/555796/1

227 13BBibliography

[122] B. Coghlan, A. W. Cooke, A. Datta, et. al., “R-GMA: A Grid Information and

Monitoring System” Conf. on UK e-Science all hands, Sheffield, 2-4 September 2002.

[123] R. Alfieri, R. Cecchini, V. Ciaschini, et. al, “VOMS: an Authorisation System for

Virtual Organisations”, Procs. of Computing in High Energy Physics (CHEP), India, 2004.

[124] M. Romberg, “The UNICORE architecture: seamless access to distributed

resources”, Procs. of 8th International Symposium on High Performance Distributed

Computing, Redondo, USA, 1999. pp.287-293.

[125] R. Ratering, A. Lukichev, M. Riedel, et. al, “GridBeans: Support e-Science and

Grid Applications”, Procs. of 2nd IEEE internal conference on e-Science and Grid

computing, Dec. 2006. pp.45.

[126] J. Novotny, M. Russell, and O. Wehrens, “GridSphere: an advanced portal

framework”, Procs. of 30th Euromicro Conference, Aug. 2004. pp.412-419.

[127] V. Venturi et al. “Using SAML-based VOMS for Authorization within Web

Services-based UNICORE Grids”, Proc.UNICORE Summit at Euro-Par 2007, Rennes,

France, 2007.

[128] M. Ellert, M. Grnager, A. Konstantinov, et. al, “Advanced Resource Connector

middleware for lightweight computational Grids”, Future Generation Computer Systems,

23:219-240, 2007.

[129] H. Nakada, S. Matsuoka, K. Seymour, et. al, “A GridRPC Model and API for

Advanced and Middleware Applications”, OGF Grid Remote Procedure Call Working

Group, Available online at: https://forge.gridforum.org/projects/gridrpc-wg/

[130] MPICH-G2, http://www.globus.org/grid_software/computation/mpich-g2.php

[131] Directed Acyclic Graph Manager, http://www.cs.wisc.edu/condor/dagman/

[132] M. A. Pettipher, A. Khan, T. W. Robinson, and X. Chen, “Review of Accounting

and Usage Monitoring (final Report)”, JISC Final Report, Jul. 2007.

228 13BBibliography

[133] P. Garfjall, “Accounting in Grid Environments, an architectural proposal and a

prototype implementation”, Master Thesis, 27 May 2004, Umea University, Sweden,

available at: http://www.cs.umu.se/~peterg/thesis/thesis.pdf

[134] Webster, “Definition of Accounting”, Available online at: http://www.merriam-

webster.com/dictionary/accounting

[135] J. Coles, “The evolving grid deployment and operations model with EGEE, LCG

and Gridpp”, Proceedings of 1st International Conf. on e-Science and Grid computing,

Dec. 2005, pp8

[136] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, et. al., “Web Services Agreement

Specification”, Open Grid Forum GRAAP WG, GFD.107, March 2007, available at:

http://www.ogf.org/documents/GFD.107.pdf

[137] L. McGinnis, R. Mach, R. Lepro-Mez, and S. Jackson, “Usage Record-Format

Recommendation version 1.0”, Open Grid Forum Usage Record Working Group,GFD.58,

September 2006. Available online at: https://forge.gridfourm.org/projects/ur-wg/

[138] J. Ainsworth, S. Newhouse, and J. MacLaren, “Resource Usage Service Based on

WS-I Basic Profile 1.0 (draft)”, Open Grid Forum Resource Usage Service Working

Group, August, 2006.

[139] K. Weeks, “The National Grid Service User Accounting System”, Proc. of UK e-

Science All Hands Meeting 2007, September, 2007.

[140] J. D. Ainsworth, J. MacLaren, J. M. Brooke, Implementing a Secure, Service

Oriented Accounting System for Computational Economics, CCGrid, 2005.

[141] R. Byrom, R. Cordenonsi, and L. Cornwall, “APEL: An implementation of Grid

accounting using R-GMA”, UK e-Science All Hands Conference, Nottingham, September

2005.

[142] S. Fisher, “Building the e-Science Grid in UK: Grid Information Service”, Proc. Of

UK e-Science All Hands Meeting 2003, Nottingham, September 2003.

229 13BBibliography

[143] R. Byrom and D. Kant, “LCG Accounting Schema”, EGEE Support and

Management Activity (SA1) document, Oct. 19th, 2004. Available online at:

http://www.egee.cesga.es/EGEE-SA1-SWE/accounting/guides/apel-schema.pdf.

[144] R. M. Piro, A. Guarise, and A. Werbrouck, “An economy-based accounting

infrastructure for the datagrid”, Proceedings of Fourth International Workshop on Grid

Computing (IEEE, 2004), pp 202-204

[145] R. M. Piro, M. Pace, A. Ghiselli, A. Guarise, E. Luppi, G. Patania, L. Tomassetti,

and A. Werbrouck, “Tracing Resource Usage over Heterogeneous Grid Platforms: A

Prototype RUS interface for DGAS”, Proceedings of International Conf. on e-Science

and Grid Computing, Dec. 2007, pp93-101

[146] P. Gardfjall, E. Elmroth, L. Johnsson, and O. Mulmo, “Scalable Gridwide

capacity allocation with SweGrid Accounting System” Concurrency and Computation:

Practice and Experience, John Wiley and Sons Ltd, June 2008.

[147] P. Canal, S. Borra, M. Melani, “GRATIA, a resource accounting system for OSG”,

Proc. of Computing in High Energy and Nuclear Science 2006 (CHEP06), Mumbai, Inida,

February 2006.

[148] W. Frings, M. Riedel, A. Streit, D. Mallmann, D. Snelling and V. Li, “LLview:

User-Level Monitoring in Computational Grids and e-Science Infrastructure”, German

eScience 2007 conference, May 2007.

[149] “ARCO: N1 Grid Engine 6 Accounting and Reporting Console (white paper)”, Sun

Microsystems. Inc. May 2005.

[150] W. Gentzsch, “Sun Grid Engine: towards creating a compute power grid”, Proc. of

1st IEEE/ACM International Symposium on Cluster Computing and the Grid 2001

(CCGrid2001), May 2001.

[151] Gold Allocation Manager, http://www.clusterresources.com/pages/products/glod-

acllocation-manager.php

230 13BBibliography

[152] HPCx, http://www.hpcx.ac.uk/

[153] HECToR, http://www.epcc.ed.ac.uk/msc/hpc-systems/hector/

[154] J. Shiers, “Memorandum of Understanding for Collaboration in the Deployment

and Exploitation of the Worldwide LHC Computing Grid”, Jan. 13th, 2009. Available

online at “http://lcg.web.cern.ch/lcg/mou.htm”.

[155] X. Chen and A. Khan, “Aggregative accounting service enabling economic

modelling for commercial grid”, Conf. on Grid technology for financial modelling and

simulation, Feb. 3-4, 2006, Palermo, Italy.

[156] X. Chen and A. Khan, “Development and Performance of Resource Usage Service

in WLCG”, Conf. on IEEE Nuclear Science Symposium, Oct. 2006. pp.603-606.

[157] X. Chen and A. Khan, “Development of Multi-Grid Resource Usage Service in

LCG”, Conf. of International Symposium on Grid Computing (ISGC) 2007, Mar. 26-29,

2007, Taiwan.

[158] X. Chen, R. M. Piro, P. Canal, et. al, “Aggregate Usage Representation Version 1.0”,

OGF Usage Record working group, Dec. 2006. Available online at:

https://forge.gridfourm.org/projects/ur-wg/

[159] I. Bird and D. Kant, “EGEE-II Operational Accounting Portal”, EGEE

Management Service Activity (MSA) document, July 19th, 2007, online available at:

“https://edms.cern.ch/document/726137/4”

[160] P. Rey, J. Lopez, C. Fernadez, D. Kant and J. Gordon, “The Accounting

Infrastructure in EGEE”, Proc. of 1st Iberian Grid Infrastructure Conference, May 14-16th,

2007, Spain.

[161] XML:DB API, http://xmldb-org.sourceforge.net/xapi/

[162] Hibernate, https://www.hibernate.org/

231 13BBibliography

[163] Web Service Interoperability, http://www.ws-i.org/

[164] Apache Axis Project, online available at: “http://ws.apache.org/axis/”.

[165] Grails, http://www.grails.org/

[166] Groovy, http://groovy.codehaus.org/

[167] ISO 8601, “Date Elements and Interchange formats – Information Interchange

Representation of Dates and Times”, International Standard Organization, Dec. 3rd, 2004.

[168] Spring Framework, http://www.springsource.org/

[169] Acegi, http://www.grails.org/AcegiSecurity+Plugin

[170] J. Clark and S. DeRose, “XML Path Language Version 1.0”, Nov. 1999. Available

online at: http://www.w3.org/TR/xpath

[171] X. Chen, “OGSA Resource Usage Service IDL WS-I Rendering”, OGF Resource

Usage Service working group, Dec. 2007. Available online at:

https://forge.ggf.org/sf/sfmain/do/go/artf6090?nav=1&selectedTab=attachments

[172] X. Chen and A. Khan, “GRUS: An Extensive Solution to Resource Usage Service”,

Conf. on IEEE Nuclear Science Symposium, Dresden, Germany, Oct. 2008.

[173] G. Netzer, “OGSA Resource Usage Service-Core IDL Specification Draft Version

1.0”, OGF Resource Usage Service working group, Sept. 2007. Available online at:

https://forge.gridforum.org/sf/go/artf6015

[174] J. Alexander, D. Box, L. F. Cabrera, et. al., “Web Service Enumeration”, W3C, Mar.

2006. Available online at: http://www.w3.org/Submission/WS-Enumeration/

[175] D. Chamberlin, M. Dyck, D. Florescu, et. al., “XQuery Update facility 1.0”, W3C

XML Activity, Jun. 2009. Available online at: http://www.w3.org/TR/xquery-update-10/

232 13BBibliography

[176] S. Boag, D. Chamberlin, M. F. Fernandez, et. al., “XQuery 1.0: An XML Query

Language”, W3C XML Query, Jan. 2007. Available online at:

http://www.w3.org/TR/xquery/

[177] Apache Ant, http://ant.apache.org/

[178] Wiseman, “Java Implementation of Web Service Management”. Available online at:

https://wiseman.dev.java.net/

[179] Java Web Services Developer Pack,

http://java.sun.com/webservices/downloads/previous/index.jsp

[180] Hibernate Query Language,

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html

[181] JSR 175, “A Metadata Facility for the JavaTM Programming Language”, Sun Inc.

Available online at: http://jcp.org/en/jsr/detail?id=175

[182] Simple API for XPath, http://sourceforge.net/projects/saxpath/

[183] Jaxen, http://jaxen.org/

[184] Simple API for XML, http://www.saxproject.org/

[185] Document Object Model, http://www.w3.org/DOM/

[186] XML Object Model, http://ws.apache.org/commons/axiom/

[187] K. Ballinger, D. Ehnebuske, M. Gudgin, et. al., “WS-I Basic Profile Version 1.0”,

WS-I Interoperability Organisation, Apr. 2004. Available online at: http://www.ws-

i.org/Profiles/BasicProfile-1.0-2004-04-16.html

[188] S. Crouch, D. Fellows, X. “Experiences of Using Usage Record (UR) Version 1.0”,

OGF Usage Record Working Group, Oct. 2009, Available online at:

http://forge.gridforum.org/projects/ur-wg

233 13BBibliography

[189] Korpela, E., D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. "SETI@home

- Massively distributed computing for SETI", Computing in Science and Engineering,

3(1), p. 79, 2001.

[190] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin, “A Practical Guide to

the IBM Autonomic Computing Toolkit”, IBM Redbook Series, Apr. 2004, Available

online at: http://www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf.

[191] A. Andrieux, K. Czajkowski, et. al, “Web Services Agreement Specification (WS-

Agreement)”, OGF Grid Resource Allocation Agreement Protocol Working Group,

March 14, 2007, Available online at: http://forge.gridforum.org/sf/projects/graap-wg.

[192] Portable Batch System (PBS), http://www.pbsworks.com/

[193] S. Tuecke, K. Czajkowski, I. Foster, et. al, “Open Grid Service Infrastructure

(OGSI) Version 1.0”, Open Grid Forum Open Grid Service Infrastructure Working

Group, June 27, 2003. Available online at: http://www.globus.org/toolkit/draft-ggf-ogsi-

gridservice-33_2003-06-27.pdf.

[194] V. Bullard, B. Murray, and K. Wilson, “An Introduction to Web Service

Distributed Management (WSDM)”, OASIS Web Service Distributed Management

(WSDM) TC, Feb. 24, 2006. Available online at: http://www.oasis-

open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc.

[195] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie, and J. Simeon, “Xquery

Update Facility 1.0”, World Wide Web Candidate Recommendation, June 2009. Avaiable

online at: http://www.w3.org/TR/xquery-update-10/.

[196] X. Chen, G. Wills, L. Gilbert, and D. Bacigalupo, “TeciRes: A Technical Review

of Using Cloud for Research”, JISC Documents and MultiMedia Repository, June, 2010.

Online available at: http://tecires.ecs.soton.ac.uk/publications.

	List of Anonyms
	List of Publications
	Introduction
	1.1 Evolution
	1.1.1 Computer Generations
	High Performance Computing
	1.1.3 Distributed Computing
	1.1.4 The Grid

	1.2 e-Science Grid
	1.3 World-wide LHC Computing Grid
	1.4 Grid Accounting
	1.5 Summary

	The Grid
	2.1 Concept
	2.2 Architecture
	2.2.1 Fabric
	2.2.2 Connectivity
	2.2.3 Resource
	2.2.4 Collective
	2.2.5 Application

	2.3 Standards
	2.3.1 Infrastructure Services
	2.3.2 Execution Management Services
	2.3.3 Data Services
	2.3.4 Information Services
	2.3.5 Security Services
	2.3.6 Self-management Services

	2.4 Middleware
	2.4.1 Globus Toolkit
	2.4.2 gLite
	2.4.3 UNICORE
	2.4.4 Others

	2.5 Tools
	2.6 Summary

	Grid Accounting
	3.1 Concept
	3.2 Usage Scenarios
	3.2.1 Statistical Usage Reporting
	3.2.2 Usage Policing
	3.2.3 Grid Economy
	3.2.4 Quality of Service
	3.2.5 Putting Together

	3.3 Accounting Model
	3.3.1 Usage Metering
	3.3.2 Usage Collection
	3.3.3 Classification

	3.4 Standards
	3.4.1 Usage Record Format
	3.4.2 Resource Usage Service

	3.5 Accounting Systems
	3.5.1 User Accounting System
	3.5.2 Accounting Processor for Event Logs
	3.5.3 Distributed Grid Accounting System
	3.5.4 SweGrid Accounting System
	3.5.5 Gratia
	3.5.6 UINCORE Accounting System
	3.5.7 Comparison
	3.5.8 Others

	3.6 A Generic Accounting Framework
	3.7 Summary

	Design of Resource Usage Service for World-wide LHC Grid
	4.1 Introduction
	4.2 Requirement Analysis
	4.2.1 Use Cases
	4.2.2 Requirements

	4.3 Design
	4.3.1 System Architecture
	4.3.2 Detailed System Design

	4.4 Implementation
	4.4.1 Resource Usage Service
	4.4.2 WLCG-RUS Admin
	4.4.3 User Interface

	4.5 Performance
	4.5.1 Testbed
	4.5.2 Unit Performance
	4.5.3 Insertion Performance

	4.6 Summary

	Design of Grid Resource Usage System Middleware
	5.1 Introduction
	5.2 Requirement Analysis
	5.2.1 Use Cases
	5.2.2 Requirements

	5.3 Design
	5.3.1 System Architecture
	5.3.2 Detailed System Design

	5.4 Implementation
	5.4.1 Entity Model Compiler
	5.4.2 GRUS Core
	5.4.3 GRUS Annotations
	5.4.4 GRUS Admin
	5.4.5 User Interface

	5.5 Summary

	Conclusions
	6.1 Research Outcomes
	6.1.1 Lessons Learned
	6.1.2 Reflections

	6.2 Recommendations
	6.2.1 Recommendations on Standards
	6.2.2 Recommendations on Development

	Appendix A
	A.1 National Grid Service
	A.2 Grid for Particle Physics
	A.3 Campus Grids
	A.4 Regional Grids
	A.5 Other Compute Services
	A.6 End user
	A.7 Standard Bodies
	A.8 Data Service Providers

	Appendix B
	Appendix C
	B.1 WLCG-RUS Use Cases
	B.2 GRUS Use Cases

	Appendix D
	C.1 WLCG-RUS Command Line Parameters
	C.2 GRUS Command Line Parameters

	Appendix E
	D.1 GRUS Data Type Definitions
	D.2 GRUS Service Interface Definitions

	Bibliography

