
FRAMEWORK TO MANAGE LABELS FOR

E-ASSESSMENT OF DIAGRAMS

A Thesis submitted for the degree of Doctor of Philosophy

by

AMBIKESH JAYAL

School of Information Systems, Computing & Maths,

Brunel University

March 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40030459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Automatic marking of coursework has many advantages in terms of resource benefits and

consistency. Diagrams are quite common in many domains including computer science but

marking them automatically is a challenging task. There has been previous research to

accomplish this, but results to date have been limited. Much of the meaning of a diagram

is contained in the labels and in order to automatically mark the diagrams the labels need

to be understood. However the choice of labels used by students in a diagram is largely

unrestricted and diversity of labels can be a problem while matching.

This thesis has measured the extent of the diagram label matching problem and proposed

and evaluated a configurable extensible framework to solve it. A new hybrid syntax matching

algorithm has also been proposed and evaluated. This hybrid approach is based on the

multiple existing syntax algorithms.

Experiments were conducted on a corpus of coursework which was large scale, realistic

and representative of UK HEI students. The results show that the diagram label matching

is a substantial problem and cannot be easily avoided for the e-assessment of diagrams.

The results also show that the hybrid approach was better than the three existing syntax

algorithms. The results also show that the framework has been effective but only to limited

extent and needs to be further refined for the semantic stage.

The framework proposed in this Thesis is configurable and extensible. It can be extended

to include other algorithms and set of parameters. The framework uses configuration XML,

dynamic loading of classes and two design patterns namely strategy design pattern and facade

design pattern. A software prototype implementation of the framework has been developed

in order to evaluate it.

Finally this thesis also contributes the corpus of coursework and an open source soft-

ware implementation of the proposed framework. Since the framework is configurable and

extensible, its software implementation can be extended and used by the research community.

Keywords: e-learning, e-assessment, automated marking

i

Contents

1 Introduction 1

1.1 E-learning . 1

1.2 E-assessment . 3

1.3 Motivation for research . 3

1.4 Research aims . 5

1.5 Thesis roadmap . 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Existing systems for automatically marking a diagram 7

2.3 Approaches for marking diagrams . 8

2.4 Approaches to match labels for marking a diagram 15

3 Diagram Label Matching Framework 18

3.1 Introduction . 18

3.2 Research Methodology . 19

3.3 Requirements of Framework . 19

3.3.1 Match labels . 19

3.3.2 Configurable and extensible . 21

3.4 Framework . 22

3.4.1 Pre processing stage . 25

3.4.2 Syntax stage . 29

ii

3.4.3 Semantic stage . 40

3.4.4 Combined similarity stage . 47

3.4.5 Analysis stage . 47

3.5 Design patterns and Software prototype . 50

3.5.1 Strategy design pattern and dynamic loading 51

3.5.2 Facade design pattern . 53

3.5.3 Software Tool . 53

3.6 Summary . 54

4 Results and Discussion 56

4.1 Introduction . 56

4.2 Data collection . 57

4.3 Proliferation of synonym experiment results 58

4.3.1 Corpus of coursework . 58

4.3.2 Effect of basic text manipulation techniques 62

4.3.3 Impact of scale . 63

4.4 Manual categorisation of data . 63

4.4.1 Categorisation process . 66

4.4.2 Categorisation results . 69

4.5 Preprocessing stage results . 71

4.5.1 Spell check results . 71

4.5.2 Abbreviation expansion results . 75

4.6 Syntax stage results . 76

4.6.1 Analysis for effective algorithm . 80

4.6.2 Analysis for optimal threshold . 81

4.7 Semantic stage results . 81

4.7.1 HCI system approach . 82

4.7.2 Semantic similarity algorithms . 82

4.8 Summary . 84

iii

5 Conclusion, Limitations And Future Work 86

5.1 Summary of research . 86

5.2 Contributions . 88

5.3 Limitations and future work . 89

6 Appendix A 110

6.1 Technologies used for developing software prototype of the framework 110

6.2 List of parameters used during pre-processing stage 111

6.2.1 List of special characters . 111

6.2.2 List of stopwords . 111

6.3 Configuration XML File . 111

6.4 Document Type Definition (DTD) of synonym XML file 114

6.5 Case Study: Problem Specification and Model Solution 115

6.5.1 Syntax algorithm result table . 116

6.6 Semantic data . 116

6.7 Sample code to add an algorithm . 116

6.8 Sample code to configure the combined hybrid syntax algorithm 125

6.9 Software for framework (Java code) and Corpus of coursework 125

7 Appendix B 127

7.1 Java Source code for DiagramAssessmentTool.jar 127

7.2 Java Source code for UMLDiagramXMIAPI.jar 134

7.3 Java Source code for GenericLabelMatcher.jar 139

7.4 Java Source code for GenericLabelMatcherConcreteClasses.jar 171

7.5 Java Source code for GenericLabelMatcherInterface.jar 186

iv

List of Figures

1.1 Sample diagram . 4

2.1 Diagram for minimal meaningful unit (MMU) 13

3.1 DiagramLabelMatchingFramework . 23

3.2 Semantic Stage Design Rationale . 44

3.3 Strategy design pattern and dynamic loading 51

4.1 Text Transformation Processing . 59

4.2 Rates of New Labels with Increasing Numbers of Student Coursework 60

6.1 Part of Question . 116

6.2 Model Answer . 117

6.3 Screen shot for the published Software and Corpus of coursework 126

v

List of Tables

1.1 Types of Assessment . 2

2.1 Tools for e-Assessment of Diagrams . 8

2.2 e-Assessment Tool Details . 9

3.1 Framework Main Stages . 24

3.2 Framework Stage Input Output . 24

3.3 Sub-stages of Pre Processing Stage . 25

3.4 Combined Syntax Algorithm Example . 33

3.5 Syntax Matching Algorithm . 35

3.6 Syntax Matching Example . 38

3.7 Similarity matrix . 49

4.1 Basic Data . 58

4.2 Text Transformations . 59

4.3 Text Transformation Impact upon Label Count 60

4.4 Main Categories . 69

4.5 Semantic Subcategories . 70

4.6 Manual Categorisation Result Summary . 70

4.7 Manual Categorisation Result Detailed . 70

4.8 Cause of misspelling . 71

4.9 Examples of misspelling . 72

4.10 Results of Auto Correct Pre-processing Stage 72

vi

4.11 Detailed Analysis of Auto Correct Pre-processing Stage 73

4.12 Result of Abbreviation Expansion Pre-processing Stage 75

4.13 Syntax Algorithms . 76

4.14 Syntax Distance . 76

4.15 Precision For All Threshold . 78

4.16 Recall For All Threshold . 79

4.17 FScore For All Threshold . 79

4.18 Semantic Analysis of Synonyms . 81

4.19 Synonyms found using the semantic similarity algorithms 83

6.1 List Of Stopwords . 111

6.2 True Positives For All Threshold . 117

6.3 Rate of Decrease of True Positives For All Threshold 118

6.4 False Positives For All Threshold . 119

6.5 Rate of Decrease of False Positives For All Threshold 120

6.6 False Negative For All Threshold . 121

6.7 Rate of Increase of False Negative For All Threshold 122

6.8 True Negative For All Threshold . 123

6.9 Rate of Increase of True Negative For All Threshold 124

6.10 Synonyms in student diagrams . 124

vii

Acronyms

e-learning Electronic Learning

e-assessment Electronic Assessment

XML Extensible Markup Language

UML Unified Modelling Language

CASE Computer Aided Software Engineering

VLE Virtual Learning Environment

XMI XML Metadata Interchange

API Application Programming Interface

NLP Natural Language Processing

HCI Human Computer Interface

DTD Document Type Definition

UK HEI United Kingdom Higher Education Institution

OKI Open Knowledge Initiative

IMS QTI IMS Question Test Interoperability

viii

Acknowledgments

First and foremost I would like to thank Professor Martin Shepperd for providing me the

opportunity to pursue PhD research. Without his support this PhD would never had even

started. I would also like to thank him for the supervision, support, encouragement and

guidance throughout my PhD studies. I have been very fortunate to have him as my super-

visor. Apart from the knowledge about the subject, I have also learnt from him the qualities

of a good academic. I hope that I will embed some of these qualities in my future academic

life. I would also like to thank Dr. Michelle Cartwright and Dr. Steve Counsell for the

excellent supervision. I would also like to thank Brunel University for providing me the

financial support to pursue PhD.

Secondly, I would like to thank my family and friends (Supayanee Watchararattanawalee,

Carolyn Mair, Alex DeWitt, Navonil Mustafee, Yogesh Dwivedi and Banita Lal). I would

also like to thank Dr. Kate Dunton from Learning and Teaching Unit, Julie Whittaker and

all the support staff at DISC.

Finally, thanks to all those who helped me throughout this thesis.

ix

Dedication

I dedicate this thesis to my dearest mother and father who have brought me up with immense

love, care and blessings.

x

Research publications

The following is a list of four related publications directly arising from this thesis.

• Jayal, A. and Shepperd, M. The Problem of Labels in E-Assessment of Diagrams. ACM

J. Educ. Resour. Comput. 8, 4 pp1-13, 2009, Citation count=3

• Jayal, A. and M. Shepperd (2009). An improved method for label matching in e-

assessment of diagrams. Innovation in Teaching and Learning in Information and Com-

puter Sciences (ITALICS), Electronic journal of the UK Higher Education Academy,

8(1), 2009.

• Jayal, A. and Shepperd, M.J. An evaluation of e-learning standards, 5th International

Conference on E-Governance, Hyderabad, India, December 28-30, 2007. Citation

count=2

• Jayal, A. Cartwright, M. and Shepperd, M.J. Premark: A System Designed to Or-

ganising Course Work for Assessment, 5th International Conference on E-Governance,

Hyderabad, India, December 28-30, 2007.

In addition to the above, I have also published following related e-learning papers.

• Shepperd, M.J. and Jayal, A. Experiences of Introducing Group Projects to Comput-

ing Degrees, 35th International Conference on Improving University Teaching (IUT),

Washington D.C., USA, June 30, 2010.

• Lauria, S., Jayal, A., Tucker, A., Swift, S. Python for Teaching Introductory Program-

ming: a Quantitative Evaluation, United Kingdom Higher Education Academy 10th

Programming Workshop, University of Brighton, UK, March 30, 2010.

xi

Chapter 1

Introduction

1.1 E-learning

E-learning comprises any type of learning activity that is based upon some electronic me-

dia. According to Wentling (Went 00), “E-learning is the acquisition and use of knowledge

distributed and facilitated primarily by electronic means”. E-learning includes the use of

electronic means for all the aspects of teaching, for example creation and delivery of course

content, electronic submission and marking of coursework, delivery of coursework assessment

results, interaction with and among students through discussion boards, etc.

E-learning has practical advantages, for example resource benefits in terms of time and

effort (Higg 02a). Virtual learning Environments VLE(Chin 03) are software tools for e-

learning. A survey conducted by Brown (Brow 08) in which 74 of the 164 UK HEI in-

stitutions participated shows that 91% of the participating UK HEI institutions used a

VLE. It also shows that the most popular VLE among UK HEIs are Moodle(Cole 05),

Blackboard(Blac 10) and WebCT(Clar 02). So e-learning is popular and widely adopted

among UK HEIs.

E-learning also has two disadvantages. The first one is that sometimes the e-learning

tools impose new processes on lecturers resulting in extra administrative work (Jaya 07a).

This may hinder the adoption of these e-learning tools. This problem may be solved by

introducing middleware components that sit between the lecturer and the e-learning tool

1

Educational Purpose Time

Context

Diagnostic To ascertain knowledge Before or after

level of learner learning programme

Formative To provide feedback to During learning programme

the learner

Summative To formally grade During or end of

performance of learner learning programme

Table 1.1: Types of Assessment

and lessen the extra administrative work imposed by the e-learning tool. Such a system has

been developed by Jayal (Jaya 07a).

The second disadvantage of having many e-learning tools is the issue of interoperability

between them. This can be solved by defining standards for e-learning content and compo-

nents. Recently there have been efforts to define standards for the e-learning content and

components in order to make them interoperable and reusable with other e-learning tools.

For example the standards Learning Object Metadata (Hodg 05; CETI 08), IMS standards

(Cons 10) and SCORM (Lear 04) define the specifications for the e-learning content in order

to make them reusable and interoperable. Similarly the OKI standards (Tech 07) define

the service interfaces for the various components of e-learning so that implementation of

the components can be shared between the different e-learning systems. A study by Jayal

(Jaya 07b) shows that although these standards may help interoperability, accessibility and

reusability of the e-learning content and e-learning components, they have limited adoption

at UK higher education institutions.

2

1.2 E-assessment

Assessment is an integral part of the learning process. According to Brown (Brow 97a) the

assessment word was extracted from the phrase “ad sedere” which means to sit down beside

and is primarily concerned with providing guidance and feedback to the learner. Assessment

can involve various activities, for example preparing questions for the examination, delivering

the exam, marking the students answers, providing feedback to the students and detecting

plagiarism. It is used at different stages of the learning process as summarized in the Table

1.1 (Khed 05). Before the learning process begins, the diagnostic assessment can be used to

ascertain the knowledge of the learner. During the learning process the formative assessment

can be used to provide feedback to the learner about their level of understanding of a concept.

On completion of the learning process, summative assessment can be used to provide grades

to the students.

E-assessment or electronic assessment refers to automating the process of assessment.

There has been growing interest within the e-learning community for e-assessment (Brow 97b).

E-assessment may involve coursework delivery by the lecturer, coursework submission by the

students, coursework marking and presenting feedback to the students. A software tool for

e-assessment is known as an e-assessment system. Some of the important features of an

effective e-assessment system should be user friendliness, efficiency, reliability, consistency,

effective plagiarism detection, interoperability, adherence to e-learning standards for example

IMS QTI (Cons 10) and providing timely feedback to students.

1.3 Motivation for research

The e-assessment of coursework brings both pedagogic and practical benefits (Higg 02a). It

provides resource benefits in terms of time and effort, consistency in marking and quicker

feedback. Additionally, it may also be used for plagiarism detection.

Automatically marking coursework is one of the factors that can help provide feedback

quickly to the students. One important area is the e-assessment of diagrammatic coursework

as diagrams are commonplace in many subjects such as computer science. Previous re-

3

Figure 1.1: Sample diagram

search work to automatically mark coursework has mostly targeted objective type questions

(Clar 02; Feng 06), free response text based questions (Vale 03; Pere 05; Kere 05), mathe-

matics based questions (Poll 02; Beev 02) and computer programming questions (Ala 05).

However, there is now growing interest in diagram based questions (Hogg 98; Higg 02b;

Thom 04; Tsel 05) but results to date have been limited.

Diagrams are difficult to automatically mark because of problems such as the diagram

being malformed or possessing missing or extraneous features (Smit 04). Another problem

is the diversity of labels used by the students. Typically much of the meaning of the diagram

resides in the diagram labels. For example, the sample diagram shown in Figure 1.1 can

not be interpreted without meaningful labels. However, the choice of label by the students

is largely unrestricted and so there are problems of synonyms, homonyms, abbreviations,

misspellings, labels comprising variable numbers of words and so forth. This means a correct

student diagram may utilise labels that differ yet are syntactically or semantically equivalent

to the labels in the model solution. Previous research has reported label matching to be a

problem for e-assessment of diagrams (Jaya 09b; Thom 09; McGe 05).

A systematic review of all the diagram e-assessment systems shows that although there are

benefits of e-assessment of diagrams there are only six systems for e-assessment of diagrams,

4

none of which are open source while two of them are commercial1. For e-assessment, the

structure of a diagram and the labels present in it need to be compared with that of the

model solution. The structure of a diagram can be compared using graph theory while the

labels can be compared using natural language processing techniques. Existing e-assessment

systems for diagrams focus on structure (Tsel 07). This Thesis complements existing work

by empirically measuring the problem of diversity of labels used by students and exploring

various syntax and semantic techniques to address this problem.

1.4 Research aims

The following are the five research aims of this Thesis.

1. Empirically measure the extent of the diagram label matching problem.

This Thesis will be empirically measuring the extent of the diagram label matching

problem.

2. Propose and evaluate a framework to match diagram labels.

This Thesis will propose a framework to match the labels in diagrams and evaluate the

proposed framework on a coursework at a UK HEI.

3. Propose and evaluate a new hybrid syntax matching algorithm.

This Thesis will proposes and evaluate a new hybrid syntax matching algorithm based

on the multiple existing syntax algorithms.

4. Provide a corpus of coursework for further experiments

Considering the time and effort required to collect coursework for experiments, the

corpus of coursework will be made available to the research community for further

experiments.

5. Develop a prototype open source implementation of the framework.

This Thesis will provide an open source implementation of the proposed framework
1The source code for the non-open source tool developed by Open University (Thom 04) is available

informally from the authors.

5

which can be used by the research community for further implementation and evalua-

tion.

1.5 Thesis roadmap

Chapter 2 of the Thesis describes the existing systems for e-assessment of diagrams. In

Chapter 3 a framework to match the diagram labels for e-assessment is proposed. The chapter

3 starts by first discussing the design research methodology used in this Thesis. Then the

functional and non-functional requirements of the framework are explained. The six different

stages of the framework which fulfil the functional requirements are then explained. Finally,

the design of the software prototype implementation of the framework will be explained.

This design fulfils the non functional requirements of the framework. In Chapter 4 the

corpus of coursework collected for the experiments to evaluate the framework and the results

of these experiments is discussed. The software prototype implementation of the framework

explained in the Chapter 3 is used to carry out these experiments on coursework from a UK

HEI. These results show that the framework is effective, but there is a need for more effective

semantic algorithms as the syntax algorithms are effective only to a limited extent. Chapter

5 presents the conclusion of the Thesis, limitations and directions for the future work.

6

Chapter 2

Literature Review

2.1 Introduction

This chapter explains the techniques for marking the diagrams by existing e-assessment

systems and identifies those areas needing further work.

2.2 Existing systems for automatically marking a diagram

To find the existing systems that automatically mark the diagrams, a systematic search of

the literature was conducted in May 2008 on five bibliographic databases namely IEEE/IET

Electronic Library, ACM Digital Library, ScienceDirect, Scopus and SpringerLink. The

main search terms used were “e-assessment”, “eassessment”, “computer aided assessment”,

“computer-aided assessment”, “computer assisted assessment” and “computer-assisted as-

sessment”. This retrieved almost 900 papers that were then hand-checked for relevance as a

result of which six e-assessment systems for diagrams were identified. The spreadsheet con-

taining details of these papers is available at (Jaya 10). The databases were searched again

in February 2010 and no new e-assessment system for diagrams was found. Tables 2.1 and

2.2 summarize the six e-assessment systems for diagrams. The next two sections describe

the techniques used by these six systems to mark the diagrams and match the labels in the

diagrams.

7

Reference Tool name Source

eA1 University of Teesside (UK) (Hogg 98)

Automated Student Diagram

Assessment System

eA2 Nottingham University (UK) CourseMaster (Higg 02b)

(Higg 06)

eA3 Open University (UK) DEAP Diagram Tool (Thom 04)

(Thom 07b)

eA4 Manchester University (UK) (Tsel 05)

Assess By Computer (ABC)

eA5 Loughborough University (UK) Diagram Tool (Batm 06)

eA6 Canterbury University (NZ) KERMIT Tool (Sura 02)

Table 2.1: Tools for e-Assessment of Diagrams

2.3 Approaches for marking diagrams

The following five approaches have been used for automatically marking diagrams in the

existing e-assessment tools.

• Object Oriented Metrics

This approach involves calculating the various Object Oriented metrics for cohesion,

coupling etc. and using them to mark the diagrams. The marking tool for the Object

Oriented diagrams in the CourseMaker system (Higg 02b) uses metrics to mark the

diagrams for correct classes, relationship and completeness. This approach is limited

to Object Oriented diagrams only and can not be used for other types of diagrams.

• Graph Isomorphism

In this approach a diagram is treated like a graph with the node representing an

activity or entity depending on the type of the diagram and the edge representing the

relationship between them. Marking is done by searching for graphs or sub graphs in

8

Ref. Marking technique Label similarity technique Label diversity

problematic?

eA1 Object Oriented Metrics Manual intervention (students

map the labels in their dia-

gram to those in the model so-

lution)

Unknown

eA2 Object Oriented Metrics Unknown Unknown

eA3 Local Metrics (label, type) Edit Distance algorithm, syn-

onyms, punctuation, hyphen-

ation and stemming

Yes

eA4 Graph Isomorphism, Edit Distance algorithm Yes

Local Metrics (label, type)

eA5 human marking Manual intervention (students

are required to choose from

a list of labels presented to

them)

Unknown

eA6 human marking Manual intervention (students

highlight the text in the

problem specification and this

highlighted text is then used

as a label)

Yes

Table 2.2: e-Assessment Tool Details

9

the student diagram isomorphic to the model solution. The advantage of this approach

is that it is generic and can be applied to wide variety of diagrams. This approach is not

scalable because of the computational power required to find isomorphic components

(Sedg 03) but this is not a major problem for the e-assessment domain considering

the expected size of the the student diagrams (Tsel 05). This approach has been

implemented in the ABC system developed by the University of Manchester and is

reported to have computationally worked well even for large artificial student diagrams

(Tsel 05).

The ABC system first finds the maximal sub graphs in the student diagram that are

isomorphic to the model solution and then produces a list of relabellings required for

the vertexes. This approach has two disadvantages. The first is that this approach

will not work well if the student diagram has some edges missing. The second is

that this approach treats diagrams purely as graphs whereas diagrams can have richer

associated information; for example the label in the nodes and edges, type of nodes etc.

(Tsel 05). Two diagrams may be topologically equivalent yet have differing semantics.

So this approach alone may not be sufficient for marking diagrams. The ABC system

(Tsel 05) has used it in combination with the Local Metrics approach explained in the

next paragraph.

• Local Metrics

This approach complements the graph isomorphism approach by taking into account

the richer information associated with nodes and edges in a diagram; for example

the type and label of the nodes. The ABC system uses this approach in conjunction

with the graph isomorphism approach (Tsel 05). For each node in the diagram, a

local metric object containing five attributes is created1. The first attribute is the

degree which is equal to the number of the edges to the node. The second attribute

is the type of the node which is a string representing the domain specific name of the
1According to the developers of ABC system these metrics are subject to change and only discussed

informally in the paper (Tsel 05). The exact information on the metrics could not be found as the tool is

commercial in nature.

10

node for example entity or the way node is drawn for example circular, rectangular or

diamond shaped. The third attribute is the number and type of the adjacent nodes.

The fourth attribute is the number of incident connectors, their types and the label in

the connector. The fifth attribute is the label in the node. Each attribute of the local

metric object is given a weight between 1 and 4. All the attributes are either number

or string labels. The string labels are considered the same if the edit distance between

them is more than a certain threshold. The lecturer also has the option to exclude any

attribute from the marking process using a check box. The similarity score of two local

metrics is the weighted average of the similarity score of each of their attributes.

The ABC system also has a weight manager which can automatically calculate the

weights for the attributes of the local metric object. It works by calculating marks

using all the possible combinations of weights for each attribute of the local metric

object and choosing the weight that maximizes the marks.

The local metric for a node in the student diagram is matched with the local metric for

each node in the model solution. The node in the model solution that gives the highest

similarity score is considered to be matched and is assigned to the node in the student

diagram. This process is repeated for each node in the student diagram but only with

the unassigned nodes in the model solution so that a node in the model solution is not

matched to more than one node in the student diagram. Since only the unassigned

nodes in the model solution are considered for matching the order in which the nodes

in the student diagram are selected for matching will effect the nodes in the model

solution that they are matched to. The literature available at (Tsel 05; Tsel 07) does

not make clear the order in which the nodes in the student diagram are selected up

matching2.

Experiments were carried out using 15 students’ coursework from a real exam. The

results of these experiments show that, on average the machine marks were lower than

the human marks. The average marks awarded by the machine was 57% compared to
2The tool is commercial in nature and owned by the Assessment21 Limited.

11

62% awarded by the human with a standard deviation of 14.7%.

• GREE

Tselonis has introduced a domain independent marking technique called “Dynami-

cally extendable AND/OR trees GREE” (Tsel 07). It has a modular scoring strategy.

This technique is the subject of a patent application by Assessment21 Ltd. who have

developed the eA4 system.

• Minimal Meaningful Unit MMU

This approach has been adopted by the eA3 system and is based on the concept of

meaningful unit (MU) and minimal meaningful unit (MMU) (Thom 04; Thom 07b;

Thom 07a). A diagram consists of smaller units which have their own meaning. For

example in the Figure 2.1 the state represented by a rectangle with the label “read

card” is a unit having it’s own meaning; similarly the arrow labelled “date ok” together

with the the diamond decision box and the state “check card type” at each end is a

unit having it’s own meaning. Such smallest units of a diagram which have their

own meaning are called minimal meaningful units (MMU). A set of MMUs form a

meaningful unit MU. A diagram consists of one or more MUs which in turn consist

of one or more MMUs. For example the diagram in the Figure 2.1 has six MMUs of

type state, one MMU of type start state, one MMU of type end state and sixteen (nine

having labels) MMUs of type arrow.

This approach takes a raster based image as input and outputs feedback and marks

using five stages namely segmentation, assimilation, identification, aggregation and

interpretation. The first two stages segmentation and assimilation identify the basic

diagram components for example boxes, arrows etc. from the raster based image. The

identification stage using the domain knowledge finds all the MMUs in a diagram.

All the MMUs in a student diagram are compared with all the MMUs in the model

solution to find the matching MMUs. Once the matching MMUs are found in the

student diagram, the marks are allocated as per the marking scheme which can allocate

different marks to different MMUs in the model solution. An enhancement to this

12

Figure 2.1: Diagram for minimal meaningful unit (MMU)

process is the introduction of the aggregation stage which combines different MMUs

to form units with higher level meaning. This aggregation stage has not yet been

implemented by this tool (Thom 07b).

The marking approach does some initial lexical processing, removes the stopwords

(Wiki 10f) from labels and uses the edit distance algorithm to calculate a numeric sim-

ilarity measure between them. It also uses a manually prepared list of synonyms. This

approach recognises that the edit distance only works well with simple labels. Deal-

ing with complex labels consisting of more than one word requires further processing

(Thom 07b). To deal with complex labels, in an evaluation of this tool using the entity

relationship diagrams, noun phrases consisting of noun and modifiers were extracted

from the entity labels and verb phrases were extracted from the relationship labels.

These noun and verb phrases were then used to calculate the similarity score. The

approach also uses the structure of the diagram and domain specific rule to find syn-

onyms. For example if there is an entity in the student diagram and a yet unattached

entity of the same type in the model solution, then these two should be considered as

matched. This approach also recognises the use of hyponyms as synonyms by students

for example “prereq course” being used as synonym for “course”.

13

This eA3 system was first evaluated with a sample of 20 answers from a real exam and

then with 11 answers from a mock exam. In the first experiment, the average difference

between the machine and human marks was 2.5 (10.5%) with a standard deviation of

1.54 marks. In the second experiment with the mock exam, the average difference

between human and machine mark was 12%. The research reports that the main

reasons for discrepancies were spelling errors, thesaurus deficiencies and abbreviations.

When these deficiencies were manually rectified, the average difference between the

human and machine mark was reduced from 12 to 4.73. So this research recognises the

problems in matching the labels and shows that by rectifying them manually improves

the accuracy of the automatic marker. This research also acknowledges the need for

large scale experiments on real coursework in order to determine the accuracy of the

automatic marker.

Large scale experiments were then carried out using the eA3 system on 594 entity

relationship diagrams drawn in a real but supervised examination (Thom 07b). Out

of 594 diagrams, 200 were used as training set to detect bugs and set the weights and

thresholds, while the remaining 394 were used for the actual evaluation. The results

show that in 91% of diagrams there was less than 7% difference between the human

and machine marks while in 69% of the diagrams there was no difference. The system

was evaluated again on a set of 30 more complex entity relationship diagrams. The

model solution in this experiment was more complex because apart from containing

entities (represented by boxes) and relationships (represented by lines) it also contained

an additional type of minimal meaningful unit (MMU) for entity supertype-subtype

relationship (represented by a box wholly containing another box). The results show

that there was no difference between the human and machine mark in 36.7% of the

diagrams, while there was a difference of just 7% marks (0.5 marks our of 7) between

human and machine mark in about 96.7% of the diagrams. The difference in results

of two experiments show that the performance of the system is encouraging, but the

algorithms need refining.

14

• Graph Transformation Approach

Although this approach, like the Graph Isomorphism approach treats the diagram as

a graph, it differs in the way it marks the diagrams. In this approach, the student

diagram is treated as a starting graph and model solution is treated as the final graph.

An attempt is made to transform the student diagram into the model solution. The

number of steps required for this transformation is treated as a measure of the distance

between the two diagrams and used to mark them. The problem with this approach

lies in selecting the transformation steps and the order they should be applied as it can

effect the marks. This approach has not been used by any of six existing e-assessment

tools found during the literature review conducted during this Thesis.

All of the above approaches of automatically marking the diagrams include matching the

labels in student diagram with the labels in the model diagram. The next section explains

the different approaches that have been used to match the labels for marking the diagrams.

2.4 Approaches to match labels for marking a diagram

Table 2.2 summarizes the approaches used by the e-assessment systems to match the labels.

The systems eA3, eA4 and eA6 acknowledge that label matching is a problem for e-assessment

of diagrams. Following are two quotes from the existing literature acknowledging the label

matching problem.

The eA6 system reports “It is believed that the naming sometimes causes inconsistencies

between student diagram and the referenced phrases” (Sura 02).

The developers of eA4 system McGee et al. (McGe 05) encountered a high degree of

variation in the labels used by students for an objective two-word phrase in a technical

domain and reports “If this nature and degree of variation is found even for an objective

two-word phrase in a technical domain, in an open-book test with no time pressure, it is

somewhat alarming to speculate what we may find when we begin to look at less constrained

situations, such as (for example) language translation exercises.” (McGe 05).

The systems eA1, eA5 and eA6 use the manual intervention approach to deal with the

15

label matching problem. In the eA1 system, the students can use the label of their choice

but in the eA5 and eA6 systems the students are restricted to the labels present in the

problem specifications. In the eA1 system, each student is presented with a list of labels

within their diagram and the model solution. The students are then required to map the

labels in their diagram to those in the model solution. In the eA6 system the students are

required to highlight the text in the problem specification and this highlighted text is then

used as a label. In the eA5 system the students are presented with a list of labels in the

form of a drop down selection box. The labels in this list are all the different noun phrases

present in the problem specification. The students are required to choose the labels from

this list. The system eA5 classifies all the labels in the student diagram as either directly

or indirectly referencing a label in the model solution. A directly referencing label is one

where the students have picked up the label directly from the problem specification. However

sometimes students pick up two or more labels from the problem specification and merge

them into a new label. For example in the problem specification for the case study (see

appendix Section 6.5), the student may select “pre-pay card” and “concessions card” and

merge them into a single label “non-travel card”. Such labels in the student diagram are

different from the labels in the model solution and known to be indirectly referencing the

labels in the model solution. To deal with the indirectly referenced labels in the student

diagram, the eA5 system provides buttons to split and merge labels. The student selects the

labels from the list and use these buttons to create new labels.

The systems eA3 and eA4 uses the edit distance algorithm (Wagn 74; Nava 01), manually

prepared list of synonyms and abbreviations to deal with the label matching problem. The

syntax algorithm used by the systems eA3 and eA4 returns a score based on the edit distance

(Wagn 74; Nava 01) between the two labels. If the edit distance is less than a certain

threshold value the labels are considered to be similar (Tsel 05). In the eA4 system, all the

matched labels having an edit distance less than a threshold are presented to the lecturer

in the form of a navigable tree which can then be reviewed and updated by the lecturer

(Jone 05).

So the existing e-assessment systems acknowledge the problem of label matching but the

16

extent of the problem has not been measured before. Also only a few techniques have been

explored to deal with this problem. The use of algorithms to finding syntactic similarity

between labels is limited to edit distance algorithm (Wagn 74; Nava 01) which is used by

the system eA3 and eA4. Techniques to find the semantic similarity are limited to manually

prepared lists of synonyms and abbreviations used by the system eA3. Also there is no generic

framework for matching the labels for e-assessment. So there is a need for the following four

things:

• Formally assess the extent of the label matching problem

The extent of the problem should be empirically measured using real coursework.

Towards the end of writing of this Thesis a similar work by Thomas was found at

(Thom 09) which explores the label matching problem for the e-assessment of diagrams.

The research finds that the label matching is an existing problem and the various values

of threshold for similarity index affect the performance of the e-assessment tool.

• Explore syntax algorithms

Apart from the edit distance algorithm (Nava 01) used by the systems eA3 and eA4,

other syntax algorithms for example q-gram (Ukko 92) and simon algorithm (Whit nd)

should be explored. The syntax algorithm returns a number between 0 and 1 as the

similarity score. If the score is more than a certain threshold the labels are considered

to be similar. The threshold value can be important for the matching process so there

is also a need for exploring the optimal value of the threshold.

• Explore semantic techniques

The semantic techniques for example WordNet (Mill 95a), Wu & Palmer (Wu 94),

Leacock and Chodorow (Leac 98) etc. should be explored.

• Extensible and configurable framework for label matching

A generic framework should be developed for matching the labels for e-assessment.

This framework should be extensible and configurable.

17

Chapter 3

Diagram Label Matching

Framework

3.1 Introduction

Chapter 2 discussed existing systems to automatically mark the diagrams and the techniques

used to match the diagram labels. In this chapter an extensible and configurable framework

is proposed to match the labels in a diagram. This chapter starts by discussing the research

methodology used in this Thesis and then discusses the non-functional and functional re-

quirements of the proposed framework. It then explains the various stages of the framework

linking them to the requirements.

For the purpose of the framework proposed in this Thesis, a word is defined as any

continuous sequence of alphanumeric characters while a label is defined as a sequence of

words separated by one or more spaces.

Word=(A-Z | a-z | 0-9 | special character)*

Label = (Word (single space)*)*

Towards the end of writing this Thesis I came across a rarely cited technical report by

Hart (Hart 94) which proposes an improved algorithm to identify the spelling and word

order errors in student coursework. Similar to the framework proposed in this Thesis, it

18

is configurable. For example it can be be configured for extra words using the parameter

extraWordOk which if True will judge a student label as correct even if extra words are

present. Similarly it can be configured for sensitivity using parameter capFlag which can have

the values “exact case, authors caps, ignore case”). This work differs from the framework

proposed in this Thesis because it does not evaluate the various syntax algorithms and does

not use semantic analysis.

3.2 Research Methodology

This Thesis uses empirical and design research methodologies. First, the empirical research

is used to measure the extent of the diagram label matching problem. The result of this

experiment shows that the diagram label matching is a substantial problem and cannot be

easily avoided for the e-assessment of diagrams. These results will be presented in the next

chapter. Having established the problem a system is required to solve it. Since the domain

of e-assessment of diagram-based coursework lacks maturity and there are no open source

systems for the same a new system needs to be designed and evaluated. The design research

methodology (Vais 04; Take 90) suits this need as it involves the development and evaluation

of a system. So the design research methodology is used to design a framework for diagram

label matching. This framework is then evaluated on coursework from a UK HEI. The results

of this evaluation will be presented in the next chapter.

3.3 Requirements of Framework

The following are the functional and non-functional requirements of the framework.

3.3.1 Match labels

The framework should compare the labels in the student diagram with the labels in the model

solution and produce a set of matching pairs of labels. This involves removing ambiguities in

the student labels and calculating the similarity score with the labels in the model solution.

By manually categorising the students coursework used in the experiments in this Thesis,

19

the following kinds of ambiguities were found. The results of this manual categorisation has

been presented in the Section 4.4 Chapter 4.

• Differing case, leading, trailing and embedded spaces.

• Special characters, so a label in the student diagram may contain special characters

for example underscore, currency symbols etc.

• Misspellings

• Concatenation of words

Sometimes students concatenate multiple words in a label for example in the label

“UpdateTotal”. To match the concatenated label to the correct label, it needs to be

separated into words.

• Differing number of words and order.

A label in the student diagram may contain more or less words than the corresponding

correct label in the model solution. Also, the words in the student label may be

arranged in a different order than the corresponding correct label in the model solution.

• Synonyms and abbreviations.

The student label may contain a synonym or abbreviated form of a label in the model

solution. For example the student may use “update amount” instead of “update total”

or “expdate” instead of “expiry date”.

• Different level of decomposition

Sometimes the students provide a more detailed answer than the model solution and

so there is a subsumption relationship between one label in the model solution and a

set of many labels in the student answer. The human expert will give marks for those

lower level labels in the student answer which when composed add up to form a label

in the model solution. For example the label “check balance” in the student diagram is

a detailed level of the label “update total” in the model solution as balance is checked

while updating the total 1.
1The categorisation can be subjective and may differ from person to person. The categorisation process

20

The work in this Thesis handles all the above mentioned label ambiguities except the last

one namely “Different level of decomposition”. Some of the ways to handle this imprecision

are discussed in Chapter 5 of this Thesis.

3.3.2 Configurable and extensible

The aim of this framework is not to propose any specific algorithm or a set of parameters,

rather it is to propose a sequence of steps for matching the labels in a student diagram to

those in the model solution. According to Johnson (John 88), a framework plays the role

of the main program in coordinating and sequencing application activity and consists of an

abstract class for each major component. So the framework in this Thesis should only define

a main program for sequencing the steps and a set of interfaces for various components.

The user should then use the framework by providing the concrete implementations of these

interfaces. To enable the framework to be used ‘out of the box’ by new users the framework

should define default implementations of the interfaces and provide default values for the set

of parameters. In order to evaluate the framework, it was implemented using a set of specific

algorithms and parameters. These specific algorithms and parameters are embedded as the

default behaviour of the framework. However, this Thesis does not compare the various

algorithms and parameters available for each step of the framework except for the syntax

stage.

So the non-functional requirements of the framework are that it should be configurable,

extensible, generic by design and not confined to an algorithm, an implementation of an

algorithm or a set of parameters. It should also be easy to use. The users should be able

to configure the framework according to their needs or availability of algorithms. There can

be multiple algorithms for a task. For example the spellings can be corrected using different

spell checking algorithms for example Hunspell (Neme 10) or ASpell (Atki 04). Different

algorithms may work best in different situations and users should be able to choose the par-

ticular algorithms to be used. Also, on occasions users may have access to better commercial

carried out in this Thesis was reviewed by two members of academic staff at the Brunel University. The

results of this categorisation has been explained in Chapter 4

21

and non-open source algorithms which they should be able to use within the framework. So

the framework should be independent of any particular algorithm or implementation detail

of algorithms and the user should be able to configure the framework to select algorithms of

their choice. The user should also be able to configure the framework for various parameters

like threshold, list of special characters, abbreviations and stopwords. The framework should

be available as a jar file with Java documentations for it’s application programming interface

(API) so that it can be integrated with other applications.

3.4 Framework

The framework proposed in this Thesis is driven by a simple high level design rationale

which is to first disambiguate the labels and then to calculate the syntactic and semantic

similarity. Figure 3.1 shows this proposed framework. Table 3.1 lists the five stages of

the framework and Table 3.2 summarizes the input and output of these five stages. The

first stage disambiguates the labels to produce a set of cleaned labels that are used for the

subsequent stages. The second stage runs the syntax algorithms on these cleaned labels to

produce a matrix for the syntactic similarity index. The third stage uses WordNet to produce

a list of synonyms in the form of a synonym XML file. The fourth stage uses this synonym

XML file and re-executes the second syntax stage to produce a matrix of the combined

similarity matrix. The final fifth stage analyses this combined similarity matrix and marks

the labels in the student’s diagrams as correct if a match can be found in the model diagram

and incorrect if a match can not be found in the model diagram. Only the first three stages

of this framework namely pre-processing, syntactic matching and semantic matching have

been evaluated in this Thesis, the results of which are presented in the next chapter. The

remaining two stages namely combined similarity and analysis have been included in the

framework so as to make it complete.

22

Figure 3.1: DiagramLabelMatchingFramework

23

Reference Stage Name Main Purpose

S1 Pre-processing Disambiguate the labels

(6 Sub Stages)

S2 Syntactic Matching Calculate Syntax Similarity

S3 Semantic Matching Produce synonym XML file

S4 Combined Similarity Return stage S2 using synonym XML file

S5 Analysis Best Match Selection

Table 3.1: Framework Main Stages

Stage Name Input Output

Pre-processing Labels Processed labels

(6 Sub Stages)

Syntactic Matching Processed labels Syntactic similarity matrix

Semantic Matching Processed labels Synonym XML file

Combined Similarity synonym XML file Similarity matrix

Analysis similarity matrix List of matching pair

of labels

Table 3.2: Framework Stage Input Output

24

Reference Sub Stage Name

S1.1 Lowercase And trimming

S1.2 Special Character Replacement

S1.3 Abbreviation Expansion

S1.4 Auto Correct

S1.5 Removing Stopwords

S1.6 Stemming

Table 3.3: Sub-stages of Pre Processing Stage

3.4.1 Pre processing stage

The pre-processing stage comprises of the measures carried out before any actual similarity

matching is done and is analogous to the data cleaning which is a standard and a well

researched approach in data analysis. It takes the raw labels as input and produces a set

of processed labels which are used in the subsequent stages. The purpose of this stage is to

remove the superficial imprecision in the labels so that they can be better matched against

the correct labels in the model solution. This stage removes the imprecision caused by using

different case, space, special character, abbreviation, spelling mistake, stopword and different

derived word from the same root word. Table 3.3 lists all the sub-stages of the pre-processing

stage. Following are the details of each sub stage.

• Lowercase and trimming

This stage involves converting all the labels to lowercase and removing the leading and

trailing spaces.

• Special Character Replacement

This stage involves replacing or removing the special characters, for example ′ (single

quote), “ ” (underscore) and “&” (ampersand). Some of the special characters may

be used to separate the words in a label for example “update total”, so they should

be replaced by a single space “ ” while others for example ′ (single quote) should be

25

removed. Also some of the special characters may have specific meaning in a particular

domain and removing or replacing them may change the meaning of the label. To

overcome this problem a list of domain specific special characters should be used. The

user can modify the list of special characters using the configuration XML file. For

the purpose of evaluating the framework the results of which are explained in the next

chapter the list of special characters that was used is presented in the Appendix Section

6.2.1. The framework allows flexibility to modify this list.

• Abbreviation and Acronym Expansion

Sometimes students use abbreviations and acronyms in the labels, for example “msg”

for “message” and “paygcard” for “Pay As You Go Card”. Expanding the abbrevia-

tion is necessary to match the labels, but it is a difficult task. It can not be solved by

using a dictionary as only some of the dictionaries register some of the commonly used

abbreviations as informal words (Tera 04). For example the abbreviation “calc” is not

present in the WordNet(Mill 95b) but is registered as an informal word for “calcula-

tion” in the Dictionary.com (Dict 10). Also the abbreviations can be ambiguous. For

example the abbreviation “exp” may mean “exponential” or it may also mean “expiry”.

Expansion becomes more difficult if the student has appended the abbreviation with

some other word for example in “check expdate” because the combined words need to

be separated before doing expansion. Terada (Tera 04) has done work on automatic

expansion of abbreviations by using context and character information but it is still an

ongoing research problem.

This stage involves replacing the abbreviations and acronyms with their expanded

forms using a list of abbreviations for example the list available at (LLC 10b; Univ 96).

Also the free REST style (Fiel 02) Application Programming Interface (API) has been

provided at (LLC 10a) to retrieve the expanded form of abbreviations in the form of

XML.

For the purpose of evaluating the framework, the results of which are explained in the

next chapter the list of abbreviations available at (LLC 10b) was used. The framework

26

allows flexibility to use a different list of abbreviations.

• Auto Correct

This stage involves replacing the misspelled words in a label with their correct spelling

using a spell checker. There are different spell checkers available for example Hunspell

(Neme 10) which is used by Open Office (Corp 10a), Microsoft office spell checker,

GNU Aspell (Atki 04) etc. For the purpose of evaluating the framework the results of

which are explained in the next chapter the Hunspell spell checker (Neme 10) was used

as its implementation was easily available in Java (Fran 09). The framework allows

flexibility to use any spell checker. Also the spell checker often suggests multiple

words having different meanings for a supposedly misspelled word and it needs to

be determined which one among the multiple suggested words should be selected to

replace the supposedly misspelled word. Sometimes, but not always, the first word

suggested by the spell checker is the correct one, meaning a human expert will choose

it to replace the misspelled word. For example for the misspelled word “ceck”, the spell

checker suggests words “check”, “neck”, “deck” and “peck” in order. In this case the

first word “check” is the correct one. However in another example for the misspelled

word “vaildiate”, the spell checker suggests words “vacillate”, “radiately”, “validate”

and “repudiate” in order. In this case the third word “validate” suggested by the

hunspell is the correct one.

For the experiments in this Thesis the first word suggested by the spell checker was

used to replace the supposedly misspelled word. The evaluation results as explained in

the next chapter show that selecting the first suggested word gives reasonable perfor-

mance in terms of accuracy. Also the auto correct stage sometimes introduces special

characters. For example it flags “offpeak” as a spelling error and auto corrects it to “off-

peak”. Similarly it flags “todays” as a spelling error and auto corrects it to “today’s”.

It does not have any negative effect but introduces special characters like minus sign

and single quotes. So the stage S1.2 which involves replacing special characters needs

to be rerun after the auto correct stage to remove any special characters introduced by

27

it.

• Removing Stopwords

This stage involves removing the stopwords which are very common words like “is”,

“an”, “the”, “to” that are not relevant for matching. A list of English language stop

words can be found in google (Doyl nd). For the purpose of evaluating the framework,

the results of which are explained in the next chapter the list of stopwords that was

used is presented in the Appendix Section 6.2.2. The framework allows flexibility to

modify this list.

• Stemming

This stage deals with the different forms of the same root word. It involves replacing

the words in a label with their root words (Wiki 10e) using a stemmer. For example

the word “warning” is replaced by its root word “warn”. There are different stemming

algorithms available for example Lovins(Lovi 68), Paice(Paic 90), Porter(Port 06), S-

Removal(Harm 91) etc. Smirnov(Smir 08) presents an overview of various stemming

algorithms. Frakes(Frak 03) has done an evaluation of these four stemming algorithms.

This evaluation shows that Paice is strongest followed by Lovins, Porter and S-Removal

in order. The strength of a stemmer is defined as how much it changes words. This

evaluation also shows that the amount of over stemming is zero in S-removal followed

in increasing order by Porter, Lovins and Paice. So there is tradeoff between over and

under correction. In the proposed framework, over stemming is a significant drawback

because the stemming is a part of the first stage and its output is fed into the subsequent

stages, so the over stemming will have a multiple negative effect on the subsequent

stages. Also stemming should be applied after running all the other stages of pre-

processing stage because applying it early on can negatively effect the performance of

other stages. For the purpose of evaluating the framework the results of which are

explained in the next chapter the Paice stemming algorithm (Paic 90) was used as its

implementation source code was easily available in Java (Neil 00). But the framework

allows flexibility to use any stemming algorithm.

28

3.4.2 Syntax stage

The syntax stage proposes a new hybrid syntax algorithm known as “Combined Hybrid Syn-

tactic Algorithm” and uses it to calculate the syntactic similarity between two labels. This

hybrid algorithm is explained in the next subsection and it uses four existing syntax algo-

rithms namely edit distance, Q-gram, simon and soundex. The framework allows flexibility

to configure the hybrid algorithm for the choice of existing syntax algorithms used. This can

be done by making changes in the configuration XML file and the sample code to do this has

been presented in the Appendix Section 6.8. The results, as explained in the next chapter

show that it works better than the existing syntax algorithms on the corpus of coursework

used in this Thesis.

The approach behind the combined syntax algorithm is that since previous research shows

that none of the existing syntax algorithm dominates and is a clear best (Chri 06; Cohe 03),

use the results from various syntax algorithms to calculate the syntactic similarity. This is

analogous to searching for the best solution from a search space which consists of various

syntax similarity scores returned by the different syntax algorithms. The search algorithm

used in the combined syntax algorithm in this Thesis is simply to choose the maximum

value. The maximum value is selected in order to maximise the chance of finding the match

for a label. However the framework is configurable to select a different search algorithm

for example average, median or mode of all the values returned by the individual syntax

algorithms.

Combined Hybrid Syntactic Algorithm

This algorithm combines the existing word-to-word syntax matching algorithms into a label-

to-label syntax matching algorithm. It takes as input two labels, the first being the label

in the model solution and the second being the label in the student diagram. It then runs

the various syntax algorithms inputting one word from the first label and one word from

the second label. This is done for each pair of words in the cartesian product of word pairs

between words in first and second labels and a similarity index for each pair of words is

obtained. After that it selects the matching pair of words based on the threshold value and

29

the maximum value of similarity index. While selecting the matching pairs, it removes the

duplicates because one word in the first label can have only one corresponding matching word

in the second label. Once the matching pair of words has been selected, it then calculates

the overall similarity between the labels by taking the sum of the similarity scores of all the

matched pair of words and dividing it by the total number of words present in the first label,

which is the label in the model solution. The extra words present in the student diagram are

handled by checking them against the negation words list which is a list of words like “no,

don’t” that negate the meaning of label. If any of the extra words present in the student label

are not a negation word then they do not impact the similarity score of the labels, otherwise

the similarity score of the labels is set to zero. Also, since this algorithm operates on a word

by word basis, differing orders of the words in the labels do not impact the similarity score

of the labels. Hence this algorithm is independent of the word order and insertion of extra

words. The following steps explain the algorithm.

1. Input two labels Li and Lj . The first label Li denotes the label in the model solution

while the second label Lj denotes the label in the student diagram. Also input the

negation words list which is a list of words like “no, don’t” that negate the meaning of

label.

2. Extract words2 from each label, for example Li has words wi1, wi2..., wini and Lj has

words wj1, wj2..., wjnj where the number of words in the label Li is ni and number of

words in the label Lj is nj .

3. Prepare the cartesian product pairs between the words in the first and the second

labels, so we have

(wi1, wj1), (wi1, wj2), ..., (wini , wjnj)

4. For each pair of words, calculate the Syntactic Similarity Index (SynSI) using the

following formula:
2Recall from the definition of word and label in the beginning of this chapter that a label consists of a

sequence of words separated by one or more spaces

30

SynSI(wi, wj)csa = max5
p=1 SynSI(wi, wj)algop

where p is defined as:

(a) Exact Match algorithm 3 (p = 1)

(b) Levenshtein Distance algorithm (p = 2)

(c) Q gram algorithm (p = 3)

(d) Simon algorithm (p = 4)

(e) Soundex algorithm (p = 5)

The Combined Hybrid Syntactic Algorithm is denoted by csa.

5. For each word wk in the first label Li, select the word wl in the second label Lj such

that the pair has maximum possible value for SynSI(wk, wl)csa. Remove the duplicates

and recalculate because one word in the first label can have only one corresponding

matching word in the second label. If one word in first label has the same value of

similarity index with two words in the other label, then select one randomly.

6. Read the word similarity threshold value represented by T (SynSI) from the config-

uration XML file. The value of this threshold used for experiments in this Thesis is

0.6.

7. For the word pairs for which SynSI(wi, wj)csa < T (SynSI), set the SynSI(wi, wj)csa

to 0. This is because if the value is less than the threshold, the words are considered

to be non matching. The remaining pairs are considered to be matched and these will

be used to calculate the similarity index between the labels.

8. Each word in the second label Lj that has not been matched to any word in the first

label Li is termed an extra word. Check such extra words in the second label Lj against

negation word list4. If any of the extra word is present in the negation words list, then
3The plain match algorithm is kept for completeness. Also it can be used to optimise the Combined Hybrid

Syntactic algorithm by not executing any other individual syntax algorithm if a match is found using the

plain match algorithm.
4This step has not been implemented in the software prototype used for evaluating the framework.

31

set the similarity index between labels Li and Lj denoted by SynSI(Li, Lj)csa to zero.

Otherwise, calculate the similarity index between labels Li and Lj by taking the mean

of the similarity index vales of the matched pair of words using the following formula:

SynSI(Li, Lj)csa =
∑ni

i=0 SynSI(wi, wj)
ni

where ni is the number of words in the first

label Li. Note that if no match is found for a particular word in the first label or if

the similarity index value is less than the threshold, then its similarity index value is

set to zero and hence the overall similarity index of the label is reduced.

9. Return the SynSI value calculated above as the syntactic similarity index between the

labels Li and Lj .

10. Two labels are considered to be matched if the syntactic similarity index between them

is more than the value of the label similarity threshold mentioned in the configuration

XML file. Experiments were carried out using the label similarity threshold value of

0.5 through 1. The results of these experiments are explained in the next chapter.

This algorithm is not symmetric in the sense that the similarity score between label1 and

label2 may be different from the similarity score between label2 and label1. The reason for

this is that the first label is considered to be the label from model solution and the value of

the number of words in it is used to calculate the final similarity score.

Example of the Combined Hybrid Syntactic Algorithm

Considering the label in the model solution “invalid warn” and the label in the student

diagram “not valid”, the value syntactic similarity index between them calculated using the

combined hybrid syntactic algorithm is 0.40. Table 3.4 shows the various intermediate values

while calculating the final score. Before applying the threshold the matching pair of words

are (not, invalid, 0.14) and (valid, invalid, 0.80). After applying the threshold value of 0.6

the first pair of words (not, invalid, 0.14) is discarded as its similarity score is less than the

threshold. The only remaining matching pair of words is (valid, invalid, 0.80) and it will

be used to calculate the similarity index between the labels. As the number of words in

the correct label “invalid warn” is two so the similarity score between the matching pair is

32

Word1 Word2 Exact Simon Levenshtein Soundex Q-gram Max Match

not invalid 0.0 0.0 0.14 0.0 0.0 0.14 Selected but dis-

carded as 0.14 less

is than threshold

0.6

not warn 0.0 0.0 0.0 0.0 0.0 0.0 Not selected as it

is not maximum

valid invalid 0.0 0.80 0.71 0.0 0.63 0.80 Yes

valid warn 0.0 0.0 0.20 0.0 0.0 0.20 Not selected as it

is not maximum

Table 3.4: Combined Syntax Algorithm Example

divided by two. Accordingly, the overall similarity index between the labels “not valid” and

“invalid warn” is equal to 0.40 (0.80 divided by the number of words in the first label “not

valid”, =0.80/2).

Design rationale

The syntax algorithm used by the existing e-assessment tools retrieved from the systematic

search described in Chapter 2 uses the edit distance algorithm to find the syntactic similarity

between labels. Three widely known existing syntax algorithms are edit distance (Nava 01),

Q-gram(Ukko 92) and Simon(Whit nd) algorithm. Previous research has shown that there

is no single best syntax algorithm available (Chri 06; Cohe 03). Each of these existing syn-

tax algorithms have their own strengths and weaknesses. According to Christen (Chri 06),

“Experimental results on different real data sets have shown that there is no single best

technique available. The characteristics of the name data to be matched, as well as compu-

tational requirements, have to be considered when selecting a name matching technique” .

Below are the characteristics of a syntax matching algorithm for the e-assessment domain.

These characteristics are identified by analysing the corpus of coursework used in this thesis.

33

• Reflection of word based lexical similarity

The similarity score of two labels should be monotonic to the number of common words

between them. This characteristic gives rise to the following two requirements.

– Word Order Independent

The algorithm should be word order independent. This applies to the cases where

the student label contains no extra words and has all the words contained in the

correct label but at different positions. For example:

Student Label=“time check”, Correct Label=“check time”

Student Label=“card reader”, Correct Label=“read card”

Student Label=“cardreader”, Correct Label=“read card”

– Insertion of extra non-stopwords

The student should not be penalised for extra words in the label unless the extra

word negates the meaning. So for example the following labels should be judged

as matched.

Student Label=“invalid audible warning”, Correct Label=“invalid warning”

Student Label=“invalid beep warning”, Correct Label=“invalid warning”.

Sometimes the extra word inserted negates the meaning of the label for example

“check time” and “do not check time”. Although we did not find any such case in

the corpus of coursework used in this Thesis, such a scenario is possible. So a list

of negation words for example “no, don’t” should be used while calculating the

similarity. The insertion of any extra word not present in this list should have no

bearing on the similarity index of labels but the insertion of a extra word from

the negation word list should impact the similarity score by setting it to zero.

• Similar Sound

Sometimes a student may spell the word according to it’s sound for example “updat”

instead of “update” as both have similar sounds. The algorithm should be able to deal

with this.

34

Reference Syntax Algorithm Source

A1 Exact Match None

A2 Soundex (Wiki 10d; Russ 18)

A3 Levenshtein Distance (Nava 01)

A4 Q-gram (Ukko 92)

A5 Simon Algorithm (Whit nd)

A6 AlgoMax (Jaya 09a)

A7 Combined Syntactic Algorithm (Jaya 09a)

Table 3.5: Syntax Matching Algorithm

• Time Complexity and Memory

Generally the approximate matching algorithms in the NLP domain are led by the

objective of reducing the time complexity and the memory requirement. But in the e-

assessment domain the execution time and memory are not major constraints because

the number of labels in the model solution and the student diagram is generally limited.

As explained in the next chapter the corpus of coursework of 160 students used in this

Thesis has a total of 773 different labels, averaging 5 unique labels per student diagram.

So multiple syntax algorithms can be used simultaneously to calculate the syntactic

similarity for e-assessment of diagrams because the execution time and memory are

not major constraints.

Existing syntax algorithms

Following are the existing syntax matching algorithms.

• Exact Match Algorithm

This simply compares the two labels and produces a value 1 if an exact match is found

otherwise produces a value 0.

35

• Levenshtein Distance Algorithm

The Levenshtein distance between two strings is calculated by counting the the min-

imum number of insertions, deletions, or substitutions of a single character that is

needed to transform one string into the other (Wagn 74; Nava 01). The following

algorithm is used by (Chap 06) for calculating similarity using Levenshtein distance.

– Set cost of one insertion or deletion or substitution of a single character = 1

– Calculate minimum number of operations required to transform one string into

the another string.

– Similarity = 1− costofminimumtransformationoperations

lengthoflongerstring

Following are two examples of calculating similarity using Levenshtein distance algo-

rithm.

String1=valid

String2= invalid

Minimum operations required= Two insertions (insert ‘i’ and ‘n’ in the first string)

Cost of minimum transformation operations= 2

Length of longer string=7

Similarity=1 - (2/7)=1-0.29=0.71

String1=valid

String2= warn

Minimum operations required= Three insertions and One deletion (substitute ‘v’ with

‘w’ in the first string, substitute ‘l’ with ‘r’ in the first string, substitute ‘i’ with ‘n’ in

the first string, delete ‘d’ from the first string)

Cost of minimum transformation operations= 4

Length of longer string=5

Similarity=1 - (4/5)=1-0.8=0.2

36

• Q-gram Algorithm

This algorithm calculates similarity between two strings based upon the number of

common Q-grams between them (Ukko 92). The implementation of this algorithm

available at (Chap 06) is used in this thesis for evaluating the framework. This imple-

mentation uses trigrams (q=3). It also appends the characters “##” at the beginning

and end of each string so that the starting and ending characters of each string also

count equally towards the similarity score as the middle characters.

• Simon Algorithm

This algorithm uses the number of common adjacent character pairs contained be-

tween two strings as a measure of their similarity (Whit nd). The formula for cal-

culating the similarity score used by this algorithm is as follows. similarityindex =
2∗numCommonPairs

(numPairsStr1+numPairsStr2) where numPairsStr1 is the number of adjacent character

pairs contained in the first string, numPairsStr2 is the number of adjacent character

pairs contained in the second string and numCommonPairs is the number of common

adjacent character pairs between first and second strings. This algorithm5 is the same

as the Dice coefficient (Hill 06).

• Soundex Algorithm

This uses the similarity in sound produced by two labels as a measure of similarity

between them and is based on the Soundex Algorithm (Wiki 10d; Russ 18). So for ex-

ample “Update” and “Updat” will have a Soundex similarity score of 1 whilst “go” and

“come” will have a Soundex similarity score of 0. This algorithm has some variations

like RefinedSoundex, Metaphone and DoubleMetaphone (Foun 09).

The aim of experiments carried out using this stage of the framework is to determine which

syntax algorithm is best suited for e-assessment of diagrams. The results of these experiments

are explained in the next chapter.
5According to an informal email conversation with the author of this algorithm Simon White, he had

reinvented it without knowing about the Dice coefficient at that time.

37

Label1 Label2 A1 A2 A3 A4 A5

invalid audible warning invalid warning 0 1 0.75 0.88 0.9

invalid beep warning invalid warning 0 1 0.71 0.79 0.86

card reader read card 0 0 0.33 0.45 1

time check check time 0 0 0.11 0.36 1

read card card reader reads card information 0 0 0.35 0.36 0.52

Table 3.6: Syntax Matching Example

Alternative Option: Use the various existing syntax algorithms individually

This option means individually using the various existing syntax algorithms explained in the

previous section. The existing e-assessment tools use this approach by using just the edit

distance algorithm. Table 3.6 shows the similarity score calculated using the syntax algo-

rithms for five sets of labels present in the corpus of student coursework used for experiments

in this Thesis. The details of the corpus of coursework are explained in the next chapter

and the simmetrics library (Chap 06) has been used to execute the algorithms 6. All the five

sets of labels present in the Table 3.6 have been judged as correct by the human marker and

hence the machine should judge them the same as well. But as can be seen from this table,

none of the five syntax algorithms performs well consistently and fulfils all the requirements.

To overcome this limitation the combined hybrid syntax algorithm explained in section 3.4.2

was proposed.

Design Rationale: Combined Hybrid Syntactic Algorithm

As demonstrated in the previous section using various examples, every syntax algorithm

works best in some situations but none works best in all the situations. In other words,

none of the syntax algorithms dominates and each has its strengths and weaknesses. So it is
6The soundex algorithm implementation in the simmetrics library (Chap 06) takes into account just the

first word of the labels. So the labels “invalid audible warning” and “invalid warning” have soundex similarity

of 1 as both start with the common word “invalid”.

38

proposed to use multiple syntax algorithms in a hybrid way because using just one of them

means missing out the strength of others. This mean that two labels should be considered as

similar if any one of the syntax algorithms identifies them as similar. One way to use multiple

syntax algorithms is to combine them using the AlgoMax hybrid algorithm. This AlgoMax

hybrid algorithm takes, as input, two labels and returns a syntactic similarity index between

0 and 1 with 1 meaning a perfect match. It runs the various syntax algorithms for example

edit distance, Q-gram etc., thus obtaining different similarity scores. It then simply returns

the maximum value. Although the AlgoMax Hybrid Algorithm does combine the various

syntax algorithms it is still not independent of word order and insertion of extra words

(which are the requirements identified in the previous section), because it applies the various

syntax algorithm on the label as a whole and not on individual words. So it is modified by

applying the various syntax algorithms at the word level rather than at the label level. This

means that the input to the syntax algorithm should be words rather than whole labels.

The syntactic similarity between words should then be combined to calculate the syntactic

similarity between the labels. This new modified algorithm explained in section 3.4.2 is

known as the “Combined Hybrid Syntactic Algorithm”. Similar to the AlgoMax algorithm,

it uses different syntax algorithms and returns a syntactic similarity index between 0 and 1.

But it differs from the AlgoMax algorithm in the way it runs these syntax algorithms and

processes the results. While AlgoMax runs the various syntax algorithms inputting the two

complete labels as they are, the “Combined Hybrid Syntactic Algorithm” runs the various

syntax algorithms inputting one word from the first label and one word from the second

label. Please see section 3.4.2 for details of this algorithm.

There are two design decisions to be made for this stage. The first is to decide which of the

individual syntax algorithms to use and the second is to decide how to combine the similarity

scores from the various syntax algorithms. The framework is plug and play based, so the

users can choose this at runtime by providing the concrete class for the syntax algorithms

and adding entries for them in the configuration XML file. To carry out experiments, for the

first decision we have chosen the five existing syntax algorithms explained in the previous

section. For the second decision, we have decided to select the maximum value out of the

39

similarity indexes by various syntax algorithms.

Summary For Syntax Stage

Overall the syntax stage takes as input the processed labels from the pre-processing stage,

runs the various syntax matching algorithms and outputs a similarity matrix for the labels

in the student and model solution diagrams. However, the student may often use a label

that is syntactically different but semantically the same as the correct label. For example a

student may use “update amount” in place of “update total” or “invalid beep” in place of

“invalid warning”. The syntax matching stage is limited to the syntactically similar labels

and would fail to deal with such labels that are syntactically different but semantically same.

The next stage deals with such labels.

3.4.3 Semantic stage

As explained in the previous section, the syntax matching stage would fail to match labels

that are syntactically different but semantically the same. This stage complements the pre-

vious stage by enhancing the capacity of the framework to match such labels. This is done

by producing a list of synonyms for each word in the model solution and adding them to

a synonym XML file. The synonyms are produced from the WordNet (Mill 95a) using a

human computer interface (HCI) system used by the lecturer. WordNet (Mill 95a) lists the

different senses in which a word can be cognitively used and the corresponding synonyms for

each of these senses. The HCI system presents the various senses of a word and allows the

lecturer to manually select the senses in which the word has been used in the model solution.

The system then picks up the synonyms and hypernyms7 for the selected senses from the

WordNet and generates the synonym XML file. This synonym XML file is then fed into the
7The semantic analysis carried out in this thesis was done using human expert. The human expert treated

the hypernyms as synonyms for example “chec hours” and “check time”. So for the purpose of this Thesis,

hypernyms are treated as synonyms. However this may be an issue in other domains. For example if the

model solution has both a hypernyn and the corresponding synonym as separate labels. This requires further

work and is an area for future research.

40

next stage namely combined similarity stage.

The next chapter explains the evaluation of the semantic stage. The HCI system used to

carry out this evaluation was openoffice spreadsheet (Corp 10a). The spreadsheet was used

because it was easily available and sufficient for evaluation purposes considering that the

number of words in the model solution was small. However more efficient HCI like navigable

tree based expandable check box nodes would help the lecturer to choose the synonyms more

quickly. Such a tree based HCI has been used by Assess By Computer system to allow the

lecturer to review and update the matched labels (Jone 05; Tsel 05). Below is an example

of the synonym XML file. The document type definition (DTD) schema of the synonym.xml

file is presented in the appendix.

<synonymset name="example synonym xml">

<word description="update total" value="total">

<!--Sense #1-->

<synset description="" wordnetdatabseid="04353803" selectedbylecturer="yes">

<sense value="the whole amount">

</sense>

<synonymn value="sum, total, totality, aggregate">

</synonymn>

<partofspeech value="noun">

</partofspeech>

<examplesentence value="">

</examplesentence>

</synset>

<!--Sense #2-->

<synset description="" wordnetdatabseid="05861067" selectedbylecturer="yes">

<sense value="a quantity obtained by the addition of a group of numbers">

</sense>

<synonymn value="sum, amount, total">

41

</synonymn>

<partofspeech value="noun">

</partofspeech>

<examplesentence value="">

</examplesentence>

</synset>

<!--Sense #3-->

<synset description="" wordnetdatabseid="00515380" selectedbylecturer="no">

<sense value="constituting the full quantity or extent; complete">

</sense>

<synonymn value="entire, full, total">

</synonymn>

<partofspeech value="adjective">

</partofspeech>

<examplesentence value="an entire town devastated by an earthquake">

</examplesentence>

</synset>

</word>

</synonymset>

This example synonym xml shown above finds the synonyms of the word “total” as used in

the model solution label “update total”. It uses WordNet and shows three different senses

of the word “total” and the synonyms corresponding to each of these three senses. For each

sense it also has an XML attribute “selectedbylecturer=yes/no” which shows whether the

lecturer agrees if the word “total” was used in this sense in the model solution label “update

total”. As can be seen in this synonym xml, the value of parameter selectedbylecturer is equal

to “yes” for the first two senses and “no” for the third sense, which means that according to

the lecturer the valid synonyms of the word “total” as used in the label “update total” are

those corresponding to the first two senses. Hence the valid synonyms of word “total” are

“amount, sum, total, totality, aggregate”. After this synonym xml is fed into the framework,

42

the labels “update amount” and “update total” would be judged as matched since the word

“amount” has been listed as a synonym for the word “total”. On the other hand the labels

“update full” and “update total” would not be judged as matched since the word “full” has

not been listed as a synonym for the word “total”.

Design Rationale

As seen in the figure 3.2 there are two design decisions to be made during this stage. In step

one the source for the semantic similarity is to be decided. The two available options for this

are a linear dictionary like (Dict 10) and WordNet (Mill 95a). The linear dictionary is easy

to use but does not take into account various semantic relations. WordNet is a cognitive

science based collection of English words and the various senses in which they can be used

(Mill 95a; Wiki 10h). Its latest 2.1 version has a total of 155327 words. A sense can be

defined as the way in which a word can be used. For example the word “beep” can be

used in three different senses. First as a noun meaning “a short high tone produced as a

signal or warning”, second as a verb meaning “make a loud noise” and third as a verb again

meaning “call, summon, or alert with a beeper”. So in the WordNet the word “beep” has

three senses. For each of these senses WordNet also defines a set of synonymous words that

can used interchangeably to represent that particular sense. So the first noun sense of the

word “beep” has synonym “bleep”, while it’s second verb sense has synonyms “honk, blare,

claxon, toot”. In other words it can be said that, to represent the noun sense “a short high

tone produced as a signal or warning”, the word “beep” or “bleep” can be used. Similarly

to represent the verb sense “make a loud noise” the words “honk” or “blare” or “beep” or

“claxon” or “toot” can be used. Also the different senses can be related to each other. For

example the sense “Sound (make a certain noise or sound)” is a hyerpnym or more generic

form of “Beep (make a loud noise)”, “building” is a holonym of “window” and “full (complete

in extent or degree and in every particular)” is similar to another sense “complete (having

every necessary or normal part or component or step)”. So each sense has pointers relating

it to other senses. This combination of a sense, the synonymous words that can be used

interchangeably to represent that sense and the pointers relating that sense to other senses

43

Figure 3.2: Semantic Stage Design Rationale

44

forms a Synset. WordNet is basically a collection of these Synsets. The various synsets are

related to each other using different kinds of pointers or relationships for example hypernym,

hyponym, holonym, meronym etc. It is important to note that the various relationships are

between the various senses of two words and not between the words themselves. Various

applications like OpenOffice (Corp 01) and Memidex dictionary (Memi 09) use WordNet to

generate the thesaurus. Hence the proposed framework intends to use WordNet.

The second design decision is the way to use the WordNet to find the semantic similarity.

There are three available options for this, the first is to use semantic distance algorithms to

find the semantic similarity, the second is to use automatic word sense disambiguation to find

the senses and synonyms and the last is to select the synonyms using manual intervention

by the lecturer using HCI system. These three options are explained below along with the

reason to choose or discard them. The proposed framework uses the third option of manual

intervention by the lecturer using HCI system.

The first option is to use the semantic algorithms to calculate the similarity index between

two words using the WordNet (Mill 95a; Fell 98). A summary of semantic algorithms is

provided at (Pede 08; Pede 04). There is a distinction between semantically related and

semantically similar (Patw 03; Sala 09). Semantically related takes into account all kinds

of relationships for example synonyms, antonyms, hypernym, hyponym, holonym, meronym

etc. So even two antonyms will be related to each other. On the other hand semantically

similar takes into account only hyponymy and hypernymy relationships. These are applicable

only to nouns and verbs as adjectives and adverbs don’t have hyponymy and hypernymy

relationships. So “semantically related” is a superset containing a subset “semantically

similar”. Some of the algorithms to calculate semantic relatedness are Hirst & St-Onge

(Hirs 98), Lesk (Lesk 86), Adapted Lesk (Bane 02). Some of the algorithms to calculate

semantic similarity are Wu & Palmer (Wu 94), Lin (Lin 98) and Path length (Pede 04),

Leacock and Chodorow (Leac 98), Jiang & Conrath (Jian 97) and Resnik (Resn 95).

These algorithms use the shortest path between the two words and their Information

Content to calculate the similarity index but differ on the actual formula that they apply. The

Information Content (IC) of a word is a measure of the amount of information it represents.

45

There are different algorithms to calculate the value of IC. For example, the algorithm by

Nuno Seco et al. (Seco 04b) use the number of hyponyms a word has to calculate its IC

(Seco 04b). If a word has more hyponyms then that means the word is more generic and

represents less specific information and hence should have low value of IC. So the IC value

for a top root node will be the minimum while that for a leaf node will be the maximum.

Another algorithm to calculate the semantic similarity is the combined text-to-text semantic

similarity algorithm (Corl 05). It is the only semantic matching algorithm that is focussed

on a group of words rather than the individual words. Some of the software systems that

calculate the semantic similarity between two words using different algorithms are (Pede 09a;

Seco 04a; Veks 07). Budanitsky has carried out experiments using WordNet to compare five

different semantic distance algorithms and found Jiang and Conrath algorithm to be best

(Buda 01).

The advantage of this approach is that it is easy to use and full automation is possible

as it returns a similarity score. The disadvantage of this approach is its blackbox nature.

The algorithms to calculate the semantic distance between two words are based on the

shortest path between them. The WNConnect software (Fong 05) shows the shortest distance

between two words in a graphical form. But this shortest path might have in between senses

representing nodes which might be different from the sense in which the word was originally

used in the label in the model solution. So this approach is blackbox in nature because

the lecturer may or may not agree with the path taken to calculate this semantic distance.

Because of the blackbox nature this approach is discarded.

Having discarded the approach to automatically calculate the semantic distance using the

semantic algorithms, a second approach involves finding the synonyms from WordNet using

the various sense. A word can be used in many senses and the task of resolving the sense in

which a word has been used in a particular sentence is termed as word sense disambiguation

(Sanf 98). As already discussed that the WordNet lists the various senses in which a word

can be used and the synonyms corresponding to each of these senses. So the first step is to

select the senses present in the WordNet which match the sense in which the word was used

in the label in the model solution. This can either be done manually by the lecturer using

46

an HCI system or automatically using word sense disambiguation techniques. For example

the word “fare” may mean “eat well” as in the sentence “They fared sumptuously” or it may

mean “the sum charged for riding in a public conveyance”. The technique of automatic word

sense disambiguation uses the neighbouring words to determine the sense in which a word is

used. For example the sentence “Different fares are charged for peak and off peak services”

contains the word “fare” alongwith “charge” and so it can be assumed that the word “fare”

is used for “sum or amount” and not for “eat well”. But word sense disambiguation is an

ongoing research problem (Pede 09b) and it becomes more complex for words in diagram

labels as the diagram labels consist of few words. Since it is difficult to apply the word sense

disambiguation techniques to diagram labels, so manual intervention by lecturer using an

HCI system is preferred the details of which have already been explained in the beginning

of the Section 3.4.3 of this chapter.

The advantage of manual intervention by the lecturer to select the senses over the previous

approach of automatically calculating the similarity index using semantic algorithms is its

white box nature. The user has control over the sense that should be used to find the

synonyms. The manual intervention has the disadvantage that it will involve lecturer time,

but this time can be reduced by using the efficient HCI systems for example the tree based

selection. Moreover it is a one time task and needs to be done only for the labels in the

model solution which are generally not many. Also, the economies of scale will make this

approach more beneficial if the same coursework is used multiple times.

3.4.4 Combined similarity stage

This stage calculates the combined similarity index (ComSI) value for each pair of labels by

using the synonym XML file mentioned in the previous section and reexecuting the syntax

stage algorithm.

3.4.5 Analysis stage

This is the last stage of the framework and for each label in the student diagram it outputs

the corresponding matching label in the model solution or null if none is found. The input

47

to this stage is the cartesian product set of the labels in the model solution and the student

diagram along with the value of similarity index for each of these pairs. The following steps

explain the method used by this stage to select the matching pair of labels.

• Input the similarity index matrix for the cartesian product of labels in the model

solution and the student diagram. If there are n and m labels in the model solution

and the student diagram respectively then this will be a n × m matrix.

• For each Label Li in the model solution (each row in the similarity index matrix),

select the corresponding label Lj (represented in columns) from the student diagram

such that the pair has maximum value for the similarity index ComSI(Li, Lj).

• So if there are n labels in the model solution, n pairs will be selected each consisting of

one label from model solution and one label from the student diagram. If the number

of labels in the student diagram (m) is less than the number of labels in the model

solution (n), then for some labels in the model solution the corresponding label from

student diagram will be null. Also In case of duplicates where one label from the

student diagram matches more than one label from the model solution, select the one

with the higher similarity score or any one randomly if similarity scores are equal

and then recalculate the matching pairs. After recalculating the matching pairs again

check for duplicates and recalculate if duplicate exists. This step of recalculating the

matching pair should be repeated until each label in the student diagram matches only

one label of the model solution.

• Read the threshold value represented by T (ComSI) from the configuration XML file.

The value of this threshold used for experiments in this Thesis is 0.6.

• Discard the pair of labels for which ComSI(Li, Lj) < T (ComSI)

• The remaining pairs of labels are considered to be matched. Each student diagram label

Lj present in these matching pairs is considered to be correct and the corresponding

label Li from model solution is returned. The rest of the student diagram labels not

present in the matching pairs are considered as incorrect and null is returned for them.

48

La1 La2 La3 La4

L1 0.40 0.10 0.90 0.82

L2 0.20 0.30 0.95 0.80

L3 0.25 0.30 0.70 0.81

Table 3.7: Similarity matrix

The following example explains the analysis stage. The model solution in this example has

three labels namely (L1, L2 L3) while the student diagram has four labels namely (La1, La2,

La3, La4). The similarity matrix for the cartesian product of labels in the model solution

and the student diagram is shown in the Table 3.7. The maximum value of the similarity

index in each row has been highlighted. The matching pair of labels are (L1,La3), (L2,La3)

and (L3,La4). But two labels in the model solution can’t match the same label in the stu-

dent diagram which is the case here as both the labels L1 and L2 in the model solution are

matched with the same label La3 in the student diagram. Since the pair (L2, La3, 0.95)

has higher similarity index value than (L1, La3, 0.90) so L2 is matched with La3 and a

second maximum is chosen for L1 which is La4 with a value of 0.82. Now the matching pairs

becomes (L1,La4), (L2,La3) and (L3,La4). But the labels L1 and L3 are matched with the

same label La4 so the pairs need to be recalculated. Since the pair (L1, La4, 0.82) has higher

similarity index value than (L3, La4, 0.81) L1 is matched with La4 and a second maximum

is chosen for L3 which is La3 with a value of 0.70. But La3 is already matched with L1 with

similarity index value higher than 0.70 so a third maximum is choose for L3 which is La2.

So the matching pairs of labels are (L1, La4), (L2, La3) and (L3, La2). Now the threshold

value of 0.6 is applied and the pairs having similarity index less than the threshold value are

discarded. The intermediate output of the analysis stage before applying the threshold is as

follows.

L1 La4 0.82

L2 La3 0.95

L3 La2 0.30

49

The final output of analysis stage after applying the threshold of 0.6, is

L1 La4 0.82

L2 La3 0.95

L3 None

Since the pair (L3, La2) has similarity index value less than the threshold it is discarded.

So the final matching pairs are (L1, La4), (L2, La3) and (L3, null). The labels L1 and L2 in

the model solution match the labels La4 and La3 in the student diagram while there is no

match in the student diagram for the label L3 in the model solution. So the labels La3 and

La4 in the student diagram are flagged as correct while the labels La1 and La2 are flagged

as incorrect.

The algorithm used in the analysis stage always selects the local maximum in each row.

However sometimes selecting the second maximum from a row may lead to an overall better

match. For example, in the Table 3.7 if the value for (L2,La4) is changed from 0.80 to 0.94,

then the same match as before is obtained which is (L1 La4 0.82), (L2 La3 0.95) and (L3

La2 0.30). The overall similarity score for this match is 2.07 (0.82+0.95+0.3). But selecting

second maximum for the L2 (selecting 0.94 instead of 0.95) would result in the matches

(L1,La3, 0.90), (L2,La4, 0.94) and (L3, La2, 0.30). This is a better match because the

overall similarity score is 2.14 (0.90+0.94+0.3) which is more than overall similarity score

obtained by selecting the local maximum for each row. So there can be a tradeoff between

local maximum in each row and the overall similarity score. This issues requires further work

and is an area for future work.

3.5 Design patterns and Software prototype

As explained before there are two non-functional requirements of the framework. Firstly

the framework should be configurable, extensible, generic by design and not confined to an

algorithm, an implementation of an algorithm or a set of parameters. This will allow the

framework to be configured and extended by others. Secondly the framework while remaining

50

Figure 3.3: Strategy design pattern and dynamic loading

extensible at the same time should be simple to use and embed into other applications without

much effort. To fulfil these two requirements configuration XML (W3C 08), dynamic loading

of classes (Micr 99b; Micr 09) and two design patterns namely the strategy design pattern

(Wiki 10g) and the facade design pattern (Wiki 10b), are used in the framework. These are

explained below.

3.5.1 Strategy design pattern and dynamic loading

For the first requirement the Strategy design pattern (Wiki 10g) is used. According to

Gamma et.al (Gamm 95), “The strategy pattern defines a family of algorithms, encapsulates

each one, and makes them interchangeable. Strategy lets the algorithm vary independently

from clients that use it. The strategy pattern is useful for situations where it is necessary

to dynamically swap the algorithms used in an application”. The strategy pattern suits the

requirement except that it requires the concrete implementations of the algorithm interface

to be defined at compile time. This limitation of the strategy pattern was overcome by

51

removing the name of the concrete class from the framework code and using the dynamic

loading of classes (Micr 99b; Micr 09). The name of the concrete class for an algorithm is

mentioned in the configucation XML file while the actual concrete class is provided either

as a Java Archive JAR file (Corp 10b) or as a Java class file (Micr 99a). The framework

gets the name of the concrete class of the algorithm from the configuration XML file and

accesses the class using the Java class path (Micr 04). The client can create a new concrete

implementation of the algorithm interface and add its name in the configuration XML file.

Figure 3.3 shows this process.

The interface for algorithms being used during the various stages is defined. The users

should create concrete classes for the algorithm of their choice by implementing these in-

terfaces. The framework uses these interfaces, a configuration file containing names of the

concrete classes and a dynamic binding mechanism to load at runtime the externally pro-

vided concrete implementations of the various algorithms. All the concrete implementation

of the algorithms are outside the framework.

Users can extend the framework by writing a concrete implementation for any algorithm

and adding the entry in the configuration file. So, for example, the following steps need to

be carried out in order to use the Porter stemming algorithm (Port 06) in the framework.

The actual code to do so has been provided in the Appendix Section 6.7.

• Write the concrete class for the Porter stemming algorithm. This class should imple-

ment the StemmingInterface which has been defined in the framework and contains

the abstract method getStem(String srt1).

• Compile the file and place the class file inside the framework.

• Add the name of this class to the configuration XML file. The framework then auto-

matically reads the name of the concrete class from the configuration xml file, loads it,

and calls its methods at runtime.

52

3.5.2 Facade design pattern

Facade design pattern has been used to provide a simple interface to the diagram label

matching framework (Wiki 10b). The facade class consists of following method which the

user can call.

//string[0][0]=label in student diagram

//string[0][1]=matching label in the model solution, this is null if none is found

//string[0][2]=similarity index

String[][] getMatchedLabels(String xmlStudentDiagram, String xmlModelSolution)

3.5.3 Software Tool

An open source software tool to automatically mark the diagrams has been developed using

the framework proposed in the Thesis. The Java source code for this prototype implemen-

tation is shown in Appendix 7. The Java code, Java documentation javadoc and netbeans

project folder of the prototype has also been published at (Jaya 10) so that it is easy to

download and reuse.

This tool, called “DiagramAssessmentTool.jar”, consists of the following four compo-

nents. Each component is a separate jar file. The software also has a configuration XML file

which can be used to customize various algorithms and parameters.

• UMLDiagramXMIAPI.jar

This component extracts the labels from UML diagrams in XMI format.

• GenericLabelMatcher.jar

This component matches the labels.

• GenericLabelMatcherConcreteClasses.jar

This component has the concrete implementations of the algorithms used by the Gener-

icLabelMatcher component.

• GenericLabelMatcherInterface.jar

53

This component has the interface for the algorithms used by the GenericLabelMatcher

component. The user needs this component containing interfaces in order to compile

the concrete implementation of the algorithms.

The design of this software prototype has the following properties.

• XML Based

The prototype is based on the XML format. The input to the framework is a diagram

expressed in XMI format (OMG 07b) which is a standard format to express UML

diagrams. The prototype can be extended to accept diagrams as input in various

formats for example JPEG, GIF, SVG etc. (Mian 99) but it is a topic for further work

and will be discussed in Chapter 5.3.

• Configurable for various algorithms and parameters

The prototype has a main controller class and a set of interfaces for the algorithms.

It is independent of any concrete implementation class for any of the algorithms. The

concrete algorithm classes are outside the prototype system and the users can provide

their own implementations of the interfaces for the algorithms and plug them into the

system. The users can also customize the various parameters like special characters,

stopwords etc. All this is done via a configuration XML file, an example of which is

presented in the Appendix Section 6.3.

3.6 Summary

In this chapter a framework to match the diagram labels for e-assessment has been proposed.

The chapter started by first discussing the design research methodology used in this Thesis.

Then the functional and non-functional requirements of the framework were explained. The

six different stages of the framework were then explained which fulfil the functional require-

ments. The design of the software prototype implementation of the framework was then

explained. This design fulfils the non-functional requirements of the framework.

The functional requirement of the framework is that it should compare the labels in the

student diagram with the labels in the model solution and produce a set of matching pairs

54

of labels. The proposed framework has five stages explained in Section 3.4 of this chapter

which fulfils this requirement. The first stage disambiguates the labels to produce a set of

cleaned labels that are used for the subsequent stages. The second stage runs the syntax

algorithms on these cleaned labels to produce a matrix for the syntactic similarity index.

The third stage uses WordNet to produce a list of synonyms in the form of a synonym XML

file. The fourth stage uses this synonym XML file and re-executes the second syntax stage

to produce a matrix for the combined similarity matrix. The final fifth stage analyses this

combined similarity matrix and marks the labels in the students’ diagrams as correct if a

match can be found in the model diagram and incorrect otherwise.

Note that the fourth stage of the framework reruns the second syntax stage but with

the synonyms XML file. This makes the second syntax stage of the framework redundant.

However the second stage is kept as a separate stage in the framework for two reasons.

Firstly it is the sequence in which the framework was evaluated, first the syntax algorithms

were run alone, and then further stages were added to enhance the label matching process.

Secondly keeping the second and fourth stage separate allows the user to see the effect of

syntax algorithms and semantic stage separately.

The non-functional requirements of the framework are that it should be configurable,

extensible, generic by design and not confined to an algorithm, an implementation of an

algorithm or a set of parameters. The software prototype design explained in the Section

3.5 of this chapter fulfils this requirement. The framework is a set of interfaces for various

components and a configuration XML file which has the entries for the names of the con-

crete classes and value of various parameters. The framework provides concrete classes and

parameters for the default behaviour so that it can be used straight out of the box by the

users but the user is able to override these configurations by modifying the configuration

XML file and define the algorithms and parameter values of their choice.

In order to evaluate the proposed framework a software prototype was implemented.

This prototype was used to carry out experiments on a coursework at a UK HEI. The next

chapter will discuss the results of these experiments.

55

Chapter 4

Results and Discussion

4.1 Introduction

Having proposed a configurable and extensible framework to match the labels in the previous

chapter, in this chapter the results of experiments carried out using this framework are

explained. The first section of this chapter explains the data collection process for the

corpus of student coursework that was collected to carry out experiments in this Thesis. The

experiments were then carried out using this corpus to first empirically measure the scale of

the label matching problem and then to evaluate the effectiveness of the proposed framework

to solve this problem. The second section explains the results of the experiments to measure

the scale of the label matching problem. These results show that the problem of labels is

substantial and cannot be easily avoided for the e-assessment of diagrams. These results also

indicate a set of syntax and semantic algorithms will be required to solve this problem. The

third section explains the categorisation of the data carried out manually. Here each label

in the student coursework has been assigned to a category depending upon whether it would

require just the syntax algorithms, just the semantic algorithms, or a combination of both in

order to be matched to the correct label in the model solution. These results provide an upper

bound for the performance of a perfect label matching process over the corpus of coursework

used in this Thesis. The fourth section presents the analysis of the performance of two

pre-processing stages namely auto correct and abbreviation expansion. These results show

56

that the auto correct stage was quite effective but the abbreviation expansion stage did not

perform well. The fifth section discusses the results of four syntax algorithms. These results

show that the hybrid syntax algorithm explained in Section 3.4.2 of the previous chapter

performs comparatively better than the three existing syntax algorithms. The last section

analyses the results of using WordNet for semantic matching which shows that WordNet is

only marginally effective for finding synonyms.

4.2 Data collection

Data was collected from coursework for second year Computer Science undergraduates at

Brunel University. The coursework and the model solution provided by the lecturer are

presented in the Appendix Section 6.5. The coursework description consisted of three para-

graphs of text explaining the requirements for a bus travel card system and the students

were required to draw a UML activity diagram (OMG 07a) for this problem. They were free

to draw the diagrams either at home or in the labs over a period of a month. The students

created a project for the UML activity diagram (OMG 07a) in the Borland Architect CASE

tool (Toge 08) and submitted the complete project folder as a single compressed file through

WebCT Virtual Learning Environment (VLE) (Clar 02). Initially 193 compressed student

coursework files each containning an UML activity diagram were received. But unfortunately

some of the compressed files could not be opened because they were corrupted and some did

not contain a UML activity diagram. After removing all such files, 160 student coursework

files each containing a UML activity diagram were obtained.

These files were then uncompressed and opened in Borland Architect CASE tool (Toge 08).

The UML XMI (OMG 07b) (Fran 03) files were then extracted using the Borland Architect

export utility for each of the student coursework projects. A Java program was written to

parse these XMI files to extract the labels present in the diagrams. The framework explained

in the previous chapter takes these UML XMI files (OMG 07b) as input.

This corpus of student coursework was large scale with 160 students and realistic be-

cause students did it in a natural setting for a real undergraduate module assessment. The

57

Item Count

Total number of student diagrams 160

Total number of labels in all the student diagrams 2013

Mean number of labels per student diagram 12.58

Number of labels in the model solution 8

Mean number of words per label in the student diagram 3.06

Mean number of words per label in the model solution 1.88

Table 4.1: Basic Data

coursework created by the lecturer and the submissions by students were not affected by

the experiments carried out in this thesis. The lecturer did not know beforehand that the

coursework would be used for experiments and so the coursework creation was unbiased. Nor

were the students told of this experiment beforehand. After the students had submitted the

coursework there was an opportunity to use it for experiments carried out in this Thesis.

Also 90% of the students in this module were UK home students and therefore had sufficient

level of proficiency in the English language. So this corpus of student work was chosen for

experiments as it was large scale, realistic and representative of the UK HEI home students.

Table 4.1 summarises the raw data that was used in this Thesis for experiments.

4.3 Proliferation of synonym experiment results

4.3.1 Corpus of coursework

The corpus of coursework has been published in the following three formats at (Jaya 10).

• Borland Architect CASE tool project(Toge 08)

This is the original format in which students submitted their coursework.

• XMI Format

The XMI XML file corresponding to each student diagram was manually extracted

58

Figure 4.1: Text Transformation Processing

Text Transformation Before After

Trimming “ Update Balance ” “Update Balance”

Lowercase “Update Balance” “update balance”

Replace punctuation characters with single space “update balance” “update balance”

Remove stopwords “display the charge” “display charge”

Remove embedded spaces “process card” “processcard”

Stemming “processing” “process”

Table 4.2: Text Transformations

59

Text Transformation Sequence Count %

Total number of labels 2013 100%

(Do Nothing) Total number of unique labels 773 38.4%

(TS1) Case and space trimming 638 31.7%

(TS2) Punctuation and stop words 571 28.4%

(TS3) Stemming 537 26.7%

Total number of unique correct label 358 17.8%

synonyms from TS3

Table 4.3: Text Transformation Impact upon Label Count

Figure 4.2: Rates of New Labels with Increasing Numbers of Student Coursework

60

using the Borland Architect CASE tool XMI export utility. All these XMI files have

been published as a compressed zip file.

• JPEG PDF Format

To make it easy to see all the student diagrams, the utility PreMark (Jaya 07a) was

used to generate a single PDF file containing all the student diagrams in JPEG for-

mat arranged according to student identification number. Another PDF file was also

generated using the (Jaya 07a) containing all the student diagrams in JPEG format

arranged according to their file size. These two PDF files have also been published as

part of the corpus.

To empirically measure the problem of diversity of labels used by the students, first the effect

of basic text manipulation techniques in reducing the number of unique labels was assessed.

Then the impact of scale was explored by measuring the number of new unique labels added

per 10 students. From the dataset of 160 student coursework diagrams explained in the

previous section all the labels were extracted using a Java program that parses the XMI

files. Three sequences of text processing were then applied to these labels. These sequences

are summarised in Fig. 4.1 where the ellipses denote specific text transformations such as

trimming. However, there are ordering issues so the combination of transformations are

referred to as transformation sequences (TS) and these are denoted by rectangles. Following

are the three TS applied to the dataset. Table 4.3 gives examples of each individual text

transformation.

• Do nothing: no processing of the labels extracted from the diagrams.

• Transformation Sequence 1 (TS1): this involves trimming the labels and converting

them to lowercase, so for example, the terms “Update Balance ” and “Update Balance”

would be transformed into “update balance”.

• Transformation Sequence 2 (TS2): this involved first replacing the punctuation charac-

ters like underscore with a single space, then removing the stopwords and then finally

61

removing the embedded spaces1. Stopwords are very common words like “to” and

“the” that can be ignored whilst comparing labels (Wiki 10f). So “update balance” is

first converted to “update balance” and then to “updatebalance”, “display the charge”

is first converted to “display charge” and then to “displaycharge” and “process card”

is converted to “processcard”.

• Transformation Sequence 3 (TS3): this differs from TS2 in that the stemming text

processing must be performed prior to removing embedded spaces. This is because the

stemming algorithm which reduces a word to its root form cannot deal with concate-

nated words hence embedded spaces are essential to delineate each word.

The results for the effect of the transformation sequences and the impact of scale are explained

in the following two subsections. These results show that the diagram label matching is a

substantial problem and cannot be easily avoided for the e-assessment of diagrams. The

finding implies that a set of better syntax and semantic similarity algorithms would be

required to solve the problem.

4.3.2 Effect of basic text manipulation techniques

Table 4.3 indicates the impact of the basic text manipulation techniques to reduce the number

of labels. As can be seen, the most effective of these strategies is TS3 which includes word

stemming. This has the positive effect of reducing the number of unique labels by almost

73%, however, in practice this still leaves us with 537 unique labels which has a considerable

impact if these must be examined manually. Unfortunately this task can not be ignored

since 358 labels out of those produced by TS3 transformation have been judged as correct
1Embedded spaces were removed for the following reason. We needed to identify synonyms but the

student labels did not always contain spaces between words, for example “invalidbeep”. To avoid treating

“invalidbeep” and “invalid beep” as different labels we removed the embedded spaces. Another solution would

be to split “invalidbeep” into two separate words but for this we would require the automatic correction of

words using a spell checker. Unfortunately spell checkers are not always accurate and can lead to over-

correction, for example the Open Office spell checker auto corrects the label “cardreader” to “car dreader”.

Hence we decided to remove the embedded spaces from all labels.

62

by the human marker. So in the absence of further automation the human marker would

have to deal with a total of 537 labels which can be time consuming.

4.3.3 Impact of scale

To explore the economies of scale factor the cumulative effect of adding ten new diagrams

at a time on the number of new unique labels added was measured. These sets of ten new

diagrams were randomly selected without replacement from the pool of 160 diagrams. Since

the order in which the sets of 10 diagrams were selected from the pool of all diagrams might

be influential the randomisation and cumulative analysis was repeated 30 times. The results

as shown in the line plot in Figure 4.2 indicate the number of new unique labels added per

10 students so as to present the effect of increasing the number of students. The three line

plots represent three levels of text processing. As can be seen in the Figure 4.2 the number

of new unique labels added tends to decrease as the number of students is increased. This

is not particularly surprising since increases in the numbers of label collisions is expected,

i.e. picking a non-unique label. However, there also appears to be a tendency to flatten out

from about 90 students onwards. The disconcerting issue here is that even after Level 2 text

processing there is little evidence that new unique labels are being added at a rate of less

than 30 per set of 10 additional student diagrams. Nor does this rate appear to be declining.

So overall the cumulative growth of synonyms only shows a limited tendency to reduce at

the margin despite using a range of text processing techniques.

4.4 Manual categorisation of data

Having established the scale of the label matching problem in the previous section, it is clear

that a set of syntax and semantic algorithms is required to solve the problem. The human

marker has marked all the student labels as correct or incorrect. If this marking were to be

done automatically using various syntax and semantic algorithms, then some of the correct

labels in the student diagram might be matched using just the syntax algorithm, but some

would require a combination of syntax and semantic algorithms and some might require

63

semantic algorithms alone. In order to find the percentage of such labels in each of these

categories, manual categorisation of all the correct labels was done. This finds the upper

bound for the performance of the best syntax and semantic algorithm.

The manual categorisation was carried out by myself for all the student labels that were

marked as correct by the human marker. This categorisation was then reviewed by two mem-

bers of the academic staff at Brunel University, one of them being the original human marker

who had categorised each label as correct or incorrect. The manual categorisation can be

subjective and may differ from person to person, so it is important to explain the process

followed for categorisation as clearly as possible. This has been done by first listing a set of

transformation rules and then listing the manner in which these transformation rules were

applied to categorise each correct label. The following 15 transformation rules were used

during the categorisation process. These transformation rules have not been implemented

automatically but were carried out manually for the experiments. Also the transformations

T9 and T10 are high level and difficult to automate, but have been included to clearly explain

the categorisation process.

Label cleaning Transformations

• T1: convertToLowercase:(label) → label

This transformation converts the label into lowercase.

• T2: breakIntoWord:(label) → label

Sometimes a label contain two or more separate words but in a concatenated form.

This transformation breaks them into separate words. For example “validbeep” is

broken down into “valid beep”.

• T3: correctSpelling:(label) → label

• T4: removeStopword:(listOfStopword, label) → label

• T5: removeSpecialCharacter(listOfSpecialCharacter, label) → label

64

• T6: removeDigits:(label) → label

For example the labels “valid-beep0” and “valid-beep1” are converted into “valid-beep”

• T7: expandAbbreviation(listofAbbreviation, label) → label

Semantic Plus Syntax Transformation

• T8: replaceWordBySynonymWord(Synonym, word) → word

This is a word level transformation and is applied repeatedly on each word of the label.

This means replacing individual words in a label with the corresponding synonym,

hypernym or hyponym word. For example “update amount” is replaced by “update

total”, “amount” being synonym of “total”. The hypernym of a word is its more

generic form or a super category. For example, with “process card type” and “check

card type”, “process” is a hypernym of “check”. The hyponym of a word is its less

generic form or a sub category. For example, with “check hours” and “check time”,

“hour” is a hyponym of “time”.

Semantic Transformations

• T9: replaceLabelBySynonymLabel(listOfSynonymLabel, label) → label

This transformation replaces the label with a synonym label. For example the label

“warning beep” is replaced by the label “invalid warning”.

• T10: replaceDecomposedLabelByHigherLevelLabel(listOfDecomposedLabels, label)→
label

Sometimes a label in the student diagram is in a decomposed form (differing level of

decomposition) of a target label in the model solution. This transformation replaces

such decomposed labels with the the corresponding target label. For example the label

“display reason for error” is replaced by the label “invalid warning”.

• T11: replaceBySurroundingStateMatch(surroundingLabelsOfTargetLabel, label)→ la-

bel

Sometimes surrounding or nearby labels are used to match labels in a diagram. Sur-

rounding labels are defined as the immediately adjacent labels. This transformation

65

deals with such case. If all or most of the labels surrounding a label in the student

diagram are same as those surrounding a label (known as target label) in the model

solution, then this transformation replaces the label by the target label.

• T12: replaceByType(label, targetLabel) → label

Sometimes there is only one start state in the student diagram and only one in the

model solution. A student may have used a different label for this start state but the

human expert will match it to the start state in the model solution as both can contain

only one start state. This transformation takes care of such situations by replacing the

label in student diagram with the target label in the model solution if both have the

same type and a maximum of one is allowed in a diagram.

Syntax Transformations

• T13: removeSurplusWord(label * targetLabel) → label

The surplus words are the words that are present in the label but not present in the

target label. This transformation removes all such surplus words from the label.

• T14: arrangeWordOrder(label, targetLabel) → label

This transformation arranges the words in the label according to those in the targetla-

bel. So if label = “time check” and targetLabel = “check time” then this transformation

reverses the word order in the label and returns “check time”.

Result Transformation

• T15: equal(label, targetLabel) → boolean

This transformation returns true if two labels are exactly same, else it returns false.

4.4.1 Categorisation process

The manual categorisation was carried out by applying the above mentioned transforma-

tion rules in the following manner. Tables 4.4 and 4.5 summarize the main categories and

subcategories respectively.

• Cleaned Label: Input label L and apply transformations T1 through T7. Store the

66

output label as L′. This is the cleaned label on which all further transformations will

be applied.

• Syntax Only: Apply T13 through T15 on L′. If true is returned then categorise the

label L as “Syntax Only”.

• Semantic Plus Syntax: Apply T8 on each word of L′ and then on its output apply T13

through T15. If true is returned then categorise the label L as “Semantic Plus Syntax”

with the sub category as “Sem Synonym”.

• Semantic Only: Apply T9 on L′ and then on its output apply T15. If true is re-

turned then categorise the label L as “Semantic Only” with the sub category as

“Sem Synonym”.

• Semantic Only: Apply T10 on L′ and then on it’s output apply T15. If true is returned

then categorise the label L as “Semantic Only” with the sub category as “Sem DifDec”

(Differing level of decomposition).

• Semantic Only: Apply T11 on L′ and then on its output apply T15. If true is returned

then categorise the label L as “Semantic Only” with the sub category as “Sem Sur”.

• Semantic Only: Apply T12 on L′ and then on its output apply T15. If true is returned

then categorise the label L as “Semantic Only” with the sub category as “Sem Typ”.

The labels categorised as “Syntax only” can be matched using just the syntax algorithms.

The labels categorised as “Semantic Plus Syntax” would require a set of semantic and syntax

algorithms to be matched while the labels categorised as “Semantic only” would require

semantic algorithms to be matched. The labels categorised as “Syntax only” are syntactically

similar to the correct label. For example the labels “ceck card type” and “check card type”

were categorised as “Syntax Only” because they are syntactically very similar as they just

differ in the spelling of the word “check”.

The labels categorised as “Semantic Plus Syntax” are also syntactically similar to the correct

label but to a lesser extent than those categorised as “Syntax only” because they also have

67

words that are semantically same but syntactically different than those in correct label. For

example the labels “identify card type” and “check card type” were categorised as “Semantic

Plus Syntax” because although they have the common part “card type”, but the first label

also has the word “identify” which is semantically the same but syntactically different from

“check”.

The third category of labels is “Semantic only”. Such labels are syntactically different

to the correct label but have the same semantic meaning. For example the labels “validate”

and “check card type” have no syntactic similarity but the same semantic meaning.

All the labels categorised either as “Semantic Plus Syntax” or “Semantic Only” have been

further divided into four types depending upon the reason for their semantic similarity. The

first subcategory is “Sem Synonym” which means that the label in the student answer and

in the model solution are either synonyms or hypernyms or hyponyms for example the labels

“identify card type” and “check card type”. The second subcategory is “Sem DifDec” which

means that the student label is a more detailed form of the label in the model solution. The

reason for having this subcategory is because sometimes the students provide more detailed

answers than the model solution and so there is a subsumption relationship between one label

in the model solution and a set of many labels in the student answer. The human expert will

give marks for those lower level labels in the student answer which when composed add up to

form a label in the model solution. For example the labels “validate” and “check card type”

are subcategorised as “Sem DifDec” because “validate” is a more detailed form of “check

card type” as validation is done while checking the card type2. The third subcategory is

“Sem Sur” which means that the label in the student answer and in the model solution have

the same set of surrounding labels. For example the labels “card type” and “check card

type” were matched by the human expert and subcategorised as “Sem Sur” as both had the

same surrounding labels. An issue in matching labels on the basis of surrounding labels is

that sometimes only a proportion of the surrounding labels may match because some labels

are missing or additional labels are included. This was not an issue during categorisation as
2The categorisation can be subjective and may differ from person to person. It was reviewed by two

members of the academic staff at Brunel University.

68

Main Category Example

Syntax only “ceck card type” and “check

card type”

Semantic Plus Syntax “identify card type” and

“check card type”

Semantic only “validate” and “check card

type”

Table 4.4: Main Categories

it was done manually and human judgement was used to resolve it. The last subcategory is

“Sem Typ” which means that the label in the student answer and in the model solution have

the same state type. The reason for having this subcategory is because sometimes there is

only one start state in the student solution and only one in the model solution. The student

may have used different labels for this start state but the human expert will match it to the

start state in the model solution as both can contain only one start state. For example the

labels “cockle cards” and “startstate” were matched by the human expert and subcategorised

as “Sem Typ” as both were start states.

4.4.2 Categorisation results

Table 4.6 summarizes the result of the manual categorisation process. As shown in this table,

only 14.7% of the total correct labels can be matched using syntax algorithms alone, while an

additional 7% of correct labels would be identified by a syntax algorithm if combined with a

semantic algorithm. So overall the syntax algorithms would be useful in matching 21.7% or

just over a fifth of the correct labels. This implies the importance of semantic algorithms in

matching labels without which e-assessment of diagrams containing labels will be difficult.

Table 4.7 shows the manual categorisation for different kinds of semantic relationships.

As can been seen in this table the semantic relationship “Differing level of decomposition”

dominates by accounting for 63% of the correct labels, while the semantic relationship “Syn-

69

Semantic Subcategory Description Example

Sem Synonym Synonym or Hypernym “identify card type” and

“check card type”

Sem DifDec Differing Level of Decomposi-

tion

“validate” and “check card

type”

Sem Sur Match because of the Sur-

rounding states

“card type” and “check card

type”

Sem Typ State Type Match “cockle cards” and “start-

state”

Table 4.5: Semantic Subcategories

Ref Count %

Total Correct 429 100%

Syntax Only 63 14.7%

Semantic Plus Syntax 30 7%

Semantic Only 336 78.3%

Table 4.6: Manual Categorisation Result Summary

Ref Count %

Total Correct 429 100%

Syntax Only 63 14.7%

Sem Synonym 64 15%

Sem Sur 28 6.5%

Sem Typ 4 0.9%

Sem DifDec 270 63%

Table 4.7: Manual Categorisation Result Detailed

70

Reference Cause Of Misspelling

S Actual Spelling mistake

C Concatenation

C and S Concatenation and Actual Spelling mistake

A Abbreviation

C and A Concatenation and Abbreviation

N Not a spelling mistake

Table 4.8: Cause of misspelling

onym” comes second by accounting for 15% of the correct labels. This Thesis only analyses

syntax algorithm and semantic algorithm to find synonyms which combined accounts for

29.7% of the correct labels. The remaining 70.3% of the correct labels require other seman-

tic algorithms e.g. to deal with the differing level of decomposition, which are important but

out of scope of this Thesis and are a topic for further work.

4.5 Preprocessing stage results

The following are the results from the pre-processing stage of spell check and abbreviation

expansion.

4.5.1 Spell check results

The spell checker can flag a word as misspelled for six main reasons as summarized in Table

4.8. For example, it may be an actual spelling mistake as in “ceck”, a concatenation of

words or an abbreviation or sometimes the spell checker can flag a correctly spelled word as

misspelled word for example “offpeak”. Also the spell checker often suggests multiple words

having different meanings for a supposedly misspelled word and the first word suggested by

71

Ref Type Student Label Misspelled

word

First suggested

word by spell

checker

Correct

by human

S ceck card type ceck check Yes

C acceptedbeep acceptedbeep accepted beep Yes

C and S cheakdate cheakdate cheapskate No

A display error msg msg mg No

C and A check expdate expdate exudate No

N offpeak offpeak off-peak Yes

Table 4.9: Examples of misspelling

Count %

Auto-corrected labels matching human judgement 88 86

Auto-corrected labels not matching human judgement 14 14

Total number of labels detected by spell checker 102 100

Table 4.10: Results of Auto Correct Pre-processing Stage

72

Type Of Number Num Auto Correct Num Auto Correct

Spell Problem of Labels word Match word Does not Match

Human Judgement Human Judgement

S 34 31 3

C 51 45 6

C and S 2 0 2

A 3 1 2

C and A 1 0 1

N 11 11 0

TOTAL 102 88 14

Table 4.11: Detailed Analysis of Auto Correct Pre-processing Stage

the spell checker may or may not be the correct one3. Table 4.9 shows an example of the six

types of misspellings flagged by the spell checker, the first word suggested by it and if the

first word suggested is the correct one as judged by a human expert.

As mentioned in the previous chapter 3 on the framework the Hunspell spell checker

(Neme 10) was used to carry out the experiments in this Thesis. The spell checker was

run on all the labels and the words flagged as misspelled were replaced by the first word

suggested by the spell checker. The words flagged as misspelled by the spell checker were

manually categorised into one of the six cases of misspelling as mentioned in Table 4.8. Also

the first word suggested by the spell checker for each of the supposedly misspelled words was

manually checked for correctness, meaning if it should be chosen to replace the misspelled

word. The results of these two analyses are presented in Table 4.10 and Table 4.11.

As shown in Table 4.10 the spell checker flagged a total of 102 labels as containing

misspelled words. After these misspelled words were replaced by the first word suggested

by the spell checker and manually checked for correctness, 88 out of 102 labels matched the
3The correct word for a misspelled word means that a human expert will choose it to replace the misspelled

word.

73

human judgement. This means that the spell checker did not work well in just 14 out of 102

labels.

As shown in Table 4.11, 11 labels flagged by the spell checker as misspellings were man-

ually categorised as “N” meaning they had no spelling mistakes. However the first word

suggested by the spell checker for all of these 11 words matched the human judgement as

it had no negative effect. For example the spell checker flags “offpeak” as a misspelled

word and suggests “off-peak” as the first word to replace it. Similarly it flags “todays” as

a misspelled word and suggests “today’s” as the first word to replace it. The reason for no

negative effect is that the first suggested word only introduced special characters which can

easily be removed by rerunning the stage S1.2 explained in Section 3.4.1 of Chapter 3 which

involves removing the special characters. Also Table 4.11 shows that 34 labels flagged by the

spell checker as misspellings were manually categorised as “S” and 2 labels were manually

categorised as “C and S” meaning they had actual spelling mistakes. So a total of 36 labels

had actual spelling mistakes out of which 31 were successfully corrected by the spell checker

as they matched the human judgement. Also Table 4.11 shows that 51 labels flagged by the

spell checker as misspellings were categorised as “C” meaning they had no spelling mistakes

but were actually concatenations of correctly spelled words. The spell checker successfully

corrected 45 out of these 51 labels as they matched the human judgement. Also Table 4.11

shows that 4 labels flagged by the spell checker as misspellings were categorised either as

“A” or “C and A” meaning they had no spelling mistakes but were actually abbreviations.

The spell checker successfully corrected only 1 out of these 4 labels.

So the spell checker worked well for the cases where there was an actual spelling mistake

(in 31 out of 36 such cases). It also worked well where there was no spelling mistake but

the words were concatenated (in 45 out of 51 such cases). The spell checker did flag some

of the correctly spelled words as misspelled but it had no negative effect in any of the such

cases as it only introduced special characters which can easily be removed by rerunning the

stage S1.2 explained in Section 3.4.1 of Chapter 3. The spell checker did not seem to work

well in cases where there were no spelling mistakes but abbreviations. However this had only

a minor effect as there were only 4 such cases. So using a spell checker to detect spelling

74

Abbreviated

Word

Expanded

form by

human

expert

Number

of Unique

Labels

Abbrevi-

ated Word

Occurs In

abbreviation

found in

abbrevia-

tion.com

Order

in which

correct

expanded

form found

in abbrevi-

ation.com

msg message 1 Yes First

exp expiry 3 Yes Not found

calc calculate 1 Yes Fifth

paygcard prepay card 1 No Not found

Table 4.12: Result of Abbreviation Expansion Pre-processing Stage

mistakes and replacing them with the first word suggested by the spell checker had positive

effect in 77 cases (actual spelling mistake, concatenation, abbreviation), was neutral in 11

cases (no actual spelling mistake) and had a negative effect only in 14 cases. This shows

that the auto correct stage can be quite useful.

4.5.2 Abbreviation expansion results

As explained in the previous section the spell checker flags some of the abbreviations as

spelling mistakes for example “msg” and “exp”. The results explained in the previous section

show that the spell checker does not work well for abbreviations. So further experiments

were carried out to find if the abbreviation expansion stage would be effective in handling

abbreviations. In order to evaluate this, the words detected by the spell checker as spelling

mistakes were manually checked to see if they were abbreviations. All such abbreviations

were then put in the abbreviation expander and the first suggested abbreviation was manually

checked against the human expert judgement for correctness. Table 4.12 shows these results.

As can be seen in this table, a total of four abbreviations were found out of which only

75

Ref Algorithm

A Combined Hybrid Syntactic Algorithm

B Simon Algorithm

C Levenshtein Distance Algorithm

D Q-gram Algorithm

Table 4.13: Syntax Algorithms

Label1 Label2 Processed Processed A B C D

Label1 Label2

“valid bleep” “valid beep” “valid bleep” “valid beep” 1 0.8 0.9 0.8

“card reader” “read card” “card read” “read card” 1 1 0.3 0.45

“beep for validity” “valid beep” “beep valid” “valid beep” 1 1 0 0.42

“time check” “check time” “tim check” “check tim” 1 1 0.11 0.36

“cardreader” “read card” “card read” “read card” 1 1 0.3 0.45

Table 4.14: Syntax Distance

one of the abbreviations could be resolved through the abbreviation expander. The correct

expanded form according to the human expert of the remaining three abbreviations was

either not found or if found then not in first place. These results show that there is a need

for better abbreviation expander.

4.6 Syntax stage results

After executing the pre-processing algorithms mentioned in the previous section, a set of

cleaned labels were collected. As a result of the pre-processing stage, some of the labels

became duplicate. For example the labels “invalid beep” and “invalid beep” were both

converted to the label “invalid beep”. The duplicate labels were removed and syntax analysis

was carried on the unique cleaned labels. The same process was done for the labels in the

76

model solution. We evaluated four syntax matching algorithms which are listed in Table 4.13.

The syntax algorithms were executed on the cartesian product of all these unique student

labels and the labels in the model solution. Algorithms B, C, D are widely known and well

established algorithms. Algorithm A has been proposed in this Thesis and its details can

be seen in the previous framework chapter. These algorithms take two labels as input and

return a similarity index value between 0 and 1, 0 being no match and 1 being a perfect

match. Table 4.14 shows the similarity distance between some of the labels for the algorithms

B,C and D. The similarity index for the labels in Table 4.14 according to algorithm A is 1.

If the similarity index value for two labels is more than a certain threshold value they are

considered matched. One of the limitations of this is that two or more labels belonging to

the same student diagram may match to the same label in the model diagram. This Thesis

does not address this issue but it can be handled by taking into account the surrounding

labels. Also it will be less of a problem with small diagrams such as the one considered in

our dataset.

The threshold value will have an effect on the accuracy of the algorithm. There are two

important decisions to be made, to select the best syntax algorithm and set the optimum

threshold value. The following sections consider these two questions.

True positives are the labels that are correct according to the human and also correct

according to the syntax algorithm. False positives are the labels that are incorrect according

to the human but are correct according to the syntax algorithm. Precision is one measures

to find the accuracy of an algorithm and can be defined as the fraction of the actually correct

values among all the values identified by an algorithm. Recall is one measures to find the

effectiveness of an algorithm in identifying maximum number of correct values and can be

defined as the fraction of total correct values identified by an algorithm. FScore combines

the precision and recall and produces a single value (Wiki 10c; Wiki 10a). The formulae for

precision, recall and FScore are as follows:

Precision =(True Positive)/(True Positive + False Positive)

Recall=(True Positive)/(True Positive + False Negative)

77

Algo (Precision) 0.5 0.6 0.7 0.8 0.9 1.0

A 0.37 0.44 0.5 0.5 0.54 0.62

B 0.35 0.44 0.58 0.71 1 1

C 0.31 0.36 0.45 0.4 1 1

D 0.45 0.6 0.67 1 1 1

B ∩ C ∩ D 0.42 0.56 0.67 1 1 1

B ∪ C ∪ D 0.34 0.38 0.51 0.69 1 1

A ∩ B ∩ C ∩ D 0.42 0.59 0.8 1 1 1

A ∪ B ∪ C ∪ D 0.34 0.35 0.45 0.49 0.54 0.62

A - (B ∪ C ∪ D) 0.36 0.19 0.35 0.37 0.5 0.59

(B ∪ C ∪ D) - A 0.06 0.24 0.3 0.4 1 1

A - (B ∩ C ∩ D) 0.35 0.39 0.44 0.49 0.54 0.62

(B ∩ C ∩ D) - A 1 0.33 0 1 1 1

Table 4.15: Precision For All Threshold

FScore=2*Precision*Recall/(Precision + Recall)

Syntax Results

Tables 6.2, 6.4, 6.6, 6.8 in the Appendix Section 6.5.1 show the count of true positives, false

positives, false negatives and true negatives respectively for the threshold values of 0.5, 0.6,

0.7, 0.8, 0.9 and 1.0. Tables 4.15, 4.16, 4.17 have been derived from these tables and show

the precision, recall and FScore respectively for the threshold values of 0.5, 0.6, 0.7, 0.8, 0.9

and 1.0. Note that Table 6.2 shows that Algorithm A shows a steep rise in the number of

true positives at a threshold of 0.6. This is because the internal threshold for algorithm A

is 0.6. While producing these tables, the values found by the exact match algorithm were

ignored so that their net effect could be evaluated. So for example in Table 6.2 the count for

0.9 threshold for the edit distance algorithm is 1, which means that the edit distance found

one extra match at 0.9 threshold apart from those found by the exact match algorithm.

This implies in terms of true positives, at the 0.9 threshold the edit distance algorithm is

78

Algo (Recall) 0.5 0.6 0.7 0.8 0.9 1.0

A 0.36 0.1 0.08 0.08 0.08 0.08

B 0.17 0.11 0.07 0.04 0.01 0.01

C 0.14 0.08 0.03 0.01 0 0

D 0.1 0.05 0.03 0.01 0 0

B ∩ C ∩ D 0.09 0.04 0.02 0 0 0

B ∪ C ∪ D 0.21 0.13 0.07 0.05 0.01 0.01

A ∩ B ∩ C ∩ D 0.09 0.03 0.02 0 0 0

A ∪ B ∪ C ∪ D 0.36 0.15 0.1 0.09 0.08 0.08

A - (B ∪ C ∪ D) 0.15 0.01 0.03 0.04 0.07 0.07

(B ∪ C ∪ D) - A 0.01 0.05 0.02 0.01 0 0

A - (B ∩ C ∩ D) 0.27 0.06 0.06 0.08 0.08 0.08

(B ∩ C ∩ D) - A 0 0 0 0 0 0

Table 4.16: Recall For All Threshold

Algo (FScore) 0.5 0.6 0.7 0.8 0.9 1.0

A 0.36 0.16 0.14 0.14 0.14 0.14

B 0.23 0.18 0.12 0.08 0.02 0.02

C 0.19 0.13 0.05 0.01 0.01 0

D 0.17 0.1 0.05 0.01 0 0

B ∩ C ∩ D 0.14 0.07 0.04 0.01 0 0

B ∪ C ∪ D 0.26 0.2 0.12 0.09 0.03 0.02

A ∩ B ∩ C ∩ D 0.14 0.06 0.04 0.01 0 0

A ∪ B ∪ C ∪ D 0.35 0.21 0.16 0.15 0.14 0.14

Table 4.17: FScore For All Threshold

79

only slightly better than the exact match algorithm. But at 0.7 threshold, the edit distance

algorithm is significantly better than the exact match algorithm in terms of true positives.

All the values in the syntax results tables have been rounded to two decimal places, but

while calculating the values based on these values the actual value has been used rather than

the rounded value. For example in Table 4.16 the recall for algorithm C for threshold value

of 0.9 and 1.0 is shown to be 0. But actually the recall value for 0.9 threshold is 0.002551 and

that for a 1.0 threshold the value is 0.0. Hence in Table 4.17, the FScore for 0.9 threshold

value is not equal to zero although the recall for 0.9 threshold is shown to be 0 in Table 4.16,

the reason being that the actual recall value of 0.002551 has been used for calculating the

FScore rather than the rounded recall value which is 0.

Note that Table 4.15 shows that for the threshold 1.0, the precision of algorithm A is 0.62

while the precision of Algorithms B, C and D are 1. This is because there are cases where the

student label contains all the words present in a label of model solution (and hence algorithm

A returns a similarity score of 1.0), but it has been marked incorrect by the human expert.

For example, the similarity score according to algorithm A between the student label “wait

for card to be read” and the model solution label “read card” is 1 but the human expert has

marked the student label as incorrect.

4.6.1 Analysis for effective algorithm

The effectiveness of an algorithm can be measured in terms of precision and recall. Table 4.15

shows that algorithm D has the highest value of precision for all thresholds except for the

threshold value of 0.7 for which the algorithm (A ∩ B ∩ C ∩ D) has the highest value. Table

4.16 shows that the algorithm (A ∪ B ∪ C ∪ D) has the highest recall value for all thresholds

followed closely by the algorithm A. So algorithm A has high recall but low precision which is

to be expected as there will always be trade-off between precision and recall. High precision

can be achieved at the cost of high recall and vice verse. So an overall analysis based on a

FScore value that combines precision and recall is more useful than analysing precision and

recall separately. If only individual algorithms are considered then algorithm A has highest

FScore value for all threshold values except 0.6 threshold for which algorithm B has slightly

80

Count %

Synonyms used by the students 17 100%

Found in WordNet 2 11.8%

Present in question text 6 35.3%

Table 4.18: Semantic Analysis of Synonyms

higher FScore value. If the hybrid algorithms are also considered, then the algorithm (A ∪ B

∪ C ∪ D) has highest FScore value for all threshold values except for 0.5 threshold for which

the algorithm A has slightly higher FScore. So for the dataset in this Thesis the hybrid

approach is best.

4.6.2 Analysis for optimal threshold

Setting the threshold is an important aspect. Table 4.17 shows that the maximum value of

FScore for all algorithms is at threshold 0.5. This implies that out of the threshold values

0.5 through 1.0, 0.5 is the optimal threshold for all algorithms. Also Tables 4.15 and 4.16

show that lower values of the threshold result in high recall but low precision, while a higher

value of the threshold results in high precision but low recall. There is a possibility that

the FScore is higher for thresholds lower than 0.5. But lowering the threshold would further

lower precision to the point of unusability.

4.7 Semantic stage results

Semantic analysis was carried out by first manually identifying all the synonyms used by

students. Some of the synonyms were used by multiple students and so the duplicates

were removed. These synonyms are shown in the Table 6.10 in the Appendix section 6.6.

Two experiments were carried out for semantic analysis. First using the semantic approach

explained in the Section 3.4.3 of Chapter 3. Second using the semantic similarity algorithms.

The following sections describe the results of these experiments.

81

4.7.1 HCI system approach

The synonyms used by students were checked for in the WordNet (Mill 95b; Fell 98) using the

HCI system approach explained in Section 3.4.3 of Chapter 3. Furthermore the text of the

question was also checked for presence of these synonyms in order to evaluate the extent to

which the choice of synonyms by students is affected by the text of the question. Table 4.18

shows these results. It may be noted that the total number of synonyms used by the students

as shown in this section in Table 4.18 is just 17 compared to 64 shown in the previous section

in Table 4.7. This means that students have used 64 unique labels which in turn contain

17 unique synonymous words as more than one label can contain the same synonym. For

example two different student labels “update balance” and “update new balance” map to

the same correct label “update total” and use the word “balance” as synonym for the word

“total”. As shown in Table 4.18 only 2 out of 17 synonyms used by the students were listed

in WordNet as synonyms and hence this approach seems to be only marginally effective to

find the synonyms. One of the reasons for this is that WordNet is generic and not specific to

a domain. Table 4.18 also shows that 6 out of 17 synonyms used by the students were found

in the text of the question. It may be reiterated that in the coursework analysed in this

Thesis, the lecturer had no prior information that it would be used for analysis and hence

creation of the coursework and its administration was not influenced in any manner. This

suggests that the text of the question would be an effective source to extract the synonyms

used by students. This also suggests that a question should be drafted carefully because its

text influences the choice of labels by students. Although such work is out of scope for this

Thesis, it opens up potential areas for future work.

4.7.2 Semantic similarity algorithms

As explained in Section 3.4.3 of Chapter 3 the proposed framework discards the approach

to use the semantic similarity algorithms because of their blackbox nature. But experiments

were carried out to find the effectiveness of semantic similarity algorithms. Experiments were

run on three semantic similarity algorithms namely Wu & Palmer (Wu 94), Lin (Lin 98) and

Path length (Pede 04). These three algorithms were chosen because they have a range

82

Algorithm 0.5 0.6 0.7 0.8 0.9 1.0

Wu & Palmer 8 6 6 5 4 1

Path length 3 1 1 1 1 1

Lin 3 3 3 2 2 1

Table 4.19: Synonyms found using the semantic similarity algorithms

between 0 and 1 and so it is easy to compare them. Other semantic similarity algorithms

for example Jiang & Conrath (Jian 97) and Resnik (Resn 95) have ranges from 0 to a big

number. The three chosen semantic similarity algorithms were run using the system available

at (Pede 09a) on 15 synonyms out of the 17 used by the students. They could not be run

on the remaining two synonyms because in one case the word “offpeak” was not found in

WordNet and in another case the word “valid” was neither noun or verb. Recall from Section

3.4.3 of Chapter 3 that the semantic similarity algorithms take into account only hyponymy

and hypernymy relationships and are applicable only to nouns and verbs as adjectives and

adverbs don’t have hyponymy and hypernymy relationships.

The semantic similarity algorithms return a score between 0 and 1. If the score was more

than a certain threshold value, the words were judged to be synonyms. Six different threshold

values from 0.5 through 1.0 were used. Table 4.19 shows the number of synonyms found using

the three semantic similarity algorithms. These results show that Wu & Palmer (Wu 94)

is best having found 8 out of 15 synonyms used by the students. These results also show

that lower thresholds result in more synonyms being found and different semantic similarity

algorithms have different optimal thresholds. The results show that semantic similarity

algorithms can be effective to find the synonyms. However the semantic algorithms were run

only on the synonyms used by the students and not on the whole corpus of coursework. In

order to find the negative effect of these algorithms, they need to be run on all the words in

the corpus of coursework. This will be interesting to evaluate and is a topic for future work.

Since the framework is extensible, so the semantic similarity algorithms can be quite easily

integrated into the system using the configuration XML file.

83

4.8 Summary

This chapter has discussed the results of the experiments carried out using the framework

proposed in Chapter 3.

The first section of this chapter explained the data collection process for the corpus

of student coursework that was collected to carry out experiments in this Thesis. Data

was collected from coursework for second year Computer Science undergraduates at Brunel

University. This corpus consisted of 160 student courseworks and was chosen for experiments

as it was large scale, realistic and to some extent representative of the UK HEI home students.

The second and third section of this chapter measured the extent of the diagram label

matching problem and showed that it is a substantial problem. The second section explained

the results of the experiments carried out to empirically measure the scale of the label

matching problem. These results show that the problem of labels is substantial and a set

of syntax and semantic algorithms would be required to solve this problem. The third

section explained the categorisation of the data carried out manually. Here each label in

the student coursework was assigned a category depending on whether it would require

just the syntax algorithms or semantic algorithms or a combination of both in order to be

matched to the correct label in the model solution. These results were upper bound for the

performance of a perfect label matching process over the corpus of coursework used in this

Thesis. These results show that only 14.7% of the total correct labels can be matched using

syntax algorithms alone, while an additional 7% of correct labels would benefit from the

syntax algorithm if combined with a semantic algorithm. So overall the syntax algorithms

would be useful in matching 21.7% or just over a fifth of the correct labels. This implies

the importance of semantic algorithms in matching labels without which e-assessment of

diagrams containing labels will be difficult.

The remaining section of this chapter evaluated the proposed framework and showed

that that it is effective but only to limited extent and needs to be further refined for the

semantic stage. The fourth section presented the analysis of the performance of two pre-

processing stages namely auto spelling correction and abbreviation expansion. These results

84

show that the auto correct stage was quite useful by correcting 86% of the total misspelled

labels but the abbreviation expansion stage did not perform well as it could only expand one

of the four abbreviations. The fifth section discussed the results of four syntax algorithms.

These results show that the hybrid syntax algorithm explained in Section 3.4.2 of Chapter 3

performed better than the three existing syntax algorithms. These results also show that out

of the threshold values 0.5 through 1.0, 0.5 is the optimal threshold for all the four syntax

algorithms analysed in this Thesis. The last section of this chapter analysed the results of

using the WordNet for semantic matching and showed that the WordNet is only marginally

effective for finding synonyms and needs to be further refined.

The next chapter concludes the Thesis by summarizing, discussing the limitations and

the opportunities arising out of this Thesis for further work.

85

Chapter 5

Conclusion, Limitations And

Future Work

5.1 Summary of research

This Thesis has measured the extent of the diagram label matching problem and proposed

and evaluated a configurable extensible framework to solve it.

In order to measure the extent of the diagram label matching problem experiments involv-

ing basic text manipulation techniques were run on 160 items of coursework for second year

Computer Science undergraduates at a UK HEI. This corpus was chosen for experiments as

it was large scale, realistic and to some extent representative of the UK HEI home students.

First, the effect of basic text manipulation techniques in reducing the number of different

labels was assessed. Then the impact of scale was explored by measuring the number of new

unique labels added per 10 students. The results of these experiments have been presented in

Chapter 4. These results show that the basic text manipulation techniques have the positive

effect of reducing the number of unique labels by almost 73%, however, in practice this still

leaves us with 537 unique labels which has a considerable impact if these must be examined

manually. The results also show that there is little evidence that new unique labels are being

added at a rate of less than 30 per set of 10 additional student diagrams. Nor does this rate

86

appear to be declining. So the cumulative growth of synonyms only shows a limited tendency

to reduce at the margin despite using a range of text processing techniques. If these results

were to be repeated in other corpora of student diagrams, and there is no evidence to suggest

that this corpus is atypical, it suggests that the problem of matching labels is significant and

cannot be easily avoided for the e-assessment of diagrams. The finding implies that a set of

better syntax and semantic similarity algorithms would be required to solve the problem.

In order to find the extent to which syntax and semantic algorithms would solve the label

matching problem, all the correct labels in the student diagrams were manually categorised

according to whether they would require just the syntax algorithms, just the semantic algo-

rithms, or a combination of both for being matched to the label in the model solution. The

results for this have been presented in Section 4.4.2 of Chapter 4. In this one experiment

I found that just over a fifth of the correct labels were found by using syntax and simple

semantic algorithms. If this result were to be repeated in other corpora of student diagrams,

and there is no evidence to suggest that this corpus is atypical, it implies the importance of

semantic algorithms in matching labels without which e-assessment of diagrams containing

labels would be difficult.

In order to solve the diagram label matching problem explained above, a configurable

and extensible framework was proposed. A new hybrid syntax matching algorithm was

also proposed. This hybrid approach is a combination of existing syntax algorithms. The

proposed framework has five stages and has been explained in Chapter 3. The first stage

disambiguates the labels to produce a set of cleaned labels that are used for the subsequent

stages. The second stage runs the syntax algorithms on these cleaned labels to produce a

matrix for the syntactic similarity index. The third stage uses WordNet to produce a list

of synonyms in the form of a synonym XML file. The fourth stage uses this synonym XML

file and re-executes the second syntax stage to produce a matrix for the combined similarity

matrix. The final fifth stage analyses this combined similarity matrix and marks the labels

in the students’ diagrams as correct if a match can be found in the model diagram and

incorrect if a match can not be found in the model diagram.

The proposed framework is configurable, extensible, generic by design and easy to use.

87

It is not confined to an algorithm, an implementation of an algorithm or a set of parameters.

In order to achieve this it uses configuration XML (W3C 08), dynamic loading of classes

(Micr 99b; Micr 09) and two design patterns namely the strategy design pattern (Wiki 10g)

and the facade design pattern (Wiki 10b). A software prototype implementation of the

framework was developed in order to evaluate it.

The first three stages of the proposed framework and hybrid syntax matching algorithm

were then evaluated on the same 160 coursework items on which previous experiments to

measure the extent of the label matching problem were run. The results showed that the

auto correct stage was quite useful by correcting 86% of the total misspelled labels but

the abbreviation expansion stage did not perform well as it could only expand one of the

four abbreviations. The results also showed that the hybrid approach was better than the

three existing syntax algorithms used alone. The results also showed that the WordNet is

only marginally effective in finding the synonyms. Overall the results showed that that the

framework has been effective but only to limited extent and needs to be further refined for

the semantic stage.

5.2 Contributions

The contributions of this Thesis are as follows:

• Highlighted diagram label matching problem

This Thesis has highlighted the importance of label matching in the e-assessment of

diagrams by empirically measuring the extent of the diagram label matching problem

on 160 coursework at a UK HEI. The results showed that the diagram label matching

is a substantial problem and cannot be easily avoided for the e-assessment of diagrams.

• Proposed and evaluated a framework to match diagram labels

This Thesis has proposed a framework to match the labels in a diagram and evaluated

the first three stages of the proposed framework on a coursework at UK HEI. The

results show that syntax algorithms can be helpful only to a limited extent and better

semantic algorithms are needed to match diagram labels for e-assessment.

88

• Introduced a hybrid syntax matching algorithm

This Thesis has proposed and evaluated a hybrid syntax matching algorithm. The

results showed that the hybrid approach was better than the existing syntax algorithms.

• Provided corpus of coursework for further experiments

To carry out the experiments in this Thesis a corpus of student coursework was collected

from a UK HEI the details of which has been mentioned in Chapter 4. Considering

the time and effort required to collect the coursework for experiments, this corpus

coursework can be used by the research community for further experiments. The

corpus of coursework has been released at (Jaya 10) in the following three formats.

– Borland Architect CASE tool project format(Toge 08)

– XMI Format

– JPEG PDF Format

• Prototype Open source implementation of the proposed framework

This Thesis provides an open source implementation of the proposed framework. This

open source prototype implementation of the framework can be used by the research

community for further implementation and evaluation. The Java source code for this

prototype implementation is shown in Appendix 7. The Java code, Java documenta-

tion javadoc and netbeans project folder of the prototype has also been published at

(Jaya 10) so that it is easy to download and reuse. A screen shot of the published

website is provided at Section 6.9 of Appendix 6.

5.3 Limitations and future work

Following are limitations of this Thesis and directions for future work to overcome these

limitations.

• More experiments with different corpus of coursework

This Thesis only conducted a single empirical study on a corpus of coursework for

89

second year Computer Science undergraduates at Brunel University. Although this

corpus was large scale, realistic and to some extent representative of the UK HEI home

students it would be essential to see this work replicated by other researchers using

different corpus of coursework and groups of students.

• Extend framework and Combined Hybrid Syntactic algorithm

The framework proposed in this Thesis does not handle the scenario where same label

occurs more than one time in the same student diagram or in the model solution. This

is unlikely to be a frequent occurrence. One solution to handle this is to consider

the surrounding labels to distinguish between the same labels and use this to find the

matching label. The proposed framework should be extended to handle this scenario.

Also the Combined Hybrid Syntactic algorithm proposed in this Thesis does not handle

scenario where a student has used a negation word for example “not” and an antonym to

represent a label in the model solution. For example “not valid” to represent “invalid”.

One solution is to have a list of antonyms for each word in the model solution and

judge the labels as matched if it consists of a negation word and an antonym of word

in the model solution label. Applying this rule will judge “not valid” and “invalid”

as matched because “not valid” consists of a negation word (not) and an antonym of

“invalid”. The algorithm also does not handle the scenario where there is more than

one negation word in a label. Although this is unlikely to be a frequent occur but can

be an area for future work. This algorithm should be extended to handle this scenario.

• Graphical user interface (GUI) for configuring the framework

The framework in this Thesis can be used without explicitly configuring it as all the

parameters are set to default values but the lecturer may need to configure it so as to

optimise for a coursework. This configuration can be done by modifying the configu-

ration XML file which has been which has been shown in the Appendix Section 6.3.

However a graphical user interface (GUI) to configure the framework could be useful

as it will allow users unfamiliar with XML to configure and use the framework.

The GUI could have a sliding cursor for the threshold. On moving the cursor, the

90

FScore, precision and recall from the test data would be displayed. A lecturer could

use this feature to set the optimal threshold using the test data. The GUI could also

have checkboxes selecting the existing syntax algorithms to be used for calculating the

syntactic similarity, and a browse button to embed any other syntax algorithm. It could

also have two text boxes for entering the list of special characters, stopwords. These

text boxes should be auto-populated with the default values for special characters and

stopwords.

• Image Import plugin

The framework proposed in this Thesis is based on the XML format and takes dia-

gram as input in XMI format (OMG 07b). XMI is a well known standard to express

UML diagrams and many open source and commercial tools support it for example

ArgoUML (Argo 10) and Borland Together (Toge 08). The open source tool NetBeans

(Corp 09) also promises to support it in the near future. However in many cases the

students submit the diagram not in XMI format (OMG 07b) but in an image format

for example JPEG or GIF. So further work should be carried out to extend the pro-

totype so that it can input the diagrams in image formats for example JPEG, GIF,

SVG etc. (Mian 99). A parser to parse the XMI file and fetch various labels has been

included in the framework. By design the framework is modular and based on XML, so

it can be extended for other types of diagrams by writing a relevant parser middleware

component.

• Explore spell check algorithms and abbreviation expanders

The results of experiments in this Thesis show that the open office spell checker is

quite effective as it successfully auto corrects 86% of the incorrectly spelled labels.

However it also over corrects the 14% of incorrectly spelled labels. So there is a need

for further research to investigate the effectiveness of other spell checkers and auto

correct algorithms. Also the spell checker generally suggests multiple words and so one

has to decide which one to pick up for replacing the incorrectly spelled label. For this

study we selected the first suggested word for the auto correction but it may be useful

91

to see the effect of selecting other words suggested by the spell checker.

A further interesting direction for future work would be to explore if the spell check

stage of the framework can be used to detect plagiarism based on the notion that

similar spelling mistakes in different coursework indicates plagiarism. Informally we

observed that several student solutions contained identical spelling errors and this was

not detected by the manual marking process.

• Concatenated words

As explained in Chapter 3, sometimes students concatenate multiple words in a label

for example in the label “UpdateTotal”. In the framework proposed in this Thesis the

spell checker has been used to separate the concatenated words. The results in Table

4.11 show that the spell checker has been effective in dealing with concatenated words

as it could successfully separate words in 45 out of 51 concatenated labels. However

as the spell checker could not deal with the remaining 6 out of 51 concatenated labels,

an interesting direction for future work would be to explore better ways to deal with

concatenated words for example separating the words using the embedded upper case.

If upper case proves to be effective then the concatenated words in a label need to be

separated before converting the label to lowercase for further processing.

• Calculating the optimal threshold

The framework proposed in this Thesis is based upon the concept of selecting the

maximum similarity index from various algorithms and considering the pairs which

have similarity indices greater than the threshold as matched. The results discussed in

Section 4.6 of Chapter 4 show that lower values of the threshold result in high recall

but low precision, while a higher value of the threshold result in high precision but

low recall. These results also show that out of the threshold values 0.5 through 1.0,

0.5 is the optimal threshold for all the four syntax algorithms analysed in this Thesis.

Further work can be done to refine the process to determine the optimal threshold.

One possible method to determine the optimal threshold would be to use past training

data which, although tedious, might give more reliable results. The advantage of this

92

approach is that it can give more reliable values for threshold and hence improve overall

reliability of the e-assessment process. The disadvantage is that it can be difficult to

collect training data but if the same assessment is used over a period of time then the

difficulty may be overcome by the economics of scale.

• Level of detail in the model solution

One of the points to consider while automatically marking diagrams is the level of detail

in the model solution. Students may produce answers in more detail than required

assuming it can only act as basis for more marks. On the other hand lecturers may

produce a less detailed model solution and supplement the model solution with human

judgement while marking. There is a trade-off between the level of detail in the model

solution and the accuracy of the e-assessment system. A more detailed model solution

will penalise students who have provided coursework with just enough detail but reward

students who have produced more detailed solution. So it is important to consider the

level of detail in the model solution for e-assessment. One solution is to have multiple

model solutions, one with just enough detail and others with more detail. The student

diagram can be compared with all the different model solutions and maximum value

out of the different marks awarded by different model solutions can be awarded to the

student as final marks. However, this approach would entail more work on the part of

the lecturer.

• Handling differing level of decomposition

The manual categorisation of labels in Table 4.7 shows that the syntax and semantic

relationship “Synonym” which this Thesis deals with, accounts only for 29.7% of correct

labels. The categories for example “Differing level of decomposition” which account

for the remaining 70.3% of the correct labels are not handled by this Thesis and and

is an area for future work. It will be useful to explore the extent to which ontologies

can deal with the “Differing level of decomposition” category. The domain specific

ontologies can be generated automatically from the text of the question and related

domain specific documents.

93

• Reduce human intervention during semantic stage

The framework proposed in this Thesis requires manual intervention by the lecturer

during the semantic stage to select the correct senses from WordNet for each word

in the model solution. This manual intervention is not a major limitation because it

needs to be done only for the labels in the model solution which are generally not too

many; additionally the manual intervention reduces if same question is used multiple

times. But reducing the amount of manual intervention can be helpful and is a topic for

future work. Two possible directions for this are efficient human computer interfaces

and word sense disambiguation techniques. Also WordNet is generic and not specific

to any particular domain. So future work should explore the use of domain specific

sources of senses and synonyms.

Efficient human computer interfaces such as navigable tree based expandable check box

nodes would help the lecturer to choose the senses of a word quickly and hence reduce

the time spent on manual intervention. Such a tree based HCI is used by the Assess

By Computer system to allow the lecturer to review and update the matched labels

(Jone 05; Tsel 05). So a direction for future work is to develop and evaluate effective

human computer interfaces to help lecturers choose the word senses.

As discussed in Section 3.4.3 of Chapter 3, the framework proposed in this Thesis uses

manual intervention by the lecturer to select the senses over using automatic word

sense disambiguation techniques because the word sense disambiguation field is an

open research problem and difficult to apply on labels as they consist of just a few

words and not complete sentences. But the coursework question text may be of help

in finding the sense in which the word has been used. This is supported by the results

discussed in Section 4.7 of Chapter 4 which show that 6 out of 17 synonyms used by

the students were present in the text of the question. So a direction for future work is

to explore the use of the coursework question text in finding the sense in which word

has been used.

• Explore factors influencing student’s choice of labels and semantic resources

94

This Thesis has explored the problem of diversity of diagram labels used by students.

In the semantic analysis, it was explored if the specification of the case study affected

the choice of labels. Table 4.18 shows that 6 out of 17 synonyms used by the students

were found in the text of the question which suggests that the text of question influences

the choice of labels by students. Although such work is out of scope for this Thesis but

it opens up potential area for future work. Research should be carried out to study

the factors that influence the student’s choice of a label. Apart from the text of the

question, some of the other factors that can be explored are the personal factors of the

student like behavioural traits, background and level of knowledge of the subject. The

text of the question is particularly useful to explore because the lecturer has control

over it unlike other factors over which the lecturer has no control.

Also as the results discussed in Chapter 4 show that WordNet is only marginally

effective, there is a need to explore other semantic resources for example ConceptNet

(Liu 04) and CYC (Lena 95).

• Extend e-learning standards

Extend OKI (Tech 07) standards to incorporate the Application Programming Inter-

face (API) for e-assessment tools for diagram marking. Extend IMS QTI specifica-

tion to incorporate fields for automatic assessment of diagrams. The study by Jayal

(Jaya 07b) shows that there is little evidence of widespread adoption of the e-learning

standards.

• Develop new standards for diagram coursework and marking schemes

In order to evaluate the e-assessment tools, collecting and human marking of the course-

work is required. The real coursework can only be collected after exams which don’t

happen throughout the year. The human marking scheme is also difficult to capture as

many times it involves human judgement and is difficult to formally state the marking

rule. All this takes considerable effort and time. So storing the coursework and mark-

ing schemes in a generic way so that they can be retrieved by others for reuse would

be helpful for the research community at large. Pete Thomas of Open University has

95

proposed to create a generic e-learning standard for storing the diagram coursework

and capturing the marking schemes1.

1There is no published work for this idea but only an informal email exchange with Pete Thomas of Open

University.

96

Bibliography

[Ala 05] K. Ala-Mutka. “A Survey of Automated Assessment Approaches for Program-

ming Assignments”. Computer Science Education, Vol. 15, No. 2, pp. 83–102,

2005.

[Argo 10] ArgoUML. “ArgoUML User Manual”. Tech. Rep., ArgoUML, Jan 2010.

[Atki 04] K. Atkinson. “GNU Aspell Spell Checker”. http://aspell.net/, Accessed on

20 March 2010, 2004.

[Bane 02] S. Banerjee and T. Pedersen. “An adapted Lesk algorithm for word sense dis-

ambiguation using WordNet”. Computational Linguistics and Intelligent Text

Processing, pp. 117–171, 2002.

[Batm 06] F. Batmaz and C. Hinde. “A Diagram Drawing Tool for Semi-Automatic As-

sessment of Conceptual Database Diagrams”. Proceedings of the 10th CAA In-

ternational Computer Assisted Assessment Conference, Vol. 4, pp. 71–82, 2006.

[Beev 02] C. Beevers. “The SCHOLAR Programme in Scottish education”. Proceedings

of International Conference on Computers in Education, pp. 490–491, 2002.

[Blac 10] Blackboard. “Blackboard Home”. http://www.blackboard.com/, Accessed on

20 March 2010, 2010.

[Brow 08] T. Browne, R. Hewitt, M. Jenkins, and R. Walker. “Technology Enhanced

Learning Survey”. UCISA, available online at http://www. ucisa. ac.

uk/publications/tel survey. aspx, 2008.

97

[Brow 97a] G. Brown, J. Bull, and M. Pendlebury. Assessing student learning in higher

education. Routledge, 1997.

[Brow 97b] G. Brown, J. Bull, and M. Pendlebury. Assessing Student Learning in Higher

Education. Routledge, 1997.

[Buda 01] A. Budanitsky and G. Hirst. “Semantic distance in WordNet: An experimental,

application-oriented evaluation of five measures”. In: Workshop on WordNet

and Other Lexical Resources, 2001.

[CETI 08] CETIS. “CETIS-Documents and resources about the UK LOM core”. http://

www.cetis.ac.uk/profiles/uklomcore/, Accessed on 20 March 2010, 2008.

[Chap 06] S. Chapman. String Similarity Metrics For Information Integration. University

of Sheffield, 2006.

[Chin 03] P. Chin. “Virtual Learning Environments”. Learning and Teaching Support

Network (LTSN) Physical Sciences Centre, 2003.

[Chri 06] P. Christen. “A comparison of personal name matching: Techniques and prac-

tical issues”. In: Sixth IEEE International Conference on Data Mining Work-

shops, ICDM Workshops 2006, pp. 290–294, 2006.

[Clar 02] J. Clark. “A product review of WebCT”. The Internet and Higher Education,

Vol. 5, No. 1, pp. 79–82, 2002.

[Cohe 03] W. Cohen, P. Ravikumar, and S. Fienberg. “A comparison of string distance

metrics for name-matching tasks”. In: Proceedings of the IJCAI-2003 Workshop

on Information Integration on the Web (IIWeb-03), pp. 9–10, Citeseer, 2003.

[Cole 05] J. Cole. Using moodle. O’Reilly, 2005.

[Cons 10] I. G. L. Consortium. “IMS Inteoperability Project Groups”. http://www.

imsglobal.org/interoperabilitygroups.html, Accessed on 20 March 2010,

2010.

98

[Corl 05] C. Corley and R. Mihalcea. “Measuring the Semantic Similarity of Texts”.

Empirical Modeling of Semantic Equivalence and Entailment, Vol. 100, p. 13,

2005.

[Corp 01] O. Corporation. “OpenOffice Lingucomponent Thesaurus Development”.

http://lingucomponent.openoffice.org/thesaurus.html, Accessed on 20

March 2010, 2001.

[Corp 09] O. Corporation. “NetBeans UML”. http://netbeans.org/projects/uml/,

Accessed on 20 March 2010, 2009.

[Corp 10a] O. Corporation. “Open Office 3.2”. http://www.openoffice.org/, Accessed

on 20 March 2010, 2010.

[Corp 10b] O. Corporation. “Packaging Programs in JAR Files”. http://java.sun.com/

docs/books/tutorial/deployment/jar/, Accessed on March 2010, 2010.

[Dict 10] Dictionary.com. “Dictionary reference”. http://dictionary.reference.com/,

Accessed on 20 March 2010, 2010.

[Doyl nd] D. Doyle. “English Stopwords”. n.d.

http://www.ranks.nl/tools/stopwords.html, Accessed on 20 March 2010.

[Fell 98] C. Fellbaum et al. WordNet: An electronic lexical database. MIT press Cam-

bridge, MA, 1998.

[Feng 06] M. Feng, N. Heffernan, and K. Koedinger. “Addressing the testing challenge

with a web-based e-assessment system that tutors as it assesses”. Proceedings

of the 15th international Conference on World Wide Web, pp. 307–316, 2006.

[Fiel 02] R. Fielding and R. Taylor. “Principled design of the modern Web architecture”.

ACM Transactions on Internet Technology (TOIT), Vol. 2, No. 2, pp. 115–150,

2002.

[Fong 05] S. Fong. “Wordnet wnconnect”. 2005. http://dingo.sbs.arizona.edu/ sandi-

way/wnconnect/, Accessed on 20 March 2010.

99

[Foun 09] T. A. S. Foundation. “Apache Codec Project”. http://commons.apache.org/

codec/userguide.html, Accessed on 20 March 2010, 2009.

[Frak 03] W. Frakes and C. Fox. “Strength and similarity of affix removal stemming

algorithms”. In: ACM SIGIR Forum, pp. 26–30, ACM New York, NY, USA,

2003.

[Fran 03] D. Frankel. Model driven architecture. Wiley New York, 2003.

[Fran 09] F. Frandsen. “Java API For Hunspell Spell Checker”. http://dion.swamp.dk/

hunspell.html, Accessed on 20 March 2010, 2009.

[Gamm 95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements

of reusable object-oriented software. Addison-wesley Reading, MA, 1995.

[Harm 91] D. Harman. “How effective is suffixing?”. Journal of the American Society for

Information Science, Vol. 42, No. 1, pp. 7–15, 1991.

[Hart 94] R. Hart. “Improved Algorithms for Identifying Spelling and Word Order Errors

in Student Responses.”. Tech. Rep., Language Learning Laboratory, Univer-

sity of Illinois at Urbana-Champaign, G70 Foreign Languages Building, 707 S.

Mathews St., Urbana, IL 61801., 1994.

[Higg 02a] C. Higgins, P. Symeonidis, and A. Tsintsifas. “Diagram based CBA using DAT-

sys and CourseMaster”. Proceedings of International Conference on Computers

in Education, pp. 167–172, 2002.

[Higg 02b] C. Higgins, P. Symeonidis, and A. Tsintsifas. “The marking system for Course-

Master”. Proceedings of the 7th annual Conference on Innovation and Technol-

ogy in Computer Science Education, pp. 46–50, 2002.

[Higg 06] C. Higgins and B. Bligh. “Formative computer based assessment in diagram

based domains”. Proceedings of the 11th annual SIGCSE Conference on Inno-

vation and Technology in Computer Science Education, pp. 98–102, 2006.

100

[Hill 06] M. Hillenmeyer. “Dice coefficient”. http://www.stanford.edu/~maureenh/

quals/html/ml/node69.html, Accessed on 20 March 2010, 2006.

[Hirs 98] G. Hirst and D. St-Onge. “Lexical chains as representations of context for

the detection and correction of malapropisms”. WordNet: An electronic lexical

database, Vol. 305, p. 332, 1998.

[Hodg 05] W. Hodgins et al. “IEEE Learning Object Metadata”. http://ltsc.

ieee.org/wg12/files/IEEE_1484_12_03_d8_submitted.pdf, Accessed on 20

March 2010, 2005.

[Hogg 98] G. Hoggarth and M. Lockyer. “An automated student diagram assessment sys-

tem”. Proceedings of the 6th annual Conference on the Teaching of Computing

and the 3rd annual Conference on Integrating Technology into Computer Science

Education: Changing the Delivery of Computer Science Education, pp. 122–124,

1998.

[Jaya 07a] A. Jayal, M. Cartwright, and M. Shepperd. “Premark: A System Designed To

Organising Course Work For Assessment”. In: 5th International Conference on

E-Governance, Hyderabad, India, Dec 28-30, 2007, December 2007.

[Jaya 07b] A. Jayal and M. Shepperd. “An evaluation of e-learning standards”. In: 5th

International Conference on E-Governance, Hyderabad, India, Dec 28-30, 2007,

December 2007.

[Jaya 09a] A. Jayal and M. Shepperd. “An improved method for label matching in e-

assessment of diagrams”. ITALICS, Innovation in Teaching And Learning in

Information and Computer Sciences, Vol. 8, No. 1, 2009.

[Jaya 09b] A. Jayal and M. Shepperd. “The problem of labels in e-assessment of diagrams”.

Journal on Educational Resources in Computing (JERIC), Vol. 8, No. 4, p. 12,

2009.

[Jaya 10] A. Jayal. “Ambikesh PhD Thesis Output”. url-

101

http://sites.google.com/site/ambi1999/research, Accessed on March 20,

2010, 2010.

[Jian 97] J. Jiang and D. Conrath. “Semantic similarity based on corpus statistics and

lexical taxonomy”. Arxiv preprint cmp-lg/9709008, 1997.

[John 88] R. Johnson and B. Foote. “Designing reusable classes”. Journal of Object-

Oriented Programming, Vol. 1, No. 2, pp. 22–35, 1988.

[Jone 05] C. Jones. “Teachers need help too: aiding the marking process through a

Human-Computer Collaborative approach”. In: 8th Human Centred Technology

Postgraduate Workshop, 2005.

[Kere 05] M. Kerejeta, M. Larranaga, U. Rueda, A. Arruarte, and J. Elorriaga. “TOKA: A

Computer Assisted Assessment Tool Integrated in a Real Use Context”. ICALT

2005. Fifth IEEE International Conference on Advanced Learning Technologies,

pp. 848–852, 2005.

[Khed 05] K. Khedo. “Computer-assisted assessment system at the University of Mauri-

tius”. In: IEEE 3rd International Conference on Computational Cybernetics,

ICCC 2005, pp. 187–193, 2005.

[Leac 98] C. Leacock and M. Chodorow. “Combining local context and WordNet similarity

for word sense identification”. WordNet: An electronic lexical database, Vol. 49,

No. 2, pp. 265–283, 1998.

[Lear 04] A. D. Learning. “SCORM - Shareable Content Object Reference Model”.

http://www.scormsoft.com/scorm, Accessed on 20 March 2010, 2004.

[Lena 95] D. Lenat. “CYC: A large-scale investment in knowledge infrastructure”. Com-

munications of the ACM, Vol. 38, No. 11, pp. 33–38, 1995.

[Lesk 86] M. Lesk. “Automatic sense disambiguation using machine readable dictionaries:

how to tell a pine cone from an ice cream cone”. In: Proceedings of the 5th annual

international conference on Systems documentation, pp. 24–26, ACM, 1986.

102

[Lin 98] D. Lin. “An information-theoretic definition of similarity”. In: Proceedings of

the International Conference on Machine Learning, pp. 296–304, 1998.

[Liu 04] H. Liu and P. Singh. “ConceptNeta practical commonsense reasoning tool-kit”.

BT Technology Journal, Vol. 22, No. 4, pp. 211–226, 2004.

[LLC 10a] S. LLC. “Abbreviations API”. http://www.abbreviations.com/abbr_api.

asp, Accessed on 20 March 2010, 2010.

[LLC 10b] S. LLC. “List of Abbreviations”. http://www.abbreviations.com/, Accessed

on 20 March 2010, 2010.

[Lovi 68] J. Lovins. “Development of a Stemming Algorithm.”. Tech. Rep., Massachusetts

Inst of Tech Cambridge Electronic Systems Lab, 1968.

[McGe 05] M. McGee Wood, J. Sargeant, and C. Jones. “What students really say”. Pro-

ceedings of the 9th CAA International Computer Assisted Assessment Confer-

ence, 2005.

[Memi 09] Memidex. “Memidex Dictionary”. http://www.memidex.com/, Accessed on 20

March 2010, 2009.

[Mian 99] J. Miano. Compressed Image File Formats: Jpeg, Png, Gif, Xbm, Bmp.

Addison-Wesley, 1999.

[Micr 04] S. Microsystems. “Java class path”. http://java.sun.com/j2se/1.5.0/docs/

tooldocs/windows/classpath.html, Accessed on 20 March 2010, 2004.

[Micr 09] S. Microsystems. “Class Java Platform SE 6”. http://java.sun.com/javase/

6/docs/api/java/lang/Class.html, Accessed on 20 March 2010, 2009.

[Micr 99a] S. Microsystems. “Java class file format”. http://java.sun.com/docs/books/

jvms/second_edition/html/ClassFile.doc.html, Accessed on 20 March

2010, 1999.

103

[Micr 99b] S. Microsystems. “Java Security Architecture”. http://java.sun.com/j2se/

1.4.2/docs/guide/security/spec/security-spec.doc5.html, Accessed on

20 March 2010, 1999.

[Mill 95a] G. Miller. “WNGLOSS(7WN) manual page”. http://wordnet.princeton.

edu/man/wngloss.7WN.html, Accessed on 20 March 2010, 1995.

[Mill 95b] G. Miller and C. Fellbaum. “Wordnet Search”. http://wordnetweb.

princeton.edu/perl/webwn, Accessed on 20 March 2010, 1995.

[Nava 01] G. Navarro. “A guided tour to approximate string matching”. ACM computing

surveys (CSUR), Vol. 33, No. 1, p. 88, 2001.

[Neil 00] C. Neill. “Algorithm Implementations Paice Husk stemming algo-

rithm”. http://www.comp.lancs.ac.uk/computing/research/stemming/

Links/implementations.htm, Accessed on 20 March 2010, 2000.

[Neme 10] N. Nemeth. “Hunspell open source spell checking”. http://hunspell.

sourceforge.net/, Accessed on 20 March 2010, 2010.

[OMG 07a] OMG. “UML Version 2.1.2”. Tech. Rep., Object Management Group, November

2007.

[OMG 07b] OMG. “XMI 2.1.1”. Tech. Rep., Object Management Group, December 2007.

[Paic 90] C. Paice. “Another stemmer”. In: ACM SIGIR Forum, pp. 56–61, ACM New

York, NY, USA, 1990.

[Patw 03] S. Patwardhan, S. Banerjee, and T. Pedersen. “Using measures of semantic

relatedness for word sense disambiguation”. Computational Linguistics and In-

telligent Text Processing, pp. 241–257, 2003.

[Pede 04] T. Pedersen, S. Patwardhan, and J. Michelizzi. “Wordnet:: similarity-measuring

the relatedness of concepts”. In: Proceedings of the National Conference on Ar-

tificial Intelligence, pp. 1024–1025, Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999, 2004.

104

[Pede 08] T. Pedersen. “Semantic Similarity Measures”. http://marimba.d.umn.edu/

similarity/measures.html, Accessed on 20 March 2010, 2008.

[Pede 09a] T. Pedersen and M. J. “WordNet Similarity”. http://marimba.d.umn.edu/

cgi-bin/similarity/similarity.cgi, Accessed on 20 March 2010, 2009.

[Pede 09b] T. Pedersen and V. Kolhatkar. “WordNet:: SenseRelate:: AllWords: a broad

coverage word sense tagger that maximizes semantic relatedness”. In: Pro-

ceedings of Human Language Technologies: The 2009 Annual Conference of

the North American Chapter of the Association for Computational Linguistics,

Companion Volume: Demonstration Session, pp. 17–20, Association for Com-

putational Linguistics, 2009.

[Pere 05] D. Perez, A. Gliozzo, C. Strapparava, E. Alfonseca, P. Rodriguez, and

B. Magnini. “Automatic Assessment of Student free-text Answers underpinned

by the Combination of a Bleu-inspired algorithm and Latent Semantic Analy-

sis”. In Proceedings of the Eighteenth International Florida Artificial Intelligence

Research Society Conference, pp. 358–362, 2005.

[Poll 02] M. Pollock. “Introduction of CAA into a Mathematics Course for Technology

Students to Address a Change in Curriculum Requirements”. International

Journal of Technology and Design Education, Vol. 12, No. 3, pp. 249–270, 2002.

[Port 06] M. Porter. “An algorithm for suffix stripping”. Program: Electronic Library

and Information Systems, Vol. 40, No. 3, pp. 211–218, 2006.

[Resn 95] P. Resnik. “Using information content to evaluate semantic similarity in a taxon-

omy”. In: International Joint Conference on Artificial Intelligence, pp. 448–453,

1995.

[Russ 18] C. Russell. “Soundex Algorithm”. http://www.pat2pdf.org/pat2pdf/foo.

pl?number=1261167, Accessed on 20 March 2010, 1918.

[Sala 09] M. Salahli and T. Canakkale. “AN APPROACH FOR MEASURING SEMAN-

105

TIC RELATEDNESS BETWEEN WORDS VIA RELATED TERMS”. Math-

ematical and Computational Applications, Vol. 14, No. 1, pp. 55–63, 2009.

[Sanf 98] A. Sanfilippo, N. Calzolari, S. Ananiadou, R. Gaizauskas, P. Saint-Dizier, and

P. Vossen. “EAGLES Preliminary Recommendations on Semantic Encoding,

Word Sense Disambiguation”. The EAGLES Lexicón Interest Group, 1998.

[Seco 04a] N. Seco. “Java WordNet Similarity Library JAVASIMLIB”. http://eden.dei.

uc.pt/~nseco/javasimlib.tar.gz, Accessed on 20 March 2010, 2004.

[Seco 04b] N. Seco, T. Veale, and J. Hayes. “An Intrinsic Information Content Metric for

Semantic Similarity in WordNet”. Proc. of ECAI, Vol. 4, pp. 1089–1090, 2004.

[Sedg 03] R. Sedgewick. Algorithms in Java. Addison-Wesley Professional, 2003.

[Smir 08] I. Smirnov. “Overview of Stemming Algorithms”. Tech. Rep., DePaul Univer-

sity, 2008.

[Smit 04] N. Smith, P. Thomas, and K. Waugh. “Interpreting Imprecise Diagrams”. Pro-

ceedings of the Third International Conference in the Theory and Application

of Diagrams. March, pp. 22–24, 2004.

[Sura 02] P. Suraweera and A. Mitrovic. “KERMIT: a Constraint-based Tutor for

Database Modeling”. Proc. ITS, pp. 377–387, 2002.

[Take 90] H. Takeda, P. Veerkamp, and H. Yoshikawa. “Modeling design process”. AI

magazine, Vol. 11, No. 4, p. 37, 1990.

[Tech 07] M. I. of Technology. “Open Knowledge Initiative”. http://www.okiproject.

org/, Accessed on 20 March 2010, 2007.

[Tera 04] A. Terada, T. Tokunaga, and H. Tanaka. “Automatic expansion of abbrevia-

tions by using context and character information”. Information Processing and

Management, Vol. 40, No. 1, pp. 31–45, 2004.

[Thom 04] P. Thomas. “Drawing diagrams in an online examination”. Proceedings of the

8th CAA International Computer Assisted Assessment Conference, 2004.

106

[Thom 07a] P. Thomas, N. Smith, and K. Waugh. “Computer assisted assessment of dia-

grams”. Proceedings of the 12th annual SIGCSE Conference on Innovation and

Technology in Computer Science Education, pp. 68–72, 2007.

[Thom 07b] P. Thomas, K. Waugh, and N. Smith. “Learning and Automatically Assessing

Graph based Diagrams”. Proceedings of the 7th ALT Association for Learning

Technology Conference, 2007.

[Thom 09] P. Thomas, N. Smith, and K. Waugh. “The Role Of Labels In The Automatic

Assessment Of Graph-Based Diagrams”. 23rd ICDE World Conference on Open

Learning and Distance Education, 2009.

[Toge 08] B. Together. “Borland Together”. Tech. Rep., Borland Together, April 2008.

[Tsel 05] C. Tselonis and J. Sargeant. “Diagram matching for human computer collabora-

tive assessment”. Proceedings of the 9th CAA International Computer Assisted

Assessment Conference, 2005.

[Tsel 07] C. Tselonis and J. Sargeant. “Domain-specific formative feedback through

domain-independent diagram matching”. Proceedings of the 11th CAA Inter-

national Computer Assisted Assessment Conference, 2007.

[Ukko 92] E. Ukkonen. “Approximate string-matching with q-grams and maximal

matches* 1”. Theoretical Computer Science, Vol. 92, No. 1, pp. 191–211, 1992.

[Univ 96] I. University. “Oxford English Dictionary List of Abbreviations”. http://

www.indiana.edu/~letrs/help-services/QuickGuides/oed-abbr.html,

Accessed on 20 March 2010, 1996.

[Vais 04] V. Vaishnavi and W. Kuechler. “Design Research in Information Sys-

tems”. http://desrist.org/design-research-in-information-systems/,

Accessed on 20 March 2010, 2004.

[Vale 03] S. Valenti, F. Neri, and A. Cucchiarelli. “An overview of current research on

automated essay grading”. Journal of Information Technology Education, Vol. 2,

pp. 319–330, 2003.

107

[Veks 07] D. V. Veksler. “Measures of Semantic Relatedness”. 2007. http://

cwl-projects.cogsci.rpi.edu/msr/, Accessed on 20 March 2010.

[W3C 08] W3C. “Extensible Markup Language (XML) 1.0”. Tech. Rep., World Wide

Web Consortium (W3C), November 2008.

[Wagn 74] R. Wagner and M. Fischer. “The String-to-String Correction Problem”. Journal

of the ACM (JACM), Vol. 21, No. 1, pp. 168–173, 1974.

[Went 00] T. Wentling, C. Waight, J. Gallaher, J. La Fleur, C. Wang, and A. Kanfer.

“E-learning-A review of literature”. Knowledge and Learning Systems Group,

University of Illinois at Urbana-Champaign learning. ncsa. uiuc. edu/papers/e-

learnlit. pdf, 2000.

[Whit nd] S. White. “How to Strike a Match”. n.d. http://www.catalysoft.com/

articles/StrikeAMatch.html, Accessed on 20 March 2010.

[Wiki 10a] Wikipedia. “F1 score”. http://en.wikipedia.org/wiki/F1_score, Accessed

on 20 March 2010, 2010.

[Wiki 10b] Wikipedia. “Facade design pattern”. http://en.wikipedia.org/wiki/

Facade_pattern, Accessed on 20 March 2010, 2010.

[Wiki 10c] Wikipedia. “Precision and Recall”. http://en.wikipedia.org/wiki/

Precision_and_recall, Accessed on 20 March 2010, 2010.

[Wiki 10d] Wikipedia. “Soundex Algorithm”. http://en.wikipedia.org/wiki/Soundex,

Accessed on 20 March 2010, 2010.

[Wiki 10e] Wikipedia. “Stemming”. http://en.wikipedia.org/wiki/Stemming, Ac-

cessed on 20 March 2010, 2010.

[Wiki 10f] Wikipedia. “Stop words”. http://en.wikipedia.org/wiki/Stop_words,

2010.

[Wiki 10g] Wikipedia. “Strategy design pattern”. http://en.wikipedia.org/wiki/

Strategy_pattern, Accessed on 20 March 2010, 2010.

108

[Wiki 10h] Wikipedia. “WordNet”. http://en.wikipedia.org/wiki/WordNet, Accessed

on 20 March 2010, 2010.

[Wu 94] Z. Wu and M. Palmer. “Verbs semantics and lexical selection”. In: Proceed-

ings of the 32nd Annual Meeting on Association for Computational Linguistics,

pp. 133–138, Association for Computational Linguistics Morristown, NJ, USA,

1994.

109

Chapter 6

Appendix A

6.1 Technologies used for developing software prototype of

the framework

The following Open Source technologies have been used in the partial implementation of the

framework.

• Java

• Netbeans

• Linux

• Hunspell spell checker (Neme 10) for the stage S1.3 and S1.4

• Open Office (Corp 10a) for the stage S1.3 and S1.4

• Paice Husk Stemmer (Paic 90; Neil 00) for the stage S1.6

• Implementation of syntax matching algorithms (Chap 06) for stage S2

110

List of Stopwords List1 a, an, the, this, that

List2 to, of, for, from, and, be, or, on, if, in, with, by, as, but, at

List3 i, he, she, it, we, you, they

List4 is, am, are, do, did, was, were, has, have, been

Table 6.1: List Of Stopwords

6.2 List of parameters used during pre-processing stage

6.2.1 List of special characters

The special character ’ (single quote) was removed while the following list of special characters

were replaced by single space.

!,",,$,%,^,&,*,(,),-,_,+,=,{,},[,],~,#,;,:,@,<,>,.,?,/,‘,\\,|

6.2.2 List of stopwords

Table 6.1 lists the stopwords used during the pre-processing stage.

6.3 Configuration XML File

The following is an example of the configuration xml file which is used to configure various

algorithms and parameters for the software prototype of the framework proposed in this

Thesis.

<toolconfiguration>

<casesensitive value="true"> </casesensitive>

<trimming value="true"> </trimming>

<specialcharacter>

<!--Path of xml file containing the special characters-->

<path>

</path>

111

</specialcharacter>

<stopword>

<!--Path of xml file containing the stopwords-->

<path>

</path>

</stopword>

<abbreviation>

<!--Path of xml file containing the abbreviations-->

<path>

</path>

</abbreviation>

<spellchecker>

<!--Details of the spell check algorithm-->

<algorithm name="">

<concreteclass></concreteclass>

</algorithm>

</spellchecker>

<stemming>

<!--Details of the stemming algorithm-->

<algorithm name="">

<concreteclass></concreteclass>

</algorithm>

</stemming>

<syntaxstage>

<algorithms>

<!--Details of the syntax matching algorithms-->

<!--Note that user can mention more than one syntax algorithm-->

<algorithm name="ExactMatchSyntaxAlgorithm" id="ExactMatchSyntaxAlgorithm"

active="true" weight="0.1">

<concreteclass>ExactMatchSyntaxAlgorithm.java</concreteclass>

112

</algorithm>

<algorithm name="EditDistanceSyntaxAlgorithm" active="true">

<concreteclass>EditDistanceSyntaxAlgorithm.java</concreteclass>

</algorithm>

<algorithm name="QGramDistanceSyntaxAlgorithm" active="true">

<concreteclass>QGramDistanceSyntaxAlgorithm.java</concreteclass>

</algorithm>

<algorithm name="SimonWhiteAlgorithm" active="true">

<concreteclass>SimonWhiteAlgorithm.java</concreteclass>

</algorithm>

<algorithm name="SoundexSyntaxAlgorithm" active="true">

<concreteclass>SoundexSyntaxAlgorithm.java</concreteclass>

</algorithm>

<algorithms>

<searchalgorithm>

<!--Details of the search syntax matching algorithms-->

<!--This algorithm will take input by running the various syntax algorithms

and then apply some search algorithm to return a final value for the syntax

similarity index value-->

<!--Read about search algorithms

at http://en.wikipedia.org/wiki/Search_algorithm-->

<!--In computer science, a search algorithm, broadly speaking, is an algorithm

that takes a problem as input and returns a solution to the problem,

usually after evaluating a number of possible solutions.-->

<!--Although there can be many entries for algorithms in the searchalgorithm

but only one can have value active=true. This search algorithm with value of

active=true will be used for searching the search space.-->

<algorithm name="MaxSearchAlgorithm" id="MaxSearchAlgorithm" active="true">

<!--This search algorithm "MaxSearchAlgorithm" searches all the possible

values of the syntax similarity and returns the maximum value. This is based

113

on the argument that if any one of the various syntax algorithms outputs that

two labels are similar, then they are indeed similar.-->

<concreteclass>MaxSearchAlgorithm.java</concreteclass>

</searchalgorithm>

</algorithm>

<!--Value for threshold-->

<thresholdvalue> 0.6 </thresholdvalue>

</syntaxstage>

<semantic>

<!--Path of xml file containing the semantic synonyms generated by the

wordnet interface-->

<path>

</path>

</semantic>

<!--Final analysis stage-->

<analysis>

<thresholdvalue> 0.6 </thresholdvalue>

<analysis>

</toolconfiguration>

6.4 Document Type Definition (DTD) of synonym XML file

The following is the DTD for the synonym.xml file proposed in this Thesis.

<?xml encoding="UTF-8"?>

<!ELEMENT synonymset(description?, word+) >

<!ATTLIST synonymset name CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT word(synset+)>

<!ATTLIST word value CDATA #REQUIRED

description CDATA #IMPLIED

114

>

<!ELEMENT synset(sense,synonymn+,partofspeech,examplesentence+)>

<!ATTLIST synset wordnetdatabseid CDATA #REQUIRED

selectedbylecturer(yes|no) #REQUIRED

description CDATA #IMPLIED

>

<!ELEMENT sense EMPTY>

<!ATTLIST sense value CDATA #REQUIRED >

<!ELEMENT synonymn EMPTY>

<!ATTLIST synonymn value CDATA #REQUIRED >

<!ELEMENT partofspeech EMPTY>

<!ATTLIST partofspeech value (noun|verb|adjective|adverb|other) #REQUIRED >

<!ELEMENT examplesentence EMPTY>

<!ATTLIST examplesentence value CDATA #REQUIRED >

6.5 Case Study: Problem Specification and Model Solution

The following case study was used for experiments carried out in this Thesis. The Cockle

Card System: Chipolata Buses of Marlin on Sea plan to invest in a new bus card system.

In addition to a travel card (monthly, weekly, daily), there is a pre-pay card (pay-as-you-go),

where customers can purchase credit in advance, and a concessions card, allowing free off

peak travel for certain groups of people. Each bus is to be fitted with a card reader which

will read the card, update the amount of credit (for pre-pay) or check it is valid (travel cards

or concession cards). Different fares are charged for peak and off peak services. If the card is

not valid for some reason (e.g. out of date, no credit or cant be used at peak times) the reader

should give an audible warning to prompt the driver to read the display and take appropriate

action. The reader should also give a valid ‘beep’ so that the driver and passenger know that

the card has been read. The pre-pay card needs to be debited each time it is used. However,

there is a daily cap so that it never exceeds the amount that would be charged for a daily

travel card. There is a flat fare for each journey, but peak journeys (before 9.30 am) cost

115

Figure 6.1: Part of Question

more than off peak journeys. The amount charged is displayed. Current costs:

1. Daily travel card £6

2. Weekly travel card £35

3. Monthly travel card £120

4. Single peak journey £2

5. Single off peak journey £1

The following activity diagram [refer to Figure 6.1] only partially models the requirements

in the case study. Complete it. The Model Solution, as devised by the lecturer who marked

the coursework, is presented in Figure 6.2.

6.5.1 Syntax algorithm result table

6.6 Semantic data

Table 6.10 shows the words in the student diagram that are judged by human marker to be

synonymous with words in the model solution.

6.7 Sample code to add an algorithm

As explained in Section 3.5, the actual code to use the porter stemming algorithm in the

framework is as follows. The following code shows the way in which the framework reads

116

Figure 6.2: Model Answer

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 141 38 32 32 32 31

B 68 45 26 17 4 4

C 55 30 10 2 1 0

D 41 21 10 2 0 0

B ∩ C ∩ D 34 14 8 1 0 0

B ∪ C ∪ D 83 52 27 18 5 4

A ∩ B ∩ C ∩ D 34 13 8 1 0 0

A ∪ B ∪ C ∪ D 143 57 38 34 32 31

A - (B ∪ C ∪ D) 60 5 11 16 27 27

(B ∪ C ∪ D) - A 2 19 6 2 0 0

A - (B ∩ C ∩ D) 107 25 24 31 32 31

(B ∩ C ∩ D) - A 0 1 0 0 0 0

Table 6.2: True Positives For All Threshold

117

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 103 6 0 0 1

B 23 19 9 13 0

C 25 20 8 1 1

D 20 11 8 2 0

B ∩ C ∩ D 20 6 7 1 0

B ∪ C ∪ D 31 25 9 13 1

A ∩ B ∩ C ∩ D 21 5 7 1 0

A ∪ B ∪ C ∪ D 86 19 4 2 1

A - (B ∪ C ∪ D) 55 -6 -5 -11 0

(B ∪ C ∪ D) - A -17 13 4 2 0

A - (B ∩ C ∩ D) 82 1 -7 -1 1

(B ∩ C ∩ D) - A -1 1 0 0 0

Table 6.3: Rate of Decrease of True Positives For All Threshold

118

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 242 48 32 32 27 19

B 127 57 19 7 0 0

C 120 53 12 3 0 0

D 51 14 5 0 0 0

B ∩ C ∩ D 47 11 4 0 0 0

B ∪ C ∪ D 164 85 26 8 0 0

A ∩ B ∩ C ∩ D 47 9 2 0 0 0

A ∪ B ∪ C ∪ D 272 107 46 35 27 19

A - (B ∪ C ∪ D) 108 22 20 27 27 19

(B ∪ C ∪ D) - A 30 59 14 3 0 0

A - (B ∩ C ∩ D) 195 39 30 32 27 19

(B ∩ C ∩ D) - A 0 2 2 0 0 0

Table 6.4: False Positives For All Threshold

119

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 194 16 0 5 8

B 70 38 12 7 0

C 67 41 9 3 0

D 37 9 5 0 0

B ∩ C ∩ D 36 7 4 0 0

B ∪ C ∪ D 79 59 18 8 0

A ∩ B ∩ C ∩ D 38 7 2 0 0

A ∪ B ∪ C ∪ D 165 61 11 8 8

A - (B ∪ C ∪ D) 86 2 -7 0 8

(B ∪ C ∪ D) - A -29 45 11 3 0

A - (B ∩ C ∩ D) 156 9 -2 5 8

(B ∩ C ∩ D) - A -2 0 2 0 0

Table 6.5: Rate of Decrease of False Positives For All Threshold

120

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 251 354 360 360 360 361

B 324 347 366 375 388 388

C 337 362 382 390 391 392

D 351 371 382 390 392 392

B ∩ C ∩ D 358 378 384 391 392 392

B ∪ C ∪ D 309 340 365 374 387 388

A ∩ B ∩ C ∩ D 358 379 384 391 392 392

A ∪ B ∪ C ∪ D 249 335 354 358 360 361

A - (B ∪ C ∪ D) 332 387 381 376 365 365

(B ∪ C ∪ D) - A 390 373 386 390 392 392

A - (B ∩ C ∩ D) 285 367 368 361 360 361

(B ∩ C ∩ D) - A 392 391 392 392 392 392

Table 6.6: False Negative For All Threshold

121

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 103 6 0 0 1

B 23 19 9 13 0

C 25 20 8 1 1

D 20 11 8 2 0

B ∩ C ∩ D 20 6 7 1 0

B ∪ C ∪ D 31 25 9 13 1

A ∩ B ∩ C ∩ D 21 5 7 1 0

A ∪ B ∪ C ∪ D 86 19 4 2 1

A - (B ∪ C ∪ D) 55 -6 -5 -11 0

(B ∪ C ∪ D) - A -17 13 4 2 0

A - (B ∩ C ∩ D) 82 1 -7 -1 1

(B ∩ C ∩ D) - A -1 1 0 0 0

Table 6.7: Rate of Increase of False Negative For All Threshold

122

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 353 547 563 563 568 576

B 468 538 576 588 595 595

C 475 542 583 592 595 595

D 544 581 590 595 595 595

B ∩ C ∩ D 548 584 591 595 595 595

B ∪ C ∪ D 431 510 569 587 595 595

A ∩ B ∩ C ∩ D 548 586 593 595 595 595

A ∪ B ∪ C ∪ D 323 488 549 560 568 576

A - (B ∪ C ∪ D) 487 573 575 568 568 576

(B ∪ C ∪ D) - A 565 536 581 592 595 595

A - (B ∩ C ∩ D) 400 556 565 563 568 576

(B ∩ C ∩ D) - A 595 593 593 595 595 595

Table 6.8: True Negative For All Threshold

123

Algo 0.5 0.6 0.7 0.8 0.9 1.0

A 194 16 0 5 8

B 70 38 12 7 0

C 67 41 9 3 0

D 37 9 5 0 0

B ∩ C ∩ D 36 7 4 0 0

B ∪ C ∪ D 79 59 18 8 0

A ∩ B ∩ C ∩ D 38 7 2 0 0

A ∪ B ∪ C ∪ D 165 61 11 8 8

A - (B ∪ C ∪ D) 86 2 -7 0 8

(B ∪ C ∪ D) - A -29 45 11 3 0

A - (B ∩ C ∩ D) 156 9 -2 5 8

(B ∩ C ∩ D) - A -2 0 2 0 0

Table 6.9: Rate of Increase of True Negative For All Threshold

Word in model solution Synonyms in student diagram Hypernym/Hyponym in stu-

dent diagram

total amount, balance credit, debit

valid accepted

check identify, detect

time offpeak, peak, hours

update reduce

beep sound, audible warning

invalid error, problem, reject

warning notice

Table 6.10: Synonyms in student diagrams

124

the name of the concrete class from the configuration XML file, creates an instance of that

concrete class and calls its methods.

Scanner sc = new Scanner(new File(’’configuration.xml’’));

String strClassName=sc.next();

Class myClass1 =Class.forName(strClassName);

StemmingInterface stemmingInterface=null;

stemmingInterface=(StemmingInterface)myClass1.newInstance();

String result=stemmingInterface.getStem(’’mylabel1’’);

6.8 Sample code to configure the combined hybrid syntax al-

gorithm

The user can configure the combined hybrid syntax algorithm using the configuration XML

file. To configure the hybrid algorithm to include an additional syntax algorithm, add the

following entry in the configuration XML file. Please note that the user needs to provide the

concrete class for the syntax algorithm.

¡algorithm name=”NewSyntaxAlgorithm” active=”true”¿ ¡concreteclass¿NewSyntaxAlgorithmConcreteClass.java¡/concreteclass¿

¡/algorithm¿

To configure the hybrid algorithm to exclude a syntax algorithm, either delete the entry

of the syntax algorithm from the configuration XML file or set the value of active attribute

to false.

6.9 Software for framework (Java code) and Corpus of course-

work

Figure 6.3 shows the screen shot of the software and corpus of coursework published as part

of this Thesis at (Jaya 10).

125

Figure 6.3: Screen shot for the published Software and Corpus of coursework

126

Chapter 7

Appendix B

7.1 Java Source code for DiagramAssessmentTool.jar

This is the main program that creates a swing GUI with which the end user interacts.

1 package uk . ac . brune l . gu i ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

6 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

import java . awt . ∗ ;

11 import javax . swing . ∗ ;

import javax . swing . GroupLayout . ∗ ;

import java . awt . event . ∗ ;

import java . u t i l . Arrays ;

16 import uk . ac . brune l . g ene r i c l abe lmatche r . LabelMatcher ;

import uk . ac . brune l . xmi .XMIDOMDataLoader ;

127

public class DiagramAssessmentToolGUI {

21 public stat ic void main (St r ing [] a rgs) {

DiagramAssessmentToolGUI diagramAssessmentToolGUI = new

DiagramAssessmentToolGUI () ;

diagramAssessmentToolGUI . generateGUI () ;

26 }
JTextFie ld t fCorrectAnswerFi lePath = new JTextFie ld () ;

JTextFie ld t fStudentAnswerFi lePath = new JTextFie ld () ;

JTextArea textAreaForFeedback= new JTextArea () ;

31 public void generateGUI () {

JLabel l a b e l T i t l e = new JLabel (”Brunel Un ive r s i ty LTDU CIF 2009

Pro j e c t ”) ;

JFrame frame = new JFrame (”Brunel Un ive r s i ty LTDU CIF 2009

Pro j e c t ”) ;

36 frame . s e tDe fau l tC lo seOperat ion (JFrame .EXIT ON CLOSE) ;

frame . s e t S i z e (400 ,400) ;

GroupLayout layout = new GroupLayout (frame . getContentPane ()) ;

frame . getContentPane () . setLayout (layout) ;

41

JLabel labe lCorrectAnswerFi l ePath = new JLabel (”

strCorrectAnswerFi lePath ”) ;

JLabel labe lStudentAnswerFi lePath = new JLabel (”

strStudentAnswerFi lePath ”) ;

128

46 JLabel labe lForButton=new JLabel (” Please Press button ”) ;

JLabel labelForFeedback = new JLabel (”Feedback”) ;

JButton jbutton1 = new JButton (”Automatica l ly Mark”) ;

51

textAreaForFeedback = new JTextArea () ;

textAreaForFeedback . setColumns (100) ;

textAreaForFeedback . setLineWrap (true) ;

textAreaForFeedback . setRows (40) ;

56 textAreaForFeedback . setWrapStyleWord (true) ;

textAreaForFeedback . s e tEd i t ab l e (fa l se) ;

JScro l lPane jSc ro l lPane1 = new JScro l lPane (textAreaForFeedback) ;

frame . getContentPane () . add (jSc ro l lPane1) ;

61

jbutton1 . addAct ionLis tener (new MyTestActionListener ()) ;

layout . setAutoCreateGaps (true) ;

66

layout . setAutoCreateContainerGaps (true) ;

GroupLayout . SequentialGroup hGroup = layout . c reateSequent ia lGroup

() ;

71

hGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

addComponent (labe lCorrectAnswerFi l ePath) . addComponent (

labe lStudentAnswerFi lePath) . addComponent (

labe lForButton) . addComponent (labelForFeedback)) ;

hGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

addComponent (t fCorrectAnswerFi lePath) . addComponent (

129

t fStudentAnswerFi lePath) . addComponent (jbutton1) .

addComponent (textAreaForFeedback)) ;

76

layout . setHor izonta lGroup (hGroup) ;

81 GroupLayout . SequentialGroup vGroup = layout . c reateSequent ia lGroup

() ;

vGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

addComponent (labe lCorrectAnswerFi l ePath) . addComponent (

t fCorrectAnswerFi lePath)) ;

vGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

86 addComponent (labe lStudentAnswerFi lePath) . addComponent (

t fStudentAnswerFi lePath)) ;

vGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

addComponent (labe lForButton) . addComponent (jbutton1)) ;

vGroup . addGroup (layout . c r ea t ePara l l e lGroup (Alignment .LEADING) .

91 addComponent (labelForFeedback) . addComponent (

textAreaForFeedback)) ;

layout . s e tVert i ca lGroup (vGroup) ;

frame . pack () ;

96 frame . s e tV i s i b l e (true) ;

}
// s t a r t o f a c t i on l i s t e n e r code

class MyTestActionListener implements Act ionL i s t ene r {

101 public void act ionPerformed (ActionEvent ae) {

130

// St r ing strCorrectAnswerFi lePath = ”/home/ambi/01MYRES/01Am/LTDU

/LTDU Symposium/ v3 Correct Diagrams . xmi ” ;

// St r ing strStudentAnswerFi lePath = ”/home/ambi/01MYRES/01Am/LTDU

/LTDU Symposium/ v3 Correct Diagrams . xmi ” ;

106 St r ing strCorrectAnswerFi lePath =”” ;

S t r ing strStudentAnswerFi lePath =”” ;

S t r ing strOutputFeedback = ”” ;

int marks=0;

111 St r ing [] [] arrayStr ingOutput=null ;

try{
strCorrectAnswerFi lePath=tfCorrectAnswerFi lePath . getText () ;

strStudentAnswerFi lePath=tfStudentAnswerFi lePath . getText () ;

116

//Using the UMLDiagramXMIAPI . j a r

XMIDOMDataLoader xmiDOMDataLoader = new XMIDOMDataLoader () ;

S t r ing [] [] s t rArrayLabe lDeta i l sOfCorrectAnswer=new

XMIDOMDataLoader () . g e tDe ta i l sO fA l lLabe l s (

strCorrectAnswerFi lePath) ;

S t r ing [] [] s trArrayLabelDetai l sOfStudentAnswer=new

XMIDOMDataLoader () . g e tDe ta i l sO fA l lLabe l s (

strStudentAnswerFi lePath) ;

121

//Using the GenericLabelMatcher . j a r

LabelMatcher labe lMatcher=LabelMatcher . g e t In s tance (””) ;

// St r ing [] a r rayStr1={”S e l e c t Recipe ” , ”Assemble I ng r ed i en t s ” , ”Cook

meal ” , ” Set the t ab l e ” , ”Eat ”} ;

126 // St r ing [] a r rayStr2={”turn up at arranged time ” , ” eat the meal

produced by f r i e nd ” , ”must s e l e c t a r e c i p e f o r t h e i r meal ” ,

131

//” assemble the i n g r ed i e n t ” , ” cook the meal ” , ” Set t ab l e ” , ” eat meal

”} ;

S t r ing [] a r rayStr1=new St r ing [strArrayLabe lDeta i l sOfCorrectAnswer .

l ength] ;

S t r ing [] a r rayStr2=new St r ing [strArrayLabelDetai l sOfStudentAnswer .

l ength] ;

131

for (int i =0; i<arrayStr1 . l ength ; i++){
arrayStr1 [i]= strArrayLabe lDeta i l sOfCorrectAnswer [i] [0] ;

}

136 for (int i =0; i<arrayStr2 . l ength ; i++){
arrayStr2 [i]= strArrayLabelDetai l sOfStudentAnswer [i] [0] ;

}

double [] [] arrayDetai lsOfMatchedStringsFromSecondArray=labe lMatcher .

getDetai lsOfMatchedStringsFromSecondArray (arrayStr1 , a r rayStr2) ;

141

for (int i =0; i<arrayDetai lsOfMatchedStringsFromSecondArray . l ength ; i++)

{
i f (arrayDetai lsOfMatchedStringsFromSecondArray [i] [1] >=0) {

//match has been found , so p o s i t i v e feedback

strOutputFeedback=strOutputFeedback+

strArrayLabe lDeta i l sOfCorrectAnswer [i] [2] + ”\n \n” ;

146 marks++;

} else {
//match has not been found , so negat ive feedback

strOutputFeedback=strOutputFeedback+

strArrayLabe lDeta i l sOfCorrectAnswer [i] [3] + ”\n \n” ;

}
151 }

132

strOutputFeedback=strOutputFeedback+ ”\n\n Total Makrs : ” + marks ;

//add raw feedback

156 strOutputFeedback=strOutputFeedback+ ”\n\n Raw Feedback : \n\n ” ;

strOutputFeedback=strOutputFeedback+”

arrayDetai lsOfMatchedStringsFromSecondArray [] [] : \n + ” + Arrays .

deepToString (arrayDetai lsOfMatchedStringsFromSecondArray) + ”\n\n
” ;

strOutputFeedback=strOutputFeedback+”

strArrayLabe lDeta i l sOfCorrectAnswer [] [] : \n + ” + Arrays .

deepToString (strArrayLabe lDeta i l sOfCorrectAnswer) + ”\n\n” ;

strOutputFeedback=strOutputFeedback+” arrayStr1 [] : \n + ” + Arrays .

deepToString (ar rayStr1) + ”\n\n” ;

strOutputFeedback=strOutputFeedback+”

strArrayLabelDetai l sOfStudentAnswer [] [] : \n + ” + Arrays .

deepToString (strArrayLabelDetai l sOfStudentAnswer) + ”\n\n” ;

161 strOutputFeedback=strOutputFeedback+” arrayStr2 [] : \n + ” + Arrays .

deepToString (ar rayStr2) + ”\n\n” ;

for (int i =0; i<arrayDetai lsOfMatchedStringsFromSecondArray . l ength ; i++)

{
// System . out . p r i n t l n (arrayDetai lsOfMatchedStringsFromSecondArray [

i] [0] + ” ” + arrayDetai lsOfMatchedStringsFromSecondArray [i] [1]

+ ” ” +arrayDetai lsOfMatchedStringsFromSecondArray [i] [2]) ;

}
166

}catch (Throwable ex) {
ex . pr intStackTrace () ;

171

strOutputFeedback= strOutputFeedback + ”SORRY, SOME

EXCEPTION OCCURRED. PLEASE RERUN OR CONTACT

133

ADMINISTRATOR” ;

strOutputFeedback=strOutputFeedback + ”\n\n ∗∗∗∗∗∗∗∗∗∗∗∗
Exception Message \n\n ex . getMessage () + \n” + ex .

getMessage () ;

strOutputFeedback=strOutputFeedback + ”ex .

getLoca l i zedMessage () \n” + ex . getLoca l i zedMessage () ;

strOutputFeedback=strOutputFeedback + ”ex . t oS t r i ng () \n”

+ ex . t oS t r i ng () ;

176 }

textAreaForFeedback . setText (strOutputFeedback) ;

}
181 }

}

7.2 Java Source code for UMLDiagramXMIAPI.jar

This component extracts the labels from UML diagrams in XMI format.

package uk . ac . brune l . xmi ;

3 import javax . xml . pa r s e r s . ∗ ;

import java . u t i l . ArrayList ;

import java . u t i l . Arrays ;

import java . u t i l . L i s t ;

8 import org . w3c .dom . ∗ ;

import org . w3c .dom. Node . ∗ ;

/∗∗
∗ Java API to ac c e s s the l a b e l s pre sent in a diagram repre s en ted as an

XMI f i l e .

134

13 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
18

public class XMIDOMDataLoader {

private stat ic f ina l St r ing UMLActionState = ”UML: Act ionState ” ;

23 private stat ic f ina l St r ing UMLModelElementtaggedValue = ”UML:

ModelElement . taggedValue ” ;

private stat ic f ina l St r ing UMLTaggedValuedataValue = ”UML:

TaggedValue . dataValue” ;

private stat ic St r ing s t rF i l ePa th = ”/home/ambi/01MYRES/01Am/LTDU/

LTDU Symposium/ v3 Correct Diagrams . xmi” ;

// f o r t e s t i n g

public stat ic void main (St r ing [] a rgs) {
28 XMIDOMDataLoader xmiDOMDataLoader = new XMIDOMDataLoader () ;

S t r ing s t rF i l ePa th = ”/home/ambi/01MYRES/01Am/LTDU/LTDU Symposium

/ v3 Correct Diagrams . xmi” ;

new XMIDOMDataLoader () . g e tDe ta i l sO fA l lLabe l s (s t rF i l ePa th) ;

}
33

/∗
∗ This func t i on r e tu rn s l i s t o f l a b e l s . s t r i n g [i] [0]=” l a b l e l ” ,

s t r i n g [i] [1]=” xmiid ” , s t r i n g [i] [2]=” p o s i t i v e feedback ” ,

∗ s t r i n g [i] [3]=” negat ive feedback ”

∗
38 ∗/

public St r ing [] [] g e tDe ta i l sO fA l lLabe l s (S t r ing strXMIFilePath) {

135

St r ing [] [] s t rAr rayLabe lDeta i l s = null ;

i f (! strXMIFilePath . endsWith (” . xmi”)) {
// f i l e does not end with xmi , so do nothing

43 s t rAr rayLabe lDeta i l s = null ;

} else {
//now i t ends with . xmi and hence probaby i t i s indeed an xmi

f i l e , p roce s s i t

try {
48 DocumentBuilderFactory f a c t o r y = DocumentBuilderFactory .

newInstance () ;

DocumentBuilder bu i l d e r = f a c t o ry . newDocumentBuilder () ;

Document document = bu i l d e r . parse (strXMIFilePath) ;

s t rAr rayLabe lDeta i l s = processDocument (document) ;

53 } catch (Exception ex) {
ex . pr intStackTrace () ;

}

58 }

System . out . p r i n t l n (”Arrays . deepToString (s t rAr rayLabe lDeta i l s) ” +

Arrays . deepToString (s t rAr rayLabe lDeta i l s)) ;

return s t rAr rayLabe lDeta i l s ;

}
63

/∗
∗ +−−−+

∗ | METHOD: pr intElements |
∗ +−−−+

68 ∗/
private St r ing [] [] processDocument (Document doc) {

136

St r ing [] [] s t rAr rayLabe lDeta i l s = null ;

L i s t<St r ing [] > l i s t S t a t e s = new ArrayList<St r ing [] > () ;

73 NodeList n od e l i s t = doc . getElementsByTagName (”∗”) ;

Node node ;

for (int i = 0 ; i < nod e l i s t . getLength () ; i++) {
node = nod e l i s t . item (i) ;

78 System . out . p r i n t l n (”∗∗∗∗” + node . getNodeName () + ” ”) ;

S t r ing strNodeName = node . getNodeName () ;

i f (strNodeName . equa l s (UMLActionState)) {
// t h i s s t a r t s the p roc e s s i ong o f a s t a t e machine

83 St r ing [] a r rayLabe lDeta i l = processUMLActionState (node) ;

i f (a r rayLabe lDeta i l != null) {
l i s t S t a t e s . add (a r rayLabe lDeta i l) ;

}
}

88

}

s t rAr rayLabe lDeta i l s = new St r ing [l i s t S t a t e s . s i z e ()] [] ;

for (int i = 0 ; i < l i s t S t a t e s . s i z e () ; i++) {
93 s t rAr rayLabe lDeta i l s [i] = l i s t S t a t e s . get (i) ;

}

return s t rAr rayLabe lDeta i l s ;

}
98

private St r ing [] processUMLActionState (Node nodeActionState) {
St r ing [] a r rayLabe lDeta i l = new St r ing [4] ;

S t r ing label = ”” ;

137

103 St r ing xmiid = ”” ;

S t r ing feedback = ”” ;

S t r ing pos i t iveFeedback = ”” ;

S t r ing negat iveFeedback = ”” ;

108 NamedNodeMap namedNodeMap = nodeActionState . g e tAt t r i bu t e s () ;

try {
label = namedNodeMap . getNamedItem (”name”) . getNodeValue () ;

xmiid = namedNodeMap . getNamedItem (”xmi . id ”) . getNodeValue () ;

} catch (Exception ex) {
113 }

i f (label . equa l s (””)) {
return null ;

}
118

// the f o l l ow inng two l i n e s with l o t s o f g e tF i r s tCh i l d () .

g e tNextS ib l ing () are a way to get to the feedback value which

i s pre sent in the

// tag <UML: TaggedValue . dataValue >.

Node ch i l d 1 = nodeActionState . g e tF i r s tCh i l d () . g e tNextS ib l ing () .

g e tF i r s tCh i l d () . g e tNextS ib l ing () ;

Node childNodeUMLTaggedValuedataValue = ch i l d1 . g e tF i r s tCh i l d () .

g e tNextS ib l ing () ;

123

St r ing nameChildNodeUMLTaggedValuedataValue =

childNodeUMLTaggedValuedataValue . getNodeName () ;

// System . out . p r i n t l n (”ˆˆˆˆˆ nameChildNodeUMLTaggedValuedataValue

” + nameChildNodeUMLTaggedValuedataValue) ;

i f (nameChildNodeUMLTaggedValuedataValue . equa l s (

UMLTaggedValuedataValue)) {
f eedback = childNodeUMLTaggedValuedataValue . getTextContent () ;

128 }

138

ar rayLabe lDeta i l [0] = label ;

133 ar rayLabe lDeta i l [1] = xmiid ;

a r rayLabe lDeta i l [2] = feedback . s p l i t (”] ”) [0] . r ep l a c e (” [” , ””) .

r ep l a c e (”] ” , ””) ;

a r rayLabe lDeta i l [3] = feedback . s p l i t (”] ”) [1] . r ep l a c e (” [” , ””) .

r ep l a c e (”] ” , ””) ;

// a r rayLabe lDeta i l [2]= feedback ;

// ar rayLabe lDeta i l [3]= feedback ;

138

return ar rayLabe lDeta i l ;

}

143 }

7.3 Java Source code for GenericLabelMatcher.jar

This component matches the labels.

package uk . ac . brune l . i f a c e ;

2 /∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

7 ∗/

public interface SearchAlgorithmIF {

139

/∗
12 ∗ syntaxa lgor i thms [i] [0] conta in s the id o f the syntax a lgor i thm c l a s s

∗ syntaxa lgor i thms [i] [1] conta in s the double va lue o f the s i m i l a r i t y

index f o r the cor re spond ing syntax a lgor i thm in the

syntaxa lgor i thms [i] [0]

∗∗/

public double getCombinedSimi lar i ty (S t r ing [] [] a r raySyntaxS imi la r i ty Index

) ;

17 }

package uk . ac . brune l . i f a c e ;

/∗∗
3 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
8

public interface Spel lCheckerIF {

/∗
∗ This fucn t i on r e tu rn s t rue i f word has been mi s sp e l l ed otherwi se f a l s e

.

13 ∗∗/
public boolean i sM i s s p e l l e d (S t r ing strWord) ;

/∗
∗ This func t i on takes a s i n g l e word or a sentence c o n s i s t i n g o f words

separated by s i n g l e or mu l t ip l e space .

18 ∗ I t then r e tu rn s the autoco t t e c t ed ve r s i on o f each word ,

∗ This fucn t i on r e tu rn s the f i r s t suggested word by the s p e l l checker .

140

∗ Incase the word in not s p e l l e d i n c o r r e c t l y then t h i s func t i on r e tu rn s

the same word

∗∗/
public St r ing getSpel lCheckedText (S t r ing strWord) ;

23

/∗
∗ ∗ This func t i on takes an array o f s i n g l e words .

∗ I t then r e tu rn s an array the autoco t t e c t ed ve r s i on o f each word ,

∗ This fucn t i on r e tu rn s the f i r s t suggested word by the s p e l l checker .

Incase the word in not s p e l l e d i n c o r r e c t l y then t h i s func t i on

r e tu rn s the same word

28 ∗∗/
public St r ing [] getSpel lCheckedText (S t r ing [] strWord) ;

}

package uk . ac . brune l . i f a c e ;

/∗∗
3 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
8 public interface StemmingAlgorithmIF{

/∗
This func t i on takes a s i n g l e word or a sentence c o n s i s t i n g o f words

separated by s i n g l e or mu l t ip l e space . I t then re tu rn s the stem o f

each word ,

13 // inputText can wither be a s i n g l e word or be a sentence c o n s i s t i n g o f

words separated by s i n g l e or mu l t ip l e space

141

∗/

public St r ing getStemText (S t r ing inputText) ;

18

}

1 package uk . ac . brune l . i f a c e ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

6 ∗ @since JDK1. 6

∗/

public interface SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) ;

11 }

package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
4 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
9

public class CommonPaths {

public stat ic St r ing DATASTORE BASE PATH = ”” ;

142

public stat ic St r ing DATA SET NAME = ”” ;

14 public stat ic St r ing DATA PATH = ”” ;

public stat ic St r ing REPORTS PATH = ”” ;

public stat ic St r ing DATADICTIONARY FILE PATH = ”” ;

public stat ic St r ing FEATURES PROPERTIES PATH = ”” ;

public stat ic St r ing LABEL MATCHING ALGORITHM PROPERTIES PATH = ”” ;

19 public stat ic St r ing ALGORITHM PROPERTIES PATH = ”” ;

public stat ic St r ing STUDENT ANSWER PATH = ”” ;

public stat ic St r ing CORRECT ANSWER PATH = ”” ;

public stat ic St r ing PaiceHusk Stemmer RULES FILE PATH = ”” ;

public stat ic St r ing MASTER DECISION FILE PATH = ”” ;

24 public stat ic St r ing WORDNETHOMEPATH=”” ;

public stat ic St r ing WORDNET BASE PATH=”” ;

public stat ic St r ing WORDNET RESOURCES PATH = ”” ;

public stat ic St r ing TEMP FOLDER PATH = ”” ;

29

// s e t paths

stat ic {
DATASTORE BASE PATH = ”/home/ambi/01MYRES/02SwDev/0001 BEAS/01

SOFTWARE/01DATASTORE/” ;

34 DATA SET NAME = ” set10 ” ;

DATA PATH = DATASTORE BASE PATH + DATA SET NAME + ”/data/” ;

REPORTS PATH = DATASTORE BASE PATH + DATA SET NAME + ”/ r epo r t s /” ;

DATADICTIONARY FILE PATH = DATASTORE BASE PATH + DATA SET NAME +

”/ datad i c t i ona ry / datad i c t i ona ry . p r op e r t i e s ” ;

39 FEATURES PROPERTIES PATH = DATASTORE BASE PATH + DATA SET NAME +

”/ f e a t u r e s / f e a t u r e s . p r op e r t i e s ” ;

STUDENT ANSWER PATH = DATA PATH + ” studentanswer /” ;

CORRECT ANSWER PATH = DATA PATH + ” cor rec tanswer /” ;

143

44

PaiceHusk Stemmer RULES FILE PATH = DATASTORE BASE PATH + ”

stemming/ s temru le s . txt ” ;

LABEL MATCHING ALGORITHM PROPERTIES PATH = DATASTORE BASE PATH +

” p r op e r t i e s / l abe l match ing a l go r i thm . p r op e r t i e s ” ;

49 MASTER DECISION FILE PATH = DATASTORE BASE PATH + ”Report f o r

Framework/Main Reports /Syntax Algo Conpar is ion Report/

leve l3 And spe l l check And Stemming /raw data/

Main 09JUL2008 ALL LEVEL ALL DETAILS . x l s ” ;

//WORDNET RESOURCES PATH=DATASTORE BASE PATH + ” re s ou r c e s /wordnet

/” ;

WORDNET BASE PATH=DATASTORE BASE PATH + ” r e s ou r c e s /wordnet/” ;

54

WORDNET RESOURCES PATH=WORDNET BASE PATH + ” wordne t con f i gu ra t i on

/” ;

WORDNETHOMEPATH=WORDNET BASE PATH + ”WordNet−3.0/” ;

59

TEMP FOLDER PATH=DATASTORE BASE PATH + ” tempfo lder /” ;

}
64

public stat ic St r ing LTDU Project Data File Path=”/home/ambi/01MYRES

/01Am/LTDU/LTDU Pro j ec t S tu f f /” ;

}

144

package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
4 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
9

import java . u t i l . ∗ ;

import uk . ac . brune l . i f a c e . Spe l lCheckerIF ;

import uk . ac . brune l . i f a c e . StemmingAlgorithmIF ;

14 public class CommonUtil ityService {
private stat ic ToolConf igurat ion too lCon f i gu ra t i on=new ToolConf igurat ion

() ;

public stat ic St r ing [] p roce s sSt r ingArray (St r ing [] a r raySt r) {
St r ing [] p roces sedStr ingArray = new St r ing [a r raySt r . l ength] ;

19 for (int i = 0 ; i < ar raySt r . l ength ; i++) {
proces sedStr ingArray [i] = p ro c e s sS t r i n g (ar raySt r [i]) ;

}
return proces sedStr ingArray ;

}
24

public stat ic St r ing p ro c e s sS t r i n g (S t r ing s t r 1) {
i f (s t r 1 == null) {

s t r 1 = ”” ;

}
29 // 1 . Remove ending and t r a l i i n g spaces and Convert to Lowercase .

s t r 1 = s t r 1 . tr im () . toLowerCase () ;

145

// 2 . Remove a l l s p e c i a l cha rac t e r . Sp e c i a l cha rac t e r DOES NOT

inc lude the inbetween spaces .

// L i s tSpe c i a lCha ra c t e r s ={ ! ,” , , $,% ,ˆ ,& ,∗ , (,) ,− ,

,+ ,= ,{ ,} , [,] , ˜ ,# , ; , : ,@, ’ , < , > , . , ? , / , ‘ , , \ , | , ,}
34 s t r 1 = proce s sForSpec i a lCharac t e r (s t r 1) ;

//Note : F i r s t remove the punctuat ion words l i k e the , to e t c and

then remove the inbetween spaecs .

//Do not do i t the other way round .

//This i s because to remove the punctuat ion words at the very

s t a r t o f the s t r i n g or at the very end o f the s t r i ng ,

39 //we need to s p l i t the s t r i n g us ing the SPACE. And so we need the

inbetween spaces f o r p ro c e s s i ng the s t r i n g f o r

// punctuat ion words .

// 3 . Remove the inbetween extra spaces except one .

44 s t r 1 = processForInbetweenSpace (s t r 1) ;

// 4 . r ep l a c e abbr ev i a t i on s with t h e i r expanded form

s t r 1 = proces sForAbbrev ia t ions (s t r 1) ;

49 // 5 . Sp e l l check

s t r 1 = processForSpe l lCheck (s t r 1) ;

// 6 . Remove a l l the punctuat ion symbols .

// ListPunctuationWords={the , or , and , i f , but , i s , are , do , did , has , have ,

been , for , an , at }
54 s t r 1 = processForStopwords (s t r 1) ;

// 7 . Stemming

s t r 1 = processForStemming (s t r 1) ;

146

59 return s t r 1 ;

}

public stat ic St r ing processForSpe l lCheck (St r ing s1) {
St r ing s t r 1=s1 ;

64 //stemming algor i thm

Str ing [] [] s p e l l c h e ck e r a l g o r i t hms=too lCon f i gu ra t i on .

s p e l l c h e c k e r a l g o r i t hms ;

for (int i =0; i<s p e l l c h e c k e r a l g o r i t hms . l ength ; i++){
St r ing a c t i v e=sp e l l c h e ck e r a l g o r i t hms [i] [2] ;

i f (a c t i v e . equa l s IgnoreCase (” t rue ”)) {
69 // t h i s i s the main a c t i v e search a lgor i thm

// searcha lgor i thm [i] [3] conta in s the name o f the conc re t e c l a s s

// St r ing strNameOfConcreteClass=searcha lgor i thm [i] [3] ;

S t r ing strNameOfConcreteClass=too lCon f i gu ra t i on .PACKAGENAME+

spe l l c h e ck e r a l g o r i t hms [i] [3] ;

74

try{
Spel lCheckerIF spe l lChecker IF=(Spel lCheckerIF) Class . forName (

strNameOfConcreteClass) . newInstance () ;

s t r 1=spe l lChecker IF . getSpel lCheckedText (s t r 1) ;

79 }catch (ClassNotFoundException ex) {
System . out . p r i n t l n (” Sorry the c l a s s [” + strNameOfConcreteClass +

”] has not been found . Please e i t h e r c r e a t e i t or i f a l r eady

created , p lace ” +

” i t in the c l a s spa th . ”) ;

ex . pr intStackTrace () ;

}catch (Exception ex) {
84 System . out . p r i n t l n (”Sorry , other except ion ”) ;

ex . pr intStackTrace () ;

}

147

break ;

89 } else {
continue ;

}
}

return s t r 1 ;

94 }

public stat ic St r ing processForStemming (St r ing s1) {
St r ing s t r 1=s1 ;

// stemming algor i thm

99 St r ing [] [] stemmingalgorithms=too lCon f i gu ra t i on . stemmingalgorithms ;

for (int i =0; i<stemmingalgorithms . l ength ; i++){
St r ing a c t i v e=stemmingalgorithms [i] [2] ;

i f (a c t i v e . equa l s IgnoreCase (” t rue ”)) {
// t h i s i s the main a c t i v e search a lgor i thm

104 // searcha lgor i thm [i] [3] conta in s the name o f the conc re t e c l a s s

// St r ing strNameOfConcreteClass=searcha lgor i thm [i] [3] ;

S t r ing strNameOfConcreteClass=too lCon f i gu ra t i on .PACKAGENAME+

stemmingalgorithms [i] [3] ;

109 try{
StemmingAlgorithmIF stemmingAlgorithmIF=(StemmingAlgorithmIF) Class .

forName (strNameOfConcreteClass) . newInstance () ;

s t r 1=stemmingAlgorithmIF . getStemText (s t r 1) ;

}catch (ClassNotFoundException ex) {
114 System . out . p r i n t l n (” Sorry the c l a s s [” + strNameOfConcreteClass +

”] has not been found . Please e i t h e r c r e a t e i t or i f a l r eady

created , p lace ” +

” i t in the c l a s spa th . ”) ;

148

ex . pr intStackTrace () ;

}catch (Exception ex) {
System . out . p r i n t l n (”Sorry , other except ion ”) ;

119 ex . pr intStackTrace () ;

}

break ;

} else {
124 continue ;

}
}

return s t r 1 ;

}
129 public stat ic L i s t g e tSpe c i a lCha ra c t e rL i s t () {

L i s t l i s t S p e c i a lCha r a c t e r = new ArrayList () ;

S t r ing strWordList = ToolConstants .STR SPECIAL CHARACTER;

St r ing s t rSepa ra to r = ToolConstants .SEPARATER1;

134 St r ing [] a r rS t r1 = strWordList . s p l i t (s t rS epa ra to r) ;

for (int i = 0 ; i < a r rS t r1 . l ength ; i++) {
l i s t S p e c i a lCha r a c t e r . add (a r rS t r1 [i]) ;

}
139 return l i s t S p e c i a lCha r a c t e r ;

}

public stat ic Map<Str ing , Str ing> getAbbreviationAndTheirExpandedForm

() {
Map<Str ing , Str ing> mapAbbreviationAndTheirExpandedForm=new HashMap<

Str ing , Str ing >() ;

144 mapAbbreviationAndTheirExpandedForm . put (”msg” , ”message”) ;

mapAbbreviationAndTheirExpandedForm . put (”exp” , ” exp i ry ”) ;

149

return mapAbbreviationAndTheirExpandedForm ;

}
149

public stat ic St r ing proces sForAbbrev ia t ions (S t r ing s t r 1) {
St r ing s t r 2 = ”” ;

// f o r punctuat ion words

Map<Str ing , Str ing> mapAbbreviationAndTheirExpandedForm =

CommonUtil ityService . getAbbreviationAndTheirExpandedForm () ;

154 // L i s t l i s t S t r 1 = Arrays . a sL i s t (s t r 1 . s p l i t (ToolConstants .SPACE)) ;

//System . out . p r i n t l n (” l i s t S t r 1 . ge tC la s s () . getName () : [”+ l i s t S t r 1 .

ge tC la s s () . getName () +”]”) ;

//System . out . p r i n t l n (” l i s t S t r 1 : [”+ l i s t S t r 1 +”]”) ;

S t r ing [] a r rS t r i ng1 = s t r 1 . s p l i t (ToolConstants .SPACE) ;

159 St r ing [] a r rS t r i ng2= new St r ing [a r rS t r i ng1 . l ength] ;

for (int i = 0 ; i < a r rS t r i ng1 . l ength ; i++) {
St r ing key1=ar rS t r i ng1 [i] ;

System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗∗ [” + key1 + ”] ”) ;

164 i f (mapAbbreviationAndTheirExpandedForm . containsKey (key1)) {
St r ing expandedForm=mapAbbreviationAndTheirExpandedForm . get (

key1) ;

// r ep l a c e w i l l not work because i t w i l l r ep l a c e a l l

// s t r 2=s t r 2 . r ep l a c e (key1 , expandedForm) ;

a r rS t r i ng2 [i]=expandedForm ;

169 } else {
a r rS t r i ng2 [i]=key1 ;

}
}

174 for (int i = 0 ; i < a r rS t r i ng2 . l ength ; i++) {
i f (s t r 2 . equa l s (””)) {

s t r 2=ar rS t r i ng2 [i] ;

150

} else {
s t r 2=s t r 2+ ” ” + ar rS t r i ng2 [i] ;

179 }
}

return s t r 2 ;

}
184

public stat ic L i s t getPunctuationWordList () {
L i s t l i stPunctuat ionWord = new ArrayList () ;

S t r ing strWordList = ToolConstants .STR PUNCTUATION WORD;

189 St r ing s t rSepa ra to r = ToolConstants .SEPARATER1;

St r ing [] a r rS t r1 = strWordList . s p l i t (s t rS epa ra to r) ;

for (int i = 0 ; i < a r rS t r1 . l ength ; i++) {
194 l istPunctuat ionWord . add (a r rS t r1 [i]) ;

}
return l i s tPunctuat ionWord ;

}

199 //Note : This func t i on in a way removes double or more in between

spaces a l s o because the s p l i t f unc t i on

//by de faut tr ims each word in the s t r i n g . So no need to c a l l the

func t i on processForInbetweenSpace () a f t e r

// c a l l i n g t h i s func t i on processForPunctuationWord () .

// pub l i c s t a t i c S t r ing processForPunctuationWord (St r ing s t r 1) {
public stat ic St r ing processForStopwords (S t r ing s t r 1) {

204 St r ing s t r 2 = ”” ;

// f o r punctuat ion words

L i s t l i stPunctuat ionWord = CommonUtil ityService .

getPunctuationWordList () ;

151

L i s t l i s t S t r 1 = Arrays . a sL i s t (s t r 1 . s p l i t (ToolConstants .SPACE)) ;

//System . out . p r i n t l n (” l i s t S t r 1 . ge tC la s s () . getName () : [”+ l i s t S t r 1 .

ge tC la s s () . getName () +”]”) ;

209 //System . out . p r i n t l n (” l i s t S t r 1 : [”+ l i s t S t r 1 +”]”) ;

L i s t l i s t S t r i n g 1 = new ArrayList () ;

S t r ing [] a r rS t r i ng1 = s t r 1 . s p l i t (ToolConstants .SPACE) ;

for (int i = 0 ; i < a r rS t r i ng1 . l ength ; i++) {
214 l i s t S t r i n g 1 . add (a r rS t r i ng1 [i]) ;

}
l i s t S t r i n g 1 . removeAll (l i stPunctuat ionWord) ;

for (int i = 0 ; i < l i s t S t r i n g 1 . s i z e () ; i++) {
i f (s t r 2 . equa l s (””)) {

219 s t r 2 = (St r ing) l i s t S t r i n g 1 . get (i) ;

} else {
s t r 2 = s t r 2 + ” ” + (St r ing) l i s t S t r i n g 1 . get (i) ;

}
}

224 return s t r 2 ;

}

public stat ic St r ing proce s sForSpec i a lCharac te r (S t r ing s t r 1) {
// f o r s p e c i a l cha ra c t e r s

229 L i s t l i s t S p e c i a lCha r a c t e r = CommonUtil ityService .

g e tSpe c i a lCha ra c t e rL i s t () ;

S t r ing strReplacement = ToolConstants .REPLACEMENT CHARACTER1;

for (int i = 0 ; i < l i s t S p e c i a lCha r a c t e r . s i z e () ; i++) {
St r ing s t rSpe c i a lCha ra c t e r = (St r ing) l i s t S p e c i a lCha r a c t e r .

get (i) ;

i f (s t r 1 . conta in s (s t rSpe c i a lCha ra c t e r)) {
234 s t r 1 = s t r 1 . r ep l a c e (s t rSpec i a lCharac t e r , strReplacement) ;

}
}

152

return s t r 1 ;

}
239

// t h i s func t i on removes a l l the ext ra inbetween spaces except one .

public stat ic St r ing processForInbetweenSpace (S t r ing inputText) {
// f o r Inbetween Spaces

St r ingToken i ze r l i n e = new Str ingToken ize r (””) ;

244 St r ing outputText = ”” ;

l i n e = new Str ingToken ize r (inputText) ;

try {
while (l i n e . hasMoreTokens ()) {

249 St r ing word = new St r ing () ;

word = l i n e . nextToken () ;

word = word . tr im () ;

i f (outputText . equa l s (””)) {
outputText = word ;

254 } else {
outputText = outputText + ” ” + word ;

}

}
259 } catch (Exception e) {

e . pr intStackTrace () ;

}
return outputText ;

264 }

public stat ic void main (St r ing [] a rgs) {

//System . out . p r i n t l n (” UMLCommonUtilityService .

g e tSpe c i a lCha ra c t e rL i s t () : ”+CommonUtil ityService .

153

ge tSpe c i a lCha ra c t e rL i s t ()) ;

269 //System . out . p r i n t l n (” UMLCommonUtilityService .

getPunctuationWordList () : ”+CommonUtil ityService .

getPunctuationWordList ()) ;

//System . out . p r i n t l n (” UMLCommonUtilityService . p r o c e s sS t r i ngLeve l 2

() : ”+CommonUtil ityService . p r o c e s sS t r i ngLeve l 2 (” SThe ∗ ((

t ohe l the l o t o na theme to ’\∗)) \” ”)) ;

//System . out . p r i n t l n (” UMLCommonUtilityService . p r o c e s sS t r i ngLeve l 2

() : ”+CommonUtil ityService . p r o c e s sS t r i ngLeve l 3 (” i n v a l i d

aud ib l e warning ”)) ;

//System . out . p r i n t l n (” UMLCommonUtilityService . p r o c e s sS t r i ngLeve l 2

() : [”+CommonUtil ityService . processForRemovingEmbeddedSpaces

(” i n v a l i d aud ib l e warning ”) + ”] ”) ;

274

//System . out . p r i n t l n (” UMLCommonUtilityService . p r o c e s sS t r i ngLeve l 2

() : ” + CommonUtil ityService . p r o c e s sS t r i n g (” i n v a l i d

aud ib l e warning ”)) ;

//System . out . p r i n t l n (” UMLCommonUtilityService .

processForInbetweenSpace () : ” + CommonUtil ityService .

processForInbetweenSpace (” i n v a l i d aud ib l e

warning ”)) ;

//System . out . p r i n t l n (” UMLCommonUtilityService .

processForInbetweenSpace () : ” + new CommonUtil ityService () .

p r o c e s sS t r i n g (” i n v a l i d aud ib l e warning

”)) ;

279 System . out . p r i n t l n (”UMLCommonUtilityService .

processForInbetweenSpace () : ” + new CommonUtil ityService () .

proces sForAbbrev ia t ions (” msg i n v a l i d msg aud ib l e

expwarning exp ”)) ;

154

}
284 }

1 package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

6 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

import uk . ac . brune l . i f a c e . SearchAlgorithmIF ;

11 import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

import java . u t i l . Arrays ;

public class LabelMatcher{

16 private stat ic ToolConf igurat ion too lCon f i gu ra t i on=null ;

private stat ic LabelMatcher labe lMatcher=null ;

private LabelMatcher () {
t oo lCon f i gu ra t i on=new ToolConf igurat ion () ;

21 }

public stat ic LabelMatcher ge t In s tance (S t r ing STR PATH CONFIG FOLDER) {

i f (labe lMatcher==null) {
26 labe lMatcher=new LabelMatcher () ;

}
l oadCon f i gura t i on (STR PATH CONFIG FOLDER) ;

155

return labe lMatcher ;

31 }

// loads the c on f i g u r a t i on

/∗
∗ STR PATH CONFIG FOLDER : path o f the f o l d e r c on t i i n i n g the c on f i g f i l e s

36 ∗/
private stat ic void l oadCon f i gura t i on (St r ing STR PATH CONFIG FOLDER) {
t oo lCon f i gu ra t i on=new ToolConf igurat ion () ;

}

41 // pub l i c S t r ing [] [] getMatchedStr ingPairs (S t r ing [] arrayStr1 , S t r ing []

a r rayStr2) {
// return nu l l ;

// }

/∗
46 ∗ Note : each element o f the array ar rayStr1 and arrayStr2 i s a s i n g l e

trimmed (no l ead ing and t r a l i n i n g spaces) word with no inbetween

spaces .

∗
∗ @return : a two dimens iona l array , with returnArray [i] [0] conta in ing

value o f the index in arrayStr1 , returnArray [i] [1] conta in ing value

o f the index in ar rayStr2 that matches the ar rayStr1 [i] , and

∗ returnArray [i] [2] conta in ing the corre spond ing s i m i l a r i t y index value .

I f no matching index i s pre sent then returnArray [i] [1]=−1 ,

returnArray [i] [2]=−1

∗ and returnArray [i] [1]=−1

51 ∗∗/
public double [] [] getDetai lsOfMatchedStringsFromSecondArray (St r ing []

arrayStr1 , S t r ing [] a r rayStr2) {

156

double [] [] arrayDetai lsOfMatchedStringsFromSecondArray=new double

[a r rayStr1 . l ength] [] ;

S t r ing [] processedArrayStr1=CommonUtil ityService .

p roce s sSt r ingArray (ar rayStr1) ;

56 St r ing [] processedArrayStr2=CommonUtil ityService .

p roce s sSt r ingArray (ar rayStr2) ;

double [] [] a r r ayS im i l a r i t y Index=new double [processedArrayStr1 .

l ength] [processedArrayStr2 . l ength] ;

for (int i =0; i<a r r ayS im i l a r i t y Index . l ength ; i++){
for (int j =0; j<a r r ayS im i l a r i t y Index [i] . l ength ; j++){

61 a r r ayS im i l a r i t y Index [i] [j]= getSyntaxS imi l a r i ty Index (

processedArrayStr1 [i] , processedArrayStr2 [j]) ;

}
}

System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗∗ ” + Arrays . deepToString (

a r r ayS im i l a r i t y Index)) ;

66 double th r e sho ld=too lCon f i gu ra t i on . th r e sho ld ;

// double th r e sho ld =0.2 ;

arrayDetai lsOfMatchedStringsFromSecondArray=getMatchedPairs (

a r rayS imi l a r i ty Index , th r e sho ld) ;

return arrayDetai lsOfMatchedStringsFromSecondArray ;

71 }
/∗

// t h i s i s a fundamental funct ion , i t takes a 2D double array and

re tu rn s matching pa i r s

//Conceptual not ion in the 2D array , F i r s t column= l a b e l s in model

s o lu t i on , f i r s t row l a b e l s in student diagram

∗ @return : a two dimens iona l array , with returnArray [i] [0] conta in ing

value o f the index in arrayStr1 , returnArray [i] [1] conta in ing

157

value o f the index in ar rayStr2 that matches the ar rayStr1 [i] ,

and

76 ∗ returnArray [i] [2] conta in ing the corre spond ing s i m i l a r i t y index value .

I f no matching index i s pre sent then returnArray [i] [1]=−1 ,

returnArray [i] [2]=−1

∗ and returnArray [i] [1]=−1

∗/
public stat ic double [] [] getMatchedPairs (double [] []

a r rayS imi l a r i ty Index , double th r e sho ld) {
/∗

81 double [] [] a r r ayS im i l a r i t y Index1 ={{0 . 40 , 0 . 10 , 0 . 90 , 0 . 82} ,

{0 . 2 0 , 0 . 3 0 , 0 . 9 5 , 0 . 8 0} ,

{ 0 . 2 5 , 0 . 3 0 , 0 . 7 0 , 0 . 8 1 }} ;

∗
∗ Rerutns as f o l l ow s

86 ∗ double [] [] arrayValueOfIndexesOfMatchingPairs ={{0 .0 , 3 . 0 , 0 . 82} ,

{1 . 0 , 2 . 0 , 0 . 9 5} ,

{ 2 . 0 , 1 . 0 , 0 . 3 0 } } ;

∗/

91 double [] [] arrayValueOfIndexesOfMatchingPairs=new double [

a r r ayS im i l a r i t y Index . l ength] [] ;

for (int i =0; i<a r r ayS im i l a r i t y Index . l ength ; i++){
int n=ar rayS im i l a r i t y Index [i] . l ength −1;//max value , Arrays .

s o r t () s o r t s in ascending order and not in descending

order

int valueOfIndexOfNthMaxValue=−10;

96 double value1 =−1.0;

// whi l e (n<a r r ayS im i l a r i t y Index [i] . l ength) {
// whi l e (t rue) {
while (n>=0){

158

//System . out . p r i n t l n (”n ” + n) ;

101 valueOfIndexOfNthMaxValue=getIndexOfNthMaxValue (n ,

a r r ayS im i l a r i t y Index [i]) ;

// double value1=ar rayS im i l a r i t y Index [i] [

valueOfIndexOfNthMaxValue] ;

va lue1=ar rayS im i l a r i t y Index [i] [valueOfIndexOfNthMaxValue] ;

double [] array1=new double [a r r ayS im i l a r i t y Index . l ength] ;

for (int k=0;k<array1 . l ength ; k++){
106 array1 [k]= a r r ayS im i l a r i t y Index [k] [

valueOfIndexOfNthMaxValue] ;

}
int valueOfIndexOfNthMaxValue2=getIndexOfNthMaxValue (array1 .

length −1, array1) ;

double value2=array1 [valueOfIndexOfNthMaxValue2] ;

i f (value1>=value2) {
111 break ;

}
n=n−1;

}

116 arrayValueOfIndexesOfMatchingPairs [i]=new double [3] ;

arrayValueOfIndexesOfMatchingPairs [i] [0]= i ;

System . out . p r i n t l n (”%%% i=” + i+ ” valueOfIndexOfNthMaxValue

” + valueOfIndexOfNthMaxValue) ;

// i f (a r r ayS im i l a r i t y Index [i] [valueOfIndexOfNthMaxValue]>=

thre sho ld) {
i f (valueOfIndexOfNthMaxValue>=0 && ar rayS im i l a r i t y Index [i] [

valueOfIndexOfNthMaxValue]>=thre sho ld) {
121 arrayValueOfIndexesOfMatchingPairs [i] [1]=

valueOfIndexOfNthMaxValue ;

} else {
arrayValueOfIndexesOfMatchingPairs [i] [1]=−9;

}

159

// value o f the s i m i l a r i t y index

126 arrayValueOfIndexesOfMatchingPairs [i] [2]= value1 ;

// arrayValueOfIndexesOfMatchingPairs [i]={ i ,

valueOfIndexOfNthMaxValue } ;

}
return arrayValueOfIndexesOfMatchingPairs ;

}
131 // t h i s func t i on f i n d s the value o f index o f nth maximum

public stat ic int getIndexOfNthMaxValue (int nthPos i t ion , double [] numbers

) {
int indexOfMaxValue=0;

double maxValue = numbers [0] ;

double [] cloneNumbers = numbers . c l one () ;

136 Arrays . s o r t (cloneNumbers) ;

for (int i =0; i<numbers . l ength ; i++){
i f (numbers [i] ==cloneNumbers [n thPos i t i on]) {

indexOfMaxValue=i ;

break ;

141 }
}
return indexOfMaxValue ;

}

146

public double ge tSyntaxS imi l a r i ty Index (St r ing st r1 , S t r ing s t r 2) {

St r ing [] [] syntaxa lgor i thms=ToolConf igurat ion . syntaxa lgor i thms ;

S t r ing [] [] s ea rcha lgor i thm=ToolConf igurat ion . s earcha lgor i thm ;

151

double combinedSyntaxSimi lar i tyIndex =0.0 ;

// double [] [] a r raySyntaxS imi la r i ty Index=new double [

syntaxa lgor i thms . l ength] [2] ;

160

St r ing [] [] a r raySyntaxS imi la r i ty Index=new St r ing [syntaxa lgor i thms

. l ength] [2] ;

156 for (int i =0; i<syntaxa lgor i thms . l ength ; i++){
// St r ing strNameOfConcreteClass=”uk . ac . brune l . g ene r i c l abe lmatche r

. TestConcreteClass1 ” ;

// syntaxa lgor i thms [i] [3] conta in s the name o f the conc re t e c l a s s

// St r ing strNameOfConcreteClass=syntaxa lgor i thms [i] [3] ;

S t r ing strNameOfConcreteClass=ToolConf igurat ion .PACKAGENAME+

syntaxa lgor i thms [i] [3] ;

161

// syntaxa lgor i thms [i] [0] conta in s the id o f the syntax a lgor i thm

c l a s s

a r raySyntaxS imi la r i ty Index [i] [0]= syntaxa lgor i thms [i] [1] ;

try{
166 SyntaxAlgorithmIF syntaxAlgorithmIF=(SyntaxAlgorithmIF) Class . forName (

strNameOfConcreteClass) . newInstance () ;

a r raySyntaxS imi la r i ty Index [i] [1]= syntaxAlgorithmIF . s i m i l a r i t y (s t r1 ,

s t r 2)+”” ;

}catch (ClassNotFoundException ex) {
System . out . p r i n t l n (” Sorry the c l a s s [” + strNameOfConcreteClass +

”] has not been found . Please e i t h e r c r e a t e i t or i f a l r eady

created , p lace ” +

171 ” i t in the c l a s spa th . ”) ;

ex . pr intStackTrace () ;

a r raySyntaxS imi la r i ty Index [i][1]=−1+”” ;

}catch (Exception ex) {
176 System . out . p r i n t l n (”Sorry , other except ion ”) ;

ex . pr intStackTrace () ;

a r raySyntaxS imi la r i ty Index [i][1]=−1+”” ;

161

}
}

181

// search a lgor i thm

for (int i =0; i<s ea rcha lgor i thm . l ength ; i++){
St r ing a c t i v e=searcha lgor i thm [i] [2] ;

i f (a c t i v e . equa l s IgnoreCase (” t rue ”)) {
186 // t h i s i s the main a c t i v e search a lgor i thm

// searcha lgor i thm [i] [3] conta in s the name o f the conc re t e c l a s s

// St r ing strNameOfConcreteClass=searcha lgor i thm [i] [3] ;

S t r ing strNameOfConcreteClass=ToolConf igurat ion .PACKAGENAME+

searcha lgor i thm [i] [3] ;

191

try{
SearchAlgorithmIF searchAlgor ithmIF=(SearchAlgorithmIF) Class . forName (

strNameOfConcreteClass) . newInstance () ;

combinedSyntaxSimi lar i tyIndex=searchAlgor ithmIF . getCombinedSimi lar i ty

(a r raySyntaxS imi la r i ty Index) ;

196 }catch (ClassNotFoundException ex) {
System . out . p r i n t l n (” Sorry the c l a s s [” + strNameOfConcreteClass +

”] has not been found . Please e i t h e r c r e a t e i t or i f a l r eady

created , p lace ” +

” i t in the c l a s spa th . ”) ;

ex . pr intStackTrace () ;

a r raySyntaxS imi la r i ty Index [i][1]=−1+”” ;

201

}catch (Exception ex) {
System . out . p r i n t l n (”Sorry , other except ion ”) ;

ex . pr intStackTrace () ;

a r raySyntaxS imi la r i ty Index [i][1]=−1+”” ;

206 }

162

break ;

} else {
continue ;

211 }
}

return combinedSyntaxSimi lar i tyIndex ;

}
216

}

package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
3 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
8

public interface LabelMatcherIF {

// loads the c on f i g u r a t i on

/∗
13 ∗ STR PATH CONFIG FOLDER : path o f the f o l d e r c on t i i n i n g the c on f i g f i l e s

∗/
public LabelMatcher ge t In s tance (S t r ing STR PATH CONFIG FOLDER) ;

/∗
18 ∗ Note : each element o f the array ar rayStr1 and arrayStr2 i s a s i n g l e

trimmed (no l ead ing and t r a l i n i n g spaces) word with no inbetween

spaces .

163

∗
∗ @return : a two dimens iona l array , with returnArray [i] [0] conta in ing

value o f the index in ar rayStr2 that matches the ar rayStr1 [i] , and

∗ returnArray [i] [1] conta in ing the corre spond ing s i m i l a r i t y index value .

I f no matching index i s pre sent then returnArray [i] [0]=−1

∗ and returnArray [i] [1]=−1

23 ∗∗/
public St r ing [] [] getMatchedStr ingPairs (S t r ing [] arrayStr1 , S t r ing []

a r rayStr2) ;

}

package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

5 ∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

10 import java . i o . F i l e ;

public class ToolConf igurat ion {

public stat ic boolean c a s e s e n s i t i v e=true ;

15 public stat ic boolean trimming=true ;

// g l oba l s e t t i n g s

public stat ic boolean useSpec i a l cha rac t e rxml=true ;

public stat ic boolean useStopwordxml=true ;

20 public stat ic boolean useAbbreviat ionxml=true ;

public stat ic boolean useSpe l l che cke ra l go r i thm=true ;

164

public stat ic boolean useStemmer=true ;

public stat ic boolean useSynonymxml=true ;

25

public stat ic St r ing spe c i a l cha ra c t e rxm l=”” ;

public stat ic St r ing stopwordxml=”” ;

public stat ic St r ing abbrev iat ionxml=”” ;

public stat ic St r ing sp e l l c h e ck e r a l g o r i t hm=”” ;

30 public stat ic St r ing stemmer=”” ;

public stat ic St r ing synonymxml=”” ;

public stat ic double th r e sho ld =0.0 ;

35 /∗<!−−The value a t t r i b u t e o f the packagename tag d e f i n e s the package f o r

a l l the conc re t e c l a s s e s−−>

<packagename value=”uk . ac . brune l . c o n c r e t e c l a s s e s ”></packagename>

∗/
public stat ic St r ing PACKAGENAME=”” ;

//Note : The path s t rPathEng l i shDic t i onary should conta in two f i l e s named

en GB . d i c and en GB . a f f

40 // St r ing strEngl i shDict ionaryBaseFi l eName=”/home/ambi/01MYRES/01Am/01 Res

EAss/02−Work/04−Tools / Sp e l l Checker/ D i c t i o n a r i e s /en GB/en GB ” ;

public stat ic St r ing strEngl i shDict ionaryBaseFi l eName=” r e s ou r c e s ”+F i l e .

s epa ra to r+” D i c t i o n a r i e s ”+F i l e . s epa ra to r+”en GB”+F i l e . s epa ra to r+”en GB

” ;

//=”ExactMatchSyntaxAlgorithm” id=”ExactMatchSyntaxAlgorithm” ac t i v e=”

true ” weight =”0.1” c on c r e t e c l a s s

//two dimens iona l array syntaxa lgor i thms [i] [0]=name , syntaxa lgor i thms [i

] [1]= id , syntaxa lgor i thms [i] [2]= act ive , syntaxa lgor i thms [i] [3]=

conc r e t e c l a s s ,

45 // syntaxa lgor i thms [i] [4]= weight

public stat ic St r ing [] [] syntaxa lgor i thms=null ;

165

// searcha lgor i thm [0] [0]= name , searcha lgor i thm [0] [1]= id , s earcha lgor i thm

[0] [2]= act ive , s earcha lgor i thm [0] [3]= c on c r e t e c l a s s

public stat ic St r ing [] [] s ea rcha lgor i thm=null ;

50

public stat ic St r ing [] [] s p e l l c h e ck e r a l g o r i t hms=null ;

public stat ic St r ing [] [] stemmingalgorithms=null ;

55 public ToolConf igurat ion () {
t e s t () ;

}

public void t e s t () {
60

PACKAGENAME=”uk . ac . brune l . c o n c r e t e c l a s s e s . ” ;

c a s e s e n s i t i v e=true ;

trimming=true ;

65

sp e c i a l cha ra c t e rxm l=”” ;

stopwordxml=”” ;

abbrev iat ionxml=”” ;

s p e l l c h e ck e r a l g o r i t hm=”” ;

70 St r ing stemmer=”” ;

S t r ing synonymxml=”” ;

//=”ExactMatchSyntaxAlgorithm” id=”ExactMatchSyntaxAlgorithm” ac t i v e=”

true ” weight =”0.1” c on c r e t e c l a s s

//two dimens iona l array syntaxa lgor i thms [i] [0]=name , syntaxa lgor i thms [i

] [1]= id , syntaxa lgor i thms [i] [2]= act ive , syntaxa lgor i thms [i] [3]=

conc r e t e c l a s s ,

75 // syntaxa lgor i thms [i] [4]= weight

166

// syntaxa lgor i thms=nu l l ;

// St r ing [] [] syntaxa lgor i thms={{”ExactMatchSyntaxAlgorithm ” ,”

ExactMatchSyntaxAlgorithm ” ,” t rue ” ,” ExactMatchSyntaxAlgorithm ” ,”1”} ,

80 //{”SoundexSyntaxAlgorithm ” ,” SoundexSyntaxAlgorithm ” ,” t rue ” ,”

SoundexSyntaxAlgorithm ” ,”1”}} ;

S t r ing [] [] syntaxa lgor i thms={{”ExactMatchSyntaxAlgorithm” , ”

ExactMatchSyntaxAlgorithm” , ” t rue ” , ”ExactMatchSyntaxAlgorithm” , ”1” } ,

{”EditDistanceSyntaxAlgorithm” , ”EditDistanceSyntaxAlgor ithm” , ” t rue ” , ”

EditDistanceSyntaxAlgorithm” , ”1” } ,

{”QGramDistanceSyntaxAlgorithm” , ”QGramDistanceSyntaxAlgorithm” , ” t rue ” , ”

QGramDistanceSyntaxAlgorithm” , ”1” } ,

{”SimonWhiteSyntaxAlgorithm” , ”SimonWhiteSyntaxAlgorithm” , ” t rue ” , ”

SimonWhiteSyntaxAlgorithm” , ”1” } ,

85 {”SoundexSyntaxAlgorithm” , ”SoundexSyntaxAlgorithm” , ” t rue ” , ”

SoundexSyntaxAlgorithm” , ”1” }} ;

this . syntaxa lgor i thms=syntaxa lgor i thms ;

// searcha lgor i thm [0] [0]= name , searcha lgor i thm [0] [1]= id , s earcha lgor i thm

[0] [2]= act ive , s earcha lgor i thm [0] [3]= c on c r e t e c l a s s

// searcha lgor i thm=nu l l ;

90 St r ing [] [] s ea rcha lgor i thm={{”MaxSearchAlgorithm” , ”MaxSearchAlgorithm” , ”

t rue ” , ”MaxSearchAlgorithm” }} ;

this . s ea rcha lgor i thm=searcha lgor i thm ;

//two dimens iona l array stemmingalgorithms [i] [0]=name , stemmingalgorithms

[i] [1]= id , stemmingalgorithms [i] [2]= act ive , stemmingalgorithms [i] [3]=

c on c r e t e c l a s s

S t r ing [] [] s p e l l c h e c k e r a l g o r i t hms={{” Hunspe l lSpe l lChecker ” , ”

Hunspe l lSpe l lChecker ” , ” t rue ” , ” Hunspe l lSpe l lChecker ” }} ;

95 this . s p e l l c h e c k e r a l g o r i t hms=spe l l c h e c k e r a l g o r i t hms ;

167

//two dimens iona l array stemmingalgorithms [i] [0]=name , stemmingalgorithms

[i] [1]= id , stemmingalgorithms [i] [2]= act ive , stemmingalgorithms [i] [3]=

c on c r e t e c l a s s

S t r ing [] [] stemmingalgorithms={{”PaiceStemmingAlgorithm” , ”

PaiceStemmingAlgorithm” , ” t rue ” , ”PaiceStemmingAlgorithm” }} ;

this . stemmingalgorithms=stemmingalgorithms ;

100

th re sho ld =0.6 ;

}

105 }

package uk . ac . brune l . g ene r i c l abe lmatche r ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

5 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

public class ToolConstants

10 {
public stat ic St r ing STR SPECIAL CHARACTER=” ! ,\” , , $,% ,ˆ ,& ,∗ , (,)

,− , ,+ ,= ,{ ,} , [,] , ˜ ,# , ; , : ,@, ’ , < , > , . , ? , / , ‘ ,\\ , | ” ;

// removed means to be rep laced by no spaces . Like ” today ’ s ”

should be changed to ” todays ” and not to ” today s ”

public stat ic St r ing STR SPECIAL CHARACTER TO BE REMOVED=” ’ ” ;

15

public stat ic St r ing SEPARATER1=” , ” ;

public stat ic St r ing REPLACEMENT CHARACTER1=” ” ;

168

// pub l i c s t a t i c S t r ing SPACE=” ” ;

public stat ic St r ing SPACE=”\\ s+” ;

20 public stat ic St r ing NOSPACE=”” ;

public stat ic St r ing STRING PROCESSING LEVEL ONE=”Level1 ” ;

public stat ic St r ing STRING PROCESSING LEVEL TWO=”Level2 ” ;

public stat ic St r ing STRING PROCESSING LEVEL THREE=”Level3 ” ;

25

//added on 10 march 2008

public stat ic St r ing STR ENGLISH LANGUAGE ARTICLES=”a , an , the , th i s

, that ” ;

// pub l i c s t a t i c S t r ing STR ENGLISH LANGUAGE GRAMMER WORDS LIST1=”

to , of , fo r , from , and , be , or , on , i f , in , with , by , as , but , at ” ;

// remove the word ’ i f ’ from the l i s t

STR ENGLISH LANGUAGE GRAMMER WORDS LIST1

30 public stat ic St r ing STR ENGLISH LANGUAGE GRAMMER WORDS LIST1=”to

, of , fo r , from , and , be , or , on , in , with , by , as , but , at ” ;

public stat ic St r ing STR ENGLISH LANGUAGE GRAMMER WORDS LIST2=” i ,

he , she , i t , we , you , they” ;

public stat ic St r ing

STR ENGLISH LANGUAGE GRAMMER WORDS HELPING VERBS=” i s , am, are ,

do , did , was , were , has , have , been” ;

public stat ic St r ing STR PUNCTUATION WORD=

STR ENGLISH LANGUAGE ARTICLES+ ” , ” +

STR ENGLISH LANGUAGE GRAMMER WORDS LIST1+ ” , ” +

STR ENGLISH LANGUAGE GRAMMER WORDS LIST2+ ” , ” +

STR ENGLISH LANGUAGE GRAMMER WORDS HELPING VERBS;

35

}

package uk . ac . brune l . t e s t ;

/∗∗

169

∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

4 ∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

9 import uk . ac . brune l . g ene r i c l abe lmatche r . ∗ ;

public class TestClass1 {

public stat ic void main (St r ing [] a rgs) {
14 System . out . p r i n t l n (”Hel looooo ”) ;

S t r ing strNameOfConcreteClass=”uk . ac . brune l . g ene r i c l abe lmatche r .

LabelMatcher” ;

try{
//LabelMatcherIF labelMatcherIF=(LabelMatcherIF) Class . forName (

strNameOfConcreteClass) . newInstance () ;

// labelMatcherIF . l oadCon f i gura t i on (””) ;

19

LabelMatcher labe lMatcher=LabelMatcher . g e t In s tance (””) ;

// St r ing [] a r rayStr1={”update ” ,” t o t a l ”} ;

// St r ing [] a r rayStr2={”up” ,” amount” ,” to ” , ”updat ”} ;

24

St r ing [] a r rayStr1={” S e l e c t Recipe ” , ”Assemble I ng r ed i en t s ” , ”Cook

meal” , ” Set the t ab l e ” , ”Eat” } ;

// St r ing [] a r rayStr2={”turn up at arranged time ” , ” eat the meal

produced by f r i e nd ” , ”must s e l e c t a r e c i p e f o r t h e i r meal ” ,

//” assemble the i n g r ed i e n t ” , ” cook the meal ” , ” Set t ab l e ” , ” eat meal

”} ;

29

170

St r ing [] a r rayStr2={” turn up at arranged time” , ” eat the meal

produced by f r i e nd ” , ”must s e l e c t a r e c i p e f o r t h e i r meal” ,

” assemble the i n g r ed i e n t ” , ” cook the meal” , ” Set t ab l e ” , ” eat meal” ,

” r e c i p s e l c t ” } ;

double [] [] arrayDetai lsOfMatchedStringsFromSecondArray=labe lMatcher .

getDetai lsOfMatchedStringsFromSecondArray (arrayStr1 , a r rayStr2) ;

34 for (int i =0; i<arrayDetai lsOfMatchedStringsFromSecondArray . l ength ; i++)

{
System . out . p r i n t l n (arrayDetai lsOfMatchedStringsFromSecondArray [i

] [0] + ” ” + arrayDetai lsOfMatchedStringsFromSecondArray [i

] [1] + ” ” +arrayDetai lsOfMatchedStringsFromSecondArray [i

] [2]) ;

}

}catch (Exception ex) {
39 System . out . p r i n t l n (”Sorry , other except ion ”) ;

ex . pr intStackTrace () ;

}
}

44 }

7.4 Java Source code for GenericLabelMatcherConcreteClasses.jar

This component has the concrete implementations of the algorithms used by the GenericLa-

belMatcher component.

1 package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

171

∗ @version 1 . 0 , 25−Aug−2009

6 ∗ @since JDK1. 6

∗/

import uk . ac . sh e f . wit . s immetr ic s . s im i l a r i t yme t r i c s . Levenshte in ;

import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

11

public class EditDistanceSyntaxAlgorithm implements SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) {
double s im i l a r i t y I ndx ex =0.0 ;

// use s immetr ic s to re turn the ed i t d i s t anc e

16 //Note : The conc re t e c l a s s l e v en sh t e i n . java i s pre sent in the package uk .

ac . sh e f . wit . s immetr ic s . s im i l a r i t yme t r i c s . Levenshte in

Levenshte in l e v en sh t e i n=new Levenshte in () ;

s im i l a r i t y I ndx ex=l ev en sh t e i n . g e t S im i l a r i t y (s t r1 , s t r 2) ;

return s im i l a r i t y I ndx ex ;

}
21 }

package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

4 ∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

9 import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

public class ExactMatchSyntaxAlgorithm implements SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) {
double s im i l a r i t y I ndx ex =0.0 ;

172

14 i f (s t r 1 . equa l s (s t r 2)) {
s im i l a r i t y I ndx ex= 1 . 0 ;

} else {
s im i l a r i t y I ndx ex =0.0 ;

}
19 return s im i l a r i t y I ndx ex ;

}
}

package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
4 ∗ This java f i l e uses the Open source JNA based Java API f o r Hunspel l

which i s a v a i l a b l e from http :// hunspe l l . s ou r c e f o r g e . net /

∗ Hunspel l i s used by Open O f f i c e

∗ For d e t a i l s about JNA see https : // jna . dev . java . net /

∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

9 ∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

14

import com . s t i b o c a t a l o g . hunspe l l . Hunspel l ;

import java . u t i l . L i s t ;

import java . u t i l . S t r ingToken ize r ;

import uk . ac . brune l . g ene r i c l abe lmatche r . Too lConf igurat ion ;

19 import uk . ac . brune l . i f a c e . Spe l lCheckerIF ;

public class Hunspe l lSpe l lChecker implements Spel lCheckerIF {
Hunspel l . D ic t ionary d=null ;

173

24 public Hunspe l lSpe l lChecker () {
try{

St r ing strEngl i shDict ionaryBaseFi l eName=ToolConf igurat ion .

s t rEngl i shDict ionaryBaseFi l eName ;

d = Hunspel l . g e t In s tance () . g e tD ic t i onary (

strEngl i shDict ionaryBaseFi l eName) ;

}catch (Exception ex) {
29 ex . pr intStackTrace () ;

}
}

@Override

/∗
34 ∗ This fucn t i on r e tu rn s t rue i f word has been mi s sp e l l ed otherwi se f a l s e

.

∗∗/
public boolean i sM i s s p e l l e d (S t r ing strWord) {

return d . m i s sp e l l e d (strWord) ;

}
39

@Override

// inputText can be a sentence c o n s i s t i n g o f words separated by s i n g l e or

mu l t ip l e space

public St r ing getSpel lCheckedText (S t r ing inputText) {
St r ing outputText=”” ;

44 // St r ing [] arrayStrWord=inputText . s p l i t (” ”) ;

//Note : ”\\ s+” means one or more empty spaces .

S t r ing [] arrayStrWord=inputText . s p l i t (”\\ s+”) ;

S t r ing [] arraySpel lCorrectedWords=getSpel lCheckedText (arrayStrWord) ;

//now j o i n i n g

49 for (int i =0; i<arraySpel lCorrectedWords . l ength ; i++){
i f (outputText . equa l s (””)) {

outputText=arraySpel lCorrectedWords [i] ;

174

} else {
outputText=outputText+ ” ” + arraySpel lCorrectedWords [i] ;

54 }
}

return outputText ;

}
59

@Override

public St r ing [] getSpel lCheckedText (S t r ing [] arrayStrWord) {
St r ing [] cor rectedArray=new St r ing [arrayStrWord . l ength] ;

for (int i =0; i<arrayStrWord . l ength ; i++){
64 correctedArray [i]=getFirstSuggestedWord (arrayStrWord [i]) ;

}
return correctedArray ;

}
69 /∗

∗ This fucn t i on r e tu rn s the f i r s t suggested word by the s p e l l checker .

Incase the word in not s p e l l e d i n c o r r e c t l y then t h i s func t i on

r e tu rn s the same word

∗∗/
public St r ing getFirstSuggestedWord (St r ing strWord) {

//Note : The path s t rPathEng l i shDic t i onary should conta in two f i l e s

named en GB . d i c and en GB . a f f

74 // St r ing strEngl i shDict ionaryBaseFi l eName=”C:/01Am/01 Res EAss/04−
Tools / Sp e l l Checker/ D i c t i o n a r i e s /en GB/en GB” ;

// St r ing strEngl i shDict ionaryBaseFi l eName=ToolConf igurat ion .

s t rEngl i shDict ionaryBaseFi l eName ;

// Hunspel l . D ic t ionary d = Hunspel l . g e t In s tance () . g e tD i c t i onary (

strEngl i shDict ionaryBaseFi l eName) ;

return getFir s tSuggestedLabe lByHunspe l l (d , strWord) ;

}

175

79

// Label c o n s i s t s to more than one word

public stat ic St r ing getFi r s tSuggestedLabe lByHunspe l l (Hunspel l .

D ic t ionary d , S t r ing s t rLabe l) {
St r ing s t rF i r s tSugge s tLabe l=”NULL” ;

S t r ing [] arrWord=st rLabe l . s p l i t (” ”) ;

84 for (int i =0; i<arrWord . l ength ; i++){
i f (i==0){

s t rF i r s tSugge s tLabe l=

getFirstSuggestedWordByHunspel l (d , arrWord [i]) ;

} else {
s t rF i r s tSugge s tLabe l=s t rF i r s tSugge s tLabe l+” ” +

getFirstSuggestedWordByHunspel l (d , arrWord [i]) ;

89 }
}
//System . out . p r i n t l n (s t rF i r s tSugge s tLabe l) ;

return s t rF i r s tSugge s tLabe l ;

94 }

public stat ic St r ing getFirstSuggestedWordByHunspel l (Hunspel l .

D ic t ionary d , S t r ing strWord) {
St r ing strFirstSuggestWord=”NULL” ;

99 i f (d . m i s sp e l l e d (strWord)) {
List<Str ing> l i s tSuggestedWords=d . sugges t (strWord) ;

i f (l i s tSuggestedWords !=null && lis tSuggestedWords . s i z e ()

>0){
// alwasy get the f i r s t suggested word

strFirstSuggestWord=l i s tSuggestedWords . get (0) ;

104 } else {
// strFirstSuggestWord=”NO SUGGESTION” ;

strFirstSuggestWord=strWord ;

176

}
} else {

109 // strFirstSuggestWord=”WORD IS CORRECT” ;

strFirstSuggestWord=strWord ;

}
return strFirstSuggestWord ;

114 }

public stat ic void main (St r ing [] a rgs) {
St r ing inputText = ”cappped update Updat update to ta l

updatota l tota Udate” ;

// St r ing inputText = ”cappped update Updat update to ta l updatota l to ta

Udate ” ;

119 // St r ing words [] = {”cappped ” ,” update ” , ”Updat ” , ” update to ta l ” , ”

updatota l ” , ” tota ” , ”Udate ”} ;

Hunspe l lSpe l lChecker hunspe l lSpe l lChecke r=new Hunspe l lSpe l lChecker () ;

// St r ing correctedWords []= hunspe l lSpe l lChecke r . getSpel lCheckedText (

words) ;

// f o r (i n t i =0; i<correctedWords . l ength ; i++){
//System . out . p r i n t l n (correctedWords [i]) ;

124 //}

System . out . p r i n t l n (hunspe l lSpe l lChecke r . getSpel lCheckedText (inputText

)) ;

}

129 }

package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗

177

5 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗ This java f i l e uses the Open source JNA based Java API f o r Hunspel l

which i s a v a i l a b l e from http :// hunspe l l . s ou r c e f o r g e . net /

10 ∗ Hunspel l i s used by Open O f f i c e

∗ For d e t a i l s about JNA see https : // jna . dev . java . net /

∗/

15 import uk . ac . brune l . i f a c e . SearchAlgorithmIF ;

public class MaxSearchAlgorithm implements SearchAlgorithmIF {
/∗
∗ syntaxa lgor i thms [i] [0] conta in s the id o f the syntax a lgor i thm c l a s s

20 ∗ syntaxa lgor i thms [i] [1] conta in s the double va lue o f the s i m i l a r i t y

index f o r the cor re spond ing syntax a lgor i thm in the

syntaxa lgor i thms [i] [0]

∗∗/

public double getCombinedSimi lar i ty (S t r ing [] [] a r raySyntaxS imi la r i ty Index

) {
// r e tu rn s the maximum value

25 double combinedS imi lar i ty =−1.0;

for (int i =0; i<ar raySyntaxS imi la r i ty Index . l ength ; i++){
double s imindex=−1.0;

try{
s imindex=Double . parseDouble (a r raySyntaxS imi la r i ty Index [i

] [1]) ;

30 }catch (Exception ex) {
ex . pr intStackTrace () ;

178

}
i f (simindex>combinedS imi lar i ty) {

combinedS imi lar i ty=simindex ;

35 }
}
return combinedS imi lar i ty ;

}
}

1 package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

6 ∗ @since JDK1. 6

∗ This c l a s s uses the PaiceJava2 . java c l a s s wr i t t en by Chr i s topher O’

N e i l l

∗/

import uk . ac . brune l . g ene r i c l abe lmatche r . ∗ ;

11 import java . u t i l . LinkedHashMap ;

import java . u t i l .Map;

import java . u t i l . S t r ingToken ize r ;

import uk . ac . brune l . i f a c e . StemmingAlgorithmIF ;

16 public class PaiceStemmingAlgorithm implements StemmingAlgorithmIF{

// the idea i s that keep a l l the words and t h e i r stems in a map so

that i t can be reused .

//key=word , v laue=stem of the word

21 public stat ic Map mapWordAndStem=new LinkedHashMap () ;

179

// strWord should be a s i n g l e word

private stat ic St r ing getStemWord (St r ing strWord) {
St r ing strStemWord=”” ;

26 i f (mapWordAndStem . containsKey (strWord)) {
strStemWord=(St r ing)mapWordAndStem . get (strWord) ;

} else {

//To do : wr i t e code f o r i n t e g r a t i n g d i f f e r e n t stemmers l i k e

po t t e r . The l e c t u r e r should be ab le to mention the

31 //stemmer to use in a p r op e r t i e s f i l e .

// f o r now ju s t use Paice a lgor i thm

PaiceJava2 paiceJava2=PaiceJava2 . g e tS i ng l e t on In s t anc e () ;

strStemWord=paiceJava2 . s t r i p A f f i x e s (strWord) ;

36

//add to the map f o r reuse l a t e r

mapWordAndStem . put (strWord , strStemWord) ;

}
41 return strStemWord ;

}

// inputText can be a sentence c o n s i s t i n g o f words separated by s i n g l e or

mu l t ip l e space

46 public St r ing getStemText (S t r ing inputText) {

// PaiceJava2 p = new PaiceJava2 (args [2] , a rgs [3]) ;

// PaiceJava2 p = new PaiceJava2 () ;

St r ingToken i ze r l i n e = new Str ingToken ize r (””) ;

51 St r ing outputText =”” ;

180

l i n e= new Str ingToken i ze r (inputText) ;

try{
while (l i n e . hasMoreTokens ())

56 {
// read word from l i n e and stem word

St r ing word = new St r ing () ;

word = l i n e . nextToken () ;

i f (outputText . equa l s (””)) {
61 outputText=getStemWord (word) ;

} else {
outputText=outputText+ ” ” + getStemWord (word) ;

}

66 }
}

catch (Exception e)

{
e . pr intStackTrace () ;

71 }
return outputText ;

}

76

}

package uk . ac . brune l . c o n c r e t e c l a s s e s ;

2 /∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

181

∗ @since JDK1. 6

7 ∗/

import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

import uk . ac . sh e f . wit . s immetr ic s . s im i l a r i t yme t r i c s . QGramsDistance ;

12

public class QGramDistanceSyntaxAlgorithm implements SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) {
double s im i l a r i t y I ndx ex =0.0 ;

// use s immetr ic s to re turn the ed i t d i s t anc e

17 //Note : The conc re t e c l a s s QGramsDistance . java i s pre sent in the package

uk . ac . sh e f . wit . s immetr ic s . s im i l a r i t yme t r i c s . Levenshte in

QGramsDistance qGramsDistance=new QGramsDistance () ;

s im i l a r i t y I ndx ex=qGramsDistance . g e t S im i l a r i t y (s t r1 , s t r 2) ;

return s im i l a r i t y I ndx ex ;

}
22 }

package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
3 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
8

import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

public class SimonWhiteSyntaxAlgorithm implements SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) {

13 double s im i l a r i t y I ndx ex =0.0 ;

182

// use the a lgor i thm developed by Simon White to re turn the s im i l a r i t y ,

http ://www. c a t a l y s o f t . com/ a r t i c l e s /StrikeAMatch . html

SimonWhiteStringMatchingAlgorithm simonWhiteStringMatchingAlgorithm=new

SimonWhiteStringMatchingAlgorithm () ;

s im i l a r i t y I ndx ex=simonWhiteStringMatchingAlgorithm . g e t S im i l a r i t y (s t r1 ,

s t r 2) ;

return s im i l a r i t y I ndx ex ;

18 }
}

1 package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
∗ This i s a s imple a lgor i thm f o r exac t l y matching two s t r i n g s . I t

r e tu rn s 1 i f two s t r i n g s exac t l y match otherwi se r e t u r s 0 .

∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

6 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

import java . u t i l . ∗ ;

11 import uk . ac . sh e f . wit . s immetr ic s . s im i l a r i t yme t r i c s . I n t e r f a c eS t r i n gMe t r i c ;

public class SoundexMatchAlgorithm implements I n t e r f a c eS t r i n gMe t r i c {

16 public St r ing ge tLongDesc r ip t i onSt r ing () {
// r e tu rn s a long s t r i n g o f the s t r i n g metr ic d e s c r i p t i o n .

return ”This i s a Soundex a lgor i thm f o r matching two s t r i n g s . I t

r e tu rn s 1 i f two s t r i n g s have exac t l y same Soundex code ,

o therw i se r e t u r s 0 . ” +

183

” I t uses org . apache . commons . codec to r e t r i e v e the Soundex

code f o r a s t r i n g . ” ;

}
21

public St r ing ge tSho r tDe s c r i p t i onS t r i ng () {
// r e tu rn s a s t r i n g o f the s t r i n g metr ic name .

return ”Soundex Matching Algorithm” ;

}
26 public f loat g e t S im i l a r i t y (java . lang . S t r ing s t r ing1 , java . lang . S t r ing

s t r i n g 2) {
org . apache . commons . codec . language . Soundex apacheSoundex=new org .

apache . commons . codec . language . Soundex () ;

S t r ing soundexCodeForString1=apacheSoundex . soundex (s t r i n g 1) ;

S t r ing soundexCodeForString2=apacheSoundex . soundex (s t r i n g 2) ;

i f (soundexCodeForString1 . equa l s (soundexCodeForString2)) {
31 return 1 ;

} else {
return 0 ;

}
}

36

public St r ing ge tS im i l a r i t yExp l a i n ed (java . lang . S t r ing s t r ing1 , java .

lang . S t r ing s t r i n g 2) {
// r e tu rn s a s i m i l a r i t y measure o f the s t r i n g comparison .

return ”This i s a Soundex a lgor i thm f o r matching two s t r i n g s . I t

r e tu rn s 1 i f two s t r i n g s have exac t l y same Soundex code ,

o therw i s e r e t u r s 0 . ” +

” I t uses org . apache . commons . codec to r e t r i e v e the Soundex

code f o r a s t r i n g . ” ;

41 }

public long getS imi la r i tyTimingActua l (java . lang . S t r ing s t r ing1 , java .

lang . S t r ing s t r i n g 2) {

184

// ge t s the ac tua l time in m i l l i s e c ond s i t takes to perform a

s i m i l a r i t y t iming .

return s t r i n g 1 . l ength ()+s t r i n g 2 . l ength () ;

46 }

public f loat getS imi lar i tyTimingEst imated (java . lang . S t r ing s t r ing1 ,

java . lang . S t r ing s t r i n g 2) {
// ge t s the est imated time in m i l l i s e c ond s i t takes to perform a

s i m i l a r i t y t iming .

return s t r i n g 1 . l ength ()+s t r i n g 2 . l ength () ;

51 }

public stat ic void main (St r ing [] a rgs) {

56 In t e r f a c eS t r i n gMe t r i c i n t e r f a c e S t r i n gMe t r i c=new

SoundexMatchAlgorithm () ;

System . out . p r i n t l n (”∗∗∗∗∗”+in t e r f a c e S t r i n gMe t r i c . g e t S im i l a r i t y (”

update” , ”updat”)) ;

}
}

1 package uk . ac . brune l . c o n c r e t e c l a s s e s ;

/∗∗
∗ This i s a s imple a lgor i thm f o r exac t l y matching two s t r i n g s . I t

r e tu rn s 1 i f two s t r i n g s exac t l y match otherwi se r e t u r s 0 .

∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

6 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

185

import uk . ac . brune l . i f a c e . SyntaxAlgorithmIF ;

11

public class SoundexSyntaxAlgorithm implements SyntaxAlgorithmIF{
public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) {
double s im i l a r i t y I ndx ex =0.0 ;

// use s immetr ic s to re turn the ed i t d i s t anc e

16 //Note : The conc re t e c l a s s SoundexMatchAlgorithm . java i s pre sent in the

package uk . ac . brune l . mamcaasystem . common . u t i l i t y . s yn t a c t i c .∗
SoundexMatchAlgorithm soundexMatchAlgorithm=new SoundexMatchAlgorithm () ;

s im i l a r i t y I ndx ex=soundexMatchAlgorithm . g e t S im i l a r i t y (s t r1 , s t r 2) ;

return s im i l a r i t y I ndx ex ;

}
21 }

7.5 Java Source code for GenericLabelMatcherInterface.jar

This component has the interface for the algorithms used by the GenericLabelMatcher com-

ponent. The user needs this component containing interfaces in order to compile the concrete

implementation of the algorithms.

package uk . ac . brune l . i f a c e ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

4 ∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

9 public interface SearchAlgorithmIF {

/∗
∗ syntaxa lgor i thms [i] [0] conta in s the id o f the syntax a lgor i thm c l a s s

186

∗ syntaxa lgor i thms [i] [1] conta in s the double va lue o f the s i m i l a r i t y

index f o r the cor re spond ing syntax a lgor i thm in the

syntaxa lgor i thms [i] [0]

14 ∗∗/

public double getCombinedSimi lar i ty (S t r ing [] [] a r raySyntaxS imi la r i ty Index

) ;

}

package uk . ac . brune l . i f a c e ;

/∗∗
3 ∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/
8

public interface Spel lCheckerIF {

/∗
∗ This fucn t i on r e tu rn s t rue i f word has been mi s sp e l l ed otherwi se f a l s e

.

13 ∗∗/
public boolean i sM i s s p e l l e d (S t r ing strWord) ;

/∗
∗ This func t i on takes a s i n g l e word or a sentence c o n s i s t i n g o f words

separated by s i n g l e or mu l t ip l e space .

18 ∗ I t then r e tu rn s the autoco t t e c t ed ve r s i on o f each word ,

∗ This fucn t i on r e tu rn s the f i r s t suggested word by the s p e l l checker .

∗ Incase the word in not s p e l l e d i n c o r r e c t l y then t h i s func t i on r e tu rn s

the same word

187

∗∗/
public St r ing getSpel lCheckedText (S t r ing strWord) ;

23

/∗
∗ ∗ This func t i on takes an array o f s i n g l e words .

∗ I t then r e tu rn s an array the autoco t t e c t ed ve r s i on o f each word ,

∗ This fucn t i on r e tu rn s the f i r s t suggested word by the s p e l l checker .

Incase the word in not s p e l l e d i n c o r r e c t l y then t h i s func t i on

r e tu rn s the same word

28 ∗∗/
public St r ing [] getSpel lCheckedText (S t r ing [] strWord) ;

}

package uk . ac . brune l . i f a c e ;

3 /∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

8 ∗/
public interface StemmingAlgorithmIF{

/∗
13 This func t i on takes a s i n g l e word or a sentence c o n s i s t i n g o f words

separated by s i n g l e or mu l t ip l e space . I t then re tu rn s the stem o f

each word ,

// inputText can wither be a s i n g l e word or be a sentence c o n s i s t i n g o f

words separated by s i n g l e or mu l t ip l e space

∗/

188

public St r ing getStemText (S t r ing inputText) ;

18

}

package uk . ac . brune l . i f a c e ;

/∗∗
∗ @author Ambikesh Jayal , School o f IS , Computing & Maths , Brunel

Un ive r s i ty .

∗ @author ambikesh . jaya l@brune l . ac . uk , ambi1999@gmail . com

5 ∗ @version 1 . 0 , 25−Aug−2009

∗ @since JDK1. 6

∗/

public interface SyntaxAlgorithmIF{
10 public double s i m i l a r i t y (S t r ing st r1 , S t r ing s t r 2) ;

}

189

