
University of Huddersfield Repository

Liu, Baolong

XML Security in XML Data Integrity, Authentication, and Confidentiality

Original Citation

Liu, Baolong (2010) XML Security in XML Data Integrity, Authentication, and Confidentiality.

Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/9671/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40030434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

XML Security in XML Data

Integrity, Authentication, and

Confidentiality

Baolong Liu

 A thesis submitted to the University of Huddersfield in

partial fulfilment of the requirements for the

degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

May 2010

 2

Acknowledgements

I would like to thank my first supervisor, Dr. Joan Lu for her supervision. I also

acknowledge my second supervisor, Prof. Jim Yip, for his valuable advice to my

research.

Many thanks give to Dr. Andrew Campton and Dr. Diane Kitchin for their valuable

comments to my progress report.

I want to thank the School of Computing and Engineering at the University of

Huddersfield for providing the great opportunity of study and facilitating me

throughout the research.

I want to thank my parents, Xinhui Sun and Yingxiang Liu who never give up

providing supports to my study. More than anyone else, I want to thank my wife,

Yi Guo, for her patience and came to stay with me during my study. I would like

to thank all my friends in China for their kind encouragements.

 3

Abstract

The widely application of XML has increasingly required high security. XML
security confronts some challenges that are strong relating to its features. XML
data integrity needs to protect element location information and context-
referential meaning as well as data content integrity under fine-grained security
situations. XML data authentication must satisfy a signing process under a
dependent and independent multi-signature generation scenario. When several
different sections are encrypted within the XML data, it cannot query the
encrypted contents without decrypting the encrypted portions. The technologies
relating to XML security demand further development.

This thesis aims to improve XML security relative technologies, and make them
more practicable and secure. A novel revocation information validation approach
for X.509 certificate is proposed based on the XML digital signature technology.
This approach reduces the complexity of XKMS or PKI systems because it
eliminates the requirement for additional revocation checking from XKMS or CA.
The communication burden between server and client could be alleviated.

The thesis presents the context-referential integrity for XML data. An integrity
solution for XML data is also proposed based on the concatenated hash function.
The integrity model proposed not only ensures XML data content integrity, but
also protects the structure integrity and elements’ context relationship within an
XML data. If this model is integrated into XML signature technology, the signature
cannot be copied to another document still keeping valid.

A new series-parallel XML multi-signature scheme is proposed. The presented
scheme is a mixed order specified XML multi-signature scheme according to a
dependent and independent signing process. Using presented XML data
integrity-checking pool to provide integrity-checking for decomposed XML data, it
makes signing XPath expression practicable, rather than signing XML data itself.

A new labeling scheme for encrypted XML data is presented to improve the
efficiency of index information maintenance which is applied to support encrypted
XML data query processing. The proposed labelling scheme makes maintenance
index information more efficient, and it is easy to update XML data with
decreasing the number of affected nodes to the lowest. In order to protect
structural information for encrypted XML data, the encrypted nodes are removed
from original XML data, and structural information is hidden.

A case study is carried out to demonstrate how the proposed XML security
relative approaches and schemes can be applied to satisfy fine-grained XML
security in calibration certificate management.

 4

 List of Figures

Figure 1.1 An example of XML encryption result 20

Figure 2.1 Location service provides name resolution (Hallam-Baker and Mysore,

2005) 36

Figure 2.2 Key validation service (Hallam-Baker and Mysore, 2005) 37

Figure 2.3 Registration of key binding (Hallam-Baker and Mysore, 2005) 38

Figure 2.4 Document subset canonicalizing 41

Figure 2.5 Structure of SignedInfo in XML signature 43

Figure 2.6 Algorithms for XML digital signatures correspondence with

different elements 44

Figure 2.7 Enveloping signature 45

Figure 2.8 Detached signature 46

Figure 2.9 Enveloped signature 47

Figure 2.10 Structure for XML encryption (Imamura et al., 2002) 48

Figure 2.11 Algorithms for XML encryption correspondence with

different elements 49

Figure 3.1 An example of forging a signature 56

Figure 4.1 Structure for an X.509 v3 certificate 74

Figure 4.2 Size of X-certificate 77

Figure 4.3 Data volume for N=1,000 79

Figure 4.4 Data volume for N=100,000 80

Figure 5.1 A certificate of calibration 85

Figure 5.2 An example of CRI 87

Figure 5.3 An example of structure integrity 95

Figure 5.4 Schema for STI 96

Figure 5.5 An example of CRI description 97

Figure 5.6 Schema for CRI 97

Figure 5.7 Efficiency comparison based on SHA-1for XML data depth 101

Figure 5.8 Efficiency comparison based on SHA-256 for XML data depth 102

Figure 5.9 Efficiency comparison based on SHA-1 for XML data width 103

Figure 5.10 Efficiency comparison based on SHA-256 for XML data width 103

 5

Figure 5.11 Comparison for numbers of hash computations 104

Figure 6.1 Signing order graph 112

Figure 6.2 Converted series-parallel signing order 114

Figure 6.3 Signing order graph 123

Figure 6.4 Converted series-parallel signing order 124

Figure 6.5 Execution time comparison (160 bits signing) 124

Figure 6.6 Execution time comparison (256 bits signing) 125

Figure 6.7 Execution time comparison (160 bits verification) 126

Figure 6.8 Execution time comparison (256 bits verification) 126

Figure 7.1 An example for XML encryption 130

Figure 7.2 Example of interval-based labeling 132

Figure 7.3 Example of XML data inserting 133

Figure 7.4 Insert processing with enough space 135

Figure 7.5 Insert processing without enough space 136

Figure 7.6 Insert processing with space=0 136

Figure 7.7 Delete processing 137

Figure 7.8 A graphical representation for encrypted XML data 138

Figure 7.9 The architecture for XQuery on encrypted contents 140

Figure 7.10 Efficiency of index information updating 148

Figure 7.11 Efficiency evaluation for query processing 150

Figure 8.1 A certificate report for fault detection 155

Figure 8.2 The tasks relative to certificate management 156

Figure 8.3 System Architecture 158

Figure 8.4 Process for CSR generation 159

Figure 8.5 Verification process for CSR 160

Figure 8.6 The process for XML multi-signature generation 162

Figure 8.7 Presentation for XML multi-signature 163

Figure 8.8 Process of role based XML encryption 164

Figure 8.9 Process of XML decryption 164

Figure 8.10 Process for encrypted XML data pool generation 165

Figure 8.11 System interface 167

Figure 8.12 Access control authorization 168

 6

Figure 8.13 Warning information 168

Figure 8.14 Certificate information integrity 169

Figure 8.15 Signed results based on CSR 170

Figure 8.16 Integrity CSR and signed results 171

Figure 8.17 Certificate information confidentiality 172

Figure 8.18 Certificate retrieve 173

Figure 8.19 XML signature validating data integrity 174

 7

List of Tables

Table 2.1 Hash algorithms 27

Table 2.2 Symmetric-key algorithms 28

Table 2.3 A pair of cryptographic keys 29

Table 3.1 Multi-signature schemes for non-XML data 57

Table 3.2 An example of pairs of element and value with their hash

values 66

Table 3.3 Representation of structural index tables 67

Table 3.4 Index for payment information 69

Table 3.5 XML schema stored at the client side 70

Table 3.6 Index information at the server side 70

Table 4.1 Size of different mechanism 78

Table 4.2 Parameters for performance evaluation 78

Table 5.1 Software deployed 98

Table 5.2 Testing criterion description 99

Table 5.3 Testing cases 100

Table 5.4 Parameters 101

Table 5.5 Testing result based on testing cases 105

Table 5.6 XML data integrity model comparison 107

Table 6.1 Existing schemes comparison 127

Table 7.1 Structure index information 139

Table 7.2 Index table for query processing 141

Table 7.3 Basic information for testing cases 145

Table 7.4 Testing cases for range queries based on DBLP dataset 146

Table 7.5 Testing results based on XMark dataset 147

Table 7.6 Results for range queries based on DBLP dataset 147

Table 7.7 Comparison for encrypted XML data query 152

 8

List of Abbreviations

CA Certification Authority

CI Content Integrity

CRI Context Referential Integrity

CRL Certificate Revocation List

CRS Certificate Revocation System

CRT Certificate Revocation Tree

DD Document Dispatcher

DL Discrete Logarithm

DoD Department of Defence

DOM Document Object Model

DSA Digital Signature Algorithm

DSI Discontinuous Structural Index

DSS Digital Signature Standard

DTD Document Type Definition

HMAC Hash-based Message Authentication Code

IETF Internet Engineering Task Force

ITU International Telecommunication Union

MAC Message Authentication Code

NLBILS Number List based Interval Labeling Scheme

OASIS Organization for the Advancement of Structured Information

Standards

OCSP Online Certificate Status Protocol

PI Processing Instruction

PKI Public Key Infrastructure

RSA Rivest, Shamir and Adleman

SA System Authority

SC Signature Collector

SHA Secure Hash Algorithm

SOAP Simple Object Access Protocol

STI Structure Integrity

 9

XDD XML Data Decomposition

XDM XPath data model

XHTML eXtensible Hypertext Markup Language

XKMS XML Key Management Specification

X-KISS XML Key Information Service Specification

X-KRSS XML Key Registration Service Specification

XML eXtensible Markip Language

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

URIs Uniform Resource Identifier Strings

W3C World Wide Web Consortium

 10

List of Mathematical Symbols

)(Mh The result of a hash computation on message M using an

approved hash function

K A secret key used in symmetric cryptography

),(KMAs An encryption algorithm (symmetric cryptography)

),(1
KCAs

− A decryption algorithm (symmetric cryptography)

C Encryption result (Cipher text)

pubK A public key

privK A private key

),(pube KMA An encryption algorithm (Asymmetric cryptography)

),(privd KCA A decryption algorithm (Asymmetric cryptography)

V An element set of XML data

DX An XML data

p A prime number that defines the)(pGF and is used as a modulus

in the operations of)(pGF

q A prime factor of 1−p

G A broadcast signing group

ii yx , Private key and public key for each member in G

YX , The private and public key pair for G

Γ A set of decomposed sub-message of M

r One component of a DSA digital signature

s One component of a DSA digital signature

R One component of multi-signature

S One component of multi-signature

Cert An X.509 digital certificate

xmlC An X.509 digital certificate based on XML data format

SN A set of revoked X.509 digital certificate

 11

T A time-stamp for signature

v An XML node in XML data

rv The node of XML data root

iI An initial vertex of an edge i in directed graph

iT A terminal vertex of an edge i in directed graph

ϕ A directed graph

)(ϕL A set of edges in graph ϕ

)(ϕE A set of vertices in graph ϕ

φ An empty set

SG A series-parallel signing group

st Any sub-tree in an XML data

kR One component of multi-signature in a broadcast subgroup

kS One component of multi-signature in a broadcast subgroup

NL Number list

 12

List of Contents

Acknowledgements ...2

Abstract ...3

List of Figures ..4

List of Tables ...7

List of Abbreviations ...8

List of Mathematical Symbols ... 10

List of Contents ... 12

Chapter 1 Introduction .. 17

1.1 Motivation and challenges .. 19

1.2 Aim and objectives .. 21

1.3 Research approach .. 22

1.4 Arrangements of this thesis .. 24

Chapter 2 Background .. 26

2.1 Security techniques and protocols .. 26

2.1.1 Cryptographic hash functions ... 26

2.1.2 Symmetric cryptography ... 27

2.1.3 Asymmetric cryptography ... 29

2.1.4 Public key infrastructure ... 32

2.1.5 X.509 certificate .. 33

2.2 XPath expressions .. 34

2.3 XML Key Management ... 35

2.3.1 X-KISS ... 36

2.3.2 X-KRSS .. 38

2.4 Canonical XML ... 39

2.4.1 Content changes for canonical XML ... 40

2.4.2 Structure changes for document subsets .. 41

2.5 XML signature .. 42

2.5.1 Structure of XML signature ... 43

2.5.2 Enveloping, enveloped and detached signatures 45

2.6 XML encryption ... 47

 13

2.7 Summary .. 50

Chapter 3 Literature Review.. 51

3.1 Revocation information validation for X.509 certificate 51

3.2 XML data integrity ... 52

3.3 XML multi-signature schemes ... 57

3.3.1 Multi-signature schemes for non-XML data .. 57

3.3.2 XML multi-signature schemes .. 60

3.4 Encrypted XML data querying ... 65

3.4.1 Hash function based index building .. 66

3.4.2 Discontinuous structural index (DSI) ... 67

3.4.3 Query-Aware decryption ... 68

3.4.4 Scheme based on random number ... 69

3.5 Summary .. 71

Chapter 4 XML-based X.509 digital certificate ... 73

4.1 Introduction ... 73

4.2 Structure of X.509 certificate ... 73

4.3 XML-based X.509 certificate (X-certificate) ... 74

4.3.1 Definition for X-certificate .. 75

4.3.2 Two-party authentication process based on X-certificate 76

4.4 Evaluation ... 77

4.4.1 Evaluation methods .. 77

4.4.2 Size evaluation ... 77

4.4.3 Efficiency evaluation ... 78

4.5 Discussion and analysis.. 80

4.6 Summary .. 82

Chapter 5 XML data integrity based on concatenated hash function 83

5.1 Introduction ... 83

5.2 Theory guidance for XML data integrity ... 84

5.3 XML data integrity model CSR based on concatenated hash function 84

5.3.1 XML data integrity requirements ... 85

5.3.2 Definition of integrity model CSR .. 88

5.3.3 Integrity analysis ... 91

 14

5.3.4 Efficiency analysis .. 94

5.4 Combination with XML specification ... 95

5.4.1 Specification for structure integrity .. 95

5.4.2 Specification for context-referential integrity 96

5.5 Testing and evaluation .. 98

5.5.1 Evaluation environment .. 98

5.5.2 Evaluation methods .. 98

5.5.3 Evaluation results ... 101

5.5.4 Testing results .. 105

5.6 Analysis and discussion .. 106

5.7 Summary .. 109

Chapter 6 A Series-parallel XML Multi-signature Scheme for XML Data

Authentication .. 110

6.1 Introduction ... 110

6.2 Theory guidance for data authentication .. 111

6.3 A series-parallel XML multi-signature scheme .. 112

6.3.1 Series-parallel signing group .. 112

6.3.2 XML data decomposition (XDD) ... 114

6.3.3 XML multi-signature scheme .. 116

6.3.4 Correctness proofs ... 119

6.3.5 Security analysis .. 120

6.3.6 Efficiency analysis .. 121

6.3.7 Compatibility with XML Signature Specification 122

6.4 Testing and evaluation .. 122

6.4.1 Evaluation environment .. 122

6.4.2 Evaluation methods .. 122

6.4.3 Evaluation results ... 124

6.5 Discussion and analysis.. 126

6.6 Summary .. 128

Chapter 7 NLBILS based encrypted XML data querying 130

7.1 Introduction ... 130

7.2 Number list based interval labeling scheme (NLBILS) 131

 15

7.2.1 Interval-based labeling scheme .. 131

7.2.2 NLBILS ... 132

7.3 NLBILS based encrypted XML data querying ... 137

7.3.1 XML encryption process ... 137

7.3.2 Index information .. 138

7.3.3 Query processing ... 139

7.4 Efficiency analysis for index information updating 143

7.5 Security analysis ... 143

7.6 Testing and Evaluation ... 144

7.6.1 The aims of evaluation ... 144

7.6.2 Evaluation methods .. 144

7.6.2 Evaluation results ... 146

7.7 Discussion and analysis.. 151

7.8 Summary .. 153

Chapter 8 XML security in calibration certificate management 155

8.1 Introduction ... 155

8.2 System requirements .. 157

8.3 System architecture .. 158

8.4 Implementation ... 159

8.4.1 XML data Integrity .. 159

8.4.2 XML data authentication ... 161

8.4.3 XML data encryption and decryption process 163

8.4.4 Encrypted XML data query processing ... 165

8.5 Implementation results .. 166

8.5.1 Environment of development .. 166

8.5.2 Implementation results ... 167

8.6 Discussion and analysis.. 173

8.6.1 The basis of XML signature .. 174

8.6.2 The sequence of XML signature and XML encryption 174

8.7 Summary .. 176

Chapter 9 Conclusions and future works .. 177

9.1 Contributions and conclusions .. 177

 16

9.1.1 Revocation information validation for x.509 digital certificate 177

9.1.2 XML data integrity... 177

9.1.3 Series-parallel XML multi-signature scheme 178

9.1.4 Efficient index information updating for encrypted XML data 178

9.2 Future works ... 179

9.2.1 Context-related elements selection ... 179

9.2.2 Integrate XML security into native XML database system 180

References ... 181

Appendix A: List of Publications .. 196

Appendix B: XMark’s Auction DTD ... 197

Appendix C: Class diagram for implemented prototype 200

Appendix D: Relative algorithms for XML data integrity 201

Appendix E: Relative algorithms for XML multi-signature 203

 17

Chapter 1 Introduction

With eXtensible Markup Language (XML) (Bray et al., 2008) widely applied to

different areas, security is necessary to be integrated into XML solutions. XML is

based on text format designing and has tree structure, and it is easier to access

portions of data using XPath (Berglund et al., 2007). It is natural that data

integrity, data authentication, information confidentiality, and other security

benefits should be applied to entire XML data or portions of XML data. Traditional

security systems can only handle the entire document or message. A new

requirement of security is needed. XML security should provide security

assurance of information represented using XML format. XML security must be

combined with XML data features to keep the advantages and flexibility of XML

while integrating essential security technologies. This is very important in XML-

based protocols, e.g. the protocol of Simple Object Access Protocol (SOAP)

(Gudgin et al., 2007), and it relies on XML as its message format to provide

message negotiation and transmission.

Based on the new features and security requirements of XML data, the reasons

of having XML security mechanism for XML are: XML data provides fine-grained

access, and it needs to sign, and encrypt portions of XML data rather than in

whole, e.g. multi-signature to different portions of XML data. Traditional security

technologies cannot be used directly within XML data and do not provide

methods relative to XML data content management (Sun and Li, 2005), e.g.

using XPath to locate portions of XML data content or specifying XML data

content using Uniform Resource Identifier string (URIs). Traditional security

technologies play an important role in XML security to provide a set of necessary

security algorithms and techniques which can be deployed in XML security.

However, the representation of traditional security is not suitable to XML security

(Sun and Li, 2005). The format of traditional security technologies is in binary,

and it requires specialized software for interpretation and extracting the security

information (Hirsch, 2002).

 18

The specifications relative to XML security published by W3C define the basic

framework and rules that can be utilized by across applications. The basic idea

for XML security is to reuse the algorithms, approaches, concepts, and

techniques of traditional security systems. The tools and methods which can be

used to support extensible integrating XML have been introduced. This idea

enables existing infrastructures and across security deployment to interoperate

with XML security. By using existing technologies and XML relative tools, XML

security minimizes additional applications to satisfy security requirements for

XML data (Hirsch, 2002).

There are four major topics relative to XML security.

• XML data integrity

XML data integrity ensures that both XML data structure and data content are

not destroyed or changed during transition or storage, and this can be

ensured using hash value checking. This may happen when XML data is

transmitted over the internet, such as from a server to a browser, and XML

data is stored in a database system, or processed by intermediaries.

• XML data authentication

Identity authentication provides assurance about the claimed identity of an

entity. In other words, it is to prove the claimed identity to a verifier. XML data

authentication is that the entity is responsible for the creation of a set of XML

data, which is the whole XML data or portion of XML data, is the one claimed.

XML data authentication is usually ensured using digital signature.

• XML data confidentiality

XML data confidentiality ensures that XML data structure, data content or

other sensitive information in XML data may only be accessed by legitimate

parties. Confidentiality is generally associated with access control

mechanisms or encryption technologies. Compared to access control

mechanism, the encryption technology is essential in application, for example,

 19

utilizing encryption technology to protect data transmitted in an untrusted

channel.

• Accountability

Accountability is used to record the responsibility of the individuals belonging

to the organization for which a policy regarding XML data security has been

established (Brandt and Bonte, 2000). This can be ensured using access

control mechanism, such as assigning the role to control user’s accountability.

These topics are not separate. XML key management (Hallam-Baker and

Mysore, 2005) provides the basic key requirements for XML data integrity,

authentication, and confidentiality. XML data integrity is used to generate hash

value which actually is signed in XML signature. XML data integrity is the

fundamental for XML data authentication. Based on the specification of

“Decryption Transform for XML Signature” (Hughes et al., 2002), XML signature

and XML encryption can be implemented independently, or encrypt entire or

portions of a signed XML data.

The thesis focuses on XML security in XML data integrity, authentication, and

confidentiality. In particular, it mainly focuses on improving technologies relative

to XML data integrity, XML signature, and XML encryption.

1.1 Motivation and challenges
XML security specifications published by W3C have addressed XML data

integrity, XML digital signature, and XML encryption (Bartel et al., 2008; Imamura

et al., 2002). XML data integrity is the basis for XML signature generation. W3C

adopts DOM-HASH (Maruyama et al., 1999) to generate hash values for

ensuring XML data integrity. Without considering XML data structure integrity,

and context-referential integrity, it will result that a signature can be copied to

another document still keeping valid signature verification. XML data integrity is

the main reason leading to limitation in XML signature. Existing integrity solutions

for XML data have not considered the features relative to XML data. Most of XML

data integrity models describe controls for achieving hash values, but no attempt

 20

is made to define a model for XML data integrity combined with XML data

features.

XML signature specification supports to build a single signature or multiple

signatures. With XML signature, users can sign the same content or different

portions of XML data. With the single digital signature generation and verification,

XML signature is useful and practicable. When several users participate in multi-

signature generation, XML signature specification cannot handle a multi-

signature generation with a mixed dependent and independent way since it only

supports a parallel multi-signature generation. Existing XML multi-signature

schemes only provide broadcast (parallel) signature-generation scenarios. It

cannot satisfy the signing process under a dependent multi-signature-generation

situation.

XML encryption is used to ensure XML data confidentiality, and it provides a

flexible approach to encrypt any portions of XML data. Figure 1.1(a) shows a

document of customer information. In order to protect credit card information, the

elements <CreditCard> have to be encrypted. By using XML encryption

<Customers>
 <Customer>
 <Name>…</Name>
 <Address>…</Address>
 <CreditCard>
 …
 </CreditCard >
 </Customer>
 <Customer>
 <Name>…</Name>
 <Address>…</Address>
 <CreditCard >
 …
 </CreditCard >
 </Customer>
 …
</Customers>

<Customers>
 <Customer>
 <Name>…</Name>
 <Address>…</Address>
 <EncryptedData>
 …
 </EncryptedData >
 </Customer>
 <Customer>
 <Name>…</Name>
 <Address>…</Address>
 <EncryptedData >
 …
 </EncryptedData >
 </Customer>
 …
</Customers>

Figure 1.1 An example of XML encryption result

(a) (b)

 21

technology, the encrypted result is shown in Figure 1.1(b). XML encryption

supports to encrypt portions of XML data, and this can be found in Figure 1.1(b).

However, the query of the information which resides in the cipher blocks has not

been addressed in XML encryption technology when XML data is encrypted. For

instance, only the cipher blocks in Figure 1.1 (b) can answer information relating

to bank information.

Existing approaches are index-based scheme for encrypted XML data querying.

Management of index information is not considered by researchers. It is a time-

consuming task to maintain index information for frequently changed XML data. It

needs to consider efficiency of index information updating when an index scheme

is deployed (Ünay and Gündem, 2008). In addition, the structural information

leakage has not been considered within existing solutions.

1.2 Aim and objectives
The aim of this research is to improve XML security related technologies, and

make it more practicable and secure. In order to reach this aim, there are several

objectives:

• To present an approach to easily validate X.509 digital certificate

revocation information.

• To present the XML data integrity requirements combined with XML data

features.

• To present a solution for XML data integrity protection, and improve the

efficiency of hash value generation for XML data.

• To build an XML multi-signature scheme, which is a mixed-signing order

scheme including both series and parallel to satisfy a dependent and

independent signing process.

 22

• To present an index mechanism which can exactly locate a block of

cipher text while users submit a query, and eliminate unnecessary

decryption when query an encrypted XML data. The index information can

be updated efficiently. In addition, this index mechanism will not disclose

the structural information of XML data.

• To implement a prototype of proposed approaches and schemes

combining with existing XML security specifications.

1.3 Research approach
This research started with an extensive literature review of the sate-of-the-art in

XML security in XML data integrity, entity authentication, XML data authentication

and XML confidentiality.

• Approaches or schemes development

To address the aim and objectives highlighted in section 1.2, this research

decided to use the concatenated hash function to model XML data integrity.

The traditional hash functions, such as SHA1 or SHA2 cannot protect the

relationship of different XML elements in XML data, e.g. parent-child

relationship, sibling relationship. However, the traditional hash functions can

be used to generate hash value for individual XML element. It needs a

mechanism to assemble the hash value of individual XML element to protect

the relationship between different XML elements. Similar to Merkle hash

function (Merkle, 1989), concatenated hash function also focuses on hash

value generation processing for tree-based data structure. Merkle hash

function is based on binary tree, in contrast, concatenated hash function is

based on arbitrary tree structure, and it is more suitable to handle XML data.

Digital signature is used to ensure XML data authentication in a hierarchical

network. Index-based mechanism is adopted in encrypted XML data query

processing.

 23

• Correctness proving

The correctness of proposed approaches or schemes is proved to confront

the proposed aim and objectives. The correctness proofs of XML data

integrity approach are expressed by three theorems. As proposed XML multi-

signature scheme, the correctness is proved by using strict mathematic

method.

• Security analysis

The security of proposed approaches or schemes is also analyzed. The

proposed XML data integrity approach is based on concatenated hash

function. The security issue in proposed integrity approach is avoided

because the approach is based on collision-resistant one-way hash function.

The proposed XML multi-signature scheme is based on discrete logarithm

(DL) problem, so it has a high security. The thesis also describes how the

proposed encrypted XML data query scheme avoids inference attack.

• Testing and evaluation

The proposed approaches or schemes are strictly tested and verified to

evaluate its performance and efficiency over existing solutions. The testing

and evaluation cases are generated from XMark and DBLP dataset. The

testing mainly focuses on correctness and functionality proving of proposed

approaches or schemes. The evaluation mainly focuses on efficiency

comparison between existing solutions. In this research, testing and

evaluations were continuously being undertaken during every major phase to

ensure that it has a good functionality and stability. Researchers in the School

of Computing & Engineering have given some advices for evaluation, as well

as whether it meets the aim and objectives of the research. Further revisions

for the proposed approaches or schemes might take place based on the

feedback from these tests and evaluation.

 24

• Prototype implementation

A prototype for XML security was developed in the C#.net language. This has

facilitated the refinement and completion of the approaches and schemes

with improved understanding on some implementation issues. The system

also served as a demonstration of capabilities of the final system with

feedbacks from various tests.

1.4 Arrangements of this thesis
Chapter 1 introduces the motivation and challenges of XML security in XML data

integrity, authentication and confidentiality. The aim and objectives are described.

The research approaches are also demonstrated.

Chapter 2 introduces the background knowledge relative to traditional security

technologies, the common tools which has been deployed in XML security

specifications, especially XML security specifications or standards including XML

key management, XML signature syntax and processing, XML encryption syntax

and processing published by W3C or OASIS.

Chapter 3 is literature review. The contents of literature review mainly focuses on

existing ideas and solutions relative to revocation information validation

approaches for X.509 digital certificate, XML data integrity, the theories and

schemes of multi-signature for ensuring XML data authentication. The

investigation of schemes for index-based encrypted XML data query processing

is also illustrated.

XML key management is the basic requirements for XML security technologies.

In order to alleviate the burden of revoked certificate validation, Chapter 4

introduces an improved X.509 digital certificate based on XML signature

technology. The improved X.509 digital certificate can be utilized combined with

XML key management specification with a high efficiency.

 25

Chapter 5 analyzes the XML data integrity. Based on presented XML data

integrity requirements, an integrity model CSR (‘C’ for content integrity, ‘S’ for

structure integrity, and ‘R’ for context-referential integrity) for XML data is

proposed in this chapter. The functionality of this model is tested to meet the XML

data integrity requirements. The efficiency of this model is also evaluated.

Chapter 6 introduces the series-parallel signing group, which intends to generate

a multi-signature with a dependant and independent signing process. In order to

make XML data integrity-checking possible, the XML data integrity checking-pool

is presented in this section. Based on Lu’s XML multi-signature scheme (Lu and

Chen, 2004), combined with series-parallel signing group and XML data integrity-

checking pool, a series-parallel multi-signature scheme for XML data

authentication is proposed.

Chapter 7 introduces a number list based interval labeling scheme for XML data.

Based on presented labeling scheme, an index-based scheme for encrypted XML

data query processing is proposed with considering the efficiency of index

information maintaining.

Based on approaches and schemes proposed in previous chapters, Chapter 8

implements a case study of XML security in calibration certificate management.

The system architecture for calibration certificate management is introduced. The

detailed algorithms or processes relative to XML security are also described.

Chapter 9 focuses on the summary of this research and contribution to

knowledge. A discussion for the future work is also described.

 26

Chapter 2 Background

This chapter firstly introduces the traditional security techniques and protocols,

and then briefly introduces the XPath language. XML security specifications

published by W3C and OASIS are also described. In particular, XML key

management, Canonical XML, XML signature and XML encryption specifications

established by the W3C are discussed.

2.1 Security techniques and protocols

2.1.1 Cryptographic hash functions

Cryptographic hash functions are modelled based on one-way functions, which is

easy to generate an authentication code. A cryptographic hash function is

)(Mhy = (2.1)

where, h is a hash function, M is a message, y is a hash value (Stallings,

2006). A cryptographic hash function has some properties as follows.

• The input of h can be a block of data of any size

• h produces a fixed-length output, and it is called hash value, or message

digest.

• For any given value y , it is computationally infeasible to find M such that

yMh =)(. This is referred to as the one-way property.

• Given a message M , it is difficult to find 'M such that 'MM ≠ and

)()('MhMh = (Stallings, 2006).

• It is difficult to find any pair (M , 'M) such that)()('MhMh = (Stallings,

2006).

Widely used cryptographic hash functions are MD5, and the SHA series of

functions. However, the collision has been found in hash function MD5, SHA-1

and RIPEMD-160, and they are now considered insecure. SHA-256 and other

hash functions are believed to be secure. A summary of existing hash algorithms

are listed in Table 2.1.

 27

Table 2.1 Hash algorithms

Hash algorithms Block
size
(bits)

Output
size
(bits)

Rounds Collision

MD5 (Rivest,
1992)

512 128 64 239 (Wang et al., 2005a)

SHA-1 (FIPS180-
2, 2002)

512 160 80 263 (Wang et al., 2005b)

SHA-256
(FIPS180-2,
2002)

512 256 64 No

SHA-512
(FIPS180-2,
2002)

1024 512 80 No

RIPEMD-160
(Dobbertin et al.,
1996)

512 160 80 251 (Mendel et al., 2006)

It is shown that MD5, SHA-1 and RIPEMD-160 are not good choice for

generating message digest because of collision attacks (Cid 2006). Although the

drawback of SHA-256 and SHA-512 is certainly slower than MD5 and SHA-1,

until now, no collision has been found in SHA-256 and SHA-512 as shown in

Table 2.1. SHA-256 and SHA-512 can be used as a replacement for MD5 and

SHA-1. NIST (National Institute of Standards and Technology) also recommends

using SHA-256 in practical applications. Based on this fact, hash functions still

can be used to ensure security in applications.

2.1.2 Symmetric cryptography

Bijection is used as the basis of cryptography, for encryption (Smart, 2010).

Bijection is a mathematical function which is one-to-one (injective) and onto

(surjective). In particular, if YXf →: is a bijection, then for all Yy ∈ , there is a

unique Xx ∈ such that yxf =)(. This unique x is given by the inverse function

XYf →− :1 .

If f is an encryption transformation, then 1−f is the corresponding decryption

transformation. If a non-injective function were used as an encryption

transformation, it would not be possible to decrypt to a unique plain text.

 28

The traditional way of encrypting messages is called symmetric key encryption.

Symmetric-key algorithms use a single secret key which must be shared and kept

private by both sender and receiver for both encryption and decryption. To use a

symmetric encryption scheme, the sender and receiver must securely share a

key in advance.

This symmetric encryption scheme assumes that the sender and the recipient

share the knowledge of a secret key K and an encryption algorithm sA to the

message M . A message can be encrypted by

),(KMAC s= (2.2)

The secret message C is decrypted by applying the inverse algorithm 1−

sA to the

secret message C with the key K :

),(1

KCAM s

−= (2.3)

Symmetric-key algorithms can be divided into stream ciphers and block ciphers.

Stream ciphers encrypt the bits of the message one at a time, and block ciphers

take a number of bits and encrypt them as a single unit. Table 2.1 summarizes

the commonly used symmetric-key algorithms.

Table 2.2 Symmetric-key algorithms

Algorithms Block size (bits) Key size (bits)

DES (Kammer, 1999) 64 56

AES (NIST, 2001) 128 128, 192, 256

Triple DES (Barker, 2004) 64 168

The commonly used block ciphers are Data Encryption Standard (DES),

Advanced Encryption Standard (AES), and Triple DES as shown in Table 2.2.

The DES is a block cipher that was selected by the National Bureau of Standards

as an official Federal Information Processing Standard (FIPS) for the United

States in 1976 (Kammer, 1999). It is based on a symmetric-key algorithm that

uses a 56-bit key. DES is now considered to be insecure for many applications,

 29

and this is chiefly due to the 56-bit key size being too small. The AES is a

symmetric-key encryption standard adopted by the U.S. government (NIST,

2001). The standard comprises three block ciphers, AES-128, AES-192, and

AES-256. Each of these ciphers has a 128-bit block size, with key sizes of 128,

192, and 256 bits, respectively. Triple DES (3DES) applies the DES cipher

algorithm three times to each data block. Triple DES was designed to provide a

relatively simple method of increasing the key size of DES to protect against

brute force attacks, without designing a completely new block cipher algorithm

(Barker, 2004).

2.1.3 Asymmetric cryptography

The distinguishing technique used in public key cryptography is the use of

asymmetric key algorithms, where the key used to encrypt a message is not the

same key used to decrypt it. Each user has a pair of cryptographic keys—a public

key pubK and a private key privK . The private key is kept secret, while the public

key may be widely distributed. Messages are encrypted with the recipient’s public

key and can only be decrypted with the corresponding private key. The keys are

related mathematically, but the private key cannot feasibly be derived from the

public key (Diffie, 1976). Table 2.3 lists the usage of key pairs with different

security purposes.

Table 2.3 A pair of cryptographic keys

Security purpose Kind of key

Send an encrypted message Use the receiver’s public key

Decrypt an encrypted message Use the receiver’s private key

Send a signed message (signature generation) Use the sender’s private key

Verify a signature (and authenticate the sender) Use the sender’s public key

In asymmetric cryptography, each user has a private key privK , and a public key

pubK . A plain-text message M encrypted with the public key pubK can only be

 30

decrypted with the private key privK . The cryptographic algorithm eA is used for

encryption, and dA is used for decryption. In some public key encryption

schemes, e.g. RSA, the same algorithm can be used for both encryption and

decryption (i.e. de AA =). The encryption and decryption is performed

),(pube KMAC = (2.4)

),(privd KCAM = (2.5)

Similarly, a message 'M that is encrypted with the private key privK can only be

decrypted with the public key pubK :

),(''

prive KMAC = (2.6)

),(''

pubd KCAM = (2.7)

There are two main branches of public key cryptography are public key

encryption and digital signature.

• Public key encryption

A message encrypted with a receiver’s public key cannot be decrypted by

anyone expect a possessor of the matching private key. This is used for

confidentiality. RSA (which stands for Rivest, Shamir and Adleman who

first publicly described it) is the first algorithm known to be suitable for

encryption as well as signing. RSA is believed to be secure given

sufficiently long keys and the use of up-to-date implementations. The RSA

algorithm involves three steps: key generation, encryption and decryption

(Stallings, 2006).

Step 1: key generation

1. Select qp, , where p and q are both prime, and qp ≠ .

2. Calculate qpn ×= ,where n is used as the modulus for both the public

and private keys.

3. Calculate)1)(1()(−−= qppqϕ , whereϕ is Euler’s totient function.

 31

4. Select an integer e such that)(1 qpe ϕ<< , and 1)),(gcd(=enϕ (this

means that e and)(pqϕ share no divisors other than 1).

5. Calculate))1()1mod((1 −×−= − qped , where d is kept as the private

key exponent.

6. },{ neK pub = . The public key consists of the modulus n and the public

exponent e . },{ ndK priv = . The private key consists of the modulus

n and the private exponent d which must be kept secret.

Step 2: encryption

Each message)(nMM < , the ciphertextC corresponding to:

 nMC
e mod= (2.8)

Step 3: decryption

The original message M can be recovered by using private key exponent

d by the formula 2.9 computation:

 nCM
d mod= (2.9)

• Digital signature

A digital signature (Pfleeger, 1997) is an emulation of a real, physical

signature. A digital signature is a proof that the sender makes the

message, and everyone can identify the message belonging to the sender

with the sender’s public key. Public key encryption algorithms are suited

to digital signatures, like RSA. An encryption using a private key of the

user serves as a signature that only the owner of the private key can be

generated, and everyone with the public key can verify. Another

commonly used algorithm for digital signature is Digital Signature

Algorithm (DSA). The DSA is based on the difficulty of computing discrete

logarithms. The DSA algorithm involves three steps: key generation,

signing, and verifying (NIST, 2006).

 32

Step 1: key generation

The key pair is generated for a set of domain parameters gqp ,, ,

where qp, are two large prime numbers such that)1(| −pq , g is the

generator of the cyclic group of order q in *

pZ (selects an element *

pZh ∈

and computes phg qp mod/)1(−= such that 1≠g). User’s private key is a

randomly selected integrity)0(qxx << . User’s public key y is calculated

by using pgy x mod= .

Step 2: signing

Let H be the hashing function, such as SHA1, and M the message to be

signed.

1. Generate a random per-message value)0(qkk << .

2. Calculate qpgr k mod)mod(= , and qxrMHks mod)))(((1 += − .

3. The signature is),(sr

Step3: verifying

1. Reject the signature if either qr <<0 or qs <<0 is not satisfied.

2. Compute qsw mod)(1−= .

3. Compute qwMHu mod))((1 ×= , and qwru mod)(2 ×=

4. Compute qpygv
uu mod)mod)((21 ×= .

5. The signature is valid if rv = .

2.1.4 Public key infrastructure

The definition of the Public Key Infrastructure (PKI) is “the set of hardware,

software, people, policies and procedures needed to create, manage, store,

distribute, and revoke public key certificates based on public key cryptography” in

the IETF PKIX Roadmap (Arsenault and Turner, 1999; Goyal, 2004b). PKIX

(Public Key Infrastructure (X.509)) is an Internet Engineering Task Force (IETF)

effort to standardize such a PKI.

 33

2.1.5 X.509 certificate

In the terminology of PKIX, a public key certificate is defined as “a data structure

containing the public key of an End-Entity and some other information, which is

digitally signed with the private key of the certificate authority (CA) which issued

it” (Arsenault and Turner, 1999).

A public key certificate is applied to provide evidence of a legitimate key, and it is

a document containing serial number, public key information, and identity – such

as the name of a person or email address, and these information is signed by a

trusted authority, e.g. a CA (Schneier, 1995; Georgiadis et al., 2002).

One of the most popular standards for public key certificates is contained in the

ITU (International Telecommunication Union) X.509 standard. The X.509

standard (ITU, 1997; Ford and Baum, 1997) provides an authentication

framework with public key certificate distribution to the X.509 directory standards

series (ITU, 1997). The X.509 standard specifies how identity authentication

information is generated, illustrates how identity authentication information can be

retrieved from a server, and also defines approaches in which applications may

utilize the identity authentication information to perform authentication verification

process (Georgiadis et al., 2002).

ITU-T X.509 was firstly published in 1988 as part of the X.500 Directory

recommendations, and it defines a standard certificate format. The certificate

format in the 1988 standard is called the version 1 (v1) format. X.509 is based on

the use of public-key cryptography and digital signatures. The standard does not

dictate the use of a specific algorithm but recommends RSA. The digital signature

scheme is assumed to require the use of a hash function. However, the standard

does not dictate a specific hash algorithm. The 1988 recommendation included

the description of a recommended hash function; this algorithm has since been

shown to be insecure and was dropped from the 1993 recommendation (Housley

et al., 2002).

 34

When X.500 was revised in 1993, resulting in the version 2 (v2) format. The

X.509 version 2 format does not convey all of the information that recent design

and implementation experience has shown to be needed. Ford lists the following

requirements not satisfied by version 2 (Ford, 1995).

• The Subject field is inadequate to convey the identity of a key owner to a

public-key user.

• The Subject field is also inadequate for many applications, which typically

recognize entity by an e-mail address, a URL.

• There is a need to indicate security policy information. This makes an

application easily to relate a certificate to a given policy.

• It needs to limit the damage, which may result from a faulty or malicious

CA, by setting constraints of a particular certificate.

• It is important to be able to identify different keys used by the same owner

at different time.

In response to these new requirements, the X.509 certificate version 3 (v3) was

developed. The v3 version extends the v2 format by adding provision for

additional extension fields. Particular extension field types may be specified in

standards or may be defined and registered by any organization (Housley et al.,

2002).

In the X.509 structure, a trusted CA assigns a distinguished name (DN) to the

user who holds a public key certificate (Schneier, 1995). The CA issues

certificates signed under the CA’s private key. When a user A wishes to

communicate with a user B, A obtains B’s certificate from a directory (or by

another method) and verifies its authenticity with the CA’s public key.

2.2 XPath expressions
In order to retrieve information from encrypted XML data, XML Path Language

(XPath) should be deployed within a query. The XPath language is a

specification for addressing nodes of an XML data in XPath data model (XDM)

proposed by W3C. Using XPath, an XML document as well as atomic values, e.g.

 35

integers, strings, and booleans are represented as a tree structure. It also offers

an expressive way to locate nodes within the tree (Berglund et al., 2007).

A path expression contains of a series of path steps, which is separated by "/" or

"//", and usually beginning with "/" or "//", where, “/” denotes parent-child operator,

and “//” denotes ancestor-descendant operator. Such a path can be either

absolute path, which starts from the root of the XML data tree, or relative one

starting with known context nodes (Berglund et al., 2007).

A wildcard operator (“*” or “@”) is also allowed to be used in an XPath. A

wildcard operator can match any element or attribute node of the context node in

XML data tree. In addition, a predicate expressed in square brackets (“[]”) can

also be used to refine the selection operation in XPath expression (Jonker and

Feng, 2008).

2.3 XML Key Management
Public key provides trustworthy of client’s identity, and it can be used to establish

secure communication between different clients. Public key information is

provided by a digital certificate based on PKI. Deployment of PKI is a complex

task because the PKI must reflect the real word trust relationship which is

complex and subtle (Hallam-Baker and Ford, 2001). The complexity limited the

application of PKI.

In order to support a client to make use of public key management, and further

support public key management in XML digital signature and XML encryption, the

W3C and Internet Engineering Task Force (IETF) published specification of XML

Key Management (Hallam-Baker and Mysore, 2005).

The XML Key Management Specification (XKMS) provides public key

management to support XML applications (Hirsch and Just, 2003). XKMS is not a

substitute for a PKI. It is expected that a client can make use of key management

functionality. It is also expected that the deployments of XMKS allows clients to

interoperate with X.509 PKI already deployed (Hallam-Baker and Ford, 2001). In

 36

addition, the XKMS is suitable for use in conjunction with the W3C

Recommendations for XML Signature and XML Encryption (Hallam-Baker and

Mysore, 2005).

The XML Key Management Specification consists of two parts: the XML Key

Information Service Specification (X-KISS) and the XML Key Registration Service

Specification (X-KRSS).

2.3.1 X-KISS

X-KISS specifies a protocol to resolve public key information contained in

element of <ds: KeyInfo> (Hallam-Baker and Ford, 2001). This element is applied

to identify a public key in XML signature. X-KISS provides two services as

follows:

• Locate service

The locate service resolves a <ds: KeyInfo> element but does not require the

service to make an assertion concerning the validity of the binding between

the data in the <ds: KeyInfo> element (Hallam-Baker and Mysore, 2005).

When a client submits a locate request, the locate service processing is

shown in Figure 2.1 as described by W3C (Hallam-Baker and Mysore, 2005).

A recipient receives a signed XML data from another user which specifies

user own certificate but not the key value. The recipient can obtain the key

Client Trust
Service

Server-A

<ds:KeyInfo>
 <ds:KeyName>

<ds:KeyInfo>
 <ds:KeyValue>

GET/ HTTP/1.1
 …

HTTP/1.1
X.509Certificate

Figure 2.1 Location service provides name resolution
(Hallam-Baker and Mysore, 2005)

 37

value from the XKMS service by using the locate service. The recipient sends

the element of <ds:KeyInfo> to the location service, and the locate service

returns the corresponding <KeyValue> to the recipient.

• Validate service

The validate service allows the client to obtain an assertion specifying the

status of the binding between the public key and the relative identity

information, such as a name or a set of other attributes (Hallam-Baker and

Mysore, 2005). Unlike locate service, the validate service makes sure the

data returned is valid and bound to the same public key. Figure 2.2 described

by W3C shows the validate service.

When a user holds a signed XML data and relative X.509 certificate, it is not

known whether the certificate is trustworthy. In order to determine this, the

certificate needs to be sent to an XKMS validate service, and the service

returns back the validating results. The validate service establishes a

certificate trust path, and then validates each certificate in the path against

the relevant CRL. If all certificates in the path are valid, the validate service

responses a positive result. The client is only informed the validation results

by validate service, and shielded from this complex process. Although this

approach reduces the complexity for a client, it will increase the burden of the

server because of frequently user validation request.

Client Trust
Service

PKI
services

<Query>
 <…>

Result=Valid
<Keybinding>
 <KeyID>
 <ds:KeyInfo>

Figure 2.2 Key validation service
(Hallam-Baker and Mysore, 2005)

 38

2.3.2 X-KRSS

XML Key Registration Service Specification (X-KRSS) specifies a protocol for a

trust service that permits management of information bound to a public key

(Hallam-Baker and Mysore, 2005). X-KRSS supports all the following

functionalities associated with the public key:

• Registration

The registration service supports binding a public key to a specific identity,

such as a name, email address. The key pair can be generated by either

client or registration service. If the key pair is generated by client, it also

needs additional information to prove possession of private key (Hallam-

Baker and Mysore, 2005). The registration request should be authenticated

by the client, and this can be done by a digital signature.

A client generates a key pair and registers the public key. The identifier is the

email address. The request message should contain the elements of

<ProofofPossession> and <Keyauthentication> as shown in Figure 2.3 by

W3C (Hallam-Baker and Mysore, 2005).

• Reissue

The registration service permits clients to reissue key bindings previously

issued (Hallam-Baker and Mysore, 2005). The reissue process is similar to

Client Server

<RegisterResult>
 <KeyBinding>

<RegisterRequest>
 <PrototypeKeyBinding>
 <Authentication>
 <ProofofPossession>

Figure 2.3 Registration of key binding
(Hallam-Baker and Mysore, 2005)

 39

the initial registration process. Clients only need to submit a reissue request.

The registration service accepts the request and returns the response.

• Revocation

A registration service permits clients to revoke a key binding previously

issued. An authorized client may request that the trust service revokes a key

binding. This is necessary because the key has been compromised or

because information contained in the key binding is incorrect (Hallam-Baker

and Ford, 2001). Sufficient information must be included in the request to

identify the key binding to be revoked such as key binding ID for evidence,

and then the registration service responds that the key binding has been

revoked.

• Recovery

When the key pair is created by the registration service, private key recovery

is essential because clients may lose their private key and require accessing

to their encrypted data (Hallam-Baker and Ford, 2001). The registration

service provides functionality of recovery a private key to a client under this

situation.

2.4 Canonical XML
The specification “Canonical XML 1.1” provides an approach for creating a

unique physical representation of an XML data which accounts for permissible

changes (Boyer and Marcy, 2007). This specification is used to guarantee that

logically-identical XML documents give identical XML signatures. XML

Canonicalization (Canonicalization is often simply called “c14n”) discards

irrelevant details from an XML data and supplies a non-ambiguous octet

representation. If two XML data have the same canonical results, then the two

XML data are logically equivalent in a given context.

Canonical XML is used by XML signature to create a unique representation of an

XML data or a subset. This unique representation is necessary to compute a

 40

cryptographic hash value which to be signed, because the hash function is

sensitive to any character changing. XML 1.0 is so flexible in document formats

that equivalent contents can be expressed in multiple formats. An example is

given below.

(1) <document></document>

(2) <document/>

Both code fragments in (1) and (2) above represent an empty element. They are

different in byte representation, but are equivalent as XML data. The XML 1.0

specification allows equivalent XML data to be expressed in multiple formats in

terms of attribute occurrence sequence, naming space definitions, and blank

character handling, among others.

The digital signature is generated based on hash value of byte representations

for XML data. Because of the flexibility of the XML 1.0 specification described

above, signing the logically equivalent contents may lead to failed signature

verification. Against this background, the canonical XML specification, which

provides for canonical forms that are equivalent to XML data formats, was

established ahead of XML signature specifications. Based on the canonical XML

specification, an XML data is need to be converted to a canonical form before

XML data is signed and verified (Weerasinghe et al., 2006).

The changes for canonical XML have been summarized into two different

categories, the first is relative to content changes and the other is the structure

change for document subset.

2.4.1 Content changes for canonical XML

• Character encoding: c14n always uses the UTF-8 as character encoding

scheme.

• Line breaks: all line endings are normalized to #xA.

• Attribute values: attribute values are normalized to the XML 1.0

specification. All attribute values are delimited by double quotes.

 41

• The replacement of references for character and parsed entity.

• CDATA sections are converted into text content.

• XML declaration and DTD removed: both XML declaration and document

type declaration are omitted from canonical XML.

• Empty elements: use start-end tag pairs replace empty elements.

• White space: all white space in character content is retained. White space

within start and end tags are reduced to a single space.

• Special characters: use character references to replace special

characters in character contents.

• Namespace declarations: each element’s superfluous namespace

declarations bas been removed.

• Default attributes: default attributes for particular elements must be added

to respective elements.

• Lexicographic: the namespace declarations and attributes of elements are

arranged as lexicographical order.

2.4.2 Structure changes for document subsets

Some applications require a physical representation for an XML document

subset. Figure 2.4 illustrates the process of canonical document subset. Figure

2.4 (a) shows the XML tree with selected nodes which will be included in

document subsets. Figure 2.4 (b) shows the canonicalized document subsets.

The selected nodes are A (/A), D (/A/B/D), F (/A/F), H (/A/F/H), K (/A/I/J/K), where

the bracketed content is the XPath string of each selected node in Figure 2.4 (a).

A

B F I

C D G H J

E K L

A

D F K

H

(a) (b)

Figure 2.4 Document subset canonicalizing

 42

The changes are that nodes become direct children of their visible ancestor when

their parent node has not been selected. As shown in Figure 2.4, the node K

becomes a child of node A, and node D becomes a child of node A.

Exclusive XML Canonicalization is one of the XML canonicalization

specifications. It has been established considering special situations. In

consideration that signed XML data A will be inserted as a child element of XML

data B. Because of canonicalization, the name space of XML data A will be

changed when XML data B is converted according to the canonical XML

specification. This will result an invalid XML signature verification for XML data A.

The exclusive XML canonicalization specification, which is based on canonical

XML specification, was established to avoid this problem (Weerasinghe et al.,

2006). This specification is particular important for Web Services Security, which

specifies XML-signed SOAP messages.

2.5 XML signature
XML signature is a digital signature technology that is optimized for XML data.

The practical benefits of this technology include partial signature, which allows an

electronic signature to be written on specific tags contained in XML data, and

multi-signature, which enables user to generate more than one signature within

the same XML data. The use of XML signature can solve security problems,

including falsification, spoofing, and repudiation.

XML signature was established as a formal version of W3C recommendations in

Feb. 2002 (Bartel et al., 2008). W3C has also established related specifications

that need to be fulfilled when XML signature is actually deployed. The

specifications relative to XML signature are listed:

• Canonical XML Version 1.0: W3C Recommendation 03/15/2001 (Boyer,

2001).

• Exclusive XML Canonicalization Version 1.0: W3C Recommendation

07/18/2002 (Boyer et al., 2002a).

 43

• XML-Signature XPath Filter 2.0: W3C Recommendation 11/08/2002

(Boyer et al., 2002b).

Based on specifications above, the W3C published the first edition and the

second edition of XML digital signature specification in 2002 and 2008

respectively.

• XML-Signature Syntax and Processing: W3C Recommendation

02/12/2002 (Bartel et al., 2002).

• XML Signature Syntax and Processing (Second Edition): W3C

Recommendation 10/06/2008 (Bartel et al., 2008).

2.5.1 Structure of XML signature

XML-Signature Syntax and Processing specification provides the rules for XML

signature. It defines signature in XML format, the approach for signature

generation, and method for signature verification. Figure 2.5 shows the structure

of the element <SignedInfo>.

A structure of XML signature is that the <Signature> element lies at the top of the

document. The element <Signature> contains the element of <SignedInfo>,

which includes references to the algorithms applied to XML signature generation

and the target in XML data (Weerasinghe et al., 2006). It also holds hash value

ds:SignedInfo ds:SignatureMethod

ds:Reference using URI
(one or more)

ds:CanonicalizationMethod

ds:DigestValue

ds:DigestMethod

ds:Transforms

Figure 2.5 Structure of SignedInfo in XML signature

 44

and other information. An element of <SignatureValue> includes the signature

result, and public key information is contained in <KeyInfo> element, which to be

used when the XML signature is verified. When considering the characteristics of

XML signature, the <Reference> element is particularly important. Multiple

<Reference> elements may be contained in the <SignedInfo> element. This is

used to identify XML data segments at any location in XML data to be signed.

With this advantage, multi-signature is also supported through simply repeating

XML signature. However, this kind of multi-signature will increase the size of

signature results. The signing process only can be executed with an independent

way, and the signing process for users’ dependent relationship cannot be

supported.

Figure 2.6 shows algorithms deployed in XML digital signature. The signature

algorithms deployed in XML digital signature are RSA and DSA. XML signature

permits one to deploy one-way hash functions to get a hash value using SHA-1,

and recommends using HMAC-SHA1 to get a MAC. Although the integrity

method has been introduced, XML signature scheme does not provide how to

organize this information of portions of XML tree. Each signature must have

Digest

Encoding

MAC

Signature

Canonicalization

Transform

SHA1

XPath

Enveloped Signature

Canonical XML with comments

Canonical XML (omits comments)

RSA-SHA1

DSA-SHA1 (DSS)

HMAC-SHA1

base64

XSLT

Required

Recommended

Optional

 Element Algorithms Requirement

Figure 2.6 Algorithms for XML digital signatures
correspondence with different elements according to

W3C specification

 45

exactly one <SignedInfo> element to indicate what is signed by the signature.

The signature is an intermediary list of hash values. Generation of the

<SignedInfo> does not require the usage of a private key, as only hash values

are generated. The <SignedInfo> is the final object which is being signed by the

cryptographic signature.

2.5.2 Enveloping, enveloped and detached signatures

XML signature supports three kinds of signature representation forms:

enveloping, enveloped, and detached. These terms for XML signature refers to

the relationship between signed contents and signature. The properties and

limitations of the three kinds of forms are as follows.

• Enveloping signature

An enveloping signature is an ancestor of the signed contents in the XML tree

as shown in Figure 2.7.

The major feature of an enveloping signature is that only one data object is in

signed contents. The signed contents and signature form a single object. The

application must strip away the signature-envelope before handling signed

contents within enveloping signature. The advantage of this kind of signature

approach is that the signature and signed content form a single entity which

can be handled easily during transport. There is no problem to miss the

signature or contents since it is always together.

XML data

Signed content

Signature

Signed content

Figure 2.7 Enveloping signature

 46

• Detached signature

A detached signature means that the signature is separated from the signed

contents. The signed contents are outside of the signature element. A

detached signature has no parent/child relationship to the signed contents.

There are two situations as shown in Figure 2.8: the signature and the signed

contents reside in separate files, or the signature and the signed contents

reside in the same XML document but have no parent/child relationship,

usually both are siblings.

The major feature of detached signature is that signature is not merged into

signed contents. In XML signature specification, the signed content is

identified using URIs. This provides a binding between signature and signed

contents, and it makes the selection of signed object more flexible, e.g. the

object on a web server or in any directory can be accessed by a URIs.

Different from enveloping signature, if the signer sends only the signature, the

verifier still can access the signed contents via URIs mechanism. Without

protecting elements’ context-relationship, this flexibility can lead to a result

that a signature can be copied to any XML data still keeping valid signature

verification.

• Enveloped signature

An enveloped signature is a descendant relative to the whole or parts of

signed contents in the XML tree as shown in Figure 2.9. Enveloped signature

introduced by XML signature is that the signature is placed inside the signed

contents. Because signature becomes a part of XML data, enveloped

XML data

Signed content

Signature

Signed content

Figure 2.8 Detached signature

XML data

Signed content

Signature

Signed content

 47

signatures can only sign XML data. This kind of approach changed the

structure of the original XML data. This is the reason that XML signature

provides a transform mechanism to select portions of signed XML data.

2.6 XML encryption
XML encryption specification was established by the W3C as a formal version of

W3C recommendations in December 2002 (Imamura et al., 2002). The W3C also

established related specifications that solve problems raised when XML

encryption and XML signature are used in combination. The specifications

relative to XML encryption are listed:

• XML Encryption Syntax and Processing: W3C Recommendation

12/10/2002

• Decryption Transform for XML Signature: W3C Recommendation

12/10/2002

XML encryption is an encryption technology that is optimized for XML data. This

specification provides format for using XML and processing rules regarding to

encryption and decryption. Its practical benefits include partial encryption, which

encrypts specific tags contained in XML data, multiple encryption, which means

that data can be encrypted multiple times, and even more complex encryption,

such as the designation of recipients who were permitted to decrypt respective

XML data

Signed content

Signature

Signed content

Signed content

Figure 2.9 Enveloped signature

 48

portions of data. The use of XML encryption also facilitates to solve security

problems, including XML data eavesdropping.

XML encryption offers various benefits. An XML element containing XML

encryption information can act as a container for encrypted data or as a container

for encrypting key or both. XML encryption is capable to encrypt the whole XML

data or portions of it within an XML document (Geuer-Pollmann, 2002). XML

encryption allows direct inclusion of the encrypted contents into the container or

to reference the encrypted contents via the transform mechanism. XML

encryption offers key management facilities for symmetric wrapping of private

keys, private key transportation, and key agreement using Diffie-Hellman.

The structure for XML-encrypted data is shown in Figure 2.10 as described by

W3C. The <EncryptedData> element lies at the top of encrypted results.

<EncryptionMethod> element is the child element of <EncryptedData>. The

element of <EncryptionMethod> contains algorithms information for encryption

result generation. The decryption key information is contained in element

<KeyInfo>, which is used to decrypt encrypted-data. The <CipherData> element

is the final encrypted value. If hybrid encryption is used, the structure can also

<EncryptedData Id? Type? Encoding?>
 <EncryptionMethod/>
 <ds:KeyInfo>
 <EncryptedKey/>
 <AgreementMethod/>
 <ds:KeyName/>
 <ds:RetrievalMethod/>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue/>
 <CipherReference URI/>
 </CipherData>
 <EncryptionProperties/>
</EncryptedData>

Figure 2.10 Structure for XML encryption
(Imamura et al., 2002)

 49

include the <EncryptedKey> element, which contains the key-encryption key.

URIs can be used to specify what has been encrypted. This indicates that XML

encryption provides a flexible method to identify the encrypted objects. The

detailed element in XML encryption and related algorithms is shown in Figure

2.11.

The value of element <EncryptionMethod> is the identifiers of block encryption

algorithms. The major block encryption algorithms deployed are 3DES, AES-128,

AES-256, AES-192. Key Transport algorithms are used to specify the encrypting

and decrypting keys. Key transport algorithm includes RSA-v1.5 and RSA-OAEP

(Imamura et al., 2002).

Block Encryption
Symmetric Key Wrap

Key Transport

Key Agreement

Message Digest

Encoding

Canonicalization

Triple DES

SHA 256

SHA1

Diffie-Hellman

RSA-OAEP

RSA-v 1.5

AES-192

AES-256

AES-128

SHA 512

REQUIRED

RECOMMENDED

OPTIONAL

 Element Algorithms Requirement

Figure 2.11 Algorithms for XML encryption correspondence
with different elements according to W3C specification

RIPEMD-160

base64

Canonical XML

Canonical XML with comments

Exclusive XML Canonicalization

Exclusive XML Canonicalization
 with comments

XML Digital Signature

Message Authentication

 50

In order to judge the sequence of XML signature and XML encryption for the

same portions of XML data, the specification of “Decryption Transform for XML

Signature” was established (Hughes et al., 2002). Generally, signing an

encrypted XML data is meaningless in practice. When user encrypts the whole or

portions of signed XML data, it needs to identify the encrypted object for

decrypting. This specification provides an approach to solve the problem. This

has been established by the W3C’s XML encryption working group as an

additional specification with regard to the conversion processing that is performed

on XML signatures.

2.7 Summary
Traditional security technologies are the basis of XML security. This chapter

mainly introduces the traditional security techniques that are utilized in XML

security specifications. The XML security relative specifications published by

W3C and OASIS are the core of XML security technology, such as XML key

management satisfies key requirements for signature or encryption, XML

signature provides XML data authentication, and XML data confidentiality is

ensured using XML encryption technology.

XML key management specification provides public key management to support

XML security applications. The validation for digital certificate is a bottleneck, and

it increases the burden of the server. Without considering elements’ context

relationship which can be ensured by XML data integrity, an XML signature can

be copied to another XML data still keeping successful signature verification. In

addition, simply repeating XML signature to generate multi-signature will increase

the size of signature results, and this kind of multi-signature cannot support a

dependent signing process. Although XML encryption specification offers some

benefits, how to locate the information contained in cipher text has not been

addressed. After several rounds encryption, only the plaintext can be queried

while the information residing in cipher block cannot be identified. The issues

mentioned above will be investigated in detail in next chapter.

 51

Chapter 3 Literature Review

This chapter analyzes the revocation information validation approach for X.509

digital certificate. XML data integrity and relative solutions are investigated. The

XML multi-signature schemes are analyzed. The approaches for encrypted XML

data query processing are also investigated.

3.1 Revocation information validation for X.509 certificate
Certificate revocation is the action of declaring a certificate invalid before its

validity expired. There are two major approaches to check validity of a certificate

status, Certificate Revocation List (CRL), and Online Certificate Status Protocol

(OCSP).

CRL is a list issued and digital signed by a certificate authority (CA), and it

contains the serial number of certificates that they should not be used if they

have been revoked before their expiration date. This list is dated and also has an

expiration date. User must download a new CRL after it’s expired. However,

CRLs are too bandwidth and cannot support a good degree of timeliness (Myers

et. al, 1999; Micali, 1997, Goyal, 2004a; Arnes, 2000; Benjumea et al., 2007;

Goyal, 2007; Wazan et al., 2008). Several CRL relative approaches have been

proposed to improve the efficiency of digital certificate validation. Certificate

Revocation System (CRS) enables system to answer the user query with a high

efficiency (Micali, 1997; Micali, 2002; Goyal, 2007). The basic idea of CRS is as

follows. For certificate creation, the CA selects two random numbers 0Y and 0X ,

and computes)(0YHY = , where H is a hash algorithm such as SHA1.

Let)(),...,(),(3643651201 XHXXHXXHX === , where H is a hash algorithm,

the number 365 denotes the number of days in the year. Y and 365X are included

in the certificate and signed along with the other usual information.

36400 ,...,, XXY keep secret by CA. When the CA receives a validation request on

the i th day, CA makes two choices with checking CRL. If the certificate is

revoked, the CA releases 0Y , which can be verified by hashing and comparing

 52

with Y specified in the certificate. If the certificate is still valid, the CA

releases iX −365 which can be verified by hashing i times and comparing with 365X

specified in the certificate. However, CRS is difficult to be deployed in distributed

querying systems (Goyal, 2007). The communication between CA and directory

is too frequent, which shoots up the overall bandwidth cost of the system (Naor

and Nissim, 1998; Aiello et al., 1998; Goyal, 2007).

Certificate Revocation Tree (CRT) is another well-known approach for certificate

revocation solution (Kocher, 1998; Goyal, 2007). A CRT is based on the Merkle

hash function (Kocher, 1998). The tree leaves contain the serial number of the

revoked certificate which is included in a relevant CRL. The root of the tree is

signed by the CA. The certificate status proof for a certificate with serial number

consists of the path node siblings from the root to the appropriate leaf, in addition

to the signature on the root of the tree. Although the communication is low, the

data volume to be downloaded is still large. The overall cost is still relatively high.

The OCSP is another certificate revocation solution designed by IETF (Myers et

al., 1999). The protocol requires the security client to send a request to an OCSP

responder which is the server returning status information about a specific

certificate when asked. OCSP is an online service, and it has a high degree of

timeliness. Because the CA is required to create a signature for each query,

OCSP increases the communication burden between server and client (Goyal,

2007).

3.2 XML data integrity
General applications of data integrity could exist in many domains, including e-

government, e-commerce, e-financial services, e-business, e-banking, e-learning,

e-healthcare, mobile communications, heterogeneous networks, digital factories,

multi-agent systems, and grid computing (Wu et al., 2002; Chen and Lu, 2004;

Rushinek, 2002; Boritz and No, 2005; Jones et al., 2000; O’Neill, 2007; Yee et

al., 2006; Blobel, 2004; Dankers et al., 2002; Ekelhart et al., 2008; Karnouskos,

2005; Woerner and Woern, 2005; Oliveria et al., 2006; Cody et al., 2008). Wu

 53

and Chen described the need for data integrity when official documents are being

transmitted between government agencies for e-government in Taiwan (Wu et al.,

2002; Chen and Lu, 2004). O’Neill pointed out the importance of data integrity

through an assessment of a bank’s web service (O’Neill, 2007). IBM gives an

example of data integrity as follows: assume the data is a funds transfer and the

hacker alters a random piece of the data that happens to be the account number.

When the bank decrypts the data, the account number is not a valid account;

therefore, the data tampering is detected and the transaction is not completed.

However, assume instead that the data altered by the hacker is the amount of

money and, changed it from 1000 units to 9000 units (IBM, 2008). In this case, the

transaction would be completed using the incorrect amount. Research into this

area would be of great benefit.

There are two approaches to ensure integrity for XML data. The first tries to add

additional elements in XML data to record the integrity information. Hussain

maintained the integrity of XML signatures using the manifest element (Ekelhart et

al., 2008; Hussain and Soh, 2004). Mclntosh presented an element position

attack, and solved this problem by adding additional objects in XML data

(Mclntosh and Austel, 2005). Another approach is based on hash function

mechanism.

Mclntosh summarized the context dependent semantics for XML data integrity

with examples. The context dependent semantics for XML data integrity has been

summarized into three situations:

• Simple ancestry context

It means that an element has a specific position in an XML document. From

the element’s name, value, attributes, and its ancestors or children’s name,

the semantic meaning of this element can be completely derived (Mclntosh

and Austel, 2005).

 54

• Sibling value context

This situation means that the element has sibling elements with the same

name but with different semantic meanings (Mclntosh and Austel, 2005).

• Sibling order context

The element’s semantics are relative to their order in sibling elements. If the

order of sibling has been changed, it also affects the semantics of the

element.

In order to prevent authorizing the access requests with a mistake, Mclntosh

suggested that properly specified and enforced security policy should be

deployed. For an optional element context, an absolute XPath expression

references should be considered to adding specification of security policy.

Although Mclntosh presented sibling value context and sibling order value

context, he has not proposed proper approach to handle it. Without cryptography,

this kind of method is easily attacked by a hacker.

The second approach is based on a cryptography mechanism, and adopts a hash

function to ensure integrity. DOM-HASH is the first algorithm proposed by

Maruyama to calculate a hash value for XML data (Maruyama et al., 1999). In this

algorithm, MD5 and SHA1 were adopted to generate hash values with four

different node types related to XML data. The four node types include element,

attribute, processing instruction (PIs), and text. The detailed algorithm is as

follows.

).||.||.||.()(attrvpivtextvelemvhvdos =

where, v is the element set of XML data, h is a collision-resistant one-way hash

function.

This approach only satisfies the contents integrity of the XML data. It does not

provide integrity for subset of DTD (Brown, 1999).

 55

Similar to DOM-HASH, the XHASH algorithm has been proposed by Brown. The

XHASH makes use of two parameters: the first is the hash function such as

SHA1; the second (optional) can be used to determine how non-significant space

characters will be handled by default (Brown, 1999). The values for this attribute

are set as ‘default’ and ‘preserved’, and it is difficult to specify the non-significant

space characters which should be discarded (Brown, 1999).

Devanbu adopted the DOM-HASH and the Merkle hash function to maintain the

integrity of XML data queries (Devanbu et al., 2001). The aim of Devanbu’s

scheme is to assure that the client can obtain complete and correct answers

corresponding to their queries. The hash value of the XML document is

generated by using Merkle hash function. When client obtains a queried result,

the correctness can be verified by checking the related hash value.

Bertino also adopted the Merkle hash function to handle integrity of XML

documents publishing (Bertino et al., 2004). These two approaches provide a

solution to generate hash values of XML data based on the Merkle hash function.

The XML data and the Merkle hash function defined by Bertino:

Let),,,(EErVd ∅= be an XML data, whereV is a set of nodes in XML data d ,

r is the root node of XML data d , E is the set of edges, and Eφ is the edge

labelling function. h is a collision-resistant hash function (Bertino et al., 2004). Let

HS be the co-domain of h . The Merkle hash function associated with d denoting

as MhX is a function: HSV → such that, for each Vv ∈ :

��

�
�
�

∈

∈
=

e

c

a

VvifvNchildMhXvchildMhXtagnamevhcontentvhh

Vvifnamevhvalvhh
vMhX

v
))),((||||)),1((||).(||).((

)).(||).((
)(

�

where, a
V is the leaf node in XML data d , e

V is the non-leaf node in XML data d

‘||’ denotes the concatenation operator,),(vNchild c is used to obtain the children

of an element, and)...1(nN c ∈ is the child of node v (Bertino et al., 2004).

 56

The integrity approach proposed by Bertino can ensure both the schema and the

contents of an XML data. On the one hand, a subject can verify that contents of

an XML data have not been altered, e.g. that no modification occurs at the value

of an element’s content, or the value of a relative attributes. On the other hand, a

subject is able to verify that the XML data schema has not been modified. Attacker

altering the name of an attribute or an element tag can be revealed. Based on

cryptography, this kind of approach has a higher security level than the first

approach. However, the element’s attribute integrity has been ignored in this

approach (Carminati et al., 2005). Because of using Merkle hash function, the

virtual nodes will be increased when generating a hash value from bottom-up for

XML data, and this will lead to a low efficiency.

W3C published XML signature specifications in 2000 (Second Edition in 2008)

(Bartel et al., 2008; Reagle, 1999). This specification provides the format for data

integrity expressions in XML signatures, and gives the optional algorithm to

generate hash values, such as SHA-1, SHA-256. However, signed resources can

be copied to another document but still keeping signature valid, and this can be

utilized by an attacker to generate an authorized XML data.

Figure 3.1(a) and (b) are two different invoices for the book order. The authorized

entity signed the payment £160 in Figure 3.1(a). Figure 3.1 (b) also contains an

element <Payment> with value £70. An attacker may change the payment from

<Books>
 <Title>XML Security</Title>
 …
 <Amount>20</Amount>
 …
 <Payment>£160</Payment>
 …
 <Signature>
 …
 </Signature>
</Books>

<Books>
 <Title>XML Technology</Title>
 …
 <Amount>5</Amount>
 …
 <Payment>£70</Payment>
 …
</Books>

(a)

Figure 3.1 An example of forging a signature

(b)

<Books>
 <Title>XML Technology</Title>
 …
 <Amount>5</Amount>
 …
 <Payment>£160</Payment>
 …
 <Signature>
 …
 </Signature>
</Books>

(c)

 57

£70 to £160 in Figure 3.1(b), and copy the signature from Figure 3.1 (a) to Figure

3.1 (b). The forged document is shown in Figure 3.1 (c). In the forged document,

the signature still keeps valid.

3.3 XML multi-signature schemes

3.3.1 Multi-signature schemes for non-XML data

Multi-signature schemes for non-XML data include extended DSA, RSA, or

ElGamal schemes, signing sequence, broadcast signing architecture,

distinguished signing authorities, and order specify. Table 3.1 lists the

advantages and disadvantages of these schemes.

Table 3.1 Multi-signature schemes for non-XML data

Approach Advantages Disadvantages
Extended DSA, RSA, or EIGamal Easy to be

implemented
The size of multi-
signature results grows
with the increasing
numbers of signers.

Improved extended DSA, RSA, or
EIGamal (Itakura and Kiesler,
1990; Harn and Kiesler, 1989;
Kiesler and Harn, 1990; Ohta and
Okamoto, 1991; Boyd, 1991)

The size of multi-
signature results
has nothing to do
with the numbers of
signers.

Predefined signing
sequence.
Verifying the signature
with the knowledge of
signing sequence.

Undistinguished signing authorities
(Harn, 1994a; Harn, 1994b;
Hardjono and Zheng 1992; Michels
and Horster, 1996)

Signing and
verifying process is
independent to the
sequence of signing
process.

All signers sign the
same message.

Distinguished signing authorities
(Harn, 1999; Wu et al., 2001;
Mitomi and Miyaji, 2000; Wu and
Hsu, 2002; Huang and Chang,
2005; Yamamoto and Ogata, 2007)

Sign the message
which who is
responsible for.

The signing order is
not a mixed sequential
and broadcasting way.

Signing order specified (Doi et al.,
2000; Tada, 2002; Burmester et al.,
2004; Wang et al., 2006; Yang et
al., 2006)

The signing is a
mixed sequential
and broadcasting
way.

Inflexibility in adding or
deleting signers.

One of approach to construct a multi-signature for a message is to repeat the

scheme of DSA, RSA, or ElGamal. The major drawback of this approach is that

 58

the size of a multi-signature result grows with the increasing of the number of

signers (Wu et al., 2001).

In order to overcome the drawbacks mentioned above, Italura and Nakamura

presented a multi-signature scheme based on the RSA scheme (Itakura and

Kiesler, 1990). In this scheme, the size of a multi-signature result has nothing to

do with the numbers of signers. However, the signers have to follow the

predefined signing sequence to sign the document, and verify the signature with

the knowledge of signing sequence. Similar schemes also have been proposed

by (Harn and Kiesler, 1989; Kiesler and Harn, 1990; Ohta and Okamoto, 1991;

Boyd, 1991), which are based on extended RSA, DSA, or ElGamal schemes with

sequential multi-signature.

Harn proposed a multi-signature scheme based on a modified ElGamal digital

signature. In this scheme, the signature-generation and verification process is

independent of the sequence of signing process (Harn, 1994a; Harn, 1994b).

This scheme is known as multi-signature scheme which is based on broadcast

architecture. The similar schemes can be found in (Hardjono and Zheng 1992;

Michels and Horster, 1996). In these schemes, all signers sign the same

message, and it was defined as “undistinguished signing authorities” by Harn

(Harn, 1994b). It was defined as “distinguished signing authorities” if signers can

sign different portions of a document. “Undistinguished signing authorities”

indicates that all signers have the same responsibility for the signed document.

“Distinguished signing authorities” indicates that signers have different

responsibility for different portions of the signed document. However, multi-

signatures with distinguished signing authorities are needed in applications, e.g.

a company publishes a document that may involve the financial department and

engineering department to sign different sections of the document (Huang and

Chang, 2005).

A multi-signature scheme which has distinguished signing authorities proposed

by Harn in 1999 (Harn, 1999). In this scheme, signers can only sign the message

which he is responsible for. However, Li discovered an efficient insider attack on

 59

Harn multi-signature scheme in 2000 (Li et al., 2000). Wu proposed a “delegated

multi-signature scheme with document decomposition” in 2001 (Wu et al., 2001).

Wu’s scheme is more efficient in multi-signature-generation and verification.

However, Lu and Chen pointed out that Wu’s balanced strategy to delegate

subdocuments to qualified signers is problematic, because each signer should

sign the portions of the document that they are responsible for rather than the

portions of the documents based on some balanced strategy (Lu and Chen,

2004). Mitomi proposed a general model for multi-signature with message

flexibility in 2000 (Mitomi and Miyaji, 2000). Yamamoto improved Mitomi’s

scheme in 2007 (Yamamoto and Ogata, 2007). Wu proposed an ID-based multi-

signature scheme with “distinguished signing authorities for sequential and

broadcasting architectures” in 2002 (Wu and Hsu, 2002). Huang presented

“multi-signatures with distinguished signing authorities for sequential and

broadcasting architectures” in 2005 (Huang and Chang, 2005). Although these

models considered message flexibility, they have not considered the signing

order in a mixed sequential and broadcasting way.

To date, signing order specified multi-signature schemes are Doi’s model in

2000, Tada’s model in 2002, Burmester’s model in 2004, Wang’s model in 2005,

and Yang’s model in 2006 (Doi et al., 2000; Tada, 2002; Burmester et al., 2004;

Wang et al., 2006; Yang et al., 2006). There are two different major approaches

to deal with this directed series-parallel signing graph. Tada and Yang adopt a

series-parallel group, which are based on directed graphs (Tada, 2002; Yang et

al., 2006). Another approach presented by Burmester, who also represented the

group of signers by a graph, and then decomposed the graph to a tree

(Burmester et al., 2004). There are two obvious disadvantages in these schemes.

First, the scheme makes the signer order as a signature parameter, increasing

the complexity of multi-signature algorithm. Second, each signer needs to verify

the signing order before signing, and update the signing graph or decomposition

tree after signing. These disadvantages will lead to inflexibility in adding or

deleting signer group members.

 60

3.3.2 XML multi-signature schemes

As for the XML multi-signature, two schemes have been presented. The first is

based on a repeated DSA or RSA scheme. The second approach is proposed by

Lu based on delegated multi-signature scheme proposed by Wu.

• Repeat of DSA or RSA

This approach is deployed by W3C in XML signature specification (Bartel, 2008).

The process of repeated DSA or RSA can be described through following three

steps:

Step 1: Assigning XML data which need to be signed to each signer using XPath

expression, },,,{ 21 nd MMMX �= , where,),,1(niiM
�= is the data to be

signed.

Step 2: Each signer generate signature separately as:),(1

11 prive KMAS = ,

),(2

22 prive KMAS = ,…,),(n

privnen KMAS = , where, iS is the signed result,

()eA is the encryption function based on RSA or DSA to generate

signature results, and i

privK is the private key of the signers.

Step 3: Assembling the signed results to a single XML data, and

letting nSSSS ∪∪∪= �21 , where, S is the final signature. This means

that the final multi-signature result is a set of individual single signatures.

The major advantage of this approach is easy to be implemented. However, this

approach increases the XML data size when signers group is big, and cannot

support multi-signature generation under dependant situation.

• Delegated multi-signature scheme

Wu has presented the “delegated multi-signature scheme with document

decomposition” (Wu et al., 2001). In this scheme, a document is decomposed

into a set of subdocuments and then assigned to signers using a dispatch

algorithm. The scheme consists of four components (Wu et al., 2001): a group of

 61

signers, a system authority (SA), which provides system initialization such as

system parameters, private key and public key generation. A document

dispatcher (DD) is used to decompose document and delegate subdocument. A

signature collector (SC) collects and verifies the individual signatures created by

each signer.

The scheme consists of the private key and public key generation, the multi-

signature generation, and the multi-signature verification (Wu et al., 2001).

Stage 1: Private key and public key generation

SA chooses a large prime 5122≥p , a large divisor 1402≥q of 1−p , a generator

α of order q in)(pGF , and a hash function)()(pGFxh ∈ for any x . After

publishing hqp ,,, α , SA can accept the registration requested by any signing

group. Let },,,{ 21 nuuuG �= be the registered signer group, and ju is the

individual signer. After finished registration, SA generates a distinct private key

and public key pair),(jj yx for each Gu j ∈ , where qj Zx ∈ and

py jx

j mod
−

= α

The private key and public key pair),(YX for G are generated by using:

�
∈

=
Gu

j

j

qxX mod , ∏
∈

=
Gu

j

j

pyY mod

Stage 2: The multi-signature generation stage

DD decomposes M , which need to be signed, into set of subdocuments, and it is

denoted as: },,,{ 21 mwww �=Γ . Let jM be the subset of Γ delegated to ju . DD

assigns jM to ju . The multi-signature generation consists of seven steps.

Step 1: DD sends }),({ jMMh and)}({ Mh to ju and SC, respectively.

 62

Step 2: All Gu j ∈ extract jw from their delegated jM and cooperatively check

the integrity of M by verifying that)||||()(21 mwwwhMh �= , where “||” is

the concatenation operator.

Step 3: Each Gu j ∈ randomly selects an integer qj Zz = and computes

pr jz

j modα=
,

prR jj rMh

jj mod
)||(

=

and sends }{ jR to other participant signers and SC.

Step 4: Each Gu j ∈ computes

 ∏
∈

=
Gu

k

k

pRR mod ,

 qRMhhxRrMhzs jjjjj mod))||(()||((+=

and sends },,{ jjj srM to SC. Here,),(jj sr is the personal signature of

M for ju

Step 5: SC obtains jw from received jM and check the integrity of M by

verifying that)||||()(21 mwwwhMh �= .

Step 6: SC computes R and verifies),(jj sr by checking whether following

equation holds.

))(mod)(())||(()||(
pyr

RMhh

j

sRrMh

j

jjj α=

Step 7: If the personal signatures generated above are successfully verified, then

SC computes � ∈
=

Gu j
j

qsS mod and publishes),(SR as the multi-

signature of M forG .

Stage 3: The multi-signature verification stage

 Any verifier can check the signature by using the following equation.

))(mod)(())||((pYR RMhhSR α= , if this equation holds, then),(SR is

successfully verified.

 63

This scheme is more efficient in multi-signature-generation and verification.

However, its balanced strategy to delegate subdocuments to qualified signers is

problematic. In addition, this scheme only supports parallel signature-generation

scenarios, and cannot handle a multi-signature generation under a dependant

situation.

• Lu’s XML multi-signature scheme

Based on Wu’s delegated multi-signature scheme, Lu presented XML multi-

signature in 2004 (Lu and Chen, 2004). In this scheme, he first proposed signing

XPath expression instead of XML data itself.

In Lu’s scheme, there are four components: a group of signer G , a system

authority (SA), document decomposition (DD), and a signature collector (SC) (Lu

and Chen, 2004). DD decompose a document M into a set of subdocuments

},,,{ 21 mwww �=Γ using a set of rules },,,{ 21 mtttT �= , where it is the XPath

expression. Via XPath expression, one can easily obtain a subdocument iM . The

procedure for generating a multi-signature of M forG is as follows.

Step 1: DD sends },),({ jj TMMh and)}(),({ MhTh to ju and SC, respectively.

Step 2: All Gu j ∈ extracts iw from jM delegated to them and then cooperatively

checks the integrity of M by verifying)||||||()(21 mwwwhMh �= where

“||” is the concatenation symbol.

Step3: Every Gu j ∈ extracts it from jT , computes hash value)(MCw
iti = , and

verifies whether or not every newly computed iw is identical to the

received iw . If all iw are successfully verified, each ju randomly selects an

integer qj Zz ∈ , computes both

pr jz

j modα= , and

prR jj rTh

jj mod
)||(

= , and sends jR to other participant signers and SC.

 64

Step 4: Each Gu j ∈ computes both

∏
∈

=
Gu

k

k

pRR mod ,and (3.1)

qRMhhxRrThzs jjjjj mod)))||(()||((+=

and sends },,{ jjj srT to SC.),(jj sr is the personal signature of M for ju .

Step 5: SC checks the integrity of T by extracting it from the received jT and

verifying whether or not }||||()(21 mttthTh �= holds.

Step 6: To verify),(jj sr for every ju , SC computes R by Eq.3.1 and checks

whether or not the following equation holds.

))(mod)(())||(()||(
pyr

RMhh

j

sRrTh

j

jjj α=
.

Step 7: If all personal signatures generated in the previous steps are successfully

verified, then SC computes

�
=

=
Gu

j

j

qsS mod

and publishes),(SR as the multi-signature of M forG .

In Lu’s scheme, the XPath expression is used to transform an XML document

into subdocument (Lu and Chen, 2004). Let M be the XML data to be

cooperatively signed by the signers. XML data M can be divided into set of

subdocuments },,,{ 21 mwww � using XPath expression, and then signers only

need to sign the XPath expression instead of XML data itself. This scheme

decreases the communication overhead, although it has three major

disadvantages.

First, by division, },,,{ 21 mwwwM �= , the integrity checking for each

subdocument depends on the formula)||||||()(21 mwwwhMh �= . This

indicates that the document must be delegated entirely; otherwise the integrity

checking will be invalid. Supposing a document consists of five parts, and the

signers only need to sign three of them. The other two parts have not been

 65

delegated, and then the integrity checking will be failed. Second, the

subdocument integrity check needs the signers to check cooperatively online.

When the group of signers is small, this is possible, but it is impractical when the

group of signers is very large. Third, the scheme only provides broadcast

(parallel) signature-generation scenarios. It cannot satisfy the signing process

under a dependent multi-signature situation. For example, the company policy is

set up in a way that the sequence of approval is important and has to be

respected: before launching a project, the financial department has to approve

the project. Lu’s scheme cannot deal with this application scenario.

3.4 Encrypted XML data querying
With the widely applications of XML, it is necessary to handle sensitive

information in XML data, and XML data confidentiality becomes an important

issue (Yang et al., 2006). The sensitive parts of the XML data have to be

protected in case unauthorized access. There are two approaches to protect the

sensitive information in XML data, one is using access control mechanism, and

the other is using encryption technology, especially XML encryption technology.

Most cases, the access control mechanism can be bypassed and encryption

technology is a must (Yang et al., 2006). When XML data is transmitting through

an untrusted channel, it needs encryption technology to protect sensitive

information (Fan et al., 2004; Agrawal et al., 2004). However, how to query

encrypted XML data has not been addressed in XML encryption specification.

Querying encrypted XML data schemes or survey can be found in (Brinkman et

al., 2004; Feng and Jonker, 2003; Wang and Lakshmanan, 2006; Lee and

Whang, 2006; Gao et al., 2008; Ünay and Gündem, 2008; Jammalamadaka and

Mehrotra, 2006; Yang et al., 2006). The basic idea for encrypted XML data query

is to build index information for encrypted XML data. Two types of index

information are deployed for encrypted XML data. The first one is the structural

index information and the other is the value index information (Ünay and

Gündem, 2008). Structural index is used to determine the XPath matches any

paths in a submitted query. The value index is used to support the range query.

These indexes are deployed in either at the server side or client side (Ünay and

 66

Gündem, 2008). Maintaining index at the server side can be found in (Feng and

Jonker, 2003; Wang and Lakshmanan, 2006; Lee and Whang, 2006;

Jammalamadaka and Mehrotra, 2006) and maintaining index at the client side

can be found in (Gao et al., 2008; Yang et al., 2006).

3.4.1 Hash function based index building

Feng and Jonker built the index information using hash function. The basic idea

is to augment encrypted XML data with encodings which characterize the

topology and contents of each XML data, and then filter out candidate data for

decryption and query execution by examining query conditions against these

encodings. The searching encrypted XML data is comprised of three phases

(Feng and Jonker, 2003): query preparation, identify candidate, and query

execution.

• Query preparation

In this phase, XML data and DTD are encoded before encryption using hash

function)(pHashFunc . Each node in path p is calculated with Base26Value

and calculated the module of the hash table size, which is assigned by the

user. The encoding result is a pair of element and relative value),(valname cc .

An example is shown in Table 3.2.

Table 3.2 An example of pairs of element and value with their hash values

Element/Attribute namec , Value valc)(namecHashFunc)(valcHashFunc

1c = (Name, “Baolong Liu”) 0 1

2c = (number, 3209446589721205) 1 10

3c = (Issuer, “HSBC”) 3 0

4c = (Expiration, “04/12”) 2 25

… … …

 67

• Identify candidate using hashing paths

Given a query, it can be matched to a path p , and compute the hash value

for p using the same hash function)(pHashFunc , then consult with the table

generated in phase 1 to obtain possibly items containing path p .

• Query execution

The identified results from phase 2 are decrypted into plaintext, on which the

query can be executed.

The major contribution of the method is using hash function to generate XML

data structure encodings. When DTD for XML document has been changed, it

needs to re-compute all related hash values. In consequence, it is inefficient

when XML document is updated frequently. In addition, the hash function

adopted may generate hashing collision, and this needs to be resolved.

3.4.2 Discontinuous structural index (DSI)

A discontinuous structural index (DSI) for encrypted XML data has been

proposed by Wang and Lakshmanan (Wang and Lakshmanan, 2006). The DSI is

built based on interval-based labeling scheme. In DSI, the root node has been

assigned the interval [0,1], the children nodes are assigned an interval which

within the range of their parent’s interval. Two index tables are used for the

structural index. One of it is the encrypted XML data block as shown in Table 3.3

(a), and another is the DSI table as shown in Table 3.3 (b).

Table 3.3 Structural index tables

 (a) (b)

ID Represented Interval
 1 [0.27, 0.32]
2 [0.65, 0.659]

In the query processing, the query processor translates the query into encrypted

form against the structural index table. The processor replaces each element

Tags DSI index
PaymentList [0, 1]
PaymentInfo [0.14, 0.46]
Name [0.16, 0.2]
CreditCardInfo [0.27, 0.32]
… …

 68

name in XPath with corresponding encrypted tags in the structural table (Ünay

and Gündem, 2008). The encrypted block id can be found by joining query the

two tables.

The major disadvantage of Wang’s scheme is that it increases data size by

scaling encrypted XML data, and this will increase the time cost in query

processing. Another disadvantage is that the scheme cannot satisfy the security

against inference attack. An inference attack is a data mining technique

performed to analyzing data in order to illegitimately gain knowledge about a

subject (Krumm, 2007). In scheme DSI, attackers may infer nodes relationship or

infer whether a node resides in encrypted block by using DSI index. In addition,

this scheme is not efficient in XML data insertions when the data updating

frequently (Ünay and Gündem, 2008).

3.4.3 Query-Aware decryption

Lee and Whang proposed Query-Aware decryption for encrypted XML data (Lee

and Whang, 2006). Based on Query-Aware scheme, Xia designed architecture

for XML encrypted data querying (Xia et al., 2009). In these schemes, the index

information is kept at the server side. The index information consists of three

columns. The first column is the key name. The second column is element name,

and the third is the occurrences, which is expressed as the Dewey number of

elements in the second column (Ünay and Gündem, 2008). All three columns are

encrypted using the keys in the first column. Table 3.4 shows an index for

payment information.

 69

Table 3.4 Index for payment information

Key name Element name Occurrences

Null PaymentList 1

Null PaymentInfo 1.1

Null Name 1.1.1

K1 CreditCardInfo 1.1.2

Null Address 1.1.3

K1 Number 1.1.2.1

K1 Issuer 1.1.2.2

… … …

The following steps illustrate the querying process. Assuming a client holds the

key k1, and then submits a query “//PaymentInfo//Issuer”. The query processor

decrypts the field of key name using k1. The column element name is decrypted

using k1. The field occurrences of the row associated with element type “Issuer”,

which is requested in the query, is decrypted by the processor (Lee and Whang,

2006; Ünay and Gündem, 2008). The position of element type “Issuer” is at the

node with number 1.1.2.2, and encrypted data element is included in the node

with Dewey number 1.1.2 (Lee and Whang, 2006; Ünay and Gündem, 2008). The

node with Dewey number 1.1.2 is returned and decrypted.

Although the scheme proposed by Lee and Whang is efficient to match the XPath

in querying, it has an important security issue. When a query is being processed,

the key applied to decrypt index table is disclosed to server, and this may lead to

potential security problems. Another disadvantage of the work is that it cannot

support range query without decrypting all encrypted blocks. It will also lead to

other nodes re-labelled when inserting the new XML data.

3.4.4 Scheme based on random number

Encrypted XML data querying is processed by both maintaining index information

at the server side and the client side proposed by Schrefl (Schrefl et al., 2005;

Ünay and Gündem, 2008). In the presented scheme, each possible path is stored

with unique identifier as shown in Table 3.5.

 70

Table 3.5 Each possible path stored at the client side

Path ID Path Schema

PS1 PaymentList/PaymentInfo*/Name

PS2 PaymentList/PaymentInfo*/CreditCardInfo

PS3 PaymentList/PaymentInfo*/Address

PS4 PaymentList/PaymentInfo*/Amount

PS5 PaymentList/PaymentInfo*/ CreditCardInfo/Number

… …

There are two kinds of hash results maintained at the server side. First table uses

path instances as key and the second table uses path values as key as shown in

Table 3.6 (a) and Table 3.6 (b) (Schrefl et al., 2005; Ünay and Gündem, 2008).

Table 3.6 Index information at the server side

(a)

Cryptographic Hash (PI) E(value, k, nonce) Nonce

H(PS1-1) E(Baolong Liu, k, 10) 10

H(PS1-2) E(Jack Xia, k, 11) 11

H(PS5-1) E(3209446589721205, k, 12) 12

H(PS5-2) E(446534762218 5421, k, 13) 13

… … …

(b)

Cryptographic Hash (PS-V) E(PI*, k, nonce) Nonce

H(PS1-Baolong Liu) E({1}, k, 14) 14

H(PS1-Jack Xia) E({2}, k, 15) 15

H(PS5-3209446589721205) E({1}, k, 16) 16

H(PS5-446534762218 5421) E({2}, k, 17) 17

… … …

Based on index information above, the querying process is described as follows,

assuming that the client submits a query is:

 71

/PaymentList/PaymentInfo/[Number=”3209446589721205”]/Name.

The client retrieves the path id of

/PaymentList/PaymentInfo*/CreditCardInfo/Number is PS5 in Table 3.5. The

client then computes H(PS5-3209446589721205), the value returned is E({1}, k ,

16). Firstly, the client decrypts the reply using key k together with nonce and finds

out that the answer is as first instance {1} of “PaymentInfo” in the path. Secondly,

the client filters the card number path and adds the “/name” path to the query.

The client knows that /PaymentList/PaymentInfo/Name path is PS1. Now the

query becomes /PaymentList/PaymentInfo[1]/Name which is PS1-1. The client

executes function H(PS1-1), finally the server returns the encrypted value with its

nonce E(Baolong Liu, k, 10). Through decryption results returned, the client can

get the final query results expected.

The approach adopts random number to prevent frequency based attacks,

because the same plaintext can get different encryption results with different

random number. One of the disadvantages is the multiple rounds of

communication between the server and the client when a query is processed,

and it has a high requirement on bandwidth (Ünay and Gündem, 2008). Another

disadvantage is that it cannot support range query. In addition, the computing

hash function is a time-consuming task, when XML data is changed, it is need to

re-compute the hash results for XML data, and it will increase the system burden.

3.5 Summary
This chapter has investigated the current situations of XML security. Two main

approaches for revocation information validation for X.509 digital certificate were

investigated. CRLs are too bandwidth and cannot support a good degree of

timeliness. The improved CRLs still has a high data volume download. The CA is

required to create a signature for each query in OCSP, so the communication

burden is increased between the server and clients.

Existing integrity models only generate a hash value for XML data content. Using

Merkle hash function to generate hash values has a low efficiency because the

 72

process will increase the numbers of virtual nodes, and the hash times will also be

increased because of increased virtual nodes. Without considering XML data

features, these solutions cannot protect the structure integrity and context-

referential meaning. This results that a signed XML data can be copied to another

document but still keeping signature valid.

The main drawback of repeated DSA or RSA of XML multi-signature is that the

size of a multi-signature result grows with the increasing of the number of

signers, and the time for verifying the multi-signature is equal to the total time for

verifying all personal signatures individually. Lu first presented signing XPath

expression instead of the message itself. In this scheme, the document must be

delegated entirely; otherwise the integrity checking will be invalid. The

subdocument integrity checking needs the signers to check cooperatively online.

When the group of signers is small, this is possible, but it is impractical when the

group of signers is very large. The scheme only provides broadcast (parallel)

signature-generation scenarios. It cannot satisfy the signing process under a

dependent multi-signature situation.

In a scheme for encrypted XML data query based on index information

mechanism, two major points should be considered. The first is that avoids

unnecessary encrypted blocks being decrypted, and most of existing scheme

achieved this objective. Considering frequently changing of XML data, the

efficiency of index information updating should be considered. The second point

has not been taken into account by researchers. Most cases in existing

literatures, the XML document update will lead to a global index information

updating. There should have a scheme with considering updating efficiency for

index information. In addition, the sensitive nodes in internal structure of XML

data are confidential, so simply substituting values by crypto-index may infer the

structural information to the third party.

 73

Chapter 4 XML-based X.509 digital certificate

A novel revocation information validation approach for X.509 digital certificate is

proposed based on XML digital signature technology. Two-party identity

authentication process for presented approach is described. The evaluation is

also made to verify the efficiency of improved X.509 certificate.

4.1 Introduction
X.509 digital certificate plays an important role in identity authentication. Although

XKMS makes PKI deployment easily, it still needs to check the validation of a

digital certificate. One of the main concerns associated with digital certificate is

that mechanism for revocation validation of certificate is required (Nielsen and

Hamilton, 2005; Rivest, 1998; Housley et. al, 2002; Liu et. al, 2008; Noor, 2008).

Investigation on revocation information validation for X.509 digital certificate has

demonstrated that existing techniques for certificate revocation validation are the

bottleneck of a PKI or XKMS system. To alleviate the problem, this chapter

proposes a novel idea to check certificate revocation information validation by

using XML signature technology. XML signature technology enables a user to

sign arbitrary portions of the message. After the XKMS issued a new certificate,

the certificate owners can add additional information for the latest status of the

certificate with their signature. Certificate owner’s signature is only used to

provide evidence for revocation information of the certificate. It does not need to

query XKMS or CA for revocation information of such certificate because the

certificate already contains the status information.

4.2 Structure of X.509 certificate
The structure of an X.509 v3 digital certificate in XML format is shown in Figure

4.1 (ITU-T, 1997).

 74

Based on the structure of X.509 v3 shown in Figure 4.1, the mathematical symbol

expression of X.509 v3 digital certificate is

))),||((||||(,,, CAprivApubAApubAA KKIDSKIDCert = (4.1)

where, ACert is an original X.509 certificate for entity A issued by a CA.

AID denotes identity of entity A, such as subject name or email address. The

AID corresponds to the element <Subject> in Figure 4.1. ApubK , is entity A’s

authenticated public key from the current date iD to the future date eD , where

ApubK , corresponds to element <PublicKeyInfo>, iD corresponds to element

<NotBefore>, and eD corresponds to element <NotAfter>. “||” denotes the

concatenation operator.),(privKMS represents signature algorithm in Figure 4.1.

M is the message to be signed, and privK is the private key. The certificate

provides a binding of identity AID to public key ApubK , with CA’s signature.

4.3 XML-based X.509 certificate (X-certificate)
Based on advantages of XML signature technology, the thesis makes an

improvement on X.509 certificate to improve the efficiency of digital certificate

<Certificate>

 <Version/>

 <SerialNumber/>

 <AlgorithmID/>

 <Issuer/>

 <Validity>

 <NotBefore/>

 <NotAfter/>

 </Validity>

 <Subject/>

 <PublicKeyInfo>

 <PublicKeyAlgorithm/>

 <SubjectPublicKey/>

 </PublicKeyInfo>

 <SignatureAlgorithm/>

 <CerificateSignature/>

</Certificate>

Figure 4.1 Structure for an X.509 v3 certificate

 75

revocation validity. The improved x.509 certificate is named as X-certificate. The

X-certificate contains two parts, the first is the X.509 digital certificate, and the

second part is the status information added by certificate owner.

4.3.1 Definition for X-certificate

The basic idea is that after received
ACert from CA, the certificate owner can

attach revocation information at the end of
ACert to generate new certificate

xmlC .

The X-certificate is defined in formula (4.2).

))),||((||(,

'

AprivAxml KTSNSCertC = (4.2)

))),||,,,((||(,

'

21 ApriviA KTsnsnsnSCert �=

))),||((||||||((,,, CAprivApubAApubA KKIDhSKIDT=

)))),||||||||(((|| ,

'

21 Aprivi KTsnsnsnhS �

• where, ACert is the certificate issued by CA. This is used to provide the

binding of entity A to relative public key ApubK , .

• SN denotes revoked certificates, and },,,{ 21 isnsnsnSN �= . where, isn

denotes the reference number of revoked certificates. This information

can be obtained from CA and then checked by certificate owner.

• T is the timestamp of CA’s signature, and 'T is the timestamp of

certificate owner’s signature.

• h is a one-way hash function which is used to generate hash values.

•),(privKMS denotes signing function of certificate authority, M is the

message to be signed, and privK is the private key. The formula (4.2)

should include two signatures generated by CA and certificate owner

respectively, they only sign information which they are responsible for.

When a client holds an entity’s certificate, it is an invalid certificate if the series

number belongs to SN . Otherwise, the client can confirm present status by

verifying two signatures without querying the CA. If one of the two signatures is

invalid, the certificate is invalid. When CA’s signature is invalid, it means that the

 76

identity is not identical to public key, and when certificate owner’s signature is

invalid, it indicates that the certificate has been revoked. Compared to using a

certificate server, the X-certificate’s status checking is off-line, and this approach

reduces the complexity of XKMS or PKI systems because it eliminates the

requirement for additional revocation checking from certificate server.

Correspondingly, the communication burden between server and client is

alleviated.

4.3.2 Two-party authentication process based on X-certificate

A digital certificate records the information necessary for encryption or verifying

digital signature. The protocol for authentication and confidentiality of X-certificate

can be described as follows.

• Authentication process for purpose of verifying signature

Step 1: EntityBKEntityA Aprivxml KMSC

Apriv  →
),(,

,
,)(

Where, AprivK , is the private key of entity A. xmlC is the certificate signed by CA

and certificate owner A.),(privKMS is the signed information to be transferred to

entity B. Step 1 can be described as: entity A sends signed information with X-

certificate to entity B.

Step 2: },{ invalidvalidEntityB xmlC→

With the certificate xmlC , entity B can obtain public key pubK of entity A. Entity A’s

signature can ensure the status of pubK . The signature of CA ensures the identity

of entity A binding to relative public key pubK . Step 2 is that entity B verifies the

validity of received certificate. This step includes two sub-steps: verify the identity

and relative public key with CA signature, and check certificate status by verifying

signature of entity A. If certificate xmlC received is valid, it can be used to verify

the signed information.

 77

• Authentication process for purpose of encryption

Step 1: EntityAEntityB xmlrequestC →

This process shows that entity B wants to obtain the public key of entity A, and

send a request to entity A for certificate xmlC .

Step 2: EntityBKEntityA xmlC

Apriv →)(,

This round describes the entity A sending the certificate to entity B the same as

step 1 for verifying signature purpose, but without additional signed information.

Step 3: },{ invalidvalidEntityB xmlC→

With the certificate xmlC , entity B can obtain public key pubK of entity A. Entity A’s

signature can ensure current status of delivered certificate.

4.4 Evaluation

4.4.1 Evaluation methods

The evaluation of X-certificate is divided into two parts. Firstly, the size of the

required data structure is calculated. Secondly, the transferred data volume in

revocation is evaluated.

4.4.2 Size evaluation

Figure 4.2 illustrates the size of an X-certificate. The size of each field is

calculated by using software BERViewer v2.1.1 (Available at:

http://www.freedownloadscenter.com/Utilities/Misc__Utilities/BERViewer_Downlo

ad.html, accessed on October 2010). BERViewer is the software that allows user

to view encoded files, such as X.509 certificate. It can also analyze each field

with length and values.

 78

Table 4.1 lists the size of different kinds of validation mechanisms, size of X.509,

and X-certificate. Except for X-certificate, other parameters are the same as from

the ones proposed by Arnes and Hormann (Arnes, 2000; Hormann et al., 2006).

The X.509 CRL is downloaded from W3C Server CA

(http://ca.csail.mit.eud/drl/w3c-server.crl, accessed on October 2010). The

downloaded “empty” (before any revocation) CRL is about 4 KB. The real size of

X.509 CRL in Table 4.1 is also calculated by using program BERViewer v2.1.1.

Table 4.1 Size of different mechanism

4.4.3 Efficiency evaluation

In application, a CA is assumed to manage users between 000,1=N and

000,100=N (Hormann et al., 2006). A typical validity period of the issued

certificate is one year. For the probability of certificate revocation, this thesis

takes 10%, i.e. the probability that a certificate will be revoked before its

expiration. Table 4.2 lists the parameters to be measured.

Table 4.2 Parameters for evaluation
Parameters Description Value
N Certificate users 1,000; 100,000

P Percentage of certificate revoked 10

Q

Status requests per day per user 1;10;20

U Percentage of user requesting

content

1;5;10

F Percentage of user providing content 10;50

Parameters Size Description Value

(bytes)

CertS X.509 v3 certificate 1018

CRLS X.509 CRL 39, 400

qOCSPS Re
OCSP Request 449

spOCSPS Re
OCSP Response 459

CertXS − X-certificate 1185

Version SerialNum

SigAlgId

Issuer Validity Subject PKIInfo

Extensions SigAlgId Signature SN Signature

8 11 18 193 227 389 552

552 870 1018 1020 1037 1185

Figure 4.2 Size of X-certificate (bytes)

853

 79

For CRL model, the data volume transferred during one day depends on the

parameters U and N . The transferred data volume during one day is determined

by Eq (4.3) (Hormann et al., 2006).

 UNPNvCRL)40039(+= (4.3)

In the OCSP scenario, Eq (4.4) is used to determine the data volume created

during one day (Hormann et al., 2006).

 QUNSSv spOCSPqOCSPOCSP)(ReRe += (4.4)

The X-certificate contains the status information, and user does not need to

request status information from the server, therefore, the data volume of X-

certificate generated is relative to parameter N , P andU . Eq (4.5) describes the

data volume created using X-certificate during one day.

 NPUv certX 1185=−
 (4.5)

Figure 4.3 shows the total data volume transferred during one day for users of

1,000. In a situation of 000,1=N , the OCSP scheme is performed worst in most

of the cases. This means that the usage of OCSP creates the biggest data

volume. The CRL approach performs better than the OCSP scheme except for

)5,1(),(=UQ and)10,1(. X-certificate always shows the best efficiency in data

volume transferring, compared to other two approaches.

Figure 4.3 Data volume for N=1,000

Data volume for N=1,000

0

500

1000

1500

2000

(1
,1

)
(1

,5
)

(1
,1

0)

(1
0,

1)

(1
0,

5)

(1
0,

10
)

(2
0,

1)

(2
0,

5)

(2
0,

10
)

(Q,U)

S
iz

e
(K

B
)

CRL OCSP X-Certif icate

 80

For users of 000,100=N , the CRL model is obviously the most storage cost as

shown in Figure 4.4. The OCSP performs better, and X-certificate shows again

the best efficiency because of its simple status information validation approach.

Because the X-certificate user does not need to query status information from the

CA, it decreases the times of communication between and clients, and further

decreases the data volume transferred. For CRL approach, the data transferred

contains the user request and the size of CRL, and it increased the total data

volume. In the OCSP solution, the validation includes request and response

process, so it increases the data volume transferred.

4.5 Discussion and analysis
The discussion criteria listed in this section are based on a list of general criteria

(Hormann et al., 2006; Arnes, 2000; Adams et al., 2001; Zhang, 2003).

• Timeliness
The timeliness of CRL depends on the length of the period between the

updating. The direct way to improve timeliness for CRL is to short the update

period. However, the certificate server’s burden will be increased significantly

if the CRL is updated frequently. The timeliness of OCSP heavily depends on

what approach the OCSP responder is used to gather the revocation

information. Even though OCSP provides real-time replies, the revocation

information carried may not be fresh if the OCSP responder acquires its

Figure 4.4 Data volume for N=100,000

Data volume for N=100,000

0
100
200
300
400
500

(1
,1

)
(1

,5
)

(1
,1

0)

(1
0,

1)

(1
0,

5)

(1
0,

10
)

(2
0,

1)

(2
0,

5)

(2
0,

10
)

(Q,U)

S
iz

e
(M

B
)

CRL OCSP X-Certif icate

 81

information through the use of CRL. When a certificate has been invalided,

the certificate owner is the first entity knowing certificate status. Based on this

fact, X-certificate can update status information in time. When an entity

obtains an X-certificate from certificate owner, the X-certificate has the latest

status information.

• Scalability
Currently, two types of CRLs exist: base CRLs and delta CRLs. Base CRLs

maintain a complete list of revoked certificates while delta CRLs maintain only

those certificates that have been revoked since the last publication of a base

CRL. The major drawback of CRLs is their potentially large size, which limits

the scalability of the CRL approach (Komar et al., 2010). The large size adds

significant bandwidth and storage burdens to the CA and relying party, and

therefore limits the ability of the system to distribute the CRL. Bandwidth,

storage space, and CA processing capacity can also be negatively affected if

the publishing frequency gets too high. OCSP solved the problem of

scalability experienced by CRL, because it requests certificate status on

demand and only for specific certificate. The periodic downloading of large

files is no longer necessary. As to X-certificate, the status information has

been contained in the certificate contents, it does not need to download

revocation information, and then the X-certificate has a good scalability.

• Security

When revocation information generated, it means that the information is from

an authenticated entity, and non-repudiation. As the CRL is a 2-party

scheme, only the CA has to be trusted. OCSP is a 3-party scheme, since

both CA and the OCSP server have to be trusted. The OCSP server has to

be trusted to gather authenticated revocation information and produce correct

and digital signed responses to each request. X-certificate also is a 2-party

scheme. It provides integrity, authentication, and non-repudiation through two

digital signatures. The signature generated by CA ensures the public key and

relative identity, and certificate owner’s signature provides revocation

information. X-certificate can not only provide the binding of public key to

 82

relative identity securely, but also can ensure revocation information not

being forged, e.g. prevent man-in-the-middle attack.

• Simplicity
Simplicity means that the revocation scheme is easy to be deployed in

practice. The CRL scheme is easily managed by adding a new entry to

current revocation list for each update period and distributed this CRL to its

repository. OCSP specifies the behaviour of the OCSP server and the OCSP

end-entity. However, the management of the OCSP server is a time-

consuming task, since the number of server can be quite high. X-certificate

only needs to register at CA after revocation information has been changed

by owner, and it will not increase additional service compared to CRL and

OCSP.

• Compatible with XKMS

The X-certificate proposed in this chapter is an improvement of X.509

certificate. It still holds the original architecture of X.509 certificate. It can be

used as an <x.509data> in XKMS without changing. With the X-certificate, the

X-certificate owner has the same operation as X.509, e.g. it needs to be

registration, reissue, and so on. It only offers benefits to the certificate users.

With X-certificate, a client can validate the certificate easily.

4.6 Summary
A novel revocation information validation approach for X.509 digital certificate

was proposed in this chapter. This approach reduces the complexity of XKMS or

PKI systems because it eliminates the requirement for additional revocation

checking from XKMS or CA, and in consequence, the communication burden

between server and client is alleviated. The authentication processes of X-

certificate show that the presented approach can satisfy identity authentication for

signature and encryption purpose. Through evaluation, the approach has a

higher efficiency than existing revocation checking solutions, such as CRL,

OCSP. Analysis indicates that the presented approach is secure. The approach

is an off-line certificate validation service, and it is easy to be deployed.

 83

Chapter 5 XML data integrity based on

concatenated hash function

This chapter presents the XML data integrity requirements. Based on the

presented XML data integrity requirements, the following section builds the

integrity model for XML data. The specifications for proposed integrity approach

are described. The testing and evaluation are also executed.

5.1 Introduction
Existing integrity models only generate a hash value for XML data content without

considering XML data features. For non-XML data formats, a user can directly

generate hash value of the data content to ensure integrity, but protecting data

content integrity alone is not enough for XML data. Besides data content integrity,

XML data integrity should also protect element location information and element

context meaning under a fine-grained security situation. Location information of an

XML element refers to the position of this element in the XML data (Mclntosh and

Austel, 2005). An element has an entire meaning related to its position in XML

data, and will lose original meaning if the position has been changed. XML data

integrity should also protect location information of an XML element in XML data.

Another factor which affects the meaning of XML elements is the context

relationship. The element will no longer have its original meaning without context

relationship in an XML data, and the thesis defines this as context-referential

integrity. In other words, an XML element has an entire meaning only related to

other elements in the same XML data.

This chapter aims to present XML data integrity requirements combined with XML

data features. Based on the XML data integrity requirements proposed, it

proposes an integrity model for XML data, and improves the efficiency of hash

value-generation for XML data.

 84

This chapter proposes an XML data integrity model named as CSR. The model

consists of three parts, and CSR is an acronym for these parts: ‘C’ for content

integrity, ‘S’ for structure integrity, and ‘R’ for context-referential integrity. The

three parts are combined with the concatenated hash function. Content integrity is

protected using the concatenated hash function. Structure integrity is used to

protect the location information of an element in XML data by hashing an absolute

path string from the root node. Finally, context- referential integrity protects the

integrity of context-related elements. This chapter also describes the combination

of the model with XML specification, and integrates the model into the XML

signature.

5.2 Theory guidance for XML data integrity
In order to ensure integrity, there are means to ensure the information integrity,

such as hashes or check-sum mechanisms (Geuer-Pollman, 2004). Both

approaches can be used to find changes occurring in original message. But

hashes are focused on malicious attack while check-sums are deployed to find

coincidental changes (Brandt and Bonte, 2000).

In this thesis, data integrity is ensured by a hash function mechanism. The

reasons of adopting a hash function as an integrity method is (Geuer-Pollman,

2004): checksums are usually applied in detecting accidental data changing.

Checksums provide low security level against a malicious attack because their

mathematical structure makes them easy to be broken. An example is CRC

series. A hash function has one-way and collision-resistant features with a

complex mathematical model, and it provides a higher level security than the

checksum.

5.3 XML data integrity model CSR based on concatenated
hash function

The integrity model to be presented is referred to the model DOM-HASH and the

model proposed by Bertino although the construction process is different. The

integrity model proposed by Bertino is based on Merkle hash function (Bertino et

al., 2004). The integrity model CSR is constructed based on the concatenated

 85

hash function. Just like the Merkle hash function, the concatenated hash function

also is designed to handle tree structure hash process. The reasons of adopting a

concatenated hash function to construct the integrity model for XML data is:

concatenated hash functions can handle arbitrary tree structure, but the Merkle

hash function mainly deals with binary tree structure (Merkle, 1989). A

concatenated hash function is more suitable to handle XML data. Concatenated

hash functions can decrease the numbers of hash processes, so it has higher

efficiency in hash value-generation for XML data than the Merkle hash function.

The basic idea of integrity model CSR is that content integrity, structure integrity,

and context-referential integrity are combined with the concatenated hash

function. This section first presents the requirements of XML data integrity, and

then describes the model definition.

5.3.1 XML data integrity requirements

In order to illustrate the requirement of XML data integrity, an example is given in

Figure 5.1, and it is a real application document derived from a website. Note that

some details have been omitted.

001 <Certificate>
002 <Title>Certificate of calibration</Title>
003 <RefNumber>TDFRG</RefNumber>
004 <CertificateDate>12/10/2008</CertificateDate>
005 <Description>A single-mode Fibre Attention...</Description>
006 <Measurements>
007 <Description>The measurement of the spectral...</Description>
008 <Table>Designed figure used in measurement</Table>
009 </Measurements>
010 <Results>
011 <Description>The total attenuation...</Description>
012 <Graph>Chart related to measurement results</ Graph >
013 <Table>Figure of measurement results</Table>
014 <Results>

 �
015 </Certificate>

Figure 5.1 A certificate of calibration

 86

• Content integrity (CI)

The XML data contents refer to element name, attribute, and values of an

element or sub XML data. Content integrity means that XML data content

will not be changed or destroyed in transmitting or storage. This is ensured

by generating a hash value of XML data. As shown in Figure 5.1, content

integrity for element ‘Title’ should include tag name ‘Title’ and its value

‘Certificate of calibration’.

• Data structure integrity (STI)

An XML data structure integrity protects the location information of an

element in XML data (Mclntosh and Austel, 2005). It means that if the

location of an element in the XML data is changed, it will lead to an invalid

verification. Location information of an XML element refers to the position

of this element in the XML data. Element location information consists of

three parts: parent, level, and order in sibling. This position helps users to

understand the meaning of the element. An element may have different

meanings when it is located in different positions in XML data. As shown

in Figure 5.1, there are three ‘Description’ elements in line 04, 07, 11. The

‘Description’ element has a completely different meaning related to its

location: line 04 is a description for certificate information; line 07 is a

description for measurement; line 11 is the description for measured

results. Location information for an XML element is an important aspect

and needs to be protected.

• Context referential integrity (CRI)

When adopting XML data format, without considering element context

relationship, only one element will also lose its original meaning. As shown

in Figure 5.1, the measurement result has a completely meaning related to

measurement method or technique deployed in the certificate. The

element ‘Measurements’ and the element ‘Results’ in Figure 5.1 are

generated by different responsibilities. It cannot be signed by only one

 87

user, or signed together, because each user is only responsible for own

role. Under this situation, element ‘Certificate/Results’ has a completely

meaning that is only related to element ’Certificate/Measurements’. It

means that this kind of testing results occurrence corresponds to a specific

given measurement. In other words, an XML element has an entire

meaning only when related to other elements in the same XML data, and

these elements are defined as context-related elements in this thesis.

Another example is shown in Figure 5.2.

As shown in Figure 5.2, the signature is generated on element ‘Payment’.

However, element ‘Payment’ has a complete meaning that is only relating

to element ‘Amount’. The context-related element of element ‘Payment’ is

the element ‘Amount’.

Context-referential integrity is used to protect context-related elements of

an element in XML data. It will provide a binding between an element and

context-related elements. This means if context-related elements of an

element are altered, it will also lead to an invalid verification.

The basic requirement for XML data integrity is that XML data has not been

changed or destroyed. Considering XML data integrity features analyzed above,

the detailed integrity requirements for XML data include XML data content, which

includes element name, value, and attribute, has not been changed, destroyed,

<Books>
 <Title>XML Security</Title>
 …
 <Amount>20</Amount>
 …
 <Payment>£160</Payment>
 …
 <Signature>
 …
 </Signature>
</Books>

Figure 5.2 An example of CRI

 88

or lost. Element location information, which includes element’s parent, level, and

order in sibling, should be protected. In order to ensure a complete meaning of

an element within an XML data, context-related elements should also be

protected together with this element.

5.3.2 Definition of integrity model CSR

In order to develop a model for XML data integrity, this section introduces a

definition for XML data proposed by Bertino as in definition 5.1.

Definition 5.1 An XML data is tuple),,,(ddrD EEVVX φ= (Bertino et al., 2004),

where:

• ae
VVV ∪= is a set of nodes, where e

V represents elements, and a
V

represents attributes. Each a
Vv ∈ has an associated attribute value;

each e
Vv ∈ may have associated data content.

• rV is a node representing the document element as called XML data

root node.

• VVEd ×⊆ is the set of edges.

• dEφ is the edge labelling function.

Definition 5.2 Content integrity)(vCI
XML content integrity should protect name, attributes, value of an element or sub

XML data. Let
DX be an element or sub XML data, and h be a collision-resistant

one way hash function. The)(vCI associated with
DX is a function, and for each

Vv ∈

�
�
�

=
leafnodeaisvifattributevcontentvh

verticeaisvifchildvCIchildvCIattributevcontentvh
vCI

n

)).(||).((

))).(||||).((||)).(||).(((
)(

1
� (5.1)

Formula (5.1) only provides the hash value for an element or portions of XML

data, where, e
Vcontentv ∈. , and a

Vattributev ∈. . h is a collision-resistant one-

way hash function such as SHA256.)...1(. nichildv i = denotes v ’s the i th child.

“||” denotes the concatenation operator. The definition is also based on a

 89

concatenated hash function, meaning that all children of an element are

concatenated together before, generating a hash value.

Definition 5.3 Label for an XML node)(vL

21)(CCvL = (5.2)

where, ∈1C Integer is the level of corresponding node v .)(2 vsiblingC = is the

order of sibling nodes, and)(vsibling is the function to get sibling order of

node v .

The label for element “Certificate\Results\Description” in Figure 5.1 can be

expressed: 31)\Re\(\ =nDescriptiosultseCertificatL

Definition 5.4 Structure integrity)(vST

For each Vv ∈ ,)),(()(vrpathhvST = (5.3)

The result is the hash value of path string related to Vv ∈ , where r is the root of

XML data.),(vrpathp = : stringp ∈ , denotes a path from root r to current

element v . p is an ordered sequence of one or more nodes

)()(

1

)()(//// 1 vL

m

vLvLrL vvvrp m�∈ , and r is the root node of XML data, 1
v is the child

of node r , m
v is the child of 1−m

v , and v is the current element.)(vL is the label for

an internal node.

The location of an element can be expressed as a path string from root node to

current node. This path records the level, sibling order, and parent of an element.

Through hashing this path string, element location information would be protected.

Definition 5.5 Context referential integrity)(vCRI

Suppose w is the context-related element of an XML data v , wv → , then,

))(||)(()(wSTwCIhvCRI = (5.4)

 90

where Vw ∈ . This definition includes integrity of context-related element content

and its location information. Context-related elements can be selected by a signer

before signing an XML data with considering context relationship.

The problem is that the context-related elements only can be selected by user

instead of generating automatically. Context-related elements defined in this

section concentrate on the business rules in XML data, such as dependencies,

relationship attributes, so it is difficult to give common rules to select the context-

related elements in practice, especially when integrity constraints for XML are still

at infant stage. There are not unified types of integrity constraints for XML data, so

it is impossible to integrate the integrity constraints for XML data into context-

related elements selection. Under this situation, selection of context-related

elements depends on constraints which are defined on the DTD by user. These

constraints can be captured automatically by the system. With the development of

integrity constraints for XML data, it is possible to define common rules to capture

the elements which have the context-related relationship, and this point will be

discussed in the section of future works.

Definition 5.6 Definition of integrity model CSR

))(||)(||)(()(vCRIvSTvCIhvCSR = (5.5)

The result of formula (5.5) is a hash value for the XML data. This value consists

of three parts:)(vCI ,)(vST , and)(vCRI , and the three parts are combined by a

concatenated hash function, where, Vv ∈ is the node set of the XML data.

)(vCI is a hash value of an element or sub XML data, which is used to protect the

XML data content.)(vST is a hash value of element location information, which is

used to protect the position of an element or sub XML data in the XML data.

)(vCRI is a hash value of context-related elements, and which is used to protect

context relationship of an element. h is a collision-resistant one-way hash

function. The combination of these three parts is by string concatenation, i.e., by

hashing the concatenated string lxx ||||1 � .

 91

In case an element copied from an XML data to another document which has the

same structure as original one, the original XML data creation timestamp is used

to distinguish them as defined in definition 5.7. This definition is a combination of

timestamp with integrity model CSR.

Definition 5.7 Let))(||(vCSRThS = be the hash value that is finally signed.

Where, T is an attribute of the creation timestamp related to root node rV for

XML data DX . It records the creation time of XML data DX . This value is derived

from function)(DXCtimestampT = , and it obtains the timestamp of XML data

creation.

5.3.3 Integrity analysis

The integrity proofs are expressed by three theorems. Theorem 5.1 provides the

evidence of structure integrity, theorem 5.2 proves context-referential integrity,

and theorem 5.3 proves that a signed XML data cannot be copied into another

document.

Theorem 5.1 If an element Vv ∈ in XML data
DX and '

DX , and '

DD XX ≠ , without

considering context-related elements, then)()('
vCSRvCSR ≠ .

This theorem is used to judge the data integrity when an element copied from

one XML data to another which has different structure. Because the two XML

data have different structures, the element location will be changed. From the

defined integrity model, they will have different hash values and lead to an invalid

verification.

Proof: In the theorem, because v is the same in XML data DX and '

DX , and

without considering context-related elements, there is the same)(vCI ,)(vCRI in

DX and '

DX . If)()('
vCSRvCSR ≠ , there must be different)(vST in

DX and '

DX . In

 92

other words, v has different location in
DX and '

DX . Location information consists

of three parts: parent, level, and order of sibling.

Assuming the path from root node to current element v in XML data DX is:

int,,/...// 2111 ∈= jivvvp ijj

Assuming the path from root node to current element v in XML data '

DX is:

int,,/...// 2112 ∈= nmrrrp mnn

The value of)(vST in XML data DX :

)/...//())(()(2111 ijj vvvhppathhvST ==

The value of)(vST in XML data '

DX :

)/...//())(()(2112 mnn rrrhppathhvST ==

Because '

DD XX ≠ , there are two kinds of situations:

• Different level

If v has different level in XML data DX and '

DX , then mi ≠ , and

)/...//()/...//(211211 mnnijj rrrhvvvh ≠ .

Then,)()(' vCSRvCSR ≠ . It also means element v has different ancestors.

• Different sibling order

If v has different sibling order in XML data DX and '

DX , then nj ≠ , and

)/...//()/...//(211211 mnnijj rrrhvvvh ≠

Then,)()(' vCSRvCSR ≠ .

Theorem 5.2 An element Vv ∈ in XML data
DX and '

DX , if the context-related

element is
1T in XML data

DX , '

1T in XML data '

DX , and '

11 TT ≠ , then

)()(
'

vCSRvCSR ≠ .

 93

The theorem 5.2 is used to check for changes in context-related elements. If the

same element has different context-related elements, regardless of whether or not

the two XML data have the same structure, it will lead to an invalid verification.

Proof: If '

DD XX ≠ , from theorem 5.1, then)()('
vCSRvCSR ≠

If '

DD XX = and '

11 TT ≠ , then the value of)(vCSR in XML data
DX is expressed

as follows:

)(||))(||)((||)()(||)(||)()(11 vCRITSTTCIvSTvCRIvSEvSTvCSR ==

The value of)(' vCSR in XML data '

DX :

)(||))(||)((||)()(||)(||)()('

1

'

1

'
vCRITSTTCIvSTvCRIvSEvSTvCSR ==

'

11 TT ≠ means '

11 ,TT have different content, or different structure.

If '

11 ,TT have different content, then)()('

11 TCITCI ≠ Thus,)()(' vCSRvCSR ≠

If '

11 ,TT have different structure, then)()('

11 TCITCI ≠ and)()('

11 TSTTST ≠ Thus,

)()(' vCSRvCSR ≠

Theorem 5.3 An element Vv ∈ in XML data
DX , if

DX is signed and copied to

another XML data '

DX , it will lead to an invalid verification.

Proof: If
DX and '

DX have not same structure and content, then from theorem

5.1, there has)()(' vCSRvCSR ≠ . It will lead to an invalid verification.

If two XML data have same structure and content, they should be the same XML

data. An element copied from one XML data to another will not affect the

validation result. However, XML data has its own creating time, which can be used

to judge the validation of an element in an XML data. Therefore, the integrity

model combined with timestamp, to prevent an element is being copied

maliciously from one XML data to another.

Assuming)(vS is the signature related to element v , so the value of)(vS in XML

data DX :

 94

)))(||)(()(1 vCSRthhvS =

The value of)(vS in '

DX :)))(||)(()(2 vCSRthhvS =

If
DX and '

DX have a different creation time,)()(21 thth ≠ , and it will lead to an invalid

verification. If
DX , '

DX have a same creation time, and
DX has the same structure

and content as '

DX , this means that
DX is the same XML data as '

DX .

5.3.4 Efficiency analysis

The following two factors affect the efficiency of model CSR: the node size and

the depth size. In a aryk − tree with a depth of m , and worst situation, the

numbers of nodes that would be hashed is
1

1

1

1

−

−
==�

=

−

k

k
kN

mm

x

x , and the

numbers of hash required �
=

+
−

−

++−
==

m

x

mk
x

k

kmmk
xkW

1
2

1
1

)1(

1)1(.

The time complexity of an iterative hash function h can be described as a function

of its input size l by the function, 21)1()(c
D

l
clT ++��

�
�	

�
= , where D is constant

(Tamassia and Triandopoulos, 2003). If v is a vertex of XML data DX ,)deg(vin

denotes the depth of vertex v , that is the numbers of predecessors of v in DX .

Let S be a sub-tree of DX . The two components of the integrity cost for S are

defined as follows. The node size nS of S is the number of its vertices. The

depth size dS of S is the sum of the depth of its vertices, that

is � ∈
=

Svd vinS)deg(. The rehashing overhead is given by a linear combination

of the node size and the depth size of S , that

is dnSv
SccSvincvc '')deg(|| +=+ � ∈

, where both c and '
c are constants. The

verification time is a quantity of the form � ∈
+

Sv
vincvc)deg(|| ' .

 95

5.4 Combination with XML specification
XML security has two sides: how traditional security technologies can be applied

to solve security problems existing in XML data and how security technologies can

be expressed in XML format. Based on the approaches proposed for XML data

integrity, this section describes how the proposed model is expressed in XML

format. The XML data content integrity has been described in the XML signature

specification by W3C, therefore, this section only gives the description for

structure integrity, and context-referential integrity.

5.4.1 Specification for structure integrity

The structure integrity is ensured by three elements as follows.

• The ‘STIGenerate Algorithm’ is an element, which describes the algorithm

applied to generate hash values of the location information of an element in

the original XML data.

• The content of the ‘DigestMethod’ element is the definition of hash algorithm

adopted in this specification, and the default algorithm is SHA-1.

• The value of the ‘DigestValue’ element is the generated hash value in base64

encoding.

An example of structure integrity is

<STI name="structure integrity" xmlns="http://www.example.org">
 <STIGenerate Algorithm="http://www.example.org/xmldsig-csr/#STI" />
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>49-2A-ED-1A-5A-E1-BD-9C-59-04-19-58-8F-B7-08-5C-19-14-

15-11</DigestValue>
</STI>

Figure 5.3 An example of structure integrity

 96

Syntax: Schema for STI

5.4.2 Specification for context-referential integrity

Context-referential integrity includes four elements:

• The ‘CRIGenerate Algorithm’ is an element, which describes the algorithm

applied to generate the hash values of context-related elements.

• The content of the ‘RelatedNode’ is an element, which is used to record

the context-related elements.

• The content of the ‘DigestMethod’ element is the definition of hash

algorithm adopted in this specification, and the default algorithm is SHA-1.

• The value of the ‘DigestValue’ element is the generated hash value in

base64 encoding.

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault = "qualified">
 <xsd:element name = "STI" type = "STIType"/>
 <xsd:complexType name = "STIType" mixed = "true">
 <xsd:sequence>
 <xsd:element ref = "STIGenerate"/>
 <xsd:element ref = "DigestMethod"/>
 <xsd:element ref = "DigestValue"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name = "STIGenerate">
 <xsd:complexType>
 <xsd:attribute name = "Algorithm" use = "optional" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "DigestMethod">
 <xsd:complexType>
 <xsd:attribute name = "Algorithm" use = "optional" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "DigestValue" type = "xsd:string"/>
</xsd:schema>

Figure 5.4 Schema for STI

 97

An example of CRI is as follows.

Syntax: Schema for CRI

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault = "qualified">
 <xsd:element name = "CRI" type = "CRIType"/>
 <xsd:complexType name = "CRIType" mixed = "true">
 <xsd:sequence>
 <xsd:element ref = "CRIGenerate"/>
 <xsd:element ref = "RelatedNode"/>
 <xsd:element ref = "DigestMethod"/>
 <xsd:element ref = "DigestValue"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name = "CRIGenerate">
 <xsd:complexType>
 <xsd:attribute name = "Algorithm" use = "optional" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "RelatedNode" type = "xsd:string"/>
 <xsd:element name = "DigestMethod">
 <xsd:complexType>
 <xsd:attribute name = "Algorithm" use = "optional" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "DigestValue" type = "xsd:string"/>
</xsd:schema>

Figure 5.6 Schema for CRI

<CRI name="context-referential integrity" xmlns="http://www.example.org">
 <CRIGenerate Algorithm="http://www.example.org/xmldsig-cri/#CRI" />
 <RelatedNode>#myData</RelatedNode>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>36-C3-C5-A4-02-41-A9-0F-38-B7-C1-7C-7A-A0-A5-DE-

7D-3A-75-9</DigestValue>
</CRI>

Figure 5.5 An example of CRI description

 98

5.5 Testing and evaluation

5.5.1 Evaluation environment

• Hardware environment

All the testing and evaluation are performed on a PC with a 2.39 GHz Pentium (R)

4 processor, 0.99GB of RAM, and the MS Windows XP operating system.

• Software environment

The software deployed in the evaluation is listed in Table 5.1. The programming

language is the C#.net.

Table 5.1 Software deployed
Related models Software
Integrity model CSR Developed
Integrity model proposed by E. Bertino Developed
DOM-HASH Built-in package by Microsoft
XMark The XML Benchmark Project

5.5.2 Evaluation methods

• Efficiency evaluation

Efficiency evaluation aims at comparing the time-consuming of hash value-

generation between different models. In order to evaluate the efficiency of

proposed model, XMark is used to generate XML data (Schmidt et al, 2001). For

the XMark dataset, various scaling factors (0-1, incremental step is 0.1) are

selected to create from 26.5KB to 113MB of documents. The DTD of XMark can

be found in Appendix B. The compared integrity models are DOM-HASH,

integrity model proposed by Bertino, and CSR.

• Functionality testing

In order to test functionality of proposed model based on described XML data

integrity requirements, testing criterion is listed in Table 5.2.

 99

Table 5.2 Testing criterion description
Functionality Aims
XML data content
integrity

The XML data content, including element name, value,
and attribute, must not be modified in transit

Structure integrity Element location information, including element parent,
level, and order of sibling, has not been changed

Context-referential
integrity

The model can protect context-related elements of an
element. The protection of context-related elements
include content integrity, and structure integrity

The testing cases are categorized by element numbers. There are three kind of

category: element number is 1, element numbers are equal or bigger than 2, and

the whole XML data. The reasons of choosing this kind of category are: CSR

based XML signature will be the same as XML signature when XML data has

only one element. The algorithms of STI and CRI both are based on iterative, so

there will no effect on CSR model no matter how many or how deep the elements

will be hashed. When signing the whole XML data, XML data content integrity

can ensure the structure integrity and context-referential integrity. Because the

signed XML data contains all information related to structure and context

relationship.

 100

Table 5.3 lists 13 testing cases under different situation.

Table 5.3 Testing cases
Element
Numbers

Case
No

CI STI CRI Description Expected
Result

1

1.1 √ × × Only change content of signed
information

Both XML
signature
and CSR
based
XML
signature
has the
same
verification
result of
invalid.

1.2 √ √ √ Check all integrity properties with
one element.

1.3 √ × √ Check content integrity and
context referential integrity with
one element

1.4 √ √ × Check content integrity and
structure integrity with one
element

>=2

2.1 √ × × Only change content of signed
information with more than one
element.

2.2 √ √ √ Check all integrity properties with
more than one element.

2.3 √ × √ Both change content and context-
related element of signed
information

2.4 √ √ × Both change content and location
of signed information

2.5 × × √ Only change context-related
element of signed elements

XML
signature:
valid
CSR
based
signature:
invalid

2.6 × √ × Only change location of signed
information

2.7 × √ √ Both change context-related
element and location of signed
information

Whole
XML data

3 √ N/A N/A Signed the whole XML data Both XML
signature
and CSR
based
XML
signature
has the
same
verification
result of
invalid.

N/A 4 N/A N/A N/A Signed portions of XML data with
timestamp

XML
signature:
valid
CSR
based
signature:
invalid √: Denote checking this property ×: Denote without checking this property

 101

Based on testing cases and algorithms, the parameters need to be provided

when executing the test process is listed in Table 5.4.

Table 5.4 Parameters
Parameter
name

Constraints Description

Doc Null, an XML data The whole XML data need to be handled
DataSign Null, the whole Doc,

or portions of Doc
Elements need to be signed

Sdata Null, element of Doc,
or set of elements

Context-related elements of a signed XML
data

Identifier Null, user private key User private key is used to sign XML data

5.5.3 Evaluation results

The integrity model proposed by Bertino is based on the Merkle hash function.

The model CSR in this thesis is based on a concatenated hash function. DOM-

HASH is also based on an iterative algorithm. When all of them have the same

node size, the efficiency depends on the depth of XML data. There are five

elements on each level in this testing. Let NiH i ∈, be the depth of XML data, and

the time requirement is expressed as NiHT i ∈),(. The comparison is made

based on two different hash algorithms, SHA-1 and SHA256 as shown in Figure

5.7 and Figure 5.8

Figure 5.7 Efficiency comparison based on
SHA-1 for XML data depth

Efficiency Comparison (SHA-1)

0

1

2

3

4

5

5 15 25 35 45 60 80 10
0

12
0

14
0

16
0

XML Data Depth

T
im

e
(S

ec
on

ds
)

Integrity model CSR
Integrity model DOM-HASH
Integrity model by Bertino

 102

Figure 5.7 shows that, these models have almost the same efficiency when XML

data depth is less than 30. When the XML data depth is increased, the

concatenated hash function-based integrity model CSR has the highest efficiency

compared to integrity model DOM-HASH and integrity model proposed by Bertino.

The integrity model DOM-HASH has a higher efficiency when compared to

integrity model proposed by Bertino, and this is obvious when XML data has a

higher depth. It can be calculated that the model CSR has 49.03% higher

efficiency than DOM-HASH, and 74.72% higher efficiency than the integrity model

proposed by Bertino. Figure 5.8 has the same development trend as Figure 5.7,

but because the algorithm SHA256 is slower than SHA-1, the total time overhead

is increased as shown in Figure 5.8. This indicates that although different hash

algorithms have an impact on efficiency, the integrity model CSR is still the most

efficient under different hash algorithms, and this is determined by integrity model

mechanism, having nothing to do with adopted hash algorithms.

Without changing node size and numbers, when these nodes are at the same

level, and it is defined as XML data width, the model CSR also is the most

efficiency than others model as shown in Figures 5.9 and 5.10. Compared to

Figure 5.7 and Figure 5.8, XML data depth has a significant impact on XML data

integrity generation process.

Figure 5.8 Efficiency comparison based on
SHA-256 for XML data depth

Efficiency Comparison (SHA-256)

0

2

4

6

8

5 15 25 35 45 60 80 10
0

12
0

14
0

16
0

XML Data Depth

T
im

e
(S

ec
on

ds
)

Integrity model CSR

Integrity model DOM-HASH

Integrity model by Bertino

 103

The reason of this result is the different numbers of hash computations in the

three models. Figure 5.11 shows the total hash times of the three integrity models

Figure 5.10 Efficiency comparison based on
SHA-256 for XML data width

Efficiency Comparison (SHA-256)

0

0.5

1

1.5

2

2.5

5 15 25 35 45 60 80 10
0

12
0

14
0

16
0

XML Data Width

T
im

e
(S

ec
on

ds
)

Integrity model CSR

Integrity model DOM-HASH

Integrity model by Bertino

Figure 5.9 Efficiency comparison based on
SHA-1 for XML data width

Efficiency Comparison (SHA-1)

0

0.5

1

1.5

2

5 15 25 35 45 60 80 100 120 140 160

XML Data Width

T
im

e
(S

ec
on

ds
)

Integrity model CSR

Integrity model DOM-HASH

Integrity model by Bertino

 104

used in the testing cases. Bertino’s model hashes the leaf node

with)).(||).((namevhvalvhh , and there are 3 hash processes for each element.

DOM-HASH hashes the leaf node with).||.||.||.(attrvpivtextvelemvh , and there is

only 1 hash process for each element. In model CSR, the leaf node returned

directly with 1 hash process, and the non-leaf node will have 2 hash processes.

Based on the Merkle hash function, hashing the leaf node will increase virtual

nodes, and then increase the node numbers which need to be hashed, which can

lead to a low efficiency. Based on concatenated hash function, this thesis

concatenates the child node firstly, and then generates a hash value. It has been

proved that increasing hash numbers will not improve the security of hash

function (Joux, 2004). Therefore, the model presented has the same security

level as DOM-HASH and Bertino’s integrity model, but because of decreased

hash times, the presented hash process has a higher efficiency.

Number of HASH Computation

0
1000
2000
3000
4000
5000
6000

5 15 25 35 45 60 80 10
0

12
0

14
0

16
0

XML Data Depth

H
A

S
H

 T
im

es

Integrity model CSR

Integrity model DOM-HASH

Integrity model by Bertino

Figure 5.11 Comparison for numbers of
hash computations

 105

5.5.4 Testing results

Table 5.5 shows the testing results based on testing cases in Table 5.3.

Table 5.5 Testing results based on testing cases
Sample
No

XML signature CSR based XML signature
Signing Verification Signing Verification

1.1 Successful Invalid Successful Invalid
1.2 Successful Invalid Successful Invalid
1.3 Successful Invalid Successful Invalid
1.4 Successful Invalid Successful Invalid
2.1 Successful Invalid Successful Invalid
2.2 Successful Invalid Successful Invalid
2.3 Successful Invalid Successful Invalid
2.4 Successful Invalid Successful Invalid
2.5 Successful Valid Successful Invalid
2.6 Successful Valid Successful Invalid
2.7 Successful Valid Successful Invalid
3 Successful Invalid Successful Invalid
4 Successful Valid Successful Invalid

As shown in Table 5.5, all the testing results correspond to expected result as

described in Table 5.3.

• XML data contains only one element

When XML data consists of only one element, it includes all the information

of structure and context relationship, so CSR based XML signature is the

same as XML signature as shown in cases 1.1, 1.2, 1.3, and 1.4, they have

the same testing results.

• Signing the whole XML data

When signing the whole XML data, the hash value of XML data content

should have contained XML data structure integrity and context-referential

integrity, and hashed result is included in the signed information. CSR based

XML signature is the same as XML signature, they also have the same

testing result, and this can be verified in case 3.

 106

• Signing portions of XML data when XML data elements are more than

one element

When signing portions of XML data, user can make a choice to ensure CI,

STI, CRI, or all. When changed the contents of signed information, both XML

signature and CSR based XML signature can detect this change and lead to

an invalid verification result as shown in cases 2.1, 2.2, 2.3, and 2.4. When

changing location information, context-related element of signed elements, or

both of them, XML signature still keeps a valid verification result as shown in

cases 2.5, 2.6 and 2.7. CSR based XML signature can detect this change

and lead to an invalid verification result as shown in cases 2.5, 2.6, and 2.7.

• Signed element copied to another XML data

When portions of XML data signed, attacker can copy signed XML data to

another XML data still remaining a valid verification. XML signature cannot

prevent this situation happening as shown in case 4. CSR based XML

signature can find this kind of attack and achieve an invalid verification.

Above testing results corresponds to expected result in Table 5.3. Therefore,

proposed XML data integrity model CSR satisfies the integrity requirements for

XML data presented previous, and can protect content integrity, element location

information, and context-related elements for XML data.

5.6 Analysis and discussion
In order to summarize the advantages of the XML data integrity model CSR

proposed, this section makes a comparison of integrity solutions as shown in

Table 5.6.

 107

Table 5.6 XML Data integrity model comparison
Model
Name

Description Hash
times

Integrity
objects

DOM-
HASH by
Maruyam
a
(Maruyam
a et al.,
1999)

).||.||.||.()(attrvpivtextvelemvhvdos =

Where, v is the element set of XML data, h is a collision-resistant one-way
hash function.

1 Element
name,
attribute,
value

XHASH
by Brown
(Brown,
2000)

).||.||.||.(),(attrvpivtextvelemvhsvdos =

Where, v is the element set of XML data, h is a collision-resistant one-way
hash function. s is default processing of non-significant SPACE characters.

1 Element
name,
attribute,
value

XML Data
integrity
by
Devanbu
(Devanbu
et al.,
2001)

)(,),(),(,(

)(
{)(

21 kvfvfvfvh

vh
vf

�
=

Where v is a sink node, kvv �1 are the successor of v . h is a collision-

resistant one-way hash function.

3 Element
name,
attribute,
value

XML Data
integrity
by Bertino
(Bertino et
al., 2004)

e

d

a

d

VvifvnchildMhXdvchildMhXdtagnamevhcontentvhh

Vvifnamevhvalvhh
vMhXd

∈

∈
=

))),((||...||)),1((||).(||).((

)).(||).((
{)(

 Where, v is the element set of XML data, h is a collision-resistant one-way
hash function.

3 Element
name,
value

XML Data
integrity
by
Hussain
(Hussain
and Soh,
2004)

<Manifest> contains the data whose location is going to change and apply an
XSLT transform to omit the URI attributes

N/A Element
position

XML Data
integrity
by Qiao
(Qiao,
2007)

))((:

)),((,)),(()(
{

��

����

MBCDInfohdigestU

MAInfoHBAInfohMBCDInfo

−

−−=

Where, Info(A-B), …,Info(A-M), … is the sub XML data, Info(BCD…M…) is the

united hashed result, and h is a collision-resistant one-way hash function.

N/A Element
name,
attribute,
value

XML Data
integrity
model
CSR

))(||)(||)(()(vCRIvSTvCIhvCSR = , where, v is the element set of XML

data, h is a collision-resistant one-way hash function.)(vCI is the content

integrity of signed elements,)(vST is the structure integrity, and)(vCRI is the

context referential integrity.

1 Element
name,
attribute,
value,
position,
context-
related
elements

The similarities of the integrity model CSR compared to existing models mainly

focus on two aspects. The integrity model CSR adopts a bottom-up iterative hash

process as with DOM-HASH, Devanbu’s, and Bertino’s integrity model. The

integrity model DOM-HASH, XHASH, Devanbu’s model, Qiao’s model, and

model CSR ensure element name, attribute, and value, except Bertino’s model

ignored the attribute integrity of an element.

As shown in Table 5.6, only the model CSR for XML data provides overall integrity

protection, including data content, element location information, and element

 108

context meaning. Based on this comparison, the major differences of the model

proposed compared to others are:

• Only integrity model CSR is considering XML data features

DOM-HASH and XHASH just consider the hash objectives, and the model

proposed by Devanbu and Bertino focus on the hash value-generation

process. The model CSR combined the XML data features, such as the

element location and context-related elements for example.

• Integrity model CSR not only ensure the integrity of data content, but also

provides a method for hash value-generation process

The integrity model DOM-HASH and XHASH just provide the integrity objects

which include element name, attribute, and value, without describing the

process of hash value-generation process. The integrity model CSR not only

ensures the integrity of data content, but also describes the hash value-

generation process. Two kinds of element have been involved, the leaf node

and vertices. It will directly return the hash values of content and attribute if

the node is the leaf node, otherwise it will iteratively call the function.

• Bertino’s model ignored the integrity attribute

The content integrity in Bertino’s model is only from)).(||).((namevhvalvhh .

This does not consider the integrity attribute. In integrity model CSR, the

integrity content includes attributevcontentv .||. , and

valuevnamevcontentv ... ∪= .

• Different hash numbers in the models

DOM-HASH and XHASH hash the leaf node from).||.||.(pivtextvelemvh ,

and there are 1 hash processes in total. Devanbu’s and Bertino’s model

hashes the leaf node from)).(||).((namevhvalvhh , and there are 3 hash

processes in total. In integrity model CSR, the non-leaf node returned directly

 109

using).(||).(attributevcontentv without hash process, and there is only 1

hash process for leaf node.

5.7 Summary
This chapter presents overall XML data integrity requirements combining XML

data features. An integrity model is also presented based on the concatenated

hash function to protect the requirements presented. The testing results show

that the integrity model proposed not only ensures XML data content integrity, but

also protects the structure integrity and elements’ context relationship within an

XML data. With this approach integrated into XML signature technology, the

signature cannot be copied to another document still keeping valid. This indicates

that the presented model overcome the limitations existing in XML signature

specification. Integrity model CSR not only provides a model for XML data

integrity, but also provides a method for the hash value-generation process. The

integrity model has been verified a higher efficiency on hash value-generation

than the Merkle hash function-based integrity model for XML data.

 110

Chapter 6 A Series-parallel XML Multi-signature
Scheme for XML Data Authentication

This chapter firstly describes series-parallel signing group and then XML data

integrity-checking pool is presented. Based on series-parallel signing graph and

off-line XML data integrity-checking approach, a series-parallel XML multi-

signature scheme for XML data is proposed. The testing and evaluation are also

executed in this chapter.

6.1 Introduction
XML data authentication is important research area related to XML security

(Bertino, 2001). General applications of data authentication could exist in many

domains. For example, a user contacting a mirror site would need to

cryptographically validate the information as genuine, that is, as being the same

information as if the response had come directly from the source (Polivy and

Tamassia, 2002; Damiani et al., 2002).

A document is delivered through a hierarchical network of responsibilities with

different roles and access rights. An example has been given by Leung and Hui

to describe this situation. The computing department of a university would like to

renovate its staff room so as to meet the contemporary hardware requirements

(Leung and Hui, 2001). The requirement has to be approved by the Financial

Office. The subsequent approval from the Estate Office will depend on the

signature of the Financial Office (Leung and Hui, 2001). The approval of the

Estate Office is based on the approval of the Financial Office. Traditional digital

signature approach focuses on signing the entire document, and the XML

signature specification is infeasible to make complex workflows secure on an

XML data with multiple signatures (Leung and Hui, 2001). Under this situation, it

is necessary to build an XML multi-signature scheme which is compatible with a

dependant signing process.

 111

This chapter proposes a series-parallel XML multi-signature scheme based on

Lu’s model (Lu and Chen, 2004). The series-parallel XML multi-signature scheme

presented is a mixed-signing order including both dependent and independent

signing process. In proposed scheme, signers are divided into series or parallel

subgroups and the members in the signer group can be flexibly managed. The

signing order is generated before the signing process without a relationship to

multi-signature scheme. This scheme uses XPath expression to transform XML

data, and generates an XML data integrity-checking pool to provide integrity-

checking for decomposed XML data. With an integrity-checking pool, a signer

can check integrity without cooperation from other signers. XML data does not

need to be delegated entirely, and signers can complete integrity verification off-

line. If there is a single signer, the scheme is compatible with single XML

signature. When each subgroup has a single signer, the scheme is compatible

with a sequential multi-signature scheme. When all signers are in the same

subgroup, the scheme is compatible with a broadcast multi-signature scheme.

6.2 Theory guidance for data authentication
There are two mechanisms to ensure data authentication:

• Message authentication code (MAC)

MAC, a cryptographic check value, is used to provide data origin

authentication and data integrity (ISO/IEC, 1997). Both data integrity and

data origin authentication can only be provided for the receiving entity. A

third party cannot verify these properties, as both sender and receiver are

capable to create the MAC (or HMAC).

• Digital signature

Digital signature allows a recipient of the message to prove the source and

integrity of the message and protect against forgery (ISO 7498-2, 1989;

Georgiadis et al., 2002). More specifically, the using of asymmetric

encryption provides a means to ensure the authentication, also known as

non-repudiation (Brandt and Bonte, 2000).

 112

In this chapter, data authentication is ensured using digital signature. The

reasons of adopting digital signature as the data authentication method is: digital

signature can be used to support requirements for non-repudiation. This is

because access to the private key is usually restricted to the owner of the key,

which makes it easier to verify proof of ownership. W3C has developed the

technology of XML signature for XML data authentication. The new scheme

should be compatible with XML signature specification.

6.3 A series-parallel XML multi-signature scheme

6.3.1 Series-parallel signing group

• Signing order graph

In order to represent signing orders, among n signers, series-parallel graph is

deployed, which is a directed acyclic graph as shown in Figure 6.1.

A directed acyclic graph),(EV=ϕ consists of set V of nodes and a set of

E edges connecting pairs of distinct nodes. For an edge e between two nodes,

the initial vertex of the edge is represented by)(VII ee ∈ , and the terminal vertex

is represented by)(VTT ee ∈ . The signers correspond to the vertices in the

graphϕ .

• The rules for series-parallel signing group

Given signers group },,,{ 21 nuuuSG �= , it can be divided into several ordered

subgroups according to the following rules.

� �

� �
�

1u

2u 3u

4u

5u

6u

Figure 6.1 Signing order graph

�

 113

1. Given signer group SG , it can be defined as nGGGSG ∪∪∪= �21 , and

φ=∩∩∩ nGGG �21 , where iG is the sub set of SG , φ denotes an empty

set. The signing order is nGGG ,,, 21 � , and this means that nGGG ,,, 21 � is

signing in sequential.

2. For ki Gu ∈∃)(, mj Gu ∈∃)(, if mk = , then kji Guu ∈, (= mG), and ji uu , can sign

parallel. In other words, the signers who are in the same subgroup can sign in

parallel.

3. For ki Gu ∈∃)(, mj Gu ∈∃)(, if mk < , then ji uu , should sign sequentially, and

iu should sign before ju .

4. For ki Gu ∈∃)(, mj Gu ∈∃)(, if mk > , then ji uu , should sign sequentially, and

ju should sign before iu .

5. Only the groups obtained by the rules (1), (2), (3), and (4) are series-parallel

signing groups.

• Signing order graph conversion to series-parallel signing group

The following steps illustrate how to convert a signing order graph to a series-

parallel signing group.

Assume nGGGG ∪∪∪= �21 and let φ==),...,1(nkkG .

Step 1: With a labelled edge ϕ∈e , where the initial vertex is eI , and the terminal

vertex is eT .

Step 2: If GI e ∉ , then let 1GI e ∈ . If GTe ∉ , then let 2GTe ∈ .

Step 3: If)...1(nkke GI =∈ , and GTe ∉ , then let 1+∈ ke GT . Otherwise,

assume)...1(nmme GT =∈ . If km ≤ , then move eT from mG to 1+mG , until km > .

Step 4: Go to step 1 until each edge inϕ has been handled.

According to above algorithm, the signing order graph can be converted to the

following series-parallel signing group.

 114

}{},,{},{},,{ 6454332211 uGuuGuGuuG ====

This means signers can generate a parallel signature in each subgroup, where

every subgroup signing is sequential. The converted signing order group of

Figure 6.1 is shown in Figure 6.2.

6.3.2 XML data decomposition (XDD)

XML data is based on the tree structure. DOM is used to define how XML data

can be accessed, and it is naturally a tree structure representation (Devanbu et

al., 2001). For integrity verification purpose, the important properties of DOM-

HASH are as follows.

If a signer iu knows the hash value of a root for an XML data DX , it is possible to

prove that any sub-tree ist of the XML data occurs under DX without revealing

all of DX and online verification. A iu can generate the hash value of ist by DOM-

HASH the sub-tree ist . By given the hash value of the sibling of ist and the

sibling of all its parents, the signer iu can compute the hash value of the root

node. Based on the feature of one-way hash function and comparison of hash

value, the signer iu can judge whether the sub-tree ist is included in the XML

data DX . This process also can be used to prove that a sub-tree ist is contained

in another sub-tree jst without revealing other sub-tree in jst .

Giving an XML data DX , a DTD relative to the XML data and a poolτ with a

limited number of XPath in DTD, the integrity-checking pool can be defined:

Definition 6.1 XML data integrity-checking pool τ , τ is a tuple

as)))((),(),(,(pchpcphp , where

• p is the possible XPath in the DTD.

},{ 21 uu }{ 3u },{ 54 uu }{ 6u

Figure 6.2 Converted series-parallel signing order

 115

•)(ph is the hash value of each p , and h is a secure one-way hash function.

•)(pc denotes the content accessed by XPath p ,

•))((pch is the hash value of)(pc .

The generation process for XML data integrity-checking poolτ is:

1. Generate each possible XPath },...,1{, nippi ∈∈∀ in the DTD, and relative

hash value)(iph . Insert ip , content)(ipc , and)(iph into poolτ .

2. Build DOM-HASH associates a secure hash value))((ipch with each ip , and

let))((ii pchm = .

3. There could be many sub-trees },...,1{, nisti ∈ relative to XPath ip , and these

sub-trees can be hashed together using the concatenation hash function

)||||||(21 ni stststhm �= to get a hash value each entry ip .

For integrity verification, there is the pool τ with XPath entries, and an integrity

verification request from a signer with the XPath q .

1. Match q against each entry inτ .

2. If the XPath q matches an entry ip inτ , retrieve the hash value im relative

to the entry ip . If there is no corresponding entry matched to q , reject,

otherwise, go to step 3.

3. Build hash value '

im with step 3, check that ii mm
?

' = . If mm ≠' , then reject,

otherwise, accept. If signer does not believe in this result after accepting, the

verification process can be extended to parent verification as shown in step

4.

4. Assume 'q is the XPath of q parent, and let 'qq = , then go to step 1. Finally,

signer can generate the hash value of the whole XML data DX , check

that ii mm
?

' = . If it is not equal, reject, otherwise accept. This is a convincing

result, because the integrity of whole XML data has been checked.

 116

6.3.3 XML multi-signature scheme

The system has the following roles which are similar to Wu and Lu’s scheme: a

group of signers, a system authority, an XDD, and a signature collector (Wu et

al., 2001). SA supports to initialize system parameters, and to generate the

secret keys and public keys for the group and the individual signer (Wu et al.,

2001). XDD is used to decompose the XML data to a set of sub-data. Individual

signatures generated by the signers are collected and verified by SC. SC also

constructs a multi-signature for XML data based on verified individual signature

(Wu et al., 2001). It is supposed that SA and SC can be trusted by all signers.

The proposed approach consists of three stages as Wu’s scheme: the stage of

private key and public key generation, the stage of multi-signature generation,

and the stage of multi-signature verification (Wu et al., 2001).

1. Common parameters

The common parameters are similar to those defined in (NIST, 2006) for DSA

standard to which the group dimension has been added. Assuming a group of

n signers, the parameters are defined:

• :, qp Two large prime numbers such that)1(| −pq as defined in digital

signature algorithm (NIST, 2006).

• :g Generator of the cyclic group of order q in *

pZ (selects an element

*

pZh ∈ and computes phg qp mod/)1(−= such that 1≠g).

• :,,, 21 nxxx � Group members’ private keys.

• :,,, 21 nyyy � Group members’ public keys such that pgy ix

i mod= is

computed.

•),(ii YX is the key pair for each subgroup kG , where

 �
∈

=
kji Gu

ji qxX mod (6.2)

 ∏
∈

=
kj Gu

ji pyY mod (6.3)

 117

• :(.)h A cryptographic hash function (one-way function) such as SHA-1,

SHA-256.

2. Signature generation and verification

The procedure for generating a multi-signature of DX for G is as follows.

 Step 1: XDD sends },,{ jD TXτ to ju , and },,,{ 21 jj pppT �=

 Step 2: Each Gu j ∈ extracts j

DX from DX using jT , and then checks the integrity

of j

DX usingτ and the integrity verification process.

Step 3: If integrity of j

DX is successfully verified, each

],1[,, NkjGu kj ∈∈ randomly selects an integer qj Zz ∈ , computes

 pgr jz

i mod= , (6.4)

and sends },{ jj rT to other participant signers in the same subgroup and

SC.

Step 4: After receiving },{ jj rT ,)(jiui ≠ and SC can compute

prR jj rTh

jj mod
)||(

= (6.5)

Step 5: Each],1[,, NkjGu kj ∈∈ computes both

 ∏
∈

=
kj Gu

jk pRR mod (6.6)

 qRhhxRrThzs kjkijij mod))||)(()||((τ+= (6.7)

and sends }{ js to SC.),(jj sr is the personal signature of DX by signer

ju .

Step 6: In order to verify),(jj sr for every],1[,, NkjGu kj ∈∈ , SC computes

kR by Eq. (6.6) and checks whether or not the following equation holds.

 pygr kjkjj Rhh

j

sRrTh

j mod))((
))||(()||(τ= (6.8)

Step 7: If all personal signatures generated in the previous steps are successfully

verified, then SC computes

 118

�
∈

=
kj Gu

jk qsS mod (6.9)

and publishes),(kk SR as the multi-signature of DX by subgroup kG .

The verifier checks the equality to verify the subgroup multi-signature),(kk SR :

))(mod)((
))||((

pYgR kkk RhhSR

k

τ= (6.10)

If Eq. (6.10) holds, then subgroup multi-signature),(kk SR is successfully verified.

The signature of the whole group (this signature is used to ensure sequential

signing order):

Step 1: SC verifies each subgroup multi-signature),(kk SR , if any of them are

invalid, then reject, otherwise, go to step 2.

Step 2: SC computes)||||||(21 kG SSShS �= , here]..1[, kiS i ∈ is each subgroup

signature.

Step 3: The signature for subgroup 1G :

 pg
k mod1

1 =σ (6.11)

 qkXSG mod1111 σρ −= (6.12)

 and sends),(11 ρσ to next subgroup.

Step 4: For subgroup iG , first verifies the signature by 1−iG through

 ∏ ∏
−

=

−

=

=−

1

1

1

1

mod1

i

j

i

j

SG

ij pYg ji
σρ σ (6.13)

If this generates a failed verification, then reject the signature from 1−iG ,

otherwise, compute

pg ik

i mod=σ , (6.14)

qkXS iiiGii mod1 σρρ −+= − (6.15)

Then),(ii ρσ is the final multi-signature for group SG .

 Step 5: Verification for final multi-signature:

 119

 ∏ ∏
= =

=
k

j

k

j

S

ij pYg Gji

1 1

mod
σρ σ (6.16)

6.3.4 Correctness proofs

Since proposed scheme for subgroup signature is based on Lu’s scheme,

correctness of the single signature and subgroup signature is as their scheme.

This section just provides the proofs of correctness of sequential signature for

subgroup.

Theorem 6.1 If equation (6.13) is true, then the subgroup signature),(ii ρσ is

valid

Proofs: From Eq. (6.15), for each i ,

qkrXSkk iiigi

i

j

i

j

jjijj mod1

1 1

−++=+ −
= =

� � ρσρσ

�
−

=
−−−− −+++=

1

1

1112 mod)(
i

j

iiiiGijj qkXXSk σρσ

�
=

=
i

j

iG qXS
1

mod

Then, pgg

i

j

jG

i

j

jjj qYSqk

mod11

modmod �
=

�
==

+ρσ

pg
i

j

SX Gi mod)(
1

∏
=

=

∏
=

=
i

j

S

i pY G

1

mod)(

The Eq. (6.13) is correct.

Theorem 6.2 If Eq. (6.16) is true, then the final signature for group is valid.

Proofs: Because Eq. (6.16) is a special expression from Eq. (6.13), for ki = ,

then Eq. (6.13) is equal to Eq. (6.16), the Eq. (6.16) is correct, and the sequential

signature for group is valid.

 120

6.3.5 Security analysis

The security of the proposed scheme is as secure as Wu’s scheme because both

of them are based on discrete logarithm and one-way hash function. Note that

there are two particular issues that need to be addressed. The security issues

related to proposed scheme:

• Issue 1: Forging an integrity verification tableτ

Assuming (given an XML data and a conforming DTD) that the decomposition

process is executed correctly, the signer can accept a correct answer and

reject an incorrect one, unless a collision in the hash function applied in

decomposition process is found.

Analysis of issue 1:

Suppose that the signers use the DTD to compute the set of table entries

which matches their XML data to be signed. Based on repeating the

computation done by the decomposition process and results in the same hash

value, the signers can accept correct XML data delegated to them. Now we

discuss that the signers will reject any incorrect XML data to be signed. If a

signer received an incorrect XML data delegated to him from an adversary,

the process of computing the hash value for that entry will be different from

that used to generate provided hash value. There are two ways to get a same

hash value for a different XML data. First way is that a hash collision has to be

found in the process of computing the hash value of delegated XML data.

Alternatively, a second pre-image is found in the process of computing the

hash value of delegated XML data. For these two cases, a collision should be

found in the hash functions to generate the same hash value for different

information. However, for a secure one-way hash function h , given)(xhy = ,

it is computationally unfeasible to find 21 xx ≠ , such that)()(21 xhxh = . The

signer can reject an incorrect XML data to be signed.

 121

• Issue 2: Forging a multi-signature

The signature generated by the last subgroup is the multi-signature),,(iiGS ρσ ,

the verification equation is Eq. (6.16). The security of Eq. (6.16) is expressed by

theorem 6.3.

Theorem 6.3 It is a DL (Discrete Logarithm) problem to calculate iρ through

),(iGS σ , or to calculate iσ through),(iGS ρ in Eq. (6.16).

Proofs: From Eq. (6.16), it is easy to understand that it is a DL problem to
calculate iρ through),(iGS σ .

Given),(iGS ρ , then ig
ρ and ∏

=

i

j

S

j
GY

1

are constants. Let igC
ρ=1 , ∏

=

=
i

j

S

j
GYC

1

2 ,

then Eq. (6.16) can be rewritten as: pCC mod21

σσσ = , then has

pCC mod)(1

1

1

2

−− =σσ (6.17)

 We can get 1

13

−= CC , and 1

24

−= CC in)(pGF . Then Eq. (6.17) can be written as:

pCC mod)(34 =σσ , so, pCC
CC

mod)()(44

34 =σσ (6.18)

Assume XC =4σ , and CC
C =4)(3 , then Eq. (6.18) can be written as:

pCX X mod= (6.19)

Given),(iGS ρ , calculation iσ is equal to obtain X in Eq. (6.19). It is a DL

problem to obtain X in Eq. (6.19).

6.3.6 Efficiency analysis

Let mT , eT , and hT be the time required to perform a modular multiplication, a

modular exponential, and the one-way hash function h ; respectively. n is the

number of signers inG ; k is the number of divided subgroup forG ; and i is the

signer’s number in subgroup kG .

The time-consuming for generating and verifying an individual signature),(ii sr is

identical to Lu’s scheme. The time complexities of both stages are

 122

)32)2((hem TTTnO +++ and)23(hem TTTO ++ respectively. The time

complexities for generating and verifying a subgroup signature are different from

the signers in the subgroup, both stages are))2()1((hem TiiTTiO +++− and

)23(hem TTTO ++ ; respectively. The worst situation is where all the signers are

in the same group, that is ni = . The time complexities for constructing multi-

signature from subgroup are)3)2((hem TTTkO +++ and)3(hem TTTO ++ .

6.3.7 Compatibility with XML Signature Specification

As described in proposed scheme, each signer Gui ∈ extracts XPath expression

ip from the set of XPath expressions T delegated to him. “Transforms” element

can be used to describe ip ’s content to be signed. Other information can also be

defined in an XML signature. The method applied to generate hash values can

be described in the “DigestMethod” element. The element “SignatureValue” can

contain the multi-signature result. The proposed scheme is compatible with the

XML signature specification.

6.4 Testing and evaluation

6.4.1 Evaluation environment

All the testing is performed on a PC with a 2.39 GHz Pentium (R) 4 processor,

0.99GB of RAM, and the MS Windows XP operating system. The algorithms are

coded in C#.net.

6.4.2 Evaluation methods

Two parameters have been taken into account in the evaluation: the number of

signers and the number of bits used to generate the common parameters. The

schemes are compared including the two major XML multi-signatures: repeated

DSA, and Lu’s scheme.

 123

• Input bits

The evaluation is categorized to two situations of 160 bits and 256 bits. Which is

corresponding to hash algorithm SHA-1 and SHA-256, and also is the length of

the parameter q in bits.

• Testing cases

The testing cases are generated using XMark. The selected scaling factor is 1,

and created XML data size is 113MB. The XPath is used to assign XML data to

be signed. The XML data assigned to each signer is selected randomly from

these XPath.

(1) /site

(2) /site/regions

(3) /site/regions/europe

(4) /site/regions/europe/item

(5) /site/regions/europe/item/description

(6) /site/regions/europe/item/description/parlist/listitem

(7) /site/regions/europe/item/description/parlist/listitem/text/keyword

• Sign order graph

In the testing, the signer group has 20 members, and the relationship of their

signature generation is shown in Figure 6.3.

According to approach presented previous, the signing order graph can be

converted to a series-parallel signing order as shown in Figure 6.4.

1
2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 6.3 Signing order graph

 124

• Output results

The output is the execution time of different multi-signature schemes. The time

taken is after XML data assigned to each signer and stopped after the signature

generated or validated.

6.4.3 Evaluation results

Figures 6.5 and 6.6 show the execution time overhead corresponding to the

signing process, while Figures 6.7 and 6.8 show the execution time overhead

corresponding to the verifying process.

1 2, 5 3 4 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16 17, 18 19 20

Figure 6.4 Converted series-parallel signing order

Figure 6.5 Execution time comparison (160 bits signing)

Signing Time Overhead (160 bits)

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19
Number of Signers

T
im

e
(S

ec
on

ds
)

Scheme in this thesis Lu's scheme RDSA

 125

Figure 6.5 and 6.6 show that the superiority of the scheme presented in this

thesis and Lu’s scheme over RDSA increasing with the signers size. Although all

signers should sign specific XML data, the scheme in this thesis and scheme by

Lu have almost 50% higher efficiency. The reason for this result is that these two

schemes only sign the XPath expression, not the XML data itself. Compared to

sign XML data itself, the XPath expression are significantly smaller. This will

decrease the time taken to generate the hash value. Compared to Lu’s scheme,

the two have almost the same efficiency; however, the scheme proposed has

more functionality and is more practicable in applications.

Figure 6.7 and 6.8 show the superiority of scheme proposed in this thesis and

scheme proposed by Lu over RDSA in terms of execution times. The increase of

the size group has less impact on schemes both in this thesis and by Lu. When a

signature is verified, RDSA should check each signature generated by signers,

and this leads to a line of increasing verification time. The schemes presented

both in this thesis and by Lu only need to verify the signature generated by SC,

so the verification time almost is a constant of about 1.2 seconds.

Figure 6.6 Execution time comparison (256 bits signing)

Signing Time Overhead (256 bits)

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

Number of Signers

T
im

e
(S

ec
on

ds
)

Scheme in this thesis Lu's scheme RDSA

 126

6.5 Discussion and analysis
The three models including RDSA or RRSA, the scheme proposed by Lu, and the

scheme proposed in the thesis are compared as listed in Table 6.1.

Figure 6.7 Execution time comparison (160 bits verification)

Verif ication Time Overhead (160 bits)

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

Number of Signers

T
im

e
(S

ec
on

ds
)

Scheme in this thesis Lu's Scheme RDSA

Figure 6.8 Execution time comparison (256 bits verification)

Verif ication Time Overhead (256 bits)

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19
Number of Signers

T
im

e
(S

ec
on

ds
)

Scheme in this thesis Lu's scheme RDSA

 127

Table 6.1 Existing schemes comparison
Comparison

aspects
RDSA or RRSA Lu’s scheme Scheme proposed

Integrity
validating
before signing

The contents which
need to be signed

Difficult to validate
the contents
denoted by XPath

Easy to validate
assigned XML data
with integrity-
checking pool

Signer
affection on
results

With increasing the
numbers of signers, the
size of signature results
will increase significant.

XML data size
increase depends
on signing order

Without effect on
XML data size
when signer
numbers increasing

Number of
signed objects

An arbitrary number of
objects can be signed

An arbitrary
number of objects
can be signed

An arbitrary number
of objects can be
signed

Signing order Broadcast Broadcast Series and parallel
Signed
contents
access

Signed content is
directly accessible

Signed content is
accessible by
XPath

Signed content is
accessible by
XPath

Signed
contents
constraints

Arbitrary data can be
signed

Arbitrary data can
be signed

Arbitrary data can
be signed

Binding to
signed
contents

URI plus transforms URI plus
transforms

URI plus transforms

Numbers of
signature
value

Depends on signer
numbers

1 or more 1

• Integrity validating

Before signing the contents, the signer needs to check the integrity of XML

data to be signed. Repeated DSA or RSA only checks the integrity of

delegated XML data contents, so the signed results can be copied to another

document still with a valid verification results. For Lu’s scheme and the

scheme presented in this thesis, the integrity checking is not only the XML

data itself but also the XPath expression, which denotes the XML data need

to be signed. In addition, the presented scheme can ensure that the signed

results cannot be copied to another document.

• Signer’s number constraint

Although the three schemes have not limited the signer numbers, the scheme

of repeated RSA or DSA can increase the size of signature results when

 128

signer numbers is increased. It indicates that the repeated RSA or DSA is not

suitable to a large signer group.

• The numbers of signed objects

All the three schemes can sign arbitrary numbers of objects.

• Signing order

The scheme of repeated DSA or RSA and the scheme proposed by Lu only

support broadcast signature generation. The presented scheme supports a

natural signing process, e.g. series and parallel.

• Generated signature value

The numbers of signature value will affect the XML data size. The numbers of

signature value depends on the signer numbers in approach of repeated DSA

or RSA, because each signer will generate an independent signature value.

The number of signature value in approach proposed by Lu depends on

signing order graph, and the worst situation is the numbers equal to signer

numbers. The best situation is only 1 signature value. In the scheme

presented, there only 1 signature value, this value is a mixed multi-signature

value.

6.6 Summary
This chapter proposes a series-parallel XML multi-signature scheme. The

presented scheme is a mixed order specified XML multi-signature scheme

according to a dependent and independent signing process. Using presented

XML data integrity-checking pool to provide integrity-checking for decomposed

XML data, it makes signing XPath expression practicable, instead of signing XML

data itself. The proved evidence shows that the scheme is correct, and the

scheme is secure since it is a DL problem. The evaluation results show that the

scheme satisfies the functionality of sequential and parallel signing process, and

has a higher efficiency than scheme of repeated DSA or RSA. This scheme is

 129

also compatible with single XML signatures, sequential or broadcast multi-

signature schemes.

 130

Chapter 7 NLBILS based encrypted XML data
querying

A number list based interval labeling scheme (NLBILS) for XML data is presented

in this chapter. Based on proposed labeling scheme, a structural index for

encrypted XML data is illustrated. The testing and evaluation for proposed

scheme are also executed.

7.1 Introduction
Using XML encryption technology proposed by W3C, user can encrypt any parts

of an XML data. Because of the flexibility of XML encryption, it raises new issue

for XML data querying. As shown in Figure 7.1(a), some information of a credit

card needs to be encrypted, and the customer names should be viewed by

others. Using the encryption methods described by W3C, only information about

credit cards can be encrypted, and the result is shown in Figure 7.1(b).

<PaymentList>
 <PaymentInfo>
 <Name>Baolong Liu</Name>
 <CreditCardInfo>
 <Number>3209 4465 8972 1205</Number>
 <Issuer>HSBC<Issuer>
 <Expiration>02/11</Expiration>
 <Limit>1000</Limit>
 </CreditCardInfo>
 <Address>Huddersfield</Address>
 <Amount>£120.00</Amount>
 </PaymentInfo>
 <PaymentInfo>
 <Name>Jack Xia</Name>
 <CreditCardInfo>
 <Number>4465 3476 2218 5421</Number>
 <Issuer>Lloyds tsb<Issuer>
 <Expiration>04/12</Expiration>
 <Limit>500</Limit>
 </CreditCardInfo>
 <Address>Manchester</Address>
 <Amount>£210.00</Amount>
 </PaymentInfo>
</PaymentList>

<PaymentList>
 <PaymentInfo>
 <Name>Baolong Liu</Name>
 <EncryptedData>
 <CipherData>
 <CipherValue>A23B45C5
 </CipherValue>
 </CipherData>
 </EncryptedData>
 <Address>Huddersfield</Address>
 <Amount>£120.00</Amount>
 </PaymentInfo>
 <PaymentInfo>
 <Name>Jack Xia</Name>
 <EncryptedData>
 <CipherData>
 <CipherValue>C67DR87T
 </CipherValue>
 </CipherData>
 </EncryptedData>
 <Address>Manchester</Address>
 <Amount>£210.00</Amount>
 </PaymentInfo>
</PaymentList>

Figure 7.1 An example for XML encryption

(a) (b)

 131

This method of encryption can be used for XML data confidentiality. Consider the

following query: //PaymentInfo[//Issuer = "HSBC"]/Name

Only the issuer of credit card can answer the query above, and the credit card

information has been encrypted. Without decrypting the contents, this query

cannot be executed properly.

This chapter proposes a structural index with considering both efficiency of index

information updating and query processing security. A structural index based on

number list based interval labeling scheme (NLBILS) is proposed. Proposed

structural index provides spare space for node insertion, and makes

management of index information more efficiency, so it is easy to update XML

data without affecting other nodes. Value index is based on order preserving

encryption. With the feature of order preserving, it can support range querying.

The index information will be encrypted using different keys. User accesses

different parts of index information according to their keys. It will not disclose the

structural information and contents to untrusted server. Inspired by XML pool

encryption (Geuer-Pollmann, 2004), this thesis proposes a novel approach to

protect structural information for encrypted XML data. The encrypted nodes are

removed from original XML data, and consist of an encrypted XML data pool. The

structural information is protected. When user submits a query Q according to

original XML schema, it will be translated to 'Q for encrypted XML data with the

helping of index information. The server will retrieve the query result and return to

user.

7.2 Number list based interval labeling scheme (NLBILS)

7.2.1 Interval-based labeling scheme

The interval-based labeling scheme is described by Li in 2001 (Li and Moon,

2001). In this scheme, each node is assigned two values: start position value and

the end position value. The values are positive numbers during the depth first

traverse of an XML data as shown in Figure 7.2 (Li and Moon, 2001; Yun and

Chung, 2008). The step size of increment is set as 3 in Figure 7.2.

 132

This technique aims at determining if there exists a relationship

ascendance/precedence between two given nodes. A pair))(),((xsizexorder is

associated to each node x in the document in such a way that, for each child

node y of x ,

)()(yorderxorder < and))()(())()((xsizexorderysizeyorder +≤+

It has the following property:

)]()(),([)]()(),([xsizexorderxorderysizeyorderyorder +⊂+ if and only if y is

the child of x .

When inserting a child to an existing node, it is always possible to find an interval

that satisfies that property above. The computation of a new interval for a sibling

between two nodes depends on the available remaining space. However, it is

difficult to predict the XML data updating, it means that it is difficult to reserve the

space which is used to insert XML data. After data updated several times, the

space required to contain inserted data will exceed the reserved space, and the

re-label of the whole XML data is needed (Yun and Chung, 2008).

7.2.2 NLBILS

This section improves the interval-based labeling scheme focusing on labeling

the nodes when there have not enough space for inserting. The basic idea is that

if there is not enough space for inserting, the labeling process assigns a number

for the sub-tree to be inserted, and then start with a new labeling process for

Root

Child1 Child2

Den1 Den2

Den3

1

5 9 13

17 21 25 29 33 37

41

45

Figure 7.2 Example of interval-based labeling

 133

each node in the sub-tree. The labeling result of each node will be consisting of a

number list with its parent’s nodes label.

Definition 7.1 Number list NL

Let NL be the number list, and)1(... 21 ≥= npppNL n� , where)...1(, nipi ∈ is an

integer.

In definition above, if 2=i , this means that the situation of not having enough

space occurs first time. If 2>i , the situation of low inserting space has happened

several times, and)1(... 21 ≥nppp n� contains the label of parent node. With the

number list, it can overcome the space problem of insertion, and avoid to re-

labeling of whole XML data, so improving the efficiency of XML data updating.

Figure 7.3 shows an example of XML data inserting. The sub XML data in

rectangle will be inserted into original data tree, and there have not enough

inserting space. The sub XML data will be assigned a new number 27, which is in

the range of interval-based labeling scheme. Each node in sub XML data will be

labelled with a new start number. The labeling result of each node in sub-tree is a

number list. For example, the label of node “Enn1” is (27.1, 27.21), “Fcb1” (27.5,

27.9), and “Fcb2” (27.13, 27.17).

Root

Child1 Child2

Den1 Den2

Den3

1

5 9 13

17 21 25 29 33 37

41

45

Figure 7.3 Example of XML data inserting

1 21

5 Fcb1

Fcb2

9 17 13

Enn1

27

 134

Definition 7.2: Node label The label of each node is denoted as the 3-tuple

),,(levelrightleft , where left is the left number list of the node, right is the right

number list of the node, and the level is the depth of the node in the XML data.

Lemma 7.1 (Number list relationship). Given two number lists nssss ... 21 �= ,

nrrrr ... 21 �= , their relationship can be judged by following rules:

• rs > , if 11 rs > , or)()(11 ++ >= iiii rsandrs , where ni ,,2 �=

• rs = , if ii rs = , where ni ,,1 �=

• rs < , if 11 rs < , or)()(11 ++ <= iiii rsandrs , where ni ,,2 �=

Lemma 7.2 (Nodes relationships). Given two nodes yx, , let),,(levelrightleft xxx and

),,(levelrightleft yyy are the node label respectively;

• yx = , if leftleft yx = , rightright yx = , and levellevel yx =

• x is the parent of y , if leftleft yx < , rightright yx > , and 1−= levellevel yx

• x is the ancestor of y , if leftleft yx < , and rightright yx >

• x is the descendant of y , if leftleft yx > , and rightright yx <

• x is the preceding of y , if leftright yx <

• x is the following of y , if rightleft yx >

The basic rules for updating are that the lemma 7.2 is still holds. The updating

includes the insertion process and deletion process.

1. Insert process

This process includes two steps: adding a sub-tree into original XML data,

and labeling the inserted sub-tree. Two situations should be considered when

labeling inserted sub-tree. If the provided space size is bigger than inserting

size, the sub-tree to be inserted with integer numbers should be in the range

of the space. If the provided space size is smaller than the insert size, it

needs to label the data to be inserted as an interval of parent node.

 135

• Space size>Insert size

Under this situation, the sub-tree to be inserted can be labelled in the range

of provided space size. Assuming the space size is 100, and n nodes need

to be inserted (100<n), and incremental size]12/100[+= nS . Figure 7.4

shows the case. In Figure 7.4 (a), there are 5 nodes to be inserted, and

space is 100. Because 100102 <=n , it means that there has enough space

to insert. The incremental size is 9)]15*2/(100[=+=S . The inserted result

is shown in Figure 7.4 (b), and it still holds the lemma 7.2.

• Space size <=Insert size

The root of the sub-tree to be inserted will be denoted an integer number r ,

and r is in the range of space. The descendants of r will be labelled with a

new data range. Figure 7.5 (a) represents three nodes need to be inserted,

and space size is smaller than insert size. The root of sbutree denotes an

integer number “1076” in data range. The descendants of root is labelled with

a new start as shown in Figure 7.5 (b), and the labelled result of inserted

nodes are (1076.100, 1076.600), (1076.200, 1076.300), and (1076.400,

1076.500).

Figure 7.4 Insert processing with enough space

(500, 1000)

(400, 1300)

(600, 700) (800, 900)

(1100, 1200)

 (500, 1000)

(400, 1300)

(600, 700) (800, 900)

(1100, 1200)

(1009, 1090)

(1072, 1081)

(1018, 1027)

(1045, 1054)

(1036, 1063)

(a) (b)

 136

• Space=0

When space size is equal to 0, the sub-tree to be inserted with its parent will

be treated as a new sub-tree. Because the parent of the tree to be inserted

has obtained position in the XML data tree, the inserting process is similar to

situation of space size smaller than insert size. As shown in Figure 7.6 (a),

three nodes need to be inserted into data tree, and the insert space is equal

to 0. The sub-tree combined with parent node (5,10) as a new sub tree, and it

can obtain insert space as shown in Figure 7.6 (b). Although this situation

will lead to re-label portions of other nodes, it decreases the affected nodes

to the lowest.

Figure 7.6 Insert processing with space=0

(5, 10)

(4, 13)

(6, 7) (8, 9)

(11, 12)

(a) (b)

 (5.1, 5.12)

(4, 13)

(5.2, 5.3) (5.10, 5.11)

(11, 12)

(5.4, 5.9)

(5.5, 5.6) (5.7, 5.8)

(100, 600)

1076

Figure 7.5 Insert processing without enough space

 (500, 1000)

(400, 1300)

(600, 700) (800, 900)

(1100, 1200)

(1009, 1090)

(1072, 1081)

(1018, 1027)

(1045, 1054)

(1036, 1063)

(a) (b)

 (500, 1000)

(400, 1300)

(600, 700) (800, 900)

(1100, 1200)

(1009, 1090)

(1072, 1081)
(1018, 1027)

(1045, 1054)

(1036, 1063)

(200, 300) (400, 500)

 137

2. Delete process

The XML data deletion can be treated as removing a sub-tree from the original

XML data. Because the lemma 7.2 is not broken after deleting a sub-tree, it does

not need to do additional performance. As shown in Figure 7.7, a sub-tree and an

element will be delete in Figure 7.7 (a), and Figure 7.7 (b) is the deleted result.

Figure 7.7 shows that lemma 7.2 will still be hold after deleting process.

7.3 NLBILS based encrypted XML data querying

7.3.1 XML encryption process

Christian Geuer-Pollmann presented the idea of XML encryption pool, which

provides a fine-grained XML encryption (Geuer-Pollmann, 2004). The final aim of

this method is to encrypt XML data at any granularity. In this research, the

encryption process is directly adopted from XML encryption pool. In the

encryption process, the selected nodes to be encrypted are encrypted individually

under a public key. The encrypted nodes are removed from their original position

in the XML data, and collected in a pool of encrypted nodes. Figure 7.8

describes a graphical representation for presented example in Figure 7.1. Figure

7.8 (a) is the original XML data, and Figure 7.8 (b) is the encrypted result, the

Figure 7.7 Delete processing

 (500, 1000)

(400, 1300)

(600, 700) (800, 900)

(1100, 1200)

(1009, 1090)

(1072, 1081)

(1018, 1027)

(1045, 1054)

(1036, 1063)

(a) (b)

(400, 1300)

(1100, 1200)

(1009, 1090)

(1072, 1081)

(1018, 1027) (1045, 1054)

 138

encrypted data are stored in a pool. This approach can hide the structural

information of encrypted nodes. As a result, it can prevent the inference of

structural information.

7.3.2 Index information

In order to complete the query processing, index information is added on the

hosted data at the server side. The index information includes two parts a

structural index and a value index.

7.3.2.1 Structural index based on NLBILS

The structural index is set up based on NLBILS that is an effective approach to

index tree structured data with considering the efficiency of index information

updating. Because the inverted index has been widely used to index XML data

(Lee and Whang, 2006), this research adopts inverted index as the structural

index for the index information.

PaymentList

PaymentInfo

Name CreditCardInfo

Number Issuer Expiration Limit

Address

PaymentInfo

Name CreditCardInfo

Number Issuer Expiration Limit

Address

Figure 7.8 A graphical representation for encrypted XML data

0 3300

100 1600

200 300 400

500 600 700 800 900 1000 1100 1200

1300 1400 1500

1700

1800 1900

2100 2200 2300 2400 2500 2600 2700 2800

2000 2900 3000 3100

3200

PaymentList

PaymentInfo

Name CreditCardInfo Address

PaymentInfo

Name CreditCardInfo Address

0 3300

100 1600

200 300 400 1300 1400 1500

1700

1800 1900 2000 2900 3000 3100

3200

Pool

(a)

(b)

 139

Table 7.1 shows the structural index for XML data used in the research. Each

entry in the table represents (1) a set of key name, (2) an element name, (3)

encoding results, which is the labelled result using NIBILS, and (4) encrypted

block id, which indicates the block id of the encrypted XML data.

Table 7.1 Structural index information

Key ID Element Name Encoding Encrypted

block ID

1k PaymentList Encoding result of “PaymentList”

element

EB1

… … … …

7.3.2.2 Value index

This thesis adopts an order preserving hash function presented by Czech (Czech

et al., 1992) to build value index.

mwfgwfgwh mod)))(())((()(21 += (7.1)

where 1f and 2f are functions that map string into integers, and g is a function that

maps integers into [0, m-1] within a unique integer (Czech et al., 1992).

So,)(wh : integer → integer if w is of type integer,

)(wh : string → integer if w is of type string,

The source code for implementation above hash function can be found at the

website http://sourceforge.net/projects/cmph/ (Accessed on October 2010).

7.3.3 Query processing

The architecture for encrypted XML data querying is illustrated in Figure 7.9. A

user encrypts an XML data DX using a public key pubK and encryption

function eA . The encrypted XML data are stored in XML encryption pool. Users

 140

can publish the encrypted XML data),(pubDe KXA together with the index

information. When a query Q needs to be executed on the encrypted XML

data),(pubDe KXA , the user translates Q into an encrypted query 'Q . The answer

to 'Q , i.e.,)),((' pubDe KXAQ , consists of set of encrypted blocks. After received

encrypted block, the user decrypts the encrypted block using decryption

function d with a private key privK , and obtain expected results, such that

)()))),,(((('

Dprivpubded XQKKXAQAQ = . This research use XPath, the core of

XQuery language for illustrating query processing.

Based on structural index and value index above, the whole index information is

set as in Table 7.2. The greyed portion indicates that contents are encrypted by

different keys. Based on this index table, the query processing can be done by

five steps.

Figure 7.9 The architecture for XQuery on encrypted contents

XQueryQ XQuery Translator Encrypted
XML data

XML
Decryptor

Queried
Results

Index
Information

Encrypted
content 'Q

 141

Table 7.2 Index table for query processing

KeyId Node Name Encoding Value Encrypted
block ID

Null PaymentList (0,3300) null Null

Null PaymentInfo (100,1600) null Null

Null Name (200,300) Baolong Liu Null

1k , 2k

CreditcardInfo (400,1300) null

EB1

Number (500,600) 1n

Issuer (700,800) 1i

Expiration (900,1000) 1e

Limit (1100,1200) 1l

Null Address (1400,1500) Huddersfield Null

Null PaymentInfo (1700,3200) null Null

Null Name (1800,1900) Jack Xia Null

2k

CreditcardInfo (2000,2900) null

EB2

Number (2100,2200) 2n

Issuer (2300,2400) 2i

Expiration (2500,2600) 2e

Limit (2700,2800) 2l

Null Address (300,3100) Manchester

Step 1: User submits a query >< KQ, according to original XML data schema,

where, Q denotes an XQuery, and K denotes user private key.

Step 2: System decrypts the corresponding encrypted blocks of index table using

user key K . Because the key for encrypted blocks is the same as

encrypted content, it can judge the user’s accessibility to sensitive

information.

Step 3: Structural query translation.

This step can be divided into three sub-steps.

 142

First, client obtains index entries which are associated with each path

node in XQuery by checking the index table.

Second, system lists the encoding value associated with path nodes, and

prunes away encoding value that do not match structural constraints in

the query. This means that the remaining encoding value satisfies the

structural constraints of the XQuery.

Third, system replaces each element name with the corresponding

encoding value in the structural index table. These encoding values are

used to obtain the encrypted block id among encrypted XML data. The

results of the structural index processing are the returned encrypted

block id.

Step 4: Value-based constraints translation

The value-based constraints can be defined as a triple of

>< valueoptag ,, , where },,,,{ =≥>≤<∈op . The value may be plaintext

or encrypted contents. If it is a plaintext, which can be found in index

table directly, otherwise, generate order preserving hash value by using

formula (7.1). The related encoding value is obtained through consulting

index table.

Step 5: Final results.

Through previous two steps, the encrypted block which satisfying the

XQuery can be determined. In this step, system only needs to return the

related encrypted block or plain text obtained from step 3, and step 4.

Example 7.1 Suppose a client holds a key 2k , and submits a query

//CreditCardInfo[Issuer=”HSBC”] against the encrypted XML data in Figure 7.8

(b) using the index information in Table 7.2. The query processor first decrypts

the index Table 7.2 using the key 2k , and obtains the plaintext of index

information, which contains elements “CreditCardInfo”, “Number”, “Issuer”,

 143

“Expiration”, and “Limit”. With order preserving hash function, the vale “HSBC” is

converted to 1i . The original query can be translated to

//CreditCardInfo[Issuer= 1i]. Through checking the index table, the encrypted

block EB1 satisfies this condition, and then obtains the encoding result of

element “CreditCardInfo”. The query can be translated to //[400,1300]. The server

retrieves the encryption pool and returns the element “CreditCardInfo

[400,1300]”. The client decrypts it and obtains the final query results.

7.4 Efficiency analysis for index information updating

Let D is the depth of the XML data, M is the maximal fan-out of the XML data,

K is the nodes in each sub-tree, and T is the total nodes in the XML data. The

average numbers of re-labelled nodes is N .

)(1
1

)1(

1

1

1

)1(
)1(

1

1

1

1

0

0 DOD
M

Md

MM

MD

M

Mi

T

K
N

D

D

D

D

D

i

i

D

i

i

=+≈
−

×+
<

−
−

−

×+
=

×+

==
+

+

+

+

=

=

�

�

If there has enough insertion space without relabeling other nodes, the average

numbers of re-labelled nodes is)(DO . The worst situation is that the whole XML

data needs to be re-labelled, and the numbers of re-labelled nodes is�
=

D

i

i
M

0

. The

fact is that XML data with huge numbers of nodes has relatively small numbers of

depth (Yun and Chung, 2008), so the structural index updating is efficient.

7.5 Security analysis
As to index based encrypted XML data query scheme, the inference attack is the

usually attack method. Inference attack mainly includes two points for XML data:

leakage of content of encrypted XML data, leakage of structural relationship

between two different nodes, and leakage of structural order between two nodes

(Wang and Lakshmanan, 2006). (1) Leakage of structural relationship between

two different nodes. By knowing the specific relationship between two nodes

which may be either parent-child, ancestor-descendent or sibling-sibling, the

 144

attacker infers the nature and type of the sensitive information embedded in a

sub data. (2) Leakage of structural order between two nodes x and y . By

knowing the specific order of x and y , which is either y is to the left of x or right

of x . The attacker infers sensitive information such as a temporal relationship

between x and y . With XML encryption pool, these two kinds of structural attack

can be avoided. The encrypted XML data has been removed to a pool, it cannot

judge the relationship of encrypted XML data, and then the structure information

can be protected.

7.6 Testing and Evaluation

7.6.1 The aims of evaluation

The aims of the evaluation focus on three points. The most important point is that

the approach can obtain the correct results corresponding to client’s XQuery

submitted. Through the time cost comparison of index information updating,

evaluating the efficiency of proposed approach for index information maintaining.

The efficiency of proposed approach for encrypted XML data query processing is

compared to existing solutions.

7.6.2 Evaluation methods

The input of the scheme is the query request and the portion encrypted XML

document. The output is the encrypted cipher block or an empty result which

denoting the data does not contain the relative information queried.

The testing cases deployed to execute evaluation are generated from XMark, and

DBLP dataset. For the XMark dataset, various scaling factors (0-1, incremental

step is 0.1) were selected to create from 26.5KB to 113MB of documents.

The queries used in experiments for XMark dataset:

(1) /site

(2) /site/regions

(3) /site/regions/europe

(4) /site/regions/europe/item

 145

(5) /site/regions/europe/item/description

(6) /site/regions/europe/item/description/parlist/listitem

(7) /site/regions/europe/item/description/parlist/listitem/text/keyword

Table 7.3 lists the encrypted elements in XML data and the number of querying

elements which are encrypted.

Table 7.3 Basic information for testing cases
Total elements in XML
data

Number of encrypted
elements or block

Number of queried
elements which are
encrypted

242 10 10
242 20 10
242 30 10
242 40 10
242 50 10
242 60 10
242 70 10
242 80 10
242 90 10
242 100 10

The experiment based on DBLP dataset mainly focuses on range query. Table

7.4 lists the basic information of testing cases based on DBLP dataset. The query

1 and 2 are used to evaluate factor of querying performance based on a very

large XML data. The query 3 contains both confidential and non-confidential

information. The query 4 and 5 contain highly selective predicates.

(1) /dblp/inproceedings/title

(2) //Thesis/author

(3) //Article [year> ”2002”]/url

 //Article [year< ”2006”]/url

 //Article [year>= ”2005”]/url

 //Article [year<= ”2004”]/url

(4) //inproceedings [booktitle= “DASFAA”]/url

(5) //inproceedings [author=”Elisa Bertino”]/title

 146

Table 7.4 Testing cases for range queries based on DBLP dataset
Total
elements
in XML
data

Number of
encrypted
elements
or block

Number of
elements
which year
>2002

Number of
elements
which year
<2006

Number of
elements
which year
>=2005

Number of
elements
which year
<=2004

321 10 6 7 4 5
321 20 9 14 9 12
321 30 17 23 13 18
321 40 22 31 21 23
321 50 28 37 28 29
321 60 32 43 34 37
321 70 33 50 42 43
321 80 42 54 47 47
321 90 49 61 51 52
321 100 64 67 58 56

7.6.2 Evaluation results

Corresponds to Table 7.3, the testing result is shown in Table 7.5. The number of

elements, which has been decrypted, is corresponding to the number of queried

elements which were encrypted and containing the query information. The results

show that the decrypted blocks or elements only contain information relative to

the submitted query. In addition, all the testing executed can achieve correct

expected results. Each querying is related to 10 encrypted XML data blocks. With

the total increasing encrypted XML data blocks, the query process can obtain

expected results. This indicates that the proposed querying scheme can obtain a

correct answer responding to XQuery submitted.

 147

Table 7.5 Testing results based on XMark dataset

Total elements in
XML data

Number of
encrypted elements
or block

Number
of
decrypted
elements

Average
time
(Seconds)

Queried
results

242 10 10 1.5624 Correct
242 20 10 1.6241 Correct
242 30 10 1.7068 Correct
242 40 10 1.7453 Correct
242 50 10 1.7908 Correct
242 60 10 1.8612 Correct
242 70 10 1.9287 Correct
242 80 10 1.9876 Correct
242 90 10 2.1178 Correct
242 100 10 2.2125 Correct

One of the steps is translating the XQuery submitted to another one, which

support querying on encrypted XML data block. The aims of this step are

completing a correct translation with index information. With four kinds of range

query tested as shown in Table 7.6, the proposed scheme can obtain a correct

result relative to range query.

Table 7.6 Results for range queries based on DBLP dataset

Total
elements

Encrypted
elements

Number of
elements which
year >2002

Number of
elements which
year <2006

Number of
elements which
year >=2005

Number of
elements which
year <=2004

Actual Queried Actual Queried Actual Queried Actual Queried
321 10 6 6 7 7 4 4 5 5
321 20 9 9 14 14 9 9 12 12
321 30 17 17 23 23 13 13 18 18
321 40 22 22 31 31 21 21 23 23
321 50 28 28 37 37 28 28 29 29
321 60 32 32 43 43 34 34 37 37
321 70 33 33 50 50 42 42 43 43
321 80 42 42 54 54 47 47 47 47
321 90 49 49 61 61 51 51 52 52
321 100 64 64 67 67 58 58 56 56

With the frequency updating of XML data, it will lead to a changing of index

information. The advantage of the proposed scheme considers the efficiency of

index information updating. In order to evaluate the efficiency on index

 148

information updating, this section gives an XML data, which contains 242

elements, based on XMark dataset, and an XML data, which contains 321

elements, based on DBLP dataset. Through inserting the same number of

elements (from 10 to 60) as shown in Figure 7.10, the proposed scheme has

been compared to the scheme of Query-Aware, and hash scheme approaches

(The details of hash scheme and Query-Aware can be found in Chapter 3). The

position of XML data to be inserted is generated randomly.

Based on XMark dataset, the proposed scheme has an average of 199.95ms

updating time cost. However, the time cost for Query-Aware and hash scheme

are 372ms, and 445.6 respectively. As to DBLP dataset, the average time cost

for proposed scheme is 189.65ms. Query-Aware, and hash scheme are 367.4ms

and 452.58ms respectively. Although the time cost of index information updating

Insert for XMark dataset

0

100

200

300

400

500

600

10 20 30 40 50 60

Number of inserted nodes

T
im

e(
m

s)

NLBILS
Query-Aw are
Hash scheme

Insert for DBLP dataset

0

100

200

300

400

500

600

10 20 30 40 50 60

Number of inserted nodes

T
im

e(
m

s)

NLBILS
Query-Aw are
Hash scheme

Figure 7.10 Efficiency of index information updating

 149

is increasing as the numbers of inserted nodes increasing, the proposed scheme

still has almost 48% higher efficiency than Query-Aware, and 57% higher

efficiency than hash scheme.

Considering the efficiency of index information updating, especially XML data

changing with a high frequency, existing approaches need to re-label the whole

XML data to generate encoding values. Based on number list based interval

labelling scheme, this problem is solved. This means that the XML data updating

cannot lead to re-label the whole index information. Only the elements to be

inserted into the original XML data tree will be labelled. Furthermore, hash

function based scheme needs to hash each possible XPath when XML data

changing, it will cost a huge of time.

 150

The efficiency on encrypted XML data query processing has been evaluated as

shown in Figure 7.11. The proposed scheme is compared to Query-Aware

scheme and hash scheme. The size of tested XML data is 34MB with totally 2232

elements generated from XMark. The evaluated XML data is 97MB with totally

3521 elements from DBLP dataset. The time required variously depends on the

numbers of encrypted elements and the size of text node. The proposed scheme

and Query-Aware scheme has a 31% higher efficiency than hash scheme as

shown in Figure 7.11. The average time cost for proposed scheme and Query-

Aware scheme are 1.87s and 1.85s respectively. This slight difference is because

the proposed scheme supports range query, and it needs to compute hash

values relative to range query. The scheme Query-Aware do not support range

query. After a client submitted a query, the hash scheme needs to compute hash

Query processing for XMark dataset

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

Number of encrypted elements

T
im

e
(s

)

NLBILS
Query-Aw are
Hash scheme

Query processing for DBLP dataset

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

Number of encrypted elements

T
im

e
(s

)

NLBILS
Query-Aw are
Hash scheme

Figure 7.11 Efficiency evaluation for query processing

 151

value of each path in query sentence, and it is a time cost task. So, the hash

scheme has a low efficiency on encrypted XML data query processing, especially

when XML data is huge.

7.7 Discussion and analysis
A comparison between existing approaches for encrypted XML data query is

made in this section as shown in Table 7.7. The comparison aspects mainly

contain index approach, querying process, range querying, and efficiency of

index information updating.

• Index approach

Existing schemes for encrypted XML data query are based on index

mechanism. The index approach is main factor affecting the whole process of

querying, and also has an important effect on querying efficiency.

• Querying process

There are different querying processes based on different index approaches.

It is embodied on communication process between server and client.

• Range querying

Range querying is used to obtain group results related to a specific value.

Existing relational database and native XML database both support this kind

of query. The querying process for encrypted XML data also needs to

compatible with them.

• Efficiency of index information updating

The frequency changing of XML data will lead to index information updating.

In order to improve the efficiency of updating index information, it needs to

consider mechanism which provides efficiency index information updating,

and avoids re-labeling all the XML data.

 152

Table 7.7 Comparison for encrypted XML data query

Solutions Index approach Querying process Range
querying

Index information
updating

Sem-Crypt
(Schrefl et
al., 2005)

Maintaining index
information both
at server side and
client side. Adopt
hash function
GetValueForPath
and
GetPathInstance
to generate index
information.

Exact locate at
cipher block with
index information

Do not
support
range
querying

Re-compute the
hash value when
XML data updating

Hash
scheme
(Feng and
Jonker,
2003)

Base26Value
hash results for
DTD and
document

Step 1: Generate
hash value of XPath
Step 2: Index
PathInstance table
Step 3: Get cipher
block id with
ValueInstance

Support
range
querying by
using hash
function

Re-compute the
hash value when
XML data updating

Query-
Aware
Decryption
(Lee and
Whang,
2006)

Server side index
based on Dewey
numbers

Step 1: decrypt the
index table
Step 2: query
occurrence to get
element type
Step 3: get cipher
block id

Do not
support
range
querying

Re-label the index
information when
XML data updating

Efficient
secure
query
(Wang and
Lakshman
an, 2006)

A discontinuous
structural index
(DSI)

Step 1: Find the DSI
table for tags in the
query
Step 2: Query
interval in DSI and
join with cipher block
id table to get result

Support
range
querying with
B+ tree

Re-label the index
information when
XML data updating

XQenc
(Yang et
al., 2006)

The structure
index in XQEnc is
based on
vectorization and
skeleton.

Step 1: Decrypt data
block
Step 2: decompress
the decrypted XML
data
Step 3: Get result
with index
information

Do not
support
range
querying

Need to re-compute
the vectorization
and skeleton
compression for
index information

Approach
in thesis

Number list based
interval labeling
scheme

Step 1: Translate
XQuery
Step 2: Analyze the
range querying
Step 3: Find in the
index table
Step 4: Get the
cipher block

Support
range
querying with
order
preserve
hash function

Has a high
efficiency on index
information
updating with XML
data changing,
without re-labeling
index information

 153

Based on Table 7.7, the difference between existing approaches is listed.

• Existing querying scheme are based on index information. The index

information is maintained at server side or client side. In existing scheme,

only Sem-Crypt maintains the index information both at server side and

client side, this increases the communication cost between the server and

client.

• Only the proposed query scheme considers the efficiency of index

information updating. Except for the number list based interval labeling

scheme, other schemes have not considered the efficiency of index

information updating. When XML data changed, it needs to re-label the

whole XML data to generate new index information with low efficiency.

• The proposed scheme supports range querying with a simple order

preserver hash function. Most of existing scheme does not support range

query. The scheme by Wang adopt B+ tree to support range query,

however, it will lead to low efficiency of index information updating when

XML data changed (Ünay and Gündem, 2008).

7.8 Summary
This chapter presented the number list based interval labeling scheme for

encrypted XML data. The proposed scheme makes maintaining index information

more efficient, and it is easy to update XML data with decreasing the number of

affected nodes to the lowest. In order to improve the efficiency of index

information updating for encrypted XML data query processing, especially when

XML data changing frequently, this chapter proposed a structural index based on

number list based interval labeling scheme. A novel approach was proposed to

protect structural information for encrypted XML data. The basic idea is that

encrypted nodes are removed from original XML data, and they consist of an

encrypted XML data pool. The structural information is hidden through this

method. The testing results show that the proposed scheme can complete a

 154

correct query processing, and support range query. The evaluation results show

that the proposed scheme supports to maintain index information in an efficient

way.

 155

Chapter 8 XML security in calibration certificate
management

This chapter describes a case study of XML security in calibration certificate

management. The security requirement for calibration certificate management is

analyzed. The system architecture is designed based on the requirement

analysis. The algorithms relating to XML security are illustrated. The implemented

results are also presented in this chapter.

8.1 Introduction
Based on approaches and schemes of previous chapters, this chapter describes

a prototype of XML security which allows a programmer to specify the security

details of XML data. The prototype is described with a working case study of

calibration certificate management. It includes calibration certificate creation,

editing, retrieve, and security management in hierarchical environment.

Figure 8.1 is a real calibration certificate expressed in XML format, some details

are omitted. The tasks related to calibration certificate management are shown in

Figure 8.2.

001 <Certificate>
002 <Title>Certificate of calibration</Title>
003 <ReferenceNumber>TDFRG</ReferenceNumber>
004 <Description>A single-mode Fibre Attention

Standard...</Description>
005 <Data>This reported expanded uncertainty is based

on...</Data>
006 <Measurements>
007 <Description>The measurement of the spectral

attenuation...</Description>
008 <Table>Designed figure used in measurement</Table>
009 </Measurements>
010 <Results>
011 <Description>The total attenuation...</Description>
012 <Graph>Chart related to measurement results</ Graph >
013 <Table>Figure of measurement results</Table>
014 <Results>

 �
015 </Certificate>

Figure 8.1 A certificate report for fault detection

 156

The system consists of five major tasks: authorization (T1), certificate retrieve

(T2), certificate editing or creation (T3), certificate information check (T4), and

certificate information confidentiality (T5).

The system provides the calibration certificate contents and security

management in a hierarchical environment. There is more than one user handling

a single certificate in workflow system. This process depends on workflow of

calibration certificate generation. The prototype will provide the interface for

certificate editing, transforming, saving, loading, and searching. XML security

enables the secure transmission of information at element level of a document for

a certificate. Integrity ensures that the contents of certificate is not being

changed, and protect the structural integrity, and context-referential integrity.

Authentication is satisfied using digital signature. This functionality should provide

digital signature for any portions of a certificate, and further validate the signed

certificate. The signature includes a single signature on an XML data, or multi-

signature based on work-flow signing process. XML encryption will be used to

protect sensitive information of a certificate. This service includes encrypting or

decrypting an XML-based calibration certificate. The system can retrieve relative

information of a certificate whether it is in cipher block or plaintext.

Login

Retrieve

Edit/Create

Check

Encryption

Figure 8.2 The tasks related to certificate management

T1

T2

T3

T4

T5

 157

8.2 System requirements

• User authorization

When user login the system, the system will judge the authorization with

public key information provided. This process is used to decide the privilege

of a user.

• Certificate generation and editing

Certificate information can be created and edited by an authorized user.

• Certificate transforming

A certificate can be viewed in HTML, XHTML, and PDF format. This

requirement needs that an XML-based certificate can be transformed to other

format easy to be viewed.

• Certificate integrity

As a certificate described in XML format, it needs to protect integrity of

certificate information, not only considering content integrity, but also

protecting structural integrity and context-referential integrity.

• Certificate authentication

X-certificate is applied to ensure the claimed identity of an entity. In

authentication, an entity aims at proving its identity to a verifier, and the

creation of a set of calibration certificate data, which is the whole XML-based

data or portion of it, is the one claimed. The system allows an authorized user

verify the validation of certificate.

• Certificate confidentiality

Certificate confidentiality ensures that sensitive information of a certificate

contents or structures may not be viewed by unauthorized entity. The

prototype should provide a mechanism to keep certificate information or

portions of information confidential, and the sensitive information can be

viewed by specific users.

• Certificate retrieve

A certificate can be retrieved by a user request. A query processor can

identify the contents of encrypted certificate or a certificate in plaintext.

 158

8.3 System architecture
Based on requirements above, the system architecture is shown in Figure 8.3.

The architecture consists of six modules.

• Certificate management module

Certificate management module is the crucial part of the system. It provides

calibration certificate generation, editing, updating, and certificate retrieve

service.

• XML data integrity module

XML data integrity is applied to support XML signature. Before signing a

certificate, this module generates hash values for certificate information to be

signed. The hash value consists of three parts: content integrity, structural

integrity, and context-referential integrity. The three parts combined using a

concatenated hash function.

• XML signature and verification module

XML signature and verification service provide the XML signature based on

proposed XML data integrity scheme, and signature verification process.

Once the user identity is identified, this service will return signed XML data or

verified result for a signed XML data.

User interface Web Service

Native XML
database

SQL 2005
Server

XCC
(XQuery)

Sqlxml
Client

Background Database

Certificate
editor

Certificate
management

SOAP

Figure 8.3 System Architecture

User

XML PDF XHTML

XML data
signing,
verifying
module

XML data
integrity

XML data
encryption,
decryption

Certificate
searching

 159

• XML encryption and decryption module

XML encryption and decryption service provide data confidentiality. Once

user identity is identified, this service will return encrypted XML data or

decrypted XML data.

• Certificate retrieve

The certificate retrieve is completed by the module of certificate searching.

Client can set searching conditions for certificate, and the system returns the

certificate or portions of information which satisfy client’s request. The retrieve

can be done on information of plain text or encrypted block. If the retrieve are

relative to encrypted information, client needs to submit a private key at the

same time.

• Database

Because the calibration certificate is expressed in XML format, the system

chooses XML native database as background database service. The

deployed product is MarkLogic Server 3.1. It supports flexible XQuery over

stored XML data.

8.4 Implementation

8.4.1 XML data Integrity

Based on approaches in Chapter 5, CSR based integrity value generation

consists of three steps as shown in Figure 8.4. In Figure 8.4 CI denotes the

algorithm for content integrity. STI denotes the algorithm for structure integrity,

and CRI denotes the algorithm for context-referential integrity.

XML data Canonicalized XML

Canonical
XML

Digest

SHA-1

STI string

Private Key

RSA

Signed XML

Figure 8.4 Process for CSR generation

Relative elements

STI

Client select

CRI

CRI string

SHA-1

CI

 160

Step 1: The securing process selects elements from DX . bS is the set containing

all the selected elements in this step.

Step 2: The securing process performs algorithm CI, structure integrity, and

context-referential integrity related to bS .

Step 3: The securing process signs CI, STI, and CRI to generate signatures.

aS is the set containing all generated signature in this step, where

)()()()(tScriSstiSciSSa ∪∪∪= , and t is the creation time of XML

data.

The integrity verification also consists of three steps as shown in Figure 8.5.

Step 1: The securing process obtains hash values from signed results, and user’s

public key should be provided to the algorithm.

Step 2: System generates hash value of CI, STI, and CRI from original XML data,

and then creates the final hash values.

Step 3: The two hash value generated from step1, and step2 are compared, and

generate the verification results.

The relative algorithms for content integrity generation and structure integrity

generation are listed in Appendix D.

},{ InvalidValid

Compare
Digest

 value

SHA-1
STI value

Public Key

RSA

Signed XML

Figure 8.5 Verification process for CSR

STI

CRI
CRI value

Digest
 value

Original XML

CI value
CI

 161

8.4.2 XML data authentication

In this section, XML single signature and XML multi-signature generation are

described separately, and focusing on XML signature generation and verification.

• XML single signature

Step 1: A hash value is calculated for each XML data fragment being signed.

This involves applying a set of transforms to the XML fragment,

calculating the digest on the transformed XML fragment. The

transformations ensuring the XML fragment is in a normalized form. This

usually is completed using XML canonicalization. The information from

this step is represented using a “ds:Reference” element.

Step 2: The “ds:Reference” elements from the previous stage are added to a

“ds:SignedInfo” element. A hash value is calculated on the “ds:SignedInfo”

element which involves first applying XML canonicalization. This

calculated hash value is signed using the signer’s private key to create the

“ds:SignatureValue” element. A “ds:KeyInfo” element is used to specify

which key was used to create the signature. The “ds:SignedInfo”,

“ds:SignatureValue” and “ds:KeyInfo” elements are added to a

“ds:Signature” element which is the signature results.

When user intends to verify a signature, the following steps can be executed.

Step 1: A hash value is calculated for each “ds:Reference” element within the

signature. This involves applying the transforms specified in the reference,

and then calculating the hash value on the transformed XML fragment.

The calculated hash value is compared to the one that is within the

“ds:Reference” element. When they don’t match, the signature validation

fails.

Step 2: A hash value is calculated on the “ds:SignedInfo” element. This involves

first applying canonicalization on this element. The hash value of the

“ds:SignedInfo” element is retrieved from the signature value using the

 162

signer’s public key. This hash value is compared with the calculated hash

value. When they don’t match, the signature validation fails.

• XML multi-signature

XML single signature only satisfies the requirements of one user authenticating

an XML data. Based on proposed XML multi-signature scheme in Chapter 6, this

section also gives a description on how to implement XML multi-signature. The

process is similar to delegated multi-signature scheme proposed by Wu as

shown in Figure 8.6.

As shown in Figure 8.6, signers in same group can sign parallel, the different

group sign in sequential. This signing model can satisfy multi-signature

generation in a mixed signing process. The parameters transferred are identical

to the solutions in Chapter 6. The relative algorithms for XML multi-signature is

listed in Appendix E.

• Presentation for signed results

The presentation of XML signature view is using XSLT technology. XSL

transformation can be performed on an XML data source and generate a result

tree. A general application of XSLT is transforming XML data into HTML or

),(nn SR XML Data

1u

2u

nu

�

Broadcast
network

1u

2u

nu

�

XDD MSC

1A

2A

nA

1r

2r

nr

1B

2B

nB

1C

2C

nC

},,,{ 21 nrrr �

τ

},{ ii pA τ=

}{\},,,{ 21 ini rrrrB �=

},,{ iiii srpC =

Figure 8.6 The process for XML multi-signature generation

1G

τ

2G

),(11 SR

,,� MSC

 163

XHTML. The basic steps for transformation are shown in Figure 8.7. First, the

signed XML data is validated against the XML signature schema, and then the

basic information of each signature in XML data is extracted and delivered to

XSLT, also the XPath expressions of the signatures are extracted from the

element <Reference>. With each XPath and original signed XML data, the XSLT

generates the resulting view of the document.

8.4.3 XML data encryption and decryption process

Encryption can be performed based on different types of data, not just XML data.

The XML encryption specification defines how encryption is applied to XML data.

It specifies the processes for encrypting and decrypting XML data and the

representation of the encryption result in XML (Imamura et. al, 2002).

Data is encrypted using XML encryption by the following steps as shown in

Figure 8.8.

Multi-signed XML data

XML syntax validation

XML signature verification

Mark the XML element
with signature XPath

Verify signature and
display signer information

Signed XML data with
additional information

XHTML

XSLT process

XSL transformation

Figure 8.7 Presentation for XML multi-signature

 164

Step 1: A random session key is generated.

Step 2: The data is encrypted using a symmetric algorithm with the session key.

Symmetric encryption is used for the data for better performance. The

encrypted data is represented using the “xenc:EncryptedData” element.

Step 3: The session key is encrypted using an asymmetric algorithm with the

public key of the receiver. The encrypted session key is represented

using the “enc:EncryptedKey” element. The “xenc:EncryptedKey”

element can use a “ds:KeyInfo” element to specify which key was used.

The encrypted key can be added to the “ds:KeyInfo” element of the

“xenc:EncryptedData” element or it can exist independently.

Data is decrypted using XML encryption by the following steps as shown in

Figure 8.9:

Step 1: The encrypted session key within the “xenc:EncryptedKey” element is

decrypted using the private key of the receiver. The decrypted session

key is the key that was used to encrypt the data.

Subject
private key

Figure 8.9 Process of XML decryption

Encrypted XML
data

XML data Decryption

Ciphered
session key

Session
key

Figure 8.8 Process of role based XML encryption

XML
Data

Permission
judge

XML data operation
permission

Encryption

Session Key

Ciphered
Text

Ciphered
Session

key

X-Certificate

Encrypted
XML data

Combine

Subject role

 165

Step 2: The cipher text within the “xenc:EncryptedData” element is decrypted

using the session key.

The process for encrypted XML data pool generation can be divided into three

steps.

Step 1: With XML encryptor, the original XML data can be encrypted as shown in

Figure 8.10.

Step 2: Record the cipher block position in encrypted XML data. The position

information can be used to generate structural index information.

Step 3: Remove the cipher block into encrypted XML data pool. With the index

information, it is easy to find the original position of each cipher block.

8.4.4 Encrypted XML data query processing

The architecture for encrypted XML data query processing was illustrated in

Chapter 7. This section only gives the algorithm for index information updating

based on NLBILS.

• Algorithm for index information updating
Procedure InsertSub(SubTree,Pos)

// SubTree is the inserted sub-tree;

// Pos is the (left, right) pair

foreach node n of SubTree do

 Initialize the startList and endList of n to be the startList and endList of the current tree

 SpaceSize=getSpacesize(Pos)

XML data Encryptor Encrypted
XML data

Record
cipher block

position

Remove
cipher block

to pool

Public Key

Index
information

Encrypted XML
data pool

Figure 8.10 Process for encrypted XML data pool generation

 166

 InsertSize=getSubTreeSize(SubTree)

 for i=1 to SpaceSize do

 l[i]=getNewLabel(Pos)

 endfor

 if SpaceSize>InsertSize then

 Label the nodes in SubTree, attach the start and end value to the startList and

endList of the nodes in SubTree

 else if 0<SpaceSize<=InsertSize then

 m=l[SpaceSize/2]

 foreach node n in SubTree do

 Attach m to the startList and endList of n

 Label the nodes in SubTree by a new numbering

 Attach the start and end position to the startList and endList of the nodes in

SubTree

 else

 ParentSubTree=subtree rooted by the node that SubTree will be attached to

 foreach node in ParentSubTree do

 Remove the last start and end position from the startList and endList of n

 NewSubTree=ParentSubTree combined with SubTree

 NewSpaceSize=getSpaceSize(position of root of ParentSubTree)

 for i=1 to NewSpaceSize do

 l[i]=getNewLabel(position of root of ParentSubTree)

 k=l[NewSpaceSize/2]

 foreach node n in NewSubTree do

 Attach k to the startList and endList of n

 Label the nodes in NewSubTree by a new number

 Attach the start and end position to the startList and endList of the nodes in

NewSubTree

 endif

8.5 Implementation results

8.5.1 Environment of development

The prototype was developed on a PC with a 2.39 GHz Pentium (R) 4 processor,

0.99GB of RAM, and the MS Windows XP operating system. The programming

language is the C#.net. The background database is deployed as MarkLogic 3.1.

 167

8.5.2 Implementation results

This subsection presents the implementation results according to above system

architecture and algorithms. Based on the system architecture, the system

interface is shown in Figure 8.11. The functionality of the system includes five

modules: certificate editing, user authorization, certificate integrity protecting and

authentication, certificate information confidentiality, and certificate retrieve.

8.5.2.1 Certificate editing

The left side of the main interface in Figure 8.11 provides calibration certificate

creation. The basic information for a certificate includes title, description,

reference number, issue authority, data information, measurements, results, and

so on. After inputting the information, user clicks on button “Save” to save created

certificate. With the help of XSLT, the certificate can be viewed in PDF, XHTML

format. User can open an existing certificate through menu item “File”, and the

opened XML data will be displayed on right side of the interface.

8.5.2.2 User authorization

After a certificate generated, the administrator can assign the role of each user to

access the certificate. When a user login as an administrator, the user can open

Figure 8.11 System interface

 168

menu item “Management” and click the sub item “Authorization” as the result

shown in Figure 8.12.

First, the administrator chooses the user name in the list;

Second, administrator selects the certificate information at the left side in Figure

8.12;

Third, the role is assigned to the user with selected privilege.

With three steps above, the system stores the privilege of each user for different

certificate information. When users do some operation later, the system checks

their privilege first, if the operation forbidden, system will give information as

shown in Figure 8.13, otherwise, the operation will be done successfully.

Figure 8.13 Warning information

Figure 8.12 Access control authorization

 169

8.5.2.3 Certificate information integrity and authentication

Certificate authentication is completed based on certificate integrity. This means

that before signing a certificate, user should generate the certificate integrity

results, and then sign it. When user selects “Signing” under the menu item

“Signature”, the system will show the interface as in Figure 8.14.

The left side of Figure 8.14 is the XML data to be signed. The context-related

elements are shown in right side of Figure 8.14. When user selects an element at

left side, right side will display the relative elements automatically according to

default records. User can delete or add the new relative XML data in practice. This

improves the flexibility of context-referential integrity selection. This process can

be summarized into three steps.

First, user needs to select XML data to be signed by selecting possible XPath

listed in list-box. Second, user selects context-related XML elements. Finally,

through clicking on “confirm” button, system will generate integrity results.

Based on generated integrity results, the system can perform a signing process

or verifying process as shown in Figure 8.15. The right side in Figure 8.15 is the

Figure 8.14 Certificate information integrity

 170

signed results based on integrity CSR, and the signed results can be verified by

the user. As shown in Figure 8.15, after signed the certificate of calibration, the

user can verify it successfully.

The following contents depict the detailed components contained in the signature

results based on CSR and the details of CSR generation. A completely integrity

results and signed results based on CSR can be found in Figure 8.16.

• Structure integrity result

Structure integrity result is generated from formula)),(()(vrpathhvST = , h is a

one-way hash function, r is the root node, and v is the node to be signed. In this

case, r =”Certificate”, and v =”myData” denotes the element of “Measurements”.

• XML data content integrity

)(vCI is used to generate hash values of node to be signed, and v =”myData”.

Figure 8.15 Signed results based on CSR

 171

• Context-referential integrity

This result is generated by using function))(||)(()(wSTwCIhvCRI = , where, v is

the node to be signed, w is the context-related element. In this

case, w =”myRelate” denote the element of “Results”, and v =”myData”.

• Signature value based on integrity results

After obtained integrity results, the signature can be created by using

function))),(||)(||)(((privKvCRIvSTvCIhsign , where, “||” denotes the concatenation

operator.

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference URI="#myData">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>bDDbRiQzAsaD8e5K4svNt/6Mhr8=</DigestValue>

 </Reference>
 <CSR name="XML data integrity" xmlns="http://www.example.org">
 <STI name="structure integrity" xmlns="http://www.example.org">
 <STIGenerate Algorithm="http://www.example.org/xmldsig-csr/#STI" />
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>49-2A-ED-1A-5A-E1-BD-9C-59-04-19-58-8F-B7-08-5C-19-14-15-11</DigestValue>
 </STI>
 <CRI name="Content referential integrity" xmlns="http://www.example.org">
 <CRIGenerate Algorithm="http://www.example.org/xmldsig-csr/#CRI" />
 <RelatedNode>#myRelate</RelatedNode>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>36-C3-C5-A4-02-41-A9-0F-38-B7-C1-7C-7A-A0-A5-DE-7D-3A-75-E9</DigestValue>
 </CRI>
 </CSR>

 </SignedInfo>
<SignatureValue>Q2GGAc1bBlf9076W9uXOv3OwwDaAFP/WcO1AArZpGK8QCUoKn6j2ANbdxSX
BuTqqwK50NjGyRN2Vxbl3IxIXLFsHIw5rt/BoK7gkiGOXQTiwQV9AXK109dsfaqlvuesjZx2zHY0+8T
QOKaJBXOsa9zjjbuHSxRyJLTnaLRstdnA=</SignatureValue>

 <Object Id="myData" />
</Signature>

Figure 8.16 Integrity CSR and signed results

 172

8.5.2.4 Certificate information confidentiality

When sensitive information needs to be encrypted, user can click on menu item

“Encryption”. The system allows user to load a public key, and then selects the

nodes to be encrypted. The encryption result is shown in Figure 8.17. The

original XML data is replaced by the element “EncryptedData”. The element

“EncryptedData” contains the element “EncryptedKey”, and the “CipherData”.

The element “EncryptedKey” is the encrypted session key using algorithm RSA

with public key. The element “CipherData” is the encrypted XML data using

session key with algorithm AES-256. In Figure 8.17, the encrypted element is

“CertificateDate”. The original XML data element “CertificateDate” can be viewed

by process of decryption and relative private key. Through clicking the “Decrypt”

menu item in “Encryption”, user can obtain the original XML data.

8.5.2.5 Certificate retrieve

The system also provides functionality of certificate retrieving as shown in Figure

8.18. The left side is used to input the query condition, and the right side is used

to display queried results.

Figure 8.17 Certificate information confidentiality

 173

The querying process can be executed on plaintext or encrypted XML data

according to the scheme described in Chapter 7. When the user inputs the

condition of query, the system will search the certificate which is stored in

database MarkLogic. As shown in Figure 8.18, the querying condition is the

“CertificateDate”, and the queried results are displayed. In displayed case, the

element “CertificateDate” is in cipher block.

8.6 Discussion and analysis
The relationship of XML data integrity, authentication, and confidentiality is an

important factor affecting the generation of each result. Generally speaking, XML

data integrity is the basis of XML digital signature. XML signature signs the hash

value of XML data instead of XML data itself, and hash value is used to check the

integrity of XML data. The sequence for XML signature and XML encryption

generation is various. However, different sequence could generate totally

different results. This section discusses the relationship of XML data integrity,

authentication, and confidentiality.

Figure 8.18 Certificate retrieve

 174

8.6.1 The basis of XML signature

XML digital signature is applied to ensure XML data authentication. Strictly

speaking, XML signature supports to protect XML data integrity, as well as

ensuring XML data authentication. Figure 8.19 shows the integrity position in

XML signature.

The original XML data and the signature are transferred to the recipient. The

hash value generated by one-way hash function is used to ensure XML data

integrity, and it is encrypted with the signer’s private key. The recipient first uses

the signer’s public key to decrypt the hash result, and uses the same hashing

algorithm to generate a new hash value of the same XML data. Through

comparing the new hash result against the original hash value, the integrity is

ensured.

Compared to traditional data integrity, the XML data integrity model proposed in

Chapter 5 has advantage of preventing XML signature tampering. Without the

structure integrity and context-referral integrity, it is easy to copy a signature into

another XML data and still keeping the valid signature.

8.6.2 The sequence of XML signature and XML encryption

Anyone can sign or encrypt portions of an XML data at any order, which mainly

are encrypted-then-signed, and signed-then-encrypted. The signing or encrypting

sequence will generate completely different results. The principle for XML

signature presented by W3C is the practicable rules for XML signature

Original
XML
data

Digest
value

Private
key

XML
signature

Network

Original
XML
data

XML
signature

Public
key

Digest
value

Digest
value

 Validating

Figure 8.19 XML signature validating data integrity

 175

application (Bartel et al., 2008). It has presented approach how to handle

different sequence relating to XML signature and XML encryption as follows.

• Principle 1: Only what is “Seen” should be Signed

XML signature signs any information indicated by a transform: “only what is

“seen” should be signed”. It is necessary to secure as exactly as practical the

information that was presented to the user (Bartel et al., 2008). Note that this can

be accomplished by literally signing what was presented, such as the screen

images, auditory or other media. However, this may result in data which is difficult

for security software to manipulate. Under this situation, one can sign the data

along with whatever filters, style sheets or other information that generates its

presentation.

• Principle 2: “See” What is Signed

“Persons and automated mechanism that trust the validity of a transformed

document on the basis of a valid signature should operate over the data that was

transformed (including canonicalization) and signed, not the original pre-

transformed data. This recommendation applies to transforms specified within the

signature as well as those included as part of the document itself” (Bartel et al.,

2008).

8.6.2.1 Encrypted-then-signed

No one should be asked to sign a data that they cannot see, and this situation

opposite the basic principles of “Only What is “Seen” should be Signed” (Hughes

et al., 2002). When a data is encrypted, a user cannot infer the information

through the cipher text. The encrypted-then-signed is meaninglessness in

applications.

8.6.2.2 Signed-then-encrypted

If one intends to sign the plain text which is later encrypted, the person can use

the transform specified by the W3C (Hughes et al., 2002). It has been noted by

David Solo that both XML encryption and XML signature can be performed on an

XML data in any order and any time (Hughes et al., 2002). An example has been

described by W3C as follows, when a user wishes to order and pay for a product

 176

from a company using the trusted payment system Paypal. The company creates

an order form including the product name, quantity, price, and account

information. The company signs all of these information (Hughes et al., 2002),

and encrypts the account information for Paypal only. The company sends the

order form to the user for confirmation with user’s signature. To validate both

signatures, Paypal will have to know the encrypted information for validating the

company’s signature.

However, encryption applied to the signed content may result a signature not to

be verifiable, and it needs to decrypt the encrypted XML data before the

signature is verified (Hughes et al., 2002). It needs a mechanism to decrypt only

signed-then-encrypted portions. There are two cases: one is that the encryption

and signature order can be derived directly from the content. The other is that

encrypted content is the signed resources, and it is difficult to derive it directly

from the content, which defined as order issue within signed resources. W3C has

proposed the specification of “Decryption Transform for XML Signature” to handle

these two kinds of situation.

8.7 Summary
A case study of XML security in calibration certificate management is designed

and implemented conforming to the approaches and schemes in previous

chapters. The results of the tests and analysis show that the prototype can

benefit the security management of calibration certificate.

 177

Chapter 9 Conclusions and future works

This chapter summarizes the outcomes of this research and highlights the

contributions in the relevant research topics, which were described in previous

chapters. Future works relative to XML security are also discussed.

9.1 Contributions and conclusions
This dissertation aims at improving XML security relative technologies, and

makes it more practicable and secure. The proposed works have demonstrated

the feasibility and applicability of presented approaches and schemes with

systemic validation over the performances of the solutions. It is perceived that the

dissertation has made several contributions to the domain knowledge.

9.1.1 Revocation information validation for x.509 digital
certificate

The first main contribution of this dissertation is that a novel approach for

revocation information validation for X.509 digital certificate was proposed. In

order to alleviate the burden of XKMS for certificate revocation query, the thesis

proposed a novel idea to make certificate revocation handling and validation

easier using XML signature technology. Certificate owner’s signature is applied to

provide evidence for revocation information of the certificate. It does not need to

query XKMS or CA for revocation information of such certificate, because the

certificate already contains the status information. It improves the efficiency on

revocation information checking, further alleviates the burden of XMKS server.

9.1.2 XML data integrity

The second main contribution of this dissertation is that an overall XML data

integrity requirements was presented combining XML data features, and then

satisfies the requirements with an integrity model for XML data with a high

efficiency.

• XML data integrity requirements combining XML data features were

presented under fine-grained XML security. Three aspects are considered

 178

including content integrity, structure integrity, and context-referential

integrity.

• Based on proposed requirements, an integrity approach CSR for XML

data was set up based on the concatenated hash function.

• Based on the concatenated hash function to generate hash values for

XML data, the approach has a higher efficiency than the Merkle hash

function-based hash value-generation process.

9.1.3 Series-parallel XML multi-signature scheme

The third main contribution of this research is that an XML multi-signature

scheme was proposed to satisfy a dependent and independent signing process.

To the domain knowledge, this is the first XML multi-signature scheme supporting

series and parallel signing process.

• An XML data integrity-checking pool to provide integrity-checking for

decomposed XML data was presented. XML data integrity-checking pool

makes signing XPath expression practicable for XML data.

• A series-parallel XML multi-signature scheme according to a mixed

dependent and independent signing process was proposed based on

series-parallel signing group and XML data integrity-checking pool.

9.1.4 Efficient index information updating for encrypted XML
data

The fourth main contribution of this dissertation is that a structural index for

encrypted XML data with considering both efficiency of index information

updating and query processing security was proposed.

• The number list based interval labeling scheme for encrypted XML data

was presented. The proposed scheme is easy to update XML data with

decreasing the number of affected nodes to the lowest.

 179

• In order to improve the efficiency of index information maintaining for

encrypted XML data query processing, especially when XML data

changing frequently, the thesis proposed a structural index based on the

number list based interval labeling scheme.

• A novel approach was proposed to protect structural information for

encrypted XML data. The basic idea is that encrypted nodes are removed

from original XML data, and they consist of an encrypted XML data pool.

The structural information is hided through this method.

9.2 Future works
The major disadvantage of proposed integrity approach is that user needs to

select the context-related elements in the process of signature creation. The

disadvantage increases complexity of interaction between the user and the

system. One of the future works will focus on integrating XML data integrity

constraints into presented solution to capture context-related elements

automatically.

The implemented prototype only is a demonstration of the proposed solutions to

solve security issues in calibration certificate management. It needs common

XML security tools which easy to be integrated into existing applications. Another

future works is to focus on integrating XML security into native XML database to

solve the security issues existing in native XML database system, and further

developing XML security common tools.

9.2.1 Context-related elements selection

The problem of selecting the context-related elements within an XML data was

discussed in Chapter 5. As mentioned, with the development of integrity

constraints for XML, it is possible to integrate the constraints for XML into

context-related elements selection. Integrity constraints for XML are defined to

limit the relationship among XML elements. Existing types of integrity constraints

include the XML key constraints, referential constraints, and XML semantic

 180

constraints. These constraints is used to protect the integrity when XML data

updating or storage. In the future, these constraints will be introduced into XML

data integrity for context-related elements selection.

9.2.2 Integrate XML security into native XML database system

Native XML database system has been built for several years, such as Marklogic,

dbXML, Xindice, eXist. These systems just provide a mechanism for XML data

storage and query, the security issues relative to XML data have not been

considered. When an XML data is encrypted, how to execute a query on these

data is not taken into account. The work related to native XML database security

will be carried out.

• Access control model for portions of XML data in native XML database.

The major advantage of XML is that it provides a fine-grained access.

Although native XML database system provides access control

mechanism, the access control rules only can be defined on entire XML

data. It has not considered the access control for portions of XML data.

This indicates that the current access control mechanism has not taken

XML data feature of fine-grained accessibility into account.

• Development a mechanism for encrypted XML data query processing in

native XML database

When a user encrypts portions of XML data for security problem, the

query processor of native XML database cannot deal with it. Another

future work is that deploy the proposed encrypted XML data query

processing into native XML database. In other words, a query processor

for encrypted XML data will be developed.

 181

References

Adams, C., Cain, P., Pinkas, D., Zuccherato, R., 2001. “Internet X.509 Public Key

Infrastructure Time-Stamp Protocol (TSP)”, (RFC 3161), IETF.

Aiello, W., Lodha, S., Ostrovsky, R., 1998. “Fast digital identity revocation

(extended abstract)”, In :CRYPTO, pp. 137-152.

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y., 2004. Order preserving encryption

for numeric data. In: SIGMOD Conference. (2004) pp 563-574.

Altinel, M., Franklin, M., 2000. Efficient filtering of XML documents for selective

dissemination of information. In proceeding of the 26th international

conference on Very Large Data Bases, Cairo, Egypt, 2000, pp 53-64.

Arnes, A., 2000. “Public key certificate revocation schemes”, Master thesis,

Queen’s University, Kingston, Ontario, Canada.

Arsenault, A., Turner, S., 1999. PKIX Roadmap. IETF Internet Draft.

Barker, W. C., 2004. Recommendation for the Triple Data Encryption Algorithm

(TDEA) Block Cipher. NIST special publication 800-67m version 1.1, available

at: http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf (Accessed

on October 2010).

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E., 2002. XML-Signature

Syntax and Processing, W3C Recommendation 12 February 2002, available

at: http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ (Accessed on

October 2010).

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E., 2008. XML signature

syntax and processing (second edition), Available at:

http://www.w3.org/TR/xmldsig-core/ (Accessed on 6 December 2008)

Benjumea, V., Choi, S. G., Lipez, J., Yung, M., 2007. “Anonymity 2.0 – X.509

extensions supporting privacy-friendly authentication”, CANS 2007, LNCS

4856, pp. 265-281.

 182

Berglund, A., Boag, S., Chamberlin, D., Fernández, Mary F., Kay, M., Robie, J.,

Siméon, J., 2007. XML path language (XPath) 2.0. Available at:

http://www.w3.org/TR/xpath20/ (Accessed on December 2008).

Bertino, E., 2001. XML security. Information security technical report, Vol. 6 No.

2, pp 44-58.

Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., Gupta, A., 2004.

Selective and authentic third-party distribution of XML documents. Knowledge

and Data Engineering, IEEE Transactions, 16(10) pp 1263–1278.

Blobel, B., 2004. Authorisation and access control for electronic health record

systems. International Journal of Medical Informatics, 73(3) pp 251-257.

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., Simeon, J.,

2007. XQuery 1.0: An XML Query Language. Available at:

http://www.w3.org/TR/xquery/ (Accessed on December 2009).

Boritz, J.E., No, W.G., 2005. Security in XML-based financial reporting services

on the Internet. Journal of Accounting and Public Policy, 24(1), pp 11-35.

Boyd, C., 1991. Multisignatures based on zero knowledge schemes. Electronics

letters 27, pp 2002-2004.

Boyer, J., 2001. Canonical XML Version 1.0, W3C Recommendation 15 March

2001, available at: http://www.w3.org/TR/xml-c14n (Accessed on October

2010).

Boyer, J., Eastlake, D. E., Reagle, J., 2002a. Exclusive XML Canonicalization

Version 1.0, W3C Recommendation 18 July 2002, available at:

http://www.w3.org/TR/xml-exc-c14n/ (Accessed on October 2010).

Boyer, J., Hughes, M., Reagle, J., 2002b. XML-Signature XPath Filter 2.0, W3C

Recommendation 08 November 2002, available at:

http://www.w3.org/TR/xmldsig-filter2/ (Accessed on October 2010).

Boyer, J., Marcy, G., 2007. Canonical XML 1.1, W3C Candidate

Recommendation 21 June 2007, available at: http://www.w3.org/TR/2007/CR-

xml-c14n11-20070621/ (Accessed on July 2009).

 183

Brandt, P., Bonte, F., 2000. Towards secure XML. Availabel at:

http://lists.w3.org/Archives/Public/xml-encryption/2000Oct/att-0016/02-

Discussion_paper_sXML.doc (Accessed on December 2009).

Bray, T., Paoli, J., Sperberg-McQueen., C.M., Maler, E., Yergeau, F., 2008.

Extensible Markup Language (XML) 1.0 (Fifth Edition). Availabel at:

http://www.w3.org/TR/REC-xml/ (Accessed on December 2009)

Brown, R.D., 1999. Digital signature for XML, GlobeSet. Inc. XMLDSIG Working

Group. Available at: http://www.w3.org/Signature/Drafts/draft-ietf-xmldsig-

signature-00.txt (Accessed 5 December 2008)

Brinkman, R., Feng, L., Doumen, J., Hartel, P.H., Jonker, W., 2004. Efficient Tree

Search in Encrypted Data. Information systems security, 13 (3). pp 14-21.

Brinkman, R., Schoenmakers, B., Doumen, J., Jonker, W., 2005. Experiments

with Queries over Encrypted Data Using Secret Sharing. Lecture Notes in

Computer Science, Volume 3674/2005, pp 33-46.

Burmester, M, Desmedt, Y., Doi, H., Mambo, M., 2004. A structured ELGamal-

Type Multisignature Scheme. Lecture Notes in Computer Science, Volume

1751/2004, pp 466-483.

Carminati, B., Ferrari, E., Bertino, E., 2005. Securing XML data in third-party

distribution systems. The ACM conference on information and knowledge

management, Bremen, Germany, 2005, pp 99-106.

Celko, J., (2004). Trees and Hierachies in SQL: Adjacency List Model, Available

at: http://www.sqlsummit.com/AdjacencyList.htm (Access on February 2009).

Chan, C., Felber, P., Garofalakis, M., Rastogi, R., 2002. Efficient filtering of XML

documents with XPath expressions. The VLDB Journal, Vol. 11, pp 354-379.

Chang, T.K, Hwang, G.H., 2007. A processing model for the optimal querying of

encrypted XML documents in XQuery. In: proceedings of Eighteeth

Australasian Database Conference (ADC2007), Ballarat, Victoria, Australia.

Pp 43-51.

 184

Chen, Y.H., Lu, E.J., 2004. Design of a secure fine-grained official document

exchange model for e-government. Information & Security, 15(1) (2004), pp

55-71.

Chow, R., Johnson, T., 1997. Distributed Operating System & Algorithms.

Addison Wesley.

Cid, C., 2006. Recent developments in cryptographic hash functions: Security

implications and future directions. Information Security Technical Report. II

(2006), pp 100-107.

Cody, E., Sharman, R., Rao, R.H., Upadhyaya, S., 2008. Security in grid

computing: A review and synthesis. Decision Support Systems, 44 pp 749–

764.

Czech, Z. J., Havas, G., Majewski, B. S., 1992. An optimal algorithm for

generating minimal perfect hash functions. Information Processing Letters,

Vol. 43 Issue 5, pp 257 – 264.

Damiani, E., De, S., Di, C., Samarati, P., 2002. Towards securing XML web

services. ACM workshop on XML security, November 22, 2002, USA, pp 90-

96.

Dankers, J., Garefalakis, T., Schaffelhofer, R., Wright, T., 2002. Public key

infrastructure in mobile system. Electronics and Communication Engineering

Journal, 14(5) pp 180-190.

Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G.,2001. Stubblebine,

Flexible authentication of XML documents. In Proceeding of the 8th ACM

conference on Computer and Communications Security. ACM Press,

Philadelphia, USA, 2001, pp 136-145.

Diffie, W., Hellman, M., 1976. New Direction in Cryptography. IEEETransactions

of Information Theory, Vol. 22 Issue 6, pp 644-654.

Dobbertin, H., Bosselaers, A., Preneel, B., 1996. RIPEMD-160: a strengthened

version of RIPEMD, Fast Software Encryption, LNCS 1039, Springer-Verlag,

1996, 71-82.

 185

Doi, H., Mambo, M., Okamoto, E., 2000. On the security of the RSA-based

multisignature scheme for various group structures. ACISP 2000, LNCS 1841,

pp. 352-367.

Ekelhart, A., Fenz, S., Goluch, G., Steinkellner, M., Weippl, E., 2008. XML

security – A comparative literature review. Journal of Systems and Software,

81 pp 1715-1724.

Fan, W., Chan, C., Garofalakis, M., 2004. Secure XML querying with security

views. In: SIGMOD Conference. pp 587-598.

Feng, L., Jonker, W., 2003. Efficient processing of secured XML metadata, OTM

workshop 2003, LNCS 2889, pp 704-717.

FIPS180-2, 2002. Secure Hash Standard, available at

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf (Accessed on July

2009)

Ford, W., 1995. Advances in public-key certificate standards. ACM SIGSAC

Review, Volume 13, Issue 3, pp9-15.

Ford, W., Baum, M. S., 1997. Secure Electronic Commerce. Prentice Hall PTR.

Gao, J., Wang, T., Yang, D., 2008. Xflat: Query-friendly encrypted XML view

publishing, information sciences 178 (2008), pp 774-787.

Georgiadis, Christos K., Mavridis, Ioannis K., Nikolakopoulou, G., Pangalos,

George I., 2002. Implementing Context and Team Based Access Control in

Healthcare Intranets, Informatics for Health and Social Care, Volume 27, pp

185 – 201.

Geuer-Pollmann, C., 2002. XML Pool Encryption. In proceedings of the 2002

ACM Workshop on XML Security, Nov. 22, 2002, Fairfax VA, USA. ISBN: 1-

58113-632-3. pp 1-9.

Geuer-Pollmann, C., 2004. Confidentiality of XML documents by pool encryption

(Unpublished PhD thesis, University Siegen, 2004)

Goyal, V., 2004a. “Certificate revocation lists or online mechanisms”, In Eduardo

Fernandez-Medina, Julio Cesar Hernandez Castro, and L. Javier Garca-

Villalba, editors, OSIS, INSTICC Press, pp. 261-268.

 186

Goyal, V., 2004b. “Fast Digital Certificate Revocation”. IFIP International

Federation for Information Processing. Security and Protection in Information

Processing Systems. pp 488-500.

Goyal, V., 2007. Certificate Revocation using Fine Grained Certificate Space

Partitioning. Financial Cryptography 2007. pp247-259.

Gudgin, M., Hadley, M., Medelsohn, N., Moreau, J., Nielsen, H., Karmarkar, A.,

Lafon, Y., 2007. SOAP Version 1.2 Part1: Messaging Framework (Second

Edition). Available at: http://www.w3.org/TR/soap12-part1/#intro (Accessed on

December 2009).

Hallam-Baker, Phillip M., Ford, W., 2001. XML Key Management Specification

(XKMS). Available at: http://www10.org/cdrom/posters/1129.pdf. (Accessed on

July, 2009)

Hallam-Baker, P., Mysore, S.H., 2005. XML Key Management Specification

(XKMS 2.0), W3C Recommendation 28 June 2005,

http://www.w3.org/TR/xkms2/. (Accessed on July, 2009)

Hardjono, T., Zheng, Y., 1992. A practical digital multisignature scheme based on

discrete logarithms. Advances in Cryptology, AUSCRYPT’92, Springer, Berlin,

pp 122-132

Harn, L., Kiesler, T., 1989. New scheme for digital multisignature. Electronics

letters 25, pp 1002-1003.

Harn, L., 1999. Digital multisignature with distinguished signing authorities.

Electronics Letters, Volume 35, Issue 4, pp 294 – 295.

Harn, L., 1994a. Group-oriented (t,n) threshold digital signature scheme and

digital multisignature. IEE Proceedings Computers and Digital Techniques

141, pp 307-313

Harn, L., 1994b. New digital signature scheme based on discrete logarithms.

Electronics letters 30, pp 396-398.

Hirsch, F., 2002. Getting Started With XML Security, Available at:

http://home.comcast.net/~fjhirsch/xml/xmlsec/starting-xml-security.html

(Accessed on December 2008)

 187

Hirsch, F., Just, M., 2003. XML Key Management (XKMS 2.0) Requirements.

W3C Note 05 May 2003. Available at: http://www.w3.org/TR/xkms2-req

(Accessed on July 2009)

Hormann, T. Perlines, Wrona, H., K., Holtmanns, S., 2006. “Evaluation of

certificate validation mechanisms”, Computer Communications, Volume 29,

Issue 3, pp 291-305.

Housley, R., Ford, W., Polk, W., Solo, D., 2002. “Internet X.509 Public Key

Infrastructure, Certificate and CRL Profile”, the IETF, RFC 3280.

Huang, H.F., Chang, C.C., 2005. Multisignatures with distinguished signing

authorities for sequential and broadcasting architectures. Computer Standards

& Interfaces, Volume 27, Issue 2, pp 169-176.

Hughes, M., Imamura, T., Maruyama, H., 2002. Decryption transform for XML

signature, W3C recommendation 10 December 2002 (Accessed on July

2009).

Hussain, O.K., Soh, B., 2004. Maintaining the integrity of XML signatures by

using the Manifest element. 30th Annual Conference of IEEE’, IEEE computer

Society, Vol.1, Busan, South Korea, 2004, pp 493–195.

Imamura, T., Dillaway, B., Simon, Ed., 2002. XML Encryption Syntax and

Processing, December 2002, available at http://www.w3.org/TR/xmlenc-core/

((Accessed on February 2009)

IBM, 2008. Data integrity. Available at:

http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=/com.i

bm.ztpf-ztpfdf.doc_put.cur/gtps5/s5dint.html (Accessed 12 December 2008)

ISO/IEC, 1997. Information technology -- Open Systems Interconnection --

Security frameworks for open systems Part 4: Non-repudiation framework.

ISO 7498-2, 1989. Information processing systems -- Open Systems

Interconnection -- Basic Reference Model -- Part 2: Security Architecture

ITU. X.500, 1997. ITU-T Recommendation. Available at: http://www.itu.int/rec/T-

REC-X.500-200508-I/en (Accessed on Feb. 2009)

 188

ITU. X.509, 1997. ITU-T Recommendation. Available at: http://www.itu.int/ITU-

T/asn1/database/itu-t/x/x509/1997/index.html (Accessed on Feb. 2009)

ITU-T Recommendation X.509 version 3, 1997. “Information Technology - Open

Systems Interconnection - The Directory Authentication Framework”, ISO/IEC

9594-8:1997, (Accessed on Feb. 2009)

Itakura, K., Nakamura, K., 1983. A public-key cryptosystem suitable for digital

multisignatures. NEC Research and Development 71, pp 1-8.

Jammalamadaka, R.C., Mehrotra, S., 2006. Querying encrypted XML documents.

Proceedings of the IEEE International Database Engineering & Applications

Symposium, IDEAS, 2006, pp129-136.

Jones, S., Wilikens, M., Morris, P., Masera, M., 2000. Trust requirement in e-

business. Communications of the ACM, 43(12), pp 81-87.

Jonker, W., Feng, L., 2008. Method of searching in a collection of documents,

USPTO Application #: 20080059404.

Joux, A., 2004. Multicollisions in Iterated Hash Functions. Application to

Cascaded Constructions. LNCS (3152), pp 306-316.

Kammer, R. G., 1999. Data Ecryption Standard (DES). FIPS PUB 46-3, available

at: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf (Accessed on

October 2010).

Karnouskos, S., 2005. Security-enabled code deployment for heterogeneous

networks. Computer Standards & Interfaces, 27(5) pp 547-560.

Kiesler, T., Harn, L., 1990. RSA blocking and multisignature schemes with no bit

expansion. Electronics letters 26, pp.1490-1491

Kocher, P. C., 1998. “On certificate revocation and validation”, In Financial

Cryptography, pp. 172-177.

Komar, B., Kinder, C., Ben-Menahem, A., 2010. Certificate Revocation and

Status Checking. Available at: http://technet.microsoft.com/en-

us/library/cc770413%28WS.10%29.aspx (Accessed on October, 2010).

 189

Krumm, J., 2007. Inference Attacks on Location Tracks. Fifth International

Conference on Pervasive Computing (Pervasive 2007), LNCS 4480, pp 127-

143.

Kubbilun, W., Gajek, S., Psarros, M., Schwenk, J., 2005. Trustworthy

Verification and Visualisation of Multiple XML-Signatures. LNCS, Volume

3677/2005, pp 311-320.

Lee, J-G., Whang, K-Y., 2006. Secure query processing against encrypted XML

data using Query-Aware decryption, Information sciences, 176 (2006), pp

1928-1947.

Leung, K.R.P.H., Hui, L.C.K., 2001. Handling signature purposes in workflow

systems. The Journal of System and Software, 55 pp 245-259.

Li, Q., Moon, B., 2001. Indexing and querying XML data for regular path

expressions. In proceedings of the VLDB 2001, pp. 361-370.

Li, Z.C., Hui, L.C.K., Chow, K.P., Chong, C.F., Tsang, W.W., Chan, H.W., 2000.

Cryptanalysis of Harn digital multisiganture scheme with distinguished signing

authorities. Electronics Letters, Volume 36, Issue 4, pp 314 – 315.

Liu, H., Luo, P., Wang, D., 2008. “A scalable authentication model based on

public keys”, Journal of Network and Computer Applications, 31, pp 375-386.

Liu, B., Lu, J., Yip, J., 2009a. “A Series-parallel XML Multisignature Scheme for

XML Data Authentication”, International Journal of Computer Science and

Network Security, VOL.9 No.2, February 2009, pp. 236-247.

Liu, B., Lu, J., Yip, J., 2009b. “XML Data Integrity Based on Concatenated Hash

Funcation”, International Journal of Computer Science and Information

Security, Vol. 1, No. 1, May 2009, pp. 31-40.

Lu, E. J-L., Chen, R-F., 2004. An XML multisignature scheme. Applied

Mathematics and Computation, 149 pp 1-14.

Lu, J., Cripps, N., Chen, H., Chen, Y., 2005. An Approach to XML Key

Management Specification in X-Certificator. International Conference on

Internet Computing 2005: 488-493

 190

Lu, J., Cripps, N., Chen, H., 2006. XML Security in Certificate Management, 4th

Workshop on XML Technology and Applications - XML TECH'06. pp 340-346

Maruyama, H., Tamura, K., Uramoto, N., 1999. Digest Values for DOM (DOM-

HASH), RFC2803. Available at: http://www.landfield.com/rfcs/rfc2803.html

(Accessed 13 November 2008)

Mclntosh, M., Austel, P., 2005. XML signature element wrapping attacks and

countermeasures. in: SWS’05: Proceedings of the 2005 ACM Workshop on

Secure Web Services. ACM Press, Fairfax, USA, 2005, pp 20-27.

Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V., 2006. On the Collision

Resistance of RIPEMD-160. Lecture Notes in Computer Science, ISBN: 978-

3-540-38341-3, pp 101-116.

Micali, S., 1997. “Efficient certificate revocation”, In: Proceedings 1997 RSA Data

Security Conference.

Micali, S., 2002. “Novomodo: Scalable certificate validation and simplified PKI

management”, In: Proceeding of 1st Annual PKI Research Workshop,

Gaithersburg, Maryland, USA, pp. 15-26.

Michels, M., Horster, P., 1996. On the risk of disruption in several multiparty

signature schemes. Advances in Cryptology, ASIA Crypt’96, Springer, Berlin,

pp 125-132.

Mitomi, S., Miyaji, A., 2000. A general model of Multisignature Scheme with

Message Flexibility, Order Flexibility and Order Verifiability. ACISP 2000, pp

298-312.

Merkle, R.C., 1989. A Certified Digital Signature. In proceedings of Advances in

Cryptology, Lecture Notes in Computer Science (435), Springer-Verlag,

California, USA, 1989, pp 218-238.

Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C., 1999. “X.509

Internet Public Key Infrastructure, Online Certificate Status Protocol – OCSP”,

the IETF, RFC 2560.

Naor, M., Nissim, K., 1998. “Certificate revocation and certificate update”, In:

Proceedings 7th USENIX Security Symposium (San Antonio, Texas).

 191

Nielsen, R., Hamilton, B. A., 2005. “Observations from the Deployment of a Large

Scale PKI”, In: Proceedings of 4th Annual PKI R&D Workshop “Multiple Paths

to Trust”, NIST, Gaithersburg MD, USA, pp. 159-165.

NIST, 2001. Specification for the Advanced Encryption Standard (AES), FIPS

PUB 197, available at: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

(Accessed on October 2010).

NIST, 2006. Digital Signature Standard, FIPS Publication 186-3.

Noor, A., 2008. “Securing the core with an enterprise key management

infrastructure (EKMI)”, in: Proceedings of the 7th symposium on Identity and

trust on the Internet, Gaithersburg, Maryland, pp 98-111.

Ohta, K., Okamoto, T., 1991. A digital multisignature scheme based on the fiat-

shamir scheme. Advances in Cryptology, ASIA Crypt’91, Springer, Berlin, pp.

139-148

Oliveria, E., Abdelouahab, Z., Lopes, D., 2006. Security on MASs with XML

Security Specifications. Proceedings of the 17th International Conference on

Database and Expert System Applications, IEEE Computer Society, Krakow,

Poland, 2006, pp 5-9.

O’Neill, M., 2007. Case Notes from a Vulnerability Assessment of a Bank's Web

Services. XML2007 conference & Exposition, Massachusetts, USA, 2007, pp

18-24.

Pfleeger, C. P., 1997. Security in Computing. Prentice Hall PTR.

Polivy, D. J., Tamassia, R., 2002. Authenticating distributed data using Web

services and XML signatures. In proceedings of the 2002 ACM workshop on

XML security, pp 80-89.

Qiao, J., 2007. Research on XML United-Signature Technology and Its

Implementation. Proceedings of the Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, IEEE Computer Society, Qingdao, China,

2007, pp 979-983.

 192

Randall, J., 2005. Hash function update due to potential weakness found in sha-

1. RSA laboratories, Technical Note.

Reagle, J., 1999. XML-Signature Requirements, Available at:

http://www.w3.org/TR/xmldsig-requirements (Accessed 6 November 2008)

Rivest, R.L., 1992. The MD5 message digest algorithm. RFC 1320. Available at:

http://www.ietf.org/rfc/rfc1321.txt (Accessed on Feb. 2009)

Rivest, R. L., 1998. “Can we eliminate certificate revocation lists?”, Financial

Cryptography, vol. 1465, pp. 178-183.

Rushinek, A., Rushinek, S., 2002. E-commerce security measures: are they

worth it?. Ubiquity 3(39), pp 1.

Schmidt, A. R., Waas, F., Kersten, M. L., Florescu, D., Manolescu, I., Carey, M.

J., and Busse, R., 2001. The XML Benchmark Project. Technical Report INS-

R0103, CWI, Amsterdam, The Netherlands, 2001. http://monetdb.cwi.nl/xml/

(Accessed on April 2009)

Schneier, B., 1995. Applied Cryptography, 2.nd ed. John Wiley & Sons.

Schrefl, M., Grun, K., Dorn, J., 2005. SemCrypt-Ensuring privacy of electronic

documents through semantic-based encrypted query processing. Proceedings

of the 21st International Conference on Data Engineering Workshops, April,

2005, pp 1191-1191.

Secure hash standard (SHA), 2002. Federal Information Processing Standard

Publication 180-2. Available at: http://csrc.nist.gov/publications/fips/fips180-

2/fips180-2.pdf (Accessed on Feb. 2009).

Smart, N., 2010. Cryptography: An Introduction (3rd Edition). Available at:

http://www.cs.bris.ac.uk/~nigel/Crypto_Book/ (Accessed on October 2010).

Stallings, W., 2006. Cryptography and Network Security: Principles and

Practices, Fourth Edition, ISBN: 0131873164, by Person Education, Inc., pp

341.

Sun, L., Li, Y., 2005. XML undeniable signature. In proceedings of the 2005

International Conference on Computational Intelligence for Modelling, Control

and Automation. IEEE computer society. pp 981-985.

 193

Tamassia, R., Triandopoulos, N., 2003. On the Cost of Authenticated Data

Structures. In Proc. European Symposium on Algorithms, LNCS (2832),

Budapest, Hungary, 2003, pp 2-5.

Tada, M., 2002. An Order-Specified Multisignature Scheme Secure against

Active Insider Attacks. ACISP 2002, LNCS 2384, pp 328-345.

Ünay, O., Gündem, T.I., 2008. A survey on querying encrypted XML documents

for databases as a service, SIGMOD Record, Vol.37 No. 1, 2008, pp 12-20.

Wang, H., Lakshmanan, L.V.S., 2006. Efficient secure query evaluation over

encrypted XML databases, in proceedings of the 32nd international

conference on Very large data bases, Seoul, Korea, 2006, pp 127-138.

Wang, L., Okamoto, E., Miao, Y., Okamoto, T., Doi, H., 2006. ID-based series-

parallel multi signature scheme for multi-message from bilinear maps.

International Workshop on Coding and Cryptograph (WCC2006), LNCS 3969,

Springer-Verlag, Berlin, 2006, pp 291–303.

Wang, X., Yin, L., Yu, X., 2005a. Finding collisions in the full SHA-1, In: Eurocrypt

2005, LNCS, vol. 3494, Springer, pp19-35.

Wang, X., Yu, X., 2005b. How to break MD5 and other hash functions. In: Crypto.

2005. LNCS, vol. 3621. Springer; pp. 17-36

Wazan, A. S., Laborde, R., Barrere, F., Benzekri, A., 2008. “Validating X.509

certificates based on their quality”, in: Proceeding of the 9th International

Conference for Young Computer Scientists, Hunan, China, pp. 2055-2060.

Weerasinghe, D., Elmufti, K., Rajarajan, M., Pakocevic, V., 2006. XML Security

based Access Control for Healthcare Information in Mobile Environment. In

proceedings of Pervasive Health Conference and Workshops, 2006. ISBN: 1-

4244-1085-1, pp 1-6.

Woerner, J., Woern, H., 2005. A security architecture integrated co-operative

engineering platform for organised model exchange in a Digital Factory

environment. Computers in Industry, 56(4) pp 347-360.

Wu, C., Shan, H., Wang, W., Shieh, D., Chang, M., 2002. E-Government

Electronic Certification Services in Taiwan, proceedings of the Second

 194

International Workshop for Asian Public Key Infrastructures, Taipei, Taiwan,

2002, pp 1-8.

Wu, T-C., Huang, C-C., Guan, D.J., 2001. Delegated multisignature scheme with

document decomposition. The Journal of Systems and Software, 55 pp 321-

328.

Wu, T.S., Hsu, C.L., 2002. ID-based multisignatures with distinguished signing

authorities for sequential and broadcasting architectures. Applied Mathematics

and Computation, Volume 131, Issues 2-3, pp 349-356.

Xia, S., Ke, Y., Wang, C., 2009. Model design on DAS and research of XML

encrypted data querying. Proceedings of the 2009 Sixth Web Information

Systems and Applications Conference, IEEE Computer Society, pp 32-36.

Yamamoto, D., Ogata, W., 2007. A General Model of Structured Multisignatures

with Message Flexibility. IEICE Trans. Fundamentals, Vol. E90-A, No. 1 pp

83-90.

Yang, M., Su, L., Li, J., Hong, F., 2006. Secure order-specified multisignature

scheme based on DSA. Wuhan University Journal of Natural Science, Vol. 11

No. 6 pp 1614-1616.

Yang, Y., Ng, W., Lau, H.L., Cheng, J., 2006. An efficient approach to support

querying secure outsourced XML information. CaiSE 2006, LNCS 4001, 2006,

pp 157-171.

Yee, G., Xu, Y., Korba, L., El-Khatib, K., 2006. Privacy and Security in E-

Learning. Future Directions in Distance Learning and Communication

Technologies. Idea Group, Inc. 2006.NRC Publication Number: NRC 48120.

Yun, J., Chung, C., 2008. Dynamoc interval-based labeling schme for efficient

XML query and update processing. The journal of systems and software 81

(2008), pp 56-70.

Zhang, C., Naughton, J., Dewitt, D., Luo, Q., Lohman, G., 2001. On supporting

containment queries in relational database management systems. In

proceedings of the ACM SIGMOD 2001, pp. 425-436.

 195

Zhang, P., 2003. “Tradeoffs in certificate revocation schemes”, ACM SIGCOMM

Computer Communication Review, Volume 33, Issue 2, pp. 103-112.

 196

Appendix A: List of Publications

1. Liu, B., Lu, J., Yip, J. (2009) “A Series-parallel XML Multisignature Scheme

for XML Data Authentication”, International Journal of Computer Science

and Network Security, VOL.9 No.2, February 2009, pp. 236-247.

2. Liu, B., Lu, J., Yip, J., (2009) “XML Data Integrity Based on Concatenated

Hash Funcation”, International Journal of Computer Science and

Information Security, Vol. 1, No. 1, May 2009, pp. 31-40.

 197

Appendix B: XMark’s Auction DTD

<!ELEMENT site (regions, categories, catgraph, people, open_auctions,

closed_auctions)>

<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ATTLIST category id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

<!ELEMENT catgraph (edge*)>

<!ELEMENT edge EMPTY>

<!ATTLIST edge from IDREF #REQUIRED to IDREF #REQUIRED>

<!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT item (location, quantity, name, payment, description, shipping,

incategory+, mailbox)>

<!ATTLIST item id ID #REQUIRED featured CDATA #IMPLIED>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT reserve (#PCDATA)>

<!ELEMENT incategory EMPTY>

<!ATTLIST incategory category IDREF #REQUIRED>

 198

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from, to, date, text)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT itemref EMPTY>

<!ATTLIST itemref item IDREF #REQUIRED>

<!ELEMENT personref EMPTY>

<!ATTLIST personref person IDREF #REQUIRED>

<!ELEMENT people (person*)>

<!ELEMENT person (name, emailaddress, phone?, address?, homepage?,

creditcard?, profile?, watches?)>

<!ATTLIST person id ID #REQUIRED>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT address (street, city, country, province?, zipcode)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT province (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT homepage (#PCDATA)>

<!ELEMENT creditcard (#PCDATA)>

<!ELEMENT profile (interest*, education?, gender?, business, age?)>

<!ATTLIST profile income CDATA #IMPLIED>

<!ELEMENT interest EMPTY>

<!ATTLIST interest category IDREF #REQUIRED>

<!ELEMENT education (#PCDATA)>

<!ELEMENT income (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT business (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY>

<!ATTLIST watch open_auction IDREF #REQUIRED>

 199

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial, reserve?, bidder*, current, privacy?, itemref, seller,

annotation, quantity, type, interval)>

<!ATTLIST open_auction id ID #REQUIRED>

<!ELEMENT privacy (#PCDATA)>

<!ELEMENT initial (#PCDATA)>

<!ELEMENT bidder (date, time, personref, increase)>

<!ELEMENT seller EMPTY>

<!ATTLIST seller person IDREF #REQUIRED>

<!ELEMENT current (#PCDATA)>

<!ELEMENT increase (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT interval (start, end)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller, buyer, itemref, price, date, quantity, type,

annotation?)>

<!ELEMENT buyer EMPTY>

<!ATTLIST buyer person IDREF #REQUIRED>

<!ELEMENT price (#PCDATA)>

<!ELEMENT annotation (author, description?, happiness)>

<!ELEMENT author EMPTY>

<!ATTLIST author person IDREF #REQUIRED>

<!ELEMENT happiness (#PCDATA)>

 200

Appendix C: Class diagram for implemented

prototype

-New() : void
-PubKeyGenerate() : string
-PrivKeyGenerate() : string
-Check() : bool
-DisplayCertificate()

-CertificateID : int
-Identity : string
-PublicKey : string
-IssueDate : Date
-ExpireDate : Date
-IssueAuthority : string

Certificate Generation

+ReadPrivKey() : string
-Sign() : string

-XMLsig : object

SignCertificate

+LoadCertificate()
-ReadPubKey() : string
-Encryption() : string

-XMLen : object

Encrypt Certificate

+LoadCertificate() : void
+ReadPubKey() : string
-CheckSignature() : bool

-Results : bool

Validate

+LoadCertificate()
+ReadPrivKey() : string
-Decrypt() : string

-Results : bool

Decryption

-Connection()
+Search() : string
+Update() : bool
+Delete() : bool

-Dbtype : string

DatabaseConnection

-GetPubKey() : string
-Send() : string

-Identity : string
-PublicKey : string

Register

-Request() : Certificate Generation

-Identity : string
-PublicKey : string

RetrieveCertificate

-Search() : Certificate Generation
-Update() : Certificate Generation
-Delete() : bool
-DisplayCertificate()

-CertificateID : int
-Identity : string
-PublicKey : string
-IssueDate : Date
-Expiredate : Date
-IssueAuthority : string

Certificate Management

+GetChild() : string
+GetSibling() : string
+GetParents() : string

-XDoc : string

XMLDocument

+SignXML() : string
+VerifySigned() : bool

-XMLData : string
-SignedData : string

CSR based XML signature

+Encryption() : string
+Decryption() : string

-OriginalXML : string
-DecryptedXML : string

XML Encryption

+KeyGenerate() : string

-PublicKey : string
-PrivateKey : string

KeyGeneration

-Sha1() : string
-Combine() : string

-XML element : string
-HResult : string

STI

-CreateStatus() : string
-Signature() : string

-PreviousRN : string
-CurrentID : string
-TimeStamp

CertificateStatus

-Sha1() : string
-Combine() : string

-XML nodes : object
-HResult : string

CRI

-Sha1() : string

-XML nodes : object
-HResult : string

CI

+Convert() : string

-IsDirectedGraph : bool
-DesArray : int

Signer group convertion

+GetStructureIndex() : string
+GetValueIndex() : string

-IsEncrypted : bool

GetCipherBlock

 201

Appendix D: Relative algorithms for XML data

integrity

• Algorithm for content integrity (CI)
Input: 1. An element or sub XML data

 2. Hash algorithm, default value is SHA1.

Output: Hash value of inputted XML data.

 XmlNode xnodworking;

 string TempNode = xnod.Name;

 string strValue = (string)xnod.Value;

 if (strValue != null)

 seinode = seinode + "-" + strValue;

 else

 seinode = seinode + "-" + xnod.Name;

 endif

 if (xnod.NodeType == XmlNodeType.Element)

 if (xnod.HasChildNodes)

 xnodworking = xnod.FirstChild;

 while (xnodworking != null)

 CI(xnodworking);

 xnodworking = xnodworking.NextSibling;

 endwhile

 endif

 endif

 //Multi variant hash result

 byte[] btr = UTF8Encoding.UTF8.GetBytes(seinode);

 SHA1CryptoServiceProvider shar = new SHA1CryptoServiceProvider();

 byte[] outputr = shar.ComputeHash(btr);

 TempNode = BitConverter.ToString(outputr);

 return TempNode //Return hashed result of content integrity

• Algorithm for structure integrity

Input: an element or a sub XML data, and start level, default value is 1

 202

Output: Path string from root to target element

 XmlNode xnodeworking;

 string strVal = (string)xnode.Value;

 if (strVal!= null)

 strVal = ":" + strVal;

 else

 Tpath = Tpath + "/" + xnode.Name + intLevel.ToString();

 // Record parent information and level information

 XmlNamedNodeMap mapAttributes = xnod.Attributes;

 foreach (XmlNode xnodAttributes in mapAttributes)

 if ((xnodAttributes.Value == "myData") && (getpath == false))

 Fpath = Tpath;

 getpath = true;

 endif

 endif

 if (xnode.NodeType == XmlNodeType.Element)

 if (xnod.HasChildNodes)

 position = 0; //Record position information of an element among its sibling

 xnodeworking = xnode.FirstChild;

 while (xnodeworking!= null)

 STI(xnodeworking, intLevel + 1);

 xnodeworking = xnodeworking.NextSibling;

 if (xnodeworking!= null)

 position = position + 1;

 endif

 endwhile

 endif

 endif

 Return Tpath

 203

Appendix E: Relative algorithms for XML multi-

signature

• Algorithm for XPath possible in DTD
Input: XML documents

Output: XPath sets

private void structure(XmlNode xnod)

 XmlNode xnodworking;

 XmlNode TempNode;

 string TempPath = "";

 if (xnod.NodeType == XmlNodeType.Element)

 TempNode = xnod;

 TempPath = TempNode.Name;

 TempNode = TempNode.ParentNode;

 while (TempNode.Name != "#document")

 TempPath = TempNode.Name + "/" + TempPath;

 TempNode = TempNode.ParentNode;

 endwhile

 myCheck.Items.Add(TempPath);

 if (TempPath != myCheck.Items[0].ToString())

 myRelatives.Items.Add(TempPath);

 endif

 if (xnod.HasChildNodes)

 xnodworking = xnod.FirstChild;

 if (xnodworking.NodeType == XmlNodeType.Element)

 while (xnodworking != null)

 structure(xnodworking);

 xnodworking = xnodworking.NextSibling;

 endwhile

 endif

 endif

 endif

• Algorithm for series-parallel graph to sub signing group

 204

Node set:]..1[nN = of integer, edge setG ,

�
�
�

�

�
�
�

	

�

=

nm

ji

uu

uu

G

,

,

� , im > .

Converted results

�
�
�

�

�
�
�

	

�

=

nm

ji

K

uu

uu

G

�

���

�

Input: node set N and edge setG

Output: Converted subgroup kG

// Initial matrix

For (i=0 to row(Gk)-1) do

 For (j=0 to col(Gk)-1) do

 Gk(i,j)=0;

endfor

For (i=0 to row(G)-1) do

 m=G(i,0);

 flagI=true;

 j1=0;

 while (flagI) and (j1<=row(GK)-1) do

 R1=0;

 while (flagI) and (R1<=row(GK)-1) do

 If (GK(j1, R1)==m) then

 flagI=false;

 R1= R1+1

 endwhile

 j1= j1+1;

 endwhile

 flagT=true;

 j2=0;

 while (flagT) and (j2<=row(GK)-1) do

 R2=0;

 While (flagT) and (R2<=row(GK)-1) do

 If (GK(j1, R2)==m) then

 flagT =false;

 R2= R2+1

 205

 endwhile

 j2= j2+1;

 endwhile

If ((not flagI) and (not flagT)) then

 G[0]=m; G[1]=n;

endif

If ((flagI) and (not flagT)) then

 G[j1]=n;

endif

If ((flagI) and (flagT)) then

 While (j2<= j1) do

 G[j2]=0; G[j1+1]=n;

 endwhile

endif

endfor

