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Abstract 

 
Histaminergic regulation of appetite 

 

 
 

Food intake is essential to all animals. However, when energy consumption 
through food overtakes energy expenditure, obesity can result. Obesity has been 
identified as a worldwide health problem associated with diseases such as type 2 
diabetes and hypertension. Thus, it is essential to find effective anti-obesity 
therapies. The aim of this thesis was to determine whether the histaminergic 
system could be pharmacologically manipulated to alter food intake and whether 
in particular the H3R is a suitable therapeutic target. Histamine is a central 
neurotransmitter that plays a major role in controlling energy balance by acting 
through specific hypothalamic sites. Injections of histamine receptor-1 (H1R) 
antagonists into the ventromedial hypothalamic nucleus (VMN) cause 
hyperphagia, whereas antagonism of presynaptic histamine receptor-3 (H3R) 
causes hypophagia, leading to the hypothesis that selective antagonists or 
inverse agonists might be potential treatments for obesity through their actions on 
central H3R. My aim was to assess the precise mode of action of histamine and 
H3R drugs to affect acute, appetitive behaviour. Using feeding and behavioural 
studies I demonstrated the acute anorexigenic actions of histamine (ICV) and the 
H3R inverse agonist, thioperamide (ICV or IP), in rats without disrupting the 
behavioural satiety sequence. In accordance with predictions, the H3R agonist, 
imetit (ICV or IP), increased feeding. The actions of both thioperamide and imetit 
were blocked by the drug proxyfan, which in our model is acting as a neutral H3R 
antagonist. Interestingly, both thioperamide and imetit caused anorexia in mice. 
C-Fos functional immunostaining revealed that systemic administration of 
thioperamide and imetit increased the activity of neurones in the key feeding 
nuclei of the hypothalamus, including the VMN. To further investigate the mode of 
action of histaminergic drugs, I carried out extracellular electrophysiological 
recordings from neurones of the rat VMN in vitro. Of the 197 VMN cells recorded, 
62% were histamine-responsive, with 97% of these showing an increase in 
neuronal firing rates in response to histamine. The excitatory response to 
histamine was blocked in 90% of instances by pyrilamine, a selective H1R 
antagonist. Neurones that responded to histamine previously were treated also 
with thioperamide. 88% of these neurones also responded with an increase in 
firing. The effect of thioperamide was blocked in all cases by co-administrating 
pyrilamine, proving that H3R in the VMN are presynaptic autoreceptors, rather 
than heteroreceptors modulating the release of other transmitters. Imetit had an 
inhibitory effect on VMN neuronal firing in 86% of recorded cells. Proxyfan was 
able to block the changes in neuronal firing that both thioperamide and imetit 
caused. This suggests it is acting as a neutral H3R antagonist in both our in vivo 
and in vitro models. Thus, using a neutral H3R antagonist we have proven the 
effects imetit and thioperamide had on feeding and neuronal VMN firing were a 
direct result of activating a H3R and, therefore, these compounds are receptor-
specific for the H3R. In conclusion, our results support a role for histaminergic 
receptors, including postsynaptic H1R and presynaptic H3R autoreceptors in the 
VMN, to modulate feeding. 
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General Introduction 

 

Food is essential to all animals and physiological states associated with 

energy balance (e.g., hunger and satiety) are major determinants of eating 

behaviour (Beaver et al., 2006). By ingesting food, an animal gains energy to 

survive and maintain its internal environment. However, food intake must be 

balanced with energy expenditure otherwise over eating coupled with a lack of 

exercise can result in obesity. Obesity has been identified as a worldwide public 

health and economic problem affecting all age groups. It is associated with 

diseases such as type 2 diabetes, hypertension and hyperlipidemia (Masaki et al., 

2006). Genetic and environmental factors influence the development of obesity, 

yet the molecular mechanisms that are involved in obesity have not yet been 

determined (Blissmer et al., 2006). As a consequence of increasing cases of 

obesity worldwide, numerous investigations have been carried out to determine 

the multiple factors at the origin of this imbalance between energy intake and 

energy expenditure (Beck, 2000). Attention was first focused on the nutritional 

aspects such as the use and storage of ingested food but, more recently, 

research has focused on the central nervous system (CNS) and its involvement in 

energy homeostasis. 

 Over the last few decades we have witnessed a huge advance in the study 

and the understanding of the central mechanisms and pathways involved in 

regulating food intake and the control of energy balance. One of the key 

discoveries over the years has been and the acceptance of the prominent 

involvement of the hypothalamus in the control of feeding behaviours. The 

hypothalamus plays an important physiological role in regulating energy balance 

and has a central role in the development of obesity (Morimoto et al., 2001).  
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The overall aims of this project were to determine the effects of histamine, 

a neurotransmitter within the CNS associated with the regulation of appetite, on 

feeding and to describe the central mechanisms which might be targeted by 

potential therapeutic agents.  

In this chapter I will first give an overview of the central and peripheral 

mechanisms controlling appetite and energy expenditure and then go on to 

discuss the histaminergic system and the role it plays in the regulation of feeding 

and the possibility of manipulating this system for the pharmaceutical control of 

appetite and body weight. 

 

 

1.1 Central regulation of appetite 

The control of food intake and energy metabolism is an extremely complicated 

process which depends on the brain’s ability to receive, interpret and integrate a 

wide range of signals which indicate to the organism its nutritional state and 

energy level, and to make appropriate adjustments in the intake of food, energy 

expended and metabolism (Williams et al., 2000). Body weight is regulated by 

complex interrelationships between central and peripheral factors. The CNS 

controls satiety, hunger and hedonistic drive. The peripheral nervous system 

(PNS) controls the metabolism and energy utilization associated with peripheral 

tissue, but is regulated by the CNS. These central and peripheral components of 

weight control are mediated by a multitude of neurotransmitters and hormones 

and their respective receptors (Williams et al., 2000). Peripheral signals are sent 

to central neurones in specific areas of the brain known to control food intake and 

body weight (Jobst et al., 2006). 

By whatever means central neurones receive information regarding energy 

status, it is clear that the effects of peripheral signals are mediated by specific 

transduction systems in identifiable areas of the brain known to control food 



 19 

intake and body weight (Jobst et al., 2006). The hypothalamus is one of these 

brain areas and has been identified as having an important role in controlling food 

intake and energy expenditure. From brain lesion studies, the ventromedial 

hypothalamic nucleus (VMN) and paraventricular nucleus (PVN) are regarded 

predominantly as satiety centres, and the lateral hypothalamus (LH) as a feeding 

centre (for review see King, 2006) (Figure 1.1). After the discovery of these 

centres, several new areas located mainly in the hypothalamus have also been 

associated with food intake. The most important include the hypothalamic arcuate 

(ARC), dorsomedial (DMN) and suprachiasmatic (SCN) nuclei. They form, along 

with the VMN, PVN and LH, complex networks for the regulation of energy intake 

and expenditure (Beck et al., 2000).  

Appetite or the sensation of hunger is the leading force in the drive to eat. 

However, it is also controlled in a circadian fashion by a biological clock located 

within the suprachiasmatic nucleus (SCN). The SCN consists of two small, round 

nuclei resting dorsally on the optic chiasm either side of the third ventricle, that 

act as the internal clock within the body (Nagai et al., 1978). The SCN responds 

to daily and seasonal light cycles to anticipate changes in the local environment 

and ensure changes in behavior, such as the organisms’ ability to coordinate 

daily patterns in activity, feeding, energy utilization and energy storage, to 

maintain the optimum chance of survival (Bechtold DA, 2008). The pattern of 

eating behaviour is a highly-regulated phenomenon in all living organisms (Kalra 

et al., 1999) and lesion studies have shown damage to the SCN results in loss of 

regulated feeding (Nagai et al., 1978).  
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Figure 1.1.;  A schematic diagram showing a coronal section through the hypothalamus at 

the level of the ventromedial nucleus (VMN). Other hypothalamic nuclei present at the 

level of this area are; dorsomedial nucleus (DMN), lateral hypothalamus (LH) and arcuate 

nucleus (ARC). 3V denotes the third ventricle. 

 

 

1.2 The homeostatic pathways involved in regulating appetite 

The regulation of food intake is very complex and organized by a complicated 

loop system involving humoral signals and afferent neuronal pathways to the 

brain, which are processed within the hypothalamic neuronal circuitry, and with 

commands then being sent back through vagal and spinal neurones to the body 

(Dozio et al., 2007). Body weight is regulated by these complex interrelationships 

between central and peripheral factors (Ahima et al., 2008).  

Over the last few decades more and more experiments have investigated the 

role of the neuropeptides present in the areas associated with controlling appetite 

and feeding behaviours. These neuromodulators include peptides that inhibit or 

stimulate feeding behaviour. Corticotropin-releasing factor (CRF), cholecystokinin 

(CCK), neurotensin, cocaine- and amphetamine-regulated transcript (CART), α-

melanocyte-stimulating hormone  (α-MSH), pro-opiomelanocortin (POMC) and 

vasopressin are all anorexigenic and decrease feeding, whereas neuropeptide Y 

3V 

LH 
DMN 

VMN 

ARC 



 21 

(NPY), galanin, agouti-related protein (AgRP), melanin-concentrating hormone 

(MCH), and the orexins all stimulate food intake and are, thus, referred to as 

orexigenic (Beck et al., 2000).  

The ARC, situated at the base of the hypothalamus either side of the third 

ventricle, is important in the control of appetite. The ARC has been shown to 

contain the largest co-expression of the orexigenic peptides NPY and AgRP 

(Dhillo WS., 2007). Although research has also revealed a large population of 

cells within the ARC express anorectic signals, including CART and POMC (Elias 

et al., 1998). The ARC neurones receive information regarding energy status from 

peripheral circulating factors, such as ghrelin from the stomach, passing the 

blood-brain barrier (Schwartz et al., 2000). The orexigenic and anorexigenic 

neurones in the ARC project into a number of other hypothalamic sites involved in 

appetite, including the VMN, DMN, LH, and the PVN, allowing the signals from 

the peripheral system to be processed in the necessary brain areas and body 

homeostasis to be maintained (Harrold et al., 2006) (figure 1.2).  

The LH receives extensive connections from the ARC including both orexigenic 

and anorexic inputs from the NPY/AgRP and POMC/CART neurones (Dhillo WS., 

2007). This hypothalamus is the site of production of the orexigenic 

neuropeptides, MCH and the orexins (Sakurai et al., 1998).  

Although electrolytic lesions in the DMN have been shown to disrupt feeding to 

a much lesser degree than those of the VMN (Kalra et al., 1999), suggesting a 

less pivotal role in the control of food intake, microinjection of orexigenic 

compounds into the DMN elicits feeding (Li et al., 1998). Yokosuka et al. 

illustrated that the inhibition of NPY-induced feeding by leptin administration, 

increased neuronal c-Fos in the DMN, which acts as a marker of neuronal 

activation (Yokosuka et al., 1998). Prominent ARC efferents project to the DMN 

and a large number of DMN efferents project to both the VMN and PVN (Kalra et 

al., 1999) illustrating the complex and multiple connections these areas have with 
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each other and showing the complex network systems involved in the control n 

feeding. 

The PVN is situated in the dorsal region of the hypothalamus. It contains a 

dense and heterogeneous cluster of neurones that extend out either side of the 

third ventricle within a well-defined area (Sawchenko et al., 1993). Research 

suggests these vast neuronal elements contained within the PVN are involved in 

the control of ingestive behaviour. Microinjection of virtually all the known 

orexigenic signals, including, NPY, GAL, orexins, GABA, opioids, noradrenaline, 

and adrenaline, into the PVN stimulates feeding (Xu et al., 1995). Whereas 

microinjection of a number of anorexigenic neuropeptides, such as CRH and 

leptin, cause a significant reduction in food intake. Additionally, high densities of 

c-Fos-positive neurones have been shown within the PVN in response to 

administration of both orexigenic and anorexigenic peptides (Dhillo WS., 2007). 

These findings coincide with other evidence that suggests the PVN is one of the 

crucial sites for the release of both orexigenic and anorexgenic signals (Kalra et 

al., 1999). 
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Figure 1.2.;  Adapted from DhillO, 2007. Schematic diagram the circulating factors and 

central appetite circuits involved in the regulation of appetite. Peripheral circulating factors 

activate circuits within the hypothalamus and brainstem mediating their effects on food 

intake. There are extensive reciprocal connections between the hypothalamus and the 

brainstem with energy intake being coordinated based on the information received by both 

regions. PVN: paraventricular nucleus; 3V: third ventricle; ARC: arcuate nucleus; VMN: 

ventromedial nucleus; BBB: blood–brain barrier; SNS: sympathetic nervous system; HPT 

axis: hypothalamo-pituitary-thyroid axis; Y1-Y5: Y1-Y5 NPY receptors; MC4R: 

melanocortin 4 receptor; NPY: neuropeptide Y; AgRP: agouti-related protein; α-MSH: 

alpha melanocyte-stimulating hormone; CCK: cholecystokinin; GLP-1: glucagon-like 

peptide-1; PYY: peptide YY; T3: triiodothyronine. Appetite-regulating factors in blue 

stimulate and those in black inhibit food intake. Green arrows represent activation, and 

red arrows represent inhibition of the pathway. 
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1.3 VMN regulation of appetite 

As described above, the hypothalamus has an important role in controlling food 

intake and energy expenditure. To further support this, evidence obtained from 

clinical presentations in hypothalamic tumour patients and from preclinical lesion 

studies suggest that damage to the mediobasal hypothalamic areas, in particular 

the VMN, are associated with increased food intake, morbid obesity and insulin 

resistance, while damage to more lateral hypothalamic structures are associated 

with anorexia and adipsia (Anand et al., 1951). Neuroimaging studies have 

illustrated neurones within the immediate area of the VMN become activated 

during feeding (Liu et al., 2001). Electrical stimulation of the VMN decreases 

feeding, whereas stimulation of the LH region increases appetite (Mittleman et al., 

1984). It has even been noted that rats with VMN lesions often begin eating 

insatiably, even before fully recovering from the effects of anesthesia (Brobeck et 

al., 1943, Brooks et al., 1946). Brooks et al. suggested the overeating and obesity 

resulting from VMN lesions can be crudely divided into two stages; firstly, a 

dynamic phase of marked hyperphagia and rapid weight gain, which is then 

followed by a reduction in food intake as body weight levels off and is then 

maintained during the static second phase of obesity (Brooks et al., 1946). Thus, 

the VMN is a “satiety centre” of the brain and therefore, if damaged, it can no 

longer enforce feeding restraints, resulting in overeating and weight gain (Sclafani 

A., 1971, Bray et al., 1981). The VMN has direct links with the PVN and DMN and 

via these it connects indirectly with the LH (Harrold et al., 2004), illustrating the 

complex circuitry surrounding the VMN involved in regulating food intake within 

the hypothalamus. 

VMN lesion-induced obesity has been found in a wide variety of species, which 

include mice (Mayer et al., 1955), rabbits (Romanouk A., 1962), ground squirrels 
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(Mrosovsky et al., 1974), cats (Anand et al., 1955), chickens (Lepkovsky et al., 

1966), sparrows (Chen et al., 2006), dogs (Rozkowska et al., 1971), monkeys 

(Brooks et al., 1946) and humans (Bray et al., 1979).  

Research has illustrated that the VMN has a large number of glucose-sensing 

neurones that dynamically respond to hypo- or hyperglycaemia (Anand et al., 

1964, Oomura et al., 1973, Song et al., 2001). Studies have also revealed that 

the VMN has many receptors that respond to neurotransmitters and hormones, 

such as dopamine (Davidowa et al., 2002, Fetissov et al., 2002, Meguid et al., 

1997), serotonin (Leibowitz SF., 1986, Meguid et al., 2000), GABA (Dellouade et 

al., 2001), insulin (Baskin et al., 1999, Bruning et al., 2000), leptin (Dhillo WS., 

2007), histamine (Magrani et al., 2004, Mollet et al., 2003, Sakata et al., 2003), 

ghrelin (Kamegai et al., 2001), orexin (Heidel et al., 1999), and estrogen (Pfaff et 

al., 1973, Wade et al., 1970) to affect feeding behaviour. The response of many 

of these receptors has been found to be abnormal in obese animals that were 

overfed since birth (King et al., 2006). The VMN receives projections from ARC 

NPY-, AgRP- and POMC-immunoreactive neurones and in turn VMN neurones 

project to other hypothalamic nuclei, such as the DMN, and to brainstem regions, 

such as the nucleus of the solitary tract (NTS) (Wynne et al., 2005). Mice with 

reduced brain-derived neurotrophic factor (BDNF) receptor expression or 

decreased BDNF signalling have been shown to significantly increase food intake 

resulting in increased body weight (Rios et al. 2001, Xu et al. 2003). Xu et al. 

demonstrated that BDNF is highly expressed within the VMN, and its expression 

is dramatically reduced by fasting (Xu et al. 2003) or by melanocortin agonists 

(figure 1.2). This suggests BDNF neurones within the VMN may form downstream 

pathways through which the melanocortin system regulates appetite and body 

weight (Wynne et al., 2005). The VMN has also been identified as a key target for 

leptin, which acts on the hypothalamus to inhibit feeding and stimulate energy 

expenditure (Dhillon et al. 2006). Here leptin could be acting via cells containing 
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the VMN-expressed neuropeptide, pituitary adenylate cyclase-activating 

polypeptide (PACAP), which also reduce food intake and energy expenditure 

(Hawke et al., 2009). 

 

 

1.4 The brainstem and gut involvement in the regulation of appetite 

The brainstem has numerous interactions with hypothalamic circuits and plays 

a major role in the regulation of energy homeostasis. In particular there are 

extensive reciprocal connections between the NTS and other brainstem areas 

(Ter Horst et al. 1986). The ARC in the hypothalamus is pivotal for receiving 

peripheral signals mediating information on appetite and metabolic needs, whilst 

the NTS is the key entry port for signals from the gastrointestinal (GI) tract 

(MacDougald et al., 2002) (figure 1.3). The GI tract acts not only as a conduit for 

food, but is also crucial for the digestion and absorption of nutrients (Ahima et al., 

2008). The brain, and in particular the NTS receives signals from the GI tract 

about meal size and content through sensory nerves and via the circulation 

(Schwartz et al., 2000 b). Projections from the NTS and the parabrachial nucleus 

in the brainstem innervate the PVN, DMN and ARC nuclei of the hypothalamus 

and the LH area, central nucleus of the amygdala (AMY) and bed nucleus of the 

stria terminalis (Ahima et al., 2008). The NTS projects also to the visceral sensory 

thalamus, which goes on to communicate with the visceral sensory cortex, which 

mediates the conscious perception of fullness and satiety. Studies demonstrate a 

powerful negative feedback control of vagal afferent innervation on feeding 

(Schwartz et al., 2000, Smith et al., 1985, South et al., 1988). 
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Figure 1.3.;  Figure taken from Naslund et al., 2007, Afferent gastrointestinal signals 

controlling food intake. CCK, cholecystokinin; GLP-1, glucagon-like peptide-1; PYY(3-36), 

peptide YY(3-36); NPY, neuropeptide Y; AgRP, agouti-related peptide; α-MSH, α 

melanocyte-stimulating hormone; POMC, pro-opiomelanocortin; NTS nucleus of the 

tractus solitarius; ARC, arcuate nucleus. 

 

 

 

Many of the peptides involved in the regulation of energy homeostasis in the 

brain are also found in the enteric nervous system and enteroendocrine cells of 

the mucosa of the GI tract (Naslund et al., 2007). Peptide signalling from the gut 

influences food intake, that then goes on to influence neuropeptidergic neurones 

in the brain. These hormones include CCK, which was the first gut secreted 

peptide to be identified as a satiety factor; GLP-1, a product of the 

preproglucagon gene secreted primarily by endocrine cells of the small and large 

intestine after eating: PYY, a gut peptide belonging to the same family as NPY 

and is released in response to feeding to cause a decrease in food intake; amylin, 
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which exerts anorectic effects; ghrelin, a growth hormone-releasing peptide that is 

predominantly released from the stomach and acts as a hunger signal: insulin 

which is secreted in response to meals and increases glycogen storage; and the 

endocannabinoids which have significant effects on appetite and metabolism 

along with glucocorticoids (Ahima et al., 2008).  

 

 

1.5 The reward pathways involved in regulating appetite 

There are multiple interactions between the homeostatic and hedonic 

mechanisms controlling food intake (Zheng et al., 2009). The rewarding nature of 

food can act as a stimulus to feeding, even when hunger and energy homeostasis 

are missing. Although the sensation of reward is ultimately influenced by energy 

status, the subjective palatability of food is altered in the fed state compared with 

the fasting state (Berridge et al., 1991). Thus, signals of energy status influence 

reward pathways (Wynne et al., 2005). The reward circuitry is complex and 

involves many interactions between numerous signalling systems (figure 1.4). 

Cognitive and emotional factors have an important role in regulating feeding, 

especially in humans (Zheng et al., 2009). This high-level control involves 

integration of a number of external and internal signals, which include, peripheral 

signals related to energy status, food-related signals conveyed by taste, smell, 

and other senses, environmental cues, such as the sight of food, and memory of 

past feeding experiences (Benarroch et al., 2010). Several functional 

neuroimaging studies indicate that the insular, orbitofrontal, and anterior cingulate 

cortical areas are activated in relationship to these stimuli and participate in 

motivational aspects of feeding behaviour in humans (Rolls ET., 2008, Zheng et 

al., 2009). The nucleus accumbens is vital in the reward aspect of food intake as 

it integrates the homeostatic, hedonic, motivational, and cognitive aspects of food 

intake via its connections with the prefrontal cortex, amygdala, and lateral 
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PVN 

hypothalamus (Kelley et al., 2005). Although, it has also been recognised that the 

reinforcing effect is lost in the fasted state, suggesting homeostatic mechanisms 

can override hedonistic mechanisms (Hayward et al., 2002, Wynne et al., 2005). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.4.;  Adapted from Wynne et al. 2005. This diagram illustrates the central control 

of appetite. AP, area postrema; ME, median eminence; NAc, nucleus accumbens; PFA, 

perifornical area.  
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Orexin neurones are important in linking energy balance, behavioural 

arousal, and reward. These neurones are active during wakefulness and 

participate in the short-term regulation of energy homeostasis (Sakurai T., 1999). 

Orexin neurones that activate ventral tegmental area dopaminergic neurones 

have been implicated in hedonic mechanisms of food intake (Harris et al., 2006). 

Opioids also play an important role in feeding and reward behaviours. For 

example, Hayward et al. (2002) found that regardless of the palatability of the 

food tested, a lack of enkephalin or β-endorphin abolishes the reinforcing property 

of food in mice. The dopaminergic system is also integral to reward-induced 

feeding behaviour, for example, mice which lack dopamine have fatal 

hypophagia. Injections of opioid and dopamine agonists into the nucleus 

accumbens preferentially stimulate the ingestion of highly-palatable foods (Zhang 

et al., 2003). Stratford et al. have suggested that GABA-ergic connections 

between the nucleus accumbens and the LH may mediate hedonistic feeding by 

disinhibition of LH neurones (Stratford et al., 1999). Additionally, the MCH 

neurones in the LH may reciprocally influence the reward circuitry, as the nucleus 

accumbens expresses MCH receptors (Saito et al., 2001). Other systems, 

including those mediated by endocannabinoids and serotonin, may also be able 

to modulate both reward circuitry and homeostatic mechanisms controlling 

feeding (Cota et al., 2003).  

Signaling systems expressed in the hypothalamus also contribute to both 

homeostatic and hedonic control of food intake are those containing CART 

peptide and the endocannabinoids (Harrold et al., 2006). CART is colocalized 

with POMC in neurones of the ARC and exerts a potent anorexigenic effect in 

rodents (Dietrich et al., 2009). Whereas the endocannabinoids promote feeding 

and provide anabolic signals via multiple actions at the hypothalamus, mesolimbic 

reward system and periphery (Bellocchio et al., 2008). Additionally, leptin inhibits 

firing of dopaminergic neurones and feeding-induced dopamine release in the 
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nucleus accumbens (Hommel et al., 2006), whereas ghrelin stimulates both 

dopamine release and feeding (Abizaid et al., 2006).  

 

 

1.6 The histaminergic system 

While the role of histamine in neural functioning and behaviour is only partially 

understood, it is widely accepted that histamine functions as a central 

neurotransmitter (Orthen-Gambil et al., 1992, Sakata et al., 1997, Takahashi et 

al., 2002, Zawilska et al., 1985). In the mammalian CNS, anatomical, 

neurochemical, pharmacological and electrophysiological data have converged to 

demonstrate that histamine is involved in a wide array of neuroendocrine, 

cardiovascular and thermoregulatory functions, including arousal, cognition, 

locomotor activity, autonomic and vestibular functions, feeding and drinking, 

sexual behaviour and analgesia (Hough LB., 1988; Schwartz et al., 1991; Wada 

et al., 1991, Chotard et al., 2002, Gomez-Ramirez et al., 2002, Hancock et al., 

2004).  

In the mammalian brain, histamine is synthesized by a population of neurones 

whose cell bodies are restricted to the tuberomammillary nuclei (TM) of the 

posterior hypothalamus (Schwartz et al., 1991). Diffuse histaminergic nerve fibres 

consisting of long, varicose, arborizing, slowly-conducting axons project from the 

TM to virtually all parts of the brain (figure 1.5). These axons form synaptic 

contacts with other neurones, while varicosities can be apposed to neurones, glial 

cells and capillaries (Bugajski, et al., 2003). The highest density of histamine 

fibres in the brain is in the ventral half of the posterior hypothalamus, including the 

VMN. Although the median eminence, SCN and PVN are also highly innervated 

with histaminergic fibres, all areas of the hypothalamus receive a moderate to 

strong histaminergic innervation (Gomez-Ramirez et al., 2002).  
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Figure 1.5.;  Diagram taken from Schwartz et al., 1990. The disposition of the main 

histaminergic pathways in the rat brain as indicated by the black arrows. The diagram 

illustrates the sagital section of the rat brain. AH, anterior hypothalamic area; cc, corpus 

callosum; Cer, cerebellum; CG, central grey; CX, cerebral cortex; DR, dorsal raphe 

nucleus; Hip, hippocampus; LS, lateral septum; MD, mediodorsal thalamus; MMN, medial 

mammillary nucleus; OB, olfactory bulb; Pn, pontine nuclei; Sol, nucleus of the tractus 

solitarius; Sox, supraoptic decussation; VDB, nucleus of vertical limb of diagonal band; 

VMN, ventromedial hypothalamic nucleus. 

 

 

 

Cortically projecting histaminergic neurones share, along with other aminergic 

neurones, certain electrophysiological properties evidenced by extracellular 

recording. Histaminergic neurons fire spontaneously, slowly and regularly, and 

their action potentials are of long duration (Haas et al., 1989). The rate of firing 

varies depending on the behavioural state of the animal. For example, direct 

recordings of histamine neurones in cats indicated their activity is high during 

waking and attention, but low or absent during sleep (Haas et al., 2003). Thus, 
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histaminergic neurones exhibit a circadian rhythm in their firing rate (Schwartz et 

al., 1991). Furthermore, in the rat hypothalamus, histamine levels are low, 

whereas synthesis is high during the dark period, suggesting neuronal activity is 

enhanced during the active phase (Hill et al., 1997). In addition, in the mouse 

cerebral cortex, striatum and hypothalamus, tele-methylhistamine levels, a 

histamine analogue, are doubled at the end of the dark phase compared with the 

beginning of the light phase (Morisset et al., 2000). Mochizuki et al. have also 

demonstrated that histamine release from the anterior hypothalamus of freely 

moving rats, evaluated by in vivo microdialysis, gradually increases in the second 

half of the light period and is maintained at a maximal level during the active 

phase (Mochizuki et al., 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.;  This diagram has been adapted from Haas et al., and illustrates histamine 

transport and metabolism in neurones. Histidine is brought into neurones via the L-amino-

acid-transporter. Here histamine is synthesized by the specific enzyme histidine 

decarboxylase. Histamine is then taken up into vesicles by the vesicular monoamine-

transporter VMAT-2. After release, histamine is methylated by histamine-

methyltransferase, which is located post-synaptically in glia, to tele-methylhistamine. Tele-

methylhistamine exhibits no histamine-like activity. The turnover rate for neuronal 

histamine is very high, and its half-life, which is normally about 30 minutes, can change 

quickly depending on neuronal activity. Increased neuronal activity, such as stressful 

situations increases histamine turnover (Haas et al., 2003). 

 

 

 

A vast body of evidence illustrates the importance of central histamine 

signaling in the control of food intake and energy regulation (Yoshimatsu et al., 

1993, Yoshimatsu et al., 2001, Yoshimatsu H., 2006, Yoshimoto et al., 2006, 

Gotoh et al., 2007). Behavioural studies have revealed histamine suppresses 

food intake when administered centrally or systemically (Doi et al., 1994, Endou 

et al., 2000, Lecklin et al., 1998, Lecklin et al., 1995). Orthen-Gambill et al. 

suggested that removal of histamine’s inhibitory effect might in turn stimulate 
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feeding (Orthen-Gambill et al., 1992). They found in rodents, if histamine levels 

were decreased using the histamine synthesis inhibitor α-fluoromethylhistidine (α-

FMH), which is a potent, highly specific, and irreversible inhibitor of histidine 

decarboxylase (HDC), an increase in both food intake and body weight was 

produced. Additionally, central histaminergic activity is increased by food intake 

after fasting (Itoh et al., 1991). Yoshizawa et al. showed there were alterations 

within central histaminergic activity in anorexia nervosa patients (Yoshizawa et 

al., 2009). Histamine depolarises select brainstem neurones in the NTS and 

dorsal motor nucleus of the vagus (Poole et al., 2008), which together with the 

hypothalamus, have a fundamental role in the control and regulation of food 

intake (Jelsing et al., 2009). In the GI tract, histamine is considered to regulate at 

least three major functions, firstly the enhancement of gastric acid production 

(Tari et al., 1993), secondly, modulation of GI motility (Bolton et al., 1981), and 

finally the alteration of mucosal ion secretion (Wang et al., 1990). Thus, it seems 

endogenous histamine plays an important role in regulating food intake.  

 

 

1.7 Histamine receptor types  

Histamine exerts its multiple biological activities through the activation of 

at least four distinct receptors: H1R, H2R, H3R and H4R (Leurs et al., 1995, 

Lovenberg et al., 1999, Masaki et al., 2006). All four histamine receptors belong 

to the superfamily of heptahelical seven-transmembrane (7TM), G-protein-

coupled receptors (GPCR) (Govoni et al., 2006). Constitutive activity has been 

shown in all the histamine receptors and is explained in more detail in Chapter 5 

of this thesis.  

Terao et al. suggest that histamine H1R are located post-synaptically with 

high densities of these receptors being apparent in the hypothalamus and other 
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limbic regions (Terao et al., 2004). H2R are also mainly located post-synaptically 

and are found in the hippocampus, amygdala and basal ganglia. Histamine H3R 

are located on the somata and axon terminals of histamine neurones where they 

serve as autoreceptors to modulate histamine synthesis and release, and are 

also located pre- and post-synaptically the brain. Histamine H4R are expressed 

primarily in bone marrow and eosinophils, and are found at very low levels in the 

brain. However, as the H4R are a more recent discovery considerably less 

research has been carried out on these receptors. The H1R is a 486–491 amino 

acid protein encoded by an intronless gene (Yamashita et al., 1991), and is 

coupled to the Gq/11 protein and phospholipase C. Like the H1R, an intronless 

gene encodes the H2R, and the protein consists of 358–359 amino acids. It is 

coupled to Gs and protein kinase A. Several isoforms of the H3R, consisting of 

326–445 amino acids, are derived from a single gene by alternative splicing 

(Lovenberg et al., 1999). The H3 autoreceptor is coupled to Gi/Go, displays 

significant constitutive activity, and controls histamine release and synthesis 

(Morisset et al., 2000). The H3R is highly heterogeneous and its gene structure is 

more complex than that of the H1 and H2 receptors. H3R are coupled to Gi/o and 

high voltage-activated Ca2+ channels, a typical mechanism for the regulation of 

transmitter release (Haas et al., 2003. The H3R is coupled negatively to cAMP 

and activates the mitogen activated protein kinase pathway (Drutel et al., 2001). 

The human H3R gene has four exons and gives rise to six or more alternative 

splice variants (Coge et al., 2001). The H3R regulates the release of several 

transmitters in brain areas such as the substantia nigra, amygdala and cerebral 

cortex (Haas et al., 2003). The gene encoding the H4R has a similar intron–exon 

arrangement as the gene encoding the H3R (Coge et al., 2001). The H4R is a 

390-residue GPCR encoded by three exons and is expressed predominantly in 

bone marrow, eosinophils and mast cells (De Esch et al., 2005). H1 and H2 

receptors have mostly excitatory actions on neurones or potentiate excitatory 
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inputs. Conversely, H3R activation causes autoinhibition of TM neurones and 

inhibition of neurotransmitter release (Haas et al., 2003). As H4R are most similar 

to H3R it could be assumed that they also exhibit inhibitory affects on their target 

cells. The H1 and H2 receptors are found densely throughout the central and 

peripheral nervous system, the H3R is predominantly found within the CNS and 

the H4R is found solely within the PNS. Sander et al. found that H1R, H2R, and H-

4R are expressed in the human GI but found no evidence of H3R expression here 

(Sander et al., 2006). 

 

 

1.7.1 The H1 receptor 

H1R are located post-synaptically and are found in the hypothalamus, 

cerebral cortex, basal forebrain and limbic system (Morimoto et al., 2001) (see 

figure 1.7). H1R mediate excitatory actions on whole-brain activity. The classic 

antihistamines and antipsychotics act as H1R antagonists but H1R-based drugs 

have also been effective in treating depression, anxiety and sleep disorders. 

Stimulation of H1R regulates the level of H1R protein expression through 

activation of H1R mRNA synthesis (Hill et al., 1997). 

Histamine H1R knockout (H1R-KO) mice (Inoue et al., 1996) exhibit a complex 

cognitive phenotype, including both impairments and improvements in a variety of 

learning and memory tasks (Dai et al., 2007, Zlomuzica et al., 2008). The results 

of physiological and pharmacological studies have revealed that brain histamine 

and H1R are involved in the regulation of feeding and obesity in rodents (Masaki 

et al., 2006). The effects of the H1R on weight gain were first witnessed in 

patients taking antipsychotic and antidepressant drugs with H1R antagonistic 

properties which caused drastic and rapid weight gain. Research suggested that 

weight gain caused from taking antipsychotic drugs was through a drug-induced 

decrease in the hypothalamic expression of the H1R, blockade of which is linked 
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to downstream AMPK activation, resulting in increased food intake which, when 

coupled with insufficient locomotion, results in drastic weight gain (Kim et al., 

2007, Han et al., 2008).  

Central administration of histamine can reduce body mass and adiposity in diet-

induced and genetically-obese mice by altering food intake and energy 

expenditure. Endogenous histamine in the brain exerts an inhibitory effect on 

feeding behaviour through the H1R (Fukagawa et al., 1989; Sakata et al., 1994, 

Ookuma et al., 1993, Doi et al., 1994). However, H1R antagonists can stimulate 

other neurotransmitter systems which affect feeding behaviour, such as serotonin 

or noradrenaline (Lidbrink et al., 1971). Therefore, potential effects of H1R 

antagonists on other transmitter systems should always be considered. Through 

site injections of histamine, H1R in the VMN and PVN are implicated in the 

neuronal regulation of appetite (Masaki et al., 2003). A simple, yet clear indication 

that endogenous H1R are important in feeding and body weight regulation is 

provided by the fact that the H1R-KO mouse is obese (Inoue et al., 1996). 

Although it must be noted that H1R are also found in peripheral tissues that are 

concerned with regulating body composition (Masaki et al. 2006). Neuronal 

histamine and the H1R are also involved in the central regulation of energy 

homeostasis through sympathetic influences on uncoupling protein expression in 

brown adipose tissue (Masaki et al., 2001, Takasashi et al., 2002). Consistent 

with these observations, Masaki et al. showed that H1R-KO mice displayed late-

onset obesity and decreased energy expenditure (Masaki et al., 2004). 

Interestingly, the anorectic activity of ICV leptin was significantly attenuated in 

H1R-KO mice (Masaki et al., 2001), suggesting the obese phenotype of H1R-KO 

mice could be explained in part by reduced sensitivity to leptin.  

H1R antagonists are not used pharmacologically for appetite regulation as they 

cause a number of adverse effects due to ubiquitous expression in peripheral 

tissues, including in lymphocytes, heart, and spleen, as well as in the CNS 
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(Kinnunen et al., 1998). The H1R is involved in a number of actions as it is so 

widely found peripherally and centrally and, therefore, it is difficult to make drugs 

that target just one of its many functions and pathways. 

 

 

 

  

 

 

 

 

 

 

 

Figure 1.7.;  Illustration based on Hill (1990) showing the interaction between histamine 

(HA) and presynaptic H3 receptors on histaminergic nerve terminals, and H1 and H2 

receptors on postsynaptic cells in the central nervous system. H3-receptor stimulation 

leads to an inhibition of both the synthesis of histamine from histidine (HD) and its release 

into the synaptic cleft. H1- and H2-receptor stimulation leads to physiological responses 

via the action of intracellular messengers diacylglycerol (DG), inositol trisphosphate 

(InsP3) and cyclic 3`,5` adenosine monophosphate (cAMP). 

 

 

 

1.7.2 The H2 receptor 

H2R like H1R are also located post-synaptically (figure 1.7) and occur at 

high densities in the basal ganglia and parts of the limbic system, such as the 

hippocampal formation and amygdala (Masaki et al., 2006). As there are diffuse 

projections of histamine fibres throughout the mammalian brain. Histamine is 

involved in the central control of a large number of behaviours and functions, 
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including neuroendocrine responses (Schwartz et al., 1991) and cardiovascular 

functions (Onodera et al., 1994), motion sickness, sleep and wakefulness cycle 

(Schwartz et al., 1991), stress-induced responses and behaviour, learning 

behaviour and some clinical disorders. Most of these functions in the physiologic 

and pathologic states have been identified to be mediated by H1R and/or H2R in 

the brain.  

H2R are coupled to Gs, adenylyl cyclase and protein kinase, which 

phosphorylates proteins and activates the transcription factor cyclic-AMP-

response element (CRE)-binding protein (CREB). The direct action on neuronal 

membranes is usually excitatory or potentiates excitation (Francis et al., 2007). 

Unlike H1R, H2R are apparently not involved in the control of food intake, since 

injections of H2R agonists do not decrease food intake (Sakata et al., 1988). In 

addition, H2R antagonists do not abolish the feeding suppressive effects of central 

histamine (Lecklin et al., 1998; Morimoto et al., 2001).  

 

 

1.7.3 The H3 receptor 

The H3R differs from the H1 and H2 receptors as it is located pre-synaptically 

(figure 1.7) and is expressed predominantly in the CNS, with high densities being 

found in the cerebral cortex, nucleus accumbens, striatum, olfactory tubercles 

and substantia nigra (Lovenberg et al., 1999). H1R and H3R mRNAs are detected 

in a number of areas within the hypothalamus including the VMN and the ARC 

(Lovenberg et al., 1999). Studies using selective H3R ligand binding have shown 

a high density of H3R in the hypothalamus, striatum and nucleus accumbens 

(Hussain et al., 2002). Although the highest densities of H3R can be found in the 

CNS, they are also present in much lower levels within the PNS, for example, in 

the GI tract, the airways and the cardiovascular system (Celanire et al., 2005). 

The histamine H3R was discovered in 1983 by Arrang and co-workers (Arrang et 
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al., 1983) and later cloned (Lovenberg et al., 1999). H3R are located on the cell 

bodies and axon terminals of histamine-containing neurones, where they serve as 

autoreceptors to modulate histamine synthesis and release (Celanire et al., 

2005). H3R also act as presynaptic heteroreceptors on the terminals of neurones 

that contain other transmitters, such as dopamine, serotonin, noradrenaline, 

GABA and acetylcholine, thus can also negatively regulate the release of a 

number of other neurotransmitters (Schlicker et al., 1994) (figure 1.8). Since H3R 

are located predominantly in the CNS, it has been suggested that H3R mediate 

various CNS functions by modulating brain histaminergic tone and possibly by 

interacting with H1R and H2R. R-alpha-methylhistamine, a selective H3R agonist, 

inhibits the release of endogenous brain histamine (Itoh et al., 1998), while 

thioperamide, a selective inverse agonist, enhances histamine release (Itoh et al., 

1998, Itoh et al., 1999).  

H3R is functionally linked to Gi/o proteins, thus negatively regulates intracellular 

cAMP levels (Lovenburg et al., 1999, Chen et al., 2003). The amino acid 

sequences of H3Rs are highly conserved among humans, monkeys, rats, mice, 

and guinea pigs, thus suggesting that H3Rs play critical roles in numerous 

species (Hancock et al., 2003). Research has shown that several splice variants 

are present in humans, rats, mice and guinea pigs. Drutel et al. reported that rat 

H3R splice variants (H3A, B, and C) showed distinct expression patterns in the 

brain and were differentially coupled to Gi/o proteins when expressed in cultured 

cells (Drutel et al., 2001). Observations suggest that the splicing variants might 

have distinct roles in vivo, but the full extent of which are still unknown. Although 

no major pharmacological differences have yet been noted for these isoforms 

using antagonists, agonists do show increased potencies for the short isoform 

(Wieland et al., 2001). One important point to illustrate is that profound species 

differences in the antagonist pharmacology of the rat and human H3Rs have been 

observed (Ligneau et al., 2000; Lovenberg et al., 2000; Yao et al., 2003).  
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One of the remarkable features of H3R is its high constitutive activity both in 

vivo and in vitro (Morisset et al., 2000) (for a full and detailed description of H3R 

constitutive activity see Introduction in Chapter 6 of this thesis). The high 

constitutive activity of H3R may be critical for its regulatory function in the CNS 

(Morisset et al., 2000, Schwartz et al., 2003). Both native and heterologously 

expressed recombinant H3Rs are constitutively active (Morisset et al., 2000; 

Wieland et al., 2001; Rouleau et al., 2002), and as a result of this several 

previously characterized H3R antagonists have subsequently been shown to be 

inverse agonists, including thioperamide.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.8.;  Based on Yoshimoto et al., (2006) illustrating the regulation of H3R on 

appetite. Released histamine acts on H3R located on the presynaptic histamine terinal or 

on non-histaminergic neurones containing noradrenaline, dopamine, serotonin, glutamate, 

and GABA. Released histamine may also activate postsynaptic H3R. 
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H3R-specific ligands have been shown to have beneficial effects in animal 

models of obesity, epilepsy, and cognitive diseases such as Alzheimer’s disease 

and attention deficit hyperactivity disorder (Hancock et al., 2003; Passani et al., 

2004; Leurs et al., 2005). Thus, H3R antagonists/inverse agonists are considered 

as potential new therapeutics and are currently undergoing clinical trials (Celanire 

et al., 2005). 

The histaminergic system is well-documented for its involvement in reducing 

food intake through the histamine-induced activation of the H1R, but the histamine 

H3R also plays an important role in food intake and body weight regulation. H3R 

agonists have been shown to increase food intake whereas the H3R antagonists 

and inverse agonists appear to reduce feeding. The role of the H3R in energy 

control are still being elucidated but due to its complexity it could be affecting 

feeding by acting via the H1R or even by controlling the release of other 

neurotransmitters.  

H3R-KO mice display enhanced histamine release when compared with wild-

type (WT) littermates, with increased histamine release being recorded in the 

forebrain, hypothalamus, thalamus, hippocampus, cerebellum and brainstem 

(Takahashi et al., 2002). H3R-KO mice are viable and fertile, but initially their body 

size does not differ significantly from WT littermates, and they show no overt 

abnormalities in the brain or other tissues. The key variation from the WT 

phenotype is that H3R-KO mice display mild hyperphagia, decreased energy 

expenditure and late-onset obesity. The fact H3R-KO mice become obese is a 

paradoxical finding as without the H3R being present it would be expected that 

histamine release would cease to be negatively controlled and, thus, a increase in 

circulating endogenous histamine would be present, resulting in anorexic and 

even a lean mouse phenotype. Takahashi et al., suggest it could be that a lack of 

H3Rs alters neural circuitry during the development stage or sustained increases 

in histamine release may desensitize and/or down-regulate post-synaptic 
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histamine receptors (H1R and H2R), and hence attenuate net histaminergic tone, 

but the evidence for this has yet to be found (Takahashi et al., 2002).  

 

 

1.7.4 The H4 receptor 

The H4R is a post-synaptic receptor and is coupled mainly to Gi/o 

proteins. In either stably or transiently transfected cells, H4R activation leads to a 

pertussis-toxin-sensitive decrease in the forskolin-induced production of cAMP 

and the inhibition of downstream events such as CREB-dependent gene 

transcription in much the same way as the H3R (Lui et al., 2001 b). This 

observation indicates that the H4R, like other histamine receptors expresses 

constitutively activity. The H4R was cloned and found to be over 35% homologous 

to the H3R (Lui et al., 2001 b). 

Research into the H4R suggests it is involved principally in the immune 

system and expressed mainly during allergic reactions or as an inflammatory 

response (De Esch et al., 2005, Nguyen et al., 2001). The H4R is expressed in 

the PNS, but to date there is no consistent observable evidence suggesting H4R 

expression in the brain (Liu et al., 2001 b, Welty et al., 2009). O’Reilly et al. did 

report weak expression in the human brain, but expression has not been 

demonstrated in the brains of rat, mouse or guinea pig (O’Reilly et al., 2002). 

Therefore, if these receptors are expressed in the brain they are expressed at 

minimal levels. No evidence has been found to suggest the H4R has any role in 

the control of energy requisition or expenditure. 

 

 

1.8 Histamine and feeding 

Neuronal histamine is involved in the regulation of food intake (Morimoto et al., 

2001). Changes in endogenous histaminergic tone in the CNS have been 
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associated with genetic models of obesity (Machidori et al., 1992), such as the 

ob/ob mouse (Hancock et al., 2004). L-histidine, the precursor of histamine, 

decreases food intake when it is intraperitoneally (IP) injected (Orthen-Gambill N., 

1988, Sheiner et al., 1985). The ICV infusion of histamine itself (Lecklin et al., 

1998) or the increase of endogenous histamine by the administration of 

metoprine, an inhibitor of histamine catabolic enzyme, suppresses food intake in 

rats (Lecklin 1995). α-FMH the specific suicide inhibitor of histidine HDC, 

inactivates HDC more specifically and potently than any other HDC inhibitors 

(Garbarg et al., 1980). This inactivation of HDC is highly selective, so much so 

that α-FMH depletes neuronal histamine almost completely from the nerve 

terminals therefore increasing food intake (Garbarg et al., 1980). Thus, 

pharmaceutical agents directed at HDC could help regulate the release and 

synthesis of histamine and, thus, be used as a drug to help control appetite. 

H1R and H3R are both important for regulating feeding, and research suggests 

they have opposing affects on food intake. In both humans and rodents, 

treatment with a H1R antagonist or H3R agonist results in hyperphagia (Fukagawa 

et al., 1989), and administration of a H1R agonist or H3R antagonist or inverse 

agonist leads to hypophagia (Attoub et al., 2001, Takahashi et al., 2002). These 

opposing effects on food intake are most simply explained by the fact that the 

H1R is a postsynaptic receptor whereas the H3R is a presynaptic autoreceptor. 

Evidence for histamine’s role in food intake and appetite share the common 

theme that insufficient stimulation of post-synaptic CNS histamine H1R causes 

increased food consumption and/or weight gain (Karlstedt et al., 2001). Studies 

have shown the ability of histamine H3R antagonists or inverse agonists to 

promote weight loss or prevent weight gain (Hancock et al., 2004), with the 

presumed mechanism of action being the resulting enhanced release of 

histamine from histaminergic terminals, leading to the stimulation of postsynaptic 

histamine H1R to reduce appetite. Thus, a presumed CNS mode of action is 
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likely, although findings from recent in situ hybridization histology indicating the 

prominent expression of histamine H3R mRNA in brown adipose tissue (Karlstedt 

et al., 2001) would also support a potential non-CNS role in regulating 

thermogenesis through peripheral sites of action (Hancock et al., 2004).  

The H1R has long been a target of interest in the regulation of food intake. 

ICV application of a H1R agonist (2-(3-trifluoromethylpehenyl)histamine) potently 

suppresses food intake, whilst antagonism of hypothalamic H1R’s results in food 

intake (Sakata et al., 1997; Han et al., 2008). In addition, the H3R is also 

important in the control of food intake. For example, antagonism of H3R’s in the 

hypothalamus reduces food intake and induces weight loss in diet-induced obese 

rodents, as well as rhesus monkeys and pigs (Hancock et al., 2004; Malmlof et 

al., 2005; Malmlof et al., 2007), whilst the H3R agonist, imetit enhances feeding in 

rats (Chiba et al., 2009). Furthermore, the H3R’s localisation in the hypothalamus 

and NTS is supportive of its potential role in the regulation of food intake (Poole et 

al., 2008). The H3R has a distinct role in numerous appetite signaling pathways. 

For example, the H3R inverse agonist, thioperamide, inhibits food intake induced 

by the potent orexigens NPY and PYY (Itoh et al., 1999), whilst H3R agonists, R-

α-methyl-histamine (α-MH) and imetit, decrease bombesin-induced satiety in rats 

(Kent et al., 1997). In addition, H3R activation reduces the anorexigenic effects of 

amylin in fasted rats (Lutz et al., 1996). A study by Attoub et al. found that α-FMH 

dose-dependently inhibited the satiating effects of CCK, whilst thioperamide 

enhanced CCK-induced satiety. They also found that pre-treatment with 

pyrilamine, a post-synaptic H1R antagonist, inhibited CCK-induced satiety (Attoub 

et al., 2001), indicating that whilst the H3R controls pre-synaptic histamine 

concentrations, CCK-induced satiation is also dependent upon the post-synaptic 

activation of the H1R. 

In mice and rats, the activity level of the histaminergic system is relatively 

high at night and low in the day (Mochizuki et al., 1992). However, these animals 



 47 

eat at night for the most part although at this time the histamine activity is high. 

Sakata et al., showed that H1R  (Sakata et al., 1988) and α-FMH (Sakata et al., 

1990) antagonism induced food intake when they were modulated soon after 

lights on, but their effects were attenuated in the dark phase. In addition, they 

also showed that thioperamide reduces food intake in the dark (Sakata et al., 

1990). If this is the case, the abilities of these drugs to affect food intake inversely 

correlates with the histamine level in both the light and dark phase (Morimoto et 

al., 2001).  

 

 

1.9 Histamine and its interactions with other transmitters and peptides 

 As mentioned previously, the histamine H3R can act as a heteroreceptor and 

it is well documented that these receptors are present on the neurones of a 

number of other neurotransmitters. Thus, the H3R not only regulates the release 

of histamine itself but also of other transmitters (Schlicker et al., 1994). Research 

indicates that the H3R’s modulate the release of dopamine, acetylcholine, 

serotonin, GABA and noradrenaline in the brain (Schlicker et al., 1993). Also, 

secretion of these neurotransmitters is inhibited by the activation of H3R (Arrang 

et al., 1995), whilst H3R antagonism disinhibits their release.  

The first effective anti-obesity drugs (fenfluramine, sibutramine) that were 

developed to inhibit food intake and limit weight gain acted upon the synaptic 

availability of dopamine, acetylcholine, serotonin, GABA and noradrenaline. The 

clinical efficacy of these drugs can be attributed to their ability to enhance 

serotonin availability (Tallett et al., 2009), and it has been reported that the H3 

heteroreceptors can inhibit serotonin release resulting in an increase in food 

intake (Cole et al., 1998). Also, the anti-histamines, cyproheptadine and 

promethazine, are non-selective serotonin receptor antagonists, as well as acting 

as histamine receptor blockers that induce food-intake and weight gain in humans 
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and rats (Yoshimatsu et al., 2002). H3 heteroreceptor activity may also play a role 

in atypical antipsychotic-induced weight gain. Antagonism of the H3 

heteroreceptor has been shown to disinhibit neurotransmitter release (Arrang et 

al., 1995), which in the case of H3 heteroreceptors located on noradrenaline and 

acetylcholine neurones, may account for the side-effect of atypical antipsychotic-

induced food intake, as both these neurotransmitters can increase food intake 

(Pratt et al., 2009).  

Histaminergic neurones project fibres to almost all brain areas, albeit to a lower 

extent than the hypothalamus. The hippocampus and the nucleus accumbens 

both receive innervations form histaminergic neurons and both exert some 

physiological control of appetite (Hussain et al., 2002). High densities of H1R and 

H3R have both been found in the striatum (Drutel et al., 2001, Pillot et al., 2002). 

The analysis of histamine receptor distribution has shown that the nucleus 

accumbens also contains high levels of H1R and H3R, and comparably lower 

levels of H2R. Studies have indicated functional interaction between histaminergic 

and dopamine neurotransmission, with histaminergic function regulating at least 

in part dopamine activity in the forebrain (Galosi et al., 2001, Hussain et al., 

2002). Shlicker et al. found that histamine can inhibit striatal dopamine release 

and synthesis via presynaptic H3R (Shlicker et al. 1993). However, the complete 

mechanism by which histamine exerts its effects on dopamine activity is not clear. 

Prast et al. suggested histamine may be acting presynaptically through histamine 

receptors located on dopamine terminals in the nucleus accumbens (Prast et al., 

1999). Alternatively, Galosi et al. propose histamine may act on the output 

neurones of the nucleus accumbens, which via downstream projections may 

indirectly stimulate dopaminergic cells in the ventral tegmental area, resulting in 

dopamine release in the nucleus accumbens. Histamine can also interfere with 

the uptake of dopamine (Galosi et al., 2001), which could also lead to increased 

levels of extracellular dopamine. It may also be possible that histamine affects 
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dopamine release via acting on other inputs to the nucleus accumbens (Prast et 

al., 1999).  

As the histaminergic cell bodies are located only within the TM of the posterior 

hypothalamus (Watanabe et al., 1984), it is possible the signal inputs to the TM 

greatly influence histaminergic function Morphological evidence has suggested 

some of the appetite-stimulating peptides affect the histaminergic system within 

the TM itself (Watanabe et al., 1984). Neurones containing orexin-A and -B 

densely innervate the TM (Peyron et al., 1998), and both of the orexin receptors 

are expressed in the TM (Eriksson et al., 2001). NPY neurones have been shown 

to form synapses with the histaminergic cells directly in the TM (Tomaszuk et al., 

1996). Guan et al. reported strong expression of mRNA for the growth hormone-

secretagogue receptor, for which ghrelin is an endogenous ligand, in the TM 

(Guan et al. 1997). Also, Nakazato et al. reported that ICV injections of ghrelin 

induced the induction of c-fos expression in the TM (Nakazato et al. 2001). Thus, 

ghrelin could affect the histaminergic system directly in the TM. These 

observations indicate a functional relationship between these peptides and the 

histaminergic system (Ishizuka et al., 2006).  

Neuronal histamine plays an important role in leptin signaling in the 

hypothalamus, which controls feeding behaviour and energy metabolism. The 

central administration of leptin increases histamine turnover (Yoshimatsu H., 

2008). Leptin-induced suppression of feeding is attenuated in histamine-depleted 

rats using α-FMH, HDC and in histamine H1R-KO mice (Masaki et al., 2001). All 

these findings indicate neuronal histamine and the H1R could be mediating the 

suppressive effect leptin has on food intake (Morimoto et al., 1999). 

NPY has been demonstrated to potently increase food intake in both WT 

and H1R-KO mice, however the increase in food intake observed in H1R-KO mice 

was much more significant than that seen in WT animals (Ishizuka et al., 2006). 

Ishizuka et al. found NPY increases histamine release although this was very 
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short lived (Ishizuka et al., 2006). Further evidence of NPY and histamine working 

together in the control of food intake is that NPY afferents form direct synaptic 

contacts with the histaminergic cell body, and mRNA of NPY Y1 receptors, which 

has been implicated in feeding (Kanatani et al., 2000), is expressed in the TM 

(Kishi et al., 2005). These observations suggest that NPY could act on the 

histaminergic system directly in the TM via the NPY Y1 receptors. Toftegaard et 

al. have previously shown that the suppression of neuronal histamine synthesis 

by α-FMH stimulates NPY mRNA expression suggesting histamine exerts an 

inhibitory effect on NPY synthesis (Toftegaard et al., 2003). Therefore, NPY may 

inversely affect histamine synthesis and form a feedback loop with the 

histaminergic system in the regulation of food intake.   
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1.10 Summary 

Obesity is clearly a worldwide problem in most developed countries and is 

costing health services around the world millions in treating obesity-related 

illnesses. Thus, it is paramount that treatments are developed which help tackle 

this growing pandemic. Scientific research has advanced over the last few years 

and gained vital knowledge and understanding of the central mechanisms and 

pathways involved in regulating food intake and the control of energy balance. 

One widely accepted discovery is the central role the hypothalamus has in 

regulating energy balance and controlling feeding.  

Histamine is an important neurotransmitter within the CNS that has been 

associated with the regulation of appetite. Histamine has been shown by 

numerous research groups to act as a potent anorexigenic agent (Doi et al., 

1994, Endou et al., 2001, Lecklin et al., 1998, Lecklin et al., 1995). The 

histaminergic system acts via the H1R or H3R to exert its effects on feeding and, 

thus, these receptors could act as possible targets in the development of 

therapies to battle obesity. These receptors have opposing effects on feeding in 

that H1R agonists acts as potent anorexigens and H3R agonists act as powerful 

orexigens. Although the H1R has been more widely investigated as a possible 

target for anti-obesity drug development the fact these receptors are widely 

distributed and are involved in many functions, agonist drugs which target them 

can cause numerous adverse effects. For example, H1R agonists would have 

profound effects on the immune system (note anti-histamines acting on the H1R 

are used to combat hayfever and other allergic reactions). Instead, because H3R 

negatively regulate the release of histamine mainly in the brain, potentially to 

suppress appetite through the activation of only central H1R targets, 

pharmaceutical organisations have turned their focus onto H3R-based antagonists 

and/or inverse agonists, which can be given systemically but will have their 
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effects only centrally. To address the therapeutic potential of H3R ligands as anti-

obesity drugs, several groups have reported the pharmacological profiles of H3R 

inverse agonists in animal studies.  

Although H3R inverse agonists have been seen to potently reduce food 

intake in a number of species (Lecklin et al., 1998), research groups have shown 

varying degrees of their efficacy at changing food intake (Itoh et al., 1998, 

Sindelar et al., 2005). Therefore, although some reports have suggested the 

therapeutic potential of H3R inverse agonists, their anti-obesity effects remain 

controversial. For example, thioperamide, an imidazole-containing H3R inverse 

agonist, has been shown to suppress food consumption in rats and mice (Lecklin 

et al., 1998). However, other studies have shown thioperamide to have no affect 

on food intake either in satiated or in fasted rats (Itoh et al., 1998). Sindelar et al., 

demonstrated that both IP and oral administration of thioperamide enhanced 

histamine release in the brain, while only IP administration caused significant 

reductions in food intake (Sindelar et al., 2004). Furthermore, one group found 

that thioperamide even increased food intake when administered to mice 

(Yoshimoto et al., 2006).  The area of activation of these compounds has not 

been fully elucidated and the specificity of these drugs is not fully known. Thus, it 

is apparent that further investigation into the histaminergic system and in 

particular the H3R is required. 
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1.11 PhD Aims 

My main aims with this PhD were to investigate and determine histamine's 

hypophagic affect on feeding and to determine whether this system could be 

manipulated for the development of potential therapeutic agents that are anti-

obesity targets.  

I aimed to firstly determine the effects histamine had on rodent feeding 

when administered centrally. Once an anorexigenic effect had been elucidated 

we aimed to investigate whether H3R-based drugs, including a H3R agonist and 

two H3R inverse agonists could also alter food intake. Our next aim was to 

investigate where histamine and these H3R drugs were acting within the rodent 

brain and in particular whether the known ‘feeding’ or ‘satiety’ centres are 

involved. Once the areas in which histamine is acting had been established my 

next step was to investigate what effects histamine and histamine-based drugs 

have on neuronal firing within the VMN, a hypothalamic area known to be pivotal 

in the regulation of food intake. We then investigated whether histamine was 

exerting its effects within the VMN via a H1R or a H3R to determine the 

populations of histamine receptors present in this area. My penultimate aim was 

to ensure the effects of the H3R drugs being tested were acting specifically at the 

H3 receptor we co-applied a neutral H3R agonist with an H3R agonist or H3R 

inverse agonist, to ensure the any effects these drugs had on feeding or neuronal 

firing were receptor specific. My final aim was to establish the same populations 

of VMN neurones responding to histamine are also glucose responsive.  
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Chapter 2: 

In vivo effects of histamine and 

H3R drugs on food intake 
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2.1 Introduction 

2.1.1 Pharmaceutical development of histaminergic agents 

Extensive pharmacological experiments have demonstrated that the brain’s 

histamine system plays critical roles in the regulation of feeding and energy 

expenditure and, thus, this system could be manipulated for the pharmaceutical 

control of appetite and body weight. Behavioural studies have revealed histamine 

suppresses food intake when administered centrally or peripherally (Doi et al., 

1994, Endou et al., 2001; Lecklin et al., 1998; Lecklin et al., 1995), therefore, 

Orthen-Gambill et al. (1992) suggested the removal of histamine’s inhibitory effect 

might in turn stimulate feeding. They found that if histamine levels were 

decreased using α-FMH, which is a potent and irreversible inhibitor of HDC, an 

increase in both food intake and body weight is seen in rodents. This inactivation 

of HDC in histamine-containing nerve terminals is highly potent and selective; so 

much so, that FMH depletes neuronal histamine almost completely from the 

nerve terminals (Garbarg et al., 1980). Hence, pharmaceutical agents directed at 

HDC could help regulate the release and synthesis of histamine and be used as a 

drug to help control appetite. However, a problem arises since such drugs would 

affect all histaminergic systems in the body.  

An alternative would be to target specific histamine receptors. H1R and H3R are 

both important for regulating feeding. Their activity has opposing effects on food 

intake. H1R agonists and H3R antagonists decrease food intake, whereas H1R 

antagonists and H3R agonists increase food intake in rodents (Takahashi et al., 

2002). This is most simply explained by the fact that the H1R is a postsynaptic 

receptor, whereas the H3R is normally a presynaptic autoreceptor. In both 

humans and rodents, treatment with an H1R antagonist results in hyperphagia 
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(Fukagawa et al., 1989), whereas administration of H3R antagonists leads to 

hypophagia (Attoub et al., 2001).  

The fact that drugs with H1R-blocking properties stimulate food consumption in 

humans as well as in animals clearly indicates the critical role of endogenous 

histamine and H1R in the regulation of feeding behaviour (Fukagawa et al., 1989). 

However, H1R are widely distributed and are involved in many functions, so 

agonist drugs which target them can cause numerous adverse effects. For 

example, H1R agonists would have profound effects on the immune system (note 

anti-histamines acting on the H1R are used to combat hayfever and other allergic 

reactions). Instead, because H3R negatively regulate the release of histamine 

mainly in the brain, potentially to suppress appetite through the activation of only 

central H1R targets, pharmaceutical organisations have turned their focus onto 

H3R based antagonists and/or inverse agonists, which can be given systemically 

but will have their effects only centrally.  

H3R antagonists have been proposed as drugs for the treatment of several 

CNS disorders such as attention-deficit hyperactivity disorder (Onodera et al., 

1998), Alzheimer’s disease (Passani et al., 2000), epilepsy (Yokoyama et al., 

1994), schizophrenia (Schlicker et al., 1996) and obesity (Takahashi et al., 2002), 

whereas the therapeutic potential of H3R agonists has been shown for myocardial 

ischemia (Levi et al., 2000), inflammatory diseases (McLeod et al., 1998), gastric 

acid-related diseases (Bertaccini et al., 1991), and migraine and sleep disorders 

(Mignot et al., 2002).  

With the cloning of the H3R and the discovery of the high degree of constitutive 

activity of this receptor, many H3R antagonists have been subsequently 

reclassified as inverse agonists because of their ability to reverse basal H3R 

activity. Since H3Rs may inhibit neurotransmitter release in the absence of 

endogenous histamine because of their inherent constitutive activity (Morisset et 

al., 2000), compounds that demonstrate greater inverse agonist efficacy may 
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cause greater enhancement of neurotransmitter release and thus could pose 

greater therapeutic effects. To address the therapeutic potential of H3R ligands as 

anti-obesity drugs, several groups have reported the pharmacological profiles of 

H3R inverse agonists in animal studies. Because H3Rs negatively regulate the 

release of histamine in the brain, H3R inverse agonists are believed to suppress 

appetite through the activation of H1Rs in the post-synaptic areas. Although 

reports have suggested the therapeutic potential of H3R inverse agonists, their 

anti-obesity effects still remain controversial. For example, thioperamide, an 

imidazole-containing H3R inverse agonist, increases histamine neurones activity 

in vivo by removing the normal feedback autoinhibitory control system of both 

histamine synthesis and release at the level of histamine nerve terminals (Arrang 

et al., 1987). Thioperamide has been shown to suppress food consumption in a 

number of animal models, for example Jethwa and colleagues showed that in the 

seasonal hamster administering H3R inverse agonists in the lean state reduced 

food intake (Jethwa et al., 2009). Whilst other studies have shown thioperamide 

to have no effect on food intake either in satiated or in fasted rats (Itoh et al., 

1998, Lecklin et al., 1998, Sakata et al., 1990). Sindelar et al. (2004) 

demonstrated that both intraperitoneal (IP) and oral (PO) administration of 

thioperamide enhanced histamine release in the brain, while only IP 

administration caused significant reductions in food intake (Sindelar et al., 2004). 

Most recently, one influential report witnessed the opposing effects of 

thioperamide in murine studies (Yoshimoto et al, 2006). Here, the group showed 

that the H3R inverse agonist thioperamide increased rather than decreased food 

intake, which opposes the findings of most research groups investigating the 

actions of these histamine-based drugs, but illustrates a need for further 

research. In addition, several reports have demonstrated the possibility that the 

imidazole moiety of thioperamide may be responsible for toxicity through its 

interaction with P450 proteins (Yang et al., 2002; Onderwater et al., 1998), thus 
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suggesting the possibility that imidazole-containing H3R drugs may exert non-

selective adverse effects leading to reduced feeding. In order to address these 

concerns, several pharmaceutical companies have developed non-imidazole H3R 

inverse agonists (Tokita et al., 2006). Among these, Hancock and colleagues 

reported that A-331440 potently suppresses feeding and body weight gain in diet-

induced obese mice (Hancock et al., 2004). However, ABT-239, another 

structurally distinct H3R inverse agonist, showed no anti-obesity activity in the 

same animal model (Tokita et al., 2006). Wulff et al. reported that the H3R inverse 

agonists by Novo Nordisk, NNC-0038-1049 (NNC1049) and NNC-0038-1202 

(NNC1202), reduced body weight in diet-induced obese rats (Wulff et al., 2002). 

Furthermore, NNC1202 reduced food consumption and body-weight gain in pigs 

and obese rhesus monkeys. These varying pharmacological observations 

demonstrate that H3R inverse agonist may possess anti-obesity activity but that 

their efficacy may differ among species (Tokita et al., 2006). Many observations 

highlight potential and as of yet, unknown off-target activity of specific compounds 

that might contribute to their anorectic effects. Although the brain histamine 

system is a highly conserved system among species, it is possible that this 

system plays slightly different physiological roles. Oishi et al. reported that 

histamine content and turnover in several brain areas differ between mice and 

rats (Oishi et al., 1983), thus supporting the notion of species related differences 

in H3R ligand functions. Splicing variants, which differ slightly amongst species, 

would play different roles within the CNS, interacting differently with 

pharmacological reagents and therefore resulting in distinct outcomes in each 

species. Thus, further investigation of the use of H3R compounds as potential 

anti-obesity therapies is required. 

 Imetit was initially characterized as a weak partial H2R agonist (Ganellin R., 

1981), but was later identified in various in vitro and in vivo tests as an extremely 

potent and selective H3R agonist (Garbarg et al., 1992). As an H3R agonist it 
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would be expected that imetit would increase food intake by reducing histamine 

synthesis and release. This has been shown as the case for a number of 

research groups (Garbarg et al., 1992; Leurs et al., 2005; Hancock et al., 2004) 

who all demonstrated imetit produces a increase in food intake in rodent studies. 

However, despite disagreeing with this published material, Yoshimoto et al, 

reported that imetit reduced, rather than increased food intake in mice and 

continual injections even resulted in a body weight reduction (Yoshimoto et al., 

2006). Again, these data emphasise the confused literature and show the need 

for further studies to be carried out to determine the exact actions of H3R drugs 

on food intake.  

Additionally, in mice and rats, the activity level of the histaminergic system 

is relatively high at night and low in the day (Mochizuki et al., 1992). However, 

these animals eat mainly at night when the histamine activity is high. Sakata et 

al., showed that H1R antagonism (Sakata et al., 1988) and α-FMH (Sakata et al., 

1990) induced food intake when they were injected soon after lights on, but their 

effects were attenuated in the dark phase. In addition, they also showed that 

thioperamide reduces food intake in the dark (Sakata et al., 1990). If this is the 

case, the abilities of these drugs to affect food intake inversely correlates with the 

histamine level in both the light and dark phase (Morimoto et al., 2001).  

 

 

2.2 Aims and Objectives 

2.2.1  Does histamine reduce food intake when administered centrally? 

Histamine has many roles in mammalian physiology, one of which is its 

powerful effect on appetite. The hypothalamus is integral in appetite control and 

in order to confirm histamine’s actions in our own models and to lay the 
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foundation for investigating receptor-selective drugs, we carried out a baseline 

study to determine the central action of histamine on food intake.  

 

2.2.2 What effects does the H3R receptor agonist have on food intake? 

 Controversy over the effects of H3R agonist drugs has been raised, thus, we 

aimed to determine the effect of the H3R agonist, imetit, on food consumption in 

the adult rat when administered both centrally and systemically. 

2.2.3 What are the effects on food intake of H3R inverse agonists? 

This same controversy over the effectiveness of H3R agonists also applies 

to the H3R inverse agonists. Thus, we ascertained the effects of the H3R inverse 

agonists, thioperamide and the coded compound from Novo Nordisk, NN1202, on 

food consumption in the adult rat to help establish if these compounds could 

possibly be used pharmacologically to reduce food intake. 

 

 

2.2.4 Do the H3R selective drugs have indirect, adverse effects on food 

intake? 

 Our last objective was to establish if the H3R drugs being considered altered 

only the feeding behaviour, or if other adverse responses, such as malaise or 

sedation, occurred resulting in secondary actions on food consumption. In order 

to determine this, we studied the behavioural satiety sequence of different 

experimental groups. 

 Normally, food intake is controlled by appetitive processes such as hunger or 

satiation. However, many compounds can alter food intake when administered 

exogenously. Although to date it is not fully understood how histaminergic drugs 

affect appetite and alter food intake, one explanation is that they are acting upon 

a specific stage of the natural process where animals match their food intake to 

nutritional requirements (Blundell et al., 1985). A reduction in food intake instead 
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could be due to non-specific, non-physiological interference of eating behaviours, 

such as a reduction in motor function or malaise. Thus, one question is whether 

drug-induced alterations in food consumption actually reflect the natural process 

of satiation (Blundell et al., 1975). To determine this, more data is required than 

simply a change in food consumption. Thus, additionally we can analyse changes 

in the structure of feeding behaviour. The examination of the structure of 

behaviour can be used to identify adaptive responses to “natural” processes or 

altered responses brought about by pathological, physiological or environmental 

conditions, such as administering drugs. Therefore, the structure of behaviour can 

be used to determine whether the effect of a drug on food intake is mediated by a 

natural process or a pathological condition (Blundell et al., 1985). 

 

 

2.2.5 Do imetit and thioperamide have similar effects on food intake in 

mice? 

 The paper published by Yoshimoto et al. (2006) suggested the H3R agonist 

imetit could decrease the food intake in mice, that prolonged administration could 

even cause a loss of body weight, and that the H3R inverse agonist thioperamide 

had the opposite effect to increase food consumption. This paper was very 

influential because, until then, all published research into the effects of these 

drugs on food intake suggested the opposite, with imetit causing hyperphagia and 

thioperamide having an anorectic effect. At face value, because histamine itself is 

anorexic, the results from Yoshimoto and colleagues (2006) are unusual since 

imetit should decrease endogenous histamine release, while thioperamide should 

increase it.  
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2.3 Methods  

2.3.1 Animals 

Male Sprague-Dawley rats (225 - 275 g) and male CD1 mice (7 weeks old; 

both Charles-River, UK) were kept in a 12 h/ 12 h light-dark cycle (lights on 

08.00-20.00) within The University of Manchester animal facility. All animals were 

maintained in the facility for at least one week prior to the start of the experiment. 

The animals were housed in a temperature-controlled room (~22 ºC ± 1) with a 

relative air humidity of 40-60%. They had free access to food (Beekay, UK) and 

water.  

These and all other experiments conformed with the Home Office (Animals) 

Procedures Act (1986) and local ethical review.  

 

 

2.3.2 Compounds 

Compounds were administered via injection into the lateral cerebral ventricle 

for intracerebroventricular administration (ICV) and into the intraperitoneal cavity 

(IP) for the systemically-injected animals. Histamine (Sigma, Sigma-Aldrich 

Company Ltd, Dorset) and was diluted in isotonic saline to a concentration of 200 

nmol immediately prior to use. Thioperamide (Sigma) was diluted in isotonic 

saline to the required amount for the ICV (100, 200, 400 nmol per rat) and IP (0.5, 

1, 2 mg/kg body weight) injections. Imetit (Sigma) was diluted with isotonic saline 

to the required amount for the ICV (10, 50, 100 nmole per rat) and IP (2.5, 5, 10 

mg/kg body weight) injections. NNC1202 was donated by Novo Nordisk and was 

diluted in isotonic saline to the necessary amounts for the ICV (100, 200, 400 

nmole per rat) and IP (10, 20, 30 mg/kg body weight) injections. 

For the murine experiments drugs were diluted in the same manner as the 

rodent IP studies, but the following amounts were used: thioperamide and imetit 



 63 

were injected at 10 or 20 mg/kg body weight (in a volume of 1 ml/kg of body 

weight).  

 

 

2.3.3 Intracerebroventricular cannulation  

 Rats were anaesthetised with 2 % isofluorane in O2 at 1 l/min. Once the 

head had been shaved, rats were placed securely in the stereotaxic apparatus 

(Stoelting, Illinois, USA). A 2-3 cm incision was made along the midline of the 

cranium, exposing the skull. All connective tissue was displaced from the cranial 

surface before the guide cannula was positioned 0.8 mm posterior and 1.5 mm 

lateral to bregma (co-ordinates determined according to Paxinos and Watson 

1986). A 21-gauge guide cannula was implanted 3 mm into the brain at this co-

ordinate through a 1.5 mm-diameter hole drilled in the cranium so it inserted into 

the lateral ventricle. The guide cannula was fixed to the skull with acrylic dental 

cement (Simplex Rapide; Austental Dental, UK) adhered to two jeweller's screws 

(4 mm long x 2 mm diameter) positioned anterior and posterior to the guide 

cannula. The dental cement was allowed to dry and the skin around the cannula 

and the surrounding skin was then sutured (size 3/0 mersilk, Ethicon, Johnson 

and Johnson International, USA). For post-operative analgesia, rats were injected 

with 10 µl/kg buprenophrine (Vetergesic, Reckitt Benckiser Healthcare, Hull, UK), 

and a bolus of saline to aid recovery. Animals were allowed to recover and then 

maintained for one week post surgery. During this time rats were given food and 

water ad libitum.  A cannula made from the tip of a 23-gauge needle was used to 

inject the drug or vehicle when inserted through the guide cannula to a depth of 

10.5 mm from the surface of the skull which allowed the drug to be injected 

directly into the lateral ventricle. 
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2.3.4 The effect of histaminergic drugs on food intake 

The control groups in the feeding studies show some variation between the 

absolute amounts of food eaten. Rats naturally show much variation in food 

consumption from experiment to experiment, which is probably dependent on 

individual variations, the exact time of day that an experiment was begun, the 

amount of food eaten by different groups in the period immediately before each 

experiment, as well as the immediate pre-history of handling and husbandry. The 

daytime feeding experiments all began between the hours of 8:00 am and 10:00 

am. Although all rats are managed in as similar a way as possible, variations in 

the daily maintenance of stocks by the animal facility staff are difficult to control. 

Variations between experiments are relatively small, but to ensure statistical 

relevance to all experiments, the drug-injected experimental groups and the 

control groups are housed and maintained, as well as treated, in exactly the same 

way. That is every experiment has its own internal controls. 

 

Rats were caged singly and fasted overnight prior to both ICV and IP 

injections. On the day of the experiment for central injections, rats were 

administered 2 µl of the drug being tested (amounts used above) and control rats 

received 2 µl saline ICV. After the injection, the cannula was checked to ensure 

reflux did not occur. For both the rat and mouse systemic injections, on the day of 

the experiment, animals were administered 1ml/kg (body weight) of the drug 

being tested (amounts used above) and controls received 1 ml/kg saline IP. Pre-

weighed food was returned to the animal 2 minutes after receiving the injections. 

Food consumption was measured at 1, 2, 4, 8, and 24 h intervals post-injection 

for the rodent studies and 1, 2, 4, 12 and 24 h for the murine studies.  
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2.3.5 Behavioural satiety sequence (BSS) 

Each experiment was performed at the same time every day to avoid any 

circadian variation. Rats were housed singly, two days before the experiment, in 

transparent observation cages. Food was removed 2 hours before the experiment 

began to ensure no pre-feeding occurred. Animals (n = 8 per treatment) received 

a IP injection of isotonic saline, imetit (10 mg/kg body weight), thioperamide (2 

mg/kg) or NNC1202  (30 mg/kg) at 20:00 h on different days, so each animal 

received one injection of each compound or vehicle over a two-week period. A 

minimum of 3 days were left between each experiment so animals had recovered 

from their last drug treatment. After the drug was administered, rats were given a 

pre-weighed amount of food. Behavioural observations began 90 seconds later. 

The animals were scored every 30 sec for 90 minutes with the behaviour of each 

animal at that instant in time being noted. Their behaviour was scored as one of 

the following: feeding, drinking, grooming, resting, inactive or active (see table 

2.1). The data were collated into 5-minute periods or bins and expressed as the 

mean percentage of total behaviour. The percentage of time the animals spent 

exhibiting each individual behaviour was analysed for all drug or vehicle groups 

and collated into a graph. The overall food eaten for each animal was taken after 

the 90-minute observational period was over. 
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Resting  Sitting or lying in a resting position or asleep. 

Inactive  Not moving or exploring but not lying in resting position and still 
fully awake. 

Active Walking around cage, exploring or circling. Movements involving 
all four limbs. 

Grooming  Scratching, licking or biting of the coat, whiskers, feet or genitals. 
Biting of the tail. 

Drinking  Licking the water bottle. 

Feeding  Biting, gnawing or swallowing food from dish or from front paws. 

 
 

Table 2.1.;  This table was adapted from Halford and Blundell 1993 and illustrates the six 

behavioural categories used for behavioural analysis when carrying out the behavioural 

satiety sequence (BSS) experiments. 

 
 

 

2.3.6 Statistical anaylsis 

 All data are presented as mean ± standard error of mean (S.E.M.). Data from 

feeding and the BSS studies were analysed using an unpaired t test, one-way 

analysis of variance (ANOVA) with Bonferonni post hoc test or a two-way ANOVA 

with repeated measures were carried out depending on the experiment. 

Significance was taken at P < 0.05.  
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2.4 Results 

2.4.1 Histaminergic effects on food intake in rats 

Injection of histamine ICV (200 nmol in 2 µl) caused a significant 

suppression of food intake in rats (P < 0.05) (figure 2.1). It was observed that one 

hour after administration, rats that received histamine had eaten only 0.9 ± 0.3 of 

food, whereas those that received saline had eaten 6.2 ± 0.4 g (P < 0.005), and a 

statistically significant difference in cumulative intake remained until 8 hours after 

ICV injection (P < 0.05). At 24 hours post-injection the cumulative food eaten by 

the two groups was no longer significantly different: histamine injected rats had 

eaten 25.2 ± 0.8 g of food and rats that had received saline had eaten 26.1 ± 1.9 

g. 

 

0

10

20

30

*** *** * *

    1             2             4             8            24
                    Hours post-injection

Control
Histamine

C
um

ul
at

iv
e 

fo
od

 in
ta

ke
 (g

)

 

Figure 2.1.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after ICV injection 

with histamine (200 nmol, n = 11) or saline (n = 9). Data are expressed as mean ± S.E.M. 

Two-way ANOVA with repeated measures and Bonferonni post hoc test was carried out: 

*** P < 0.005, * P < 0.05.  
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2.4.2 H3R agonist effects on food intake in rats  

We carried out ICV injections using imetit (H3R agonist) at varying 

concentrations (100, 50 and 10 nmol) to determine a dose-response curve (figure 

2.2). We found that giving imetit at a concentration of 10 nmol was not sufficient 

enough to produce a significant increase in food intake. Both 50 nmol and 100 

nmol of imetit caused rats to significantly increase their food consumption 1 hour 

after the initial injection (figures 2.2 and 2.3).  
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Figure 2.2.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after ICV injection 

with imetit (10, 50, & 100 nmol) or saline, in 2 µl. n = 7 for saline and 100 nmol imetit 

groups and n = 6 for 10 nmol and 50 nmol imetit drug groups. Data are expressed as 

mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test 

was carried out: ** P < 0.01, * P < 0.05.  
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The group that received 50 nmol of imetit ate 7.08 ± 0.19 g 1 hour after 

receiving the ICV injection whereas control animals ate 5.30 ± 0.56 g. This 

showed a significant increase in food intake (P < 0.05). This increase in food 

intake was not a long-term effect as by 2 hour the significance was lost, with the 

50 nmol imetit group having cumulatively eaten 7.79 ± 0.52 g and the control 

groups having cumulatively eaten 7.67 ± 0.99 g (figure 2.3). Out of the 

concentrations tested, we found that giving imetit at a concentration of 100 nmol 

gave the most significant results. An ICV injection of 100 nmol imetit caused a 

significant, though short-term, increase in food intake in rats (figure 2.3). It was 

observed that one hour after treatment, rats that received imetit had eaten 7.5 ± 

1.3 g of food whereas those that received saline ICV had eaten 5.3 ± 1.9 g (P < 

0.01; figure 2.3). The significance was lost between 1 and 2 hours post injection 

with rats receiving ICV imetit injections having a cumulative food intake of 8.4 ± 

1.2 g compared with the saline-treated group 7.67 ± 0.99 g (figure 2.3).  
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Figure 2.3.;  Food consumption measured at 1 & 2 hours after ICV injection with imetit at 

50 & 100 nmol or saline, in 2 µl. n = 7 for saline and 100 nmol imetit groups and n = 6 for 

50 nmol imetit drug group. Data are expressed as mean ± S.E.M. Two-way ANOVA with 

repeated measures and Bonferonni post hoc test was carried out: ** P < 0.01, * P < 0.05.  

 

 

We also carried out a dose response curve for imetit (H3R agonist) given IP at 

varying amounts (10, 5 and 2.5 mg/kg, see figure 2.4). We found that imetit when 

given at 2.5 mg/kg and 5 mg/kg there was no significant change in food intake, 

although the lower amount (2.5 mg/kg) did surprisingly show some trend towards 

reducing food intake, but this did not enter significance. Alternatively, when we 

administered imetit IP at 10 mg/kg a significant increase in food intake in rats was 

observed (figures 2.4 and 2.5).  

 



 71 

0

10

20

30

40

 1             2             4             8                24
                  Hours post injection

****

Control
10 mg/kg
5 mg/kg
2.5 mg/kg

C
um

ul
at

iv
e 

fo
od

 in
ta

ke
 (

g)

 

Figure 2.4.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after IP injection with 

imetit (2.5, 5 & 10 mg/kg, n = 6) or saline (n = 7) in 1 ml/kg. Data are expressed as mean 

± S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test was 

carried out: ** P < 0.005, * P < 0.05.  

 

 

It was observed that at one hour after treatment, rats that received imetit had 

eaten 8.77 ± 0.27 g of food, whereas those that received saline IP had eaten 6.75 

± 0.32 g (P < 0.005; figure 2.5). At 2 hours rats that received IP injections of imetit 

were still eating significantly more, with cumulative food intake at 9.77 ± 0.69 g 

compared with 8.09 ± 0.35 g for control rats (P < 0.05; figure 2.5). This significant 

difference in cumulative food intake continued up to 4 hours post injection, with 

the imetit group eating 10.28 ± 0.44 g and the saline group consuming 8.49 ± 

0.48 g (figure 2.5). The statistical significance was lost between 4 and 8 hours 

post injection with rats receiving IP imetit injections having eaten 12.28 ± 0.64 g 

compared with 11.60 ± 1.01 g for the control group (figure 2.5).  
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Figure 2.5.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after IP injection with 

10 mg/kg imetit (n = 6) or saline (n = 7) in 1 ml/kg. Data are expressed as mean ± S.E.M. 

Two-way ANOVA with repeated measures and Bonferonni post hoc test was carried out: * 

P < 0.05.  

 

 

 

2.4.3 H3R inverse agonist effects on food intake in rats  

After carrying out a dose response curve for thioperamide (an H3R inverse 

agonist) given ICV at varying concentrations (400, 200, 100 nmol, figure 2.6), we 

found that a concentration of 400 nmol was the only concentration that we tested 

that gave a significant result (figures 2.6 and 2.7).  



 73 

0

5

10

15

20

25

30

35

1             2             4             8            24
                Hours post injection

Control
100 nmole
200 nmole
400 nmole

*
*

C
um

ul
at

iv
e 

fo
od

 in
ta

ke
 (

g)

 

Figure 2.6.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after ICV injection 

with thioperamide (100, 200 & 400 nmol, n = 5) or saline (n = 5) in 2 µl. Data are 

expressed as mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferonni 

post hoc test was carried out: * P < 0.05. 

 

 

The ICV injection of 400 nmol thioperamide caused a significant decrease 

in cumulative food intake in rats compared with saline (figure 2.7), however, the 

difference was only significant at the 4- and 8-hour time points. At four hours, IP 

thioperamide-injected rats had eaten 5.80 ± 0.26 g and those that had received 

saline had eaten 7.43 ± 0.93 g (P < 0.05; figure 2.7). The significant difference in 

cumulative food intake between thioperamide and control rats was maintained at 

8 hours, with control rats eating 11.35 ± 0.70 g whereas thioperamide-treated 

animals ate 7.79 ± 0.93 g. This significance was lost between 8 and 24 hours 

(figure 2.7). At 24 hours, the cumulative food intake of thioperamide-treated rats 

was 30.52 ± 1.43 g and for the saline-treated rats was 34.25 ± 0.56 g. These 
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feeding experiments suggest that the H3R inverse agonist may have a delayed 

effect on feeding. 
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Figure 2.7.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after ICV injection 

with thioperamide (400 nmole, n = 5) or saline (n = 5). Data are expressed as mean ± 

S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test was 

carried out: * P < 0.05.  

 

 

We then went on to determine the effect on food intake that thioperamide 

(H3R inverse agonist) has when administered systemically at varying amounts by 

carrying out a dose response curve. The amounts investigated were, 2, 1, 0.5 

mg/kg (figure 2.8). We found that giving thioperamide at all three amounts gave 

significant results at some time points post injection, with the highest 

concentration (2 mg/kg) giving the highest significance (figures 2.8 and 2.9).  
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Figure 2.8.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after IP injection with 

thioperamide (0.5, 1 & 2 mg/kg, n = 5) or saline (n = 5) in ml/kg. Data are expressed as 

mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test 

was carried out: ** P < 0.005, * P < 0.05. 

 

 

 

 The IP injections at 2 mg/kg caused a significant decrease in food intake in 

rats in the same way as the ICV study. One hour post injection, thioperamide-

treated rats had eaten 5.89 ± 0.18 g and those treated with saline had eaten 7.22 

± 0.44 g (P < 0.05; figure 2.9). 2 hours post injection the significance of the 

difference increased to P < 0.005, and thioperamide-treated rats ate 6.80 ± 0.25 g 

compared with saline-treated rats that consumed 9.47 ± 0.63 g of food (figure 

2.9). 4 hours post injection, rats that received a injection of thioperamide ate 

significantly less than rats receiving vehicle, with thioperamide-treated animals 

having eaten 7.39 ± 1.63 g and control animals consuming 13.22 ± 1.59 g of food 

(figure 2.9). The statisitical significance in difference in cumulative food intake 

was lost between 4 and 8 hours, with the H3R inverse agonist-treated rats 
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consuming 11.09 ± 1.35 g and those that received saline eating 12.64 ± 0.51 g 

(figure 2.9).  
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Figure 2.9.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after IP injection with 

thioperamide (2 mg/kg, n = 5) or saline (n = 5). Data are expressed as mean ± S.E.M. 

Two-way ANOVA with repeated measures and Bonferonni post hoc test was carried out: 

*** P < 0.0001, ** P < 0.005, * P < 0.05. 

 

 

The i.p injections of thioperamide at 0.5 and 1 mg/kg also cause a significant 

reduction in food intake compared with control injections, but these doses appear 

to have a delayed affect on feeding, as significance was apparent only at 4-hours 

post injection (figure 2.8). This significance was lost for the 0.5 mg/kg dose by the 

8-hour time point but rats that received a injection of 1 mg/kg thioperamide ate 

significantly less 8 hours post injection. Food intake normalised levels somewhere 

within the 8 and 24 hour time points. These feeding experiments correlate with 

the ICV thioperamide study showing the same effect on feeding. 
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A dose-response experiment for NNC1202 (an H3R inverse agonist) given ICV 

at varying concentrations (100, 200 and 400 nmol, figure 2.10) was then carried 

out. We concluded that giving NNC1202 at all the concentrations tested showed 

no significant change in food intake (figure 2.10). There was no overall trend or 

change in food consumption suggesting that, when given ICV, NNC1202 has no 

effect on rodent appetite. 
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Figure 2.10.;  Food consumption measured at 1, 2, 4 and 24 hours after ICV injection with 

NNC1202 (100, 200 & 400 nmol, n = 6) or saline (n = 8). Data are expressed as mean ± 

S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test was 

carried out: non significant. 

 

 

We then carried out a dose-response curve for NNC1202 using IP injections 

(30, 20, 10 mg/kg, figure 2.11) to determine if the drug can affect food intake in 

rats when given systemically. We found that giving NNC1202 at all three doses 

showed a reduction in food intake, with the highest concentration (30 mg/kg) 
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showing the highest and most prolonged significance in food intake reduction 

(figures 2.11). The IP injections (30 mg/kg) caused a significant decrease in food 

intake in rats that lasted for a prolonged time and was still apparent 24 hours after 

the injection. One hour after injection, NNC1202-treated rats had eaten 1.03 ± 

0.30 g and those that received saline IP had eaten 6.14 ± 0.55 g (P < 0.0005; 

figure 2.11). The significant difference between NNC1202-treated and saline-

treated rats was still apparent after 24 hours, with rats injected IP with NNC1202 

IPconsuming between 28.00 ± 0.91 g of food compared with saline treated rats 

that consumed 34.27 ± 0.93 g (P < 0.0005; figure 2.11). These results suggest 

that the H3R inverse agonist NNC1202 given IP at 30 mg/kg and 20 mg/kg has a 

dramatic affect on the food consumption of rats causing a much reduced food 

intake that is prolonged and still apparent after 24 hours post injection. 

We noted that NNC1202 given at 20 mg/kg also caused a significant reduction 

in food intake at 1, 2, 4 and 24 hours post injection. Also our results also indicate 

that when NNC1202 is administered at 10 mg/kg a significant reduction is 

apparent after 1 and 2 hours post injection. These data suggests that even at the 

lower doses NNC1202 has a significant effect on food consumption in rats.  

 



 79 

0

10

20

30

40

1             2              4             8            24
                 Hours post injection

Control
10 mg/kg
20 mg/kg
30 mg/kg

*** ******
******

***

***

***

**
*

*
C

u
m

ul
at

iv
e

 fo
od

 in
ta

ke
 g

 

Figure 2.11.;  Food consumption measured at 1, 2, 4, 8 and 24 hours after IP injection 

with NNC1202 (10, 20 & 30 mg/kg, n = 7) or saline (n = 7). Data are expressed as mean ± 

S.E.M. Two-way ANOVA with repeated measures and Bonferonni post hoc test was 

carried out: *** P < 0.0005, ** P < 0.005, * P < 0.05.  

 

 

2.4.4 The effect of the H3R compounds on the behavioural satiety sequence 

Similar to the earlier experiments described in this chapter, animals ate 

significantly more food when given the H3R agonist imetit (figure 2.12) compared 

with all other groups. When given either of the H3R inverse agonist drugs, 

thioperamide or NNC1202, rats significantly reduced their food intake (figure 

2.12). Measurements of food intake were made at the end of the 90-minute 

observation period. As mentioned, food intake was measured 90 minutes into the 

lights off period showing that the changes in food intake seen after administering 

these drugs occurs both in pre-fed and fasted animals in both lights on and lights 

off periods.  
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Figure 2.12.;  Food consumption measured at 90 minutes after IP injection with imetit (10 

mg/kg), thioperamide (2 mg/kg), or NNC1202 (30 mg/kg) or saline (n = 8 for all groups). 

Data are expressed as mean ± S.E.M. One-way ANOVA with Bonferronni post hoc test 

was carried out: * P < 0.05, *** P < 0.0005. 

 

 

Figure 2.13 shows the BSS control group animals display a normal sequence 

of behaviour. They initially showed episodes of feeding interspersed with 

episodes of activity, before progressing to extended periods of grooming and rest, 

as they became satiated. Apart from an initial increase in eating behaviour in the 

first few bin points, the imetit-treated animals showed a similar pattern to the 

control animals. Also, the pattern of behaviours was similar in the thioperamide-

treated animals apart from slightly less time spent eating over the first few time 

bins. These results show that no unusual behaviours, e.g. immobility, malaise or 

sickness behaviour were noted in these treated groups. This was not the case for 

the NNC1202-treated group which showed a very different pattern of behaviours. 

Rats treated with NNC1202 showed prolonged episodes of inactivity where they 

were observed as quiet, motionless and unresponsive, although with eyes open, 

leading to assumption they are suffering from malaise. They appeared to recover 

slightly towards the latter part of the 90 minutes post injection and were even 

seen to start feeding in the last few bin time points. These results suggest that the 
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drug is having an effect on the animals that is making them feel unwell or 

unmotivated and as a result of this they are not eating as much as the other 

groups.  

 

 

 

 

 

 

 

Figure 2.13.; Behavioural satiety sequence – animals were IP injected with, A. saline, B. 

imetit, C. thioperamide, or D. NNC1202 and introduced to food 90 seconds post-injection. 

Their behaviours were scored every 30 seconds for 90 minutes according to the 

categories mentioned in the method section. Data are collated into 5 min time bins and 

expressed as mean percentage of total behaviour.  
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 Saline Imetit Thioperamide NNC1202 

Feeding 31% 34% 24% 13% 

Drinking 6% 5% 4% 2% 

Grooming 18% 21% 20% 1% 

Active 29% 26% 33% 28% 

Inactive 4% 2% 7% 54% 

Resting 13% 12% 12% 2% 

 

 

Table 2.2.;  The overall average percentage of time spent in each behaviour over the 90-

minute observational period whilst carrying out the behavioural satiety sequence after 

animals were injected with either, saline, imetit, thioperamide, or NNC1202.  

 

 

 Animals that received an injection of imetit at lights out spent a slightly longer 

percentage of their time eating compared with control animals over the 90 

minutes observation period. Imetit treated animals spent 34 ± 3% of their time 

eating, whereas control animals spent 31 ± 3% (table 2.2). All time spent carrying 

out other behaviours corresponded with control animals. Thioperamide-treated 

subjects also showed similar behaviours as controls and spent a similar 

percentage of time in each behaviour. The one behaviour to deviate from control 

levels was the time spent feeding. Thioperamide-treated animals spent 24 ± 3% 

of their time feeding over the 90 minutes they were observed. Conversely, 

NNC1202-treated subjects spent a large percentage of their time in different 

behaviours during each time bin compared with the control animals and the 

thioperamide- and imetit-treated animals. Firstly, the NNC1202 group showed a 

much lower percentage of time feeding compared with controls or thioperamide-

treated subjects, with only 13 ± 2% of their time being spent feeding.  Also, 



 83 

animals that received an injection of NNC1202 spent the majority of their time 

during the 90 minute observation period inactive with signs of malaise (54 ± 4%). 

When compared with control animals, which spent only 4 ± 1% of the 90 minutes 

showing inactivity, it is apparent that the NNC1202 animals are clearly showing a 

very different pattern of behaviours, as they are when compared with animals that 

received either the imetit or thioperamide injections.  

A measure of the induction of satiety may be inferred from the time during the 

observational period when resting overtakes feeding as the dominant behaviour. 

The control saline-, imetit- and thioperamine-treated animals all showed similar 

times taken for rest to become the dominant behaviour. The point of transition or 

‘cross over’ took place in time bins 8 to 11 for animals on the three groups (figure 

2.15). The NNC1202 treated animals showed a very different BSS compared to 

all other groups. It was noted that these animals were highly inactive for 

prolonged periods of time following injection and only started feeding towards the 

end of the 90 minutes. There was no real transition from feeding to resting with 

the animals spending very little time resting or feeding.  
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Figure 2.15.;  This figure illustrates the observational period when resting overtakes 

feeding as the dominant behaviour after animals were injected with, A. saline, B. imetit, C. 

thioperamide, or D. NNC1202. Where the two lines first overlap is known as the ‘cross 

over’ point. The purple line indicates feeding behaviour and the blue line indicates resting. 

Each time bin represents 5 minutes. 
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2.4.5 Do imetit and thioperamide have similar effects on feeding in mice? 

 Using similar concentrations to those used by Yoshimoto et al. (2006), we 

administered two doses of imetit to determine whether this H3R agonist had the 

same effects on food intake that we and others have reported in rats or whether it 

had the opposite effects noted by Yoshimoto et al. (2006). We gave 10 or 20 

mg/kg of imetit IP to mice, 10 mg/kg had no effect on food intake either at 1 hour 

or 2 hours post injection. 20 mg/kg did have a significant effect on food intake 

resulting in significantly less food being eaten by imetit-treated mice compared 

with the saline-treated animals (figure 2.16). This significance was only apparent 

in the first hour post the imetit injection with the imetit treated group only eating 

0.41 ± 0.05 g compared to control animals that ate 0.74 ± 0.11 (P < 0.01) (figure 

2.16). This significance was lost by two hours post injection, with control animals 

eating 1.14 ± 0.11 g and imetit treated mice eating 0.08 ± 0.11 g (figure 2.16). 

Thus, we found in contrast to what we noted in rats, imetit reduce food intake in 

mice. 
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Figure 2.16.;  Food consumption measured at 1 & 2 hours after IP injection with 10 & 20 

mg/kg imetit or saline (n = 5). Data are expressed as mean ± S.E.M. Two-way ANOVA 

with repeated measures and Bonferonni post hoc test was carried out: ** P < 0.01. 
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We then wanted to determine whether the H3R inverse agonist thioperamide 

had opposing effects on food intake in mice and rats. We administered both 10 

and 20 mg/kg of thioperamide, and measured food intake for two hours after the 

injection (figure 2.17). We found both doses resulted in a significant reduction in 

food intake. 10 mg/kg of thioperamide resulted in anorexia in mice for the first 

hour post injection. Here we found that control animals ate 0.74 ± 0.11 g of food, 

whereas thioperamide-treated animals ate 0.51 ± 0.06 g of food (P < 0.01). This 

significance was lost between 1 and 2 hours post injection with mice 

administered, with imetit mice ate 1.14 ± 0.11 g of food whereas the control 

grouped ate 0.90 ± 0.09 g of food 2 hours post injection (figure 2.17). Mice given 

a dose of 20 mg/kg of thioperamide showed significant hypophagia at both the 1 

and 2 hour time points. Mice given 20 mg/kg ate 0.027 ± 0.06 g of food 1 hour 

post injection, which is significantly less food (P < 0.001) than animals that 

received a injection of saline, which ate 0.74 ± 0.11 g. This significance was still 

apparent at two hours post injection, with the control group having eaten 1.14 ± 

0.11 g of food compared with thioperamide-treated animals that ate 0.68 ± 0.10 g 

(figure 2.17). Thus, we found thioperamide to be a powerful and effective 

anorexic inducing drug in mice. 
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Figure 2.17.;  Food consumption measured at 1 & 2 hours after IP injection with 10 & 20 

mg/kg thioperamide or saline (n = 13). Data are expressed as mean ± S.E.M. Two-way 

ANOVA with repeated measures and Bonferonni post hoc test was carried out: *** P < 

0.001, ** P < 0.01. 

 

 

 

2.5 Discussion 

2.5.1 Histamine causes a reduction in feeding in rats 

In the first experiments described, histamine was injected into the lateral 

ventricle of the rat brain, close to the hypothalamus, an area associated with 

appetite. It has been shown previously by a number of research groups that 

histamine can decrease food intake in rodent models following ICV, IP and 

intravenous (IV) injections (Doi et al. 1994; Endou et al. 2001; Lecklin et al. 1998), 

and we aimed to confirm these studies by determining if we could also cause a 

decrease in food intake in male Sprague-Dawley rats. We found that ICV 

histamine injection caused a significant decrease in food intake for up to 8 hours 

post injection. 200 nmol histamine caused a reduction in the food eaten by rats 
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compared with rats receiving a saline vehicle injection. Intake was normalised by 

24 hours post injection. That is, histamine-injected rats compensated with an 

increase in consumption at later time points, indicating that the histamine did not 

have long-term deleterious effects.  

According to the literature, H1R and H3R can mediate effects on feeding 

behaviour in rodents, with H1R agonism causing a reduction, and H3R agonism 

causing an increase in food intake, respectively. As our ICV histamine injections 

cause a reduction in food intake, the simplest explanation is that histamine is 

acting directly on postsynaptic H1R, perhaps within the hypothalamus. H1R are 

highly concentrated in the hypothalamus (Ookuma et al., 1993; Doi et al., 1994), 

and direct injections of histamine or H1R agonists into either the VMN or PVN can 

reduce feeding (Kinnunen et al. 1998).  

However, it remains possible that histamine’s actions could be indirect and not 

the result of activating hypothalamic H1Rs. H3R occur densely within the 

hypothalamus and can act as heteroreceptors. Thus, giving injections of 

histamine could activate H3R heteroreceptors present on neurones containing 

other transmitters to affect the release of these transmitters, which could indirectly 

affect the food consumption of the animals being tested (Schlicker et al., 1993, 

Yoshimatsu et al., 2008).   

 

 

2.5.2 H3R agonism effects on food intake in rats and mice  

Our findings, on the effects of the H3R agonist imetit on food intake in rats is in 

agreement with the vast majority of the literature already published. Many studies 

have been carried out that suggest H3R agonists, including imetit, cause an 

increase in food consumption (Garbarg et al., 1992; Leurs et al., 2005; Hancock 

et al., 2004). We too found that the H3R agonist imetit, when administered either 

centrally or systemically caused a significant increase in food intake in male 
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Sprague-Dawley rats. The majority of H3R are expressed centrally (Lovenberg et 

al., 1999) and, therefore, these results support the assumption that imetit can 

cross the blood-brain barrier to affect central H3R receptors to affect feeding 

(Lecklin et al., 1998). We could assume that administering a H3R agonist would 

increase the auto-regulatory nature of H3R autoreceptors and, thus, endogenous 

circulating histamine would be reduced resulting in an increase in food intake.  

However, one study has found imetit to have opposite effect on food intake in 

mice (Yoshimoto et al., 2006). This study suggests imetit causes a decrease 

rather than an increase in food intake in mice and that continual administration 

can result in body weight reduction. Thus, our next aim was to carry out a feeding 

study in mice to determine whether this research groups finding are in 

disagreement with the rest of the literature, or whether species related difference 

in the effects of this H3R drug actually causes it to have an alternative effect in 

mice. Our results agreed with the findings of Yoshimoto and colleagues with 

imetit causing a significant reduction in food intake in mice when given 

systemically. These data supports the controversial findings of Yoshimoto et al. 

(2006) and suggest imetit can have opposing effects in rats and mice and again 

illustrates the possible differences in effects H3R drugs can have amongst 

different species.  

Histamine is known to play a crucial role in sleep-wake control and it has been 

reported (Parmentier et al., 2002; Lamberty et al., 2003) that several H3R 

agonists, including imetit, increase slow-wave sleep by inhibiting histamine 

release. Thus, it has been suggested that H3R agonists might have hypnotic 

actions, and could possibly explain the hypophagic effects of imetit reported 

(Parmentier et al., 2002). However, Yoshimoto et al. found that imetit did not 

significantly reduce locomotor activity compared with vehicle (Yoshimoto et al., 

2006). Likewise, the hyperphagic effects seen in rats given imetit and our BSS 

findings, which showed no significant alterations in any behaviour other than 
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feeding, suggests movement and/or wakefulness was not seriously affected. It 

would be important to carry out the BSS study in mice too.  

 

 

2.5.3 H3R inverse agonism decreased food intake in rats and mice  

Although some research groups have found thioperamide to have varying 

effects (Itoh et al., 1998; Sindelar et al., 2004), it is a widely investigated H3R 

inverse agonist and has been shown to decrease food intake by a number of 

research groups (Lecklin et al., 1998; Sakata et al., 1990). NNC1202, on the 

other hand, is a more recently developed H3R inverse agonist and has been 

much less widely investigated, yet it is reported to have robust inhibitory effects 

on food intake (Wulff et al., 2002).  

We carried out feeding studies to determine how these H3R inverse agonists 

would affect food intake in male Sprague-Dawley rats when administered either 

centrally or sytemically. By both routes of administration, thioperamide caused a 

significant decrease in food intake in rats. By 24 hours post injection of 

thioperamide by either route, cumulative food intake was no longer significantly 

different compared with vehicle controls, suggesting that the drug is not having a 

long-lasting effect on food intake and no major adverse actions. This is backed up 

by our BSS results which showed that the sequence of post feeding behaviours 

did not greatly differ from those seen in control animals, with the only difference in 

behaviour being seen in the feeding behaviour. Although we found the behaviours 

of the rats that received thioperamide did not greatly deviate from those given 

saline there was no shift in the sequence, which might suggest thioperamide is 

not affecting satiation directly. 

The H3R inverse agonist, NNC1202, a compound donated by our industrial 

partners, Novo Nordisk, has been shown to decrease food intake in rodent and 

primate studies when given systemically (Wulff et al., 2002). We were able to 



 91 

confirm this. However, to date there is no evidence that shows the compound to 

have the same effects when given by the ICV route, which would narrow its 

effectiveness to a central site of action. We found NNC1202 to have no 

observable effect on food intake at any of three doses tested (100, 200 or 400 

nmol) when injected ICV. No data are available to indicate the efficacy of 

NNC1202 compound when given ICV, and it is possible that insufficiently high 

doses were chosen. Since the hypothesis set out by the company is that the 

compound is crossing the blood-brain barrier to cause anorexia when 

administered peripherally, it is surprising that NNC1202 is ineffective at any of our 

tested doses. However, NNC1202 did cause a dramatic reduction in food intake 

when injected IP and cumulative food intake was still significantly reduced at 24 

hours post injection. This suggests this compound has longer-term effects on 

feeding. We did not measure food intake after the 24 hour period and thus can 

not define when, if at all, cumulative food intake normalised. However, we did 

note that the rats did not lose weight and showed comparable weight gain to 

control rats over the next seven days. However, a question remains whether it is 

achieving a reduction in appetite through the hypothesized mode of action (i.e. 

the central release of endogenous histamine) or whether it is creating an adverse 

reaction within the periphery that leads indirectly to hypophagia. Our BSS 

experiments show NNC1202 treated animals eat very little and are inactive for the 

majority of the 90 minutes they were observed, suggesting NNC1202 is indirectly 

affecting appetite and may be affecting other behaviours causing a lack of food 

intake. Unfortunately, our BSS studies do not distinguish between possible 

causes for the recorded inactivity (e.g. malaise, sedation etc). An alternative 

study to carry out would be a conditioned taste aversion test to investigate the 

development of aversion and, thus, malaise or nausea induction after the 

administration of a drug. Suffice to say that the enormous disruption of the BSS 

and the lack of effect when given centrally but dramatic affect when peripherally 
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administered, suggests that NNC1202 is having undesirable adverse actions and, 

thus, we decided not to continue with our studies using this drug. In fact, Novo 

Nordisk have since stopped its development programme on this and other small 

molecule drugs in this field.  

It has certainly been shown that a number of H3R inverse agonists have 

opposing effects on food intake in different animal models (Lecklin et al., 1998; 

Hancock et al., 2004; Jethwa et al., 2009). Hancock et al. Showed that the H3R 

antagonist, A-133144, decreased weight and body fat when given orally over a 

28-day period, although surprisingly minimal food intake consumption changes 

were observed (Hancock et al., 2004). Lecklin et al. (1998) found that giving 

thioperamide centrally had no affect on food intake, whereas Jethwa and 

colleagues showed that in the seasonal hamster administering H3R inverse 

agonists in the lean state reduced the animals food intake (Jethwa et al., 2009). 

Alternatively Yoshimoto et al. found that thioperamide given to mice resulted in 

significant weight gain and hyperphagia (Yoshimoto et al., 2006). 

After determining that the H3R agonist imetit can cause an increase in food 

intake in rats and yet produces anorexia in mice we wanted to determine whether 

thioperamide could also have these differing effects in different animal species as 

shown by Yoshimoto et al. (2006). We found, when given systemically, the H3R 

inverse agonist thioperamide caused a significant decrease in food intake in mice 

at both 10 and 20 mg/kg. These findings support our data from our rodent studies 

which also suggest thioperamide acts as a potent hypohagic agent, but oppose 

the results previously published by Yoshimoto and colleagues. The difference in 

our findings and the findings of Yoshimoto et al. (2006) are not entirely surprising 

as thioperamide has long been controversial in its effectiveness with varying 

effects seen by a number of groups being published. Some suggest it causes 

anorexia (Arrang et al., 1987), whilst others suggest it has no effects on food 

intake (Itoh et al., 1998), and others suggesting its effects are determined by the 
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route of administration (Sindelar et al., 2004). We used CD-1 mice whereas 

Yoshimoto and colleagues carried out their experiments on C57BL/6J mice. The 

differences in mouse strains could explain the differences in our findings 

especially as a number of other H3R inverse agonists have shown different effects 

in their actions depending on the species being tested (Oishi et al., 1983; 

Hancock et al., 2004; Tokita et al., 2006). 

 

Our results from systemic injections suggest that imetit and thioperamide could 

be crossing the blood-brain barrier as they have strong effects on food intake. 

This is useful for the development of pharmaceutical agents as it would be 

impossible to administer drugs centrally to human patients. Furthermore, since 

H3R are found in abundance centrally, the release of endogenous histamine or 

other transmitter modulation within the brain is unlikely to have “off-target” effects 

in the periphery. It is interesting that we found no evidence for adverse actions of 

either drug from our BSS. Altogether our evidence suggest, although more 

research needs to be carried out, H3R might still be worthy of consideration as a 

useful target for the treatment of obesity or other eating disorders.  

 

 

2.6 Future work and directions 

The H3R can act as an autoreceptor to modulate histamine synthesis and 

release or as a heteroreceptors on the terminals of other transmitter-containing 

neurones (Schlicker et al., 1994). From the studies carried out we are not able to 

define whether the increase in food intake seen in rats with imetit or the decrease 

in feeding seen with thioperamide was due to effects on the presynatic H3R 

autoreceptor or the H3R heteroreceptor. This could be determined by carrying out 

feeding studies where the H3R based drugs are given along with antagonists for 
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post-synaptic histamine receptors or for other transmitters. The situation is further 

complicated by the fact that histamine can also co-localise with other transmitters 

that have effects on feeding and appetite, such as dopamine (Fulton S., 2010, 

Campbell et al., 2007), GABA (Gruninger et al., 2007, Patel et al., 2010) and 

serotonin (Ebenezer et al., 2007, Halford et al., 2010).  

To determine that diurnal influences are not having effects on drug 

administration and determining different behaviours, we also could examine the 

behavioural satiety sequence following histamine injection at different times of the 

day. Any disruption of the sequence would indicate unusual actions of a treatment 

that might be affecting food intake indirectly, for example of aversion, nausea or 

sedation. Future work might also include the use metabolic cages to determine 

how histamine can affect energy metabolism. 

 

 

These feeding studies allowed us to determine how the drugs affected food 

intake in adult rats but didn’t give us any information on where the drugs were 

acting. Thus, our next step was to carry out immunohistochemistry studies to 

measure the induction of c-fos, a neuronal marker for activation, to determine 

exactly where in the adult rat brain the H3R drugs are acting. 
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Chapter 3: 

Neuronal activation by 

histaminergic receptor ligands 
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3.1 Introduction 

3.1.1 Histamine and its neuronal projections throughout the rat brain 

Histamine is a central neurotransmitter and, as mentioned previously, is 

involved in many behavioural and physiological functions. The histamine 

neurones are found solely in the TM of the posterior hypothalamus (Schwartz et 

al., 1991), from here the histaminergic nerve fibres project to almost the entire 

areas of the brain through dorsal and ventral pathways, with the highest density 

of projections being found within the hypothalamus, in particular to the VMN. 

Although all brain regions receive some histaminergic innervations, some receive 

a much denser input than others. An over-simplified description would be to say 

that that structures innervated by the ventral ascending pathway receive a 

powerful input whereas those innervated by the dorsal ascending pathway tend to 

have a much lower density of fibres (Brown et al., 2001). The cerebral cortex of 

the rat brain has a moderate density of fibres, whilst the histaminergic innervation 

of the thalamus is concentrated upon the periventricular nuclei. Although the 

hippocampus receives only a moderate innervation by histamine neurones, 

histamine has strong effects on excitability in this area (Haas et al., 1983; Haas et 

al., 1986; Panula et al., 1989; Greene et al., 1990). Also a low to moderate level 

of innervation is present in the striatum and nucleus accumbens (Brown et al., 

2001). Projections to the midbrain, brain stem, cerebellum and spinal cord are 

lower concentration than the ascending projections. All of the other aminergic cell 

groups receive at least a moderate density of fibres, with the substantia nigra and 

ventral tegmental area being strongly innervated. In addition, prominent 

projections have been noted in the inferior and superior colliculi, periaqueductal 

gray, nucleus of the trigeminal nerve and nucleus of the tractus solitarius (Brown 

et al., 2001). 
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Histaminergic axons do not in general form synaptic specialisations, 

instead histamine is released from varicosities (swellings containing synaptic 

vesicles) located periodically along the axon (Takagi et al., 1986). Thus, 

histamine release sites and histamine receptors are not always directly apposed 

to one another. Therefore, histamine can function like a local hormone, acting on 

neurones, glial cells and blood vessels in a concerted manner (Wada et al., 1991, 

Brown et al., 2001). Although some brain regions receive only a low density of 

histaminergic fibres there is a considerable inconsistency between histaminergic 

fibre density and histaminergic receptor density in various brain regions 

(Schwartz et al., 1991) and the prominence of electrophysiological effects (Takagi 

et al., 1986). This suggests that all brain regions can be affected to a lesser or 

greater degree depending on the situation. For example, areas with a high 

histaminergic density of fibres will probably be affected tonically during waking, 

whilst areas with lower histamine fibre density may only be affected under certain 

behavioural situations when histamine neurones fire more rapidly.  

There is accumulating evidence that histaminergic neural circuits arising in the 

TM and projecting into the satiety centres of the hypothalamus participate in 

regulation of energy homeostasis. The central function of neural histamine in 

regulation of food intake is further underlined by the fact that leptin, amylin and 

bombesin have been suggested to exert at least some of their anorectic effects 

through the histaminergic circuitry (Malmlof et al., 2005). Also, histaminergic 

neurones project into hypothalamic centres known to be involved in food intake 

regulation, these include the PVN and VMN, where the anorectic effect is thought 

to be mediated by the postsynaptic histamine H1R. Malmlof et al. suggest the 

density of the H1R, together with the H3R-mediated control of the intrasynaptic 

concentration of histamine, are both crucial in determining the strength of the 

anorectic signal (Malmlof et al., 2005).  
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Although there are only two histamine receptors (H1R and H3R) known to 

influence feeding behaviour there are a number of other histamine receptors that, 

like H1R and H3R, are found widely both peripherally and centrally. The ubiquitous 

nature of histamine receptors is one of the main reasons that histamine has such 

diverse and widespread effects. For this reason we began by giving histamine 

i.c.v. to determine the exact effects it has acting purely upon the brain. This stops 

any peripheral receptors being stimulated and potentially causing secondary 

actions in the brain through afferent projections. We then went on to determine 

the effects of the histamine agonist and histamine antagonists by carrying out 

both i.c.v. and i.p. injections. We carried out i.p. injections as wanted to see the 

effects the drugs would have if given systemically and we needed to determine if 

the drug was able to cross the blood-brain barrier. This is important in considering 

the possible route of administration in a clinical setting. 

 

 

3.1.2 The neuronal activation marker c-fos  

Immediate-early genes (IEG) show rapid and transient expression, are 

activated upon cell stimulation, and their expression cannot be prevented by 

protein synthesis inhibitors (Sheng et al., 1990). IEG’s are believed to encode 

transcription factors which modify the expression of other target genes (Sheng et 

al., 1990). The induction of these genes by neuronal activity can result in long-

lasting changes and even modify the phenotype of the cell. One of the more 

commonly studied and understood IEG is c-fos (Herrera et al. 1996). A number of 

studies have demonstrated that increased neuronal activity in vivo induces c-fos 

expression (Morgan et al., 1987, Hunt et al. 1987, Ons et al., 2010), leading to c-

fos expression commonly being used to determine which neuronal populations 

are activated following different stimuli (Dragunow et al., 1989), such as drug 

administration.  
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C-fos is the most widely used functional anatomical marker of activated 

neurones within the CNS, mainly because it is expressed at relatively low levels 

under basal conditions; it is induced in a stereotypical manner in response to 

extracellular signals; the response is transient; detection of c-fos expression is 

relatively basic and it can be easily combined with a number of other markers 

(Elias et al., 1999; Zhang et al., 2000). C-fos and its protein product c-Fos are 

generally thought to act as reliable markers for identifying activated cells (Kovas 

KJ., 2008), but it must be noted that the lack of a Fos response does not rule out 

the involvement of the cell group or tissue area being investigated (Ericsson et 

al., 1994). Although, if depolarisation alone regulated c-fos expression, its 

detection would be observed in neurones throughout the brain, even under basal 

conditions. Thus, it is likely that only changes in afferent inputs and changes in 

external stimuli induce c-fos expression (Scott et al., 2007; Kovas et al., 2008; 

Dodd et al., 2009).   

In most cell types, c-Fos protein levels are relatively low under basal 

conditions (Curran et al., 1988). However, stimuli linked to cell division, such as 

serum and polypeptides can stimulate c-fos expression (Curran et al., 1985; 

Greenberg et al., 1986; Greenberg et al., 1984; Sheng et al., 1990). Other signals 

associated with neuronal excitation can also elicit, albeit temporary, c-Fos 

expression. For example, voltage-dependent Ca2+ channel activation and 

neurotransmitter release (Greenberg et al., 1986). Activation of c-fos in the brain 

can be induced by a diverse group of stimuli and therefore c-fos has been used 

as a tool to study neuronal activation in a number of different systems in the brain 

(Herrera et al., 1996). Hence, C-fos is an important tool in science and its 

detection has led to a further understanding of different systems in the CNS and 

allows the mapping of neuronal populations activated by a variety of external 

stimuli. 

 



 100 

3.2 Objectives 

3.2.1 Where does i.c.v. injection of histamine activate cells within the rat 

brain? 

A number of brain areas are known to be central in the control of appetite 

and feeding behaviour. Thus, using c-Fos immunohistochemistry, we aimed to 

determine which brain areas were activated when histamine was administered 

centrally and to establish how widespread the activation was.  

 

 

3.2.2 Do i.p. injections of a histamine agonist and inverse agonist cause 

activation of cells in similar areas to that of histamine? 

Due to the significant changes on feeding behaviour caused by the 

administration of the H3R agonist, imetit, and the H3R inverse agonists, 

thioperamide and NNC1202, we also wanted to determine if the same brain areas 

were activated when these drugs were given systemically.  

 

 

 

3.3 Methods 

3.3.1 Animals 

Male Sprague-Dawley rats (250-280 g; Charles-River, UK) were adapted 

to a 12 h/ 12 h light-dark cycle (lights on 08.00-20.00) a week before surgery or 

before their intraperitoneal (i.p.) injections. These and all other experiments 

conformed with the Home Office Scientific (Animal) Procedures Act of 1986 and 

local ethical review.  
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3.3.2 Compounds 

Histamine (200 nmol) was administered via injection into the lateral 

cerebral ventricle (intracerebroventricular administration, i.c.v.), thioperamide (2 

mg/kg body weight), imetit (10 mg/kg) and NCC-0038-1202 (NNC1202, 30 mg/kg) 

were administered intraperitoneally. All compounds were diluted in isotonic saline 

to the required concentration. Histamine, thioperamide and imetit were purchased 

from Sigma-Aldrich Company Ltd (Dorset) and NNC1202 was donated by Novo 

Nordisk. 

 

 

3.3.3 Experimental procedures for i.c.v. cannulation 

Rats were anaesthetised with 2 % isofluorane in O2 at a rate of 1 l/min. 

Once their heads had been shaved, rats were placed securely in the stereotaxic 

apparatus (Stoelting, Illinois, USA). A 2-3 cm incision was made along the midline 

of the cranium exposing the skull. All connective tissue was displaced from the 

cranial surface before a 21-gauge guide cannula was positioned 0.8 mm posterior 

and 1.5 mm lateral to bregma (co-ordinates determined according to Paxinos and 

Watson 1986). The guide cannula was inserted to a depth of 3 mm through a 1.5 

mm diameter hole drilled in the cranium. It was fixed to the skull with acrylic 

dental cement (Simplex Rapide; Austental Dental, UK) adhered to two jeweller's 

screws (4 mm long x 2 mm diameter) positioned anterior and posterior to the 

cannula. Once the dental cement was dry, the skin around the cannula was 

sutured (size 3/0 mersilk, Ethicon, Johnson and Johnson International, USA). For 

post-operative analgesia, rats were injected with 10 µl/kg buprenophrine 

(Vetergesic, Reckitt Benckiser Healthcare, Hull, UK) and a bolus intramuscular 

injection of saline to aid recovery. Animals were allowed to recover for one week 

and during this time rats were given food and water ad libitum. 
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3.3.4 Fos immunocytochemistry following i.c.v. histamine administration or 

i.p. administration of a H3R agonist and H3R inverse agonists  

I.c.v. histamine administration or i.p. administration of thioperamide, imetit 

or NNC1202 was repeated in animals that had not been fasted overnight, in order 

to examine brain areas activated. On the day of the experiment, rats were 

administered with histamine or isotonic saline (2 µl injection volume) i.c.v., or with 

the thioperamide, imetit, NNC1202 or isotonic saline injections (1ml/kg) i.p. After 

the injection, the cannulae were checked to ensure reflux did not occur. 90 min 

following injection, the rats were deeply anaesthetised with sodium 

pentobarbitone (100 mg/kg (B. Braun, Sheffield, UK) and perfused transcardially 

with heparinised (10,000 I.U./l, Leo Pharma, Denmark) isotonic saline (0.9 % 

NaCl, B. Braun, Sheffield, UK) for 8 min, followed by 4 % paraformaldehyde in 0.1 

M phosphate buffer (PB) for 15 min. Perfused brains were post fixed and 

cryoprotected in the same fixative with 15 % sucrose added, followed by 

immersion in 30 % sucrose in 0.1 M PB. 30 µm coronal sections throughout the 

rostro-caudal extent of the brain were cut using a freezing-sledge microtome and 

collected into 0.1M PB. Endogenous peroxidase activity was deactivated by 

incubating sections in a 1.5 % hydrogen peroxide, 20 % methanol and 0.2 % 

Triton X-100 in 0.1 M PB for 30 minutes at room temperature, followed by three 

10 min washes in 0.1 M PB. To block non-specific staining, slices were incubated 

for 1 hour at room temperature in 2 % normal goat (NGS) blocking serum (0.1 M 

PB, 0.3 % Triton X-100, 2 % NGS). Slices were then incubated for ~24 hours at 

4°C in goat anti-rabbit c-Fos antibody (SC052, Santa Cruz Biotechnology Inc., 

USA) diluted 1:1000 in the NGS blocking serum. Excess antibody was removed 

by washing sections three times in 0.1 M PB with 0.3 % Triton X-100 before the 

sections were incubated in goat anti-rabbit immunoglobulin (IgG) peroxidase 

complex (Vector Laboratories Inc., USA) diluted 1:500 in blocking serum. 
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Following three washes in 0.1 M PB the slides were incubated for 1 ½ hours at 

room temperature in streptavidin-biotinylated horseradish peroxidase complex 

(source) 1:400 in 0.1M PB. Following three further washes in 0.1 M PB, the 

bound antibody-peroxidase complex on the sections was visualised using nickel-

intensified diaminobenzidine (DAB). Sections were washed in 0.1 M acetate 

buffer (1.64 % sodium acetate, adjusted to pH 6 with glacial acetic acid) 

incubated in nickel-DAB solution (5 % nickel sulphate in 0.1 M acetate buffer, 

0.25 mg/ml DAB, 0.4 % glucose, 0.08 % ammonium chloride and 0.003 % 

glucose oxidase). The reaction was followed using a microscope and terminated 

by rinsing the sections in acetate buffer, followed by 0.1 M PB three times, once a 

strong black precipitate was formed. 

Sections were mounted from distilled water onto glass microscope slides 

using a xylene-based mountant (Ralmont, BDH UK), left to dry and observed 

using a microscope. 

 

 

3.3.5 Analyses 

Neurones were determined to be c-Fos positive if their nuclei were stained 

a dark black colour. A qualitative analysis of the whole brain was made to 

determine regions of interest (i.e. that contained significant c-Fos staining). 

Regions of interest were then counted bilaterally for each tissue section with the 

observer blinded to the treatment group. The average number of cells per section 

was calculated for each animal and averaged to provide a treatment group mean. 

All sections collected were analysed and each section is 120 µm further than the 

last. One way analysis of variance (ANOVA) with Bonferonni post hoc test was 

carried out to determine statistical significance between saline and histamine 

treated animals. Two way ANOVA with Bonferonni post hoc test was carried out 
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to determine statistical significance between saline treated animals and imetit, 

thioperamide or NN1202 treated animals. 

 

 

3.5 Results  

Examining the brains collected from each of the drug treatments, we found 

that all had induced c-Fos. There was not a global activation of the brain, but 

instead, activity was distributed within clearly-identifiable regions. The staining 

patterns of c-Fos were found to be similar for the different drug treatments and, 

therefore, these regions of interest were focused on in our quantitative analyses. 

The regions of interest were the paraventricular nucleus (PVN), ventromedial 

nucleus (VMN), dorsomedial nucleus (DMN), arcuate nucleus (ARC) in the 

hypothalamus, anterior hypothalamic area (AHC), lateral hypothalamic area (LH), 

medial amygdala (AMYm), anterior amygdala (AMYa), central amygdala (AMYc), 

tuberomammillary nucleus (TM) and the dorsal raphe nucleus (DR). As all 

staining patterns were similar for histamine and all the drug groups a example of 

the staining for only the histamine versus control group have been illustrated. 

 

 

3.5.1 The effect of i.c.v. injections of histamine on neuronal activation 

Examination of brains showed that animals that received i.c.v. injections of 

200 nmol histamine displayed the induction of c-Fos. Four hypothalamic nuclei 

known to be involved in feeding and appetite had high numbers of c-Fos-positive 

neurones. These included the PVN, VMN, DMN and the ARC. We found that 

these areas had significantly increased numbers of c-Fos-positive neurones in 

rats that received histamine, compared with control rats (figure 3.1). For the PVN 

there were a high number of c-Fos-positive cells per section (50 ± 5) compared 
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with the control rats (7 ± 2; P < 0.0001). The PVN was seen to have a high 

number of c-Fos-positive cells that were close together and with nuclei of varying 

sizes suggesting different types of neurone and potentially non-neuronal cells 

were activated in this area (figure 3.2). The VMN had significantly more c-Fos-

positive cells in animals that received i.c.v. histamine injections (27 ± 4) compared 

with control animals (2 ± 1, P < 0.0001) (figure 3.1). The DMN had a large 

number of c-Fos-positive cells in the histamine-treated rats (120 ± 20) compared 

with vehicle-treated animals (46 ± 20, P < 0.0001) (figure 3.1). These cells were 

more spaced out throughout the DMN rather than a close group of cells as seen 

in the PVN. The ARC also had increased number of Fos-stained neurones in rats 

that received histamine injections (30 ± 3) compared with those that received 

saline vehicle (9 ± 3; P < 0.0005) (figure 3.1). The TM was found to have an 

increased number of c-Fos-positive cells in the brains collected from rats that 

received histamine injections compared with those that received vehicle. There 

were 50 ± 12 c-Fos-positive cells per section found within the histamine-treated 

animals with only 12 ± 5 c-Fos-positive cells being found in the saline-treated 

control animals (P < 0.05) (figure 3.1). 

 There was also a high amount of staining within the central amygdala 

(AMYc) of rats treated with histamine. Rats treated with histamine were found to 

have significantly higher neuronal activation (45 ± 29) as compared with control 

rats (12 ± 9, P < 0.05) (figure 3.1). These c-Fos-positive cells were tightly grouped 

together suggesting they could be a specific population of cells within the AMYc. 

The other areas of the amygdala did not show significant differences between 

histamine and control groups. 

 After examining the DR of both the histamine- and saline-treated animals we 

counted a significant difference between numbers of neurones activated. The 

saline-treated animals had a much lower level of staining than the histamine-

treated group (figure 3.1). The histamine-treated group had an average of 121 ± 5 
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positive cells per section whereas as the saline-treated group had 46 ± 5 (P < 

0.05) c-Fos positively stained cells. 
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Figure 3.1.;  The effect of histamine administration on c-Fos immunoreactivity in the rat 

brain. Animals received an injection of histamine (200 nmol) or saline into the 

intracerebral ventricle 90 minutes before transcardial perfusion. Data are expressed as 

mean ± SEM. Two way ANOVA with Bonferonni post hoc test was carried out to 

determine statistical significance, * P < 0.005, ** P < 0.0005, *** P < 0.00005. 
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Figure 3.3.;  Representative photomicrographs of the cortex of saline treated and 

histamine treated animals. These photomicrographs illustrate that c-fos staining was not 

universally found in all regions throughout the brain but was specific to certain brain 

areas. In particular those regions of interest known to be integral in appetite control. 

Animals received an injection of histamine (200 nmol) or saline into the intracerebral 

ventricle 90 minutes before transcardial perfusion. A. Represents animals that received an 

injection of saline, B & C represent a animal that received a injection of histamine. A 

similar a pattern of staining was also observed in these areas for each of the H3R 

compounds tested. 

 

 

Figure 3.2. (see previous page); Representative photomicrographs of regions of interest 

known to be integral in appetite control that display significantly high level of activation 

following histamine administration. Animals received an injection of histamine (200 nmol) 

or saline into the intracerebral ventricle 90 minutes before transcardial perfusion. A, D & 

G represent saline treated animals, B, C, E, F, H & I represent histamine treated animals. 

A – C illustrates c-fos staining in the PVN, D - F represents c-fos staining in the VMN and 

G – I represents c-fos staining in the ARC. 3V = third ventricle. A similar a pattern of 

staining was also observed in these areas for each of the H3R compounds tested.  

200 µm 200 µm 800 µm 



 109 

3.5.2 The effect of i.p. injections of H3R compounds on neuronal activation 

I.p. injections of 10 mg/kg imetit, 2 mg/kg thioperamide or 30 mg/kg 

NNC1202 significantly increased c-Fos-positive neurones in a number of areas 

within the hypothalamus compared with control rats (figure 3.4). Overall there 

were also similar patterns of c-Fos staining between the separate drug groups. A 

significantly higher number of cells were stained for c-Fos within the DMN of 

imetit-, thioperamide- and NNC1202-treated animals (99 ± 9, 88 ± 14, 90 ± 9, 

respectively; P < 0.001 for all groups) compared with saline-treated rats (51 ± 6) 

(figure 3.4). The VMN also had a large number of c-Fos-positive cells within the 

brains of imetit-, thioperamide- and NNC1202-treated animals (32 ± 4, 36 ± 3, 44 

± 4, respectively; P < 0.001 for thioperamide and NNC1202, P < 0.01 for imetit), 

with a significantly lower number within the brains of animals that received saline 

injections (15 ± 3) (figure 3.4). There were also differences in neuronal activation 

within the PVN between the drug and vehicle groups. The H3R agonist, imetit, 

and H3R inverse agonists, thioperamide and NNC1202, treated brains were found 

to have a significantly increased number of c-Fos positive cells (78 ± 16, 126 ± 

12, 120 ± 9, respectively; P < 0.05 for all groups) compared with the saline-

treated group (26 ± 3) (figure 3.4). The ARC was also an area that we discovered 

differences between the H3R agonist-, the H3R inverse agonist- and the saline-

treated-controls (figure 3.4). The imetit-treated animals had 49 ± 7 c-Fos-positive 

cells whereas those that received saline had significantly less cells stained for c-

Fos (26 ± 3; P < 0.001). The rats that received thioperamide and NNC1202 also 

had significantly higher c-Fos counts (33 ± 5, 56 ± 3, P < 0.001). Interestingly, the 

H3R antagonists were less potent at causing neuronal activation that the H3R 

agonist within the ARC.  

Two other areas within the hypothalamus were also seen to have 

differences in neuronal activation between drug-treated and vehicle-treated 

groups. These areas included the AHC and the LH (figure 3.4). The AHC of 
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control animals had 48 ± 19 c-Fos-positive cells whereas those that received 

imetit, thioperamide and NNC1202 showed a dramatic increase in neuronal 

activation, with, 184 ± 25, 147 ± 7, 158 ± 16 (P < 0.001) c-Fos-positive cells, 

respectively (figure 3.4). H3R agonist- and H3R inverse agonist-injected animals 

were also seen to have an increase in neuronal activation within the LH. c-Fos-

positive cells were more numerous within the LH in imetit, thioperamide and 

NNC1202 treated animals (170 ± 14, 146 ± 8, 124 ± 14, respectively; P < 0.001), 

than in saline control animals (57 ± 14), suggesting all three drugs cause a 

increase in neuronal activation in this area. The TM, the source of histaminergic 

neurones, was also found to show differences in activation (figure 3.4). Brain 

slices from rats that were treated with saline had 23 ± 6 c-Fos-positive cells per 

section, whereas those that received imetit injections had 93 ± 6 c-Fos-positive 

cells (P < 0.001), those that received NNC1202 showed 100 ± 10 (P < 0.001) 

cells positive for c-Fos and those that received thioperamide were calculated to 

have 107 ± 22 c-Fos-positive cells (P < 0.001). Thus, all three treatments caused 

a significant increase in neuronal activation with increased numbers of c-Fos-

positive cells compared with saline controls in much a similar way seen when rats 

received a histamine injection (for comparison see figure 3.2). 
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Figure 3.4.;  The effect of the H3R agonist imetit and the H3R inverse agonists, 

thioperamide and NNC1202 administration on c-Fos immunoreactivity in the 

hypothalamus of the rat brain. Animals received an injection of imetit (10 mg/kg), 

thioperamide (2 mg/kg) or NNC1202 (30 mg/kg) or saline into the intraperitoneal cavity 90 

minutes before transcardial perfusion. Data are expressed as mean ± SEM. One way 

ANOVA with Bonferonni post hoc test was carried out to determine statistical significance. 

* indicates change from control animals. # indicates change from different drug group. # / 

* P < 0.05, ** P < 0.01, *** P < 0.001. 
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The AMY was another area seen to have variances in neuronal activation 

between the drug- and saline-treated groups (figure 3.5). The AMYm showed a 

significant increase in c-Fos-positive cells in brain sections from animals that 

received imetit (214 ± 20, P < 0.01), thioperamide (231 ± 18, P < 0.01) and 

NNC1202 (281 ± 45, P < 0.001), compared to those that received saline (77 ± 15) 

(figure 3.5). The pattern of staining here was evenly spaced out, covering the 

entire AMYm. The AMYa showed a similar pattern of staining for c-Fos-positive 

cells. There was a significant increase in c-Fos-positive cells in animals treated 

with imetit (235 ± 19, P < 0.001), thioperamide (163 ± 12, P < 0.01) and NNC1202 

(151 ± 10, P < 0.01), compared with control animals (81 ± 16) (figure 3.5). Again 

the staining pattern was seen to be evenly spread throughout the entire AMYa. 

The cells stained positive for c-Fos showed a much more compact pattern in the 

AMYc compared to the other areas of the AMY (figure 3.5). The AMYc from 

animals that received imetit and thioperamide showed a significant increase in c-

Fos positive cells (187 ± 16, 200 ± 33, respectively; P < 0.001) compared with 

saline controls (40 ± 5) (figure 3.5), suggesting this area was activated due to the 

effects of the drug. The NNC1202 treatment however showed no significant 

difference in neuronal activation with only 68 ± 5 c-Fos positive cells being 

detected. This suggests that the NNC1202 compound does not cause activation 

within the AMYc, despite the H3R inverse agonist thioperamide showing a 

significant increase in neuronal activation in this area. 
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Figure 3.5.;  The effect of the H3R agonist imetit and the H3R inverse agonists, 

thioperamide and NNC1202 administration on c-Fos immunoreactivity in the amygdala 

regions of the rat brain. Animals received an injection of imetit (10 mg/kg), thioperamide (2 

mg/kg) or NNC1202 (30 mg/kg) or saline into the intraperitoneal cavity 90 minutes before 

transcardial perfusion. Data is expressed as mean ± SEM. One way ANOVA with 

Bonferonni post hoc test was carried out to determine statistical significance. * indicates 

change from control animals. # indicates change from different drug group. * P < 0.05, ** 

P < 0.005, ### / *** P < 0.0005.  

 

 

 

The dorsal raphe nucleus (DR) contained a significantly increased number 

of c-Fos-positive cells in brain slices from rats that had been treated with imetit, 

thioperamide and NNC1202 (81 ± 6, 115 ± 15, 110 ± 12, respectively; P < 0.05, P 

< 0.05, P < 0.01 respectively), compared to rats that had received saline (35 ± 9) 

(figure 3.6). This staining was seen in more anterior DR areas, with the amount of 

neuronal activation decreasing more caudally. 
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Figure 3.6.;  The effect of the H3R agonist, imetit, and the H3R inverse agonists, 

thioperamide and NNC1202, on c-Fos immunoreactivity in the dorsal raphe nucleus (DR) 

of the rat brain sections. Animals received an injection of imetit (10 mg/kg), thioperamide 

(2 mg/kg) or NNC1202 (30 mg/kg) or saline into the intraperitoneal cavity 90 minutes 

before transcardial perfusion. Data is expressed as mean ± SEM. One way ANOVA with 

Bonferonni post hoc test was carried out to determine statistical significance. * P < 0.05, 

** P < 0.005.  

 

 

3.6 Discussion 

We found that Fos was induced only in certain areas within the rat brain (see 

comparison between figure 3.2 and figure 3.3). Thus, there was no blanket effect 

of neuronal activation therefore suggesting only certain areas are activated upon 

administration with histamine. Presence of Fos shows which areas of the brain 

have been activated but not the process through which it occurs (for example, 

directly or indirectly). Although c-Fos shows certain areas of the brain that are 

activated at the time of brain collection it gives no indication if histamine is 

actually being released endogenously in these areas. Also, c-Fos immunopositive 

neurones are found in areas that have been activated but this can be due to 

excitation or a disinhibition (that is due to the local inhibition of otherwise 

inhibitory neurone/inputs).  
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3.6.1 Histamine- and H3R receptor drug-induced neuronal activation within 

the hypothalamus 

Histamine neurones project from the TM to all areas of brain, with the densest 

projections to nuclei in the hypothalamus. Thus, one might have predicted, a high 

level of neuronal activation, though not an exclusive activation in these areas. 

Although, it is noteworthy to add that the activation was confined mainly to areas 

involved in the regulation of appetite. It is well established that the hypothalamus 

is essential for controlling appetite (see review King 2006). In particular the VMN, 

PVN, ARC, LH and DMN play pivotal roles in regulating food intake. We 

determined that the numbers of c-Fos-immunopositive neurones in the VMN, 

PVN, ARC, LH and DMN were significantly higher in rats that received an i.c.v. 

injection of histamine, or i.p. injections of the H3R agonist, imetit, or the H3R 

inverse agonists thioperamide and NNC12302.  

The hypothalamus is crucial in appetite control with the VMN, PVN, LH,  ARC, 

DMN and SCN nuclei all playing pivotal roles. Grouped together these areas form 

complex networks that regulate energy intake and expenditure (Beck et al., 

2000). For example, the VMN has direct links with the PVN and DMN and via 

these it connects indirectly with the LH (Harrold et al., 2004) illustrating the 

complex circuitry involved in regulating food intake within the hypothalamus. All 

the hypothalamic areas we found to have increased numbers of c-Fos-

immunopositive neurones are known to play important roles in regulating food 

intake. The VMN and PVN are satiety centres and the LH is a feeding centre and, 

thus, inform the brain when the animal is full or hungry, respectively. The ARC 

has a high co-expression of the orexigenic peptides NPY and AgRP (Dhillo, 2007) 

and also expresses a large population of anorectic signalling cells (Elias et al., 

1998) and therefore is extremely important in regulating both hunger and satiation 

in the animal. These orexigen- and anorexigen-producing neurones project from 

the ARC onto the VMN, DMH, LH and PVN (Harrold JA., 2004), again illustrating 
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the complex appetite regulating networks within the rodent brain. Within the DMH, 

microinjection of orexigenic compounds elicits feeding (Li et al., 1998), and the 

inhibition of NPY-induced feeding, enhances neuronal c-Fos (Yokosuka et al., 

1998). DMH efferents project to both the VMN and PVN, and the DMH receives 

prominent ARC input. Studies have shown that high densities of c-Fos-positive 

neurones have been shown within the PVN in response to administration of both 

orexigenic and anorexigenic signal molecules (Dhillo, 2007). All these areas were 

shown to increase their neuronal activation in response to histamine, imetit, 

thioperamide or NNC1202 application suggesting their involvement in controlling 

food intake at least in part through the histaminergic system.  

Fos induction within the hypothalamus might be due to direct activation by 

histamine itself through the activation of H1Rs. H1Rs are located throughout the 

rodent brain but are known to be high in density in the hypothalamus, including 

discrete neurones involved in regulating food intake, such as in the VMN and 

PVN (Sakata et al., 1988). Morimoto et al (2001) and Masaki et al. (2006) suggest 

that histamine acts on the H1R in the VMN and PVN to decrease food intake. As 

the H1R is distributed throughout the hypothalamus, histamine may also be acting 

directly within the ARC, LH and/or DMN. The H1R causes a reduction in food 

intake when activated, so administering histamine could have caused an 

activation of the H1R within these feeding centres of the rat brain, thus causing 

the reduction in food intake observed in previous experiments. This also applies 

to the H3R inverse agonists, as their actions would have led to the inactivation of 

the H3R’s ability to regulate the release of histamine and thus resulting in a 

increase in neuronal histamine with would than cause the same effects seen on 

food intake or neuronal activation witnessed when histamine itself was 

administered. 

A significantly high number of c-Fos-immunopositive cells were also evident 

within the TM of the rat hypothalamus. This is not surprising as the TM is the sole 
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origin of the histaminergic neurones. Also, accumulating evidence suggests 

histaminergic neural circuits arising within the TM and projecting into the satiety 

centres of the hypothalamus participate in regulation of energy homeostasis. For 

example, histaminergic neurones have been found to project from the TM the 

PVN and VMN. Here the anorectic effect is again thought to be mediated by 

postsynaptic histamine H1R. But the density of the H1R, together with H3R-

mediated control of endogenous histamine concentrations is thought to be crucial 

for anorectic potency (Malmlof et al., 2005). H3Rs are present on the cell bodies 

of the histamine neurones in the TM (Brown et al., 2001). Thus, histamine and the 

H3R drugs could be directly acting upon these histaminergic cell bodies causing 

neuronal activation within this area and this would induce Fos. Equally the 

histamine may activate H1R within or around the TM causing the increase in c-

Fos-immunopositive neurones being seen. Also, histamine, imetit, thioperamide 

or NNC1202 could be acting upon the histaminergic nerve endings from the TM. 

This itself may not induce Fos, but the H3R inverse agonists may block the ability 

of the H3 autoreceptor to negatively regulate the release and synthesis of 

histamine thus resulting in an inevitable increase of endogenous circulating 

histamine. This increase in endogenous histamine could be binding to the H1R in 

the hypothalamus causing an increase in neuronal activation. As all the 

substances tested could be acting through the H1R by altering histamine levels, 

this could explain the similar patterns of Fos staining seen after the application of 

histamine and the H3R agonist and inverse agonists suggesting similar neuronal 

activation occurs. 

The H3R agonist imetit increased neuronal activation within the same 

areas as histamine and the H3R inverse agonist even though it would inhibit 

histamine release and thus be unlikely to be activating H1R in these areas. 

Therefore, imetit could have activated H3R present or that project to these 

regions. Alternatively, the H3R agonist might have acted on H3 heteroreceptors 
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and affected the release of other transmitters which in turn is causing an increase 

in c-Fos staining due to neuronal activation in this area. This applies to the H3R 

inverse agonists as well who could have equally been activating H1Rs via H3 

autoreceptor directed histamine release, or directly activating H3 heteroreceptors 

present on other transmitter terminals.  

 

 

3.6.2 Histamine and H3R-drug induced neuronal activation within the medial, 

central and anterior amygdala 

Another area showing a significant increase in neuronal activation after 

histamine or the H3R drug application was the amygdala. The medial, central and 

anterior amygdala all showed increased neuronal activation. Krettek et al. (1978), 

illustrated how individual amygdalar cell groups in rat project to the 

hypothalamus. This work revealed that the medial, basomedial, and posterior 

amygdalar nuclei project to the VMN, that these same nuclei project to the 

premammillary nuclei, and that the central and basolateral nuclei also project 

sparsely to the rostral lateral hypothalamic zone (Petrovich et al., 2001). Central 

amygdala lesions robustly potentiate feeding. Thus, activation in this area might 

be involved in the sharp reduction in feeding seen. In addition, the amygdala has 

anatomical connections with neural circuits in the hypothalamus that are known to 

control feeding behaviour (Swanson LW., 2000, Petrovich et al., 2001).  

The H1R is expressed abundantly in the amygdala (Haas et al., 2003) and, 

thus, could have been activated after the application of histamine. The H3R 

inverse agonists would have also increased endogenous histamine, which could 

have then acted upon the H1R. These connections and the presence of H1R could 

explain why significant c-Fos staining was observed within the amygdala after 

histamine administration and the injections of the H3R inverse agonists, 

thioperamdie and NNC1202.  
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The H3R agonist imetit was also proven to increase neuronal activation 

and although it would result in a reduction in histamine, it could have, like the H3R 

inverse agonist drugs, activated H3Rs that are present or project to the amygdalar 

regions. Alternatively, all three compounds might have acted on H3R 

heteroreceptors. Imetit, thioperaminde or NNC1202 could have acted on H3R 

heteroreceptors, such as those that have been found on glutamatergic terminals. 

There are a large number of glutamate neurones within the amygdala which have 

been shown to project onto the LH (Swanson et al., 1998). Thus, our H3R drugs 

may be affecting the release of glutamate within the amygdala causing an 

increase in c-Fos staining due to neuronal activation in this area.  

 

 

3.6.3 Histamine- and H3R- drug induced neuronal activation within dorsal 

raphe nucleus 

The dorsal raphe nucleus (DR) also had an increase in c-Fos-positive cells 

after both histamine and H3R drugs were given. H1R rather than H3R have been 

found within the DR (Barbara et al., 2002) and, thus, could again be activated by 

the increase in endogenous histamine either after the administration of histamine 

or the H3R inverse agonists.    

There is a large serotonergic neurone population within the DR (Barbara et al., 

2002). Serotonin is involved in the control of feeding behaviour (Blundell JE., 

1977, Simansky KJ., 1996, Kaye et al., 1998, Schuhler et al., 2005) and is 

especially linked to hunger and satiety (Blundell et al., 1987). Serotonergic 

transmission from the DR (Fletcher et al., 1993; Ohliger-Frerking et al., 2002) to 

the VMN has been proven to regulate feeding (Fernández-Galaz et al., 2010). 

H3R, when acting in their heteroreceptor form, can control the release of serotonin 

by acting presynaptically (Schlicker et al., 1988, Threlfell et al., 2004). For 

example, thioperamide has been shown to increase serotonin release (Threfell et 
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al., 2004). Also a number of atypical H3R antipsychotic drugs affect food intake 

and appetite by influencing serotonin release via the H3R. Thus, the H3R drugs 

could have been not only affecting histamine release and synthesis but also other 

neurotransmitter release such as serotonin caused an increase in neuronal 

activation and hence shown a significant increase in Fos production in this area. 

 

 

 To conclude we have demonstrated that only specific areas within the rat 

brain are activated upon receiving the compounds tested. We have shown some 

areas within the rodent brain histamine, imetit, thioperamide and NNC1202 act 

upon, and have determined that each drug group produces very similar patterns 

in neuronal activation. In particular, we have illustrated that all the known key 

feeding or satiety centres showed a significant increase in c-Fos-immunopositive 

neurones, suggesting activation of these areas by histamine and the H3R drugs is 

causing the changes on food consumption that these drugs exhibit. 
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4.1 Introduction 

4.1.1 The VMN and appetite 

For a number of decades, discrete nuclei in the basal hypothalamus have 

been accepted as crucial in the regulation of daily energy homeostasis, especially 

those sites connected with neural mechanisms affecting appetite and energy 

homeostasis (Kalra et al., l999). These hypothalamic sites include the VMN, 

DMN, PVN, and LH. The belief these regions contained neurones affecting 

ingestive behaviour was based on the results of numerous lesions studies or 

surgical transections of neural pathways in these hypothalamic regions (Anand et 

al., 1951; Bray GA 1984). With the exception of lesions in the LH, these 

experimental manipulations within the brain disrupted the daily food intake pattern 

to produce permanently enhanced hyperphagia, suggesting appetite-regulatory 

mechanisms may be confined to a small number of morphologically well-defined 

regions within the hypothalamus (Kalra et al., 1999). The VMN is one of the most 

important sites known to regulate appetite and food intake and is commonly 

referred to as the satiety centre. The satiety centre hypothesis was first proposed 

in 1950 (Kennedy GC., 1950.). Here Kennedy (1950) suggested that the VMN 

was the brain’s satiety centre, as when active, feeding behaviour is inhibited and 

when disrupted or ablated feeding greatly increases, indicating its main role is to 

tell the brain when the body is full. 

There is evidence that suggests the VMN is receptive to several appetite-

regulating signal molecules, including orexigenic and anorexigenic signals. For 

example, microinjection into the VMN of NPY (Stanley et al., 1985), galanin 

(Kyrkouli SE., 1990; Kyrkouli et al., 1986; Schick et al., 1993), GABA (Grandison 

et al., 1977; Kelly et al., 1979), and β-endorphin (Grandison et al., 1977) all 

stimulate hyperphagia, whereas injections of leptin reduces feeding (Munzberg 

H., 2010; Velkoska et al., 2003). This suggests that receptors for each of these 
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signals exist in the VMN and each of these compounds have valuable roles in 

appetite and feeding control. Further, the VMN is neurally linked with several 

hypothalamic sites implicated in the control of ingestive behaviour. 

Brobeck (Brobeck JR 1956) and Kennedy (Kennedy GC 1950) observed 

that even small lesions around the ventrolateral borders of the ventromedial 

hypothalamus and extending to the base of the brain can have affects on feeding 

behaviours. Anand and Brobeck (Anand et al., 1951) later reported that obesity 

could be produced by either ventromedial hypothalamus lesions or by small 

lesions just lateral to the ventromedial hypothalamus. Lesions posterior to the 

ventromedial hypothalamus and dorsolateral to the mammillary body also cause 

obesity (Graff et al., 1962). Although researchers have observed weight gains in 

rodents with lesions just ventrolateral or just posterior to the ventromedial 

hypothalamus, lesions directed at the VMN cause the greatest obesity (King BM., 

2006). Ventromedial hypothalamus lesion-induced hyperphagia and obesity have 

been observed in a variety of species besides rats, including ground squirrels, 

mice, dogs, cats, pigs, monkeys and even birds (Mrosovsky N. 1974; Romaniuk 

A. 1962; Rozkowska et al., 1971; Brooks et al.,  1946), illustrating the species 

wide importance of this brain area in the regulation of feeding. Hypothalamic 

obesity has been documented in humans as well when damage has occurred in 

the hypothalamic brain area due to injury or other outside causes (Bray et al., 

1975). Although, I believe it important to note here that it is difficult to interpret the 

results of such physical lesions as the damage can be indiscriminate, involving, 

cell bodies or fibre pathways, and not be specific so that they include other 

surrounding brain regions.  

A number of studies have demonstrated that more selective knock out models 

or disruption in peptide signalling within the VMN can also cause hyperphagia 

resulting in weight gain and obesity. BDNF is highly expressed within the VMN, 

and its expression is dramatically reduced by food deprivation (Xu et al. 2003). 
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Mice with reduced BDNF receptor expression or decreased BDNF signalling 

significantly increase food intake and thus have elevated body weight (Rios et al. 

2001; Xu et al. 2003). The VMN has also been identified as a key target for leptin, 

which acts on the hypothalamus to inhibit feeding and stimulate energy 

expenditure (Dhillon et al. 2006). It is also rich in glucose-responsive neurones 

(GRN) which respond to a rise in blood glucose that may help to cease feeding 

(Levin et al., 1999; Borg et al., 1995). Zhao et al. demonstrated the targeted 

deletion of the VMN transcription factor steroidogenic factor 1 (SF-1) results in 

agenesis of the VMN and obesity (Majdic et al., 2002; Zhao et al., 2004). 

Additionally, SF-1-driven deletion of the signalling form of the leptin receptor, lepr-

B, can also results in an obese phenotype (Dhillon et al., 2006). These studies all 

illustrate the importance of the VMN in controlling food intake and show that not 

only disruption in the neuronal structure within this area disrupts feeding but also 

alterations in the signalling of a number of peptides or hormones affecting energy 

homeostasis regulation. 

 

 

4.1.2 The VMN and histamine signalling 

The rat VMN has long been divided on cytoarchitectonic grounds into 

ventrolateral, central and dorsomedial parts (Canteras et al. 1994). McClellan et 

al. (2006) suggest the VMN contain a bilateral cell group that have an 

elliptical shape. In coronal sections, the anterior region consists of a circular 

aggregate of densely packed perikarya, whereas the middle and posterior VMN 

are formed by two regional cell masses, dorsomedial and ventrolateral, separated 

by a diagonal cell-poor zone (Canteras et al. 1994). The VMN has been thought 

of as a collection of heterogenous cell types, some of which have been identified 

but most of which have not (McClellan et al. 2006). Cell identity is an important 
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characteristic of brain organization and the VMN cell population has been 

somewhat unidentified thus far. Cell sizes have been seen to differ greatly, 

ranging from between 5 – 20 µm. Sakuma et al. (1983) observed differences 

in the spike duration and amplitude between groups of neurones with different 

sizes within the VMN. The larger surface area of the larger neurones allows a 

greater peak current flow, and the action potentials in these cells are finished in 

a much shorter period. The amplitude of the extracellular spikes has also been 

shown to vary directly with the transmembrane current flow (Sakuma et al. 

1983). Thus as a rule, large neurones will generate larger spikes of shorter 

duration, and their extracellular fields will be detected over great distances 

(Humphrey, 1978). Two main neuronal types, large and small, exist in the VMN. 

(Murphy et al. 1969; Ono et al. 1982). Ono et al. (1982) found small neurones 

are restricted to the medial border of the nucleus. On the other hand, Murphy & 

Renaud (1969) described a cluster of small neurones at the lateral edge of the 

VMN. Ono et al. (1982) illustrated the presence of large neurones in the core of 

the VMN and scattered distribution of small neurones all over the nuclear region. 

Larger neurones have thicker axons, which conduct action potentials faster than 

thinner ones (Paintal, 1966). Sakuma et al. (1983) found a the lack of any 

systematic difference in the antidromic spike latency between the two groups of 

VMN neurones with different sizes suggesting the conduction distance may not 

be consistent for all VMN neurones. Murphy & Renaud (1969) suggest small 

VMN neurons are interneurones which transmit inhibitory amygdala effects to 

the VMN, and they propose the large neurones are the major effector cells of 

the VMN.  

As shown in the previous chapters, there is abundant evidence to support 

a role of brain histamine in food intake and energy metabolism. An early 
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iontophoretic:extracellular recording study in anaesthetised rats found that 

histamine could either increase or depress firing in the VMN, ARC, DMN and LH 

(Renaud LP., 1976). There is also evidence to suggest histamine acts within the 

VMN to cause shifts in feeding. In fact, the VMN is reported to be the preferential 

site of histamine-mediated suppression of food intake in the mammalian brain 

(Haas et al., 2008). The regional distribution of histaminergic fibres and H1R is 

uneven, but is most dense in the hypothalamic nuclei related to food intake, such 

as the VMN and PVN (Palacios et al., 1981). Ookuma et al. (1993) suggest that 

as the H1R has a suppressive role on feeding it could be explained by the fact 

these receptors are distributed more densely in the nuclei involved in the 

suppressive function of food intake. Thus, histamine, through H1R, conveys 

signals for suppression of food intake to the satiety centre in the VMN (Ookuma 

et al., 1993; Sakata et al., 2003). Evidence for the VMN H1R suppressive effects 

on feeding come from studies demonstrating that microinfusion of H1R 

antagonists directly into the VMN but not PVN or LH elicits feeding responses and 

increases both meal size and duration (Fukagawa et al., 1989; Sakata et al., 

2003). Likewise, electrophoretic application of H1R antagonists suppresses the 

firing of glucose-responsive units in the VMN but not the PVN or LH (Fukagawa et 

al., 1989). Also, feeding rhythms are disrupted in H1R-deficient mice (Masaki et 

al., 2001), and H1R antagonists given selectively in the VMN but not other regions 

induces feeding and suppress the firing of glucose-sensitive neurons (Fukagawa 

et al., 1989; Haas et al., 2008).  

There is little or no research suggesting the H3R is present within the VMN 

but what is known is that the H3R can regulate histamine release within the 

ventromedial hypothalamus through its autoinhibitory pathways. H3R within or 

around the ventromedial hypothalamus can alter the release of endogenous 

histamine locally, thus could be affecting histamine’s ability to bind to H1R within 

the area and cause changes in appetitive behaviour. 
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4.2 Objectives 

4.2.1 How does histamine affect the firing rate of cells within the VMN? 

 We have determined that histamine can affect the feeding behaviour of rats 

when administered centrally. We have also demonstrated that injections of 

histamine and H3R based drugs increase c-Fos induction, which is a marker of 

cellular activation, within the feeding centres of the rat brain, including the VMN.  

The VMN has also been shown by a number of research groups (see Chapter 5 

introduction) to not only play a pivotal role in controlling feeding behaviours in the 

rat but also to be highly innervated by histamine neurones, and to contain H1R 

within and around it. Thus, we wanted to determine what was happening at the 

neuronal level within the VMN. Little research has looked at histamine’s affects 

using the extracellular electrophysiology technique, therefore, our aim was to 

determine firstly what changes were seen when histamine was introduced to a rat 

brain slice, and specifically to determine whether histamine had an inhibitory or 

excitatory affect on the firing rate of cells in this area. 

  

 

4.2.2 Is the increase in neuronal firing via a H1R?  

Whilst a number of research groups (Palacios et al., 1981; Ookuma et al., 

1993; Sakata et al., 2003) suggest the presence of the H1R within and around the 

VMN, little has been published about the presence of the H3R. It is widely 

accepted that the H3R can control the endogenous histamine levels within the rat 

brain and, therefore could possibly affect histamine’s release and actions within 

the VMN. Once we had determined how histamine affected the firing rate of cells 

within the VMN, we then wanted to determine the role of H1R and H3R. To do this 

we aim to administer H1R and H3R drugs to determine how they affect the local 

actions of histamine.  
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4.2.3 Are H3R in the VMN autoreceptors or heteroreceptors? 

 As mentioned previously, the evidence of H3R presence within the VMN is 

scarce. We determined using extracellular electrophysiology that histamine was 

acting via both H1R and H3R within the VMN, thus suggesting the presence of the 

H3R in this area. After demonstrating that the H3R is present within the VMN, we 

then wanted to determine whether these are H3 heteroreceptors or autoreceptors. 

To do this we co-administered an H1R antagonist after blocking H3R. If H3R are 

autoreceptors, then H1R antagonism would block the actions of an H3R inverse 

agonist. Whereas if H3R were heteroreceptors, then co-administering an H1R 

antagonist would have no additional effect.    

 

 

 

4.3 Methods 

4.3.1 Animals 

Male Sprague-Dawley rats, aged 6-8 weeks (Charles River, UK) were 

housed within The University of Manchester animal facility in a temperature-

controlled room (22°C ± 1°C), under a 12:12 h light/dark cycle (lights on 08.00-

20.00), with a relative air humidity of 45 ± 10 % and had free access to food and 

water (Beekay, UK). All animals were maintained in the facility for at least one 

week prior to the start of the experiment. These and all other experiments 

conformed with the Home Office (Animals) Procedures Act (1986) and local 

ethical review.  

Animals were culled using a UK Home Office recommended Schedule 1 

procedure (see below).  
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4.3.2 Drugs 

Histamine, thioperamide, pyrilamine and imetit (all Sigma) were the drugs used 

for this study. All drugs were dissolved in sterile water to stock concentration, 

aliquoted and stored at -20oC. Immediately before use, an aliquot was thawed, 

diluted to the appropriate working concentration in artificial cerebrospinal fluid 

(aCSF) and bath applied to the slice via the perifusion line. Concentrations were 

determined following review of the literature. 

 
 
 

4.3.3 Artificial Cerebrospinal Fluid (aCSF) 

2 l of aCSF was prepared fresh each day with the following constituents: NaCl: 

124.0 mM; NaHCO3: 25.5 mM; KCl: 3.3 mM; KH2PO4: 1.2 mM; MgSO4: 1.0; 

CaCl2: 2.5 mM and D-glucose; 5 mM (all Sigma). In order to determine whether 

the response of neurones to peptides was direct, we used a low CaCl2 and high 

MgSO4 solution to block pre-synaptic activation from other neurones. Only the 

amount of CaCl2 and MgSO4 was changed, using 0.3 mM and 9.0 nM, 

respectively. The aCSF was adjusted to pH 7.4 and constantly perifused with 

95% O2/5 % CO2.  

 

4.3.4 Slice preparation  

Rats were killed by cervical dislocation and decapitation under isofluorane 

anaesthesia. The brain was rapidly removed and dissected to form a tissue block 

containing the hypothalamus. Coronal brain slices 400 µm thick were cut in ice-

cold aCSF using a Vibroslicer (Campden Instruments, Loughborough, UK). 

Usually, three slices that included the VMN were obtained from the 
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hypothalamus, and the slices not used immediately were stored in oxygenated 

aCSF through the day.  

 
 
 

4.3.5  Electrophysiological Rig 

Brain slices were transferred to a PDMI-2 submerged slice microincubator 

(Figure 3.1) (Medical Systems Corp., NY, and USA). The slice sits in a culture 

dish surrounded by a 350 µm thick spacer and is stabilised using a nylon ladder 

attached to a collar, which sits on the spacer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 4.1.; A schematic 
representation of the 
electrophysiological experimental 
arrangement.  
The diagram illustrates the flow of 
10mM glucose aCSF, via a 
peristaltic pump, through the 
bubble trap, warmed at the heat 
exchange (via a TC-202 bipolar 
temperature controller) and 
superfused over the oxygenated 
brain slices contained in the 
PDMI-2 micro-incubator 
chamber; waste solution is 
removed via a suction line.  
Modified from Forsythe & Coates 
(1988). 
 

Background 
      electrode 

Suction line

Perfusion
    line 

 

  
aCSF

Peristaltic 
   pump

   

Heat 
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Chamber 

  O2/CO2 input Bubble  
trapper 

Diagram 4.2.; A schematic 
representation of the 
electrophysiology recording 
chamber. 
A top down view of the brain slice 
recording chamber showing the 
input locations of the perfusion 
line, background electrode, 
suction line, and the orientation of 
the nylon ladder which stabilises 
the brain slice and allows 
unrestricted microelectrode 
manipulation.  
Modified from Forsythe & Coates 
(1988). 
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Slices were maintained for 8-12 h by perfusion (approximately 1.5ml/min) with 

oxygenated aCSF. The tissue bath and perfusion solutions were warmed to 

approximately 35°C using a TC-202 temperature controller (Medical Systems 

Corp.). Slices were allowed to equilibrate for at least 1 h before 

electrophysiological recordings began. 

 

4.3.6  Electrophysiological Recording 

Single unit activity of hypothalamic neurones was recorded extracellularly with 

borosilicate glass electrodes (Harvard Instruments, Herts, UK) filled with 2 M 

NaCl (resistance approximately 5 MΩ). Action potential spikes were amplified (× 

20,000) filtered (bandwidth 300 Hz to 3 kHz) and visualised using an 

oscilloscope. Amplification, filtering and spike discrimination were performed 

using a NeuroLog modular system (Digitimer Ltd, Herts, UK). Data were collected 

and plotted as integrated histograms on a PC running Spike 2 software 

(Cambridge Electronic Design, Cambridge, UK). The size of the spikes recorded 

was between 10-100 mV. Only spikes at least two times the size of the 

Diagram 4.3.; A diagram of the 
insert assembly showing the collar 
(A), the nylon ladder (B) and 
perspex spacer (C) which sit in 
the 35 mm tissue culture dish. The 
underside of the collar (D) 
illustrates the location of the inlet 
port. 
 inlet port
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background noise were recorded and the cell firing rate was recorded for 10 

minutes to obtain a stable baseline firing rate, prior to a change in aCSF or drug 

treatment.  

 

4.3.7 Treatment 

Once a stable baseline firing rate was established, the drug was applied via the 

perifusion line. To identify histamine-responsive neurones, 5 µM histamine was 

applied for 4 minutes.  Normal aCSF was then applied for 20 minutes to allow the 

histamine to be washed off, before either 20 µM thioperamide or 20 µM 

pyrilamine was applied for 4 minutes. Again normal aCSF was then applied for 20 

minutes to wash off the drug treatment. For experiments using low CaCl2/ high 

MgSO4, this aCSF was applied for 10 minutes before the drugs diluted in low 

CaCl2/ high MgSO4 aCSF were applied at the concentrations and times shown 

above. A return to stable baseline firing was re-established for 10 minutes in low 

CaCl2/ high MgSO4 aCSF before application of the drug, and then a recovery 

period of 20 minutes was allowed for the firing rate to return to basal levels before 

the next drug application. 

 

4.3.8 Identification of Neurones and Analysis 

Recordings were only taken from the neurones in the dorsomedial region 

of the VMN. A VMN neurone was considered to have responded if the firing rate 

increased or decreased by 20 % relative to the initial 5 min baseline recording, 

following and during a change in aCSF or drug application. Responses are given 

as a mean firing rate ± S.E.M. and statistical significance was accepted when P < 

0.05 using an unpaired t-test. 

4.4 Results 
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4.4.1 Histamine increases neuronal firing rate in the VMN 

In this study a total of 197 spontaneously firing VMN neurones were tested 

for their responsiveness to bath application of 5 µm histamine. The cells showed 

an average basal firing rate of 1.91 ± 1.73 Hz and a range of 3.55 – 0.97 Hz.  122 

out of 197 cells (62 %) showed an increase in firing when histamine was applied, 

whilst four decreased firing (2 %) and 71 had no response (36 %). Those that 

increased in firing had an average rate of 3.47 ± 2.01 Hz following application of 5 

µm histamine. Those that decreased firing whilst histamine was applied showed 

an average neuronal firing of 0.62 ± 0.46 Hz. Finally, the 71 cells recorded that 

were classed as unresponsive to histamine showed an average neuronal firing 

rate 1.10 ± 1.20 Hz whilst histamine was present. All changes in firing of 

individual neurones were shown to return to basal levels within 20 minutes post 

the application of histamine. 
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Figure 4.1.;  This graph illustrates the differences in the response that cells have to 

histamine when it is applied to a brain slice in vitro. As can be seen the majority of cells 

showed an increase in neuronal firing when histamine was applied. Around a third of the 

cells we recorded from were not responsive suggesting around two-thirds are able to 

respond to histamine, and almost 97 % of these do so with an excitatory response. Only 4 

out of 197 cells showed an inhibitory response to histamine. 
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The increase in neuronal firing seen in 122 of the cells we recorded was 

very rapid following the introduction of histamine, bearing in mind a slight delay is 

incurred as the drug is introduced into the bath via the perifusion line (estimated 

at around 60 seconds). Figure 4.2 shows a typical electrophysiology trace of a 

VMN neurone responding to histamine application. The increase in firing rate is 

almost instant and there is a period of constant rapid firing spikes before a graded 

decrease in response. The neurone takes around 15 minutes to return to basal 

firing rate. The return to its basal firing rate indicates that the neurone has not 

been irreversibly altered by the application of histamine.  

 

Figure 4.2.; An electrophysiology trace showing a typical rat VMN neuronal response to 

histamine application. The trace indicates that almost immediately after histamine is 

administered the spikes fired per second increase from 3 spikes per second to 7 spikes 

per second.  There is a gradual decrease in firing rate after histamine is removed and a 

return to basal rate after ~ 15 minutes. The purple band indicates when histamine was 

applied. 
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Our results suggest that of the two thirds of VMN neurones that respond to 

histamine application, they do so with an increase in firing (97 %), illustrating that 

the majority of VMN neurones are excited by the transmitter histamine. The other 

third of VMN neurones recorded show no change in firing suggesting they are 

histamine unresponsive. Very few cells were found to decrease their neuronal 

firing rate after histamine was applied (only 4 out of 197 cells) suggesting a very 

small percentage of histamine neurones within the VMN are inhibited by the 

transmitter.  

 

 

4.4.2 Histamine causes an increase in neuronal firing via the H1R 

In this study, a total of 31 VMN neurones that were responsive to the 

application of 5 µm histamine, were then tested by the co-application of 5 µm 

histamine and 50 µm pyrilamine, an H1R antagonist. These cells showed, on 

average, a basal firing rate of 1.87 ± 0.93 Hz and a range of 2.76 – 0.89 Hz.  Only 

2 out of 31 cells (7 %) showed an increase in firing when the histamine and 

pyrilamine were applied together, whilst only 1 cell (2 %) decreased to below 

basal neuronal firing. In the majority of cells, 50 µm pyrilamine blocked the effects 

of histamine (28 out of 31 cells; 90 %). The two cells that increased firing rate in 

the presence of histamine and pyrilamine, showed an average firing rate of 3.45 ± 

1.35 Hz, which is in the range of histamine alone. The one cell that decreased in 

neuronal firing whilst 5 µm of histamine and 50 µm pyrilamine were applied 

showed a neuronal firing rate of 0.51 Hz. Finally the 28 cells recorded from that 

were unresponsive to the histamine when pyrilamine was present, showed an 

average firing rate 1.28 ± 1.15. All changes in neuronal firing returned to basal 

levels 20 minutes after the application of the drug solution. 
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Figure 4.3.;  This graph illustrates the differences in the response that cells have when a 

solution of histamine and pyrilamine was applied to a brain slice in vitro. As can be seen, 

the majority of cells showed no response, suggesting the H1R antagonist pyrilamine is 

blocking histamine actions. 

 

 

Figure 4.4 which illustrates a typical extracellular electrophysiology trace 

response to the application of 5 µm histamine and then the application of a 

solution of 5 µm histamine and 50 µm pyrilamine. As can be seen, when the 

histamine and pyrilamine were added together there was no change in neuronal 

firing (seen in over 90 % of the cells). To ensure pyrilamine was not causing long-

lasting effects on the slice preparation, when possible, we added 5 µm histamine 

again by itself. In these cases, the neurones again responded to histamine alone.  
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Figure 4.4.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of the 50 µm pyrilamine and 5 µm histamine solution. This trace illustrates 

that after firstly recording a typical histamine neuronal response, when pyrilamine is 

added along with histamine the increase in neuronal firing is blocked. The purple band 

indicates when histamine was applied alone and the blue band indicates when the 

pyrilamine and histamine were co-administered. 

 

 

4.4.3 Histamine signalling in the VMN is modified by H3R 

In this study, a total of 49 histamine-responsive VMN neurones were 

tested for how they reacted to the application of a solution containing 20 µm 

thioperamide. These cells showed on average basal firing rate of 1.29 ± 1.37 Hz 

and a range of 2.78 – 0.74 Hz.  43 out of 49 cells (88 %) showed an increase in 

firing when thioperamide was applied, whilst 1 decreased (2 %) firing and 5 had 

no response (10 %). Those that increased activity in response to thioperamide, 

showed an average firing rate of 3.15 ± 2.01 Hz. The one cell that decreased in 
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neuronal firing whilst thioperamide was applied showed a neuronal firing 

response of 0.29 Hz. Finally, the five cells recorded from that showed no changes 

in neuronal firing during the application of thioperamide showed an average 

neuronal firing rate 1.57 ± 1.18. All changes in neuronal activity were shown to 

return to basal levels within 20 minutes post the application of the drug solution. 

 

 

           

Increase Decrease No response
0

10

20

30

40

50

60

70

80

90

%
 o

f r
e

co
rd

e
d

 c
e

lls
 r

e
sp

o
n

se
 to

 th
io

p
e

ra
m

id
e

 

Figure 4.5.;  This graph illustrates the differences in the response that cells have when the 

H3R inverse agonist, thioperamide, was applied to a brain slice in vitro. As can be seen, 

the majority of cells showed a similar response as to histamine application itself, with 88 

% of cells showing a increase in neuronal firing. This suggests the H3R is present within 

the VMN and that their blockade can produce an excitatory increase in neuronal firing. As 

with histamine, very few cells showed an inhibition following the application of 

thioperamide (2 %) and, in the case of thioperamide, a relatively small number of cells 

also had no response in neuronal firing rates (10 %).  

 

 

Figure 4.6 illustrates a typical trace response recorded after histamine and 

then thioperamide were separately applied to the brain slice. The majority of cells 

recorded from within the VMN illustrated that thioperamide not only caused an 

increase in neuronal firing, but that the response almost mimicked that to 
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histamine itself. The cells exposed to thioperamide showed an almost immediate 

increase in neuronal firing with a gradual decrease back to basal firing rates.  

 

 

 

 

Figure 4.6.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of 20 µm thioperamide. This trace illustrates that the typical histamine 

response is mimicked by 20 µm thioperamide. In a similar pattern to histamine, 

thioperamide causes a almost immediate increase in neuronal firing with a gradual return 

to basal levels over a 15 minute period. The purple band indicates when histamine was 

applied and the pink band indicates when the thioperamide was added. 

 

 

Our results suggest that the H3R is present within or near the vicinity of 

the VMN of the rat hypothalamus, since when the H3R inverse agonist, 

thiopereamide, was applied there was an increase in firing in 88 % of cells we 

recorded from. Thioperamide may be causing an increase in endogenous 
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histamine release by stopping the negative regulation by H3R autoreceptors. This 

might explain why similar responses were seen after histamine and thioperamide 

applications.  

 

 

We have also carried out some preliminary studies to determine if 

the increase in firing rate that the VMN neurones were showing in response to 

histamine application was a presynaptic or postsynaptic event we carried out 

electrophysiology recordings that used low Ca2+
 / high MgSO4 aCSF (figure 4.7). 

Once a neurone had shown an increase in firing in response to histamine and 

returned to basal firing, we then place the brain slice under low Ca2+
 / high MgSO4 

aCSF and applied histamine again. In the majority of neurones that received 

histamine diluted in low Ca2+
 / high MgSO4 aCSF there was no change in 

response (66 % of neurones showed no response to histamine when under a low 

Ca2+ / high MgSO4 aCSF solution, n=4). During and after the application of 

histamine it was noted that the basal firing rate of neurone remained constant and 

thus suggests that application under low Ca2+
 / high MgSO4 aCSF blocks the 

neurones response to histamine (figure 4.7).  
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Figure 4.7.; An electrophysiology trace showing a typical rat VMN neuronal response to 

histamine application under low Ca2+/high MgSO4 aCSF. The trace indicates that almost 

once histamine is added under low Ca2+/high MgSO4 aCSF there is no increase in 

neuronal firing as seen when histamine is applied under the common aCSF solution. 

Purple band indicates where histamine was applied. Orange band indicates low Ca2+/high 

MgSO4 aCSF application.  

 

 

 

4.4.4 Histamine activates H3R autoreceptors within the VMN 

In this study a total of 15 histamine-responsive VMN neurones were tested 

for their responsiveness to the application of a solution containing 20 µm of 

thioperamide, an H3R inverse agonist, with or without 50 µm pyrilamine, an H1R 

antagonist. These cells showed on average basal firing rate of 1.18 ± 1.29 Hz and 

a range of 0.89 – 2.63 Hz. All 15 cells recorded, also responded to 20 µm 

thioperamide with an increase in firing, however this response was lost when 50 

µm pyrilamine was co-administered. The cells were shown as histamine 
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responsive by displaying an increase in neuronal firing when the 5 µm solution of 

histamine was applied to the slice. We then ensured the cell being recorded from 

also showed an increase in neuronal firing when thioperamide, the H3R inverse 

agonist, was applied. All 15 cells showed increases in neuronal firing when either 

histamine or thioperamide were applied alone, but when pyrilamine was co-

applied with thioperamide it was found that pyrilamine blocked the increase in 

neuronal firing. This suggests that the H3R in this system is an autoreceptor as 

the H1R antagonist pyrilamine is able to block the actions of the H3R inverse 

agonist thioperamide. All changes in neuronal firing were shown to return to basal 

levels 20 minutes post the application of the drug solutions. 

          Figure 4.8 shows increases in neuronal firing after firstly applying 5 

µm histamine and then, secondly, applying 20 µm thioperamide. Once this had 

been determined we then added a solution containing 20 µm thioperamide and 50 

µm pyrilamine, the H1R antagonist, and found that the excitation was lost.  
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Figure 4.8.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of a solution of 20 µm thioperamide plus 50 µm pyrilamine. This trace 

illustrates firstly a typical neuronal response when histamine is added to the slice 

preparation and then a typical response to the introduction of thioperamide. As can be 

seen, though, if pyrilamine is co-administered with thioperamide, the increase in neuronal 

firing was lost and neuronal firing remained at basal levels. This suggests that pyrilamine 

is able to block the actions of thioperamide resulting in the loss of the increase in neuronal 

firing. The purple band indicates when histamine was applied, the pink band indicates 

when the thioperamide was added and green band indicates when thioperamide and 

pyrilamine were co-administered. 

 

 

 

Our results suggest we are recording the effects of thioperamide at an H3 

autoreceptor as opposed to a H3 heteroreceptor, as when the effects of 

thioperamide were blocked on each occasion by the H1R antagonist, pyrilamine. If 

thioperamide was acting on H3 heteroreceptors to block the release of other 

transmitters, pyrilamine would have no effect on its actions. We also carried out 
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some recordings (results not shown) where we applied thioperamide alone after 

the co-treatment of thioperamide and pyrilamine to ensure that applying 

thioperamide alone didn’t release all available endogenous histamine. This further 

concludes the ‘no response’ recording seen with the co-application of 

thioperamide and pyrilamine was a real result and not due to no available 

histamine.  

 

 

4.4.5 The H3R agonist imetit has an inhibitory effect on VMN neuronal firing 

 Here 22 histamine-responsive cells were recorded to determine their 

response to the application of 5 µm imetit. After establishing a cell was histamine 

responsive, we then applied imetit to establish how the cell reacts to the H3R 

agonist. We found that the 22 histamine-responsive cells had an average basal 

firing rate of 1.86 ± 1.33 Hz and a range of 1.19 – 3.09 Hz. We found 19 (86%) of 

the 22 cells tested cells showed a reduction in firing rate when imetit was applied, 

suggesting imetit has mainly an inhibitory effect on neuronal firing within the rat 

VMN. The cells that responded with an inhibition in neuronal firing showed a 

average firing rate of 0.47 ± 0.42 Hz during and immediately post the application 

of the H3R agonist. Imetit had no effect on 3 of the 22 cells (13%) we recorded, 

which showed an average firing rate of 1.67 ± 1.22 Hz during imetit application. 

No cells responded with an excitation following the application of imetit.  

 Figure 4.9 illustrates that after the initial excitatory histamine response is 

recorded and imetit is then applied, the cell then significantly reduces its neuronal 

firing rate almost immediately. After around 10 minutes post application of the 

H3R agonist the neuronal firing rate then returns to basal levels showing this is a 

reversible response. 
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Figure 4.9.;  An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of the 20 µM imetit. This trace illustrates that after firstly recording a typical 

histamine neuronal response, when imetit is added the firing rate of the cell being 

recorded from decreases suggesting imetit has an inhibitory effect on VMN neuronal 

firing. Purple band indicates where histamine was applied and the green band illustrates 

where imetit was applied. 

 

 

 

Our results suggest the majority of cells (86 %) within the rat VMN showed very 

similar response to that seen in figure 5.9, with most exhibiting an inhibitory 

response to imetit. An important point to illustrate is that imetit did not always 

completely block firing within the VMN when applied, but the majority of cells 

recorded from significantly reduced their firing rate. Only a small minority of cells 

(14 %) were unresponsive to the application of imetit and no cells showed an 

excitatory neuronal firing response, suggesting imetit has an inhibitory response 

on cells within the rat VMN.  
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Although all our drug applications resulted in similar responses from the VMN 

neurones it must be noted that the overall firing pattern we observed from the 

neurones we recorded from within the VMN was quite irregular with bursts of 

spikes occurring every minute or so. 

 

   

4.5 Discussion 

4.5.1 Histamine can cause an increase in neuronal firing via the H1R within 

the VMN 

Our results suggest that the increase in neuronal firing seen in a histamine 

responsive cell after the application of histamine can be blocked when the H1R 

antagonist pyrilamine is co-applied. This suggests that the increase in neuronal 

firing seen when histamine is applied to the slice is caused by activating a H1R 

within the VMN or at least within the confines of the slice. We have shown that 

histamine causes neuronal excitement in approximately two thirds of rat VMN 

neurones. The remaining cells were non responsive. It is likely that the two 

neurones that responded to application of histamine with a decrease in firing may 

have been doing so following an indirect action through other neurones within the 

slice, though this was not proven in the current studies. Relatively few 

electrophysiology studies have been carried out on the effects of histamine, but 

those that have been published suggest histamine can cause both the inhibition 

and excitation of neuronal firing rates depending on the area being investigated 

(Chen et al., 2003; Haas et al., 1977; Haas et al., 1975; Haas et al., 1983; Reiner 

et al., 1987).  

In some studies, histamine has been applied microelectrophoretically to 

the immediate environment of single cells (Haas HL., 1974; Phillis et al., 1968). In 

most brain regions, including the cerebral cortex, brain stem and the thalamus, a 
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depressant effect has been demonstrated. In contrast, neurones within the 

hypothalamus, where the highest levels of histamine are found, an excitement in 

neuronal activity is often found (Haas et al., 1977). In rat and cat brains, 

histamine caused neuronal excitement in almost 70 % of hypothalamic neurones. 

Chen et al., (2003) also found histamine, when given at varying concentrations 

(1-100 µm), caused a dose-dependent increase in the firing of most hypothalamic 

neurones. 

As mentioned previously, histaminergic neurones are found only within the 

TM of the posterior hypothalamus, and from here the histaminergic fibres project 

to most regions of the brain (Panula et al., 1984; Watanabe et al., 1984). The 

actions of histamine occur through the functioning of four types of receptors 

(Schwartz et al., 1986). The H1R mediates the excitation of cortical, thalamic and 

brainstem neurons; and are mainly responsible for the arousal actions of the 

histaminergic system (Diewald et al., 1997). Haas et al., (1975) showed the H1R 

had an inhibitory action in the rat hippocampus and suggest this is probably down 

to an elevation of the intracellular Ca2+ levels. H2 receptors have also been shown 

to be inhibitory in action (Haas et al., 1975). However, the H1R has also been 

proven to excite neurones, such as in the hippocampus (Haas et al., 1983). 

Histamine potentiates excitation in neurons by blocking the long-lasting after 

hyperpolarization that follows action potentials and the accommodation of firing 

(Diewald et al., 1997). The H3R negatively controls the synthesis and release of 

transmitter (Reiner et al., 1987). The H4R is primarily expressed in hematopoietic 

cells indicating their function in immunomodulation (Tiligada et al., 2009) and are 

not found within the brain. 

In the results section of this chapter, we described how when histamine 

was applied to a rat brain slice, of the 66 % of cells that were histamine 

responsive, 97 % of these showed a almost immediate increase in neuronal firing 

rate. We have concentrated on the VMN as this is a leading feeding centre within 
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the rat brain, is known to contain histamine receptors and a number of research 

groups have suggested that when histamine is applied to a brain area within the 

hypothalamus an excitement in neuronal firing is recorded. As we found only four 

of the responding cells to show an inhibitory response to the application of 

histamine we too can suggest that histamine causes an excitation within the rat 

VMN. This response could be resulting in the animal’s behavioural response to 

food intake after histamine is administered, suggesting histamine excites 

receptors within the VMN which in turn affect the appetite of the animal causing 

reduction in food intake.  

 

 

4.5.2 Histamine signals via the H1R causing a excitatory neuronal response 

within the VMN  

 After determining that histamine causes an excitatory response in the 

majority of rat VMN neurones when applied to a slice preparation, we wanted to 

determine if this was, as others had suggested, a H1R-dependent response. As 

shown in the results section we illustrated that when pyrilamine, an H1R 

antagonist was co-applied with histamine the increase in neuronal firing was 

blocked. This suggests that the excitatory response that histamine has on cells 

within the VMN is via a H1R.  

The H1R is involved in numerous actions and is widely distributed both 

peripherally and centrally. Centrally, the H1R is found post-synaptically in almost 

all areas of the rat brain and has been found to be involved in the regulation of 

appetite and feeding. Pharmacological, behavioural and knock out studies all 

suggest the H1R has inhibitory effects on food intake (Fukagawa et al., 1989; 

Sakata et al., 1994; Ookuma et al., 1993; Doi et al., 1994; Inoue et al., 1996). In 

particular, H1R within the VMN are implicated in the neuronal regulation of 

appetite (Masaki et al., 2003). However, Kow et al. (1989) found that histamine 
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effected PVN neurons with an almost exclusive excitatory action, and this 

excitatory action was blocked by H1R receptor antagonists. Li et al. (1996) 

confirmed using whole-cell patch recording techniques that bath-applied 

histamine depolarizes membrane potential and increases firing rate in many SON 

neurons and that the depolarization can be blocked by H1R antagonists and is 

mimicked by H1R agonists. Electrophysiological studies have demonstrated the 

excitatory effect of histamine on neuronal activity in the SCN, SON and ARC is 

mediated by H1R (Armstrong et al., 1985, Jorgenson et al., 1989, Stehl et al., 

1992). Zhou et al. (2007) used whole cell patch-clamp recording to investigate the 

effect of histamine on VMN neurons. They found that histamine increased the 

excitability of VMN neurons as indicated by membrane depolarization and 

increased firing rate. They suggest this effect is produced by the inhibition of 

potassium leakage currents through the H1R. 

 

 

 

 

 

Figure 4.10.;  This schematic diagram illustrates how histamine induces an excitatory 

response on neurones within the rat VMN via the H1R. Histamine alone results in an 

increase in neuronal firing within the VMN but when the H1R agonist pyrilamine is added 

this increase in neuronal firing is lost suggesting histamine is exciting cells within the VMN 

via a H1R. 
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The majority of studies carried out that have focussed on the effects of 

histamine on neuronal activity within the hypothalamus have shown histamine to 

cause a excitation in neuronal activation as implicated by a increase in the firing 

rate of the neurones being recorded. These studies all found that the H1R to be 

implicated in the production of this excitatory response by using selective 

agonists and antagonists. Thus figure 4.10, illustrates the possible pathways that 

histamine could be inducing its excitatory response on a VMN neurone via a H1R.  

 

 

4.5.3 Histamine can act via an H3R to affect neuronal firing within the VMN 

 The H3R has been less widely studied than the H1R in relation to its affects 

on feeding behaviours, in part because it was discovered much later than the 

H1R. Also the H3R is much more complex in its physiology than the H1R as it is a 

presynaptic receptor and can act as either an autoreceptor, negatively regulating 

the synthesis and release of histamine, or as a heteroreceptor, regulating the 

release of other transmitters such as serotonin and dopamine. H3R activation 

inhibits the release of serotonin in the CNS, of dopamine in the CNS and the 

retina, and of noradrenaline in the CNS, in blood vessels and in the heart (Stark 

et al., 1996). H3R is found predominantly within the CNS, which makes it a good 

target for manipulation, avoiding the unwanted effects on peripheral systems.    

 H3R mediate reduction of transmitter release (Philippu et al., 1991; Schlicker 

et al., 1994) and have been found to inhibit the firing of histaminergic neurons 

(Reiner et al., 1987). Little research has been carried out on H3R in the 

hypothalamus including the VMN and so no evidence has been gathered as to 

their effect in this area. We have now shown that H3R blockade can lead to an 

increase in neuronal firing within the VMN of the rat brain. We have demonstrated 
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in the results section of this chapter that the H3R inverse agonist thioperamide 

mimicked the actions of histamine when applied to a brain slice containing the 

VMN. Our results illustrate that not only are H3R present within the VMN but also 

they can mediate an excitatory response within VMN neurones. When histamine 

and thioperamide are applied either centrally or peripherally a decrease in food 

intake is observed and an increase in neuronal activation has been demonstrated 

within the VMN. As the VMN is an integral player in the control of food intake we 

could suggest that the H3R present in this area have roles in the regulation of 

appetite. Figure 4.11 illustrates how histamine can induce an excitatory response 

on a VMN rat neurone via the H3R. 

 

 

 

 

 

Figure 4.11.;  This schematic diagram illustrates how histamine also can induce an 

excitatory response on neurones within the rat VMN via the H3R. Histamine results in an 

increase in neuronal firing within the VMN and the H3R inverse agonist thioperamide 

mimics this response also resulting in a excitatory increase in neuronal firing. This is the 

first evidence to date that not only suggests H3R are present within the rat VMN but that 

they also cause excite neurones within this area resulting in a increase in neuronal cell 

firing.  
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4.5.4 Histamine can act via an H3R autoreceptor to affect neuronal firing 

within the VMN 

Our studies proved that H3R are present within the VMN, so our next step 

was to determine whether these H3R were autoreceptors or heteroreceptors. 

Histamine is known to have many different actions depending on the histamine 

receptor involved. The two receptors associated with histamine’s effects on food 

intake are H1R and H3R. H1R is located postsynaptically and H3R is located 

presynaptically, and both are found within and act upon the hypothalamus. 

However, H1R and H3R have opposing effects on food intake, with the H1R 

agonism decreasing and the H3R agonism increasing food intake. By applying low 

Ca2+/ high MgSO4 aCSF, it is possible to determine whether a compound is acting 

postsynaptically or presynaptically. We found that of the small number of 

neurones tested in this way, 66% of histamine-responsive neurones did not 

respond to histamine when it was applied in low Ca2+/ high MgSO4 aCSF. If 

histamine is affecting the target neurone directly on postsynaptic receptors, we 

would expect the neurone to still respond in low Ca2+/ high MgSO4 aCSF. The 

lack of response in these neurones could suggest histamine is acting via 

presynaptic receptors within the VMN. Although tempting at this point to suggest 

the applied histamine may be acting on presynaptic H3R, but the modulation of 

this receptor would be masked in low Ca2+/ high MgSO4 aCSF, it is equally likely 

with this crude experiment that the with high Ca2+/ low MgSO4 aCSF recordings, 

histamine could be acting on other neurones within the slice which then act to on 

the VMN neurones from which we are recording. These presynaptic neurones 

may themselves contain excitatory transmitters that stimulate the downstream, 

recorded neurone. If the presynaptic neurones contain inhibitory transmitters, 

then histamine may inhibit these, leading to disinhibition of the downstream, 

recorded neurone. In this context, it is important to note that the VMN is 
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surrounded by a dense network of GABAergic neurones which could potentially 

project into the nucleus and be affecting the response of VMN output neurones.  

Thus using the co-application of the H3R inverse agonist thioperamide and 

the H1R antagonist pyrilamine we were able to establish that H3 autoreceptors 

within the VMN could be exerting the excitatory response produced by VMN 

neurones after the application of thioperamide. We found that pyrilamine blocked 

the excitatory increase in neuronal firing by thioperamide, suggesting the H3R we 

observed within the VMN are autoreceptors. If the H3R were heteroreceptors, 

pyrilamine would have had no effect on the firing response to thioperamide in a 

majority of neurones.  

 

 

4.5.5 H3R agonism inhibits the excitatory response of histamine 

 We have also demonstrated that the H3R agonist imetit can have an 

inhibitory effect on VMN neuronal firing. Our results suggest 86 % of the VMN 

cells showed very similar response to the application of imetit, with most 

exhibiting an inhibitory response by showing a significant reduction in neuronal 

firing whilst and immediately after the application of the H3R agonist. These 

results show imetit have the opposite effects on neuronal firing within the rat 

VMN. As thioperamide, which is a H3R inverse agonist, and imetit, a H3R agonist 

have opposing effects on the H3R it is not surprising they have opposite effects on 

the neuronal firing of VMN neurones. Thioperamide blocks the autoinhibitory 

actions of the H3R and, thus, allows an increase of endogenous histamine 

release. Imetit activates the H3R and, thus, encourages its autoinhibitory effects, 

halting the release of histamine in the slice. Consequently, thioperamide can 

mimic the actions of histamine whereas imetit produces opposite results. As 

mentioned previously, the H3R negatively controls the synthesis and release of 

histamine and has been shown to inhibit the firing of histaminergic neurons 
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(Reiner et al., 1987), which could be what we are observing in our recordings. 

Also, Vanni-Mercier et al. (2003) have reported that imetit caused a significant 

decrease in cell discharge and neuronal firing rate when applied to the posterior 

hypothalamus, but our slices did to include the TM. 

 

 

It is important to note that one major drawback with extracellular 

electrophysiology, is that the response that we are recording could be a direct 

response of the drugs on that cell within the VMN or an accumulative response to 

a number of inputs which might themselves have histamine receptors. Due to 

this, it can be difficult to verify whether the response we see is a direct or indirect 

neuronal response to histamine and histamine receptor drugs, but the cumulative 

data suggests a direct action. 
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Chapter 5: 

Proxyfan – an H3R neutral 

antagonist? 
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5.1 Introduction 

5.1.1 GPCRs and constitutive activity 

G-protein coupled receptors (GPCRs) are a large family of 

transmembrane receptors that sense molecules outside the cell and activate 

intracellular signal transduction pathways resulting in cellular responses (Gbahou 

et al., 2003). Activation of some GPCRs results in fast chemical synaptic 

transmission through neurotransmitter-gated ion channels. Additionally, 

neurotransmitters acting on GPCRs can also have slower, longer-lasting and 

more diverse post-synaptic actions. Transmitter action involves three steps. 

Firstly, the neurotransmitter molecules bind to receptor proteins embedded in the 

post-synaptic membrane (Fong TM., 1996). The receptor proteins then activate 

small protein molecules, called G-proteins (guanosine triphosphate (GTP)-binding 

proteins), that move freely along the intracellular face of the post-synaptic 

membrane. The activated G-proteins activate "effector" proteins, which can be G-

protein-gated ion channels in the membrane or enzymes that synthesize second 

messengers that diffuse away in the cytosol and regulate ion channel function 

and alter cellular metabolism (Fong TM., 1996). 

GPCRs are allosteric proteins that adopt inactive and active conformations 

in equilibrium. The active conformation can be promoted by agonists or can occur 

spontaneously, leading to constitutive activity of the receptor. Alternatively, 

inverse agonists promote an inactive conformation and decrease constitutive 

activity (Gbahou et al., 2003). Gbahou et al (2003) suggest constitutive activity is 

the synthesis of a protein or enzyme at a constant rate regardless of physiological 

demand or the concentration of a substrate. In pharmacology, an agonist is a 

substance that binds to a specific receptor and triggers a response. It does so by 

mimicing the action of an endogenous ligand that binds to the same receptor. 

Agonist ligands stabilize or increase the fraction of the active state of a GPCR, 
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allowing it to interact with and activate a G protein. Milligan and colleagues 

propose that basic thermodynamics define there must be a finite probability that 

this active state also occurs in the absence of the agonist (Milligan et al., 2003). If 

agonists enhance such active states, then ligands (inverse agonists) that stabilize 

or enrich the inactive state should be able to be identified. Therefore, an inverse 

agonist is able to bind to the same receptor-binding site as an agonist for the 

receptor, but it exerts the opposite pharmacological effect.  

Heterologous expression of many GPCRs has resulted in the uncovering 

of ligand-independent signal transduction that increases with increasing levels of 

GPCR expression (Tiberi et al., 1994). Many traditional 'antagonists', that block 

the constitutive activity of expressed GPCRs, have been reclassified as inverse 

agonists after establishing the constitutive activity of the GPCR is not linked to the 

presence of low concentrations of endogenous agonists (Milligan et al., 1995). 

Inverse agonists are effective against only certain types of receptors, such as the 

histamine receptors, which have intrinsic activity without the action of a ligand 

upon them (Daeffler et al., 2000).  

Compounds that are able to bind to GPCRs without altering the balance 

between active and inactive states of the receptor are described as neutral 

antagonists and are much less common (Milligan et al., 2003). An antagonist is a 

ligand of a receptor that blocks the ability of an agonist or inverse agonist to bind 

to the receptor and thus inhibits their function. Milligan et al. suggests that within 

such models, efficacy ranges from 1 (full agonism) to -1 (full inverse agonism) 

and neutral antagonists possess 0 efficacy (Milligan et al., 1995). 

Takahashi et al. (2003) suggest GPCRs play a major role in signal 

transduction and are the targets of a large number of therapeutic drugs. As 

mentioned before, traditional models of GPCRs require an agonist to bind to the 

receptor to activate the signal transduction pathways. A model used to describe 

agonist activation of GPCRs is referred to as the ternary complex model, which 
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accounts for the interactions between receptor, G-protein and agonist (De Lean et 

al., 1980). This model has since been extended to include the observations that 

several GPCRs can activate G-proteins in the absence of agonists due to 

constitutive activity. Therefore the ternary complex model was modified to the 

“extended ternary complex model” or ETC (Samama et al., 1993). In this model, 

Samama et al. (1993) suggest the receptor exists in an equilibrium between an 

inactive state (R) and an active state (R*) in the absence of a drug. Binding of an 

agonist to the receptors stabilizes the R* causing G-protein-coupling and 

activation of cellular responses. Conversely, binding of an inverse agonist 

stabilizes the R at the expense of R*. Takahashi et al. propose the primary 

structure and expression levels of the receptor determine the equilibrium between 

active and inactive receptor states and therefore determine the intrinsic basal 

activity of the GPCRs (Takahashi et al., 2003). For wild-type receptors, R 

predominates, thus minimal receptor activity is present in the absence of an 

agonist. Alternatively, a high level of receptor expression or specific mutation in 

receptors can increase the concentration of R*, therefore resulting in increased 

activities in the absence of agonists and the enhanced susceptibility to inverse 

agonists. Thus the level of constitutive activity depends on both the number of 

spontaneously active conformations and their coupling efficiency to G proteins 

(Arrang et al., 2007). Inverse agonists therefore abrogate constitutive activity by 

promoting inactive conformations of the receptor. 

Protean agonists are a theoretical class of ligands that produce receptor 

activation but at a lower degree than that derived from spontaneous receptor 

constitutive activity (Kenakin T., 2001). Protean agonists are unique in that they 

can produce positive agonism in some GPCR systems, and inverse agonism in 

others, when the receptor conformation induced by an agonist shows an efficacy 

lower than that of the constitutively active receptor conformation (Kenakin T., 

2001). For example, if the ligand produces activity in the receptor greater than 
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spontaneous constitutive activity, it will act like an agonist. Conversely, if the 

system were constitutively active and, thus, had a high number of spontaneously 

active sites, the ligand might reduce the activity by changing this active site to the 

less efficacious active site and therefore act as an inverse agonist (Kenakin T., 

2001). Consequently, a protean agonist could act as either an agonist or an 

inverse agonist at the same GPCR, depending on the level of constitutive activity. 

With an none constitutively active system the ligand would be act as an agonist 

and in a constitutively active system it would be an inverse agonist (Arrang et al., 

2007. The observation of protean agonism in a system gives some evidence that 

the ligand being investigated produces a receptor active state of lower intrinsic 

efficacy than the naturally occurring constitutively active state and therefore is 

suggestive of selective receptor states which are a useful tool for discovery of 

ligand-specific receptor active-states and thus could be a useful tool in our 

investigations to determine the ligand-specific nature of our H3R agonist, imetit, 

and H3R inverse agonist, thioperamide.  

 

 

5.1.2 Constitutive activity and the H3R 

The H3R belongs to the class of G-protein coupled receptors which 

contain seven putative transmembrane domains, with an extracellular N-terminus 

and an intracellular C-terminus (Strakhova et al., 2008). Arrang et al. (2007) have 

reviewed how the H3R has become a GPCR of choice for studies of constitutive 

activity and protean agonism as H3Rs present in the brain have been shown to 

exhibit high constitutive activity. Liedtke et al. (2003) suggest the mechanisms 

underlying constitutive activity might involve the carboxyl terminus of the third 

intracellular loop of the H3R and is conserved among species (Lovenberg et al., 

1999, Hancock et al., 2003). However, the functional H3R isoforms, which all 

contain this sequence, show different degrees of constitutive activity. Constitutive 
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activity of the recombinant H3R is, therefore, dependent on species, isoform, cell 

line and signaling pathway, but all of the collected data are consistent in showing 

the high constitutive activity of both the rat and human H3R. Most of the 

compounds originally classified as H3R antagonists are, in fact, inverse agonists, 

such as thioperamide, and abrogate the signaling changes generated by 

constitutive activity of the recombinant H3R (Arrang et al., 2007, Liedtke et al., 

2003).  

The H3R has been shown to signal without agonist stimulation in several 

recombinant receptor systems (Wieland et al., 2001; Wulff et al., 2002), as well as 

in in vivo systems (Morisset et al., 2000), by means of constitutive activity. 

Pharmacological agents with high inverse efficacy would be a benefit if the clinical 

need is to lower basal receptor activity. Thus, inverse agonists open the 

possibility for a new therapeutic strategy for the H3 receptor (Takahashi et al., 

2003). However, the level of H3R constitutive activity in each specific system, 

such as that controlling feeding, needs to be fully determined as species 

differences and drug effectiveness of the H3R agonists and inverse agonists have 

all been brought into question, suggesting the need for a careful evaluation of the 

drugs used to fully define H3R involvement. 

 

 

5.1.3 Proxyfan and its potential to act as a neutral antagonist at the H3R 

Interest in the drug proxyfan began after the discovery that the H3R shows 

a high degree of constitutive activity. Several of the classical H3R antagonists, 

such as thioperamide and ciproxifan, actually behave as potent inverse agonists, 

as they block the intracellular pathways associated with active H3R in 

heterologous transfected cells (Morisset et al., 2000; Rouleau et al., 2002). 

Alternatively, the high-affinity H3R ligand, proxyfan, acts as a protean agonist 

which can display the full spectrum of pharmacological activities from full agonism 
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to full inverse agonism (Gbahou et al., 2003).  

Research on proxyfan has confirmed the competition between a ligand-

directed active receptor state (LR*) and a constitutively active receptor state (R*) 

for G proteins, predicted by Kenakin’s model (Kenakin T., 2001). This model 

suggests the intrinsic activity of proxyfan is that of an agonist when the agonist 

state promoted by proxyfan (LR*) has an higher efficacy than that of the 

constitutively active state (R*). When both states show the same efficacy, 

proxyfan alone will have no apparent activity on the system and therefore here 

proxyfan will act as a neutral antagonist (Arrang et al., 2007). Alternatively, when 

the state promoted by proxyfan has a lower efficacy than that of constitutive 

activity, proxyfan behaves as an inverse agonist (Arrang et al. 2007).  

Constitutive activity of a native GPCR can be established when its putative 

activation by an endogenous agonist has been excluded, which can only be 

achieved using a neutral antagonist (Arrang et al., 2007). In the presence of 

constitutive activity, neutral antagonists have no effect alone, but will block the 

effects of agonists and inverse agonists. Constitutive activity at H3 autoreceptors 

inhibits histamine release (Morriset et al., 2000). By suppressing H3R constitutive 

activity, inverse agonists such as thioperamide enhance histamine release, 

whereas agonists such as imetit inhibit its release. Here, proxyfan alone would 

have no effect on histamine release, but will blocks the effects of both 

thioperamide and imetit, and therefore act as a neutral antagonist (Clark et al., 

1996). The lack of effect of proxyfan alone illustrates antagonism of endogenous 

histamine does not contribute to the histamine-releasing effect of thioperamide or 

other drugs (Clark et al., 1996, Meier et al., 2004). Fox and colleagues 

demonstrated that H3 autoreceptors that inhibit histamine synthesis in brain also 

show constitutive activity (Fox et al., 2002). Histamine released from histamine 

neurons is metabolized to tele-methylhistamine (t-MeHA). Levels of t-MeHA are, 

thus, a reliable indication of histamine neuron activity (Schwartz et al., 1991). H3R 
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inverse agonists enhance t-MeHA levels by abolishing the constitutive block 

caused by H3 autoreceptors (Clark et al., 1996). Proxyfan acts as a neutral 

antagonist by antagonizing the increase in t-MeHA levels induced by 

thioperamide or ciproxifan and the decrease induced by imetit (Clark et al., 1996; 

Meier et al., 2004). Proxyfan also has been shown to act as a neutral antagonist 

in H3R-mediated intake of water. Here Fox et al. (2002) showed that proxyfan 

attenuates both agonist and inverse agonist effects on drinking behaviour in mice. 

One issue with proxyfan is that it appears to be very species and organ 

dependent in its actions and ability to act as a protean agonist. Where inverse 

agonists, such as ciproxifan, induce arousal in all species (Ligneau et al. 1998), 

the effect of proxyfan on the sleep–wake cycle depends on the species. In the 

mouse, proxyfan increases wakefulness, decreases sleep, and therefore behaves 

as a full inverse agonist (Morisset et al., 2000). Conversely, in the cat, proxyfan 

increases sleep and shows the same effect as the H3R agonist (R)-α-

methylhistamine (Morisset et al. 2000). In the rat, proxyfan acts as an inverse 

agonist on histamine neuron activity (Morisset et al., 2000), but as a full agonist 

on fear memory (Baldi et al., 2005). Here, Baldi et al. (2005) reported that rats 

that received systemic administrations of proxyfan showed a stronger response to 

the footshock-context association. Proxyfan can mimic the memory-enhancing 

effect of H3R agonists administered in the amygdala (Cangioli et al., 2002) or in 

the hippocampus (Giovannini et al., 2003), in contextual fear conditioning. Full 

agonism of proxyfan has also been observed in the cat, where it significantly 

increases deep slow-wave sleep, without affecting wakefulness, whereas in the 

mouse proxyfan behaves as a full inverse agonist (Gbahou et al., 2003), 

mimicking the arousal effect of ciproxifan (Parmentier et al., 2002). Proxyfan has 

also acted as a partial agonist in a murine dipsogenic model (Fox et al., 2002), as 

mentioned above. Gbahou et al. (2003) suggest competition between the active 

and inactive forms of the H3R receptor may be responsible for the variety of 
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pharmacological responses observed in different brain regions and in different 

species. The pharmacology of H3R is very complex, and Passani and colleagues 

suggest that receptor polymorphism with differential splice variant distribution in 

the CNS, potential coupling to different G protein signaling pathways and 

heterogeneity contributes to the numerous effects of histaminergic ligands when 

tested in different brain regions and across animal species allowing a range of 

behavioural responses to be observed (Passani et al., 2004). Therefore, protean 

agonism indicates that a single drug might produce different responses, 

depending on the constitutive activity of the system.  

Morriset et al. (2000) suggest the pharmacological profile of proxyfan 

depends on the system being tested. Thus it depends on the equilibrium between 

the active and inactive conformations of the receptor and/or the stoichiometric 

ratio of the receptor to the various G proteins. Thus, Gbahou et al. 2003, suggest 

that a single drug such as proxyfan may belong to all of the classical classes of 

ligands (full agonists, partial agonists, neutral antagonists, partial inverse 

agonists, and full inverse agonists). Therefore, proxyfan could be used as a tool 

to discover ligand-specific receptor active-states and, thus, could be used in our 

investigations to determine the ligand-specific nature of our H3R agonist, imetit, 

and H3R inverse agonist, thioperamide. 

 

 

5.2 Aims and Objectives 

5.2.1 Does proxyfan alone affect feeding in Sprague Dawley rats? 

 Proxyfan has been shown by a number of research groups to act in 

differently in various models, including as a H3R agonist, inverse agonist, protean 

agonist and neutral antagonist (Clark et al., 1996, Morisset et al., 2000, Gbahou 

et al., 2003, Baldi et al., 2004, Passani et al., 2004, Meier et al., 2004). Fox et al. 
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(2002) published a paper illustrating how proxyfan can block the actions on 

drinking behaviour of ciproxifan, a H3R inverse agonist, and to attenuate R-α-

MeHA effects on water intake. As proxyfan has not been investigated into its 

effects on food intake and appetite behaviour, we wanted to determine whether 

alone it would act as a H3R agonist, inverse agonist, a protean agonist or a 

neutral antagonist. 

Levels of endogenous histamine in the whole brain may vary greatly 

across the time of day, and also in regions of the brain specifically involved in 

appetite regulation. Thus, we measured the effects on normal food intake of 

proxyfan at both lights out in animals that were fed ad libitum and at lights on in 

overnight fasted animals, ensuring a spectrum of endogenous histamine 

concentrations would be tested. 

 

 

5.2.2 Can proxyfan attenuate the actions on food intake of other H3R drugs? 

 Once we had established whether proxyfan had any effect on food intake 

alone, we then wanted to determine whether proxyfan could act as a neutral 

antagonist at the H3R and attenuate the actions on food intake of both the H3R 

agonist, imetit, and the H3R inverse agonist, thioperamide, when co-administered. 

Proxyfan has been seen to act in a number of ways, to attenuate the actions of 

some H3R drugs and not others (Fox et al., 2002), and have effects on some 

behaviours in certain species and not in others (Morisset et al., 2000, Gbahou et 

al., 2003). Therefore, we aimed to determine whether proxyfan could indeed 

attenuate or block the effects that imetit and thioperamide have on food intake in 

male Sprague Dawley rats. 
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5.2.3 Can proxyfan act as a neutral antagonist on feeding-related neurones 

in vitro? 

 Once we determined if proxyfan affects food intake when administered alone 

or when co-administered with H3R drugs, we aimed to determine the effects 

proxyfan has at a neuronal level in an in vitro slice preparation using single-unit 

extracellular electrophysiology. Here we plan to determine the effects proxyfan 

has on neurons within the VMN when applied via a perifusion line. We then aim to 

determine whether, when co-applied, proxyfan can block or attenuate the actions 

of imetit or thioperamide on neuronal firing rates of neurons within the VMN. 

 

 

5.3 Methods 

5.3.1 Animals 

 For the feeding studies, male Sprague-Dawley rats (225 - 275 g, Charles 

River, UK) were used and for the electrophysiology studies male Sprague-Dawley 

rats, aged 6 - 8 weeks (Charles River, UK) were used. All animals were adapted 

to a 12 h/ 12 h light-dark cycle (lights on 08:00 - 20:00), at least one week prior to 

the experiments starting. Rats were housed in a temperature-controlled room (~ 

22 ± 1 oC) with relative air humidity 40 - 60 %. Rats had free access to food 

(Beekay, UK) and water unless otherwise stated. Animals used in the 

electrophysiology studies were culled using a UK Home Office recommended 

Schedule 1 procedure. These and all other experiments conformed with the 

Home Office (Animals Procedures Act of 1986 and local ethical review. 
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5.3.2 Compounds  

 Compounds used in the behavioural studies were administered via injection 

into the intraperitoneal cavity (i.p.) of the rat. Imetit and thioperamide (both 

Sigma) were diluted with isotonic saline to allow injection of 10 mg/kg and 2 

mg/kg of body weight, respectively. Proxyfan (Tocris) was made up to 5, 2, 0.5 

and 0.2 mg/kg body weight for the feeding experiments and to 5 mg/kg body 

weight when co-administered with either imetit or thioperamide. All drugs were 

diluted to their required concentrations immediately prior to use. 

 For the extracellular electrophysiology procedures compounds were used at 

the following concentrations: histamine 5 µM; thioperamide 20 µM; imetit 5 µM; 

proxyfan 20 µM. For all compounds an aliquot was thawed, diluted to the 

appropriate concentrations in fresh aCSF (see previous chapter for details on 

how to make aCSF solution) and bath applied to the brain slice being recorded 

from via a perifusion line immediately before use. 

 All concentrations were determined following a review of the literature (Fox 

et al. 2002). 

 

 

 
5.3.3 Proxyfan and its effects on food intake 

 Rats were caged singly 24 hours before i.p. injections we administered. 

Drug-treated rats were given 5 mg/kg of body weight of proxyfan in a volume of 

1ml/kg of body weight and control rats received a volume of 1 ml/kg of body 

weight of saline, i.p. Satiated rats given the i.p. injection of proxyfan at lights on 

(08:00 h) were allowed free access to food until they were injected with proxyfan. 

Rats receiving an i.p. injection of proxyfan at lights off (20:00 h), had their food 

removed 2 hours before lights out to ensure no pre-feeding was carried out 

before the experiment. Pre-weighed food was returned to the rat 2 minutes after 
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receiving the injections and food consumption was then measured at 1, 2 and 4 

hours post injection. 

 

 

5.3.4 Does proxyfan act as a neutral antagonist in the feeding model? 

 Again, rats were caged individually 24 hours before any injections or 

experiments were carried out. All injections were i.p. and in a volume of 1 ml/kg 

body weight. Rats being tested for their food behaviour response to imetit 

received an injection of 10 mg/kg body weight of imetit at lights off (20:00 h) 15 

minutes after receiving an injection of 5 mg/kg body weight of proxyfan. Rats 

being tested for their feeding response to thioperamide received an injection of 2 

mg/kg body weight of thioperamide 15 minutes after receiving an injection of 5 

mg/kg body weight of proxyfan, again at lights off (20:00). Pre-weighed food was 

returned to the rat 2 minutes after receiving both injections and food consumption 

was then measured at 1, 2 and 4 hours post injection. 

 

 

5.3.5 The effects of proxyfan on neurones within the VMN 

 An account of how our extracellular rig is set up and how our slices are 

prepared and recorded from is detailed in the previous chapter. 

 Once a neurone was identified and a stable baseline firing rate was 

established, 5 µM histamine was applied by perifusion for 4 minutes. If an 

excitatory histamine response was recorded, histamine was washed off during 20 

minute application of normal aCSF. Proxyfan was then applied via the perfusion 

line for 4 minutes and the cells response was recorded. Normal aCSF was then 

applied for 20 minutes to again allow the cell’s firing to return to baseline levels. 

Thioperamide was then co-applied with proxyfan for 4 minutes to determine 

whether proxyfan would block the excitatory effects that thioperamide has been 
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shown to produce (see previous chapter). Again, normal aCSF was the applied 

for 20 minutes to wash off the effects of the drugs and baseline levels of firing 

were returned. Thioperamide was then applied alone for 4 minutes to check the 

effects when applied alone. Finally normal aCSF was again administered for 20 

minutes to allow neuronal firing to return to baseline levels. 

 For the imetit electrophysiology study, after an excitatory response to 

histamine was recorded and neuronal firing was allowed to return back to basal 

levels after 20 minutes of normal aCSF application, imetit was appled for 4 

minutes and the response recorded. Normal aCSF was then applied to allow the 

drug to wash off and neuronal firing to return to normal levels. A solution of imetit 

and proxyfan was then applied over a 4 minute period and the response was 

recorded to determine whether proxyfan could block the actions that imetit alone. 

Finally, normal aCSF was again administered for 20 minutes to allow neuronal 

firing to return to baseline levels. 

 

 

5.3.6 Statistical analysis 

 All data are presented as mean ± SEM. Data from feeding groups were 

analysed using a two-way analysis of variance (ANOVA) with repeated measures. 

Significance was taken at P < 0.05. 

 Recordings were only taken from the neurones in the dorsomedial region of 

the VMN. A VMN neurone was considered to have responded if the firing rate 

increased or decreased by 20 % relative to the firing rate 5 minutes prior to 

application of proxyfan, imetit, thioperamide or a combination of these drugs. 

Responses are given as a mean firing rate ± S.E.M. and show significance at P < 

0.05 using an unpaired t-test. 
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5.4 Results 

5.4.1 Proxyfan alone has no effect on food intake in rats 

 Firstly, we determined whether different doses of the H3R drug proxyfan 

affect the feeding behaviour of Sprague-Dawley rats that had free access to food 

at the beginning of the light phase. We found that an injection of proxyfan at 0.2, 

0.5, 2 and 5 mg/kg body weight had no significant effects on food consumed at 1, 

2 or 4 hours post injection (figure 5.1). Rats that received the saline injection 

cumulatively had eaten 0.12 ± 0.08 g at 4 post injection, which is very similar to 

the rats that received either 0.2, 0.5, 2 or 5 mg/kg body weight of proxyfan (0.65 ± 

0.8 g, 0.75 ± 0.9 g, 0.1 ± 0.1 g and 0.13 ± 0.07, respectively). These results 

suggest both high and low doses of proxyfan have little effect on the food intake 

of satiated rats. 
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Figure 5.1.;  Cumulative food consumption measured at 1, 2 and 4 hours after i.p. 

injection with proxyfan (n = 4) or saline (n = 4) during the day time (08:00 h). Food intake 

over this period is very low in these nocturnal animals. Data are expressed as mean ± 

S.E.M. Two-way ANOVA with repeated measures and Bonferronni post hoc test was 

carried out. Significance = n/s. 
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We then determined whether these same doses of proxyfan (0.2, 0.5, 2 and 5 

mg/kg body weight) had any effects on food intake of rats when fed at normal 

night time feeding (20:00 h). We found that an injection of proxyfan at any of the 

concentrations tested had no effect on food intake, with all animals within the 

drug groups eating similar amounts to the control group (figure 5.2). Rats that 

received an injection of saline ate on average 9.4 ± 1.8 g at 4 h post injection, 

whereas rats receiving an injection of 0.2, 0.5, 2 and 5 mg/kg body weight of 

proxyfan ate 9.9 ± 1.3 g, 9.0 ± 0.6 g, 9.6 ± 0.5 g and 8.8 ± 1.1 g of food, 

respectively. 
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Figure 5.2.;  Cumulative food consumption measured at 1, 2 and 4 hours after i.p. 

injection with proxyfan (n = 4) or saline (n = 4) given at lights out (20:00 h). Data are 

expressed as mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferronni 

post hoc test was carried out. Significance = n/s. 
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5.4.2 Proxyfan blocks imetit-induced hyperphagia in rats 

As none of our concentrations of proxyfan had shown any affects on rat 

food intake alone, we decided to use the highest concentration of proxyfan tested 

(5 mg/kg body weight), which is similar also to concentrations used by other 

research groups. Our research showed that when an injection of imetit was given 

after an injection of proxyfan, no increase in food intake was noted from control 

levels whereas when an injection of imetit was administered after an initial 

injection of saline a significant increase in food intake was observed 1 hour post 

the injection of imetit. This suggests proxyfan is blocking the effects imetit has on 

rodent feeding. We found rats that received a double saline injection ate on 

average 3.89 ± 0.72 g of food 1 hour post the first injection. Rats that received a 

proxyfan injection and then an injection of saline 15 minutes later ate on average 

3.37 ± 1.11 g of food 1 hour post the first injection, rats that received a injection of 

saline and then an imetit injection ate on average 4.89 ± 0.56 g of food and rats 

that received an injection of proxyfan and then an imetit injection 15 minutes later 

at on average 3.58 ± 0.67 g of food. Only rats that received the injection of saline 

and then later were administered a second injection containing imetit were found 

to eat significantly more (P < 0.05) than the control group and the proxyfan-

vehicle or proxyfan-imetit group. Significance was lost by two hours after the first 

injection. 
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Figure 5.3.;  Cumulative food consumption measured at 1 and 2 hours after i.p. injections 

with; saline (S) or proxyfan (P) followed by saline (S) or imetit (I) (n = 6). There are four 

different drug groups tested and rats received two injections 15 minutes apart. These 

groups include; saline-saline, proxyfan-saline, saline-imetit and proxyfan-imetit. Data are 

expressed as mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferronni 

post hoc test was carried out. P < 0.05. 
 

 

 

 

 

 

5.4.3 Proxyfan blocks thioperamide-induced hypophagia in rats 

 We found that when an injection of thioperamide is administered prior to an 

injection of saline rats consumed significantly less food than when thioperamide is 

injected after receiving an injection of proxyfan suggesting proxyfan is able to 

block the anorexic effects of thioperamide. We found that when we administered 

a double injection of saline rats ate on average 1 hour post the first injection 3.89 

± 0.72 g of food. Rats that were given a proxyfan injection and then administered 

with an injection of saline 15 minutes later, ate on average 3.37 ± 1.11 g of food, 
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rats that received an injection of saline and then thioperamide ate on average 

2.56 ± 0.51 g of food and rats that were administered with proxyfan and then 

thioperamide ate on average 3.73 ± 1.69 g of food. Only rats that received an 

injection of saline prior to receiving an injection of thioperamide were found to eat 

significantly less (P < 0.05) food than animals receiving a double saline injection 

or even those receiving proxyfan-saline or proxyfan-thioperamide. These results 

suggest proxyfan is blocking the inhibitory effect that thioperamide has on rodent 

feeding. Significance was lost by 2 hours post the first injection. 
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Figure 5.4.;  Cumulative food consumption measured at 1 and 2 hours after i.p. injections 

with; saline (S), proxyfan (P) or thioperamide (T) (n = 6). There are four different drug 

groups tested and rats received two injections 15 minutes apart. These groups include; 

saline-saline, proxyfan-saline, saline-thioperamide and proxyfan-thioperamide. Data are 

expressed as mean ± S.E.M. Two-way ANOVA with repeated measures and Bonferronni 

post hoc test was carried out. P < 0.05. 
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5.4.4 Proxyfan alone has no effect on VMN neuronal firing  

 In this experiment, at total of 20 spontaneously firing histamine-responsive 

VMN neurons were tested for their responsiveness to the application of 20 µM 

proxyfan. We firstly recorded an excitatory response to histamine from the 20 

cells tested before we then applied proxyfan to the bath surrounding the brain 

slice and determined 100 % of the cells we recorded from had no change in 

neuronal firing rate. These cells showed an average basal firing rate of 1.35 ± 

0.98 Hz and a range of 2.61-1.02 Hz. In our study, none of the 20 cells showed a 

change from basal firing rate when proxyfan was applied over a four minute 

period to the brain slice. The average firing rate during the administration of the 

drug was 1.24 ± 0.84 Hz which was not significantly different from basal firing 

levels. Figure 6.5 shows that after a basal rate of VMN neuronal firing was 

established over a ten minute period, histamine was then added and there was a 

rapid increase in neuronal firing which gradually returned to basal levels after 

around 15 minutes after the application of the drug. As can be seen in an 

example of a recording (figure 5.5), when proxyfan is added after the effects of 

histamine have been washed off, there was no change in firing rates from basal 

level.  
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Figure 5.5.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of the 20 µM proxyfan. This trace illustrates that after firstly recording a 

typical histamine neuronal response when proxyfan is added the firing rate of the cell 

being recorded from does not change from basal levels suggesting proxyfan when 

administered alone has no effect on VMN neuronal firing. Purple band indicates where 

histamine was applied and light blue band indicates where proxyfan was added. 

 

 

 

5.4.5 Proxyfan can block the inhibition in neuronal firing caused by imetit 

 After determining that proxyfan had no effect on neuronal firing when applied 

alone to a brain slice, we then wanted to establish whether proxyfan could block 

the inhibitory effects of the H3R agonist imetit on these cells. After establishing 

recording from a firing cell that was histamine responsive, we then applied imetit 

alone to establish how the cell reacts to the H3R agonist. If the cell was both 

Minutes 
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histamine and imetit responsive, we then co-applied proxyfan with imetit. We 

recorded from 22 histamine-responsive cells with an average basal firing rate of 

1.86 ± 1.33 Hz and a range of 1.19-3.09 Hz. We found 19 (86 %) of the 22 cells 

tested cells showed a reduction in firing rate when imetit was applied, suggesting 

imetit has mainly an inhibitory effect on neuronal firing within the rat VMN. The 

cells that responded with an inhibition in neuronal firing showed an average firing 

rate of 0.47 ± 0.42 Hz during and immediately after the four minute application of 

the H3R agonist. Imetit had no effect on 3 of the 22 cells (14 %) we recorded from 

with an average firing rate of 1.67 ± 1.22 Hz. No cells responded with an 

excitation of neuronal firing to the application of imetit.  

 After we established imetit causes a reduction in neuronal firing, we then 

wanted to determine whether proxyfan could block this effect. Here we co-applied 

proxyfan with imetit for 4 minutes onto 20 histamine-responsive cells and found 

that, in all cells recorded, proxyfan blocked the inhibitory actions of imetit. All 20 

cells showed no change from basal firing levels when proxyfan and imetit are co-

applied suggesting proxyfan is able to block the inhibition in neuronal firing rates 

seen when imetit alone is added. 

 Figure 5.6 illustrates that after the initial excitatory histamine response is 

recorded and imetit is then applied the cell then significantly reduces its neuronal 

firing rate almost immediately. After around 10 minutes post application of the 

H3R agonist the neuronal firing rate then returns to basal levels showing this is a 

reversible response. It is then seen that once the response to imetit is thoroughly 

washed off (after a 20 minute period), an application of proxyfan and imetit was 

added and no change from basal levels of neuronal fifing were recorded. We 

continued to record for approximately 20 minutes post the application of proxyfan 

and imetit in case of a late response but in no cases was there any deviation from 

basal firing rates.  
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Figure 5.6.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of the 20 µM imetit and then the application of 20 µM imetit with 20 µM 

proxyfan. This trace illustrates that after firstly recording a typical histamine neuronal 

response, when imetit is added the firing rate of the cell being recorded from decreases 

suggesting imetit has an inhibitory effect on VMN neuronal firing. When proxyfan is then 

co-administered with imetit there is no change in neuronal firing rates from basal levels 

suggesting proxyfan is able to block the actions of imetit and act as a neutral antagonist. 

Purple band indicates where histamine was applied, the green band illustrates where 

imetit was applied and the blue band indicates when either the imetit and proxyfan 

solution was added. 

 

 

 

Our results suggest the majority of cells (approximately 86 %) within the rat 

VMN showed very similar response to that illustrated in figure 4.9 in the previous 

chapter, with most having a inhibitory response to imetit by showing a significant 
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reduction in neuronal firing whilst and immediately after the application of the H3R 

agonist. Only a small minority of the cells recorded (14 %) were unresponsive to 

the application of imetit and no cells showed an excitatory neuronal firing 

response suggesting imetit has an inhibitory response on cells within the rat 

VMN. All cells that we co-applied proxyfan and imetit had no changes in neuronal 

firing rate suggesting proxyfan is blocking the effects of imetit in our system and 

is, thus, acting as a neutral antagonist. 

 

 

5.4.6 Proxyfan can block the excitation in neuronal firing caused by 

thioperamide 

 In this study, we recorded from 16 spontaneously firing cells within the rat 

VMN to study their response to neuronal firing rate when proxyfan is co-applied 

with the H3R agonist thioperamide. We first established that the cell we were 

recording from was histamine responsive and we then determined that proxyfan 

had no effect when applied alone to the cell (results as above). Once these 

recordings were established we then co-applied proxyfan with thioperamide and 

found this had no effect on the neuronal firing rate of the cells. All 16 cells showed 

an increase in neuronal firing when histamine was added, no change in neuronal 

response when proxyfan was applied alone, and again no change from basal 

firing rate when proxyfan and thioperamide were co-applied. To ensure these 

cells could still respond to thioperamide alone, we then applied thioperamide 

without proxyfan to the brain slice. We found the cells then showed an excitatory 

response with an almost immediate increase in neuronal firing rate. This suggests 

proxyfan is able to block the excitatory effects of thioperamide without any long-

term effects. On average, cells showed a basal firing rate of 1.35 ± 0.57 HZ with a 

range of 2.61-1.02 Hz. The average firing rate of the cells during and immediately 
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post the application of the proxyfan and thioperamide solution was 1.33 ± 0.93 

Hz. Confirming what we saw in the previous chapter, when thioperamide was 

applied alone the average firing rate was 3.15 ± 2.01 Hz during and immediately 

post the drugs application. 

 Figure 5.7 illustrates a typical extracellular electrophysiology trace response 

to the co-application of proxyfan and thioperamide. The typical increase in 

neuronal firing after histamine application is seen first, then a return to basal firing 

levels, before proxyfan is then applied. After these first two responses have been 

established we then added the proxyfan and thioperamide solution and as is 

shown in figure 6.7, and no change from neuronal firing was recorded. To ensure 

the cell was still thioperamide responsive, we then added thioperamide alone. An 

increase in neuronal firing was produced showing that proxyfan was blocking the 

effect of thioperamide, and that it was not that the cell was unresponsive to 

thioperamide. 
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Figure 5.7.; An electrophysiology trace showing a typical rat VMN neuronal response to 

the application of the 20 µM proxyfan and then the application of 20 µM thioperamide with 

20 µM proxyfan. Finally, 20 µM thioperamide was applied alone. This trace illustrates that, 

after firstly recording a typical histamine neuronal response, when proxyfan is added, the 

cell shows no response and the firing rate remains at basal levels. When proxyfan is co-

administered with thioperamide, again the cell shows no deviation in its firing rate. When 

thioperamide alone is added, an excitatory response is noted with the firing rate rapidly 

increasing. These results suggest proxyfan is able to block the actions of thioperamide 

and act as a neutral antagonist. Purple band indicates where histamine was applied, the 

light blue band illustrates where proxyfan was applied, the pink band indicates where the 

solution of proxyfan and thioperamide was added and the red band indicates where 

thioperamide alone was added. 
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As all the cells showed a excitatory response to both histamine and 

thioperamide yet showed no change in response when proxyfan plus 

thioperamide was applied, our results suggest proxyfan is blocking the excitation 

in neuronal firing produced by the H3R inverse agonist and thus is acting as a 

neutral antagonist in our system.  

 

Although all our drug applications resulted in similar responses from the VMN 

neurones it must be noted that the overall firing pattern we observed from the 

neurones we recorded from within the VMN was quite irregular with bursts of 

spikes occurring every minute or so. 

 

 

 

5.5 Discussion 

5.5.1 Proxyfan acts as a neutral antagonist at the H3R at a behavioural and 

neuronal level 

Although proxyfan has been shown to have little effect alone in some 

systems (Clark et al., 1996, Meier et al., 2004) and to alter others significantly 

(Baldi et al., 2004, Gbahou et al., 2003), the effect of this drug has never been 

tested for its effects on feeding in the rat and, to our knowledge, the effects of 

proxyfan on the electrical activity of non-histaminergic cells have not been 

published.  

As we have illustrated above, the H3R compound has no effect on food 

intake when administered systemically in both satiated and non-satiated rats. This 

shows that when endogenous brain histamine levels are both high (non-satiated 

animals) and low (in satiated animals) proxyfan alone has no significant effect on 

the food intake, suggesting in this behavioural system, proxyfan is having neither 
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an inhibitory or stimulatory effect at the H3R. We have also demonstrated that 

when proxyfan was introduced to a brain slice via a perifusion bath, the neuronal 

firing rate of VMN neurones within the brain slice were unperturbed and remained 

at basal levels. Our data suggest that proxyfan is acting neither as an agonist or 

inverse agonist at the H3R when administered alone in our extracellular 

electrophysiology system. 

Gbahou et al. (2003) demonstrate that proxyfan can be a protean agonist 

at the H3R, having a spectrum of activities ranging from potent agonist to potent 

inverse agonist. As a protean agonist it can produce different responses 

depending on the constitutive activity of the system being tested. Thus, it could be 

suggested that the lack of effect proxyfan had on food intake in both satiated and 

non-satiated animals is due to the equilibrium between the active and inactive 

conformations of the receptor. 

As shown in this and in chapter 2 of this thesis, both H3R drugs imetit and 

thioperamide have significant effects on food intake when given both at night or 

during the day and in satiated or fasting animals, with imetit causing a significant 

increase in food intake and thioperamide causing a significant decrease in food 

intake. Thus, it was interesting to find that proxyfan, which has no effects on food 

intake when administered alone, blocked any changes in food intake from basal 

levels when co-administered with either the H3R agonist or inverse agonist. As 

proxyfan has no effect alone but can have effects on food intake when co-applied 

with imetit or thioperamide, proxyfan appears to be acting as a neutral antagonist 

in our feeding system. It also shows clearly that proxyfan can cross the blood-

brain barrier to affect neuronal function, as has been shown in other studies. For 

example, proxyfan has been shown to affect memory (Cangioli et al., 2002, 

Giovannini et al., 2003), wakefulness (Gbahou et al., 2003), or drinking (Fox et 

al., 2002) in rats. 
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Our results from extracellular electrophysiology on histamine-responsive 

neurones within the rat VMN, suggests these neurones are unresponsive to 

proxyfan when it is administered alone, and is probably not acting as a H3R 

agonist or inverse agonist in this system. We also have shown in previous 

chapters that thioperamide and imetit have an excitatory or inhibitory effect on 

neuronal firing within the rat VMN, respectively. Here we found that, when these 

drugs were co-applied with proxyfan, the excitatory effects of thioperamide or the 

inhibitory effects of imetit were blocked, suggesting proxyfan is antagonising the 

effects on histamine release mediated by presynaptic H3R. Again, this suggests 

proxyfan is acting as a neutral antagonist.  

By suppressing the constitutive activity at the H3R, inverse agonists such 

as thioperamide enhance histamine release, whereas agonists such as imetit 

inhibit the release. Proxyfan alone has no effect on histamine release, but blocks 

the opposing effects of the H3R drugs, thioperamide and imetit on both feeding 

and neuronal firing of histamine-responsive cells within the VMN, suggesting it is 

acting as a neutral antagonist in both systems. The lack of effect of proxyfan 

shows that antagonism of endogenous histamine does not contribute to the 

histamine-releasing effect of thioperamide and imetit.  

The level of constitutive activity depends on both the number of 

spontaneously active conformations and the coupling efficiency of these 

conformations to G proteins (Arrang et al., 2007). It therefore depends not only on 

the receptor, but also on the response. Inverse agonists impede constitutive 

activity by promoting inactive conformations. Their maximal effect is correlated to 

the level of constitutive activity. Thus, thioperamide is blocking the natural 

constitutive activity at the H3R and promoting an inactive conformation which is in 

turn allowing the release of endogenous histamine. As Arrang et al. (2007) 

suggest proxyfan can act as an agonist when the agonist state promoted by 

proxyfan has an efficacy higher than the receptors constitutive state and it can act 
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as a inverse agonists when the state promoted by proxyfan has an efficacy lower 

than the receptor constitutive. But proxyfan alone will have no apparent activity 

when both the receptor constitutive state and the agonist state show the same 

efficacy, and thus here proxyfan is acting as a neutral antagonist (Arrang et al., 

2007). In our system, proxyfan is having no effect alone, but is able to block the 

effects of both imetit and thioperamide. This suggests both the agonist state 

promoted by proxyfan and the constitutively active state of the receptor are 

showing the same efficacy in our system and, thus, proxyfan is acting as a neutral 

antagonist.   

Our results would agree with Morriset et al. (2000) who suggested the 

pharmacological profile of proxyfan depended on the system being analysed. 

Thus, the actions of proxyfan depend on the equilibrium between the active and 

inactive conformations of the receptor and the ratio of the receptor to the various 

G proteins.  

As proxyfan is a protean agonist and we found it to act as a neutral 

antagonist in our system it suggest the H3R agonist, imetit, and the H3R inverse 

agonist, thioperamide act specifically at the H3R. It important to note, that these 

results cannot be generalised to all neurons that are involved in appetite 

regulation. However, the consistency between my in vivo and in vitro data 

suggests that the effects myself and other research groups have noted in rodents 

are in fact real and the H3R agonist, imetit and the H3R inverse agonist, 

thioperamide, are truly specific for the H3R. This adds further support to the vast 

majority of the literature (Jethwa et al., 2009, Sindelar et al., 2005, Lecklin et al., 

1998), and further brings into the question the validity of the Yoshimoto et al. 

(2006) study results described in Chapter 2 of this thesis, which found imetit and 

thioperamide to have the opposite effects on feeding to all other published 

research. Although it must be noted that it is difficult to disagree entirely with the 

findings of Yoshimoto and colleagues, as we did find imetit to have a similar effect 



 185 

on feeding in mice as they illustrated. Also their experiments were carried out on 

H3R knockout mice, which will have no endogenous H3R tone and thus histamine 

may be unusually high in this system which could alter the data collected from 

adding H3R agonists or H3R inverse agonists.  
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Chapter 6: 

Glucose tolerance and the 

histaminergic system 
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6.1 Introduction 

As I have illustrated in this Thesis, a large population of VMN neurones 

are responsive to histamine, but these VMN neurones are presumably responsive 

to a number of other stimuli and, therefore, are able to integrate signaling related 

to energy homeostasis. Thus, these VMN neurones are possibly the same 

population that respond to leptin, ghrelin, and other metabolic signals. A major 

integratory role within the VMN is played by glucose-sensing neurones, but these 

only make up a relatively small proportion of the total number VMN neurones, and 

can respond differently to increases or decreases in glucose. Therefore, we wish 

to determine whether the same populations of VMN neurones responding to 

histamine are also glucose responsive.  

 

 

6.1.1 Glucose sensing in the brain 

Throughout this thesis I have presented evidence that the VMN is 

essential and plays a pivotal role in the regulation and maintenance of energy 

homeostasis. One important role is dependent on the high density of glucose-

sensing cells within the VMN which will influence energy-regulating mechanisms 

(Gonzalez et al., 2008). It is important to note that small changes in levels of 

glucose probably do not have a direct role in the timing or quantity of food intake, 

but the VMN is important in integrating both long- and short-term regulators of 

energy balance, and also in counter-regulatory mechanism to protect against 

hypoglycaemia. If the VMN detects hypoglycaemia, it initiates a number of 

immediate counter-regulatory mechanisms, the most important being the 

immediate release of glucose from the liver, which is mediated by the sympathetic 

nervous system. There is also a slower release of glucagon and inhibition of 

insulin secretion to counteract against hypoglycaemia. There is also an increase 
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in feeding in response to hypoglycaemia, but this is neither immediate nor 

important unless in extreme situations. Perhaps the more important function of 

the VMN in the acute regulation of food intake may be the ability of the VMN to 

reduce feeding in response to other stimuli. 

Most brain glucose is used primarily as substrate for the energy needs of 

neurones and glia and does not alter the firing rate of the majority of neurones 

(Levin et al., 1999). However, a small group of neurones within brain areas tied to 

the neuroendocrine and autonomic control systems appear to use glucose as a 

signal to alter their firing rate suggesting some neurones might be involved in 

energy homeostasis. 

‘Glucose-sensing’ neurones are specialized cells that respond to small, 

physiological changes in extracellular glucose concentration by altering their firing 

rate (Burdakov et al., 2005). Glucose-sensing neurones are present in a number 

of forebrain regions and the brainstem, but, like histamine responsive neurones, 

are most prevalent within the hypothalamus (Adachi et al., 1995). Hypothalamic 

glucose-sensing neurones comprise groups of cells within the LH, ARC and VMN 

regions and exhibit both excitatory or inhibitory firing responses to changes in 

extracellular glucose concentration (Anand et al., 1964; Oomura et al., 1969; 

Routh VH., 2002; Wang et al., 2004). The activity of these cells in response to the 

energy status of the body, can result in changes in hormone release, metabolic 

rate, food intake and locomotor activity to ensure the brain always has adequate 

glucose (Routh VH., 2002; Levin et al., 2004; Routh et al., 2004). This continual 

monitoring of brain glucose concentrations is critical as the brain becomes 

irreversibly damaged if deprived of glucose after only a few minutes.  

Two populations of hypothalamic glucose-sensing neurones have been 

shown to exist, those excited and those inhibited by glucose (Burdakov et al., 

2005). Glucose-excited (GE) neurones and glucose-inhibited (GI) neurones are 

both located in the hypothalamic VMN, LH, ARC and PVN, and in the caudal 
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brainstem around the tract of the solitary nucleus (Song et al., 2001, Levin et al., 

1999). The first evidence for the presence of hypothalamic GI neurones was 

provided by the in vivo experiments of Anand et al. who tried to correlate blood 

glucose levels with firing activity in the ‘hunger’ and ‘satiety’ regions of the 

hypothalamus (Anand et al. 1964). Using steel microelectrodes, they found that 

spike firing of LH neurones significantly decreased after intravenous infusion of 

glucose in anaesthetised dogs (Anand et al., 1964). Oomura et al. also 

demonstrated that injection of glucose suppressed spike firing in 20% of LH 

neurones (Oomura et al., 1969). Although GI and GE neurones both respond to 

glucose albeit in opposing manners, they are not similar in their physiology 

(Routh et al., 2003).  

Relatively little is known about glucosensing in GI neurons, but what is 

certain is that they respond to increasing glucose levels by decreasing their firing 

rate. Oomura et al. propose that glucose-inhibited neuronal activity is regulated 

by the Na+-K+-ATP pump (Oomura et al., 1974). Whereas, Routh and colleagues 

obtained data indicating that they may use a Cl- channel to sense glucose (Song 

et al., 2001; Routh et al., 2003). Because decreasing extracellular glucose levels 

should lower intraneuronal ATP levels, such a Cl--channel should be responsive 

to changes in the ATP to ADP ratio. GE neurones show more similarity to 

pancreatic β-cells than GI neurons, and these similarities are proposed to account 

for how GE neurones sense glucose (Yang et al., 1999). GE neurones increase 

their firing rate when ambient glucose levels rise and cease firing when glucose is 

removed (Oomura et al., 1969). This response is thought to be modulated by a K+ 

channel that is sensitive to the intracellular ratio of ATP to ADP. Thus, it is called 

the ATP-sensitive K+ channel (KATP) (Trapp et al., 1997). The KATP channel is 

inactivated by direct binding of ATP, whereas phosphorylation of the channel 

increases its activity (Routh et al., 1997). Normal orexigenic responses to NPY 

and anorectic responses to leptin are maintained when KATP channel function is 
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interrupted, suggesting neuronal glucosensing is critical for glucoprivic, but not 

homeostatic ingestive behavior, and the ablation of KATP channel function 

attenuates the counter-regulatory response to hypoglycemia but does not alter 

basal plasma glucose levels (Miki et al., 2001). It is suspected that glucose is only 

one of several metabolic signals sensed and integrated within energy-sensing 

neurones (Levin et al., 2002). 

 

 

6.1.2 The VMN and glucose sensing 

Many glucose-sensing neurones are found in the classical ‘satiety center’ 

or VMN. Glucosensing neurones in the VMN are among the best characterized, 

with 14–19% of all VMN neurones being GE and 3–14% being GI in type (Levin 

et al., 2004). Single-cell RT-PCR studies have suggested that some, if not all, 

VMN neurones including GE neurones, are GABAergic (Miki et al., 2001; Kang et 

al., 2004). Glucosensing neurones also express receptors for and respond to 

peripheral hormones that convey signals relating to fat stores such as leptin 

(Spanswick et al., 2000) and insulin (Wang et al., 2004). The sensitivity of the 

VMN GI neurones can be modulated by systemic hyperglycaemia (Canabal et al., 

2007) and hypoglycaemia (Song et al., 2006), illustrating the importance of the 

VMN in relation to glucose sensing within the brain. The importance of glucose 

sensing within the VMN came about when data showed that mature rats with 

lesions in the VMN failed to display the preference reversal from concentrated to 

dilute glucose solutions that is seen in normal rats (Booth et al., 1972; Jacobs et 

al., 1958), indicating that the VMN could be involved in the sensing of metabolic 

signals arising from glucose. Panksepp and co-workers (1972) also established 

that rats with VMN lesions do not exhibit the prolonged depression of food intake 

after intraperitoneal glucose injections observed in control rats and in rats with 

lateral hypothalamic lesions (Panksepp et al., 1972). 
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VMN GE neurones have been noted to be inhibited when extracellular 

glucose decreased to very low levels suggesting these neurones only respond to 

large decreases in extracellular glucose that accompany profound systemic 

hypoglycemia, rather than the relatively small changes in plasma glucose levels 

(Levin et al., 1998). Thus, as with other GE neurones, VMN GE neurones are 

more likely to play a role in the counter-regulatory response to hypoglycemia 

(Yoshimatsu et al., 1984) and glucoprivic feeding (Atef et al., 1992), than in the 

control of meal initiation. A less common type of VMN neurone with inherent 

glucosensing properties are the GI neurones and which are found only in low 

abundance within the VMN. GI neurones are excited when extracellular glucose 

is decreased.  

It is important to point out that, Song et al., 2001 have shown that there 

are many neurones in the VMN that have no inherent glucosensing capacity of 

their own. Instead, their firing rate is regulated by presynaptic inputs from other 

glucosensing neurones either inside or outside of the VMN.  

 

 

6.1.3 Histamine and glucose sensing 

Histamine neurones in mammals project their efferent varicose fibres to 

almost all areas of the brain. The hypothalamus is one of the richest areas in 

density of histamine fibres, with histamine receptors being heavily localised in the 

hypothalamus (Sakata et al., 1997). Although it must be pointed out that although 

histamine receptor expression is dense within the hypothalamus, it is far greater 

in other brain regions that are not related to energy homeostasis. Glucose-

sensing neurones are found within the VMN and also tend to have receptors for 

other metabolic signals, such as leptin and insulin, demonstrating that glucose-

sensing neurones are capable of integrating different types of signals. If these 



 192 

same neurones are also responsive to histamine, then histamine may well be 

able to modulate glucose sensing, and therefore glucose handling.  

Glucoprivation activates histamine neurones in the hypothalamus (Oohara 

et al., 1994) and enhances glycogenolysis in the brain (Sakata et al., 1994). 

Histamine neurones also accelerate lipolysis in adipose tissues to supply energy 

to the brain through activation of the sympathetic nervous system (Bugajski et al., 

1981). These findings regarding functional roles of histamine neurones suggest 

such systems are related to nutritional status and energy storage across a broad 

range, from starvation to hyperglycemia (Sakata et al., 1997). Treatment of diet 

induced obese (DIO) and db/db obese mice with histamine lowers serum 

concentrations of glucose and insulin, improving glucose tolerance and insulin 

sensitivity (Masaki et al., 2001).  

 

 

6.2 Does thioperamide affect glucose metabolism?  

Hyperglycemic responses to exogenous histamine have been shown 

(Nishibori et al., 1987). Sakata et al measured the turnover of hypothalamic 

histamine after IP infusion of insulin and demonstrated that the turnover rate of 

hypothalamic histamine was accelerated (Sakata et al., 1994). Sakata et al. 

suggest the accelerating effect of insulin on histamine release is mediated by 

hypoglycemia as ICV infusion of the glucose analogue 2-deoxy- glucose (2-DG) 

induces hyperglycemia and also increases the turnover rate of hypothalamic 

histamine (Sakata et al., 1994, Sakata et al., 1991). These results suggest a lack 

of neural glucose in the hypothalamus increases histamine turnover (Oohara et 

al., 1994, Sakata et al., 1994). Sakata and colleagues have shown hypothalamic 

histamine is activated and released in response to an energy deficit thus 

suggesting hypothalamic histamine may play a vital role in glucose utilization and 
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ensuring homeostatic maintenance of energy supplies in the brain (Sakata et al., 

1997). As shown in Chapter 2 of this thesis, thioperamide is a potent H3R inverse 

agonist that causes significant reductions in food intake when given both centrally 

and peripherally. But thioperamide has also been shown to significantly increase 

plasma glucose in rats (Yoshimatsu et al., 1993).  Yoshimatsu et al. showed that 

thioperamide produced a hyperglycemic response through activation of 

endogenous histamine in rats (Yoshimatsu et al., 1993). Thioperamide removes 

the normal feedback autoinhibitory control system of both histamine synthesis 

and release at the level of histamine nerve terminals thus increasing histamine 

neuronal activity and endogenous histamine release in vivo (Arrang et al., 1987).  

As it has been shown by a number of research groups that histamine 

turnover is accelerated and endogenous histamine release increases when 

glucose levels are low (Oohara et al., 1994, Sakata et al., 1994, Yoshimatsu et 

al., 1993), we can assume that histamine plays a role in glucose utilization. 

Thioperamide, by blocking the autoinhibitory controls on histamine that the H3R 

has it causes a increase in histamine release which could then go on to play a 

key role in glucose tolerance and consumption. We wanted to determine whether 

injecting the H3R inverse agonist, thioperamide and, thus, increasing histamine 

release within the animal before injecting a bolus of glucose would affect the 

animals natural ability to partition glucose.  

We carried out this experiment on 18 CD-1 male mice (7 weeks of age) 

and injected either 20 mg/kg of thioperamide of saline (100 µl injection volume) 

into the intraperitoneal cavity of the animal (n = 9 per group). Twenty minutes 

after the initial injection of either thioperamide or saline was given, we took the 

circulating blood glucose levels of the animal being tested by collecting blood 

from a small incision in the tail and using a One Touch Ultra 2 glucometer 

(LifeScan, Johnson-Johnson, UK). We then administered 2 g/kg of glucose into 

the intraperitoneal cavity. We took further circulating blood glucose readings, at 
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15, 30, 60 and 120 minutes post the injection of glucose. Blood glucose levels 

were presented as mmol/l and results were analysed and presented as mean ± 

SEM. Data from feeding groups were analysed using a two-way ANOVA with 

repeated measures and Bonferroni post hoc tests (see graph 7.1). 
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Figure 6.1.;  Circulating blood glucose levels (mmol/l) measured at 15, 30, 60, 120 

minutes after i.p. injection with glucose. (n = 9). Data are expressed as mean ± S.E.M. 

Two-way ANOVA with repeated measures and Bonferroni post hoc tests, no significance.  

 

 

We found that thioperamide had no effect on glucose handling in the CD1 

mouse (figure 6.1). Although thioperamide-treated animals did show some trend 

towards an increase in glucose, their blood levels returned back to basal levels 

faster than control group, and so there was no statistical significance. These 

results suggest that the increase in histamine resulting from the administration of 

thioperamide has little effect on the handling of glucose and is not associated with 

the anorexic effects of the H3R inverse agonist. These preliminary results suggest 
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the actions of thioperamide are not directly affecting glucose sensing and 

metabolism, but further more in depth hormone studies are needed to determine 

the levels of compounds such as insulin and glycogen to determine whether 

histamine is affecting their levels when glucose levels vary. It also would be 

interesting to see what effect thioperamide has on glucose tolerance in obese 

models. 

 

 

6.3 SF-1 neurones and possible role of PACAP  

One of the major problems in studying the VMN is that is that we do not 

know the phenotype of the cells. Steroidogenic factor 1 (SF-1) is a member of the 

nuclear receptor family of intracellular transcription factors and is important in the 

development of the VMN. It regulates steroid hydroxylases and is a cell-specific 

nuclear regulator. Since SF-1 is only expressed in the VMN in the brain it can be 

used to target VMN neurones. Zhao and colleagues have demonstrated that 

targeted deletion of SF-1 results in the failed development of the VMN resulting in 

an obese animal (Zhao et al., 2004). The SF-1 promoter has also been used to 

drive expression of Cre-recombinase, to selectively knock out “floxed” genes in 

the VMN. For example, SF-1-driven deletion of leptin receptors also results in an 

obese phenotype (Dhillon et al., 2006). Many VMN neurones are glutamatergic, 

but less is understood about the neuropeptide populations in this area. Two 

possible neuropeptide candidates are pituitary adenylate cyclase-activating 

polypeptide (PACAP) and brain-derived neurotrophic factor (BDNF). These two 

neuropeptides appear to be in separate populations because most PACAP 

neurones in the adult mouse express SF-1, notably in the dorsomedial region of 

the VMN, but very few BDNF neurones in this region do (Hawke and Luckman, 

unpublished). Ideally, we would like to look at individual populations of cells within 
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the VMN, but that is not currently possible. Although SF-1 cells are probably a 

mixed population, Dhillon et al. (2006) suggest they mostly respond in the same 

direction and are excited by leptin, much as we would expect for histamine. 

Therefore, we wanted to determine whether SF-1 cells also contain a sub-

population of glucose-sensing neurones. If they do, then our aim would be to see 

how these glucose-sensing neurones respond to histamine. 

 

VMN cells are predominantly glutamatergic, like many hypothalamic 

neurones, and at least some of the effects of SF-1 cells in the VMN are mediated 

by glutamate (Tong et al., 2007). One VMN-enriched gene is PACAP (Segal et 

al., 2005; Kurrasch et al., 2007), which plays a role in controlling both appetite 

and energy expenditure in mice (Morley et al., 1992, Tachibana et al., 2003, 

Matsuda et al., 2005; Matsuda et al., 2007). At least some of leptin’s effects are 

mediated by this VMN PACAP population (Hawke et al., 2009). Leptin signaling in 

the VMN plays an important role in regulation of energy homeostasis. 

Extracellular recordings have revealed that at least half of VMN neurones 

respond to the application of leptin (Irani et al., 2008). Moreover, 

electrophysiological recordings from SF-1 neurones show the large majority are 

depolarized by leptin (Dhillon et al., 2006). Electrophysiology and 

immunohistochemistry confirm that SF-1 cells in the VMN are a target for leptin, 

and that targeted genetic ablation of leptin receptors in the VMN results in obesity 

(Dhillon et al., 2006). SF-1-Cre lepr flox/flox mice exhibit significantly less PACAP 

expression in the VMN than wildtype littermates (Hawke et al., 2009). 

As PACAP is clearly vital in VMN controlled feeding and the majority of 

leptin-sensitive neurones contain PACAP we hypothesis that the same population 

of cells could also be histamine-responsive and these cells could be mediating 

their affects on food intake via similar neuronal pathways. 
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6.4 How does glucose act SF1-positive neurones?  

Extracellular electrophysiology determines the effects on a subset of 

neurones when a substrate is applied. The electrode will detect electrical activity 

generated by the neurones adjacent to the electrode tip, but the major downside 

to extracellular electrophysiology is that it is impossible to easily determine the 

identity of the neurones being recorded. Also, extracellular recordings may be 

generated by the collective activity of many cells and are affected by the 

simultaneous activation of many neurones by synaptic transmission. With single-

cell, patch-clamp electrophysiology, you can either fill the recorded cell with a 

marker and identify it post-recording using immunocytochemistry or, as done 

here, record from pre-identified neurones. This is possible because the SF1-Cre 

mouse we have used was originally crossed with a green-florescent protein 

(GFP) reporter mouse, so that GFP in the offspring is now expressed only in SF-1 

neurones (Dhillon et al., 2006). Thus, with help from Dr Mino Belle, we have 

preliminary data to begin the task of phenotyping the VMN neurones that are 

sensitive to glucose and histamine.  

To determine how glucose affects neuronal firing within the VMN we 

measured changes in the excitability of VMN neurones in vitro using whole-cell 

patch recordings from SF-1 VMN neurones pre-identified by their expression of 

GFP. Mice (7-9 months old) expressing GFP driven by the SF-1 gene in the VMN 

were bred and group housed on a 12:12 hour light:dark cycle with lights on at 

8:00 h. Animals were fed ad libitum. Animals were terminally anaesthetized with 

isofluorane and killed by decapitation. The brain was immediately removed and 

coronal brain slices containing the VMN were collected using a Vibroslicer 

(Campden Instrument, Loughborough, Leicestershire, UK) into an ice-cold low 

Na+/Ca2+, high Mg2+ sucrose-based incubation artificial cerebro-spinal fluid 

(aCSF) (in mM: NaCl 95; KCl 1.8; KH2PO4 1.2; CaCl2 0.5; MgSO4 7; NaHCO3 
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26; glucose 15; sucrose 50; Phenol Red 0.5mg/l; oxygenated with 95% O2; 5% 

CO2; pH 7.4, measured osmolality 300-310 mosmol kg-1). For patch-clamp 

recordings, slices were transferred to a recording bath and were continuously 

perifused (1.5-2.5 ml min-1) with oxygenated recording aCSF at room 

temperature. The recording aCSF was identical to the incubation solution except 

for the following (mM): NaCl 127; CaCl2 2.4; MgSO4 1.3; sucrose 0. Slices were 

allowed to recover for at least 1 hour prior to whole-cell recording. Cell membrane 

was ruptured with or without minimum holding currents using a patch pipette 

electrode (7-10 MΩ), made from thick-walled borosilicate glass capillaries 

(Harvard Apparatus Ltd, Kent, UK) using a two-stage vertical micropipette puller 

(Narashige, Tokyo, Japan). Signals were sampled at 30 kHz, stored and analyzed 

using Spike2 software (Cambridge Electronic Design, Cambridge, UK). All data 

acquisition and step protocols were generated through a micro 1401 mkII 

interface (CED). GFP neurones were visually identified using a Leica 

epifluorescent microscope (DMLFS; Leica Microsystems Ltd, Milton-Keynes, UK) 

equipped with filters optimized for visualizing GFP through a 40x water-immersion 

lens (HCX APO). Neurones were allowed to recover for 10-20 seconds, and all 

data were collected within 4 minutes of cell membrane rupture to minimize any 

potential cell dialysis effects (see Belle et al., 2009 for more details on the setting 

up and recording of whole-cell patch-clamp electrophysiology).  

To determine the cell’s response to increased glucose we firstly bath 

applied 1 mM glucose solution mixed with fresh aCSF for 1 minute to determine 

the cells response to low glucose and then bath applied 5 mM of glucose solution 

mixed with fresh aCSF for 5 minutes and recorded the changes in membrane 

potential and neuronal firing.  

Unfortunately due to the lack of SF-1-Cre lepr wt/wt mice, genotyping 

drawbacks and time restrictions we were only able to collect recording from a few 

cells, only one of which was intrinsically glucose sensitive.  
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Figure 6.2.;  This diagram (see next page) illustrates the area within the mouse 

hypothalamus we recorded from and allows us to demonstrate the GFP identified SF-1 

cells within this area. A. illustrates the dorsomedial ventromedial hypothalamus (VMHDM) 

where our electrode was placed, B. illustrates a low magnification of the VMHDM area 

and demonstrates the GFP within the SF-1 cells in this area, C. demonstrates the SF-1 

cells expressing GFP under a high magnification which allowed us to specifically record 

from this subset of cells using whole cell-patch clamp electrophysiology, D. illustrates our 

glass pipette electrode recording from a SF-1 GFP expressing cell, E. illustrates more 

clearly the glass pipette electrode recording specifically from a SF-1 cell. The yellow 

dotted lines indicate the edges of the glass electrode.  
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As discussed in the introduction of this chapter, both GE and GI neuronal 

populations are found within the VMN, with a slightly higher population being 

glucose excited. We hypothesized that as more VMN glucose responsive cells 

are found to be GE than GI we would expect to find cells that increased their 

neuronal firing when glucose was added. The one recording we obtained, was 

found to be a glucose-inhibited neurone. As can be seen in figure 6.3 when the 

higher concentration of glucose was added (5 mM) we recorded a gradual 

hyperpolarisation of 10 mV in the membrane potential, which eventually resulted 

in an inhibition of cell firing. The cell did begin to return to basal membrane 

potential levels around 30 minutes after the high-glucose medium was thoroughly 

washed off, showing this was a reversible decrease in firing. The membrane 

properties of this neurone (results not shown), suggested that it had similar 

properties to glucose-inhibited neurones recorded in the lateral hypothalamus 

(Burdakov et al., 2005).  

 

 
 

Figure 6.3.; This patch clamp electrophysiology trace shows the change in membrane 

potential the SF-1 GFP VMN cell we recorded from demonstrated when the glucose 

concentration within the aCSF solution was increased from 1 mM to 5 mM. There is a 

gradual lowing of the membrane potential seen after the higher concentration of glucose 

is added suggesting this particular VMN cell is glucose-inhibited. This recording was 

carried out by Dr Mino Belle. 
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6.5 Future work 

The regulation of feeding by histamine and glucose sensing both involve the 

VMN. We began to investigate whether glucose sensing interacted with 

histaminergic signaling within the VMN. Unfortunately due to a number of 

setbacks and a lack of time, we were only able to carry out very preliminary 

studies.  

With the help and expertise of Dr Mino Belle we demonstrated glucose 

sensing by at least some SF-1 cells within the dorsomedial VMN. Obviously as 

only one recording was obtained, we would plan to carry out more recordings on 

this population of SF1-positvie cells and determine whether the majority are 

glucose inhibited or glucose excited. 

Once the population of glucose responsive cells has been characterized, we 

would then aim to determine whether these cells also are influenced by the 

histaminergic system. To determine this we would apply the H3R inverse agonist 

thioperamide which would increase histamine release within the slice and see if 

thioperamdie modified the firing patterns of glucose-sensing neurones. 

We found thioperamide had no significant effect on the glucose tolerance of 

CD1 mice when given before a bolus injection of glucose, though there may have 

been a slight increase in circulating glucose as suggested in other reports. It is 

too early to determine if histamine is interacting directly in the VMN to modify 

glucose handling. Thus, one further study would be to determine the effects of 

thioperamide on glucose tolerance in obese mice. We could also measure insulin 

and glucagon responses in the blood of mice that received thioperamide.   
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General Discussion 

 The key aims of this PhD thesis were to determine the involvement of the 

histaminergic system in relation to food intake and appetite control and whether 

the H3R could, like the H1R, be a possible target for the development of 

pharmacological products to advance the fight against obesity. We also wanted to 

determine where in the rat brain H3R ligands were acting and if they were acting 

directly on known ‘feeding’ and ‘satiety’ centres within the hypothalamus. We 

aimed to establish what effects histamine has on neuronal firing within the rat 

VMN, including whether H1 or H3 receptors are present within the rat VMN and 

whether the drugs we tested in in vivo feeding studies also altered neuronal firing 

in this area, which is known to be pivotal in the regulation of feeding. Our final aim 

was to ensure our H3R drugs, imetit and thioperamide, were acting specifically at 

the H3R. 

 

 

7.1 The histaminergic system can be pharmacologically manipulated 

to affect food intake 

 Histamine is an important central neurotransmitter and is involved in a large 

number of functions including arousal, cognition, locomotor activity, autonomic 

and vestibular functions, feeding and drinking, sexual behaviour and analgesia 

(Hough LB., 1988; Schwartz et al., 1991; Wada et al., 1991, Chotard et al., 2002, 

Gomez-Ramirez et al., 2002, Hancock et al., 2004). A number of research groups 

have demonstrated the importance of histamine in controlling food intake and all 

have suggested it is a potent anorexigenic agent (Yoshimatsu et al., 1993, 

Yoshimatsu et al., 2002, Yoshimatsu H., 2006, Yoshimoto et al., 2006, Gotoh et 

al., 2007). For example, behavioural studies have illustrated that histamine 

suppresses food intake when administered both centrally or systemically (Doi et 
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al., 1994, Lecklin et al., 1998, Lecklin et al., 1995, Endou et al., 2001). We have 

demonstrated that when histamine is administered centrally into the rat it results 

in a rapid, yet short-lasting, highly significant reduction in food intake. These 

results concur with other reports suggesting histamine is a potent hypophagic 

agent. 

Of the four documented histamine receptors only the H1R and H3R have been 

found to be involved in the regulation of feeding and obesity in rodents (Masaki et 

al., 2006). H1R activation causes a reduction in food intake and, thus, 

pharmaceutical agencies first looked to establish drug therapies that targeted this 

H1R as a treatment for weight gain. The main issue with targeting the H1R is that 

it is involved in a large number of bodily functions and it is distributed widely 

throughout peripheral tissues, as well as the CNS (Kinnunen et al. 1998). Thus, 

altering the activity of this receptor will not specifically target just one of its many 

functions, but will result in a number of adverse effects, including drowsiness. 

Therefore, we focused our attention on the H3R which has been illustrated by a 

number of reports to have potential anti-obesity effects, though the exact 

therapeutic benefits remain controversial. For example, thioperamide, a potent 

H3R inverse agonist should theoretically reduce food intake by increasing 

endogenous histamine levels which then activate the H1R resulting in a reduction 

in food intake. This has been found by some research groups (Lecklin et al., 

1998, Sindelar et al., 2004), but others found it to have no effect (Itoh et al., 

1998), and some even found giving thioperamide increased food intake and 

weight gain in mice (Yoshimoto et al., 2006). Therefore, we wanted to determine 

what effect on food intake a H3R agonist and two H3R inverse agonists would 

have on food intake in our chosen rat model. We found that the H3R agonist 

imetit, caused a significant increase in food intake, whereas the H3R inverse 

agonists thioperamide and NNC1202, caused dramatic hypophagia in the rat. 

Using analysis of the behavioural satiety sequence, we found that imetit and 
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thioperamide appeared to change feeding without causing any unexpected, 

adverse effects. By contrast, NNC1202 caused the animals to withdraw and 

become inactive, displaying “sickness-like” behaviour, which explains the 

dramatic and prolonged reduction in food intake caused by non-selective actions.  

We also wanted to determine whether feeding in mice and rats were equally 

affected by imetit and thioperamide, or whether these drugs, as suggested by 

some research groups (Tokita et al., 2006, Yoshimoto et al., 2006), exerted 

species-related differences in their actions and abilities to alter feeding. We found 

that both imetit and thioperamide caused a significant reduction in food intake in 

mice. This suggests that thioperamide can cause hypophagia in both rats and 

mice and, thus, inverse agonists at the H3R remain a potential target for anti-

obesity therapies. The effects of imetit on the other hand appear to alter 

depending on the species of animal being investigated. The reasons for these 

differences are currently unknown, but may reflect differences in H3R splice 

variants expressed in different areas of the CNS or in different species. Splice 

variant may interact differently with pharmacological reagents such as imetit and 

thus result in distinct outcomes in different species. 

 

 

7.2 The hypothalamus is a key target for the histaminergic system 

 The hypothalamus is a key brain area identified as having an important role 

in controlling food intake and energy expenditure (King BM., 2006). From brain 

lesion studies, the VMN and PVN are regarded predominantly as satiety centres, 

and the LH as a feeding centre. But the ARC, DMN and SCN all play important 

roles in controlling appetite as well (Beck et al., 2000). Histamine is known to 

reduce food intake, but where and on what neuronal types it is acting has not 

been fully elucidated. Histaminergic nerve fibres are found in virtually all parts of 
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the brain but with especially high densities being apparent within the posterior 

hypothalamus, including in particular the VMN, SCN and PVN, although all 

hypothalamic areas receive a fairly strong histaminergic innervation with 

histaminergic fibres (Gomez-Ramirez et al., 2002). The H1R is found throughout 

the mammalian PNS and CNS but has specifically been shown to be present 

within the VMN and PVN (Masaki et al., 2003). It is widely accepted that 

histamine acts via the H1R to reduce food intake. We found using c-Fos, the 

neuronal marker for activation, that cells were activated within the hypothalamus 

of the rat brain. In particular, there was increase neuronal activation within the 

VMN, PVN, ARC, LH and DMN, all known to play a part in the regulation of 

appetite. As H1R are present within the rat hypothalamus, histamine acts through 

the H1R to reduce food intake there is increased neuronal activation within this 

area, we could assume that histamine is acting either directly or indirectly through 

the VMN, PVN, ARC, LH and DMN to have its hypophagic effects.  

There is a high density of H3R within the mammalian hypothalamus, striatum 

and nucleus accumbens (Hussain et al., 2002). In particular, H3R mRNA have 

been detected in a number of areas within the hypothalamus including the VMN 

and the ARC (Lovenberg et al., 1999). Although the highest densities of H3R can 

be found in the CNS, they have also been found to be present, albeit in much 

lower levels, within the PNS, for example, in the GI tract, the airways and the 

cardiovascular system (Celanire et al., 2005). In much the same manner as 

histamine, the application of the H3R agonist, imetit, and the H3R inverse 

agonists, thioperamide and NNC1202, caused increased neuronal activation 

within the same key feeding centres of the rat brain. H3R have been shown to be 

present within the hypothalamus of the rat brain, in particular the VMN and ARC 

(Lovenberg et al., 1999), It is widely assumed that H3R inverse agonists and 

antagonists should affect food intake by blocking the negative feedback 

mechanisms of the H3R that control the synthesis and release of histamine and 
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by doing so a increase in histamine is seen which then could go on to activate 

hypothalamic H1R resulting in anorexia. It is important to point out here that due 

to the high level of constitutive activity at the H3 receptor, the receptor has 

intrinsic activity even without the action of a ligand, and hence why the H3R 

inverse agonist thioperamide is effective here. H3R agonists on the other hand 

could be causing a reduction in endogenous histamine resulting in hyperpagia. It 

is important to point out here that as H3R can reside on the terminals of neurones 

containing other neurotransmitters that themselves affect feeding behaviours, this 

is another possible mechanism which may result in the changes observed on 

food intake. 

 

 

7.3 H1 and H3 receptors are present within the rat VMN 

The VMN plays a crucial role in regulating food intake. It has been 

demonstrated in lesion studies and clinical observations that damage to the VMN 

is associated with increased food intake and morbid obesity (Anand et al., 1951). 

The VMN is referred to as the “satiety centre” of the brain and therefore, if 

damaged, it can no longer enforce feeding restraints resulting in a overeating and 

weight gain (Sclafani, 1971, Bray et al., 1981). The VMN has direct links with the 

PVN and DMN and via these it connects indirectly with the LH (Harrold et al., 

2004), illustrating the complex circuitry surrounding the VMN and the importance 

it carries in regulating food intake within the hypothalamus. VMN lesion-induced 

obesity has been found in both rodents (Mayer et al., 1955) and humans (Bray et 

al., 1975) demonstrating the importance of researching this area when looking for 

pharmacological targets against obesity. The VMN is reported to be the 

preferential site of histamine-mediated suppression of food intake in the 

mammalian brain (Haas et al., 2008) and, thus, we aimed our electrophysiology 
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research the rat VMN. We found that approximately two-thirds of VMN cells 

responded to histamine with an increase in firing.  

Histamine causes a reduction in food intake via the H1R most probably 

within the VMN thus we could assume this increase in neuronal firing is due to the 

H1R. Therefore, we co-administered a H1R antagonist, pyrilamine and blocked 

histamine’s excitatory affects on neuronal firing. This provides further evidence to 

support the presence of the H1R within the rat VMN. Ookuma et al. (1993) had 

suggested H1R have a suppressive role on feeding because these receptors are 

distributed more densely in the nuclei involved in the suppressive function of food 

intake, such as the VMN.  

There is much less research identifying the distribution of the H3R within 

the rat brain compared to the H1R, but it is suggested that the H3R can regulate 

histamine release within the VMN, potentially through its autoinhibitory pathways. 

Using the H3R inverse agonist thioperamide, we were able to demonstrate the 

presence of H3R in or near the VMN. By co-applying the H1R antagonist, 

pyrilamine with thioperamide, we were also proved that the H3R population in the 

VMN are autoreceptors as opposed to heteroreceptors. Our results  collective 

results strongly suggest that H1R andH3R present in the VMN have a key role in 

the regulation of appetite. 

 

 

7.4 Thioperamide and imetit are acting specifically at the H3R 

The H3R is a 7TM GPCR with a high level of constitutive activity (Gbahou 

et al., 2003). Using the fact H3R can act constitutively to our advantage, we aimed 

to determine whether the H3R agonist, imetit, and the H3R inverse agonist, 

thioperamide, were acting specifically at the H3R to have their effects on feeding 

and neuronal firing. GPCRs are allosteric proteins that adopt inactive and active 
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conformations in equilibrium. The active conformation is promoted by agonists, 

such as imetit, or can occur spontaneously, leading to constitutive activity of the 

receptor. Alternatively, inverse agonists, such as thioperamide, promote an 

inactive conformation and decrease constitutive activity (Gbahou et al., 2003). 

Constitutive activity refers to the synthesis of a protein or an enzyme at a 

constant rate regardless of physiological demand or the concentration of a 

substrate. Compounds that bind to GPCRs without altering the equilibrium 

between active and inactive states of the receptor are referred to as neutral 

antagonists (Milligan et al., 2003). Some ligand can act as protean agonists. One 

such compound is proxyfan, which depending on the system it is introduced to 

can act as an agonist, antagonist or neutral antagonist depending on the level of 

constitutive activity. We have shown that in both of in vivo studies looking at 

proxyfan’s effects on feeding and in our in vitro system investigating proxyfan’s 

effect on VMN neuronal firing, proxyfan alone has no effect. But we demonstrated 

that proxyfan can block the actions of both the H3R agonist imetit and the H3R 

inverse agonist thioperamide both in vivo and in vitro. Therefore, in the feeding 

circuitry it appears that proxyfan is acting as a neutral antagonist. As proxyfan is a 

protean agonist, we could use it as a tool to determine the ligand-specific nature 

of our imetit andthioperamide. We found that imetit and thioperamide were acting 

specifically at the H3R as proxyfan, when co-administered with the H3R agonist 

and H3R inverse agonist, blocked the actions of both these compounds.  

 

 

7.5 Conclusion 

 This PhD thesis has investigated the histaminergic system and if such a 

complex signaling system could be manipulated pharmacologically to have a 

beneficial effect on feeding behaviours. We have shown that histamine itself is a 
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potent anorexigenic agent and by focusing our initial investigations on H3R 

compounds, we have proven that the H3R inverse agonist thioperamide causes 

significant hypophagia in both rats and mice. However, imetit, an H3R agonist, 

produces significant hyperphagia in rats whilst it reduced feeding in mice. Others 

have postulated that certain H3R drugs can have opposing effects on food intake 

depending on the animal model being tested, suggesting species-related 

differences could pose a problem for anti-obesity drug development.  

We have also illustrated the key areas activated by histamine and the 

H3R-selective compounds tested, highlighting the feeding and satiety centres 

known to play a vital role in controlling food intake. This suggests possible areas 

or action that histamine, imetit, thioperamide and NNC1202 include the VMN, 

DMN, ARC, PVN and LH all integral in the control of appetite. Unfortunately, the 

coded compound, NNC1202, also appeared to have very strong adverse effects, 

which precludes it from future development. 

We have shown that both H1R and H3R are present within the VMN of the 

rat brain and that histamine produces an excitatory neuronal firing response via 

both these receptors. We have also concluded that H3R are autoreceptors within 

the rat VMN. As the VMN plays one of the most fundamental roles in the 

regulation of feeding and we have shown a population of both H1 and H3 

receptors within this area, this is an important site for the histaminergic regulation 

of feeding.  

Finally we have proven, using a neutral antagonist that the main H3R 

compounds tested during this PhD were acting specifically via the H3R in rats 

and, thus, allows us to conclude confidently that the effects of both imetit and 

thioperamide on feeding and neuronal VMN firing were a direct result of their 

efficacy at H3R.  
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