
DISTRIBUTED SPATIAL ANALYSIS

IN WIRELESS SENSOR NETWORKS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

Farhana Jabeen
Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Dedication 15

Acknowledgements 16

Publications 17

Glossary 18

1 Introduction 19

1.1 WSNs as a Distributed Computing Environment 21
1.2 Core Challenges: Distributed Spatial Analysis Over WSNs 24

1.2.1 Support For Induced Geometries . 24
1.2.2 Supporting Continuous Queries . 24
1.2.3 Distributed Data . 25
1.2.4 Energy Efficiency . 25
1.2.5 Aggregation of Information . 25
1.2.6 Network Dynamics . 26
1.2.7 Synchronization in Complex Task Evaluation 26

1.3 Technical Context To In-network WSN Spatial Analysis 26
1.4 Applicability of Spatial Analyses in WSNs . 27
1.5 Aim: Distributed In-Network Spatial Analysis Over WSNs 29
1.6 Contributions . 30
1.7 Structure of the Dissertation . 31

2 Background 33

2.1 The (Centralized) Spatial Algebra . 33
2.1.1 ROSE Algebra . 34
2.1.2 Algorithmic Strategy . 35

2.2 Background to Sensor Network Deployment . 36

2

2.3 Aggregation Approaches . 36

2.3.1 Tree-Based Aggregation Approaches . 37

2.3.2 Gossip-Based Aggregation Approaches . 38

2.4 Routing Approaches . 39

2.5 Summary . 40

3 A Framework for Spatial Analysis Over WSNs 42

3.1 Related Work . 42

3.2 A Framework for Distributed Spatial Analysis over WSNs 45

3.2.1 Model and Assumptions . 45

3.2.2 Description of the Framework . 46

3.3 Distributed Spatial Task Processing . 49

3.4 Background: Event and Edge Detection Approaches 51

3.4.1 Algorithms for Event and Edge Detection 52

3.4.2 Experimental Comparison of Algorithmic Techniques for Edge Detection . 56

3.5 Summary . 61

4 Spatial Algebra: Distributed Spatial Analysis Over WSNs 62

4.1 Spatial Data Types . 62

4.2 Spatial Operations . 64

4.2.1 Boolean-Valued Operations . 65

4.2.2 Spatial-Valued Operations . 77

4.3 Summary . 81

5 Algorithmic Strategy For Spatial Analysis Over WSNs 82

5.1 Related Work . 83

5.2 Tasks as Complex Algebraic Expressions . 87

5.3 Concrete Data Structures . 87

5.4 Evaluation Components for Boolean-Valued Tasks 88

5.4.1 Task Dissemination . 88

5.4.2 Distributed Task Evaluation . 88

5.4.3 Result Processing . 110

5.5 Evaluation Components for Spatial-Valued Tasks 111

5.5.1 Task Dissemination . 111

5.5.2 Distributed Task Evaluation . 111

5.5.3 Result Processing . 119

5.6 Distributed Algorithms for Spatial Operations . 119

5.6.1 Model for Distributed Algorithms . 119

5.6.2 Description of the Task Processing System 124

5.6.3 Concrete Distributed Algorithms for Spatial Operations 127

5.6.4 Distributed Task Evaluation . 127

5.7 Summary . 128

3

6 Experimental Validation 131

6.1 Simulation Environment . 131

6.2 Experimental Context . 132

6.3 Preprocessing Steps . 132

6.4 Out-of-Network Spatial Analysis Approach . 133

6.4.1 Experimental Setup . 133

6.4.2 Experiments . 134

6.5 Geometry Induction . 136

6.6 In-Network Spatial Analysis Approach . 137

6.6.1 Experimental Setup . 138

6.6.2 Boolean-Valued Operations . 138

6.6.3 Spatial-Valued Operations . 154

6.7 Summary . 160

7 Conclusions and Future Work 162

7.1 Overview . 162

7.2 Significance of Major Results . 163

7.3 Future Research Directions . 164

7.4 Summary . 165

Bibliography 166

A Rose Algebra 180

A.1 Spatial Data Types . 180

A.2 Spatial Operations . 181

A.2.1 Spatial Predicates expressing Topological Relationships 181

A.2.2 Spatial Operations Returning Spatial Data Type Values 184

B Algorithms 186

B.1 Distributed Algorithms for Spatial Operations . 186

B.1.1 Task Dissemination . 186

B.1.2 Task Evaluation . 189

B.2 Boolean-valued Task . 189

B.2.1 Boolean-valued Operators . 190

B.2.2 Aggregation . 209

B.2.3 Result Processing . 214

B.3 Spatial-Valued Tasks . 216

B.3.1 Minus . 217

B.3.2 Plus . 220

B.3.3 Intersection . 220

B.3.4 Vertices . 225

B.3.5 CommonBorder . 225

B.4 Geometry Induction Tasks . 229

4

List of Tables

1.1 Some characteristics of the sensor nodes in Figure 1.1 21

4.1 Spatial predicates supported . 66
4.2 Formal definitions for spatial predicates on SEG points 66
4.3 Formal definitions for spatial predicates on MEG points 66
4.4 Formal definitions for spatial predicates on SEG points and regions 66
4.5 Formal definitions for spatial predicates on MEG points and regions 67
4.6 Formal definitions for spatial predicates on SEG points and regions 67
4.7 Formal definitions for spatial predicates on MEG points and regions 67
4.8 Formal definitions for spatial predicates on SEG lines 68
4.9 Formal definitions for spatial predicates on MEG lines 69
4.10 Formal definitions for spatial predicates on SEG lines and regions 69
4.11 Formal definitions for spatial predicates on MEG lines and regions 69
4.12 Formal definitions for spatial predicates on SEG regions 71
4.13 Formal definitions for spatial predicates on MEG regions 76
4.14 Spatial-valued operations supported . 77
4.15 Spatial-valued operations on SEG points . 77
4.16 Formal definitions for spatial-valued operations on MEG points 77
4.17 Spatial-valued operations on SEG lines . 78
4.18 Spatial-valued operations on SEG lines and regions 78
4.19 Spatial-valued operations on SEG regions . 79

5.1 Possible membership states of operators that only require local GIT look-up to
compute their membership state . 93

5.2 Possible membership states of operators that require, in addition to a local GIT
look-up, GIT information from their one-hop neighbours to compute their mem-
bership state . 99

5.3 Representing operation states . 104
5.4 Expected operator and task state for the complex task in Figure 5.14, by a node

in the scenario in Figure 5.15 . 106
5.5 Bitwise operations for ANDand ORconnectives 110

6.1 Size in number of nodes of the Induced Geometries in Experiment O2 135
6.2 Size of regions in Experiment I1 . 140

5

6.3 Size of regions in Experiment I2 . 143
6.4 Size of regions in Experiment I3 . 145
6.5 Size of regions in Experiment I4 . 147
6.6 Size of regions in Experiment I5 . 149
6.7 Size of regions in Experiment I6 . 151
6.8 Size of geometries in Experiment I7 . 152
6.9 Size of geometries in Experiment I8 . 155
6.10 Size of regions in Experiment I10 . 159

A.1 Predicates formally defined over two R cycles c1 and c2 adapted from [Sch97] . . 182
A.2 Formal definitions for spatial predicates on values b1 and b2 of type R blocks

[Sch97] . 182
A.3 Formal definitions for spatial predicates on values f and g of type R faces 183
A.4 Formal definitions for spatial predicates on values F and G of type regions

[Sch97] . 183
A.5 Spatial predicates [Sch97] . 184
A.6 Spatial-valued operations [Sch97] . 184

6

List of Figures

1.1 (a) Crossbow iMote2 mote [cro10a] (b) Crossbow Mica2 mote [cro10b] 21

1.2 (a) Fields (f1-f10) with induced geometries in a vineyard (b) Example WSN
over (a) showing approximate geometry membership 28

2.1 Realm and application-specific geometries defined over R points and R segments
adapted from [Sch97] . 35

3.1 Distribution of Chlorophyll, Lake Fulmor (adapted from [SSC+07]) 48

3.2 Event Geometry on applying the predicate (chlorophyll levels lie below 20) to
Figure 3.1) . 48

3.3 Actual Event Geometry (left); Induced Geometry (right) 57

3.4 F-Measure-Based accuracy under different areal coverages for FEBD (left) and
CFEBD (right) . 59

3.5 F-Measure-Based accuracy under different areal coverages for T-Fit (left) and
CFT-Fit (right) . 60

3.6 Results from Experiment 2 (left) and Experiment 3 (right) 60

4.1 (a) An example WSN (b) Example geometries over (a) 64

4.2 Examples of not having area disjoint relationship between r and r′ of type SEG
regions. 70

4.3 Geometries r and r′ of type SEG regions standing in area disjoint, border in common

and adjacent relationships. 72

4.4 Geometries r and r′ of type SEG regions standing in edge disjoint and meets

relationships. 73

4.5 Geometries r and r′ of type SEG regions standing in edge disjoint and vertex disjoint

relationships. 73

4.6 Geometries r and r′ of type SEG regions standing in area inside and border in common

relationships. 74

4.7 Geometries r and r′ of type SEG regions standing in area inside, edge inside,
and not equals relationships. 74

4.8 Geometries r and r′ of type SEG regions standing in area inside, edge inside,
vertex inside, and not equals relationships. 75

4.9 Geometries r and r′ of type SEG regions standing in equals relationships. . . . 75

4.10 Derived geometry obtained as a result of a plus operation between regions values. 79

7

4.11 Derived geometry obtained as a result of a minus operation between regions values. 80

4.12 Derived geometry obtained as a result of a intersection operation between re-

gions values. 80

5.1 Characterization of induced geometry and its spatial extent. 90

5.2 (a) Snapshot of a university campus (b) Geometries over the sensor space . . 90

5.3 Snapshot of GIT and EIT of nodes s19 and s24 91

5.4 vertex disjoint relationship between two geometries of type regions. 93

5.5 equals relationship cannot be determined in some scenarios if aggregation is
performed on the basis of a single operand. 94

5.6 Geometries r and r′ not having border in common and adjacent relationship . . . 96

5.7 Geometries r and r′ having border in common and adjacent relationship 96

5.8 Common Localized Unit Triangle (CLUT) Computation 98

5.9 Examples of existence of intersects relationship between values r and r′ of type
SEG regions . 98

5.10 Example scenario: Adjacent relationship between two geometries of type re-

gions. Operand r′ is of type SEG and R of type MEG 101

5.11 Complex Task 1 . 102

5.12 Complex Task 2 . 102

5.13 Running example to describe computation of adjacent relationship between two
geometries of type regions . 103

5.14 Complex Task 3 . 104

5.15 Example scenario: To evaluate the complex task in Figure 5.14 105

5.16 Example scenario-1 and associated derived geometry after evaluating operation
r minus r′ . 114

5.17 Example scenario-2 and associated derived geometry after evaluating operation
r minus r′ . 116

5.18 Complex Spatial-valued task in Postfix notation 117

5.19 Example scenario and derived geometry after evaluating complex task in Figure
5.18 . 117

5.20 Step by step execution of complex task in Figure 5.18 over the geometries in
example scenario in Figure 5.19 (a) . 118

5.21 Task Processing System component diagram . 125

5.22 Task Processing System components (a) Boolean-Valued Operator (Type1) (b)
Boolean-Valued Operator (Type2) inner structure is composed of other components126

5.23 Task Processing System component’s (a) Spatial-Valued Operator (Type1) (b)
Spatial-Valued Operator (Type2) (c) Spatial-Valued Operator (Type3) inner
structure is composed of other components . 126

5.24 Protocol EvaluateBooleanValuedTask . 129

5.25 Protocol VertexDisjoint . 130

6.1 Scenario (Snapshot of vineyard) . 134

8

6.2 Experiment O1: Behaviour w.r.t. Network Size (Sensed measurements are sent
back to the gateway) . 135

6.3 Experiment O2: Behaviour w.r.t. Network Size (Boundary information of in-
duced regions is sent back to the gateway) . 136

6.4 Experiment GI1: Geometry Induction Behaviour w.r.t. Network Growth 137

6.5 Experiment I1: Scenario (Intersection of two induced MEGs IR1 and IR2) 140

6.6 Experiment I1: Behaviour w.r.t. Network Growth (Tree Aggregation) 141

6.7 Experiment I1: Behaviour w.r.t. Network Growth (Gossip-based Aggregation) . 142

6.8 Experiment I2: Scenario (Six stages of an evolving phenomenon) 143

6.9 Experiment I2: Behaviour w.r.t. Topology of the underlying transient phe-
nomenon undergoes changes between evaluation episodes (Tree-based Aggregation)144

6.10 Experiment I2: Behaviour w.r.t. Topology of the underlying transient phe-
nomenon undergoes changes between evaluation episodes (Gossip-based Aggre-
gation) . 145

6.11 Experiment I3: Scenario (Event region with disjoint element geometries) 146

6.12 Experiment I3: Behaviour w.r.t. Spatial-analytic task grows more complex . . . 146

6.13 Experiment I4: Scenario (Four stages of an evolving phenomenon that grows) . . 147

6.14 Experiment I4: Behaviour w.r.t. Induced geometry growth 148

6.15 Experiment I5: Behaviour w.r.t. Average node-neighbourhood cardinality growth 149

6.16 Experiment I6: Scenario (Network regularly deployed over a irregular grid) . . . 150

6.17 Experiment I6: Behaviour w.r.t. Network (regularly deployed over a irregular
grid) growth in terms of number of sensor nodes 151

6.18 Experiment I7: Scenario (Distinct Geometries) 152

6.19 Experiment I7: Behaviour w.r.t. Boolean task varies in terms of operation in-
volving one or more operands other than of type regions 153

6.20 Experiment I8: Scenario (Distinct Geometries) 155

6.21 Experiment I8: Behaviour w.r.t. Randomly generated spatial-analytical tasks . . 156

6.22 Experiment I9: Behaviour of Spatial-valued task w.r.t. Network Growth 158

6.23 Experiment I10: Scenario (Four stages of evolving phenomena) 159

6.24 Experiment I10: Behaviour of Spatial-valued task w.r.t. Topology of the under-
lying transient phenomena undergo changes between evaluation episodes 160

6.25 Experiment I11: Behaviour w.r.t. Spatial-analytic task varies in terms of opera-
tion involving one or more operands other than of type regions 161

A.1 (a) points value (b) lines value (c) regions value adapted from [Sch97] 181

A.2 Between two values of type R block (i) p represents a meeting point (ii) p′ rep-
resents a non-meeting point [Sch97] . 183

A.3 Two intersecting regions Values [Sch97] . 185

B.1 Protocol Task Dissemination . 187

B.2 Procedures used by Task Dissemination protocol 189

B.3 Protocol Evaluate . 189

B.4 Protocol AreaInside . 190

9

B.5 Protocol OnBorderOf . 191
B.6 Protocol Equals . 192
B.7 Protocol NotEquals . 193
B.8 Protocol VertexInside . 194
B.9 Protocol BorderInCommon . 195
B.10 Protocol NeighbourLookUp . 196
B.11 Procedures used by NeighbourLookUp protocol 198
B.12 Procedures used by NeighbourLookUp protocol to confirm CBS 199
B.13 Protocol EdgeInside . 200
B.14 Protocol EdgeDisjoint . 201
B.15 Protocol AreaDisjoint . 202
B.16 Procedures used by Neighbour-Lookup protocol to compute common area 203
B.17 Protocol Intersects . 205
B.18 Procedures used by NeighbourLookUp protocol to compute whether two lines

values meets or intersects . 206
B.19 Procedures used by NeighbourLookUp protocol to compute whether lines value

meets or intersects regions value . 207
B.20 Protocol Adjacent . 208
B.21 Procedures used by NeighbourLookUp protocol to compute existence of CBS and

common area . 209
B.22 Protocol Meets . 210
B.23 Protocol Aggregation . 212
B.24 Procedures used by Aggregation protocol . 213
B.25 Protocol Result Processing . 214
B.26 Protocol EvalSpatialValueTask . 218
B.27 Procedures used by EvalSpatialValuedTask protocol 219
B.28 Protocol Minus . 221
B.29 Procedures used by Minus protocol to compute the difference between two lines

values . 222
B.30 Procedures used by Minus protocol to compute the difference between two re-

gions values . 222
B.31 Protocol Plus . 223
B.32 Protocol DeriveGeometry . 224
B.33 Procedures used by DeriveGeometry protocol . 226
B.34 Protocol Intersection . 227
B.35 Protocol Vertices . 228
B.36 Protocol CommonBorder . 229
B.37 Protocol EvaluateInduceValuedTask . 230
B.38 Procedures used by InduceGeometry protocol to compute the boundary of In-

duced geometry . 230

10

The main text of this dissertation contains 67,252 words including footnotes and endnotes.
The appendices contain a further 12,687 words.

11

Abstract

Wireless sensor networks (WSNs) allow us to instrument the physical world in novel ways, pro-
viding detailed insight that has not been possible hitherto. Since WSNs provide an interface
to the physical world, each sensor node has a location in physical space, thereby enabling us to
associate spatial properties with data. Since WSNs can perform periodic sensing tasks, we can
also associate temporal markers with data. In the environmental sciences, in particular, WSNs
are on the way to becoming an important tool for the modelling of spatially and temporally
extended physical phenomena. However, support for high-level and expressive spatial-analytic
tasks that can be executed inside WSNs is still incipient. By spatial analysis we mean the abil-
ity to explore relationships between spatially-referenced entities (e.g., a vineyard, or a weather
front) and to derive representations grounded on such relationships (e.g., the geometrical extent
of that part of a vineyard that is covered by mist as the intersection of the geometries that char-
acterize the vineyard and the weather front, respectively). The motivation for this endeavour
stems primarily from applications where important decisions hinge on the detection of an event
of interest (e.g., the presence, and spatio-temporal progression, of mist over a cultivated field
may trigger a particular action) that can be characterized by an event-defining predicate (e.g.,
humidity greater than 98 and temperature less than 10). At present, in-network spatial analysis
in WSN is not catered for by a comprehensive, expressive, well-founded framework. While there
has been work on WSN event boundary detection and, in particular, on detecting topological
change of WSN-represented spatial entities, this work has tended to be comparatively narrow
in scope and aims.

The contributions made in this research are constrained to WSNs where every node is
tethered to one location in physical space. The research contributions reported here include
(a) the definition of a framework for representing geometries; (b) the detailed characterization
of an algebra of spatial operators closely inspired, in its scope and structure, by the Schneider-
Guting ROSE algebra (i.e., one that is based on a discrete underlying geometry) over the
geometries representable by the framework above; (c) distributed in-network algorithms for
the operations in the spatial algebra over the representable geometries, thereby enabling (i)
new geometries to be derived from induced and asserted ones, and (ii) topological relationships
between geometries to be identified; (d) an algorithmic strategy for the evaluation of complex
algebraic expressions that is divided into logically-cohesive components; (e) the development
of a task processing system that each node is equipped with, thereby with allowing users to
evaluate tasks on nodes; and (f) an empirical performance study of the resulting system.

12

Declaration

No portion of the work referred to in this thesis has been submitted
in support of an application for another degree or qualification of
this or any other university or other institute of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The Uni-
versity of Manchester certain rights to use such Copyright, including for administrative
purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commer-
cialisation of this thesis, the Copyright and any Intellectual Property and/or Reproduc-
tions described in it may take place is available in the University IP Policy (see http://
www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf),
in any relevant Thesis restriction declarations deposited in the University Library, The
University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/
regulations) and in The University’s policy on presentation of Theses.

14

Dedication

Dedicated to my AMMA (MOM), who left this world very early, but have never left my
heart.

15

Acknowledgements

First of all I would like to thank my supervisor, Alvaro A. A. Fernandes, for his guidance,
vision, and time. His vision has opened me a new door in the field of wireless sensor networks.
I would also like to thank my advisor, Professor Norman W. Paton, for his suggestions and
providing a broad perspective for my work.

I can never thank my great friend Sohel Vhora for his constant suggestions, encouragement
and support. Whenever I lost focus, he encouraged me with one of his unforgettable golden
sentence ”You are almost there!” that infused in me a new spirit to accomplish. I also wish to
express my gratitude to Sarfraz Nawaz, Research Assistant, University of Oxford, for the long
fruitful discussions on potential problems, precious suggestions, and technical support.

Thanks also to Christian Y. A. Brenninkmeijer and Ixent Galpin with whom I have worked
on SNEE Project. I also wish to express my gratitude to Alasdair J. G. Gray, with whom I
have shared office and many moments, during my write-up period.

I am extremely grateful to the School of Computer Science, The University of Manchester,
for support that let me continue and survive the biggest adversity of my career, when my parent
university (NUST, Pakistan) had discontinued funding and instructed me to return. I would
like to thank Schlumberger Foundation for their financial assistance under their programme
Faculty for the Future, which allows many deserving female researchers and students around
the globe to complete their higher education for the benefit of their community.

I would like to express my gratitude to all the members at the School of Computer Sci-
ence of The University of Manchester. Special thanks to all the members of the Information
Management Group.

My special gratitude is due to my brother, Wisal Mohammad, for his continuing guidance,
loving support and encouragement.

Thank you my family, for the Patience and Love Extended (I don’t think I could have made
up without it). Also grateful for the Encouragement that made me accomplish.

16

Publications

1. Farhana Jabeen, Alvaro A. A. Fernandes. Distributed Spatial Analysis in Wireless Sen-
sor Networks. In Proceedings of the Sixteenth International Conference on Parallel and
Distributed Systems (ICPADS04), IEEE, Dec. 2010.

This publication forms the part of Chapter 5 and Chapter 7 of this dissertation.

2. Farhana Jabeen, Alvaro A. A. Fernandes. Monitoring Spatially-referenced Entities in
Wireless Sensor Networks. In 7th International Conference on Ubiquitous Intelligence
and Computing (MENS Symposium). UIC-ATC ’10, IEEE, Oct. 2010.

This publication forms the part of Chapter 5 and Chapter 7 of this dissertation.

3. Farhana Jabeen and Alvaro A. A. Fernandes. Impact on accuracy of deployment tradeoffs
in localized sensor network event detection. In Second International Workshop on Local-
ized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS), in conjuction
with IEEE DCOSS, June 2008.

This publication forms the part of Chapter 3.

4. Ixent Galpin, Christian Y. A. Brenninkmeijer, Farhana Jabeen, Alvaro A. A. Fernandes,
Norman W. Paton. An Architecture for Query Optimization in Sensor Networks. ICDE
2008: 1439-1441

This publication is on Architecture for Query Optimization in Sensor Networks and is not
directly related to this dissertation.

5. Ixent Galpin, Christian Y. A. Brenninkmeijer, Farhana Jabeen, Alvaro A. A. Fernan-
des, and Norman W. Paton. Comprehensive optimization of declarative sensor network
queries. In SSDBM, pages 339-360, 2009

This publication is on Optimization of Declarative Sensor Network Queries and is not
directly related to this dissertation.

17

Glossary

AGG Aggregation
CBN Common Boundary Node
CBS Common Boundary Segment
CLUT Common Localized Unit Triangle
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
DTE Distributed Task Evaluation
DME Distributed Membership Evaluation
DRG Distributed Random Grouping
EEPROM Electrically Erasable Programmable Read-Only Memory
EIT Edges Information Table
GIT Geometric Information Table
GID Geometric ID
GI Geometry Induction
IDG Intermediate Derived Geometry
LUT Localized Unit Triangle
MAC Medium Access Control
MEG Multi-element Geometry
MBR Minimum Bounding Rectangle
NIT Neighbours Information Table
RP Result Processing
ROSE RObust Spatial Extension
SEG Single Element Geometry
SNQPs Sensor Network Query Processors
SQL Structured Query Language.
TDMA Time division multiple access
TC Tree Construction
TD Task Dissemination
TTL Time to live
WSN Wireless Sensor Network

18

Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a collection of spatially-distributed nodes equipped with
sensing, communication, processing and storage capabilities. These capabilities allow the nodes
to measure properties of the physical world, to act as relays for forwarding data sensed elsewhere,
to perform local processing before transmitting information, and to act as storage points for
data.

WSNs allow for interaction with the environment at very high spatial and temporal densities.
Since WSNs provide an interface to the physical world, each sensor node has a location in
physical space, thereby enabling us to associate spatial properties with data. WSNs can perform
periodic sensing tasks, therefore, we can also associate temporal markers with data. Each
value measured by a sensing device in a particular node can have associated with it where,
when, what, i.e., the location of the sensor node at the time of measurement, the time at
which measurement was taken and what is the measured value, respectively. This can be
important in many applications scenarios, e.g., in automatic detection, avoidance, and recovery
from environmental disasters. As scientific understanding of physical phenomena presupposes
a study of their manifestation in time and space, this makes WSNs well-suited for real-time
monitoring, control, and analysis of transient physical phenomena (e.g., a moving band of rain,
a shape-shifting region of low temperature).

As an example of the usefulness of this kind of information, consider the following context.
Efficient water management is a major concern for farmers of many crops. Imagine that a
farmer has deployed sensor nodes [Ulr08, BBB04], and is interested in part of a field where
the soil moisture has dropped below a certain threshold, so that only those parts are irrigated,
given the limited water supply. The nodes sense the soil moisture and, using their short-range
radio, communicate with each other to send the real-time information from the fields to the
farmer. WSNs therefore allow the farmer to get a real-time digital picture, in the form of sensed
measurements, of the physical world. The raw data being collected enables the farmer to see
what is going on in fields and to adjust their management strategies. In addition, sensor node
can also help in frost monitoring [PE08] and fighting fungal disease in the field [A05, BBB04].
Such diseases tend to spread under certain temperature and humidity conditions. The collected
information allows the farmers to control water, fertilizer, planting density, and pest-disease

19

20 CHAPTER 1. INTRODUCTION

control programs. Many factors affect the growth of crops, some according to place, some by
time. For each factor, there are information needs, much of it specific to the location of the
crop. In particular, a farmer may be interested in knowing the spatial relationship between the
physical phenomenon and the fields (e.g., whether the low moisture event region is adjacent,
or inside, or outside a cultivated field). In a different context, consider now the Great Duck
Island deployment [MCP+02] for monitoring the nests in the petrel colony established there.
The nests are situated in underground burrows, distributed in discrete patches around the
island. Environmental conditions vary widely from patch to patch. This characterizes the
need for a spatio-analytical perspective. For example, the biologists involved were interested
in determining which environmental conditions yield an optimal microclimate for breeding,
incubation, and hatching. Such microclimates are characterized by transient phenomena and
by their interaction with permanent features of the physical environment.

WSNs are likely to be more prevalent as their cost-effectiveness improves [ASSC02a, HHKK04].
The spectrum of applications for WSNs spans multiple domains. In the environmental sciences,
in particular, they are on the way to becoming an essential technology for monitoring the natu-
ral environment and for modelling the dynamic behaviour of transient physical phenomena over
space. In most applications, a WSN acts as an entirely passive system, i.e., it helps in detecting
events or in observing state of the environment, but is unable to affect it. In other applications,
nodes may have actuators, with the help of which they can affect the environment. For example,
in a flood monitoring application [Big09] based on water dams, the system can affect the environ-
ment automatically by opening water gates, or emitting alarms, when the water level in the dam
exceeds a certain level. Examples of environmental WSN applications proposed in the literature
include minimizing unintended impacts on wildlife habitats monitoring [HBC+09, TPS+05];
precision agriculture [PE08, AS09, BBB04, CMS03, OE08, WZW06, VTP+08]; reducing the
risk as well as providing expert support in a time of crisis (e.g., forest fire detection [JWZ+09],
flood detection [Big09], active volcano monitoring [WALW+06], undersea surveillance applica-
tions [HYW+06]; and pollution studies [TYIM05]). As can be seen, for many WSNs applica-
tions, the scenarios in which WSNs are best placed to act like macroscopes are those in which
deployment takes place in sites with difficult access to scientists and cost constraints preclude
expensive components or strategies. WSNs have, therefore, been advocated as a prime tech-
nology for building macroscopes for scientific studies. By macroscope is meant an intelligent,
largely autonomous, instrument for scientific observation at very fine granularities and over
large distributed areas.

The importance of identifying, tracking and reporting relationships between dynamic, tran-
sient spatial phenomena and application-specific geometries has been stressed in environmental
monitoring applications. This dissertation argues that WSNs can be used effectively as spatial
information systems, allowing management decisions about processes in the physical world to
be made on the basis of sensed data. The main research challenge in this respect is how to
support in-network spatial analysis in a cost-effective manner. At present, in-network spatial
analysis in WSN is not catered for by a comprehensive, expressive, well-founded framework.

With a view to supporting this class of applications, this dissertation shows that such spatial
analyses can indeed be efficiently implemented in WSNs using in-network processing techniques.

1.1. WSNS AS A DISTRIBUTED COMPUTING ENVIRONMENT 21

Mica2 Imote 2
CPU Speed 8MHz 13-416MHz
RAM 4K 32MB
Program Memory 128K Flash (persistent) 256K SRAM (volatile)
Data Flash 512K 32MB
Radio Range 150m (outdoor) 30m

Table 1.1: Some characteristics of the sensor nodes in Figure 1.1

Figure 1.1: (a) Crossbow iMote2 mote [cro10a] (b) Crossbow Mica2 mote [cro10b]

The remainder of this introduction is structured, as follows. In Section 1.1, we describe the
highly constrained distributed computing platform that WSNs give rise to. Section 1.2 explains
the major challenges that arise, in an attempt to apply classical spatial algebra over WSNs. In
Section 1.3, we summarize the context in which the research has been carried out. In Section
1.4, we describe the main motivations for conducting spatial analysis over WSNs. In Section
1.5, we describe the aims and objectives of the work that led to this dissertation. In Section
1.6, we present the resulting contributions. Finally, in Section 1.7, we outline the structure of
the remainder of the dissertation.

1.1 WSNs as a Distributed Computing Environment

Sensor nodes can be considered small computers, but they are extremely resource-constrained
in terms of communication, power, storage and computational resources. The size of the typ-
ical sensor node is on the order of a few centimeters. Crossbow Technologies [cro] was the
first commercial supplier of WSN hardware. A number of other manufacturers and research
institutions have also created their own hardware platforms. Although there are a number of
different variants of sensor nodes (called motes), a typical mote would have a micro-controller,
few kilobytes of RAM, a short range radio transceiver, sensing devices and several kilobytes of
flash storage. These motes can be powered by one or two ordinary AA batteries. Figure 1.1
shows two different sensor motes which, at the time of writing, are among those motes available
in the market. In Table 1.1, some characteristics for them are shown.

In WSNs, energy is valuable because it is scarce, sensor nodes only have finite energy reserves
drawn from batteries whose replacement is not only expensive, but, for some applications,

22 CHAPTER 1. INTRODUCTION

impossible as nodes can be deployed in human-unfriendly locations of difficult access [HBC+09,
TPS+05]. In most, environmental monitoring applications, the WSN is, by and large, an
isolated system with depletable resources. The effectiveness of WSNs is constrained, therefore,
by their limited energy supplies. This causes their life time to be determined by their ability to
use the available energy in an effective and frugal manner. As with other platforms, the cost of
performing certain operations is more expensive when compared to others. In particular, in the
case of sensor nodes, communication is more expensive than computation [GM04] and sensing
operations. As described in [PK00], in a noise-free environment transmitting 1 Kb of data at a
distance of 100 meters costs around 3 joules. Nevertheless, a general purpose processor with 100
MIPS/W capability consumes around the same amount of energy to execute around 3 million
instructions. Therefore, reducing communication activity and increasing processing inside the
network, because of the much lower cost of CPU cycles, boosts the longevity of the network.

Each of the sensor nodes typically has a short communication range and needs to work
cooperatively in order for it to be effective over a large area. Assuming that they can be
cost-effectively deployed in large numbers, this short-range communication constraint need not
hinder their deployment, and may even be useful in cluttered environments where line-of-sight
paths are short and prevent the formation of a long-range communication network. Hence,
in most WSNs applications, in order to cover the desired monitoring region, multi-hop com-
munication [ASSC02b, KR04, CSA04] is used, so that each sensor node may have to perform
the additional function of forwarding/relaying the data that it receives from one to another
of its neighbours thereby forming routing links, all the way back to the gateway. In addition,
distributed sensing is also effective not only in cluttered areas but also in detecting events that
cannot be effectively sensed from a long distance, e.g., temperature, humidity, and pressure. It
follows from these observations that, as macroscopes, WSNs can cover large areas of irregular
topography and with greater density of observation.

In most environmental monitoring applications, WSNs are used to sense and collect data
that was impossible to collect in the past and to transmit it towards the base station for storage,
where the required data analyses can be performed off-line [HM06, MGZ+09, BBB04]. Some
systems send specific requests to the nodes to fetch the data, others allow the nodes to send
data autonomously, or else in response to the detection of some event of interest.

The technological characteristics of WSN alluded so far, viz. resource constrained sensor
devices, distributed system complexity, and communication unreliability, raise extensive soft-
ware development challenges. Software development costs remain high, as programming WSNs
requires specialized knowledge, the scarcity of the resources puts a tight limit on code size,
and debugging is cumbersome. Implementing a simple data collection application may require
thousands of lines of code in an embedded programming language.

Transmitting every node sensed value [MCP+02, Big09] to some destination that is external
to the WSN for storage and off-line analysis may be prohibitively expensive and sometimes not
possible, given the typical data collection rates and network sizes. In this approach, apart from
network longevity, scalability is an issue as it will result in increased bandwidth requirements,
raising the risks of packet loss due to collisions [BGS00, Sri]. In addition, the nodes that lie
closer to the sink consume energy much faster, as they have to relay more packets towards

1.1. WSNS AS A DISTRIBUTED COMPUTING ENVIRONMENT 23

the sink, than distant sensors. For supporting lower communication activity, it is therefore,
preferable that, instead of raw sensor data, finer-grained information is returned by the net-
work. In-network processing is a distributed technique for information processing that allows
for the reduction of the network traffic in WSN, thus supporting network scalability, and net-
work longevity. It has led to the development of generalized algorithms supporting different
application scenarios (e.g., TinyDB [MFHH05]). Increasing in-network processing is useful in
prolonging the lifetime, and hence improving the cost-effectiveness, of the deployment. In the
in-network approach, energy efficiency arises from cooperation and a reduction in the need to
transmit large amounts of data. One common strategy to achieve this is to perform data reduc-
tion (e.g., by computing aggregates) and filtering as early as possible in a data path. For the
sake of increased network longevity, it is therefore crucial that tasks such as routing, sensing,
localization, communication and others, are carried out using energy-efficient algorithms.

It follows from the considerations above that a WSN may be viewed as a distributed com-
puting platform [BGS00], with each node being viewed as computational resource and not just
a data collection and data transmission resource. Albeit limited, node resources such as pro-
cessing power and memory can be used to execute application logic. WSN applications can
therefore be considered to be fully-fledged distributed systems, since sensor nodes cooperate
not only in the execution of application but in transmitting the results to the destination and in
performing functions such as adapting to changing network topology, and ensuring the longevity
of the network. Moreover, each sensor node acts as a separate data source providing data by
means of its sensing capabilities or pulling it out of its flash memory.

Note, however, that sensor nodes constitute a distributed environment and hence, there is
no central clock to regulate the activities of the network. Time synchronization is, therefore,
a critical requirement for in-network processing, as is accurate time stamping of sensor events
and, possibly of processing and communication events as well. This is a well studied prob-
lem [SKPM06, EE01], and it is beyond the scope of the dissertation to address such issues.
Components that provide such functionality are assumed to exist in support of the distributed
algorithms described later on.

More specifically, WSNs have been the focus of research in which the network is viewed as a
database against which queries can be executed. This approach, with its reliance on declarative
specifications of the data to be retrieved, can be seen as response to the software engineering
challenges alluded to above and to the fact that too many existing deployments have tended to
be application-specific. Gehrke et al. [YG02] and Madden et al. [MFHH05] propose that WSNs
can be programmed with considerably less effort by the use of the database paradigm. This has
given rise to Sensor Network Query Processors (SNQPs) implementing in-network declarative
query processing over WSNs, examples of which include TinyDB [MFHH05], Cougar [YG02],
and SNEE [GBJ+09]. Declarative queries allow users to specify what data they want from a
WSNs without needing to know such details as how to contact the relevant sensing devices
on sensor nodes, how to deploy application logic, how to manage its execution and how to
transmit results back to the user. However, current WSNs query processors are not capable of
performing spatial analysis. At present, in-network spatial analysis in WSN is not catered for
by a comprehensive, expressive, well-founded framework.

24 CHAPTER 1. INTRODUCTION

1.2 Core Challenges for Performing Distributed Spatial

Analysis Over WSNs

There are major differences between carrying spatial analysis over WSN and classical spatial
database systems. The design of distributed spatial analysis algorithms that run correctly and
efficiently over WSNs poses several challenges, some of which are summarized in the remainder
of this sub-section.

1.2.1 Support For Induced Geometries

In a classical centralized spatial database system (such as Tripod [GFP+01], which makes use of
ROSE [GS93, Sch97] algebra), spatial analysis is usually performed over asserted and derived
geometries. The reader is referred to Section 2.1.1 for a description of ROSE algebra. By
asserted geometries are meant permanent geometries that are known in advance. By derived
geometries are meant geometries that are computed based on existing asserted geometries
and are output by the spatial operations available for that purpose. Information about these
geometries is held centrally and is rarely updated.

WSN applications are usually deployed for real world monitoring, in contexts where scientists
are interested in the shape and size of an event as it occurs in the sensing scope of the nodes.
The accurate characterization of the geometry of transient, physical phenomena as they take
place in the sensing scope of a deployed WSN is referred to in this dissertation as induced
geometries. Therefore, in the case of WSNs, spatial analysis needs to be carried on three types
of geometries, viz., asserted , induced , and derived geometries. Note, furthermore, that derived
geometries may be computed based on any combination of existing induced , asserted or derived
geometries. The reader is referred to Section 3.2.2 for detailed description of these geometries.

1.2.2 Supporting Continuous Queries

Classical spatial DBMSs mostly operate on non-streamed data and only support one-off queries.
In contrast, WSNs must support continuous queries, which are posted once and evaluated many
times, result tuples being generated continuously for possibly long periods of time [SN05].
WSNs are, by definition, connected to the physical world and sensed data streams represent
properties of dynamic, evolving real world events (as opposed to stored data in the case of
classical DBMSs). Traditional spatial DBMSs only support queries that are posted once and
produce a complete result set in one single return event.

Continuous monitoring of an induced geometry makes it possible to track the spatial evo-
lution of the underlying spatial phenomenon. An event of interest can be characterized by an
event-defining predicate (e.g., humidity>98 and temperature<10). If so, then the notion of an
event geometry is definable in terms of the location in space of those sensor nodes that satisfy
the event predicate. More specifically, changes in the measurements of physical quantities ob-
tained by a group of sensor nodes can be used to characterize the life cycle of an event of interest
by the way its geometry changes. This is so because, over time, the measurements obtained by
each sensor node will vary depending on the distance at which that node lies from the physical

1.2. CORE CHALLENGES: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS 25

phenomenon under observation. At different points in time, such a predicate will change in its
truth value at different nodes depending on their location with respect to the event defined by
the predicate. This allows the event geometry to be induced.

1.2.3 Distributed Data

In the case of the classical approach, the assumption is that a computer is used to store the
geometries. WSNs are distributed platform, therefore, each node is only aware of that part of
induced geometries lying in their sensing range. Because of this kind of resource constraint, com-
plete information regarding induced, asserted and derived geometries is distributed throughout
the WSN. No node can assume to have complete information about the geometries it is part of.

The ensuing challenges are highly nontrivial, particularly so in the case of induced geome-
tries. In such scenarios, a task related to the detection of an induced geometry is re-evaluated
with some periodicity and each node independently updates the local information that defines
the induced geometries it is a member of. Thus, unless it cooperates with other nodes, each
node is, in principle, only aware of its own membership status. The inherent scarcity of re-
sources and the nature of underlying platform, where execution is distributed and carried out
periodically over sensed data streams, give rise to non-trivial challenges.

Furthermore, the resolution or scale of the spatial data may vary, geometries may have
different spatial dimensions, and spatial types (e.g., points, lines, or regions). These several
forms of diversity give rise to challenges on how to integrate and to keep them consistent in
order to provide correct answers for spatial analysis tasks.

1.2.4 Energy Efficiency

In the case of WSNs, for reasons of energy efficiency and network longevity, the algorithms
should run in a distributed manner inside the network. This requirement for in-network pro-
cessing arises because the cost of communication dominates energy consumption and nodes are
energy-bound. The need to reduce communication often precludes sending all sensed values
back from the nodes to the base station as well as any scheme that often requires the exchange
of messages in a non-localized manner, i.e., beyond the one-hop neighbourhood of a node. Con-
crete algorithms implementing spatial operations as well as algorithms for task dissemination,
routing, aggregation, etc., must be localized.

1.2.5 Aggregation of Information

Recall that information about a geometry lies in distributed fashion inside the WSN and that
each node is only aware of portion of geometry. This implies that the computation of spatial
operations requires aggregating information from all the nodes that belong to the operands of
the operators involved. An operand may comprise a single-element geometry or a multi-element
geometry with or without holes.

Furthermore, induced geometries are dynamic, which implies that, their shape and size can
not be known in advance. This requires the design of efficient in-network hierarchial aggregation
scheme that allows for aggregation of information, from single and multi-element geometries

26 CHAPTER 1. INTRODUCTION

with or without holes to compute the final result. Such scheme must be efficient enough to
reduce not only the number of messages but also the amount of information they carry.

As the nodes are resource constrained, therefore, for detailed spatial analysis instead of
evaluating many simple tasks separately, the user should be able to express and evaluate complex
spatial tasks (examples are given in Section 1.4) in an energy-efficient manner.

1.2.6 Network Dynamics

Another fundamental challenge in WSNs is to cope with network layer dynamics. Among the
most important dynamic events are those that cause the network topology to change. There
are several factors that can cause changes in network topology between evaluation episodes
including: (i) node failure at various locations; (ii) change in membership status for a specific
geometry resulting in increase or decrease in the number of nodes belonging to that geometry;
(iii) packet collision, and (iv) loss of communication.

1.2.7 Synchronization in Complex Task Evaluation

In-network processing of spatial tasks requires nodes to perform local processing to compute
operation state for each operation in the task. An operation state identifies whether the node
satisfies the primitive success criteria for a spatial operator. The evaluation of some spatial
operators may only require information that is available within the node itself, whereas for
others the node might require information from neighbouring nodes that are also members
of operand geometries to compute its operation state. For timely coordination, participating
entities must start and finish the processing of each spatial operator in the complex task at
the appropriate time in order to avoid delays in response and in achieving accuracy. As each
node is acting as a unit in a distributed computing platform, during the evaluation of a task, at
each point in time, there may be situations where some of the nodes satisfy the participation
requirements of one or more operators in the task, and some satisfy for other operators, and
others does not satisfy for any of the operator.

1.3 Technical Context To In-network WSN Spatial Anal-

ysis

There are several factors that motivate the investigation of spatial analysis over WSNs, the
combination of which provides an opportune and timely context for research on this area:

• SNQPs, have demonstrated that in-network processing is an effective and efficient means
of interacting with a WSNs in data collection tasks. Thus, spatial analysis over WSNs
can build upon established distributed query processing techniques, but, here, emphasis is
on the spatial aspects of the data, which are not adequately addressed in existing SNQPs
[MFHH05, YG02, GBJ+09].

• The emergence of event and edge detection techniques as an effective approach to detect
events in a distributed manner using in-network processing techniques [CG03, JF08]. The

1.4. APPLICABILITY OF SPATIAL ANALYSES IN WSNS 27

reader is referred to Section 3.4 for description.

• The existence of research [FZWN08, JW08, WD06] on providing a computational model
for WSNs to detect topological change (i.e., hole formation/hole loss, self-split/self merge,
and split/merge) in dynamic regions based on local low-level snapshots of spatio-temporal
data. This work has tended to be comparatively narrow in scope in that it confines itself
to detecting topological change.

• The existence of a spatial algebra based on finite resolution computational geometry rep-
resented with a discrete grid, viz., the RObust Spatial Extension (ROSE) algebra [Sch97].
The ROSE algebra has several desirable characteristics: it rigorously defines a comprehen-
sive set of Boolean-valued (e.g., meets, adjacent, vertex inside, etc.) and spatial-valued
operations (e.g., plus, intersection, etc.), and it supports complex geometries such as
regions containing holes, and multi-element ones. However, [Sch97] only presents cen-
tralized algorithm over stored data for one-off execution.

With a view to supporting environmental applications that depend on monitoring evolv-
ing phenomena, this dissertation defines a framework for representing geometries over WSNs,
thereby allowing the representation of asserted , induced and derived geometries. The disserta-
tion then shows how an algebra can be defined over this spatial framework whose operations
enable the expression of sophisticated spatial analyses over WSNs. In particular, this disser-
tation shows how the algebra can be used to characterize complex and expressive topological
relationships between spatial entities and spatial phenomena that, due to their dynamic, evolv-
ing nature, cannot be represented a priori. If it can be efficiently implemented in WSNs, such
a characterization is very helpful in the detailed analysis of such phenomena.

The focus of the research reported here was on developing algorithms for efficient in-network
evaluation of complex tasks that are expressions in the algebra mentioned above, over WSNs
and over complex, dynamic phenomena. This dissertation describes distributed implementa-
tions of spatial-algebraic operations over the geometries represented by that framework, thereby
enabling: new geometries to be derived from induced, derived and asserted ones, and relation-
ships to be checked between spatially-referenced entities.

1.4 Applicability of Spatial Analyses in WSNs

The application level motivation for the research described in this dissertation stems primarily
from applications where important decisions hinge on the detection of an event of interest. In
the last decade, for example, wireless technologies have been increasingly applied in precision
agriculture. Precision agriculture is a developing discipline aiming to enhance farming effi-
ciency [KK03]. We use as a running motivating example an application of WSNs in agriculture.

WSNs have been used in precision viticulture for suggesting appropriate management prac-
tices to increase productivity and the quality of the crops. One real-world example in which
WSNs are being deployed for precision viticulture is at Camalie Vineyards [Ulr08]. Monitoring
the moisture in the soil, soil pH, sun exposure and temperature is crucial to improving crop
yield and quality. WSNs support the monitoring of these physical quantities. The availability

28 CHAPTER 1. INTRODUCTION

Figure 1.2: (a) Fields (f1-f10) with induced geometries in a vineyard (b) Example WSN over
(a) showing approximate geometry membership

of real-time information makes it possible to promptly target irrigation when soil in one area
dries up, to remove leaves and expose grapes to more sunshine, to change the schedule for using
pesticides or to make arrangements to avoid the risk of frost damage to vines. For control-
ling the spread of disease, pesticides need to be applied if certain temperature and humidity
conditions are met and these may be periodic. The application of pesticides can be delayed
or stopped if high temperature and low moisture are detected, thereby avoiding the risk of
damage to vine quality. It can be seen that much of the information relates to the location, as
the factors affecting crop quality are inherently spatial in nature. Therefore, the spatial aspect
of the data is significant in contributing to the growth and quality of vines.

As WSNs provide an interface to the physical world, our main motivation is to contribute to
the goal of making it act as an intelligent device (i.e., a macroscope). Instead of retrieving raw
data for farmers, we aim to make the WSN respond to the information requests by the farmers
that require exploring the relationships between spatially-referenced entities, and to derive
representations grounded on such relationships (e.g., to compute a new derived geometry as
the intersection of the geometries that characterize the low moisture region). The power of
this intelligent tool derives from the integration of spatial data with descriptive data pertaining
to spatially distributed phenomena. Our aim is to contribute to the spatial analysis of such
interactions using in-network processing techniques [MFHH05, YG02, GBJ+09].

We have used the underlying asserted geometries (f1-f10) in the deployment depicted in
Fig. 1.2 as the basis for our examples and experiments 1. The starting point for our motiva-
tional scenario is the observation that mildew and other bacteria tend to spread under certain
temperature and humidity conditions. When this happens, chemicals need to be applied. As a
result, it is important to monitor the temperature and soil moisture with appropriate temporal

1More information is available at http://camalie.com/WirelessSensing/WirelessSensors.htm [12 June

2009]. In particular, see http://camalie.com/CamalieGIS/Naked/default.asp [12 June 2009] for the geome-
tries we use as our basis.

1.5. AIM: DISTRIBUTED IN-NETWORK SPATIAL ANALYSIS OVER WSNS 29

and spatial precision in order to decide when and where to apply chemicals. More formally,
given thresholds θ and θ′, call M the induced geometry where soil moisture is above θ and T

the induced geometry where temperature is below θ′. The sensor nodes whose measurements
satisfy each of these predicates characterize the two induced geometries. Figure 1.2 shows as-
serted geometries (f1-f10) and induced geometries M and T. Both geometries M and T have
two elements. Both elements of geometry T are without holes, whereas one of the element of
geometry M has hole and other is without hole. Our motivation is to enable WSNs that allow
a farmer to pose a task whose evaluation determines whether there is a need to spray a field,
say f5. The task is a spatial-analytic one and can be expressed in terms of the intersects

topological relationship as follows:

((M Intersects f5) AND

((T Intersects f5) AND (M Intersects T)))

If this expression returns true, the farmer needs to take action. In order to derive a
geometry, where spray is needed a farmer can pose the task as follows:

((M Intersection f5) Intersection

(M Intersection T))

In terms of our motivating example, we note that water infiltration varies over space and
time and hence influences soil moisture levels differently. The farmer can pose a task as follows
to compute the relationship of the induced geometry to several others:

(((M BorderInCommon f6) OR (M AreaInside f6)) AND (M Intersects f5))

As mentioned, the quality of a crop is shaped by the physical conditions where it is growing
(i.e., location, topography, soil, etc.) and the climatic environment. Wine makers achieve
greater control over the product by defining sub-blocks within the vineyard. Batch selection
can then be decided based upon suitable flavors, spatial locality, type of soil and climatic factors.

Assume that field f5 comprises types of soils ST1 and ST2. Call SA the area where soil is of
type ST1 and SB the area where soil is of type ST2. If so, a farmer can derive a new geometry
comprising the area of soil type ST1 in field f5 where neither soil moisture nor temperature are
above the target thresholds by posing the following task.

((F5 Intersection SA) Minus (M Union T))

From the discussion in this section, it can be seen that there is a need for contributions that
enable in-network distributed spatial analyses of physical phenomena using WSNs.

1.5 Aim: Distributed In-Network Spatial Analysis Over

WSNs

In this section, we describe the main research aim underlying the contributions reported in
this dissertation in terms of its component objectives. The main aim is to contribute to the
enabling of in-network distributed spatial analyses of spatial phenomena that can be sensed
using WSNs. In order to achieve that aim, the following objectives have been pursued:

30 CHAPTER 1. INTRODUCTION

1. To define a spatial framework for representing geometries over WSNs.

2. To identify distributed algorithms for characterizing induced geometries in the framework
in (1).

3. To define a spatial algebra over the geometries representable by the framework in (1) and
inducible by the algorithms in (2).

4. To design and implement distributed in-network algorithms for the operations in the
spatial algebra in (3) over the geometries that can be represented over the framework,
thereby enabling new geometries to be derived from induced and asserted ones, as well
as the computation of relationships between geometries, with the optimization goal of
preserving energy and obtaining short response times.

5. To design and implement a task processing system for the evaluation of complex algebraic
expressions using the algorithms in (4).

6. To evaluate the effectiveness and efficiency of the concrete algorithms in (5) by means of
empirical experiments over simulated deployments.

1.6 Contributions

In this section, we describe the contributions of the research. The contributions described below
are constrained to WSNs where every node is tethered at one location in physical space.

1. This dissertation presents a framework for representing geometries in WSNs that can be
induced, asserted and derived. These geometries can be single or multi-element and can
have one or more disjoint holes inside it.

2. This dissertation presents a detailed characterization of a spatial algebra closely inspired,
in its scope and structure, by the Schneider-Guting ROSE algebra over the geometries
representable by the framework in (1). The dissertation also contributes extended defi-
nitions for topological operations that take into account cases where the geometries may
comprise unit regions, which were overlooked by Schneider and Guting.

3. This dissertation presents distributed in-network algorithms for the operations in the
spatial algebra over the representable geometries, thereby enabling (i) new geometries
to be derived from induced and asserted ones and (ii) topological relationships between
geometries to be identified. The algorithms for these spatial operations are divided into
logically-cohesive components. The algorithms are specifically tailored for power-efficient
in-network execution, with a focus on minimizing unnecessary communication and re-
ducing the size of information to be communicated. The distributed algorithms are, for
the most part, localized (i.e., communication is restricted to one-hop neighbourhood),
and hence have desirable complexity in terms of messages complexity as well as of bit
complexity, response time, and energy consumption.

1.7. STRUCTURE OF THE DISSERTATION 31

This dissertation shows that the algorithms for topological operations maps the problem
of distributed computation of complex algebraic expressions stemming from (3) that in-
volve multi-element geometries to the problem of first computing a node-level task state
and then aggregating that at two levels using a new bit-string-based approach. Com-
putation of aggregates, such as count, sum, average, minimum, and maximum, is a well
studied problem and can be solved in a distributed manner. The dissertation studies two
aggregation approaches for handling this distributed aggregation problem and contributes
modifications to these approaches that yield improvements in performance.

4. The dissertation shows that a general algorithmic strategy for the evaluation of complex
algebraic expressions can be used that breaks down into logically-cohesive components. A
task processing system has been developed that allows the users to evaluate task on nodes.
Each node is equipped with the task evaluation components allowing it to participate in
task dissemination, to contribute in the distributed evaluation of a task, and to participate
in the aggregation and routing of results to the user.

5. This dissertation contributes an empirical performance study of the system stemming from
4. We evaluate our algorithms with detailed simulations using the TinyOS [LMG+04]
simulators TOSSIM [LLWC03] and PowerTOSSIM [SHrC+04]. Our experimental results
provide evidence that the algorithms scale well in terms of response time, message com-
plexity, bit complexity and energy consumption under varying conditions.

1.7 Structure of the Dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 briefly outlines the background work on the ROSE algebra. It also describes
the 9-intersection model based on point-set topology, which is a more restricted algebraic
framework than the one adopted in the rest of this dissertation.

• Chapter 3 discusses the research dealing with spatio-temporal query processing and on
event tracking and monitoring. It then defines a framework for representing induced
geometries as well as asserted geometries and derived geometries that advances on the
work in Chapter 2.

• Chapter 4 describes the spatial algebra over the geometries representable by the framework
described in Chapter 3.

• Chapter 5 discusses the research dealing with spatial analysis over WSNs. It then de-
scribes an algorithmic strategy for in-network distributed spatial analysis over WSNs that
addresses the challenges identified in Chapter 2. This chapter also presents distributed
in-network algorithms for the operations in the spatial algebra described in Chapter 4
using the algorithmic strategy described in Chapter 5.

• Chapter 6 presents empirical performance study of the algorithms in Chapter 5.

32 CHAPTER 1. INTRODUCTION

• Chapter 7 summarizes the work presented in this dissertation and suggests some future
directions that could be pursued to advance the WSNs spatial analysis research in the
wake of the contributions reported here.

Chapter 2

Background

At the time of writing, there is no comprehensive approach available to perform in-network
spatial analysis over WSN. Note that, therefore, this chapter does not describe potentially
competing research. Spatial analysis over WSN clearly raises research issues at several levels.
It is crucial, therefore, to survey the state of art on several areas of the literature, as they may
contribute insights, methods and techniques for building a complete framework for evaluating
distributed spatial operations in WSNs. This chapter, is therefore, a survey structured by
the broad areas that comprise the technical context underpinning the research contributions
reported in the remainder of this dissertation.

Section 2.1 briefly outlines the background work on centralized spatial algebra, based on fi-
nite resolution computational geometry represented with a discrete grid. By centralized is meant
that the operations of such an algebra are applied to data stored on a single, central server. Such
centralized spatial algebra cannot be implemented without modification over WSNs. The goal
of doing so presents significant challenges that were discussed in detail in Section 1.2. The aim
of discussing centralized, classical spatial algebra is to highlight the similarities and challenges
in supporting a spatial algebra and representing spatial data in WSNs, and, more specifically,
to investigate whether an existing classical spatial algebra could be redesigned, redefined and
reimplemented in distributed form, thereby enabling spatial analysis over WSNs.

Section 2.2 introduces concepts and terminology related to designing a precise deployment
model in WSN-based environmental monitoring applications. Section 2.3 briefly outlines the
background work on aggregation approaches over WSN. Section 2.4 reviews some of the back-
ground literature on routing, with emphasis on geographical routing over WSN. The motivation
behind the description of routing and aggregation approaches is to build the technical context
in so far as these techniques will be required for distributed evaluation of spatial tasks. Section
2.5 summarizes the chapter.

2.1 The (Centralized) Spatial Algebra

This section briefly outlines the background work on a spatial algebra based on finite resolution
computational geometry represented with a discrete grid, viz. the ROSE algebra. The main

33

34 CHAPTER 2. BACKGROUND

motivation behind the description of ROSE algebra is that this dissertation presents a detailed
characterization of a spatial algebra in Chapter 4 closely inspired, in its scope and structure,
by the Schneider-Guting ROSE algebra.

2.1.1 ROSE Algebra

The ROSE algebra uses the notion of a realm for spatial modelling in order to overcome the
problem of limited precision support provided by computers. With this aim, it replaces Eu-
clidean space with a discrete geometric basis. The ROSE algebra is based on finite resolution
computational geometry where spatial values consist of finite sets of points and non-intersecting
line segments defined over a discrete point grid called a realm (see Figure 2.1). A realm con-
sists of a finite set of points, called R points, and a finite set of segments, called R segments.
It provides a discrete, numerically robust, and consistent geometric basis on which spatial data
types can be defined. R points are the end points of R segments. It is assumed that R points
have coordinates in the grid and that no R point lies within a R segment , as shown in Figure
2.1. All intersections between segments are assumed to be pre-calculated at the time the repre-
sentations enter the database, or when updates are made. Therefore, any two distinct segments
neither properly intersect nor overlap. The use of a realm guarantees that all spatial operations
are error-bounded and take as input, and produce as output, intersection-free spatial values.
Thus, interactions with a realm-based database benefits from geometric consistency. Much of
the material in this sub-section is summarized from Schneider et al. [GS93, Sch97].

All spatial objects processed and produced by the ROSE operations are realm-based, i.e.,
they are defined over a discrete basis. For obtaining a discrete geometric basis, it is necessary to
avoid the intersection of line segments at a point not lying on the underlying grid. The topology-
preserving solution to this problem proposed by Greene and Yao uses a redrawing method
[GY86], and that proposed by Guibas and Marimont uses snap rounding method [GM95]. As
a result, the spatial algebra and the geometric algorithms, built on top of realm are protected
from problems of numerical discrepancy and topological incorrectness.

Application-specific geometries can be defined using the ROSE data types, which are col-
lections of points, lines, or regions representing geometric entities. A points value can be
used to denote 0-dimensional spatial entities (a value of which could denote, e.g., a well)). A
lines value can be used to denote 1-dimensional spatial entities (a value of which could denote,
e.g., a river, or a pipeline). A regions value can be used to denote 2-dimensional spatial
entities (a value of which could denote, e.g., a building, or a cultivated field). The values of
these data types can be defined in terms of points and line segments present in a realm. Figure
2.1 shows some spatial values defined over the realm in Figure 2.1(a). In Figure 2.1(b), A and
B represents region values, C is a value of type line and D is a point value.

Over such data types, a comprehensive set of algebraic operations is defined. There are four
classes of operations: binary spatial predicates expressing topological relationships, operations
returning spatial objects, operations returning numbers, operations on sets of objects. Appendix
A discusses the spatial data types and the two types of operation in the ROSE algebra that are
of greatest relevance in this dissertation, viz., spatial predicates and spatial-valued operations.
The motivation behind this is two-fold: firstly, to explain how the operations over the geometries

2.1. THE (CENTRALIZED) SPATIAL ALGEBRA 35

are computed in a discrete manner; and secondly, to lay the foundations for Chapter 3.2 and
Chapter 4 where we show how these definitions can be mapped to sensor space and why some
of these definitions need modifications.

(a) Realm: A finite set of points and (b) Application-specific geometries
line segments over a discrete domain defined over (a)

Figure 2.1: Realm and application-specific geometries defined over R points and R segments
adapted from [Sch97]

Recall form Chapter 1, in WSN each node has a location, which gives spatial properties to
data. These nodes have limited communication and sensing capabilities, therefore, deployed
in a finite large number to be effective over large area. In WSN, any pair of nodes in a WSN
can only communicate with each other, if there is communication link between them. Similarly,
sensor nodes can only sense an event that lies in their sensing range. WSNs deployment strategy,
therefore, provides discrete, and consistent geometric basis on which spatial data types can be
defined. WSN comprises finite-set of points and line segments. Each node can be considered
representing point, whereas communication links between any pair of neighboring nodes can
be considered a line segment. It is therefore, possible just like ROSE algebra to define the
geometries based on these points and line segments. The reader is referred to Chapter 3, for
the description of how a WSN can give rise to a discrete grid over which it is possible to define
spatial types and values that follow the ROSE-algebraic approach and to Chapter 4, for the
description of spatial algebra over the framework defined in Chapter 3.

2.1.2 Algorithmic Strategy

Schneider and Güting provided efficient centralized algorithms for the ROSE-algebraic opera-
tions [Sch97]. Algorithms for these operators make use of the plan-sweep technique. Plan-sweep
technique allows for the transformation of geometric set problems into a form which are easier
than original to resolve. For implementation AVL tree structure is used. Lines and regions val-
ues are stored as the ordered sequences of segments for efficiency. For the evaluation of most of
the operators, parallel traversal through the points or segments of the objects are made. These
algorithms are not usable for in-network processing in WSNs, because, in this case, spatial data
and execution of operations is distributed and carried out periodically over sensed data streams.

36 CHAPTER 2. BACKGROUND

2.2 Background to Sensor Network Deployment

In WSN-based environmental monitoring applications, designing a precise deployment is chal-
lenging because accurate event detection depends on a number of factors including the type
and quality of the nodes, and the nature of the terrain. The type of event to be detected varies
from application to application. In this dissertation, we are only concerned with events related
to physical phenomena. In such applications, a sensor node can only detect a part of the event,
and only if the phenomena lies in sensing range. For dynamic, transient phenomena, the size
and shape of the event geometry varies over time and space. If a large number of nodes can be
deployed, finely-grained event detection is a possibility, otherwise, one has to compromise on
the precise shape and size of the event geometry.

Although the relatively low cost of the sensor nodes allows for the deployment of these
nodes in large number, in many applications the purchasing cost is not the critical factor
compared to the deployment cost and the need to collect the right data at the right spatial
grain. Therefore, different applications require different geographic coverage with varying or
uniform nodes density over the field under study.

The deployment strategies are broadly divided into regular grid deployments and random
deployments. In regular grid deployments, the sensors are placed deterministically with some
regular geometric topology along grid points. This strategy is mostly used in application sce-
narios where the deployer has control over node placement, i.e., where access to the deployment
site is not a concern and it is safe for humans to place sensors manually. Because of the fact, that
each node has a communication radius rc and a sensing radius rs, in most applications nodes
are usually deployed at a distance rs apart along the regular grid points ensuring coverage of the
area as well as node connectivity. In the case of a regular grid deployment, the granularity of
the grid is, therefore, a function of the sensing range, the radio range and whatever fine-grained
event-detection resolution that can be afforded. The smallest rectilinear distance between two
nodes defines the absolute distance between any two adjacent abscissae and between any two
adjacent ordinates. Random deployments allow for the location of the nodes not to be planned
a priori: the sensors may be air-dropped, scattered using a vehicle or any comparable means
[EG02].

2.3 Aggregation Approaches

In-network aggregation is a well studied problem in WSNs. Aggregation approaches are dis-
tributed techniques for reducing the amount of data and, thus, the total number of packets that
need to be transmitted from the sensor nodes to the sink node. The idea is to remove data
redundancy and combine the data coming from different sources by applying simple aggregation
operators (e.g. sum, average, min, max, count) to more complicated data aggregation operators
(e.g., median, Wavelet Histogram [SBAS04]) outputting thereby more compact representation
of the data. These aggregation functions can be applied to data produced during the same
sample period or over a time span comprising of few sample intervals. In-network aggregation
has been found to prolong the life time of the network and is, therefore, a crucial technique for
energy-constrained WSNs [MFHH02, IEGH02].

2.3. AGGREGATION APPROACHES 37

The algorithms available for this problem can be broadly classified into tree-based and
gossip-based.

2.3.1 Tree-Based Aggregation Approaches

Tree-based approaches, like those proposed by Madden et al. [MFHH02] and Zhao et al.
[ZGE03], compute the exact value of the aggregation. Tree-based algorithms tend to be energy-
efficient but are not resilient in the presence of topology change. These issues can sometimes be
addressed by approaches that maintain the tree after it has been constructed [MFHH02, HYS04].

Tiny Aggregation (TAG) [MFHH02] is an aggregation service for WSN nodes by TinyDB.
It aims to reduce the communication overhead for computing an aggregate value. The TAG
approach focuses on sending a single message per sample period from the child node to its
parent regardless of the depth at which the child node lies and irrespective of the aggregate
function. When the parent receives a value it aggregates that value to the one it itself has
sensed, and sends the value to its parent in turn. One of the features of TAG is to tolerate
disconnections and loss as it is designed to sit on top of a network topology. By dividing the
time into sample periods, the processor and the radio can lie in deep sleep modes for most
of the time, thereby resulting in low power consumption during long idle periods. In-network
aggregation has been shown to be energy-efficient. For example, in-network aggregation of the
SUM function allows each intermediate node to forward a single message containing the sum
of the sensor readings of all upstream nodes, instead of sending every measurement from every
node that lies upstream from it.

For tree-based aggregation schemes, if the root node is not predetermined, a root node
must be elected, either randomly or through a distributed leader election algorithm like the one
proposed by Dulman et al. [DHS02]. Once the root node has been elected, the tree creation
process is started by the root node. Once the tree is set up, it can be used for aggregation
purposes.

In [HL05, LRS02], the authors compute aggregation topologies by taking into account the
residual energy of each node. In addition, there are other efficient tree-based in-network ag-
gregation approaches. Temporal Coherency Aware In-Network Aggregation (TiNA) [SBLC04]
exploits the temporal correlation in a sequence of sensor readings for performing energy efficient
in-network aggregation. It allows intermediate nodes to send data up the hierarchy only when
there is a significant change in the value of collected readings over time. It allows the suppres-
sion of readings as long as the expected quality of data defined by the user or application is
not affected. The Semantic/Spatial correlation-aware tree (SCT) approach [ZVPS08] supports
application scenarios where nodes are densely deployed and in which, as a result, the readings
reported may be spatially correlated. To build an aggregation structure, the network is divided
into partitions and then sub-divided into sectors. A node is selected as a leader for each sector
based on its residual energy and location. Nodes in a sector report to the sector leader. The
leader is responsible for aggregating the data from sources. A spanning tree is built on top
of these nodes to form a structure for aggregation. Dynamic Query-Tree Energy Balancing
(DQEB) [HYS04] allows dynamic modification to be made to the tree structure once it has
been constructed with a view to balancing the energy left at nodes. The Load Balanced Tree

38 CHAPTER 2. BACKGROUND

Protocol (LBTP) allows the gathering of periodical data [CTC06] by constructing a balanced
tree in which all non-leaf nodes have a similar number of children. The tree structure is up-
dated when the energy at a non-leaf node falls below a certain threshold. Heuristic algorithms
for real-time data aggregation [CLJ06] allow for real-time data aggregation by supporting the
transmission of packets with a specified time requirement. Cheng et al. suggested three differ-
ent heuristics-based algorithms for constructing minimum spanning trees that satisfy hop and
degree constraints.

2.3.2 Gossip-Based Aggregation Approaches

Gossip-based algorithms (e.g., Boyd et al. [BGA+05], Chen et al. [CPX05] and Kempe et al.
[KDG03]) are distributed, localized algorithms that do not require any pre-computed routing
structure and are thus resilient to topology changes at the cost of less energy-efficiency. These
algorithms can be used to compute aggregate functions such as sum, average, maximum, and
minimum within a given error range.

To the best of the author’s knowledge, the first characterization of randomized gossip-
based algorithms for computing aggregates in completely decentralized manner was reported
in [KDG03]. Push-sum algorithm allows a node to communicate with only one of the randomly
selected node in each round. Each node maintains two attributes (i.e., sum and weight). In the
first round, nodes declare their sum attribute value to their own sensed value and weight to 01.
For estimating average, in each round each node sends half of its sum and weight values to its
randomly selected node; which adds them to its own halved values. Finally, sum/weight is the
estimate of the average in the last round.

Boyd et al. [BGA+05], like Kempe et al. [KDG03] also uses the asynchronous time model.
For estimating average, in each round a node selects a neighbouring node with some probability,
to which it sends its value. Upon receiving value from neighbour, both nodes set their values
equal to the average of their current and received value. Distributed Randomized Grouping
(DRG) [CPX05] takes advantage of the broadcast nature of transmissions in WSNs to compute
the aggregation operator average. DRG is more efficient than the gossip-based algorithms
[KDG03, BGA+05]. In DRG, each node can be in one of three states: idle, group leader

or group member. In each round, some nodes are elected as group leader nodes with some
probability pg and the other nodes take on the role of group member nodes. A group leader

broadcasts a request message and waits for its neighbouring nodes in idle state to join the
group. An idle node that receives a group leader request sends a reply including its data value
to the group leader and changes its state to group member. A group member does not respond
to any other group leader requests and waits for a reply from its group leader. The group

leader computes the average by first adding values received from members, then dividing the
result by the number of group members, then broadcasting the computed value in its reply
message and, finally, changing its state to idle. Group members that receive this broadcast
overwrites their own value, and changes their state to idle.

Chen et al. [CPX05] have shown that the upper bound for convergence of this process
depends on pg, the network topology, the variance of initial values and the accuracy requirement
for the aggregate value. In addition, fastest convergence is achieved when pg = 1/x , where x

2.4. ROUTING APPROACHES 39

is the average number of two-hop neighbours around the group leader. However, a distributed
algorithm to terminate the evaluation of algorithm is not given. The message complexity of
each iteration depends on the number of rounds for converging to the aggregate function. Chen
et al. [CPX05] have given an upper bound on the expected number of rounds needed by network
nodes to converge on the average value of O(1/γ log(φ0/ε2)) where γ depends on the grouping
probability pg and network topology on the grand variance of initial values φ0 and the error
tolerance ε of the aggregate average.

Section 2.3 has described the two broad categories of aggregation protocols. The motivation
behind the description is to build the technical context, as the information from nodes in the
network involved in the spatial task evaluation will need to be aggregated in order to compute
the fine-grained final result inside the network.

2.4 Routing Approaches

Routing protocols allow for determining the paths taken by the messages between nodes. Rout-
ing protocols [AY05b] can be broadly divided into four categories (1) data-centric, (2) hier-
archical, (3) location-based, and (4) quality-of-service (QoS) aware. Data-centric protocols
[HKB99, CIE00, BE02] are often query-based and may perform in-network aggregation of data,
as described in Section 2.3 above. These protocols support finding routes to intermediate nodes
that allow in-network aggregation of data from multiple sources on their way to sink. Directed
diffusion [CIE00] is a data-centric routing protocol, in which all communication is for named
data and all nodes are application-aware. Query is disseminated inside the network as an in-
terest for named data. Which results in setting up the gradients within the network to pull
events. These features supports energy saving by enabling efficient path selection and en route
data aggregation.

Hierarchical routing protocols [HHT02, YF04], divide the network into small groups called
clusters, where each cluster leader is responsible for aggregation and reduction of information
transmitted to it by the nodes belonging to the cluster.

QoS-aware routing protocols strive to meet certain QoS requirements [HF08, AY03, CT04,
YCL+01, AY05a, ZGFL08, ZRLM06] such as: delivery time, energy consumption in the nodes,
and network life time.

In location-based (also called geographical) protocols [JJPSW+09], each node makes a for-
warding decision, based on its location information, that of its neighbours, and that of the
destination. One of the advantages of geographic routing is that the routing overhead is mini-
mized. Such routing schemes operate on locally available position information to make packet
forwarding decisions [ZLS07]. Other features includes scalability, statelessness and low mainte-
nance overhead [ZRLM06].

Yu et al. [YGE01], Alexandru et al.[CNS04] and Lian et al. [LCN+05] have used geographic
information for dissemination of queries to appropriate regions. In [LCN+05], the authors
suggested using a flooding approach for forwarding the query towards the target region and its
dissemination inside the region. A leader is selected among the nodes in the target region who
is held responsible for performing aggregation and forwarding the result to the sink through

40 CHAPTER 2. BACKGROUND

one of the available paths. In [CNS04], the authors use a greedy forwarding approach [Sto02]
for forwarding the query towards the leader located in the center of the target area. The query
is then broadcast inside the target region. Flooding of the query inside the target region helps
in the construction of the routing tree used by the nodes to transmit their result to the leader
inside the target region. In [YGE01], the authors propose a Geographic and Energy-Aware
Routing (GEAR) protocol, which makes use of energy and geography-aware heuristics to route
a packet towards the target region.

In the case of geographical routing schemes, the approach to selecting the neighbouring
node for advancing towards the destination varies. For example, greedy geographical routing
schemes [KK00] use a greedy forwarding mechanism whereby each node forwards a packet to
the neighbour that is closest to the destination. The approach tries to always shorten the
distance to be traveled to the destination to the maximum possible extent. Therefore, the node
considers only those neighbours that are closer to the destination than itself. While in Most
Forward within Radius (MFR) [TK84] the packet is forwarded to the neighbour with the shortest
projected distance to the destination. Compass routing [SL01] selects a neighbouring node on
the basis of its direction towards destination such that the angle between the neighbouring node
and the destination is minimized.

A greedy geographical routing scheme is very efficient and guarantees packet delivery in the
case of a dense network, but it can fail to deliver packets in sparse networks or in networks having
holes in their topology [JLY+08]. These schemes are also susceptible to the communication void
problem, viz., the problem caused by the fact that a node may select a neighbouring node that
is closest to the destination, but this neighbouring node find itself not a destination (or part of
a destination) and not having a neighbour closer to the destination to deliver the packet. Most
of the variants of greedy geographical schemes are equipped with a technique to overcome the
communication void problem such as routing around the perimeter of the empty region [KK00],
upgrading virtual distances [JK09], rebroadcast and bypass strategies [XcL05], planar-graph-
based technique [BMSU01], distance upgrading technique using cost-based idea [CFC06], void
resolution-forwarding, using quadrant-level right-hand rule [KPSK09]. In particular, [DK06]
combines compass routing with a mechanism to explore the area around void regions.

Some algorithms are combinations of two or more strategies. In [ZRLM06], the authors
describes an approach in which the decision combines several factors such as location, energy,
realistic lossy wireless channel condition and the renewal capability of the energy supply. Seada
et al. [SZHK04] motivate energy efficient geographic forwarding. Trajectory Based Forwarding
(TBF) [NN03] uses a combination of greedy forwarding and source based routing to route a
packet along a predefined curve.

2.5 Summary

This chapter has provided the technical context required to understand the research contri-
butions reported in the remainder of this dissertation. First and foremost, it described the
centralized ROSE algebra based on finite resolution computational geometry represented with
a discrete grid, which gives rise to a discrete, numerically robust, and consistent geometric basis

2.5. SUMMARY 41

to be used later on. Secondly, the implementation of the centralized ROSE algebra cannot meet
the broad range of constraints and requirements that characterize WSN platforms. In light of
these observations, defining a spatio-analytic framework and spatial algebra over WSN and
its distributed implementation is a novel and potentially useful research contribution. Finally,
background work on aggregation and routing approaches in WSN has been discussed. The
next chapter presents the framework that supports algebraic abstractions as spatial types with
expressive spatial operations upon them.

Chapter 3

A Framework for Spatial

Analysis Over WSNs

This chapter presents a framework for performing spatial analysis over WSNs as one of the
research contributions of this dissertation. The framework supports expressive algebraic ab-
stractions as spatial types with expressive operations upon them. This framework can be
construed as a conceptual platform over which distributed algorithms can be designed in order
to perform spatial analysis over WSNs.

The structure of the chapter is as follows. Section 3.1 discusses related work on frameworks
for spatial analysis over WSNs. Section 3.2 presents the contributed framework. Recall, from
Section 1.5, that one of the research aims underlying the contributions reported in this dis-
sertation is the identification of distributed algorithms for characterizing induced geometries.
This is founded on event detection. Therefore, Section 3.4.1 surveys the related work on event
and edge detection approaches. The objective is to identify useful techniques for characterizing
induced geometries. Section 3.4.1 also summarizes the results of a study of two event detection
algorithms, viz., FEBD [RZL06] and T-Fit [Sel06]. The study revealed shortcomings in both
algorithms, so we contribute how improved versions of both algorithms [JF08]. The results
presented here quantify the trade-offs between accuracy, areal coverage and sensor density that
each algorithm incur. Section 3.5 summarizes the chapter.

3.1 Related Work

To date, there has been no effort to develop a comprehensive framework for spatial analysis
over WSNs on the same scale as the one introduced in Section 3.2. Therefore, this section
discusses those elements that might be part of a framework with reference to published proposals
thereof. Thus, we touch primarily on spatio-temporal query processing and on event tracking
and monitoring. Note that no proposal in the literature has, to the best of our knowledge,
taken an algebraic basis, which is a major concern of this dissertation.

A framework called CLOUD is proposed in [LKH05] to collect and aggregate information
over regions generated as a result of event detection. In this work, a proposal is made that after

42

3.1. RELATED WORK 43

selecting the leader node and computing a tree-like structure, each node reports to the leader
node. Hence, the leader node will have the information related to event and the location of
the nodes. The leader node is made responsible for the computation of aggregates and of the
new leader for the next evaluation period. This is to some extent related to the work described
in this dissertation, as for evaluating a spatio-analytical task, the state of a node for a task
is also collected and aggregated. However, whilst the focus in [LKH05] is on functions like
average, min, max etc., in the work reported here the information that is aggregated is bit-level
encodings of the partial results in evaluating a complex distributed task. The reader is referred
to Chapter 5 for further details.

EnviroTrack [ABC+04] is a programming abstraction for distributed event tracking appli-
cations. A moving object is tracked by dynamically established groups of nodes and a context
label is assigned to each such object. To create context, after event detection, each node par-
ticipates in the leader election. An elected leader sends periodic messages to inform its group
member about its existence and is also responsible for sending a handoff message in case an
event moves out of its sensing range. Each node periodically sends its sensed value towards the
leader using multi-hop routing. The leader performs the aggregation over the received values in
each period. The framework described in this dissertation also associates an ID to each geom-
etry to enable addressing those nodes that belong to it and assigning them the responsibility
for computations associated with that geometry. Whilst EnviroTrack is restricted to tracking
moving objects, the focus of this dissertation is to track complex, transient, evolving physical
phenomena and studying the spatial relationships they exhibit with other physical phenomena
or with permanent geographical features.

The work reported in [Wel04] focuses on providing a high-level programming interface that
abstracts away the details of routing, data collection, data dissemination, and state manage-
ment. The authors propose a region abstraction for programming WSNs defined in terms of
radio connectivity, geographic location, or other properties of nodes. However, there is no
indication of how spatio-analytical tasks can be expressed in their approach.

The programming abstraction proposed in [MP06] introduces the concept of logical neigh-
bourhoods whose span is not limited by the radio range but can be specified declaratively based
on characteristics of nodes. For example, a logical neighbourhood for a node can be defined as
nodes comprising temperature higher than a threshold and that are at a maximum of 2-hops
away. The authors also propose a programming language for defining such neighbourhoods
and a supporting routing strategy. In the work reported in this dissertation, the information
about induced geometry and other geometries is distributed. Each node only knows about the
geometries it is part of and can only communicate with neighbours lying in its radio range.

Kumar et al. [PKRVJ05] proposed a framework for distributed event detection using collab-
oration. It builds an event-based tree over the nodes that are in an event region for information
aggregation. The framework supports one mobile node (user node), all other nodes must be
static. An event detection message is transmitted by a user node with attributes including
area-of-interest coordinates, a threshold value (specifying the number of nodes required to infer
an event) and the tolerable delay between events. The proposed framework works with the
assumption that each node is location-aware. Upon reception of a message, a node checks its

44 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

participation in the area-of-interest and whether it can sense the attributes required for the
detection of the event. If so, the decision is then made by a node regarding participation based
on the threshold value. If successful, it sends a confirmation message to the parent, and in
this way an event-based tree is constructed. Once the tree is constructed, each parent waits
for a specific period for a response from its children, the information from which is aggregated
with its own and transmitted towards its parent on its way to the sink. This dissertation also
studies two aggregation approaches for handling distributed aggregation problem, one of which
is tree-based aggregation, in which, just like the aggregation scheme presented in [PKRVJ05],
each parent waits for a specific period for a response from its children, the information from
which is aggregated with its own and transmitted towards its parent on its way to the sink.
However, the aggregation function used in this dissertation is a new bit-string-based aggrega-
tion function. The aim of aggregation in this dissertation is to compute a fine-grained result of
the in-network evaluation of the spatial task.

In [CSN05], the authors focus on a general framework for historical spatio-temporal query
processing and describe techniques for queries that retrieve the relevant raw data. For stor-
ing historical data, it assumes the stream storage solutions for fixed storage space proposed in
[ZGTS03], with which temporal aggregations over a data stream at multiple time granularities
can be computed. The proposed framework consists of two phases. Firstly, the query is dis-
seminated from the originator node to a query coordinator node located in the specified spatial
area. Secondly, query-related information is collected by the coordinator node from nodes lying
in the specified spatial area and the information is transmitted to the originator node. For the
first phase, the GreedyDF algorithm has been proposed to find a routing path from the origina-
tor node to a query coordinator node that lies within the centre of the query’s spatial window.
Two algorithms have been proposed for the second phase, viz., WinFlood and WinDepth. In
WinFlood, each sensor node that lies within the spatial window will broadcast the query to
its neighbours. In WinDepth, each node that lies in the query’s spatial window upon receiving
the query will forward it only to those neighbours which also lie in the query’s spatial window.
The query answers from the relevant nodes are returned to the coordinator. The framework
described in this dissertation supports in-network distributed spatial analysis. The information
about geometries is distributed. The spatial task which may be complex, is transmitted towards
the area-of-interest using greedy forwarding scheme and is then disseminated inside the area-
of-interest. In contrast with the above work in which raw data is retrieved, in this dissertation
the spatial task is evaluated inside the area-of-interest. Leaders are elected at two-levels, one
at the level of geometry-element level and other at the MBR-level. Aggregation takes place at
two levels: firstly at the level of SEG leaders, and then, at MBR-level leader to which SEG
leader respond. The fine-grained result is then routed by the first-level leader towards the sink.

In [SKG05], the authors focus on developing a distributed spatial index SPIX over the sensor
nodes for in-network processing of spatial queries. The authors like in [CSN05] exploit the fact
that spatial query need to include the information regarding the target region towards which
it should be forwarded. The proposed framework works with the assumption that each node is
location-aware and the spatial query to be disseminated from the gateway. The construction
of SPIX is similar to tree construction rooted at the gateway. After the SPIX construction

3.2. A FRAMEWORK FOR DISTRIBUTED SPATIAL ANALYSIS OVER WSNS 45

phase each node is required to maintain minimum bounding area (MBA) information. MBA
of a node represents the area which covers a node itself, its parent and all child nodes. A
SPIX construction message is sent by the gateway. Upon receiving the message each node
broadcasts the message. Each node selects a parent node such that it results in the least
perimeter enlargement of MBA among the nodes from which it has received message. Upon
selection of parent node each node inform its child nodes, so that if they find themselves more
closer to their grand parent then they can change parent. Upon reception of spatial query a
node forwards the query to its children for evaluation only if any of its children MBA intersects
with MBR of the area-of-interest specified in spatial query. In this work the authors have not
discussed method to forward the query towards MBR.

To the best of the author’s knowledge, no research to date has explored the issue to develop
a comprehensive spatial framework that allows for the evaluation of spatial-analytic task for
performing spatial analysis over WSNs. The next section describes the spatial framework for
performing distributed spatial analysis over WSNs.

3.2 A Spatial Framework for Performing Distributed Spa-

tial Analysis Over WSNs

This section describes the spatial framework for performing distributed spatial analysis over
WSN that is one of the main contributions of this dissertation.

This section consists of two sub-sections. Section 3.2.1 describes how geometries can be
defined over a WSN as subgraphs of the WSN connectivity graph. Section 3.2.2 describes the
kinds of geometry supported by the framework along with the data structures that associate
a sensor node with the geometries it is a member of. Section 3.3 sketches a solution for the
distributed evaluation of spatial tasks over this spatial framework.

3.2.1 Model and Assumptions

This section formalizes the basic terminology and assumptions upon which the description of
the proposed framework is based.

Let M × N denote the two-dimensional Euclidean plane that discretises a rectangular
geographic area G under study. Also, assume a Cartesian coordinate system to describe each
point pi in G in terms of a x-axis and a y-axis (x, y). Let M be the minimum Cartesian
coordinates (min(px

i), min(py
i)) ∈ G and N the maximum Cartesian coordinates (max(px

i),
max(py

i)) ∈ G. These two points define one of diagonals of G say, the upper-left to bottom-
right one. A set of nodes S is deployed inside G and the overall disposition of nodes may be
regular (i.e., grid-like) or not.

It is assumed that a node is location-aware and that its position in the WSN can be de-
termined. The position does not need to be global, it could be relative to a known point or
decided by the deployer. It can be computed using Global Positioning System (GPS), or any
other localization schemes [SHS04, BHE00, DFN06]. We assume that the sensing and commu-
nication ranges of a node si ∈ S are representable by circles with radius rd

si
and rc

si
respectively.

46 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

A node si ∈ S that is located at (xi, yi) in G is capable of sensing at a location (u, v) in G

if the Euclidean distance d((xi, yi), (u, v)) ≤ rd
si

. A node si ∈ S located at (xi, yi) in G is
capable of communicating with another node at location (u, v) in G, if the Euclidean distance
d((xi, yi), (u, v)) ≤ rc

si
.

The 1-hop neighbourhood N1(si), or N(si), of a node si ∈ S is the set of all sensors that are
in the communication disc centered at si with radius rc. This determines a WSN connectivity
graph whose vertices are the deployed nodes and whose edges consist of pairs of nodes sl ∈ S
and sm ∈ S where l 6= m, such that each element in the pair is capable of communicating with
the other. This, in turn, allows geometries to be defined over the WSN as subgraphs of the
WSN connectivity graph.

Given a geographical area G covered with sensors S where for each sensor si ∈ S, its
coordinates (xi, yi) are known, then we only consider events and only associate application
specific geometries to those points in this Euclidean space where a sensor node is deployed.

Recall that, as discussed in Section 1.4, the running example used in this dissertation is
an application of WSNs in precision agriculture. Therefore, throughout this dissertation, it is
assumed that the location (xi, yi) ∈ G of each node si ∈ S is given. The assumption is that
the deployer decides where, physically, to place each node. However, the contributions made in
this dissertation, do not depend on this assumption. Note also that it may or may not be the
case that there is a node in every point in grid, but geometries are always defined in terms of
deployed nodes.

3.2.2 Description of the Framework

A framework is now presented for describing and constructing spatial analysis systems in a
systematic way, allowing for component reuse. Recall from the previous section that a WSN
corresponds to a finite, discrete, two-dimensional space that models a spatial domain.

Following the ROSE-algebraic approach [Sch97], application-specific geometries can be de-
fined based on abstract data types such as points, lines, regions.

Spatial values are represented in terms of deployed sensor nodes using the graph view of
the corresponding WSN, in the proposed framework. Geometries (i.e., spatial values of type
points, lines and regions) can be single-element or multi-element, i.e., spatial values are
collections. A single-element geometry is a singleton, a multi-element geometry has more than
one constituent geometry and can be used, e.g., to represent disjoint regions of the same event,
such as regions with moisture above a given threshold in a cultivated field. Each sensor node
is aware of every geometry it is a part of and stores geometry-related information locally in
a table called the Geometric Information Table (GIT). A node can be part of one or more
geometries. Therefore, a unique Geometric ID (GID) is assigned to each geometry a node is
part of. This can be seen as roughly similar to the way the postcode of a building determines,
e.g., the road, the borough, and the town it belongs to. In such a way, all nodes in the WSN
that have identical GIDs comprise a specific geometry. Each sensor node stores and manages
locally its geometric information in its own, local GIT. Each tuple in the GIT has attached to it
a validity timestamp that defines the life time for membership in the corresponding geometry.
The reader is referred to Section 5.3, for a description of the GIT.

3.2. A FRAMEWORK FOR DISTRIBUTED SPATIAL ANALYSIS OVER WSNS 47

Recall that, as discussed in Section 3.2.1, each node has a location, which gives spatial
properties to data. The proposed framework, therefore, considers the data in the WSNs as a
specialized distributed database, with spatial data stored in a nodes GIT. Furthermore, the
framework considers three kinds of geometry; viz., asserted, induced and derived.

3.2.2.1 Asserted Geometries

The first kind of geometry is referred to as asserted. Asserted geometries are representations
of physical features (e.g., a well, a pipeline, or a cultivated field). An asserted geometry can
consist of a single element, or a homogenous collection of elements (e.g., to represent a set
of islands or irrigation points inside a vineyard). An asserted geometry of type regions may
contain holes such as a cultivated field with a hole representing where a lake is located and so
on.

These geometries are both assumed to pre-exist the WSN deployment and to remain un-
changed for the duration of that deployment. Under these assumptions, nodes can be made
geometry-aware for this type of geometry by storing the geometric information in its local GIT
and setting the validity period to indefinite. GIDs are also assigned once, while making node
asserted geometry-aware.

3.2.2.2 Induced Geometries

The second kind of geometry supported by the framework is referred to as induced. Induced
geometries are representations of transient phenomena determined by physical properties that
can be sensed by the nodes. These geometries are assumed both not to pre-exist the WSN
deployment and to change independently, possibly often, for the duration of that deployment.

Induced geometries are characterized by means of event detection and boundary compu-
tation. Briefly, by event detection is meant the outcome of a distributed process in which
participating nodes evaluate the event-defining predicate and, as a consequence, declare them-
selves an event node if the predicate is satisfied. The boundary of the event geometry can then
be computed using distributed boundary detection algorithms. A boundary detection algorithm
allows a node to determine whether it is lying on the boundary or the interior of an induced
geometry. The reader is referred to Section 3.4, for a detailed description of boundary detection
approaches. Each node stores this boundary membership information, i.e., whether it is lying
in the interior or the boundary of the geometry, in its GIT. The GID for induced geometries is
passed as a parameter of the message that contains the task that characterizes it.

Induced geometry characterization may result in multi-element geometries, i.e., one con-
sisting of disjoint component geometries. Furthermore, the interior of an induced geometry
may contain non-event nodes, in which case the induced geometry will contain one or more
disjoint holes. In Section 3.4.2.4, a real-world example is presented. Figure 3.1 shows the
interpolated data representing measurements of distribution of chlorophyll obtained in Lake
Fulmor (at the James Reserve in the San Jacinto Mountains, California, USA) as reported
in [SSC+07]. Figure 3.1 shows the interpolated data. The x-axis shows the interval [5m, 35m]
across the transect, the y-axis show the interval [-1.0m, -4.5m] in depth. In Figure 3.1, the

48 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

event predicate chlorophyll-levels < 20 gives rise to a multi-element event geometry with three
sub-regions (shown in Figure 3.2).

In the case of induced geometries, the fulfilment of the requirement that a node is geometry-
aware implies the need to reconsider periodically its event-membership status from sensed data
at the relevant evaluation episodes. The distributed algorithms for the characterization of
induced geometries are discussed in Section 3.4.

Figure 3.1: Distribution of Chlorophyll, Lake Fulmor (adapted from [SSC+07])

Figure 3.2: Event Geometry on applying the predicate (chlorophyll levels lie below 20) to Figure
3.1)

3.2.2.3 Derived Geometries

The third, and last, kind of geometry is referred to as derived. Derived geometries are obtained
by applying spatial-valued operations to existing spatial values (e.g., applying intersection to
two values of type regions would result in a new geometry of type, say, regions). The com-
putation of derived geometries involves two components: membership detection and boundary

3.3. DISTRIBUTED SPATIAL TASK PROCESSING 49

computation. Briefly, by membership detection we mean that a node checks whether it satis-
fies the primitives required for the success criteria of the operation. Recall that, as described
in the previous section, in the case of a geometry of type regions, a boundary computation
algorithm is used to allow nodes to determine whether they are lying on the boundary or the
interior of the derived geometry. In the case of an asserted geometry of type regions, nodes
can be informed whether they are lying on the boundary or interior of geometry manually, or
the nodes can compute such information through boundary detection algorithms. A derived
geometry can consist of a single element or a homogenous collection of disjoint elements. A
derived geometry of type regions may contain one or more holes. Given that one (or both)
of the arguments for the derivation of a geometry can be induced, nodes in derived geometries
also need to maintain their membership status in GIT dynamically. A node sets the validity
period of a derived geometry as follows: it sets the validity period to indefinite if both operands
are of type asserted; otherwise, it sets the validity period to be the minimum of the validity
periods among the operands of the operation. The GID for derived geometries is also passed
as a parameter of the spatial task message that defines it.

The algebra for the spatial-valued operators that leads to the characterization of the derived
geometry is discussed in Section 4.2.2.

3.3 Distributed Spatial Task Processing

Recall, from Section 1.6, that the contributions made in this dissertation concern the efficient,
in-network processing of spatial tasks over asserted, induced, and derived geometries. As a
major constraint on sensor nodes is their limited energy supply, the focus is on energy-efficient
techniques to process the spatial task inside the WSN.

In the proposed framework, an induced geometry is periodically evaluated for true-representation
of the corresponding evolving phenomenon. Each node updates its geometry status regarding
induced geometries at the end of each evaluation period. If an entry already exists for that
geometry in the GIT of a node, its validity period is reset (typically, in the case of periodic
evaluation, until the next evaluation period). Otherwise, a new entry is added to the GIT. On
the expiry of the validity period, the entry is removed.

The framework also supports periodic evaluation of tasks related to the computation of
derived geometries and computation of spatial relationships. The evaluation period (e.g. every
30 minutes) and duration for the task are passed as parameters in the task message that
disseminates the task into the relevant nodes in the WSN.

Efficiency is achieved because information about geometry types is kept inside the WSN,
thereby avoiding sending information out about these geometries at the end of every evaluation
period. Spatial tasks can be evaluated over these geometries periodically and only the final
answer is sent back to the user. The user can request explicitly for the information about the
geometry out of network, if required.

For task message dissemination, one simple method consists of flooding the task message
inside the WSN. This approach, however, can be expensive in terms of network congestion, and
energy consumption [JA07, CHLS07]. For example, it is not a suitable technique for applications

50 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

where multiple spatial tasks in different parts of the network must be evaluated because it results
in too much network congestion. In addition, for spatial analysis, users may prefer to query a
small geographical area inside the WSN rather than all the network [CSN05]. In this case, there
is only a need to send the spatial task to one specific target region. Transmission efficiency can
be achieved if the algorithm detects a path that reduces the number of relay nodes and also by
reducing message payloads by the use of compression and aggregation techniques.

Recent research [WMHF03, ZRLM06] suggests that geographic routing algorithms are more
suitable for WSN. There is also evidence that location-based greedy forwarding techniques
[Sto02, KPSK09] are helpful in the dissemination of spatial task containing geometric infor-
mation about specific area. In such a scheme, before forwarding the task message, each node
needs to compute the distance from itself to its neighbouring nodes and select the neighbour
that lies closest to the destination. The reader is referred to Section 2.4 for a description of
greedy-forwarding routing protocol.

The framework introduced here for distributed processing of spatial tasks in a WSN targets
the area of interest corresponding to each task. A gateway is assumed to exist that acts as the
source for disseminating tasks expressing the desired analysis and as the sink for receiving the
corresponding outcomes. Spatial tasks are input at the gateway. The gateway is responsible for
storing all referable geometries and for the computation of the Minimum Bounding Rectangle
(MBR) representing the target region. The derivation of an interpretable structure in postfix
notation from the task specification is performed at the gateway and gives rise to an inter-
pretable structure that is evaluated by the task processing system with which each node in the
network is equipped with. The gateway computes the task MBR and includes its coordinates
as parameters in the task message. This is done by scrutiny of the geometries specified as
operands in the task. Based upon the semantics of analysis represented by task (requirements
of the operators and operands part of the task) the MBR may comprise the whole WSN or
part of it. Note that task involving induction of geometries need to run on every node in the
network, periodically. For example, consider the example in Section 1.4. If the task is (f5
area disjoint M) the gateway compute MBR that encloses f5. The task MBR denotes the
rectangular region of the WSN in which the task needs to be disseminated and evaluated.

Task dissemination involves two stages: firstly, greedy forwarding is used to send the task
message towards the MBR, secondly, the task message is then broadcast within the MBR. A
greedy forwarding dissemination strategy is suitable because it is completely localized. However,
it is not claimed as a research contribution of this dissertation since it is inspired by [KK00,
JK09, XcL05, BMSU01, CFC06, KPSK09]. Broadly speaking, task dissemination uses greedy
forwarding to send the task message from the root to the task MBR. The first MBR node that
receives the task message behaves in a special way: it takes on the role of first-level leader. The
first-level leader records the destination ID, the source node ID as the parent node ID, updates
the information in the packet related to the cost of reaching the source, and sets its own ID as
the source node ID and destination ID in the task message before broadcasting it. Each MBR
node uses its location to compute whether it is part of the task MBR. Upon receiving the task
message, a task MBR node other than the first checks whether the cost of reaching the source
is less than the one it has recorded earlier (this may be so because it may have already received

3.4. BACKGROUND: EVENT AND EDGE DETECTION APPROACHES 51

the same task message from more than one neighbour). If it is, it records the parent node ID
and the source node ID, updates the cost of reaching source, and broadcasts the task message.
If the node is not part of MBR, it discards the message. The reader is referred to Section B.1.1
for the description of attributes of the task message. At the same time that the task message
is forwarded towards the MBR and then flooded inside MBR, nodes assemble into the routing
tree to be used for aggregating the results from disjoint geometry elements and for delivering
results back to the gateway.

A task processing system has been developed that allows the users to evaluate tasks inside a
WSN. This contribution is based upon the division of an algorithmic strategy comprising a small
set of logically-cohesive components. Each node is equipped with task evaluation components
that allow it to participate in task dissemination, to contribute in the distributed evaluation of
a task, to participate in the aggregation of intermediate results and to route results to the user.
The reader is referred to Section 5.6.2 for a detailed description of the components of the task
processing system. The algorithmic strategy for in-network distributed spatial analysis over
WSNs is given in Chapter 5.

As described above our framework supports predicate-defined induced geometries the char-
acterization of which requires though the detection of the boundary of the event geometry. The
next section describes the related work on the schemes for boundary detection.

3.4 Background: Event and Edge Detection Approaches

This section aims to identify a suitable candidate for event boundary detection as required for
geometry induction. Event detection is a distributed technique whereby each node computes
whether it has detected an event. Sensor nodes can be used to detect phenomena that are
extended in space. This dissertation specifically consider those events that can be modeled
as having a boundary, or edge. Examples include temperature gradients, variations in levels
of measurable quantities such as light intensity, chemical concentration, etc. These events are
detected by applying an event predicate (such as temperature > 90) to the readings obtained
from sensing devices present on nodes. The event characterization predicate takes the form of
a threshold test. Event detection can be simple or complex. Complex event detection requires
readings from more than one sensing device in the node. In addition, the characterization
predicate may also be a more complex algebraic expression (such as temperature > Tt AND

light > Tl) requiring, therefore, that more than one threshold test is applied over several
readings as well as the application of Boolean connectives to compute the final result.

Intuitively, the boundary detection problem can be formulated as follows: given a set of
readings from sensors located at different points in the field and an event characterization
predicate, return a description of the boundary of the event. In other words, the boundary
separates the sensor nodes that satisfy the characterization predicate and those that do not.
The boundary of an event geometry (i.e., the spatial shape of event) Ge is defined as the set
of nodes lying on the boundary of Ge, denoted by B(Ge). B(Ge) describes the shape and the
location of the event.

It is challenging for algorithms running in a WSN to detect an ideal boundary due to

52 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

inherent limitations of WSNs such as sensor noise (e.g., faulty measurement by the sensor),
unreliable wireless communication links, etc. Many proposed solutions exist for boundary
detection, including those based on image processing [CG03], topological and geometrical tech-
niques [CG03, JWZ+09, NM03, Sel06] as well as statistical [CG03, JN06, DCXC05] schemes.
This section now briefly surveys the most prominent proposals.

3.4.1 Algorithms for Event and Edge Detection

To the best of the author’s knowledge, the first characterization of event boundary was reported
in [CG03]. In that paper, the authors propose three different approaches: statistical, image-
processing, and classifier-based. None of the approaches have any mechanism for detection and
suppression of noise.

A statistical approach requires an event node to collect information from its neighbours,
derive a set of statistics from that information and use a Boolean decision function in or-
der to decide whether it lies in the event boundary based on an acceptance threshold. The
image-processing approach treats each sensor as a pixel, thereby opening the way for the direct
application of edge detection techniques used in the treatment of images, e.g., those based on
computing a filtered image using convolution, Prewitt filters etc. Such filtering techniques do
not consider either the topology or the geometrical locations of the sensor nodes. Note that
if a WSN deployment is such that the required pixel-like regularity is not observed, a weight-
ing scheme can be used based on the number of event and non-event neighbours. Finally, in
the classifier-based approach, a node attempts to partition the information collected from its
neighbourhood into regions of distinct behaviour using classification techniques.

The authors of [CG03] instantiate each approach and comparatively evaluate their instanti-
ations using detection accuracy and boundary thickness as their metrics. For those particular
metrics and instantiations, the classifier-based approach both produced better results and was
shown to be less susceptible to poor performance in the presence of errors. In the first two ap-
proaches, based on statistics, and on image processing, the correct choice of a threshold value
is very critical for correct identification. The statistical technique performs better than the
image processing one in scenarios where all the sensor nodes are well calibrated, error free and
uniformly deployed. The performance of both schemes degrades with an increase in network
density, a decrease in neighbourhood size, and an increase in the percentage of faulty mea-
surements. In addition, the authors of [CG03] noticed that for all three schemes, an increase
in the neighbouring area (e.g., collecting information on two-hop neighbours) results in higher
performance results albeit at the cost of more communication.

Jitender et al. [DDHG05] proposed the Interior Point (IP) algorithm to discover boundaries
in uniformly and randomly distributed WSNs. The authors assumed that each node must
have at least three neighbours in its radio range. The algorithmic strategy comprises two
algorithms: Interior Point (IP) and ChooseGoodNeighbours (CGN). In order to detect edge
nodes, IP requires nodes to broadcast their location information to their neighbours. The IP
algorithm confirms whether a node is in the radio range of three neighbours. The accuracy
of the algorithm depends upon the best selection of the three neighbours. For this purpose,
the CGN algorithm is responsible for intelligently selecting four neighbours that are pairwise

3.4. BACKGROUND: EVENT AND EDGE DETECTION APPROACHES 53

neighbours of each other. CGN selects neighbours that are close to a node and possibly surround
it. Experimental evidence is derived using size of neighbourhood and the network as metrics
in both random and uniform grid deployments. The accuracy of the algorithm increases if the
neighbourhood increases to more than 4. It has been found that the accuracy of the algorithm
decreases if the network density increases but that the inaccuracy does not increase much in
the case of random deployments compared to grid deployments.

Zhang et al. propose two algorithms based on computational geometric techniques, called
Localized Voronoi Polygon (LVP) and neighbouring Embracing Polygons (NEP)[JWZ+09]. In
one LVP-based algorithm, the Tentative Localized Voronoi is computed by each node using
the nearest neighbour distance and direction information. Based on such information, the
neighbours are divided into quadrants. If neighbours are found in all four quadrants, a node
declares itself a non-boundary node. If a node cannot find neighbours in any quadrant, then it
checks for neighbours in the assistant area (constructed by calculating two sectors of 45◦ each,
adjacent to the specific quadrant). If the neighbours in the assistant area are not the nearest
neighbour in that quadrant, then the node declares itself a boundary node. The LVP-based
algorithm is reported to provide continuous closed curves as boundaries. In the case of the
NEP-based algorithm, a node sorts its neighbours according to their angle with itself (to create
a convex hull of its neighbouring nodes). After sorting, if node finds a gap less than or equal
to π among these angles, it declares itself a boundary node. The authors have reported that,
compared to the LVP-based algorithm, the NEP-based algorithm provides less accuracy. The
LVP-based algorithm provides higher accuracy both for uniformly deployed as well as arbitrarily
deployed nodes.

Jaffer et al. [JJJES07] used an autonomous agent based approach for event boundary
detection in WSNs. The main objective of the authors was to decrease the communication cost
by improving the transmission efficiency. Initially, the agents are generated by event nodes
based on a preset threshold value. The node in which the agent resides requests a response
from non-event neighbouring nodes. The agent makes a decision about the selection of the next
boundary node on receiving the response from its neighbours. Upon finding the first boundary
node, the agent generates a child agent. Both the agent and the child agent then start moving
around the boundary in the opposite directions until they meet. An agent stores the boundary
nodes which it has visited in its boundary stack. The threshold value used for generation of an
agent is not constant and is dependent on the phenomenon size. According to the experimental
results, the scheme performed well for networks with high node density. Furthermore, the
efficiency of the algorithm increases as an inverse function of the event region radius. No
discussion is provided regarding the stack size of the agent in which it keeps boundary-related
information, or on the cost associated with agent movement from one node to another.

Noise-tolerated Event and Event Boundary Detection(NED) [JN06] supports noise suppres-
sion in event boundary detection in WSNs. NED assumes that sensing errors are independent
over the WSN, and is a white normal random variable (i.e., sensor error ∈ N(0, σ2)) and
have fixed variance because of further assumption that all nodes were sourced from the same
manufacturer batch. In addition it is assumed and that the event phenomenon is continuous.
NED uses a statistical approach in which the probability density of a normal random variable

54 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

concentrates around the mean value. So, for a random variable, N(µ,σ2), 95% probability falls
within the range (µ − 1.96σ, µ + 1.96σ). Since the sensing error is considered normal white
noise, nodes are classified as significant, non-significant event, non-event based on the threshold
value and variance σ2 of the sensing error. Such classification allows the transmission of a mes-
sage using variable length coding mechanism for communication efficiency. The NED algorithm
makes use of a moving mean method for suppressing sensor faults. As the authors focused on
continuous phenomena to represent sensed data in WSNs, they conducted experiments using a
smooth gray-scale image. Performance analysis of the NED algorithm has not been provided in
terms of varying network density and neighbourhood. The experimental results show that with
a large density and moderate noise, NED performs well for detecting the edge of continuous
phenomenon.

Nowak and Mitra [NM03] proposed a hierarchical processing strategy using a cluster-based
scheme for edge detection in WSNs. The whole sensor field is first divided into four quadrants,
and each quadrant is then recursively divided into 4 sub-quadrants of equal size until some
maximum resolution is reached. Then, cluster formation occurs. Each of the sensor nodes in
the sub-quadrant is then responsible for transmitting their original measurements to their sub-
quadrant cluster head. The cluster head is then responsible for computing the average and other
statistical measurements and to transmit its estimates regarding the subregion to the cluster
head up in the hierarchy. A quad tree is used for representing this hierarchical structure. The
cluster head on the higher level then performs some further processing in order to determine
the sub-partition that provides an approximation to the boundary. The algorithm does not
involve any mechanism for detection of noise. However, since the average of the measurements
are used instead of the original ones, there is suppression of noise to some extent. Under this
scheme, upper bounds are set on the Mean Square Error(MSE) of the estimator based on the
smoothness of the curve. The authors concentrated on the trade-off between the MSE and
the communication cost as a function of node density. The scheme provides better accuracy
at low communication cost for low and medium density networks but at the cost of complex
regularization of the hierarchical tree-based estimation method. The MSE increases with an
increase in node density. One of the limitations of this scheme is that it is based on a hierarchical
polling method which implies high cost in terms of cluster formation, cluster head selection, its
maintenance, as well as long transmission distances.

Tangent fit (T-fit) [Sel06] is another localized edge detection technique based on geometric
rules and trigonometry. In order to detect edge nodes, it requires event nodes to broadcast
their location information to its neighbours. Upon reception of the messages from event nodes,
a node N makes itself the origin of a circle centered at the node and partitions its neighbouring
event nodes into four quadrants. The edge-detection statistic is then formulated in terms of the
number of quadrants in which neighbouring event nodes are found.

If no neighbouring event nodes are found in any quadrant or else if they are found in all
four quadrants, then N declares itself not to be an edge node. If neighbouring event nodes are
found in one quadrant only, N declares itself to be an edge node. If neighbouring event nodes
are found in either two or three quadrants, N computes the angle formed by itself at the origin
and its two farthest neighbours in the two populated quadrants (or in the diagonal quadrants,

3.4. BACKGROUND: EVENT AND EDGE DETECTION APPROACHES 55

in the case of three populated quadrants). If that angle is less than 180◦, N declares itself
to be an edge node. Experimental results shows that the scheme performs comparatively well
compared to the PR-classifier algorithm [CG03] both in terms of accuracy and energy efficiency.
The experimental evidence suggests that the performance of the scheme increases by increasing
node density even in the case of arbitrarily placed nodes.

The localized fault-tolerant event boundary detection scheme [DCXC05] assumes that the
set of sensor nodes with faulty measurements may contain information related to detecting
events. The algorithm for faulty sensor detection is based on the moving median method, which
requires every node to broadcast location information along with the sensed measurement to
its neighbours. After the computation of the median, for the computation of event boundary
detection, a node computes the difference d between its own sensed measurement and the
median. Each node is then required to broadcast d in another message. Several statistical tests
are then applied to compute the resultant value, which is then compared against the threshold
to determine whether the node is an edge node. The algorithm is sensitive to the settings of the
threshold, which is based on the sensor node fault probability. The communication cost of the
moving median algorithm is approximately 32 times higher than the cost of a majority voting
algorithm [RZL06] as it requires the sensed measurement to be broadcasted. The experimental
evidence suggests that a detection accuracy of around 90% is achieved with node densities
greater than 30 and that the probability of error is less than 20%.

The fault-tolerant event boundary detection scheme (FEBD) [RZL06] is based on Bayesian
theory [KI03, KI04]. It is another distributed localized boundary detection scheme designed for
WSNs. FEBD requires every node to send the outcome of its event detection predicate to all its
one-hop neighbours, irrespective of whether that outcome was true or false. The scheme used by
FEBD to contend with sensor errors is to subject a node’s own call as to whether it is an event
node to a majority rule [KI04]. Thus, the call of every one-hop neighbour of a node is counted.
If the majority vote concurs with the node’s call, then that call is allowed to stand, otherwise
not. If a node calls itself an event node, then it computes a statistic to determine whether it is
an edge node by comparing that with a threshold value. For this purpose, FEBD takes as input
an acceptance threshold. The acceptance threshold is designer-set and thus should be decided
taking into account any relevant deployment properties (such as the tolerance radius for edge
thickness, network density, neighbourhood size, etc.) The performance of the scheme decreases
with an increase in the number of faulty measurements due to the increase in false detections,
especially in the case of low density networks. Compared to the schemes in [CG03, DCXC05],
the performance of FEBD in terms of correctly detecting boundary nodes is not dependent on
the density of the network and, gives reasonable results at low communication cost, even with
a faulty measurement percentage up to 25%.

Zeinalipour-Yazti et al. [ZYACS07] have presented a perimeter algorithm for distributed
boundary detection. This scheme requires that each node is aware of its neighbour’s location.
A randomly chosen node identifies the minimum y-coordinate in the field by constructing an
aggregation tree [MFHH02] rooted at it. During aggregation, each node identifies among itself
and its children which node has the minimum y-coordinate value. The identified node is marked
as the starting perimeter node and is responsible for selecting, among its neighbouring nodes, the

56 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

next perimeter node as the one that forms with it the minimum polar angle. The communication
cost of the algorithm is high as it involve message flooding to construct a tree.

This section described some of the existing approaches for boundary detection of event
regions. The motivation behind it is to characterize an efficient scheme that can be used for
geometry induction.

There was a significant practical drawback as if environmental scientists were to try and seek
guidance in the literature as to which, among proposed edge detection solutions, would perform
better for a planned deployment, they would find the absence of comparative evaluations a
serious impediment for an informed decision. In line with this motivation, Section 3.4.2 describes
the experimental comparison of edge detection methods, on the basis of which one of the edge
detection method has been selected for geometry induction. Further details are in the paper
[JF08] that has been published based on this work.

3.4.2 Experimental Comparison of Algorithmic Techniques for Edge

Detection

This section describes the results of an experimental comparison of two edge detections methods,
viz., FEBD and T-Fit with the modifications proposed in work [JF08] and described below.

These two algorithms were chosen because they were shown in [RZL06] and [Sel06] to have
good edge detection accuracy with good complexity properties. Furthermore, they produce good
results over a realistic parameter space, e.g., network density, network topology, neighbourhood
size, etc. Finally, they are both conceptually simple to understand and hence relatively easy to
analyze, implement and evaluate, whilst still being conceptually distinct enough to suggest that
their outcomes might not be strictly positively correlated. Here, the interest is in characterizing
the effect on accuracy of varying the areal coverage, sensing fault probability and the number
of nodes in a deployment. The two methods are comparatively evaluated with inputs that
are realistic (i.e., consist of events, adapted from those reported in [SSC+07, HAG+07], whose
geometry occurs in nature, rather than the Platonic forms (such as circles, squares and ellipses)
used in the original papers.

3.4.2.1 CFEBD: A Cautious Version of FEBD

The original scheme used by FEBD [RZL06] for contending with sensing errors can be shown
to have some shortcomings. As presented in [RZL06]), the fact that a node has detected an
event must be confirmed by a majority vote where the pool of voters consists of all nodes in
the neighbourhood defined by the radio range RR. In experiments, it has been identified that
for smaller size event regions whose shape is other than elliptical or circular, i.e. those in which
narrow bands or acute jagged edges occur, the scheme in [RZL06] produces poor outcomes if
the node density is high. Consider Figure 3.3. It depicts a WSN deployed as regular grid in
which there is a sensor in each point of the field. The left figure depicts, by the presence or
absence of shading, two regions of distinct behaviour. The right part of Figure 3.3 exemplifies
what the outcome of edge detection might be. For example, assume that, in the right part of
Figure 3.3, nodes are, say, 10m apart and the radio range is 15m. In addition, the node lying

3.4. BACKGROUND: EVENT AND EDGE DETECTION APPROACHES 57

Figure 3.3: Actual Event Geometry (left); Induced Geometry (right)

at the bottom-left corner has the location (0,0). It can be seen that the node at (10,40) (2nd
column from the left, 5th row from the bottom) has two neighbours calling themselves event
nodes (i.e., at location (20,30) and (20,40)) and six failing to do so. In this case, FEBD (10,40)
submits to the majority rule, reverses its decision and declares itself a non-event node.

Essentially, in this case, FEBD is overconfident in judging a measurement to be erroneous
because it gives voting rights to too many nodes. The refinement proposed is that the pool of
voters is shrunk when the density is above a certain threshold. That is, when d < RR/2, the
pool of voters consists only of those nodes in the half-neighbourhood of the node defined by
the radius RR/2. Because this approach makes the original FEBD more cautious when judging
a measurement to be erroneous, this modified version is called cautious FEBD or, CFEBD, for
short.

3.4.2.2 The T-Fit Algorithm

Unlike FEBD [RZL06], T-Fit [Sel06] only requires a node N to send the outcome of evaluating its
event detection predicate (and location information) to its one-hop neighbours if that outcome
is positive, i.e., if N calls itself an event node. The implications of this for the comparative
message complexity of the two algorithms are, of course, significant, because whilst the message
size in T-Fit increases with the location information with respect to FEBD, the number of
messages exchanged decreases. T-Fit has no error-suppression. The implications of this for the
comparative accuracy of the two algorithms are, of course, significant.

Note that, in the original algorithm, there is some ambiguity as to the definition of a
quadrant in respect of the treatment afforded to nodes that lie along an axis. Such assumption
has been found to give erroneous results, when the event geometry shape is irregular. It can be
seen that, in Figure 3.3, the event node at location (50,50) has neighbours in three quadrants
and four axes. The original T-Fit [Sel06] causes the node at location (50,50) to declare itself a
non-boundary node. Therefore, such cases are explicitly treated, as follows. The neighbouring
nodes lying on quadrants and axes are considered separately. If an event node has no neighbours
in any quadrant and there exist neighbours in all four axes, then it declares itself a non-edge
node. Otherwise, an event node is an edge node.

58 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

3.4.2.3 CFT-Fit: A Cautious, Fault-Tolerant Version of T-Fit

Empirical study has, revealed shortcomings in T-Fit which led us to modify the original al-
gorithm in three principal ways, as follows. As presented in [Sel06], the T-Fit algorithm has
no provision for contending with sensor error. Therefore, an error-suppression phase is added
to the original T-Fit algorithm, and, for comparability, the error suppression scheme used in
CFEBD above is used. In contrast with the original T-Fit algorithm, now every node must
transmit a message to its neighbours and the message will still contain additional information
about location.

It has been identified in experiments that when the event is not connected (i.e., it exhibits
the geometry of an archipelago, in pictorial terms), then the assumption that a node whose
four quadrants contain event nodes is, for that reason alone, not an edge node is too optimistic.
Now that each node has information about both its event and its non-event neighbours, a
modification is introduced that has the effect of introducing more caution into this decision, as
follows. When an event node has neighbours that are event nodes in all four quadrants but in
any one of those quadrants, at least half of the nodes are not event nodes, then that quadrant
is considered abnormal and a more precise rule is applied for the case in which there are nodes
in three quadrants, in this case, the three remaining quadrants. Because the modifications
introduced made the original T-Fit both more cautious as well as fault-tolerant, this modified
version is called as cautious, fault-tolerant T-Fit or, CFT-Fit, for short.

3.4.2.4 Example Used

For defining inputs to the algorithms under evaluation, measurements of the distribution of
chlorophyll obtained in Lake Fulmor (at the James Reserve in the San Jacinto Mountains,
California, USA) as reported in [SSC+07] are used.

The main interest is not in using these values as such, instead, what is important for evalua-
tion is that the event geometries are naturally occurring, rather than idealized. In this respect,
the event predicate is satisfied if chlorophyll levels lie below 20, i.e., the low concentration values
in Figure 3.1. This give rise to a disconnected event with three sub-regions as shown in Figure
3.2.

3.4.2.5 Experimental Design and Set-Up

The experiments aim to characterize the effect on accuracy of varying the areal coverage and
the number of nodes in a deployment. A radio range RR of 15m is assumed.

The F-measure is used as the dependent variable, i.e., the weighted harmonic mean of
precision and recall (expressed in terms of true positives (TP), false positives (FP) and false
negatives (FN)), as follows: F = (2 · TP)/((2 · TP) + FP + FN). If the algorithm calls a node
an edge node that lies in the actual sensed boundary then it is a true positive (and so on for all
the other elements in the F-measure definition). For the purposes of computing the F-measure,
the thickness of the edge boundary is assumed to be RR/4, which is more stringent than the
value (RR/2) that the literature tends to report. The real coverage (in m2) and the number of
nodes are the independent variables. The assumption made here is that the area is covered with

3.4. BACKGROUND: EVENT AND EDGE DETECTION APPROACHES 59

a grid of square cells in which nodes are deployed at the resulting coordinates. Given RR = 15,
the following range of values for the side of a square cell in the grid is {3m, 6m, 9m, 12m}.
When there exists a sensor node at every point in a regular grid with n2 cells, the number of
nodes is (n + 1)2.

Experiment 1 studies the accuracy of FEBD, T-Fit, CFEBD, and CFT-Fit for the four values
of areal coverage above when there is a sensor at every point in the grid, and no sensor reading
errors. Experiment 2 studies the accuracy for the four values of areal coverage above when
there is a sensor at every point in the grid and the sensing density is constant at 20 nodes in
the one-hop neighbourhood, but (a randomly distributed) 15% of the readings are erroneous.
Experiment 3 studies the accuracy for the four values of areal coverage above when there are
no sensing errors, but (a randomly distributed) 15% of the points in the grid do not have sensor
nodes (this could be either because the nodes have failed or because either a design decision
advises against, or a physical constraint prevents, a node being deployed at that point). As
a result, the sensing density varies, but is kept at a maximum of 20 nodes in the one-hop
neighbourhood.

Note that, because of the randomization, in the case of Experiments 2 and 3, for each setting
of the independent variables, each algorithm is run 25 times and the average is plotted as the
F-measure achieved by the algorithm.

As a consequence of the simulated setting, the algorithms do not acquire readings, rather
the measurements are read from data files (extracted these from the values in Figure 3.1).

In order to compute the F-measure, reference event geometries are defined for each point
defined by a pair of values for the independent variables.

3.4.2.6 Experimental Results

The results of Experiment 1 for each of FEBD, T-Fit, CFEBD and CFT-Fit are shown in the
four plots in Figure 3.4 and Figure 3.5. The results of Experiments 2 and 3 are shown in the
left and right plots in Figure 3.6, resp..

Figure 3.4: F-Measure-Based accuracy under different areal coverages for FEBD (left) and
CFEBD (right)

The results of Experiment 1 confirm the intuition that, in the absence of sensor errors and
with a measurement available from every point in the grid, the tendency is for accuracy to grow
as the area covered grows, from left to right, within each cluster of bars. Recall that the number

60 CHAPTER 3. A FRAMEWORK FOR SPATIAL ANALYSIS OVER WSNS

Figure 3.5: F-Measure-Based accuracy under different areal coverages for T-Fit (left) and CFT-
Fit (right)

Figure 3.6: Results from Experiment 2 (left) and Experiment 3 (right)

of nodes associated with each cluster decreases from left to right. Thus, the sensing density
decreases from left to right, cluster by cluster. The import of this is that for those algorithms
that are less robust to varying sensor density, their accuracy is less consistent for the same
areal coverage. As explained in Sec. 3.4.2.1, the majority voting method results in more false
negatives when the shape of the event region is jagged, especially when the proportion of event
nodes to non-event nodes is small. In such case, the refinement described in Sec. 3.4.2.1 can
improve accuracy, as shown in Figure 3.4 (right) when the distance between neighbours is 3m

or 6m. In Figs. 3.4 and 3.5, when, for the same areal coverage, the distance between neighbours
reaches 9m, the accuracy of FEBD, CFEBD and CFT-Fit dips because the majority vote tends
to give wrong results and the refinement introduced is not capable of compensating for that
(because 9 6< RR/2). Note that, for the same areal coverage, since T-Fit does not use any error
correction scheme, the accuracy does not dip when the distance between neighbours makes the
same transition. When the distance between neighbours reaches 12m, the four algorithms show
no significant differences.

As shown in Figure 3.5, the introduction of a fault-suppression scheme in CFT-Fit compared
with the original algorithm, is detrimental to accuracy, but not to any significant extent. This
can be verified by comparing the left plot (without fault-suppression) and the right plot (with
fault-suppression) in Figure 3.4. When errors are present and when measurements are not
available at some of the points in the grid, CFT-Fit is never worse than T-Fit and is often
better, as shown in Figure 3.6.

FEBD and CFEBD perform better, in general, than T-Fit and CFT-Fit in the presence of

3.5. SUMMARY 61

errors and when measurements are not available at some of the points in the grid, as shown in
Figure 3.6. The results of Experiment 2 also reveal that FEBD is less sensitive than the other
algorithms to an increase in areal coverage. It does perform poorly when sensing density is
high, as shown by the fact that CFEBD, which specifically corrects for that, outperforms FEBD.

CFEBD and CFT-Fit outperform the algorithms as originally proposed if errors are not
present and measurements are available at all points in the grid as shown in Figure 3.4.
However, it could be argued that most deployments at this stage in the development of WSN
technology are such that errors are present and measurements are not available at some of the
points in the grid. In this case, as shown in Figure 3.6, CFEBD slightly outperforms CFT-Fit,
and FEBD performs better than both. From Experiments 2 and 3, it can be seen that T-Fit

and CFT-Fit are less robust to increases in areal coverage that involve large numbers of nodes.
One lesson that can be drawn from a comparison of Experiment 1 and Experiments 2

and 3 is that, in spite of advances made since the first characterization of the sensor network
event detection problem, current solutions remain sensitive to sensing errors and to irregular
deployments.

In the light of this experimental work, the CFEBD algorithm is used in this dissertation in
order to induce geometries.

3.5 Summary

The contributions of this chapter were as follows. Firstly, a taxonomy of the existing WSN
proposals was presented on the grounds of the focus of event monitoring, and the framework
for the spatio-temporal query processing. Secondly, it has been noticed that a WSN deploy-
ment provides a discrete basis over which application-specific geometries can be represented, by
considering the nodes as points and the communication links as line segments between them in
a numerically consistent manner. This is similar to the realm concept that underpins the ROSE
algebra. Thirdly, a generic framework for distributed in-network spatial analysis over WSN was
proposed to facilitate conducting spatial analysis over WSN. It is based on the decomposition
into and the separate investigation of three distinct phases that are inherently present in any
WSN framework supporting in-network processing: dissemination of spatial task, distributed
evaluation of the task, and routing of fine-grained results to the user. Fourthly, a survey of
the related work for characterizing induced geometries was carried out. An empirical study of
the two most promising event detection algorithms in the literature was carried out so that a
decision could be reached regarding their use for geometry induction in the remainder of this
dissertation.

Chapter 4

A Spatial Algebra for Distributed

Spatial Analysis Over WSNs

This chapter describes the spatial algebra that is one of the main contributions of this dis-
sertation. It is closely inspired, in its scope and structure, by the Schneider-Guting over the
geometries representable by the framework presented in Chapter 3 for performing distributed
spatial analysis over WSN. The algebra is defined over the finite, discrete, two-dimensional
sensor space defined by a WSN deployment as described in Section 3.2. The spatial algebra
comprises three spatial data types, which are collections of points, lines, or regions. The
values for these spatial data types are geometries as described in Section 3.2.2.

The structure of the chapter is as follows. Section 4.1 defines the data types supported by
the framework. Section 4.2 describes the definitions of the spatial operations. Finally, Section
4.3 summarizes the chapter.

4.1 Spatial Data Types

The spatial algebra comprises three spatial types, viz., points, lines, and regions.

A points value denotes a finite set of nodes with location (x, y) in the finite, discrete,
two-dimensional sensor space defined by a WSN deployment as described in Section 3.2. We
denote the location (x, y) of a node by writing the ID of the latter, e.g., s1, on the assumption,
discussed in Chapter 3, that every node is location-aware and knows which geometries it belongs
to.

A line segment is a pair of distinct locations s1s2 in sensor space such that s1 and s2

are closest one-hop boundary neighbours. By closest one-hop boundary neighbours we mean
that no neighbour belonging to same geometry, lies closer to s1 or s2, in the direction of the
communication link between s1 and s2.

A lines value is a finite set of pairwise disjoint line segment values forming a connected
sequence with no interior.

A regions value with no hole is defined as a finite set of pairwise disjoint polygons with
an interior, boundary and exterior. More formally, a value of type regions without holes is a

62

4.1. SPATIAL DATA TYPES 63

possibly singleton finite set of pairwise disjoint values of the form 〈b, i〉, where b denotes the
boundary of a region, i denotes the possibly empty interior of that region, which contains all
the nodes enclosed by b.

A Unit regions value is a regions value without interior. More formally, a Unit regions

value is defined as a finite set of pairwise disjoint polygon values having an empty interior.
The nodes comprising unit regions value are part of boundary. A Minimal-unit regions value
is the smallest unit regions value. It is defined as a finite set of triangles, having an empty
interior, i.e., comprising three segments that form a cycle, thereby implying that the three
nodes are neighbours of each other.

A regions value with holes is defined as a finite set of pairwise disjoint triples of the form
〈b, i, H〉, where b is a cycle value denoting the boundary of the regions value, i denotes the
interior of the regions value and contains all the nodes enclosed by b excepting those belonging
to H, and H is a finite set of pairwise disjoint regions values, lying in the interior of b, each
element of which denotes a hole in the region. Note that the nodes enclosed by an element of H

do not belong to i, and hence not to the regions value either. The boundary and the exterior
of a regions value with holes are allowed to be disconnected. Therefore, a regions value with
holes has one outer boundary and one or more interior boundaries based upon the number of
disjoint holes inside the outer boundary of the regions value. Each inner boundary delimits
one hole. Holes represent the simple regions values that are not part of the regions value but
are enclosed by it. Similarly, if a regions value has more than one hole, then the holes are
vertex disjoint with respect to each other, otherwise they form a single hole.

Each element r of a regions value partitions the space into the (possibly empty) set of points
belonging to the interior of r, denoted by rin, the set of points belonging to the boundary of
r, denoted by ron, and the set of points not belonging to either rin or ron, denoted by rout.
ron consists of both the points lying on the outer boundary denoted by roon, and the interior
boundaries denoted by

⋃k
h=1 rh

ion (i.e. ron =
⋃k

h=1 rh
ion ∪ roon) where K denotes the number of

disjoint holes. Thus, r = rin ∪ ron.

If a non-empty value of type points, lines, or regions is a singleton, it is referred to as a
single-element geometry (SEG), otherwise, it is referred to as a multi-element geometry (MEG).
In the scope of this dissertation, unless it is specified specifically, a value of type regions may
or may not have a hole, and it may or may not be a unit or a minimal-unit regions value.

Figure 4.1 (a) shows part of an example WSN and Figure 4.1 (b) shows some geome-
tries defined over it as follows. points{N18} is a points value, call it P. lines{N23-N19,-
N19-N15,N15-N11,N11-N7,N7-N3} is a lines value, call it L. regions{{N11,N15,N20,N24,N25,N26,-
N22,N17}:{N16,N21}:{ } } is a regions value, call it R1, represented as a triple consisting of a
boundary, an interior and in this case, an empty set of holes. Other regions values are R2 =
regions{{N11,N12,N13,N8,N3,N2,N1,N6}:{N7}:{ } } and R3 = regions{{N11,N6,N5,N4,N9,N14,-
N15}:{N10}:{ } }.

In Rose algebra, two representations of a region are set up, as a set of pairwise edge disjoint
R-faces, and as a set of area-disjoint R-units. Operations faces and units are defined to convert
between R-faces and R-units [GS95].

The formal definitions given are as follows:

64CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

Figure 4.1: (a) An example WSN (b) Example geometries over (a)

∀F ⊆ F (R) : faces(units(F)) = F

units(F) := u ∈ U(R)|∃f ∈ F : u area inside f

Schneider and Guting have explained in [GS95], that the faces operation first forms multi-
set of boundary segments from a given set of area-disjoint R-units, then, all segments occurring
twice are removed to compute the set of segments (that occurs once) that uniquely defines a
set of edge-disjoint R-faces [GS95].

Furthermore, in [GS95] it is described as: let T be a set of R-segments, that is, T ⊆ S.
Then, cycles (T) denotes the set of all cycles (in the graph interpretation of realm R) that can
be formed from segments in T. Cycles defines the basic entities for the definitions of the regions

value. According to the definition of R-cycle given by Schneider [GS93] the R-cycle may be
empty. The reader is referred to Appendix A.1 for the description of R-cycle.

As described in Section 1.1, each sensor node based on its sensing and communication range
covers a part of sensor network area. In addition, in Section 2.2 it was also described that based
on application and the deployer requirements the nodes density varies. In this dissertation, the
minimum-unit regions value is defined as cycle formed by three closest neighboring nodes as
explained above. A single-element regions value which is not a minimum-unit regions value,
is defined as comprising finite set of area disjoint minimum-unit regions values.

4.2 Spatial Operations

This section presents the definition of the spatial operations over the spatial values in Section 4.1.
The algebraic operations that are covered in this dissertation fall into two groups, viz., spatial-
valued operations and Boolean-valued operations. The spatial data type values over which the
operations are defined can denote induced, derived, or asserted geometries.

For the definition of operations, assume that p and p′ denotes SEG points values, and P and
P ′ denote MEG points values; l and l′ denotes SEG lines values, and L and L′ denote MEG
lines values; r and r′ denote SEG regions values representing values with or without holes

4.2. SPATIAL OPERATIONS 65

or unit values, and R and R′ denote MEG regions values whose constituents are SEGs. In
addition, s, s′, s′′ and s′′′ denote node IDs, ss′ denotes a segment between s and s′, s̃s′ denotes
that s and s′ are boundary neighbours of a regions value and form a boundary segment that
does not intersect the interior of a regions value, and s ∈ Nc(s′) denotes that s′ is among the
closest neighbours of s. Recall, from Section 3.2.1, that N(si) denotes all nodes that lie within
the communication range of a node si. Nc(si) ⊆ N(si) denotes the neighbouring nodes, where
the communication link between si and sj ∈ Nc(si) does not have any other neighbouring node
in between.

In the case of unit and minimal-unit regions values r, r = ron. Let s ∈ ronr′on denote that
s belongs to the boundary of both r and r′, and let s ∈ rinr′on denote that s belongs to interior
of r and the boundary of r′.

A localized unit triangle (LUT) 〈s1, s2, s3〉 satisfies the properties that the interior and the
edges of the LUT do not contain any node that is a neighbour of s1, s2 or s3 and that all
the edges of LUT have length not greater than unit length (i.e., the prevailing radio range).
The reader is referred to Section 5.4.2.1, for a description of the computation of LUT and
CLUT. Let MinUnit(r) denote the finite set of LUT in r, MinUnit(rr′) denote the finite set
of common localized unit triangles (CLUTs) of r and r′, and MinUnit(r′onron) denote the finite
set of CLUTs of r and r′ formed by nodes that belongs to boundary of both r and r′. Let
s ∈ MinUnit(ronr′on) denote the finite set of CLUTs of which s is a member.

4.2.1 Boolean-Valued Operations

The spatial operations in Table 4.1 are Boolean-valued operations, that characterize topo-
logical relationships. To describe the operations in the algebra, second-order signatures [Sch97]
are used as described in Appendix A.2.1. Operations defined in this section are the ones that
are defined by Schneider [Sch97].

The definitions in [Sch97] for Boolean-valued operations have been improved upon to con-
sider the cases in which one or both operands of type regions are unit regions. This section
comprises six sub-sections presenting the definitions for operations over combinations of values
of type points, lines and regions.

4.2.1.1 Operations on Points

This section defines the Boolean-valued operations that can be performed over values of type
points. Formal definitions for spatial predicates on SEG points are given in Table 4.2. The
definitions for these operations are created as part of the work described. Two values p and p′

of type SEG points are considered disjoint and not equals if a node that belongs to p does
not belong to p′. Otherwise, if a node belongs to both p and p′, then p equals p′.

The definitions of operations over points values of type MEG are given in Table 4.3. The
definition of disjoint operation over the values of type MEG is given in [GS93]. Operation
equals yields true if both P and P ′ have an equal number of elements and, for each element
p ∈ P , there exists one unique element of P ′ with which it stands in an equals relationship.
The disjoint relationship yields true if an element that belongs to P does not belongs to any
element in P ′. The not equals relationship yields true if P is not equals to P ′.

66CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

equals : GEO × GEO → B
not equals : GEO × GEO → B
intersects : EXT1 × EXT2 → B
disjoint : points × points → B
disjoint : lines × lines → B
vertex disjoint : regions × regions → B
area disjoint : regions × regions → B
edge disjoint : regions × regions → B
adjacent : regions × regions → B
meets : EXT1 × EXT2 → B
area inside : GEO × regions → B
edge inside : regions × regions → B
vertex inside : regions × regions → B
border in common : EXT1 × EXT2 → B
on border of : points × EXT → B

Table 4.1: Spatial predicates supported

p disjoint p′ ≡ ∃s[s ∈ p ⇒ s 6∈ p′]

p equals p′ ≡ ∃s[s ∈ p ⇒ s ∈ p′]

p not equals p′ ≡ ¬(p equals p′)

Table 4.2: Formal definitions for spatial predicates on SEG points

P disjoint P ′ ≡ ∀p ∈ P ∀p′ ∈ P ′ : p disjoint p′

P equals P ′ ≡ ∀p ∈ P ∃!p′ ∈ P ′ : p equals p′ ∧
∀p′ ∈ P ′ ∃!p ∈ P : p′ equals p

P not equals P ′ ≡ ¬(P equals P ′)

Table 4.3: Formal definitions for spatial predicates on MEG points

4.2.1.2 Operations on Points and Lines

This section defines the Boolean-valued operations that can be performed over values of type
points and lines. The definitions of operations over points and lines values of type SEG
are given in Table 4.4. The definitions for these operations are created as part of the work
described. The operation on border of yields true if a value p intersects a point that belongs
to a line-segment in l.

The definitions of operations over points and lines values of type MEG are given in Ta-
ble 4.5. The definition of on border of operation over the values of type MEG is given in
[GS93].

p on border of l ≡ ∃ss′[ss′ ∈ l ⇒ s ∈ p ∨ s′ ∈ p]

Table 4.4: Formal definitions for spatial predicates on SEG points and regions

4.2. SPATIAL OPERATIONS 67

P on border of L ≡ ∀p ∈ P ∃l ∈ L : p on border of l

Table 4.5: Formal definitions for spatial predicates on MEG points and regions

4.2.1.3 Operations on Points and Regions

This section defines the Boolean-valued operations that can be performed over values of type
points and regions. The definitions of operations over points and regions values of type
SEG are given in Table 4.6. The definitions for these operations are created as part of the work
described.

The definition of operation area inside over the values of type SEG is given in [GS93],
whereas the definition of on border of operation in Table 4.6 is created as part of the work
described. The definition for the area inside operation is created differently. The reason is
as explained in Section 4.1 nodes enclosed by a hole inside a regions value, do not belong
to interior of the regions value, and hence not to the regions value either. The operation
on border of returns true if a boundary point of r belongs to the SEG points value p. For an
area inside relationship between the SEG points value p and the regions value r, the value p

must also belong to r.

p on border of r ≡ ∃s[s ∈ p ⇒ s ∈ ron]

p area inside r ≡ ∃s[s ∈ p ⇒ s ∈ r]

Table 4.6: Formal definitions for spatial predicates on SEG points and regions

In Table 4.7, formal definitions of operations over the MEG values of type points and
regions are given. The definition of on border of operation over the values of type SEG is
given in [GS93], whereas the definition of area inside operation in Table 4.7 is created as part
of the work described. For an on border of relationship, for each element of P , there must exist
an element of R which it is on border of. For an area inside relationship between the MEG
points value P and regions value R, for each element of P , there must exist an element of R

it is area inside of.

P on border of R ≡ ∀p ∈ P ∃r ∈ R : p on border of r

P area inside R ≡ ∀p ∈ P ∃r ∈ R : p area inside r

Table 4.7: Formal definitions for spatial predicates on MEG points and regions

4.2.1.4 Operations on Lines

This section defines the Boolean-valued operations that can be performed over values of type
lines. The definitions of operations over the lines values of type SEG are given in Table 4.8.
The definitions of operations meets and intersects over the values of type SEG are given in

68CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

[GS93], whereas the definitions of all other operations in Table 4.8 are created as part of the
work described. The definitions of operations meets and intersects are created differently,
to cater for the = and 6= operations that are used in the definitions in [GS93], but not well
explained.

In Table 4.8, for computing whether a sensor node s that belongs to both values l and l′

and is not a part of common line-segment is a meeting point, s needs to compute angularly
sorted cyclic list of all segments touching at s of each value. If only one segment of either l or
l′, or both, meet at s, then s is a meeting point. Node s is also considered as a meeting point,
if upon finding that segments list is the circular concatenation of two sublists such that one
sublist belongs to l and the other to l′. For meets or intersects, both l and l′ must not have
any line segment in common. In addition, for meets, the point where l and l′ touches must be
a meeting point, whereas intersects requires that the point where they touch must not be a
meeting point. SEG lines values l and l′ are disjoint, if any node that belongs to l does not
belongs to l′. The border in common operation yields true if one or more line segments that
belong to l also belong to l′.

l disjoint l′ ≡ ∀s[s ∈ l ⇒ s 6∈ l′]

l equals l′ ≡ ∀ss′[ss′ ∧ ss′ ∈ l ⇒ ss′ ∈ l′]∧
∀s′′s′′′[s′′s′′′ ∧ s′′s′′′ ∈ l′ ⇒ s′′s′′′ ∈ l]

l not equals l′ ≡ ¬(l equals l′)

l border in common l′ ≡ ∃s, s′[ss′ ∧ ss′ ∈ l ∧ ss′ ∈ l′]

l meets l′ ≡ ∀s, s′[ss′ ∧ ss′ ∈ l ∧ ss′ 6∈ l′]∧
∃s[s ∈ l ∧ s ∈ l′ ∧meetingpoint(s)]

l intersects l′ ≡ ∀s, s′[ss′ ∧ ss′ ∈ l ∧ ss′ 6∈ l′]∧
∃s[s ∈ l ∧ s ∈ l′ ∧ ¬meetingpoint(s)]

Table 4.8: Formal definitions for spatial predicates on SEG lines

The definitions of operations over the lines values of type MEG are given in Table 4.9. The
definitions of operations border in common, meets and intersects over the values of type MEG
are given in [GS93], whereas the definitions of all other operations in Table 4.9 are created as
part of the work described.

4.2.1.5 Operations on Lines and Regions

This section defines the Boolean-valued operations that can be performed over values of type
regions and lines. The definitions of operations over the lines and regions values of type
SEG are given in Table 4.10 and over lines and regions values of type MEG in Table 4.11.

The definitions of meets and intersects operations over the values of type SEG are given
in [GS93], whereas the definitions of all other operations in Table 4.8 are created as part of the
work described. The definitions of operations area disjoint, border in common and adjacent

4.2. SPATIAL OPERATIONS 69

L equals L′ ≡ ∀l ∈ L∃!l′ ∈ L′ : l equals l′ ∧
∀l′ ∈ L′ ∃!l ∈ L : l′ equals l

L not equals L′ ≡ ¬(L equals L′)

L intersects L′ ≡ (∀l ∈ L ∀l′ ∈ L′ : l intersects l′ ∨ l disjoint l′)∧
∃l ∈ L∃l′ ∈ L′ : l intersects l′

L disjoint L′ ≡ ∀l ∈ L∀l ∈ L′ : l disjoint l′

L meets L′ ≡ (∀l ∈ L ∀l′ ∈ L′ : l meets l′ ∨ l disjoint l′)∧
∃l ∈ L∃l′ ∈ L′ : l meets l′

L border in common L′ ≡ ∃l ∈ L∃l′ ∈ L′ : l border in common l′

Table 4.9: Formal definitions for spatial predicates on MEG lines

over the values of type MEG are given in [GS93], whereas the definitions of all other operations
in Table 4.8 are created as part of the work described.

l disjoint r ≡ ∀s[(s ∈ r ⇒ s 6∈ l)]

l area inside r ≡ ∀s, s′[ss′ ∧ ss′ ∈ l ∧ ss′ ∈ r]

l border in common r ≡ ∃s, s′[ss′ ∈ l ∧ s̃s′ ∈ ron]

l meets r ≡ ∀s, s′[ss′ ∧ ss′ ∈ l ∧ ¬(ss′ area inside r)]∧
∃s[s ∈ l ∧ s ∈ ron ∧meetingpoint(s)]

l intersects r ≡ ∃s, s′[ss′ ∧ ss′ ∈ l ∧ ss′ area inside r]

Table 4.10: Formal definitions for spatial predicates on SEG lines and regions

L intersects R ≡ ∃l ∈ L∃r ∈ R : l intersects r

L disjoint R ≡ ∀l ∈ L∀r ∈ R : l vertex disjoint r

L meets R ≡ ∀l ∈ L∀r ∈ R : ¬(l area inside r′) ∧
∃l ∈ L∃r ∈ R : l meets r

L area inside R ≡ ∀l ∈ L∃r ∈ R : l area inside r

L border in common R ≡ ∃l ∈ L∃r ∈ R : l border in common r

Table 4.11: Formal definitions for spatial predicates on MEG lines and regions

70CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

4.2.1.6 Operations on Regions

This section defines the Boolean-valued operations that can be performed over values of type
regions. The definitions over the regions values of type SEG are described first. The defi-
nitions for Boolean operators over the regions values of type MEG are provided later in this
section.

The definitions of equals, not equals, intersects, and border in common operations over the
values of type SEG are created as part of the work described, whereas the definitions of all other
operations in Table 4.12 are given in [GS93]. For area inside operation, the definition given
in [GS93] makes use of the operation ⊆, not well explained. Therefore, the definition has been
modified as it is an important operation and the definitions of vertex inside, and edge inside

relationship depend on it. The original definition of area disjoint operation has been modified,
explained later in this section. The area disjoint operation is an important operation because
the definitions of meets, adjacent, edge disjoint, and vertex disjoint relationship depend on
it.

Recall that, as explained in Section 4.1 nodes enclosed by a hole inside a regions value, do
not belong to interior of the regions value, and hence not to the regions value either. A node
is only part of a regions value if it is part of its interior or if the node lies on its boundary.
So, in this dissertation, by a geometry r of type regions we mean the nodes that belong to the
interior or boundary of r.

Formal definitions for spatial predicates on SEG values of type regions are given in Ta-
ble 4.12. In the description of these predicates, it will help understanding if they are read in
conjunction with Figures 4.2-4.9, in which it is assumed that the nodes in these figures are say,
10 meters apart and the radio range is 15 meters. Therefore, the maximum neighbourhood of
a node contains 8 nodes.

Two regions r and r′ are area disjoint if points lying in the interior of either value do not
intersect any point in the other value, and the values do not share any minimal-unit area. Both
values may share common boundary points and boundary segments.

Figure 4.2: Examples of not having area disjoint relationship between r and r′ of type SEG
regions.

If both values r and r′ have interior points, then the definition given for the area disjoint

operator in [Sch97] and reproduced in Table A.1 in Appendix A.2.1 suffices. According to that
definition, a point belonging to the interior of either cycle value must not intersect any point of

4.2. SPATIAL OPERATIONS 71

r area disjoint r′ ≡ ∀s[(s ∈ r ⇒ s 6∈ r′) ∨ (s ∈ ron ∧ s ∈ r′on)]
∧[MinUnit(r) ∩MinUnit(r′) = ∅]

r edge disjoint r′ ≡ r area disjoint r′ ∧ ∀s, s′[s, s′ ∈ ron ∧ s, s′ ∈ r′on ⇒ ¬s̃s′]

r vertex disjoint r′ ≡ ∀s[(s ∈ r ⇒ s 6∈ r′)]

r intersects r′ ≡ ∃s[((s | s ∈ rin ∧ s ∈ r′) ∨ (s | s ∈ r ∧ s ∈ r′in))]∧
[MinUnit(r) ∩MinUnit(r′) 6= ∅]

r adjacent r′ ≡ r area disjoint r′ ∧ ∃s, s′[s, s′ ∈ ron ∧ s, s′ ∈ r′on ∧ s̃s′]

r meets r′ ≡ r area disjoint r′ ∧ ∃s[s ∈ ron ∧ s ∈ r′on]∧
∀s′s′′[s′, s′′ ∈ ron ∧ s′s′′ ∈ r′on ∧ ¬s̃′s′′]

r area inside r′ ≡ ∀s(s ∈ rin ⇒ s ∈ r′in) ∧ ∀s′(s′ ∈ ron ⇒ s ∈ r′)
∧ ((r equals r′)∨(∃s′′(s′′ 6∈ r ∧ s′′ ∈ r′))

r edge inside r′ ≡ r area inside r′ ∧ ∀s, s′[s, s′ ∈ ron ∧ s, s′ ∈ r′on ⇒ ¬s̃s′]

r vertex inside r′ ≡ r edge inside r′ ∧ ∀s(s ∈ ron ⇒ s 6∈ r′on)]

r equals r′ ≡ ∀s[s ∈ rin ⇒ s ∈ r′in] ∧ ∀s′[s′ ∈ ron ⇒ s′ ∈ r′on]∧
∀s′′[(s′′ ∈ r′in ⇒ s′′ ∈ rin] ∧ ∀s′′′[(s′′′ ∈ r′on ⇒ s′′′ ∈ ron]∧
∀s′′′′s′′′′′[s̃′′′′s′′′′′ ∈ ron ⇒ s̃′′′′s′′′′′ ∈ r′on]∧
∀s′′′′s′′′′′[s̃′′′′s′′′′′ ∈ r′on ⇒ s̃′′′′s′′′′′ ∈ ron]

r not equals r′ ≡ ¬(r equals r′)

r border in common r′ ≡ ∃s, s′[s, s′ ∈ ron ∧ s, s′ ∈ r′on ∧ s̃s′]

Table 4.12: Formal definitions for spatial predicates on SEG regions

the other value. This definition cannot handle the case where one or both SEG regions values
are unit or minimal-unit regions. Some example scenarios are given in the Figure 4.2 where the
original definition of area disjoint cannot determine whether the geometries are area disjoint.
Given these shortcomings, the original definition of area disjoint operation has been extended
by adding the condition that the two values must not have any shared minimal-unit regions

area. This additional condition handles the scenarios in Figure 4.2. Two values r and r′ are
also considered to be area disjoint if there exists a hole in r′ such that r lies area inside it,
or if there exists a hole in r such that r′ lies area inside it.

Figure 4.3-4.5, show example scenarios where SEG regions values are area disjoint. In
Figure 4.3(a), both r and r′ are SEG regions values without holes and r and r′ only share
boundary segments. In Figure 4.3(b), r′ is a SEG regions value with a hole, r is a SEG regions

value without hole, and r shares a boundary segment with r′ and is area inside the hole in r′.
In Figure 4.3(c), r′ is a SEG regions value with a hole and r is a unit regions value, and r

shares two boundary segments with r′ and is area inside the hole in r′.

In Figure 4.4(a), both r and r′ are SEG regions values without holes, r and r′ are

72CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

area disjoint and r shares two boundary points with r′. In Figure 4.4(b), r is a unit re-

gions value and r’ is a SEG regions value with a hole, r shares a boundary point with r′ and
is edge inside the hole in r′. In Figure 4.4(c), r′ is a SEG regions value with a hole and r is
a SEG regions value without a hole, r shares two boundary points with r′ and is edge inside

the hole in r′.

In Figure 4.5(a), both r and r′ are SEG regions values with an interior, r does not share
any point with r′. In Figure 4.5(b), r is a unit regions value and r′ is a SEG regions value
with a hole, r and r′ do not share any point and r is vertex inside the hole in r′. In Figure
4.5(c), r′ and r are SEG regions with and without a hole respectively, r and r′ do not share
any point and r is vertex inside the hole in r′.

(a) (b) (c)

Figure 4.3: Geometries r and r′ of type SEG regions standing in area disjoint,
border in common and adjacent relationships.

The edge disjoint relationship is true for two geometries r and r′ if they are area disjoint,
and do not share common boundary segments, although they may share common boundary
points. In addition, two SEG regions values r′ and r are edge disjoint if there exists a hole
in r such that r′ is edge inside in it, or if there exists a hole in r′ such that r is edge inside in
it. Figures 4.4-4.5 show example scenarios where the two regions values are edge disjoint.

The vertex disjoint relationship simply disjoint, is true if values r and r′ do not share
any points. The values are also considered to be vertex disjoint if there exists a hole in r′

such that r is vertex inside in it or if there exists a hole in r such that r′ is vertex inside in
it. Figure 4.5 shows example scenarios where regions values are vertex disjoint.

The meets relationship is true if the values are area disjoint, and share at least one common
boundary point and no common boundary segment. In addition, the SEG regions values r′

and r stand in a meets relationship if there exists a hole in r such that r′ is edge inside it and
has at least one common boundary point with r and no common boundary segment, or else if
there exists a hole in r′ such that r is edge inside in it and has at least one common boundary
point with r′ and no common boundary segment. Figure 4.4 shows example scenarios where
two SEG regions values stand in a meets relationship.

The adjacent relationship is true if the values are area disjoint, and shares at least one
common boundary segment. Two regions values r′ and r are adjacent if there exists a hole

4.2. SPATIAL OPERATIONS 73

(a) (b) (c)

Figure 4.4: Geometries r and r′ of type SEG regions standing in edge disjoint and meets

relationships.

(a) (b) (c)

Figure 4.5: Geometries r and r′ of type SEG regions standing in edge disjoint and
vertex disjoint relationships.

in r such that r′ is area inside it and there exists at least one boundary segment in common
with r, or if there exists a hole in r′ such that r is area inside it and there exists at least one
common boundary segment with r′. Figure 4.3 shows example scenarios where SEG regions

values are adjacent.
The border in common relationship is true if the two regions values have at least one bound-

ary segment in common. Figure 4.3 and Figure 4.6 show example scenarios where the two SEG
regions have a border in common.

Geometry r is area inside r′ if r equals r′ or r is subset of r′. They may or may not
share a common boundary point and common boundary segment. In addition, the area inside

relationship is also true if r is area disjoint from all holes in r′ or there exist holes in r′ with
holes in r area inside it. Figure 4.6-4.8 show example scenarios where SEG regions values are
area inside one another.

Two values are edge inside if they are area inside and, in addition, do not share any
boundary segment. The edge inside relationship is also true, if r is edge disjoint from all
holes in r′ or there exists hole in r such that there is a hole in r′ that edge inside it. Figure

74CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

(a) (b) (c)

Figure 4.6: Geometries r and r′ of type SEG regions standing in area inside and
border in common relationships.

4.7-4.8 show example scenarios of SEG regions values that are edge inside one another.

(a) (b) (c)

Figure 4.7: Geometries r and r′ of type SEG regions standing in area inside, edge inside,
and not equals relationships.

The vertex inside relationship is true if r and r′ are edge inside and do have any common
boundary point. The vertex inside relationship is also true if r is vertex disjoint from all
holes in r′ or there exist holes in r such that there is a hole in r′ that is vertex inside it. Figure
4.8 shows example scenarios of regions values that are vertex inside one another.

The relationship intersects is true if the operands have a minimal-unit regions value in
common or else if the interior of either value shares a boundary and the interior with the other
value, or the interior and boundary of either value shares a interior of the other value, or the
interior and boundary of either value shares the boundary and interior with the other value.
Figure 4.7-4.8 show example scenarios of SEG regions values that stand in an intersects

relationship.

r equals r′ if both values have an equal number of points and boundary segments, and each
point that belongs to the interior of one value also belongs to the interior of the other value
and each point that belongs to the boundary of one value also belongs to boundary of the other

4.2. SPATIAL OPERATIONS 75

(a) (b) (c)

Figure 4.8: Geometries r and r′ of type SEG regions standing in area inside, edge inside,
vertex inside, and not equals relationships.

value. If r and r′ are SEG regions value with holes, both r′ and r must have an equal number
of holes and for each hole in r′, there must exist one hole in r which equals it. Figure 4.9 shows
example scenarios of regions values that stand in a equals relationship. In Figure 4.9(a), r

and r′ are SEG regions values without holes and r and r′ share every interior and boundary
point. In Figure 4.9(b), both r and r′ are SEG regions values with a hole that share every
interior and boundary point and have an equal number of holes. In Figure 4.9(c), r and r′ are
SEG unit regions values and r and r′ share every boundary point.

(a) (b) (c)

Figure 4.9: Geometries r and r′ of type SEG regions standing in equals relationships.

The relationship not equals is true if both SEG regions values are not equals, i.e., at least
one point exists that is part of the interior or the boundary of one value and not of the other
or atleast one boundary segment exists that is part of one value and not of other value.

Figure 4.13 presents definitions for spatial predicates over operands of type MEG regions.
The definitions of area disjoint, border in common, intersects and adjacent operations over
the values of type MEG are given in [GS93], whereas the definitions of all other operations in
Table 4.8 are created as part of the work described. The definition of intersects operation
given in [GS93] has been modified, as the function Units() used in the definition is not well

76CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

R equals R′ ≡ ∀r ∈ R ∃!r′ ∈ R′ : requals r′ ∧
∀r′ ∈ R′ ∃!r ∈ R : r′equals r

R not equals R′ ≡ ¬(R equals R′)

R area disjoint R′ ≡ ∀r ∈ R ∀r′ ∈ R′ : r area disjoint r′

R edge disjoint R′ ≡ ∀r ∈ R ∀r′ ∈ R′ : r edge disjoint r′

R vertex disjoint R′ ≡ ∀r ∈ R ∀r′ ∈ R′ : r vertex disjoint r′

R adjacent R′ ≡ R area disjoint R′ ∧ ∃r ∈ R ∃r′ ∈ R′ : r adjacent r′

R meets R′ ≡ R area disjoint R′ ∧ ∃r ∈ R ∃r′ ∈ R′ : r meets r′

R area inside R′ ≡ ∀r ∈ R ∃r′ ∈ R′ : r area inside r′

R edge inside R′ ≡ ∀r ∈ R ∃r′ ∈ R′ : r edge inside r′

R vertex inside R′ ≡ ∀r ∈ R ∃r′ ∈ R′ : r vertex inside r′

R border in common R′ ≡ ∃r ∈ R ∃r′ ∈ R′ : r border in common r′

R intersects R′ ≡ ∃r ∈ R ∃r′ ∈ R′ : r intersects r′

Table 4.13: Formal definitions for spatial predicates on MEG regions

explained.

The operation equals yields true if both R and R′ have an equal number of elements and,
for each element of r ∈ R, there exists one element of R′ with which it has equals relationship.
Operation not equals yields true if the equals relationship between R and R′ yields false.

The operation area disjoint yields true if every possible pair of elements from both ge-
ometries R and R′ are area disjoint. For edge disjoint, all elements of R and all elements of
R′ must be edge disjoint with each other. Similarly, for vertex disjoint every possible pair of
values from both geometries R and R′ must be vertex disjoint.

The two values R and R′ of type MEG regions are adjacent, if every pair of the elements
from R and R′ is area disjoint and there exists an element of R adjacent with an element of
R′.

The two values R and R′ of type MEG regions stand in a meets relationship if every element
of R is area disjoint with every element of R′, and there exists an element of R that stands in
a meets relationship with an element of R′.

For area inside, all elements of R must be area inside one or more elements of R′. R and R′

are edge inside if all the elements of R are edge inside one or more elements of R′. Operation
vertex inside yields true if all the elements of R are vertex inside one or more elements of
R′.

For border in common, there must exist an element of R sharing at least one common bound-
ary segment with an element of R′. The operation intersects is true if there exists an element

4.2. SPATIAL OPERATIONS 77

of R that stands in an intersects relationship with an element of R′.

4.2.2 Spatial-Valued Operations

The second group of operations in the algebra comprises spatial-valued operations, i.e., those
that return a derived geometry. It includes operations such as plus, intersection, minus and
contour. These are shown in Table 4.14. For the operations defined in this section, equivalent
operations exists in [Sch97].

intersection : points × points → points
intersection : lines × lines → points
intersection : regions × regions → regions
intersection : regions × lines → lines

contour : regions → lines
plus : GEO × GEO → GEO
minus : GEO × GEO → GEO

vertices : EXT → points
common border : EXT1 × EXT2 → lines

Table 4.14: Spatial-valued operations supported

4.2.2.1 Operations on Points

Table 4.15 gives the definitions for spatial-valued operations over SEGs of type points and
Table 4.16 gives definitions over operands of type MEG points. The definitions for these
operations are created as part of the work described. The operator plus creates a new derived
geometry containing the values of type points that belongs to either of the operands or to
both. The operator minus returns a new derived geometry containing the values of type points

that only belong to the geometry p. The operator intersection returns a new geometry of type
points containing the values that belong to both p and p′.

p plus p′ ≡ {s | s ∈ p ∨ s ∈ p′}

p intersection p′ ≡ {s | s ∈ p ∧ s ∈ p′}

p minus p′ ≡ {s | s ∈ p ∧ s 6∈ p′}

Table 4.15: Spatial-valued operations on SEG points

P plus P ′ ≡ ∀p ∈ P plus ∀p′ ∈ P ′

P intersection P ′ ≡ ∀p ∈ P intersection ∀p′ ∈ P ′

P minus P ′ ≡ ∀p ∈ P minus ∀p′ ∈ P ′

Table 4.16: Formal definitions for spatial-valued operations on MEG points

78CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

4.2.2.2 Operations on Lines

Table 4.17 gives the definitions for spatial-valued operations over SEGs operands of type lines.
The definition of intersection operation over the values of type SEG is given in [GS93], whereas
the definitions of all other operations in Table 4.17 are created as part of the work described.

The operator plus creates a new derived geometry containing the line-segments that belong
to either l, l′ or both. The operator minus returns a new derived geometry containing the
line-segments that belong to value l only. The operator intersection returns a new derived
geometry of type points containing the points where l intersects l′. The operator vertices

returns a new derived geometry of type points containing the finite set of points that occurs
in the line segments of l.

l plus l′ ≡ {ss′ | ss′ ∧ (ss′ ∈ l ∨ ss′ ∈ l′)}

l minus l′ ≡ {ss′ | ss′ ∧ ss′ ∈ l ∧ ss′ 6∈ l′}

l common border l′ ≡ {ss′ | ss′ ∧ ss′ ∈ l ∧ ss′ ∈ l′}

l intersection l′ ≡ {s | s ∈ l ∧ s ∈ l′ ∧ ¬meetingpoint(s)}

vertices l ≡ {s | s ∈ l}

Table 4.17: Spatial-valued operations on SEG lines

4.2.2.3 Operations on Lines and Regions

Table 4.18 gives the definitions for spatial-valued operations over SEGs operands of type lines

and regions. The definitions are given in [GS93].

The operation intersection returns a new derived geometry of type lines containing the
line segments that are lies area inside the SEG regions value r. The operation common border

returns a new derived geometry of type lines containing the finite set of line segments that
belong to l and to the boundary of r.

l common border r ≡ {ss′ | ss′ ∈ l ∧ s̃s′ ∈ ron}

l intersection r ≡ {ss′ | ss′ ∈ l ∧ ss′ area inside r}

Table 4.18: Spatial-valued operations on SEG lines and regions

4.2.2.4 Operations on Regions

Table 4.19 gives the definitions for spatial-valued operations over SEGs of type regions. The
definitions of common border, and contour operations over the values of type SEG are given in
[GS93], whereas the definitions of all other operations in Table 4.17 are created as part of the
work described.

4.2. SPATIAL OPERATIONS 79

r plus r′ ≡ {s | s ∈ r ∨ s ∈ r′}

r intersection r′ ≡ {s | s ∈ rin ∧ s ∈ r′} ∪ {s | s ∈ r ∧ s ∈ r′in} ∪
{s | s ∈ ronr′on ∧ ∃s′[s′ ∈ r′inrin ∨ s′ ∈ r′onrin ∨ s′ ∈ r′inron)}
∪ {ss′′s′′′ | ss′′s′′′ ∈ ronr′on ∧ ss′′s′′′ ∈ MinUnit(ronr′on)}

r minus r′ ≡ {s | s ∈ r ∧ s 6∈ r′} ∪ {s | s ∈ rin ∧ s ∈ r′on} ∪
{s | s ∈ ronr′on ∧ ∃s′[s′ ∈ r] ∧ s 6∈ MinUnit(ronr′on)}
∪{s | s ∈ ronr′on ∧ s ∈ MinUnit(ronr′on)∧
∃s′[s′ ∈ r ∧ ss′ ∩ s ∈ MinUnit(ronr′on) = φ]}

contour(r) ≡ {s | s ∈ roon ∧ s 6∈ rion}

vertices(r) ≡ {s | s ∈ ron}

r common border r′ ≡ { s, s′ | s, s′ ∈ ron ∧ s, s′ ∈ r′on ∧ s̃s′}

Table 4.19: Spatial-valued operations on SEG regions

The operation plus creates a new derived geometry of type regions containing the points
and segments that belong to one operand or to both. The reader is referred to Section 5.5.2.1,
for a description of the computation of edge nodes and boundary segments of the derived
geometry. Figure 4.10 explains the plus operation between two regions values R and R′ and
the resultant derived geometry, where R is of type SEG comprising r (a regions value with a
hole) and R′ is of type MEG comprising r′1,r

′
2 and r′3.

(a) (b) Result of R plus R’

Figure 4.10: Derived geometry obtained as a result of a plus operation between regions values.

The operation minus between two regions values creates a new derived geometry of type
regions. The new derived geometry contains the points that are members of r only; those
belonging to the interior of r and to the boundary of r′; the common boundary points that
do not form a CLUT with other common boundary points and that have among their closest
neighbours at least one neighbour that is a member of r only; and the common boundary
points that are part of one or more CLUTs and have among their closest neighbours at least
one neighbour that belongs to r only, and the segment between itself and that neighbour does
not intersect any of the CLUTs. The reader is referred to Section 5.5.2.1, for a description

80CHAPTER 4. SPATIAL ALGEBRA: DISTRIBUTED SPATIAL ANALYSIS OVER WSNS

of the computation of edge nodes and boundary segments of the derived geometry. Figure
4.11 explains the minus operation on two regions values R and R′ and the resultant derived
geometry. Geometry R is of type SEG comprising r and R′ is of type MEG comprising r′1,r

′
2

and r′3.

(a) (b) Result of R minus R’

Figure 4.11: Derived geometry obtained as a result of a minus operation between regions values.

The operation intersection between two regions values creates a new derived geometry of
type regions. It implies the need to search for a common intersection area that belongs to
both operands. The new derived geometry contains the points belonging to the interior of r

and the boundary of r′; those belonging to the boundary of r and to the interior of r′; those
belonging to the interior of both r and r′; the common boundary points having among closest
neighbours, at least one neighbour that either belongs to the interior of both r and r′, or to
the interior of r and to the boundary of r′, or to the boundary of r and to the interior of r′;
and common boundary points that constitute a CLUT. Figure 4.12 explains the intersection

operation between two regions values R and R′ and the resultant derived geometry, where
geometry R is of type SEG comprising r and R′ is of type MEG comprising r′1, r′2 and r′3. The
reader is referred to Section 5.5.2.1, for a description of the computation of edge nodes and
boundary segments of the derived geometry.

(a) (b) Result of R intersection R’

Figure 4.12: Derived geometry obtained as a result of a intersection operation between regions
values.

4.3. SUMMARY 81

The operation common border creates a new derived geometry of type lines containing the
common boundary segments of r and r′. Operation contour returns a derived geometry of type
lines formed from the boundary segments of the outer boundary of the regions value r, i.e.
inner boundaries are omitted. Recall, from Section 4.1, that a regions value with a hole has a
disconnected boundary. The vertices operator returns the boundary points of a regions value
r and produces a new derived geometry of type points.

The algebra presented this chapter allows for inferences about the set of spatial relation-
ships that hold between the geometries and the derivation of geometries based on the existing
geometries. The spatial inferences are formalized within the spatial framework described in
Chapter 3 and the remainder of the dissertation is about the challenge of implementing these
operations over WSNs. The inherent scarcity of resources and nature of underlying platform
where execution is distributed and carried out periodically over sensed data streams give rise
to non-trivial challenges. The challenge is very different in all respects from the ROSE algebra
implementation developed [GS93, Sch97].

4.3 Summary

This chapter has shown how an algebra can be defined over the spatial framework presented in
Chapter 3 whose operations enable the expression of sophisticated spatial analysis over WSNs.
The chapter has provided rigorous, formal definitions of the spatial data types points, lines

and regions together with spatial-valued and Boolean-valued operations over them. These def-
initions of spatial data types clarify the structure of spatial data type values from an abstract
point of view. The spatial values can be of type SEG or MEG and the regions values may
contain holes. This chapter has also presented the definitions of operations over valid combi-
nation of values of type points, lines and regions. These definitions serve as a specification
for our distributed implementation discussed in Chapters 5 and 5.6.

Chapter 5

Algorithmic Strategy for

In-Network Distributed Spatial

Analysis Over WSNs

In line with the vision of the spatial analysis framework and distributed spatial algebra presented
in the previous chapters, this chapter presents the in-network strategy for the evaluation of
spatial analysis tasks as another contribution of this dissertation.

The algorithmic strategy for in-network distributed spatial analysis over WSN is specifically
tailored for energy-efficient in-network execution, with a focus on issues related to minimizing
unnecessary communication and the size of information to be communicated. The algorithmic
strategy for the evaluation of complex algebraic expressions is divided into logically-cohesive
components thereby facilitating component reuse and sharing. Each node is equipped with the
task processing system thereby allowing it to participate in task dissemination, to contribute in
the distributed evaluation of tasks, and to participate in the aggregation of intermediate results
and in the routing of results to the user. In this chapter, the advantages of our approach over
alternatives are argued in detail. The reader is referred to Section 5.6.2 for the description of
task processing system.

This chapter describes how the problem of distributed computation of complex topological
tasks, involving multi-element geometries as operands, can be mapped to the problem of first
computing a node-level task state and then aggregating the node-level task state at two-levels
using a new bit-string-based approach. The distributed computation of aggregates, such as
count, sum, average, minimum, and maximum, is a well studied problem in WSNs. This
dissertation introduces BitwiseAND as a new aggregate operator for aggregation of node-level
task states. In addition, the algorithmic strategy for the evaluation of spatial-valued tasks is
described in detail.

The structure of the chapter is as follows. Section 5.1 discusses the related work. Section 5.2
introduces the different types of spatial tasks to be evaluated over the framework described in
Chapter 3. Section 5.3 describes the basic data structure which allows a node to associate itself

82

5.1. RELATED WORK 83

to a particular geometry. The algorithmic approach for the evaluation of Boolean-valued tasks
is described in Section 5.4, and that for spatial-valued tasks is described in Section 5.5. Sec-
tion 5.6 presents distributed algorithms that constitute the first comprehensive, implemented,
empirically evaluated proposal for expressive in-network spatial analysis in WSNs. Over this
distributed computing platform, an application is executed as collection of processes. Section
5.7 summarizes the contributions of this chapter.

5.1 Related Work

To the best of our knowledge, the representational framework described in this dissertation and
its associated spatial algebra and distributed algorithms constitute the first comprehensive,
proposal for expressive in-network spatial analysis in WSNs. There exists work on detecting
and reporting of topological changes. The topological changes reported include hole formation,
hole disappearance, event region splitting, and event region merging. However, none of the
existing work focuses on the computation of topological relationships among the three types
of geometries or the derivation of new geometries from existing geometries using spatial-valued
operations.

The work described in [JWN09] provides a computational model for WSNs to detect topo-
logical changes in dynamic regions based on local low-level snapshots of spatio-temporal data.
The assumptions made by authors includes: the nodes are densely deployed and induce a
voronoi diagram in the sensing area. Jiang et al. focus on using connectivity information,
instead of location information, for the detection of topological changes to single element event
geometry with no hole. Each node records the event state of its previous and current evaluation
periods. The descriptions of the change is computed by the comparison of the event state at
the consecutive two evaluation periods.

In [JWN09], at each evaluation period, the boundary of the event region is computed after
the event detection. Once the boundary nodes are identified, the next step is the formation of
groups based on the boundary nodes that have the same state in consecutive evaluation periods.
Each group is assigned a unique ID, which is the node ID of the group leader. Each boundary
node waits for a short random period of time for the group construction message from group
leader. Upon the expiry of wait period, it declares itself a group leader and transmits requests to
neighbouring nodes that have the same state to join the group. The group construction message
from the group leader helps to construct the routing tree, which is then used for the aggregation
of information. Each boundary node in a group communicates with its direct neighbours to
find out the group ID of its adjacent groups in order to compute neighbouring greater label
set, comprising the group IDs of the groups that are greater than the node’s own group ID.
After aggregation, the leader node is responsible for routing the group information to the sink,
which includes the group state, the group ID, the neighbouring greater label set and group hop
distance representing minimum hop distance in the group between nodes. After the reception
of information from the group leaders, the sink node constructs the snapshot of the event region
and the location of topological change.

Other work on using WSNs to detect topological change includes [FZWN08, JW08]. Farah

84 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

and Zhong [FZWN08], propose an event-driven approach for capturing topological changes.
The basic data structure used for the detection of topological changes is a neighbourhood ring.
Each node maintains such a data structure for storing the event state of the nearest neighbours.
In addition, it is assumed that each node is location-aware and records the event state of its
previous and current evaluation periods. In this dissertation, it is also assumed that the nodes
are location-aware and that each node keeps a record of its membership to induced, asserted
and derived geometries in its own GIT.

Furthermore, for resource management, [FZWN08] divides a WSN into rectangular regions
called clusters. The leader for each cluster maintains information about adjacent cluster heads
and is also responsible for the activation of nodes in its associated cluster whenever its event
state changes relative to the previous evaluation period.

For detecting the type of topological change, a non-boundary node checks for the consis-
tency of information in its neighbourhood ring whenever its event state changes relative to the
previous evaluation period. If, all the values in the neighbourhood ring are uniform, then an
event node computes that the topological change is hole loss. Otherwise, a non-event node
declares the topological change to be hole formation. If the values in neighbourhood ring are
not uniform, then it makes use of the adjacent neighbouring components, their ID information,
and its own event state to compute whether the topological change is merging. For splitting,
it needs to compute the existence of cycle. Depending upon the requirement of detection of
particular topological changes, a cluster head needs to communicate with one or all adjacent
cluster heads. Detailed description about the aggregation of information and the reporting of
topological change to the user is not provided in [FZWN08]. With a view to supporting this
class of applications, this dissertation shows that such spatial analysis can indeed be efficiently
implemented in WSNs.

Worboys et al. [WD06] propose a scheme for the detection of topological changes. The
assumption is that the nodes and the communication links in a WSN divide the underlying
plane into set of triangles (i.e., triangulations are superimposed on top of the underlying com-
munication topology of a WSN). The authors use the triangulation method for the estimation
of the spatial extents of event geometries. All triangles that are exterior to an event geometry
constitute the boundary triangles, and all the triangles that are lying in the interior constitute
the interior. The event state of a node in successive evaluation periods results in dynamic
triangulation because of the changes, i.e., addition or deletion, made to the triangles in the
embedded triangulation framework. The authors have proposed triangulation transition rules
which are used for the detection of topological changes including splitting, merging, movement,
stasis and hole formation and disappearance to single element event geometries. Whilst [WD06]
is restricted to the detection of topological changes, the focus of this dissertation is on tracking,
complex, transient, fast-evolving physical phenomena and enabling the analysis of the topolog-
ical relationships they exhibit with other physical phenomena or with permanent geographical
features.

Jiang and Worboys [JW08] propose in-network algorithms for the detection and reporting of
topological changes. The work allows for reporting the Minimum Bounding Rectangle (MBR)
of the area where change has taken place and the type of topological change. It is assumed that

5.1. RELATED WORK 85

an event region and a hole inside it is a two dimensional object, i.e., not of type points or lines,
and that each node is location-aware. This is related to the work described in this dissertation,
as here it is also assumed that a node is location-aware and that holes inside regions value are
two-dimensional objects instead of type lines or points.

For detecting of topological change, each node assigns itself a colour based on its event state
information in successive two evaluation periods. For example, a node with event state (0/1)
denotes a false event state in the previous evaluation period and a true one in the subsequent
evaluation period. A node assigns itself the black colour on having the state (1/1), and white

on having state of (0/0). Otherwise, it assigns itself the gray colour. The black nodes are called
as black C-component nodes, having one-hop neighbour of gray colour or having a black colour
neighbour part of black C-component nodes. White C-component nodes are defined in similar
manner. Communication is required for the assignment of the red and blue colours. A gray

colour node which is a k-hop neighbour of black or white is assigned a blue colour. The red

colour node is selected among the black and white colour nodes that satisfies either one of the
following: having one-hop neighbour of gray colour, or having one-hop neighbour part of black

or white colour C-component.

After colour assignment, a leader election is held between blue colour nodes, resulting in the
selection of a representative node and the construction of a routing tree. A leader is also elected
among red colour nodes to act as cluster leader. After that, cluster formation occurs among
red nodes, to which the leader node ID is assigned as label. Cluster formation results in the
formation of a routing tree rooted at the cluster leader. Each cluster head is connected to one
of the neighbouring blue node. After that, the red nodes engage in aggregation of information.
The aggregation phase results in the computation of the MBR of the cluster and the collection
of information about adjacent neighbouring clusters. Each cluster head is then responsible for
transmitting this information towards the representative leader for analysis. After the reception
of information from cluster heads, the representative node is then responsible for detecting
topological change and aggregating MBR information, which is then transmitted towards the
root node. This aggregation and reporting scheme is related to the work described in this
dissertation in which, aggregation of membership states for computing topological relationships
takes place at two levels. Therefore, leaders are selected at two-levels: first at the SEG level
and then at the top-level. However, whilst the focus in [JW08] is on computing the minimum
bounding rectangle of the area where the topological change is detected, whereas in the work
reported here the information that is aggregated consists of bit-level encodings of the partial
results in evaluating a complex distributed task to compute the final result.

Bi et al. [BGTD06] propose an algorithmic strategy for the detection of topological holes
created because of environmental factors, of random deployment, or the fact that the nodes have
run out of energy. The algorithm works under the assumption that the nodes are uniformly
deployed. The algorithm exploits two facts. Firstly, that the hole boundary nodes have a
smaller number of neighbours than non-boundary nodes, and secondly, that most of the one-hop
neighbours of boundary nodes are also neighbours of the two-hop neighbours of boundary nodes.
Each node maintains a list of one-hop and two-hop neighbours, and list of neighbours received
from its neighbours lying at most two-hop away. After the computation of this information,

86 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

each node computes the count of neighbours for each of its two-hop neighbour. Based on this
information, each node computes the boundary state for its two-hop neighbourhood, and sends
its computed boundary state to those neighbours. Upon the reception of such information, a
node computes whether it is a boundary node based on the number of true and false boundary
states and the weight assigned to each neighbour boundary vote (based on its degree, i.e., the
count of its two-hop neighbours).

Bi et al. [BTG+06] provide an improvement to the algorithm proposed in [BGTD06] in
order to achieve energy efficiency. The idea is that instead of a node computing the boundary
state of each two-hop neighbour, it transmit its computed state towards those neighbours. A
node needs to compute the average of the degree of its two-hop neighbours. If its own count of
two-hop neighbours is less than the average degree of two-hop neighbours, it needs to compute
whether it itself is a boundary node and transmit its boundary state to its one-hop neighbours
with a request to confirm its boundary state value. Upon the reception of a response from its
one-hop neighbours, a node decides to retain its boundary state value or to flip it. In contrast to
[BTG+06, BGTD06], the work presented in this dissertation does not detect topological holes,
instead it detects the topological relationships between geometries, with or without holes.

Zhu and Sarkar [ZSGM08] provide a detection algorithm to track the contours of an evolv-
ing region, while guaranteeing that the contour represents information about the topological
features. To detect a contour, each node needs event state information from its neighbours at
each evaluation period. On the basis of its own and its neighbours event state information, a
node assigns itself a colour. It assigns itself black if its own and all of its neighbours event states
are true. If all of its neighbours and its own event state are false, it assigns itself white. Oth-
erwise, it assigns itself gray. The contour is computed among the gray nodes that are located
close to the black nodes based on some threshold value. In this dissertation, the focus is not on
the in-network aggregation of information or on designing a scheme that provides information
about topological features, instead the focus is on the detection of topological relationships
between asserted, induced and derived geometries.

Jiang and Worboys [JW09] present a tree model for modelling the topological structure of
an event geometry at each evaluation period. The idea is that as the areal object undergoes
topological change, the associated tree also changes. The work presented proposes the idea that
tree structures allows to represent topological relationships between regions and some of the
topological relations such as surrounded by can be represented by using single tree. An event
geometry is defined as a collection of region components, possibly with holes. This is to some
extent related to the work described in this dissertation, as an induced geometry is a finite set
of pairwise disjoint, polygons with or without holes.

Deb et al. [DBN03] propose a distributed parameterized algorithm for sensor topology
retrieval at multiple resolutions. The resolution of the topology is defined in terms of number
of edges and number of nodes. The parameters that control the resolution include the virtual
range (which defines the maximum distance r between nodes that form an edge), the resolution
factor (which defines the percentage of edges originating from a node, which a node needs to
return to its parent as part of computing reply to the topology discovery reply), and the query
type (which defines the type of query so that the specific filters and aggregation functions can

5.2. TASKS AS COMPLEX ALGEBRAIC EXPRESSIONS 87

be mapped to it). The algorithm uses a colouring scheme. Initially all nodes are white except
for the node that initiates the topology extraction request, which is black. The initiating node
becomes the root of the black node tree. Each black node sets a black node as a parent which is
at most two-hops away and from which it lastly received a topology extraction request message.

Upon reception of the broadcast message, each node broadcasts a request to its neighbours
lying in a distance r. A node that receives a request from a black node changes its colour to
red. A node that receives a request from a blue or a red node, or that is in the communication
range of a black node, sets its colour to blue. Each blue node sets a timer (expiry time of
which is proportional to its deviation from 2r distance from the black colour neighbour), upon
the expiry of which it changes its colour to black. The time of the timer is set such that blue
nodes that are closer to 2r distance change their colour earlier. Upon changing colour from
blue to black, a node sets a acknowledgement timer to reply to the discovery request. Until the
expiry of the acknowledgement timer, it receives information from child nodes and aggregates all
topology information from its children and adds f fraction of edges from its own region. Upon
the expiry of the acknowledgement timer, a black node transmits its response to its parent.
Whilst [DBN03] is restricted to the retrieval of topology at multiple resolutions, the focus of
this dissertation is on performing in-network distributed spatial analysis over WSNs.

In summary, in contrast, to the related work presented in this section, our work provides a
comprehensive approach to the detection of topological relationships and derivation of new
geometries from existing geometries using distributed algorithms for in-network processing
techniques. The related work provides comprehensive techniques for the following: detecting
topological changes, detecting and reporting topological changes, detecting topological holes,
extracting topological features, and topology information retrieval. We will now describe how
tasks are conceptualized as algebraic expressions and then move on to describe the data struc-
tures and algorithmic strategies used in their evaluation.

5.2 Tasks as Complex Algebraic Expressions

Simple tasks consists of a single spatial operator. Complex tasks consists of more than one
operator. In the case of complex Boolean-valued tasks, the logical operators and, or and not

(i.e., the classical Boolean connectives) are used to construct complex algebraic expressions.

5.3 Concrete Data Structures

In our approach we assume that each node holds a data structure known as a Geometric
Information Table (GIT). This section describes the attributes of GIT. In a node S, an entry in
its GIT is a quadruple 〈I, T, B, θ〉, where I denotes the geometry ID of the geometry to which
N belongs, T denotes the spatial data type of I, B is true iff N is in the boundary of the
geometry identified by I, and θ denotes the validity period, i.e., the time-to-live (TTL) after
which the GIT entry becomes invalid. In the case of induced geometries, when an event of
interest is detected at a given time in a node, its GIT is updated. If the entry already exists for
that induced geometry, its TTL is reset. Otherwise, a new entry is added to the GIT. Upon the

88 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

expiry of the TTL, the entry is removed. In the case of derived geometries, an entry is added
to GIT with a TTL when the geometry is derived. The TTL is set to the minimum TTL of
the original operands. The reason is that the new geometry is derived on the basis of existing
geometries, where one or both operands used for its derivation can be of type induced. The
TTL for asserted geometries is set to ∞ and is not updated. Thus, the GIT allows a node to
keep a record of which geometries it is part of. This is used, e.g., to decide whether the node
should evaluate some task at a specific evaluation period.

5.4 Evaluation Components for Boolean-Valued Tasks

The procedure for the evaluation of Boolean-valued tasks consists of three sub-tasks, task dis-
semination to the nodes, distributed task evaluation, of complex spatial-algebraic expressions,
and result processing, which sends the results to the gateway.

5.4.1 Task Dissemination

In this phase, the task message is disseminated to the relevant nodes in the WSN. The task
dissemination phase accomplishes the additional purpose of constructing the routing tree for
result processing rooted on (as well as electing) the first-level leader to whom the results from
leader nodes at the SEG levels are sent for aggregation, as described later. A description of the
task dissemination phase was provided in Section 3.3. The reader is referred to Section B.1.1
for more details.

5.4.2 Distributed Task Evaluation

Every task MBR node evaluates the interpretable structure conveyed by the task message,
i.e., every node runs an interpreter for the event detection and algebraic evaluation steps
required in our approach to spatial analysis. After receiving the task, a node may need to
wait until the estimated (on the basis its location in the task MBR) time needed for the task
message to be received by the furthest node in the MBR. The reader is referred to Section B.1.1
for more details. Once the task message is received, the MBR nodes have to execute the task
specified in the task message in a distributed manner. Apart from other attributes, the task
message contains the internal, interpretable form of the task specification represented in postfix
notation.

This section describes how a task containing Boolean-valued operators can be evaluated in a
distributed manner. Note that this section only describes the case where the operands are of the
type regions. Furthermore, in all the figures presented in this section, which provide illustrative
example scenarios, it is assumed (unless specified otherwise) that the nodes are deployed in a
uniform grid, and that a node has a maximum neighbourhood of 8 nodes. For the description
of the algorithmic strategy for the evaluation of Boolean-valued tasks, it is assumed that r and
r′ denote SEG regions values, and R and R′ denote MEG regions values. Furthermore, r

(or R) represent the left-hand-side (LHS) operand and r′ (or R′) the right-hand-side operand
(RHS) of a binary Boolean-valued spatial operation represented in infix notation. Equivalently,

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 89

in postfix notation r (or R) represents the first operand and r′ (or R′) the second operand of
a binary Boolean-valued spatial operation. In this dissertation, spatial values are also referred
to as operands or geometries.

As described in Chapter 3 and Chapter 4, our sensor space framework represents a WSN
as a graph where sensor nodes denote vertices and the communication link between nodes
represent edges. An induced geometry represents a continuously-evolving phenomenon and the
pre-requisites for the characterization of induced geometries are event detection and boundary
computation. The boundary detection phase allows nodes that are part of an induced geometry
to determine whether they belong to the interior or the boundary of the induced geometry.
Note that, due to reasons including node sensing, communication range, network density and
size and shape of event geometry, it is not possible to characterize accurately the induced
geometry, as shown in Figure 5.1, in which (a) depicts the actual event geometry, exemplifies
what the characterization of induced geometry might be, and represents the spatial extent of
the induced geometry to be considered in the scope of this dissertation. The boundary separates
the sensor nodes that satisfy the event predicate and those that do not. Figure 5.1(c) depicts
the approximate spatial extent of the event geometry that the current network density supports
to be detected. The spatial extent of the induced geometry includes the edges that is formed
by the two closest boundary nodes, therefore, it includes the spatial area that is enclosed by
considering those edges. Figure 5.1(d) depicts the edges that are considered as part of induced
geometry spatial extent (e.g., Nodes 1 and 3 are closest boundary nodes and there exist edge
between them).

Let si belongs to boundary and N(si) represent the set of closest neighbours of si and Non(si)
represent the set of boundary neighbours of si where Non(si) ⊆ N(si). Node si confirms that
the segment it creates with sj ∈ Non(si) is a boundary segment only if it finds that boundary
segment does not intersects the interior of the regions value.

In this dissertation, it is assumed that information about asserted geometries is manually
configured by the deployer since these geometries represent static real-world physical entities not
continuously-evolving entities like induced geometries. In most real world scenarios, asserted
geometries of type regions are area disjoint. We assume, therefore, that our framework all
asserted geometries of type regions are area disjoint. For example, one real world scenario is
shown in Figure 5.2. Figure 5.2 (a) shows part of a university campus and Figure 5.2 (b) shows
how part of the map on the left can be represented over a sensor space. In (b), nodes s19 and s24
are closest boundary neighbours and a boundary segment exists between them. The existence
of such a boundary segment makes the regions values R48 and R49 not area disjoint.

To avoid such scenarios, each node is equipped with an edge information table (EIT) in
which it maintains information about edges that do not exist between itself and its closest
boundary neighbour. An entry for a node S in the EIT is a pair 〈GID,N ID〉 where GID
denotes the geometry ID and NID denotes the neighbour ID. Such a table is also required to
represent information about derived geometries as described in Section 5.5. Therefore, whenever
information about a geometry is removed from the GIT of a node, its associated entries in the
EIT are also removed. The snapshot of GIT and EIT of nodes s19 and s24 is given in Figure
5.3.

90 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

(a)Actual Event Geometry (b) Induced Geometry

(c) Spatial extent of detected (d) Spatial extent of
event geometry induced geometry

Figure 5.1: Characterization of induced geometry and its spatial extent.

Figure 5.2: (a) Snapshot of a university campus (b) Geometries over the sensor space

In this dissertation, two boundary nodes si and sj belonging to a regions value r form a
boundary segment iff they satisfy the following conditions: (1) si and sj are closest boundary
neighbours, (2) the segment created by s̃isj does not pass through the interior of r, and (3) si

and sj do not have an entry for each other with respect to r in their respective EITs.

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 91

Figure 5.3: Snapshot of GIT and EIT of nodes s19 and s24

5.4.2.1 Evaluation of Simple Boolean-Valued Tasks on Single Element Geometries

As discussed in Section 3.2.2, in a WSN, information about geometries is distributed rather
than centrally held. Each node member of a geometry is only aware of part of that geometry,
the scope of which is restricted by its radio and sensing range.

Recall from Section 5.2, that a simple Boolean-valued task consists of a single Boolean-
valued operator. The use of a universal quantifier ∀, in the formal definitions of the topological
predicates for operands of type SEG regions in Table 4.12, implies that, for the distributed
evaluation of topological predicates, one needs to consider all the nodes that belong to an
operand. For example, from the formal definition of the vertex disjoint operator in Table 4.12,
for the relationship to hold, all nodes that are members of operand r must not be members of
operand r′.

One strategy for evaluating a topological operation in WSNs might be to collect information
at a central destination, external to the network, from all nodes that belong to one or both
operands of the corresponding operation. The following pieces of information would be needed:
the node ID, the indication as to whether that node belongs to either or both of the operands,
the indication as to whether it belongs to the interior or the boundary, of the corresponding
geometry. The central node, upon the reception of this information, can evaluate the task.
This strategy is not energy-efficient and may lead to network congestion (as the geometry size
increases) because nodes need to transmit all the information towards the sink. To achieve
energy efficiency, it is better to perform data reduction and filtering as early as possible in a
data path, and to reduce the number of relay nodes. This characterizes the first challenge in
task processing in WSNs, viz., to preserve energy stocks through in-network processing.

A more efficient in-network approach is for each node to produce, through localized pro-
cessing, a local outcome for each operation in the task, specifying whether it satisfies the
prerequisites for the success of the operator being evaluated. These local outcomes from nodes
inside network can then be combined using an aggregation scheme and only the fine-grained
result is routed to the gateway. For example, for the computation of a local outcome for a

92 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

vertex disjoint operation, a node needs to know which operands it is part of, an indication as
to whether it lies at the boundary or the interior of any of the operands, and the data type of
the operands. It can be seen that, for the computation of vertex disjoint relationship in our
framework and under the assumptions we have made, the required information is available in
the node’s GIT and therefore it is feasible, to compute the local outcome (referred to, hence
forth, as the membership state of the node) using local computation alone.

This strategy for membership state evaluation resembles a voting scheme, where the vote
cast is the node’s membership state. Therefore, in the case of a vertex disjoint operator, an
MBR node casts one of three types of votes: true, false or OP not applicable. A false vote
denotes that the node does not fulfill the prerequisites for vertex disjoint, a true vote denotes
that it fulfils those prerequisites, and an OP not applicable vote denotes either that the node
does not belong to either of the operands or that the node does not satisfy the spatial data
type requirement for the evaluation of the operator, e.g., , for the adjacent relationship, it is
required that both operands are of type regions. In the case of vertex disjoint, a node that
is a part of the task MBR and a member of exactly one of operands declares its membership
state to be true, otherwise, it declares it to be false.

For the distributed evaluation of topological predicates, one needs to consider the member-
ship state from the nodes that belong to one or both operands. For considering the membership
states from all the nodes there is a need to have an aggregation scheme. Computation of aggre-
gates, such as count, sum, average, minimum, and maximum, is a well studied problem and can
be solved in a distributed manner. In the case of a simple Boolean-valued task on a SEG, after
membership state computation, the problem of detecting a topological relationship reduces to
the problem of computing a count aggregate, which can be formally described as:

Given a network of n nodes, where each node i holds a value vi, determine the count
of these values in a distributed manner.

This is a well studied problem in WSNs. The algorithms available for this problem can
be broadly divided into two categories: tree-based and gossip-based. The reader is referred
to Section 2.3 for the description of related work on aggregation approaches. Section 5.4.2.6
provides more discussion. Let us suppose for the time being that tree-based aggregation is used
for computing the aggregation function. Each child node needs to transmit its state towards
parent nodes. Each parent node on its way to the leader nodes wait to receive state information
from the child nodes. After receiving information from child nodes, each parent node computes
the partial aggregated result by including their own state and transmitting the result towards
their parent on their way to the leader node. Therefore, in the case of the vertex disjoint

operator, if after applying aggregation function (i.e., count) over both its own computed and
the received partial aggregated results from child nodes, the leader node obtains a count of zero
for false membership states and a count of greater than zero for true states, it declares that r

and r′ are vertex disjoint.

Consider the example scenario in Figure 5.4, where geometries r and r′ are vertex disjoint.
Figure 5.4 shows that an efficient and cost-effective solution for selecting a leader node for the
aggregation tree is to select a node that is part of at least one of the operands. The strategy used

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 93

Figure 5.4: vertex disjoint relationship between two geometries of type regions.

in the dissertation for the selection of a leader node is discussed in Section 5.4.2.6. Furthermore,
it can be seen from Figure 5.4 that for computing the outcome of the vertex disjoint operation,
the membership states from just one of the operands suffice. It will be seen in the next examples
that the same holds for every topological operator except equals and not equals, in which case
the membership states from both r and r′ must be aggregated.

For some operators (e.g., vertex disjoint), a node only needs to perform a look-up in its
own GIT to produce a membership state. Other operators (e.g., adjacent) require, in addition
to the local GIT look-up, the gathering of GIT information from their one-hop neighbours in
order to produce a local outcome. Therefore, from this point onwards, this section first discusses
Boolean-valued operations that only require a local GIT lookup and then moves on to consider
operations requiring both a local GIT lookup and the collection of information from neighbours.

Membership State Computation Based On Local GIT Information. In addition to
vertex disjoint, computing a membership state for area inside, vertex inside, equals, and
not equals only requires a local GIT look-up. An MBR node declares its operation state to be
OP not applicable if the node does not belong to either of the operands of an operator or if
the node cannot satisfy the spatial data type requirement for the evaluation of the operator.
Possible membership states for these operators are given in Table. 5.1.

area inside : true, false, unknown or OP not applicable
vertex inside : true, false, unknown or OP not applicable
equals : false, true, or OP not applicable
not equals : false, true, or OP not applicable

Table 5.1: Possible membership states of operators that only require local GIT look-up to
compute their membership state

94 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

In the case of area inside and vertex inside, an MBR node declares its state to be un-

known if it belongs to r′ only, reflecting that it is part of the container operand only. An MBR
node declare its state to be false if it does not fulfill the prerequisite for the corresponding
operator (as described in Table 4.12), and true state if it fulfils those prerequisites. In case of
equals and not equals, an MBR node is responsible for checking entries for neighbours in its
EIT related to operands r and r′. It sets its computed state to false upon finding that it has
an entry in EIT for one of the operands but not for both.

Moreover, in the case of vertex inside, area inside and vertex disjoint, aggregation of
states from one of the operands is enough to compute the final outcome. Detailed discussion
as to which operand is selected is given in Section 5.4.2.5. Considering the same tree-based
aggregation approach discussed above, the leader on the computation of final aggregation, over
its own and the received partial aggregated results from child nodes, declares the result to be
true if it computes a count of greater than zero for true and count of zero for false state.

Figure 5.5: equals relationship cannot be determined in some scenarios if aggregation is per-
formed on the basis of a single operand.

An example scenario is shown in Figure 5.5. If the states are collected from operand r′, then
the wrong outcome would result. The reason is r′ has no interior and all nodes and edges of
r′ belongs to r, but some nodes and edges of r does not belong to r′. To avoid such scenarios,
therefore, in the case of both equals and not equals, the membership states from both operands
must be considered in order to compute the final outcome for equals and not equals operations
accurately.

Membership State Computation Based On Local and Neighbour GIT Information.

Some operators (e.g., adjacent, area disjoint, edge disjoint, edge inside, meets, intersects,
border in common) require, in addition to a local GIT look-up, that common boundary nodes
(CBN) i.e., those that belong to the boundary of both operands, obtain GIT information
from their one-hop neighbours to compute their membership state. All non-CBNs can com-
pute their state using the information available in their own GIT. For example, in the case of
edge disjoint, edge inside, border in common, a CBN needs to test for the existence of a com-
mon boundary segment (CBS); in the case of intersects, area disjoint, it needs to test for

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 95

the existence of a CLUT, and in the case of meets, adjacent, it needs to test for the existence
of a CBS and a CLUT. A CBS exists between two CBNs that are closest one-hop boundary
neighbours and form a valid boundary segment of both r and r′. Recall from Section 4.2, that
a LUT 〈s1, s2, s3 〉 satisfies the properties that its interior and its edges do not contain any
node that is a neighbour of s1, s2 or s3 and that all its edges have length less than or equal to
unit length (i.e., the prevailing radio range).

BorderInCommon. Suppose that si and sj are two closest CBNs of r and r′ and do not
have entry in their EIT for each other related to r or r′ or both. To compute whether they
form a valid boundary segment, information is collected from their neighbours in order to check
whether the segment created by them does not overlap with the interior of either r or r′. Let
the space around every CBN be divided into 12 sectors defined by an angle of 30◦ each. As each
node knows only about the geometries it is part of, a CBN, therefore, requests its neighbours
that are part of r or r′ (or both) for their location, and their geometry membership information.
The neighbours, then send the required information. With this information, the CBN computes
the distance to each neighbour, the sector where it lies, and its closest neighbours in each sector
for whom it has no entry in its EIT.

This information allows the CBN to construct the LUT graph for each operand of the
subregion around it by taking itself as the center [PR00]. Firstly, for the r operand (i.e.,
considering the LUT graph of the subregion constructed by nodes belongs to r), the CBN
computes whether the boundary segment forms with its neighbour CBN is part of one of the
LUTs and no other LUT is adjacent to it. If it satisfies the condition for r, it will check it for
r′. If it finds the segment is shared by two adjacent LUTs, for any of the operands, the CBN
will repeat this process for other neighbour CBNs. Upon finding that segment is not shared by
two adjacent LUTs for any of the operands, it declares its state to be true. After repeating
the procedure for each neighbouring CBN, if a CBN does not form a valid CBS, it declares its
state to be unknown. The unknown state denotes that the node belongs to either r or r′ or
both but not to a CBS. The description of the computation of LUT is given later in this section
under the description of area disjoint.

Consider the example scenario in Figure 5.6. Geometries r and r′ have two boundary nodes
(36 and 47), that are CBNs. Both nodes request information from their neighbours. Upon
receiving request from node 36, the neighbouring nodes send a reply. Similarly, for a request
from node 47, the neighbouring nodes send a reply. Upon reception of these replies, nodes
36 and 47 compute minimum distance neighbours in all sectors. Lets explain the working of
algorithm on CBN 36 (same is true for CBN 47). CBN 36, first computes whether the segment
forms with its neighbour CBN 47 is part of one of the LUTs in operand r and no other LUT is
adjacent to it. On computation, it finds out that the segment created by itself with neighbouring
CBN 47 overlaps the interior of r (as the segment 3647 is shared by two adjacent LUTs <36,
37, 47> and <36, 46, 47>). Therefore, both 36 and 47 declare their state to be unknown.
The arrows in Figure 5.6 denote routing of information, which is aggregated on its way towards
the parents at various levels of the tree.

In Figure 5.7, geometries r and r′ have two CBNs (viz. 36 and 47). The segment created

96 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

Figure 5.6: Geometries r and r′ not having border in common and adjacent relationship

Figure 5.7: Geometries r and r′ having border in common and adjacent relationship

by CBN 36 and neighbouring CBN 47 is a valid boundary segment (3̃647) not overlapping the
interior of either operand. Therefore, both 36 and 47 declare their membership state to be
segment node. In the case of border in common, upon reception of partial aggregated results
from child nodes, the leader performs the final aggregation, over its own and the received partial
results, and declares final outcome of the border in common operation to be true if after final
aggregation it get a count of greater than zero for the membership state segment node.

AreaDisjoint. The formal definition of area disjoint in Table 4.12 states that two regions

values are area disjoint if they do not have common shared areas.

For two regions values that have an interior, the definition of area disjoint relationship
given in [Sch97] (viz., that no point lying in the interior of one of the geometries intersects the
interior or the boundary of the other geometry) suffices. In this case, evaluation only requires
a local GIT look-up. However, if one or both regions values are unit regions, or if the two
geometries have a shared unit regions, the definition in [Sch97] is not sufficient as explained
in Section 4.2.1.6. This has led to the extended definition in Table 4.12.

In such cases, the CBNs perform localized communication with neighbouring nodes to de-
termine whether they are part of the shared unit regions value. All other nodes compute

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 97

their state based on the information available in their GIT. For area disjoint, the possible
membership states are true, false, and OP not applicable. All nodes that do not belong to
a common boundary can compute their state using their own GIT. If a non-CBN belongs to
exactly one of the operands, then its state is true, otherwise it is false.

Each CBN transmits an information request to its one-hop neighbours. All one-hop neigh-
bours that belong to either operand respond with their location and an indication as to whether
they belong to the interior or the boundary of either or both of the operands. Upon receipt
of this information, a CBN declares its state as false if one or more of its one-hop neighbours
belong either to the interior of both operands or to the boundary of one operand and the interior
of the other. If a CBN finds no neighbouring non-CBN belonging to both geometries, then it
declares its state to be true if it has less than two neighbouring CBNs, otherwise (i.e., if it has
two or more neighbouring CBNs) it needs to find whether it is part of a common Unit region

area. In this case, a CBN computes whether it forms a CLUT with its neighbouring CBNs.

A CBN can compute whether it is part of a CLUT using a barycentric technique [CM69].
The method is explained briefly below. The order of the three CBNs in the computation of
a CLUT is important. For each CLUT in case a CBN participates in more than one, each
CBN places itself and its neighbouring CBNs in an order based on their node ID. If a CBN
participates in one or more CLUTs, it sets its state to false.

Now suppose that s1, s2, and s3 denotes CBNs and the CBNs order themselves based on
their IDs as s1, s2, and s3. Let N(si), where i = 1, 2, 3, denote the set of neighbours of each
si. Each si then computes the barycentric coordinates for each of their neighbours in N(si) as
shown below, with sj ∈ N(s1), and with v0, v1 and v2 representing vectors:

v0xLoc = S2xLoc - S1xLoc

v0yLoc = S2yLoc - S1yLoc

v1xLoc = S3xLoc - S1xLoc

v1yLoc = S3yLoc - S1yLoc

DotProdv0v0 = ((v0xLoc * v0xLoc) + (v0yLoc * v0yLoc))

DotProdv0v1 = ((v0xLoc * v1xLoc) + (v0yLoc * v1yLoc))

DotProdv1v1 = ((v1xLoc * v1xLoc) + (v1yLoc * v1yLoc))

invCrossDotProd = (1.0 / ((DotProdv0v0 * DotProdv1v1) - (DotProdv0v1 * DotProdv0v1)))

v2xLoc = sjxLoc - S1xLoc

v2yLoc = sjyLoc - S1yLoc

DotProdv0v2 = ((v0xLoc * v2xLoc) + (v0yLoc * v2yLoc))

DotProdv1v2 = ((v1xLoc * v2xLoc) + (v1yLoc * v2yLoc))

// Compute Barycentric coordinates bm and bn

bm = ((DotProdv1v1 * DotProdv0v2) - (DotProdv0v1 * DotProdv1v2)) * invCrossDotProd

bn = ((DotProdv0v0 * DotProdv1v2) - (DotProdv0v1 * DotProdv0v2)) * invCrossDotProd

Figure 5.8 describes the values of Barycentric coordinates inside a CLUT and in the direction
of each edge in the CLUT. If a neighbour node sj ∈N(s1) lies inside a CLUT or on its edges, then
the barycentric coordinates for that neighbour are as (bm > 0) and (bn > 0) and (bm+bn <= 1).

98 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

Figure 5.8: Common Localized Unit Triangle (CLUT) Computation

(a) (b) (c) (d) (e) (f)

Figure 5.9: Examples of existence of intersects relationship between values r and r′ of type
SEG regions

Suppose there exist only two CBNs as neighbours of node s1. Node s1 declares its state to
be true if (bm > 0), (bn > 0), (bm + bn <= 1) and no segment of the CLUT is in the EIT. The
state true denotes that s1, s2 and s3 forms a CLUT. A CBN declares its state for area disjoint

to be false. If it is in one or more valid CLUTs. This scheme helps to detect the common
minimum unit regions area in scenarios such as those shown in Figure 5.9.

If a CBN participates in one or more CLUTs, it computes whether it is part of any invalid
CLUT, i.e., whether one or more segments are in the EIT. If so, it communicates with the
neighbour CBNs to share information about invalid CLUTs. The neighbouring CBNs then
update their CLUT information. After that, if a CBN is still on at least one valid CLUT, it
declares its state to be true.

Other Operators. The operation states for other operators are given in Table. 5.2. The
formal definitions of the topological predicates in Table 4.12, stipulate that, in the case of SEGs,
some topological operators (e.g., area disjoint) are only true if all the member nodes (part
of operands) satisfy the prerequisites. Others (e.g., adjacent) are only true if all the member
nodes satisfy the prerequisites of a secondary operator (i.e., area disjoint in case of adjacent),
and there must exist some nodes that satisfies the requirements of the primary operator (i.e.,

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 99

adjacent in this example).

adjacent : false, disjoint, segment node or OP not applicable
edge disjoint : false, true, or OP not applicable
meets : false, disjoint, commonBoundaryNode, or OP not applicable
edge inside : false, true, unknown or OP not applicable
intersects : true, unknown, or OP not applicable
border in common : true, unknown, or OP not applicable
area disjoint : false, true, or OP not applicable

Table 5.2: Possible membership states of operators that require, in addition to a local GIT
look-up, GIT information from their one-hop neighbours to compute their membership state

In the case of adjacent, the state disjoint denotes that it satisfies the prerequisites for
area disjoint and is not part of a CBS. The state segment node denotes that it fulfils the
prerequisites for area disjoint and that it is part of a CBS. The state false denotes that a node
does not satisfy the prerequisites for area disjoint as explained above. After checking whether
the operands are area disjoint, a CBN computes whether it is a segment node using the
information it has obtained while considering the existence of CLUT in case of area disjoint.
The test for CBS was explained in the description of border in common.

For the edge disjoint operator, the state false denotes that a node is part of a CBS or else
that it belongs to the interior of one of the operands and to the interior or the boundary of the
other. For edge inside, the state false denotes that a node is either part of a CBS or does not
satisfy the prerequisites for area inside. For intersects, a node that belongs to only one of
the operands declares its state to be unknown. All other nodes in the boundary of one of the
operand and the interior of other, or in the interior of both operands, declare their state to be
true. The CBNs test whether they are part of shared area between operands. A CBN declares
its state to be true if it belongs to the CLUT or if it has neighbouring nodes that belong to
the interior of both r and r′, or else to boundary of one operand and to the interior of other.
Otherwise, a CBN declares its state to be unknown.

In the case of meets, the state disjoint denotes that the node is not a CBN and satisfies
the basic prerequisites for edge disjoint. The commonBoundaryNode state denotes that it
fulfils the prerequisites for edge disjoint, and that it is a CBN and not part of a CBS. The
false state denotes that a node either does not fulfill the basic prerequisites for edge disjoint

or else is a part of a CBS.

5.4.2.2 Evaluation of Simple Boolean-Valued Tasks on Multi-Element Geometries

A multi-element geometry of type regions may consist of elements with or without holes, and
unit cycles in any combination. Induced geometries are dynamic, i.e., their shape, size, location
may change at each evaluation period. In addition, it is not known in advance, whether the
induced geometry is a SEG or a MEG. Therefore, in WSNs, a node cannot be made geometry-
element aware, i.e., whether it belongs to single-element geometry or whether it belongs to one
element of a geometry consisting of more than one disjoint elements.

The aggregate calculation problem can, therefore, be formally redefined as:

100 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

Given the geometry of m elements, with each element comprising nk nodes k = 1...m
but not necessarily the same for all elements, and with each node i ∈ nk holding a
value vi, determine the aggregate count of these values in a distributed manner.

The formal definitions of the topological predicates in Table 4.13, stipulate that, in the case
of MEGs, some topological operators (e.g., area disjoint) are only true if all the member ele-
ments satisfy the prerequisites. Others (e.g., adjacent) are only true if all the member elements
satisfy the prerequisites of a secondary operator (i.e., area disjoint in case of adjacent), and
if there is one pair of elements that satisfies the requirements of the primary operator (i.e.,
adjacent in this example).

As explained in Section 5.4.2.1, for topological relationships between SEGs (with the excep-
tion of equals and not equals) selecting a single leader in one of the operands for performing the
aggregation phase is a correct and energy-efficient solution. In the case of MEGs, however, one
also needs to decide which element is to supply the leader node. Moreover, the nodes of all the
elements of that operand must know who the leader is for them to participate in aggregation.

One strategy for that is to elect a leader node at the level of the entire sensor field. All
network nodes participate in the election of the leader and in this way all are aware of it. This
strategy is not efficient because, firstly, it results in more energy consumption not only in the
leader election and tree construction but also in aggregation as the nodes in all elements transmit
their state towards the central leader and, hence, involve more relay nodes; and, secondly, it
restricts the possibility of evaluation of different spatial tasks efficiently at different parts of the
WSN.

Another strategy is to elect a leader node that belongs to an element of an operand (e.g.,
the node having the smallest ID or the largest energy stock). This strategy is also not energy-
efficient for leader election and aggregation, because it may involve too many relay nodes in so
far as the operand elements (e.g., as is likely for induced geometries) may spread widely over
the WSN. In addition, because the shape, number of disjoint elements and extent of induced
geometries may change at each evaluation period, and, therefore, this strategy may require
the election of a leader at every evaluation period, which would generate network traffic and,
ultimately, restrict the possibility of evaluating different spatial tasks at different parts of the
WSN.

A more efficient solution is to have leaders at the SEG level and at the top-level. Firstly, at
the level of individual geometry elements, for each element, node-level outcomes are partially
aggregated on their way to a leader node into an SEG-level outcome. Secondly, at the level of
multiple geometry elements, the SEG-level outcomes are aggregated at a first-level leader into
the final aggregated result. Recall, from Section 5.4.1, that a first-level leader node will have
already been elected during task dissemination.

Figure 5.10 shows an example scenario for the evaluation of the adjacent operation between
r′ and R, where R is a MEG and consists of SEGs r1 and r2. The labels adjacent to each node
represent the node membership state for the adjacent operation, and the labels adjacent to the
arrows (on the way from SEG leaders to the first-level leader and from first-level leader to the
gateway) represent the state as aggregated by SEG leaders and by the first-level leader. Figure
5.10 shows that aggregation is performed over R. Detailed discussion as to which operand is

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 101

selected is delayed till Section 5.4.2.5. The SEG leader of the r1 geometry element is located at
the lower-left corner and computes the geometry-element state to be disjoint after aggregation
because all the nodes that are part of geometry-element have the disjoint membership state.
The SEG leader of r2 is located at the top-right corner and computes the geometry-element
state to be true after aggregation because some nodes have declared their membership state
to be segment node, and others have declared it to be disjoint. After receiving the partial
aggregated results from the SEG leaders, the first-level leader aggregates them and declares the
result to be true, because it has received both true and disjoint membership states.

Figure 5.10: Example scenario: Adjacent relationship between two geometries of type regions.
Operand r′ is of type SEG and R of type MEG

5.4.2.3 Evaluation of Complex Boolean-Valued Tasks on Multi-Element Geome-

tries

Recall from Section 5.2 that complex topological tasks are complex algebraic expressions, con-
sisting of more than one topological operator connected by and, or, and not.

Complex tasks are difficult to evaluate inside the network. Reasons include: (1) there being
more than one Boolean-valued operator, (2) operands may be SEG or MEG, with or without
hole, and possibly Unit regions, (3) each operation in a task may have shared operands (e.g.,
consider complex task in Figure 5.11 where operands of both operations are the same), (4)
operations in a task may have distinct (in terms of data type, geometry ID, and independence
in terms of sensor space where they are located) operands, and (5) the Boolean-connectives
must be handled as well.

It would not be efficient to use the count as an aggregation operator for a complex task. As
discussed in the previous sections, the membership states associated with each operator can be
computed by performing localized processing. These local outcomes are then aggregated. For
example, for adjacent, the possible states that an MBR node can declare are disjoint, false,

102 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

segment node, and OP not applicable. For vertex disjoint, the possible states are true,
false, and OP not applicable. For the evaluation of a complex task, one would, therefore,
need to separately aggregate each membership state for each of the operators that occur in the
task. For example, in the case of the complex task in Figure 5.11, each node on its way to
leader node needs to compute separately the count of seven membership states (as described
above for vertex disjoint, a node can be in one of the three possible membership states and for
adjacent in one of the four possible states) to be forwarded to its parent. The number of states
will increase with an increase in the number of operations in the complex task, which leads in
turn to an increase in the message length. Each child node may end up needing to transmit
more than one message containing membership states to its parent for aggregation because of
restrictions on the length of individual messages.

Furthermore, for a complex task, the aggregation strategy described in Section 5.4.2.2 cannot
be used without modification. Firstly, each parent node in the path to the leader node must
relate the membership states which it has received from child nodes with specific operators in
the task. Secondly, some strategy is also needed for applying the Boolean connectives.

(NOT(r VertexDisjoint r’) AND
(r Adjacent r’))

Figure 5.11: Complex Task 1

(NOT(r VertexDisjoint r’) AND
(d Adjacent e))

Figure 5.12: Complex Task 2

5.4.2.4 Compression and Aggregation Schemes

For efficiently evaluating complex tasks, this dissertation contributes a novel approach compris-
ing a compression scheme that represents the node’s membership state for each of the operators
in the task, and an aggregation scheme over this compressed representation that yields the final
outcome.

The compression scheme merges the operation states, for each operator in the task into
node-level task state. In this dissertation, node membership state is also referred to as node
operation state. Table 5.3 shows how the possible operation states are coded into an octal digit
(i.e., a 3-bit representation). Each constant represents one operation state. Let a task have
n operations, and let [SOP1 , SOP2 , . . . , SOPn], where each SOPi denotes an operation state in
Table 5.3, be the sequence of computed operation states. A node-level task state is generated by
initializing it to 0 and then iteratively left-shifting its current value by three bits and BitwiseOR-
ing each SOPi . This scheme allows the use of the BitwiseAND as an aggregation operator instead
of count.

Consider a simple example of how this aggregation strategy works in Figure 5.13. The
numbers inside the node represent the operation state, and the numbers adjacent to the node

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 103

Figure 5.13: Running example to describe computation of adjacent relationship between two
geometries of type regions

represent the result after performing the aggregation over its own and partial aggregated results
received from the child nodes. For two SEGs to be adjacent, two or more nodes in those SEGs
must have declared a segment node membership state (i.e., 58) whilst the others must have
called a disjoint membership state (i.e., 38). BitwiseAND-ing a bag each of whose elements is
either 58 or 38, yields 18, i.e., true.

The compression scheme has three main benefits. Firstly, communication energy is saved
by compressing the information which a node has to transmit towards the SEG-leader, and
from the latter towards the first-level leader. Secondly, the compression scheme decreases the
number of computations to be made by each node. Thirdly, this compression scheme allows
aggregation to be based on a single operand (i.e., a node needs to participate at most once in
the aggregation process at the geometry element level). The MBR nodes that participate in
the aggregation are those with at least one operation state other than OP not applicable.
A node participates at most once in an aggregation process at the geometry-element level. A
node elects its SEG leader based on only one of the operands of only one of the operators in a
task for which the operation state is not OP not applicable. Detailed discussion is given in
Section 5.4.2.5.

The compression scheme, therefore, allows the same aggregation scheme described in Section
5.4.2.2 for the computation of simple tasks on multi-element geometries. The aggregation
problem can, therefore, be redefined as follows:

Given a geometry comprising m elements, with each element comprising nk nodes
where k = 1...m but not necessarily the same for all elements, and with each node i ∈
nk holding a task value vi that is encoded as per Table 5.3, determine the BitwiseAND

of these values in a distributed manner.

The hierarchy of leaders to be elected as described in Section 5.4.2.3 is sufficient for the
computation of a complex task. There is one first-level leader and a number of SEG leaders
varies depending on the task complexity. Task complexity is based on the number of operations

104 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

OP state Encoding
true 18

false 08

disjoint 38

unknown 38

segment node 58

commonBoundaryNode 58

OP not applicable 78

Table 5.3: Representing operation states

in the task, whether the operation only needs a local GIT lookup or, additionally, the collection
of GIT information from the node’s neighbours, the operands are SEG or MEG and, finally,
how independent, in terms of the sensor space, the operand elements of an operation are with
respect to other operations in the complex task. Let us suppose that operands r, r′, d and e

are SEG of type regions in the tasks given in Figure 5.11 and Figure 5.12. The complexity of
the task in Figure 5.11 is smaller compared to the task in Figure 5.12, especially, in the case
where the nodes that are part of the r and r′ are not part of d and e, or vice versa. As, in such
a case the task involve operands that are disjoint from each other and may be located far apart
in the network from each other.

To compute the partial result at the geometry-element level, the nodes task states are
aggregated on the way to the SEG leader node by using BitwiseAND as the aggregation operator.
After performing the aggregation, the SEG leaders transmit the result to the first-level leader.
Once the distributed evaluation sub-task is concluded, results are routed towards the first-level
leader by the SEG leaders along the tree that was established during task dissemination. The
first-level leader performs the final result processing. The reader is referred to Section 5.4.3 for
more on the result processing phase.

Let G, h, D and e be four induced geometries of type regions where G and D are MEGs, and
h and e are SEGs, G consists of elements g1 and g2, and D consists of elements d1 and d2. Now
let the task in Figure 5.14 be transmitted for evaluation. All nodes that are part of the MBR
evaluate the task after receiving it in the task message. These nodes first perform distributed
membership evaluation to compute the operation state for each of the three predicates in the
task, and then compute the task state.

(NOT(G VertexDisjoint h) AND
(D Adjacent e) AND (G AreaInside D))

Figure 5.14: Complex Task 3

The evaluation of vertex disjoint is first carried out by all MBR nodes. The MBR nodes
that are not part of an element of G or of h declare their operation state to be OP not applicable.
An MBR node that belongs to an element of G or to h, but not to both, declare its state as
true. Otherwise, an MBR node that belongs to an element of G (i.e., g1 or g2) and to h

declares its state to be false. Recall, from the formal definitions of the topological predicates
in Table 4.13, that vertex disjoint on MEGs requires all elements of both geometries to be
vertex disjoint.

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 105

After the evaluation of the first operation, the nodes evaluate the second (i.e., adjacent)
operation. Recall, from Section 4.2.1.6, that adjacent on MEGs requires at least one element
of each geometry to be adjacent and all other elements of both geometries to be area disjoint.

Figure 5.15: Example scenario: To evaluate the complex task in Figure 5.14

After the evaluation of adjacent, the nodes evaluate the area inside operation. Recall,
from the formal definitions of the topological predicates in Table 4.13 (Section 4.2.1.6), that
area inside on MEGs requires all elements of G to be area inside one or more elements of D.

Table 5.4 depicts all the possible combination of operation states for the spatial predicates
specified in task, their octal-encoded representation, and the corresponding task state computed
after applying the compression scheme. We use as examples the geometries in Figure 5.15. We
now describe how, in the top most row of Table 5.4, the task state 120 is computed from
the three operation states i.e., true, OP not applicable and false. Recall that a node-level
task state is generated by initializing it to 0 and then iteratively left-shifting its current value
by three bits and BitwiseOR-ing the individual states. A node acquire a task state of 1 after
assigning the first operation state to the task state, for second operation state it left-shifts the
task state (i.e., 1) three bits and after BitwiseOR-ing it with 7 the task state becomes 15, and
lastly, for the third operation state it left-shifts the task state (i.e., 15) three bits and after
BitwiseOR-ing it with 0, the task state becomes 120.

After the distributed membership evaluation, the next step is aggregation. The only nodes
that participate in aggregation are those with at least one operation state other than OP not applicable.
Recall that a node only needs to participate at most once in an aggregation process at the
geometry-element level. A node selects the operand of which it is a member and its state for
that operation is not OP not applicable whilst scanning the task from left to right. The

106 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

OP1State : OP2State : OP3State OP Task
Constant State
Rep.

true: OP not applicable: false 1 : 7 : 0 120
false: OP not applicable: false 0 : 7 : 0 56
OP not applicable: false: false 7 : 0 : 0 448
OP not applicable: disjoint: false 7 : 3 : 0 472
OP not applicable: segment node: false 7 : 5 : 0 488
OP not applicable: OP not applicable: false 7 : 7 : 0 504
true: OP not applicable: true 1 : 7 : 1 121
false: OP not applicable: true 0 : 7 : 1 57
OP not applicable: false: true 7 : 0 : 1 449
OP not applicable: disjoint: true 7 : 3 : 1 473
OP not applicable: segment node: true 7 : 5 : 1 489
OP not applicable: OP not applicable: true 7 : 7 : 1 505
true: OP not applicable: unknown 1 : 7 : 3 121
false: OP not applicable: unknown 0 : 7 : 3 59
OP not applicable: false: unknown 7 : 0 : 3 451
OP not applicable: disjoint: unknown 7 : 3 : 3 475
OP not applicable: segment node: unknown 7 : 5 : 3 491
OP not applicable: OP not applicable: unknown 7 : 7 : 3 507
true: OP not applicable: OP not applicable 1 : 7 : 7 127
false: OP not applicable: OP not applicable 0 : 7 : 7 63
OP not applicable: false: OP not applicable 7 : 0 : 7 455
OP not applicable: disjoint: OP not applicable 7 : 3 : 7 479
OP not applicable: segment node: OP not applicable 7 : 5 : 7 495
OP not applicable: OP not applicable: OP not applicable 7 : 7 : 7 511

Table 5.4: Expected operator and task state for the complex task in Figure 5.14, by a node in
the scenario in Figure 5.15

process of selecting an operand is now described in detail.

5.4.2.5 Selection of the Geometric Operand for Aggregation

This section addresses the question as to which operand of an operation should be selected for
performing aggregation.

The conditions are as follows. If the node has computed no operation state other than
OP not applicable, then it need not participate in the aggregation. If the node has computed
exactly one operation state other than OP not applicable, it participates in the aggregation
on the basis of one of the operand geometries of the corresponding operation, as explained below.
If the node has computed more than one operation state other than OP not applicable and
belongs to more than one operand geometries involved, it participates in the aggregation but
still on the basis of only one of those operand geometries, as now explained.

For participating in the aggregation, a node scans the operations in a complex task from left
to right and selects the first one whose computed operation state is different from OP not applicable.
Once the operation is selected, the next step is to select the operand. If the operation is equals,
or not equals, then a node selects the operand it is a member of, and if it is a member of both,
it selects the LHS operand. If the operation is area inside, edge inside, or vertex inside, then
it selects the LHS operand. It can be seen in Table 4.13 that these predicates evaluate to true

even if some elements in the RHS operand contain more than one element from the LHS operand
or if some element of the RHS operand does not contain any element of the LHS operand. For
the other operators, i.e., vertex disjoint, edge disjoint, area disjoint, meets, adjacent, and
border in common, any of the operands can be selected. So in this dissertation, we selected the
LHS operand. The topological operators are, therefore, classified into two groups: the first

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 107

one, comprising equals and not equals, has higher precedence; the second one, comprising all
other operators, has lower precedence. Therefore, before the task is disseminated, the gateway
rewrites the submitted task in order to ensure the higher precedence operators appear leftmost
in the task.

Therefore, in the case of the example scenario in Figure 5.15, the nodes that belongs to an
element of G participate in the aggregation process of the corresponding element. Otherwise,
the nodes that do not belong to any geometry-element of G and instead belong to an element
of D participate in the aggregation process of the corresponding element of D.

The aggregation scheme that allows for the selection of SEG leader and aggregation of
information at the single-geometry element level is discussed in Section 5.4.2.6.

5.4.2.6 Strategies for Leader Election and Aggregation

To perform the aggregation at the geometry-element level, we make use of two algorithmic
strategies and compare the results. The first strategy is a randomized grouping gossip-based
technique and the second is a tree-based technique.

The first algorithmic strategy for aggregation that we consider is inspired by the distributed
random grouping (DRG) approach [CPX05] for computing aggregations described in Section
2.3. In [CPX05] this approach is used to compute an aggregate function like the average of node
values within a given error range, where the values to be aggregated are physical measurements.

We have used DRG with modifications to adapt it to our setting. It is effective and very
efficient in the presence of topological changes since it does not have to pay any cost for con-
structing, and frequently maintaining, an aggregation tree. Although it involves additional
communication cost, it comes with greater reliability in situations where consideration of each
node value is important towards the computation of the result as is the case with Boolean-valued
operations. It is effective and efficient even in the presence of MEGs, of holes in a geometry,
of irregularly-shaped geometries, and of overlapping geometries. It is also resilient to node and
message failures, time synchronization delays, and node additions.

Tree-based algorithms tend to be energy-efficient but are not resilient in the presence of
topology change. These issues can be addressed by using tree maintenance approaches like
those by Madden et al. [MFHH02]. However, in the case of phenomena that are continuously
evolving, one would need to reconstruct the aggregation tree at every evaluation period.

Gossip-based Technique. We now provide more details of our gossip-based scheme inspired
by the distributed random grouping (DRG) approach that underpins the selection of geometry-
element leaders and the aggregation of local outcomes.

The process involves a number of rounds, in each of which a node can be in one of seven
states, viz., idle, leadershipPending, groupLeader, membershipPending, groupMem-

ber, tentativeConvergence, converged. The process works as follows. In each round, some
nodes are elected as groupLeader with some probability and the other nodes take on the role
of groupMember. Initially, each node is in the idle state for a given time. Once this state
expires, the node generates a random value that denotes its bid to be groupLeader. If the
value is less than a probability threshold, the node moves to the leadershipPending state

108 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

and broadcasts the bid to move to the groupLeader state, otherwise it moves back into the
idle state and waits for the associated time to expire once more. If the bid for leadership is
successfully transmitted, the node moves to the groupLeader state, otherwise, it moves back
to the idle state.

Upon receiving a bid from a candidate group leader, those nodes that are in the idle state
move to the membershipPending state and transmit their partially aggregated results, as
well as SEG leader information, to the candidate group leader, after which they move to the
groupMember state. If transmission failed, they move back to the idle state. In the first
round, group members declare themselves SEG leaders. After transmitting this report, such
a node move to the groupMember state. In the groupMember state, a node waits for a
specified duration for the reply from its group leader. Upon receiving the reports from group
members, a node in the groupLeader state aggregates using BitwiseAND the reported results
and identifies the minimum node ID amongst its own and proposed SEG leader IDs received
in the group member reports. Upon expiry of the wait period for members to report, the
group leader node broadcasts a reply message to its group members containing the computed
aggregated result and the updated SEG leader ID. Upon receiving such a reply message from
its group leader, a node in the groupMember state performs a BitwiseAND on its own outcome
with the outcome sent by the group leader and updates its SEG leader ID to the minimum
node ID amongst its own and the one received in leader reply.

As a stopping criterion for this iterative process, we use a technique that allows each node
to determine if convergence has occurred. For this purpose, each node monitors any change in
its aggregated result and its SEG leader ID. If these do not change after a specified number of
consecutive rounds, the node moves to the tentativeConvergence state.

Upon changing the state to tentativeConvergence, it waits in this state for a specified
duration. If it does not receive any request from the group leader during that time, the node
moves to the converged state when the waiting period expires. Otherwise, it moves to the
membershipPending state. Therefore, at the end of each round, a node in the groupLeader

or the groupMember states, upon receiving the required information and performing the
required computation, increments the count of tentative convergence rounds if no changes have
taken place since the last round, otherwise it sets the count back to zero. At the end of each
round, a node checks whether it can move to the tentativeConvergence state. If it cannot,
it moves to idle and engages in another round.

To address the risk of packet loss due to collision, wait period has been used. When the wait
period expires, the entity changes state as described above even if it does not receive a packet
for which it was waiting. The purpose is to differentiate the scenarios in which the GROUP LEAD

does not receive any membership message because of packet loss, or because neighbouring
entities have converged, or because neighbouring entities are already in either the GROUP LEAD

or the GROUP MEMBER states. In such a case, as there will be no change in GROUP LEAD results,
at the end of its wait for membership reports, incrementing the tentative convergence round
count would impact on the successful convergence of the geometry and not incrementing could
prevent an entity from converging (i.e., keep on trying). In order to handle such a situation,
if the group leader entity does not receive any group membership message, it increments the

5.4. EVALUATION COMPONENTS FOR BOOLEAN-VALUED TASKS 109

tentative convergence round count by less than one (i.e., 0.4), instead by one as explained above
.

Tree-based Technique. The second algorithmic strategy for aggregation that we consider
is tree-based. A tree-based aggregation algorithm works by creating a tree rooted at a root
node. This tree acts as a routing tree for the incremental aggregation of data. Any of the
geometry-element nodes can be used as a root node. This root node can be chosen either
randomly or through a distributed leader election algorithm like the one proposed by Dulman
et al. [DHS02]. In this dissertation, the root node, i.e., the SEG leader, selected is the closest
node to the gateway. The tree construction phase is subdivided into two phases: leader election
and tree construction. In the leader election phase, all nodes that belongs to the geometry
broadcast their ID to their neighbours. Upon receiving the information each node compute
whether there is a neighbouring node having minimum ID then itself. If it finds any, it sets its
status as non-leader node and sets wait timer for information from leader node, upon expiry
of wait time, if it does not receive information about leader node it sends the tree construction
message (TCM). Otherwise, if it finds that it has minimum ID, it starts the tree creation process
by broadcasting a TCM. Before broadcasting the TCM, it sets the value of the leaderID and
sourceID attributes to its own ID, its level attribute to zero, the distance attribute to its
distance to gateway, and the geometryID attribute to the operand ID, on the basis of which
it participates in the aggregation process.

Any node belonging to the same geometry-element that has not heard the TCM earlier,
records the information in the message upon receiving it. It keeps the ID of the sender node
as its parent node. After incrementing by one the level attribute in the message and setting
the sourceID attribute to its own ID, the node broadcasts the message. If a node receives a
TCM from some other node with a different leaderID and if the distance of this leader to the
gateway is smaller (or if the distance is same but the leaderID is smaller) than the recorded
leaderID, it updates its information, increments the level attribute in the message by one and
broadcasts the message. Otherwise, it ignores the message. If a leader node receives a TCM
with better leader information (i.e., with a smaller distance to the gateway or with a smaller
leaderID), it records the information and changes its state to non-leader node. This process
continues until all the nodes in the geometry-element have been assigned a parent node, leader
information and a level value.

Upon the reception of a TCM, each node waits for a specified duration. The node refreshes
the wait period upon the reception of a TCM from some other neighbour or the same neighbour.
Upon the expiry of the wait period, each node registers with its parent node. This allows each
node to learn how many children nodes it has. Nodes with no child nodes are leaf nodes in the
resulting tree.

After the tree has been set up, the process of aggregation of membership states is started at
the leaves. Leaf nodes insert their task state in a single packet and forward it to their parent.
Each parent, depending on its level and the number of children it has, waits for a specified
period to receive the packets from its children. Each parent then computes a partial outcome
by applying the BitwiseAND operation to its own and to the values received from its children.

110 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

It then forwards the result to its parent. This computation of partial aggregations of task state
continues at each level of the tree and eventually the aggregated task state, representing the
task state at geometry-element level, is computed at the SEG leader node.

Figure 5.15 shows the node-level task state computed by each node and the element-level
task state (i.e. the partial aggregated result at the SEG leader) computed after applying the
aggregation scheme. In Figure 5.15, there are four SEG leaders which transmit the partial
aggregated task states towards the first-level leader.

5.4.3 Result Processing

As discussed earlier in Section 5.4.2.6, after the aggregation operation, the SEG leaders transmit
the aggregated task state towards the first-level leader. The first-level leader then performs the
BitwiseAND operation on the task states received from SEG leaders and computes the aggregated
task state. The first-level leader then computes the operation states from the aggregated task
state by decompressing the task states. These operation states represent the final aggregated
result for each spatial predicate occurring in the task. The next step is to apply the Boolean
connectives that occur in the task. For this purpose, each spatial predicate in the task is
replaced by an operation state and the corresponding Boolean connectives rules are applied to
compute the final outcome. If the outcome is true then true is transmitted transmitted by the
first-level leader towards the sink, otherwise, false is transmitted. Table 5.4.3 defines how and

and or correspond to bitwise operations depending on the operations states they apply to. In
Table 5.4.3, ¬(false) denotes any operation state in Table 5.3 other than false, and ¬(true)
denotes any operations state other than true. In the case of not, it yields true if the operation
state is any other than OP not applicable and true.

OP1Res OP2Res OP for and OP for or
false false BitwiseAND BitwiseOR
¬(false) false BitwiseAND BitwiseOR
¬(false) ¬(false) BitwiseOR BitwiseAND

Table 5.5: Bitwise operations for AND and OR connectives

In Figure 5.15, after applying the BitwiseAND aggregation operator to all partial outcomes
received from the SEG leaders, the first-level leader, computes the MEG task state to be 8. The
first-level leader node then decompresses and computes each operation state from the task state
(i.e., 8 represents 000|001|000 in binary) as (false:true:false). It then applies the connectives
after substituting these operations states (i.e., not (false) and (true) and (false)) in place
of the spatial predicates in the task given in Figure 5.14. For applying the connectives, the
first-level leader make use of the classical rules for each connective which yields the value false.
The first-level leader node then transmits the computed result towards the sink.

In the example scenario in Figure 5.15, geometry G has two elements g1 and g2 and g2
satisfies the vertex disjoint relationship whereas g1 does not. Therefore, the final aggregated
state for vertex disjoint is false. Geometry element d1 satisfies the adjacent relationship with
e, but not with d2, d2 satisfies the area disjoint relationship with e only. Therefore, the final
aggregated state for adjacent is true. In the case of area inside, g1 and g2 do not lie within
one or more geometry elements of D, therefore the final aggregated result for area inside is

5.5. EVALUATION COMPONENTS FOR SPATIAL-VALUED TASKS 111

false.

5.5 Evaluation Components for Spatial-Valued Tasks

This section describes how a task containing spatial-valued operators is evaluated in a dis-
tributed manner. Note that this section only discusses spatial-valued tasks whose operands
are regions. Furthermore, in all the figures in this section which provide illustrative example
scenarios, it is assumed (unless specified otherwise) that the nodes are deployed in uniform grid,
that a node has a maximum neighbourhood of 8 nodes. For the description of the algorithmic
strategy for the evaluation of spatial-valued tasks, it is assumed that r and r′ denote SEG re-

gions values, and R and R′ denote MEG regions values whose constituents are SEGs, denoted
by r and r′, resp.. Furthermore, it is assumed that r (or R) represents the LHS operand and
r′ (or R′) the RHS operand of binary spatial-valued operations represented in infix notation.

As with Boolean-valued tasks, the task evaluation process can be broken down into three
phases viz., task dissemination, distributed task evaluation, and result processing.

5.5.1 Task Dissemination

Task dissemination of a spatial-valued task is identical to that of a Boolean-valued task as de-
scribed in Section 5.4.1. Therefore, we focus on distributed task evaluation and result processing
for the remainder of this section.

5.5.2 Distributed Task Evaluation

Spatial-valued tasks comprise operators that return a spatial value. The logical structure of the
process that evaluates a spatial-valued task is a sequence involving: membership evaluation, and
geometry derivation. Membership evaluation is the process whereby a node computes whether
it satisfies the conditions for membership in the derived geometry defined by the spatial value
returning operator. Geometry derivation is the process whereby event nodes (i.e., those that
satisfy the membership requirements of the derived geometry) compute whether they are part
of the boundary or the interior of the derived geometry. For some operations, such as contour,
common border, and vertices, additional computation is not required for geometry derivation as
these operations return a value of type lines or points, which do not have an interior. Therefore,
in the case of spatial operations which result in a spatial value of type points or lines, the
boundary related information is implicitly set by nodes without the need for further processing
along with other information about the derived geometry in GIT. For other operators, details
are provided in Section 5.5.2.1.

Recall, from Section 5.3, that an entry in the GIT is a quadruple 〈GeometryID,DataType,
BoundaryNode,TTL〉. The geometryID for the new derived geometry is provided as part the
task message. For spatial-valued operations, type inference (i.e., reasoning from the input types)
suffices to derive the result data type. For example, taking the plus of two geometries of type
regions results in a new geometry of type regions. A node sets the BoundaryNode attribute
to true if it is part of the boundary of the derived geometry, otherwise it sets the attribute

112 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

value to false. The TTL for a new derived geometry is computed as the minimum of TTL
of the operands for all binary spatial-valued operations. In the case of unary spatial-valued
operations, the TTL of the resulting geometry is set to that of the operand. The membership
evaluation process for each of the spatial-valued operation is now explained.

5.5.2.1 Evaluation of Simple Spatial-Valued Tasks on Multi-Element Geometries

An MBR node declares its operation state as false if the node does not belong to either of the
operands of an operator or if the node does not satisfy the spatial data type requirement for the
evaluation of the operator. For many operators (e.g., plus, vertices), membership evaluation
only requires a local GIT look-up to check whether the node satisfies the prerequisites for the
operation.

Plus. In the case of the plus operator, if an MBR node is part of one or both operands, it
declares itself as belonging to the derived geometry, i.e., an event node, by setting its operation
state to true. Otherwise, an MBR node sets its operation state as false. CBNs must perform
localized decision-making to compute their edge state. A CBN requests information from its
neighbours that have a true operation state. Upon reception of the replies, a CBN node makes
itself the origin of a circle and partitions its neighbouring event nodes as lying on a quadrant
or an axis based on their location. It then uses the modified T-Fit [JF08] boundary detection
algorithm to compute its edge state.

A boundary node that belongs to only one operand with a true operation state sets its edge
state to true.

As the plus results in the union of two geometries. In the case of plus, a boundary node that
belongs to only one of the operands checks the entries in its EIT for any neighbour that belongs
to that operand. If a node finds such information in the EIT, it appends that information to
its EIT, after updating the GID of the tuple with the GID of derived geometry. Recall, an
entry in the EIT is a pair 〈GID,N ID〉. If a node is a CBN, it checks tuples in its EIT that are
common to both operands and only appends those tuples to its EIT, after updating the GID
of the tuple with the GID of the derived geometry.

Vertices. The vertices operation returns a new spatial-valued geometry of type points. It is
a unary operation. Nodes that belong to the boundary of the regions value set their operation
state to true. Nodes that belong to the interior of the regions value set their operation state
to false.

For other operations (e.g., minus, intersection, contour, common border), the participating
nodes engage in localized decision-making to compute whether they belong to the derived
geometry.

CommonBorder. The common border operator returns a new geometry of type lines contain-
ing the common boundary segments of operands. In the case of common border, CBNs perform
localized decision-making to compute whether they belong to a CBS. If they do, the CBNs
declare themselves to belong to the derived geometry by setting their operation state to true.

5.5. EVALUATION COMPONENTS FOR SPATIAL-VALUED TASKS 113

All other nodes set their state to false. The algorithm for the detection of CBS was described
in Section 5.4.2.1 for the border in common operator.

Intersection. In the case of the intersection operator, non-CBNs compute their operation
state using the information available in their own GIT : if the node belongs to the interior of
both operands, or to the interior of one and the boundary of the other, then its operation state
is true, otherwise false.

Let the space around a CBN be divided into 12 sectors of 30◦ each. A CBN transmits an
information request to its one-hop neighbours. All one-hop neighbours that belong to one or
both operands respond with an indication as to whether they belong to interior or boundary
of each of the operands. Upon receiving this information, a CBN assigns them to the proper
sector (based on their location) and computes the minimum distance neighbour in each sector.
Its operation state is true if one or more of its closest one-hop neighbours nodes belong either
to the interior of both operands or to the boundary of one operand and the interior of the other.
If a CBN has no neighbouring non-CBN belonging to both geometries, then its operation state
is false provided that it has less than two neighbouring CBNs, otherwise it must consider the
existence of a shared minimum unit regions value. Let s1, s2, s3 denote CBNs then a LUT
between them may form a CLUT. A CBN can compute whether this is the case using the
barycentric technique in [CM69]. The reader is referred to Section 5.4.2.1 for the description
of how a CLUT is computed. If a CBN belongs to one or more CLUTs, its operation state is
true, otherwise false. A node with a true operation state that does not belong to the interior
of both operands sets their local edge state attribute to true, otherwise to false.

After membership evaluation, the nodes with operation state true compute whether they
lie in the interior or the boundary using the local edge state attribute. If the local edge state
attribute is true, the node declares itself a boundary node, and enters information about the
derived geometry in its GIT, otherwise, it declares itself a non-boundary node.

After computing the local edge state attribute, the nodes that belong to the boundary of the
derived geometry engage in local communication. The boundary nodes of the derived geometry
having an entry for R or R′ for a particular neighbour in its EIT, ask that neighbour whether
it is part of the derived geometry. Upon reception of this information, it adds that information
about that neighbour using the GID of the derived geometry to its EIT.

Minus. The minus returns the difference between two regions values. Let the operation be
denoted r minus r′. A non-CBN node that belongs to r only or to the interior of r and to
the boundary of r′ sets its operation state to true, otherwise to false. As for intersection,
in this case too a CBN must consider CLUTs. Let the space around a CBN be divided into
12 sectors of 30◦ each. A CBN transmits an information request to its one-hop neighbours.
Upon receipt of this information, the CBN assigns them to the proper sector and computes the
minimum distance neighbour in each sector. The CBN then computes whether it is part of any
CLUT (created with neighbouring CBNs). If it is not and if it has at least one neighbour that
belongs only to r amongst its closest neighbours, it sets the operation state to true. If the
CBN is part of one or more CLUTs (formed with neighbouring CBNs) and if it has at least one
neighbour that belongs only to r, and the segment between the CBN and that neighbour does

114 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

not intersect any of the CLUTs, the CBN sets its state to true, otherwise to false. Consider the
example scenario in Figure 5.16, geometries r and r′ have three boundary nodes (2, 6 and 7),
that are CBNs. All CBNs request information from their neighbours. Upon receiving request
from CBNs, the neighbouring nodes send a reply. As shown in Figure 5.16 (a) CBN 7, has three
neighbours (1, 11 and 12) which belongs to r only. The segment between itself and neighbour
1 intersects the CLUT. But the segments with the neighbours 11 and 12 does not intersect any
of the CLUT, therefore, CBN 7 sets its operation state as true.

A node with a true operation state that is a CBN or belongs to the interior of r and the
boundary of r′, or belongs to r only and to its boundary, sets its edge state to true. Nodes
that belongs to the interior of the first operand set their boundary state information to false.

(a) Example Scenario 01 (b) Derived geometry after evaluating
r minus r′ over example scenario
in Figure 5.16

Figure 5.16: Example scenario-1 and associated derived geometry after evaluating operation r
minus r′

Now the next step is to remove the segments that are created by the boundary nodes of
derived geometry, but which should not be part of the derived geometry as they are lying in
the spatial area of R′. Let si denote a node with the local edge state attribute set to true. In
the case of the minus operation, as part of geometry derivation, an si ∈ Ron performs a local
EIT-lookup to find any tuple belonging to R. If it finds one or more tuples, it appends the
same information in the EIT for the new derived geometry by updating the GID. Recall that
a tuple in the EIT contains the GID, and the neighbourID. Where as, a node si ∈ RonR′

on or
si ∈ RinR′

on needs information from their neighbours to compute which edges are lying in the
spatial area of R′ and enter such information in its EIT because edges from derived geometry
that are created by its closest boundary nodes but are lying in the spatial area of R′ must be
removed. Consider a complicated example scenario in Figure 5.17(a) and the derived geometry
in Figure 5.17(b).

For this purpose a node si ∈ RinR′
on also requests information from its neighbours when

CBNs request information to compute their event state. Let sector 1 denote the sector in which
the angle a node can make with its boundary neighbours is between 0◦-30◦(inclusive) by making
itself the origin and let sector 12 denote the sector in which the angle a node can make with
its boundary neighbours is between 330◦-360◦. Let A denote the sectors from 7 to 9 and B

5.5. EVALUATION COMPONENTS FOR SPATIAL-VALUED TASKS 115

denotes the sectors from 10 to 12.

A node si ∈ RonR′
on or si ∈ RinR′

on with neighbours in RonR′
on or in RinR′

on in sector A or
B or both runs the following algorithm to compute among the neighbours (i.e., neighbours ∈
RonR′

on or neighbours ∈ RinR′
on) with whom it does not form valid edges. Each si computes list

of the rejected neighbours (with whom it does not form valid edges) and add this information to
its EIT. After such computation if a node has a non-empty rejected edges list it transmits the
information about the neighbours with which it not form edges in a message to its neighbours.
Upon reception of this information, the neighbours that find their ID in the message remove
their edge with the neighbour from which it has received message by adding this information
to its EIT. Consider the example scenario in Figure 5.17, nodes 11, 12, 13, 35, 36 and 37 has
neighbours that lie in either sector A or B or both.

The algorithm works as follows:

1. If neighbours lying in sector B of si forms a total of all neighbours lying in sector A

and sector B. Node si needs to compute two neighbours with which it is making LUT.
In case, si makes more than one LUT, it select the LUT in which it creates maximum
angle by keeping itself at the origin. After the selection of LUT, it keep both neighbours.
It removes edges with all other neighbours by adding their ID to the list of rejected
neighbours. Node si then adds information from its list of rejected neighbours to its EIT.

• In the example scenario Figure 5.17, for example node 11 has three neighbours (12,
19, 20) in sector B that forms a total of all neighbours lying in sector A and sector
B. Node 11 is part of three LUTs <11, 12, 19>, <11, 12, 20> and <11, 19, 20>.
Among these LUTs, node 11 selects LUT <11,12,19> in which it creates maximum
angle by keeping itself at the origin. Therefore, node 11 keeps its segments with
node 12 and 19 and removes segment with 20.

2. If si does not satisfy condition (1) and has neighbours in sector A. Node si selects the
neighbour among its neighbouring nodes in sector A with which it forms the minimum
angle, and adds all other neighbours ID lying in sector A to its list of rejected neighbours.
Node si then adds information from its list of rejected neighbours to its EIT.

• In the example scenario Figure 5.17, for example node 13 keeps its segment with
node 12 only and removes its segments with nodes 20 and 21, and node 12 keeps its
segment with node 11 only and removes its segments with nodes 19 and 20.

3. If si does not satisfy condition (1) and has neighbours in sector B, it selects the neighbour
from B with which it forms the maximum angle and adds all other neighbour IDs in B

to its list of rejected neighbours. A node then adds information from its list of rejected
neighbours to its EIT.

• In the example scenario Figure 5.17, for example node 12 keeps its segment with
node 13 and removes its segments with nodes 20 and 21.

116 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

(a) Example Scenario 02 (b) Derived geometry after evaluating
r minus r′ over example
scenario in Figure 5.17

Figure 5.17: Example scenario-2 and associated derived geometry after evaluating operation r
minus r′

Contour. The contour operator computes the outer boundary of the regions value by ignor-
ing inner boundaries. As a regions value with hole contains both an outer boundary and an
inner boundary, the nodes in the outer boundary declare their operation states to be true. All
other nodes declare their operation state to be false.

Nodes belonging to the operand of the contour operator engage in localized decision-making
to compute the MBR of the regions value. Once the boundary nodes belonging to the regions

value know about the minimum x-axis and y-axis, and the maximum x-axis and y-axis locations,
a boundary node computes the four boundary segments of the MBR. Based on its location, the
boundary node computes to which of the four boundary segments of the MBR it lies closest.
The MBR segment to which it lies closest is called its closest MBR segment.

The boundary nodes then request their neighbours for information related to whether they
belong to the interior or the boundary of the operand. Suppose that space around every
boundary node is divided into 12 sectors of 30 degrees each. Upon receiving information from
the neighbours, it computes the closest neighbour in each sector. The boundary node then
computes whether any neighbouring nodes lie closer than itself to the closest MBR segment.
If it finds that a neighbouring node belonging to the interior lies closer to the closest MBR
segment, then it declares its operation state to be true. If it finds all neighbouring nodes in the
direction of the closest MBR segment are boundary nodes, then by placing itself at the origin
it computes the angle between any of the two neighbours in the adjacent sectors towards the
closest MBR segment. If the angle is greater than or equal to 90, it declare its operation state
to be true. It also sets its operation state to be true upon finding itself part of closest MBR
segment.

5.5.2.2 Evaluation of Complex Spatial-Valued Tasks

In the case of complex tasks, the explicit derivation of a geometry is performed after the
evaluation of every operator in the task. The evaluation of each spatial-valued operator results
in an intermediate derived geometry (IDG). Each MBR node keeps information about an IDG

5.5. EVALUATION COMPONENTS FOR SPATIAL-VALUED TASKS 117

locally. Each node belonging to an IDG inserts information about that geometry in its GIT.
Upon the evaluation of each successive operator in which the IDG is used as operand, all nodes
belonging to IDG remove its IDG entry from the GIT if the operation state is false. Nodes with
true operation state also update the attributes in the GIT entry of the IDG. Upon evaluation
of the last operation in the task, the nodes with true operation state remove the entry for the
IDG and create an entry for the final derived geometry.

For example, consider the complex spatial-valued task in Figure 5.18. It is semantically
equivalent to the task (((r plus h) minus r′) intersection g) in infix notation. Let r, h, r′ and
g denote SEG regions values. Figure 5.19(a) provides an example scenario for the evaluation
of the complex task in Figure 5.18 and Figure 5.19(b) shows the resultant derived geometry
after the evaluation of the complex task over the geometries in Figure 5.19 (a). Figure 5.20
shows the step-by-step execution of the complex task in Figure 5.18 over the geometries in the
example scenario in Figure 5.19(a).

r h PLUS r’ MINUS g INTERSECTION

Figure 5.18: Complex Spatial-valued task in Postfix notation

(a) Example Scenario (b) Derived geometry after evaluating
complex task in Figure 5.18

Figure 5.19: Example scenario and derived geometry after evaluating complex task in Figure
5.18

The task evaluation engine at each MBR node executes the task using a stack-based postfix
expression evaluation approach. An element is popped from the expression. If it is an operand,
it is pushed into the operand stack. If it is a binary operator, then two operands are popped
from the stack. Otherwise, one operand is popped from the operand stack. Operators are then
evaluated and the resulting operand (representing the IDG) is pushed into the operand stack.
If there is no IDG operand ID on the stack, then the nodes enter the operand ID TDGIDa.
Otherwise, it enters the IDG operand ID TDGIDb. Depending on the complexity of the task,
an MBR node can have a maximum of two IDG operand IDs (TDGIDa, TDGIDb) on the
operand stack during its evaluation.

While evaluating the expression in Figure 5.18 from left to right, operands r and h are

118 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

Figure 5.20: Step by step execution of complex task in Figure 5.18 over the geometries in
example scenario in Figure 5.19 (a)

pushed into the operand stack. After popping the plus operator, operands r and h are popped
from the operand stack. The MBR nodes that belong to r or h or both declare their operation
state to be true. All other MBR nodes set their operation state to false.

After membership evaluation, nodes having operation state true engage in local commu-
nication in order to compute whether their CBNs belonging the boundary or the interior of
the IDG. After this, all the nodes whose operation state is true, and belong to the boundary,
compute the EIT information. All nodes whose operation state is true, and belong to the
derived geometry, enter the information about the IDG in their GIT. The information includes
GID, datatype, boundary node and TTL. The GID is set as the IDG ID (i.e., TDGIDa). For
plus, type inference suffices to derive the result type, which in this case is regions. The node
sets the boundary node attribute value to true or false depending on whether it lies in the
boundary or the interior of the IDG. The TTL for a new derived geometry is computed as the
minimum of the TTL of the operands. All MBR nodes push the operand ID for the IDG into
the operand stack before evaluating the rest of the task.

While evaluating the expression from LHS to RHS, all other operations in the task will be
evaluated as explained above. The next step is result processing which is now explained.

5.6. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 119

5.5.3 Result Processing

The nodes that are part of the final derived geometry add an entry for it in their GIT if it does
not exists already. Otherwise, these nodes update the entry by resetting the TTL attribute in
the GIT table. For the final derived geometry, the nodes set the GID to the derived geometry
ID received as part of the task message.

5.6 Distributed Algorithms for Spatial Operations

The main research challenge faced is that of devising algorithms to operate efficiently under
conditions of extreme resource scarcity and the precarious nature of the shared communication
medium. The distributed algorithms presented in this chapter are, for the most part, localized,
and hence have desirable complexity in terms of messages complexity as well as in terms of bit
complexity, response time, and energy consumption. Then there, are challenges relating to the
engineering of the solution and of the expressiveness of the algebra in terms of the complex
geometries involved and of the powerful operations supported as well as the compositionality
opportunities permitted by the algebra.

The section is structured as follows. Section 5.6.1 presents a model for the distributed
algorithms that will be used in this chapter. Section 5.6.2 presents an overview of the task
processing system. It describes how the various software components are wired together to
build the overall application that runs in a node. Section 5.6.3 provides the algorithm for
the stack-based evaluation of Boolean-valued tasks and the algorithms for the Boolean-valued
operators. Appendix B.3 presents the algorithm for the stack-based evaluation of spatial-valued
tasks and the algorithms for spatial-valued operators.

5.6.1 Model for Distributed Algorithms

This section presents a model for distributed computation of spatial operations and introduces
several terms, concepts, and notations that will be used in this section. The model, terminology,
concepts and notations are adapted from [San06]. Indeed, most of the structure and content
of this section is adapted from [San06]. Note, that following [San06], in this section we mostly
refer to nodes as entities, i.e., an element in a distributed computation. This differs from the
terminology used in previous chapters.

5.6.1.1 Entity

In a WSN, each node is an entity and acts as unit of the distributed computing environment.
Each entity n ∈ N is equipped with local memory, processing, storage, sensing, and communica-
tion capabilities, but entities in a WSN are extremely constrained in terms of communication,
power, storage and computational resources. In addition, these entities are limited by their
short transmission range, and therefore, may have to perform the additional function of for-
warding/relaying the data which they receive from neighbouring entities along a routing path.

Entities do not share global memory over the communication network. For the purpose of
this section, the local memory of an entity n comprises a set of registers that, conceptually, can

120 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

be described as follows: a geometric information register, an edge information register, a status
register, and an input value register, denoted by g state(n), e state(n),n state(n), status(n),
input(n), respectively. g state(n) contains GIT, e state(n) contains EIT, and n state(n) con-
tains neighbours location information. status(n) determines the state that an entity is initially
in and can change during the execution of the chore. Examples of such values includes IDLE,
and Available. More details about state values in status(n) are provided in Section 5.6.1.3.
Whereas input(n) contains the values of the local identifiers.

In addition, each entity has available a local timer referred to as an alarm clock. An alarm
can be set, stop or reset on a timer. An alarm is fired, upon the completion of a time period.

An entity can perform the following operations: sensing, local storage, local processing,
transmission of message, changing the value of the status register, and (re)setting/stoping
alarm.

5.6.1.2 Event

An entity is reactive and responds to stimuli called events. An event e ∈ E can be generated by
a hardware or a software component. The completion of a request, or an external trigger, can
generate an event. Events generated by hardware are interrupts caused by a timer, a sensor,
or a communication device.

An event can be internal or external. We envisage internal events Ei as representations of
stimuli that are local to an entity and originate within the entity (e.g., an interrupt indicating
the firing of a timer). External events Eo are external to the system (e.g., an incoming radio
packet). The set of all events is E = Ei ∪ Eo.

In the scope of this dissertation, an entity can call a method Set Alarm(a ID, time) to set
an alarm, where a ID denotes the unique alarm ID and time denotes the period of time the
expiry of which causes alarm a ID to fire. In addition, an entity can turn off and reset a specific
alarm by calling methods Stop Alarm(a ID) and Reset Alarm(a ID), respectively. Each timer
is associated with a When event. Upon the completion of the time time, any action associated
with an Alarm Fire(a ID) event is executed. More details about actions are provided below.

A Receive event is associated with incoming radio packets at the receiving entity. An
entity can receive more than one message. The sending entity associates with each message
to a message ID, specifying which application or process it should be forwarded. Upon the
reception of a message, an entity is responsible for forwarding each message to the specific
process/component running on it, based on the message ID. Receive events are differentiated
from each other by their message ID denoted by Receive(m ID).

A Read event is associated with an interrupt indicating that new sensor reading has been
made available. An entity may be equipped with more than one sensing device. Read events
are distinguished by the corresponding sensing device ID, denoted by Read(s ID).

A Spontaneously event is not associated with an interrupt or external cause such as hard-
ware interrupt. Among the events that are external or internal to the system, Spontaneously

event has the higher precedence.

The operation Send generates a Receive event, Sense generates a Read event and Set alarm

and Reset alarm generate a When event.

5.6. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 121

When an event e ∈ E occurs, the action block associated with the event is executed. An
action block comprises a finite sequence of instructions, called actions. It is possible, that in
response to an event, an entity n does not react because no action is associated with event.

5.6.1.3 Status

In the scope of this dissertation, the set of state values S comprises three subsets, viz., SINIT ,
SINTERMEDIATE , and STERM . SINIT denotes the set of values an entity can hold at the start
of the execution; SINTERMEDIATE , the set of values that an entity can hold after the start and
before the end of the execution; and SFINAL, the set of values that an entity can hold after the
execution of an action block has ended.

More formally, the set of state values S can be described as, S = SINIT ∪ SINTERMEDIATE

∪ STERM

Among the SINIT values, SSTART ⊂ SINIT refers to the set of values, which if an entity
is in, is responsible for starting the evaluation of the protocol. Typically, it contains a single
value SSTART = {INITIATOR}. In the scope of this dissertation, if action block evaluation is
started on all entities in a specific state, then only the set of states in SSTART are specified.

STERM values denotes states that cannot ever be changed by the protocol. Among STERM

state values, there exists a subset of values, called SFINAL, that define the status in which no
further activity takes place.

5.6.1.4 Behaviour

The action that an entity n ∈ N will take depends upon the type of event and the value in
status(n) when an event occurs. This can be formally defined as a rule of the form:

status(n) × Event =⇒ Action,

The behaviour of an entity n can be defined as finite set of rules B(n) that an entity n obeys.
In other words, actions determine the behaviour of an entity based on specific conditions. For
every distinct event and status, there exists one rule that defines the action which an entity
should take when that event occurs in that state. A set of rules B(n) is called a protocol or a
distributed algorithm for n.

In this dissertation, we make use of the following conventions:

• Rules are grouped by status.

• If the action for a (status, event) pair is Null, then no rule is given for it.

• If the action for a (status, event) pair includes a command to change the state, and is
followed by a call to the protocol, it executes the protocol in that new state. Otherwise,
it simply changes the state and executes the events when they occur in that state.

• If a protocol calls another protocol without passing any arguments, it is simply returning
the control back to that protocol.

• The action associated with an Spontaneously event is executed implicitly.

122 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

• In distributed computations, it is possible that at some specific point in time some entities
are still running the protocol while others may have terminated its execution before com-
pletion of the overall computation; and also some entities based on the status(n) or the
g state(n) register may be ready to participate in the execution of protocol while others
may not.

5.6.1.5 Communication

A WSN can be considered a bidirectional graph G(V,E), with the entities as the set of vertices
V , and the wireless communication links as the set of edges E. The entities that an entity can
receive from and transmit to directly are its one-hop neighbours. Consider two entities sj and
sk ∈ V , if sj is within the propagation area of sk, there is an edge (sj , sk) ∈ E.

In a WSN, messages can be lost as well as corrupted. Packets can be lost due to commu-
nication links going down or to collisions. Packet collision occurs when an entity receiving a
packet hears one or more additional transmissions over the same channel [KM07, MV05]. The
result of a collision is generally a garbled message. In general, packet collision occurs when
two or more entities send data at the same time over the same channel. When a collision is
detected, the message is rejected and the result is that no message is delivered.

WSNs require some sort of mechanism either to prevent collisions altogether or to recover
from collisions when they occur. In WSNs, the role of the medium access control (MAC)
protocol is to coordinate access to and transmission over a shared wireless medium [WC01].
In the networking literature, numerous MAC protocols have been proposed, which are usually
grouped in two different broad categories: contention-based and reservation-based [BDWL10,
KM07, YH03].

The communication system may deliver duplicated messages. In addition, communication
delays may occur due to message failure, network congestion and processing overhead. By
communication delay we mean any additional overhead above the normal expected time that
elapses between the event at the sending entity which transmitted the message and the event
that processes the message at the receiving entity.

5.6.1.6 Messages

For the distributed execution of an application logic, entities communicate with each other by
passing messages over the communication channels.

In this dissertation, the following conventions will be used. The message comprises a finite
number of bytes and its size is bounded by the underlying system. A message is usually
transmitted by an entity as a pair (m ID, tuple), where m ID denotes the message ID and
tuple denotes a sequence of length k of data fields (f1, f2 fk), where each field contains some
amount of payload information. An entity can transmit the message directly to its neighbours
by specifying their ID as destination. For transmitting a message, the Send operation is used.
The syntax of the Send operation is as follows:

Send (m ID, f1, f2 fk) to destination
In the case of a message broadcast, N(n) is specified as destination, denoting the local

neighbourhood of an entity n. In the case of transmission to a specific neighbour, the entity ID

5.6. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 123

of that neighbour is specified as the destination.

5.6.1.7 Protocol

The content of all the registers of an entity n and the values of its alarms constitute the internal
state of an entity. Some of the registers are initialized before the start of the protocol, while
others are initialized during the execution.

In this section, the initial and final conditions of each protocol are defined in terms of {PINIT ,
PFINAL} are provided in the algorithm pseudocode for a protocol. PINIT and PFINAL are
predicates on the internal state of the entities, and R defines set of restrictions. Let t0 denote
the time before the entities start evaluating the protocol and tf the time at which the evaluation
of protocol ends. PINIT at t0 defines the conditions the entities are in before the start of the
protocol, PFINAL at time tf defines the conditions the entities are in after evaluating the
protocol. The set of R restrictions for all the protocols described in this section are the same,
as now described.

5.6.1.8 Restrictions

The distributed algorithms defined in this section, make several assumptions. These assump-
tions define the knowledge and restrictions under which these algorithms operate. Some re-
strictions regarding the network are as follows.

1. Bidirectional communication links

2. An entity may receive duplicate messages. Some of the possible causes include loss of
acknowledgement messages (during routing and tree construction), in response to which
the transmitter retransmits the message after a fixed interval; broadcast communication
(e.g., during task dissemination inside MBR), as a result of which an entity receives the
same message from different sources.

3. An entity may not receive a message due to collision. One cause of packet collision is the
hidden terminal problem [TL08].

4. Physical time plays a crucial role in many WSN applications. Time is crucial not only for
data fusion but also for intra-network coordination among different sensor entities. Time
synchronization is a well studied research problem [SKPM06, EE01], and in the scope of
this dissertation, it is assumed that all entities are time synchronized.

5. Delay in communication may occur, e.g., due to different workloads. For example, if an
entity is busy with aggregation and receives a message to be sent towards the first-level
leader, then the relaying of the message may be delayed. This situation can particularly
affect tasks involving MEG operands because of their size and complexity. In such cases,
the aggregation process may complete at different times in different operands. Another
cause of communication delay is a transmission failure, in which case the sender waits
for an acknowledgement and retransmits if none arrives. Finally, network congestion may
cause communication delay as well.

124 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

5.6.2 Description of the Task Processing System

A simple component diagram of the task processing system that runs on entities is given in
Figure 5.21. It describes the high-level software components and the interfaces to those compo-
nents. Components may both provide and require interfaces. An interface defines a cohesive set
of behaviours. A connector from one component to another denotes that the former provides
the interface that the latter requires. The component that provides the interface exhibits a
lollipop (the symbol with a complete circle at its head), whereas the component that requires
the interface exhibits a socket (the half-circle symbol). To avoid clutter, we have not included
interface titles in Figure 5.21. The inner structures of the components Boolean-Valued Operator
(Type1) and Boolean-Valued Operator (Type2) are shown in Figure 5.22. The inner structures
of the components Spatial-Valued Operator (Type1) and Spatial-Valued Operator (Type2) are
shown in Figure 5.23.

The radio, receive and transmit components constitute the communication layer. The trans-
mit component is responsible for tagging the message with an ID and transmitting it over the
radio. The receive component is responsible for the reception of messages destined to an entity
and forwarding it to a specific component on the basis of the message ID. The radio component
is responsible for turning the radio on and off and starting the radio either in full mode or in
low power listening mode. In low power listening mode, the entity cycles between the sleep
state and the awake state [MM06, LWG05].

The architecture of the task processing system consists of two main components, viz., the
software running on the motes and the software that runs on the gateway. A WSN is associated
with a gateway that acts as the source for disseminating the spatial analysis tasks and as the
sink for receiving the corresponding outcomes. Spatial tasks are translated in the gateway into
a compact byte representation in order to eliminate the need for a sophisticated parser on each
mote and to reduce the size of the task message. The contents of this data structure are defined
in Appendix B.1.1. Once a task has been disseminated, it is handed over to the task processing
system, which is responsible for the evaluation of the task conveyed in the task message. Each
entity that belongs to the task MBR evaluates the task specified in the task message. These
entities also cooperate in the execution of the task. Task processing consists of two phases,
viz., preprocessing; and evaluation. Preprocessing is performed once, after the reception of the
task message. Evaluation is performed repeatedly, once per evaluation period. Preprocessing is
performed by the evaluate component, which is responsible for checking the validity of the task
and forwarding it to a specific evaluator on the basis of the type of task. For example, if the
task comprises Boolean operators, then it is forwarded to the Evaluate Boolean-Valued Task
component for evaluation. Due to the limited capabilities of an entity, most of the validation
is performed on the gateway.

The evaluation logic of a task depends upon the type of task. The Evaluate Boolean-Valued
Task component in each entity is responsible for the stack-based evaluation of the Boolean-
valued tasks. The Neighbour GIT-lookup component is used for getting geometric information
from the neighbouring entities.

The Evaluate Spatial-Valued Task component in each entity is responsible for the stack-
based evaluation of spatial-valued tasks. The Evaluate Induce Geometry component in each

5.6. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 125

Figure 5.21: Task Processing System component diagram

126 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

Figure 5.22: Task Processing System components (a) Boolean-Valued Operator (Type1) (b)
Boolean-Valued Operator (Type2) inner structure is composed of other components

(a) Spatial-Valued Operator (Type1) (b) Spatial-Valued Operator (Type2)

(c) Spatial-Valued Operator (Type3)

Figure 5.23: Task Processing System component’s (a) Spatial-Valued Operator (Type1) (b)
Spatial-Valued Operator (Type2) (c) Spatial-Valued Operator (Type3) inner structure is com-
posed of other components

5.6. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 127

entity is responsible for the derivation of induced geometries. The Derive Geometry component
is responsible for the derivation of geometries.

The GIT component is responsible for the insertion, look-up, modification, and deletion in
the GIT of tuples with information about the geometries an entity belongs to. This component
is equipped with an alarm that fires periodically. At each such event, the validity time of tuple
is decreased by one time unit.

Recall, from Section 5.4.1, that during task dissemination a task message is forwarded
towards the task MBR using a greedy forwarding method that requires each entity to be aware
of its neighbours location. Let the neighbours location be stored in a neighbour information
table (NIT).

The EIT component is responsible for the insertion, look-up, modification, and deletion, of
information about segments formed with neighbours that do not belong to the geometries the
entity belongs to.

5.6.3 Concrete Distributed Algorithms for Spatial Operations

As discussed in Section 5.6.2, the task disseminate and evaluate components participate in the
evaluation of any type of task. Appendix B discuss the protocols for both the task disseminate
and evaluate components.

Recall, from Section 5.4, that the Boolean-valued task evaluation process comprises two
phases, viz., distributed task evaluation, and result processing. The description of the distributed
task evaluation protocol is provided later in this section, and description of the result processing
protocol is provided in Appendix B.

5.6.4 Distributed Task Evaluation

This section, discuss the EvaluateBooleanValuedTask protocol in Figure 5.24. It uses a stack-
based evaluation approach. The protocol supports re-evaluation of tasks, up to a fixed number
of times. This protocol is only responsible for the evaluation of Boolean-valued operators not
Boolean-valued connectives. Boolean-valued connectives are applied by the first-level leader on
the finally aggregated operation state (line 100 in Figure B.25 in Appendix B).

Each operation in the task is evaluated. In order to compress the operation states into an
entity-level task state, the procedure ComputeTaskState is invoked. The SatisfyTaskOP pro-
cedure is responsible for checking whether an entity satisfies the condition for participation, at
least one operation in the task. If an entity does so, the ComputeAggregationOperand proce-
dure is invoked to select the aggregation operand, as discussed in Section 5.4.2.5. After the
selection of the aggregation operand, the Aggregation protocol in Figure B.23 (Appendix B) is
invoked. After the aggregation process is performed, the Result Processing protocol (explained
in Appendix B) routes the messages from each SEG leader to the first-level leader and then
from the first-level leader to gateway.

The description of the vertex inside protocol is provided in this section, and that of other
protocols are provided in Appendix B.

VertexDisjoint

128 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

For the computation of this operation, the information required by an entity is available
in its own GIT. The procedures used in the vertex disjoint protocol (Figure 5.25) include
CheckVDDataTypeValidity and LocalGITLookup Search. CheckVDDataTypeValidity is respon-
sible for computing whether the operands are valid i.e., it returns true if an entity satisfies the
operand’s data type, which it is a member of. LocalGITLookup Search is responsible for local
GIT-lookup and for returning the address of the tuple in GIT, if it exists, otherwise it returns
null.

5.7 Summary

In this chapter, the algorithmic strategy for in-network processing of spatial task has been
presented. As mentioned, there exists related work in the area of topological change detection
in WSNs and extracting information that represent topological features. However, there is no
related work which provides a general framework or a distributed spatial algebra for supporting
complex spatial algebraic expressions.

This chapter described the various types of complex tasks supported by the task processing
system. It also explained the attributes of the supporting structures. In addition, the main
contribution of this chapter has been the construction of a generic technique for evaluating each
spatial operator in a distributed manner on WSNs. The algorithmic strategy for evaluating
Boolean-valued and spatial-valued tasks over multi-element geometries has also been described.

The approach presented is comprehensive as it covers a broad range of task evaluation as-
pects. The empirical evaluation in Chapter 6 will show the approach used for the distributed
evaluation of spatial tasks scale well in number of nodes involved. In addition, it also scales well
on task complexity measured as the number of operators comprising the task, and the num-
ber of multi-element operands, with and without holes increases. Consequently, the approach
contributed in this chapter is appropriate for distributed environments with large numbers of
mote-level nodes.

This chapter has also presented the architecture of a task processing system as well as
distributed algorithms for Boolean-valued operations for in-network spatial analysis. The con-
tributed algorithms are novel and have been designed with specific consideration to the dis-
tributed nature of the execution platform and in full awareness of the extreme resource scarcity
in WSN platforms.

5.7. SUMMARY 129

Protocol EvaluateBooleanValuedTask(postfixTask , reEvalPeriod, duration)

1 // PINIT ≡ ”All entities in the MBR can evaluate Boolean-valued task at time t0” ≡
2 // {∀ n ∈ N: n ∈ MBR ⇒ n can evaluate the task at time t0}
3 // PF INAL ≡ ”Final result is received at the sink at time tf ” ≡
4 // {∃ n ∈ N: n has task result message at tf ⇒ n is the sink }
5
6 Status Values: S= {TASK EVALUATING, SEGLEADER, IDLE, OPERATION EVALUATING, AVAILABLE}
7 SST ART = {TASK EVALUATING}
8 SINT ERMEDIAT E={IDLE, SEGLEADER, OPERATION EVALUATING}
9 ST ERM = {AVAILABLE}

10 TASK PREPROCESSING
1111 Spontaneously
12 countOP = 0
13 Stack s
14 taskstate = 0
15 taskstateSEG = 0
16 leaderSEG = false
17 operationState = 0
18 isAggregationDone = false
19 PushTaskOnStack(postfixTask , s)
20 Set Alarm(a t20, reEvalPeriod)
21 Become(TASK EVALUATING)
22 TASK EVALUATING
2323 Spontaneously
24 while(not s empty())
25 leftArg = s pop()
26 rightArg = s pop()
27 op = s pop()
28
29 if (op = vertex inside):
30 // VertexInside protocol return the state of the operation in stateOP
31 Become(OPERATION EVALUATING)
32 VertexInsideOP(leftArg, rightArg, &operationState)
33 elseif (op =area inside):
34 Become(OPERATION EVALUATING)
35 AreaInsideOP(leftArg, rightArg, &operationState)
36 elseif (op = edge inside):
37 Become(OPERATION EVALUATING)
38 EdgeInsideOP(leftArg, rightArg, &operationState)
39 elseif (op = area disjoint):
40 Become(OPERATION EVALUATING)
41 AreaDisjointOP(leftArg, rightArg, &operationState)
42 elseif (op = vertex disjoint):
43 Become(OPERATION EVALUATING)
44 VertexDisjointOP(leftArg, rightArg, &operationState)
45 elseif (op = edge disjoint):
46 Become(OPERATION EVALUATING)
47 EdgeDisjointOP(leftArg, rightArg, &operationState)
48 elseif (op = meets):
49 Become(OPERATION EVALUATING)
50 MeetsOP(leftArg, rightArg, &operationState)
51 elseif (op = adjacent):
52 Become(OPERATION EVALUATING)
53 AdjacentOP(leftArg, rightArg, &operationState)
54 elseif (op = equals):
55 Become(OPERATION EVALUATING)
56 EqualsOP(leftArg, rightArg, &operationState)
57 elseif (op = not equals):
58 Become(OPERATION EVALUATING)
59 NotEqualsOP(leftArg, rightArg, &operationState)
60 elseif (op = intersects):
61 Become(OPERATION EVALUATING)
62 IntersectsOP(leftArg, rightArg, &operationState)
63 elseif (op = on border of):
64 Become(OPERATION EVALUATING)
65 OnBorderOfOP(leftArg, rightArg, &operationState)
66 elseif (op = border in common):
67 Become(OPERATION EVALUATING)
68 BorderInCommonOP(leftArg, rightArg, &operationState)
69
70 if (operationState = NOT PART OF OPERANDS) or
71 (operationState = OPNOTSUPPORTED)):
72 operationState = OP NOT APPLICABLE
73
74 taskState = ComputeTaskState(taskState,operationState)
75

Figure 5.24: Protocol EvaluateBooleanValuedTask

130 CHAPTER 5. ALGORITHMIC STRATEGY FOR SPATIAL ANALYSIS OVER WSNS

75 if (s empty()):
76 if (isAggregationDone = false):
77 satisfyOP = SatisfyTaskOP(taskState)
78 isAggregationDone = true
79
80 if (satisfyOP = true):
81 gmtryID = ComputeAggregationOperand(postfixTask)
82 // After Aggregation each entity gets partial aggregated task state
83 // and information whether it is selected as SEG leader
84 taskStateSEG = taskState
85 leaderSEG = n.ID
86 Become(IDLE)
87 Aggregation(gmtryID, &taskStateSEG, &LeaderSEG)
88 else
89 Become(AVAILABLE)
90 else :
91 if (leaderSEG= n.ID):
92 Become(SEGLEADER)
93 ResultProcessing(taskStateSEG, gmtryID)
94 else :
95 Become(AVAILABLE)
96 ResultProcessing(taskStateSEG, gmtryID)
97
98 AVAILABLE
9999 When(a t20)

100 evalPeriod = ComputeReEvalPeriod(evalPeriod, reEvalPeriod)
101 if (evalPeriod < duration)
102 Become(TASK PREPROCESSING)
103 else :
104 Become(AVAILABLE)
105

Figure 5.24 (continued)

Protocol VertexDisjoint(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the vertex disjoint operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true or false at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 // LocalGITLookup search method returns the address of the tuple in GIT
15 tupleG1 = LocalGITLookup Search(gmtry1ID)
16 tupleG2 = LocalGITLookup Search(gmtry2ID)
17 stateOP = false
18
19 if ((tupleG1= null) and (tupleG2= null)):
20 stateOP = NOT PART OF OPERANDS
21 else :
22 isOperandsDTValid = CheckVDDataTypeValidity(tupleG1 , tupleG2)
23
24 if (isOperandsDTValid):
25 if ((tupleG1 != null) and (tupleG2 != null)):
26 stateOP = false
27 elseif ((tupleG1 != null) or (tupleG2 != null)):
28 stateOP = true
29 else :
30 stateOP = OP NOT SUPPORTED
31
32 Become(TASK EVALUATING)
33 EvaluateBooleanValuedTask()

Figure 5.25: Protocol VertexDisjoint

Chapter 6

Experimental Validation

In Chapter 5, an algorithmic strategy for computing Boolean-valued and spatial-valued oper-
ations, and, building on that strategy, algorithms for the distributed evaluation of each such
operation, have been described. These algorithms have been implemented over the de facto
standard simulation environment for WSNs. This chapter describes a series of experiments
that aim to evaluate the degree to which the distributed algorithms described in Chapter 6
meets the desiderata placed upon. The aim of the experiments is to investigate the benefits of
in-network processing of spatial-analytical tasks.

We performed experiments using simulations of an actual distributed platform, viz., TinyOS
[LMG+04] and studied four main performance indicators: bytes transmitted, messages trans-
mitted, energy consumption and response time.

The structure of this chapter is organized into six sections as follows: Section 6.1 describes
the implementation environment. Section 6.2 explains the experimental context used for all the
experiments. Section 6.3 summarizes the preprocessing steps required to run the experiments
over the simulator. Section 6.4 reports on an experimental evaluation of spatial analysis out-
of-network. Section 6.5 reports on an experimental evaluation of geometry induction. Section
6.6 presents an experimental evaluation of in-network spatial analysis. Finally, Section 6.7
concludes the chapter.

6.1 Simulation Environment

TinyOS [LMG+04] is an open-source operating system designed for mote-level WSNs and nesC
is the special purpose language designed to embody the structural concepts and execution
model of TinyOS [LG09]. All of the algorithms contributed in Chapter 5.6 were implemented in
nesC/TinyOS 1.x. The algorithms in this dissertation were evaluated using detailed simulations
over the TOSSIM [LLWC03] TinyOS simulator. TOSSIM is an event-driven simulator, for
application execution in a controlled, reproducible environment. It simulate, nesC/TinyOS
code and can scale to large number of nodes. TOSSIM provides a number of features including
run-time configurable debugging output and radio modeling but it does not allow the estimation
of energy consumption. Energy consumption is an important factor in determining the life

131

132 CHAPTER 6. EXPERIMENTAL VALIDATION

time of a WSN. Therefore, to estimate the total energy consumed by the sensor nodes, the
PowerTOSSIM [SHrC+04] extension to TOSSIM is used to provide a per-node estimation of
energy consumption that scales to larger networks.

TOSSIM does not allow for modeling real-world behaviours such as a specific network layout,
mobility of sensor nodes or the assignment of specific readings to sensor nodes. It provides a
socket-based API for other applications to allow such modeling. One such application that
can be used for the purpose of complex real-world modeling is TinyViz [Tin], a graphical user
interface that communicates with TOSSIM over the socket API and allows to control and
analyze the simulation. TinyViz provides several mechanisms for interacting with the network,
e.g., packet traffic monitoring and a set of plugins that provide basic debugging and analysis
capabilities (examples include a plugin that displays all debug messages in list format, a plugin
that changes radio connectivity based on distances between nodes, and another that displays
the data in radio packets). In addition, it also supports a plugin interface allowing developers
to implement their own application-specific code within the TinyViz engine, and thereby to
extend the GUI’s functionality.

A scripting language, Tython (also called, Tinython) [DLJ+05], provides a scripting inter-
face to TOSSIM. Tython is based on Jython, a Java implementation of the Python language.
Users can use TinyViz, a Tython console, or both simultaneously, to interact with a running
simulation.

TOSSIM MAC is a contention-based MAC protocol, providing transmission and reception
of information using CSMA/CA-based contention-avoidance schemes [BDWL10, KM07, YH03].

6.2 Experimental Context

The tasks used for experiments in this report are based on the motivating example in Sec-
tion 1.4. As described in Section 1.4, mildew and other bacteria develop under closely-related
conditions that can compromise the desired productivity, so monitoring the moisture and tem-
perature in the soil is crucial to improve crop yield and quality. If needed, chemicals can be
applied under those conditions. As a result, it is important to monitor the temperature and
soil moisture with temporal and spatial precision in order to decide when and where to apply
the chemicals. The vine crop is influenced by the physical conditions where it is growing (e.g.,
location, topography, soil type etc.), and the climatic environment. Grape growers can take ad-
vantage of natural factors, by selecting suitable sites for particular grape varieties. Wine makers
can achieve greater control over the product by selecting, fermenting and blending batches of
grapes with suitable ripeness and flavors. The tasks for the experiments are generated based
upon the detailed study of the requirements of the sensor network deployments for precision
agriculture [Ulr08, PE08, A05, MCP+02, MGZ+09, KR04].

6.3 Preprocessing Steps

For the experiments in this chapter, different graphics packages have been used to draw and
subsequently transform the drawing of geometric shapes into textual representation of geometric

6.4. OUT-OF-NETWORK SPATIAL ANALYSIS APPROACH 133

shapes corresponding to hypothetical fields in the example application as well as induced and
derived geometries. Scripts were written in Python, that make use of these data files to generate
files containing location and GIT information for the nodes.

TinyViz was used for modeling network behaviour. Several plugins have been written to
make each sensor node aware of specific information including location, one-hop neighbourhood,
and initial GIT tuples.

For further automating the whole system, scripts were written in Tython, that automatically
invoke the required plugins in the TinyViz engine and run the task processor code. Once
the initial loading of static information is completed, and each node is equipped with basic
information about location, and the initial GIT tuples, initial EIT tuples, the nodes are ready
to evaluate tasks that are complex expressions in the algebra described in this dissertation.

6.4 Out-of-Network Spatial Analysis Approach

At the time of writing, there is no comparably expressive, implemented platform for in-network
spatial analysis that we might compare our implementation with. We therefore compared our
approach with an out-of-network approach in which all data is sent back to the gateway which
provides a baseline comparable to a warehousing approach to sensor data, and a less expensive
an out-of-network approach in which only boundary information of induced regions is sent back
to the gateway.

6.4.1 Experimental Setup

The specification of the sensor nodes we have simulated is [Type = MICA2, Radio = CC1000,
Energy Stock = 31,320,000 mJ (2 Lithium AA batteries)]. The radio range is set such that the
nodes can form a one-hop neighbourhood. The radio connectivity between nodes is based on
distances between nodes and, therefore, the maximum cardinality of the one-hop neighbourhood
of a node is set to eight in our experiments unless specified otherwise. In all experiments,
it is assumed that the tasks related to detection of induced geometries run over the whole
network and the cost associated with the induction of induced geometries is not included in
the experimental cost. In all experiments presented in this section, it is assumed that each
node knows its parent, to which it has to transmit message, and, to receive messages from, its
children. A node tries to send a packet to its parent up to four times, upon not receiving the
acknowledgement from parent. Otherwise, it broadcasts the message to its neighbours. A node
also checks not to send duplicate packets.

Size of the networks for the experiments are selected by not only considering the number of
nodes in the real-world deployments [Ulr08, PE08, A05, MCP+02, MGZ+09, KR04, KLS+10],
but also to demonstrate that the approach contributed in this dissertation is appropriate for dis-
tributed environments with large numbers of mote-level nodes. The number of nodes deployed
in some of these applications are as follows: Camalie vineyards [Ulr08] 25 nodes, NAV (Net-
work Avanzato per il Vigneto) system [MGZ+09] 45 nodes for precision viticulture, LofarAgro
project [A05] around 150 nodes to fight fungal-disease in the field.

134 CHAPTER 6. EXPERIMENTAL VALIDATION

6.4.2 Experiments

6.4.2.1 Experiment O1: Every sensor node senses and every reading is sent back

to the gateway

The purpose of the experiment is to measure the cost in terms of messages transmitted, energy
consumed and response time of sending all the measurement from every node back to the
gateway, so that the gateway can generate a snapshot of the induced geometry based on the
received data and allow the evaluation of spatial-analytic tasks. In this case, all data is centrally
held in the gateway and centralized algorithms could be used. The experiment is run over the
scenario in Figure 6.1. Here, and elsewhere in this chapter, we plot the energy consumed by
the CPU and by the radio components separately. The results are depicted in Figure 6.2.

Figure 6.1: Scenario (Snapshot of vineyard)

In this experiment we have only plotted the result for the two of the network sizes, because,
in this approach, apart from network longevity, scalability is an issue as it result in increase in
bandwidth requirements, increasing risks of packet loss due to collisions, the need to increase
buffer sizes and the effect that nodes that are closer to sink run out of energy stock sooner than
other nodes. For energy efficiency, techniques for congestion control [WEC03], flow control
[CHS+09] and scheduling algorithms [PBM+05] are needed. To avoid collision at the physical
layer, transmission events must be made to occur less frequently. For energy efficiency, trans-
mission events must be made to occur more frequently in order to maximize the radio power-off
interval and reduce the radio listening interval for the incoming packets.

In this experiment, for a network size of 166 nodes, the amount of energy consumed by
CPU and radio is close to 2,573 kmJ. If each node is powered by two AA batteries, the initial
energy stock per node is 31,320,000 mJ. The total energy stock inside the network is then the
network size times 31,320,000. This implies that each evaluation episode consumes between
0.05% and 0.09% of the total energy stock for networks containing between 166 and 223 nodes,
respectively. However, note that the distribution of energy consumption is not uniform: nodes
that are closer to the sink will deplete their energy stock much faster.

6.4. OUT-OF-NETWORK SPATIAL ANALYSIS APPROACH 135

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.2: Experiment O1: Behaviour w.r.t. Network Size (Sensed measurements are sent
back to the gateway)

6.4.2.2 Experiment O2: Boundary information of induced regions are sent back

to the gateway

The purpose of this experiment is to measure the cost in terms of messages transmitted, energy
consumed and response time of sending only the event information from boundary nodes (in
contrast to Experiment O1 in which all measurements from all nodes were sent) back to the
gateway for performing spatial analysis outside the network, so that the gateway can construct
the snapshot of induced geometry to allow the processing of spatial-analytic tasks outside the
network. The experiment is run over the scenario in Figure 6.1. The results obtained are
depicted in Figure 6.3. The size of induced geometries are given in Table 6.1.

Network IR1 IR2 IR1 IR2
Size in f5 in f5 in f4 in f7
166 28 11 12 6
223 37 15 18 10
299 51 20 22 14
400 68 28 27 18

Table 6.1: Size in number of nodes of the Induced Geometries in Experiment O2

In this experiment, for the network containing 166 nodes the amount of energy consumed
by CPU and radio together is close to 4,22 kmJ. This implies that each evaluation episode
consumes between 0.008% and 0.04% of the total energy stock for networks containing between

136 CHAPTER 6. EXPERIMENTAL VALIDATION

166 and 400 nodes, respectively. However, note that the distribution of energy consumption is
not uniform: nodes that are closer to the sink will deplete their energy stock much faster. In
comparison with Experiment 1, the growth rate is slower and the magnitudes much smaller.

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.3: Experiment O2: Behaviour w.r.t. Network Size (Boundary information of induced
regions is sent back to the gateway)

6.5 Geometry Induction

In this section, an experimental evaluation of geometry induction task is presented. In this
experiment, a task requiring geometry induction is run over the whole network. Figure 6.1
shows an experimental scenario in which we have induced geometry, viz., an induced region
IR1 defined by the event predicate Temperature<θ. For computing the induced geometry CFEBD
algorithm [RZL06] discussed in Section 3.4.1 is applied. The task used in this experiment is:

Temperature < 10

The results obtained are depicted in Figure 6.4. Figure 6.4 gives the projection of the cost
associated with inducing temperature geometry over the network of varying sizes. By ’TD’ is
meant task dissemination; by ’GI’, geometry induction.

As explained in Section 3.4.2, that each node upon acquiring the reading from attached
sensing device computes whether they are part of event geometry. CFEBD algorithm requires

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 137

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.4: Experiment GI1: Geometry Induction Behaviour w.r.t. Network Growth

each event and non-event node to transmit its event state to its neighbours. The event nodes
upon reception of information from neighbours compute whether they are part of the boundary
or of the interior of an induced geometry. The energy consumed by the CPU, radio and sensor
components are plotted separately in Figure 6.4 (c). As can be seen from Figure 6.4, geometry
induction algorithm exhibits slow rates of growth in terms of messages transmitted, energy
consumed and response time as the network size grows.

6.6 In-Network Spatial Analysis Approach

In this section, the experimental evaluation of Boolean-valued and spatial-valued tasks is pre-
sented. This section comprises three subsections: Section 6.6.1 describes the experimental
setup, Section 6.6.2 presents experiments related to evaluation of Boolean-valued tasks, and
Section 6.6.3 presents experiments related to evaluation of spatial-valued tasks. In all exper-
iments, it is assumed that the tasks related to detection of induced geometries are run over
the whole network and the cost associated with the induction of induced geometries are not
included in the experimental cost.

As sensor nodes have limited amount of memory, to avoid potential exhaustion of memory
resources, possible strategies have been taken. First and foremost, spatial tasks are translated

138 CHAPTER 6. EXPERIMENTAL VALIDATION

in the gateway into a compact byte representation in order to eliminate the need for a so-
phisticated parser on each mote and to reduce the size of the task message. Secondly, the
task processing system at each node allows it for the stack-based evaluation of complex tasks.
In case of, Boolean-valued tasks as described in Section 5.6.4, there is no need of maintain-
ing the operations state stack, each operation in the complex task, results in increase in the
task state size by 03 bits. Similarly, in case of spatial-valued tasks as described in Appendix
B.3, there is no need of maintaining the operations state stack. Thirdly, an entry in the node
GIT is a quadruple 〈GeometryID,DataType, BoundaryNode, TTL〉. Where GeometryID and
DataType attributes are of type byte (i.e., short int), BoundaryNode of type Boolean and TTL
of type long int (i.e., 04 bytes). Based on an application scenario, a node can be at maximum
part of two asserted geometries (i.e., if lying on the boundary of two asserted geometries), and
to none, one or more induced or derived geometries at each evaluation period.

6.6.1 Experimental Setup

The experimental setup is the same as in Section 6.4.1. The main difference is now discussed.
As communication is the most expensive operation, it must be dealt with carefully. There have
been many proposals for network management and for handling media access control (MAC).

Radio duty cycling is one of the techniques used to improve the longevity of the network.
Low-Power-Listening MAC protocols are characterized by radio duty cycling. The idea behind
is to prevent idle waste of energy and, thereby, meet the energy constraints of the application.
Idle listening refers to the time when a node is listening on the radio to receive the messages,
but no messages are being received. This is a WSN-specific MAC problem to a certain extent,
as idle listening consumes energy. Therefore, in order to conserve energy, after task message
dissemination and distributed membership evaluation, the nodes which are part of the task
MBR move to a low power listening state [KM07, MM06, LWG05], from which they emerge to
route packets if required. Since, it is not known in advance which of the MBR nodes will be
SEG leaders and which of the nodes will act as relay nodes, putting all the MBR nodes in the
Idle listening state would have been a very energy consuming option at power-up. Therefore,
in order to conserve energy, after the distributed membership evaluation stage, all nodes that
are in the task MBR move into a low power listening state. The TinyOS radio component for
MICA2 motes is used to achieve this purpose as it supports a low power listening state. For
task dissemination, and distributed membership evaluation, the node turns on its radio in full
transmit/recieve mode whenever required.

The experimental results shown in this section always plot the average computed over ten
runs of each experiment.

6.6.2 Boolean-Valued Operations

The experiments in this section provide evidence that the algorithms for Boolean-valued op-
erations scale well in terms of bit and message complexity, energy consumption and response
time.

Note that all experimental results are broken down into four components corresponding

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 139

to the evaluation phases, viz., TD for task dissemination, DME for distributed membership
evaluation, AGG for aggregation, RP for result processing. In the first two experiments, the
task is evaluated using tree-based as well as gossip-based aggregation schemes. The motivation
is twofold, viz., to show the cost associated using each of the aggregation scheme, and to
demonstrate that more than one aggregation scheme can be used with the algorithmic strategy
proposed for the evaluation of spatial-analysis tasks. The best aggregation policy to use depend
on the application requirements. In experiments where tree-based aggregation scheme is used,
TC denotes tree construction.

The time required for aggregation and routing is split into two parts, viz., AGGSGE,
i.e., the amount of time taken to complete the aggregation at all SGEs, and AGGMGE,
i.e., the time taken to compute the final result at the first-level leader. The first-level leader
waits for a response from all SGEs before computing the final result. In the case of MEGs, the
size of a geometry element may be such as to cause the nodes complete at different times in
different elements so that the partial aggregated result is forwarded by the SEG leader of that
element towards the MEG leader, while the aggregation process is still going on other elements.
This may result in a overlap of the time line, as expected in any truly distributed computation.
Thus, (AGGMGE + RP) denotes the time taken for the aggregation to complete at the last
SEG plus that taken for the result to be received at the sink, and AGGSGE denotes the time
taken for the aggregation to complete at the last SEG that completes.

6.6.2.1 Experiment I1: As the network grows in terms of number of sensor nodes

This experiment explores the behaviour of the implemented algorithms in evaluating a given
task as the number of nodes in the network grows. The task used is one that, in terms of our
motivating example, identifies whether spraying is required in a given field. Figure 6.5 shows
field f5 and two induced geometries, viz., an induced region IR1 defined by the event predicate
soil moisture>θ and another induced region IR2 defined by the event predicate temperature<θ′.
The task used in this experiment is:

(NOT ((IR1 AreaDisjoint f5) AND (IR2 AreaDisjoint f5)

AND (IR2 VertexDisjoint IR1)))

Our aim here is also to convey the expressiveness of the algebra which is why the task is
expressed in a more complex form than needed (it could be more simply specified using a sin-
gle operator as follows: ((IR1 intersects f5) and (IR2 intersects f5) and (IR2 intersects

IR1))). The results obtained after evaluating the task on scenario in Figure 6.5 are depicted in
Figure 6.6 (using tree-based aggregation) and Figure 6.7 (using gossip-based aggregation). The
size of the geometries involved in the task are given in Table 6.2.

It can be seen in Figure 6.7(c) that gossip-based aggregation involves additional communi-
cation cost compared to the tree-based aggregation results in Figure 6.6(c). In addition, the
rate of growth is much sharper for messages and bytes transmitted in gossip-based aggregation
in Figure 6.7. The growth rate of energy consumption is less acute compared to that of the
messages (and bytes) transmitted. The reason is that, in the case of tree-based aggregation the
nodes have to wait to receive messages from child nodes [MFHH02] and the cost of idle listening

140 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.5: Experiment I1: Scenario (Intersection of two induced MEGs IR1 and IR2)

Network f5 IR1 IR2 IR1 IR2
Size in f5 in f5 in f4 in f7
166 48 28 11 12 6
223 63 37 15 18 10
299 86 51 20 22 14
400 106 68 28 27 18

Table 6.2: Size of regions in Experiment I1

(when the radio is listening to the channel for upcoming messages) is significant and comparable
to the energy cost of receiving data [DKSD09]. For example, in MICA2 nodes the ratio for
radio power consumption, during idle-listening and during message receipt and transmission
is 1:1:1.41 at 433MHz with radio frequency (RF) signal power of 1mW in transmission mode
[DKSD09, RSZ04]. According to the power model for MICA02 motes given by PowerTOSSIM
[SHrC+04], the radio listening cost for incoming messages and for receiving messages is 7 mA
and cost for transmitting the message to the distance of 6 to 8 meters is 11.6 mA.

As expected, a comparison of Figure 6.7(c) with Figure 6.6(c) shows that tree-based ag-
gregation incurs slightly lower energy cost compared to gossip. Note that there is an inherent
trade-off between tree-based and gossip-based aggregation. The tree-based algorithm is more
energy efficient but is not as robust against node and link failures. On the other hand, the
gossip-based approach is resilient to node and link failures but comparatively less energy effi-
cient. The network user must choose the appropriate aggregation computation approach based
on the application requirements and the hostility of the environment in which the sensor network
has to be deployed.

As can be seen from Figure 6.7 and Figure 6.6, our algorithms exhibits slow rates of growth
in terms of messages transmitted, energy consumed and response time as the network size
grows except for bytes and messages transmitted in the case of gossip-based aggregation. As
expected, the most onerous phases are TD and AGG, as they are responsible for the majority of
communication events. The energy consumption, in particular, seems to exhibit good behaviour.

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 141

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.6: Experiment I1: Behaviour w.r.t. Network Growth (Tree Aggregation)

For the largest MBR (containing 120 nodes) the amount of energy consumed by CPU and radio
together is 138,481 mJ (tree-based aggregation Figure 6.6 (c)) and 157,691 mJ (gossip-based
aggregation Figure 6.7). If each node is powered by two AA batteries, the initial energy stock
per node is 31,320,000 mJ. The total energy stock inside the MBR is then 120*31,320,000.
This implies that each evaluation episode consumes around .0036% (tree-based aggregation)
and 0.0041% (gossip-based aggregation) of the total energy stock. Even if the depletion is not
uniform across different nodes, the overall amount depleted is very low. This is low enough
that adding the energy required to induce the event geometries (not counted in Figure 6.6 and
6.7) is unlikely to significantly detract from the force of these conclusions (see Section 6.5).
It can be seen that all costs for out-of-network processing Figure 6.3 and Figure 6.2 are very
high compared to in-network implementation. By comparing the results of this experiment
with the out-of-network processing approach in Figure 6.3, it can be seen that the in-network
implementation transmits no more than half the messages, and often much less; it consumes no
more than 2% of the energy and requires no more than 8% of the time to respond.

142 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.7: Experiment I1: Behaviour w.r.t. Network Growth (Gossip-based Aggregation)

6.6.2.2 Experiment I2: As the topology of the underlying transient phenomena

undergoes significant dynamic changes between evaluation episodes

This experiment explores the behaviour of the implemented algorithms when, given a network
consisting of 223 nodes, a transient physical phenomenon evolves through six stages. In terms
of our motivating example, we note that water infiltration varies over space and time and
hence influences soil moisture levels differently across monitoring episodes. It is, therefore,
an example of an evolving phenomenon giving rise to transient geometries that differ between
excessive evaluation episodes.

The six pictures in Figure 6.8 show an induced geometry IR1 (defined by the event predicate
soil moisture>θ) as it undergoes six changes: at Eval1, it is a single-element geometry; at Eval2,
the induced geometry has grown and moved; at Eval3, it has grown and changed shape; at Eval4,
it has split and become a multi-element geometry; at Eval5, one of the component elements
has developed a hole; at Eval6, one of the component elements has grown, and acquired a hole
inside it. The task used in this experiment is:

((IR1 Intersects f5) AND

((IR1 BorderInCommon f6) OR (IR1 AreaInside f6)))

The size of geometries used in the task are given in Table 6.3.

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 143

Evaluations Network f5 f6 IR1
Size IR1-1 IR1-2 IR1-2 hole

Eval 1 223 63 35 15 - -
Eval 2 223 63 35 24 - -
Eval 3 223 63 35 37 - -
Eval 4 223 63 35 14 31 -
Eval 5 223 63 35 14 27 5
Eval 6 223 63 35 14 35 10

Table 6.3: Size of regions in Experiment I2

Figure 6.8: Experiment I2: Scenario (Six stages of an evolving phenomenon)

This section discusses the results obtained by running the same task over the experimental
scenarios in Figure 6.8, using the two different aggregation methods. The results obtained using
tree-based aggregation are depicted in Figure 6.9, those obtained using gossip-based aggregation
method in Figure 6.10.

The results show that the algorithms yield roughly constant cost in terms of messages trans-
mitted, energy consumed and response time as the geometries that characterize the evolving
phenomena change over time. The increase in complexity, and the sparser, more spread-out
nature of the geometry element that contains a hole, as expected, implies a more onerous AGG
phase in terms of messages transmitted. However, as Fig.6.9- 6.10(b)-(c) show, there is very lit-
tle variation in energy consumption and response time across the evaluation episodes, although,
as already pointed out, gossip-based aggregation shows slow, linear-like growth, as expected.

144 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.9: Experiment I2: Behaviour w.r.t. Topology of the underlying transient phenomenon
undergoes changes between evaluation episodes (Tree-based Aggregation)

This is satisfying, as it suggests that in-network processing approach is stable in terms of energy
consumed even as a transient phenomenon under observation undergoes significant topological
change.

6.6.2.3 Experiment I3: As the spatial-analytic task complexity grows

This experiment explores the behaviour of the implemented algorithms when, given a network
(consisting of 223 nodes) and a particular set of geometries (see below), the task complexity
grows. In terms of our motivating example, it seems likely that, whenever an indication is pro-
duced that action may be needed in one area of the vineyard, one would want to carry out more
complex analysis to obtain a more complete indication as to which actions are needed where.
In other words, there will be circumstances when a more exploratory mode of investigation will
be needed, with the user issuing a sequence of tasks of increasing refinement and complexity.

This experiment uses the geometries depicted in Figure 6.11. The MBR is enclosing the
regions f1, f2, f3, and f6. It contains one induced multi-element geometry IR1 defined by the
event predicate soil moisture>θ. The size of the geometries involved in the task are given in
Table 6.4.

Four tasks of growing complexity in terms of the number of occurrences of an operator are

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 145

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.10: Experiment I2: Behaviour w.r.t. Topology of the underlying transient phenomenon
undergoes changes between evaluation episodes (Gossip-based Aggregation)

Network f1 f2 f3 f6 IR1
Size IR1-1 IR1-2
223 31 9 14 35 27 24

Table 6.4: Size of regions in Experiment I3

applied. The chosen operation, viz., adjacent, is amongst the more complex in the algebra in
terms of its evaluation costs. The four tasks are:

Eval01: (IR1 Adjacent f1)

Eval02: (IR1 Adjacent f1) AND (IR1 Adjacent f2)

Eval03: (IR1 Adjacent f1) AND (IR1 Adjacent f2) AND

(IR1 Adjacent f3)

Eval04: (IR1 Adjacent f1) AND (IR1 Adjacent f2) AND

(IR1 Adjacent f3) AND (IR1 Adjacent f6)

The results obtained are depicted in Figure 6.12. As expected in Figure 6.12(c) the number of

146 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.11: Experiment I3: Scenario (Event region with disjoint element geometries)

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.12: Experiment I3: Behaviour w.r.t. Spatial-analytic task grows more complex

messages transmitted during the DME phase increases with the addition of adjacent operation.
As one more adjacent operation is added, the CPU energy grows by approx. 11% and radio
energy by 10%. Once more, the implementation exhibits slow rates of growth in terms of bytes
transmitted, messages transmitted and energy consumption as tasks grow in complexity from
Eval1 to Eval4.

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 147

6.6.2.4 Experiment I4: As the induced geometry grows larger

This experiment explores the behaviour of the implemented algorithms when, given a network
consisting of 223 nodes and a particular set of geometries, the size of the multi-element induced
geometry grows. Experiment I2 explores the behaviour of the implemented algorithms as the
topology of the underlying transient phenomena undergoes significant dynamic changes (i.e.,
increase/decrease in size, self-split, formation of hole, and increase in the size of hole) between
evaluation episodes. The aim of this experiment is to show the approach used for the distributed
evaluation of spatial tasks scale well in terms of number of nodes involved as part of the multi-
element induced geometry.

This experiment uses the geometries depicted in Figure 6.13. The task used in this experi-
ment is:

((IR1 VertexInside f5) OR (IR1 Intersects f5) OR (IR1 Meets f6))

Figure 6.13: Experiment I4: Scenario (Four stages of an evolving phenomenon that grows)

The task involves induced multi-element geometry IR1 defined by the event predicate soil moisture>θ.
The sizes of the geometries involved in the task are given in Table 6.5. The results obtained
are depicted in Figure 6.14.

Network f5 f6 IR
Size IR1-1 IR1-2
223 63 35 12 10
223 63 35 26 18
223 63 35 35 31
223 63 35 44 40

Table 6.5: Size of regions in Experiment I4

As expected, the increase in size of the induced geometry, implies a more onerous AGG
phase in terms of messages transmitted and in turn in energy consumption, but the increase in
size of the induced geometry does not affect response time by much.

148 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.14: Experiment I4: Behaviour w.r.t. Induced geometry growth

6.6.2.5 Experiment I5: As the average node-neighbourhood cardinality grows

This experiment explores the behaviour of the implemented algorithms when, given a network
consisting of 223 nodes and a particular set of geometries (see below), the size of the node
neighbourhood grows. This experiment uses the geometries depicted in Figure 6.5. The task
used in this experiment is:

(not ((IR1 EdgeDisjoint f5) and (IR2 VertexDisjoint f5))) or (IR1 EdgeInside IR2)

The experimental scenario contains two induced multi-element geometries IR1 and IR2 de-
fined by the event predicate soil moisture>θ and temperature>θ’. Table 6.6 depicts the size
of the geometries involved in the task and the neighbourhood size, per evaluation episode. The
neighbourhood size is computed by increasing the radio range by factor of 1, 1.25, 1.5, and 1.75,
while keeping the distance between nodes constant.

The results obtained are depicted in Figure 6.15. The increase in size of the radio range
(i.e., node neighbourhood), as expected, results in a reduction of messages transmitted in the
TD phase and an increase in messages transmitted during DME. The reason for the decrease
in messages is due to the fact that by increasing the radio range the neighbourhood of a node
increases. By increasing the radio range, the task dissemination message sent by a node is
received by a larger number of neighbours and as a result, upon finding themselves part of the

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 149

Eval Neighbourhood f5 IR1 IR2 IR1 IR2
Size in f5 in f5 in f4 in f7

Eval01 8 63 37 15 18 10
Eval02 12 63 37 15 18 10
Eval03 20 63 37 15 18 10
Eval04 24 63 37 15 18 10

Table 6.6: Size of regions in Experiment I5

task MBR, they start participating in task dissemination. In this way, the task is disseminated
much faster in the region of interest.

The increase in radio range, therefore, decreases the depth of the tree (i.e., the number
of hops required decreases) that is built during task dissemination. As already explained in
Section 5.4.2, after receiving the task, an MBR node may need to wait until the estimated (on
the basis its location in the task MBR) time needed for the task message to be received by the
furthest node in the MBR. Therefore, an MBR node needs to wait less after receiving the task.

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.15: Experiment I5: Behaviour w.r.t. Average node-neighbourhood cardinality growth

150 CHAPTER 6. EXPERIMENTAL VALIDATION

6.6.2.6 Experiment I6: As the network (regularly deployed over a irregular grid)

grows in terms of number of sensor nodes

This experiment explores the behaviour of the implemented algorithms as the network (regularly
deployed over a irregular grid) grows in terms of number of sensor nodes. The task used in this
experiment is:

((IR1 Intersects f7) and (IR1 Intersects IR2))

The experimental scenario is given in Figure 6.16. In this experiment, apart from the fields
we have an additional application-specific geometry lake (represented by a white blob). As
described in Section 3.2.1, our framework allows the overall disposition of nodes in the two
dimensional Euclidean plane to be regular (i.e., grid-like) or not. In this experiment, no nodes
are deployed where the lake is situated, i.e., it gives rise to a WSN with a hole in it. Therefore,
we cannot induce geometries or associate asserted geometries to this part of the Euclidean
plane. This is more flexible than the original conception of the ROSE algebra. The underlying
realm is a regular discrete point grid.

Table 6.7 show the size of the geometries involved in the task. The results obtained are
depicted in Figure 6.17.

Figure 6.16: Experiment I6: Scenario (Network regularly deployed over a irregular grid)

6.6.2.7 Experiment I7: Spatial-analytic task involving operands other than of

type Regions

This experiment explores the behaviour of operations on operands of types other than regions.
Given a network consisting of 223 nodes, spatial-analytic tasks involving one or more operands
of type regions, lines, or points are evaluated. These tasks are:

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 151

Network f7 IR1 IR2
Size
143 26 10 7
195 34 13 7
264 42 17 9
349 56 25 14

Table 6.7: Size of regions in Experiment I6

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.17: Experiment I6: Behaviour w.r.t. Network (regularly deployed over a irregular
grid) growth in terms of number of sensor nodes

Eval01: (IR1 Intersects l2)

Eval02: (p2 OnBorderOf IR1)

Eval03: (l2 AreaInside IR1)

Eval04: (l1 Meets l2)

Eval05: (l2 BorderInCommon IR1)

152 CHAPTER 6. EXPERIMENTAL VALIDATION

Figure 6.18: Experiment I7: Scenario (Distinct Geometries)

The tasks involve an induced multi-element geometry IR1 (defined by soil moisture>θ), two
geometries, p1 and p2, of type points and two geometries, l1 and l2, of type lines. This
experiment uses the geometries depicted in Figure 6.18. Table 6.8 gives the size of the geometries
involved in the task. Figure 6.19 shows the experimental results.

Network f5 f6 l1 l2 p1 p2 IR1
Size IR1-1 IR1-2
223 63 35 10 8 1 1 15 12

Table 6.8: Size of geometries in Experiment I7

In Figure 6.19(b) at Eval02, the number of messages in AGG phase drops to zero as the
operand p2 value is of type points, and it declares itself SEG leader and transmits its member-
ship state towards MEG leader. In 6.19(c), the radio cost for DME phase in Eval02 and Eval03
is minimal as operations involved in these two evaluations require only local GIT lookup and
do not require any information from neighbours.

6.6.2.8 Experiment I8: Randomly generated tasks

Experiment I3 explores the behaviour of the implemented algorithms when, the task complexity
grows (i.e., in terms of the number of operators and the operands involved) at each evaluation
period. Experiment I2 explores the behaviour when, the task remains the same but one of the
operands topology complexity grows. Experiment I7 explores the behaviour of spatial-analytic
task involving operands other than of type Regions.

The aim of this experiment is to measure the relative performance of randomly generated
Boolean-valued tasks. The aim is to show some experimental evidence that the algorithms pro-
duce consistent results even when the experimenter did not decide on the task to be submitted.
Given a network (consisting of 166 nodes), spatial-analytic tasks involve one or more operands
of type regions, lines, or points. Fifteen randomly generated tasks of varying complexity, are
applied. The fifteen tasks are:

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 153

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.19: Experiment I7: Behaviour w.r.t. Boolean task varies in terms of operation involv-
ing one or more operands other than of type regions

Eval01: (f1 AreaDisjoint l2)

Eval02: (IR1 BorderInCommon f5)

Eval03: (f5 VertexInside IR1) AND NOT(f1 VertexInside f9)

Eval04: (f6 BorderInCommon f7) OR NOT(f6 Meets f8)

Eval05: NOT(f2 AreaDisjoint f3)

Eval06: (f10 VertexDisjoint f7)

Eval07: (f7 VertexDisjoint f5) AND (f3 VertexInside IR1) OR

(f5 AreaInside f4) OR (f3 VertexDisjoint l1)

Eval08: (f10 Equals f9) OR (f3 VertexDisjoint f1) OR

(f10 NotEquals f9) OR (l2 Meets f5)

154 CHAPTER 6. EXPERIMENTAL VALIDATION

Eval09: (p1 VertexDisjoint f6) OR (l2 BorderInCommon IR2) OR (f3

Meets l2) AND (l2 Intersects f5)

Eval10: (f9 Adjacent IR2) OR (f8 AreaInside f10) AND (11 VertexDisjoint f5)

Eval11: NOT(f6 Meets IR1)

Eval12: (l2 Intersects IR2) AND (f8 Meets l1)

Eval13: (l1 BorderInCommon f10) AND (f8 Adjacent f1) AND (f7

AreaInside f6)

Eval14: (f5 AreaInside f2)

Eval15: NOT((f4 VertexInside f2) AND (f9 EdgeInside l1) OR (f6

AreaDisjoint f8))

The experimental scenario is given in Figure 6.20. The size of geometries used in the task is
given in Table 6.9. Figure 6.21 shows the experimental results. From the experimental results,
it can be seen that the algorithms behave sensibly with the increase in the complexity of the
task. It can be seen that cost associated with task evaluation varies based on task complexity.

Recall, from Section 5.4.2.4, that Task complexity is based on the number of operations in
the task, whether the operation only needs a local GIT lookup or, additionally, the collection
of GIT information from the node’s neighbours, the operands are SEG or MEG and, finally,
how independent, in terms of the sensor space, the operand elements of an operation are with
respect to other operations in the complex task. In Figure 6.20(b) at Eval07, it can be seen
that the number of messages transmitted in AGG phase and TD phase are much greater as
compared to other evaluations. The reason for the increase in cost is the increase in complexity
of the task. The task involve operands that are independent, in terms of the sensor space, with
respect to other operations in the task and having large number of nodes.

6.6.3 Spatial-Valued Operations

The experiments in this section provide evidence that the algorithms for spatial-valued oper-
ations scale well in terms of bit and message complexity, energy consumption and response
time.

6.6.3.1 Experiment I9: As the network grows in terms of number of sensor nodes.

This experiment explores the behaviour of the implemented algorithms when, given a task, the
number of nodes in the network grows. The task used is one that, in terms of our motivating
example, derives the geometry of an area in need of spraying. Figure 6.5 shows field f5 and two
induced geometries, viz., an induced region IR1 defined by the event predicate soil moisture>θ

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 155

Figure 6.20: Experiment I8: Scenario (Distinct Geometries)

Geometry Number Of Nodes
ID
f1 23
f2 5
f3 9
f4 34
f5 42
f6 14
f7 27
f8 25
f9 13
f10 14
IR1 12 11
IR2 6 7 10
l1 8
l2 7
p1 1
p2 1

Table 6.9: Size of geometries in Experiment I8

and another induced region IR2 defined by the event predicate temperature<θ′. The task used
in experiment is:

(f5 Intersection IR1) Intersection IR2)

The size of the geometries were given above, in Section 6.6.2.1, Table 6.2. The results are
given in Figure 6.22.

In contrast with experiment 6.6.2.1, this experiment does not involve aggregation and rout-
ing. As a result of the evaluation of the task, nodes that are part of derived geometry store
information about the derived geometry in their GIT and EIT.

156 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted

(b) Messages Transmitted

Figure 6.21: Experiment I8: Behaviour w.r.t. Randomly generated spatial-analytical tasks

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 157

(c) Energy Consumed

(d) Response Time

Experiment I8: Behaviour w.r.t. Randomly generated spatial-analytical tasks (Figure 6.21
continued)

158 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.22: Experiment I9: Behaviour of Spatial-valued task w.r.t. Network Growth

6.6.3.2 Experiment I10: As the topology of the underlying transient phenomena

undergoes significant dynamic changes between evaluation episodes

This experiment explores the behaviour of the implemented algorithms when, given a task,
the topology of the underlying transient phenomena undergoes significant dynamic changes
between evaluation episodes. The purpose of the task is to derive a region that has soil type A

(i.e., ST1) and within which neither the temperature is below a threshold nor the soil moisture
is above another threshold, or else either the temperature is below threshold, or the moisture
is above threshold. In terms of our motivating example, water infiltration and temperature
influences soil moisture levels differently based on type of soil. Wine makers achieve greater
control over the product by defining sub-areas within the vineyard. Batch selection can then
be decided based upon spatial locality, and the type of soil, along with other factors.

The four pictures in Figure 6.23 show two induced geometries, viz., an induced region IR1

defined by the event predicate soil moisture>θ and another induced region IR2 defined by the
event predicate temperature<θ′ undergoes four changes. The task used in the experiment is:

(((f5 INTERSECTION ST1) PLUS f4) MINUS (IR1 INTERSECTION IR2))

The size of geometries used in the task is given in Table 6.10. The experimental results are
presented in Figure 6.24.

6.6. IN-NETWORK SPATIAL ANALYSIS APPROACH 159

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.23: Experiment I10: Scenario (Four stages of evolving phenomena)

Evaluations Network f5 f5 with f4 IR1 IR2
Size ST1 IR1-1 IR1-2 IR1-2 hole IR2-1 IR2-2

Eval 1 223 63 39 40 31 - - 17 -
Eval 2 223 63 39 40 31 9 - 24 -
Eval 3 223 63 39 40 31 15 7 30 7
Eval 4 223 63 39 40 31 24 7 30 17

Table 6.10: Size of regions in Experiment I10

In Figure 6.24(b) it can be seen that the number of messages transmitted only slightly
increases with the increase in complexity of the induced geometry.

6.6.3.3 Experiment I11: Spatial-analytic tasks with one or both operands of a

type other than Regions

This experiment explores the behaviour of operations on operands of type other than regions.
Given a network consisting of 223 nodes, spatial-analytic tasks involving one or more operands
other than of type lines, or points are run. The tasks are:

Eval01: (IR1 Intersection l2)

Eval02: (l1 PLUS l2)

Eval03: (Vertices IR1)

Eval04: (l1 Intersection l2)

Eval05: (IR1 CommonBorder l2)

160 CHAPTER 6. EXPERIMENTAL VALIDATION

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.24: Experiment I10: Behaviour of Spatial-valued task w.r.t. Topology of the underlying
transient phenomena undergo changes between evaluation episodes

The tasks involve an induced multi-element geometry, IR1, where soil moisture>θ, two geome-
tries p1 and p2 of type points, and two geometries l1 and l2 of type lines. This experiment
uses the geometries depicted in Figure 6.18. Table 6.8 gives the size of the geometries involved
in the task. Figure 6.25 shows the experimental results.

In Figure 6.25(b) at Eval02 and Eval03, the number of messages in DME phase drops to
zero because for the computation of the membership state for the operators plus and vertices

the nodes require information available in their local GIT. Therefore, in 6.19(c) the radio cost
for Eval02 and Eval03 is null.

6.7 Summary

This chapter described experiments that constitute empirical evidence for the claim of an ef-
ficient implementation of the algebra and demonstrated that efficient in-network processing in
WSNs is possible. The algorithms are, for the most part, localized, and were shown in our
experiments to have very desirable behaviour in terms of byte, message complexity, response
time and energy consumption. Experimental results show that in-network evaluation of spatial
analytic tasks results in substantial savings in terms of energy consumption and response time

6.7. SUMMARY 161

(a) Bytes Transmitted (b) Messages Transmitted

(c) Energy Consumed (d) Response Time

Figure 6.25: Experiment I11: Behaviour w.r.t. Spatial-analytic task varies in terms of operation
involving one or more operands other than of type regions

(as well as, as expected, in message and bit complexity) compared to sending all sensed mea-
surements or boundary information back to the sink. These results strongly suggest that our
contributions advance the state-of-the-art towards the goal of enabling the high-level specifica-
tion of expressive spatial analysis over WSNs.

Chapter 7

Conclusions and Future Work

This chapter concludes the dissertation. A review of the research motivation and the aims
of this dissertation is given in Section 7.1. The main results and contributions to distributed
spatial analysis are summarised in Section 7.2. Directions for future work are discussed in
Section 7.3. Section 7.4 summarizes the chapter.

7.1 Overview

The dissertation has focused on the challenges involved in performing in-network spatial analysis
using WSNs. It has argued that WSNs can be used effectively as spatial information systems,
allowing management decisions about processes in the physical world to be made on the basis of
sensed data. The aim of this dissertation has been to contribute to the enabling of in-network
distributed spatial analysis of spatial phenomena that can be sensed using WSNs.

This aim has been pursued through the definition of a framework for representing geometries
over WSNs, thereby allowing the representation of asserted, induced and derived geometries.
The dissertation then showed how a centralized spatial algebra can be adapted and redefined
over this spatial framework. The resulting operations enable the expression of sophisticated
spatial analysis over WSNs.

The focus of the research reported has been on developing algorithms for efficient in-network
evaluation of complex tasks that are expressions in the algebra mentioned above. This disser-
tation has described distributed implementations of both Boolean- and spatial-valued algebraic
operations over the geometries represented by the framework, thereby enabling new geome-
tries to be derived from induced and asserted ones, and relationships to be checked between
spatially-referenced entities.

The research contributions in this dissertation demonstrate that in-network spatial analysis
in WSNs can be effective and efficient. The evaluation results support this claim in that the
implemented-algorithms were shown, empirically, to exhibit desirable behaviour regarding bit
and message complexity, energy consumption and response time to an extent that justifies their
use in practice. Equipping each node with a task processing engine allows for the specifica-
tion of declarative spatial-analytical tasks that the WSN can compute the results for. Given

162

7.2. SIGNIFICANCE OF MAJOR RESULTS 163

that, as argued in Chapter 1, programming WSNs requires specialized knowledge on several
grounds scarcity of the resources puts a tight limit on code size and debugging is cumber-
some, this algebraic approach provides a cost-effective way of interacting with WSNs. It allows
more application requirements to be specified at high-level and expressively enough to enable
sophisticated WSN applications, such as environmental monitoring and precision agriculture.

7.2 Significance of Major Results

The major results of this dissertation are:

• The definition of a framework for distributed spatial analysis over WSN. It is to the best of
our knowledge, the first generic framework capable of underpinning an algebraic approach
to spatial analysis in WSNs as a distributed platform for in-network processing.

• The definition of spatial algebra over the geometries representable by the framework
above. The algebra builds upon the Schneider centralized ROSE algebra but this has
adapted it to a completely different computational environment requiring a different ap-
proach to representing geometries and to perform operations over them. Moreover, we
have identified problems with the original formalizations and found solutions that have
improved it.

• Distributed in-network algorithms for spatial and Boolean-valued operations in the con-
tributed spatial algebra over the geometries that can be represented over the contributed
framework. The algorithms for these operations are divided into logically-cohesive compo-
nents and are specifically tailored for power-efficient in-network execution. This disserta-
tion showed that the algorithms for topological operations map the problem of distributed
computation of complex algebraic expressions that involve multi-element geometries to
the problem of first computing a node-level task state and then aggregating that at two
levels using a new bit-string-based approach. The dissertation studied two aggregation
approaches for handling this distributed aggregation problem and contributes modifica-
tions to these approaches that yield good performance. To the best of our knowledge this
is the first proposal for an expressive spatial algebra for distributed, in-network processing
in WSNs.

• A task processing system that allows for the in-network evaluation of complex tasks that
are algebraic expressions in the contributed algebra. The system is the first to allow
exploratory interaction of spatial dynamically evolving phenomena in WSNs. In area
such as environmental studies and precision agriculture this capability is a significant
step towards the effort of realizing the vision of WSNs as macroscopes.

• A comparison of the in-network approach to the evaluation of spatial tasks with two out-
of-network evaluation approaches with the results showing that the in-network approach
results in substantial savings in terms of energy consumption and response time as well
as, as expected, in message and bit complexity.

164 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.3 Future Research Directions

The contributions made in this dissertation give rise to several potential directions for future
work.

Extensions to the Spatial Algebra. The dissertation presents distributed in-network algo-
rithms for a spatial algebra enabling new geometries to be derived from induced and asserted
ones and topological relationships between geometries to be identified. It would be beneficial
to extend the spatial algebra to handle metric notions including area, perimeter, diameter of
region, and distance between two spatial values etc. There exists research on the computation
of the area [GKCE04] and the perimeter of a region [KOA09].

Setting Multiple Spatial-Analytic Task. The research contributions made in this disser-
tation assume the compilation of a single spatial-analytic task. It would be beneficial to add
the ability to pose multiple spatial-analytical tasks against a WSN.

Integration with Existing WSN Query Engines. The current implementation of task
processing suffers from the fact that it is not integrated with any existing WSN query processors.
If, in the future, high-level, declarative approaches become the primary way in which users
interact with WSNs, better integration would be beneficial. Current WSN query processors
allow users to pose declarative queries but lack support for spatial analysis. The integration of
spatial-analytic task processing with existing WSN query processors would provide users with
a more comprehensive solution.

Spatial-Extension to Query Language. The work presented in this dissertation supports
expressive algebraic abstractions as spatial types with expressive operations upon them. It
would be beneficial for spatial extensions to be expressible at the level of a query language.

Multiple Gateways. Another limitation of the current task processing system is that all of
the results for a particular task are delivered to a single end-point. It would be useful to extend
the techniques proposed in this dissertation to support multiple gateways. Since, this would
mitigate the risk of creating hotspots where time to depletion is much shorter.

Event and Edge Detection. Task processing system currently includes only basic support for
event and edge detection. More sophisticated in-network event and edge detection techniques
would likely to be more energy efficient, providing true edges and would enable handling faulty
measurements.

Supporting 3D Spatial Analysis. The research presented in this dissertation works for
the analysis in two dimensions. It would be useful to extend the techniques proposed in this
dissertation to support 3D analysis. There exists related work on 3D spatial analysis [CS09],
but, as is the norm, there has been no attempt at distributed evaluation over WSNs.

Extension to Handle Fuzzy Regions. In some applications in geographic analysis, spatial
entities cannot be represented with crisp boundaries. Spatial values of such entities are called
fuzzy. Examples includes land features with continuously changing properties (such as popu-
lation density, soil quality, vegetation, pollution, air pressure), oceans, deserts, or mountains
and valleys (e.g., the transition between a valley and a mountain usually cannot be exactly

7.4. SUMMARY 165

ascertained) [Sch01a, Sch01b]. Research has already been conducted in this area including
how to model such types and to compute the topological relationships between such values
[SDCCK08, Zha97, Sch01a, Sch01b], but, again, there has been no attempt at distributed
evaluation over WSNs.

Temporal Extension and Need of Storage Manager. Our contributions enable spatial
analysis in WSN. However, there are many environmental monitoring applications (such as
those concerned with emergencies such as oil spills, or forest fires) where the addition of a
temporal dimension to yield an in-network spatio-temporal task processing over WSNs would be
beneficial. There exists work in the area of spatio-temporal query processing in WSN [HSLA05,
CSN05]. For supporting in-network spatio-temporal queries it may be necessary to materialize
the information related to induced geometries, in order to support the evaluation of historical
queries. For supporting materialization, it would be necessary to store data persistently in
sensor nodes. As sensor nodes are equipped with limited persistent storage, there would be
a need that each node to be equipped with a sophisticated storage manager. There exists
related research on storage managers [MDGS06, Bla10], but there is still a need to develop
more sophisticated storage managers that can fulfil all the requirements for supporting historical
spatio-temporal queries. In addition, there would be a need for extensions to the query language
and algebra.

7.4 Summary

In this chapter, we summarized the work presented in this dissertation. We also outlined some
future directions which can be explored to advance the research in spatial analysis in wireless
sensor network.

Bibliography

[A05] Baggio A. Wireless sensor networks in precision agriculture. In Workshop on
Real-World Wireless Sensor Networks. REALWSN’05, Stockholm, Sweden, 2005.

[ABC+04] Tarek F. Abdelzaher, Brian M. Blum, Qing Cao, Y. Chen, D. Evans, J. George,
S. George, Lin Gu, Tian He, Sudha Krishnamurthy, Liqian Luo, Sang Hyuk Son,
Jack Stankovic, Radu Stoleru, and Anthony D. Wood. Envirotrack: Towards an
environmental computing paradigm for distributed sensor networks. In ICDCS,
pages 582–589, 2004.

[AS09] C. Ayday and S. Safak. Application of wireless sensor networks with GIS on the
soil moisture distribution mapping. In Proceedings of Symposium GIS Seamless
Geoinformation Technologies, Ostrava, Czech Republic, 2528 January 2009.

[ASSC02a] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38:393–422, 2002.

[ASSC02b] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. Communications Magazine, IEEE, 40(8):102 – 114, August
2002.

[AY03] Kemal Akkaya and Mohamed Younis. An energy-aware QoS routing protocol for
wireless sensor networks. Proceedings of the 23rd International Conference on
Distributed Computing Systems Workshops, 0:710 – 715, 2003.

[AY05a] Kemal Akkaya and Mohamed Younis. Energy and QoS aware routing in wireless
sensor networks. Cluster Computing, 8(2-3):179–188, 2005.

[AY05b] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks, 3:325–349, 2005.

[BBB04] Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard computing: Sensor
networks in agricultural production. IEEE Pervasive Computing, 3:38–45, 2004.

[BDWL10] Abdelmalik Bachir, Mischa Dohler, Thomas Watteyne, and Kin Leung. MAC es-
sentials for wireless sensor networks. IEEE Communications Surveys & Tutorials,
2010.

166

BIBLIOGRAPHY 167

[BE02] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In
WSNA 02: Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 22–31. ACM Press, 2002.

[BGA+05] S. Boyd, Ghosh, A., B. Prabhakar, and D Shah. Gossip algorithms: design,
analysis and applications. In INFOCOM 2005: 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, volume 3, pages 1653–1664,
2005.

[BGS00] P. Bonnet, J. E. Gehrke, and P. Seshadri. Querying the physical world. IEEE
Journal of Selected Areas in Communications, 7(5):10–15, October 2000.

[BGTD06] Kun Bi, Naijie Gu, Kun Tu, and Wanli Dong. Neighborhood-based distributed
topological hole detection algorithm in sensor networks. IET Conference Publi-
cations, 2006(CP525):21–21, 2006.

[BHE00] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low cost out-
door localization for very small devices. IEEE Personal Communications Maga-
zine, 7(5):28–34, October 2000.

[Big09] Jeff Bigham. ALERT: Automated local evaluation in real time. http://www.

alertsystems.org/, 2009.

[Bla10] Rincon research corporation, blackbook. http://tinyos.cvs.sourceforge.

net/tinyos/tinyo-1.x/contrib/rincon/apps/Blackbook5/, 2010.

[BMSU01] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7:609–616,
2001.

[BTG+06] Kun Bi, Kun Tu, Naijie Gu, Wan Lin Dong, and Xiaohu Liu. Topological hole
detection in sensor networks with cooperative neighbors. proceedings of Interna-
tional Conference on Systems and Networks Communications (ICSNC’06), Tahiti,
0:31–31, October 2006.

[CFC06] Shigang Chen, Guangbin Fan, and Jun-Hong Cui. Avoid ”void” in geographic
routing for data aggregation in sensor networks. Int. J. Ad Hoc Ubiquitous Com-
put., 1(4):169–178, 2006.

[CG03] Krishna Chintalapudi and Ramesh Govindan. Localized edge detection in sensor
fields. Ad Hoc Networks, 1(2-3):273–291, 2003.

[CHLS07] Caixia Chi, Dawei Huang, David Lee, and XiaoRong Sun. Lazy flooding: a
new technique for information dissemination in distributed network systems.
IEEE/ACM Trans. Netw., 15:80–92, February 2007.

[CHS+09] Jiming Chen, Shibo He, Youxian Sun, Preetha Thulasiraman, and Xuemin (Sher-
man) Shen. Optimal flow control for utility-lifetime tradeoff in wireless sensor
networks. Comput. Netw., 53(18):3031–3041, 2009.

168 BIBLIOGRAPHY

[CIE00] R. Govindan C. Intanagonwiwat and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In Proceedings of the
sixth annual international conference on Mobile computing and networking, pages
56–67, Boston, MA USA, 2000.

[CLJ06] Hongju Cheng, Qin Liu, and Xiaohua Jia. Heuristic algorithms for real-time data
aggregation in wireless sensor networks. In IWCMC, pages 1123–1128, 2006.

[CM69] Coxeter and H. S. M. Barycentric coordinates. Introduction to Geometry, 2:216–
221, 1969.

[CMS03] S. Cugati, W. Miller, and J. Schueller. Automation concepts for the variable
rate fertilizer applicator for tree farming. In The Proceedings of the 4th European
Conference in Precision Agriculture, Berlin, Germany, 2003.

[CNS04] Alexandru Coman, Mario A. Nascimento, and Jörg Sander. A framework for
spatio-temporal query processing over wireless sensor networks. In DMSN ’04:
Proceeedings of the 1st international workshop on Data management for sensor
networks, pages 104–110, New York, NY, USA, 2004. ACM.

[CPX05] Jen-Yeu Chen, Gopal Pandurangan, and Dongyan Xu. Robust computation of
aggregates in wireless sensor networks: distributed randomized algorithms and
analysis. In Proceedings of the 4th international symposium on Information pro-
cessing in sensor networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[cro] Crossbow technologies. http://www.crossbow.com.

[cro10a] Crossbow technology. imote2 high performance wireless sensor network node
datasheet. http://www.xbow.com/Products/Product_pdf_files/Wireless_

pdf/Imote2_Datasheet.pdf, 2010.

[cro10b] Wireless measurement system. http://www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/mica2_Datasheet.pdf, 2010.

[CS09] Tao Chen and Markus Schneider. Data structures and intersection algorithms for
3d spatial data types. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’09, pages 148–
157, New York, NY, USA, 2009. ACM.

[CSA04] Arnab Chakrabarti, Ashutosh Sabharwal, and Behnaam Aazhang. Multi-hop
communication is order-optimal for homogeneous sensor networks. In IPSN, pages
178–185, 2004.

[CSN05] Alexandru Coman, Jorg Sander, and Mario A. Nascimento. An analysis of spatio-
temporal query processing in sensor networks. In Proceedings of the 21st Inter-
national Conference on Data Engineering Workshops, ICDEW ’05, pages 1190–,
Washington, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 169

[CT04] Jae-Hwan Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor
networks. Networking, IEEE/ACM Transactions on, 12(4):609 – 619, August
2004.

[CTC06] Tzung-Shi Chen, Hua-Wen Tsai, and Chih-Ping Chu. Gathering-load-balanced
tree protocol for wireless sensor networks. In SUTC ’06: Proceedings of the IEEE
International Conference on Sensor Networks, Ubiquitous, and Trustworthy Com-
puting - Vol 2 - Workshops, pages 8–13, Washington, DC, USA, 2006. IEEE
Computer Society.

[DBN03] Budhaditya Deb, Sudeept Bhatnagar, and Badri Nath. Stream: Sensor topology
retrieval at multiple resolutions. Kluwer Journal of Telecommunications Systems,
26:285–320, 2003.

[DCXC05] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-tolerant event bound-
ary detection in sensor networks. In INFOCOM, pages 902–913, 2005.

[DDHG05] Jitender S. Deogun, Saket Das, Haitham S. Hamza, and Steve Goddard. An
algorithm for boundary discovery in wireless sensor networks. In HiPC, pages
343–352, 2005.

[DFN06] Wenliang Du, Lei Fang, and Peng Ning. LAD: localization anomaly detection for
wireless sensor networks. J. Parallel Distrib. Comput., 66(7):874–886, 2006.

[DHS02] Stefan Dulman, Paul Havinga, and Faculty Of Computer Sciences. Wave leader
election protocol for wireless sensor networks. In Proceedings of the 3rd Inter-
national Symposium on Mobile Multimedia Systems & Applications, pages 43–50,
2002.

[DK06] Tassos Dimitriou and Ioannis Krontiris. Gravity: Geographic routing around voids
in sensor networks. International Journal of Pervasive Computing and Commu-
nications, 2:351–361, 2006.

[DKSD09] Antonios Deligiannakis, Yannis Kotidis, Vassilis Stoumpos, and Alex Delis. Build-
ing efficient aggregation trees for sensor network event-monitoring queries. In GSN
’09: Proceedings of the 3rd International Conference on GeoSensor Networks,
pages 63–76, Berlin, Heidelberg, 2009. Springer-Verlag.

[DLJ+05] Michael Demmer, Philip Levis, August Joki, Eric Brewer, and David Culler.
Tython: A dynamic simulation environment for sensor networks. Technical report,
UC Berkeley, 2005.

[EE01] Jeremy Elson and Deborah Estrin. Time synchronization for wireless sensor net-
works. In Proceedings of the 15th International Parallel & Distributed Processing
Symposium, IPDPS ’01, pages 186–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

170 BIBLIOGRAPHY

[EG02] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for dis-
tributed sensor networks. In CCS ’02: Proceedings of the 9th ACM conference on
Computer and communications security, pages 41–47, New York, NY, USA, 2002.
ACM.

[FZWN08] Christopher Farah, Cheng Zhong, Michael F. Worboys, and Silvia Nittel. De-
tecting topological change using a wireless sensor network. In GIScience, pages
55–69, 2008.

[GBJ+09] Ixent Galpin, Christian Y. A. Brenninkmeijer, Farhana Jabeen, Alvaro A. A.
Fernandes, and Norman W. Paton. Comprehensive optimization of declarative
sensor network queries. In SSDBM, pages 339–360, 2009.

[GFP+01] Tony Griffiths, Alvaro A. A. Fernandes, Norman W. Paton, Keith T. Mason,
Bo Huang, Michael F. Worboys, Chris Johnson, and John G. Stell. Tripod: A
comprehensive system for the management of spatial and aspatial historical ob-
jects. In ACM-GIS, pages 118–123, 2001.

[GKCE04] Ben Greenstein, Eddie Kohler, David Culler, and Deborah Estrin. Distributed
techniques for area computation in sensor networks. Local Computer Networks,
Annual IEEE Conference on, 0:533–541, 2004.

[GM95] Leonidas J. Guibas and David H. Marimont. Rounding arrangements dynamically.
In SCG ’95: Proceedings of the eleventh annual symposium on Computational
geometry, pages 190–199, New York, NY, USA, 1995. ACM.

[GM04] Johannes Gehrke and Samuel Madden. Query processing in sensor networks.
IEEE Pervasive Computing, 3:46–55, 2004.

[GS93] Ralf Hartmut Güting and Markus Schneider. Realms: A foundation for spatial
data types in database systems. In David J. Abel and Beng Chin Ooi, editors,
Advances in Spatial Databases, Third International Symposium, SSD’93, Singa-
pore, June 23-25, 1993, Proceedings, volume 692 of Lecture Notes in Computer
Science, pages 14–35. Springer, 1993.

[GS95] Ralf Hartmut Gting and Markus Schneider. Realm-based spatial data types: The
rose algebra. The VLDB Journal, 4:243–286, 1995. 10.1007/BF01237921.

[GY86] Daniel H. Greene and F. Frances Yao. Finite-resolution computational geometry.
Foundations of Computer Science, Annual IEEE Symposium on, 0:143–152, 1986.

[HAG+07] Thomas C. Harmon, Richard F. Ambrose, Robert M. Gilbert, Jason C. Fisher,
Michael Stealey, and William J. Kaiser. High-Resolution River Hydraulic and Wa-
ter Quality Characterziation using Rapidly Deployable Networked Infomechanical
Syestems (NIMS RD). Environmental Engineering Science, 24(2):151–1459, 2007.

[HBC+09] Wen Hu, Nirupama Bulusu, Chun Tung Chou, Sanjay Jha, Andrew Taylor, and
Van Nghia Tran. Design and evaluation of a hybrid sensor network for cane toad
monitoring. ACM Trans. Sen. Netw., 5:4:1–4:28, February 2009.

BIBLIOGRAPHY 171

[HF08] Xiaoxia Huang and Yuguang Fang. Multiconstrained QoS multipath routing in
wireless sensor networks. Wirel. Netw., 14(4):465–478, 2008.

[HHKK04] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The plat-
forms enabling wireless sensor networks. Commun. ACM, 47(6):41–46, 2004.

[HHT02] Matthias Handy, Marc Haase, and Dirk Timmermann. Low energy adaptive
clustering hierarchy with deterministic cluster-head selection. In IEEE MWCN,
pages 368–372. IEEE Computer Society, 2002.

[HKB99] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for informa-
tion dissemination in wireless sensor networks. In Proceedings of the fifth annual
ACM/IEEE international conference on Mobile computing and networking, pages
174–185, Seattle, WA USA, 1999.

[HL05] Gregory Hartl and Baochun Li. infer: A bayesian inference approach towards en-
ergy efficient data collection in dense sensor networks. In ICDCS ’05: Proceedings
of the 25th IEEE International Conference on Distributed Computing Systems,
pages 371–380, Washington, DC, USA, 2005. IEEE Computer Society.

[HM06] Jane K. Hart and Kirk Martinez. Environmental Sensor Networks: A revolution
in the earth system science? Earth-Science Reviews, 78:177–191, 2006.

[HSLA05] Tian He, John A. Stankovic, Chenyang Lu, and Tarek F. Abdelzaher. A spa-
tiotemporal communication protocol for wireless sensor networks. IEEE Trans-
actions on Parallel and Distributed Systems, 16:995–1006, 2005.

[HYS04] F. Ye H. Yang and B. Sikdar. A dynamic query-tree energy balancing protocol
for sensor networks. In Proceedings of IEEE WCNC, Atlanta, GA, 2004.

[HYW+06] John Heidemann, Wei Ye, Jack Wills, Affan Syed, and Yuan Li. Research chal-
lenges and applications for underwater sensor networking. In Proceedings of the
IEEE Wireless Communications and Networking Conference, 2006.

[IEGH02] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and John Heide-
mann. Impact of network density on data aggregation in wireless sensor networks.
In Proceedings of the 22 nd International Conference on Distributed Computing
Systems (ICDCS’02), ICDCS ’02, pages 457–, Washington, DC, USA, 2002. IEEE
Computer Society.

[JA07] Inwhee Joe and Taewon Ahn. An efficient bi-directional routing protocol for wire-
less sensor networks. In Proceedings of the 2007 Fourth Annual International
Conference on Mobile and Ubiquitous Systems: Networking&Services (MobiQui-
tous), pages 1–4, Washington, DC, USA, 2007. IEEE Computer Society.

[JF08] Farhana Jabeen and Alvaro A. A. Fernandes. Impact on accuracy of deployment
trade-offs in localized sensor network event detection. In Second International
Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks
(LOCALGOS), in conjuction with IEEE DCOSS, 2008.

172 BIBLIOGRAPHY

[JJJES07] Adil Jaffer, Muhammad Jaseemuddin, Mandana Jafarian, and Hesham El-Sayed.
Event boundary detection using autonomous agents in a sensor network. In
AICCSA, pages 217–224, 2007.

[JJPSW+09] Zhang Jin, Yu Jian-Ping, Zhou Si-Wang, Lin Ya-Ping, and Li Guang. A survey
on position-based routing algorithms in wireless sensor networks. Algorithms,
2(1):158–182, 2009.

[JK09] Gyanendra Prasad Joshi and Sung Won Kim. A distributed geo-routing algorithm
for wireless sensor networks. Sensors, 9(6):4083–4103, 2009.

[JLY+08] Sangsu Jung, Dujeong Lee, Sangyoon Yoon, Jaehwi Shin, Youngwoo Lee, and
Jeonghoon Mo. A geographic routing protocol utilizing link lifetime and power
control for mobile ad hoc networks. In FOWANC ’08: Proceeding of the 1st ACM
international workshop on Foundations of wireless ad hoc and sensor networking
and computing, pages 25–32, New York, NY, USA, 2008. ACM.

[JN06] Guang Jin and Silvia Nittel. NED: An efficient noise-tolerant event and event
boundary detection algorithm in wireless sensor networks. In MDM, page 153,
2006.

[JW08] Jixiang Jiang and Michael F. Worboys. Detecting basic topological changes in
sensor networks by local aggregation. In GIS, page 4, 2008.

[JW09] Jixiang Jiang and Michael Worboys. Event-based topology for dynamic planar
areal objects. Int. J. Geogr. Inf. Sci., 23(1):33–60, 2009.

[JWN09] Jixiang Jiang, Michael Worboys, and Silvia Nittel. Qualitative change detection
using sensor networks based on connectivity information. GeoInformatica, pages
1–24, 2009. 10.1007/s10707-009-0097-0.

[JWZ+09] Zhang Junguo, Li Wenbin, Yin Zhongxing, Liu Shengbo, and Guo Xiaolin. Forest
fire detection system based on wireless sensor network. In Industrial Electronics
and Applications, 2009. ICIEA 2009, pages 520–523, 2009.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of
aggregate information. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’03, pages 482–, Washington, DC, USA,
2003. IEEE Computer Society.

[KI03] Bhaskar Krishnamachari and S. Sitharama Iyengar. Efficient and fault-tolerant
feature extraction in wireless sensor networks. In Proceedings of the 2nd interna-
tional conference on Information processing in sensor networks, IPSN’03, pages
488–501, Berlin, Heidelberg, 2003. Springer-Verlag.

[KI04] Bhaskar Krishnamachari and Sitharama Iyengar. Distributed bayesian algorithms
for fault-tolerant event region detection in wireless sensor networks. IEEE Trans.
Comput., 53(3):241–250, 2004.

BIBLIOGRAPHY 173

[KK00] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless
networks. In MobiCom ’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, pages 243–254, New York, NY, USA, 2000.
ACM.

[KK03] Bradley Koch and Rajiv Khosla. The role of precision agriculture in cropping
systems. Journal of Crop Production, 9(1/2 (17/18)):361–381, 2003.

[KLS+10] Maria Kazandjieva, Jung Woo Lee, Marcel Salath, Marcus W. Feldman, James H.
Jones, and Philip Levis. Experiences in measuring a human contact network for
epidemiology research. In ACM Workshop on Hot Topics in Embedded Networked
Sensors (HotEmNets), 2010.

[KM07] Kurtis Kredo, II and Prasant Mohapatra. Medium access control in wireless sensor
networks. Comput. Netw., 51(4):961–994, 2007.

[KOA09] Ahmed M. Khedr, Walid Osamy, and Dharma P. Agrawal. Perimeter discov-
ery in wireless sensor networks. Journal of Parallel and Distributed Computing,
69(11):922 – 929, 2009.

[KPSK09] Young Il Ko, Chang-Sup Park, In Chul Song, and Myoung Ho Kim. An efficient
void resolution method for geographic routing in wireless sensor networks. J. Syst.
Softw., 82(6):963–973, 2009.

[KR04] Cornelia Kappler and Georg Riegel. A real-world, simple wireless sensor network
for monitoring electrical energy consumption. In EWSN, pages 339–352, 2004.

[LCN+05] Jie Lian, Lei Chen, Kshirasagar Naik, M. Tamer Özsu, and G. Agnew. Localized
routing trees for query processing in sensor networks. In CIKM ’05: Proceedings
of the 14th ACM international conference on Information and knowledge man-
agement, pages 259–260, New York, NY, USA, 2005. ACM.

[LG09] Philip Levis and David Gay. TinyOS Programming. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

[LKH05] Chun-Han Lin, Chung-Ta King, and Hung-Chang Hsiao. Region abstraction for
event tracking in wireless sensor networks. In ISPAN, pages 274–281, 2005.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David E. Culler. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In SenSys, pages 126–137,
2003.

[LMG+04] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk,
Alec Woo, Eric A. Brewer, and David E. Culler. The emergence of networking
abstractions and techniques in TinyOS. In NSDI, pages 1–14, 2004.

[LRS02] Stephanie Lindsey, Cauligi Raghavendra, and Krishna M. Sivalingam. Data gath-
ering algorithms in sensor networks using energy metrics. IEEE Trans. Parallel
Distrib. Syst., 13(9):924–935, 2002.

174 BIBLIOGRAPHY

[LWG05] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power consumption
in sensor networks. In EmNets ’05: Proceedings of the 2nd IEEE workshop on
Embedded Networked Sensors, pages 37–44, Washington, DC, USA, 2005. IEEE
Computer Society.

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02: Pro-
ceedings of the 1st ACM international workshop on Wireless sensor networks and
applications, pages 88–97, New York, NY, USA, 2002. ACM.

[MDGS06] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Cap-
sule: an energy-optimized object storage system for memory-constrained sensor
devices. In SenSys ’06: Proceedings of the 4th international conference on Embed-
ded networked sensor systems, pages 195–208, New York, NY, USA, 2006. ACM.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. In OSDI, 2002.

[MFHH05] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

[MGZ+09] A. Matese, S.F. Di Gennaro, A. Zaldei, L. Genesio, and F.P. Vaccari. A wire-
less sensor network for precision viticulture: The NAV system. Computers and
Electronics in Agriculture, 69(1):51 – 58, 2009.

[MM06] Umberto Malesci and Samuel Madden. A measurement-based analysis of the
interaction between network layers in TinyOS. In EWSN, pages 292–309, 2006.

[MP06] Luca Mottola and Gian Pietro Picco. Logical neighborhoods: A programming
abstraction for wireless sensor networks. In DCOSS, pages 150–168, 2006.

[MV05] Matthew J. Miller and Nitin H. Vaidya. A MAC protocol to reduce sensor net-
work energy consumption using a wakeup radio. IEEE Transactions on Mobile
Computing, 4(3):228–242, 2005.

[NM03] Robert Nowak and Urbashi Mitra. Boundary estimation in sensor networks: the-
ory and methods. In Proceedings of the 2nd international conference on Infor-
mation processing in sensor networks, IPSN’03, pages 80–95, Berlin, Heidelberg,
2003. Springer-Verlag.

[NN03] Dragos Niculescu and Badri Nath. Trajectory based forwarding and its applica-
tions. In MobiCom ’03: Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 260–272, New York, NY, USA, 2003.
ACM.

BIBLIOGRAPHY 175

[OE08] Susan A O’Shaughnessy and Steven R Evett. Integration of wireless sensor net-
works into moving irrigation systems for automatic irrigation scheduling. In Amer-
ican Society of Agricultural and Biological Engineers Annual International Meet-
ing, volume 1, pages 464–484, 2008.

[PBM+05] Sofie Pollin, Bruno Bougard, Rahul Mangharam, Francky Catthoor, Ingrid Moer-
man, Ragunathan Rajkumar, and Liesbet Van der Perre. Optimizing transmission
and shutdown for energy-efficient real-time packet scheduling in clustered ad hoc
networks. EURASIP J. Wirel. Commun. Netw., 2005:698–711, October 2005.

[PE08] F. J. Pierce and T. V. Elliott. Regional and on-farm wireless sensor networks for
agricultural systems in eastern washington. Comput. Electron. Agric., 61(1):32–
43, 2008.

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun.
ACM, 43(5):51–58, 2000.

[PKRVJ05] A V U Phani Kumar, Adi Mallikarjuna Reddy V, and D. Janakiram. Distributed
collaboration for event detection in wireless sensor networks. In MPAC ’05: Pro-
ceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc
computing, pages 1–8, New York, NY, USA, 2005. ACM.

[PR00] Romulo G. Pizana and Roland E. Ramos. Triangle graphs with maximum degree
at most 3. In Proceedings of the Third Asian Mathematical Conference, pages
451–454, 2000.

[RSZ04] C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati, editors. Wireless
sensor networks. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[RZL06] Kui Ren, Kai Zeng, and Wenjing Lou. Fault-tolerant event boundary detection in
wireless sensor networks. In GLOBECOM ’06: Proceedings of the Global Telecom-
munications Conference, pages 1 –5, 2006.

[San06] Nicola Santoro. Design and Analysis of Distributed Algorithms (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience, 2006.

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. Medians and beyond: new aggregation techniques for sensor networks. In
SenSys ’04: Proceedings of the 2nd international conference on Embedded net-
worked sensor systems, pages 239–249, New York, NY, USA, 2004. ACM.

[SBLC04] Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K.
Chrysanthis. Balancing energy efficiency and quality of aggregate data in sen-
sor networks. VLDB J., 13(4):384–403, 2004.

[Sch97] Markus Schneider. Spatial Data Types for Database Systems: Finite Resolution
Geometry for Geographic Information Systems, volume 1288 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1997.

176 BIBLIOGRAPHY

[Sch01a] Markus Schneider. A design of topological predicates for complex crisp and fuzzy
regions. In ER ’01: Proceedings of the 20th International Conference on Concep-
tual Modeling, pages 103–116, London, UK, 2001. Springer-Verlag.

[Sch01b] Markus Schneider. Fuzzy topological predicates, their properties, and their in-
tegration into query languages. In GIS ’01: Proceedings of the 9th ACM inter-
national symposium on Advances in geographic information systems, pages 9–14,
New York, NY, USA, 2001. ACM.

[SDCCK08] Steven Schockaert, Martine De Cock, Chris Cornelis, and Etienne E. Kerre. Fuzzy
region connection calculus: Representing vague topological information. Int. J.
Approx. Reasoning, 48(1):314–331, 2008.

[Sel06] S. Selvakennedy. An Energy Efficient Event Processing Algorithm for Wireless
Sensor Networks. In MSN, pages 588–599, 2006.

[SHrC+04] Victor Shnayder, Mark Hempstead, Bor rong Chen, Geoff Werner Allen, and
Matt Welsh. Simulating the power consumption of large-scale sensor network
applications. In SenSys, pages 188–200, 2004.

[SHS04] Radu Stoleru, Tian He, and John A. Stankovic. Walking GPS: A practical solution
for localization in manually deployed wireless sensor networks. In LCN, pages
480–489, 2004.

[SKG05] Amir Soheili, Vana Kalogeraki, and Dimitrios Gunopulos. Spatial queries in sensor
networks. In GIS ’05: Proceedings of the 13th annual ACM international workshop
on Geographic information systems, pages 61–70, New York, NY, USA, 2005.
ACM.

[SKPM06] Kee-Young Shin, Jin Won Kim, Ilgon Park, and Pyeong Soo Mah. Wireless sensor
networks: A scalable time synchronization. In ICCSA (4), pages 509–518, 2006.

[SL01] Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding routing al-
gorithms with guaranteed delivery for wireless networks. IEEE Trans. Parallel
Distrib. Syst., 12(10):1023–1032, 2001.

[SN05] Y. Shiraishi S. Nittel, G. Jin. In-networks spatial query estimation in sensor
networks. In IEICE Transactions (A), Vol.J88-A, No.12, pages pp.1413–1421,
2005.

[Sri] Prasanna Sridhar. Scalability and performance issues in deeply embedded sensor
systems. Smart Sensing And Intelligent Systems, 2(1):1–14.

[SSC+07] Amarjeet Singh, Michael J. Stealey, Victor Chen, William J. Kaiser, Maxim
Batalin, Yeung Lam, Bin Zhang, Amit Dhariwal, Carl Oberg, Arvind Pereira,
Gaurav S. Sukhatme, Beth Stauffer, Stefanie Moorthi, Dave Caron, and Mark
Hansen. Human Assists Robotic Team Campaigns for Aquatic Monitoring. Jour-
nal of Field Robotics, 24(11):969–989, 2007.

BIBLIOGRAPHY 177

[Sto02] I. Stojmenovic. Position-based routing in ad hoc networks. Communications
Magazine, IEEE, 40(7):128 –134, jul 2002.

[SZHK04] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari.
Energy-efficient forwarding strategies for geographic routing in lossy wireless sen-
sor networks. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 108–121, New York, NY, USA, 2004.
ACM.

[Tin] Simulating tinyos applications in tossim. http://www.tinyos.net/tinyos-1.x/
doc/tutorial/lesson5.html.

[TK84] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed
packet radio terminals. Communications, IEEE Transactions on [legacy, pre -
1988], 32(3):246–257, 1984.

[TL08] Athanasia Tsertou and David I. Laurenson. Revisiting the hidden terminal prob-
lem in a csma/ca wireless network. IEEE Trans. Mob. Comput., 7(7):817–831,
2008.

[TPS+05] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David E. Culler, Neil Turner,
Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and
Wei Hong. A macroscope in the redwoods. In SenSys, pages 51–63, 2005.

[TYIM05] Wataru Tsujitaa, Akihito Yoshinoa, Hiroshi Ishidab, and Toyosaka Moriizumia.
Gas sensor network for air-pollution monitoring. Sensors and Actuators B: Chem-
ical, 110(2):304–311, October 2005.

[Ulr08] Thomas Ulrich. Wireless network monitors H2O: System saves resources, increases
yield in cabernet vineyard. Wines and Vines Magazine, July 2008.

[VTP+08] G. Vellidis, M. Tucker, C. Perry, C. Kvien, and C. Bednarz. A real-time wireless
smart sensor array for scheduling irrigation. Comput. Electron. Agric., 61(1):44–
50, 2008.

[WALW+06] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff John-
son, Mario Ruiz, and Jonathan Lees. Deploying a wireless sensor network on an
active volcano. IEEE Internet Computing, 10(2):18–25, 2006.

[WC01] Alec Woo and David E. Culler. A transmission control scheme for media access
in sensor networks. In MobiCom ’01: Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 221–235, New York, NY,
USA, 2001. ACM.

[WD06] Michael F. Worboys and Matt Duckham. Monitoring qualitative spatiotemporal
change for geosensor networks. International Journal of Geographical Information
Science, 20(10):1087–1108, 2006.

178 BIBLIOGRAPHY

[WEC03] Chieh Y. Wan, Shane B. Eisenman, and Andrew T. Campbell. Coda: congestion
detection and avoidance in sensor networks. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, pages 266–279,
New York, NY, USA, 2003. ACM.

[Wel04] Matt Welsh. Exposing resource tradeoffs in region-based communication abstrac-
tions for sensor networks. Computer Communication Review, 34(1):119–124, 2004.

[WMHF03] Jörg Widmer, Martin Mauve, Hannes Hartenstein, and Holger Füβler. Position-
based routing in ad hoc wireless networks. The handbook of ad hoc wireless net-
works, pages 219–232, 2003.

[WZW06] Ning Wang, Naiqian Zhang, and Maohua Wang. Review: Wireless sensors in
agriculture and food industry-recent development and future perspective. Comput.
Electron. Agric., 50(1):1–14, 2006.

[XcL05] Yingqi Xu and Wang chien Lee. PSGR: priority-based stateless geo-routing in
wireless sensor networks. In Proc. IEEE Conf. Mobile Ad-hoc and Sensor Systems,
pages 7–10. IEEE Press, 2005.

[YCL+01] Fan Ye, Alvin Chen, Songwu Lu, Lixia Zhang, and Fan Ye Alvin Chen. A scal-
able solution to minimum cost forwarding in large sensor networks. In IEEE In-
ternational Conference on Computer Communications and Networks (ICCCN),
Scottsdale, Arizona, USA, pages 304–309, 2001.

[YF04] Ossama Younis and Sonia Fahmy. Heed: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile
Computing, 3:366–379, 2004.

[YG02] Yong Yao and Johannes Gehrke. The cougar approach to in-network query pro-
cessing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[YGE01] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing:
A recursive data dissemination protocol for wireless sensor networks. Technical
Report UCLA/CSD-TR-01-0023, UCLA Computer Science Department, 2001.

[YH03] Wei Ye and John Heidemann. Medium access control in wireless sensor networks,
2003.

[ZGE03] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wire-
less sensor networks. In First IEEE International Workshop on Sensor Network
Protocols and Applications, page 139148, 2003.

[ZGFL08] Ming Zhang, Chenglong Gong, Yuan Feng, and Chao Liu. Energy-predicted short-
est routing tree algorithm in wireless sensor networks. In ISICA ’08: Proceedings
of the 3rd International Symposium on Advances in Computation and Intelligence,
pages 117–124, Berlin, Heidelberg, 2008. Springer-Verlag.

BIBLIOGRAPHY 179

[ZGTS03] Donghui Zhang, Dimitrios Gunopulos, Vassilis J. Tsotras, and Bernhard Seeger.
Temporal and spatio-temporal aggregations over data streams using multiple time
granularities. Inf. Syst., 28(1-2):61–84, 2003.

[Zha97] F. Benjamin Zhan. Topological relations between fuzzy regions. In SAC ’97:
Proceedings of the 1997 ACM symposium on Applied computing, pages 192–196,
New York, NY, USA, 1997. ACM.

[ZLS07] Gang Zhao, Xiangqian Liu, and Min-Te Sun. Anchor-based geographic routing
for sensor networks using projection distance. In Wireless Pervasive Computing,
2007. ISWPC ’07. 2nd International Symposium on, 5-7 2007.

[ZRLM06] Kai Zeng, Kui Ren, Wenjing Lou, and Patrick J. Moran. Energy-aware geographic
routing in lossy wireless sensor networks with environmental energy supply. In
Proceedings of the 3rd international conference on Quality of service in heteroge-
neous wired/wireless networks, QShine ’06, New York, NY, USA, 2006. ACM.

[ZSGM08] Xianjin Zhu, Rik Sarkar, Jie Gao, and Joseph S. B. Mitchell. Light-weight contour
tracking in wireless sensor networks. In INFOCOM, pages 1175–1183, 2008.

[ZVPS08] Yujie Zhu, Ramanuja Vedantham, Seung-Jong Park, and Raghupathy Sivakumar.
A scalable correlation aware aggregation strategy for wireless sensor networks. Inf.
Fusion, 9(3):354–369, 2008.

[ZYACS07] Demetrios Zeinalipour-Yazti, Panayiotis Andreou, Panos K. Chrysanthis, and
George Samaras. Senseswarm: a perimeter-based data acquisition framework
for mobile sensor networks. In DMSN ’07: Proceedings of the 4th workshop on
Data management for sensor networks, pages 13–18, New York, NY, USA, 2007.
ACM.

Appendix A

Rose Algebra

The Appendix is structured as follows. Section A.1 defines the data types offered by the ROSE
algebra. Section A.2 describes the definitions of the spatial operations.

A.1 Spatial Data Types

The ROSE algebra offers three data types called points, lines, and regions, whose values are
realm-based. To describe these values, the notions of an R block, R unit, R cycle and R face
are introduced.

A points data type value is a finite set of R points. For lines two representations have
been defined, one as a finite set of R segments and another as a finite set of pairwise disjoint
R blocks. An R block is a set of maximal connected R segments. Two R blocks b1 and b2 are
disjoint: ⇔ ∀ s1 ∈ S(b1) ∀ s2 ∈ S(b2): s1 and s2 are disjoint, where S(b1) refers to the
segments in block b1 and S(b2) to the segments in b2.

An R cycle is a simple polygon and denotes a cycle in the planar graph interpretation of a
realm. Cycles represent basic entities for the definitions of regions. A value of type regions is a
finite set of edge disjoint R faces. By edge disjoint is meant that the values are area disjoint

(i.e. the interior of either regions value does not intersect the other regions value) and have
no common boundary segment. A value f of type R face is represented as a pair (c,H) where
c is an R cycle as the outer boundary and H is a (possibly empty) set of holes {h1, ..., hn}. An
R face is an R cycle that possibly encloses other edge disjoint R cycles, which correspond to
holes (see the example in Figure A.1 taken from [Sch97]). The holes, if they exist, are required
to be edge inside the outer R cycle. By edge inside is meant that the hole lies inside the outer
R cycle and that they should not have any common boundary segment. The reader is referred
to Section A.2.1 for the description of the edge inside and edge disjoint operators. Each of
the cycles in the set of segments of f (i.e., S(f)) is either equal to c or to one of the cycles
in H. R units are the smallest regions values that exist over a realm. They are also called
minimal R faces. A regions value can, therefore, be viewed as set of R faces or, equivalently,
as set of R units. The boundary and the exterior of a regions value with holes is allowed to
be disconnected.

180

A.2. SPATIAL OPERATIONS 181

An R cycle c divides grid points into three subsets Pin(c), Pon(c), and Pout(c), where Pin(c)
denotes the set of points lying in the interior of c; Pon(c), the set of points lying on the outer
boundary of the c; and Pout(c), the set of points lying outside the c. The set of points that
are part of a R cycle c can, therefore, be defined as P (c) := Pon(c) ∪ Pin(c). The grid points
that belong to an R face f = (f0, F) (where f0 is an R cycle as the outer boundary and F is a
(possibly empty) set of holes {f1, ..., fn}) is defined as P (f) := P (f0)/

⋃n
i=1 Pin (f i). Figure

A.1 illustrates some example values of type points, lines and regions.

Figure A.1: (a) points value (b) lines value (c) regions value adapted from [Sch97]

A.2 Spatial Operations

This section describes the two types of operation in the ROSE algebra that are of greatest
relevance in this dissertation, viz., spatial predicates (i.e., Boolean-valued operations that test
topological relationships) and spatial-valued operations.

A.2.1 Spatial Predicates expressing Topological Relationships

Spatial predicates test whether two spatial values stand in the topological relationship denoted
by the predicate. The result is therefore a Boolean value. Topological relationships include
equals, not equals, edge disjoint, vertex disjoint.

Schneider [Sch97] has provided definitions for topological relationships between combina-
tions of spatial data types. This section discusses topological relationships between pairs of
spatial data types such as R cycle, R block , R face, and regions.

This section will first discuss the topological relationships between a pair of values of type
R cycle. Some of the relationships between two R cycles are given in Table A.1. Informally,
two R cycles c1 and c2 are area disjoint if they do not share an interior. The relationship is
edge disjoint if they do not share an interior or any boundary segment but their boundary may
touch. Two R cycle values are vertex disjoint if they do not share any point. Similarly, c1 is
area inside c2 if c1 is a proper subset of c2 or c1 is equal to c2; c1 is edge inside c2 if c1 is a
proper subset of c2 and they do not share any boundary segment but their boundary may touch
at any point on the boundary; c1 is vertex inside c2 if c1 is a proper subset of c2 and they do

182 APPENDIX A. ROSE ALGEBRA

c1 area inside c2 :⇔ P(c1) ⊆ P(c2)

c1 edge inside c2 :⇔ c1 area inside c2 ∧ S(c1)∩ S(c2) = ∅

c1 vertex inside c2 :⇔ c1 edge inside c2 ∧ Pon(c1)∩ Pon(c2) = ∅

c1 area disjoint c2 :⇔ Pin(c1) ∩ P(c2)= ∅ ∧ Pin(c2)∩ P(c1) = ∅

c1 edge disjoint c2 :⇔ c1 and c2 are area disjoint ∧ S(c1) ∩ S(c2) = ∅

c1 vertex disjoint c2 :⇔ c1 and c2 are edge disjoint ∧ Pon(c1)∩ Pon(c2) = ∅

c1 adjacent c2 :⇔ c1 and c2 are area disjoint ∧ S(c1)∩ S(c2) 6= ∅

c1 meets c2 :⇔ c1 and c2 are edge disjoint ∧ Pon(c1) ∩ Pon(c2) 6= ∅

Table A.1: Predicates formally defined over two R cycles c1 and c2 adapted from [Sch97]

b1 meets b2 :⇔ ∃s ∈ S(b1)∃t ∈ S(b2) : s and t meets in a meeting point ∧
(∀s ∈ S(b1)∀t ∈ S(b2) : s 6= t) ∧
(s and t meets in p ⇒ p is a meeting point)

b1 intersects b2 :⇔ ∀s ∈ S(b1)∀t ∈ S(b2) : s 6= t ∧
(∃s ∈ S(b1)∃t ∈ S(b2) :) ∧
(s and t meets in p ∧ p is a meeting point)

Table A.2: Formal definitions for spatial predicates on values b1 and b2 of type R blocks [Sch97]

not share boundary point; c1 meets c2, if their boundaries share points but not segments and
if their interiors are disjoint; c1 is adjacent to c2 if they share one or more boundary segment
and their interiors are disjoint. In the ROSE algebra, area inside is the default interpretation
of the relationship inside, and vertex disjoint is the default for the disjoint relationship.

As described in Section A.1, a value of type lines can be understood as a set of R segments
or as a set of pairwise disjoint R blocks. Table A.2 describes some primitives describing two
relationship between R blocks b1 and b2.

Let p be a R point where the two blocks b1 and b2 touch. For determining whether p is a
meeting point, an angular sorted cyclic list Lp of R segments belonging to any R block value
meeting at p is constructed. p is called a meeting point if Lp is the concatenation of two sublists,
so that all elements of one of the sublists belong to S(b1) and all elements of the other sublist
belong to S(b2). Figure A.2 illustrates that p is a meeting point but p′ is not a meeting point.

The definitions of area inside and area disjoint given in Table A.1 are extended in Table
A.3 for the computation of relationships between two R faces f = (f0, F) and g = (g0, G) .
f is area inside g if f0 is area inside g0 and f0 is area disjoint from all holes in G, or there
exist holes in F to which the holes in G lie area inside in it. f is area disjoint g if f0 and g0

are area disjoint, or if there exists any hole in G such that f0 lies area inside in it, or if there
exists any hole in F such that g0 lies area inside in it.

As described in Section A.1, a regions value may consist of a set of R units or a set of
pairwise edge disjoint R faces. Let F and G be two values of type regions. Examples of the

A.2. SPATIAL OPERATIONS 183

Figure A.2: Between two values of type R block (i) p represents a meeting point (ii) p′ represents
a non-meeting point [Sch97]

f area inside g :⇔ f0 area inside g0 ∧
∀ g ∈ G: g area disjoint f0 ∨ ∃ f ∈ F : g area inside f

f area disjoint g :⇔ f0 area disjoint g0 ∨
∃ g ∈ G: f0 area inside g ∨ ∃ f ∈ F : g0 area inside f

Table A.3: Formal definitions for spatial predicates on values f and g of type R faces

formal definitions for some of the operations when the arguments are of type regions are given
in Table A.4 [Sch97]. F is vertex disjoint G if all the elements of F have a vertex disjoint

relationship with the elements of G. For membership in an area inside relationship, all elements
of F must lie in one or more elements of G. F is adjacent to G, if the elements of both values
are area disjoint and there exists an element of G that is adjacent to an element of H.

The set of topological operators that are supported by, ROSE algebra over the spatial data
types points, lines, and regions is shown in Table A.5. The ROSE algebra supports the
combination of values of different spatial data types but maintains control over the operations
that can be applied between values of spatial data types. The ROSE algebra type system
allows polymorphic operations. To describe the operations in the algebra, second-order signa-
tures [Sch97] have been introduced. A second-order signature is interpreted as defining a set of
signatures formed by taking values from the set of types used to define it. Two such sets are
EXT = {lines, regions} and GEO = {points, lines, regions}. This convention, makes it
possible to define the area inside predicate as operating on one value of type GEO and other

F area disjoint G :⇔ ∀f ∈ F ∀g ∈ G : f and g are area disjoint

F adjacent G :⇔ F area disjoint G ∧ ∃f ∈ F ∃g ∈ G :f and g are adjacent

F area inside G :⇔ ∀f ∈ F ∃g ∈ G : f area inside g

F intersects G :⇔ units(F) ∩ units(G) 6= ∅

Table A.4: Formal definitions for spatial predicates on values F and G of type regions [Sch97]

184 APPENDIX A. ROSE ALGEBRA

equals : GEO × GEO → Boolean
not equals : GEO × GEO → Boolean
intersects : EXT1 × EXT2 → Boolean

vertex disjoint : GEO × GEO → Boolean
area disjoint : regions × regions → Boolean
edge disjoint : regions × regions → Boolean

adjacent : area × area → Boolean
meets : EXT1 × EXT2 → Boolean

area inside : GEO × R → Boolean
edge inside : regions × regions → Boolean

vertex inside : regions × regions → Boolean
border in common : EXT1 × EXT2 → Boolean

on border of : points × EXT → Boolean

Table A.5: Spatial predicates [Sch97]
intersection : points × points → points
intersection : lines × lines → points
intersection : regions × regions → regions
intersection : regions × lines → lines
contour : regions → lines
plus : GEO × GEO → GEO
minus : GEO × GEO → GEO
vertices : EXT → points
common border : EXT1 × EXT2 → lines
interior : lines → regions

Table A.6: Spatial-valued operations [Sch97]

value of type regions. If the operation is defined with a second-order signature of the form
T×T , then the implication is that the same element (e.g., from GEO or EXT) must be selected
for each of the arguments. If the operation is defined by a second-order signature of the form
T1 × T2, i.e., one where the arguments are subscripted, then the implication is that different
selections can be made for each of the arguments.

In the type system, area can be bound to any type in regionsarea disjoint. The notation
regionsarea disjoint is used to represent partitions (i.e. area disjoint subdivisions of the plane
into area disjoint regions based on non-spatial attribute values). The type variable area

guarantees that the operation adjacent will only be applicable to two regions value from the
same partition.

A.2.2 Spatial Operations Returning Spatial Data Type Values

Operations such as plus, intersection, minus, interior, contour, vertices, common border return
a spatial data type value as result. Table A.6 lists the ROSE spatial-valued operations.

Operations plus (union) and minus (difference) are more restricted in being applicable to
values of the same data type. Operation plus returns the union of two values. In the case of
operands of type points and lines, the operator plus merges each element of the operands into
a new value having the same type as that of its operands.

For the computation of plus, minus and intersection with arguments of type regions, the

A.2. SPATIAL OPERATIONS 185

Figure A.3: Two intersecting regions Values [Sch97]

concepts of overlap numbers and segment classification have been introduced. The overlap
number k assigned to realm grid points depends on the number of regions values it is part of.
Figure A.3 illustrates the overlap number assigned to the areas belonging to two regions R1
and R2 that intersect one another. As each segment of a regions value divides the space into
an interior and exterior part, each segment is identified by a pair (m/n) of overlap numbers,
where m represents the lower (or the right) and n the upper (or the left) segment. Possible
(m/n)-segments between two regions values are (0/1)-, (0/2)-, (1/0)-,(1/1)-, (1/2)-, (2/0)-, and
(2/1)-segments. The computation of the plus of regions values R1 and R2 requires segments
to be (0/1)−, (1/0)−, (0/2)−, and (2/0).

Operation minus returns the difference between two values. In the case where both operands
are of type lines or points, the minus operation determines all the elements that are present
in the first operand and not in the second operand. The computation of the difference of
two regions values R1 and R2 requires all (0/1) and (1/0)-segments of R1, all (1/2)− and
(2/1)-segments of R2, and all (1/1)-segments common to R1 and R2.

The intersection operation comes in several forms. The intersection between two values
of type lines determines all their common points that are not meeting points and returns a
value of type points as a result. The intersection of a regions value with a lines value returns
a lines value as a result. The intersection of two values of type regions must be always a
regions value. In the case of one operand of type lines and an other of type regions, the
intersection operator produces a new lines value which contains all segments lying within the
regions value. In the case of two values of type regions, the intersection operator considers
all segments with segment classification (0/2), (1/2), (2/0), and (2/1).

The common border operator creates a new spatial value of type lines containing the common
segments of their operands of type lines or regions.

The contour operator computes the contour of a value of type regions and returns a value
of type lines. It computes a lines value from the segments of only the outer cycles of the faces
of a regions value (i.e. holes are not considered).

The interior operator returns a value of type regions, comprising the areas that are en-
closed by segments of type lines.

Appendix B

Algorithms

The Appendix is structured as follows. Section B.1 describes the algorithms for the task dissem-
ination and evaluator components that are common to tasks irrespective of their types. Section
B.2 provides the algorithms for each of the Boolean-valued operators. Section B.3 presents the
algorithms for each of the spatial-valued operators. Section B.4 presents the algorithm for the
evaluation of geometry induction.

B.1 Distributed Algorithms for Spatial Operations

B.1.1 Task Dissemination

This step involves forwarding the task message towards the target region (region inside the
WSN) and the dissemination of a task in the target region where evaluation is to take place.
The spatial task containing spatial operators is parsed at the base station and disseminated in
compact, internal form into the target region.

The task message conveys the interpretable form of the task (represented in postfix nota-
tion). It has following payload fields: the spatial task task[], the source entity ID (srcID), the
destination entity ID (destID), the number of hops i.e., the cost of reaching the source (hop-
Count), the geometry ID (gmtryID), the coordinates of the pair of points (x1Coord, y1Coord,
x2Coord, y2Coord) that determine the task MBR, the amount of time between two successive
evaluations of task (reEvalPeriod) and the number of times the task is to be run for (duration).
In addition to these, there are two additional fields, viz., timeAtSink denoting the time at the
sink when the task is transmitted towards network, and taskDissemTimeOut , denoting the
amount of time after which the processing of the task is to start. After receiving the message
each MBR entity makes use of these two fields to compute the time at which to start processing
the task.

The protocol for task dissemination is given in Figure B.1. Initially, the gateway computes
whether it is part of MBR. If it is not, it selects among its neighbours the one that is closer
to the left top-most coordinate of the MBR and transmits the task message m TDGF towards
it. The GreedyForwardNgbr protocol is responsible for greedy selection of the neighbour that
is closer to the MBR. Upon receiving the m TDGF message neighbour entity repeats the same

186

B.1. DISTRIBUTED ALGORITHMS FOR SPATIAL OPERATIONS 187

Protocol TaskDissemination()

1 // PINIT ≡ ”Only sink has the message at time t0 and will act as initiator” ≡
2 // {∃ n ∈ N: n has message at t0 ⇒ n is the sink }
3 // PF INAL ≡ ”All entities that are part of path towards MBR or in the task MBR
4 // will receive task message (i.e., m TDGF or m TDBD) at time tf ” ≡
5 // {∀ n ∈ N: n ∈ path(sink,MBR) ∨ n ∈ MBR ⇒ n has received task message at time tf}
6
7 Status Values: S= {INITIATING, AVAILABLE, DISSEMINATING, TASK INTERPRETING}
8 SINIT = {INITIATING, AVAILABLE}
9 SST ART = {INITIATING}

10 SINT ERMEDIAT E= {DISSEMINATING }
11 ST ERM = {AVAILABLE, TASK INTERPRETING}
12
13 INITIATING
1414 Spontaneously
15 isFirstLevelLeader = false
16 // n.ID denotes entity ID
17 srcID = n.ID
18 destID = n.ID
19 hopCount = 0
20 // Sink to confirm whether is it part of MBR
21 isPartOfMBR = PartOfMBR(x1Coord, y1Coord, x2Coord, y2Coord)
22 if (isPartOfMBR = true):
23 isFirstLevelLeader = true
24 Become(DISSEMINATING)
25 else :
26 ngbr = GreedyForwardNgbr()
27 Send(m TDGF, task [], srcID, destID, hopCount + 1 , x1Coord, y1Coord, x2Coord, y2Coord,
28 reEvalPeriod, duration, timeAtSink , taskDissemTimeOut) to ngbr
29
30 AVAILABLE
3131 Spontaneously
32 isFirstLevelLeader = false
33
3434 Receive(m TDGF)
35 UnPack(m TDGF)
36 isPartOfMBR = PartOfMBR(x1Coord, y1Coord, x2Coord, y2Coord)
37
38 if (isPartOfMBR = true):
39 isFirstLevelLeader =true
40 Become(DISSEMINATING)
41 else :
42 ngbr = GreedyForwardNgbr(N(n))
43 Send(m TDGF, task [], n.ID, destID, hopCount + 1 , x1Coord, y1Coord, x2Coord, y2Coord,
44 reEvalPeriod, gmtryID, duration, timeAtSink , taskDissemTimeOut) to ngbr
45
4646 Receive(m TDBD)
47 isPartOfMBR = PartOfMBR(x1Coord, y1Coord, x2Coord, y2Coord)
48 if (isPartOfMBR):
49 UnPack(m TDBD)
50 Become(DISSEMINATING)
51
52 DISSEMINATING
5353 Spontaneously
54 txTime = ComputeTxTime()
55 Set Alarm(a t2, txTime)
56
57 taskEvalTime = ComputeTimeToStartTaskEval(taskDissemTimeOut, n.CurrentTime(), timeAtSink)
58 Set Alarm(a t3, taskEvalTime)
59
6060 Receive(m TDBD)
61 if ((isFirstLevelLeader = false) and (isPartOfMBR)):
62 if ((hopCount > m TDBD.hopCount) or (destID > m TDBD.destID):
63 UnPack(m TDBD)
64 txTime = ComputeTxTime()
65 Set Alarm(a t2, txTime)
66
67 // Time to transmit a m TDBD message
6868 When(a t2)
69 if (isFirstLevelLeader)
70 // First-level leader transmits the m TDBD message by setting the srcID, destID
71 // attributes in the message to its own ID and hopCount to 0
72 Send(m TDBD, task [], n.ID, n.ID, 0 , x1Coord, y1Coord, x2Coord, y2Coord, reEvalPeriod,
73 gmtryID, duration, timeAtSink , taskDissemTimeOut) to N(n)
74 else
75 // An MBR node other that first-level leader transmits the m TDBD message by setting the srcID
76 // attribute in the message to its own ID and hopCount incremented by 1
77 Send(m TDBD, task [], n.ID, destID, hopCount + 1 , x1Coord, y1Coord, x2Coord, y2Coord,
78 reEvalPeriod, gmtryID, duration, timeAtSink , taskDissemTimeOut) to N(n)
79 Reset Alarm(a t1, TD TIMEOUT)
80

Figure B.1: Protocol Task Dissemination

188 APPENDIX B. ALGORITHMS

80 // Check that m TDBD message is forwarded by sufficient number of neighbours
8181 When(a t1)
82 if ((rcvdMsgs < MINNUMMSGS) and (isCollisionChkDone = false)):
83 isCollisionChkDone = true
84
85 if (isFirstLevelLeader)
86 Send(m TDBD, task [], n.ID, n.ID, 0 , x1Coord, y1Coord, x2Coord, y2Coord,
87 reEvalPeriod, gmtryID, duration, timeAtSink , taskDissemTimeOut) to N(n)
88 else
89 Send(m TDBD, task [], n.ID, destID, hopCount + 1 , x1Coord, y1Coord, x2Coord, y2Coord,
90 reEvalPeriod, gmtryID, duration, timeAtSink , taskDissemTimeOut) to N(n)
91
92 Set Alarm(a t2, TD TIMEOUT/3)
93
94 elseif (isCollisionChkDone = false):
95 isCollisionChkDone = true
96
9797 When(a t3)
98 // Time to evaluate a task in the message
99 Become(TASK INTERPRETING)

100 Evaluate(task , reEvalPeriod, duration, gmtryID)
101

Figure B.1 (continued)

process of greedy selection of the closest neighbour, if it finds itself not part of MBR. Otherwise,
it takes on the role of first-level leader, records the information, updates the information in the
packet related to the cost of reaching the source (i.e., the hopCount attribute is set to zero),
sets its own ID as the srcID and destID in the task message and changes the message ID to
m TDBD before broadcasting it.

Each entity that receives the message m TDBD, and is part of the task MBR takes on the
role of DISSEMINATING. Upon receiving the m TDBD message for the first time, it records the
information, and increments the hopCount by one, sets its own ID as srcID and broadcasts the
message. If an MBR entity has already received a task message, and receives it again, it checks
whether the hopCount or destID is less than the one it has recorded earlier. If it is, it records
the srcID as the parent entity ID, updates the attributes hopCount and destID, and broadcasts
the task message. If it is not, it ignores the message.

Packet collisions are a significant challenge in WSNs. To avoid the chances of an MBR
entity not receiving a task message because of collision, each MBR entity computes the time
to transmit before broadcasting the task message to its neighbours. The ComputeTxTime
procedure is responsible for computing the transmit time. Each entity randomly computes
a time to transmit within the range (0 - TD DELAY VAR). TD DELAY VAR denotes the
maximum expected variance in task dissemination. To minimize the effect of small-scale clock
drift, a minimum fixed delay (denoted by MIN DELAY) is added to the computed random time
for transmission of the request message to ensure that in all neighbouring entities the radio is
ON. In addition, before completing the task dissemination phase, each entity checks whether
it has received the task message from a specific number of neighbours to make sure that the
task dissemination is taken care by enough neighbouring entities. If not, it retransmits the
task message again. The UnPack procedure is responsible for assigning the message attributes
to the local variables. After the completion of task dissemination, all MBR entities call the
Evaluate protocol in Figure B.3.

B.2. BOOLEAN-VALUED TASK 189

Procedure ComputeTxTime()

1 txTimeOut = RandomValue.rand()
2 if (n.ID 6= 0):
3 txTimeOut =(txTimeOut % TD DELAY VAR)
4 txTimeOut =((txTimeOut* n.ID) % TD DELAY VAR)) + MIN DELAY
5 else :
6 txTimeOut = (txTimeOut % TD DELAY VAR)
7 return txTimeOut

Figure B.2: Procedures used by Task Dissemination protocol

B.1.2 Task Evaluation

Every task MBR entity evaluates the interpretable structure conveyed by the task message,
i.e., every entity runs an interpreter for the geometry induction and algebraic evaluation steps
required in our approach to spatial analysis. As discussed in Section 5.6.2, the Evaluate com-
ponent is responsible for validating the task. In addition, it is responsible for computing the
type of valid tasks by inference on the operator occurring in it and for forwarding it to a specific
component. The evaluation logic depends on the type of the task. This section, only discuss
the Evaluate protocol (Figure B.3). The evaluation logic for Boolean-valued tasks is discussed
in Section 5.6.3. Section B.3 discusses the evaluation logic for spatial-valued tasks and the
evaluation logic for inducing geometry is discussed in Section B.4.

Protocol Evaluate(task , reEvalPeriod, duration, gmtryID)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n can perform message interpretation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has performed message validation and interpretation at time tf}
3
4 Status Values: S= {TASK INTERPRETING, TASK EVALUATING, AVAILABLE}
5 SST ART = {TASK INTERPRETING}
6 ST ERM = {AVAILABLE, TASK PREPROCESSING}
7
8 TASK INTERPRETING
99 Spontaneously

10 isTaskValid = ValidityCheck(task)
11 if (isTaskValid) :
12 taskType = ExtractTaskType(task)
13 if (taskType = BOOLEAN VALUED):
14 Become(TASK PREPROCESSING)
15 EvalBooleanValuedTask(task , reEvalPeriod, duration)
16 elseif (taskType =SPATIAL VALUED):
17 Become(TASK PREPROCESSING)
18 EvalSpatialValuedTask(task , reEvalPeriod, gmtryID, duration)
19 elseif (taskType = INDUCED):
20 Become(TASK PREPROCESSING)
21 InduceGeometry(task , reEvalPeriod, duration, gmtryID)
22 else :
23 Become(AVAILABLE)
24

Figure B.3: Protocol Evaluate

B.2 Boolean-valued Task

The section describes the protocols for the Boolean-valued operators, aggregation and result
processing.

190 APPENDIX B. ALGORITHMS

B.2.1 Boolean-valued Operators

This section will now describe the protocol for each of the Boolean-valued operators.

B.2.1.1 AreaInside

Recall, from Section 4.2.1, that area inside computes whether an operand of type points,
lines or regions lies area inside an operand of type regions. For the computation of this
operation, the information required by an entity is available in its own GIT. The protocol is
shown in Figure B.4.

Protocol AreaInside(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the area inside operation at time t0}
2 // PF INAL ≡{∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, unknown or false at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 // LocalGITLookup search method returns the address of the tuple in GIT
15 tupleG1 = LocalGITLookup Search(gmtry1ID)
16 tupleG2 = LocalGITLookup Search(gmtry2ID)
17 stateOP = false
18
19 if ((tupleG1= null) and (tupleG2= null)):
20 stateOP = NOT PART OF OPERANDS
21 else :
22 isOperandsDTValid = CheckAIDataTypeValidity(tupleG1 , tupleG2)
23
24 if (isOperandsDTValid):
25 if ((tupleG1 != null) and (tupleG2 != null)):
26 if ((tupleG1_bndryNode = false) and (tupleG2_bndryNode = true)):
27 stateOP = false
28 else
29 stateOP = true
30 elseif ((tupleG1 = null) and (tupleG2 != null)):
31 stateOP = unknown
32 elseif ((tupleG1 != null) and (tupleG2 = null)):
33 stateOP = false
34 else :
35 stateOP = OP NOT SUPPORTED
36
37 Become(TASK EVALUATING)
38 EvaluateBooleanValuedTask()

Figure B.4: Protocol AreaInside

B.2.1.2 OnBorderOf

The procedures for the on border of protocol includes CheckOBODataTypeValidity, and Lo-
calGITLookup Search. Procedure CheckOBODataTypeValidity is responsible for computing
whether the operands are valid i.e., it returns true if an entity satisfies both of the operands
data type or if it it is part of only one of the operand and satisfies its data type. LocalGIT-
Lookup Search is responsible for local GIT-lookup and to return the address of the tuple in
GIT.

B.2. BOOLEAN-VALUED TASK 191

Protocol OnBorderOf(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the on border of operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, unknown, true, or false at time tf}
4
5 Status Values: S= {TASK EVALUATING,OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8 OPERATION EVALUATING
99 Spontaneously

10 StructGIT ∗tupleG1
11 StructGIT ∗tupleG2
12 isOperandsDTValid = false
13 // LocalGITLookup search method returns the address of the tuple in GIT
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 stateOP = false
17
18 if ((tupleG1= null) and (tupleG2= null)):
19 stateOP = NOT PART OF OPERANDS
20 else :
21 isOperandsDTValid = CheckOBODataTypeValidity(tupleG1 ,tupleG2)
22 if (isOperandsDTValid)
23 if ((tupleG1 != null) and (tupleG2 != null)):
24 if (tupleG2_bndryNode = true):
25 stateOP = true
26 elseif ((tupleG1 = null) and (tupleG2 != null)):
27 if (tupleG2_bndryNode = true):
28 stateOP = unknown
29 else :
30 stateOP = OP NOT SUPPORTED
31 Become(TASK EVALUATING)
32 EvaluateBooleanValuedTask()
33

Figure B.5: Protocol OnBorderOf

B.2.1.3 Equals

Recall, from Section 4.2.1, that equals computes whether two operands of the same type are
equal. For the computation of this operation, the information required by an entity is available
in its own GIT and EIT. The procedures for the equals protocol (Figure B.6) include Check-
EqualsDTValidity, EIT IsEdgeInfEqual and LocalGITLookup Search. CheckEqualsDTValidity
is responsible for computing whether the operands are valid i.e., it returns true if an entity
satisfies both of the operands data type or if it it is part of only one of the operand and satisfies
its data type. LocalGITLookup Search is responsible for local GIT look and and returning the
address of the tuple upon success, and EIT IsEdgeInfEqual responsible for checking entries for
neighbours in its EIT related to both operands. It returns false upon finding that it has an
entry in EIT for one of the operands but not for both and true otherwise.

B.2.1.4 NotEquals

Recall, from Section 4.2.1, that not equals computes whether two operands of the same type
are unequal. For the computation of this operation, the information required by an entity is
available in its own GIT and EIT. The procedures for the not equals protocol in Figure B.7
include CheckEqualsDTValidity, EIT IsEdgeInfEqual and LocalGITLookup Search.

B.2.1.5 VertexInside

Recall, from Section 4.2.1, that vertex inside computes whether an operand of type regions

lies vertex inside an operand of type regions. The vertex inside protocol is shown in Figure

192 APPENDIX B. ALGORITHMS

Protocol Equals(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the equals operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, or false at time tf}
4
5 Status Values: S= {TASK EVALUATING,OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8 OPERATION EVALUATING
99 Spontaneously

10 StructGIT ∗tupleG1
11 StructGIT ∗tupleG2
12 isOperandsDTValid = false
13 stateOP = false
14 // LocalGITLookup search method returns the address of the tuple in GIT
15 tupleG1 = LocalGITLookup Search(gmtry1ID)
16 tupleG2 = LocalGITLookup Search(gmtry2ID)
17
18 if ((tupleG1= null) and (tupleG2= null)):
19 stateOP = NOT PART OF OPERANDS
20 else :
21 isOperandsDTValid = CheckEqualsDTValidity(tupleG1 ,tupleG2)
22 if (isOperandsDTValid):
23 if ((tupleG1 != null) and (tupleG2 != null)):
24 if (tupleG1_bndryNode = tupleG2_bndryNode):
25 stateOP = true
26 else :
27 stateOP = false
28 else :
29 stateOP = OP NOT SUPPORTED
30 stateOP = EIT IsEdgeInfEqual(gmtry1ID, gmtry2ID)
31 Become(TASK EVALUATING)
32 EvaluateBooleanValuedTask()
33

Figure B.6: Protocol Equals

B.8.

B.2.1.6 BorderInCommon

The border in common operation computes whether both operands have at least one but pos-
sibly more CBSs. For the computation of the operation state, a CBN requires information
from its neighbours. Recall, from Section 4.2.1, that border in common takes operands that are
any combination of lines, and regions values. The CheckBICDataTypeValidity procedure is
responsible for computing whether the operands are valid, i.e., it returns true if an entity
satisfies the operand’s data type, which it is a member of.

For the computation of the CBS condition, the border in common protocol invokes the Neigh-
bourLookUp protocol with a request to compute CBS (line 35 in Figure B.9). This protocol is
called by all MBR entities, but only entities that belong to one or both operands take part in
communication. All other MBR entities wait for the protocol to finish (line 52 in Figure B.10).
The reason is to maintain synchronization in an intra-network task evaluation phase comprising
many operators. For the timely coordination among the MBR entities, participating entities
must start and finish the processing of each spatial operator part of the complex task at an
appropriate time.

Each CBN entity requests information from its neighbouring entities by transmitting the
m GITREQ message, which conveys its own ID (srcID) and the GIDs of the first and second
operands. To avoid collisions, before transmitting a message, an entity compute a transmit time
that is a random time between 0 and the maximum delay variance GITRQ DELAY VAR. To
avoid small clock drifts, a minimum fixed delay (i.e., MIN DELAY) is added to the computed

B.2. BOOLEAN-VALUED TASK 193

Protocol NotEquals(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the not equals operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, or false at time tf}
4
5 Status Values: S= {TASK EVALUATING,OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8 OPERATION EVALUATING
99 Spontaneously

10 StructGIT ∗tupleG1
11 StructGIT ∗tupleG2
12 isOperandsDTValid = false
13 // LocalGITLookup search method returns the address of the tuple in GIT
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 stateOP = true
17 isEdgeInfEqual = true
18
19 if ((tupleG1= null) and (tupleG2= null)):
20 stateOP = NOT PART OF OPERANDS
21 else :
22 isOperandsDTValid = CheckNotEqualsDTValidity(tupleG1 ,tupleG2)
23 if (isOperandsDTValid):
24 if ((tupleG1 != null) and (tupleG2 != null)):
25 if (tupleG1_bndryNode = tupleG2_bndryNode):
26 stateOP = unknown
27 else :
28 stateOP = true
29 else :
30 stateOP = OP NOT SUPPORTED
31
32 isEdgeInfEqual = EIT IsEdgeInfEqual(gmtry1ID, gmtry2ID)
33 if (isEdgeInfEqual=false):
34 stateOP = true
35 Become(TASK EVALUATING)
36 EvaluateBooleanValuedTask()
37

Figure B.7: Protocol NotEquals

random time for the transmission of a request message by a CBN (to ensure that all neighbouring
entities radio is ON). The procedure ComputeGITTxTime for the NeighbourLookUp protocol
is responsible for computing the random time for transmitting m GITREPLY, m GITREQ,
m InvalidCLUTInf and m InvalidEITInf messages, taking into account the maximum trans-
mission delay variance for request and reply messages.

Initially, all MBR entities that belong to one or both operands wait for the reception of
the m GITREQ message. Once the wait period for the reception of the m GITREQ message
finishes, all entities that have received the m GITREQ message and belong to one or both
operands transmit the m GITREPLY reply message which conveys, its own ID (srcID), and
the membership status for the first and second operands, and the boundary state for the first
and second operands.

Upon reception of the m GITREPLY message (line 74 in Figure B.10), each CBN entity
computes the sector of the neighbour based on its location, assigns the entity to the proper
sector (using the NIT ComputeSector procedure) and finds the minimum distance neighbour
in each sector. A CBN records the entity ID and the status of its minimum distance neighbour
in each of its sectors. A neighbour state NBRCBN denotes that the neighbour is a CBN,
NBRINTERSECT denotes that the neighbour belongs to both operands but is not a CBN,
NBRG1 denotes that the neighbour belongs to the first operand only, and, finally, NBRG2
denotes that the neighbour belongs to the second operand only.

After the completion of the wait period for the reception of replies from neighbours, the

194 APPENDIX B. ALGORITHMS

Protocol VertexInside(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the vertex inside operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, unknown or false at time tf}
4
5 Status Values: S= {TASK EVALUATING,OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8 OPERATION EVALUATING
99 Spontaneously

10 StructGIT ∗tupleG1
11 StructGIT ∗tupleG2
12 isOperandsDTValid = false
13 // LocalGITLookup search method returns the address of the tuple in GIT
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 stateOP = false
17 isOperandsDTValid = false
18
19 if ((tupleG1= null) and (tupleG2= null)):
20 stateOP = NOT PART OF OPERANDS
21 else :
22 isOperandsDTValid = CheckVIDataTypeValidity(tupleG1 ,tupleG2)
23 if (isOperandsDTValid):
24 if ((tupleG1 != null) and (tupleG2 != null)):
25 if (tupleG2_bndryNode = false):
26 stateOP = true
27 else :
28 stateOP = false
29 elseif ((tupleG1 = null) and (tupleG2 != null)):
30 stateOP = unknown
31 elseif ((tupleG1 != null) and (tupleG2 = null)):
32 stateOP = false
33 else :
34 stateOP = OP NOT SUPPORTED
35 Become(TASK EVALUATING)
36 EvaluateBooleanValuedTask()
37

Figure B.8: Protocol VertexInside

CBN computes whether it is part of a valid CBS (line 7 in ComputeCBSExistence in Fig-
ure B.12). For this purpose, each CBN confirms that the segments formed by itself and its
neighbouring CBNs are valid CBS of the first and the second operand. For this purpose the
EIT ConfirmSegment procedure computes whether the segment is in the EIT table. If it is
not, then the isCBSNotCommonToAdjacentLUTs procedure computes whether the boundary
segment is a common segment of two adjacent LUT formed by entities in the first operand (for
this purpose, it uses the neighbour state information sectorNbrState[]). If the segment is a valid
boundary segment for one of the operands, the entity checks the status of the segment for the
other operand. The NeighbourLookUp protocol (called by entities with a request to compute
existence of CBS), returns segment node if the segment exists, or commonBoundaryNode

if the node is a CBN.

This section, only describe the working of NeighbourLookUp protocol to detect the existence
of a CBS. The NeighbourLookUp protocol also allows a CBN to compute whether it is part
of a common area, part of an area disjoint regions value and part of a CBS, part of an
area disjoint regions value and not part of a CBS, whether it is a meetingPoint or an
intersectingPoint between two values of type lines or between one of type lines and another
of type regions. The procedures involved by the NeighbourLookUp protocol responsible for
computing the required information are shown in Figures B.18, B.16, B.21, B.19, B.29, and

B.2. BOOLEAN-VALUED TASK 195

Protocol BorderInCommon(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the border in common operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, or unknown at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 CBN = false
17 stateOP = unknown
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 stateOP = NOT PART OF OPERANDS
22
23 if ((tupleG1 != null) or (tupleG2 != null)):
24 isOperandsDTValid = CheckBICDataTypeValidity(tupleG1 , tupleG2)
25 if (isOperandsDTValid):
26 isReqdToPartInNgbrLookup = true
27 if ((tupleG1 != null) and (tupleG2 != null)):
28 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode= true)):
29 CBN = true
30 else :
31 stateOP = OP NOT SUPPORTED
32
33 if (isReqdToPartInNgbrLookup = true)
34 Become(OPERATION EVALUATING)
35 NeighbourLookUp(tupleG1 , tupleG2 , CBS, &CBNState, border in common, NULL)
36 else :
37 Become(OPERATION EVALUATING)
38 NeighbourLookUp(NULL, NULL, CBS, &CBNState, border in common, NULL)
39
40
41 POST NEIGHBOURLOOKUP
4242 Spontaneously
43 if (CBN = true):
44 if (CBNState = segment node):
45 stateOP = true
46 stateOP = unknown
47
48 Become(TASK EVALUATING)
49 EvaluateBooleanValuedTask()
50

Figure B.9: Protocol BorderInCommon

196 APPENDIX B. ALGORITHMS

Protocol NeighbourLookUp(GIT∗ tupleG1 , GIT∗ tupleG2 , spatialOPChk , ∗operationState, OperationID,
drvdGmtryID)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the NeighbourLookUp protocol with a request to compute
2 // whether CBN is part of CBS, Common Area, CBS and Common area both, derived line,
3 // or derived region at time t0}
4 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n ∈ CBN computed a operation state as false, meetingPoint,
5 // intersectingPoint, segment node, true, or commonBoundaryNode }
6
7 Status Values: S= {OPERATION EVALUATING, IDLE, POST NEIGHBOURLOOKUP}
8 SST ART = {OPERATION EVALUATING}
9 ST ERM= {POST NEIGHBOURLOOKUP}

10
11 OPERATION EVALUATING
1212 Spontaneously
13 isGITReqPhase = true
14 reqMsgcount = 0
15 isLocalComputationDone = false
16 isCLUTComputationDone = false
17 opState = false
18 CBN = false
19 IsCLUTPossible = false
20 isEITComputationDone = false
21 StructCommonLocalizedUnitTriangle CLUT []
22 InvalidNgbrInf []
23
24 if ((tupleG1 != NULL) and (tupleG2 != NULL)):
25 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode= true)):
26 // CBN’s to transmit GIT-lookup request to neighbours
27 CBN = true
28 txTime = ComputeGITTxTime(m GITREQ)
29 Set Alarm(a t1, txTime)
30
31 if (spatialOPChk = RRINTERSECTION)
32 // If common area existence request is made by Intersection operator non-CBN’s
33 // that belongs to both operands and to the boundary of one of the operands
34 // also needs to to transmit GIT-lookup request to neighbours along with CBNs
35 if ((tupleG1_bndryNode = true) or (tupleG2_bndryNode= true)):
36 txTime = ComputeGITTxTime(m GITREQ)
37 Set Alarm(a t1, txTime)
38
39 if (spatialOPChk = RRMINUS):
40 // If part of derived region request is made by Minus operator non-CBN’s that
41 // belongs to both operands and to the boundary of second operand also needs
42 // to transmit GIT-lookup request to neighbours along with CBNs
43 if ((tupleG1_bndryNode = false) and (tupleG2_bndryNode= true)):
44 txTime = ComputeGITTxTime(m GITREQ)
45 Set Alarm(a t1, txTime)
46
47 Set Alarm(a t2, WAITGITREQ)
48
49 elseif ((tupleG1 != null) or (tupleG2 != null)):
50 Set Alarm(a t2, WAITGITREQ)
51 else
52 Become(IDLE):
53
5454 Receive(m GITREQ)
55 // To count number of GIT-lookup requests received from neighbours
56 if ((tupleG1_GID = m GITREQ.GID1)or (tupleG2_GID= m GITREQ.GID2)):
57 reqMsgCount = reqMsgCount + 1
58
59 // Idle wait period Expires
6060 When(a t5)
61 isGITReqPhase = false
62 Set Alarm(a t2, FIRET2)
63
64 // Time to transmit m GITREPLY message
6565 When(a t3)
66 Send(m GITREPLY, n.ID, IsPartOfGmtry(tupleG1), tupleG1_bndryNode,
67 IsPartOfGmtry(tupleG2), tupleG2_bndryNode) to N(n)
68
69 if (reqMsgcount < MAXREPLY):
70 SendGITReply()
71
72 // Time to transmit m GITREQ message
7373 When(a t1)
74 Send(m GITREQ, n.ID, tupleG1_GID, tupleG2_GID) to N(n)

Figure B.10: Protocol NeighbourLookUp

B.2. BOOLEAN-VALUED TASK 197

7474 Receive(m GITREPLY)
75 if (CBN = true):
76 if ((m GITREPLY.GIDG1=true) and (m GITREPLY.GIDG2=true)):
77 if ((m GITREPLY.BNG1=true) and (m GITREPLY.BNG2=true)):
78 nbrState = NBRCBN
79 else :
80 nbrState = NBRINTERSECT
81
82 elseif ((m GITREPLY.GIDG1=true) and (m GITREPLY.GIDG2=false)):
83 nbrState = NBRG1
84
85 elseif ((m GITREPLY.GIDG1=false) and (m GITREPLY.GIDG2=true)):
86 nbrState = NBRG2
87
88 sector = NIT ComputeSector(m GITREPLY.sourceID)
89
90 if (sectorNbrID[sector]= EMPTY):
91 sectorNbrState[sector] = nbrState
92 sectorNbrID[sector] = m GITREPLY.sourceID
93 else :
94 distance = NIT getDistanceToMe(m GITREPLY.sourceID)
95 prvNgbrDistance = NIT getDistanceToMe(sectorNbrID[sector])
96 if (distance < prvNgbrDistance):
97 sectorNbrState[sector] = nbrState
98 sectorNbrID[sector] = m GITREPLY.sourceID
99

100 // Time to transmit GIT Reply message and to perform local computation based on type of
101 // computation request and to return the control back
102102 When(a t2)
103 if (isGITReqPhase = true): // GIT-lookup Reply phase
104 isGITReqPhase = false
105 if (reqMsgcount > MAXREPLY):
106 reqMsgcount = MAXREPLY
107 Set Alarm(a t2, WAITGITREPLY)
108 if (reqMsgcount > 0):
109 SendGITReply()
110
111 // Local Computation after completion of GIT-lookup Reply phase
112 elseif ((isGITReqPhase = false) and (isLocalComputationDone = false)):
113 if (spatialOPChk = CBS):
114 ComputeCBSExistence()
115 elseif ((spatialOPChk = RRINTERSECTS) or (spatialOPChk = RRINTERSECTION)):
116 ComputeCommonAreaExistence()
117
118 elseif ((spatialOPChk = LRINTERSECT)or (spatialOPChk = LRMEETS)):
119 ComputeSegmentAreaInsideExistence()
120
121 elseif ((spatialOPChk = LLMEETS)or (spatialOPChk = LLINTERSECT)):
122 ComputeMeetingPointExistence()
123
124 elseif ((spatialOPChk = SHAREINFO)or (spatialOPChk = WAITIDLE)):
125 Set Alarm(a t2,LOCALCOMPUTATIONTIME+CLUTCOMPUTETXRXTIME)
126 isLocalComputationDone = true
127
128 elseif ((spatialOPChk = SHAREINFO-DG)or (spatialOPChk = WAITIDLE-DG)):
129 Set Alarm(a t2,EITCOMPUTETXRXTIME+CLUTCOMPUTETXRXTIME)
130 isLocalComputationDone = true
131 elseif (spatialOPChk = CBSANDCMNAREA):
132 ComputeCommonAreaAndCBSExistence()
133
134 elseif (spatialOPChk = LLMINUS):
135 ComputePartOfDerivedline()
136
137 elseif (spatialOPChk = RRMINUS):
138 ComputePartOfDerivedRegion()
139 // Finish evaluation and return control
140 elseif ((isGITReqPhase = false) and (isLocalComputationDone = true)):
141 ∗operationState = opState
142 Become(POST NEIGHBOURLOOKUP)
143 // Method DirectControlToOperation is responsible for directing the control to the required operation
144 DirectControlToOperation(OperationID)
145
146 // Time to transmit m InvalidCLUTInf message
147147 When(a t4)
148 if (isCLUTComputationDone = true):
149 InvalidNgbrInf [] = AssignNgbrInfEachInvalidClut()
150 Send(m InvalidCLUTInf, n.ID, InvalidNgbrInf []) to N(n)
151
152 // Time to transmit m InvalidEITInf message
153153 When(a t6)
154 if (isEITComputationDone = true):
155 Send(m InvalidEITInf, n.ID, drvdGmtryID, InvalidNgbrInf []) to N(n)
156

Figure B.10 (continued)

198 APPENDIX B. ALGORITHMS

156156 Receive(m InvalidCLUTInf)
157 if (IsCLUTPossible=true):
158 UpdateCLUTSInformation(m InvalidCLUTInf)
159
160160 Receive(m InvalidEITInf)
161 if (m InvalidEITInf.drvdGmtryID = drvdGmtryID):
162 EIT RemoveEdgesMinusOP(m InvalidEITInf)
163
164 IDLE
165165 Spontaneously
166 Set Alarm(a t5, WAITGITREQ + WAITGITREPLY)
167

Figure B.10 (continued)

B.30. The descriptions of some of these procedures are provided in Appendix B and for others
later in this chapter.

Procedure ComputeGITTxTime(txType)

1 delayVariance = 0
2 txTimeOut = RandomValue.rand()
3
4 if ((txType = m GITREQ) or (txType = m InvalidCLUTInf) or (txType =m InvalidEITInf)):
5 delayVariance = GITRQ DELAY VAR
6 else :
7 delayVariance = GITRP DELAY VAR
8
9 if (n.ID 6= 0):

10 txTimeOut =(txTimeOut % delayVariance)
11 txTimeOut =(((txTimeOut* n.ID) % delayVariance)))
12 else :
13 txTimeOut = (txTimeOut % delayVariance)
14
15 if (txType = m GITREQ):
16 txTimeOut = txTimeOut + MIN DELAY
17 return txTimeOut

Procedure SendGITReply()

1 txTime = ComputeGITTxTime(m GITREPLY)
2 Set Alarm(a t3, txTime)

Figure B.11: Procedures used by NeighbourLookUp protocol

B.2.1.7 EdgeInside

In this section, we describe the protocol for the computation of the edge inside operation.
Recall, from Section 4.2.1, that EdgeInside takes operands of type regions. The edge inside

computes whether an operand of type regions lies edge inside another operand of type re-

gions. For the computation of the operation state for this operation, CBN requires information
from its neighbours to compute whether it is part of CBS. Other entities can compute its state
based on the information in its own GIT.

For the computation of the CBS edge inside protocol makes use of the NeighbourLookUp
protocol with a request to compute common segment. For the computation of the CBS,
edge inside in Figure B.13 makes use of the NeighbourLookUp protocol shown in Figure B.10.
The procedures of NeighbourLookUp protocol for computing CBS are shown in Figure B.12.
The NeighbourLookUp protocol was described in Section B.2.1.6. Upon completion of neigh-
bourLookUp protocol with a request to compute CBS, all CBNs set their state to false if they
form a CBS (i.e., receive a state of segment node from NeighbourLookUp protocol).

B.2. BOOLEAN-VALUED TASK 199

Procedure ComputeCBSExistence()

1 isValidCBSExists = false
2 if ((isGITReqPhase=false)and (isLocalComputationDone = false)):
3 Set Alarm(a t2, LOCALCOMPUTATIONTIME)
4 reqMsgcount = 0
5
6 if (CBN =true):
7 isValidCBSExists = ConfirmCBS()
8 if (isValidCBSExists =true):
9 opState = segment node

10 else :
11 opState = commonBoundaryNode
12 isLocalComputationDone = true

Procedure ConfirmCBS()

1 validBSegG1 = false
2 validBSegG2 = false
3 isValidSeg = false
4
5 for sector = 1 to 12:
6 if (sectorNbrState[sector] = CBN):
7 validBSegG1 = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
8 if (validBSegG1 = true):
9 validBSegG1 = isCBSNotCommonToAdjacentLUTs(sector , tupleG1)

10 if (validBSegG1= true):
11 validBSegG2 = isCBSNotCommonToAdjacentLUTs(sector , tupleG2)
12 if ((validBSegG1= true) and (validBSegG2= true)):
13 isValidSeg = true
14 Break
15 return isValidSeg

Figure B.12: Procedures used by NeighbourLookUp protocol to confirm CBS

B.2.1.8 EdgeDisjoint

This section, describes the protocol for the computation of the edge disjoint operation, which
computes whether two regions are area disjoint and have no CBS. For the computation of
the operation state, a CBN requires information from its neighbours to compute whether it is
part of a CBS, other entities only use information in their own GIT.

For the computation of the CBS condition, the edge disjoint protocol in Figure B.14 makes
use of the NeighbourLookUp protocol. The procedures of NeighbourLookUp protocol for com-
puting CBS are shown in Figure B.12. The NeighbourLookUp protocol was described in the
preceding section. Upon completion of the NeighbourLookUp protocol, a CBN sets its state
to false if it forms a CBS (i.e., receives a segment node state from the NeighbourLookUp
protocol).

B.2.1.9 AreaDisjoint

This section, describes the protocol for the computation of the area disjoint operation infor-
mally described in Section 4.2.1.6. To compute this operation, CBNs require information from
their neighbours to compute whether they belong to a common area, while other entities only
need information available in their own GIT. For the computation of the common areas, the
area disjoint protocol request NeighbourLookUp protocol to confirm the existence of common
area (line 37 in Figure B.15). The working of the NeighbourLookUp protocol was explained in
Section B.2.1.6. The procedures used by the protocol for the computation of a common area
are shown in Figure B.16.

After the completion of the wait period for the reception of replies from neighbours (line

200 APPENDIX B. ALGORITHMS

Protocol EdgeInside(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the edge inside operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, unknown or false at time tf}
4
5 Status Values: S= {TASK EVALUATING,OPERATION EVALUATING,POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8 OPERATION EVALUATING
99 Spontaneously

10 StructGIT ∗tupleG1
11 StructGIT ∗tupleG2
12 isOperandsDTValid = false
13 tupleG1 = LocalGITLookup Search(gmtry1ID)
14 tupleG2 = LocalGITLookup Search(gmtry2ID)
15 CBN = false
16 stateOP = false
17 isReqdToPartInNgbrLookup = false
18
19 if ((tupleG1= null) and (tupleG2= null)):
20 stateOP = NOT PART OF OPERANDS
21 else :
22 isOperandsDTValid = CheckEIDataTypeValidity(tupleG1 ,tupleG2)
23 if (isOperandsDTValid):
24 isReqdToPartInNgbrLookup = true
25 if ((tupleG1 != null) and (tupleG2 != null)):
26 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
27 CBN = true
28 elseif ((tupleG1_bndryNode = false) and (tupleG2_bndryNode = true)):
29 stateOP = false
30 else :
31 stateOP = true
32 elseif ((tupleG1 = null) and (tupleG2 != null)):
33 stateOP = unknown
34 elseif ((tupleG1 != null) and (tupleG2 = null)):
35 stateOP = false
36 else :
37 stateOP = OP NOT SUPPORTED
38
39 if (isReqdToPartInNgbrLookup = true):
40 Become(OPERATION EVALUATING)
41 NeighbourLookUp(tupleG1 ,tupleG2 ,CBS,&CBNState,edge inside,Null)
42 else :
43 Become(OPERATION EVALUATING)
44 NeighbourLookUp(NULL,NULL,CBS,&CBNState,edge inside,Null)
45
46 POST NEIGHBOURLOOKUP
4747 Spontaneously
48 if (CBN = true)
49 if (CBNState = segment node):
50 stateOP = false
51 else :
52 stateOP = true
53 Become(TASK EVALUATING)
54 EvaluateBooleanValuedTask()
55

Figure B.13: Protocol EdgeInside

number 112 in Figure B.10) the ComputeCommonAreaExistence procedure (in Figure B.16)
is called by the entities. The ChkForCommonNeighbours procedure in Figure B.16 computes
whether an entity has a neighbour with NBRINTERSECT state in any of the sectors and more
than one neighbour with a NBRCBN state. If it finds any neighbour with a NBRINTERSECT
state, the CBN sets its opState to true. If it has less than two neighbours with NBRCBN state,
it does nothing and waits for the completion of the protocol. Otherwise, it repeats the following
process for each distinct pair of neighbours with NBRCBN state (i.e., CBN neighbours). It first
computes whether it forms a triangle with its CBN neighbours. If it does, it computes whether
it forms a CLUT with its CBN neighbours. The ComputePossibleCLUTs procedure in Figure
B.16 is invoked to test whether an entity forms a CLUT. If it does, it adds this information to

B.2. BOOLEAN-VALUED TASK 201

Protocol EdgeDisjoint(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the edge disjoint operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, false at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 CBN = false
17 stateOP = false
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = CheckEDDataTypeValidity(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 if ((tupleG1 != null) and (tupleG2 != null)):
27 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
28 CBN = true
29 else :
30 stateOP = false
31 elseif ((tupleG1 = null) and (tupleG2 != null)):
32 stateOP = true
33 elseif ((tupleG1 != null) and (tupleG2 = null)):
34 stateOP = true
35 else :
36 stateOP = OP NOT SUPPORTED
37 if (isReqdToPartInNgbrLookup = true)
38 NeighbourLookUp(tupleG1 , tupleG2 , CBS, &CBNState, edge disjoint, NULL)
39 else :
40 NeighbourLookUp(NULL, NULL, CBS, &CBNState, edge disjoint, NULL)
41
42
43 POST NEIGHBOURLOOKUP
4444 Spontaneously
45
46 if (CBN = true)
47 if (CBNState = segment node):
48 stateOP = false
49 else :
50 stateOP = true
51 Become(TASK EVALUATING)
52 EvaluateBooleanValuedTask()
53

Figure B.14: Protocol EdgeDisjoint

202 APPENDIX B. ALGORITHMS

the list of CLUT records.

Protocol AreaDisjoint(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the area disjoint operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, false at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 stateOP = false
15 CBN = false
16 tupleG1 = LocalGITLookup Search(gmtry1ID)
17 tupleG2 = LocalGITLookup Search(gmtry2ID)
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = CheckADDataTypeValidity(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 if ((tupleG1 = null) or (tupleG2 = null)):
27 stateOP = true
28 elseif ((tupleG1 != null)and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 CBN = true
31 else :
32 stateOP = false
33 else :
34 stateOP = OP NOT SUPPORTED
35 if (isReqdToPartInNgbrLookup = true)
36 Become(OPERATION EVALUATING)
37 NeighbourLookUp(tupleG1 , tupleG2 , RRINTERSECTS, &CBNState, area disjoint, NULL)
38 else :
39 Become(OPERATION EVALUATING)
40 NeighbourLookUp(NULL, NULL, RRINTERSECTS, &CBNState, area disjoint, NULL)
41
42
43 POST NEIGHBOURLOOKUP
4444 Spontaneously
45 if (CBN = true)
46 if (CBNState = true)
47 stateOP = false
48 else :
49 stateOP = true
50 Become(TASK EVALUATING)
51 EvaluateBooleanValuedTask()
52

Figure B.15: Protocol AreaDisjoint

Once ComputePossibleCLUTs has finished, the CBN checks whether the CLUT is valid
based on the information in its EIT table. Each CLUT record has an attribute denoting its EIT
validity (apart from the IDs of neighbouring entities). A CBN can compute such information
using the EIT ConfirmCLUTS procedure, which checks CLUT validity for the elements in the
list on the basis of a local EIT lookup. If a CBN finds that it is part of an invalid CLUT, it
sends information about the latter in a m InvalidCLUTInf message during the invalid CLUT
reply phase.

The m InvalidCLUTInf message comprises the source ID and the InvalidCLUTInf list, in
which each tuple includes the pair of neighbour IDs in the invalid CLUT. A CBN with a true

value for isCLUTPossible updates its CLUT information upon receiving the m InvalidCLUTInf

B.2. BOOLEAN-VALUED TASK 203

Procedure ComputeCommonAreaExistence()

1 if ((isGITReqPhase= false) and (isCLUTComputationDone = true)):
2 Set Alarm(a t2, LOCALCOMPUTATIONTIME)
3 isLocalComputationDone = true
4 if ((opState=false) and (CBN= true) and (IsCLUTPossible=true))
5 opState = PartOfValidCLUT()
6
7 // If the request for computing common area existence is made my
8 // Intersection operator then it is required to update the EIT table
9 if (spatialOPChk=RRINTERSECTION)

10 EIT UpdateInfIntersectionOP(drvdGmtryID, gmtry1ID, gmtry2ID, sectorNbrID, sectorNbrState)
11
12 elseif ((isGITReqPhase=false)and (isCLUTComputationDone = false)):
13 // Time to receive and transmit m InvalidCLUTInf message
14 Set Alarm(a t2, CLUTCOMPUTETXRXTIME)
15 reqMsgcount = 0
16 ChkForCommonNeighbours()
17
18 if (IsCLUTPossible = true)
19 ComputePossibleCLUTs()
20 CLUT [] = EIT ConfirmCLUTS(CLUT[])
21 isCLUTComputationDone = true
22 if (IsInvalidEdgeInfoInCLUTS())
23 SendInvalidCLUTInfo()

Procedure ChkForCommonNeighbours()

1 stateOP = false
2 IsCLUTPossible = false
3 for sectori = 1 to 12
4 if ((sectorNbrState[sectori] = NBRINTERSECT) and (CBN =true))
5 stateOP = true
6 elseif (sectorNbrState[sectori] = NBRCBN):
7 cntNgbrCBN = cntNgbrCBN + 1
8
9 if ((cntNgbrCBN >= 2) and (CBN =true))

10 IsCLUTPossible = true

Procedure ComputePossibleCLUTs()

1 isCreatingTriangle = false
2 isCreatingCLUT = false
3 CLUTExists = false
4
5 if ((IsCLUTPossible = true) and (CBN = true))
6 for sectori = 1 to 12
7 for sectorj = 2 to 12
8 if ((sectorNbrState[sectori] = CBN) and (sectorNbrState[sectorj] = CBN)
9 and (sectori != sectorj))

10 // n.ID denotes entity ID
11 isCreatingTriangle = NIT CreatingTriangle(n.ID, sectorNbrID[sectori], sectorNbrID[sectorj])
12
13 if (isCreatingTriangle = true)
14 isCreatingCLUT = CreatingCLUT(n.ID, sectorNbrID[sectori], sectorNbrID[sectorj])
15
16 if (isCreatingCLUT = true)
17 CLUTExists = IsCLUTAlreadyExists(CLUT [], n.ID, sectorNbrID[sectori],
18 sectorNbrID[sectorj])
19 if (CLUTExists = false)
20 InsertCLUTInfo(n.ID, sectorNbrID[sectori], sectorNbrID[sectorj])

Procedure SendInvalidCLUTInfo()

1 txTime = ComputeGITTxTime(m InvalidCLUTInf)
2 Set Alarm(a t4, txTime)

Figure B.16: Procedures used by Neighbour-Lookup protocol to compute common area

204 APPENDIX B. ALGORITHMS

message. After the completion of the wait period for the m InvalidCLUTInf message, a CBN
with false opState computes whether it is still a part of at least one valid CLUT. If it is, it set
its opState to true.

Upon completion of the NeighbourLookUp protocol, a CBN sets its operation state for
the area disjoint operation to false if it receives a true state from the invocation of the
NeighbourLookUp protocol with a request to compute the existence of common area between
operands.

B.2.1.10 Intersects

This section, describes the protocol for the computation of the intersects operation. Recall
from Section 4.2.1, that intersects computes whether two operands, in any combination of
type lines and regions, intersect.

If both operands are of type lines, the MBR entities use the NeighbourLookUp protocol
shown in Figure B.10 with a request to compute the existence of an intersects relationship
between values of type lines (line 39 in Figure B.17). If one of the operands is of type lines

and other of type regions the MBR entities use the NeighbourLookUp protocol with a request
to compute whether the lines value intersects the regions value (line 44 in Figure B.17).
Finally, if both operands of type regions, the entities use the NeighbourLookUp protocol with
a request to compute the existence of common area (line 48 in Figure B.17).

The procedures used by NeighbourLookUp protocol for computing the existence of an intersects

relationship between values of type lines are given in Figure B.18. The procedures used for
computing the existence of an intersects relationship between values of type lines and regions

are shown in Figure B.19. Finally, the procedures for computing the existence of intersects re-
lationship between values of type regions value are shown in Figure B.16. To compute whether
one lines value intersects another, after the completion of GIT reply phase the Neighbour-
LookUp protocol calls the ComputeMeetingPointExistence procedure to compute the existence
of a CBS (line 8 in Figure B.18). If a CBN is not part of a valid CBS, it checks whether its
minimum distance neighbours in sectors form a cyclic concatenation of two sublists, each be-
longing to one of the operand using the ConfirmCyclicConcatSubLists procedure. The protocol
returns false if the CBN is part of a valid CBS, meetingPoint if the neighbours list is the
cyclic concatenation of two sublists, and intersectingPoint if the neighbours list is not a cyclic
concatenation of two sublists.

To compute the intersects relationship between lines and regions value, after the com-
pletion of GIT reply phase, the ComputeSegmentAreaInsideExistence procedure in Figure B.19
calls the ComputeSegIntersectRegion procedure to check whether one or more segments of an
operand of type lines is area inside the operand of type regions.

The NeighbourLookUp protocol returns intersectingPoint, if at least one neighbour of
CBN has a state NBRINTERSECT (i.e., the neighbour belongs to interior of regions value
and to lines value), or has a state NBRCBN (i.e., the neighbour belongs to boundary of
regions value and to lines value) and the segment created is a valid segment. If a CBN
is not part of a valid segment, then it it checks whether its minimum distance neighbours
in sectors form a cyclic concatenation of two sublists, each belonging to one of the operand

B.2. BOOLEAN-VALUED TASK 205

Protocol Intersects(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the intersects operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true, false or unknown at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 stateOP = unknown
15 CBN = false
16 tupleG1 = LocalGITLookup Search(gmtry1ID)
17 tupleG2 = LocalGITLookup Search(gmtry2ID)
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = CheckIntersectsDTValidity(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 if ((tupleG1 = null) or (tupleG2 = null)):
27 stateOP = unknown
28 elseif ((tupleG1 != null)and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 CBN = true
31 else :
32 stateOP = true
33 else :
34 stateOP = OP NOT SUPPORTED
35
36 if (isReqdToPartInNgbrLookup = true)
37 if ((tupleG1_dataType = lines) and (tupleG2_dataType = lines)):
38 Become(OPERATION EVALUATING)
39 NeighbourLookUp(tupleG1 , tupleG2 , LLINTERSECT , &CBNState, intersects, NULL)
40
41 elseif ((tupleG1_dataType = lines) and (tupleG2_dataType = regions)) or
42 ((tupleG1_dataType = regions) and (tupleG2_dataType = lines)):
43 Become(OPERATION EVALUATING)
44 NeighbourLookUp(tupleG1 , tupleG2 , LRINTERSECT , &CBNState, intersects, NULL)
45
46 elseif ((tupleG1_dataType = regions) and (tupleG2_dataType = regions)):
47 Become(OPERATION EVALUATING)
48 NeighbourLookUp(tupleG1 , tupleG2 , RRINTERSECT , &CBNState, intersects, NULL)
49 else :
50 // Entity that is part of only one operand and of valid data type
51 Become(OPERATION EVALUATING)
52 NeighbourLookUp(tupleG1 , tupleG2 , SHAREINFO, &CBNState, intersects, NULL)
53 else :
54 // Entity that is not part of any operand
55 Become(OPERATION EVALUATING)
56 NeighbourLookUp(NULL, NULL, WAITIDLE, &CBNState, intersects, NULL)
57
58
59 POST NEIGHBOURLOOKUP
6060 Spontaneously
61 if (CBN = true)
62 if ((tupleG1_dataType = lines) and (tupleG2_dataType = lines)):
63 if (CBNState = intersectingPoint):
64 stateOP = true
65 else :
66 stateOP = false
67 elseif ((tupleG1_dataType = regions) and (tupleG2_dataType = regions)):
68 if (CBNState = true):
69 stateOP = true
70 elseif ((tupleG1_dataType = lines) and (tupleG2_dataType = regions)) or
71 ((tupleG1_dataType = regions) and (tupleG2_dataType = lines)):
72 if (CBNState = intersectingPoint):
73 stateOP = true
74 else :
75 stateOP = false
76 Become(TASK EVALUATING)
77 EvaluateBooleanValuedTask()
78

Figure B.17: Protocol Intersects

206 APPENDIX B. ALGORITHMS

using the ConfirmCyclicConcatSubLists procedure. The protocol returns meetingPoint, if
the neighbours list is the cyclic concatenation of two sublists.

Procedure ComputeMeetingPointExistence()

1 isCmnSegExists = false
2 isMeetingPoint = false
3 if ((isGITReqPhase=false) and (isLocalComputationDone = false)):
4 Set Alarm(a t2, LOCALCOMPUTATIONTIME+CLUTCOMPUTETXRXTIME)
5 reqMsgcount = 0
6
7 if (CBN =true):
8 for sector = 1 to 12
9 if (sectorNbrState[sector] = NBRCBN):

10 validBSeg = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
11 if (validBSeg= true):
12 isCmnSegExists = true
13 Break
14
15
16 if (isCmnSegExists = true):
17 opState = false
18 elseif (isCmnSegExists = false):
19 isMeetingPoint = ConfirmCyclicConcatSubLists(sectorNbrID[], sectorNbrState[])
20 if (isMeetingPoint = true):
21 opState = meetingPoint
22 else :
23 opState = intersectingPoint
24 isLocalComputationDone = true

Figure B.18: Procedures used by NeighbourLookUp protocol to compute whether two lines
values meets or intersects

B.2.1.11 Adjacent

This section, describes the protocol for the computation of the adjacent operation. The protocol
for adjacent is shown in Figure B.20. Recall, from Section 4.2.1, that Adjacent takes operands
of type regions. The operation computes whether operands are area disjoint and have at
least one CBS.

To test the existence of a common area or of a CBS, the adjacent protocol makes use of the
NeighbourLookUp protocol. The procedures of the NeighbourLookUp protocol for computing
common area and CBS are shown in Figure B.21, B.12, and B.16. The NeighbourLookUp pro-
tocol was described in Section B.2.1.6. After the completion of the GIT reply phase, the Neigh-
bourLookUp protocol uses the ComputeCommonAreaAndCBSExistence procedure to compute
whether the two regions values are area disjoint and have a boundary segment in common.
The ChkForCommonNeighbours procedure is called to confirm whether a CBN has any neigh-
bours which belong to both operands. The description of the computation to test whether a
CBN belongs to a common area is given in Section B.2.1.9. If a CBN is not part of a com-
mon area, it uses the ConfirmCBS procedure of the NeighbourLookUp protocol (as explained
in Section B.2.1.6) to check whether it is part of a valid CBS. The NeighbourLookUp protocol
returns state commonBoundaryNode if a CBN is not part of common area and not of CBS,
segment node if a CBN is not part of common area and part of CBS, and false otherwise.

Upon completion of the NeighbourLookUp protocol, a CBN sets its state as follows (line 45
in Figure B.20). The segment node state denotes that the CBN is not part of a common area
between two operands and is part of a valid CBS. The false state denotes that the CBN is part
of a common area. The disjoint state denotes that the CBN is not part of a CBS nor of any

B.2. BOOLEAN-VALUED TASK 207

Procedure ComputeSegmentAreaInsideExistence()

1 isSegAI = false
2 isMeetingPoint = false
3 if ((isGITReqPhase=false) and (isLocalComputationDone = false)):
4 Set Alarm(a t2, LOCALCOMPUTATIONTIME+CLUTCOMPUTETXRXTIME)
5 reqMsgcount = 0
6 if (CBN =true):
7 isSegAI = ComputeSegIntersectRegion()
8 if (isSegAI =true):
9 opState = intersectingPoint

10 else :
11 isMeetingPoint = ConfirmCyclicConcatSubLists(sectorNbrID[], sectorNbrState[])
12 if (isMeetingPoint = true):
13 opState = meetingPoint
14 else
15 opState = false
16 isLocalComputationDone = true

Procedure ComputeSegIntersectRegion()

1 validBSeg = false
2 isSegAI = false
3 for sector = 1 to 12
4 if (sectorNbrState[sector] = NBRINTERSECT):
5 validBSeg = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
6 if (validBSeg= true):
7 isSegAI = true
8 Break
9 if (sectorNbrState[sector] = NBRCBN):

10 validBSeg = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
11 if (validBSeg= true):
12 isSegAI = true
13 Break
14
15 return isSegAI

Figure B.19: Procedures used by NeighbourLookUp protocol to compute whether lines value
meets or intersects regions value

common area.

B.2.1.12 Meets

This section, describes the protocol for the computation of the meets operation in Figure B.22.
The procedures used by NeighbourLookUp protocol for computing the existence of a meets re-
lationship between values of type lines are given in Figure B.18, and was discussed in Section
B.2.1.10. A CBN sets its state to true upon receiving the state meetingPoint from the Neigh-
bourLookUp protocol, otherwise it sets its state to false. The procedures used for computing
the existence of a meets relationship between a lines value and a regions value are shown in
Figure B.19, and was discussed in Section B.2.1.10. A CBN sets its state to true upon receiv-
ing the state meetingPoint from the NeighbourLookUp protocol, otherwise it sets its state to
false.

For computing the existence of meets relationship between regions values, the Neighbour-
LookUp protocol uses the ComputeCommonAreaAndCBSExistence procedure in Figure B.21.
ComputeCommonAreaAndCBSExistence procedure, and was discussed in Section B.2.1.11. A
CBN sets its state to commonBoundaryNode upon receiving the state commonBound-

aryNode from the NeighbourLookUp protocol, otherwise it sets its state to false.

208 APPENDIX B. ALGORITHMS

Protocol Adjacent(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the adjacent operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, disjoint, false or segment node at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 stateOP = false
15 CBN = false
16 tupleG1 = LocalGITLookup Search(gmtry1ID)
17 tupleG2 = LocalGITLookup Search(gmtry2ID)
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = CheckAdjacentDTValidity(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 if ((tupleG1 = null) or (tupleG2 = null)):
27 stateOP = disjoint
28 elseif ((tupleG1 != null)and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 CBN = true
31 else :
32 stateOP = false
33 else :
34 stateOP = OP NOT SUPPORTED
35
36 if (isReqdToPartInNgbrLookup):
37 Become(OPERATION EVALUATING)
38 NeighbourLookUp(tupleG1 , tupleG2 , CBSANDCMNAREA, &CBNState, adjacent, NULL)
39 else :
40 Become(OPERATION EVALUATING)
41 NeighbourLookUp(NULL, NULL, CBSANDCMNAREA, &CBNState, adjacent, NULL)
42
43 POST NEIGHBOURLOOKUP
4444 Spontaneously
45 if (CBN = true):
46 if (CBNState = segment node):
47 stateOP = segment node
48 elseif (CBNState = commonBoundaryNode):
49 stateOP = disjoint
50 else :
51 stateOP = false
52 Become(TASK EVALUATING)
53 EvaluateBooleanValuedTask()
54

Figure B.20: Protocol Adjacent

B.2. BOOLEAN-VALUED TASK 209

Procedure ComputeCommonAreaAndCBSExistence()

1 CBSExists = 0
2 if ((isGITReqPhase= false)and (isLocalComputationDone = false) and (isCLUTComputationDone = true)):
3 Set Alarm(a t2, LOCALCOMPUTATIONTIME)
4 isLocalComputationDone = true
5 if ((opState=false) and (CBN= true)and (IsCLUTPossible=true))
6 isPartOfCLUT = PartOfValidCLUT()
7
8 // CBN is part of common area
9 if (isPartOfCLUT=true)

10 opState = false
11
12 // To compute CBS, as CBN is not part of common area
13 if ((isPartOfCLUT=false) and (CBN= true))
14 CBSExists = ConfirmCBS()
15 if (CBSExists=CBS):
16 opState = segment node
17 else :
18 opState = commonBoundaryNode
19
20 elseif ((isGITReqPhase=false) and (isCLUTComputationDone = false)):
21 reqMsgcount = 0
22 Set Alarm(a t2, CLUTCOMPUTETXRXTIME)
23 ChkForCommonNeighbours() // in Figure B.16
24 if (IsCLUTPossible = true):
25 ComputePossibleCLUTs(CLUT[])
26 CLUT [] = EIT ConfirmCLUTS(CLUT[])
27 if (IsInvalidEdgeInfoInCLUTS()):
28 SendInvalidCLUTInfo()
29 isCLUTComputationDone = true

Figure B.21: Procedures used by NeighbourLookUp protocol to compute existence of CBS and
common area

B.2.2 Aggregation

This section provide more details on the gossip-based scheme that underpins the selection of
geometry-element leaders and the aggregation of local task states. The protocol is shown in
Figure B.23. The process involves a number of rounds, in each of which an entity can be in one
of seven states, viz., IDLE, LEAD PENDING, GROUP LEAD, MEMBERSHIP PENDING, GROUP MEMBER,
TENTATIVELY CONVERGE, CONVERGE. In the first round, group members declare themselves SEG
leaders but, gradually, after successive rounds, as a result of the convergence properties of the
algorithm, a single, final SEG leader and aggregated task state at the geometry-element level
emerges and each node part of the geometry is aware of it. Initially, each entity is in the IDLE

state. Once this state expires, the entity generates a random value that denotes its bid to be
group leader. The LeaderElection procedure is responsible for generating a bid. If this bid
value is greater than a probability threshold the entity moves to the IDLE state. A maximum
limit has been set to handle the problem of consecutive retries an entity could make to become
a GROUP LEAD, in case if each time the computed bid value is greater than threshold and not
hearing any GROUP LEAD request from its neighbours. The purpose of adding this condition is
two-fold: firstly, to give preference to an entity that is not receiving group leader requests from
neighbouring entities as they are busy in the current round and is unable to poll a valid bid in
the maximum consecutive number of retries, and, secondly, to handle the problem of delayed
convergence, if most of the neighbouring entities have already converged, and the entity still
has to complete certain number of rounds to move to CONVERGE state.

If the bid value is less than a probability threshold, the entity moves to the LEAD PENDING

state and broadcasts the m GLRQ message. The group leader request message m GLRQ,

210 APPENDIX B. ALGORITHMS

Protocol Meets(gmtry1ID, gmtry2ID, stateOP)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the meets operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed a operation state as
3 // opNotSupported, NotPartOfOperands, true or commonBoundaryNode, disjoint, false at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 SINT ERMEDIAT E= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 isOperandsDTValid = false
14 tupleG1 = LocalGITLookup Search(gmtry1ID)
15 tupleG2 = LocalGITLookup Search(gmtry2ID)
16 CBN = false
17 stateOP = false
18 CBNState = false
19 isReqdToPartInNgbrLookup = false
20
21 if ((tupleG1= null) and (tupleG2= null)):
22 stateOP = NOT PART OF OPERANDS
23 else :
24 isOperandsDTValid = CheckMeetsDTValidity(tupleG1 , tupleG2)
25 if (isOperandsDTValid):
26 isReqdToPartInNgbrLookup = true
27 if ((tupleG1 != null) and (tupleG2 != null)):
28 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
29 CBN = true
30 else :
31 stateOP = false
32 elseif ((tupleG1 = null) and (tupleG2 != null)):
33 stateOP = disjoint
34 elseif (((tupleG1 != null) and (tupleG2 = null)):
35 stateOP = disjoint
36 else :
37 stateOP = OP NOT SUPPORTED
38 if (isReqdToPartInNgbrLookup):
39 if ((tupleG1_dataType = lines) and (tupleG2_dataType = lines)):
40 Become(OPERATION EVALUATING)
41 NeighbourLookUp(tupleG1 , tupleG2 , LLMEETS, &CBNState, meets, NULL)
42
43 elseif (((tupleG1_dataType = lines) and (tupleG2_dataType = regions)) or
44 ((tupleG1_dataType = regions) and (tupleG2_dataType = lines))):
45 Become(OPERATION EVALUATING)
46 NeighbourLookUp(tupleG1 , tupleG2 , LRMEETS, &CBNState, meets, NULL)
47
48 elseif ((tupleG1_dataType = regions) and (tupleG2_dataType = regions)):
49 Become(OPERATION EVALUATING)
50 NeighbourLookUp(tupleG1 , tupleG2 , CBSANDCMNAREA, &CBNState, meets, NULL)
51 else :
52 // Entity that is part of only one operand and of valid data type
53 Become(OPERATION EVALUATING)
54 NeighbourLookUp(tupleG1 , tupleG2 , SHAREINFO, &CBNState, meets, NULL)
55
56 else :
57 // Entity that is not part of any operand
58 Become(OPERATION EVALUATING)
59 NeighbourLookUp(NULL, NULL, WAITIDLE, &CBNState, meets, NULL)
60
61 POST NEIGHBOURLOOKUP
6262 Spontaneously
63 if (CBN = true)
64 if ((tupleG1_dataType = regions) and (tupleG2_dataType = regions)):
65 if (CBNState = commonBoundaryNode):
66 stateOP = commonBoundaryNode
67 else :
68 stateOP = false
69 if ((tupleG1_dataType = lines) or (tupleG2_dataType = lines)):
70 if (CBNState = meetingPoint):
71 stateOP = true
72
73 else :
74 stateOP = false
75 Become(TASK EVALUATING)
76 EvaluateBooleanValuedTask()
77

Figure B.22: Protocol Meets

B.2. BOOLEAN-VALUED TASK 211

conveys the source ID (srcID), and the geometry ID (gmtryID). Upon transmission of the
request, the entity moves to the GROUP LEAD state and waits, for a specified duration, for
membership information. Upon receiving m GLRQ message an entity in the IDLE state, moves
to the MEMBERSHIP PENDING state and transmits group member reply m GMRP message, to the
candidate group leader and moves to the GROUP MEMBER state (line 54 in Figure B.23). In the
first round, group members declare themselves SEG leaders.

The m GMRP message conveys its partially aggregated results (taskStateSEG), and SEG
leader information (leaderSEG). In the GROUP MEMBER state, the entity waits for a specified
duration for the reply from its group leader. Upon receiving reports from group members,
the entity that happens to be in the GROUP LEAD state aggregates (i.e., using BitwiseAND) the
reported results and identifies the minimum entity ID between its own leaderSEG and the
proposed leaderSEG received in the group members m GMRP message (line 62 in Figure B.23).
Upon expiry of the wait period for members to report, the group leader entity broadcasts
a reply m GLRP message to its group members containing the computed aggregated result
(taskStateSEG) and the updated SEG leader ID (leaderSEG). Upon receiving such a reply
message from its group leader (line 83 in Figure B.23), an entity in the GROUP MEMBER state
aggregates its own outcome (taskStateSEG) with the outcome sent by the group leader and
updates its (leaderSEG) to the minimum between its own (leaderSEG) value and the one
received in the leader reply. As a stopping criterion for this iterative process, a technique is
used that allows each entity to determine if convergence has occurred. For this purpose, upon
receiving the required information and performing the required computation each entity in
the GROUP LEAD or the GROUP MEMBER state monitors any change in its taskStateSEG and its
leaderSEG at the end of every round. If these do not change at the end of round, an entity
increments the parameter which keeps record of the number of consecutive rounds for which the
parameters do not change, by one. If these do not change after a specified number of consecutive
rounds, the entity moves to the TENTATIVELY CONVERGE state. If, at the end of a round, any
of the parameters (i.e., taskStateSEG or leaderSEG) changes, it initializes the round count to
zero and moves to the IDLE state. Upon changing the state to TENTATIVELY CONVERGE, it waits
in this state for a specified duration. If it does not receive any m GLRQ message from its
neighbours during that time, the entity moves to the CONVERGE state when the waiting period
expires, otherwise it moves to the MEMBERSHIP PENDING state and participates in another round
(line 106 in Figure B.23). As a result of the convergence properties of the algorithm, a single,
final SEG leader and aggregated task state at the geometry element level emerges and each
entity in the geometry becomes aware of it.

To address the risk of packet loss due to collision, wait period has been used. When the wait
period expires, the entity changes state as described above even if it does not receive a packet
for which it was waiting. The purpose is to differentiate the scenarios in which the GROUP LEAD

does not receive any membership message because of packet loss, or because neighbouring
entities have converged, or because neighbouring entities are already in either the GROUP LEAD

or the GROUP MEMBER states. In such a case, as there will be no change in GROUP LEAD results,
at the end of its wait for membership reports, incrementing the tentative convergence round
count would impact on the successful convergence of the geometry and not incrementing could

212 APPENDIX B. ALGORITHMS

Protocol Aggregation(gmtryID, ∗taskStateSEG, ∗leaderSEG)

1 // PINIT ≡ {Entities in a geometry element with at least one operation state other than
2 // OP not applicable participate in the aggregation of the task state at time t0}
3 // PF INAL ≡ {Every entity in the geometry element knows who is the SEG leader and what
4 // is the partial aggregated task state at time tf}
5
6 Status Values: S= {IDLE, GROUP LEAD, GROUP MEMBER, MEMBERSHIP PENDING, LEAD PENDING,
7 TENTATIVELY CONVERGE, CONVERGE }
8 SST ART = {IDLE }
9 SINT ERMEDIAT E= {IDLE, GROUP LEAD, GROUP MEMBER, MEMBERSHIP PENDING, LEAD PENDING,

10 TENTATIVELY CONVERGE, CONVERGE }
11 ST ERM = {TASK EVALUATING}
12
13 IDLE
1414 Spontaneously
15 Set Alarm(a t1, IDLE TIMEOUT)
16
17 // Idle period time out
1818 When(a t1)
19 isGroupLeader = LeaderElection()
20 cntSuccessiveBidAttempts = cntSuccessiveBidAttempts + 1
21 if ((isGroupLeader = true) or (cntSuccessiveBidAttempts > MAXBIDATTEMPT)):
22 cntSuccessiveBidAttempts = 0
23 Become(LEAD PENDING)
24 else :
25 Become(IDLE)
26
27
2828 Receive(m GLRQ)
29 if (gmtryID = m GLRQ.gmtryID):
30 Stop Alarm(a t1)
31 cntSuccessiveBidAttempts = 0
32 Become(MEMBERSHIP PENDING)
33
34 LEAD PENDING
3535 Spontaneously
36 isMembersInfoRcvd = false
37 // n.ID denotes entity ID
38 srcID = n.ID
39 txTime = ComputeAggMsgTxTime(LEAD PENDING)
40 Set Alarm(a t6, txTime)
41
4242 When(a t6)
43 Send(m GLRQ, srcID, gmtryID) to N(n)
44 Become(GROUP LEAD)
45
46 MEMBERSHIP PENDING
4747 Spontaneously
48
49 txTime = ComputeAggMsgTxTime(MEMBERSHIP PENDING)
50 Set Alarm(a t5, txTime)
51
5252 When(a t5)
53 Send(m GMRP, ∗LeaderSEG, ∗taskStateSEG) to groupLeader
54 Become(GROUP MEMBER)
55
56 GROUP LEAD
5757 Spontaneously
58
59 txTime = ComputeAggMsgTxTime(GROUP LEAD)
60 Set Alarm(a t2,(LEADER TIMEOUT+ txTime))
61
6262 Receive(m GMRP)
63 ∗LeaderSEG = MinNodeID(m GMRP.leaderSEG, ∗LeaderSEG)
64 ∗taskStateSEG = BitwiseAND(∗taskStateSEG, m GMRP.taskStateSEG)
65 isMembersInfoRcvd = true
66
67 // Group Leader Time Out
6868 When(a t2)
69 srcID = n.ID
70 Send(m GLRP, srcID, ∗LeaderSEG, ∗taskStateSEG) to N(n)
71 isTentativeConverged = CheckConvergence(isMembersInfoRcvd)
72 if (isTentativeConverged):
73 Become(TENTATIVELY CONVERGE)
74 else :
75 Become(IDLE)
76

Figure B.23: Protocol Aggregation

B.2. BOOLEAN-VALUED TASK 213

76 GROUP MEMBER
7777 Spontaneously
78
79 txTime = ComputeAggMsgTxTime(GROUP MEMBER)
80 Set Alarm(a t3,(MEMBER TIMEOUT+ txTime))
81
8282 Receive(m GLRP)
83 if (groupLeader = m GLRP.srcID):
84 Stop Alarm(a t3)
85 ∗LeaderSEG = MinNodeID(m GLRP.leaderSEG, ∗LeaderSEG)
86 ∗taskStateSEG = BitwiseAND(∗taskStateSEG, m GMRP.taskStateSEG)
87 isConverged = CheckConvergence(∗LeaderSEG, ∗taskStateSEG, true)
88 if (isConverged):
89 Become(TENTATIVELY CONVERGE)
90 else :
91 Become(IDLE)
92
93 // Group Member Time Out
9494 When(a t3)
95 Become(IDLE)
96
97 TENTATIVELY CONVERGE
9898 Spontaneously
99 Set Alarm(a t4, CONVERGENCE TIMEOUT)

100
101101 Receive(m GLRQ)
102 if (gmtryID = m GLRQ.gmtryID):
103 Stop Alarm(a t4)
104 cntSuccessiveBidAttempts = 0
105 groupLeader = m GLRQ.srcID
106 Become(MEMBERSHIP PENDING)
107
108 // Tentative Convergence Time Out
109109 When(a t4)
110 Become(CONVERGE)
111
112 CONVERGE
113113 Spontaneously
114 Become(TASK EVALUATING)
115

Figure B.23 (continued)

Procedure CheckConvergence(isMembersInfoRcvd)

1 if ((∗taskStateSEG = previousTaskStateSEG) and (∗LeaderSEG = previousLeaderSEG)):
2 if (isMembersInfoRcvd = true):
3 equivCount = equivCount +1
4 else :
5 equivCount = equivCount +0.4
6 else :
7 equivCount = 0
8 previousLeaderSEG = ∗LeaderSEG
9 previousTaskStateSEG = ∗taskStateSEG

10 if (equivCount >= EQUAL THRESHOLD):
11 return true
12 else :
13 return false

Procedure ComputeAggMsgTxTime(state)

1 txTimeOut = RandomValue.rand()
2 if (state = MEMBERSHIP PENDING):
3 delay var = MBR TX RANDOMNESS
4 else :
5 delay var = LDR TX RANDOMNESS
6 if (n.ID 6= 0):
7 txTimeOut =(txTimeOut % delay var)
8 txTimeOut =(((txTimeOut* n.ID) % delay var)))
9 else :

10 txTimeOut = (txTimeOut % delay var)
11 return txTimeOut

Figure B.24: Procedures used by Aggregation protocol

214 APPENDIX B. ALGORITHMS

prevent an entity from converging (i.e., keep on trying). In order to handle such a situation,
if the group leader entity does not receive any group membership message, it increments the
tentative convergence round count by less than one (i.e., 0.4), instead by one as explained above
(line 5 in Figure B.23).

B.2.3 Result Processing

Once the distributed evaluation sub-task is concluded, results are routed towards the first-level
leader by the SEG leaders along the tree that was established during task dissemination. The
result processing protocol is shown in Figure B.25.

Protocol Result Processing(taskState, gmtryID)

1 // PINIT ≡ ”Only SEG leaders has the m RoutingInf message at time t0 and will act as initiator”
2 // PF INAL ≡ ”Sink will receive m RoutingResult message containing the final outcome by time tf

3
4 Status Values: S= {SEGLEADER, AVAILABLE, FIRSTLEVELLEADER }
5 SST ART = {SEGLEADER}
6 SINIT = {SEGLEADER, AVAILABLE}
7 SINT ERMEDIAT E= {FIRSTLEVELLEADER }
8 ST ERM= {AVAILABLE}
9

10 SEGLEADER
1111 Spontaneously
12 // n.ID denotes entity ID
13 srcID = n.ID
14 destID = n.ID
15 msgRxCount = 0
16 retransmitAttempt = 0
17 isFirstLvlLeader = TaskDissemination FirstLevelLdr()
18 if (isFirstLvlLeader = false):
19 txTime = ComputeRouteMsgTxTime()
20 Set Alarm(a t11, txTime)
21 cntRcvdDistinctGmtries = ComputeCntRcvdGmtries(m RoutingInf .gmtryID)
22 else :
23 Become(FIRSTLEVELLEADER)
24
2525 When(a t11)
26 destID = TaskDissemination getParentID()
27 Send(m RoutingInf, srcID, taskState) to destID
28 retransmitAttempt = retransmitAttempt + 1
29 if (retransmitAttempt < RETRYATTEMPTS):
30 txTime = ComputeWaitAckTime()
31 Set Alarm(a t11, txTime)
32 Become(AVAILABLE)
33
3434 Receive(m RoutingAck)
35 Stop Alarm(a t11)
36
37 AVAILABLE
3838 When(a t11)
39 destID = TaskDissemination getParentID()
40 if (msgID = m RoutingInf):
41 Send(m RoutingInf, srcID, taskState) to destID
42 elseif (msgID = m RoutingResult):
43 Send(m RoutingResult, srcID, taskState) to destID
44 retransmitAttempt = retransmitAttempt + 1
45 if (retransmitAttempt < RETRYATTEMPTS)
46 txTime = ComputeWaitAckTime()
47 Set Alarm(a t11, txTime)
48

Figure B.25: Protocol Result Processing

A SEG leader first computes whether it is a first-level leader (line 17 in Figure B.25). If it is
not, it transmits a m RoutingInf message towards its parent entity (which has been determined
during task dissemination) and sets a wait timer for the reception of an acknowledgement. The
m RoutingInf message conveys source ID (srcID), geometry ID (gmtryID) and the partial

B.2. BOOLEAN-VALUED TASK 215

4848 When(a t13)
49 Send(m RoutingAck, srcID) to childID
50 if (isFirstLvlLeader = false):
51 txTime = ComputeRouteMsgTxTime()
52 Set Alarm(a t11, txTime)
53
5454 Receive(m RoutingAck)
55 Stop Alarm(a t11)
56
5757 Receive(m RoutingInf)
58 childID = m RoutingInf .srcID
59 isFirstLvlLeader = TaskDissemination FirstLevelLdr()
60 msgID = m RoutingInf
61 if (isFirstLvlLeader = true):
62 Become(FIRSTLEVELLEADER)
63 cntRcvdDistinctGmtries = ComputeCntRcvdGmtries(m RoutingInf .gmtryID)
64 txTime = ComputeRouteACKMsgTxTime()
65 Set Alarm(a t13, txTime)
66
6767 Receive(m RoutingResult)
68 childID = m RoutingResult.srcID
69 msgID = m RoutingResult
70 txTime = ComputeRouteACKMsgTxTime()
71 Set Alarm(a t13, txTime)
72
73 FIRSTLEVELLEADER
7474 Spontaneously
75 srcID = n.ID
76 msgRxCount = 1
77 expDistinctGmtries = ComputeExpDistinctGmtries(postfixtask)
78 timeToWait = ComputeWaitTimeForSEGs(expDistinctGmtries, cntRcvdDistinctGmtries)
79 Set Alarm(a t12, timeToWait)
80
8181 When(a t11)
82 destID = TaskDissemination getParentID()
83 Send(m RoutingResult, srcID, taskResult, gmtryID) to destID
84 retransmitAttempt = retransmitAttempt + 1
85 if (retransmitAttempt < RETRYATTEMPTS)
86 txTime = ComputeWaitAckTime()
87 Set Alarm(a t11, txTime)
88 else :
89 Become(AVAILABLE)
90
9191 When(a t13)
92 Send(m RoutingAck, srcID) to childID
93
9494 When(a t12)
95 if (cntRcvdDistinctGmtries < expDistinctGmtries)
96 Reset Alarm(a t12, DELAYWAIT)
97 cntRcvdDistinctGmtries = expDistinctGmtries
98
99 opStates[] = DecompressTaskState()

100 taskResult = ApplyBooleanConnectives(opStates[])
101 txTime = ComputeRouteMsgTxTime()
102 Set Alarm(a t11, txTime)
103
104104 Receive(m RoutingAck)
105 Stop Alarm(a t11)
106 Become(AVAILABLE)
107
108108 Receive(m RoutingInf)
109 childID = m RoutingInf .srcID
110 cntRcvdDistinctGmtries = ComputeCntRcvdGmtries(m RoutingInf .gmtryID)
111 msgRxCount = msgRxCount + 1
112 timeToWait = ComputeWaitTimeForSEGs(expDistinctGmtries, cntRcvdDistinctGmtries)
113 Reset Alarm(a t12, timeToWait)
114 if ((msgRxCount > 1) and (isFirstLvlLeader)):
115 taskState = BitwiseAND(taskState, m RoutingInf .taskState)
116 elseif ((msgRxCount <= 1) and (isFirstLvlLeader)):
117 taskState = m RoutingInf .taskState
118 txTime = ComputeRouteACKMsgTxTime()
119 Set Alarm(a t13, txTime)
120

Figure B.25 (continued)

216 APPENDIX B. ALGORITHMS

aggregated task state (taskState). Upon receiving this information, the parent entity sends
the acknowledgement and forwards the message towards its own parent unless it itself is the
first-level leader. If a child sees the wait period expire without receiving an acknowledgement,
it retransmits the message towards the parent.

Upon finding itself the first-level leader, an entity moves to the FIRSTLEVELLEADER state
and waits for certain amount of time for the task states from other SEG leaders (more than one
in case of MEGs). The first-level leader then aggregates the task states from the SEG leaders.
Upon the expiry of the wait period, the first-level leader decompresses the finally aggregated
task state and computes the operation states (line 99 in Figure B.25). These operation states
represent the final result for each spatial predicate in the task. The next step is to apply the
Boolean connectives (i.e., not, and and or) that occur in the task. For this purpose, each
spatial predicate in the task is replaced by the corresponding operation state and the Boolean
connectives are applied to compute the final outcome. The ApplyBooleanConnectives procedure
is responsible for applying the Boolean connectives to the operation states. The final outcome,
is then transmitted by the first-level leader towards the sink in the m RoutingResult message.
The m RoutingResult message conveys the source ID (srcID) and final outcome (taskResult).

B.3 Spatial-Valued Tasks

Recall, that the spatial-valued task evaluation process comprises two phases, viz., distributed
task evaluation, and result processing. This section, discuss the EvaluateSpatialValuedTask
protocol. It also uses a stack-based approach. The protocol supports re-evaluation of tasks up
to a fixed number of times. Each operation in a task is evaluated in turn. An operand is pushed
onto the operand stack. A binary operator causes two operands to be popped from the stack;
a unary operator, causes one operand to be popped from the stack. After the evaluation of
each operation in a complex spatial-valued task, the resulting derived geometry is referred to
as a temporary intermediate derived geometry. For each operation, the corresponding protocol
is called by MBR entities. An entity computes the ID of the temporary intermediate derived
geometry using the SelectPartialDrvdGmtryID procedure. This procedure checks which of the
temporary geometry IDs (i.e., TEMPGMTRY1 or TEMPGMTRY2) is already on the operand
stack and selects accordingly. At the end of each operation evaluation, some of the entities
will have set the event state to false and some to true indicating membership in the derived
geometry. The entities that satisfy the success criteria of the operation set their event state
to true and compute the other attributes of the geometry including its type, its boundary
membership, and the time-to-live (TTL) of the derived geometry. This information is returned
to the EvaluateSpatialValuedTask protocol. After each operation, each entity stores the tempo-
rary geometry ID on their operand stack and the entities with true state store the information
about the temporary geometry in their GIT temporarily. The procedure GIT InsertTuple is
responsible for inserting the tuple in the GIT if it does not already exists. If the tuple already
exists for that geometry, its attributes are reset.

Upon the evaluation of each operator in which one or both operands are temporary geome-
tries, all entities calls the ProcessPartialDrvdGmtryInfo procedure to remove the relevant entry

B.3. SPATIAL-VALUED TASKS 217

from GIT and EIT if their event state is false. Nodes with a true event state also update the
attributes TTL, spatialdatatype and boundarynode about temporary geometry in their GIT.

Upon evaluation of the last operation in the task, the entities with a true event state
update the GIT and associated entries in EIT for intermediate derived geometry with the
finally derived geometry ID. This section describes the protocol for the operator, minus. The
protocols for the remaining operators (e.g., plus, intersection, common border, vertices) are
provided in Appendix B.

B.3.1 Minus

The minus protocol is shown in Figure B.28. If the operands are two points values, the entities
can compute the event state based on the information in the local GIT. If the operands are
two lines values, the entities that belong to first operand only set their event state to true

based on the local information in their GIT but the CBNs need to find out whether they are
part of a segment in which one of the points value belongs to first operand only (as the minus

operation returns a value of type lines in this case). For this purpose, the entities call the
NeighbourLookUp protocol in Figure B.10 with a request to compute the difference between the
lines values (line 51 in Figure B.28). After collecting information from its neighbours, if one of
its valid segment neighbours belongs to the first operand only, the CBN sets its state to true

(line 6 in Figure B.29).

In the case of regions, the entities that belong to the first operand only or the entities that
are part of the interior of the first and the boundary of the second operand sets their operation
state to true. A CBN needs information from its neighbours to compute its operation state as
well as information about invalid edges. An entity that belongs to the interior of the first and
to the boundary of the second operand also needs information from its neighbours to compute
its EIT information. Therefore, in the NeighbourLookUp protocol, the condition is added (line
39 in Figure B.10) that along with the CBNs all entities that belong to the interior of the first
and the boundary of the second operand must also request information from their neighbours.

The procedures used by the NeighbourLookUp protocol to compute the difference between
two regions values are given in Figure B.30 and B.16. After collection of information from its
neighbours, a CBN checks whether it is part of any CLUT formed with neighbour CBNs(line
38 in ConfirmPartOfDerivedRegion procedure in Figure B.30). If a CBN is not part of a CLUT
with two other CBNs and if it has at least one neighbour that belongs to the first operand
only amongst its closest neighbours, the CBN sets its state to true (line 6 in Figure B.30). If
the CBN forms a CLUT with two other CBNs and has at least one neighbour that belongs to
the first operand only such that the segment between the CBN and that neighbour does not
intersect any CLUT that the CBN belongs to, it sets its state to true, otherwise it sets it to
false. Entities with a true operation state, that are CBNs or belong to the interior of first
operand and to the boundary of the second operand or belong to the first operand only and to
its boundary set the boundary state information for the derived geometry to true (line 38 in
Figure B.28). Entities that belong to the interior of the first operand set their boundary state
information to false.

An entity that is part of the first operand only needs to perform a local EIT lookup to find

218 APPENDIX B. ALGORITHMS

Protocol EvalSpatialValuedTask(task* postfixTask , reEvalPeriod, derivedGmtryID, duration)

1 // PINIT ≡ ”All entities in the task MBR are ready to evaluate the spatial-valued task message at time t0” ≡
2 // {∀ n ∈ N: n ∈ MBR ⇒ n can evaluate the task message at time t0}
3 // PF INAL ≡ ”Nodes in the new derived geometry have stored the information about the geometry in their GIT by time tf ”
4
5 Status Values: S= {TASK EVALUATING, TASK PREPROCESSING, POST SPATIALOPERATIONEVALUATION, AVAILABLE}
6 SST ART = {TASK PREPROCESSING}
7 SINT ERMEDIAT E= {TASK EVALUATING, POST SPATIALOPERATIONEVALUATION}
8 ST ERM = {AVAILABLE}
9

10 TASK PREPROCESSING
1111 Spontaneously
12 StackOPStack , taskStack
13 eventNode = false
14 rightArg = InvalidGmtry
15 leftArg = InvalidGmtry
16 // tmpGmtry contains attributes gmtryID, stateOP , isGmtryMbr , isBndryNode, gmtryTTL, gmtryDataType
17 StructTempGmtryRec tmpGmtry
18
19 InitializeTmpGmtry(tmpGmtry)
20 PushTaskOnStack(postfixTask , taskStack)
21
22 Set Alarm(a t19, reEvalPeriod)
23 Become(TASK EVALUATING)
24
25 TASK EVALUATING
2626 Spontaneously
27
28 while(not taskStack Empty()):
29 op = taskStack Pop()
30 if (op=plus):
31 rightArg = OPStack Pop()
32 leftArg = OPStack Pop()
33 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
34 Become(OPERATION EVALUATING)
35 PlusOperator(leftArg, rightArg, &tmpGmtry)
36 elseif (op=intersection):
37 rightArg = OPStack Pop()
38 leftArg = OPStack Pop()
39 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
40 Become(OPERATION EVALUATING)
41 IntersectionOperator(leftArg, rightArg, &tmpGmtry)
42 elseif (op= minus) :
43 rightArg = OPStack Pop()
44 leftArg = OPStack Pop()
45 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
46 Become(OPERATION EVALUATING)
47 MinusOperator(leftArg, rightArg, &tmpGmtry)
48 elseif (op= vertices):
49 leftArg = OPStack Pop()
50 rightArg = INVALIDGMTRY
51 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
52 Become(OPERATION EVALUATING)
53 VerticesOperator(leftArg, &tmpGmtry)
54 elseif (op= common border):
55 rightArg = OPStack Pop()
56 leftArg = OPStack Pop()
57 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
58 Become(OPERATION EVALUATING)
59 CommonBorderOperator(leftArg, rightArg, &tmpGmtry)
60 elseif (op= contour):
61 leftArg = OPStack Pop()
62 rightArg = INVALIDGMTRY
63 tmpGmtry.gmtryID = SelectPartialDrvdGmtryID()
64 Become(OPERATION EVALUATING)
65 Contour(leftArg, &tmpGmtry)
66 else :
67 OPStack Push(op)
68
69 if (eventNode = true):
70 GIT RenameGID(tmpGmtry.gmtryID, derivedGmtryID)
71 EIT RenameGID(tmpGmtry.gmtryID, derivedGmtryID)
72 Become(AVAILABLE)
73

Figure B.26: Protocol EvalSpatialValueTask

B.3. SPATIAL-VALUED TASKS 219

73 POST SPATIALOPERATIONEVALUATION
7474 Spontaneously
75 ProcessPartialDrvdGmtryInfo()
76 Become(TASK EVALUATING)
77
78 AVAILABLE
7979 When(a t19)
80 evalPeriod = ComputeReEvalPeriod(evalPeriod, reEvalPeriod)
81 if (evalPeriod <= duration)
82 Become(TASK PREPROCESSING)
83 else :
84 Become(AVAILABLE)
85

Figure B.26 (continued)

Procedure ComputeOprndPartOfTmpGmtry()

1 tempGmtryToRmve = INVALIDGMTRY
2
3 if ((leftArg = TEMPGMTRY1) and (leftArg = TEMPGMTRY2)) or
4 ((rightArg = TEMPGMTRY2) and (rightArg = TEMPGMTRY1))):
5 tempGmtryToRmve = BOTHTEMPGMTRY
6
7 elseif ((leftArg = TEMPGMTRY1) or (rightArg = TEMPGMTRY1)):
8 tempGmtryToRmve = TEMPGMTRY1
9

10 elseif ((leftArg = TEMPGMTRY2) or (rightArg = TEMPGMTRY2)):
11 tempGmtryToRmve = TEMPGMTRY2
12
13 return tempGmtryToRmve

Procedure ProcessPartialDrvdGmtryInfo()

1 if (tmpGmtry.gmtryMbrshp = true):
2 eventNode = true
3 else :
4 eventNode = false
5 OPStack Push(tmpGmtry.gmtryID)
6
7 if (eventNode = false)
8 tmpGmtryToRmve = ComputeOprndPartOfTmpGmtry(leftArg, rightArg)
9

10 if (tmpGmtryToRmve = BOTHTEMPGMTRY):
11 GIT RemoveTuples(TEMPGMTRY1, TEMPGMTRY2)
12 EIT RemoveTuples(TEMPGMTRY1, TEMPGMTRY2)
13
14 elseif (tmpGmtryToRmve != INVALIDGMTRY):
15 GIT RemoveTuple(tmpGmtryToRmve)
16 EIT RemoveTuple(tmpGmtryToRmve)
17 if (eventNode = true):
18 if (tmpGmtryToRmve = BOTHTEMPGMTRY)
19 GIT RemoveTuple(TEMPGMTRY2)
20 EIT RemoveTuple(TEMPGMTRY2)
21 // ComputeGITTuple procedure is responsible for computing the GIT tuple from the tmpGmtry tuple.
22 GIT UpdateTuple(ComputeGITTuple(tmpGmtry))
23 elseif (tmpGmtryToRmve != INVALIDGMTRY)
24 GIT RemoveTuple(tmpGmtryToRmve)
25 GIT InsertTuple(ComputeGITTuple(tmpGmtry))
26 else
27 GIT InsertTuple(ComputeGITTuple(tmpGmtry))
28 InitializeTmpGmtry(tmpGmtry)

Figure B.27: Procedures used by EvalSpatialValuedTask protocol

220 APPENDIX B. ALGORITHMS

any tuple belonging to the first operand. If it finds one or more tuples, it appends the same infor-
mation to the EIT for the derived geometry by updating the GID. The EIT UpdateInfMinusOP
procedure (line 22 of ComputeNodePartOfDerivedRegion procedure in Figure B.30) is respon-
sible for such computation. Recall, from Section 5.4.2, that a tuple in EIT comprises two
attributes, viz., GID, and neighbourID.

The EIT UpdateInfMinusOP procedure is also responsible for the computation of informa-
tion about invalid edges for a CBN or an entity that belongs to the interior of the first and to
the boundary of the second operand and belongs to the derived geometry. In such cases, the
entity, first checks whether it has neighbouring entities that lie in sectors 7-12 and are CBNs
or belong to the interior of the first and to the boundary of the second operand. If it finds any,
it computes the information about invalid edges that it needs to share with its neighbours.

Recall from Section 5.5.2.1, that only entities that form an invalid edge with neighbours that
are CBNs or belongs to the interior of the first operand and to the boundary of the other and
that lies in sectors 7 to 12 needs to transmit such information in an m InvalidEITInf message.
All entities that belong to the derived geometry update their EIT table upon reception of
the m InvalidEITInf message. The EIT RemoveEdgesMinusOP procedure (line 162 in Figure
B.10) is responsible for such computation.

B.3.2 Plus

The operator plus returns the union of two values of the same spatial type. If an MBR entity
belongs to one or both operands, it declares itself part of the derived geometry (i.e., it is an event
entity) by setting its operation state to true. All the entities that belong to only one operand
and belong to a boundary set the boundary state their true. All CBNs need information from
their neighbours in order to compute their boundary state. For that purpose, the MBR entities
use the DeriveGeometry protocol, which implements the modified T-Fit algorithm discussed in
Section 3.4.2.

After the boundary computation, the boundary entities compute the information to be
added to their EIT for the derived geometry (using the EIT UpdateInfPlusOP procedure). The
entities need to perform a local-lookup of their EIT for that purpose. In the case of the plus

operation, a boundary entity that belongs to only one of the operands checks that operand’s
entry in its EIT. If an entity finds any information about the operand, it copies this information
to its EIT after updating the tuple with the GID of the derived geometry. If it is a CBN, it
checks the tuples in its EIT that are common to both operands and copies those tuples to its
EIT after updating the tuple with the GID of the derived geometry.

B.3.3 Intersection

The intersection protocol is shown in Figure B.34. In the case of intersection, all non-
CBNs can compute their event state based on the information in the local GIT. The CBNs
need information from their neighbours. For this purpose, if both operands are of type lines,
the MBR entities use the NeighbourLookUp protocol with a request to compute whether the
lines intersect (line 50 in Figure B.34). The procedures used by NeighbourLookUp protocol

B.3. SPATIAL-VALUED TASKS 221

Protocol Minus(gmtry1ID, gmtry2ID, StructTempGmtryRec * tmpGmtry)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the minus operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed whether it is
3 // part of new derived geometry and all of its associated attributes at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 tupleG1 = LocalGITLookup Search(gmtry1ID)
14 tupleG2 = LocalGITLookup Search(gmtry2ID)
15 isOperandsDTValid = false
16 tmpGmtry_stateOP = OPDONE
17 CBN = false
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 tmpGmtry_stateOP = NOT PART OF OPERANDS
22 else
23 isOperandsDTValid = OperandsDTValidMinus(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 tmpGmtry_gmtryDataType = DrvdGmtryOprndTypeMinus(tupleG1 , tupleG2)
27
28 if ((tupleG1 != null) and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 if ((tupleG1_dataType != points) and (tupleG2_dataType != points)):
31 CBN = true
32 elseif ((tupleG1_bndryNode = false) and (tupleG2_bndryNode = true)):
33 tmpGmtry_isGmtryMbr = true
34 tmpGmtry_isBndryNode = true
35 tmpGmtry_gmtryTTL = tupleG1_TTL
36
37 elseif ((tupleG1 != null) and (tupleG2 = null)):
38 tmpGmtry_isGmtryMbr = true
39 if ((tupleG1_bndryNode = true)):
40 tmpGmtry_isBndryNode = true
41 tmpGmtry_gmtryTTL = tupleG1_TTL
42 else :
43 tmpGmtry_stateOP = OP NOT SUPPORTED
44
45 if ((tupleG1_dataType = points) or (tupleG2_dataType = points)):
46 isReqdToPartInNgbrLookup = false
47
48 if (isReqdToPartInNgbrLookup):
49 if ((tupleG1_dataType = lines) or (tupleG2_dataType = lines)):
50 Become(OPERATION EVALUATING)
51 NeighbourLookUp(tupleG1 , tupleG2 , LLMINUS , &CBNState,minus, tmpGmtry_gmtryID)
52 elseif ((tupleG1_dataType = regions) or (tupleG2_dataType = regions)):
53 Become(OPERATION EVALUATING)
54 NeighbourLookUp(tupleG1 , tupleG2 , RRMINUS, &CBNState,minus, tmpGmtry_gmtryID)
55 else :
56 Become(OPERATION EVALUATING)
57 NeighbourLookUp(tupleG1 , tupleG2 , SHAREINFO-DG, &CBNState,minus, tmpGmtry_gmtryID)
58 else :
59 Become(OPERATION EVALUATING)
60 NeighbourLookUp(NULL, NULL, WAITIDLE-DG, &CBNState,minus, tmpGmtry_gmtryID)
61
62 POST NEIGHBOURLOOKUP
6363 Spontaneously
64 if (CBN = true):
65 if (CBNState = true):
66 tmpGmtry_isGmtryMbr = true
67 tmpGmtry_isBndryNode = true
68 Become(POST SPATIALOPERATIONEVALUATION)
69 EvaluateSpatialValuedTask()
70

Figure B.28: Protocol Minus

222 APPENDIX B. ALGORITHMS

Procedure ComputePartOfDerivedline()

1 if (isGITReqPhase= false):
2 validBSegG1 = false
3 Set Alarm(a t2, EITCOMPUTETXRXTIME+CLUTCOMPUTETXRXTIME)
4
5 for sector = 1 to 12
6 if (sectorNbrState[sector] = GIDG1):
7 validBSegG1 = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
8 if (validBSegG1 = true):
9 opState = true

10 else :
11 opState = false
12 isLocalComputationDone = true

Figure B.29: Procedures used by Minus protocol to compute the difference between two lines
values

Procedure ComputeNodePartOfDerivedRegion()

1 if ((isGITReqPhase= false) and (isCLUTComputationDone = true)):
2 Set Alarm(a t2, EITCOMPUTETXRXTIME)
3 isLocalComputationDone = true
4 isEITComputationDone = true
5
6 if ((IsCLUTPossible = false) and (ngbrInG1Exists = true)):
7 stateOP = true
8 elseif ((IsCLUTPossible = true) and (ngbrInG1Exists = true)):
9 for sector = 1 to 12

10 if (sectorNbrState[sector] = GIDG1):
11 validBSeg = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
12 if (validBSeg = true):
13 stateOP = ConfirmSegIntersectsAnyCLUT(sectorNbrID[sector])
14 if (stateOP = false):
15 stateOP = true
16 Break
17 else :
18 stateOP = false
19
20 if ((stateOP = true) or ((tupleG1 !=NULL) and (tupleG2 =NULL)) or
21 ((tupleG1_bndryNode = false) and (tupleG2_bndryNode = true)))
22 InvalidNgbrInf [] = EIT UpdateInfMinusOP(tmpGmtry, tupleG1 , tupleG2 , sectorNbrID, sectorNbrState)
23
24 if (IsInvalidEdgeInfoExists(InvalidNgbrInf []):
25 SendInvalidEdgeInfo()
26
27 elseif (isGITReqPhase=false):
28 Set Alarm(a t2, CLUTCOMPUTETXRXTIME)
29 for sector = 1 to 12
30 if ((sectorNbrState[sector] = GIDG1)) :
31 validBSeg = EIT ConfirmSegment(sectorNbrID[sector], tupleG1 , tupleG2)
32 if (validBSeg = true):
33 ngbrInG1Exists = true
34
35 if (sectorNbrState[sector] = NBRCBN):
36 cntNgbrCBN = cntNgbrCBN + 1
37
38 if (cntNgbrCBN >= 2):
39 ComputePossibleCLUTs()
40 CLUT [] = EIT ConfirmCLUTS(CLUT[])
41 if (IsInvalidEdgeInfoInCLUTS()):
42 SendInvalidCLUTInfo()
43 isCLUTComputationDone = true

Procedure SendInvalidEITInfo()

1 txTime = ComputeGITTxTime(m InvalidEITInf)
2 Set Alarm(a t6, txTime)

Figure B.30: Procedures used by Minus protocol to compute the difference between two regions
values

B.3. SPATIAL-VALUED TASKS 223

Protocol Plus(gmtry1ID, gmtry2ID, StructTempGmtryRec * tmpGmtry)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the plus operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed whether it
3 // is part of new derived geometry and all of its associated attributes at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST GEOMETRYDERIVATION}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 tupleG1 = LocalGITLookup Search(gmtry1ID)
14 tupleG2 = LocalGITLookup Search(gmtry2ID)
15 isOperandsDTValid = 0
16 isReqdToPartInNgbrLookup = false
17 tmpGmtry_stateOP = OPDONE
18 CBN = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 tmpGmtry_stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = OperandsDTValidPlus(tupleG1 , tupleG2)
24
25 if (isOperandsDTValid):
26 tmpGmtry_gmtryDataType = DrvdGmtryOprndTypePlus(tupleG1 , tupleG2)
27 tmpGmtry_isGmtryMbr = true
28 isReqdToPartInNgbrLookup = true
29
30 if ((tupleG1 != null) and (tupleG2 != null)):
31 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
32 CBN = true
33 tmpGmtry_gmtryTTL = MinimumTTL(tupleG1_TTL, tupleG2_TTL)
34
35 elseif ((tupleG1 = null) and (tupleG2 != null)):
36 if (tupleG2_bndryNode = true):
37 tmpGmtry_isBndryNode = true
38 tmpGmtry_gmtryTTL = tupleG2_TTL
39
40 elseif ((tupleG1 != null) and (tupleG2 = null)):
41 if (tupleG1_bndryNode = true):
42 tmpGmtry_isBndryNode = true
43 tmpGmtry_gmtryTTL = tupleG1_TTL
44 else :
45 tmpGmtry_stateOP = OP NOT SUPPORTED
46 tmpGmtry_isGmtryMbr = false
47
48 if ((tupleG1_dataType = points) or (tupleG2_dataType = points)
49 or (tupleG1_dataType = lines) or (tupleG2_dataType = lines)):
50 isReqdToPartInNgbrLookup = false
51
52 if (isReqdToPartInNgbrLookup)
53 Become(OPERATION EVALUATING)
54 DeriveGeometry(tmpGmtry_gmtryID, tmpGmtry_isGmtryMbr , CBN , &bndryNode, PLUS)
55 else
56 Become(OPERATION EVALUATING)
57 DeriveGeometry(NULL, false, false, &bndryNode, PLUS)
58
59 POST GEOMETRYDERIVATION
6060 Spontaneously
61 if ((CBN = true) and (tmpGmtry_gmtryDataType =regions)):
62 tmpGmtry_isBndryNode = bndryNode
63 elseif ((CBN = true) and (tmpGmtry_gmtryDataType !=regions)):
64 tmpGmtry_isBndryNode = true
65
66 EIT UpdateInfPlusOP(tmpGmtry, gmtry1ID, gmtry2ID)
67
68 Become(POST SPATIALOPERATIONEVALUATION)
69 EvaluateSpatialValuedTask()
70

Figure B.31: Protocol Plus

224 APPENDIX B. ALGORITHMS

Protocol DeriveGeometry(GIDG1 , ∗eventNode, CBN , ∗operationState, operation)

1 Status Values: S= {OPERATION EVALUATING, IDLE, POST GEOMETRYDERIVATION}
2 SST ART = {OPERATION EVALUATING}
3 ST ERM= {POST GEOMETRYDERIVATION}
4 OPERATION EVALUATING
55 Spontaneously
6 DrvdGmtryRq = true
7 reqMsgcount = 0
8 isLocalComputationDone = false
9 opState = false

10 isEventNode = ∗eventNode
11
12 if (operation = plus):
13 if (CBN = true):
14 txTime = ComputeDrvdGmtryTxTime(m DRVDRQ)
15 Set Alarm(a t1, txTime)
16 Set Alarm(a t2, WAITDGREQ)
17 elseif ((isEventNode = false) and (CBN = false)):
18 Become(IDLE)
19 elseif ((isEventNode = true) and (CBN = false)):
20 Set Alarm(a t2, WAITDGREQ)
21 if (operation = IG):
22 reqMsgcount = 1
23 Set Alarm(a t2, SENDMSG)
24
2525 Receive(m DRVDRQ)
26 if (GIDG1 = m DRVDRQ.GIDG1):
27 reqMsgCount = reqMsgCount + 1
28
29 // Time to transmit m DRVDRQ message
3030 When(a t1)
31 Send(m DRVDRQ, n.ID, GIDG1 ,isEventNode) to N(n)
32
33 // Time to transmit GIT Reply message and to perform local computation based on
34 // type of computation request and to return control to calling protocol
3535 When(a t2)
36 if (DrvdGmtryRq=true): // GIT-lookup Reply phase
37 DrvdGmtryRq = false
38 Set Alarm(a t2, WAITDGREPLY)
39 if (reqMsgcount > MAXREPLY):
40 reqMsgcount = MAXREPLY
41 if (reqMsgcount > 0):
42 SendDrvdGmtryReply()
43 // Local Computation after completion of GIT-lookup Reply phase
44 elseif ((DrvdGmtryRq= false) and (isLocalComputationDone = true)):
45 ∗operationState = opState
46 ∗eventNode = isEventNode
47 Become(POST GEOMETRYDERIVATION)
48 if (operation = plus)
49 Plus()
50 elseif (operation = IG)
51 EvalInduced()
52 // Finish evaluation and return control
53 elseif ((DrvdGmtryRq=false)and (isLocalComputationDone = false)):
54 reqMsgcount = 0
55 Set Alarm(a t2, LOCALCOMPUTATIONTIME)
56 if ((operation = plus) and (CBN = true)):
57 opState = ConfirmBNState()
58 elseif (operation = IG):
59 opState = ConfirmInducedGmtryBN()
60 isLocalComputationDone = true
61
62 // Time to transmit m DRVDGMRYREPLY message
6363 When(a t3)
64 Send(m DRVDGMRYREPLY, n.ID, GIDG1 ,isEventNode) to N(n)
65 if (reqMsgcount < MAXREPLY):
66 SendDrvdGmtryReply()
67

Figure B.32: Protocol DeriveGeometry

B.3. SPATIAL-VALUED TASKS 225

6767 Receive(m DRVDGMRYREPLY)
68 if (CBN = true):
69 if (GIDG1 = m DRVDGMRYREPLY.GIDG1):
70 sector = NIT ComputeSector(m DRVDGMRYREPLY.sourceID)
71 if (sectorNbrID[sector]= EMPTY):
72 sectorNbrID[sector] = m DRVDGMRYREPLY.sourceID
73 sectorNbrState[sector] = m DRVDGMRYREPLY.isEventNode
74 else :
75 distance = NIT getDistanceToMe(m DRVDGMRYREPLY.sourceID)
76 prvNgbrDistance = NIT getDistanceToMe(sectorNbrID[sector])
77 if (distance < prvNgbrDistance):
78 sectorNbrID[sector] = m DRVDGMRYREPLY.sourceID
79 sectorNbrState[sector] = m DRVDGMRYREPLY.isEventNode
80
81 // Idle wait period Expires
8282 When(a t5)
83 isGITReqPhase = false
84 Set Alarm(a t2, FIRET2)
85
86 IDLE
8787 Spontaneously
88 Set Alarm(a t5, WAITDGREQ + WAITDGREPLY)
89

Figure B.32 (continued)

for computing intersection between values of type lines are given in Figure B.18. A CBN
sets its event state to true if the protocol returns intersectingPoint. The procedures used
for computing intersection between lines and regions values are shown in Figure B.19. The
entity sets its event state to true if intersectingPoint results from execution of the protocol.
If both the operands are of type regions, the MBR entities use the NeighbourLookUp protocol
with a request to test the existence of common area. The entity sets its event state to true if
the protocol returns true.

The entities belonging to the boundary of a derived geometry need to compute the infor-
mation to be added to their EIT. For this purpose, the entities need information from the
neighbours that belong to the boundary of a derived geometry. Therefore, in the Neighbour-
LookUp protocol the condition is added (line 31 in Figure B.10) that, along with the CBNs,
all entities that belong to both operands and to the interior of one operand and boundary of
other should also request information from their neighbours. The EIT UpdateInfIntersectionOP
procedure is responsible for computing and adding such information in EIT (line 9 called from
ComputeCommonAreaExistence procedure in Figure B.16).

B.3.4 Vertices

The vertices operation returns a new spatial-valued geometry of type points. It is a unary
operation and all entities that belong to the boundary of the regions value passed as input set
their operation state to true, other entities sets the operation state to false.

B.3.5 CommonBorder

The common border operation creates a new spatial value of type lines containing the common
segments of their operands of type lines or regions or a combination of lines and regions

value. For this purpose, the MBR entities uses the NeighbourLookUp protocol with a request

226 APPENDIX B. ALGORITHMS

Procedure ComputeDrvdGmtryTxTime(txType)

1 delayVariance = 0
2 txTimeOut = RandomValue.rand()
3 if ((txType = m DRVDRQ)):
4 delayVariance = DRVDRQ DELAY VAR
5 else :
6 delayVariance = DRVDRP DELAY VAR
7 if (n.ID 6= 0):
8 txTimeOut =(txTimeOut % delayVariance)
9 txTimeOut =(((txTimeOut* n.ID) % delayVariance)))

10 else :
11 txTimeOut = (txTimeOut % delayVariance)
12 if (txType = m DRVDRQ)
13 txTimeOut = txTimeOut + MIN DELAY
14 return txTimeOut

Procedure ConfirmBNState()

1 stateOP = false
2 quadrants[] = ComputeNgbrsInEachQuadrant(sectorNbrID[sector])
3 axes[] = ComputeNgbrsOnEachAxes(sectorNbrID[sector])
4 noOfQuadsWithNbrs = computeQuadsWithNgbrs(quadrants[])
5 noOfAxesWithNbrs = computeAxesWithNgbrs(axes[])
6
7 if (noOfQuadsWithNbrs= 4) :
8 stateOP = false
9 elseif (noOfQuadsWithNbrs= 1) :

10 stateOP = true
11 elseif (noOfQuadsWithNbrs= 2) :
12 angle = angleBetweenNbgrs(quadrants[])
13 if (angle < 180) :
14 stateOP = true
15 else :
16 stateOP = false
17
18 elseif (noOfQuadsWithNbrs= 3) :
19 angle = angleBetweenNgbrsInDiagonalQuads(quadrants[])
20 if (angle < 180) :
21 stateOP = true
22 else :
23 stateOP = false
24
25 elseif (noOfAxesWithNbrs= 4) :
26 stateOP = false
27 elseif ((noOfAxesWithNbrs < 4)and (noOfQuadsWithNbrs= 0)) :
28 stateOP = true
29 return stateOP

Procedure SendDrvdGmtryReply()

1 if (operation = plus) :
2 txTime = ComputeDrvdGmtryTxTime(m DRVDGMRYREPLY)
3 Set Alarm(a t3, txTime)
4 else
5 txTime = ComputeInducedGmtryTxTime(m DRVDREPLY)
6 Set Alarm(a t3, txTime)
7

Figure B.33: Procedures used by DeriveGeometry protocol

B.3. SPATIAL-VALUED TASKS 227

Protocol Intersection(gmtry1ID, gmtry2ID, StructTempGmtryRec * tmpGmtry)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the intersection operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed whether it is
3 // part of new derived geometry and all of its associated attributes at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 tupleG1 = LocalGITLookup Search(gmtry1ID)
14 tupleG2 = LocalGITLookup Search(gmtry2ID)
15 isOperandsDTValid = false
16 tmpGmtry_stateOP = OPDONE
17 CBN = false
18 isReqdToPartInNgbrLookup = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 tmpGmtry_stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = OperandsDTValidIntersection(tupleG1 , tupleG2)
24 if (isOperandsDTValid):
25 isReqdToPartInNgbrLookup = true
26 tmpGmtry_gmtryDataType = DrvdGmtryOprndTypeIntersection(tupleG1 , tupleG2)
27
28 if ((tupleG1 != null) and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 if ((tupleG1_dataType = points) and (tupleG2_dataType = points)):
31 tmpGmtry_isGmtryMbr = true
32 tmpGmtry_isBndryNode = true
33 else :
34 CBN = true
35 else :
36 tmpGmtry_isGmtryMbr = true
37 tmpGmtry_isBndryNode = false
38 if ((tupleG1_bndryNode = true) or (tupleG2_bndryNode = true)):
39 tmpGmtry_isBndryNode = true
40 tmpGmtry_gmtryTTL = MinimumTTL(tupleG1_TTL, tupleG2_TTL)
41 else :
42 tmpGmtry_stateOP = OP NOT SUPPORTED
43
44 if ((tupleG1_dataType = points) or (tupleG2_dataType = points)):
45 isReqdToPartInNgbrLookup = false
46
47 if (isReqdToPartInNgbrLookup)
48 if ((tupleG1_dataType = lines) and (tupleG2_dataType = lines)):
49 Become(OPERATION EVALUATING)
50 NeighbourLookUp(tupleG1 , tupleG2 , LLINTERSECT , &CBNState, intersection, tmpGmtry_gmtryID)
51 elseif (tmpGmtry_gmtryDataType = lines):
52 Become(OPERATION EVALUATING)
53 NeighbourLookUp(tupleG1 , tupleG2 , LRINTERSECT , &CBNState,intersection, tmpGmtry_gmtryID)
54 elseif (tmpGmtry_gmtryDataType = regions):
55 Become(OPERATION EVALUATING)
56 NeighbourLookUp(tupleG1 , tupleG2 , RRINTERSECTION, &CBNState,intersection, tmpGmtry_gmtryID)
57 else
58 // Entity that is part of only one operand and of valid data type
59 Become(OPERATION EVALUATING)
60 NeighbourLookUp(tupleG1 , tupleG2 , SHAREINFO, &CBNState,intersection, tmpGmtry_gmtryID)
61 else
62 // Entity that is not part of any operand
63 Become(OPERATION EVALUATING)
64 NeighbourLookUp(NULL, NULL, WAITIDLE, &CBNState,intersection, tmpGmtry_gmtryID)
65

Figure B.34: Protocol Intersection

228 APPENDIX B. ALGORITHMS

65 POST NEIGHBOURLOOKUP
6666 Spontaneously
67 if (CBN = true):
68 if (tmpGmtry_gmtryDataType = points):
69 if (CBNState = intersectingPoint):
70 tmpGmtry_isGmtryMbr = true
71 tmpGmtry_isBndryNode = true
72 else :
73 tmpGmtry_isGmtryMbr = false
74 elseif (tmpGmtry_gmtryDataType = lines):
75 if (CBNState = intersectingPoint):
76 tmpGmtry_isGmtryMbr = true
77 tmpGmtry_isBndryNode = true
78 else :
79 tmpGmtry_isGmtryMbr = false
80 elseif (tmpGmtry_gmtryDataType = regions):
81 if (CBNState = true):
82 tmpGmtry_isGmtryMbr = true
83 tmpGmtry_isBndryNode = true
84 Become(POST SPATIALOPERATIONEVALUATION)
85 EvaluateSpatialValuedTask()
86

Figure B.34 (continued)

Protocol Vertices(gmtry1ID, StructTempGmtryRec * tmpGmtry)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the vertices operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed whether it
3 // part of new derived geometry and all of its associated attributes at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 tupleG1 = LocalGITLookup Search(gmtry1ID)
13 isOperandsDTValid = false
14 tmpGmtry_stateOP = OPDONE
15
16 if (tupleG1= null):
17 tmpGmtry_stateOP = NOT PART OF OPERANDS
18 else :
19 isOperandsDTValid = OperandsDTValidVertices(tupleG1)
20 if (isOperandsDTValid):
21 tmpGmtry_gmtryDataType = DrvdGmtryOprndTypeVertices(tupleG1)
22 if (tupleG1 != null):
23 if (tupleG1_bndryNode = true):
24 tmpGmtry_isGmtryMbr = true
25 tmpGmtry_isBndryNode = true
26 tmpGmtry_gmtryTTL = tupleG1_TTL
27 else :
28 tmpGmtry_stateOP = OP NOT SUPPORTED
29
30 Become(POST SPATIALOPERATIONEVALUATION)
31 EvaluateSpatialValuedTask()
32

Figure B.35: Protocol Vertices

B.4. GEOMETRY INDUCTION TASKS 229

to compute CBSs explained in Section B.2.1.6. An entity only declares itself an event entity
(i.e., part of derived geometry) if it is a CBN and belongs to a valid CBS.

Protocol CommonBorder(gmtry1ID, gmtry2ID, StructTempGmtryRec * tmpGmtry)

1 // PINIT ≡ {∀ n ∈ N: n ∈ MBR ⇒ n starts evaluating the common border operation at time t0}
2 // PF INAL ≡ {∀ n ∈ N: n ∈ MBR ⇒ n has evaluated the operation and computed whether it
3 // is part of new derived geometry and all of its associated attributes at time tf}
4
5 Status Values: S= {TASK EVALUATING, OPERATION EVALUATING, POST NEIGHBOURLOOKUP}
6 SST ART = {OPERATION EVALUATING}
7 ST ERM= {TASK EVALUATING}
8
9 OPERATION EVALUATING

1010 Spontaneously
11 StructGIT ∗tupleG1
12 StructGIT ∗tupleG2
13 tupleG1 = LocalGITLookup Search(gmtry1ID)
14 tupleG2 = LocalGITLookup Search(gmtry2ID)
15 isOperandsDTValid = false
16 tmpGmtry_stateOP = OPDONE
17 isReqdToPartInNgbrLookup = false
18 CBN = false
19
20 if ((tupleG1= null) and (tupleG2= null)):
21 tmpGmtry_stateOP = NOT PART OF OPERANDS
22 else :
23 isOperandsDTValid = OperandsDTValidCmnBorder(tupleG1 , tupleG2)
24
25 if (isOperandsDTValid):
26 isReqdToPartInNgbrLookup = true
27 tmpGmtry_gmtryDataType = DrvdGmtryOprndTypeCmnBorder(tupleG1 , tupleG2)
28 if ((tupleG1 != null) and (tupleG2 != null)):
29 if ((tupleG1_bndryNode = true) and (tupleG2_bndryNode = true)):
30 CBN = true
31 else
32 tmpGmtry_stateOP = OP NOT SUPPORTED
33
34 if (isReqdToPartInNgbrLookup):
35 Become(OPERATION EVALUATING)
36 NeighbourLookUp(tupleG1 , tupleG2 , CBS, &CBNState,border in common, NULL)
37 else :
38 Become(OPERATION EVALUATING)
39 NeighbourLookUp(NULL, NULL, CBS, &CBNState,border in common, NULL)
40
41
42 POST NEIGHBOURLOOKUP
4343 Spontaneously
44 if (CBN = true):
45 if (CBNState = segment node):
46 tmpGmtry_isGmtryMbr = true
47 tmpGmtry_isBndryNode = true
48 tmpGmtry_gmtryTTL = MinimumTTL(tupleG1_TTL, tupleG2_TTL)
49
50 Become(POST SPATIALOPERATIONEVALUATION)
51 EvaluateSpatialValuedTask()
52

Figure B.36: Protocol CommonBorder

B.4 Geometry Induction Tasks

This section, discuss the InduceGeometry protocol. The protocol supports re-evaluation of tasks
up to a fixed number of times. The protocol for geometry induction is given in Figure B.37.
This protocol first calls the Sense EventGmtry protocol to sense the event geometry, then it
calls the DeriveGeometry protocol with a request to compute the boundary of event geometry
(i.e., line 19 in Figure B.37). For computing the boundary of the induce geometry CFEBD
algorithm [RZL06] discussed in Section 3.4.1 is applied.

230 APPENDIX B. ALGORITHMS

Upon completion of boundary detection, the entities with a true event state insert a tuple
in the GIT for induced geometry. The procedure GIT InsertTuple is responsible for inserting
the tuple in the GIT if it does not already exists. If the tuple already exists for that induced
geometry, its TTL is reset.

Protocol InduceGeometry(predicate, reEvalPeriod, inducedGmtryID, duration)

1 // PINIT ≡ ”All entities in the network can evaluate geometry induction task at time t0” ≡
2 // {∀ n ∈ N ⇒ n can evaluate the task at time t0}
3 // PF INAL ≡ ”Nodes in the induced geometry have stored the information about the geometry in their GIT by time tf ”
4
5 Status Values: S= {TASK PREPROCESSING, INDUCING, POST GEOMETRYDERIVATION, AVAILABLE, POST SENSINGGEOMETRY}
6 SST ART = {TASK PREPROCESSING,POST GEOMETRYDERIVATION, POST SENSINGGEOMETRY}
7 SINT ERMEDIAT E={INDUCING }
8 ST ERM = {AVAILABLE}
9 TASK PREPROCESSING

1010 Spontaneously
11 isEventNode = false
12 isBndryNode = false
13 Set Alarm(a t22, reEvalPeriod)
14 Become(INDUCING)
15 INDUCING
1616 Spontaneously
17 Sense EventGmtry(predicate,&isEventNode)
18 Become(OPERATION EVALUATING)
19 DeriveGeometry(inducedGmtryID, &isEventNode, true, &isBndryNode, IG)
20 POST GEOMETRYDERIVATION
2121 Spontaneously
22 if (isEventNode = true)
23 GIT InsertTuple(inducedGmtryID, isBndryNode,region, reEvalPeriod)
24 Become(AVAILABLE)
25 AVAILABLE
2626 When(a t22)
27 evalPeriod = ComputeReEvalPeriod(evalPeriod, reEvalPeriod)
28 if (evalPeriod < duration)
29 Become(TASK PREPROCESSING)
30 else :
31 Become(AVAILABLE)
32

Figure B.37: Protocol EvaluateInduceValuedTask

Procedure ConfirmInducedGmtryBN()

1 countEventNbrs = 0
2 countNonEventNbrs = 0
3
4 isEventNode = ComputeIsTrueEventNode(sectorNbrID[sector], sectorNbrState[sector])
5
6 if (isEventNode = true)
7 for sector = 1 to 12
8 if (sectorNbrState[sector] = true)
9 else :

10 countNonEventNbrs = countNonEventNbrs + 1
11
12 computedValue = (1.00-((countEventNbrs-countNonEventNbrs)/(countEventNbrs+countNonEventNbrs)));
13 if (isEventNode = true)
14 if (computedValue > CFEBDTHRESHOLD)
15 opState = true
16 else
17 opState = false
18

Figure B.38: Procedures used by InduceGeometry protocol to compute the boundary of Induced
geometry

