
SCALABLE EVENT-DRIVEN

MODELLING ARCHITECTURES FOR

NEUROMIMETIC HARDWARE

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

By

Alexander D. Rast

School of Computer Science

Contents

Abstract 8

Declaration 9

Copyright 10

Acknowledgements 12

1 Introduction 13

1.1 Appropriate Neural Development Systems 14

1.1.1 Effective Tools for Model Exploration 15

1.1.2 Effective Tools for Hardware Implementation 16

1.2 The Integral Role of the Development System 16

1.2.1 The Debate Over the Biological Model 16

1.2.2 The Search for the Computational Model 18

1.2.3 The Limitations of the Simulation Model 19

1.3 Contributions . 20

1.3.1 Achievements . 20

1.3.2 Outline . 22

1.3.3 Significance . 24

2 Neural Network Architecture Trends 28

2.1 Context . 29

2.2 Architectures: Hardwired, FPGA, Neuromorphic 30

2.2.1 Hardwired Architectures 31

2.2.2 Reconfigurable Architectures 32

2.2.3 Neuromorphic Architectures 34

2.3 Applications: Computational, Biological, Embedded 36

2

2.3.1 Computing Applications of Neural Hardware 37

2.3.2 Hardware for Biological Simulation 38

2.3.3 Embedded Neural Systems 39

2.4 Chips: Digital, Analogue, Mixed-Signal 41

2.4.1 Digital . 41

2.4.2 Analogue . 42

2.4.3 Mixed-Signal . 44

2.5 The State of the Art: A Summary 45

2.5.1 Chips . 46

3 A Universal Neural Network Chip 48

3.1 Overview . 49

3.2 The Neuromimetic Architecture 50

3.2.1 Native Parallelism . 50

3.2.2 Event-Driven Processing 52

3.2.3 Incoherent Memory . 53

3.2.4 Incremental Reconfiguration 53

3.3 Hardware Abstraction of Time and Space 54

3.3.1 Topological Abstraction 55

3.3.2 Process Abstraction . 56

3.3.3 Temporal Abstraction . 56

3.4 SpiNNaker: A Universal Neuromimetic Chip 58

3.4.1 The SpiNNaker local processor node 59

3.4.2 SpiNNaker global resources 61

3.4.3 Nondeterministic process dynamics 63

3.5 Summary of the SpiNNaker Architecture 65

4 The Library Architecture and Tools 67

4.1 Roadmap . 68

4.2 An Event-Driven Neuromimetic Configuration Chain 69

4.2.1 System Components . 70

4.2.2 Modelling Components . 72

4.2.3 User Components . 73

4.3 Event-Driven Model Requirements 74

4.3.1 Design Abstraction . 75

4.3.2 Design Automation . 76

3

4.3.3 Verification and Evaluation 77

4.4 Design Decisions . 78

4.4.1 Existing Design and Simulation Software 78

4.4.2 The Limits of Reuse . 79

4.4.3 The Neural Function Pipeline 81

4.4.4 3-level system . 83

4.5 Summary of the Development Architecture 88

5 Phase I: Definition - Test Networks 89

5.1 Outline . 90

5.2 The Izhikevich/STDP Model . 90

5.2.1 Neuron . 91

5.2.2 Synapse . 92

5.2.3 Networks . 95

5.3 The MLP Model . 99

5.3.1 Neuron . 99

5.3.2 Synapse . 101

5.3.3 Dynamics . 102

5.3.4 MLP event definition . 104

5.3.5 Network . 107

5.4 The LIF/NMDA Model . 112

5.4.1 Neuron . 113

5.4.2 Synapse . 115

5.4.3 Network . 120

5.5 Neural Model Summary . 125

6 Phase II: Simulation - Modelling 127

6.1 Guide . 128

6.2 Izhikevich/STDP Issues . 129

6.2.1 Voltage-Domain Performance 129

6.2.2 Time-Domain Performance 130

6.3 MLP Test Issues . 132

6.3.1 Model Exploration . 132

6.3.2 Hardware Functionality 134

6.4 LIF/NMDA Issues . 136

6.4.1 Single Neuron Dynamics 136

4

6.4.2 Neural Subcircuits . 137

6.5 Summary . 139

7 Phase III: Execution - Hardware Testing 141

7.1 Plan . 142

7.2 The Izhikevich Model in Hardware 143

7.2.1 Comparison with Brian . 143

7.2.2 Real time simulation of a 500 neuron network 143

7.3 The LIF Model in Hardware . 146

7.3.1 Single neuron testing . 146

7.3.2 Network tests . 146

7.4 Heterogeneous On-Chip Modelling 148

7.4.1 Mixed LIF/Izhikevich model networks 148

7.4.2 Hardware scalability . 150

7.5 Summary . 151

8 Implications 153

8.1 Agenda . 154

8.2 Abstract-Space, Abstract-Time Models 155

8.2.1 Abstract Representation 156

8.2.2 Abstract Space . 158

8.2.3 Abstract Time . 161

8.3 Scaling to Very Large Systems . 163

8.3.1 Hardware Scaling Challenges 163

8.3.2 Neural Model Scaling Challenges 164

8.4 Computational Cognitive Neuroscience 167

8.5 Summary . 170

9 Conclusions 173

9.1 Now . 177

9.2 Upcoming . 180

9.3 Future . 181

Bibliography 185

Word Count: 62848

5

List of Figures

3.1 SpiNNaker Architecture . 51

3.2 SpiNNaker test chip . 57

3.3 Multichip SpiNNaker CMP System. 58

3.4 Processor node block diagram . 59

3.5 SpiNNaker AER packet format 62

4.1 SpiNNaker event-driven software model 71

4.2 A function pipeline for neural networks 84

4.3 SpiNNaker system tool flow . 85

5.1 SpiNNaker Neuron Binned Input Array 93

5.2 Synapse Data Format . 96

5.3 SpiNNaker MLP mapping . 100

5.4 SpiNNaker MLP data representations 104

5.5 Typical MLP network . 108

5.6 Test inputs used with MLP networks 108

5.7 Large phonetic network used in tests 110

5.8 NMDA gating factor . 118

5.9 Proposed full-scale model . 121

5.10 Interpulse interval detection . 122

5.11 Oscillatory Network Structure . 123

6.1 SpiNNaker top-level output of the spiking network 130

6.2 SpiNNaker time-domain behaviour 131

6.3 STDP updates, self-recurrent and forward connections 131

6.4 Performance of the hand-digits application. 133

6.5 Error-Connectivity results, phonetic recognition network 134

6.6 SpiNNaker MLP test, weight changes 135

6.7 SpiNNaker packet handling performance 135

6

6.8 Single (LIF) neuron dynamics . 137

6.9 Spike Propagation . 138

6.10 Oscillatory Network Raster Plot 138

7.1 Izhikevich network: script and output 144

7.2 Izhikevich model: Membrane potentials 145

7.3 Raster plot for the 500 neuron Izhikevich model simulation 145

7.4 SpiNNaker LIF membrane potential 146

7.5 500-neuron LIF population . 147

7.6 Dynamics of the first (heterogeneous) network 149

7.7 Second test network dynamics . 149

7.8 Number of Neurons Per SpiNNaker Processor 151

8.1 Digits early training error . 159

8.2 Settling time during early training 159

8.3 Error propagation . 160

7

Abstract

The University of Manchester
Alexander Rast
For the degree of Doctor of Philosophy
Scalable Event-Driven Modelling Architectures for Neuromimetic Hardware
26 January, 2011

Neural networks present a fundamentally different model of computation from
the conventional sequential digital model. Dedicated hardware may thus be more
suitable for executing them. Given that there is no clear consensus on the model
of computation in the brain, model flexibility is at least as important a character-
istic of neural hardware as is performance acceleration. The SpiNNaker chip is an
example of the emerging “neuromimetic” architecture, a universal platform that
specialises the hardware for neural networks but allows flexibility in model choice.
It integrates four key attributes: native parallelism, event-driven processing, inco-
herent memory and incremental reconfiguration, in a system combining an array
of general-purpose processors with a configurable asynchronous interconnect.

Making such a device usable in practice requires an environment for instanti-
ating neural models on the chip that allows the user to focus on model characteris-
tics rather than on hardware details. The central part of this system is a library of
predesigned, “drop-in” event-driven neural components that specify their specific
implementation on SpiNNaker. Three exemplar models: two spiking networks
and a multilayer perceptron network, illustrate techniques that provide a basis
for the library and demonstrate a reference methodology that can be extended to
support third-party library components not only on SpiNNaker but on any con-
figurable neuromimetic platform. Experiments demonstrate the capability of the
library model to implement efficient on-chip neural networks, but also reveal im-
portant hardware limitations, particularly with respect to communications, that
require careful design.

The ultimate goal is the creation of a library-based development system that
allows neural modellers to work in the high-level environment of their choice, using
an automated tool chain to create the appropriate SpiNNaker instantiation. Such
a system would enable the use of the hardware to explore abstractions of biological
neurodynamics that underpin a functional model of neural computation.

8

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts, and whether in hard

or electronic copy, may be made only in accordance with the Copyright,

Designs and Patents Act 1988 (as amended) and regulations issued under

it or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property

Rights and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant Intel-

lectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-

property.pdf), in any relevant Thesis restriction declarations deposited in

the University Library, The University Library’s regulations (see

10

http://www.manchester.ac.uk/library/aboutus/regulations)

and in The University’s policy on presentation of Theses.

11

Acknowledgements

This work could not have been carried out without the support of the EPSRC and

ARM. I would like to thank Steve Furber for his insightful advice and brilliant

suggestions - particularly in bringing to light the principles behind neural design.

I would also like to thank Stephen Welbourne and Francesco Galluppi for their

tireless efforts in model experimentation and the inspiration they brought from

the psychological community. Two collaborators, Sergio Davies and Mukaram

Khan, assisted repeatedly with low-level debugging and technical issues; without

their help the models I built might never have worked in practice. Luis Plana gave

critical debugging support at critical times - with a level of professionalism and

skill I stand in awe of. David Lester made sure that my ideas remained grounded

in reality - along with offering not a few good ideas of his own! All the members

of the SpiNNaker team provided encouragement and assistance along the way -

and demonstrate to the full the value of a collaborative effort. Finally, I give

special thanks to Viv Woods who assisted countless times in practical matters

and in navigating the complexities of “the system” - without whose help I might

well have ended marooned in Hong Kong, Italy, or other points around the world,

to say nothing of within the University!

12

Chapter 1

Introduction

13

14 CHAPTER 1. INTRODUCTION

1.1 Appropriate Neural Development Systems

Neural networks offer a different model of computation from conventional sequen-

tial digital computers, and one that achieves in biology what (thus far) technology

has been unable to do: intelligence: the ability to compute unprompted and pro-

duce meaningful output. If there is a sense that figuring out the neural model of

computation would make it possible to realise computational intelligence, as well

as better understand how the brain works, there is also a recognition that neural

science is at least as far away from being able to give a definitive answer to this

as computer science is from creating an artificial intelligence. Vexing problems of

model scaling and parameter proliferation make it difficult to decide what parts

of the neural model of computation are critical, and formal models of structure

and dynamics tend to exist only for narrow subdomains of neurocomputing. The

easiest approach appears to be to come at the problem from the reverse direction:

instead of trying to understand biological observations and use them to construct

computers, build computational models and see what they can tell us about the

biology.

The basic purpose of computational neural networks in this approach is to

answer the question: what does neural computation do?. For many years, re-

searchers have attempted to address this question using conventional computers.

Yet given that neural networks present an emphatically different model of com-

putation from the sequential digital model it is unclear whether running neural

networks on industry-standard computer architectures represents a good, much

less an optimum, implementation strategy. With further progress on understand-

ing neural computing also appearing to depend on radical model scaling [IE08]

dedicated neural hardware also looks more and more like a prerequisite [JL07], if

only for the purposes of model acceleration. If in the past, however, the purpose

of neural hardware was obvious: model acceleration; the nature of the research

question for new chips has changed. Now it is not simply a matter of how to

scale a neural model to large sizes but what model to scale.

The question of which neural network models are the “right” ones depends

rather critically on what the purpose of the model is. A “one-size-fits-all” hard-

ware neural model is thus unrealistic and somewhat irrelevant. Different research

groups, with different goals, may want to use neural hardware in different ways,

and it is unrealistic to expect them to have, or acquire, the low-level hardware

1.1. APPROPRIATE NEURAL DEVELOPMENT SYSTEMS 15

familiarity necessary to develop efficient models for such chips. All of these con-

siderations form part of the background for the subject of this work: development

systems for neural hardware, a problem largely overlooked to date in neural re-

search.

Current neural systems suffer from an accessibility gap: fixed hardware and

nonstandard software tools make it difficult for a potential user to model anything

beyond simple applications. But adapting industry-standard tools and hardware

is usually not an option because in them the synchronous digital model of com-

putation tends to be an assumption taken as a given. Effectively, the neural

model design and development stages become the exclusive domain of system

specialists. The neural systems accessibility gap is, in essence, a symptom of

an architectural gap. An important and biologically relevant alternative exists:

event-driven computing, using inputs themselves to drive updates rather than an

independent clock. For event-driven neural computation to be a viable architec-

ture, however, it must overcome the accessibility gap. To bridge that gap, this

work develops tools, methodologies, and libraries for general-purpose event-driven

neural systems that a modeller can use to implement an arbitrary model.

1.1.1 Effective Tools for Model Exploration

At the level of the neural model, two important considerations emerge that an

architecture for neural modelling libraries must address: universality - the abil-

ity to describe and run any model, and abstraction - the ability to describe a

model independently of hardware or biological detail. Lack of clear consensus on

what constitutes an adequate neural model has led to a tremendous diversity of

different models, their characteristics determined as much by research priorities

as by agreement with observation. On the one hand, this places a high value on

neural development systems that can support any model - so that it provides the

maximum scope for model exploration. On the other, it emphasizes the need for

abstraction - so that it is possible to compare different neural models at a high

level. Yet in practice existing neural hardware has tended to support only a small

model subset, with correspondingly specialised development tools, and thus the

concept of universal modelling libraries for hardware has been largely overlooked.

With a new class of neural hardware emerging, however, that supports a wide

variety of models on a dedicated, yet flexible hardware platform, this study reex-

amines the architecture of neural modelling systems, to create a system that can

16 CHAPTER 1. INTRODUCTION

meet the needs of universality and abstraction on specialised neural hardware.

1.1.2 Effective Tools for Hardware Implementation

The existence of universal neural hardware has begun to address a need for sys-

tems for large-scale neural model exploration - but is only half of the system. To

be effective such chips need to be part of an integrated system architecture, with

hardware and tools designed together for universal neural modelling [Rey03]. In

particular, a bare chip needs a development system that can specify and configure

what neural model the chip runs. To be useful to the end user, this system should

provide enough hardware abstraction that the modeller can describe and run the

neural network entirely at the level of the model, without having to consider the

hardware specifications. At the same time it must make optimal use of hardware

resources, or it becomes questionable whether the system as a whole is a dedicated

neural modelling platform. In emerging neural hardware the event-driven com-

puting model is rapidly becoming an architectural standard. The event-driven

model provides a useful generalised framework for abstraction, both from the

point of view of isolating hardware details from the modeller and from the point

of view of decoupling neural models from biophysical dependencies. To use this

model in the configuration tool chain requires a method for recasting existing

functional models into an event-driven format. This study considers an “ideal”

architecture for the neural hardware development environment under considera-

tion, taking the form of an event-driven system with a clearly-defined abstract

computing model and a method to convert an arbitrary neural network to this

model.

1.2 The Integral Role of the Development Sys-

tem

1.2.1 The Debate Over the Biological Model

While biological investigations have revealed much, particularly recently, about

low-level neural processes, there is as yet scanty information and little consensus

on higher-level neural function and how it produces behaviour [MSK98]. The

1.2. THE INTEGRAL ROLE OF THE DEVELOPMENT SYSTEM 17

result has been a proliferation of models, each with different and possibly con-

flicting objectives and claims to biological realism [Izh04]. Solving large-scale

behavioural questions with biological accuracy requires impractical simulation

times on conventional computers [IE08], [HMS08]; it seems virtually self-evident

that dedicated neural hardware is essential. Neural network chips have been

around for about 20 years now, however, the biological community has not re-

ceived chips that attempt a literal hardwiring of a specific neural model in silicon

enthusiastically, for two important reasons. Obviously, if the “correct” model of

biological neural network operation is still under debate, hardwiring model as-

sumptions into the design makes blind compromises while limiting the group of

modellers who can use the device at all. Secondly, many of the model approxi-

mations in the hardware do not have enough theoretical support to be justifiable

to biologists, whose models often involve very careful curve fitting. But a neural

network system that attempts to learn by imitation, precisely replicating every

detail of the biology or every line of an algorithm is unlikely to yield any funda-

mental insights. It is simply an implementation of what the researchers already

know. If their utility is to extend beyond verification of pre-existing models,

neural systems need a mechanism for abstraction.

To address these problems, a new device that implements a type of neural

“blank slate” has been introduced: SpiNNaker, a chip with a neural network ar-

chitecture but general-purpose components that can, in principle, simulate any

model. However, by suggesting a form for the appropriate hardware architecture

for neural modelling, SpiNNaker reopens the question of the appropriate system

architecture: how are modellers to implement a given neural model on such a

blank-slate device? In a system where the nature of its function depends on a

model it has been configured to run, the tool architecture has a large part in

determining the system’s capabilities. Without a whole-system architectural ap-

proach the chip would be no different from earlier hardwired designs in that it

essentially presented a chip to modellers and expected them to use it. This work

addresses the critical need to develop an exemplar flow for neural implementa-

tion on universal hardware such as SpiNNaker, valid for multiple heterogeneous

network models.

18 CHAPTER 1. INTRODUCTION

1.2.2 The Search for the Computational Model

Regardless of any biological insights, neural networks as a computational tool have

proven to be a useful alternative to the conventional sequential digital computer

for many practical problems. Given a bare neural chip, it is quite likely that

individual developers would develop applications tightly optimised for the specific

problem they were trying to solve, giving little scope for interoperability or design

reuse. This reason alone is sufficient to justify libraries for neural instantiation on

chips such as SpiNNaker. However, a more fundamental reason is that, just as the

asynchronous parallel nature of biology can contribute insights to computation,

the universal abstraction power of computational techniques may suggest better

models for cognitive neuroscience. There remains a gap between observations and

applications that needs improved theoretical support to narrow. Neural network

design, even for simple problems, remains today very much a process of trial

and error; extensive parameter tuning is the normal order of the day [GAS08].

Meanwhile, much of current neural computation theory consists of highly abstract

proofs of formal properties. There are in contrast very few practical, concrete

“design rules” that permit a modeller to calculate parameters or connectivity.

This study introduces a library-based development model for neural hardware

to permit like-for-like comparisons at a high level, allowing direct verification by

experiment of principles which up to now could only be elaborated on paper.

The event-driven model is an important process abstraction with direct bio-

logical relevance as well as interesting computational properties. Real biological

neural networks use spikes, and it is natural to abstract a spike to an event

(assuming the precise spike shape is unimportant). There is some theoretical ev-

idence to suggest that spiking neural networks have greater computational power

than nonspiking systems [ŠO03], indeed, it is possible in biology that spiking sys-

tems with asynchronous dynamics are necessary to certain behaviours [THA+10].

This makes the event-driven model the process dynamic of choice for a neural

system architecture. Neural hardware such as SpiNNaker is already adopting

event-driven communications as a standard, and thus the development systems

for such hardware must likewise follow an event-driven model to maintain a uni-

fied system architecture. Since many classical computational neural models use

continuous, nonspiking activations, the tool chain also needs to provide a method

of translating nonspiking models into an event-driven representation. Event-

driven development is nontrivial, however, and event-driven tools are scarce for

1.2. THE INTEGRAL ROLE OF THE DEVELOPMENT SYSTEM 19

any platform, much less a dedicated neural device. This work therefore devel-

ops event-driven libraries that can automate the process of instantiating a neural

model: a basic requirement for a configurable neural system whose purpose is to

uncover the principles of neural computation.

1.2.3 The Limitations of the Simulation Model

Without an integrated tool chain, bare hardware by itself is useless: it is cum-

bersome to run, much less design, models. Furthermore the typical neural mod-

eller has little interest in or possibly even opportunity to learn a nonstandard,

hardware-specific software system. Classical programming languages like C or

Java do not intrinsically incorporate events and so are likely to fit poorly with

the neural model; existing neural simulators like NEURON or GENESIS, or even

Matlab, offer no easy extensibility to hardware and are unrealistic for real-world

environments. Hardware design languages include native event support that fits

elegantly with the chip and the neural model, but are unfamiliar outside a spe-

cialised audience. An approach that hides a hardware-design “back end” behind a

neural-modelling “front end” is the type of integrated tool chain necessary. In this

model the back-end contains prewritten, probably precompiled, “neural function”

libraries that standard neural simulators can instance and use as if the hardware

were part of the simulator itself. Thus the libraries provide the event-driven

support and the neural simulator can deal purely in model-level abstractions.

Note also that such an approach would be impossible without a universal neural

device; “hardwired” chips would force the simulator to conform to its internal

configuration, prohibiting model-level abstraction. To demonstrate the viability

of this neural modelling architecture, this study demonstrates the core of the

back-end libraries: efficient, non-trivial event-driven model implementations on

the target hardware, and methods to integrate these into existing neural simula-

tors, prototypes of the front-end interface. It will become clear through actual

neural network implementations that an integrated, event-driven, library-based

hardware system permits more efficient modelling of large-scale neural networks

than either software simulators or bare custom hardware alone.

20 CHAPTER 1. INTRODUCTION

1.3 Contributions

1.3.1 Achievements

Development of an integrated modelling architecture for neural hardware estab-

lishes the value of an event-driven library for universal neural hardware.

Within the framework of this overarching achievement, the following key contri-

butions stand out as significant advances.

A system architecture for mapping a neural network to dedicated

hardware:

If a universal dedicated neural device like SpiNNaker represents the most

promising approach to large-scale modelling in light of debates over the

model, it is also virtually useless without an integrated development system

to instantiate models on the hardware. This work develops that model. It

emphasises a view that considers the entire hardware/software platform as a

unified system, and creates an architecture suitable for implementing neural

networks not only on SpiNNaker but on other hardware platforms.

A general-purpose event-driven representation for neural models:

The neural library which represents the core of this work includes multiple

heterogeneous models. Managing such models would be difficult without

a common specification that makes it possible to build general interfaces

into which the model details can simply be “plugged in”. An important

contribution is the development of a function pipeline, suitable for broad

classes of neural model, and designed around considerations of what event-

driven hardware like SpiNNaker can efficiently implement, that forms a

“building-block” specification for neural models.

Scalable implementation of neural models in event-driven hardware:

Especially when large-scale networks containing more than ∼ 65K neu-

rons are under consideration, design automation is critical. In addition to

the software architecture and libraries, this work develops a functional au-

tomated tool chain that allows a user to specify a model in a high-level

description environment and have the tools automatically configure, map,

and implement the model on SpiNNaker hardware. Implementation of func-

tional neural networks able to operate in real-world conditions demonstrates

1.3. CONTRIBUTIONS 21

the utility of this architecture and provides an exemplar template for future

large-scale model implementations.

Important details on these contributions have appeared in the following:

1. A.D. Rast, S. Yang, M. Khan, and S.B. Furber, “Virtual Synaptic Intercon-

nect Using an Asynchronous Network-on-Chip”. In Proc. 2008 Int’l Joint

Conf. on Neural Networks (IJCNN2008), pp. 2727-2734, 2008.

2. A.D. Rast, X. Jin, M. Khan, and S. Furber, “The Deferred-Event Model for

Hardware-Oriented Spiking Neural Networks”. In Proc. 2008 Int’l Conf.

Neural Information Processing (ICONIP 2008). pp. 1057-1064, 2009.

3. A.D. Rast, M. M. Khan, X. Jin, L. A. Plana, and S.B. Furber, “A Universal

Abstract-Time Platform for Real-Time Neural Networks”. In Proc. 2009

Int’l Joint Conf. on Neural Networks (IJCNN2009), pp. 2611-2618, 2009.

4. A.D. Rast, S. Welbourne, X. Jin, and S.B. Furber, “Optimal Connectivity

in Hardware-Targetted MLP Networks”. In Proc. 2009 Int’l Joint Conf.

on Neural Networks (IJCNN2009), pp. 2619-2626, 2009.

5. A.D. Rast, X. Jin, F. Galluppi, C. Patterson, M.M. Khan, L.A. Plana, and

S.B. Furber, “Scalable Event-Driven Native Parallel Processing: the SpiN-

Naker Neuromimetic System” In Proc. 2010 ACM Int’l Conf. Computing

Frontiers, pp. 21-29, 2010

6. A.D. Rast, F. Galluppi, X. Jin, and S.B. Furber, “The Leaky Integrate-and-

Fire Model: A Platform for Synaptic Model Exploration on the SpiNNaker

Chip” In Proc. 2010 Int’l Joint Conf. Neural Networks, pp. 3959-3966,

2010

7. M.M. Khan, D.R. Lester, L.A. Plana, A. Rast, X. Jin, E. Painkras, and S.B.

Furber, “SpiNNaker: Mapping Neural Networks onto a Massively-Parallel

Chip Multiprocessor”. In Proc. 2008 Int’l Joint Conf. on Neural Networks

(IJCNN2008), pp. 2849-2856, 2008.

8. X. Jin, A. Rast, F. Galluppi, M. M. Khan, and S. Furber. “Implement-

ing Learning on the SpiNNaker Universal Neural Chip Multiprocessor”, In

Proc. 2009 Int’l Conf. Neural Information Processing (ICONIP 2009).

Springer-Verlag, 2009.

22 CHAPTER 1. INTRODUCTION

9. M.M. Khan, J. Navaridas, A.D. Rast, X. Jin, L.A. Plana, M. Luján, J.V.

Woods, J. Miguel-Alonso and S.B. Furber, “Event-Driven Configuration of a

Neural Network CMP System over a Homogeneous Interconnect Fabric”, In

Proc. Int’l. Symp. on Parallel and Distributed Computing (ISPDC2009),

pp. 54-61, 2009.

10. X. Jin, M. Lujan, M.M. Khan, L.A. Plana, A.D. Rast, S. Welbourne, and

S.B. Furber, “Efficient Parallel Implementation of a Multi-Layer Backprop-

agation Network on Torus-connected CMPs” In Proc. 2010 ACM Int’l Conf.

Computing Frontiers, pp. 89-90, 2010

11. X. Jin, M. Lujan, M. Khan, L.A. Plana, A. Rast, S. Welbourne and Steve

Furber “Algorithm for Mapping Multilayer BP Networks onto the SpiN-

Naker Neuromorphic Hardware” In Proc. 9th Int’l Symp. Parallel and

Distributed Computing (ISPDC 2010), pp. 9-16, 2010

12. X. Jin, A. Rast, S. Davies, F. Galluppi, and S. Furber. “Implementing

Spike-Timing Dependent Plasticity on SpiNNaker”, In Proc. 2010 Int’l

Joint Conf. Neural Networks, pp. 2302-2309, 2010

13. X. Jin, F. Galluppi, C. Patterson, A. Rast, S. Davies, S. Temple, and S.

Furber. “Algorithm and Software for Simulation of Spiking Neural Net-

works on the Multi-Chip SpiNNaker System”, In Proc. 2010 Int’l Joint

Conf. Neural Networks (IJCNN 2010), pp. 649-656, 2010

1.3.2 Outline

The rest of the work will develop the themes and contributions this Introduction

has outlined briefly, through the following sections:

Review of Hardware-Based Neural Systems

This chapter will discuss the historical context of neural modelling on hard-

ware. It will outline previous important architectures and findings, and give

some feeling for the overall direction of research trends through time.

Introduction to the SpiNNaker Chip

SpiNNaker is the chosen hardware platform to demonstrate event-driven

models, and the exemplar universal neural device. It is essential in order to

understand the actual model development to have a working knowledge of

1.3. CONTRIBUTIONS 23

the hardware design and features of SpiNNaker. This chapter will discuss

SpiNNaker in overview.

The Library Architecture

This chapter introduces the core architectural concepts that form the central

subject of the research. It goes through the process of selecting and defining

the design tools and the development model for SpiNNaker. Such a process

is not trivial because most tools incorporate an implicit synchronous system

assumption. The question is how to implement a system that allows the

user to create event-driven models without detailed hardware knowledge.

Network Implementation

This chapter describes the actual networks implemented on the SpiNNaker

platform. It will describe their structural and dynamic design to make test

results intelligible, but will focus on presenting the networks in the general

context of an event-driven function pipeline. The emphasis of this chapter,

therefore, will be the architectural model rather than the details of any

given network.

Software Testing: Pre-Hardware Implementation

This chapter will report results from testing in simulation. Most of the

development work used Verilog and SystemC simulators to present a virtual

chip test environment, and this chapter both presents the simulation results

and indicates the limitations of software simulation. Finally, it will examine

the importance of software testing as part of an overall neural system design

process.

Hardware Testing: On-Chip Implementation

This chapter will report results from testing on physical SpiNNaker hard-

ware. Real hardware permits testing of much larger-scale networks, thus

the chapter will focus on large-scale tests. It will only note smaller scale

tests where there is a significant observed deviation from software testing.

Discussion: Overall Findings

This chapter will present the implications of the event-driven model: what

it reveals about necessary models of computation for neural systems. It will

also discuss what the benefits of such a model are: what new computing

capabilities become available. Finally, it will try to give some perspective on

24 CHAPTER 1. INTRODUCTION

lessons learned: what building and testing revealed about the assumptions

built into current models and design tools, which implementation tactics

work and which turn out to be impractical.

Architectures for the Present and the Future

This chapter will offer some conclusions. The presentation will reflect a

strong opinion that real conclusions consist not in extracting the immediate

implications of the research (this is the role of a discussion section), but on

what influences the research might have on the field as a whole. In this case,

the central point is that neural networks introduce an alternative model of

computation that will mean entirely new system architectures, and that it is

through this architectural reconceptualisation that it will become possible

to understand how the brain works.

1.3.3 Significance

What is the impact of event-driven libraries for neural hardware? If there is one

central notion that this thesis wishes to show it is that neural computation is

a fundamentally different model of computing than sequential digital

computation. To that end, this research makes and will attempt to support the

following central claims.

Neural networks need universal dedicated hardware.

A neural network simulation running on a general-purpose serial computer

is two virtually independent computational models trying to run at the same

time. This is inefficient, impractical for very large networks, and eliminates

one of the central benefits of neural computing: parallelism. Indeed, it

is not even clear whether a serial, synchronous system can model all the

dynamics of a parallel network, some of which may depend explicitly on

the architecture. Therefore, hardware that offers a native implementation

of the neural computing model is essential.

Useful neural modelling requires abstraction of space, time, and

function.

As long as the debate exists over the precise nature of neural computation,

no design that fixes the model in silicon can be authoritative. However,

a “silicon copy” of the brain provides no insight either, for replication of

1.3. CONTRIBUTIONS 25

known neurobiology is simply empirical repetition. A neural network model

must therefore be able to provide an abstraction that successfully predicts

neural behaviour if it is to increase understanding. Since neither the inter-

nal function, topology or temporal dynamics of neural networks are fully

understood, the model must provide a mechanism to abstract each.

Event-driven neural computation provides a general means for

temporal abstraction.

No system that depends upon an external clock can provide a complete

abstraction of time, because the external clock introduces an absolute ref-

erence. Synchronous sequential computation is thus inadequate and inap-

propriate for neural networks. The event-driven model introduces a new

and fundamentally different model of time: event rate. Events can carry

arbitrary time labels (including no time marker), thus it is possible to im-

plement any model of time simply by specifying the label for each event to

carry.

An integrated, library-based tool set is a core architectural com-

ponent of a universal neural system.

If the critical feature of universal neural hardware is user configurability,

it must needs have development tools that make it possible for the user to

configure the chip. Tools that only provide low-level, assembly-language-

like programs consign the hardware to a small audience because very few

users are willing to negotiate the steep learning curve and long development

cycle necessary at such a low level. Libraries are an easy way to provide

this high-level functionality without losing implementation efficiency. If the

tool set contains prewritten, low-level libraries of neural function, that the

user can instantiate via a script-based system or GUI at a high level, a new

user can quickly create and run neural networks on the hardware.

A function pipeline containing retrieval, evaluation, lookup table,

interpolation, and differential equation solution is a block-level

abstraction sufficient to implement an arbitrary neural model.

If different neural model implementations use a completely different module

architecture, library management becomes too complex and interoperabil-

ity in the same simulation nearly impossible. A system based on block-level

26 CHAPTER 1. INTRODUCTION

replication of standardised function templates makes it easy to create the

high-level structure while retaining model flexibility through parameterisa-

tion. Such a system, furthermore, resembles the architecture of the brain

and this close correspondence to an evolved solution suggests that it will be

an efficient method with a minimum of implementation complexities. Con-

sidering what circuit fragments can implement what operations efficiently,

and what operations neural networks require, the general block template

should have variable retrieval, polynomial evaluation, table lookup, polyno-

mial interpolation, and differential equation solution as its subcomponents.

Abstracted models running on generalised hardware can reveal

enough biological insight to be meaningful in understanding the

brain.

There is no reason to believe a working abstract model running on abstract

hardware inherently has any claims to biological plausibility. This makes

it difficult to justify the validity of the model, especially in the eyes of

neurobiologists. On the other hand, if the biological model of computing

depended on all the biophysical minutiæ, neural computation would be a

sterile research field: there would be no way to derive theoretical principles

of neurocomputing, leaving it a purely empirical discipline. Therefore if

neural computing research is to be fruitful it must be the case that abstract

models can replicate the essential functionality of the brain. A model run-

ning on universal neural hardware that duplicates important behavioural

characteristics and has strong predictive power with respect to other, previ-

ously uncorrelated behaviours, is powerful evidence for the value to biology

of the event-driven architecture and and the universal neural chip.

A universal event-driven system architecture is the critical ab-

straction necessary to achieve brain-like levels of neural modelling

and computing capability.

Attempts to emulate full-brain function on synchronous digital systems run

into increasingly intractable scaling barriers. On the other hand, attempts

to duplicate neural behaviour even on small scales with increasing levels of

biophysical fidelity run into increasing intractable analysis barriers. When

computation is completely deterministic it is, indeed, questionable whether

any model can fully explain or achieve brain-like computation. Changing

1.3. CONTRIBUTIONS 27

the model to an event-driven architecture relieves scaling difficulties while

providing a level of non-determinism that can sustain spontaneous activity.

Combining the event-driven model with a universal neural hardware sys-

tem contains the analytical explosion while moving towards a native neural

execution platform rather than a force-fit adaptation of digital systems.

Event-driven neural computation presents a meaningful alterna-

tive to sequential digital computation.

Progress in computing will continue to stagnate so long as the serial unipro-

cessor computing model is taken as an unquestioned given - the situation

that prevails today. Clearly, neural networks are not serial uniprocessors:

attempts to fit them to this model will fail. Ultimately, the brain solves a

different class of computing problem from the digital computer. Solving this

class of problem may well require brain-like neural computing. Dedicated,

nondeterministic parallel systems thus become a basic requirement for neu-

ral computation, at least at large scales; it is the event-driven architecture

that provides a usable execution model for such systems.

Chapter 2

Neural Network Architecture

Trends

28

2.1. CONTEXT 29

2.1 Context

This chapter will attempt to put neural network hardware in historical context

and review the main research developments. The first part considers the ar-

chitectures: basic platforms for neural networks that have historically dictated

available capabilities. These architectures fall into three basic types, “hardwired”

networks which have attempted a direct hardware implementation of a specific

neural network algorithm, FPGA-type networks which offer reconfigurability and

wider model choice in exchange for somewhat reduced speed and scalability, and

neuromorphic networks, which move beyond simplified computational algorithms

to attempt biorealistic modelling, often with some level of configurability. A

pervasive theme permeating all these approaches has been “direct implementa-

tion” - the alluring but ultimately somewhat misleading concept that it should be

possible to make the hardware a literal embodiment of the model of computation.

The second part asks a critical question that affects the value of a “direct”

implementation: what is the hardware going to be used for? There is no reason

to believe, a priori, that hardware designed for biological simulation will perform

well in computational applications, and it is important within the biological do-

main to consider what part of the neural network is most important within the

context of a given study: network dynamics, neural behaviour, synaptic response.

In the computational domain, meanwhile, neural networks perform well for spe-

cific applications but are not necessarily good for general-purpose computation.

One domain where neural networks may be particularly valuable, however, is

embedded systems. Such applications usually demand real-time adaptability to

dynamic environments, often under tight power constraints. Standard digital

processing is frequently unsuitable in such situations and here neural networks

can have compelling advantages. Event-driven computing emerges as a particu-

larly suitable model for the types of applications that neural hardware performs

well in, with clear biological relevance, offering a path to standardisation which

unifies the disparate applications for neural networks into a single architectural

model.

The third part examines actual concrete implementations in hardware. Specif-

ically, it looks at chips: while there have been some neural network hardware plat-

forms that make original use of standard hardware, in the main the development

has been in custom IC’s or FPGA’s. The story of chip development follows two

major routes: analogue hardware which hopes to emulate neurons with silicon

30 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

device physics, and digital systems, which hope to leverage the advantages of stan-

dard and fast-improving process technology along with vastly more predictable

device characteristics in order to create accessible neural hardware that min-

imises the need for careful parameter tuning. However, the signal development

in the field has been the introduction and rapid adoption of Address-Event Rep-

resentation (AER), a mixed-signal communications standard that permits easy

interfacing between heterogeneous components, transforming the analogue/digi-

tal choice from a hard commitment into an implementation convenience. AER is

perhaps the most important advance in neural hardware systems and paves the

way for “neuromimetic” hardware: chips with an abstract, configurable internal

structure but an overall architecture optimised for neural processing.

2.2 Architectures: Hardwired, FPGA, Neuro-

morphic

A neural network is a structural architecture that naturally suggests hardware

implementation. Dedicated hardware can fully replicate the parallelism of the net-

work, and neural networks provide a classic example of an “embarrassingly paral-

lel” application [NS92]. Unsurprisingly, therefore, neural network chips emerged

almost as soon as the process technology reached the point that this was feasible

[TH86], [GHJdV87], [Gar87]. Since the first neural network chips, however, pro-

cess technology has evolved, and so has research opinion on the actual biological

operation of neural networks [MJH+03]. As a result there has been a compara-

ble evolution in the prevailing hardware neural network architectures over time

[RTB+07]. The research community has had 3 main phases of development. In

the first, the “hardwired” phase, the emphasis was on pure connectionist func-

tionality in silicon, whether analogue or digital [LL95]. Devices in this phase

also tended to use non-dynamic “timeless” models employing either continuous-

time or synchronous update behaviour. In the second, “reconfigurable” phase,

designs moved onto reprogrammable hardware, mostly digital FPGA’s, either to

time-multiplex functions or to permit dynamic network remapping [JS03]. At

this point event-driven implementations begin to emerge, primarily for efficiency

rather than biological realism. In the third, “neuromorphic” phase (still currently

prevalent), focus shifts to greater biological plausibility with spiking networks,

often analogue, frequently with extensive reconfigurability [JC09]. During this

2.2. ARCHITECTURES: HARDWIRED, FPGA, NEUROMORPHIC 31

evolution, process technology tends to determine progress to a greater extent

than biological (or even computational) research findings.

The dynamic model: how the neural network “state” evolves with time, has

been an important strand of development. From the outset it has been clear

that conventional sequential processing is a poor fit for modelling neural systems.

[JSR+97] It is not clear that the model of a single master clock to drive internal

state updates is optimal for parallel systems [YB09], and it certainly is not bio-

logically plausible [TMS93]. This has given scope for researchers to experiment

with various dynamic models, using neural processing as a “silicon canvas” to try

their ideas [PWKR02b], [MJH+03], [ICD06]. In spite of this freedom, however,

one major timing assumption continues to limit most current designs: the need

to maintain a coherent system state. This is a stipulation that at any point the

modeller can stop the chip in mid-process and get a complete “system snapshot”

of the entire neural state [PLGW07]. Such an assumption distorts the model of

parallel computation. A truly parallel computer is a set of independent process-

ing modules; if system state must be coherent then the computer is not actually

parallel but a set of coupled subprocesses in an overall serial architecture [CJ92],

[MR94]. Historically, this is how early models of neural computation emerged

[Ros58] [Hop82] but the result has been to create a dominant architectural model

in the chip design community that persisted for some time after the neural mod-

ellers had already moved on to dynamic, spiking models. Not until FPGA imple-

mentations started to examine creative solutions to resource limitations [LSLG94]

did researchers begin systematically to examine the temporal model, and it has

only been relatively recently that neuromorphic systems have started to imple-

ment spiking [APR+96] as the standard model [Maa01]. There remain still strong

traces of the coherent architecture even in state-of-the-art devices, however, and

on the whole it appears that observability has had a controlling influence on the

evolution of the dynamic model in hardware.

2.2.1 Hardwired Architectures

Early neural network chips were mostly hardwired [GHJdV87], [FWA88],

[YMY+90]. In the hardwired approach, hardware, usually custom ASICs, directly

implements a specific neural model and topology. Only minimal configuration of

the chip is possible, if the device allows any programmability at all [HTCB89].

Hardwired designs achieve the highest speeds possible for the available process

32 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

technology, since the hardware is a literal translation of the model into circuitry.

While this architecture is the “obvious” approach it has significant drawbacks.

There has tended to be no tool chain other than a basic interface, usually in the

form of a device driver [SBS05]. With minimal tool support, using such chips has,

historically, been difficult [ICK96]. The would-be modeller usually has to have in-

timate knowledge of the low-level details of the hardware. Integrating these chips,

containing proprietary interfaces, into larger systems is equally difficult because

the entire system must be built from the ground up [Ker92]. But the critical

limitation of such chips is the obvious one: they can only model one, or at most a

few, neural models. Therefore there is minimal scope for model experimentation,

and unless the implemented model exactly matches the experimenter’s preferred

neural model, the device is in effect useless [SBS05]. Chips implementing true

dynamic models are rare [SHS95]; those with any hardware support for events,

rarer still, The effect has been to confine the use of these chips to the original

developers, along with, at most, a small group of related researchers sympathetic

to the model implemented. Given the very high up-front investment required to

produce a full-custom ASIC, it has been very difficult to justify producing such

devices, and hardwired architectures ended up being something of a research

dead-end [Omo00].

2.2.2 Reconfigurable Architectures

Reconfigurable architectures use FPGA devices to implement neural networks

with dynamic internal logic [EH94b]. FPGA implementations became popular

when it became clear that the ASIC approach was gaining little adoption and

when coincidentally FPGA densities started to become large enough that im-

plementing full-scale neural networks on them was practical [PWKR02a]. They

use commercially available, off-the-shelf hardware and development tools, mak-

ing hardware neural modelling accessible, at least in principle, to those without

the resources to develop a full-custom IC. However, FPGA’s bring with them

several significant limitations. Dynamic reconfigurability is only possible with

some FPGA’s, and furthermore the tools usually limit the scope for reconfigu-

ration [SVS+09]. Such reconfiguration takes time and is very complex to pro-

gram, FPGA programming sequences being typically arcane and proprietary

[KdlTRJ06]. FPGA’s have digital components with a very specific structure,

placing further limits on what functions and dynamics are implementable, and

2.2. ARCHITECTURES: HARDWIRED, FPGA, NEUROMORPHIC 33

often requiring careful optimisation, particularly with expensive synaptic mul-

tiplication operations [HAM07]. Most importantly, FPGA’s impose a clocked

synchronous model of computation: any neural model that uses other models of

time must transform or adapt its dynamics into the synchronous environment

[WL06], [ROA+06].

There have been 2 types of reconfigurable architecture: component-

multiplexing and programmable-model. Component-multiplexing architectures

use the reconfigurability to implement a much greater number of individual neu-

ral elements than would be possible with fixed hardware of the same size [EH94a].

The device multiplexes individual components, either performing different pro-

cessing stages or implementing different neurons [GMM+05], while in operation

[LSLG94], [BHS98]. The component-multiplexing approach was the first to hint

at an event-driven architecture, particularly with bit-stream applications that

suggest an atomic message: an event, per bit [GSM94]. Using an event-driven

approach to drive the multiplexing itself, however, remains a future research area

[GMM+05]. In part this is because the multiplexing itself incurs a time overhead,

making it suitable mostly in coherent update applications where scheduling the

multiplexing in the presence of asynchronous input does not present problems

[HAM07]. For similar reasons the actual neural model implemented on chip

is usually static, thus they do not exploit the intrinsic programmability of the

FPGA.

Programmable-model architectures use the dynamic reconfiguration capabili-

ties to change the actual topology of the neural model, or its internal dynamics

[PWKR02b]. Many of the early implementations, given the known limitations of

partial reconfigurablity, focussed on changing the topology [PUS96] [UPRS05]. A

severe limitation with FPGA’s is the circuit-switched architecture, which ham-

pers the ability to create the dense connectivity patterns realistic neural networks

require [HMH+08b]. Attempts to create reconfigurable or event-driven dynamics

do not appear in most cases to have proceeded beyond the design-exploration

phase [EKR06], [ROA+06]. This seems, in fact, to be somewhat of a summary

of the development of neural networks on FPGA’s: useful for design exploration,

but not pursued for full-scale modelling [HMH+08b].

Recently there has been experimentation with programmable-model architec-

tures using graphics processors (GPU’s) [OJ04]. The attractiveness of GPU’s

comes from massive parallelism with standard parts at minimal cost. Because of

34 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

their particular design, it is also easier to incorporate reconfigurable dynamics on

GPU’s than FPGA’s. However, the nature of the GPU: an application-specific

processor optimised for a different application than neural networks, imposes

FPGA-like architectural limitations [BK06]. GPU’s use an emphatically syn-

chronous, coherent model. Maintaining process coherency, in fact, turns out to

be one of the most challenging research topics [NDKN07]. Various similar limi-

tations mean that mapping a neural network to a GPU is nontrivial, limiting its

use in practical terms to people with extensive hardware expertise [BK06].

Ultimately the critical limitation for both platforms is probably limited scal-

ability. FPGA’s use a circuit-switched architecture, and this in turn means wire

density limits achievable connectivity [HMH+08b]. It is not difficult to note

that while model connectivity scales potentially as N2 (where N is the number

of neurons), FPGA wire density scales linearly with area (hence with number

of neurons) and quickly runs out of routing resources with large networks. With

GPU’s, the external interfaces do not permit easy scalability to multichip systems

[FRSL09]; not particularly surprising given that the design of the GPU assumes a

single chip sitting on a graphics card. FPGA’s are also very power-hungry: a de-

sign with 60% resource utilisation might consume 50W on a large FPGA like the

Virtex-5. Meanwhile, GPU power requirements are crippling: an nVidia GeForce

GTX280 can consume 236 W. Although reconfigurable architectures have proven

useful for small-scale modelling and proof-of-concept experimentation, they are

inadequate for large-scale neural networks.

2.2.3 Neuromorphic Architectures

Neuromorphic architectures are more intimately concerned with biological plau-

sibility than previous designs, usually implementing spiking networks with full

dynamics [PRAP97], [WNE99]. Relative to the FPGA, neuromorphic systems

appear like a return to older hardwired architectures, possessing considerably

less general-purpose reconfigurability than FPGA designs, but this reflects an

integration of the knowledge gained in the previous generations [VMC+07]. If

the era of hardwired architectures revealed that fixing the model in hardware

was overly limiting, the reconfigurable era showed that general-purpose recon-

figurability sacrificed too many efficiencies in the name of universal application

[HMH+08a]. In particular, the FPGA design leads to a synchronous digital model

of computation that is too power-hungry and area-intensive for elegant neural

2.2. ARCHITECTURES: HARDWIRED, FPGA, NEUROMORPHIC 35

implementations [NdSMdS09]. Thus the neuromorphic approach accepts that

some application-specific components are necessary, possibly using combinations

of analogue and digital techniques [IWK99], along with enough general-purpose

reconfigurability to tailor the system for various models [VMVC07]. There has

therefore been a subtle shift of emphasis from which model to implement to what

level of reconfigurability is appropriate to achieve an optimally efficient modelling

platform.

Equally importantly, neuromorphic architectures incorporate the time domain

integrally, in contrast to “timeless” hardwired architectures [WCIS07]. Therefore

they can model biological networks with much greater realism than previous de-

signs [VMVC07]. Typically, however, the networks integrate time explicitly in

the hardware, as a parameter in analogue circuitry which usually tries to approx-

imate the actual biophysics of neurons [MS08], [YC09]. Time is therefore fixed,

with some scaling factor relative to “real” time, not abstract or programmable

[KBSM09]. Where there are digital components they often (and increasingly, typ-

ically) use events [CWL+07], but only as an implementation convenience: events

are merely the unit of translation between analogue and digital domains. Usu-

ally such systems also preserve time-coherency, in the sense that it is possible to

interrogate the digital interface and get a complete readout of the network state

[PVLBC+06], [CWL+07]: this represents a major departure from biological real-

ism where the notion of a global state is meaningless because no one local unit

or region possesses an instantaneous global view [Ban01]: neural transmission

involves real delays [CEVB97], [Izh06]. While undoubtedly the neuromorphic ap-

proach allows the closest hardware approximation to the biology thus far, limited

ability to abstract time still means that the fundamental question modellers ask

is how accurately the hardware models the biology rather than what models they

could use with the hardware to find out more about the biology [BI07].

This problem deflects attention away from the central question: if much of the

actual computational model of the brain remains unknown, how can hardware

provide insights into its function by modelling the biology realistically [VMVC07]?

In this regard current neuromorphic architectures suffer from several deficiencies.

One is in the area of model support: existing implementations have tended to

emphasize hardware efficiency at the expense of reconfigurability, bringing them

closer to the hardwired chips with all their known limitations [KGH09]. The

36 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

other major gap is tool support: neuromorphic architectures tend not to inte-

grate seamlessly into existing simulators [BMD+09]. The user cannot therefore

simply run a predeveloped model on the hardware: it needs translation, assuming,

furthermore, that the target model is compatible with what the hardware sup-

ports [BGM+07]. Being outside mainstream commercial technology, such trans-

lation tools are scanty to nonexistent [BMD+09]. When it is difficult, such as

here, to get even standard reference models to run, an understandable reaction of

the biological modeller is to express scepticism about the validity of the models

the chip implements [CSF04] - because he cannot test it against a model he is

familiar with and trusts [RD07]. Thus neuromorphic chips have not to date pro-

vided a compelling platform for discovering valid biological abstractions, because

it has been difficult to make direct comparisons against detailed models. The

“ideal” architecture would be more of an integrated software/hardware system

[OWLD05], containing a device that combined general-purpose programmability

with the biological realism of current neuromorphic architectures, and a tool chain

with direct support for existing simulators, native parallelism, and the ability to

present neural networks at different levels of hardware abstraction.

2.3 Applications: Computational, Biological,

Embedded

Whatever the potential benefits of a given neural architecture are, they have little

meaning outside the context of an application in which to run. Neural network

architecture is much more application-specific than digital computing, where the

microprocessor realises a reasonably good solution to any problem that can be

posed as a sequential algorithm, with an architecture that has stabilised to a

standard form [Kön97]. Some of this may be intrinsic: it is possible that the

physical form of the neural network model is tightly coupled to the task it per-

forms [STE00], [ST01]. Evidence from neurobiological studies, however, indicate

that such “hard-wiring” is limited and important only for primitive behavioural

response or early processing stages; indeed, it may not even remain active after

development [CHC06]. Much of the observed tailoring of architecture to appli-

cation in the computational domain occurs rather because current applications

come from fields with completely different priorities. There are applications in

“classical” computation: more or less parallel data processing where the need

2.3. APPLICATIONS: COMPUTATIONAL, BIOLOGICAL, EMBEDDED 37

is to solve a specifiable problem. There are biological modelling applications:

neural network simulations where the need is to approximate, hence to under-

stand, brain function. And there are embedded systems applications: sensing

and control tasks where the need is autonomous dynamic response in changing

environmental conditions, often within power and area constraints.

2.3.1 Computing Applications of Neural Hardware

Neural networks have already proven useful for some standard computer applica-

tions. In fields such as economic modelling [ASAW06], fraud detection [GR94],

and image or character recognition [Kli90], [MGS05] commercial neural network

software has existed for years. Generally, however, where such applications have

been successful is when they can be transformed into an off-line process run-

ning as conventional clocked sequential algorithm [GT02]. In software, neural

networks run relatively slowly and may not provide real-time dynamic response,

e.g. a software-based neural network fraud detection system is unlikely to be

able to provide on-line credit card approval at the point of sale, not with millions

of transactions occurring simultaneously. In such an application, requiring real-

time response with large data streams, an event-driven model is more appropriate

[GSW02].

Conventional hardware is a poor architectural match for the event-driven

model, suggesting a dedicated chip [JSR+97], [JH92]. However, this requires

a large initial investment for a technology with substantial risks [MLS04]. Com-

pared against the virtual certainty of progress in conventional processing tech-

nology during the time needed to design and fabricate the chips, this commit-

ment usually looks unjustifiable [NG03], [ICK96]. There is no reason to expect

that a chip designed for a specific neural network will perform well with a ran-

dom application, certainly not that it will perform well in applications beyond

a target application for which it was designed, and so pre-existing neural chips

offer no definite benefits to the new user and few opportunities for reuse to the

user already having such hardware [Rey03]. If, however, there were a system

that allowed easy event-driven applications development for standardised neural

hardware, neural computation would look increasingly attractive for large-scale

real-time applications. Users could invest in a single system which would then

be reusable for future applications and which provided an effective alternative

computing resource to traditional mainframes.

38 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

2.3.2 Hardware for Biological Simulation

Further progress in understanding biological neural networks virtually mandates

dedicated hardware [JL07]. Simulating large-scale biological neural networks

using software has become increasingly difficult if not completely impractical,

with biologists expecting ever-more detail from ever-larger models [MCL+06].

Widespread use of spiking models has made event-driven processing standard

in current software simulators [HC97], [DT03]; however, these run on sequential

hardware, resulting in an inefficient layering of emulation: synchronous hard-

ware, simulating event-driven execution, to drive a simulation of a neural net-

work. Unsurprisingly performance is poor [JSR+97]. Meanwhile, there is a mis-

match between available neural hardware and the models used in biology. Where

the former usually use very simple spiking models such as leaky-integrate-and-

fire, (when they implement spiking models at all) [MJH+03], [ICD06], the latter

are commonly complex multicompartmental conductance-based models such as

Hodgkin-Huxley [HC97], [BPS10]. This points to a gap in mutual understanding:

the divergent goals of the hardware designers, who typically are interested in the

nature of the neural model of computation [WNE97], and the neurobiologists,

who tend to be more interested in the causes and effects of neural computation

[YC10].

The typical process of the biological modeller is to build into the model as

many properties and components as practicable that have been observed in actual

biological studies [MCL+06], [Dur09]. Such an attempt to learn by imitation,

however, usually results in a model that yields very poor predictive power. If the

model replicates the biological behaviour, all is well and good, but the experiment

has not revealed anything the researchers did not already know. Meanwhile if it

does not, there is one more mystery unsolved. In either case the researchers gain

very little real insight. There can be no understanding of the properties of neural

computing, beyond simply cataloguing phenomena, without an understanding of

its nature [Ban01].

Hardware designers tend to use the engineers’ approach: start with a simple

model and progressively add features until it works [FT07], [WNE97]. While

this approach readily leads to a series of design abstractions containing testable

predictions [Hil97], it is important to differentiate a genuine abstraction from

a mere simplification. An abstraction conveys general computational properties

that continue to apply whatever additional detail is added; a simplification may

2.3. APPLICATIONS: COMPUTATIONAL, BIOLOGICAL, EMBEDDED 39

actually change the behaviour quantitatively even at the general level [Maa01].

The problem with current hardware is that it usually provides no method to

separate the former from the latter, especially since many chips involve various ad-

hoc design decisions taken as an implementation convenience [FSM08], [WNE97].

It is virtually certain that understanding neural computation must needs involve

some abstraction of the biology, but what the appropriate abstraction is is not

clear [WNE97]

What is needed is a general-purpose neural device that can model neural net-

works at any level of abstraction, so that while it can model very large-scale net-

works using simple models, it can at least in principle model detailed conductance-

based models and provide meaningful acceleration to biologists using such models

[HMH+08b]. Equally imperative is that this device have an integrated tool chain

that can plug in with minimal interfacing to biological simulators like NEU-

RON or high-level computational simulators like JNNS, so that modellers are not

forced to learn a completely different specification and simulation environment

[ASHJ04]. A universal neural network system that integrated with current simu-

lators would permit direct Model A/Model B comparisons [BMD+09], making it

feasible for biologists to identify conclusively which computational abstractions

are valid and begin to attack the question of the biological model of computation

systematically.

2.3.3 Embedded Neural Systems

The embedded space may well prove to be the most fruitful field for neural devel-

opment [BDCG07], [JM95]. Neural networks as computing devices may work for

some important large-scale problems but on the whole have no a priori reason to

be better than a digital approach [Rey03], and this is furthermore not the central

function of neural networks in biology, which exist within the context of a creature

interacting in an environment. Embedded computation is much more similar to

the real-world tasks biological neural networks perform [JM95], and furthermore

there are many applications where conventional microcontroller/DSP-based de-

signs work suboptimally [DLR02]. An embedded neural system would be a device

connected to sensors on the one hand and actuators (or controllers) on the other,

interacting in real time with its environment.

Event-driven computing is a standard practice in embedded systems [GE97].

Existing tools for event-driven applications [CL05], therefore, should integrate

40 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

relatively easily with an event-driven neural system. However, tools for embedded

systems development have, to date, been scarce and usually proprietary [PA05].

The same is true of neural network systems: the result is that the two very rarely

converge.

Embedded systems developers typically work with hard constraints on power,

real-time performance [PPM+07], and, perhaps most importantly, cost

[HHXW08]. Such developers are usually not hostile to using alternative process-

ing techniques and hardware. In this regard event-driven neural hardware has 2

compelling advantages over software running on conventional hardware: improved

speed supporting real-time simulation [ROA+06], and the potential for dramatic

power savings. If, however, this comes at the price of greatly increased system

cost, it probably will not be a realistic option for the embedded designer [Rey03].

This must be looked at from the perspective of total cost: a cheap device which is

difficult and time-consuming to develop applications for is just as prohibitive as

an expensive device [Kön98]. Effective, simple development tools are therefore a

prerequisite for neural hardware to have real impact in the embedded community.

For neural hardware to succeed in embedded applications it will have to com-

bine a hardware architecture flexible enough to implement different networks

optimised for different domain-specific applications with a development environ-

ment that permits the designer to implement tightly optimised models without

excessive ad-hoc design. In spite of the difference in context, these requirements

look similar to those of the previous two application categories and indicate that

the same basic architecture: an integrated universal neural network hardware/-

software system - may be the optimum approach for all neural networks. Having

remarked at the beginning of this section that digital systems have converged

upon the microprocessor-based platform as the best solution for most cases, it

seems that neural network hardware may be in a similar position: that once the

“right” platform is found the industry will quickly converge on a standard. Mo-

tivation for neural architectures thus moves from chip considerations to system

considerations.

2.4. CHIPS: DIGITAL, ANALOGUE, MIXED-SIGNAL 41

2.4 Chips: Digital, Analogue, Mixed-Signal

To outline the form of an “ideal” neural system, it is necessary to examine these

systems in reality: how architecture and application translate into concrete im-

plementation and how far actual systems go towards achieving design goals. This

is easiest to do in terms of process technology: digital, analogue, or mixed-signal.

2.4.1 Digital

Digital designs are the easiest to implement, follow the most aggressive process

technology roadmaps, enjoy the most extensive tool support, and integrate most

easily with external hardware [Rüc01], [MS88]. However, they also use by far the

most silicon area, are the most power-hungry, and have the least natural fit with

biological prototypes [JG10]. Caught between these opposing poles of equally

powerful advantages and disadvantages, digital chips have therefore been exer-

cises in design compromise [KDR07], [ME08]. One reasonably successful solution

is the bit-serial pulsed neural network: while early devices such as [MS88] use

the technique primarily as a space optimisation, it anticipates the later develop-

ment of full-spiking models [SAMK02]. Some devices implement a fixed network

type to permit aggressive hardware optimisation [YMY+90], however, these are

largely devices of the past after commercial ventures encountered decidedly lim-

ited success [DAM04]. This should come as little surprise, however, given that

it discards perhaps the most decisive advantage of digital technology: arbitrary

reprogrammability [JPL98].

Programmable digital hardware, however, has its own problem: it is difficult

to justify what is in essence a specialised microprocessor when general-purpose

CPU’s increase in speed and power each year [Rey03]. Such hardware fights

against standardisation, and this virtually ensures low to non-existent tool sup-

port [ICK96]. This made the FPGA approach appear promising for a considerable

time: standardised tools operating on standardised hardware [PMP+05], most

commonly Xilinx Virtex devices [PWKR02b] but also various Altera [BHS98]

and Actel parts [KA95], made it appear as though FPGA’s and their associated

tools could become a form of standard platform with different models becoming

different configurations that could be released as downloadable VHDL or Verilog

[THGG07]. Unfortunately the scalability problems get worse, not better, with

larger devices [MMG+07], and a tendency of the device manufacturers to limit

42 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

information on the configuration bitstream [KdlTRJ06] have confined FPGA’s to

prototyping applications.

The other major approach has been to use off-the-shelf parallel processors.

An interesting first generation mapped neural networks on early parallel chips

like the Transputer [KM94], Datawave [JH92] and WARP [PGDK88] and iden-

tified important architectural issues. However, the subsequent disappearance of

these chips, in large part because parallel programming turned out to be diffi-

cult [MECG06], meant these research directions were not pursued for some time.

More recently, there has been a revival of the idea of mapping neural networks

to general-purpose parallel processors because of the emergence of Graphics Pro-

cessing Unit (GPU) chips, a special-purpose architecture designed for massively

parallel matrix computations.

GPU’s offer the benefit of highly parallel, standard CPU’s within a chip mul-

tiprocessor architecture designed for high concurrency and internal communica-

tions bandwidth [NDKN07]. GPU’s have almost as aggressive a process tech-

nology roadmap as FPGA’s [LLW05]. Furthermore, graphics chip designers like

nVidia have released architectural standards to simplify the task of developing

applications for these chips. However, it also represents an attempt to use a

device in ways not originally intended; experience suggests such attempts run

into unexpected limitations and behaviours by trying to co-opt hardware for pur-

poses outside its design goal [Pra08]. More importantly, existing uses limit the

scope for neural optimisation or standardisation: the hardware, certainly, is stan-

dard, and so are the tools, but standardised for synchronous coherent applications

[BK06]. The central idea of both FPGA and GPU neural implementations seems

sound: use a standard, parallel digital device with generic internal components.

However, the actual implementation in both cases appears to be an attempt to

force-fit an unsuitable device [HMH+08b]. To open a realistic path to standard

neural hardware, what is necessary is a device designed around neural networks

from the outset, containing programmable on-board standardised neural process-

ing elements and scalable FPGA-like reconfigurability.

2.4.2 Analogue

Analogue designs are compact and power-efficient, and can run at reasonable

speeds [ICD06], but the primary motivation for using them has always been that

2.4. CHIPS: DIGITAL, ANALOGUE, MIXED-SIGNAL 43

it is possible to fabricate analogue devices whose characteristics have real similar-

ities with biological neurons [HB06]. An analogue chip can not merely “simulate”

a neural network, it can be a neural network, physically implemented in silicon

[ZB06]. However, this intuitively elegant direct-implementation capability has

also been conceptually limiting, because as a result most analogue chips directly

implement a specific model in hardware [HP92], [Cau96], [LS92], [PRAP97] dis-

carding out of hand the possibility of implementing different neural models with

the same hardware. “Direct implementation” is in fact a mesmerising but mis-

leading concept, because the “real” model of neural processing is unknown (except

in certain narrow, well-studied areas such as the retina), meaning that outside

such special cases there are no certainties an analogue device is directly imple-

menting anything [FT07], [TL09]. This forces the neurobiologist to ask hard

questions about what biological effects the electronic behaviour reproduces, and

whether they are adequate to capture all important behaviour [YC10]. Mean-

while, the classical applications developer or embedded system designer will need

to see compelling benefit from the hardware as opposed to off-the-shelf digital

devices [Rey03]. Direct implementation places the burden of proof squarely on

the chip designers, making standardisation unlikely since this requires broad con-

sensus on the utility of the standard.

A hardwired and often proprietary design effectively puts any systematic at-

tempt at model exploration out of reach. Therefore newer designs attempt to

achieve at least some level of programmability and general-purpose use [KGH09],

[VMVC07] [WD08]. The introduction of programmable analogue memories,

chiefly floating-gate based [HTCB89] [DHMM97], [SKIO95] has eliminated what

was historically the most vexing barrier: weight programmability, but program-

mable analogue circuitry is still very much in its infancy [LL10] [FGH06], [DBC06]

a long way off standardisation. Furthermore, there are very few tools for work-

ing with such devices (except at the very lowest level) [BÖD+99] [BD08], nor is

much research being done in analogue tool support. Overall, then, pure-analogue

designs seem unlikely at least in the short term to become standard neural compo-

nents, and if they are to have any future, tools for high-level neural specification

and modelling on programmable hardware are a vital research topic [MMG+07].

44 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

2.4.3 Mixed-Signal

Mixed-signal devices are the obvious solution to the obvious shortcomings of both

analogue and digital technologies, and the focus of many recent efforts. Mixed-

signal devices can achieve unusual combinations of speed, device density, and

interface simplicity [FSM08]. Superficially, the principal problems would appear

to be greater design complexity and reduced tool support [BRE94], but in fact

the need to provide an on-chip analogue-digital interface completely alters the na-

ture of the design tradeoff. High-precision ADC’s and DAC’s are area-expensive

[MAM05], and in particular tend to slow the design because of limited sam-

pling rates [SHMS04]. This presents the designer with a difficult design tradeoff

between signalling rate, area and usable precision. Limiting the number of con-

verters is the most common choice but this means having to serialise the data

streams [SFM08], reducing speed and parallelism.

With spiking networks it is possible to abstract the actual signalling to a

zero-time point process, and this forms the basis of the emerging neural data

serialisation standard: Address-Event Representation (AER) [LWM+93]. AER

uses packets that encode the source of the spike as an address and is a proven,

efficient way to serialise and then multiplex multiple neural signals onto the same

series of lines [Boa00] while making the converters themselves trivial [VMVC07].

It is an elegant solution that overcomes most of the interface problems associated

with mixed-signal devices with only one important limitation, the restriction

to spiking networks [LBJMLBCB06]. From the point of view of potential for

standardisation, AER is not only an outstanding candidate but is in fact well

established on the way to becoming a defined standard [CWL+07], thus making

it overwhelmingly the signalling method of choice for future neural designs. Inter-

estingly, nothing limits AER signalling to mixed-signal devices [CMAJSGLB08],

[LBLBJMCB05], and thus it can be the basis of a “template” for neural hardware.

The system that emerges is a chip containing blocks of configurable functional-

ity, possibly mixed-signal [TBS+06], embedded in a connectivity network using

AER signalling, using a standard configuration and modelling tool chain that in-

jects both data and configuration control information onto the device using AER

packets [LMAB06]: the “neuromimetic” architecture [RTB+07].

2.5. THE STATE OF THE ART: A SUMMARY 45

2.5 The State of the Art: A Summary

Thus far, neural hardware has been an exercise in design tradeoffs: architectural,

applicational, implementational. The development “tree” looks like this:

Architectures

Hardwired

Literal implementations using custom silicon to implement classical compu-

tational neural networks. While they offer high acceleration, model support

is extremely restricted, often to only one network type, and thus such chips

have been mostly a pure research exercise.

FPGA

Flexible implementations using the universal configurability of FPGA de-

vices to offer wide choice of models. These solve the problem of finite

model choice elegantly, and reconfigurability can also address questions of

dynamic network restructuring and resource utilisation. Scalability, how-

ever, remains a daunting barrier due to power and wire routing limitations.

The circuit-switched design of the FPGA is a major limiting factor.

Neuromorphic

Implementations, usually spiking, that attempt to achieve some level of bi-

ological realism. Recently such designs have also begun to acknowledge the

need for configurability. Analogue designs, however, complicate this process

because of limited and often low-precision tunability. Digital neuromorphic

designs, meanwhile, face serious questions of biological plausibility.

Applications

Computational

Neural networks have already proven useful in computational applications

like fraud detection and classification where the system must produce a

decision based upon incomplete or noisy data. Such applications will surely

continue to be important in the future, however, a careful assessment of how

to map them to hardware is critical when implementing them on hardware

systems.

46 CHAPTER 2. NEURAL NETWORK ARCHITECTURE TRENDS

Biological

There is a growing consensus that for large-scale biological simulation hard-

ware is essential. However, it is vitally important to keep in mind that as

long as the actual biological model of computation remains unknown, any

claim to “direct implementation” of anything is unsubstantiatable. Thus

hardware for biological simulation must be as flexible as possible, placing

the emphasis on providing a platform for exploring various models of com-

putation rather than examining one pre-decided one.

Embedded

Embedded applications are an ideal fit in many cases for neural hardware.

They frequently involve the need for dynamic adaptivity to changing ex-

ternal environments, often under tight power constraints. Neural networks

perform well in this area and might be suitable alternatives to traditional

digital signal processing. Event-driven computing is a common model for

embedded applications, and it also matches well with neural networks. The

one missing element that would permit wide-scale embedded neural devices

is standardisation: common platforms and interfaces that minimise design

time and cost to the developer.

2.5.1 Chips

Analogue

Custom IC’s using full analogue componentry to implement neural net-

works. Usually small-scale because of process restrictions. Difficult to tune,

but they do offer the closest implementation to real biology at the lowest

power.

Digital

Chips that use standard digital components to simulate neural circuits.

Not as space-efficient as analogue designs, but much smaller process tech-

nologies offset this, and the chips are vastly more configurable. However,

synchronous clocked design increases power dramatically and imposes its

own processing assumptions which can be difficult to circumvent.

Mixed-Signal

Chips that attempt some combination of both technologies in order to get a

2.5. THE STATE OF THE ART: A SUMMARY 47

“best-of-both-worlds” design. Exotic process technologies and complex de-

sign make such chips challenging, however, they are notable for introducing

the AER standard that provides a simple model for “building-block”-style

implementation of multichip neural systems and permit the emerging “neu-

romimetic” hardware generation.

Chapter 3

A Universal Neural Network

Chip

48

3.1. OVERVIEW 49

3.1 Overview

So long as model exploration remains at least as important for neural networks

as hardware acceleration, configurable special-purpose hardware will appear at-

tractive. While it would be possible to examine architectures for neural systems

as a purely theoretical exercise, it is far preferable to explore ideas about neural

network implementation in the context of a specific, real hardware platform. Real

working hardware makes implementation decisions concrete and clarifies the na-

ture of design decisions. Here the discussion uses the SpiNNaker chip as a specific

example to introduce the “neuromimetic” architecture. The first part outlines

the critical features of the neuromimetic architecture. In essence, these are the

defining attributes of neural networks: native parallelism, event-driven update,

incoherent memory, and incremental reconfiguration. Each of these attributes

has a corresponding specific implementation on SpiNNaker which is central to its

function and helps to illustrate the overall architecture.

The second part elaborates the essential theme of abstraction, without which

understanding of the neural model of computation will remain purely empirical.

Neural networks present three dimensions of abstraction: topological, computa-

tional, and temporal. Of these, the need for topological abstraction is perhaps

most accepted and understood, but also subjected to the most frequent over-

simplifications. Computational abstraction is a more contentious issue: is there

a “canonical” neural process? Until a satisfactory theory of neural processing

exists, any attempt to impose a neural model a priori will be uninformative.

Temporal abstraction is a theme that has only emerged recently but may be one

of the most important parts of neural computation. Representing both the bio-

logical systems’ extraordinary dynamic range of time and its ability to represent

time-invariant concepts requires systems that can reconfigure time as easily as

space or process.

The third part looks at the SpiNNaker hardware architecture in detail. In

particular, it describes the components that implement each major feature of the

neuromimetic architecture. In turn these introduce behavioural characteristics

that are quite different from conventional systems and will require rethinking the

development model. Neuromimetic architectures like SpiNNaker introduce a new

design paradigm for neural networks: an event-driven model that represents a

significant departure from conventional digital processing, with enough flexibility

to model many different classes of network but enough neural-specific features to

50 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

represent a useful abstraction of neural computation.

3.2 The Neuromimetic Architecture

Concrete realisations of the neuromimetic chip concept that is emerging as a

leading architectural model for flexible large-scale neural systems are beginning

to appear. One such chip is SpiNNaker, a universal spiking neural chip multi-

processor that represents a fourth-generation hardware architecture [FT07]. The

essential architectural feature is signal and process abstraction. Where previous

architectures make assumptions, often very constraining, upon the type of net-

work being modelled, SpiNNaker leaves the choice of model in the hands of the

designer. In that respect it is similar to the microprocessor, a general-purpose

digital device that does not predetermine function. In spite of its general-purpose

design, however, the neuromimetic architecture retains enough of the general and

specific features of neural networks to be hardware-optimisable for neural appli-

cations. These characteristics are:

• Native Parallelism: Neural networks process data in massively parallel, sim-

ple operations.

• Event-driven Update: There is no separate instruction stream - the input

data drives the process.

• Incoherent Memory: Local memories do not have and cannot employ global

sequential update dependencies.

• Incremental Reconfiguration: Each input datum may alter not just the state

but also the state space.

SpiNNaker’s architecture uses these 4 components to provide a generic substrate

for neural processing: a kind of “blank slate”.

3.2.1 Native Parallelism

The single most essential and characteristic feature of the neuromimetic archi-

tecture is native parallelism. It has 2 important, defining properties: hardware

concurrency - there are multiple processes occurring at the same time in separate

but functionally identical units; and process independence - the internal state of

3.2. THE NEUROMIMETIC ARCHITECTURE 51

Figure 3.1: SpiNNaker Architecture. The dashed box indicates the extent of the
SpiNNaker chip. Dotted grey boxes indicate local memory areas.

one process has no necessary state or timing relationship with another. SpiN-

Naker (fig. 3.1) achieves hardware concurrency using multiple (2 in the present

implementation, 20 in a forthcoming version) processors per chip, each operat-

ing entirely independently (in separate time domains) [PFT+07] and having its

own private subsystem containing various devices to support neural functionality.

This permits a direct physical correspondence between the hardware processors

and the individual processing elements (neurons) of the model. The mapping

need not be one-to-one, for example for the “reference” Izhikevich model, a given

processor nominally models 1024 neurons [JFW08]. However, each neuron re-

sides in an identifiable processor (or an identifiable fixed group of processors)

rather than having its processing distributed over the entire system. In this

sense, the SpiNNaker neuromimetic architecture is not simply running a simu-

lation on a large system. To achieve process independence, SpiNNaker uses an

asynchronous packet-switched network-on-chip (NoC) as the connection fabric

[PFT+07]. Programmable distributed routing hardware in the fabric determines

the local physical connectivity [WF09]. In much the same way as neurons corre-

spond to processors, axonal connections correspond to network routes, creating

52 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

a global virtual network that maps the actual connectivity in the neural model.

Thus SpiNNaker, uniquely, maintains a direct mapping to the neural model in

the configuration of its components while completely virtualising the actual cor-

respondence [KLP+08], so that it implements true native-parallel neural compu-

tation without hardwiring the network onto the chip.

3.2.2 Event-Driven Processing

A neuromimetic architecture requires a different model of time and a differ-

ent control-flow abstraction than the standard sequential synchronous model

[RKJ+09]. Individual processors operating independently have no way to know

or control when inputs may arrive and thus the input data itself must define the

control flow: this is event-driven processing. The defining characteristics of event-

driven processing are that an external, self-contained, instantaneous signal drives

state change in each process, and that each process has a trigger that will initiate

or alter the process flow, whether it is currently active or not. Thus in contrast

to a synchronous sequential system where a clocked counter-driven instruction

stream forces an inexorable flow of execution, SpiNNaker’s asynchronous event-

driven dynamics are a series of context-specific responses to nondeterministic

input events [RJG+10].

For the architecture to be useful, there must also be some mechanism to

transform the neural process dynamics into an event stream. For spiking neu-

ral networks the event-driven abstraction is obvious: a spike is an event, and

the dynamic equations are the response to each input spike [JFW08]. New in-

put spikes trigger update of the dynamics. Nonspiking networks require different

abstractions. Networks with continuously-variable activations can use a neuron

that generates an event when its output changes by some fixed amplitude. For

models with no time component, the dataflow itself can act as an event: a neuron

receives an input event, completes its processing with that input, and sends the

output to its target neurons as an event. SpiNNaker has direct hardware support

for such event-driven signalling using Address-Event Representation (AER) pack-

ets containing the source neuron address (along with, possibly, a data payload).

AER packets are unidirectional. Destination neurons therefore cannot respond or

acknowledge packets received, and implementing reciprocal connections requires

2 separate and distinct AER events. Processors use the familiar interrupt mech-

anism as the trigger; this also allows the processor to have additional local event

3.2. THE NEUROMIMETIC ARCHITECTURE 53

sources in the form of support devices that signal via hardware interrupts. Event-

driven control ensures that separate processes operate independently, by isolating

each process’ internal dynamics from the other. This means that the SpiNNaker

neuromimetic system is free to follow the time characteristics of its environment

and does not superimpose a synthetic clock.

3.2.3 Incoherent Memory

Incoherent memory is a distinctive characteristic of the neuromimetic architec-

ture. Any processing element in SpiNNaker may update any memory variable

it has access to without testing for prior access by another processor. Architec-

turally, this is both a benefit, because the system may as a result dispense with

complex memory coherency hardware and protocols, and a necessity, because un-

der the “fire and forget” model memory devices have no way to signal back to a

processor the outcome of a request. This affects the structure and organisation

of the memory as well as its access mode [RJG+10].

SpiNNaker has two types of memory resource: local and global. Local re-

sources are exclusive to the processor node and therefore inherently have no co-

herency issues. For global resources, however, applications must ensure that they

have no shared read-after-write dependencies, and atomic read-write operations

are forbidden. Very much like event-driven design requires any clocks that exist

to be local to a given processing element, incoherent memory in effect requires

memory updates in SpiNNaker to have purely local dependencies. This is consis-

tent with biology: overwhelming evidence indicates that neural memory appears

to reside in synapses, whose weights are only directly visible to their correspond-

ing source-target neural pair [MSK98], [HCR+04]. Global control is confined to

low-frequency non-exclusive modulatory pathways whose effect depends only on

the local visibility of the modulation [AN00]. In this important aspect, the mem-

ory access model of the neuromimetic architecture replicates that of a biological

neural network.

3.2.4 Incremental Reconfiguration

The neuromimetic architecture differs from a classical parallel multiprocessor in

that the structural configuration of the hardware can change dynamically while

54 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

the system is running. It is important to distinguish reconfigurability from re-

programmability. The latter requires processing elements to perform explicit

access to a general-purpose memory each time the affected processes execute.

The former, by contrast, partitions SpiNNaker as a series of independent on-chip

resources with hardware that automatically accesses configuration data to change

the data and control flows between resources without requiring them to access

memory explicitly [KRN+10]. It is possible to use this ability to implement neural

elements directly in a one-to-one mapping to resources (as in the reference Izhike-

vich model), but nothing about it forces any particular relation between hardware

and model; indeed, reconfigurability decouples the model from the hardware, al-

lowing experimentation between different hardware to model mappings.

Although not yet implemented in the software model, SpiNNaker hardware

supports 2 different types of reconfiguration: dynamic changes by partially or

completely reloading the processor memory, and topological changes by reconfig-

uring the hardware network. Each processor has its own private local memory

which contains the neural dynamics, along with dedicated devices that can inde-

pendently reload this memory without processor control. By requesting a reload

of the local neural dynamic memory, an external event can trigger reconfiguration

without further control, and since all the devices involved are local, it need not

shut down the entire system. Changing the topology is a matter of updating

the network fabric’s routing tables. The distributed routing structure make is

possible to change any local subpath of the network without affecting activity in

the rest of the network [NPMA+10]. Boot-time configuration reserves one pro-

cessor per chip to be able to manage this reconfiguration process locally, thus the

remapping can occur independently of the neural processing, just like changing

the dynamics [KRN+10]. Incremental reconfiguration in the SpiNNaker neu-

romimetic architecture achieves 2 purposes: it permits dynamic mapping of the

“physical processing” in the hardware to the “virtual processing” of the model,

and it allows the user to control the degree to which the hardware directly models

the neural network.

3.3 Hardware Abstraction of Time and Space

For large-scale neural models to be intelligible they will need useful abstractions

of neural computation. Thus SpiNNaker’s neuromimetic architecture comes with

3.3. HARDWARE ABSTRACTION OF TIME AND SPACE 55

the capability to model networks at different levels of structural replication. In-

deed, the 4 basic properties of the neuromimetic architecture are abstractions of

biological neural computing, which is massively parallel, appears to use event-

driven control through asynchronous spikes [MMP+07], has no identifiable mem-

ory coherence mechanisms, and supports incremental reconfiguration (through a

variety of methods including biochemical modulation [FHK93], cell growth and

death, and synaptic pruning and proliferation [BC88]). SpiNNaker is a vehicle

for exploring the computational significance of neural networks, quite aside from

what details it may reveal about the actual processing in biological neural net-

works or what the choice of model is. Still, to make real headway in deciphering

the biological model of computation it is necessary to be able to abstract all

aspects of the computing: spatial, temporal, and dynamic.

3.3.1 Topological Abstraction

The need for topological abstraction: that the hardware connectivity need not

match physically the model connectivity, is perhaps the most readily understood

and already accepted notion of abstraction in the neural hardware community.

For the most part, this has been for purely practical reasons: the number of

needed connections scales faster than silicon technology can achieve, and with

even moderately-sized networks a one-wire-per-connection approach quickly runs

out of routing room. FPGA’s provide an illuminating case study: the circuit-

switched architecture has historically limited FPGA neural implementations to

small networks [HMH+08b], and inspired many attempts to extend FPGA limits

by various innovative dynamic-mapping techniques [TMM+06]. Just as criti-

cally, neural network models do not all have the same type of topology to begin

with [UPRS05], and so the wire-per-connection style also ends up limiting model

choice. Rather than present the model with a circuit-switched connection in-

frastructure, SpiNNaker gives all processes access to a packet-switched shared

interconnect resource. Nonetheless, at some point this resource also runs out of

capacity: available bandwidth sets an upper limit on the number of simultane-

ously active connections [RJG+10]. Such blockages, however, are temporary, and

do not happen at fixed model size. Thus the system can, at least in principle,

dynamically adjust the interconnect to obtain the best tradeoff of connection

mapping to network utilisation (although this has not been attempted or tested

yet). Abstracting topology does more than relax network-size or model-topology

56 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

limits: it makes it possible to manage connectivity intelligently.

3.3.2 Process Abstraction

Differences in neural models are not simply a matter of parameter changes or

different terms in the dynamic equations: the very form of the defining equa-

tions themselves may be radically different. This means that any hardware

that assumes a “class” of equations for neural modelling loses universal power

[ŠO03]. For example, typical equations in dynamic spiking models are of the

form dV
dt

= E(V) + F (G) where V is the membrane voltage, G various cellular

conductances, and E and F functions describing their time progression. However,

equations in conventional multilayer perceptron models are of the form T (ΣiwijSi)

where T is a nonlinear transfer function, wij a weight from source neuron i to

destination neuron j, and Si the input to the synapse. Obviously these are radi-

cally different in form, nor are they the only equations involved in such models.

Using general-purpose CPU’s to implement neurons makes SpiNNaker able (at

least in principle) to abstract processes all the way up to arbitrary functions.

This involves some associated loss of hardware efficiency, for it is no longer pos-

sible as in neuromorphic chips to hard-wire devices to mimic desired behaviour.

Given the current (contentious) state of debate over the “correct” neural model

[Des97], [Izh04], [VA05] [CRT07] however, such “direct implementation” is prob-

ably a false economy. With SpiNNaker, the modeller does not need to answer

the question of which neural model is “right” in advance, and furthermore he

can continually optimise and refine those models he implements simply by repro-

gramming. The benefit of process abstraction is as great as it was in the digital

case with the microprocessor: the ability to use a general-purpose platform and

be able to build a wide range of neural models on top of it.

3.3.3 Temporal Abstraction

Some models have an explicit model of time, others do not; and for those models

that do include time there is no necessary relationship between model time, hard-

ware time, and real-world time. If, therefore, the neuromimetic architecture is to

conform to the model time in its neural behaviour, it must have internal time rep-

resentations that are as abstract as those of processes. Synchronous architectures

which force explicit timing relationships between processes appear unsuitable for

3.3. HARDWARE ABSTRACTION OF TIME AND SPACE 57

Figure 3.2: SpiNNaker test chip. Functional units are labelled.

such temporal abstraction. Instead, SpiNNaker uses event-driven control flow

with asynchronous signalling. An event can happen at any time, thus communi-

cations do not have an internal time representation that could superimpose itself

on the time representation of the model.

It is important to bear in mind, however, that with multiple possible time

domains, each communicating asynchronously, the notion of global state on SpiN-

Naker is meaningless. It is therefore impossible to get an instantaneous “snap-

shot” of the system, and processors can only use local information to control

process flow. In compensation, temporal abstraction brings unprecedented capa-

bilities. Dynamic partial reconfigurability is a natural consequence: since each

processing element operates independently, stopping and reconfiguring any one of

them does not (and must not) require restarting the neural model. More signifi-

cantly, temporal abstraction brings the ability to avoid or indeed investigate the

effects of clock-based effects on model realism, the ability to run in real time to

interact with the world, faster-than-real-time to observe slow learning processes

or run computational applications, or slower-than-real-time to examine fine detail

in neural behaviour, in different parts of the model. Temporal abstraction does

what it says: time is no longer absolute but relative, and while this involves some

reformulation of standard models it makes it possible to experiment with time as

freely as with function.

58 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

Figure 3.3: Multichip SpiNNaker CMP System.

3.4 SpiNNaker: A Universal Neuromimetic

Chip

SpiNNaker (fig. 3.2) uses a combination of off-the-shelf and custom components

to implement the neuromimetic architecture. Each chip, a parallel multiproces-

sor in its own right, can link with others over external links to form a large-scale

system containing up to 1.3 million processors over 65,536 chips with high concur-

rent inter-process communication (6 Gb/s per chip) (fig. 3.3) [KLP+08] Such a

system could model a network with ∼ 109 spiking neurons: the scale of a “mouse”

or possibly a “cat” brain. Each chip has 2 types of resources, local and global.

Local resources are replicated multiple times on-chip, operate in parallel, and are

independent from each other. Global resources are unique to a given chip, but

each local subsystem can access them independently with non-blocking access.

There is one additional important global device residing off-chip: an SDRAM

(mostly to store synaptic weights). These global resources, while singular at the

chip level, are parallel at the system level: each chip has its own dedicated set

of global resources. Thus the whole design of SpiNNaker emphasizes distributed

concurrency, the outstanding feature of neural networks.

3.4. SPINNAKER: A UNIVERSAL NEUROMIMETIC CHIP 59

32KB

ITCM

DTCM

64KB

CpuClk

(~200MHz)
Clock

Buf/Gen
AXIClk

DMAClk

AHBClk

ARMClk

CCClk

Timer / Counter

Controller
Interrupt

Communications

Controller

ARM968E−S

AHB−Lite M

Controller

System NoC

Comms NoC

CHAIN Gateway

DMA

AHB M AHB S

AHB S

AHB2

AHB S

IRQ

TClk

ARM IRQ/FIQ

ARMClk

AHBClk

AXIClk

DMAClk

CCClk

AXI Master

JTAG

AHB1AHBClk

AHBClk

AHBClk

Figure 3.4: Processor node block diagram

3.4.1 The SpiNNaker local processor node

The local processor node (fig. 3.4) is the basic system building block. Each proces-

sor node is a complete neural subsystem containing the processor and its associ-

ated event-generating devices: a (packet-generating) communications controller,

a DMA controller, a hardware timer, and an interrupt controller. While these ad-

ditional hardware resources optimise the design for spiking models, nothing in the

design fixes their use, so, for example, the communications controller can operate

simply as a general-purpose packet transceiver. The local node therefore, rather

than being a fixed-function, fixed-mapping implementation of a neural network

component, appears as a collection of general-purpose event-driven processing

resources.

SpiNNaker uses general-purpose low-power ARM968 processors to model the

neural dynamics. The processor itself also has a dedicated memory area, the

Tightly Coupled Memory (TCM), arranged as a 32K instruction memory (ITCM)

and a 64K data memory (DTCM). A single processor implements a group of

neurons (from 1 to populations of tens of thousands depending on the complexity

of the model and the strictness of the time constraints); running at 200MHz

60 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

a processor can simulate about 1000 [JFW08] simple yet biologically plausible

neurons such as [Izh03]. While the ARM968 is a synchronous core, its clock timing

remains completely decoupled from other processors on-chip and from model

time. The programmable Timer device facilitates this temporal independence.

The obvious way to use the timer is to set it to generate single or repeated

absolute real-time events; this is permissible so long as: 1) timesteps (and clocks)

remain exclusively local to the processing element they drive; 2) no processing

element can require an external event to arrive in a fixed time window. However,

another, powerful way to use it that fully preserves the event-driven model is

to set the timer on receipt of an input packet event to trigger another event at

some programmable delay into the future. This model is in essence a hardware

realisation of the event queue common in concurrent modelling software [PKP08].

The embedded communications controller controls AER packet reception and

generation for all the neurons being simulated on its associated processor. These

AER packets are the only events visible to the neural model itself. Like other

devices, the communications controller signals an incoming event using interrupts.

The ARM968 supports 2 different interrupt types, “regular” interrupts (IRQ) and

preemptive-priority “fast” interrupts (FIQ); assigning the packet event to FIQ

logically distinguishes this model-visible event from other, transparent events.

The local Interrupt Controller (VIC) centralises event management: all devices

direct their interrupts to the VIC which forwards them on to the processor. The

VIC provides 2 essential management functions, event (interrupt) prioritisation

and interrupt service (ISR) vectoring. Since the VIC is fully programmable, both

event priorities and service routines are arbitrarily (re)configurable to suit model

needs. In principle this could event include assigning a different event than packet

received to FIQ, but in practice this logical division is so useful that management

will be more likely to reorder the relative priority between transparent events.

The DMA controller interacts strongly with the TCM. It provides an inde-

pendent path to local processor memory that transfers data in and out without

requiring explicit processor control. The primary function of the DMA is to swap

blocks of memory from off-chip storage into local TCM. The most common use

of the DMA controller is to transfer synaptic weight data, which typically ex-

ceeds the size of the TCM due to the number of synapses involved. The DMA

device makes weights appear “virtually local” to the processor by swapping the

data associated with a specific input into the TCM when needed, usually after

3.4. SPINNAKER: A UNIVERSAL NEUROMIMETIC CHIP 61

receiving an AER packet [RYKF08]. Synaptic data thus appears to reside in

TCM even though in fact only a small slice of it is actually present at any one

time. The virtually-local memory model allows memory incoherency: because a

given synapse belongs to a definite neuron residing in a single processor, DMA

can write back changes to memory without snooping other processors’ state, since

only the owning processor will access the particular synapse. The DMA controller

transforms a synchronous memory access model into an event-driven model by

signalling transfer completion with an interrupt, the complete sequence being that

an input packet triggers a DMA request process, which completes the transfer

independently and then signals the processor using its transfer complete event.

The DMA controller is also the only device within the local node with direct

visibility of global resources. Thus it is a bridge between the local subsystem and

the global subsystem.

3.4.2 SpiNNaker global resources

SpiNNaker global resources implement parts of the neural model that have a

system-wide character not easily identified with a specific processing element.

These are mainly to do with implementing the connectivity: the Communications

Network-on-Chip (Comms NoC), its associated router, and the external SDRAM

with associated controller. A few remaining components implement low-level

system support features but these do not concern us here; they are invisible

to the neural model and functionally independent of it. It is the connectivity

information that truly resides in a distributed global resource.

Central to this resource is the Comms NoC [PFT+07]. This asynchronous

fabric connects each processor core on a chip to the others, and each chip with its

six neighbour chips over links supporting 2 Gb/s internally and 1 Gb/s externally

per link. Individual chips’ Comms NoC’s link to form a global network where

a processor is a node. By wrapping links around into a toroidal mesh, it is

possible to build a system of any desired scale (up to the addressing limit of

the packets) (fig. 3.3). Given the known scalability and routability limitations

of circuit-switched architectures [MMG+07], SpiNNaker’s network uses a packet-

switched approach. Most neural traffic takes the form of “spikes”, AER event

packets containing the address of the source neuron, and possibly a 32-bit data

payload (fig. 3.5). AER allows packets to be source-routed over the network

from originating neuron to destinations. Such behaviour matches biology, where

62 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

Figure 3.5: SpiNNaker AER spike packet format. Spike packets are usually type
MC. Types P2P and NN are typically for system functions.

there is no immediate “acknowledgement” from a destination neuron to source

neurons. Because the NoC is a packet-switched system, the physical topology of

the hardware is completely independent of the network topology of the model, and

it ensures that system bandwidth rather than wire density dominates the scaling

limitations. Since the Comms NoC is asynchronous, there is no deterministic

relation between packet transmission time at the source neuron and its arrival

time at the destination(s). A SpiNNaker system can map (virtually) any neural

topology or combination of topologies to the hardware with user-programmable

temporal model.

The switching hub of the NoC is a programmable on-chip multicast router that

directs packets (spikes) to internal on-chip processing cores and external chip-to-

chip links using source-based associative routing [WF09]. This configurable router

contains 1024 96-bit associative routing entries to map physical links into neural

connections. A default “straight through” routing protocol for unmatched inputs

in combination with hierarchical address organisation minimises the number of

required entries in the table. The routing table is reprogrammable entry-by-

entry on the fly, similar to the “dynamic reconfigurability” of certain modern

FPGA’s. By configuring the routing tables (using a process akin to configuring an

FPGA) [BLP+09], the user can implement a neural model with arbitrary network

connectivity on a SpiNNaker system. With such a programmable router-based

network, SpiNNaker achieves the essential feature of incremental reconfigurability

while remaining scalable up to large network sizes.

Placing the large amount of memory required for synapse data on-chip would

consume excessive chip area. Instead, SpiNNaker uses an off-the-shelf SDRAM

3.4. SPINNAKER: A UNIVERSAL NEUROMIMETIC CHIP 63

device as the physical memory store and implements a linked chain of components

on-chip to make synapse data appear “virtually local” by swapping it between

global memory and local memory within the interval between events that the

data is needed. The critical components in this path are the SDRAM controller:

an off-the-shelf ARM PL340, an internal asynchronous Network-on-Chip: the

System NoC, connecting master devices (the processors and router) with slave

memory resources at 1GB/s bandwidth, and the previously-described local DMA

controller. This “synapse channel” uses a memory-swapping method to make

data appear continuously local, using DMA to transfer required synaptic weights

from global to local memory [RYKF08]. Global SDRAM contains the synaptic

data (and possibly other large data structures whose need can be triggered by an

event). Since synapses in the SDRAM always connect 2 specific neurons, which

themselves individually map to a single processor (not necessarily the same for

both neurons), it is possible to segment the SDRAM into discrete regions for each

processor, grouped by postsynaptic neuron since incoming spikes carry presynap-

tic neuron information in the address field. This obviates the need for coherence

checking because only one processor node will access a given address range. Anal-

ogous to the process virtualisation the processor node achieves for neurons, the

synapse channel achieves memory virtualisation by mapping synaptic data into

a shared memory space, and therefore not only can SpiNNaker implement mul-

tiple heterogeneous synapse models, it can place these synapses anywhere in the

system and with arbitrary associativity.

3.4.3 Nondeterministic process dynamics

While this event-driven solution is far more flexible and scalable than either syn-

chronous or circuit-switched systems, it presents significant implementation chal-

lenges demanding new methods to transform a neural model into an appropriate,

efficient SpiNNaker instantiation.

Specific embodiment of general-purpose processors: Although the

processing node is general-purpose, it obviously has a definite hardware

implementation. There are therefore better and worse ways to implement

a given neural model.

No intrinsic time representation: Events contain no absolute time reference.

Particularly with neural models having temporal dynamics, the system must

64 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

transform an event stream into a definite time sequence.

Arbitrary network mapping: The topology of the communications NoC is

independent of the topology of the neural network. Efficient mappings

that balance the number of routing table entries required against network

utilisation are therefore essential.

No instantaneous global state: Since communications are asynchronous the

notion of global state is meaningless. It is therefore impossible to get an

instantaneous “snapshot” of the system, and processors can only use local

information to control process flow.

One-way communication: The network is source-routed. From the point of

view of the source, the transmission is “fire-and-forget”: it can expect no

response to its packet. From the point of view of the destination, the trans-

mission is “use-it-or-lose-it”: either it must process the incoming packet

immediately, or drop it.

No processor can be prevented from issuing a packet: Since there is no

global information and no return information from destinations, no source

could wait indefinitely to transmit. To prevent deadlock, therefore, proces-

sors must be able to transmit in finite time.

Limited time to process a packet at destination: Similar considerations

at the destination mean that it cannot wait indefinitely to accept incoming

packets. There is therefore a finite time to process any incoming packet.

Finite and unbuffered local network capacity: Notwithstanding the previ-

ous requirements, the network is a physical interconnect with finite band-

width, and critically, no buffering. Thus the only management options to

local congestion are network rerouting and destination buffering.

No shared-resource admission control: Processors have access to shared re-

sources but since each one is temporally independent, there can be no

mechanism to prevent conflicting accesses. Therefore the memory model

is incoherent.

These behaviours, decisively different from what is typical in synchronous se-

quential or parallel systems, require a correspondingly different software model,

3.5. SUMMARY OF THE SPINNAKER ARCHITECTURE 65

as much a part of the neuromimetic system as the hardware. This model pro-

vides important insights about neural computation, and more generally about

concurrent computing.

3.5 Summary of the SpiNNaker Neuromimetic

Architecture

SpiNNaker integrates the essential elements of the neuromimetic architecture: a

hardware model designed to support flexibility in model exploration while imple-

menting as many known features of the neural model of computation explicitly

in hardware for maximal performance. The most fundamental of these known

features are:

Native Parallelism

Parallel processing is basic to neural computation and thus a neuromimetic

architecture must incorporate massive parallelism. SpiNNaker achieves this

with a chip multiprocessor design using general-purpose ARM968 proces-

sors. These CPU’s provide the main facility for process abstraction.

Event-Driven Update

“Real” neural networks use spikes; it is reasonable to abstract a spike to

an event and so form the basis for the second feature of neuromimetic com-

putation. SpiNNaker supports spike-based events using the emerging AER

packet communications standard, but also incorporates a programmable

vectored interrupt controller that permits a wide variety of different forms

of event. Because events themselves are essentially “timeless”, they allow

for easy temporal abstraction.

Incoherent Memory

The notion of memory coherence is irrelevant for biological neural networks,

and indeed the need for any coherence mechanism in a parallel system would

imply some underlying sequentiality. SpiNNaker therefore has no hardware

support for memory synchronisation, merely local and global memory re-

sources that each processor on a chip may access asynchronously. Incoherent

memory also eliminates forced timing relationships, simplifying temporal

and process abstraction.

66 CHAPTER 3. A UNIVERSAL NEURAL NETWORK CHIP

Incremental Reconfiguration

Biological neural network structures reconfigure themselves while in opera-

tion using several different mechanisms. A neuromimetic system thus incor-

porates support for dynamic reconfiguration. In SpiNNaker, the principal

component implementing this functionality is the programmable multicast

router, but in addition it is possible to reload processor instruction and data

memory and so change out not just the topology but also internal model

parameters. SpiNNaker provides a facility for complete structural abstrac-

tion that goes beyond the basic requirement of abstracting the network

topology.

Chapter 4

The Library Architecture and

Tools

67

68 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

4.1 Roadmap

Functional, effective development tools are essential for hardware to be useful. A

potential user needs to be able to access the hardware in ways relevant to its func-

tionality that at the same time offer enough abstraction to provide a clear link

to the target applications. This chapter discusses the creation of tools, in par-

ticular a neural modelling library, appropriate for the neuromimetic architecture.

Reflecting the substantial hardware difference from conventional computing, the

library introduces a different, event-driven model. This makes the tool chain as

much a part of the neuromimetic system as the hardware.

The first part defines the overall software model, highlighting a distinction

in neuromimetic systems between configuration and application. Three different

components handle different aspects of the running system. “System software”

provides essential services as a library of low-level functions; invisible to the user

these provide the first level of hardware abstraction. “Modelling software” allows

users to configure a model to run on SpiNNaker. It does not run the model

but rather sets up the chips to run a model starting from a high-level definition.

“User software” actually runs the model and provides an environment, either real

or synthetic, for the neural network to interact with.

The second part introduces an event-driven model for tool, and in particular,

library, design. At present event-driven tools are scarce, complicating develop-

ment on event-driven hardware like SpiNNaker where there are three important

requirements: abstraction, automation, and verification, which require a reason-

ably accurate representation of the hardware. The third part describes the specific

rôle and design of the library system. To reduce the scope of the libraries to a

manageable level, it examines what existing tools, notably SystemC and PyNN,

can be used for parts of the process. The library-based system is the critical cus-

tom component, using an abstract, event-driven function pipeline to describe a

neural model using generic functional elements that the user can configure using

parameters to specify the exact model and network structure. Such a system

can describe and model almost any neural network, independent of, yet targetted

towards, the hardware on which it runs.

4.2. AN EVENT-DRIVEN NEUROMIMETIC CONFIGURATION CHAIN 69

4.2 An Event-Driven Neuromimetic Configura-

tion Chain

Configuring a neuromimetic device like SpiNNaker to run a specific model is not

simply a matter of writing an application program. Being an event-driven system

with hardware-level neural features, SpiNNaker is unlikely to find “standard”

tools and software designed for general-purpose sequential synchronous systems

suitable, at least not out-of-the-box. Furthermore, the model itself is not an

isolated component but is integrated into a complex system that presupposes

a configuration process to design, configure, and operate it. Thus, a complete

system design approach must consider the model library within the entire tool

chain and its interactions with the ultimate purpose of the device [Pan01]. Within

the system, there is a need for components to express neural behaviour in terms

of SpiNNaker’s hardware capabilities, while integrating the event-driven model

naturally and transparently, and this is where the library architecture fits in.

There is an important distinction to make between a neural network config-

uration and a neural application. In the usual sense, an “application” refers to

software that achieves the end-use goal of the system. In this sense, on a neu-

romimetic system, the application is not the neural model instantiated on the

hardware per se, but the interaction of this neural network with the environment

(either “real” or simulated) that the modeller presents it with. Configuration,

on the other hand, determines the computational architecture of a flexible hard-

ware platform. A SpiNNaker configuration describes a neural network (capable of

running various possible applications) as actually instantiated on the hardware.

Once on the hardware it is essentially static, at least on the timescale order of

the application. While the neural application is completely independent of the

hardware platform, the configuration is not - and it is a necessary part of the

complete system design since without it the hardware’s function is undefined.

This study therefore focusses on configuration as an integral part of the system

architecture.

The purpose of the configuration system is to provide an efficient hardware

abstraction: presenting SpiNNaker to the user as a series of real neural network

components while presenting neural network components to SpiNNaker in a way

that maximises utilisation and efficiency of actual hardware resources. Such a

goal naturally suggests a modular, library-based system with hierarchical levels

70 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

of abstraction [OCR+06] that uses prewritten, component-like blocks of code to

map a neural network.

4.2.1 System Components

At the bottom of the hierarchy lies system software: code that, invisible to the

user, performs essential tasks necessary for the hardware to operate. This includes

any low-level software components that interact directly with hardware at a signal

level (such as device drivers), boot and startup code, and background control and

monitoring functions (such as memory management). An event-driven system

needs a different software model for these components than a traditional operating

system model. The most important difference is that in the event-driven model

there is a discontinuous flow of control. This has 2 consequences (particularly

on SpiNNaker): first, as well as active modes, there is an overall “idle” mode, in

which the processor stops; second, an active mode may have several concurrent

processes, none of them necessarily children of another active process. A major

part of the functionality of event-driven system components is to provide a global

view of system resources to independently executing processes.

The architectural model for the SpiNNaker system layer is that of a scheduler

and a series of services. Its core component is the event handler itself, which

needs to act as an efficient scheduler of self-contained processes. The scheduler

is, in essence, an interrupt handler, and it triggers an appropriate service that

then executes. For performance reasons, as in any interrupt service routine, the

scheduler should be as lightweight as possible: it need only determine what service

to run and then trigger the service. If the processor was in idle mode it can trigger

the service immediately, however if the processor was in active mode, it needs to

save the context of already-running services.

Services have both a global, shared context, and a local, private context. The

model uses the global context to communicate information between services, thus

the scheduler, or any other service, may asynchronously update global context,

which acts as an instantaneous “message” to other services. Therefore, the sched-

uler only saves local context, private information representing intermediate states

and temporary data within an individual process (fig. 4.1).

The libraries implement individual services. Thus, a given model can load only

the services it needs. Services themselves are independent modules that simply

terminate when complete rather than returning to a “background” process. They

4.2. AN EVENT-DRIVEN NEUROMIMETIC CONFIGURATION CHAIN 71

Figure 4.1: SpiNNaker event-driven software model. Events are asynchronous
signals that trigger the scheduler: the interrupt service routine. The ISR then in
turn triggers various services, which may run concurrently. Services start in ARM
Supervisor (SVC) mode but may drop into user (USR) mode after completing
critical entry point tasks. Each service has its own local context: the register
file and user stack; that the scheduler must preserve. The scheduler does not
need to preserve the global context between service calls; it can (asynchronously)
update global context, consisting of main memory (DTCM), the service (SVC)
stack, device registers, and any registers marked as global. (The number of global
registers should be kept to an absolute minimum.) Updates to the global context
are the primary method of inter-process communication. The ISR has its own
private context. The ARM968 has 2 interrupt modes, FIQ and IRQ; in addition
to separate stacks for each, the FIQ mode has its own private registers. Thus no
interrupt need preserve scheduler context.

72 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

may either provide notification to the system via an event when complete, or sim-

ply terminate silently, their action reflected only in the change in global context.

If there is no active service, the processor is completely idle: it can “sleep” await-

ing a new event. This model reflects the native concurrency both of the hardware

and of neural networks, efficiently providing individual processes with a global

view of system resources (through the global context), while optimising processor

utilisation through an active/idle state model.

4.2.2 Modelling Components

Instantiating a neural model uses modelling components from the library to gen-

erate and verify the model on the physical hardware. Starting from a high-level,

behavioural network description, the tools need to translate a large model con-

taining possibly millions of neurons into a physical implementation with minimal

user direction. SpiNNaker’s configurable, event-driven design has 2 differentiat-

ing features: hardware virtualisation - there is no global fixed map of system

resources, and nondeterministic concurrency - an event can happen at any time.

Together, these mandate spatiotemporal locality : processes can only have knowl-

edge of actions in their local execution context. The configuration tools, therefore,

divide the neural network into self-contained blocks that are both spatially and

temporally independent using an incremental process that requires only local in-

formation. The model libraries enable this process by providing atomic units of

configuration.

SpiNNaker’s component libraries contain predesigned general neural compo-

nents implementing a particular model type such as a spiking neuron or a delta-

rule synapse. These models implement the actual instantiation on SpiNNaker in

terms of processor code, memory structures, and configuration commands. At

a higher level, other tools: a configurer and mapper, translate the description

from neural network software and assemble the SpiNNaker implementation from

library blocks. In turn, off-the-shelf verification tools allow the user to simulate

the resulting network (a simulation of a simulation!) before running it on the

hardware proper. The process of successive abstraction necessary to support a

large design leads to a chain of interrelated tools that perform specific subtasks

in the translation process from abstract neural network model to concrete SpiN-

Naker implementation. In this chain the library is the common format for tool

4.2. AN EVENT-DRIVEN NEUROMIMETIC CONFIGURATION CHAIN 73

interfacing that can express both abstract component descriptions and hardware-

identical signal behaviour.

The library’s architecture is 3-part: a set of core model-specific functions, a

set of memory object definitions, and a set of parameter headers. The functions

implement neural and synaptic behaviour and use a generalised abstract neural

model defined as a function pipeline. Under this architecture, different neural

models have the same general pipeline stages, differing only in the specifics of

the implementation of the function representing each stage. Memory objects lie

in separate files external from the function definitions, each separate SpiNNaker

space (local TCM memory, global System RAM, global SDRAM, and devices)

having its own independent definitions. Parameter headers contain constants and

initialisation values for variables. The configuration program then assembles a

complete SpiNNaker model by inspecting the source model file and extracting

neural and synaptic types. It can then build the neuron by retrieving the appro-

priate functions from the library, together with their associated memory objects.

It will plug the functions into the pipeline, configure the sizes of memory objects,

and create the parameter headers (possibly with some translation of units) by

reading the model’s structure and parameter values directly from the source file.

The end output is a series of SpiNNaker source files which can be compiled and

mapped.

4.2.3 User Components

The externally visible interface is user software: code that, the system having

booted and reached an operating state through configuration, the user initiates

and controls to run an application. For SpiNNaker the user typically interacts

with the system through an external interface to a “host” or “terminal” - a sep-

arate computer or processor that provides a suitable user environment. This

environment can specify the network model, provide real or simulated environ-

mental input and output, and possibly tune internal parameters or structure

interactively. In the ultimate limit, a neural network may need no “user” soft-

ware at all, being a completely autonomous system connected to suitable sensors

and actuators: a fully-functional robot.

Returning to less spectacular implementations, it is probably simplest and

most convenient to use an industry-standard PC for the host. While the PC

is a conventional synchronous procedural system, various off-the-shelf standards

74 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

exist that use an interrupt-driven device driver with an internal buffer, solving

the event-generation and response problem without the need for extensive custom

development. Host interfacing therefore does not form part of the library and is

only an external part of the system architecture.

The details of the user host application are not central and may vary from user

to user. However, their interfaces to the neural network system should conform to

a common interface standard. Recently, PyNN has emerged as a common, cross-

platform standard for defining and simulating neural networks. PyNN contains

plug-in modules for a wide variety of common neural simulators, and extending

it is a matter simply of writing a small interface definition. One present disad-

vantage with PyNN is that it does not contain definitions for nonspiking network

types, but this could be remedied with a PyNN extension where necessary. PyNN

provides a ready way of translating between high-level model descriptions and li-

brary components, using a plug-in module that associates a given PyNN object

with a specific library component. The structure that emerges at the user level

is a standard simulation tool, interacting through a common PyNN interface,

that enables the user to configure the network and supply it with I/O from the

environment.

4.3 Event-Driven Model Requirements

Hardware and software are interdependent and tend to coevolve. Unsurprisingly,

therefore, the available tools for design, operation, and applications have become

tightly coupled with the expected hardware platforms they coexist with. Using

software designed for systems with a different model of computation than the

hardware in concern is likely to devolve into an uphill battle of improvisations,

yet where possible it is preferable to avoid reinventing the wheel by using off-the-

shelf software. This creates problems for event-driven neural hardware such as

SpiNNaker. Neural hardware is relatively new and certainly not standardised to

any great extent, therefore there are few or no tools designed specifically to inter-

operate with it [SBS05]. As a result, it has been difficult to develop applications

for neural hardware systems or indeed even to get them to run. There has a been

a corresponding lack of enthusiasm for neural network hardware in the past.

An event-driven tool chain is thus critical if event-driven systems like SpiN-

Naker are to be successful. At present few development tools provide clean and

4.3. EVENT-DRIVEN MODEL REQUIREMENTS 75

integrated support for event-driven processes that makes the flow intuitively clear.

A library-based system, however, encapsulates components (which may have ar-

bitrary internal functionality) inside independent modules, permitting an event-

driven model that maximises the potential to use existing tools. Under this model,

the event-driven dynamics lie in a global, abstract environment into which library

components plug in as individual elements. The library components themselves

may be written with any suitable development software; only their interfaces

need conform, or even be visible to, the global environment. If, in addition, this

system is not tightly coupled to the SpiNNaker architecture but uses a hierarchy

of abstractions that enable modelling on virtually any hardware system, it also

solves the problem of event-driven neural networks more generally: a standard

for neural modelling in a variety of environments. Such a system maintains a link

to traditional synchronous development while demystifying the problem of event-

driven design, a truly general-purpose tool chain that is the software embodiment

of the universal neural concept of the SpiNNaker chip.

4.3.1 Design Abstraction

Within the library-based architecture, the target application should drive the

design flow, not the hardware. Neural network users, in particular, are a very

diverse group coming from multiple fields, most with minimal knowledge of or

even interest in low-level hardware programming details. The typical user will

prefer to input his model in a format similar to how he represents it and simulate

it on a system within an environment similar to the interface he uses [BMD+09].

Perforce this mandates structural abstraction, so that the tools at the top level

can work directly from descriptions written in high-level neural network software

[GHMM09]. However, it is equally important for the library system to separate

neural events: processes within the model, from hardware events: interrupts in

the system, otherwise it would severely restrict model choice, and also compli-

cate debugging because it would be difficult to separate a hardware fault from a

model design problem. A tool chain for neural network development on systems

like SpiNNaker needs a hierarchy of event abstractions as well as objects. This

isolates model-level events (such as spikes) from system-level events (i.e. inter-

rupts) so that the modeller need only contend with behavioural effects while the

system designer can successfully program interrupt-level flow without creating

unexpected and exotic side effects. The overall effect is a software model with

76 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

abstract time as well an abstract structure, mirroring SpiNNaker’s total abstrac-

tion of both at the hardware level.

4.3.2 Design Automation

Manually translating a detailed description of a large-scale neural network con-

taining possibly millions of neurons into a “hardware netlist” would be a virtually

hopeless task. An important function, therefore, of the proposed neural hardware

configuration tools is design automation: generation of a complete neural hard-

ware instantiation from a high-level behavioural description of the network itself.

Ideally, these tools should be able to pass configuration information to simulation

tools, and for identical reasons: tracking or executing simulations at a detail level

for large neural networks may be too much of a data-processing overhead to be

manageable or even useful to a user. The tools therefore must be able to create

a full-scale neural network model, translate it to a hardware representation, gen-

erate appropriate testbenches, and run simulations with minimal user direction

[LBB+04].

SpiNNaker (and indeed, other similar chips) has hardware-specific require-

ments that influence the design automation tool flow. Library functions must be

able to leverage SpiNNaker’s neural-network-specific hardware capabilities or the

benefit of hardware is lost. This implies the automation process must be able to

map high-level neural operations efficiently to device-specific hardware driver rou-

tines. Similarly, SpiNNaker’s hierarchical memory structure means the tools need

to match the type of data with the appropriate memory resource. Most important

is packet traffic management. While SpiNNaker has nearly unlimited flexibility to

map a network (and hence many possible actual mappings), it has finite commu-

nications bandwidth as well as source and destination processing deadlines. The

automation process therefore needs to balance packet traffic in both space and

time - and this almost certainly involves testing and verification before instan-

tiating the model on SpiNNaker, because such effects would extremely difficult

to isolate and debug on-chip. The tools need to automate SpiNNaker configura-

tion not simply to accelerate the design entry process but also to find efficient

hardware instantiations, because the model to system mapping is (probably) not

obvious.

4.3. EVENT-DRIVEN MODEL REQUIREMENTS 77

4.3.3 Verification and Evaluation

“A program that has not been tested does not work” [Str97]. With this statement

Stroustrup summarises why verification is essential. Verification is a particularly

pressing concern and a challenging problem in an event-driven system like SpiN-

Naker where there is no global clock that can ensure timing alignment. This

is a system verification problem, and simply assembling the system and testing

it after tends to lead to unpredictable, erratic failures that are hard to debug.

Since events can happen at any time, it is very difficult to predict in advance

all the possible signal timing scenarios. The SpiNNaker neural hardware, fur-

thermore, does not provide global internal visibility, hence pre-implementation

hardware simulation provides visibility that reveals many unexpected cases and

exposes subtle dependencies. The library model enhances verification by provid-

ing a standard set of functions that can be compared across many models; in turn

verification is essential for creating and managing these event-driven libraries so

that, long before a network has been instantiated on-chip, its components have

been thoroughly tested and debugged.

Verification serves 2 main functions: first, evaluation and confirmation of the

neural model itself, second, debugging and benchmarking of the functional imple-

mentation on SpiNNaker. This suggests a hierarchy of simulators that can test

the system with various levels of process visibility. At a high level, an abstract,

hardware-neutral reference model to compare actual (or simulated) chip results

against is essential. This should verify both the basic behaviour of the model itself

- where there can frequently be some surprises - and the hardware fidelity of the

model on SpiNNaker. Such a model does not, however, give enough visibility for

library debugging or analysis of system-level behaviour. For this, a second model,

that can abstract the hardware enough to avoid obscuring software bugs through

lack of symbolic context, yet replicate hardware behaviour enough to verify its

functionality with high confidence, is necessary. Native concurrency must be a

feature of both models, and their corresponding simulators, to verify event-driven

behaviour. The simulation must actually replicate the parallel execution of the

SpiNNaker asynchronous hardware, or simulated events would have a hidden syn-

chronous dependency. Using an event-driven paradigm for the libraries makes it

easy to translate models across different levels of abstraction in various simula-

tors. The system that emerges is a hierarchical chain of industry-standard tools,

using custom, event-driven libraries, with a defined standard interface format

78 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

containing SpiNNaker-specific semantics that specify particular library templates

to use in order to implement (and simulate) particular neural models.

4.4 Design Decisions

The design of the configuration system for SpiNNaker does not propose to build a

complete event-driven design and user environment from the ground up: a task of

man-years. It is preferable, rather, to exploit the advances made in system tools

to date to avoid redesigning complex system components by using off-the-shelf

tools where available. Original contributions can then focus on components that

must be built from the ground up.

4.4.1 Existing Design and Simulation Software

As it happens, the SpiNNaker tool chain requirements are similar to that of FPGA

design, particularly in the need to express and simulate concurrency. FPGA de-

signs typically use a hardware-design-like flow to instantiate components from

libraries and connect them according to a high-level behavioural or functional

description. The prevailing industry approach uses hardware design languages

(HDL’s), primarily Verilog and VHDL, to specify a circuit using a softwarelike

description, that can be both the input specification for a hardware-generation

tool (a “synthesizer”) and the functional specification for a verification tool (a

“simulator”). HDL simulators rely heavily on an event-driven model of computa-

tion to achieve true concurrency. The match with SpiNNaker design requirements

is obvious. However, while HDL’s can in principle model higher levels of system

abstraction, in practice they are specialised for low-level hardware design and

do not model hardware/software embedded systems efficiently. HDL’s therefore

offer a suitable model for SpiNNaker development but in their actual application

are probably limited to chip-level verification.

More recently, system design languages (SDL’s), of which SystemC [Pan01]

has emerged as a standard, permit design and verification at a higher level of

abstraction while retaining the same concurrent properties as their HDL cousins.

SystemC contains a built-in simulator that eliminates the need to build one from

the ground up. It fills the need for a fast system level simulator [MWBC04],

and could also be suitable as an advanced description interface for users wanting

finer-grain control over model optimisation that what could be achieved with a

4.4. DESIGN DECISIONS 79

library-driven model-level description. However, since in effect, SystemC exposes

the underlying simulator architecture to the designer, it remains fairly tightly

coupled to the hardware, while making it difficult to compile components for

any target other than the simulation. As a result it is probably unsuitable as an

abstract model description interface. Nevertheless, SystemC is an excellent match

for the complete system design approach - indeed, was developed precisely for this

purpose - and is a standard platform for testing model/hardware interactions that

does not require building a SpiNNaker simulator from the ground up.

At the topmost level, the obvious choice for a hardware-neutral “reference”

model is to create it in any one of several popular (software) neural simulation

packages. Typically, the modeller will already be familiar with and using such a

package. Neural simulators, unsurprisingly, have the best fit with “actual” neural

networks, however, if the choice of simulator for comparison against SpiNNaker

is to be arbitrary, there are 2 complications. First, such packages come with their

own, usually proprietary, simulator and are tightly coupled with it. Secondly,

simulators such NEURON [HC97] or GENESIS on the biological side or JNNS or

Lens on the computational side make fairly deep assumptions about the type of

model, limiting the networks that can be implemented at all, often in ways that

complicate the hardware mapping. A new interface, PyNN [DBE+09], attempts

to solve this by acting as a simulator front-end, providing the essential network-

design and user-interfacing functions while supporting any of a number of different

simulators as the back end. This makes it the model-level tool of choice for

SpiNNaker. By extending the PyNN development environment with a SpiNNaker

interface and a wider variety of models including non-spiking options, it is possible

to achieve a seamless verification and automation system. The model libraries

themselves operate as the units of translation in an overall system architecture

that uses off-the-shelf Verilog, SystemC and PyNN-driven simulation and model

description.

4.4.2 The Limits of Reuse

This system has the advantage of maximal reuse of existing tools and a single

point of interface at each level of abstraction. In order to provide seamless SpiN-

Naker functionality, however, there are certain tools that must be built from the

ground up . Neither PyNN nor SystemC provide integrated support for design

automation. That is, they cannot auto-generate a configuration from an abstract

80 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

description. SpiNNaker requires executable code, data object definitions, and

router table entries that need to be generated from within the tool chain in order

to provide a running configuration. To generate these entries, the system needs

two additional software components: an object builder (box “Configuration” in

fig. 4.3), which constructs the code and data definitions, and a mapper, which as-

signs individual objects to specific processors, configures the router table entries,

and defines the memory map for each processor. Since the intent is to examine

the architecture of the configuration system rather than emphasize the specific

implementation the current design considers fairly simple versions of these tools,

adequate for ∼ 10 − 100 chips; larger-scale systems will require more sophisti-

cated implementations that are the subject of continued research. Regardless of

implementation, however, the object builder interacts strongly with the library.

In HDL’s, the standard way to implement an object builder uses library files

to associate pre-built objects with higher-level source files [HM94]; this approach

also works well in the SpiNNaker case because it is possible to separate compo-

nents into code blocks: a C file for the ARM code, a file for each of the memory

areas, and a file for the routing table entries. A SpiNNaker model specification

is therefore three objects containing neural dynamics, state containers, and con-

nectivity rules, bound to a group of rules specifying how to instantiate these

objects. The tool then maps ARM code segments, data segments, and router en-

tries with members in each of the user’s specification objects, matching hardware

library objects (boxes “Neural Models” and “Synapse Models” in fig. 4.3) against

model objects. The result is a SpiNNaker “object file” that the mapper can use

to create the top-level neural network that will run on the chip. Importantly,

this reduces the rôle of the mapper to pure place-and-route, providing a clean

boundary between components of the tool chain. Typically, the object builder

translates connectivity rules to router table entries, neural dynamics to blocks

of ARM C or assembly code, and state containers to memory objects resident

in TCM or SDRAM. A simple script-driven routine completes the configuration

description for each processor, using a skeleton main() function with predefined

interfaces for neural objects to act as a top-level container for a single running

ARM image. The output of the process is a list of available “processor types”

and required connections that the mapper uses to perform place and route.

This configuration model has 3 important limitations. First, it assumes the

availability of suitable SpiNNaker library files for a given model. These routines,

4.4. DESIGN DECISIONS 81

in C or assembly, again have to be built from the ground up. Thus at present

the system does not have comprehensive support for every possible model; there

are 3 basic model types: Leaky-Integrate-and-Fire and Izhikevich spiking neu-

rons, and sigmoid continuous-activation neurons, together with 3 synaptic types:

fast STDP, slow NMDA/GABA-B, and delta-rule. These types, however, are

adequate to demonstrate the library principle; in future the SpiNNaker group

or third-party developers can create other neural types as necessary. Second,

it assumes that a single processor implements a single type of neuron and/or

synapse. Implementing different neuron types on the same processor is inefficient

due to possibly heterogeneous storage requirements and probable context switch-

ing. This is not a severe limitation; for example the Izhikevich neuron can model

26 different behaviours simply by a change of parameters, and the sigmoid type

has similar richness. Nonetheless modellers need to be aware that some network

sizes may map inefficiently in terms of number of neurons per processor. Finally,

hardware limitations dictate an absolute number of neurons per processor de-

pending upon the time model. The basic requirement is Nν [Tν +(NwATw)] ≤ δt,

where Nν is the number of neurons per processor, Nw the number of synapses

per neuron, Tν and Tw the time to update a neuron or synapse respectively, A

the mean activity of the network (proportion of active neurons) and δt the mod-

elled time step. Thus if the model has temporal dynamics, there is an interaction

between the model complexity (update time), coarseness of temporal resolution

(time step), and number of neurons modellable. In extreme cases the hardware

may not be able to meet the model requirements, for example expecting real-time

update behaviour in multicompartmental Hodgkin-Huxley neurons with 1 ms res-

olution would not be realistic if 1000 neurons per processor were to be modelled.

A hierarchical concurrent description and modelling environment using standard

tools in combination with custom libraries realises a universal system to generate

an efficient on-chip instantiation, at the cost of possible network constraints in

complex or unusual models.

4.4.3 The Neural Function Pipeline

A function library whose models are so different at the system level that they share

little or no process commonality makes it difficult to run large-scale networks with

heterogeneous internal neural modules, offers no consistent guidance to third-

party developers on how to develop new models, has minimal scope for reuse,

82 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

and is complicated to debug and manage. Therefore a successful function library

must incorporate a generic process abstraction that is able to map an arbitrary

neural model into a single processing framework.

To meet SpiNNaker’s hardware constraints efficiently and accurately, it is

useful to define an appropriate abstraction using a set of general design rules

that help to define the model implementation. These rules are indicative but

not forcing, so that while models generally obey this pattern they can in specific

details deviate from it.

Defer event processing with annotated delays

The deferred-event model [RJKF09] is a method to allow event reordering.

Under this scheme the system only performs minimal processing at the time

of a given event, storing state information in such a way as to be available

to a future event, so that processes can wait upon contingent future events.

Future events thus trigger state update relevant to the current event.

Solve differential equations using the Euler method

The Euler method is the simplest general way to solve nonlinear differential

equations. In it, the processor updates the equations using a small fixed

time step. The method then simply uses the formula X(t + 1) = X(t) +
dx
dt

(t + 1). The time step is programmable (nominally 1 ms in the reference

models), so modellers can choose finer time steps for better precision or

coarser ones for more relaxed timing margins (and potentially more complex

models).

Represent most variables using 16-bit values

Various studies indicate that 16-bit precision is adequate for most neural

models [DDT+95], [WCIS07]. Since the ARM contains efficient 16-bit op-

erations it makes sense to conserve memory space and use 16-bit variables

throughout. Intermediate values, however, may use 32 bits to avoid unnec-

essary precision loss.

Precompute constant parameters where possible

By an astute choice of representation, it is often possible to transform a

set of parameters in a neural equation into a single parameter that can

be precomputed. Furthermore, it is often possible to choose this repre-

sentation in a way that further simplifies the computation remaining. For

4.4. DESIGN DECISIONS 83

example, in the expression x(t) = Aekt, it is possible to use the substitution

logab = logcb

logca
, choose 2 for c and arrive at x(t) = A(2(log2e)kt), which makes

it straightforward to precompute a new constant λ = klog2e and determine

x with simple shift operations.

Compute non-polynomial functions by lookup table

Lookup tables provide a simple, and in fact the only general way of com-

puting an arbitrary function. The ARM takes at most 2N instructions to

compute a LUT-based function with N variables. Memory utilisation is a

concern; even a 16-bit lookup table requires 64K entries (the entire DTCM)

and is therefore impractical. However, an 8-bit lookup table occupies only

256 entries (512 bytes if these are 16-bit values) and can access the value

in a single ARM instruction. Where models need greater precision various

polynomial interpolations can usually achieve the needed accuracy.

Exploit “free” operations such as shifting

Most ARM instructions can execute conditionally, many arithmetic oper-

ations can shift an operand before doing the instruction, and there are

built-in multiply-accumulate instructions. Taking advantage of such “free”

operations is an obvious optimisation. An extreme example is the SM-

LAWx instruction. This performs a 32-bit * 16-bit multiply, truncates the

low-order 16 bits of the 48-bit result, then accumulates it with a 32-bit

value. If, then, the 16-bit value is a number representing a fraction with

implied leading 1, by choosing it to represent the reciprocal of an integer it

is possible to perform w = x
y

+ z in a single instruction.

These rules permit the construction of a generalised function pipeline to represent

a neural process that is adequate for most models (fig. 4.2).

4.4.4 3-level system

The complete software model (fig. 4.3) defines 3 levels of abstraction: device

level, system level, and model level. At the device level, software functions are

direct device driver calls written mostly in hand-coded assembly that perform

explicit hardware operations without reference to the neural model. The system

level abstracts device-level functions to neural network functions, implementing

these functions as SpiNNaker-specific operation sequences: templates of neural

84 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

Figure 4.2: A general event-driven function pipeline for neural networks. The
grey box is the SpiNNaker realisation. Variable retrieval recovers values stored
from deferred-event processes as well as local values. Polynomial evaluation com-
putes simple functions expressible as multiply and accumulate operations. These
then can form the input to lookup table evaluation for more complex functions.
Polynomial interpolation improves achieved precision where necessary, and then
finally the differential equation solver can evaluate the expression (via Euler-
method integration). Each of these stages is optional (or evaluates to the identity
function).

functionality that invoke a given hardware function. At the model level, there is

no reference to SpiNNaker (or any hardware) as such; the modeller describes the

network using abstract neural objects that describe broad classes of neural be-

haviour. In principle a network described at the model level could be instantiated

on any hardware or software system, provided the library objects at their corre-

sponding system and device levels existed to “synthesize” the network into the

target implementation. This 3-level, SDL-like environment allows modellers to

develop at their own level of system and programming familiarity while retaining

the native concurrency inherent to neural networks and preserving spatiotemporal

relations in the model.

Model level: concurrent generic description

The model level considers a neural network as a process abstraction. The user

describes the network as an interaction between 2 types of containers: neural

objects (“populations”) and synaptic objects (“projections”). Both types of con-

tainer represent groups of individual components with similar behaviour: for

4.4. DESIGN DECISIONS 85

Figure 4.3: SpiNNaker system tool flow. Arrows indicate the direction in which
data and files propagate through the system. A solid line represents a file, where
dashed lines indicate data objects. Boxes indicate software components, the
darker boxes being high-level environment and model definition tools, the lighter
ones hardware-interfacing components that possess data about the physical re-
sources on the SpiNNaker chip.

86 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

example, a population could represent a group of 100 neurons with identical ba-

sic parameters. The terms “neural” and “synaptic” are mostly for convenience; a

population need not necessarily describe only neurons. The principal difference

between objects is that a projection defines a communication between processes

and therefore translates to a SpiNNaker routing resource, while a population

translates to a process. These objects take template parameters to describe their

functionality: object classes that define the specific function or data container

to implement. The most important of these classes are functions (representing

a component of neural dynamics), parameter definitions (determining the time

model and data representation) and netlists (to represent the connectivity). Thus,

for example, the modeller might define a set of differential equations for the dy-

namic functions, rest and reset voltage parameters, and a connection matrix to

generate the netlist, and instantiate the network by creating neural and synaptic

objects referencing these classes in their templates. Since at this level the model

is a process abstraction, it could run, in principle, on any hardware platform

that supports asynchronous communications (as SpiNNaker does) while hiding

low-level timing differences between platforms.

System level: template instantiation of library blocks

At the system level, the model developer gains visibility of the neural functions

SpiNNaker is able to implement directly. System-level models can be optimised

for the actual hardware, and therefore can potentially run faster; however, they

run more slowly in software simulation because of the need to invoke hardware-

emulation routines. A given system-level library object is a generalised neural

object similar to a model-level object, whose specific functionality comes from

the template. At the system level, however, a template is a hardware “macro” -

for example a function “GetWeights()” that requests a DMA transfer, performs

the requisite memory access, and retrieves a series of weights, signalling via an

interrupt when complete. Time at the system level is still that of the neural model,

reflecting the fact that the only visible hardware event is the input “spike” event.

System level descriptions are the source input for the SpiNNaker “synthesis”

process: a bridge between the model level and the device level that uses library

templates as the link to provide a SpiNNaker hardware abstraction layer.

4.4. DESIGN DECISIONS 87

Device Level: a library of optimised assembly routines

The device level provides direct interfacing to SpiNNaker hardware as a set of

event-driven component device drivers. In the standard SpiNNaker application

model, events are interrupts to the neural process, triggering an efficient ISR

to call the developer-implemented system-level neural dynamic function associ-

ated with each event. ISR routines therefore correspond directly to device-level

template parameters. The device level exposes internal process events as well

as the input spike event, and therefore the programmer specifies a time model

by explicit configuration of the hardware devices. Time at device level is the

“electronic time” of the system, as opposed to the “real time” of the model. The

device driver library forms a common component of the entire library system and

includes the functions needed by a neural application where it has to interact

with the hardware to model its dynamics. Providing a ready-made library of

hardware device drivers gives users access to carefully optimised SpiNNaker neu-

ral modelling routines while also presenting a template for low-level applications

development should the user need to create his own optimised hardware drivers

for high-performance modelling.

For SpiNNaker, the complete process of instantiating a neural network on the

chip would go as follows (fig. 4.3): A modeller would specify the model in PyNN

as a dynamic-state-connectivity abstraction (in box “User Interface”). This ab-

straction then forms the input to a “synthesis” process (boxes “Description”,

“Configuration”, and “Mapper”) that translates it into a hardware-level configu-

ration file. A configuration utility (boxes “Router Configuration” and “Monitor

OS”) then loads the file to the device and starts the system. User-interface

software (box “Environment”) interacts with the actual simulation executing on

SpiNNaker to provide the neural network with a simulated or real environment

in which it operates and from which the user can observe actual response. The

pivotal role of libraries in this software model is clear: it is the libraries that pro-

vide the actual units of translation or “object semantics” between the high-level

tools modellers are used to and the low-level SpiNNaker configuration-time and

run-time environment.

88 CHAPTER 4. THE LIBRARY ARCHITECTURE AND TOOLS

4.5 Summary of the SpiNNaker Development

Architecture

SpiNNaker is a sufficiently large departure from conventional clock-driven sys-

tems as to require a different development model based on event-driven software.

Another large-scale distinction is the separation between configuration, which

specifies what neural model to instantiate on the chip, and application, which

constitutes the task the neural network is to perform and the objective in run-

ning the model. Three successive levels of hardware abstraction provide visibility

appropriate to different users with different objectives, and support different com-

ponents of system functionality.

System Components: Device Level

SpiNNaker Device Level components are a set of device-driver libraries that

provide critical operating-system-like support: basic functions needed to

run the hardware. Low-level simulation is possible down to cycle-accurate

fidelity using Verilog if necessary.

Modelling Components: System Level

System Level components are once again libraries, but these library func-

tions implement entire neural models rather than low-level hardware rou-

tines. A general-purpose function pipeline defines a generic structure for

the library routines, which then can take template parameters to define a

specific neural model. SystemC simulation provides transaction-level model

verification with reasonably fast performance.

User Software: Model Level

Model Level presents the user with familiar interfaces using, where possible,

existing neural simulation tools. The PyNN standard provides a convenient

interface, providing high-level abstract model definitions (that link to Sys-

tem Level libraries) which can be run on any of several supported simulators.

A modeller can thus describe the neural model and compare results across

several simulation platforms including SpiNNaker hardware, using PyNN

as a single, Model Level interface.

Chapter 5

Phase I: Definition - Test

Networks

89

90 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

5.1 Outline

What neural models can SpiNNaker run? In principle, any model, but in practice,

some models are easier to implement, and will perform better, than others. This

chapter therefore focusses on describing actual implementation of neural models

and examining what design choices lead to efficient SpiNNaker implementations.

It is easiest to demonstrate the SpiNNaker library-based development envi-

ronment, and illustrate its efficiencies as well as design tradeoffs, by introducing 3

existing neural network models for SpiNNaker. In addition, different individuals

and groups have contributed to creating these models, providing insight into the

path for the potential future integration of third-party modules. Using the func-

tion pipeline abstraction, descriptions of the neural models will first describe the

implementation of the neurons and synapses themselves with reference to pipeline

stages, then describe the operation of the network as a whole.

The three models are the Izhikevich neuron with STDP synapses, the multi-

layer perceptron model with delta-rule synapses, and the leaky-integrate-and-fire

model with NMDA synapses. While not necessarily comprehensive, these are

sufficiently different to represent a reasonable cross-section of potential neural

implementations while illustrating various design considerations. Most impor-

tantly, these models are intended as reference implementations: neural function

templates that future developers can extend or modify to create a larger model

library.

5.2 The Izhikevich/STDP Model

The first model, and perhaps the most representative in terms of the design goals

of SpiNNaker, is a simple reinforcement-learning controller using Izhikevich-style

neurons and STDP synapses. This important model is the “reference” network

used to guide SpiNNaker hardware design decisions and illustrates key general

methods for implementing real-time spiking neural networks in hardware. While

biologically realistic and potentially scalable up to large simulations of major

brain regions, the purpose of this model has been to establish basic SpiNNaker

functionality. The priorities are therefore architectural simplicity and the creation

of “infrastructure-level” functions other neural models can readily reuse without

significant modification.

5.2. THE IZHIKEVICH/STDP MODEL 91

5.2.1 Neuron

The network uses the Izhikevich model [Izh03] to implement neurons. While

not the very simplest spiking neural model, the Izhikevich model has become

the reference neuron for SpiNNaker because it is adequately simple, instruction-

efficient, and exhibits most of the dynamic properties of biological neurons. Xin

Jin describes most of the low-level implementation of the model itself in [JFW08];

this section therefore discusses it only briefly to indicate key properties of its

design. Although not originally designed under the function-pipeline model it

readily maps to it: a few simple modifications have been sufficient to integrate it

into the library system. It is thus possible to walk through the pipeline step-by-

step for this basic neuron type.

Variable Retrieval

ARM968 processor cores contain no floating-point support, and since studies

[JFW08], [WCIS07], [DDT+95] indicate that 16-bit precision is adequate for most

purposes, the model represents all variables and parameters with 16-bit fixed-

point variables. The Timer event triggers variable retrieval for the neuron. This

retrieves the neuron parameter block containing dynamic parameters, and the

current activation. The processor extracts the accumulated activation for the

current time from the data structure of one neuron and passes it along with the

(static) parameters to the two Izhikevich equations.

Polynomial Evaluation

Polynomial evaluation simply consists of evaluating the equations for the current

time. Both of these equations are simple polynomials:

dv

dt
= v2 + I − u;

du

dt
= a(bv − u)

where a and b are constant parameters, v is the voltage, I the input current

(usually from synapses) and u a lumped “recovery” variable representing the net

effect of turn-off gating conductances.

92 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Look-up Table

While the Izhikevich equations themselves are pure polynomials, one part of the

evaluation is in fact a (trivial) look-up operation: determination of whether the

neuron spikes. The dynamics replicate a spike-like upstroke, but to generate the

spike event the neuron uses a threshold value and then looks up as a parameter

(a lookup table with one entry) the after-spike reset value.

Interpolation

Since the only look-up functions are single-entry, the processor need perform no

interpolation. The results of the evaluation pass instead directly to the differential

equation solver.

Differential Equation Solution

Using the Euler method provides a simple bolt-on solution which is general for

all neural models that take the form of differential equations. For the Izhikevich

model, it simply updates v and u at each time step. Implemented in ARM

assembly to optimise performance, the model requires 21 instructions per neuron

if the neuron does not fire, 33 if the neuron fires, and 50 if the neuron fires and

synapses have STDP dynamics. The processor maintains real-time accuracy as

long as it can update its neurons before the next time step occurs - nominally 1

ms intervals in the reference model.

5.2.2 Synapse

The synapse heavily uses the deferred-event model because the time a packet

arrives does not correspond to the real-time arrival of the spike in the model.

Synapses can be either fixed-weight or plastic (variable-weight). How much of

a full function pipeline needs to be implemented depends on this characteristic.

Currently there are only a few models for plastic synapses in spiking neural net-

works, of which the overwhelming majority are of the spike-timing dependent

plasticity (STDP) family. SpiNNaker STDP synapses use the exponential up-

date model [GKvHW96]. STDP presents a significant challenge in event-driven

systems, because it uses correlations between timing of input and output spikes,

and thus if an output spike occurs after an input spike, hence after its associated

event, the event information will be lost. Critically, in SpiNNaker, the processor

5.2. THE IZHIKEVICH/STDP MODEL 93

+W
g

+W
r

+W
b

Now

W
r

W
b

W
g

Out

Compute Out

Weight
Delay

0
31 28
 15
16

Index

26

Activation In

1 ms

Figure 5.1: SpiNNaker Neuron Binned Input Array. Inputs arrive into the bin
corresponding to their respective delay. Output is computed from the bin pointed
to by “Now”.

uses event information to retrieve synapse data under the virtual synapse model

[RYKF08]; by the time an associated output event happens the synaptic data will

have been flushed from TCM. Using the deferred-event model, however, it is pos-

sible to perform the required synaptic updates without a double data load from

memory [RJKF09]. In either case, however, the event that triggers the pipeline

is the packet-received event.

Variable Retrieval

Synapse data resides off-chip in SDRAM. Therefore the first action the processor

takes when a packet arrives is to request the relevant synaptic data. This trig-

gers the first phase of deferral. The processor initiates a DMA operation which

retrieves a source neuron-indexed synaptic row (Details of the DMA process are

in [RYKF08] and the data format in [JFW08]). A second stage of deferral hap-

pens when the data arrives, because synapses have nonzero delay. To implement

the delay, a 16-element array (fig. 5.1) in each neuron represents input stimuli.

Each element represents a time bin having model axonal delay from 1 ms to 16

ms. Having retrieved the synaptic values, the process now needs to get the bin

corresponding to the axonal delay to a single synapse for each destination neuron

94 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

in turn. If the synapse has STDP, it must finally retrieve another value from that

neuron: a time stamp indicating when the neuron last fired. Each source neuron

has an associated “row” in SDRAM containing a time stamp and target-indexed

weight entries only for those target neurons on the local processor with nonzero

weights (fig. 5.2), permitting a single table lookup per input event to retrieve the

synapse data. Time stamps use a 64 ms two-phase time window comparable to

the ∼ 50 ms experimentally observed STDP time window [MT96], permitting

4 ms spike-time resolution within a 32K × 64ms coarse time period, enough to

capture about 35 minutes without time rollover. At this point the processor has

the data it needs to proceed through the pipeline.

Polynomial Evaluation

Evaluation of spike transmission assumes the dynamics are instantaneous, a rea-

sonable approximation for fast AMPA/GABA-A synapses. Given a spike with a

delay of δm ms arriving at tn ms, the processor accumulates the weight to the

value in the tn+δm ms time bin. This defers actual spike propagation until that

future time.

Look-up Table

Synaptic learning is a look-up table process. For each connected neuron, the pro-

cessor compares its local coarse time stamp (postsynaptic spiking times) against

the retrieved time stamp (presynaptic activation times). If the coarse time stamp

matches, the processor performs the weight update rule the model specifies, using

the difference in the fine time stamp as the index into a look-up table. (By coding

the weight update as the power-of-2 bit-position in the fine time stamp, the pro-

cessor can compute the update with a series of simple shift-and-add operations).

It then updates the time stamp of the presynaptic neuron.

Interpolation

Synaptic transmission requires no interpolation. If precise fidelity to the exponen-

tial STDP were desirable, the model could use interpolation to refine the weight

modification. However, there is considerable evidence [BP98] that STDP weight

updates actually follow a statistical distribution where the theoretical update

5.2. THE IZHIKEVICH/STDP MODEL 95

curve represents the envelope of the distribution. Hence the model does not per-

form interpolation since it would involve additional computation for questionable

increase in biological plausibility.

Differential Equation Solution

Once again, since the process defers synaptic transmission to the neural update

time, there is no need for a separate solver for the synapse. However, under

STDP, if the neuron fires, the processor must update its local time stamp. This

algorithm has several useful properties:

1. It gives a long time for processing, generally the real time between input

events, which for biologically plausible neural networks is ∼100 ms average-

case, 10 ms worst-case.

2. It preserves presynaptic/postsynaptic timing relationships.

3. It provides a 1-instruction test (the coarse time stamp compare) for nonup-

dated synapses, reducing processing overhead with inactive connections.

4. It works with multiple spike bursts in a short duration, by using the fine

time stamp to reduce the number of expensive off-chip memory accesses.

Provided the update computation takes less time than the time between inputs on

the same synapse, the model will retain accurate synaptic update. Deferred pro-

cessing makes it possible to “hide” the update algorithm and memory load/store

operations in the time between input activations.

5.2.3 Networks

System context

The test networks for the spiking models form part of an integrated plan to

create a large-scale model simulating a significant thalamocortical system. For

this model, Izhikevich neurons will be particularly important for control. One

of the intended core modules of the large-scale model is a reinforcement-learning

control subsystem. Many of the models thus far implemented are subcircuits

of this system. It is useful, therefore, to have some context on the ultimate

purpose of this planned model. In its simplest form, a reinforcement-learning

96 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.2: Synapse Data Format. Each of the data words is 32 bits wide. Synapse
rows in global memory have multiple weights and a time stamp word. Weights
contain a 16-bit weight field and a 16-bit parameter field. Experiments used 4
bits of the parameter field to represent synaptic delays and 11 to index the target
neuron. Each row in SDRAM has one time stamp (time of last presynaptic event),
and each neuron in local memory a second (time of last postsynaptic spike). The
time stamp has 2 fields, a fine and coarse time stamp. The fine time stamp is
bit-mapped into 16 equal time segments with resolution Iw

16
, where Iw is the total

length of the time window, containing a 1 if there was an input activation at that
real-time point within the interval. The coarse time stamp is an integer with
a resolution of Iw

φ
, where φ is a (small) power-of-2 constant representing a time

phase within the window Iw. The model updates this time stamp if a transmission
event tnew occurs at tnew−tlast ≥

Iw

φ
, where tlast is the current value of the coarse

time step.

system contains an “actor” network that processes I/O and takes control action,

and a “critic” network that monitors actor responses and forms a prediction of

future action likely to lead to the attainment of internal goals, or the avoidance

of penalty conditions. With a small modification, the transformation of the goals

input into its own network: the “evaluator” having reciprocal plastic connections

to the critic (henceforth called the monitor to distinguish it from the basic actor-

critic model), this network can build its own goals and supply its own training

with only a minimum of hard-wired drives.

The evaluator receives direct input from feature extractors in the Monitor’s in-

put pathways. The current system assumes an input with one hardwired, “uncon-

ditioned” feature and other, “conditioned” features, not hardwired. The network

will have three layers: the hardwired layer, an association layer, and an output

reinforcement layer. The hardwired layer will contain three neurons directly con-

nected to the respective inputs with a weight sufficiently large to ensure a strong

response to regular spiking input. The purpose of these neurons is to drive targets

in the association layer into reliable firing. The association layer itself receives

input from a subset of the conditioned features with synapses having random (but

5.2. THE IZHIKEVICH/STDP MODEL 97

small) initial weights and STDP plasticity, and one of the unconditioned neurons

with a fixed-weight synapse, its output neurons firing if the frequency and phase

of the conditioned and unconditioned features are strongly correlated. In turn, it

will drive the output reinforcement layer, which sends bursts of spikes with the

characteristic frequency and phase of an active associator output to synchronise

the Monitor network. By connecting each group to an associated set of inhibitory

neurons that output to all neurons of the group (a WTA: “Winner-Take-All”

network), it is possible to ensure that only the most-active output combination

within the group responds. This network could therefore function either as a

stand-alone delay associator or in its original purpose as the source of external

reinforcement to a critic in an actor-critic reinforcement learning network.

Software Simulation

Building this network involves an integrated develop-test methodology; it is now

time to turn to the actual test networks implemented in this process. An im-

portant part of building and verifying the models has been software simulation

using SystemC. A full SystemC simulation of the hardware runs quite slowly

(∼ 15min/ms); thus it is useful to build simple networks for software simulation,

where the aim is not (necessarily) behaviourally relevant network dynamics but

rather functional verification of the hardware implementation of the underlying

neural and synaptic models.

The first series of tests, to verify neural dynamics and processing speed, use

a random network of 60 Izhikevich excitatory neurons. Each neuron connects

randomly to 15 other neurons with fixed weights (i.e. synaptic plasticity was

off). Weights are random in the range 0-20 mA/mF and delays are random in

the range of 1-16 ms. Each neuron receives an initial current injection of 30

mA/mF in the first ms. The simulation ran for 244 ms.

To verify STDP, the software simulations use a second random network of

60 Izhikevich neurons. 48 neurons are excitatory “Regular Spiking” types;12

are inhibitory “Fast Spiking” types. Each neuron in both the excitatory and

inhibitory populations connects to 40 neurons selected randomly (this includes

the possibility for self-recurrent connections), with random delays in the range

1-16 ms. Connection weights have an initial value of 8 mA/mF for excitatory

and a fixed value -4 mA/mF for inhibitory synapses (which are not plastic).

Excitatory synapses can reach minimum and maximum values of 0 and 20 mA/mF

98 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

respectively. The STDP window is set to ±32 ms and the minimum/maximum

values of the STDP update are ±0.1 mA/mF. 6 randomly-selected excitatory and

1 inhibitory neuron receive a constant current injection of 20 mA/mF. Simulations

stop at 10 s.

Hardware Networks

To test the ability of the SpiNNaker system to run a large simulation in real

time, an initial hardware test generated a randomly connected network containing

500 Izhikevich neurons. The network is divided into excitatory and inhibitory

populations in a 4:1 ratio, i.e. 400 excitatory “Regular Spiking” (RS) neurons and

100 “Fast Spiking” (FS) inhibitory neurons. Each presynaptic neuron randomly

connects to 30 postsynaptic neurons with random delays in the range of 1-16 ms.

The network uses fixed weights of 10 mV for excitatory connections and -5 mV

for inhibitory connections. 12 excitatory, and 3 inhibitory neurons selected at

random receive a constant input of 20 mA/mV. The model runs for 1 second real

time.

A core subcomponent of the reinforcement system is the Associator, a simple

network that associates a hardwired “unconditioned” reward stimulus with a

plastic series of “conditioned” stimuli. Conceptually, the model encodes different

conditioned stimuli as a delay value and associates the unconditioned stimulus by

matching delays. This network is an ideal candidate for hardware testing because

it is very simple and can use synthetic inputs, at least initially. In simple test form,

the model is a 3 Layer feedforward network containing 21 Izhikevich neurons.

Layer 1 has one hardwired (input) neuron (corresponding to the unconditioned

reward). Layer 2 and Layer 3 consist of two populations of 10 neurons each.

Layer 1 connects to all neurons in Layer 2 with random delays in the range 1-10

ms and uniform weights of 20 mA/mF. Layer 2 neurons connect to Layer 3 with

one-to-one connections having random initial weights in the range 1-10 mA/mF

and fixed delay of 1 ms. To simulate a reinforcement signal, Layer 1 receives a

constant stimulus of 20 mA/mF starting at 100 ms and ending at 400 ms. The

simulation runs for 500 ms before stopping. These networks are designed to show

the essential functionality of the library: the ability to instantiate different models

on the same chip, and move towards useful subcomponents for a large-scale model.

Spiking networks, however, are only one class of model. A general library should

also be able to implement nonspiking networks. The discussion therefore now

5.3. THE MLP MODEL 99

turns to the most common nonspiking type: the multilayer perceptron.

5.3 The Multilayer Perceptron Model

The multilayer perceptron (MLP) is a good demonstration of the universal char-

acter of SpiNNaker: in complete contrast to the spiking model it has no intrinsic

notion of time, involves graded-response activations (no spiking), and uses learn-

ing rules that reverse the direction of synapses: “backpropagation”. The MLP

is also an important demonstration because it is by far the most widely used

model for computational neural networks, thus any chip that cannot implement

an MLP efficiently has very dubious claims to being universal. Finally, the MLP

is an important driver for tool development, ensuring that in like manner the de-

velopment system is not limited to spiking neural networks and their derivatives.

The MLP requires reconsideration of the entire implementation model.

SpiNNaker’s architecture creates two separate implementation considerations:

mapping : the assignment of processes to SpiNNaker resources, and dynamics, the

process flow on SpiNNaker. The process flow, however, depends explicitly upon

the mapping, which furthermore determines to some extent the identity of what

constitutes a “neuron” and a “synapse”. Thus it is necessary to consider the

mapping problem first.

5.3.1 Neuron

An MLP neuron 1 performs a simple sum-and-threshold function, the threshold

function being some continuously-differentiable nonlinear function (usually the

sigmoid function
1

1 + e−kSj
). Taken at face value, the obvious implementation

would map each unit to a specific processor. The backpropagation algorithm,

however, requires bidirectional connections, while SpiNNaker’s network is source-

routed: the router requires 2 entries to contain both forward and backward map-

pings Cij and Cji between neurons i and j. This rapidly consumes router entries

and increases overall traffic. Worse, the synaptic weights must be stored either

at the processor containing neuron i or neuron j. Thus either both neurons would

have to reside on the same processor, severely limiting scalability, or signals would

1Technically, a “unit” instead of a neuron: in the MLP the unit is a processing element not
necessarily associated with a single (biological) neuron.

100 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.3: SpiNNaker MLP mapping. Each dotted oval is one processor. At each
stage the unit sums the contributions from each previous stage. Note that one
processor may implement the input path for more than one final output neuron
(shown for the threshold stage here but not for other stages)

have to carry the weight information with them. The one-to-one mapping ap-

proach would be an extremely inefficient method, making it better to split the

processing into weight, sum and threshold components(fig. 5.3).

The model creates a hierarchical compute-and-forward neuron: processors

close to their associated synapses compute initial partial sums, then forward

these on to higher-level aggregators. At the top level, the threshold units receive

the aggregated total and compute the transfer function.

Sum Units

Sum units are trivial: they simply accumulate input packets and output the sum

after receiving all inputs contributing to that sum. If the sum components, where

possible, lie on the same die as the synaptic processing elements from which they

5.3. THE MLP MODEL 101

aggregate, the overall mapping further reduces long-distance routing and traffic

to a minimum by reducing the ∼ N2 synaptic outputs to N2

A
, where A is the

number of elements a single sum unit accumulates.

Threshold Units

Threshold units contain the most complex processing. First, they perform a final

sum over the partial sums from input sum processors. Then, they calculate the

output after thresholding. The threshold output is
1

1 + e−γSj
, where S is the

total sum and γ a gain which sets the threshold steepness. In the backpropaga-

tion direction, they compute the derivative of this function:
γe−γS

(1 + e−γS)2
. Since

the ARM968 contains no native support for transcendental functions, computing

sigmoids and their derivatives is most efficient by lookup table. However, 16-bit

precision would require a 64k-entry table, larger than the DTCM size, so the units

implement a fast spline-based interpolation [UVCP98] upon a 256-entry table.

5.3.2 Synapse

Synapses reside in the weight processors. These map a square 2 wij submatrix of

the entire network, with outputs aggregating both in the forward direction along

j components and in the backward direction along i components:

Ofj =
∑

i

Uiwij, Obi =
∑

j

Ujwji

where Ofj and Obi are the output of the weight unit to (network) unit j in the

forward, i in the backward direction respectively, Ui and Uj the output of the final

(threshold) processor for (network) unit i and j. This only requires transmission

of order N rather than N2 output values from both neurons i and j in each

stage. The forward computation simply multiplies weight and input; using 16-

bit values, the multiplication uses a single multiply-accumulate (the ARM968

SMLAxy instruction) per synapse. Given the trivial nature of the sum units’

accumulate, it is reasonable to include the first stage of sums in the synapse unit as

well, thus as soon as a given j “column” in the forward direction receives an input

2While it is possible to create synapse processors with rectangular aspect ratios this un-
necessarily complicates the mapping problem, and therefore the implementation uses square
matrices for convenience.

102 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

it adds the weighted value to its output sum. Once again this reduces traffic to the

intermediate sum processors.The reverse computation must update the weights

in addition to multiplying backpropagated errors by the weight. It first computes

the new output, Oi = wji ∗ U ′

j . Next, it computes the new weight delta: δij(p) =

λUiU
′

j +µδij(p−1), where δij(p) is the change to weight wij for input presentation

p, λ the learning rate, and µ a momentum term for momentum descent. The

input U ′

j from threshold unit j is the backpropagated error derivative. Lastly, it

accumulates the new delta to the weight.

5.3.3 Dynamics

Having considered the mapping problem and identified appropriate methods to

correspond neurons and synapses to processors, it is now possible to consider the

process dynamics of the entire MLP implementation. Translating the MLP onto

SpiNNaker involves converting the processing into an event stream. The formal

MLP model is essentially synchronous: signals from the previous layer arrive at

the next layer simultaneously for each pair of sources and targets. An event-

driven asynchronous system like SpiNNaker cannot guarantee this level of input

timing (indeed, it forbids it), and in any case, this would greatly slow down the

processing. First, if all packets actually went out and arrived simultaneously, the

system would have a very bursty traffic pattern liable to frequent transient con-

gestion. Second, this would underuse the inherent parallelism of the architecture.

Third and most fundamentally, the chip would have to signal the process clock as

events. A pair of mechanisms: a packet format and an event definition, permit a

completely event-driven MLP model on SpiNNaker.

Data Representation

SpiNNaker’s AER packet format allows for a payload in addition to the address.

In the model, therefore, the packet retains the use of the address to indicate source

neuron ID and uses the payload to transmit that unit’s activation. The result is an

“address-plus-data” event: downstream processors in the compute-and-forward

processing pipeline use the address field to determine which submatrix elements

to update, and use the date in the payload to compute the update itself.

A few observations about the MLP mapping make it possible to determine a

representation.

5.3. THE MLP MODEL 103

1. Whether a processor receives input or produces output to the external en-

vironment (it is a “visible” unit) or not (a “hidden” unit), it uses the same

representation.

2. From the output of the weight unit to the input of the threshold unit there

are no multiplication operations.

3. The output of the threshold unit in the forward direction is bounded be-

tween 0 and 1.

Combining observation 1 and 3, with respect to weight units, it is clear that a

hidden weight unit operating in the forward direction computes the product of

a weight and a number between 0 and 1. All other weight units use the same

representation and so external inputs must be mapped to the range 0-1. This

likewise scales external outputs by the same scaling factor.

Observation 2 implies that the maximum number of bits that intermediate

computations could add is the input fan-in to the unit. Combining this with

the fact that inputs are in the range 0-1, the largest (integer) value that an

intermediate computation can reach is (1 + log2Fmax)wijmax, where F is the fan-

in and the max subscript indicates the largest possible value.

Given studies indicating that 16-bit precision is adequate for most purposes

[HF92], the weight unit’s multiply operation implies that both the weight and the

threshold unit’s (forward) output should be (signed) 16-bit numbers, producing

a 32-bit product. Since the second of these numbers is in the range 0-1, that

intermediate result has its binary decimal point shifted left by 15 places. If the

accumulated sum through the pipeline is not to overflow, the binary decimal point

should thus be set so that p = 15− log2(2wijmaxMOD(1log2Fmax)) where p is the

bit-position of the 1’s place.

In practice it is it usually possible to improve the precision by placing p to

the left of the restriction above, because in many networks very few weights ever

reach wijmax, nor is it the case that the unit with the highest fan-in receives many

inputs with this weight value. In such cases it is convenient to “saturate” sums,

so that if a sum does exceed the maximum of the 32-bit representation, the pro-

cessor clips it into the integer range 0x80000000-7FFFFFFF. The ARM processor

contains carry/overflow instructions that perform this and can automatically set

the saturation. There are therefore only 3 major internal representations:

104 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.4: SpiNNaker MLP data representations

1. Weights are signed 16-bit quantities with an integer part and an implied

fractional part. The application should determine the position of the binary

decimal point to minimise the likelihood of overflow.

2. Threshold units output a signed 16-bit quantity with the binary decimal in

bit 15 - “Q15” notation.

3. Intermediate sums between weight, sum, and threshold units are 32-bit

signed numbers with the binary decimal point at 15 + pw where pw is the

position of the weight representation’s decimal point.

5.3.4 MLP event definition

There are two important events in the MLP model. One obvious event is the ar-

rival of a single vector component at any given unit: “packet received”. However,

the dataflow and processing falls into 2 distinct phases: the forward pass, and the

backward pass. Because the quasi-synchronous nature of the MLP ensures that a

given unit will not output until it has received all inputs to it, it is safe to change

the direction in that unit when it issues an output. Thus a second, internal event:

“flip direction”, triggers the change from forward to backpropagation on output

sent.

In the SpiNNaker hardware, events map to interrupts. The communications

controller generates a high-priority hardware interrupt when it receives a packet,

while writing a packet (i.e. an output) to the communications controller triggers

a software interrupt from which it is possible to reverse the direction. These 2

events preserve the characteristic of being local : a unit does not need to have a

global view of system state in order to detect the event.

5.3. THE MLP MODEL 105

Packet Received

The packet received event drives most of the MLP processing. The processor

uses the deferred-event model to handle incoming packets. Its device-level ISR,

running as a maximum-priority FIQ, immediately pushes the packet data into

a queue. It then triggers a deferred event process operating at system level to

dequeue the packets and performs the relevant incremental computations. The

background process handles the global computations necessary when all inputs

for a given unit have arrived. Using the deferred-event model, the processor can

therefore handle inbound packet servicing and intermediate processing as packets

arrive, without having to wait for (and buffer) all packets.

To summarise the process in each unit, denoting the internal input variable

as I and the output variable as J, exact processing depends upon the stage as

follows:

1. Dequeue a packet containing a data payload.

2. Test the packet’s source ID (address) against a scoreboard indicating which

connections remain to be updated. If the connection needs updating,

(a) For weight processors, I = wijOi, where Oi the payload. For all others,

I = Oi.

(b) For weight processors in the backward pass only, compute the weight

delta for learning.

(c) Accumulate the output for neuron j: J = J + I

3. If no connections remain to be updated,

(a) For threshold processors only, use a look-up table to compute a coarse

sigmoid: J = LUT (J) in the forward direction. Get the sigmoid

derivative LUT ′(Jf) in the backward direction. (Jf is the forward J ,

J b the backward.)

(b) For threshold processors only, use the spline-based interpolation to

improve precision of J.

(c) For threshold processors in the backward pass only, multiply the new

input by the derivative: J = J b(LUT ′(Jf)).

(d) Output a new packet with payload J.

106 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

4. If the packet queue is not empty, return to the start of the loop.

Flip Direction

The unit sends the output for any given target neuron when all inputs for that

target have arrived, and the communications controller transitions to empty. It

does not wait for inputs destined for other targets the particular processor serves.

Thus, if a weight processor forwarded to units X1, X2 and X3, and it had received

all inputs needed to compute the output for X2, it would output that immediately

rather than waiting for inputs for X1. In order to issue an output (and change

direction), therefore, the processor must detect that all inputs have arrived.

The most general way to do this is by a scoreboard, a bit-mapped representa-

tion of the arrival of packet-received events for each component. The test itself is

then simple: XOR the scoreboard with a mask of expected components. While

this method accurately detects both the needed condition and component errors,

it has an important limitation: all inputs must arrive before the unit changes

direction. “Fire-and-forget” signalling provides no delivery guarantees, so a re-

ceiving unit might never receive an expected input. This would effectively stop

the simulation, because the network as a whole can proceed no faster than its

slowest-to-output unit.

This “output-on-demand” model replaces the synchronous wave of computa-

tion with a flow of asynchronous signals between processes. Superficially, this

alters the overall state of the network: in principle different parts of the network

with different connectivity may be at a different point in the overall computation.

The 2-pass nature of the backpropagation algorithm ensures that the overall re-

sult does not change. Under backpropagation, all terminal signals must arrive at

the outputs before the algorithm can compute the error and reverse the direc-

tion; this is effectively a form of barrier synchronisation that prevents subgraphs

from receiving inputs in the reverse direction until all forward computations have

completed.

Output-on-demand also helps to spread traffic load, at least to the extent pos-

sible, in that individual outputs do not have to wait upon each other. However,

because of SpiNNaker’s asynchronous design, the communications fabric provides

no packet scheduling or traffic management. This can lead to local congestion,

with potentially severe impact on performance and in extreme cases, on function-

ality: if packets arrive at a given processor faster than it can service them then

5.3. THE MLP MODEL 107

it will start to miss packets altogether. Processors issue packets as soon as they

are ready: thus if several packets become ready to send simultaneously or nearly

so there will be a “burst” of local traffic.

The “burstiness” of the traffic depends on the ratio of time spent in the

packet-receiving service routines and the time spent in the background process

from which the processor issues packets. If the time spent in packet reception is

large compared to the time spent in the background task there is a strong risk

of local congestion. This is precisely the situation in the sum processors, since

the accumulate process takes only three instructions per update. To “stretch”

the effective time in the background task so that it becomes large relative to the

packet-processing task, sum processors can also assume the Monitor processor

rôle, running the sum as an event-driven service and the monitor as the back-

ground task.

5.3.5 Network

Having completed process mappings and event definitions, it is possible to build

MLP networks on SpiNNaker. The actual networks that have been built serve

three testing purposes: basic functionality verification, scalability testing, and

investigation of topological characteristics.

Basic Networks

Typically, multilayer perceptrons are feedforward networks with full connectivity

between layers (fig 5.5). Thus the most basic model, and the network used for the

first tests, is a simple full-connectivity feedforward network. The initial target

application for the MLP is hardware acceleration for the LENS 3 software simu-

lator. In this case, the initial SpiNNaker test network is a slight modification of

LENS’ digits-recognition network, containing 20 input neurons (or, more simply,

inputs), 20 hidden neurons, and 4 output neurons. The model maps the network

onto four SpiNNaker chips, using one processor to model the threshold, and three

apiece for sum and weight units. The digits-recognition network specifies neurons

with sigmoid transfer function using the form from 5.3.1. Learning is per Lens’

momentum rule given in 5.3.2. For the test network, λ was 0.0078125 and µ was

0.875. The batch size was set to 1, corresponding to updating the weights after

3http://tedlab.mit.edu/∼dr/lens

108 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.5: Typical MLP network with full connectivity. The first test network
has this structure with expanded numbers of units per layer.

each presentation of an example. For the training (example) set, the test aug-

ments Lens’ standard digits examples (containing digits 0 through 7 with digits 8

and 9, and supplements these with two sets of distorted digits: fig. 5.6. Training

stops after processing 120 examples, corresponding to 3 complete epochs.

Scalability testing

Scalability of the MLP model is an important concern with the unusual mapping

used for SpiNNaker, especially in view of the packet-traffic issues relating to

burstiness. It is important to know how far the SpiNNaker architecture can scale

Figure 5.6: Test inputs used with MLP networks

5.3. THE MLP MODEL 109

in terms of local packet density before breaking down. A simple network to test

packet-handling performance artificially increased the packet traffic by extending

the digits-recognition model, generating additional packets from the actual traffic

of the simulation proper. These networks generated a separate packet type that

output the weight of each synapse, for each input. A further network parameter

specifies the number of copies of the packet the processor issues per weight update,

thus enabling an arbitrarily high packet traffic density.

Such artificial techniques are useful to understand basic limits and establish

ultimate performance, but they do not represent a “realistic” scalability test: the

system does not scale the number of neurons or synapses, important for memory

testing. In addition, the artificial “debug” packets the previous network uses run

over a fixed route, and therefore do not test overall communications capacity or

the effects of distributing high packet traffic throughout the network. Therefore,

to create a more realistic case, the tests use a larger network designed to recognise

spoken words from a small fixed vocabulary (a development of the model in

[WR07]) with further assistance in the form of visual input of the characters.

This network contains a single input layer and 2 distinct groups each of hidden

and output layers representing the visual and sonic characteristics.The input layer

contains 400 units. The 2 output groups contain 800 and 61 neurons respectively.

The 2 hidden groups have variable numbers of neurons; from 50 to 200 neurons per

group. All groups use the standard sigmoid function in 5.3.1 for their thresholds.

Inputs connect only to hidden group 1 from which there are 2 main connectivity

paths: to output group 1 and to hidden group 2. Hidden group 2 then connects

to output group 2 to establish a forking pattern of connectivity. In addition there

are further connections from the input directly through to output group 1, and

from output group 1 itself into hidden group 2 and output group 2 (fig. 5.7).

Because of its larger size, this network is a good test for alternate topologies as

well as scalability.

Partial Connectivity

Full connectivity is adequate for small networks, containing up to ∼1000 neurons,

but computationally unmanageable at larger scales. Efficient network connectiv-

ity becomes particularly significant in the context of hardware systems. In such

devices, available circuit densities constrain the number of connections available

110 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Output

1

Input

Hidden

1

Hidden

2

Output

2

Figure 5.7: Large phonetic network used in tests

at any given size. For SpiNNaker in particular, the 1024 entries in the local rout-

ing table tend to be the limiting factor establishing routability of the network

[KLP+08]. It is also essential to balance the communications load across the net-

work. SpiNNaker’s routing model assumes average-case traffic conditions with

about 10% load; full connectivity will magnify the potential for traffic bursts al-

ready noted, especially in large systems, because all sums (and weights) in a given

processor will become ready to send as soon as the last partial update arrives.

Partial connectivity mitigates this problem since different matrix subelements

become ready to send at different times.

It is unreasonable to assume that random partial connectivity will lead to an

optimal structure in a large network performing a specific task; it might rather be

expected that the task itself would suggest a structured pattern of connectivity

matching in some way the characteristics of the task. If, however, by reducing

the number of connections important performance measures like training time or

classification speed deteriorate, then the network optimisation is of little value.

Therefore the goal is to find connectivity patterns that maximise the speed and

learning rate per connection.

5.3. THE MLP MODEL 111

Previous connectivity examinations have primarily focussed on evaluating the

effects of varying connectivities in a network with a fixed number of neurons

[DCA06], [CAD07]. In a hardware system such as SpiNNaker, however, it is more

likely that large neural networks will be connection-limited than they are neuron-

limited, given the finite routing resources. Simply varying connectivity with a

fixed number of neurons may not lead to an optimal hardware-implementable

network. With a connection-limited system, it is practical to vary the number of

neurons since they do not add substantially to the resource requirements. Since

in the MLP model, both the number of input neurons and the number of output

neurons remain fixed, because of the need to present the network with external

input and training class identifications, only the hidden neurons may vary in

number. By adopting a model where the number of connections is fixed, and

the number of (hidden) neurons (and hence the mean connectivity per neuron)

varies, it is possible to examine the impact of partial connectivity in a more

hardware-realistic way.

For the first set of tests, a simple network implements Lens’ hand-digits net-

work: a relatively logical extension of the basic digits recognition task. This

network contains 64 input, 10-40 hidden, and 10 output neurons in a simple feed-

forward configuration. The tests vary the number of hidden neurons and connec-

tivity ratios from input-hidden and hidden-output in 5 steps of 20%. Hidden neu-

rons use the sigmoid transfer function from 5.3.1. Outputs use the SOFT MAX

function, which computes eγSj , where γ is the gain, as earlier, and Sj is the in-

put to the neuron, normalised so that the sum of contributions from all of the

outputs sum to 1. The tests also vary the gain (normally 1) in all layers in de-

creasing steps of 0.2: 1, 0.8, 0.6... Learning is per Lens’ “Doug’s momentum” rule

which adjusts the standard momentum rule δij(p) = λUiU
′

j +µδij(p−1) such that

deltaij(p − 1), the previous weight update, is set to 1 if it was larger than 1. In

this network, λ was 0.2 and µ was 0.9. The batch size uses the entire example set,

i.e. the network does not update the weight until after a complete presentation

of the example set. The training set uses Lens’ supplied hand digits examples

from hand-digits.trn.bex.gz. Training stops either when all output neurons have

an error less than 1, or when the network has gone through 100 complete pre-

sentations of the training set without learning the task. The network then uses

Lens’ supplied test set: hand-digits.tst.bex.gz, for connectivity/gain parameter

combinations that successfully learn the task.

112 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Smaller networks, however, can only reveal effects at a coarse level, because

the relatively small number of connections limits the number of useful topological

variations. The large phonetic-recognition network is an obvious candidate for

testing partial connectivity with finer control over the topology parameters. Tests

allowed the size of the hidden layers to vary between 50 and 200 neurons (keeping

the number of input and output neurons the same). The tests vary the connec-

tivity in all hidden layers in 3 decreasing steps: 1, 0.66, 0.33. Again, learning

follows Lens’ “Doug’s momentum” rule. with λ = 0.05 and µ = 0.9. Batch size

was 1, specifying a weight update following presentation of each example. Both

training and test sets used a phonetic example set from the School of Psycholog-

ical Science, University of Manchester, “namtr.ex”, consisting of 2000 vocalised

phonemes, dividing the set evenly into two groups of 1000 for training and test

respectively. Training stops either when both output groups have a total error

less than 0.5, or when the network has gone through 1000 complete presenta-

tions of the training set without successfully learning the task (i.e. meeting the

criterion). These networks permit a systematic exploration of the relationship

between connectivity, network size, gain, and learning performance.

The connectivity-test networks complete the entire model development cycle

on SpiNNaker; with them testing has gone from investigating the functionality of

the library model to testing characteristics of the networks itself. This is the task

SpiNNaker was designed to do; thus the MLP networks can demonstrate SpiN-

Naker’s value in non-spiking networks in addition to spiking ones. Nonetheless,

spiking networks are currently the ones attracting the greatest interest in the re-

search community, and to demonstrate how SpiNNaker library techniques permit

rich exploration of network characteristics in the spiking case, it is instructive to

turn to a third model.

5.4 The LIF/NMDA Model

The purpose of SpiNNaker is large-scale simulation. While simple models like

the reinforcement-learning subcircuits demonstrate basic functionality and core

techniques for event-driven neural implementation, they do not as yet form con-

vincing evidence of scalability. Models such as the MLP are useful in demon-

strating medium-scale neural networks, and in addition the very different nature

of the underlying model readily exposes potential hardware limitations. Again,

5.4. THE LIF/NMDA MODEL 113

they are only partly convincing as a demonstration of scalability, in part because

the target network sizes are still only relatively small, in part because as a “non-

standard” model they use SpiNNaker in a very different way from the original

design objectives. In particular, however, they are not dynamic models: there

is no real-time requirement and no temporal dimension. These models remain

illustrative rather than prescriptive; having developed them it is now important

to introduce further models to build a neural library and provide further exam-

ples to third-party developers of how to configure SpiNNaker. The third set of

networks focusses on an important, popular neural model - the leaky-integrate-

and-fire (LIF) model, and uses it as a platform to develop other synaptic models,

notably an N-Methyl-D-Aspartic (NMDA) synapse with slow voltage-gated dy-

namics. These models introduce a variety of techniques not yet demonstrated

in the original reference models, while using and extending important core tech-

niques from those models that show their general nature. Developing different

neural models is a useful way not only to extend hardware capabilities, but to

establish principles of efficient computation - a basis for approaching the question

of what abstractions of neural function are useful.

These “neural primitives” are designed to integrate into a real-time, spiking

neural network as part of a complex model operating in a biologically relevant

time-sensitive application: attentional control. The goal of the system is to be

able to recognise and direct (visual) attention towards a set of prioritised synthetic

stimuli moving over a virtual visual field. This requires coordinated interaction

between a set of distinct functional modules, each a neural network by itself. The

obvious structural and dynamic complexities of such a model make it strongly

preferable to use simple neural models.

5.4.1 Neuron

The LIF model uses the function pipeline common to the SpiNNaker library.

This basic approach applies to virtually any spiking model with voltage-variable

differential-equation dynamics: an illustration of the universal design of the soft-

ware as well as the hardware. It is perhaps easiest to describe the LIF neuron by

walking through the function pipeline stage by stage.

114 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Variable Retrieval

Like the Izhikevich neuron, the LIF neuron uses the deferred-event model to place

input spikes into a circular array of current buffers representing the total input

in a given time step (fig. 5.1). At the actual time of arrival of an input, the

model does nothing more than trigger a DMA operation which retrieves a source

neuron-indexed synaptic row. Once this row has been retrieved, a deferred event,

DMA complete, triggers a second stage of deferral by finding the delay associated

with a given synapse and placing the synaptic weight (representing the current

injection) into the bin in the circular array representing the delay value. Finally,

when that delay expires, it triggers another deferred event, the Timer event, that

recovers the total current from the bin. At the same time, the neuron retrieves its

associated state block, containing the voltage variable and the parameters Vr (rest

voltage), Vt (threshold voltage), Vs (reset voltage), R (membrane resistance), and

fn(= 1
τ
) (natural frequency). Precomputing this last value from time constant τ

makes it possible to avoid an inefficient, processor-intensive division.

Polynomial Evaluation

The basic LIF neuron equation is [DA01]

dV

dt
= fn(Vr − V + IR)

The right-hand side is a simple polynomial, which the ARM can easily compute

(in 3 instructions using 2 SMLAxx multiply-accumulates). It is possible also to

incorporate conductance-based synapses into this evaluation; the function then

becomes
dV

dt
= fn(Vr − V + T (t)(V − Vn) + IR)

where T(t) is the synaptic “transmissivity”, a value that incorporates the values

of maximum synaptic conductance and specific membrane resistivity into the

release probability by precomputing and storing the weights as this aggregate

quantity. Vn is the synaptic rest voltage.

Look-up table

For the “normal” LIF neuron there is no need for a lookup table function since

the differential equation is polynomial.

5.4. THE LIF/NMDA MODEL 115

Interpolation

Likewise in the standard LIF model there is no need for interpolation since the

function can be computed exactly.

Differential Equation Solution

The Euler-method process evaluates the differential equation at each Timer event.

Timer events occur each millisecond. After evaluating the equation, it also tests

whether the potential has exceeded the threshold Vt. If it has, it resets V to Vs.

The LIF computation requires 10 instructions if the neuron does not fire, 21

if the neuron fires, and 38 if the neuron fires and synapses have spike-timing-

dependent plasticity (STDP). The high efficiency of this model makes it an ideal

test-bed for exploring different synaptic models.

5.4.2 Synapse

Spiking neural networks can contain various different synapse types with differ-

ent dynamics. At present the role of different synaptic types remains an area of

intense research interest [Dur09]. Equally significantly, the level of biophysical

realism necessary to achieve useful behaviour or model actual brain dynamics is

unclear. For instance, in the case of the well-known STDP plasticity rule, while

many models exist describing the behaviour [SBC02], [HTT06], the actual biolog-

ical data on STDP is noisy and of low accuracy. Observed STDP modifications

exhibit a broad distribution for which the nominal functional form of STDP mod-

els usually constitute an envelope or upper bound to the modification [MT96],

[BP98]. This suggests that high repeatability or precision in STDP models is not

particularly important.

While SpiNNaker is capable of modelling synapses with biophysical realism

down to the molecular level if necessary, such high biological fidelity is computa-

tionally expensive. In view of the observed synaptic variability, exact biological

replication, or fidelity to a precise functional form, appears to be unnecessary for

understanding their computational properties. This gives considerable latitude

for experimenting with different synaptic models in order to investigate various

tradeoffs between computational cost and functional accuracy. Using the LIF

model gives not only a default “reference” model with known and easily tuned

116 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

dynamics that expose the synaptic dynamics clearly, it also provides a very-

low-computational-cost model, minimising machine cycles to allow more time for

complex synaptic models.

The LIF model currently supports two different models. The first model is

the temporally-accurate STDP model from earlier 5.2.2. In biological terms, this

model implement synapses with fast dynamic response, either AMPA (excitatory)

or GABA-A (inhibitory) types The second model adds NMDA-mediated synapses

exhibiting voltage gating with slow dynamics. This model presents two challenges:

first, how to model the slow dynamics without having to retrieve the synaptic

values multiple times, and second, how to implement the voltage gating process.

Two properties of NMDA synapses make it possible to implement an efficient

algorithm. First, the decay of the current exhibits a linear kinetic, therefore

instead of using sampled Euler-method evaluation it is possible to precompute the

update for each input. Second, voltage gating is multiplicative and depends on the

post-synaptic potential, thus the net contribution from all synapses with NMDA-

mediated dynamics can be computed by multiplying their aggregate activation

by the gating factor on a per (postsynaptic) neuron basis.

Variable Retrieval

Retrieval of the synaptic weight follows the same virtual synaptic channel method

as the “ordinary” AMPA/GABA-A synapse: the processor initiates a DMA

transfer upon receipt of an input spike. However, since at this time the type

of synapse (NMDA/AMPA/GABA-A) is unknown, each synaptic weight entry

uses the previously-reserved Bit 27 to identify the type. A type 1 indicates a

slow dynamic; the sign bit of the weight whether the synapse is excitatory or

inhibitory. Thus an NMDA synapse has a positive weight value and a 1 in Bit

27. The processor then branches to the appropriate routine depending on the

synaptic type.

5.4. THE LIF/NMDA MODEL 117

Polynomial Evaluation

The full equation for the NMDA synapse is a term in the neuron that specifies

the amount of current injection [DA01]:

IN = rνgnGnP (V − En)

Gn =
1

1 + Mg2+

3.57
e

−V
16.13

dP

dt
= α(1 − P) − βP











rν is the neuron’s specific resistance, gn the NMDA synapse conductance, P the

open probability, and En is the synapse rest potential. Gn is the voltage gating

factor; it depends on the magnesium ion concentration Mg2+. Factors α and β are

(approximately constant) factors that determine the synapse opening and closing

time constants. Precomputing the synapse open probability uses a variety of

techniques. NMDA synaptic currents reach their maximum value quickly, usually

within 1.5 ms of spike arrival, then decay exponentially with slow time constant

β :

P (t) = Pmaxe
−β(t−Tmax)

where P is the synapse open probability, Pmax the maximum “fully-open” prob-

ability, and Tmax the time of that fully-open state. Since the rise time is fast, of

the order of the time resolution of the neural dynamics, it is reasonable to neglect

the effects of rise-time dynamics and simply incorporate it into the delay. Also,

the factors rν and gn are constants. This makes it convenient to bundle them into

the “weights” in the stored NMDA synapse. The net effect is that this “weight”

is actually a term equivalent to rνgnPmax.

With these numerical manipulations, the actual evaluation of the NMDA ex-

pression is straightforward: compute V −En, and multiply by the stored “weight”.

The gating factor Gn however, is a nonlinear sigmoid 5.8, thus it is easier to obtain

this by a look-up table.

Look-up Table

Using a look-up table for the gating factor “collapses” the entire evaluation into a

memory access, however, the Mg2+ term has the net effect of shifting the actual

sigmoid to higher voltages with higher ion concentrations 5.8. This is easy to

achieve by changing the voltage which gives the offset into the lookup table by

a factor proportional to the Mg2+ term. Again, it is easier to precompute this

118 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.8: NMDA gating factor as a function of membrane potential. Traces
represent different values of Mg2+: 0.1mM (green), 1 mM (blue) and 10 mM
(red)

actual offset (and bundle in the divisons by 3.57 and 16.13) so that is is only

necessary to add a single value stored in memory representing the effective Mg2+

concentration in order to get the LUT offset.

Interpolation

If the model uses NMDA synapses, and requires better than 8-bit precision in the

gating factor, it uses the same spline-based interpolation [UVCP98] as the MLP

model. Since the LIF neuron and NMDA synapse are dynamic models running

in real time, as opposed to the timeless MLP model, in practice it is best to

avoid this step unless absolutely necessary: while efficient, interpolation is not

computationally free, requiring 48 cycles.

Differential Equation Solution

Because the NMDA synapse has a linear kinetic, it is more efficient to precompute

its net input to the neuron rather than follow Euler-method integration. NMDA

input current decays exponentially with a slow time constant: β ≫ τ where τ is

the time constant for a fast AMPA synapse. It is straightforward to accommodate

this slower dynamic by adding a second set of activation bins to each neuron that

rotate every τ ms. Precomputing the value to place in each successive bin after the

initial (Tmax) bin is trivial by exploiting the exponential property of shifting and

5.4. THE LIF/NMDA MODEL 119

using precomputed parameter scaling: shift the “weight” stored in the synaptic

block, right by one place for each successive bin.

At each (1ms) time step, the neuron then multiplies the current NMDA

bin (representing aggregate NMDA stimulus) by the voltage gating factor and

adds it to that of the normal fast (AMPA/GABA-A) bin using the previously-

described LUT-based scheme. Once again this function can exploit extensive

precomputation to simplify the LUT evaluation. The neuron also needs to test

whether the NMDA bin should rotate, based on the system time tsys. Näıvely,

this is when tsysREMτ = 0. However, because of the finite time resolution

of the system, it should actually occur when tsysREMτ ≤ 1
2τ

. By storing

the time constant as a 16-bit fractional quantity with implied leading decimal,

fnmda = 1
τ
, determining the rotate timing requires a simple multiply and shift:

(tsysfnmda) ≪ 16 ≤ fnmda ≪ 15.

The complete process then functions as follows:

Presynaptic input event

1. Retrieve the synaptic row corresponding to the presynaptic neuron.

2. Calculate the effective bin delay (position of bin Pmax) using Tmax = δw(1
τ
),

where δw is the real-time annotated delay in the synaptic weight.

3. Precompute the synaptic contribution (effective open probability) for each

future bin.

4. Distribute the contributions into each bin by accumulating them with the

current bin value.

Neuron timer event

1. Get the current system time.

2. Calculate whether the NMDA bin should rotate by computing tsysREMτ ≤

1
2τ

.

3. If the bin should rotate, advance it and clear the previous bin.

4. Compute the gating factor by LUT.

5. Multiply the current NMDA bin by the gating factor.

6. Add to the (fast AMPA/GABA-A) activation.

120 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

The NMDA synaptic model takes advantage of the low instruction count of the

LIF process. Updating the NMDA dynamics in a neuron requires 22 instructions.

Thus the total instruction count rises only to 32 if the neuron does not fire, 43

if the neuron fires. This remains well within timing limits to permit a (memory-

limited) 910 neurons per processor.

5.4.3 Network

The Large-Scale Model

Because of the underlying simplicity of the component elements, this model is

suitable for implementation of a larger-scale network with a more complex struc-

ture than the previous models. This network is a good demonstration of a scalable

system containing heterogeneous components: a “full-scale” network to investi-

gate realistic behaviour in a real-world environment.

The proposed network (fig. 5.9 is an expansion of a pair of models: Taylor,

et. al’s CODAM model [Tay03] and Edelman, et. al’s Darwin V model [STE00].

Darwin V’s S, So and Si units replace the monitor and goals subunits in CODAM.

As planned, the network will map So and Si to the Evaluator (the test network

for the Izhikevich/STDP model), and S to the Monitor. When fully implemented,

the network will also incorporate a long-term memory not in any of the previous

models. Using a long-term memory will make it possible for the network to supply

attentional priming from learned patterns, thus being able to precondition faster

response to familiar stimuli in familiar contexts.

Subcomponents

Within the model there are several structures that repeat in multiple independent

function blocks. Following the libary modular structure, the first step is to build

and test these blocks as independent networks, then incorporate them into the

larger system. Such a modular approach provides the benefits of block reuse and

incremental debugging, so that large-scale neural networks possessing repeated

regular structures can be built by connecting components without the risk of

problems in the lower-level subcomponents obscuring top-level behaviour.

The first such structure is a “comparator” that evaluates the synchronisation

of paired inputs and outputs a coded pattern representing the phase delay between

inputs. The test implementation reproduces the results in [IH09] (Section 2).

5.4. THE LIF/NMDA MODEL 121

Figure 5.9: Proposed full-scale model for scalability testing. Each block is a sep-
arate network and may employ independent neural model types. The Evaluator
uses Izhikevich neurons with STDP and is the subject of section 5.2.3. The Mon-
itor uses LIF neurons; its core will be a resonant network containing LIF neurons
with NMDA synapse. The I/O processor is a simple first-level feature extractor;
the Phase I implementation will connect I/O directly to the Monitor and Evalu-
ator, using synthetic input with fixed-activity neurons (Future implementations
will incorporate real-world stimulus sources and outputs). Other blocks (Phase
II and Phase III) are not yet implemented.

122 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

Figure 5.10: Detection of the interpulse interval between spikes from neurons a
and b. d denotes the synaptic delay between sources and detectors. Detector
neuron τi fires when the interpulse interval ta − tb = i.

Two input neurons (sources) connect to 7 output neurons (detectors) with a

delay proportional to the distance (fig. 5.10).

The weights are set so that a detector will fire only if two coincident spikes

arrive within a millisecond interval; detector neuron τi only fires when the inter-

pulse interval ta−tb = i, where ta and tb are the absolute firing times of neurons a

and b respectively (eg. neuron τ−3 fires when neuron b fires 3 msec after neuron

a, neuron τ+2 fires when neuron b fires 2 msec before neuron a etc). This yielded a

uniform weight of 2.7 mA/mF with delays of 1, 1, 2, 2, 3, 3, and 4 ms respectively

depending upon the detector neurons’s distance from the source neuron.

Source neurons receive a regular series of 10 mA/mF current pulses, occurring

at ∼ 20 ms intervals with a decrementing 3-0 ms offset for one source and an

incrementing 0-3 ms offset for the other. Decrementing offset starts after 20 ms

and diminishes by 1 ms every 20 ms, while the incrementing offset starts after 80

ms and increases by 1 ms per 20 ms. The simulations performed stopped input

automatically after 200 ms.

The second test network is an oscillatory network (fig. 5.11) consisting of

groupings of excitatory/inhibitory neurons. Such a network is useful either to

generate a constant “clock” or in combination with a winner-take-all network to

produce networks able rapidly to switch between sources of attention based upon

the oscillation frequency. The model contains 100 neurons divided into 80 exci-

tatory neurons and 20 inhibitory neurons. Each neuron in the excitatory group

connects to 56 (70%) excitatory neurons and 2 (10%) inhibitory neurons with a

random delay between 1 and 8 ms. Each inhibitory neuron connects to every ex-

citatory neuron (full connection - 100%) with a delay of 1 or 2 ms. All excitatory

weights have uniform starting weight 2 mA/mF, while inhibitory weights likewise

5.4. THE LIF/NMDA MODEL 123

Figure 5.11: Oscillatory Network Structure. Excitatory and inhibitory groups
are connected so that when the activity of the excitatory group gets high the
inhibitory group shuts the activity of the whole network.

have uniform starting weight -20 mA/mF. 8 neurons in the excitatory population

receive a constant current injection of 3 mA/mF starting at 10 ms and ending at

500 ms. The simulations stopped at 501 ms.

To test network dynamics at a larger scale, a larger network simulates 500

LIF neurons running the “Vogels-Abbott” benchmark. This creates a network

similar to the 100-neuron oscillatory network. 400 neurons are excitatory, 100

inhibitory, and the neurons all have the following parameters: Vi = −60mV, Vr =

−49mV, Vs = −60mV, Vt = −50mV, τ = 32ms. The population uses random

connectivity with 2% probability of connection, i.e. a given neuron connects on

average to 10 other neurons. Weights for excitatory connections are a uniform

0.25 mA/mF and -2/25 mA/mF with random delays between 1 and 14 ms. A

subset of 40 neurons receives a current input injection; this current increases in

2 step-jumps at 400 and 800 ms. Simulation stops at 1200 ms.

In addition to networks using pure LIF neurons, two additional models run

multimodel simulations containing heterogeneous mixes of neural types. These

models verify, then implement, and important part of attentional control: the

generation of gating signals to output populations. In particular, as planned,

burst signals from the Evaluator will gate LIF neurons in the Monitor. The

models propose that burst signalling can act as a gating source to LIF neurons

by rapidly pumping the membrane potential up to a near-spiking regime. Since

LIF neurons cannot generate spike bursts, the model uses Izhikevich neurons as

the burst souce.

The first network uses two layers of 15 neurons each, one layer of LIF and one

of Izhikevich “Intrinsic Bursting” neurons. Each neuron in a layer connects with

124 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

a single neuron in the opposing layer with reciprocal connections having random

delays between 1 and 10 ms. Weights from Izhikevich to LIF neurons have a

uniform initial value of 5 mA/mF, while those from LIF to Izhikevich have a

value of 0.01 mA/mF. Six neurons in the Izhikevich population receive an input

stimulus in the form of a stepped current source. This source alternates between

0 and 20 mA/mF. Two neurons receive step-ON times of 50 and 666 ms with

step-OFF times of 500 and 1000 ms, two have ON times of 150 and 500 ms, OFF

times of 300 and 750 ms, and two ON times of 175 and 525 ms, OFF times of

325 and 775 ms. The simulations ran for 1 s.

The second network implements the burst gating subcomponent for the Eval-

uator, configuring 3 layers of 15 LIF, Izhikevich “Chattering” and LIF neurons

respectively. As in the previous model, one pair of LIF and Izhikevich neurons

have mutual one-to-one connections with random delays from 1 to 11 ms in this

case, and with weights of 4 mA/mF from Izhikevich to LIF, 0.01 mA/mF from

LIF to Izhikevich. The third population, of LIF neurons, connects to the other

LIF population with one-to-one connections having identical weight and delay

properties as from the Izhikevich population to the first LIF population. Two

Izhikevich neurons receive an input stimulus of 20 mA/mF starting at 200 ms.

The LIF neurons in the third population are configured with a rest potential

above threshold, so that after spiking they relax back to another spike with a

constant frequency of 50 Hz. Simulation stops after 2 s.

The complete system will be a demonstration of important library techniques

for scalability. Repeated reuse of primitive subcomponents to create larger-scale

networks indicates how to use the library for synthesis: hierarchically building

components that a synthesis tool can then lay down as drop-in blocks. Integrating

different neural types within the same overall system demonstrates SpiNNaker’s

ability to support simultaneous interacting heterogeneous models. Finally, im-

plementation of simplified network models believed to represent “real” biological

regions or processes suggest a path to full-scale biological modelling: expand the

same architectures with larger block sizes and denser connectivities, an incre-

mental process where it is possible to verify the biological correspondence at each

successively greater level of detail by direct SpiNNaker simulation. The model

remains partial at this point but nonetheless provides important test results that

establish practical procedures for building an event-driven library while revealing

potential hardware limitations.

5.5. NEURAL MODEL SUMMARY 125

5.5 Neural Model Summary

Each of the three different reference models illustrates different aspects of SpiN-

Naker design tradeoffs. Undoubtedly these reveal that choice of model implemen-

tation on any neuromimetic system is highly platform-specific, placing a further

urgency on model libraries so that users do not have to develop neural models

from scratch for the hardware. The ability to configure and run very differ-

ent neural models on the same hardware, however, is a powerful (and essential)

feature. Most importantly, development of these three models establishes a ref-

erence methodology for library development, so that future models may be built

using the same approach with maximal reuse of existing software components.

To summarise the three models:

Izhikevich/STDP

The Izhikevich neuron is a simple model that yet replicates all observed

neural behaviours including bursting, while the STDP synapse is by far the

most popular model for weight update in spiking networks. These models

illustrate the main challenges in creating a reasonably biologically plausi-

ble spiking model: dynamic fidelity, memory utilisation, and instruction

efficiency in the context of a “use-it-or-lose-it” event-driven system. The

principal solutions to these problems are the deferred-event model, the vir-

tual synapse channel, and the assembly “software macro”.

MLP/Delta-Rule

The MLP model, or specifically the sigmoid-unit neuron with delta-rule

synapses, is the classical “computational” neural network whose biological

realism is at best analogous. Given its timeless, continuous-activation repre-

sentation it unsurprisingly introduces completely different design challenges,

the most significant of which are: network mapping, communications traffic

management, and barrier synchronisation. The mapping problem is solv-

able using an adroit choice of matrix subranging [JLK+10] but the other two

are at best mitigated with careful communications distribution techniques.

LIF/NMDA

The LIF is the simplest widely accepted spiking model, making it a good

test-bed for complex synaptic models such as the NMDA model where

aggressively efficient neural processing is essential. Such models create a

126 CHAPTER 5. PHASE I: DEFINITION - TEST NETWORKS

third series of challenges: parameter specification, complexity tradeoff, and

network-level dynamics. Solving the problem of parameter specification -

that different model “flavours” may have different numbers of parameters, is

a matter of generalising the System Level library code using templates. The

other two, however remain open issues at least in part: pre-instantiation

simulation can determine whether model complexities may cripple perfor-

mance, but on the whole this remains a matter of hand-tuning.

Chapter 6

Phase II: Simulation - Modelling

127

128 CHAPTER 6. PHASE II: SIMULATION - MODELLING

6.1 Guide

An essential component of the model design process is software testing and sim-

ulation, prior to implementing library components and neural networks on the

actual hardware. In the case of SpiNNaker, furthermore, this testing has the

additional purpose of verifying the hardware design - since a hardware-level sim-

ulation of a complete running network is the best, indeed, possibly the only

feasible, way of adequately verifying a large, complex hardware component. If

working hardware is available the main purpose of software simulation is to con-

firm the viability of the neural model and the fidelity of its mapping onto the

device(s). This testing and verification process has two stages: abstract mod-

elling and hardware simulation. Abstract modelling occurs at the Model level

and confirms the basic dynamics of components or the entire model as well as

establishing a “reference behaviour” to compare against the physical implemen-

tation. Hardware simulation happens at the System level and verifies that the

hardware successfully implements the model, as well as helping with debugging.

This chapter discusses test results from the 3 different models using this structure.

Each section, ordered by model type: Izhikevich/STDP, sigmoid/delta function

MLP, and LIF/NMDA, reports results first from high-level modelling using a va-

riety of typical neural network tools and then hardware-level simulation using the

ARM SoC Designer SystemC simulator. Here hardware-level simulation means

tests on standard PC’s simulating SpiNNaker hardware, not actual simulation on

SpiNNaker chips (the subject of the next chapter). There are two different types

of test: functionality testing, which simply verifies whether the model can run

at all; and performance testing, which seeks to establish expected SpiNNaker ca-

pabilities. Summarising the results, functionality testing shows that the models

can indeed be made to run, but while performance testing reveals the potential

for significant acceleration it also shows the critical impact of network traffic and

the need to manage this carefully in order to avoid slowdowns.

6.2. IZHIKEVICH/STDP ISSUES 129

6.2 Izhikevich/STDP Issues:

Realistic STDP, Accurate Dynamics

6.2.1 Voltage-Domain Performance

The Izhikevich model with STDP synapses provides an early platform to develop

and test applications for SpiNNaker while the hardware is still in the design

phase. While it is possible to verify the cycle accurate behaviour of individual

components using HDL simulation, verifying the functional behaviour of a neural

computing system on the scale of SpiNNaker would be unmanageably complex,

either to demonstrate theoretically, or to simulate using classical hardware de-

scription languages such as VHDL and Verilog. Therefore, a separate part of

the SpiNNaker project created a SystemC system-level model for the SpiNNaker

computing system to verify its functional behaviour - especially the new commu-

nications infrastructure. SystemC supports a higher level of timing abstraction:

Transaction Level Modelling (TLM), exhibiting “cycle approximate” behaviour.

In a TLM simulation, data-flow timing remains accurate without requiring accu-

racy at the level of individual signals. This makes it possible on the one hand

to integrate synchronous and asynchronous components without generating mis-

leading simulation results, and on the other to retain timing fidelity to the neural

model since the data-flow timing entirely determines its behaviour. The SpiN-

Naker simulator integrates bespoke SystemC models for in-house components

[KJFP07] with a cycle-accurate instruction set simulator for the ARM968E-S

processor and its associated peripherals using ARM SoC Designer. SoC Designer

does not support real-time delays, therefore the model describes the behaviour of

the asynchronous NoC in terms of processor clock cycles. The model simulates 2

processing cores per chip - the number of cores on the initial test chip - in a system

containing 4 chips running concurrently - the configuration of the test board. Two

neural application case studies [KLP+08] tested the complete system behaviour

extensively to verify hardware functionality before running model-specific tests.

The complete process, from device-level functional verification to model-level sim-

ulation demonstrates the viability of the SpiNNaker platform for real-world neural

applications and establishes the methodology for the development and testing of

new neural models prior to their instantiation in hardware.

Low-level system tests initially ran on a system simulation containing one

130 CHAPTER 6. PHASE II: SIMULATION - MODELLING

Figure 6.1: SpiNNaker top-level model output of the spiking network. For clarity
only 25 neurons are shown.

processing node. Router links wrap around connecting outputs to inputs, so that

all packets go to the emulated processor. These tests (Xin Jin) used a reference

neural network having 1000 neurons with Izhikevich [Izh03] neural dynamics, with

random connectivity, initial states, and parameters, updating neural state once

per ms. The model reproduces the results presented in [JFW08](fig. 6.1).

6.2.2 Time-Domain Performance

Further modelling uses the results from this experiment to run a cycle-accurate

simulation of the top-level model (fig. 6.1) to analyse the impact of system delays

on spike-timing accuracy. Figures 6.2(a) and 6.2(b) show the results. Each point

in the raster plot is one spike count in the histogram. The spike-raster test

verifies that there are no synchronous system side effects that systematically

affect the model timing. Using the timing data from the simulation, it is possible

to estimate the timing error for each of the spikes in the simulation - that is, the

difference between the model-time “actual” timing of the spike and the system-

time “electronic” timing of the spike - by locally increasing the timing resolution

in the analytic (floating-point) Izhikevich model to 50 µs in the vicinity of a spike

and recomputing the actual spike time. Most spikes (62%) have no timing error,

and more than 75% are off by less than 0.5ms - the minimum error necessary

for a spike to occur ±1 update off its “true” timing. Maximum error is, as

expected, 1 ms, since the update period fixes a hard upper bound to the error. In

combination with the raster plot verifying no long-term drift, the tests indicate

that SpiNNaker can maintain timing fidelity within a 1 ms resolution.

6.2. IZHIKEVICH/STDP ISSUES 131

(a) SpiNNaker spiking neural simulation raster plot.
The network simulated a random network of 60
neurons, each given an initial impulse at time 0.
To verify timing synaptic plasticity was off.

(b) SpiNNaker spike error histogram.
Estimated spike-timing errors are
from the same network as the
raster plot.

Figure 6.2: SpiNNaker time-domain behaviour

A final series of tests [JRG+10] verified the STDP functionality by configur-

ing a random network containing 48 excitatory Izhikevich neurons with STDP

enabled, and 12 inhibitory neurons with no STDP. Connectivity was set to 83%,

i.e. 40 connections per excitatory neuron. By isolating weight updates between

pairs of neurons and correlating them to firing patterns, it is possible to confirm

realistic behaviour. Fig. 6.3 shows the updates for two different targets of neuron

6; as expected, a self-recurrent connection weakens consistently, since presynap-

tic inputs always reflect the postsynaptic spike occurring an axonal delay before.

Likewise, a forward connection to neuron 26 shows a variable update pattern with

a long-term upward trend, consistent with the overall trend for neuron 6 to fire

before neuron 26.

(a) Self-recurrent (b) Forward

Figure 6.3: STDP updates, self-recurrent and forward connections

132 CHAPTER 6. PHASE II: SIMULATION - MODELLING

6.3 MLP Test Issues: Connectivity Minimisa-

tion, Load Balancing

6.3.1 Model Exploration

Since the MLP network has had as a primary design goal replication of the func-

tionality of the LENS neural network simulator, high-level model testing used

LENS to run neural network simulations. The simulator ran 2 different neural

networks (section 5.3.5): the LENS hand-digits example modified to include 64

input, up to 40 hidden, and 10 output neurons in a simple feedforward configu-

ration and the larger phonetic-recognition network [WR07].

Experiments varied 3 different parameter classes: connectivity, number of

neurons, and gain. To test the effect of various parameter combinations trials

permuted each parameter in a series of steps. The smaller network used a pa-

rameter step size leading to 5 different values for connectivity and gain over each

of the input, hidden, and output layers, a total of 15,625 possible permutations.

The larger network preferentially varied the connectivities in the preference order

hidden-output, hidden-hidden, output-hidden, input-hidden, input-output, and

output-output over 3 different values, and hidden unit gain over 2 different val-

ues. Considering only the actual connection paths as per the architecture above

this leads to 38 ∗ 22 - 26,244 permutations. A single trial ran each permutation

for 500 training epochs in the small network, 1000 in the large one and measured

the final and mean errors so as to get information both on ultimate classification

performance and learning rate (using the mean as a proxy for the rate).

Results from all tests (figs. 6.4(a), 6.5(a), 6.5(b)) demonstrate an approxi-

mately linear relationship between connectivity and error performance down to a

certain minimum value. For the simpler hand-digits networks performance clearly

also separates according to gain. At higher connectivities, lower gains show im-

proved performance by decreasing the slope of the error line, thus the higher the

connectivity, the greater the impact of reduced gain. One possible interpretation

is that reduction of gain works by minimising the error in early stages of the

training. With large gains and therefore steep transfer functions small deviations

in input lead to possibly large output deviations, and hence large errors if there

is any error in the initial inputs.

6.3. MLP TEST ISSUES 133

In the large neural networks, architectural complexity makes it difficult to sep-

arate the critical parameters, although the general pattern is clear. By grouping

the series first by Hidden0-Output0 connectivity, then by Input-Output0 connec-

tivity it is possible to identify groups. Each group contains 2 branches, identifiable

as a high-gain (upper) branch and a low-gain (lower) branch. Overall, the 200-

neuron-per-hidden-layer networks perform better than the 50-neuron-per-hidden

layer networks, suggesting the improved computing power of additional feature

representations per class. One interesting feature of the 50-neuron networks is the

presence of some series (i.e. parameter combination sets) whose performance at

all Hidden0-Output0 connectivities is comparable to the 200-neuron networks and

considerably greater than the other series. These appear to occur with certain

combinations of Input-Hidden0 and Output0-Output1 connectivities, although

the precise nature of the relationships has not been determined.

(a) Error-Connectivity results. Data series
are grouped by gain.

(b) Training results for configurations that
successfully learned the task. Red dia-
monds are average values; blue squares
are the individual results on each trial.

Figure 6.4: Performance of the hand-digits application.

Examination of the output performance with networks trained for the task

reveals the effect of overtraining with lower connectivities. Fig. 6.4(b) gives the

error with hand-digits networks that successfully learned the training set accord-

ing to the maximum error criterion. These networks then ran a test set from

a second, independent data source. With all connectivities the error is small,

however, the mean error reaches its minimum at about 60% connectivity and

increases (with greater variability) as the connectivity goes beneath this value.

134 CHAPTER 6. PHASE II: SIMULATION - MODELLING

(a) 50 hidden units (b) 200 hidden units

Figure 6.5: Error-Connectivity results for the phonetic recognition network. Refer
to the text for series groupings.

6.3.2 Hardware Functionality

The first test is a simple one to verify that it is possible to get the MLP network

to function at all on SpiNNaker. The test creates an application based on the

“digits” application from LENS. Actual network design removes extraneous struc-

tural complications from the example to arrive at a simple feedforward network

with 20 input, 20 hidden, and 4 output neurons (section 5.3.5. The test initialised

the weights randomly between [-0.5, 0.5]. Using the augmented training set from

fig. 5.6, the network then ran through 3 successive training epochs. Results are

in fig. 6.6. Weight changes show an expected evolution, compared to an identical

Lens simulation on a standard PC (with floating-point values throughout). In

particular, the simulation duplicates the following characteristics:

1. Weight changes on the order of 0.001.

2. A mix of increasing and decreasing weights, with an overall downward trend.

3. Regular periodic fluctuations in weight value.

Overall, these results are consistent with basic functionality.

The second series of tests establish packet-processing limits. It is important

to know how far the SpiNNaker architecture can scale in terms of local packet

density before breaking down. By generating additional packets from the actual

traffic of the simulation proper, the MLP model can form a good test case for

6.3. MLP TEST ISSUES 135

Figure 6.6: SpiNNaker MLP test, weight changes. To improve readability the
diagram shows only selected weights; unshown weights are similar.

Figure 6.7: SpiNNaker packet handling performance

136 CHAPTER 6. PHASE II: SIMULATION - MODELLING

packet congestion. The simulation model generated a separate packet type that

output the weight of each synapse, for each input. It then ramped a number

of duplicates of the same packet, so that the communications controller sent a

burst of n packets each time it output a weight updated, where n is the number

of duplicates. Results are in fig. 6.7. SpiNNaker was able to handle ∼ 11 times

more packet traffic without breaking down, corresponding to 1 additional packet

per weight update. The network starts breaking down due to congestion by 2

packets per weight update, and by 3 packets became completely paralysed: no

packets reached the final output. We found that the failure mode was the speed

of the ISR: by 3 packets per update packets were arriving faster than the time

to complete the Fast Interrupt (FIQ) ISR. Clearly, very efficient interrupt service

routines, together with aggressive source-side output management, are essential

under extreme loading conditions.

6.4 LIF/NMDA Issues: Model Simplicity, Tem-

poral Synchronisation

6.4.1 Single Neuron Dynamics

Systems such as the planned attentional control network require precise synchro-

nisation because the focus of attention is a temporally-varying object whose time

and phase of salience is critical. This makes it an ideal context to test synapses

with different temporal properties like fast AMPA/GABA-A versus slow NMDA

synapses. In order to verify the timing characteristics of the network, the first

tests characterise the timing behaviour of the (primitive) implemented LIF model.

Testing single neuron dynamics injected short pulses of current into a neuron

with the following parameters: V0 = Vs = −75mV , Vr = −66mV , fn = 1
4
ms−1,

R = 8, Vt = −56mV . Here Vs is the reset voltage, Vr is the rest voltage, fn is the

natural frequency (= 1
τ
), R is the membrane resistance, and Vt is the threshold

voltage. Results in fig. 6.8 compare the accuracy of the implementation against

the same neuron implemented with Brian [GB08]. The difference in the spiking

region occurs because the SpiNNaker model sets V = 30mV when a neuron

crosses the threshold in order to generate a spike event.

6.4. LIF/NMDA ISSUES 137

Figure 6.8: Single neuron dynamics. The test injects 4 pulses of current into
the neuron. Traces compare the membrane potential of the simulation run on
SpiNNaker (continuous line) with the same neuron implemented in Brian (dashed
line).

6.4.2 Neural Subcircuits

The next series of tests examine the small-scale building blocks: the comparator

and the oscillator. Fig. 6.9 presents the simulation results for the comparator.

The network is able to discriminate the inter-pulse interval between the firings of

neuron a and neuron b with millisecond precision by producing a spike from the

corresponding detector neuron. This result confirms the millisecond precision of

the LIF module implementation.

The oscillator network provides a good test of network dynamics. 8 neurons

from the excitatory group were chosen as input neurons receiving a constant cur-

rent injection of 3 nA, to make them fire approximately every 10 ms. Excitatory

weights were set in order to build up the background activity of the network

slowly. Once there is sufficient activity, the whole excitatory group starts firing,

causing the inhibitory neurons to fire a few ms later (due to the dense connec-

tivity). Inhibitory weights were set to quench network activity quickly. Fig. 6.10

presents the results of the simulation. In accordance with the model, the network

oscillates between high activity and low activity.

138 CHAPTER 6. PHASE II: SIMULATION - MODELLING

Figure 6.9: Spike Propagation. (a) Raster Plot. Only the neuron detecting the
correct interpulse interval fires. (b) Membrane potential of neurons a (blue) and
b (red). (c) Membrane potential of detector neuron τ+2. The neuron only fires
when spikes from neurons a and b converge with coherent synaptic delays

Figure 6.10: Oscillatory Network Raster Plot. Input neurons (ID’s 1, 11, 22, 33,
44, 55, 66, 77) feed excitatory neurons (ID’s 0-79), slowly building up the activity
until excitatory neurons start to fire with high frequencies. Inhibitory neurons
(ID 80-99) then activate, quenching the activity of the network.

6.5. SUMMARY 139

6.5 Summary

Testing using software simulations has established the basic functionality of the

3 different neural models. It provides a fairly accurate prediction of what the

hardware can and cannot do. Just as importantly, however, it makes clear what

software simulation itself can and cannot do. The software model considers the

simulation environment as an integral part of the entire system; a central re-

search theme has been to place it in proper context so that potential users know

what they can reasonably expect to achieve with simulation. The main findings

establish the rôle of simulation:

Verification of Chip-Model Fidelity

By comparing directly against high-level simulations in MatLab (for the

Izhikevich model) Lens (for the MLP model) and Brian (for the LIF model)

it has been possible to show correspondence between the on-chip models

and their abstract mathematical representations, at least within the 16-bit

fixed-point representational precision adopted in SpiNNaker.

Estimation of Hardware Performance

It is possible using SoC Designer and SystemC to run simulations of small-

scale networks: these can reveal potential performance issues although they

cannot answer questions of scalability and network traffic conclusively. The

MLP model tests are a particularly good example of this use.

Analysis of the Effects of Parameter Variation

Software improves data visibility: a critical concern for studies of the effect

of different parameter settings such as the connectivity examination. In-

terestingly, reducing connectivity to the minimum levels that support the

necessary functionality not only improves network traffic performance but

appears to improve learning times, at least with MLP networks - this result

helps to justify the connection-limited architecture of SpiNNaker.

Evaluation of the Limits of Simulation

Where simulations need long run-time in order to verify accuracy com-

pletely, software is an inefficient approach: real-time simulations of minutes

or hundreds of epochs may take days to complete under a SystemC model.

Overall, then, software simulation is very useful for pre-implementation ver-

ification, using simplified networks that capture the essential aspects of a

140 CHAPTER 6. PHASE II: SIMULATION - MODELLING

candidate model, but is impractical for simulation even of small parts of

full-scale working networks that do anything beyond synthetic “toy” appli-

cations.

Validation of On-Chip Model Implementations

Overall, the conclusion is that the ideal rôle of software simulation is con-

ceptual model testing: finding out whether a given neural model will work

at all (which is the approach that has been adopted here), as opposed to

model execution: running “live” simulations. It remains to test models on

physical SpiNNaker hardware in order to examine performance and dynam-

ics in real-world applications.

Chapter 7

Phase III: Execution - Hardware

Testing

141

142 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

7.1 Plan

Hardware testing has the obvious goal of verifying the physical operation of the

hardware, and in the case of a general model library performs the equally critical

task of evaluating model flexibility and scalability. This means, in essence, how

quickly can the system switch between different neural models, of what size? The

ideal is heterogeneous operation: the ability to run different models, of significant

size, on different processors within the same system. Speed is also an important

consideration; this takes the form of real-time fidelity in the case of dynamic spik-

ing networks, while in the MLP and other similar networks the task is simply to

establish how many updates the system can sustain per second. Finally, because

hardware testing can run large-scale models for long enough periods of time to

demonstrate behavioural dynamics, it is appropriate to compare the hardware

results against abstract software models. These tests will reveal both the be-

havioural correspondence and any quantitative differences, so that it is possible

to explain (and possibly adjust for) hardware output with reference to an “ideal”

abstract model.

This chapter runs the basic models introduced earlier on the SpiNNaker hard-

ware platform. It will demonstrate the ability of the configuration system to

specify and run the different models with hardware acceleration, for networks of

reasonable size (500 neurons in the case of spiking networks). All implementations

start with a high-level PyNN description and follow the library-based automation

process to instantiate the models on-chip. The most important evaluation pri-

ority is size and heterogeneous model switchability, and the tests will emphasize

this. Where possible they also attempt to compare model output directly against

reference simulators. All tests ran on the SpiNNaker test platform, and are thus

somewhat preliminary, but even on this reduced system the speed at given size

exhibits substantial improvement over software models, while perhaps even more

significantly, the system could be reconfigured in seconds, making the SpiNNaker

platform equivalent to a software system with hardware-scale acceleration and

scalability.

7.2. THE IZHIKEVICH MODEL IN HARDWARE 143

7.2 The Izhikevich Model in Hardware

7.2.1 Comparison with Brian

To test the Izhikevich neuron model the system ran a 3 Layer feedforward network

containing 21 Izhikevich neurons, implementing the Evaluator’s association layer

(section 5.2.3). Layer 1 has one (input) neuron which receives constant DC

current injection consistent with a 20mV membrane potential, making it fire

at approximately 40Hz. Layer 2 and Layer 3 consist of two populations of 10

Neurons each. Layer 1 connects to all neurons in Layer 2 with random delays.

Layer 2 connects to Layer 3 with one-to-one connections having random weights.

A Brian script (Andre van Schaik, personal correspondence, script included)

tested single neuron dynamics. SpiNNaker results qualitatively preserve the Brian

dynamics, confirming the validity of the fixed point implementation of the model

on the SpiNNaker in the presence of a high firing frequency. Results are as follows

(figs. 7.1(a), 7.1(b)):

Examining the membrane potential for a neuron in Layer 2 and two neurons

in Layer 3 makes it possible to verify correct output propagation and setup of

the random weights and delays. Spikes arriving from the input neuron in Layer

1 to a neuron in Layer 2 cause it to fire after receiving approximately 4 spikes

(fig. 7.2(a)). Spikes arrive at two different neurons in Layer 3 with different times

and strengths, according to the parameters for each (single) synaptic connection

(fig. 7.2(b)).

7.2.2 Real time simulation of a 500 neuron network

To simulate a larger network, the system ran the network containing 500 Izhike-

vich neurons from section 5.2.3. While testing the ability of the SpiNNaker system

to run a large simulation in real time, it also verifies its capability simultaneously

to store and report the necessary data to generate a raster plot at the end of the

simulation. The network aims to scale down and reproduce the results of the first

part of the simulation in [IH09], exhibiting delta-frequency oscillations of ∼2-4

Hz. The model ran for 1 second real time, producing the following raster plot at

the end of the simulation (fig. 7.3).

144 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

’’’

Izhikevich Neuron Model

Simple Model of Spiking Neurons

Eugene M. Izhikevich

IEEE Transactions on Neural Networks, 2003

’’’

from brian import *

defaultclock.dt = 0.01*ms

parameters

a = 0.02/ms

b = 0.2/ms

c = -55*mV

d = 2*mV/ms

C = 1*nF

stim = 5*nA

N = 1

eqs = Equations(’’’

dv/dt = (0.04/ms/mV)*v**2+(5/ms)*v+140*mV/ms-u+I/C : volt

du/dt = a*(b*v-u) : volt/second

I : amp

’’’)

reset = ’’’

v = c

u += d

’’’

threshold = 30*mV

G = NeuronGroup(N,eqs,threshold=threshold,reset=reset)

G.v = -70*mV

G.u = b*G.v

v = StateMonitor(G,’v’,record=0)

u = StateMonitor(G,’u’,record=0)

G.I = 0*nA

run(20*ms)

G.I = stim

run(400*ms)

G.I = 0*nA

run(20*ms)

figure(1)

title(’traces’)

plot(v.times/ms,v[0]/mV,’b’,u.times/ms,u[0]*ms/mV,’r’)

xlabel(’time [ms]’)

ylabel(’v [mV], u [mV/ms]’)

legend((’v’,’u’),loc=’upper right’)

figure(2)

title(’phase diagram’)

plot(v[0]/mV,u[0]*ms/mV,’b’)

V = linspace(-80,40,num=120)

plot(V,0.04*V**2+5*V+140+stim/nA,’r’)

plot(V,0.04*V**2+5*V+140,’k’)

plot(V,b*ms*V,’c’)

axvline(30,0,1,color=’g’)

xlabel(’v [mV]’)

ylabel(’u [mV/ms]’)

legend((’trajectory’,’max stim nc’,’no stim nc’,’u nc’,

’threshold’),loc=’upper right’)

axis([-80,40,-20,0])

show()

(a) SpiNNaker output

(b) Brian simulator output

Figure 7.1: Izhikevich network: Brian script and associated membrane
potential output for an input neuron

7.2. THE IZHIKEVICH MODEL IN HARDWARE 145

(a) A neuron in Layer 2 (b) Two neurons in Layer 3

Figure 7.2: Izhikevich model: Membrane potentials with connections having ran-
dom delays and weights.

Figure 7.3: Raster plot for the 500 neuron Izhikevich model simulation

146 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

7.3 The LIF Model in Hardware

7.3.1 Single neuron testing

To validate the SpiNNaker LIF implementation at a low level in hardware, an

initial test simulated a single neuron in three environments: the SpiNNaker chip,

a Brian script, and a NEST [PEM+07] simulation. Stimulating it with the same

current shows a close match between the neuron dynamics for SpiNNaker, Brian,

and NEST. (fig. 7.4). This test was able to run immediately after the Izhike-

vich single-neuron test, using a single script-driven configuration command to

reconfigure the chip and load the new model within 6 seconds.

Figure 7.4: SpiNNaker output membrane potential for an LIF neuron in the input
population

7.3.2 Network tests

To test network dynamics at a larger scale, a larger network simulated 500

LIF neurons. 400 neurons were excitatory, 100 inhibitory, and the neurons all

had the following parameters: Vi = −60mV, Vr = −49mV, Vs = −60mV, Vt =

−50mV, τ = 32ms. The population had random connectivity with 2% proba-

bility of connection. A subset of 40 neurons received a current input injection;

this current increased in 2 step-jumps at 400 and 800 ms. Figure 7.5(a) shows

a raster plot of selected neurons in the population (for clarity), comparing the

results from SpiNNaker versus corresponding results from NEST. Qualitatively,

7.3. THE LIF MODEL IN HARDWARE 147

the neurons show pulsed waves of activity of similar frequency and phase. Re-

sults from NEST show somewhat more coherent behaviour; this is an expected

result of the differences in synaptic dynamics. SpiNNaker synapses use “all-or-

nothing” activation with instantaneous current injection, in contrast to NEST

which uses current-based synapses with a linear first-order kinetic, i.e. an expo-

nential decay of activation. The effect of SpiNNaker’s instantaneous kinetic is

to advance the spike timing on a per-neuron basis, since the synapse injects its

entire current immediately, thus increasing the membrane potential maximally at

the time of injection. Effectively the current-based synapse performs a form of

small-time-constant low-pass filtering, smoothing out local variations in neuron

output timing.

An examination of the population-based effects reveals the quantitative be-

haviour more clearly. Figure 7.5(b) shows a comparison of the mean firing rate of

the population for both the SpiNNaker and NEST simulations. The graph clearly

reveals the presence of synchronous waves through the oscillations in mean fir-

ing rate. Despite observed qualitative differences, quantitative match in mean

firing rates between the two models remains good, peaks and troughs matching

in frequency and phase except for one deviation between 500 and 600 ms where

the SpiNNaker system lags in phase. The apparent interpretation is that a more

coherent spike input in the NEST system leads to an earlier group peak, since

neurons receive spike inputs in a more tightly confined time window.

(a) Raster plot of selected neurons (b) Mean firing rate

Figure 7.5: 500-neuron LIF population: Comparison of SpiNNaker versus NEST

As a final, behavioural verification of the model, students from the SpiNNaker

group implemented a network to control a robot in a line-following task, using

spiking input from an AER-based silicon retina. The network contained 532 LIF

148 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

neurons in 3 groups. This network was successfully able to control the robot,

enabling it to follow a line reliably over a distance of ∼1 m. In addition to

verifying the on-chip model implementation in a reasonable real-world task, these

tests also demonstrate the larger system benefit of the event-driven model using

an AER interface: it was possible to integrate different devices, from different

research groups, to create a functional system based purely on the neural model

of computation.

7.4 Heterogeneous On-Chip Modelling

7.4.1 Mixed LIF/Izhikevich model networks

Two additional models verified the core abstractional ability of the library: the

ability to generate and run models containing heterogeneous mixes of neural

types. The first simulated network used two populations, containing respectively

LIF neurons and Izhikevich neurons. The network contains two layers of 15

neurons each. The first layer serves as an input layer using Izhikevich Intrinsic

Bursting neurons. The second layer is an LIF layer, configured so that neurons

will emit spikes only if stimulated over a certain frequency. A modulated stimulus

injected a current of 20 into each input neuron. Each Izhikevich neuron emits

a burst of 3 spikes, then spikes regularly (fig. 7.6(a)). In turn each LIF neuron

thus spikes only when it receives the initial burst from the lower level population

(fig. 7.6(b)).

The second network implemented the output-reinforcement layer for the Eval-

uator, configuring 3 layers of 15 LIF, Izhikevich and LIF neurons respectively.

The Izhikevich neurons are Chattering types that generate a burst “clock” to

gate input from the Layer 1 LIF neurons, so that the Layer 3 LIF neurons will

only fire when an input from Layer 1 is coincident with the burst window (fig.

7.7). Burst-type neurons are a useful and biologically plausible way of supplying

reinforcement: by creating an input “window” in downstream neurons that gates

other input sources. This network demonstrates the important ability to generate

control signal-like inputs to integrating layers.

7.4. HETEROGENEOUS ON-CHIP MODELLING 149

(a) Membrane dynamics (b) Raster plot

Figure 7.6: Membrane and network dynamics of the first test network. Param-
eters were: for the LIF neurons τm = 32ms, Vr = −65mV, Vs = −75mV, Vt =
−55mV ; for the Izhikevich neurons, a = 0.02, b = 0.2, c = −65mV, d = 6.

Figure 7.7: Second test network dynamics. Parameters were: for the LIF input
neurons τm = 16ms, Vr = −49mV, Vs = −70mV, Vt = −50mV ; for the Izhikevich
neurons, a = 0.01, b = 0.2, c = −50mV, d = 5; for the LIF output neurons
τm = 16ms, Vr = −65mV, Vs = −75mV, Vt = −55mV .

150 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

7.4.2 Hardware scalability

From the models that have successfully run it is clear that SpiNNaker can support

multiple, very different neural networks; how general this capability is remains an

important question, particularly concerning the scalability of the low-level neural

library primitives. The LIF model’s core computation time of 10 instructions

without spiking, 21 with, is probably the minimum possible for any model with

broad acceptance within the spiking neural model community. Implementing

LIF and Izhikevich models along with two different synaptic models (STDP and

NMDA) has made it possible to examine efficiency limits within the SpiNNaker

hardware. The investigation considers a synthetic network containing an identical

number of neurons per processor. Neurons randomly connect to other neurons in

the same population with random initial weights and delays. The total number of

connections is set so that each neuron receives the same number of inputs. Where

the number of inputs from other (internal) neurons is less than the specified

number, the neurons receive additional (external) inputs sufficient to make up

the balance of inputs. A randomly-selected 1% of neurons and external inputs

receive a synthetic stimulus: a regular, fixed-frequency spike train. Each network

is configured with a single fixed neural and synaptic type, uniform throughout the

population. The investigation examines 5 combinations of neural/synaptic type, 3

levels of connectivity, and 3 input frequencies. Respectively, these were LIF/fixed

synapse, LIF/STDP, LIF/NMDA, Izhikevich/fixed, and Izhikevich/STDP; 100,

1000, and 10,000 inputs/neuron; and 1, 10, and 100Hz. By varying the total

number of neurons it is possible to examine the maximum number of neurons a

single SpiNNaker processor could model (fig. 7.8).

This examination considers the model to “fail” if one of the following condi-

tions apply: the amount of available memory is insufficient to support the number

of neurons/synapses; processing of neural state is still incomplete by 0.2 ms before

the next (1 ms) Timer interval; the processor halts (because of packets arriving

faster than the interrupt routine can service them). For most models, memory ca-

pacity rather than processing overhead is the limiting factor: most configurations

easily supported rates in excess of 2000 neurons/processor·ms; considerably over

the memory limit of 1724 AMPA/GABA-A-only neurons per processor, or 910

neurons per processor with NMDA synapses. Of the various factors the mean

spiking rate of the active population has the greatest impact on performance.

7.5. SUMMARY 151

Figure 7.8: Number of Neurons Per SpiNNaker Processor

This was particularly noticeable for NMDA synapses where high firing rates in-

crease the number of iterations necessary to precompute future NMDA activation;

a multiplicative effect. High rates also increase the mean activation, making it

more probable that the NMDA gate will turn on, increasing the downstream firing

rate. The result is a processing cascade - and at the maximum input rate of 100 Hz

the number of neurons a processor can model drops drastically. Careful analysis

of the flow of execution on the SystemC model determined that the failure mode

was the speed of the ISR: packets were arriving faster than the time to complete

the Fast Interrupt (FIQ) ISR. In the hardware simulations, a similar analysis

showed that network breakdown in the spiking models was happening due to re-

ceive buffer overflow. Some of this may be attributable to known inefficiencies in

the packet queue implementation that is an important part of the deferred-event

model. It is very clear, therefore, that careful pre-implementation modelling of

the population dynamics is essential, and complex, biologically realistic synaptic

models in particular need aggressive optimisation. A neural component library

containing precompiled, pre-optimised models becomes particularly valuable in

this context.

7.5 Summary

Successful implementation of the networks on-chip demonstrates the functional-

ity of the design-automation tools: the ability, starting from a high-level model

written in PyNN, to use scripted automation based on library components to

152 CHAPTER 7. PHASE III: EXECUTION - HARDWARE TESTING

transform the description into a SpiNNaker instantiation. Furthermore, these

tools permit direct comparison against the reference high-level models written in

the Brian and NEST software simulators. This “closes the loop” in the network

modelling cycle, fulfilling the primary objective of the event-driven library ar-

chitecture: an integrated network modelling and simulation system for dedicated

neural hardware. The main results are:

Scalability

Using the SpiNNaker test chip in a four-chip configuration, it has been

possible to test networks of reasonable size: up to a 4500-neuron system.

These models ran in real-time, and in the case of the robot, in a real-world

environment. However, there are scalability concerns with complex models

containing synaptic dynamics; when spike rates are high the resultant traffic

can overwhelm the receiving processors’ ability to keep up.

Heterogeneous Model Support

The Izhikevich and LIF models ran successively on the same system, within

the same testing session. Switching the model took less than 30 s, using

the automated tool chain. It was also possible to configure the system to

run both models concurrently, within the same system, from within the

automated, library-driven development system.

Fidelity

Single-neuron model fidelity versus reference models is nearly a match fit

and the large-scale dynamics have similar properties. Where large-scale dy-

namics differ in detail, e.g. in the 500-neuron LIF model, results are consis-

tent with predictions based on the differences between the reference model

and the on-chip model. The ability to use the models within a behaving

environment: a robot in a line-following task, indicates that quantitative

differences are probably not significant for behaviour, at least not at the

gross level.

Chapter 8

Implications: Spatiotemporal

Abstraction, Complexity

Limitations

153

154 CHAPTER 8. IMPLICATIONS

8.1 Agenda

A large-scale system such as SpiNNaker raises almost as many questions as it

can answer; this begs the question as to what its purpose really is. This chapter

attempts to provide some answers. Undoubtedly the primary purpose is abstrac-

tion of the neural model of computation. This has been a recurring theme

throughout this work. The first section discusses what new abstraction capa-

bilities SpiNNaker provides, with reference to concrete examples that show how

implementing different models on a physical device rather than a software for-

malism reveals new insights. In large part this is because the SpiNNaker platform

moves away from the synchronous, sequential model that underlies conventional

simulation and introduces processing assumptions that may be inappropriate for

neural computing. Parallel, event-driven processing overturns any assumptions

about control-flow order, data determinacy, or global coherence: these are the

questions for neural modelling that systems like SpiNNaker are ideal for explor-

ing.

Another obvious purpose is simply model scaling. A large, hardware platform

such as SpiNNaker makes possible much larger neural models than software has

been able to simulate, but the question still remains about how big the models can

go. The second section explores this question. Thus far simulations in software

and hardware have been able to indicate where the challenges lie, but clearly

many of the questions will remain unanswered until the full-scale system begins

to simulate very large networks. Managing the communications traffic emerges

as the major challenge. Some of this may be possible with clever algorithmic

and mapping techniques, but undoubtedly much of it will rely on intelligent

choices in model abstraction. Such strategies move from an optimisation to a

necessity when the scale approaches that of the brain: the third section looks at

that scaling roadmap. One of the other recurring themes of this work has been

tool automation: for scaling to be successful when neural networks reach billions

of neurons, however, it will need an entirely different order of tool automation.

Fully statistical methods that can take advantage of the SpiNNaker hardware

not only to run the simulation but indeed to generate the model will be a central

component of these tools. A similar transformation of user data visualisation

and analysis is likewise inevitable. Although such tools and models lie beyond

the scope of this work, they represent the fruition of its aim: computational

cognitive neuroscience: the ability to deduce the function and structure of the

8.2. ABSTRACT-SPACE, ABSTRACT-TIME MODELS 155

brain, from abstract computational models that reproduce its behaviour.

8.2 Abstract-Space, Abstract-Time Models

The central theme of the SpiNNaker system is process abstraction: the ability to

decouple the neural model under simulation from the implementation details of

the hardware. The tests, of 3 different models with different tasks, on the same

platform and using the same development environment illustrate how to construct

a standardisable platform that makes it possible, at least in principle, to model

any neural network in hardware. This universal capability is beneficial, indeed

essential, for experimenting with different models at large scale, but it points to a

more important development: abstract neural computation. If one of the primary

goals in neural modelling is to understand the model of computation, it must be

possible to develop abstractions of neural function or the entire process is reduced

to phenomenological observation. Thus to verify any model of neural computation

it is necessary to implement it in a reproducible form that does not depend on

low-level details. The central research problem of neural networks is to develop a

universal abstract model of computation that retains the essential characteristics

of neural networks while eliminating unnecessary individual features.

In this regard, the most important architectural principle of the software

model, characteristic of native parallel computation, is modularisation of de-

pendencies. This includes not only data dependencies (arguably, the usual

interpretation of the term), but also temporal and abstractional ones. The model

does not place restrictions on execution order between modules, or on functional

support between different levels of software and hardware abstraction. Architec-

turally, the 3 levels of software abstraction distribute the design considerations

between different classes of service and allow a service in one level to ignore the

requirements of another, so that, for example, a Model level neuron can have a

behavioural description that does not need to consider how or even if a System

level service implements it. From a process-flow standpoint, it means that ser-

vices operate independently and ignore what may be happening in other services,

which from their point of view happen “in another universe” and only commu-

nicate via events “dropping from the sky”, so to speak. Such a model accurately

reflects the true nature of parallel computing and stands in contrast to conven-

tional parallel systems that require coherence checking or coordination between

156 CHAPTER 8. IMPLICATIONS

processes.

Up to now it has only been possible to do this type of abstract neural modelling

in software: hardware has been process-specific and structured at a low level. In

essence, neural hardware systems have presumed to understand, or assumed,

what the neural model of computation is a priori. Software, however, has had

the problem that as the network size scales, either the level of abstraction must

increase, eventually to the point where it starts to lose essential features of the

neural model of computation; or the simulation must slow down, eventually to the

point where it is simply too slow to run in practical time. With the SpiNNaker

development system it is possible to create and test large-scale, abstract neural

models as candidates for the “formal” universal model of neural computation,

without sacrificing behavioural detail where necessary. This system gives the

modeller the tool to access and observe the actual principles of neural computing.

How general this capability is, however, remains an important question.

8.2.1 Abstract Representation

Implementing a function pipeline provides a standard “template” for library com-

ponents. The model emerges from a consideration of what hardware can usually

implement efficiently in combination with observations about the nature of neu-

ral models. Broadly, most neural models, at the level of the atomic processing

operation, fall into 2 major classes, “sum-and-threshold” types, that accumulate

contributions from parallel inputs and pass the result through a nonlinearity, and

“dynamic” types, that use differential state equations to update internal vari-

ables. The former have the general form Sj = T (ΣiwijSi) where Sj is the output

of the individual process, T is some nonlinear function, i are the input indices, wij

the scaling factors (usually, synaptic weights) for each input, and Si the inputs.

The latter are systems with the general form dX
dt

= E(X) + F (Y) + G(P) where

E, F, and G are arbitrary functions, X is a given process variable, Y the other

variables, and P various (constant) parameters. At an abstract level, the pipeline

breaks these equations into a series of independent, atomic operations that can

be driven by input events.

At a concrete level, the pipeline considers what functions SpiNNaker can im-

plement efficiently. SpiNNaker’s processors can easily compute polynomial func-

tions but it is usually easier to implement other types, e.g. exponentials, as a

look-up table with polynomial interpolation. Such a pipeline would already be

8.2. ABSTRACT-SPACE, ABSTRACT-TIME MODELS 157

sufficient for sum-and-threshold networks, which self-evidently are a (possibly

non-polynomial) function upon a polynomial. It also adequately covers the right-

hand-side of differential equations. For very simple cases it may be possible to

solve such equations analytically, but for the general case, Euler-method evalua-

tion appears to be adequate. Creating a new component for the library is simply

a matter of plugging in appropriate models for the pipeline stages, allowing for

extensive software reuse because most of the support libraries, low-level utilities,

and “housekeeping” code can be general across all models. Only the dynamics

need change. The library therefore takes the form of a general infrastructure with

model-specific core routines.

In principle, then, SpiNNaker can implement virtually any network. In prac-

tice, as the packet experiments show, traffic density sets upper limits on model size

and speed. Furthermore, processing complexity has a large impact on achievable

performance: more complex event processing slows the event rate at which SpiN-

Naker can respond. At some point it will drop below real-time update. Careful

management of memory variables is also an important consideration. The mod-

els involve multiple associative memories and lookup tables. If speed is critical,

these must reside in DTCM or ITCM, placing a very high premium on efficient

table implementations. If it is possible to compute actual values from a smaller

fixed memory block, this will often be a better implementation than a LUT per

neuron.

Data representation and encoding is the other challenge. Given that efficient

internal representations on SpiNNaker are nonintuitive and prone to be confus-

ing, it is essential to the user that the tools hide all the scaling behind automatic

translation routines that scale variables from and to units the user expects. For

example, in the NMDA model, the transformation Mg2+ → 16lnMg2+

3.57
is far from

obvious, but improves performance dramatically since it can be precomputed. It

is natural to do this precomputation in the instantiation scripts, not only hiding

it from the user but also reducing the risk of errors in manual parameter trans-

lation. From a developer point of view, however, tracking the changes in scaling

presents one of the most significant design decisions. For example, in the MLP

model, what is the appropriate scaling for the weight units? The implementation

developed a rule that permits the developer to make reasonable scaling choices,

however, with 16-bit precision as compared to the 64-bit floating-point precision

typical of software-only MLP networks, there may still be a considerable amount

158 CHAPTER 8. IMPLICATIONS

of model-dependent verification to perform. To a large extent, confirming that

signals do not overflow frequently can only be done experimentally. It is possible

to envision a “characterisation” stage where the developer compares SpiNNaker

results against a variety of models with different parameters. The hierarchy of

simulators with different levels of abstraction becomes a significant advantage in

this scenario.

8.2.2 Abstract Space

Spatial abstraction is one of the most obvious characteristics of neural modelling;

indeed, in some areas the term “connectionist computing” is synonymous with

neural networks. Nonetheless, they do not behave as “hard-wired” circuits, for

the most part, and there is no evidence that different brains have the same precise

circuit components down to the level of individual connections. There is, however,

considerable evidence that the brain has characteristic patterns of connectivity:

cortical columns, hippocampal place cells, visual receptive fields. Presumably

this structured connectivity is achieving something useful. SpiNNaker’s virtual

topology provides a useful concrete context in which to explore the actual topolo-

gies of neural networks. Its topological flexibility is large but not arbitrary, and it

is instructive to consider how its limitations can offer insights into the biological

problem of connectivity patterns.

The NoC’s finite communications bandwidth lends strong motivation to exam-

ining the effects of partial connectivity upon network performance. Experimental

results with the MLP model show that partial connectivity can achieve faster

training times, even in neural networks of relatively small size. There are sev-

eral possible contributors to this effect. One possibility is symmetry breaking.

A large network with full connectivity is initially class-undifferentiated and must

spend a certain time during early learning to develop weights that bias individual

neurons towards identification of a particular class or feature. The usual solution

to this problem is to randomise the weight values. However, particularly with

large networks, randomised weights at best give a weak asymmetry since a neu-

ron receives inputs from many synapses. Experimental results confirm that the

symmetry breaking effect is relatively weak in networks of the size examined. If

the effect were strong, one would expect reduced connectivity in any interlayer

connection to produce improved error performance, when in fact the improvement

is most dramatic and obvious in the hidden-output connections. Such a result is

8.2. ABSTRACT-SPACE, ABSTRACT-TIME MODELS 159

Figure 8.1: Error from the digits recognition task during early training. The
oscillatory nature of the response in this fully-connected network is clear.

Figure 8.2: Settling time during early training. X-axis is the weight update
number, in 10’s (thus the tick mark “20” is the 200th update) Y-axis is the
global network error. The light-green trace is the fully connected network. The
black trace is the best of the sparsely connected networks

more consistent with the second possibility: minimisation of error propagation.

The theoretical model for connectivity performance predicts that reduction

in the backpropagation of errors in delta-rule learning will reduce training time

and produce lower error per example. In a fully-connected network, if certain

neurons in the output have large errors they can propagate throughout the net-

work, resulting in large weight corrections in potentially irrelevant connections.

Particularly early in training, the large error will tend to dominate the sum in

neurons in the previous layer, propagating back through the network as a wave

of large weight changes. Thus in a highly connected network, the overall error

initially will fluctuate before the weights settle enough that inputs from irrel-

evant neurons have very small values. It is easy to observe this effect even in

small networks like the digits-recognition network (fig. 8.1). Training with the

160 CHAPTER 8. IMPLICATIONS

Figure 8.3: Error propagation in fully- versus partially-connected networks. In
the full case, the error propagates throughout the network from even a single
output with inaccurate value. Errors are propagated under partial connectivity,
but remain confined to specific paths where there exist connections, leaving large
sections of the network unaffected.

larger phonetic-recognition network also demonstrated this characteristic. High-

connectivity networks would tend to spend several epochs with oscillating or at

best marginally decreasing error before starting to learn (fig. 8.2). By contrast

a network with partial connectivity confines any weight adjustments to the neu-

rons in the path, and since there are fewer, each one has a greater probability

of contributing meaningfully to the total error. The effect is two-fold: first, it

helps to suppress overadjustment of weights not involved in the error - “innocent

bystanders” - as it were, and second it more rapidly adjusts the erroneous inputs

towards a correct value, so that training is more effective in the early epochs

(fig. 8.2). Both in the forward and backward passes it is reasonable to infer that

the effect of partial connectivity is to localise signal propagation into class-specific

groupings (fig. 8.3).

The optimal connectivity tends to be lower with smaller network size, and

beyond a critical point the performance of networks with very sparse connectiv-

ity drops dramatically. These results have a simple interpretation: at some point

the number of connections and/or neurons is too small to represent the data

accurately. As the model removes more connections, the network must elimi-

nate classes or features. If, rather, the number of connections is fixed, and the

8.2. ABSTRACT-SPACE, ABSTRACT-TIME MODELS 161

number of neurons (hence the mean connectivity per neuron) varies, it might be

equally possible to represent the same data to the same degree of accuracy with

2 networks having a different number of neurons but identical number of connec-

tions. Comparison of best-case performance for the 50-hidden and 200-hidden

neuron large phonetic recognition networks supports this hypothesis. However,

the smaller network will have a significant disadvantage: diminished fault tol-

erance and ability to represent new classes. In the limit, the smallest possible

network will use every neuron and every synapse completely to represent the

training data, thus if a single neuron or synapse fails there is some data loss. By

contrast, if the number of neurons in hidden layers is large, the loss of one does

not necessarily imply permanent and total loss of a represented class or feature.

One benefit of large networks therefore lies in robustness under component failure

and ability to adapt to new, heretofore unknown inputs. It is clear from the data

that the larger network performs better under a wide variety of parameter com-

binations and hence is the preferred choice in a system such as SpiNNaker where

processing is cheap and connections expensive. When examining connectivity,

it is therefore preferable to treat the problem as connection-constrained rather

than neuron-constrained. This result might not have been thought of, much less

discovered, without the need to translate a network description onto a specific

hardware platform.

8.2.3 Abstract Time

The ability to create high-level spatial representations of neural networks is pow-

erful but already existed (in small-scale form) with FPGA neural networks; not

so obvious or inevitable is the ability to abstract time. It is only recently, indeed,

that research has begun seriously to attack the question of the relevance of the

time domain to neural networks and it is now clear that it is not reasonable to

take the model of time as a given. The event-driven model of the SpiNNaker

library represents a break from clock-driven synchronous neural networks mod-

els. In synchronous systems, the fixed clock sets an absolute model of time that

lies at such a low level of the model that it is effectively invisible to and often

overlooked by the modeller. Therefore, it is at least possible that a simulation us-

ing a conventional synchronous sequential computer may never be able to model

biological neural networks with full realism. Pairing the event-driven software

model with SpiNNaker’s asynchronous hardware creates a platform for temporal

162 CHAPTER 8. IMPLICATIONS

as well as spatial abstraction.

An important observation of the tests is that in a system with asynchronous

components, the behaviour is nondeterministic. Thus in spiking simulations,

while most of the spikes occurred without nominal timing error, some had suffi-

cient error to occur at the next update interval(fig. 6.2(b)). The effect of this is

to create a ±1 ms timing jitter during simulation. Biological neural networks also

exhibit some jitter, and there is evidence to suggest that this random phase error

may be computationally significant [TS01]. It is not clear whether asynchronous

communications replicates the phase noise statistics of biological networks, but

its inherent property of adding some phase noise may make it a more useful plat-

form for exploration of these effects than purely deterministic systems to which it

is necessary to add an artificial noise source. In addition, it is possible to (stati-

cally) tune the amount of noise, to some degree, by programming the value of the

update interval (that acts as an upper bound on the phase noise). A GALS sys-

tem like SpiNNaker therefore appears potentially capable of reproducing a wider

range of neural behaviours than traditional synchronous systems, while support-

ing the programmability that has been a limiting factor in analogue neuromorphic

devices.

The deferred-event model has proven to be the most powerful event-driven

mechanism for temporal abstraction . Even with nondeterministic signal timing,

the deferred-event model permits not only real-time signal timing resolution but

also more efficient processor utilisation, since each processor can schedule its up-

dates according to the model-time rather than the hardware-time event sequence.

It is the only successful model to date that can process event-driven neural and

synaptic dynamics dependent upon contingent future events without resorting to

approximate methods. The obvious application is the one for which the model

was originally designed: achieving true real-time performance by distributing the

processing in time. Less obvious is the ability to run multiple independent time

domains concurrently. The NMDA synapse introduces 2 time scales: the short

timescale of ordinary synaptic transmission and the longer timescale of NMDA

activation. Again, there is evidence these 2 distinct timescales may have bio-

logical significance [Dur09]. Simply by setting a different delay to the deferred

event, the processor can map input and output processes to entirely different

time domains. In large systems, there might be many such domains, residing on

different processors; by communicating through events, the SpiNNaker system

8.3. SCALING TO VERY LARGE SYSTEMS 163

introduces an abstract time model that breaks large models into independent

units, an architecture for greater scalability as well as biological realism.

8.3 Scaling to Very Large Systems

SpiNNaker and most hardware neural systems under development are designed

to model very large systems, containing a substantial fraction of a full human

brain. It thus comes as no surprise that scalability has become one of the critical

topics in neural networks. Systems that worked acceptably at 1000 or even 10,000

neurons are completely irrelevant at 10,000,000 neurons. It might be feasible to

hand-design a 104 neuron network but a 107 neuron network requires reexamining

the implementation model. Previous approaches to neural network design have

tended to take the simulator or underlying hardware platform as a given. By

contrast, the SpiNNaker neuromimetic platform provides almost complete model

flexibility but does not indicate self-evidently how to implement them. This

places much greater emphasis on pre-instantiation verification, and consideration

of the hardware characteristics as an integral part of the design process. The

HDL design-simulate-synthesize-implement flow is in this situation more appro-

priate, and has been the driving factor behind its adoption and adaptation for the

SpiNNaker software model. HDL tools have proven effective at scaling designs

from 1K gates to 1M+ gates; if the same scalability is to occur with SpiNNaker

systems, it is necessary to consider both its hardware limitations and the broader

question of how to scale neural models.

8.3.1 Hardware Scaling Challenges

The investigations confirm that it is communications rather than algorithmic

details that generate most of the challenges in implementing neural networks on

hardware. Notably, unexpected constraints or side effects of communications not

only determined the final form of the MLP mapping but constituted a recurring

theme during design and debugging. An illustrative example of this involves an

interaction between the mapping and the communications.

SpiNNaker’s asynchronous design provides no traffic management in the com-

munications fabric. This can lead to local congestion, with potentially severe

impact on performance and in extreme cases, on functionality: if packets arrive

164 CHAPTER 8. IMPLICATIONS

at a given processor faster than it can service them then it will start to miss pack-

ets altogether. Processors issue packets as soon as they are ready: thus if several

packets become ready to send simultaneously or nearly so there will be a “burst”

of local traffic. The “burstiness” of the traffic depends on the ratio of time spent

in the packet-receiving service routine and the time spent in the packet-issuing

background process. If the time spent in packet reception is large compared to

the time spent in the background task there is a strong risk of local congestion.

This is precisely the situation for the MLP model in the sum processors, since the

accumulate process takes only 3 instructions per update. To minimise the risk

of congestion the effective time in the background task needs to be “stretched”.

The easiest and most productive way to do this is to give the sum processor more

tasks to do. In particular, sum processors can also assume the Monitor processor

rôle, running the sum as an event-driven service and the monitor as the back-

ground task. In the test chip in particular, containing 2 processors per die, it is

a critical technique that makes it possible to implement weight and sum units on

the same chip while retaining Monitor functionality.

Both the MLP model and spiking models break down catastrophically if the

packet traffic overwhelms the processors’ ability to keep up. In the spiking model,

this occurs when the neurons become excessively bursty. In the MLP model, this

occurs when any one of the 3 component processes becomes disproportionately

faster (i.e. simpler) than the others. Large network sizes exacerbate the prob-

lem in both cases. This issue appears to be fundamental in a truly concurrent

processing system where individual processors operate asynchronously and inde-

pendently. Finding effective ways to manage the problem, which does not arise

in synchronous systems because of the predictable input timing relationships, is

a critical future research topic.

8.3.2 Neural Model Scaling Challenges

The problem of scaling neural models to large sizes is, fundamentally, one of levels

of abstraction: how much detail is necessary in the neural model? Biological

neuroscientists, in particular, often express deep concern over oversimplifying the

neural model in the interests of larger model size [Dur09]. While SpiNNaker

in some ways side-steps this problem in allowing multiple levels of abstraction

on the same system, it is nonetheless important to establish some kind of design

methodology for scalability. Implementation of the LIF model suggests a solution:

8.3. SCALING TO VERY LARGE SYSTEMS 165

Globally Abstract, Locally Detailed (GALD) modelling.

Any research project must of necessity make a definite choice as to the scope

of the research: what is being investigated. The LIF model, on SpiNNaker or

virtually any other programmable system, can support more complex synaptic

models than other spiking models such as the Izhikevich model or conductance-

based models, simply because it has fewer instructions to perform. This in itself

is a strong reason to make it the model of choice for large-scale studies of synaptic

dynamics, but there is another and equally powerful motivation: ease of analysis.

Unsurprisingly, the majority of investigations into new synaptic models have used

the LIF neuron so as not to introduce too many experimental variables simulta-

neously. It is ideal because it is very simple, exhaustively analysed, and does not

introduce complexities that might obscure the effects of a given synaptic model.

The GALD procedure, then, is straightforward: choose an overall abstrac-

tion that is, or can be, analysed and characterised completely. This abstraction

should be the simplest model that reproduces the desired effects for the focus

of study, and it should be sufficiently debugged so as not to introduce unknown

errors. Then, for the particular component or behaviour of interest, generate an

appropriate, detailed model, which may be more experimental, unproven, or pro-

totypical. SpiNNaker’s ability to support multiple heterogeneous models makes

it possible to implement both on the same system, and also permits insertion of

different detailed models into the same large-scale abstraction. Using the LIF

model as a base neuron for a model containing both NMDA and AMPA/GABA

synapses demonstrates the GALD model in use.

How to manage concurrency in very large models with potentially billions of

parallel processes is challenging regardless of the hardware platform. The problem

is one of peak local resource utilisation. In a synchronous system, it is easy to

predict processing load and interprocess traffic, since all updates occur in “lock-

step”. By contrast, in an event-driven system, there is no way to make such

predictions beyond pessimistic upper-bounds calculations, and consequently it

becomes vital to distribute processing and communications load uniformly. There

are 2 basic approaches: changing the spatial processing distribution through the

mapping, or changing the temporal processing distribution through scheduling.

In some networks the model architecture contains natural hierarchies that

suggest an obvious mapping. In the attention-control network it is straightfor-

ward to map each neural “box” to a processor, and equally straightforward to

166 CHAPTER 8. IMPLICATIONS

scale it by increasing the size of a box to a chip, or to several adjacent chips.

However, in the MLP model the “obvious” mapping of each unit to a specific

processor, grouped by layer, performs poorly because it effectively doubles the

communications traffic. There is therefore a two-stage mapping process: deter-

mine efficient mapping primitives, then scale these hierarchically. The central

rôle of the neural library is clear: it contains the mapping primitives, which can

be carefully hand-optimised and passed into automatic network “synthesis” tools

that generate the hierarchical structures.

The deferred-event model is the principal vehicle for temporal processing

distribution. By rescheduling processes to their required completion time, the

deferred-event model can spread out the processing of a series of events oc-

curring simultaneously; it does not have to handle them immediately and thus

can reduce transient processor congestion. With its complex dynamic model,

the NMDA synapse employs deferred-event processing aggressively. As the data

shows (fig. 7.8), however, the deferred-event model has limitations that can be-

come a factor in very large systems. The model relies on large differences of scale

between electronic time and model time, because there is a fixed overhead associ-

ated with deferring the update. This is problematic if the input event rate is very

high: if the frequency of events times the time to update for a single event exceeds

the mean input-to-output delay in the model, the simulation will slow down. In

large systems this becomes a greater danger because the larger number of poten-

tial inputs means the event frequency has a higher maximum. Additionally, the

deferred-event model, or indeed any model of temporal processing distribution,

increases memory requirements because of the need to store state information.

For neurons, this may not be crippling at large scales because the amount of state

will scale linearly; however, for synapses the state information can scale quadrati-

cally. It is vital, therefore, to identify methods like the STDP timestamp method,

that can store state information associatively by an entire matrix row or column.

The NMDA synapse, for example, aggregates NMDA synapses into a bin stored

per-neuron, and exploits the linear kinetic of the NMDA response to precompute

future NMDA activation, rather than store activations on a per-synapse basis.

Temporal processing distribution is a useful and proven technique, however, it

also demonstrates the general scaling issues with asynchronous event-driven neu-

ral processing that do not occur in synchronous systems, have as a result not been

considered systematically, and need continued future research to develop formal

8.4. COMPUTATIONAL COGNITIVE NEUROSCIENCE 167

theories with good predictive power.

8.4 Full-Brain Models? Computational Cogni-

tive Neuroscience

Considerable work remains to be done in the area of neural development tools,

both on SpiNNaker and more generally for neural hardware simulation. The im-

plementation to date has focussed on developing a working basic system. Future

work will aim in the first place at extending the model to larger and more com-

plex systems, and in the second on detailed investigation of optimal mappings

and translation of real neural architectures onto the physical hardware. For larger

systems statistical description models as well as formal theories for neural net-

work model design may be necessary. There remains also an open question of

verification in a GALS system such as SpiNNaker: with nondeterministic tim-

ing behaviour, exact replication of the output from simulation is both impossible

and irrelevant. It is important to develop meaningful test criteria for the finished

device, focussing on replication of timing in the neural model independent of

system-level timing.

Thus far the largest model size it has been possible to consider is a sys-

tem implementing approximately 4500 neurons, a function of memory limitations

in the simulation environment. What impact the increased model size possible

through hardware simulation on the full-scale device will have on performance,

mapping, and congestion concerns is still unknown. Particularly critical will be

performance evaluation of the NoC under fully-loaded conditions, to generate

hardware-realistic upper bounds on numbers of neurons and synapses per chip,

and number of updates per second. One important research direction is topolo-

gies, memory update methods, and network protocols for managing densely con-

nected networks such as cerebellar Purkinje cells which may require distributed

implementations spread over several processors on a chip or several chips in a

system, similar to the MLP model.

Scaling to larger networks will involve additional future work. Developing a

high-level mapping tool to automate the “synthesis” process is a priority. With

very large networks, particularly, the mapping problem is nontrivial and one solu-

tion under investigation is to load a “boot” network onto SpiNNaker to compute

the mapping, which then in turn loads the “applications” network according to

168 CHAPTER 8. IMPLICATIONS

the mapping it has determined [BLP+09]. This exploits both the known capabili-

ties of neural networks to solve complex mapping problems and the parallelism of

the SpiNNaker hardware. More immediately the automation will focus on simple

processor mappings to generate the routing tables and the data structures.

Likewise, it will be useful to automate data gathering and I/O, particularly

during the simulation. One finding of the research was that dedicating a packet

type to output run-time data, for debugging or data analysis, would be an ex-

tremely useful extension allowing greater internal visibility. The full-scale chip

incorporates this design change and I/O routines that use this functionality are

being added to the library. Work is ongoing on expanding the neural library

with additional neural models, including extensions to other non-spiking repre-

sentations. These library models will in time integrate into a PyNN-based user

development environment that allows the modeller to implement the neural model

with a high-level graphical or text description and use the automated generation

flow to instantiate it upon SpiNNaker.

More work remains on identifying efficient methods to implement the weight

updating. The deferred-event model provides a method to manage the update

problem, but as the research shows, with relatively complex models such as the

NMDA synapse, high activity in highly connected areas can severely reduce the

number of synapses that SpiNNaker can model in real-time. The synapse channel

also exists in the context of a system whose global connectivity, through the

routing table, is in principle dynamically reconfigurable at run time. How synapse

updates may be maintained consistent in such an environment remains an open

issue. Meanwhile, models exhibiting completely different update dynamics, such

as the MLP model, require methods to correlate weight update times with those

synapses whose values change in a given update epoch. How learning should be

scheduled in a large, complex system will therefore be a critical future research

focus.

Now that the SpiNNaker chip is available, testing more models on the physical

hardware is an obvious priority, particularly larger and more complex models that

are impractical to simulate purely in software. Such models could simulate major

subsystems of the brain. An important part of these models will be hierarchical

library components scalable across a wide range of model sizes. These components

would implement “neural circuits”, analogous to hardware macrocells in an HDL

environment. By reworking the library into a series of C++ template classes, the

8.4. COMPUTATIONAL COGNITIVE NEUROSCIENCE 169

template parameters can indicate the model type. This will further simplify future

model development and provide a specification for third-party model building. A

given macrocell can then use any lower-level neural model in the library, simply by

changing the template parameters. This process is also hierarchically scalable:

macrocells in turn can form template parameters for larger units, ultimately

leading to full-brain models. Clearly such components will improve automation

capabilities but even more importantly, as abstract neural blocks, they could

offer important insights into mesoscale brain structure and dynamics. Library

development is thus a form of computational cognitive neuroscience, whose aim

is to offer reasonable hypotheses about brain function by replicating behaviours

using abstract neural networks with at least some biological plausibility.

The computational cognitive neuroscience approach will develop a series of

models of ever-increasing hierarchical scale: first, neuron models and simple

“subcircuits” (this is what has been achieved to date); next, neural “circuits”,

i.e. macrocells; then neural blocks replicating complete brain subsystems; finally

full-scale brain modelling. One way to verify biological correspondence, particu-

larly as the hierarchical scale goes beyond what it is possible to compare directly

against neural recordings, would be to create a working network that successfully

replicates certain behaviours, then alter parameters or connectivity in a way that

generates pathologies similar to those observed in real clinical studies. If these

variations can be correlated against FMRI or other active brain-imaging tech-

niques, it will be possible to make a direct identification of brain regions with

function, and potentially quantify the effects of parameter variation.

This is an important first step towards the development of objective formulae

for calculating network parameters and structure. For example, in the study of

connectivity and gain values in an MLP model, the data analysis is only pre-

liminary. Clearly there is scope for further development of the gain/connectivity

model. An important future topic is the development of methods for automated

parameter extraction from raw input data: some means to normalise data char-

acteristics so that models can use them directly in parameter calculation. Little

work has been done on formal methods to compute connectivity, gain, or for that

matter any other parameter of neural networks, whose design remains partially

empirical; it seems timely that this should change. The increasing interest in

larger neural networks inevitably means that empirical methods cannot in any

case continue: what is adequate for optimising small networks of tens or hundreds

170 CHAPTER 8. IMPLICATIONS

of neurons becomes completely infeasible at the scale of tens of thousands or mil-

lions where fully automatic methods are essential. Perhaps the most enduring

aspect of the work to create a neural library architecture, therefore, will be in

providing a framework for abstraction: a process by which the principles, not just

the phenomenology of biological neural networks can be uncovered.

8.5 Summary

Event-driven parallel systems like SpiNNaker represent an attempt to break the

“monopoly” on models of computation the sequential digital model has held, by

substituting another known-working model: that of the brain. Such very different

systems demand a completely different software model; indeed, what constitutes

software or whether the term itself is relevant at all needs reassessment. Whatever

the term used, building a development system for a platform like SpiNNaker

exposes assumptions taken virtually as axiomatic in computing and replaces them

with different considerations having less to do with process determinism and more

to do with behavioural feasibility:

Predesigned model libraries provide broad scope for a universal

neural chip to function as a practical modelling tool

This is the first and most basic finding: it is possible to build libraries

that support several different neural models, and expect them to reproduce

neural behaviour. It has been possible to devise a general event-driven

abstraction (the function pipeline), suitable for almost any type of neural

network, that maps easily onto the hardware.

Event-driven computation improves process scheduling flexibility

The strongest justification for the move to event-driven computing is its

facility for temporal abstraction. At its simplest, it improves scalability

by limiting the number of active processes to the number receiving cur-

rent events. More sophisticatedly, the deferred-event model permits arbi-

trary process reordering. In the limit, some neural dynamics may only be

modellable with an event-driven model that does not require arbitrarily fine

divisions of time to be explicit.

Pre-instantiation simulation is a prerequisite for working neural

models

8.5. SUMMARY 171

The event-driven model differs sharply from the sequential model in the

need for simulation. Overall system behaviour is not predictable in the pres-

ence of asynchronous events, and meanwhile, the hardware provides only

limited internal visibility. This makes event-driven debugging hard. Event-

driven software-based simulators give the additional visibility necessary to

implement models in the confidence that they will work on the hardware.

The design-code-run-debug development cycle of traditional software thus

changes to a design-build-simulate-modify-run-debug pattern.

Neural networks present an important tradeoff between represen-

tational richness and process efficiency

Choice of representation is critical for accurate neural modelling. On the

one hand, an astute choice may significantly improve hardware process-

ing. On the other, the process of abstraction involves a a tradeoff between

representation and performance. While abstract models are necessary to

create scalable neural models on real hardware, these are not necessarily

unrealistic. Biological neural networks may, indeed, exploit the represen-

tational tradeoff, as in the connectivity-gain experiments which reveal real

processing advantages from reduced representational capability. While in

conventional processing precision tends to be a constraint, here, better pre-

cision does not necessarily mean a more accurate model: it is better to

think of it as a system parameter.

Communications, rather than computation, is the limiting factor

in neuromimetic systems

It is fairly easy, by replicating processors, to increase the computing power

in an “embarrassingly parallel” application like neural networks, but the

communications then scale with order n2 in the number of processors, a

much more difficult task. Event-driven systems can exacerbate this prob-

lem if comms traffic is “bursty”: because the asynchronous event-driven

architecture does not provide any intrinsic pacing of dataflow, events could

happen in quick succession, overwhelming local communications capacity.

Thus hardware limitations tend to become significant abruptly rather than

gracefully. Event-driven neural models thus need to treat communications

capacity as a constraint.

A library is only as good as the models it supports

172 CHAPTER 8. IMPLICATIONS

The library-based development model relies on the availability of suitable

preimplemented neural models. This is clearly a limitation from the user

point of view. But current development tools have poor support for event-

driven models, thus users, and even programmers, will probably encounter

difficulties in trying to implement neural networks on-chip by a “direct-

coding” approach. This makes the library model a logical step. Dedicated

developers familiar with the hardware can focus on implementing efficient

base models while users can concentrate on higher-level network design. Ob-

viously, this emphasizes the need for further third-party SpiNNaker library

development, just as the models thus far created form a basic “reference

set”.

Chapter 9

Conclusions: What Model for

Neural Network Development?

173

174 CHAPTER 9. CONCLUSIONS

Neural component libraries have proven to be an effective, if not indeed an in-

dispensable, tool to solve the question of instantiating efficient, functional neural

models on an application-specific neural processor. What significance does this

have for neural research?

A universal neural chip can address the central problem in neural

network research: what is the model of computation?

Chapter 1 stated this as the central thesis. The purpose of neural modelling

is, and has been, to understand the neural model of computation, whether as

it applies directly in biological behaviour, or in providing useful applications

to general-purpose computing. This universal chip, a configurable device

somewhat like an FPGA but more specifically designed to implement a

neural model, can answer this question because it can be a platform for

model abstraction. However, to be useful, it needs design tools, and here

a library of neural functions that could be used as “drop-in” components

addresses the first and most basic need: design automation.

A configurable, AER-based device relieves problems of scalabil-

ity and model support that have plagued previous generations of

neural devices.

Reviewing progress in the field, as Chapter 2 does, it appears there have

been two main barriers to widespread neural hardware adoption, scalability

and model support. Early devices had a tendency to attract only limited

adoption because of a hardwired model structure, while later generations

such as FPGA’s uncovered difficult scaling barriers, particularly in inter-

connect density and power requirements. What has been needed is some

sort of scalable standard, and here Address-Event Representation (AER)

has emerged as a standard that overcomes the interconnect problem by al-

lowing almost complete virtualisation of the topology. By combining this

interconnect with an array of general-purpose, low-power processors it is

possible to achieve a scalable, arbitrary-model neural system: the concept

behind SpiNNaker.

The “neuromimetic” architecture: generic processing blocks

embedded in a network-like interconnect, is a suitable next-

generation neural architecture

175

Chapter 3 detailed the architecture of the SpiNNaker chip, as an exam-

ple of the neuromimetic architecture. Two key architectural points make

SpiNNaker a practical tool: an array of parallel ARM968 processors, that

as functionally isolated computing nodes, achieve the massive parallelism

that is central to neural computations, and a routable asynchronous packet-

switched interconnect, that achieves the other pre-eminent feature of “real”

neural networks: reconfigurable connectivity. This chip serves as a model

for future neural systems: configurable in function, yet neurally-optimised

in structure.

A library-based system with standard interfaces and components

can provide the necessary framework for automation of event-

driven neural network development

Chapter 4 motivated the creation of a library of neural functions, using a

3-level model to provide successive levels of abstraction to the user, from

signal-level hardware visibility to behavioural neural model descriptions.

This library handles the difficult work of translating hardware event rep-

resentations into neural models, so that it is possible to define the model

entirely in the high-level environment and have automated tools transform

it into a SpiNNaker realisation. The architecture borrows its model from

the hardware description language community, using a universal function

pipeline to represent an abstraction of both the hardware components and

the neural components. This library forms a “translation layer” between

the physical hardware and the virtual model.

The event-driven model is usable both for spiking and nonspiking

networks

Chapter 5 provided a concrete demonstration of the universal power of

the event- driven libraries, by showing how to implement 3 different neu-

ral networks with entirely different structure and dynamics. Two spiking

models illustrate how it is possible to use different levels of dynamic detail

to investigate different aspects of neural computation. A third, multilayer

perceptron model, provides an example of how to implement a completely

non-spiking neural network in an event-driven environment. Successful im-

plementation of these 3 models provides strong evidence of the universal

power of the library approach.

176 CHAPTER 9. CONCLUSIONS

The ability to model heterogeneous neural networks in a neu-

romimetic chip like SpiNNaker gives scope for exploring models’

computational properties systematically

Having built the models, chapter 6 demonstrated through experiment how

to use the models to identify neural networks’ computational properties.

It also indicates how such models can characterise the performance of the

hardware and identify its limitations. Verification both at the hardware

level and the model level is a critical part of neural design, and these re-

sults show that the verification process can also be used before hardware

implementation to refine the models themselves.

Event-driven neural hardware improves scalability as well as speed

Chapter 7 investigated larger networks on the physical hardware. Ability to

implement networks of reasonable size, even on a single chip, together with

demonstration of effective multi-chip simulation, shows how the the event-

driven model, by simplifying the communications, allows larger networks.

Integration of SpiNNaker with external hardware in fully-functional real-

world scenario both illustrates the value of the AER standard and achieves

functionality that would have been challenging with conventional hardware

of similar scale.

The universal event-driven neural architecture introduces chal-

lenges in communications management but supports model ab-

straction relatively easily

Chapter 8 discussed the immediate implications of the experiments. It is

clear that implementing multiple heterogeneous models presents no par-

ticular problems per se, but that efficient packet management is essential.

SpiNNaker fails abruptly when packet traffic exceeds a critical threshold,

and this puts definite limits on activity levels, particularly with complex

dynamics like NMDA synapses. SpiNNaker’s completely virtual architec-

ture, however, suggests a solution: scalable levels of abstraction in both a

structural and temporal domain, permitting local detail where necessary

and global simplification where possible.

Universal neural chips like SpiNNaker enable a structured future

for neural modelling

9.1. NOW 177

The current chapter turns to the future: what impact SpiNNaker and its

library- based development model can have for ongoing neural research.

Short-term, it will by force of necessity allow for powerful, general methods

of model design automation and data analysis. Equally, SpiNNaker is a

useful prototype hardware architecture that could be a standard for future

chip designs, possibly incorporating more advanced functionality. More

enduringly, the hope is that with SpiNNaker libraries it will be possible to

uncover formal theories of neural computation that will permit a structured

approach to neural network research.

These observations indicate that the SpiNNaker neuromimetic system is a

new architecture for computation, which may even have applications beyond the

neural domain for which it was designed. However, it also hints at significant

changes in thinking that will be required in order to make the event-driven model

a viable alternative to mainstream synchronous processing and simulation. Com-

bined with a certain resistance from the biological modelling community, who

expect either molecular-level fidelity or formal proof of the biological validity of

the model, this means that the library system of neural components for SpiN-

Naker is still merely an entry point: a way of attracting interest in an impor-

tant alternative neural hardware architecture. Indeed, even the computational

community will likely be guarded in their adoption, until it is possible to make

compelling demonstrations of SpiNNaker’s capability to model a large-scale neu-

ral network involving heterogeneous model elements with greater speed or size

that that achievable with conventional technology. What the library architecture

introduces is a pragmatic roadmap for reaching the goal of biologically realistic

large-scale neural simulation, regardless of hardware platform, as opposed to the

ad-hoc, implementation-coupled method that currently prevails in the neuromor-

phic community. What does this roadmap look like?

9.1 Now: Library-Driven Neural Hardware In-

stantiation

Libraries of hardware routines are essential to providing a usable platform for tem-

poral abstraction. Much of the driving motivation behind creating a library-based

system for SpiNNaker has been that existing tools provide very poor support, if

178 CHAPTER 9. CONCLUSIONS

any at all, for asynchronous event-driven processes. The most vexing difficulties

in creating libraries themselves, indeed, have been consistently those of trying

to get industry-standard tools to generate efficient event-driven implementations.

From the user perspective, a model library is the only practical way to generate

asynchronous neural models: it is not realistic to expect users to struggle through

tool sets whose design incorporates the synchronous model of computation at the

outset. While the library model brings benefits to spatial abstraction that are

useful in respect of creating a standard, its definitions of abstract-time models

systematise the approach into a single architecture that gives neural network

modelling a real chance of becoming a standard.

As an example, the LIF model is an important reference model for develop-

ing new synaptic models, and has been instrumental in creating and refining the

function pipeline, as a base standard for neural and synaptic libraries. Reworking

the library into a series of C++ template classes, where the template parameters

indicate the model type, will further simplify future model development and pro-

vide a specification for third-party model building. Such a system should form an

effective, scalable tool chain to develop a demonstration network for a multichip

SpiNNaker system.

By contrast, the unusual nature of the challenges encountered in implement-

ing the MLP model begs the question: are nonspiking models a “force-fit” for

SpiNNaker, and if so, what hardware architectures are appropriate for MLP-style

networks? The past history of hardware for MLP and other such neural networks

is not encouraging, at least not to judge by commercial success [Omo00]. Both

fixed-model and configurable FPGA designs, after a flurry of early interest, qui-

etly faded away, an outcome that perhaps was to be expected given synchronous

design, which would put them squarely in competition with existing conventional

synchronous processors. The conventional processor has the advantage of contin-

uous industry improvement and refinement in a technology firmly in the volume

production sector, and with multiprocessor architectures now becoming main-

stream, further development in synchronous neural hardware seems unattractive.

This leaves processors such as SpiNNaker as the best, possibly the only, signifi-

cant alternative. But more than simply a different architectural model offering

different tradeoffs that could be useful in particular cases, SpiNNaker offers a

distinguishing advantage: universal large-scale modelling capability.

The MLP is a popular and well-established neural model that will probably

9.1. NOW 179

remain significant for a long time to come, but in addition, dynamic models with

spiking behaviour are now popular. Such models are even more difficult than

the MLP to adapt to conventional hardware and thus have even more powerful

motivation to move to an on-chip solution. Thus an architecture that can provide

effective acceleration for both classes of network has a better chance of success.

With very large-scale models, furthermore, the limiting factor often turns out

to be power; synchronous designs are power-hungry and hence encounter scaling

barriers: as a point of reference the full-scale SpiNNaker chip consumes 1 W,

a state-of-the-art Intel laptop processor such as the i7-640 18W, and a highly-

parallel synchronous processor such as an NVIDIA GeForce 200 approximately

200W. The asynchronous, event-driven model thus may present challenges, but

offers compelling advantages for large-scale neural modelling.

From a hardware/software architecture perspective, the question is, what is

the ideal architecture for neural networks? On the hardware side, the research

community seems to be converging on the AER packet-switched network: AER

because it offers a lightweight, universal communications protocol with easy scala-

bility, packet-switched because both bus and circuit-switched network designs far

too quickly encounter interconnect density limitations [MMG+07]. Choice of pro-

cessing elements remains more contentious, but a universal and familiar standard

like the ARM makes it (relatively) easy to port existing models to SpiNNaker,

giving more groups a logical basis to justify committing to the SpiNNaker plat-

form.

The most important feature of a software architecture for universal neural

modelling (particularly on dedicated hardware) would seem to be a modular

structure to both “logical” and temporal objects. The concept of software mod-

ules is familiar from synchronous systems, leading to an object hierarchy, but in

event-driven systems a similar hierarchical organisation of event handlers makes

it easier to understand the process flow in neural networks. Individual models

may vary, but the underlying event infrastructure can stay the same - and once

again the research community is beginning to accept event-driven simulation as

the most efficient and flexible modelling model. Events that can be used as flex-

ibly as objects makes it possible to build a neural model by “connecting boxes”,

a more natural heuristic for neural design than language-based coding.

In a larger context, the function pipeline model developed for SpiNNaker may

be a useful abstraction for neural hardware, regardless of platform. Creating the

180 CHAPTER 9. CONCLUSIONS

function pipeline was the result of an attempt to decompose the general form of

neurodynamic state equations into platform-neutral components that hardware

can typically implement easily. Digital hardware can readily implement memories

to form variable retrieval and LUT stages, and both analogue and digital hardware

have effective blocks for polynomial evaluation and interpolation. Both DSPs and

various analogue blocks offer efficient computation of differential equations. Thus

one could build a neural system in building-block fashion, by chaining together

various components using AER signalling, allowing for the construction of hybrid

systems in addition to integrated approaches like SpiNNaker. More than anything

else, SpiNNaker is valuable as a test bed for hardware architectures for neural

models.

9.2 Upcoming: Statistical Neural Synthesis

Making the hardware platform user-configurable rather than fixed-model intro-

duces a new type of neural device whose architecture matches the requirements

of large-scale experimental simulation, where the need to configure and test mul-

tiple and potentially heterogeneous neural network models within the same en-

vironment is critical. In this environment automated tools for development and

simulation are essential. Design of an integrated hardware/software system like

SpiNNaker provides a powerful model for neural network simulation: the hard-

ware design flow of behavioural description, system synthesis, and concurrent

simulation. Developing libraries provides the ability to leverage existing industry-

standard tools and simulators so that it is unnecessary to develop a complete

system from the ground up. This may well be critical for wider adoption of

the architecture in the research, and possibly the industrial, community. How-

ever, scaling to very large systems will require similarly industrial-strength tools

optimised for neural modelling.

The mapping model of synthesis from libraries is a proven technique that

SpiNNaker can take straight from the hardware design community. However,

traditional hardware synthesis requires an explicit, deterministic description of

the system, at a relatively low level. Attempts to synthesize from high-level Sys-

temC have, for the most part, yielded poor results [BF03], [LBB+04]. So far, the

current SpiNNaker software model has considered fixed, small-scale neural net-

works where it is practical to describe the network explicitly in terms of neurons,

9.3. FUTURE 181

synapses, and connections. With such a description it is possible at least in princi-

ple to synthesize the network, because the tools can generate a neural component

list and a netlist. However, for very large networks, this approach is infeasible.

Under such conditions the most practical (and frequently-used) technique is to

generate statistical models, describing populations of neurons and connectivity

projections using probabilistic generator functions. It is perhaps just conceivable

to imagine an intermediate tool that could run the generator functions and create

a fixed netlist to input to the synthesizer, but the resulting files would undoubt-

edly be huge, to say nothing of the time to synthesize. A more creative approach

is probably necessary.

One possible solution is to use the statistical power of neural network process-

ing itself to generate the actual model network. Under this approach, SpiNNaker

would first load a (fixed-mapping) “synthesizer” neural network whose job is to

configure the running model network. This network might be similar to well-

studied networks like the SOM that are effective in complex topological mapping

problems. Such a tool would then auto-generate the running network itself from

the high-level description. In this situation libraries are particularly valuable.

The network could associate library modules with output units, or better, with

specific patterns of activation in the output units. By preloading the available

libraries into SDRAM before running the synthesizer network the tool could de-

termine the network, configure the mapping, and distribute the code to processors

without external interference, or possibly in an interactive process that provided

the user with visibility on the state of progress of network loading. This makes

best use of the hardware by taking advantage of its distributed-processing power:

parallel neural synthesis on a parallel neural system [BLP+09].

9.3 Future: Formal Design of Neural Architec-

tures

Sophisticated neural design and synthesis tools solve the immediate problem of

automating very-large-scale neural network design for hardware systems such

as SpiNNaker, but looking at the long-term future, there is a need for better

formal theories of neural computation. This is, indeed, the basic purpose for

which SpiNNaker was designed: to uncover the model of neural computation by

modelling at user-definable levels of abstraction. When it becomes possible to feed

182 CHAPTER 9. CONCLUSIONS

back such theories into the design process, it will be possible to build even larger,

more effective models using a systematic, formal design methodology. At the very

largest scales, such models may be necessary in order to get intelligible results,

and this is the ultimate goal of the neural library development programme: a

hierarchical series of neural models incorporating formal scaling and connectivity

principles that can be used to construct a neural network in the same way one

might create a database. SpiNNaker is a near-ideal vehicle to realise this goal

upon.

By implementing an event-driven model directly in hardware, SpiNNaker

comes considerably closer to biological neural computation than clocked digital

devices, while at the same time bringing into sharp relief the major differences

from synchronous computation that place a much greater programming emphasis

on the unpredictability of the flow of control. This important programming dif-

ference underscores the urgency for event-driven development tools, which at this

point are scarce to nonexistent. Traditional languages like C assume a procedural,

rather than an event-driven model. As a result, their support for event-driven

processing is poor. This means, for practical purposes, that most critical event-

driven routines must be written in assembly. This fact alone makes it clear why

libraries are so important: even advanced users are likely to be unwilling to face

writing in assembly. At best, however, the current library-based model can only

be an interim solution; until the library routines themselves can be written in

some abstract form third-party model development will probably remain limited.

This requires an absolutely fundamental rethink of the methods used to define a

process.

It is clear that most development tools today have an underlying synchronous

assumption, which in addition to complicating development, tends to influence

programmers’ conceptual thinking - thus perpetuating the synchronous model.

For example, even at a most basic level, the idea of programming in a language is

fundamentally synchronous and sequential: it is confusing and difficult to express

event dynamics in a language-like form. Possibly a development environment that

moved away from a linguistic model towards graphically-orientated development,

for example using Petri nets, might make it easier to develop for event-driven

systems. If asynchronous dynamics is by definition a necessary feature of true

parallel processing, perhaps the linguistic model is one reason why developing

effective parallel programming tools has historically been difficult.

9.3. FUTURE 183

In the same way that the entire software model needs review, the hardware

model for the neuromimetic architecture remains a work in progress. SpiNNaker

involves various design compromises that future neuromimetic chips could im-

prove upon. The interrupt mechanism in the ARM968 assumes a relatively slow

interrupt rate. More forceful hardware could rectify this limitation. For exam-

ple, if the vectored interrupt controller could directly vector the processor to the

appropriate exception, bypassing the long and cumbersome entry point process-

ing, interrupt rate could increase while narrowing critical time windows. Such

a system might also have completely independent working memory (“register”)

banks for each exception, as well as a common area to pass data between ex-

ception modes without memory moves. Such features would be asking for data

corruption in a synchronous model but become logical in the event-driven model.

The most obvious compromise, however, is the use of (locally) synchronous

ARM968 processors. From the point of view of the entire system, local syn-

chronicity is an implementation convenience, done almost entirely since exist-

ing off-the-shelf hardware tools and component libraries assume synchronous cir-

cuitry. In time it would also be ideal to move from a GALS system to a fully

asynchronous system. The question of software and development tool support for

modelling on such a device becomes even more critical than it is already: if an

ideal device has a purely asynchronous internals, it needs purely asynchronous

development tools as well. Ultimately, perhaps, such devices could incorporate

analogue neuromorphic components and come with a mixed-signal descendant

of the software model we have developed. Such a hybrid system would offer

configurable processing with the speed and accuracy of analogue circuits where

appropriate, and the density and flexibility of digital where advantageous. With

such chips it would become meaningful again to speak of “direct implementa-

tion”: the on-chip model could adapt to fit current research thinking, while the

on-chip circuitry could implement the dynamic equations explicitly.

Getting to that point will almost certainly require richer and more biologically

accurate abstractions of neural computation, grounded on a firmer theoretical

footing. This is territory SpiNNaker is well-positioned to explore. One practical

route to stronger neural processing theories is parameter space reduction. SpiN-

Naker allows models with, in principle, any level of biological realism. Thus it is

perfectly possible to implement a (necessarily small or slow) network containing

all known biological effects. Using known behaviours, it would then be possible to

184 CHAPTER 9. CONCLUSIONS

determine which effects are significant, simply by removing parameters or model

dynamics one by one until the behaviour changes in a functionally meaningful

way. One could also imagine a reverse approach: successively adding behaviours

to a simplistic abstract model and determining which behavioural subtleties ob-

served in real biology emerge with which additions. The process would thus build

a neural function library with a hierarchy of modelling abstractions, and just as

importantly, rules that the modeller can use to decide which model is situationally

appropriate, or what analogue circuitry might be suitable in a mixed-signal chip

design context. This system would be the future version, as much as SpiNNaker

is the present version, of a neural network matching the development model and

environment to the computational model.

Since their emergence in the 1950’s, it seems neural networks have been seen

mostly as an algorithmic technique, as opposed to an architectural model ; if there

is one central theme this work has attempted to show it is that the latter ap-

proach is now feasible. The idea of neural network as algorithm almost takes as

a given the assumption that the computing platform is a synchronous, sequential

processor; SpiNNaker changes the model entirely into an event-driven, parallel

processor. The neural library, even in the prototypical state it is today, illus-

trates how to incorporate heterogeneous neural models into a single, event-driven

abstraction, and there is reason to believe virtually any model will fit into the

same library framework. In turn these libraries can form the building blocks for

sophisticated automatic design tools, that will in the near future be able to take

a high-level description of a neural network and turn it into a working instantia-

tion on SpiNNaker - or possibly even other universal neural hardware. If the the

long-term result of this is that better theories of neural computation, and a bet-

ter understanding of the biology, emerge, then SpiNNaker will have achieved its

purpose. At that time neural networks will be able to take their place alongside

conventional sequential computers as a viable computing architecture, and neu-

robiologists will be able to decode the complex dynamics of the brain into clear

and rational descriptions of thought processes. The future may hold nothing less

than understanding, and building, human intelligence.

Bibliography

[AN00] L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the

beast. Nature Neuroscience, 3(11s):1178–1183, November 2000.

[APR+96] M. Anguita, F. J. Pelayo, E. Ros, D. Palomar, and A. Prieto.

VLSI Implementations of CNNs for Image Processing and Vi-

sion Tasks: Single and Multiple Chip Approaches. In Proc.

4th IEEE Int’l Wkshop. Cellular Neural Networks and Their

Applications (CNNA-96), pages 479–484, 1996.

[ASAW06] F. Aminian, E. D. Suarez, M. Aminian, and D. T. Walz. Fore-

casting Economic Data with Neural Networks. Computational

Economics, 28(1):71–78, August 2006.

[ASHJ04] M. Arnold, T. Sejnowski, D. Hammerstrom, and M. Jabri.

Neural Systems Integration. Neurocomputing, 58–60:1123–1168,

June 2004.

[Ban01] A Banerjee. On the Phase-Space Dynamics of Systems of Spik-

ing Neurons I: Model and Experiments. Neural Computation,

13(1):161–193, January 2001.

[BC88] C. H. Bailey and M. Chen. Long-term memory in aplysia modu-

lates the total number of varicosities of single identified sensory

neurons. Proc. Nat. Acad. Sci. USA, 85(7):2373–2377, April

1988.

[BD08] D. W. Barr and P. Dudek. A Cellular Processor Array Simula-

tion and Hardware Prototyping Tool. In Proc. 11th Int’l Wkshp.

Cellular Neural Networks and Their Applications (CNNA2008),

pages 213–218, 2008.

185

186 BIBLIOGRAPHY

[BDCG07] D. R. W. Barr, P. Dudek, J. M. Chambers, and K. Gurney.

Implementation of multilayer integrator networks on a cellular

processor array. In Proc. 2007 Int’l Joint Conf. Neural Networks

(IJCNN2007), pages 349–352, 2007.

[BF03] F. Bruschi and F. Ferrandi. Synthesis of Complex Control Struc-

tures From Behavioral SystemC Models. In Proc. 2003 Design,

Automation, and Test in Europe Conf. and Exhibition (DATE

2003), pages 112–117, 2003.

[BGM+07] D. Brüderle, A. Grübl, K. Meier, E. Müller, and J. Schemmel. A

Software Framework for Tuning the Dynamics of Neuromorphic

Silicon Towards Biology. In Proc. 2007 Int’l Wkshp on Artificial

Neural Networks (IWANN 2007), pages 479–486, 2007.

[BHS98] J.-L. Beuchat, J.-O. Haenni, and E. Sanchez. Hardware Recon-

figurable Neural Networks. In Proc. 12th Int’l Parallel Proc.

Symp. and 9th Symp. Parallel and Distributed Processing (10

IPPS/SPDP’98), pages 91–98, 1998.

[BI07] C. Bartolozzi and G. Indiveri. Synaptic Dynamics in Analog

VLSI. Neural Computation, 19(10):2581–2603, October 2007.

[BK06] F. Bernhard and R. Keriven. Spiking Neurons on GPUs. In

Proc. 6th Int’l Conf. Computational Science (ICCS 2006), pages

236–243, 2006.

[BLP+09] A. Brown, D. Lester, L. Plana, S. Furber, and P. Wilson. SpiN-

Naker: The design automation problem. In Proc. 2008 Int’l

Conf. Neural Information Processing (ICONIP 2008), pages

1049–1056. Springer-Verlag, 2009.

[BMD+09] D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel,

and K. Meier. Establishing a novel modeling tool: a python-

based interface for a neuromorphic hardware system. Frontiers

in Neuroinformatics, 3(17), June 2009.

[Boa00] K. A. Boahen. Point-to-Point Connectivity Between Neuromor-

phic Chips Using Address Events. IEEE Trans. Circuits and

BIBLIOGRAPHY 187

Systems 2: Analog and Digital Signal Processing, 47(5):416–

434, May 2000.

[BÖD+99] İ Bayraktaroğlu, A. S. Öğrenci, G. Dündar, S. Balkir, and E. Al-

paydin. ANNSyS: an Analog Neural Network Synthesis System.

Neural Networks, 12(2):325–338, March 1999.

[BP98] Guoqiang Bi and Muming Poo. Synaptic Modifications in Cul-

tured Hippocampal Neurons: Dependence on Spike Timing,

Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci.,

18(24):10464–10472, December 1998.

[BPS10] M. A. Bhuiyan, V. K. Pallipuram, and M. C. Smith. Acceler-

ation of Spiking Neural Networks in Emerging Multi-core and

GPU Architectures. In Proc. 2010th IEEE Int’l Symp. on Par-

allel and Distributed Processing Wkshps. (IPDPSw 2010), pages

1–8, 2010.

[BRE94] J. A. Barby, S. E. Rehan, and M. I. Elmasry. AHDL modelling

to support top-down design of mixed-signal ASICs. In Proc. 7th

IEEE Int’l ASIC Conf. and Exhibit, pages 166–169, 1994.

[CAD07] L. Calcroft, R. Adams, and N. Davey. Efficient architectures for

sparsely-connected high capacity associative memory models.

Connection Science, 19(2):163–181, June 2007.

[Cau96] G. Cauwenberghs. An Analog VLSI Recurrent Neural Network

Learning a Continuous-Time Trajectory. IEEE Trans. Neural

Networks, 7(2):346–361, March 1996.

[CEVB97] S. M. Crook, G. B. Ermentrout, M. C. Vanier, and J. M. Bower.

The Role of Axonal Delay in the Synchronization of Networks of

Coupled Cortical Oscillators. J. Computational Neuroscience,

4(2):161–172, April 1997.

[CHC06] B. L. Chen, D. H. Hall, and D. B. Chklovskii. Wiring opti-

mization can relate neuronal structure and function. Proc. Nat.

Acad. of Sciences of the USA, 103(12):4723–4728, March 2006.

188 BIBLIOGRAPHY

[CJ92] Chwan-Hwa Wu and Jyun-Hwei Tsai. Concurrent Asyn-

chronous Learning Algorithms for Masssively Parallel Recur-

rent Neural Networks. J. Parallel and Distributed Computing,

14(3):345–353, March 1992.

[CL05] E. Cheong and J. Liu. galsC: A Language for Event-Driven

Embedded Systems. In Proc. Design, Automation and Test in

Europe 2005 (DATE’05), pages 1050–1055, 2005.

[CMAJSGLB08] L. Camuñas-Mesa, A. Acosta-Jiménez, T. Serrano-

Gotarredona, and B. Linares-Barranco. Fully Digital AER

Convolution Chip for Vision Processing. In Proc. 2008 IEEE

Int’l Symp. Circuits and Systems (ISCAS2008), pages 652–655,

2008.

[CRT07] A. V. Chizhov, S. Rodrigues, and J. R. Terry. A comparative

analysis of a firing-rate model and a conductance-based neural

population model. Phys. Letters A, 369(1–2):31–36, September

2007.

[CSF04] G. La Camera, W. Senn, and S. Fusi. Comparison between net-

works of conductance- and current-driven neurons: stationary

spike rates and subthreshold depolarization. Neurocomputing,

58–60:253–258, June 2004.

[CWL+07] E. Chicca, A. M. Whatley, P. Lichtsteiner, V. Dante, T. Del-

bruck, P. del Giudice, R. J. Douglas, and G. Indiveri. A Multi-

chip Pulse-Based Neuromorphic Infrastructure and Its Applica-

tion to a Model of Orientation Sensitivity. IEEE Trans. Circuits

and Systems, 54(5):981–993, May 2007.

[DA01] P. Dayan and L.F. Abbott. Theoretical Neuroscience. MIT

Press, Cambridge, 2001.

[DAM04] F. M. Dias, A. Antunes, and A. M. Mota. Artificial neural net-

works: a review of commercial hardware. Engineering Applica-

tions of Artificial Intelligence, 17(8):945–952, December 2004.

BIBLIOGRAPHY 189

[DBC06] P. Dong, G. L. Bilbro, and M.-Y. Chow. Implementation of Ar-

tificial Neural Network for Real Time Applications Using Field

Programmable Analog Arrays. In Proc. 2006 Int’l Joint Conf.

Neural Networks (IJCNN2006), pages 1518–1524, 2006.

[DBE+09] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller,

D. Pecevski, L. Perrinet, and P. Yger. PyNN: a common inter-

face for neuronal network simulators. Frontiers in Neuroinfor-

matics, 2(11), January 2009.

[DCA06] N. Davey, L. Calcroft, and R. Adams. High capacity,

small world associative memory models. Connection Science,

18(3):247–264, September 2006.

[DDT+95] T. Daud, T. Duong, M. Tran, H. Langenbacher, and

A. Thakoor. High Resolution Synaptic Weights and Hardware-

in-the-Loop Learning. In Proc. SPIE - Int’l Soc. Optical Engi-

neering, volume 2424, pages 489–500, 1995.

[Des97] A. Destexhe. Conductance-Based Integrate-and-Fire Models.

Neural Computation, 9(3):503–514, April 1997.

[DHMM97] C. Diorio, P. Hasler, B. A. Minch, and C. A. Mead. A Floating-

Gate MOS Learning Array With Locally Computed Weight

Updates. IEEE Trans. Electron Devices, 44(12):2281–2289, De-

cember 1997.

[DLR02] G. Danese, F. Leporati, and S. Ramat. A Parallel Neural Pro-

cessor for Real-Time Applications. IEEE Micro, 22(3):20–31,

may-jun 2002.

[DT03] A. Delorme and S. Thorpe. SpikeNET: an event-driven simula-

tion package for spiking neural networks. Network: Computa-

tion in Neural Systems, 14(4):613–627, November 2003.

[Dur09] D. Durstewitz. Implications of synaptic biophysics for recur-

rent network dynamics and active memory. Neural Networks,

22(8):1189–1200, October 2009.

190 BIBLIOGRAPHY

[EH94a] J. Eldredge and B. Hutchings. Density Enhancement of a Neu-

ral Network Using FPGAs and Run-Time Reconfiguration. In

Proc. IEEE Wkshp. on FPGAs for Custom Computing Ma-

chines, pages 180–188, 1994.

[EH94b] J. Eldredge and B. Hutchings. RRANN: the run-time reconfig-

uration artificial neural network. In Proc. IEEE 1994 Custom

Integrated Circuits Conf., pages 77–80, 1994.

[EKR06] R. Eickhoff, T. Kaulmann, and U. Rückert. SIRENS: A Simple

Reconfigurable Neural Hardware Structure for Artificial Neu-

ral Network Implementations. In Proc. 2006 Int’l Joint Conf.

Neural Networks (IJCNN2006), pages 2830–2837, 2006.

[FGH06] E. Farquhar, C. Gordon, and P. Hasler. A Field Programmable

Neural Array. In Proc. 2006 IEEE Int’l Symp. Circuits and

Systems (ISCAS2006), pages 4114–4117, 2006.

[FHK93] U. Frey, Y.-Y. Huang, and E. R. Kandel. Effects of cAMP

Simulate a Late Stage of LTP in Hippocampal CA1 Neurons.

Science, 260(5114):1561–1677, June 1993.

[FRSL09] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and W. Luk.

NeMo: A Platform for Neural Modelling of Spiking Neurons

Using GPUs. In Proc. 20th IEEE Int’l Conf. on Application-

Specific Systems, Architectures and Processors, pages 137–144,

2009.

[FSM08] J. Fieres, J. Schemmel, and K. Meier. Realizing biological

spiking network models in a configurable wafer-scale hardware

system. In Proc. 2008 Int’l Joint Conf. on Neural Networks

(IJCNN2008), pages 969–976. IEEE Press, 2008.

[FT07] S. B. Furber and S. Temple. Neural Systems Engineering. J.

Roy. Soc. Interface, 4(13):193–206, April 2007.

[FWA88] B. Furman, J. White, and A. A. Abidi. CMOS Analog IC Im-

plementing the Back Propagation Algorithm. Neural Networks,

1(Supplement 1):381, 1988.

BIBLIOGRAPHY 191

[Gar87] S. C. J. Garth. A chipset for high speed simulation of neural net-

work systems. In Proc. IEEE 1st Int’l Conf. Neural Networks,

pages 443–452, 1987.

[GAS08] W. Van Geit, P. Achard, and E. De Schutter. Neurofitter: A pa-

rameter tuning package for a wide range of electrophysiological

neuron models. Frontiers in Neuroinformatics, 1(5), November

2008.

[GB08] D. Goodman and R. Brette. Brian: a simulator for spiking

neural networks in Python. Frontiers in Neuroinformatics, 2(5),

November 2008.

[GE97] R. Gerndt and R. Ernst. An Event-Driven Multi-Threading

Architecture for Embedded Systems. In Proc. 5th Int’l Wkshp.

Hardware/Software Codesign (CODES/CASHE’97), pages 29–

33, 1997.

[GHJdV87] H. P. Graf, W. Hubbard, L. D. Jackel, and P. G. N. de Vegvar.

A CMOS Associative Memory Chip. In Proc. IEEE First Int’l

Conf. on Neural Networks, pages 461–468, 1987.

[GHMM09] B. Glackin, J. Harkin, T. M. McGinnity, and L. Maguire.

A Hardware Accelerated Simulation Environment for Spiking

Neural Networks. In Proc. 5th Int’l Wkshp. on Reconfigurable

Architectures, Tools and Applications. (ARC 2009), pages 336–

341, 2009.

[GKvHW96] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner. A

Neuronal Learning Rule for Sub-millisecond Temporal Coding.

Nature, 383(6595):76–78, Sep. 1996.

[GMM+05] B. Glackin, T. M. McGinnity, L. Maguire, Q. X. Wu, , and

A. Belatreche. A Novel Approach for the Implementation

of Large-Scale Spiking Neural Networks on FPGA Hardware.

In Proc. 8th Int’l Work-Conf. on Artificial Neural Networks.

(IWANN 2005), pages 552–563, 2005.

192 BIBLIOGRAPHY

[GR94] S. Ghosh and D. L. Reilly. Credit Card Fraud Detection with

a Neural-Network. In Proc. 27th Hawaii Int’l Conf. on System

Sciences, pages 621–630, 1994.

[GSM94] M. Gshwind, V. Salapura, and O. Maischberger. RAN2OM

A Reconfigurable Neural Network Architecture Based on Bit

Stream Arithmetic. In Proc. 1994 Int’l Conf. Field Program-

mable Logic and Applications (FPL 1994), pages 1861–1864,

1994.

[GSW02] C. Grassman, T. Schönauer, and C. Wolff. PCNN neurocom-

puters - event driven and parallel architectures. In Proc. 10th

European Symp. on Artificial Neural Networks (ESANN’2002),

pages 331–336, 2002.

[GT02] V. Gosasang and T. Tanprasert. Performance and Caching Is-

sues in an Integration of Neural Net and Standard PC. In Proc.

2002 Int’l Joint Conf. Neural Networks (IJCNN2002), pages

565–570, 2002.

[HAM07] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedfor-

ward Neural Network Implementation in FPGA Using Layer

Multiplexing for Effective Resource Utilization. IEEE Trans.

Neural Networks, 18(3):880–888, May 2007.

[HB06] K. M. Hynna and K. Boahen. Neuronal Ion-Channel Dynam-

ics in Silicon. In Proc. 2006 Int’l Symp. Circuits and Systems

(ISCAS 2006), pages 3614–3617, 2006.

[HC97] M. L. Hines and N. T. Carnevale. The NEURON simulation en-

vironment. Neural Computation, 9(6):1179–1209, August 1997.

[HCR+04] M. L. Hayashi, S.-Y. Choi, B. S. S. Rao, H.-Y. Jung, H.-Y. Lee,

D. Zhang, S. Chattarji, A. Kirkwood, and S. Tonegawa. Altered

Cortical Synaptic Morphology and Impaired Memory Consol-

idation in Forebrain-Specific Dominant-Negative PAK Trans-

genic Mice. Neuron, 42(5):773–787, June 2004.

BIBLIOGRAPHY 193

[HF92] M. Hohfeld and S. E. Fahlman. Probabilistic rounding in neu-

ral network learning with limited precision. Neurocomputing,

4(6):291–299, December 1992.

[HHXW08] Hua Hu, Jing Huang, Jianguo Xing, and Wenlong Wang. Key

Issues of FPGA Impelentations of Neural Networks. In Proc.

2nd Int’l Symp. Intelligent Information Technology Application,

pages 259–263, 2008.

[Hil97] W. Hilberg. Neural networks in higher levels of abstraction.

Biological Cybernetics, 76(1):23–40, January 1997.

[HM94] P. Hylander and J. Meador. Object Oriented VLSI Design Au-

tomation fo Pulse Coded Neural Networks. In Proc. 1994 Int’l

Joint Conf. Neural Networks (IJCNN1994), pages 1825–1829,

1994.

[HMH+08a] J. Harkin, L. McDaid, S. Hall, T. Dowrick, and F. Morgan.

Programmable Architectures for Large-scale Implementations

of Spiking Neural Networks. In Proc. 2008 IET Irish Signals

and Systems Conf. (ISSC 2008), pages 374–379, 2008.

[HMH+08b] J. Harkin, F. Morgan, S. Hall, P. Dudek, T. Dowrick, and L. Mc-

Daid. Reconfigurable platforms and the challenges for large-

scale implementations of spiking neural networks. In Proc. 2008

Int’l Conf. Field Programmable Logic and Applications (FPL

2008), pages 483–486, 2008.

[HMS08] M. L. Hines, H. Markram, and F. Schürmann. Fully implicit

parallel simulation of single neurons. J. Computational Neuro-

science, 25(3):439–448, December 2008.

[Hop82] J. J. Hopfield. Neural Networks and Physical Systems with

Emergent Collective Computational Abilities. Proc. National

Academy of Sciences of the USA, 79(8):2554–25588, April 1982.

[HP92] P. W. Hollis and J. J. Paulos. An Analog BiCMOS Hop-

field Neuron. Analog Integrated Circuits and Signal Processing,

2(4):273–279, November 1992.

194 BIBLIOGRAPHY

[HTCB89] M. Holler, S. Tam, H. Castro, and R. Benson. An Electri-

cally Trainable Artificial Neural Network (ETANN) with 10240

“Floating Gate” Synapses. In Proc. 1989 Int’l Joint Conf. Neu-

ral Networks (IJCNN1989), pages 191–196, 1989.

[HTT06] M. Hartley, N. Taylor, and J. Taylor. Understanding spike-time-

dependent plasticity: A biologically motivated computational

model. Neurocomputing, 69(16):2005–2016, July 2006.

[ICD06] G. Indiveri, E. Chicca, and R. Douglas. A VLSI Array of

Low-Power Spiking Neurons and Bistable Synapses With Spike-

Timing Dependent Plasticity. IEEE Trans. Neural Networks,

17(1):211–221, January 2006.

[ICK96] P. Ienne, T. Cornu, and G. Kuhn. Special-Purpose Digital

Hardare for Neural Networks: An Architectural Survey. J. VLSI

Signal Processing Systems, 13(1):5–25, August 1996.

[IE08] E.M. Izhikevich and G. M. Edelman. Large-scale model of mam-

malian thalamocortical systems. Proc. National Academy of

Sciences of the USA, 105(9):3593–3598, March 2008.

[IH09] E. M. Izhikevich and F.C. Hoppensteadt. Polychronous Wave-

front Computations. International Journal of Bifurcation and

Chaos, 19(5):1733–1739, May 2009.

[IWK99] G. Indiveri, A. M. Whatley, and J. Kramer. A Reconfigurable

Neuromorphic VLSI Multi-Chip System Applied to Visual Mo-

tion Computation. In Proc. 7th Int’l Conf. Microelectronics for

Neural, Fuzzy, and Bio-Inspired Systems, pages 37–44, 1999.

[Izh03] E.M. Izhikevich. Simple Model of Spiking Neurons. IEEE

Trans. Neural Networks, 14:1569–1572, November 2003.

[Izh04] E. M. Izhikevich. Which Model to Use for Cortical Spiking Neu-

rons. IEEE Trans. Neural Networks, 15(5):1063–1070, Septem-

ber 2004.

[Izh06] E.M. Izhikevich. Polychronization: Computation with Spikes.

Neural Computation, 18(2), February 2006.

BIBLIOGRAPHY 195

[JC09] Jihong Liu and Chengyuan Wang. A Survey of Neuromorphic

Engineering. In Proc. 2009 IEEE Circuits and Systems Conf.

Testing and Diagnosis (ICTD’09), 2009.

[JFW08] X. Jin, S.B. Furber, and J.V. Woods. Efficient Modelling of

Spiking Neural Networks on a Scalable Chip Multiprocessor.

In Proc. 2008 Int’l Joint Conf. Neural Networks (IJCNN2008),

pages 2812–2819, 2008.

[JG10] C. Joseph and A. Gupta. A Novel Hardware Efficient Digital

Neural Network Architecture Implemented in 130nm Technol-

ogy. In Proc. 2nd Int’l Conf. Computer and Automation Engi-

neering (ICCAE 2010), pages 82–87, 2010.

[JH92] M. James and Doan Hoang. Design of Low-Cost, Real-Time

Simulation Systems for Large Neural Networks. J. Parallel and

Distributed Computing, 14(3):221–235, March 1992.

[JL07] C. Johansson and A. Lansner. Towards cortex sized artificial

neural systems. Neural Networks, 20(1):48–61, January 2007.

[JLK+10] X. Jin, M. Lujan, M. M. Khan, L. A. Plana, A. D. Rast, S. Wel-

bourne, and S. B. Furber. Efficient Parallel Implementation

of a Multi-Layer Backpropagation Network on Torus-connected

CMPs. In Proc. 2010 ACM Conf. Computing Frontiers (CF’10),

pages 89–90, 2010.

[JM95] G. Jackson and A. F. Murray. Competence Acquisition in an

Autonomous Mobile Robot using Hardware Neural Techniques.

In Proc. 1995 Conf. Advances in Neural Information Processing

Systems (NIPS 1995), pages 1031–1037, 1995.

[JPL98] Y.-J. Jang, C.-H. Park, and H.-S. Loo. A Programmable Dig-

ital Neuro-Processor Design with Dynamically Reconfigurable

Pipeline/Parallel Architecture. In Proc. 1998 Int’l Conf. Par-

allel and Distributed Systems, pages 18–24, 1998.

[JRG+10] X. Jin, A. D. Rast, F. Galluppi, S. Davies, and S. B. Furber. Im-

plementing Spike-Timing-Dependent Plasticity on SpiNNaker

196 BIBLIOGRAPHY

Neuromorphic Hardware. In Proc. 2010 Int’l Joint Conf. on

Neural Networks (IJCNN2010), pages 2302–2309, 2010.

[JS03] Jihan Zhu and P. Sutton. FPGA Implementations of Neural

Networks - A Survey of a Decade of Progress. In Proc. Int’l

Conf. Field-Programmable Logic, pages 1062–1066, 2003.

[JSR+97] A. Jahnke, T. Schönauer, U. Roth, K. Mohraz, and H. Klar.

Simulation of Spiking Neural Networks on Different Hardware

Platforms. In Proc. 1997 Int’l Conf. Artificial Neural Networks

(ICANN 1997), pages 1187–11192, 1997.

[KA95] J. V. Kennedy and J. Austin. A Parallel Architecture for Bi-

nary Neural Networks. In Proc. 6th Int’l Conf. Microelectron-

ics for Neural Networks, Evolutionary and Fuzzy Systems (MI-

CRONEURO’97), pages 225–232, 1995.

[KBSM09] B. Kaplan, D. Brüderle, J. Schemmel, and K. Meier. High-

Conductance States on a Neuromorphic Hardware System. In

Proc. 2009 Int’l Joint Conf. Neural Networks (IJCNN2009),

pages 1524–1530, 2009.

[KdlTRJ06] Y. E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly. Virtex II

FPGA bitstream manipulation: Application to reconfiguration

control systems. In Proc. 2006 Int’l Conf. Field Programmable

Logic and Applications (FPL 2006), pages 717–720, 2006.

[KDR07] T. Kaulmann, D. Dikmen, and U. Rückert. A Digital Frame-

work for Pulse Coded Neural Network Hardware with Bit-Serial

Operation. In Proc. 7th Int’l. Conf. on Hybrid Intelligent Sys-

tems, pages 302–307, 2007.

[Ker92] L. R. Kern. Design and development of a real-time neural pro-

cessor using the intel 80170nx etann. In Proc. 1992 Int’l Joint

Conf. Neural Networks (IJCNN1992), pages 684–689, 1992.

[KGH09] T. J. Koickal, L. C. Gouveia, and A. Hamilton. A program-

mable spike-timing based circuit block for reconfigurable neu-

romorphic computing. Neurocomputing, 72(16–18):3609–3616,

October 2009.

BIBLIOGRAPHY 197

[KJFP07] M. M. Khan, X. Jin, S. Furber, and L.A. Plana. System-Level

Model for a GALS Massively Parallel Multiprocessor. In Proc.

19th UK Asynchronous Forum, pages 9–12, 2007.

[Kli90] C. C. Klimasauskas. Neural Networks and Image Processing.

Dr. Dobb’s J. of Software Tools, 15(4):77–82, 114, 116, April

1990.

[KLP+08] M. M. Khan, D.R. Lester, L.A. Plana, A. Rast, X. Jin,

E. Painkras, and S.B. Furber. SpiNNaker: Mapping Neural

Networks Onto a Massively-Parallel Chip Multiprocessor. In

Proc. 2008 Int’l Joint Conf. Neural Networks (IJCNN2008),

pages 2849–2856, 2008.

[KM94] G. Kechriotis and E. S. Manolakos. Training fully recurrent

neural networks on a ring transputer array. Microprocessors

and Microsystems, 18(1):5–11, jan–feb 1994.

[Kön97] A. König. On Application Incentive and Constraints for Neural

Network Hardware Development. In Proc. 1997 Int’l Work-

Conf. on Artificial and Natural Neural Networks (IWANN’97),

pages 782–791, 1997.

[Kön98] A. König. Towards Actual Neural Coprocessors for Heteroge-

neous Embedded Systems. In Proc. 4th Int’l. Conf. on Neural

Information Processing (ICONIP 1997), pages 670–673, 1998.

[KRN+10] M. M. Khan, A. D. Rast, J. Navaridas, X. Jin, L.A. Plana,

M. Luján, S. Temple, C. Patterson, D. Richards, J. V. Woods,

J. Miguel-Alonso, and S. B. Furber. Event-Driven Configura-

tion of a Neural Network CMP System over an Homogeneous

Interconnect Fabric. Parallel Computing, 36, November 2010.

[LBB+04] D. Lettnin, A. Braun, M. Bodgan, J. Gerlach, and W. Rosen-

stiel. Synthesis of embedded SystemC design: A case study of

digital neural networks. In Proc. Design, Automation & Test in

Europe Conf. & Exhibition (DATE’04), volume 3, pages 248–

253, 2004.

198 BIBLIOGRAPHY

[LBJMLBCB06] A. Linares-Barranco, G. Jiménez-Moreno, B. Linares-Barranco,

and A. Civit-Barcells. On Algorithmic Rate-Coded AER Gener-

ation. IEEE Trans. Neural Networks, 17(3):771–788, May 2006.

[LBLBJMCB05] A. Linares-Barranco, B. Linares-Barranco, G. Jiménez-Moreno,

and A. Civit-Barcells. AER Synthetic Generation in Hardware

for Bio-inspired Spiking Systems. Proc. SPIE, 5839:103–110,

2005.

[LL95] C. S. Lindsey and T. Lindblad. Survey of neural network hard-

ware. In Proc. SPIE, Applications and Science of Artificial Neu-

ral Networks, volume 2492, pages 1194–1205, 1995.

[LL10] E. Lehtonen and M. Laiho. CNN Using Memristors for Neigh-

borhood Connections. In Proc. 12th Int’l Wkshp. on Cellu-

lar Nanoscale Networks and Their Applications (CNNA2010),

pages 1–4, 2010.

[LLW05] Z. Luo, H. Liu, and X. Wu. Artificial Neural Network Compu-

tation on Graphic Process Unit. In Proc. 2005 Int’l Joint Conf.

Neural Networks (IJCNN2005), pages 622–626, 2005.

[LMAB06] J. Lin, P. Merolla, J. Arthur, and K. Boahen. Programmable

Connections in Neuromorphic Grids. In Proc. 49th Midwest

Symp. Circuits and Systems (MWSCAS 2006), pages 80–84,

2006.

[LS92] B. J. Lee and B. W. Sheu. General-Purpose Neural Chips with

Electrically Programmable Synapses and Gain-Adjustable Neu-

rons. IEEE J. of Solid-State Circuits, 27(9):1299–1302, Septem-

ber 1992.

[LSLG94] P. Lysaght, J. Stockwood, J. Law, and D. Girma. Artificial neu-

ral network implementation on a fine-grained FPGA. In Proc.

4th Int’l Wkshop. Field-Programmable Logic and Applications

(FPL ’94), pages 421–431, 1994.

[LWM+93] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Silviotti, and

D. Gillespie. Silicon Auditory Processors as Computer Periph-

erals. IEEE Trans. Neural Networks, 4(3):523–528, May 1993.

BIBLIOGRAPHY 199

[Maa01] W. Maass. On the relevance of time in neural computation and

learning. Theoretical Computer Science, 261(1):157–178, June

2001.

[MAM05] M. Mirhassani, M. Ahmadi, and W. C. Miller. Design and Im-

plementation of Novel Multi-Layer Mixed-Signal On-Chip Neu-

ral Networks. In Proc. 48th IEEE Int’l Midwest Symp. Circuits

and Systems, pages 413–416, 2005.

[MCL+06] M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and M. L.

Hines. Parallel network simulations with NEURON. J. Com-

putational Neuroscience, 21(2):119–29, October 2006.

[ME08] V. Mahoney and I. Elhanany. A Backpropagation Neural Net-

work Design Using Adder-Only Arithmetic. In Proc. 51st Mid-

west Symp. on Circuits and Systems, pages 894–897, 2008.

[MECG06] J. M. McGuinness, C. Egan, B. Christianson, and G. Gao. The

Challenges of Efficient Code-Generation for Massively Parallel

Architectures. In Proc. 11th Asia-Pacific Conf. Advances in

Computer Systems Architecture (ACSAC 2006), pages 416–422,

2006.

[MGS05] S. Marinai, M. Gori, and G. Soda. Artificial Neural Networks

for Document Analysis and Recognition. IEEE Trans. Pattern

Analysis and Machine Intelligence, 27(1):23–35, January 2005.

[MJH+03] N. Mehrtash, D. Jung, H.H. Hellmich, T. Schönauer, Vi Thanh

Lu, and H. Klar. Synaptic Plasticity in Spiking Neural Networks

(SP2INN): a System Approach. IEEE Trans. Neural Networks,

14(5):980–992, September 2003.

[MLS04] S. McBader, P. Lee, and A Sartori. The Impact of Modern

FPGA Architectures on Neural Hardware: A Case Study of

the TOTEM Neural Processor. In Proc. 2004 Int’l Joint Conf.

Neural Networks (IJCNN2004), pages 3149–3154, 2004.

200 BIBLIOGRAPHY

[MMG+07] L.P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Be-

latreche, and J. Harkin. Challenges for large-scale implementa-

tions of spiking neural networks on FPGAs. Neurocomputing,

71, December 2007.

[MMP+07] L. Melloni, C. Molina, M. Pena, D. Torres, W. Singer, and

E. Rodriguez. Synchronization of Neural Activity across Cor-

tical Areas Correlates with Conscious Perception. J. Neurosci,

27(11):2858–2865, March 2007.

[MR94] D. C. Marinescu and J. R. Rice. On the Scalability of Asyn-

chronous Parallel Computations. J. Parallel and Distributed

Computing, 22(3):538–546, September 1994.

[MS88] A. F. Murray and A. V. W. Smith. Asynchronous VLSI Neural

Networks Using Pulse-Stream Arithmetic. IEEE J. of Solid-

State Circuits, 23(3):688–697, June 1988.

[MS08] Y. Meng and B. Shi. Adaptive Gain Control for Spike-Based

Map Communication in a Neuromorphic Vision System. IEEE

Trans. Neural Networks, 19(6):1010–1021, June 2008.

[MSK98] B. Milner, L. R. Squire, and E. R. Kandel. Cognitive Neu-

roscience and the Study of Memory. Neuron, 20(3):445–468,

March 1998.

[MT96] H. Markram and P. Tsodyks. Redistribution of Synaptic

Efficacy Between Neocortical Pyramidal Neurons. Nature,

382(6594):807–810, August 1996.

[MWBC04] S. Modi, P.R. Wilson, A.D. Brown, and J. Chad. Behavioral

simulation of biological neuron systems in SystemC. In Proc.

2004 IEEE Int’l Behavioral Modeling and Simulation Conf.,

pages 31–36, 2004.

[NDKN07] J. M. Nageswaran, N. Dutt, J. L. Krichmar, and A. Nicolau. A

configurable simulation environment for the efficient simulation

of large-scale spiking neural networks on graphics processors.

Neural Networks, 22(5–6), July/August 2007.

BIBLIOGRAPHY 201

[NdSMdS09] N. Nedjah, R. M. da Silva, L. M. Mourelle, and M. V. C.

da Silva. Dynamic MAC-based architecture of artificial neu-

ral networks suitable for hardware implementation on FPGAs.

Neurocomputing, 72(10–12):2171–2179, June 2009.

[NG03] B. Noory and V. Groza. A Reconfigurable Approach to Hard-

ware Implementation of Neural Networks. In Proc. 2003 Cana-

dian Conf. on Electrical and Computer Engineering (CCECE

2003), pages 1861–1864, 2003.

[NPMA+10] J. Navaridas, L. A. Plana, J. Miguel-Alonso, M. Luján, and S. B.

Furber. SpiNNaker: Effects of Traffic Locality and Causality

on the Performance of the Interconnection Network. In Proc.

2010 ACM Int’l Conf. Computing Frontiers, pages 11–19, 2010.

[NS92] T. Nordström and B. Svensson. Using and Designing Massively

Parallel Computers for Artificial Neural Networks. J. Parallel

and Distributed Computing, 14(3):260–285, March 1992.

[OCR+06] E. M. Ortigosa, A. Cañas, E. Ros, P. M. Ortigosa, S. Mota, and

J. Diaz. Hardware description of multi-layer perceptrons with

different abstraction levels. Microprocessors and Microsystems,

30(7):435–444, November 2006.

[OJ04] K.-S. Oh and K. Jung. GPU implementation of neural networks.

Pattern Recognition, 37(6):1311–1314, June 2004.

[Omo00] A. R. Omondi. Neurocomputers: a dead end? Int’l J. Neural

Systems, 10(6), June 2000.

[OWLD05] M. Oster, A. M. Whatley, S.-C. Liu, and R. J. Douglas. A

Hardware/Software Framework for Real-Time Spiking Systems.

In Proc. 15th Int’l Conf. Artificial Neural Networks (ICANN

2005), pages 161–166, 2005.

[PA05] M. S. Prieto and A. R. Allen. A hybrid system for embedded

machine vision using FPGAs and neural networks. Machine

Vision and Applications, 20(6):379–384, October 2005.

202 BIBLIOGRAPHY

[Pan01] P.R. Panda. SystemC - a modeling platform supporting multiple

design abstractions. In Proc. Int’l Symp. on System Synthesis,

2001.

[PEM+07] H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and

M.-O. Gewaltig. Efficient Parallel Simulation of Large-Scale

Neuronal Networks on Clusters of Multiprocessor Computers.

In Proc. 13th Int’l Euro-Par Conf. on Parallel Processing (Euro-

Par 2007), pages 672–681, 2007.

[PFT+07] L. A. Plana, S. B. Furber, S. Temple, M. M. Khan, Y. Shi,

J. Wu, and S. Yang. A GALS Infrastructure for a Massively

Parallel Multiprocessor. IEEE Design & Test of Computers,

24(5):454–463, Sep.-Oct. 2007.

[PGDK88] D. A. Pomerleau, G.L. Gusciora, D.S.Touretsky, and H.T.

Kung. Neural Network Simulation at WARP Speed: How We

Got 17 Million Connections Per Second. In Proc. IEEE Int’l

Conf on Neural Networks, pages 143–150, 1988.

[PKP08] P. M. Papazoglou, D. A. Karras, and R. C. Papademetriou.

On Improved Event Scheduling Mechanisms for Wireless Com-

munications Simulation Modelling. In Proc. New Technologies,

Mobility and Security Conf. and Wkshps. (NTMS2008), pages

1–5, 2008.

[PLGW07] A. W. Przybyszewski, P. Linsay, P. Gaudiano, and C. M. Wil-

son. Basic Difference Between Brain and Computer: Integration

of Asynchronous Processes Implemented as Hardware Model of

the Retina. IEEE Trans. Neural Networks, 18(1):70–85, Jan-

uary 2007.

[PMP+05] M. J. Pearson, C. Melhuish, A. G. Pipe, M. Nibouche, I. Gilh-

espy, K. Gurney, and M. Mitchinson. Design and FPGA im-

plementation of an embedded real-time biologically plausible

spiking neural network processor. In Proc. 2005 Int’l Conf.

on Field-Programmable Logic and Applications (FPL’05), pages

5822–585, 2005.

BIBLIOGRAPHY 203

[PPM+07] M. J. Pearson, A. G. Pipe, B. Mitchinson, K. Gurney, C. Mel-

huish, I. Gilhespy, and M. Nibouche. Implementing Spiking

Neural Networks for Real-Time Signal-Processing and Con-

trol Applications: A Model-Validated FPGA Approach. IEEE

Trans. Neural Networks, 18(5):1472–1487, September 2007.

[Pra08] R. D. Prabhu. SOMGPU: An Unsupervised Pattern Classifier

on Graphical Processing Unit. In Proc. 2008 IEEE Cong. on

Evolutionary Computation (CEC 2008), pages 1011–1018, 2008.

[PRAP97] F. J. Pelayo, E. Ros, X. Arreguit, and A. Prieto. VLSI Im-

plementation of a Neural Model Using Spikes. Analog Inte-

grated Circuits and Signal Processing, 13(1–2):111–121, May–

June 1997.

[PUS96] E. Pérez-Uribe and E. Sanchez. FPGA Implementation of an

Adaptable-Size Neural Network. In Proc. 1996 Int’l Conf. Ar-

tificial Neural Networks (ICANN 96), pages 383–388, 1996.

[PVLBC+06] R. Paz-Vicente, A. Linares-Barranco, D. Cascado, M. A. Ro-

driguez, G. Jimenez, A. Civit, and J. L. Sevillano. PCI-AER

interface for Neuro-inspired Spiking [Systems. In Proc. 2006

IEEE Int’l Symp. Circuits and Systems (ISCAS 2006), pages

3161–3164, 2006.

[PWKR02a] M. Porrmann, U. Witkowski, H. Kalte, and U. Rückert. Dy-

namically Reconfigurable Hardware - A New Perspective for

Neural Network Implementations. In Proc. 2002 Int’l Conf.

Field Programmable Logic and Applications (FPL 2002), pages

1048–1057, 2002.

[PWKR02b] M. Porrmann, U. Witkowski, H. Kalte, and U. Rückert. Im-

plementation of artificial neural networks on a reconfigurable

hardware accelerator. In Proc. 2002 Euromicro Conf. Paral-

lel, Distributed, and Network-based processing, pages 243–250,

2002.

[RD07] M. Rudolph and A. Destexhe. How much can we trust neural

204 BIBLIOGRAPHY

simulation strategies? Neurocomputing, 70(10–12):1966–1969,

June 2007.

[Rey03] L. M. Reyneri. Implementation Issues of Neuro-Fuzzy Hard-

ware: Going Towards HW/SW Codesign. IEEE Trans. Neural

Networks, 14(1):176–194, January 2003.

[RJG+10] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and

S. B. Furber. Scalable Event-Driven Native Parallel Processing:

The SpiNNaker Neuromimetic System. In Proc. 2010 ACM

Conf. Computing Frontiers (CF’10), pages 20–29, 2010.

[RJKF09] A. Rast, X. Jin, M. Khan, and S. Furber. The deferred-

event model for hardware-oriented spiking neural networks. In

Proc. 2008 Int’l Conf. Neural Information Processing (ICONIP

2008), pages 1057–1064. Springer-Verlag, 2009.

[RKJ+09] A.D. Rast, M. M. Khan, X. Jin, L. A. Plana, and S.B. Furber.

A Universal Abstract-Time Platform for Real-Time Neural Net-

works. In Proc. 2009 Int’l Joint Conf. on Neural Networks

(IJCNN2009), pages 2611–2618, 2009.

[ROA+06] E. Ros, E. M. Ortigosa, R. Aǵıs, R. Carrillo, and M. Arnold.

Real-Time Computing Platform for Spiking Neurons (RT-

Spike). IEEE Trans. Neural Networks, 17(4):1050–1063, July

2006.

[Ros58] F. Rosenblatt. The perceptron: a probabilistic model for infor-

mation storage and organization in the brain. Psych. Review,

65:286–408, 1958.

[RTB+07] S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and S. Säıgli.

Neuromimetic ICs With Analog Cores: An Alternative for Sim-

ulating Spiking Neural Networks. In Proc. IEEE Int’l Symp.

Circuits and Systems (ISCAS2007), pages 3355–3358, 2007.

[Rüc01] U. Rückert. ULSI Architectures for Artificial Neural Networks.

In Proc. 9th Euromicro Wkshp. on Parallel and Distributed Pro-

cessing, pages 436–442, 2001.

BIBLIOGRAPHY 205

[RYKF08] A.D. Rast, S. Yang, M. M. Khan, and S.B. Furber. Vir-

tual Synaptic Interconnect Using an Asynchronous Network-

on-Chip. In Proc. 2008 Int’l Joint Conf. Neural Networks

(IJCNN2008), pages 2727–2734, 2008.

[SAMK02] T. Schoenauer, S. Atasoy, N. Mehrtash, and H. Klar.

NeuroPipe-Chip: A Digital Neuro-Processor for Spiking Neu-

ral Networks. IEEE Trans. Neural Networks, 13(1):205–213,

January 2002.

[SBC02] H. Z. Shouval, M. F. Bear, and L. N. Cooper. A unified model

of NMDA receptor-dependent bidirectional synaptic plasticity.

Proc. Nat. Acad. of Sciences of the USA, 99(16):10831–10836,

August 2002.

[SBS05] D. Steinkraus, I. Buck, and P. Y. Simard. Using GPUs for

machine learning algorithms. In Proc. 8th Int’l Conf. Document

Analysis and Recognition, pages 1115–1120, 2005.

[SFM08] J. Schemmel, J. Fieres, and K. Meier. Wafer-Scale Integration

of Analog Neural Networks. In Proc. 2008 Int’l Joint Conf.

Neural Networks (IJCNN2008), pages 431–438, 2008.

[SHMS04] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann. A

Mixed-Mode Analog Neural Network Using Current-Steering

Synapses. Analog Integrated Circuits and Signal Processing,

38(2–3):233–244, Jan–Feb 2004.

[SHS95] M. Scholles, B. J. Hosticka, and M. Schwarz. Real-Time Appli-

cation of Biology-Inspired Neural Networks Using an Emulator

with Dedicated Communication Hardware. In Proc. 1995 IEEE

Int’l Symp. Circuits and Systems (ISCAS1995), pages 267–270,

1995.

[SKIO95] T. Shibata, H. Kosaka, H. Ishii, and T. Ohmi. A Neuron-MOS

Neural Network Using Self-Learning-Compatible Synapse Cir-

cuits. IEEEjssc, 30(8):913–922, August 1995.

206 BIBLIOGRAPHY

[ŠO03] J. Š́ıma and P. Orponen. General-Purpose Computation with

Neural Networks: A Survey of Complexity Theoretic Results.

Neural Computation, 15(12):2727–2778, December 2003.

[ST01] O. Sporns and G. Tononi. Classes of Network Connectivity and

Dynamics. Complexity, 7(1):28–38, sep–oct 2001.

[STE00] O. Sporns, G. Tononi, and G. M. Edelman. Connectivity and

complexity: the relationship between neuroanatomy and brain

dynamics. Neural Networks, 13(8):909–922, August 2000.

[Str97] B. Stroustrup. The C++ Programming Language, chapter 23,

page 712. Addison-Wesley, Reading, Mass., 1997.

[SVS+09] J. Strunk, T. Volkmer, K. Stephan, W. Rehm, and H. Schick.

Impact of Run-Time Reconfiguration on Design and Speed -

A Case Study Based on a Grid of Run-Time Reconfigurable

Modules inside a FPGA. In Proc. 2009 Int’l Symp. Parallel

and Distributed Processing Systems (IPDPS 2009), pages 1048–

1057, 2009.

[Tay03] J. G. Taylor. The CODAM model of Attention and Con-

sciousness. In Proc. 2003 Int’l Joint Conf. Neural Networks

(IJCNN2003), pages 292–297, 2003.

[TBS+06] J. Tomas, Y. Bornat, S. Säıgli, T. Lévi, and S. Renaud.

Design of a modular and mixed neuromimetic ASIC. In

Proc. 13th IEEE Int’l Conf. Electronics, Circuits, and Systems

(ICECS2006), pages 946–949, 2006.

[TH86] D. W. Tank and J. J. Hopfield. Simple “Neural” Optimization

Networks: an A/D Converter, Signal Decision Circuit, and a

Linear Programming Circuit. IEEE Trans. Circuits and Sys-

tems, 33(5):533–541, May 1986.

[THA+10] I. T. Tokuda, C. E. Han, K. Aihara, M. Kawato, and

N. Schweighofer. The role of chaotic resonance in cerebellar

learning. Neural Networks, 23(7):836–842, September 2010.

BIBLIOGRAPHY 207

[THGG07] C. Torres-Huitzil, B. Girau, and A. Gauffriau. Hardware/Soft-

ware Codesign for Embedded Implementation of Neural Net-

works. In Proc. Reconfigurable Computing: Architectures, Tools,

and Applications, 3rd Int’l Wkshp. (ARC 2007), pages 167–178,

2007.

[TL09] D. B. Thomas and W. Luk. FPGA Accelerated Simulation of

Biologically Plausible Neural Networks. In Proc. 17th IEEE

Symp. on Field Programmable Custom Computing Machines

(FCCM2009), pages 45–52, 2009.

[TMM+06] F. Tuffy, L. McDaid, M. McGinnity, J. Santos, P. Kelly, V. W.

Kwan, and J. Alderman. A time-multiplexing architecture for

inter-neuron communications. In Proc. 2006 Int’l Conf. Artifi-

cial Neural Networks (ICANN 2006), pages 944–952. Springer-

Verlag, 2006.

[TMS93] M. Tsodyks, I. Mitkov, and H. Sompolinski. Patterns of Syn-

chrony in Inhomogeneous Networks of Oscillators with Pulse

Interactions. Phys. Review Letters, 71(8):76–78, August 1993.

[TS01] P. H. E Tiesenga and T. J. Sejnowski. Precision of pulse-coupled

networks of integrate-and-fire neurons. Network: Computation

in Neural Systems, 12(2):215–233, May 2001.

[UPRS05] A. Upegui, C. A. Peña-Reyes, and E. Sanchez. An FPGA plat-

form for on-line topology exploration of spiking neural networks.

Microprocessors and Microsystems, 29(5):211–223, June 2005.

[UVCP98] A. Uncini, L. Vecci, P. Campolucci, and F. Piazza. Complex-

Valued Neural Networks with Adaptive Spline Activation Func-

tion for Digital Radio-Links Nonlinear Equalization. IEEE

Trans. Signal Processing, 47(2):505–514, February 1998.

[VA05] T. P. Vogels and L. F. Abbott. Signal Propagation and Logic

Gating in Networks of Integrate-and-Fire Neurons. J. Neuro-

science, 25(46):10786–10795, November 2005.

208 BIBLIOGRAPHY

[VMC+07] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs,

and R. Etienne-Cummings. A Multichip Neuromorphic System

for Spike-Based Visual Information Processing. Neural Compu-

tation, 19(9):2281–2300, September 2007.

[VMVC07] R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwen-

berghs. Dynamically Reconfigurable Silicon Array of Spiking

Neurons With Conductance-Based Synapses. IEEE Trans. Neu-

ral Networks, 18(1):253–265, January 2007.

[WCIS07] Hsi-Ping Wang, E. Chicca, G. Indiveri, and T. J. Sejnowski.

Reliable Computation in Noisy Backgrounds Using Real-Time

Neuromorphic Hardware. In Proc. 2007 IEEE Biomedical Cir-

cuits and Systems Conf. (BIOCAS2007), pages 71–74, 2007.

[WD08] J. H. B. Wijekoon and P. Dudek. Integrated Circuit Implemen-

tation of a Cortical Neuron. In Proc. 2008 IEEE Int’l Symp.

Circuits and Systems (ISCAS2008), pages 1784–1787, 2008.

[WF09] J. Wu and S. B. Furber. A Multicast Routing Scheme for a Uni-

versal Spiking Neural Network Architecture. Computer Journal,

53(3):280–288, March 2009.

[WL06] R. K. Weinstein and R. H. Lee. Architectures for high-

performance FPGA implementations of neural models. J. Neu-

ral Engineering, 3(1):21–34, March 2006.

[WNE97] W. C. Westerman, D. P. M. Northmore, and J. G. Elias.

Neuromorphic Synapses for Artificial Dendrites. Analog Inte-

grated Circuits and Signal Processing, 13(1–2):167–184, May–

June 1997.

[WNE99] W. C. Westerman, D. P. M. Northmore, and J. G. Elias. An-

tidromic Spikes Drive Hebbian Learning in an Artificial Den-

dritic Tree. Analog Integrated Circuits and Signal Processing,

18(2–3):141–152, February 1999.

[WR07] S. Welbourne and M. A. Lambon Ralph. Using parallel dis-

tributed processing models to simulate phonological dyslexia:

BIBLIOGRAPHY 209

The key role of plasticity related recovery. J. Cognitive Neuro-

science, 19(7), July 2007.

[YB09] Z. Yu and B. M. Baas. High Performance, Energy Efficiency,

and Scalability With GALS Chip Multiprocessors. IEEE Trans.

VLSI Systems, 17(1):66–79, January 2009.

[YC09] T. Yu and G. Cauwenberghs. Analog VLSI Neuromorphic Net-

work with Programmable Membrane Channel Kinetics. In Proc.

2009 IEEE Int’l Symp. Circuits and Systems (ISCAS 2009),

pages 349–352, 2009.

[YC10] T. Yu and G. Cauwenberghs. Analog VLSI Biophysical Neurons

and Synapses With Programmable Membrane Channel Kinet-

ics. IEEE Trans. Biomedical Circuits and Systems, 4(3):139–

148, June 2010.

[YMY+90] M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, M. Yamada,

and A. Masaki. Design, Fabrication and Evaluation of a 5-

inch Wafer Scale Neural Network LSI Composed of 576 Digi-

tal Neurons. In Proc. 1990 Int’l Joint Conf. Neural Networks

(IJCNN1990), pages 527–535, 1990.

[ZB06] K. A. Zaghloul and K. Boahen. A silicon retina that reproduces

signals in the optic nerve. J. Neural Engineering, 3(4):257–267,

December 2006.

