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Abstract 

During mitosis, accurate chromosome segregation is essential: gain or loss of genetic 

information can be detrimental to cell viability, or promote tumourigenesis.  The mitotic 

checkpoint (also known as the spindle assembly checkpoint or SAC) ensures accurate 

chromosome segregation by delaying cell cycle progression until accuracy can be 

guaranteed.  Mps1 is a protein kinase that is crucial for mitotic checkpoint signalling and 

also for proper chromosome alignment at metaphase.  However, the precise role of Mps1’s 

catalytic activity is still unclear.  Here, I present AZ3146, a novel small molecule inhibitor 

of Mps1.  AZ3146 inhibits recombinant Mps1 in vitro with an IC50 of ~35 nM, and has low 

activity against a panel of 50 kinases, suggesting a good degree of selectivity.  As 

predicted for an Mps1 inhibitor, AZ1346 treatment led to spindle checkpoint malfunction 

in cells, accelerated mitotic timing, and perturbed the kinetochore localisation of the 

checkpoint effector Mad2.  AZ3146 has a negative effect on cell viability, suggesting it 

leads to detrimental missegregations.  Thus, the cellular effects of AZ3146 are consistent 

with Mps1 inhibition, and I was able to use the compound confidently as a tool to further 

probe the role of Mps1 activity in cells. 

Strikingly, levels of Mps1 increased at unattached kinetochores following inhibition 

of its kinase activity, suggesting Mps1’s kinetochore localisation is regulated by its own 

activity.  A kinase-dead GFP-Mps1 fusion protein only accumulated at kinetochores in the 

absence of endogenous, active Mps1, implicating intra-molecular interactions in regulation 

of Mps1’s kinetochore localisation.  I confirm a role for Mps1 in the mechanism of 

chromosome alignment, but in contrast to previous reports I did not detect a decrease in 

Aurora B activity following Mps1 inhibition.  On the contrary, both Mps1’s 

phosphorylation status and its kinetochore localisation were affected by treatment with the 

Aurora B inhibitor ZM447439, placing Mps1 downstream of Aurora B.  As an alternative 

explanation for the alignment defect in cells with reduced Mps1 activity, I found that levels 

of the plus-end directed kinesin Cenp-E were markedly decreased at unaligned 

kinetochores.  I propose a model in which catalytically active Mps1’s auto-release from 

kinetochores simultaneously promotes both mitotic checkpoint signalling and chromosome 

alignment by facilitating Mad2 dimerisation and Cenp-E binding at unattached 

kinetochores. 
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1 | Introduction 

Successful progression through the cell cycle requires control mechanisms.  Protein 

phosphorylation controls many aspects of cell biology, and some 518 protein kinases are 

present in the human kinome (Manning et al., 2002).  Many of these are implicated in 

control of cell cycle progression.  This thesis focuses one of these kinases: Mps1 

(Monopolar Spindle 1) (Weiss and Winey, 1996).  Mps1 is involved in regulation of the 

mitotic checkpoint (otherwise known as the spindle assembly checkpoint or SAC), a 

critical control mechanism that ensures the genome is partitioned equally between the two 

new daughter cells during cell division.  This introduction will firstly place Mps1’s role in 

context by describing mitosis and its control, focusing on the mitotic checkpoint (otherwise 

known as the spindle assembly checkpoint), which controls anaphase onset, and the 

relationship between the mitotic checkpoint, aneuploidy and cancer.  I will also outline the 

mechanism of chromosome alignment, the roles that kinases play in regulating all of these 

processes, and our current understanding of Mps1’s role in mitosis. 

1.1 | Mitosis – a brief synopsis 

Mitosis, during which the cell divides to produce two new, genetically identical 

daughter cells, is the final stage of the mammalian cell cycle (see Figure 1.1), and could be 

called the most visually spectacular.  Perhaps partly for this reason, it has been a source of 

intense fascination for scientists since the advent of microscopy allowed it to be observed.  

The term mitosis was coined by Walther Flemming (Flemming, 1882), an important figure 

in the newly emerging field of cell biology (reviewed in Paweletz, 2001).  Flemming made 

detailed drawings and classified cells as they progressed through mitosis, identified the 

‘chromatin’ by its propensity to take up dyes, and noted the formation of ‘thread-like’ 

structures which were divided between the two daughter cells; these were later individually 

called ‘chromosomes’ by Heinrich Waldeyer in 1888.  These observations eclipsed the 

theory of de novo ‘free cell formation’ that had previously found favour among his 

contemporaries, and formed the basis for the study of mitosis as we know it today. 

Thanks to more than 120 years of research, we now have a much fuller 

understanding of the process of mitosis.  However, mitosis is still commonly split into six 

distinct phases based largely on cell morphology visible to the early cell biologists  
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The Cell Cycle

G1

S

G2

M

Figure 1.1 The eukaryotic cell cycle
In somatic cells, the cell cycle comprises 4 distinct stages: Gap phase 1 (G1), DNA synthesis phase (S) dur-
ing which the genome is replicated, Gap phase 2 (G2) and mitosis (M), when the cell divides and the
genome is partitioned between two daughter cells. Phases G1, S and G2 are also collectively known as
interphase.
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(reviewed in Pines and Rieder, 2001; Scholey et al., 2003), which are illustrated in Figure 

1.2.  After duplicating that genetic material and centrosomes (microtubule organising 

centres that will become the poles of the mitotic spindle; called spindle pole bodies [SPBs] 

in yeast) in the preceding DNA synthesis phase (S phase), a cell proceeds through Gap 

Phase 2 (G2) and, if the DNA is properly replicated, enters the first stage of mitosis, 

prophase.  In prophase, the chromosomes (consisting of two identical chromatids) 

condense, the centrosomes begin to separate and move towards opposite ends of the cell, 

and the nuclear envelope fragments.  It is during mid-prophase that the cell becomes 

irreversibly committed to mitosis (Pines and Rieder, 2001).  Higher eukaryotes undergo an 

open mitosis, in which the nuclear envelope disintegrates early in mitosis, whereas in fungi 

the nuclear envelope remains intact throughout (De Souza and Osmani, 2007).  In higher 

eukaryotes, nuclear envelope breakdown signals the beginning of prometaphase.  The 

bipolar spindle forms, and chromosomes can now make contact with its microtubules.  

Stable attachments form between the microtubules and the kinetochore, a specialised 

proteinaceous structure that forms adjacent to the centromeric DNA on each paired 

chromatid.  When all chromosomes have become stably attached, via the kinetochore, to 

microtubules emanating from both spindle poles (biorientation), and aligned at the cell 

equator forming a so-called ‘plate’ of DNA, metaphase is reached.  After a brief delay, 

anaphase is initiated, and the sister chromatids are pulled apart towards opposite spindle 

poles, which also move further apart.  In telophase, the nuclear envelope reforms around 

the decondensing segregated chromatids, and the cleavage furrow begins to ingress, 

constricting the spindle midzone.  After telophase, as mitosis ends, cytokinesis occurs.  

This process enables partitioning of the cytoplasm into two daughters and their subsequent 

physical separation. 

1.2 | Regulation of mitosis: Cdk1 as the master regulator 

Progression through the cell cycle must be controlled to ensure the correct event 

sequence.  To achieve this, eukaryotic cells have evolved molecular control mechanisms 

involving posttranslational modification and targeted degradation.  The master regulators 

of the eukaryotic cell cycle are the cyclin-dependent kinases (Cdks), whose activity 

oscillates during the cell cycle due to a dependence upon association with their regulatory 

subunits, cyclins.  Cyclin levels are regulated by transcription and proteasome-dependent 

degradation throughout the cell cycle, so that different cyclin/Cdk pairings are active at 

specific points.  Phosphorylation of cyclin/Cdk substrates regulates the major events in, 

and passage through, mitosis and interphase (Vermeulen et al., 2003).  In budding yeast, 

only one Cdk binds to all types of cyclin, whereas in vertebrate cells, there are 4 Cdks 

involved in cell cycle regulation. 
12



Interphase (G2)

1.Prophase

2.Prometa-
phase

3.Metaphase 4.Anaphase

5.Telophase

6.Cytokinesis

Interphase (G1)

S phase

Figure 1.2 Mitosis in a higher eukaryotic cell
This schematic depicts the phases of mitosis in the context of the metazoan cell cycle. The 6 phases of mito-
sis, as determined by cell morphology, are labelled in red. A G2 cell enters mitosis having replicated its
genome (giving it a 4N complement of chromosomes) and its centrosome. In prophase, the first phase of
mitosis, the chromatin condenses, the kinetochores mature adjacent to the centromeres, the nuclear envelope
begins to break down, and the two centrosomes, which will become the poles of the mitotic spindle, move
apart. Prometaphase begins after nuclear envelope breakdown (NEB). The bipolar mitotic spindle forms,
and its dynamic microtubules capture the chromosomes through a stochastic process. Metaphase is reached
when all chromosomes are attached, via the kinetochores, to microtubules emanating from both poles of the
spindle (biorientation). Chromosomes form a metaphase plate at the cell equator. After a brief metaphase
delay, anaphase is initiated. Sister chromatids are separated by the action of the mitotic spindle and move
toward opposite spindle poles. The spindle poles themselves also move further apart. In telophase, the
nuclear envelope reforms around the decondensing segregated chromatin. The cleavage furrow begins to
ingress through contraction of the actomyosin contractile ring, constricting the spindle mid-zone. In
cytokinesis, the cytoplasm is partitioned into the two new daughter cells, which then separate completely.
After mitosis, cells enter G1 phase of the next cell cycle. Cycling cells will then replicate their DNA and re-
enter G2, before dividing again.

Cytoplasm
Nuclear membrane
Nucleus

Plasma membrane

Centrosome
Microtubule

Chromosome

Kinetochore region

2N4N
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In vertebrate cells, the initiation of mitosis is thought to be triggered by Cdk2/cyclin 

A activity (De Boer et al., 2008; Furuno et al., 1999).  Cdk2/cyclin A activity declines as 

cyclin A is degraded after nuclear envelope breakdown (NEBD) (den Elzen and Pines, 

2001; Wolthuis et al., 2008).  During late G2/early mitosis, Cdk2/cyclin A promotes the 

accumulation and activity of Cdk1/cyclin B, the major mitotic cyclin/Cdk pairing 

(Lindqvist et al., 2009).  The activity of Cdk1/cyclin B is essential for mitotic progression: 

a substantial increase in its activity represents a point-of-no-return for the cell (Pines and 

Rieder, 2001).  Cdk1 is active from prophase until metaphase, at which point the mitotic 

checkpoint is silenced and cyclin B is targeted for destruction by the proteasome (see 

Section 1.4).  Multiple feedback loops govern Cdk1/cyclin B activity, ensuring its rapid 

activation in early mitosis, and subsequent deactivation (reviewed in Lindqvist et al., 

2009), which is necessary for anaphase onset and mitotic exit.  Using a Förster resonance 

energy transfer  (FRET) sensor to monitor the net amount of Cdk1/cyclinB substrate 

phosphorylation in living cells, Gavet and colleagues (2010b) showed that Cdk1/cyclin B 

is activated in prophase, and reaches maximal activity shortly after NEBD.  Its substrates 

remain maximally phosphorylated through prometaphase and metaphase until anaphase 

onset, when they are rapidly dephosphorylated (Gavet and Pines, 2010b).  In anaphase, 

phosphatase activity is critical to remove phosphates from Cdk1/cyclin B’s substrates and 

facilitate mitotic exit: in yeast, this function is carried out by Cdc14 (Amon, 2008), and in 

human cells, a probable candidate for the job is protein phosphatase 1 (PP1) (Gavet and 

Pines, 2010b; reviewed in Queralt and Uhlmann, 2008; Wu et al., 2009), which itself is 

phosphorylated and kept inactive by Cdk1 before anaphase onset (Dohadwala et al., 1994; 

Kwon et al., 1997; Wu et al., 2009). 

Cdk1/cyclin B activity is both temporally and spatially regulated: just prior to 

nuclear envelope breakdown (NEBD) it is transported from the cytoplasm into the nucleus 

(Pines and Hunter, 1991).  The increase in the rate of Cdk1/cyclin B import into the 

nucleus is dependent upon its continual activity, which is thought to mediate an increase in 

the rate of nuclear import, by an as yet undetermined mechanism (Gavet and Pines, 2010a).  

Cdk1/cyclin B phosphorylates numerous substrates in mitotic cells, both cytoplasmic and 

nuclear.  Some of Cdk1/cyclin B’s substrates are involved in orchestrating the massive 

cellular rearrangements seen in mitosis.  For example, in prophase, Cdk1/cyclin B 

activation triggers cell rounding and centrosome separation, likely by phosphorylation of 

cytoskeletal components (Gavet and Pines, 2010b).  As well as the cytoskeleton, 

Cdk1/cyclin B is known to phosphorylate components of the Golgi apparatus (e.g. Lowe et 

al., 1998), the nucleolus (Peter et al., 1990a; Sirri et al., 2002), nuclear lamins (Peter et al., 
14



 

1990b; Ward and Kirschner, 1990) caspases (Allan and Clarke, 2007), and amongst many 

others.  Numerous mitotic Cdk1 substrates have been identified on purified mitotic 

spindles (Nousiainen et al., 2006), in whole cell lysates (Dephoure et al., 2008) or by 

covalent capture of labelled substrates (Blethrow et al., 2008).  Many of these substrates 

are uncharacterised candidates, and suggest many as-yet unknown roles for Cdk1 

phosphorylation in the coordination of mitotic events. 

To drive human cells into and through mitosis, Cdk1/cyclin B functions in 

combination with several other mitotic kinases, including Aurora A and Plk1.  Aurora A, a 

centrosomal serine/threonine kinase, promotes centrosome maturation and timely 

progression of early mitosis by contributing to Cdk1/cyclin B localisation and its full 

activity, and also promotes formation of a functional, bipolar mitotic spindle (reviewed in 

Barr and Gergely, 2007).  Polo-like kinase 1 (Plk1), a serine/threonine kinase with multiple 

mitotic functions, also promotes progression through early mitosis, perhaps by 

participating in Cdk1/Cyclin B activation feedback loops (Lindqvist et al., 2009), or, as has 

been recently suggested, by promoting mitotic entry upstream of Cdk1/cyclin B activation 

(Gavet and Pines, 2010b).  Plk1 also has a role in centrosome maturation and participates 

in cytokinesis, promoting contraction of the actomyosin contractile ring by activating Rho 

GTPase (reviewed in Archambault and Glover, 2009; Petronczki et al., 2008).  The role of 

Plk1 at the kinetochore is discussed in Section 1.7. 

1.3 | Ubiquitin-mediated proteolysis: regulating the regulators 

The rapid, targeted proteolysis of mitotic regulators including cyclin A, cyclin B, 

Aurora A and Plk1 is critical to drive the orderly progression of events from prometaphase 

to mitotic exit (Pines, 2006).  This targeted proteolysis is achieved by the ubiquitin-

proteasome system (Hershko and Ciechanover, 1998).  Proteins tagged with polyubiquitin 

chains (covalently linked molecules of a small protein, ubiquitin) are recognised and 

selectively degraded by the constitutively active 26S proteasome, a multisubunit protease.  

Ubiquitinylation requires a chain of 3 enzymes: a ubiquitin-activating enzyme (E1); a 

ubiquitin-conjugating enzyme (E2) and finally a ubiquitin ligase (E3), which is responsible 

for targeting of specific proteins for degradation.  The E3 enzyme active in mitosis is 

called the anaphase-promoting complex/cyclosome (APC/C).  The APC/C is a very large, 

megadalton multisubunit complex that requires a co-activator to simultaneously activate 

the enzyme and convey substrate specificity (Peters, 2006).  APC/C substrates are 

recruited to the complex via the co-activator subunit if they contain either a destruction-

box (D-box) or a KEN-box motif.  In mitosis, the APC/C associates with 2 different co-

activators, Cdc20 and Cdh1.  Pre-anaphase degradation depends upon APC/CCdc20, since 
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Cdk1 phosphorylation stimulates Cdc20 binding to the APC/C (Kraft et al., 2003), and also 

prevents Cdh1 and APC/C from interacting (Crasta et al., 2008; Zachariae et al., 1998).   

Recent advances have explained a previously puzzling paradox concerning pre-

anaphase, APC/CCdc20-mediated degradation of cyclin A.  It is well accepted that primary 

target of the mitotic checkpoint is the APC/CCdc20.  The checkpoint delays anaphase onset 

by preventing APC/CCdc20-mediated degradation of securin and cyclin B during 

prometaphase (for detail of the checkpoint mechanism, see below).  The Cdc20-dependent, 

but not mitotic checkpoint-dependent, degradation of cyclin A from NEBD has now been 

explained by the discovery of a novel, checkpoint-independent mode of APC/CCdc20 

substrate recognition.  Cyclin A is degraded through interaction of cyclin A, Cdc20 and a 

Cdk1/cyclin B accessory unit, Cks, and is recruited to the APC/C before checkpoint 

activation (Wolthuis et al., 2008).  Thus, though the APC/CCdc20 is kept inactive in 

prometaphase towards specific substrates by the mitotic checkpoint, it is still active 

towards cyclin A, the degradation of which is necessary for mitotic progression.   

1.4 | Control of anaphase onset 

1.4.1 | The mitotic checkpoint 

Regulation of the APC/CCdc20 is critical to ensure the correct timing of anaphase.  In 

prometaphase, each pair of sister chromatids must become attached, via the kinetochore, to 

microtubules emanating from both spindle poles.  Biorientation ensures that at anaphase, 

the chromatids are evenly split between the two daughters.  The process of kinetochore-

microtubule attachment is stochastic: it depends upon random chance encounters between 

the dynamic microtubules of the mitotic spindle and the kinetochore, and while cells have 

evolved ways of increasing the likelihood of stable kinetochore-microtubule attachment 

formation (see Section 1.6), the nature of the process means that the duration of 

prometaphase can vary from cell to cell (Rieder et al., 1994).  In order to prevent 

chromosome loss or gain due to the premature initiation of anaphase before all 

chromosomes are properly aligned and bioriented on a metaphase plate, cells employ the 

mitotic checkpoint.  The checkpoint is a surveillance mechanism that is active from 

prometaphase until the last chromosome is correctly attached and aligned at the metaphase 

plate (Rieder et al., 1995).  The target of checkpoint signalling is widely accepted to be the 

APC/CCdc20: more specifically, its ubiquitination of cyclin B and securin (for review, see 

Musacchio and Salmon, 2007; Zich and Hardwick, 2010).  The active mitotic checkpoint 

prevents the polyubiquitination and subsequent proteasome-dependent degradation of 

cyclin B and securin (see Figure 1.3). 
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1.4.2 | The checkpoint prevents destruction of cyclin B and securin 

Cyclin B is the activating partner of Cdk1.  High Cdk1 activity facilitates progression 

through prophase and prometaphase, and its targets must be dephosphorylated to promote 

anaphase, telophase, cytokinesis and mitotic exit.  Seminal work in Xenopus egg extracts 

pointed to the importance of the fall in cyclin levels in regulating mitotic exit in the 

embryonic cell cycle (Murray and Kirschner, 1989); moreover, Murray and colleagues 

showed that a proteolysis-resistant mutant form of cyclin B (CYCΔ90) prevented mitotic 

exit in cycling egg extracts and intact eggs (Glotzer et al., 1991; Murray et al., 1989).  

Later, Holloway et al (1993) discovered that non-destructible cyclin B did not prevent the 

chromatids from separating, though they did not decondense: this, along with the discovery 

that inhibition of ubiquitin-mediated proteolysis could stop chromatid disjunction, clearly 

indicated that at least one other protein, in addition to cyclin B, must be degraded to allow 

chromatids to separate at anaphase.  Studies in yeast identified Securin as an inhibitor of a 

protease called separase, which is required to cleave the mediators of chromatid cohesion, 

cohesins (reviewed in Nasmyth, 2002).  During prophase, cohesion dissolves along the 

length of the chromosome arms via a mechanism thought to involve phosphorylation by 

Plk1 (Hauf et al., 2005; Sumara et al., 2002), but centromeric cohesion is resistant to 

prophase removal.  Separase-mediated cohesin cleavage is necessary for resolution of the 

sister chromatids at anaphase.  By targeting both Cyclin B and securin, the checkpoint 

maintains the early mitotic environment until all chromosomes are aligned, and ensures 

anaphase spindle behaviour and chromatid disjunction are perfectly synchronised, thereby 

promoting accurate DNA segregation and the production of viable, genetically identical 

diploid daughters.   

1.4.3 | Components of the checkpoint 

Several decades before the molecular targets of the mitotic checkpoint were 

discovered, microtubule disruption by treatment with drugs such as colcemid (which 

depolymerises tubulin) was understood to block cells in mitosis through damage to the 

mitotic spindle (reviewed in Rieder and Palazzo, 1992).  Checkpoint mechanisms, which 

were thought to govern progression through mitosis (e.g. Hartwell and Weinert, 1989), 

were considered likely to mediate this mitotic block.  In the early 1990s, genetic analysis 

of mutant budding yeast strains that failed to arrest in mitosis after treatment with 

benzimidizole (another microtubule depolymerising agent) identified three genes, named 

the budding uninhibited by benzimidizole (BUB1-3) genes (Hoyt et al., 1991; Roberts et 

al., 1994).  A parallel study identified three mitotic arrest deficient (MAD1-3) genes by 
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similar methods (Li and Murray, 1991).  It later became evident that Bub2 was part of the 

budding yeast mitotic exit network (MEN, Wang et al., 2000), but Bub1, Bub3, Mad1, 

Mad2 and Mad3 (or BubR1 in humans), along with Mps1 (Weiss and Winey, 1996), are 

considered core components of the checkpoint (e.g. May and Hardwick, 2006; Taylor et 

al., 2004).  Both Bub1 and Mps1 are protein kinases in lower and higher eukaryotes 

(Abrieu et al., 2001; Lauze et al., 1995; Mills et al., 1992; Roberts et al., 1994; Taylor et 

al., 1998; Taylor and McKeon, 1997), whereas Mad1 and Mad2 do not possess enzymatic 

activity (Li and Murray, 1991).  In human cells, Mad3 has no known homologue.  

However, human cells contain BubR1, a kinase related to both Saccharomyces cerevisiae 

Bub1 and Mad3, which requires binding to non-enzymatic Bub3 to localise it to 

kinetochores (Taylor et al., 1998).   

In addition to these original checkpoint proteins, several new regulators of the 

checkpoint have been identified.  Some of these have no obvious homologues in yeast, 

pointing to the additional complexity of the mitotic checkpoint in higher eukaryotes.  Such 

proteins include Rod and Zeste-white 10 (ZW-10), part of the Rod-ZW10-Zwilch (RZZ) 

complex, which was first described in Drosophila melanogaster and is conserved in 

humans (Basto et al., 2000; Chan et al., 2000; reviewed in Karess, 2005; Williams et al., 

2003).  The RZZ complex is required for Mad1 and Mad2 to localise to kinetochores 

(Buffin et al., 2005; Kops et al., 2005) and is therefore important for checkpoint function 

(see below).  In addition, the kinetochore microtubule motor Cenp-E may play a role in 

checkpoint signalling in vertebrates (Mao et al., 2003).  Aurora B, a mitotic kinase, may 

also have a direct role in the mitotic checkpoint in yeast and higher eukaryotes (see Section 

1.4.8). 

1.4.4 | The kinetochore and checkpoint signalling 

Kinetochores are specialised proteinaceous structures which assemble at the 

beginning of mitosis adjacent to the centromeric DNA.  Kinetochores form the point of 

attachment for microtubules of the mitotic spindle, and their ultrastructure has long been 

the subject of study (e.g. Jokelainen, 1967).  Electron microscopy on samples from cells 

treated with a microtubule-depolymerising drug showed that unattached kinetochores have 

a fibrous outer corona region extending away from the outer plate (Dong et al., 2007; 

McEwen et al., 1998).  The outer plate undergoes rearrangement on contact with 

microtubules, and is directly connected to an inner kinetochore region, which contacts the 

chromatin (see Figure 1.4). 
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Figure 1.4 The vertebrate centromere and kinetochore region.
On the left is a mitotic chromosome, with one unattached kinetochore (left) and one attached kinetochore
(right). When visualised by electron microscopy, the centromere and kinetochore region appears as illustrat-
ed in the schematic. The inner centromere is the region of DNA (and associated proteins) between the two
kinetochores. The inner kinetochore (orange) contacts the centromeric DNA, and the outer kinetochore (red)
forms adjacent to it and provides binding sites for microtubules (MTs). The unattached kinetochore has a
clearly visible fibrous corona, where checkpoint proteins and kinetochore-associated motor proteins localise.

20



 

 

The trilaminar ultrastructure of the proteinaceous kinetochore region appears to 

reflect functionally distinct regions. The inner kinetochore region contains proteins that 

associate constitutively with the centromeric DNA, such as the histone variant Cenp-A 

(abbreviated from centromeric protein A), which forms the nucleosomes at centromeres 

and is critical for kinetochore specification in higher eukaryotes (Foltz et al., 2006).  In 

vertebrates, Cenp-A associates with 13 other proteins (Cenp-H, Cenp-I and Cenp-K to 

Cenp-U) collectively known as the constitutive centromere-associated network (CCAN) 

(Cheeseman and Desai, 2008).  The proteins of the inner kinetochore region form the 

platform for outer kinetochore assembly.  The outer kinetochore region contains a 

conserved multisubunit complex known as the KNL network (KNL1-Mis12 complex-

Ndc80/Hec1 complex) and Zwint.  This region (specifically the Ndc80/Hec1 complex) 

forms the primary binding site for spindle microtubules (Cheeseman et al., 2006; DeLuca 

et al., 2006; Guimaraes et al., 2008) and also provides binding sites for constituents of the 

outermost kinetochore region, the fibrous corona.  This is where core checkpoint signalling 

molecules are enriched, including the Mads, Bubs, and Mps1.  It also contains the RZZ 

complex, Cenp-F, and the kinetochore-based motor proteins Cenp-E and Dynein-dynactin 

(Musacchio and Salmon, 2007).   

The link between the kinetochore and mitotic checkpoint signalling was strengthened 

by elegant experiments in cultured marsupial Potoroo tridactylis kidney cells (Ptk1 cells).  

Rieder and colleagues filmed cells going through mitosis and noted that cells delayed 

anaphase until the last chromosome became bioriented and congressed to the metaphase 

plate (1994).  Furthermore, a subsequent report showed that laser ablation of the last 

remaining unattached kinetochore in a prometaphase cell allowed anaphase to commence 

in the presence of the laser-ablated unaligned chromosome, leading the authors to conclude 

that the unattached kinetochore must have been creating a diffusible signal to restrain 

anaphase (Rieder et al., 1995).   

The localisation of all vertebrate checkpoint proteins to the kinetochore in mitosis, 

and the depletion of these proteins from kinetochores after biorientation further supported 

a key role for this structure (Chen et al., 1998; Chen et al., 1996; Li and Benezra, 1996; 

Taylor et al., 1998; Taylor and McKeon, 1997).  Furthermore, the vertebrate proteins 

Bub1, BubR1 and Mps1 are all kinases (Abrieu et al., 2001; Mills et al., 1992; Taylor et 

al., 1998; Taylor and McKeon, 1997), making these enzymes candidates for production of 

the diffusible checkpoint signal via a phosphorylation signalling cascade.  Kinetochores 

were already known to contain phosphorylated species: a study using an antibody towards 

an unknown phosphoepitope (known as 3f3/2) reported kinetochore staining in PtK1 cells 
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(Gorbsky and Ricketts, 1993).  Gorbsky and Ricketts (1993) showed that not only did this 

antibody stain kinetochores in a phosphorylation-dependent manner, but it preferentially 

stained the kinetochores of unaligned chromosomes, suggesting these chromosomes were 

more highly phosphorylated compared to those that had already achieved biorientation.  

While we now know more about the kinases contributing to kinetochore phosphorylation 

(e.g. those discussed in Section 1.7), the precise molecular details are far from being fully 

understood.   

1.4.5 | Inhibition of the APC/C by mitotic checkpoint complexes 

A great deal of effort has been focused on understanding how the checkpoint 

prevents anaphase onset by inhibiting APC/CCdc20.  Early observations showed that Mad2 

was associated with the APC/C in mitotic HeLa cells, and could inhibit cyclin B 

ubiquitination in Xenopus egg extracts (Li et al., 1997), suggesting Mad2 might mediate 

the checkpoint’s effect by directly inhibiting the activation of APC/CCdc20.  A recombinant 

tetrameric form of human Mad2 was subsequently shown to bind directly to Cdc20 and 

inhibit APC/C activity in vitro (Fang et al., 1998), giving rise to the idea that Mad2 is a 

downstream effector of the mitotic checkpoint signalling network.  Furthermore, if the 

interaction between Cdc20 and Mad2 was perturbed in budding or fission yeast, cells lost 

checkpoint function (Hwang et al., 1998; Kim et al., 1998).  A similar role was also 

described for BubR1: BubR1 and Bub3 co-purified with Cdc20 from mitotic HeLa cell 

extracts could inhibit APC/C in vitro at approximately physiological concentrations 

independent of its kinase activity, making it a more potent inhibitor than tetrameric Mad2 

(Fang, 2002; Tang et al., 2001).  The binding of Mad2 and BubR1 to Cdc20, the APC/C 

coactivator, suggested the checkpoint may function by simply sequestering the coactivator 

away from APC/C and thereby preventing it from ubiquitinating securin and cyclin B. 

An important study by Sudakin and co-workers (2001) identified and named the 

mitotic checkpoint complex (MCC), which comprised Mad2, Bub3, BubR1 and Cdc20.  

This complex, which was isolated from mitotic HeLa cells, potently inhibited the APC/C.  

Biochemical analysis has indicated that the MCC can exist alone or bound to the APC/C 

itself (Morrow et al., 2005; Sudakin et al., 2001).  The structure of the human APC/C in 

complex with the entire MCC has been reported (Herzog et al., 2009), providing 

confirmation that the MCC can directly inhibit APC/C, rather than simply sequestering 

Cdc20.  This is in agreement with data from S. cerevisiae showing that Mad3 (related to 

BubR1) is a pseudo-substrate inhibitor of the APC/C (Burton and Solomon, 2007), 

meaning it is recognised by APC/CCdc20 and binds tightly, precluding the ubiquitination of 

true substrates. 
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A recent study by Kulukian and colleagues (Kulukian et al., 2009) also provided 

evidence against simple sequestration.  The authors reconstituted a system of checkpoint-

mediated APC/C inhibition by using purified chromosomes as a source of unattached 

kinetochores, plus purified checkpoint components.  This provided a highly manipulable 

system for analysis of the level of APC/C inhibition produced under different conditions.  

Kulukian et al found that unattached kinetochores had a catalytic effect on the production 

of an APC/C inhibitor from purified checkpoint proteins.  This inhibitor could be formed 

by preincubation of Bub3, BubR1, Mad2, and Cdc20 with chromosomes, followed by 

incubation of this mixture with APC/C.  Importantly, it could also equally effectively 

inhibit APC/C with Cdc20 pre-bound compared to APC/C without Cdc20, demonstrating 

non-sequestration mediated inhibition, in keeping with previous reports (Morrow et al., 

2005; Sudakin et al., 2001).  Notably, Kulukian et al (2008) did not find evidence to 

support the existence of an true MCC consisting of Bub3-BubR1, Mad2 and Cdc20 as 

others have reported: rather, the authors showed by size-exclusion chromatography of 

inhibitor-containing complexes that the majority of Cdc20 was bound to BubR1-Bub3, 

with very little Mad2 present (Kulukian et al., 2009), in keeping with a previous report 

(Nilsson et al., 2008).  The quaternary MCC may exist as a transient intermediate.  

Importantly however, Mad2 is a critical regulator of first steps of kinetochore mediated 

checkpoint signalling – see description of the Mad2 template model in Section 1.4.6. 

Since a single unattached kinetochore can sustain anaphase arrest, the checkpoint-

derived inhibitor has always been thought to be diffusible, at least within the spindle 

vicinity (Rieder et al., 1997).  Kulukian et al (2009) presented evidence that unattached 

kinetochores can indeed create a soluble, diffusible inhibitor of the APC/C: removal of 

chromosomes after inhibition with Bub3, BubR1, Mad2 and Cdc20 resulted in the 

production of an equally effective APC/C inhibitor as when the chromosomes were left in.  

Taken together with the above data, this implies that the checkpoint is capable of inhibition 

of APC/CCdc20 directly, and also by production of a soluble inhibitor complex.  This 

soluble inhibitor may function partly by sequestering Cdc20, since APC/C without any 

bound coactivator has been shown to exist in cells with an active checkpoint (Herzog et al., 

2009).  However, evidence suggests that an APC/C-bound pseudosubstrate-like inhibitor is 

an important product of mitotic checkpoint signalling.  Interestingly, Cdc20’s 

ubiquitination (via APC/C) and degradation has been shown to be required for checkpoint 

activity, adding another facet to the function of the Cdc20-containing inhibitory complex 

(Nilsson et al., 2008).   

This section has summarised current ideas regarding the identity of the APC/C 

inhibitor, the end-point of mitotic checkpoint signalling.  As detailed earlier, the 
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kinetochore, where all checkpoint components localise, is considered important for 

checkpoint signalling to create this APC/C inhibitor, which is likely to comprise BubR1, 

Bub3 and Cdc20, with or without Mad2.  The following section will address the role of 

kinetochores as catalytic platforms for checkpoint signal generation. 

1.4.6 | The Mad2 template model 

A kinetochore-based model for checkpoint signalling has developed, built on several 

years’ worth of biochemical, structural and cell-based data.  In this model, the kinetochore 

provides a catalytic scaffold for production of an APC/C inhibitor.  Fixed-cell analysis had 

shown that Mad2 localised to unattached kinetochores produced by treatment with the 

microtubule-depolymerising agent nocodazole (Chen et al., 1996; Waters et al., 1998).  

Subsequently, Howell and colleagues (2000) made a key observation in the development 

of the kinetochore-based signalling theory: they found that Mad2 is not stable at 

unattached kinetochores, but dynamic.  This important observation helped firmly establish 

the idea that kinetochores somehow signalled their lack of proper attachment to the cytosol 

via Mad2.  In subsequent studies, Cdc20, BubR1, Bub3 and Mps1 were also found to flux 

on and off unattached kinetochores, whereas Mad1 and Bub1 were relatively stable 

components (Howell et al., 2004; Shah et al., 2004).  Thus, all components of the MCC 

(plus Mps1) cycle on and off kinetochores, strengthening the idea that the kinetochore 

functions as a catalytic platform. 

An intriguing observation was made during the analysis of Mad2 dynamics.  Mad2 

apparently existed in two separate, equally-sized pools: one pool was stably associated 

with unattached kinetochores, and one rapidly exchanging with the cytosol (Shah et al., 

2004).  In addition to binding Cdc20 (Fang et al., 1998; Hwang et al., 1998; Kim et al., 

1998; Luo et al., 2000), Mad2 binds tightly to Mad1, and this interaction is required for 

Mad2’s kinetochore localisation (Chen et al., 1999; Chen et al., 1998; Chung and Chen, 

2002; Sironi et al., 2002).  The existence of both free, non-Mad1-associated and also 

stable, Mad1-bound forms of Mad2 was found to be necessary for checkpoint signalling in 

Xenopus egg extracts (Chung and Chen, 2002).  These data led to the idea that Mad1 

recruits Mad2 to kinetochores in order to hand it over to Cdc20, a key step in formation of 

the MCC or MCC-like APC/C inhibitor complexes. 

Structural and biochemical data shed more light on the nature of the Mad1-Mad2 

interaction, and how this might mediate checkpoint signalling.  Mad2 binds Cdc20 and 

Mad1 mutually exclusively (Luo et al., 2002; Sironi et al., 2002), and the two ligands share 

10-residue Mad2 binding sites despite being otherwise structurally quite dissimilar (Luo et 

al., 2002).  On binding either Mad1 or Cdc20, Mad2 undergoes substantial structural 
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rearrangement, changing from an inactive, open conformation (O-Mad2), to an active, 

closed conformation (C-Mad2) through movement of the ‘safety belt’ domain (Luo et al., 

2000; Luo et al., 2002; Luo et al., 2004; Sironi et al., 2002).  Thus, Mad1-bound Mad2 

exists in the closed conformation at the kinetochore, where it forms a tight tetrameric 

complex with a second pair of Mad1-C-Mad2 heterodimers (Sironi et al., 2002): this 

represents the stable, non-dynamic kinetochore pool of Mad2 (Shah et al., 2004).  The 

cytosolic dynamic pool of Mad2 is recruited to kinetochores as unbound O-Mad2 and 

handed over to Cdc20 (De Antoni et al., 2005b).  Since Mad2’s conversion from O-Mad2 

to active C-Mad2 is not trivial and occurs spontaneously only very slowly (Luo et al., 

2004; Simonetta et al., 2009), a pressing question presented itself: how can the kinetochore 

Mad1-C-Mad2 core complex catalyse the binding of soluble O-Mad2 to Cdc20, so that C-

Mad2-Cdc20 could be produced? 

This question was elegantly addressed by De Antoni et al (2005a), who proposed the 

Mad2 template model for initiation of checkpoint signalling (see Figure 1.5).  The authors 

analysed Mad1, Mad2 and Cdc20 binding in vitro and were able to show that C-Mad2 

bound to Mad1 forms a receptor for soluble O-Mad2.  The Mad1-C-Mad2 tetrameric 

‘template’ catalyses the conversion of soluble O-Mad2 to C-Mad2 bound to Cdc20, via 

dimerisation of C-Mad2 and O-Mad2.  This newly formed C-Mad2-Cdc20 is released from 

kinetochores, allowing the re-recruitment of more soluble O-Mad2, and explaining the 

dynamics of fluorescently tagged Mad2 at the kinetochore (Shah et al., 2004).  After 

release from the kinetochore, the C-Mad2-Cdc20 dimer could theoretically create an 

amplification loop in the cytosol, binding more O-Mad2 and catalysing the hand-over to 

Cdc20, though this remains unproven (De Antoni et al., 2005a; Musacchio and Salmon, 

2007).   

Aspects of the Mad2 template model have been reinforced by subsequent work.  

Structural studies and mapping of the C-Mad2-O-Mad2 interface are consistent with a 

model in which O-Mad2 selectively binds C-Mad2 and undergoes structural rearrangement 

to enable it to bind Cdc20, probably via an intermediate partially unfolded form (I-Mad2). 

(Mapelli et al., 2006; Mapelli et al., 2007; Yang et al., 2008).  Furthermore, reconstitution 

of checkpoint signalling with purified chromosomes and checkpoint components 

reinforced the necessity for direct interaction between kinetochores (with bound Mad1) 

and Mad2 for subsequent production of an APC/C inhibitor comprising BubR1, Bub3 and 

Cdc20 (Kulukian et al., 2009).  Mad2 homo-dimerisation was also essential for 

kinetochore-mediated amplification of APC/C inhibition in the reconstituted system 

(Kulukian et al., 2009), as demonstrated by the double point mutant Mad2RQ, which cannot 

dimerise (De Antoni et al., 2005a; De Antoni et al., 2005b).  
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Figure 1.5 The Mad2 template model
(A) Stable Mad1-C-Mad2 heterodimers localise to unattached kinetochores, and recruit cytosolic O-Mad2.
Conformational dimerisation between O-Mad2 and C-Mad2 facilitates its conversion to C-Mad2 bound to
Cdc20. Together with BubR1 and Bub3, C-Mad2-Cdc20 forms the mitotic checkpoint complex (MCC). The
MCC may both sequester Cdc20 away from APC/C and also bind directly to the APC/C, preventing it from
ubiquitinating cyclin B and securin. Note that the MCC (Cdc20, Mad2, BubR1 and Bub3) may only be tran-
siently formed: Mad2 may be released from the complex (not shown on schematic).
(B) Theoretically, cytosolic C-Mad2-Cdc20 can create an positive feedback loop, catalysing the conversion
of more O-Mad2 into C-Mad2-Cdc20, and thus amplifying the checkpoint signal.
(C) As microtubule occupancy increases, the minus end motor Dynein/dynactin strips Mad1 and Mad2 off
kinetochore, contributing to checkpoint silencing. Evidence suggests p31comet, a Mad2 antagonist and struc-
tural mimic, may be reactivated at metaphase and bind to C-Mad2, preventing Mad2 conformational
dimerisation and inactivating checkpoint signalling.
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A putative negative regulator of the Mad2 template model, p31comet, has been 

described.  Originally designated CMT2 (Habu et al., 2002), p31comet is a Mad2-binding 

protein and negative regulator of the checkpoint: RNAi-mediated knockdown of p31comet 

leads to a checkpoint-mediated arrest (Habu et al., 2002; Xia et al., 2004).  P31comet appears 

to act as antagonist of Mad2 activation by selectively binding C-Mad2 and competing with 

O-Mad2 for C-Mad2 binding (Mapelli et al., 2006; Vink et al., 2006; Xia et al., 2004).  

The crystal structure of the p31comet-Mad2 complex showed that p31comet is structurally 

very similar to Mad2, and binds C-Mad2 at its dimerisation interface, preventing Mad2 

conformational dimerisation by molecular mimicry (Yang et al., 2007a). In this way, 

p31comet prevents the formation of Mad2-Cdc20 and inactivates the checkpoint (see Figure 

1.5).   

Whilst the Mad2 template model is now relatively well supported, several questions 

remain.  For example, we do not know how exactly the dramatic Mad2 conformation 

change is brought about.  The O-Mad2 to C-Mad2-Cdc20 transition involves a massive 

structural alteration, plus the threading of a β-strand of Cdc20’s binding site through the β-

sheet of Mad2’s binding site, making a chain link-like structure (Mapelli et al., 2007; 

Sironi et al., 2002). Mad2 has been described as ‘prion-like’ (De Antoni et al., 2005a; 

Mapelli et al., 2006), and the quite remarkable structural rearrangement it undergoes has 

led to the suggestion that it may partially unfold and refold during conformational 

dimerisation and Cdc20 binding (Skinner et al., 2008).  The precise mechanisms governing 

this rate-limiting step in checkpoint signalling are yet to be elucidated. 

1.4.7 | Checkpoint satisfaction – tension and attachment 

What exactly the mitotic checkpoint senses remains one the most challenging 

questions in the field.  Evidence suggests an important role for kinetochore-microtubule 

attachment in checkpoint satisfaction: the checkpoint effectors Mad1 and Mad2 enrich at 

unattached kinetochores, and are depleted from vertebrate kinetochores as microtubule 

occupancy increases by a mechanism involving Dynein-dynactin-mediated poleward 

transport (Chen et al., 1996; Howell et al., 2001; Waters et al., 1998).  The stripping of 

Mad1/Mad2 from attached kinetochores is therefore thought to correlate with decreased 

formation of the APC/CCdc20 inhibitor, and therefore anaphase onset (see Figure 1.5).  

However, as well as being attached to microtubules emanating from each pole, bioriented 

kinetochores and the centromeric chromatin between them are also under tension, therefore 

it seems appropriate for cells to monitor tension as an indicator of correct alignment 

(McIntosh, 1991).  The idea that tension is important for checkpoint silencing was 
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supported by seminal micromanipulation experiments: Li and Nicklas (1995) showed that 

preying mantid spermatocytes with a single unaligned chromosome would divide if tension 

was applied to the chromosome.  Furthermore, staining of the 3f3/2 phosphoepitope was 

reduced at tensionless kinetochores (Nicklas et al., 1995; Waters et al., 1998), and since 

prevention of dephosphorylation at this site(s) prevented anaphase (Campbell and 

Gorbsky, 1995), a link between tension and checkpoint silencing was made.  Further 

evidence came from experiments in budding yeast mutants with unreplicated, single 

chromatids: these cells could not satisfy the checkpoint, leading to the conclusion that 

tension across the centromere was important for checkpoint satisfaction (Stern and Murray, 

2001).  In agreement, arresting human cells with a monopolar spindle and normal 

microtubule dynamics does not prevent attachment, but does prevent tension across the 

centromere, and causes a checkpoint-mediated arrest (Kapoor et al., 2000).   

On the other hand, studies on human cells undergoing mitosis in the presence of an 

unreplicated genome (MUGs, which have a single centromere and therefore no inter-

centromere stretch) indicated that checkpoint satisfaction does not require inter-

kinetochore stretch, and supported arguments against a role for tension in checkpoint 

signalling (O'Connell et al., 2008).  However, there is much debate regarding the ability of 

the checkpoint to sense tension (reviewed in Maresca and Salmon, 2010; Nezi and 

Musacchio, 2009; Pinsky and Biggins, 2005).  At the heart of the debate is the question of 

whether or not tensionless kinetochores directly influence checkpoint signalling, or have 

an indirect effect via the destabilisation of low-tension attachments, which produces 

unattached kinetochores. The role of Aurora B is central to the debate.  Aurora B is a 

serine/threonine kinase that forms a complex with its regulatory subunits INCENP, 

Survivin and Borealin creating the chromosome passenger complex (CPC), and localises to 

the centromeric region from prophase to metaphase (Carmena et al., 2009).   

1.4.8 | Aurora B – checkpoint signaller or just coincidental? 

Aurora B has a well accepted role in error correction (see Section 1.6), but it’s role in 

the checkpoint is subject to some controversy.  The budding yeast Aurora B homologue 

Ipl1 was shown to be required for the checkpoint response to lack of tension (Biggins and 

Murray, 2001).  However, it has been suggested that rather than directly promoting 

tension-sensitive checkpoint signalling, Aurora B activity may simply destabilise 

tensionless attachments, leading to reduced microtubule occupancy and attachment-

sensitive checkpoint signalling (Hauf et al., 2003; Pinsky et al., 2006; Yang et al., 2009).  

This would explain why Aurora B inhibition leads to rapid mitotic exit in the presence of 

Taxol, which stabilises microtubules; but is less effective at inducing checkpoint override 
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in the presence of nocodazole, which depolymerises microtubules and causes unattached 

kinetochores (Ditchfield et al., 2003; Hauf et al., 2003).  

 However, the situation is far from clear cut.  There is evidence that Aurora B does 

contribute directly to checkpoint signalling (Kallio et al., 2002; Morrow et al., 2005; 

Petersen and Hagan, 2003; Santaguida et al., 2010; Vader et al., 2007).  Recent advances 

have lead to the suggestion that intrakinetochore tension may regulate Aurora B activity, 

whilst also possibly providing a source of checkpoint signalling independent of 

microtubule attachment (Maresca and Salmon, 2009; Maresca and Salmon, 2010; Uchida 

et al., 2009; Wan et al., 2009).  These ideas build upon previous work in which inter-

kinetochore, centromeric stretching was found to regulate Aurora B’s access to substrates 

and provide an explanation for its ability to sense biorientation (Liu et al., 2009).  It is 

currently unclear whether intrakinetochore stretch contributes to checkpoint activity 

through Aurora B or some other means, but the evidence is building for a direct role for 

tension in checkpoint signalling as well as the process of chromosome alignment 

(reviewed in Maresca and Salmon, 2010; Nezi and Musacchio, 2009).   

1.5 | Checkpoint signalling, aneuploidy and cancer 

1.5.1 | Aneuploidy and CIN 

Aneuploidy, the condition in which cells possess a chromosome number deviating 

from the normal diploid quota, has been viewed as a likely causal factor in tumourigenesis 

for almost a century.  In his 1914 monograph on the subject, Theodore Boveri proposed 

that chromosome loss or gain as a result of aberrant cell division could alter the behaviour 

of a cell and lead to malignancy (reviewed in Manchester, 1995).  Cytogenetic analysis 

indicates that aneuploidy is certainly a common feature of human cancers, in both solid 

and haematopoietic tumours (Weaver and Cleveland, 2006).  In some cases, tumours can 

be considered stably aneuploid; that is, in possession of an abnormal of chromosome 

number, but without an elevated frequency of missegregation.  In such cases, 

missegregation will have been induced by a transient event at some point in tumour 

development, producing a stably inherited aneuploid karyotype (Lingle et al., 2002).  A 

non-tumour related form of stable aneuploidy is found in the cells of humans with trisomy-

related syndromes, such as Down’s syndrome (Antonarakis et al., 2004).  While 

aneuploidy is not exclusively associated with cancer, chromosomal instability (CIN; an 

elevated rate of chromosome loss or gain, leading to the state of aneuploidy) is.  CIN was 

first identified as a characteristic of colon cancer cells (Lengauer et al., 1997).  Since then, 

the relationship between aneuploidy, CIN and cancer has been subject to much scrutiny 

(for recent review, see Holland and Cleveland, 2009; Thompson et al., 2010). 
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1.5.2 | How is aneuploidy produced? 

Aneuploidy (and CIN) has been linked to subnormal mitotic checkpoint function 

(Cahill et al., 1998).  Mitotic checkpoint dysfunction can lead to aneuploidy and CIN, as 

demonstrated by the cellular phenotype of patients with mosaic variegated aneuploidy 

(MVA), a rare inherited disorder which is caused by mutations in BUB1B, the gene 

encoding BubR1 (Hanks et al., 2004; Matsuura et al., 2006).  Patients exhibit mosaicism 

for multiple different chromosome gains and losses throughout different tissues, indicative 

of CIN.  The propensity of MVA individuals to develop childhood cancers provides 

evidence that aneuploidy can drive the progression of malignancies (Hanks et al., 2004; 

Matsuura et al., 2006). 

Studies using mouse models provide further support for the idea that mitotic 

checkpoint perturbation can lead to aneuploidy and consequently tumourigenesis.  

Homozygous deletion of Mad2, Mad1, Bub1, BubR1 or Bub3 is embryonic lethal in mice 

(Dobles et al., 2000; Iwanaga et al., 2007; Jeganathan et al., 2007; Kalitsis et al., 2000; 

Perera et al., 2007; Wang et al., 2004), but mice heterozygous for mutations in checkpoint 

component genes are viable.  Such studies have indicated that mice with heterozygous for 

Mad2 (Michel et al., 2001), Mad1 (Iwanaga et al., 2007), or Bub1 (Jeganathan et al., 2007) 

had increased rates of spontaneous tumourigenesis.  Furthermore, mice heterozygous for a 

mutant, checkpoint-deficient form of Cdc20 that cannot bind Mad2 (AAA-Cdc20) had a 

significantly increased tumour formation rate, consistent with the idea that mitotic 

checkpoint defects (as opposed to unknown, non-checkpoint functions) can promote 

aneuploidy and tumourigenesis (Li et al., 2009).  However, though mutations in mitotic 

checkpoint genes are occasionally identified in cancer cell lines (e.g. Cahill et al., 1998; 

Percy et al., 2000) and in tumour samples (e.g. Kan et al., 2010), it has become apparent 

that mutations in checkpoint genes are too infrequent to account for the amount of 

aneuploidy and CIN seen in human cancers.   

In fact, it is now acknowledged that the original causative link between checkpoint 

inactivation/weakening and the CIN reported in colon cancer cells (Cahill et al., 1998) 

might have been misleading.  Subsequent studies showed that CIN cells do in fact have 

robust mitotic checkpoint responses to spindle depolymerisation (Gascoigne and Taylor, 

2008; Tighe et al., 2001), and are capable of restraining anaphase until all chromosomes 

are aligned in an unperturbed mitosis (Thompson and Compton, 2008).  It follows that 

tumour cells often become aneuploid via other mechanisms.  Persistent merotelic 

attachment (see Figure 1.6), leading to lagging chromosomes at anaphase, is a possible 

alternative cause of aneuploidy in CIN cells (Gascoigne and Taylor, 2008; Thompson and 

Compton, 2008).  Merotelic attachments are not sensed by the mitotic checkpoint since 
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kinetochores are both attached and under tension, but are usually corrected prior to 

anaphase (Cimini, 2008).  Evidence suggests that aneuploidy can be caused by alterations 

in microtubule dynamics that prevent effective correction of merotelics: overexpression of 

two kinetochore/centromeric microtubule-depolymerising kinesins, Kif2b and MCAK, 

reduced the frequency of missegregation events in a CIN cell line (Bakhoum et al., 2009).  

Another possible cause of aneuploidy is defective chromatid cohesion: mutations in genes 

encoding proteins involved in cohesion have been detected in aneuploid colon cancer cells 

(Barber et al., 2008).  Possession of abnormally high numbers of centrosomes has also 

been linked to the production of aneuploid progeny: while multipolar division can lead to 

highly aneuploid, inviable daughter cells which are eliminated from the population, cells 

with more than 2 spindle poles tend to undergo centrosome clustering to simulate a bipolar 

spindle, allowing relatively normal rates of proliferation (Brinkley, 2001; Ganem et al., 

2009).  The formation of pseudo-bipolar spindles from a transient multipolar intermediate 

increases the frequency of erroneous attachments such as merotelics, placing additional 

stress on the correction machinery and increasing the likelihood that errors will remain 

uncorrected and lead to missegregation and aneuploidy (Ganem et al., 2009). 

However it happens, increased incidence of aneuploidy is clearly able to promote 

cancer progression (Holland and Cleveland, 2009).  This seems logical: CIN allows 

constant reshuffling of genes in a cell population, meaning cells are more likely to acquire 

the genetic alterations required to promote tumourigenesis and malignancy.  However, it 

also seems logical that aneuploidy cannot always be beneficial in terms of cell growth and 

survival: some genetic changes can be detrimental.  Indeed, aneuploid yeast strains with 

extra chromosomes grew slowly compared to those with normal chromosome number 

(Torres et al., 2007).  Moreover, mouse cells engineered to contain extra copies of one of 4 

mouse chromosomes grew more slowly than diploid cells (Williams et al., 2008).  In vivo, 

tumour-promoting missegregation events are likely to be quite rare compared to 

detrimental ones, which are presumably eliminated from the cell population.   

Additionally, further genetic changes are probably required to enable a cell to survive with 

aneuploidy, since it is frequently detrimental to cell fitness (Torres et al., 2008).  In 

keeping with the idea that aneuploidy does not always promote tumourigenesis, Weaver 

and co-workers (2007) showed that mice haploinsufficient for Cenp-E exhibited 

aneuploidy in vivo, but developed fewer carcinogen-induced tumours than control mice, 

and also fewer liver tumours (Weaver et al., 2007).  In addition, Cenp-E+/- mice that were 

genetically predisposed to cancer by deletion of both copies of the tumour suppressor 

p19ARF developed tumours more slowly then Cenp-E+/+, p19ARF-/- mice that were not 

prone to aneuploidy (Weaver et al., 2007).  This indicates that aneuploidy can act as a 
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tumour suppressor.  Remarkably however, in the same Cenp-E+/- animals, the incidence of 

spontaneous lymphoma and lung cancer was increased, indicating that aneuploidy caused 

by Cenp-E haploinsufficiency can also act oncogenically (Weaver et al., 2007).  Thus, the 

cellular context has a role in determining the effects of aneuploidy.   

1.5.3 | Targeting the mitotic checkpoint as a cancer therapy 

It is thought that while relatively minor missegregation events can promote 

tumourigenesis in some contexts, very severe aneuploidy is incompatible with cell survival 

(Holland and Cleveland, 2009).  In keeping with the embryonic lethality reported in mice 

with homozygous deletions of checkpoint proteins (Dobles et al., 2000; Iwanaga et al., 

2007; Jeganathan et al., 2007; Kalitsis et al., 2000; Perera et al., 2007; Wang et al., 2004), 

fully ablating the mitotic checkpoint by RNAi leads to apoptosis in cultured cancer cells 

(Kops et al., 2004; Michel et al., 2004).  These observations led to the suggestion that the 

mitotic checkpoint may be a plausible target for cancer therapeutics (Kops et al., 2004; 

Michel et al., 2004).  However, it remains to be seen whether the mitotic checkpoint can be 

targeted without affecting normal cells in vivo, although there have been encouraging hints 

that perturbing Mps1 or BubR1 function in combination with low dosage Taxol treatment 

may be a strategy for selectively targeting cancer cells by raising aneuploidy to intolerable 

levels (Janssen et al., 2009). 

1.6 | The mechanism of chromosome alignment 

To prevent errors in segregation, the mitotic checkpoint restrains anaphase until all 

chromosomes are properly attached to the microtubules mitotic spindle and aligned at the 

metaphase plate.  To get the chromosomes to this point requires the cooperative 

functioning of kinetochores, spindle microtubules and associated motor proteins (for 

review, see Walczak and Heald, 2008).  As prometaphase progresses, chromosomes are 

captured by microtubules from each pole, and move towards the spindle equator.  In 

metazoans, chromosomes and microtubules begin to interact after NEBD.  The 

centrosomes nucleate microtubules at the minus ends, allowing the dynamically unstable 

plus ends to contact chromosomes; following end-on attachment to kinetochores, 

microtubules become stabilised (Kirschner and Mitchison, 1986).  Once stable, end-on 

attachments have been formed between the kinetochore of each of the paired sister 

chromatids, biorientation has been achieved.  However, since kinetochore-microtubule 

attachment is stochastic and random, many improper attachments are likely to form before 

the goal of biorientation is reached.  Thus, the correction of errors is crucial to facilitate 

biorientation.  Examples of erroneous attachments between the spindle and kinetochores 

are depicted in Figure 1.6. 
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Syntely, the condition in which both sister kinetochores become attached to the same 

pole of the spindle, is predicted to occur transiently during a normal prometaphase.  

Syntelic attachments must be corrected, and to do this the microtubule attachments must be 

destabilised in order to provide a new opportunity for biorientation to occur.  Merotelic 

attachments, where one sister kinetochore forms attachments to both of the spindle poles, 

must also be corrected before anaphase, or the chromatid will be pulled in both directions 

creating a lagging chromosome, reminiscent of an anaphase bridge, which may be lost 

from the daughter cell (Cimini, 2008).  Aurora B, as part of the CPC (Carmena et al., 

2009) is involved in ensuring syntelic and merotelic attachments are destabilised.   

1.6.1 | Aurora B and error correction 

In mammalian cells, the Aurora kinase family consists of three members: Aurora A, 

B and C (for review see Carmena et al., 2009; Vader and Lens, 2008).  Yeast only have 

one Aurora family kinase: Ipl1 in budding yeast and Ark1 in fission yeast.  Work in 

budding yeast showed that Ipl1 activity destabilises kinetochore-microtubule attachments 

lacking in tension (Tanaka et al., 2002).  In keeping with this, inhibiting Aurora B activity 

in human cells using the small molecule Hesperadin led to an increase in the frequency of 

syntelic attachments (Hauf et al., 2003).  In elegant experiments using successive inhibitor 

treatments in human cells, Lampson and co-workers were able to demonstrate the 

importance of Aurora B in correction of syntelic attachments (Lampson et al., 2004).  Cells 

were treated transiently with monastrol, an inhibitor of spindle pole separation (Kapoor et 

al., 2000; Mayer et al., 1999).  Since cells were kept in a monopolar state, they had a high 

probability of forming syntelic attachments (Kapoor et al., 2000).  After monastrol was 

removed and the spindle allowed to bipolarise, cells with active Aurora B could correct the 

syntelic attachments, achieving full alignment.  Cells lacking Aurora B activity were 

unable to destabilise the monopolar, syntelic attachments, and persisted with chromosomes 

attached to only one pole of the bipolar spindle (Lampson et al., 2004).  Taken together, 

these data suggest a role for Aurora B/Ipl1 in correction of erroneous attachments arising 

during prometaphase. 

The molecular mechanisms by which this occurs are becoming clearer.  One way 

Aurora B appears to influence microtubule stability at kinetochores is via the microtubule 

depolymerase MCAK.  Aurora B activity is required to recruit MCAK to the 

centromere\kinetochore, and phosphorylation leads to a decrease in MCAK activity, and in 

turn an increase in local microtubule stability (Andrews et al., 2004; Lan et al., 2004).   
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Figure 1.6 Kinetochore-microtubule attachment and alignment
(A) Types of correct and incorrect chromosome attachment to the mitotic spindle. Amphitelic attachment:
sister kinetochores are correctly attached, via stable end-on microtubule interactions, to opposite spindle
poles (bioriented). The kinetochore/centromere region is under tension. When all chromosomes have
achieved amphitelic attachment, the checkpoint is satisfied and anaphase commences. Syntelic attachment:
a form of incorrect attachment in which both sister kinetochores are attached to one spindle pole. An Aurora
B dependent mechanism corrects these attachments. Monotelic attachment: one kinetochore is attached to
one spindle pole while its sister remains unattached. Merotelic attachment: One sister kinetochore is
attached to both spindle poles. While anaphase is delayed in the presence of monotelic and syntelic attach-
ments, merotelics are not detected by the checkpoint, but are usually corrected prior to anaphase by a mech-
anism involving Aurora B.
(B) Error correction after monastrol wash-out. Monastrol arrests cells with the centrosomes close together,
forming a monopolar spindle with a high incidence of syntelic attachments (left-hand diagram). If
monastrol is removed from the cells, the spindle poles separate (middle diagram), allowing the syntelic
attachments to be effectively corrected and converted to biorientation. In unperturbed cells, Aurora B and
Cenp-E cooperate to correct these syntelic attachments: Aurora B activity destabilises syntelic attachments
and promotes shortening of microtubules, moving the chromosome toward the pole. At the pole, the mono-
oriented chromosome congresses toward the cell equator via lateral association between the unattached sis-
ter and a pre-existing K-fibre. Aurora B inhibition or Cenp-E RNAi therefore prevents chromosomes from
aligning at the metaphase plate by inhibiting syntelic destabilsation/MT shortening or poleward congression,
respectively. (B) is adapted from Kapoor, et al (2006).
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Aurora B also phosphorylates Ndc80/Hec1, a component of the Ndc80 complex in the 

KMN network at the inner kinetochore, and in doing so, destabilises microtubule 

attachments; this function is conserved from yeast to human (Cheeseman et al., 2002; 

Cheeseman et al., 2006; Ciferri et al., 2008; DeLuca et al., 2006; Guimaraes et al., 2008). 

But how might Aurora B distinguish between microtubules that require destabilisation and 

those that do not?  As previously mentioned, spatial separation, governed by tension across 

the kinetochore and centromere, affects the access of Aurora B to its various substrates and 

allows error correction to occur only at tensionless kinetochores (Liu et al., 2009).  

Intrakinetochore stretching may also contribute to this mechanism (Maresca and Salmon, 

2010).  

1.6.2 | Microtubule motors and chromosome congression 

As well as the correction of improper attachments, microtubule motor-mediated 

movement of chromosomes during mitosis contributes to proper alignment (reviewed in 

Cheeseman and Desai, 2008; Kops et al., 2010).  As well as forming end-on attachment 

with microtubules, kinetochores can associate laterally with microtubules of the spindle.  

Evidence suggests these lateral connections facilitate chromosome movement prior to 

biorientation, thereby helping to position chromosomes in places where end-on 

attachments are likely to occur.  The two motor proteins that are known to localise to 

kinetochores in mitosis are Cenp-E, a plus-directed kinesin (Kapoor et al., 2006; Schaar et 

al., 1997; Wood et al., 1997; Yen et al., 1992) and minus-end directed Dynein-dynactin 

(Pfarr et al., 1990; Yang et al., 2007b). 

Early in prometaphase, the Dynein-dynactin complex is thought to promote poleward 

movement, taking chromosomes to a position where many microtubules are found and thus 

increasing the chance of end-on kinetochore capture (Yang et al., 2007b).  Cenp-E powers 

congression from the polar region toward the metaphase plate at the cell equator, which, in 

a normal prometaphase, is necessary for congression of a few chromosomes that become 

trapped at the poles, though many chromosomes align normally (Kapoor et al., 2006; 

Weaver et al., 2003; Wood et al., 1997).  The role of Cenp-E was elegantly demonstrated 

by Kapoor and colleagues (2006) who, in an extension of a previous study (Lampson et al., 

2004), used monastrol to arrest cells transiently with a monopolar spindle, then washed the 

drug out, allowing bipolarisation in the presence of numerous syntelic attachments.  Using 

a combination of drug treatments and RNAi, followed by live-cell imaging, 

immunofluorescence and electron microscopy, the authors showed that Aurora B activity 

was required for destabilisation of syntelic attachments and shortening of microtubules, 

bringing the chromosomes towards the pole, but congression of monotelic polar 
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chromosomes towards the metaphase plate via lateral association with other kinetochore 

fibres (K-fibres) was not possible without Cenp-E (Kapoor et al., 2006).  In other words, 

Cenp-E takes mono-oriented polar chromosomes towards the equator by ‘piggy-backing’ 

on pre-formed K-fibres, promoting contact with microtubules emanating from the opposite 

pole and, therefore, biorientation.  This study demonstrated nicely how cooperation 

between error correction (via Aurora B) and microtubule motors is required to promote 

alignment and accurate segregation (see Figure 1.6).   

As well as powering chromosome movements to promote biorientation, both 

Dynein-dynactin and Cenp-E are reported to have other roles at the kinetochore.  Dynein-

dynactin promotes stable kinetochore-microtubule attachments (Chan et al., 2009; Yang et 

al., 2008); similarly Cenp-E depleted kinetochores reportedly bind fewer microtubules than 

those in control cells (McEwen et al., 2001; Putkey et al., 2002).  Cenp-E may also 

contribute to the amplification of checkpoint signalling, via activation of BubR1 kinase 

activity (Mao et al., 2003; Mao et al., 2005; Weaver et al., 2003), whereas Dynein-dynactin 

is required for poleward trafficking of checkpoint components away from kinetochores, 

contributing to checkpoint silencing on bioriented chromosomes (Howell et al., 2001). 

1.7 | Mitotic kinases in the checkpoint and chromosome alignment 

It is notable that the template model of kinetochore-based checkpoint signalling does 

not include any kinases.  However, the requirement for kinases for full checkpoint function 

in cells is undisputed, and in addition to their putative role in MCC/MCC-like complex 

generation, kinetochores may function as a platform to facilitate a phosphorylation cascade 

(Burke and Stukenberg, 2008).  A recent study showed unattached kinetochores were not 

critical for formation of an APC/C inhibitor from purified MCC components per se, but 

their presence did amplify production of the inhibitor (Kulukian et al., 2009): importantly, 

a proportion of several kinetochore-bound kinases (Mps1, Aurora B and Bub1) was 

retained on the purified mitotic chromosomes that provided the unattached kinetochores.  

This suggests an important function of kinetochore phosphorylation may be signal 

amplification to enable the checkpoint to sense one unaligned kinetochore.  Aurora B is 

one mitotic kinase with a role in alignment and, arguably, a role in checkpoint signalling 

too, as has already been outlined in Section 1.4 and 1.6.  The role of Mps1 in mitosis will 

be discussed in Section 1.8.  Several other mitotic kinases, some of which have been 

mentioned above, have been implicated in checkpoint signalling and/or chromosome 

alignment, including Bub1, BubR1 and Plk1.  I will briefly outline the proposed roles of 

these molecules below. 
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1.7.1 | Bub1 

Bub1 interacts with Bub3 and BubR1 and is recruited to unaligned kinetochores in 

prophase (Johnson et al., 2004; Taylor et al., 1998).  In contrast to Bub3 and BubR1, Bub1 

is a relatively stable kinetochore resident (Howell et al., 2004; Shah et al., 2004), and may 

act as scaffold to facilitate recruitment of other checkpoint proteins (Rischitor et al., 2007; 

Sharp-Baker and Chen, 2001).  Full depletion of Bub1 protein by RNAi (Meraldi and 

Sorger, 2005) or BUB1 knock-out (Perera et al., 2007) leads to checkpoint malfunction in 

human cells and mouse embryonic fibroblasts (MEFs) respectively.  Bub1 has been shown 

to phosphorylate Cdc20, thereby contributing to APC/C inhibition (Kang et al., 2008; Tang 

et al., 2004).  However, the requirement for Bub1 kinase activity in checkpoint signalling 

is controversial: a recent study found that kinase-dead mutants could rescue checkpoint 

signalling in BUB1 null MEFs (Perera and Taylor, 2010).  Interestingly, Bub1 is reported 

to play a role in chromosome alignment (Johnson et al., 2004; Meraldi and Sorger, 2005; 

Perera et al., 2007); this also appears to be independent of its kinase activity (Perera and 

Taylor, 2010).  So, while Bub1’s presence at kinetochores seems to be important for both 

checkpoint signalling and alignment, the role of its activity is subject to debate.  

1.7.2 | BubR1 

As discussed above, BubR1 is part of the MCC or MCC-like complex that inhibits 

the APC/CCdc20.  The analogous protein in budding yeast, Mad3, has no kinase activity (Li 

and Murray, 1991).  In human cells, BubR1 depletion causes spindle checkpoint 

inactivation and accelerates progression through an unperturbed mitosis (Chan et al., 1999; 

Meraldi et al., 2004; Morrow et al., 2005); however, there are contrasting reports as to the 

requirement of its kinase activity for checkpoint signalling in vertebrate cells (Chen, 2002; 

Malureanu et al., 2009; Mao et al., 2003).  BubR1 is also involved in chromosome 

alignment (Ditchfield et al., 2003; Lampson and Kapoor, 2005), and this function may 

require its kinase activity (Rahmani et al., 2009).  BubR1 is hyperphosphorylated in 

mitotic cells (Chan et al., 1999; Taylor et al., 2001), and has been shown to be substrate for 

Aurora B, Plk1 and Mps1 (Ditchfield et al., 2003; Elowe et al., 2007; Hauf et al., 2003; 

Huang et al., 2008; Matsumura et al., 2007).  BubR1’s phosphorylation status may be 

regulated differently by microtubule attachment and tension (Huang et al., 2008), 

suggesting it may receive and transduce signals from upstream kinases monitoring various 

aspects of kinetochore-spindle interaction.  

1.7.3 | Plk1 

Plk1 has multiple roles in mitosis and cytokinesis (reviewed in Archambault and 

Glover, 2009; Petronczki et al., 2008).  Its enrichment at the centromere/kinetochore 
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region peaks in prometaphase and depends upon its own activity (Arnaud et al., 1998; 

Lenart et al., 2007).  Evidence suggests Plk1 (or the X. laevis homologue Plx1) is the 

kinase responsible for producing the tension-sensitive 3f3/2 phosphoepitope (Ahonen et 

al., 2005; Wong and Fang, 2005).  In X. laevis egg extracts, the 3f3/2 epitope is a Plx1-

mediated phosphorylation site on BubR1 (Wong and Fang, 2007).  Plk1 also 

phosphorylates Bub1 (Qi et al., 2006), and both Bub1 and BubR1 require prior Cdk1-

mediated phosphorylation prime to facilitate Plk1 binding (Qi et al., 2006; Wong and 

Fang, 2007).  There are clearly links between Plk1 and mitotic checkpoint components; 

however, in human cells devoid of Plk1 activity, cells enter a robust checkpoint-mediated 

arrest with monopolar spindles and normal levels of kinetochore-bound Mad2 (Lenart et 

al., 2007), indicating Plk1 kinase activity is dispensable for the mitotic checkpoint.  

Instead, Plk1 activity appears to promote formation of stable end-on kinetochore-

microtubule attachments, perhaps through the aforementioned interaction with BubR1 

(Elowe et al., 2007; Lenart et al., 2007; Matsumura et al., 2007). 

1.8 | Mps1, a kinase with a dual role in mitosis 

1.8.1 | Mps1 family history 

The Monopolar spindle 1 (MPS1) gene was discovered in budding yeast in a screen 

for regulators of spindle pole body (SPB; the yeast equivalent of the centrosome) 

duplication (Winey et al., 1991).  It was later found to encode a dual-specificity protein 

kinase (Lauze et al., 1995), and to be essential for spindle checkpoint function in budding 

yeast (Weiss and Winey, 1996).  Mps1 is conserved from yeast to humans (Fisk et al., 

2004), though Caernorhabditis elegans does not possess an obvious homologue; a unique 

kinase Zyg1 is postulated to play an analogous role (O'Connell et al., 2001).  Mps1’s 

human homologue was originally identified as TTK or PYT (Hogg et al., 1994; Lindberg 

et al., 1993; Mills et al., 1992) a cell cycle-regulated kinase associated with cell 

proliferation, and is still referred to as TTK in some databases.  The human Mps1/TTK 

gene (NCBI accession number NM_003318) encodes an 857 residue, 97 kDa protein with 

a 525 amino acid N-terminal domain, followed by the 266 residue catalytic domain and a 

short C-terminal extension of 66 amino acids (see Figure 1.7). 

1.8.2 | Centrosome duplication 

Mps1 is required for spindle pole body duplication in budding yeast (Winey et al., 

1991), however its role in centrosome duplication in mammals is subject to debate.  

Several report have suggested that either human or murine Mps1 localises to centrosomes 

(Fisk et al., 2003; Fisk and Winey, 2001; Tyler et al., 2009) and is required for centrosome  
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Figure 1.7 Schematic diagram of human Mps1
The domain structure of human Mps1 kinase is shown. The N-terminal region (1-301) is involved in kineto-
chore binding; the catalytic (kinase) domain is towards the C-terminal of the protein. Catalytic domain point
mutants used experimentally are marked with asterisks: the M602A gatekeeper residue mutation renders the
kinase sensitive to inhibition with bulky ATP analogues (Mps1AS); the D664A mutation renders the kinase
catalytically inactive or kinase-dead (Mps1KD) because it changes a critical aspartate residue in the highly
conserved DFG motif, which is necessary to orient ATP in the active site.
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duplication during S phase (Fisk et al., 2003; Fisk and Winey, 2001; Mattison et al., 2007).  

However, there have also been reports suggesting human Mps1 has no role at the 

centrosome (Stucke et al., 2004; Stucke et al., 2002).  Another very recent report saw no 

effect on centrosome duplication in cells lacking Mps1 activity (Kwiatkowski et al., 2010).  

The reason(s) for the discrepancy between studies is unclear; differences in antibody and 

cell line behaviour have been cited (Winey and Huneycutt, 2002). It is possible that very 

low levels of Mps1 activity are needed to perform the centrosome duplication function 

during S phase, making a defect difficult to produce (Fisk et al., 2003). 

1.8.3 | Mps1 and the mitotic checkpoint 

The requirement for Mps1 in the mitotic checkpoint can reasonably be described as 

universal: studies in yeast (He et al., 1998; Weiss and Winey, 1996), D. melanogaster 

(Fischer et al., 2004), X. laevis (Abrieu et al., 2001), Danio rerio (Poss et al., 2004) and 

human cells (Jelluma et al., 2008b; Liu et al., 2003; Stucke et al., 2002; Tighe et al., 2008) 

have concluded that Mps1 is required for the checkpoint.  In human cells, Mps1 is required 

not only for the checkpoint response to spindle damage (e.g. nocodazole treatment), but 

also to restrain anaphase onset in an otherwise unperturbed mitosis (Jelluma et al., 2008b; 

Tighe et al., 2008).  In addition to accelerated passage through an unperturbed mitosis, 

cells lacking Mps1 also exit mitosis with unaligned chromosomes, yielding aneuploid 

daughter cells (Jelluma et al., 2008b; Tighe et al., 2008). 

The idea that Mps1 was at, or near, the top of the checkpoint signalling network 

initially came from studies in budding yeast, which showed that Mps1 overexpression 

activated the spindle assembly checkpoint, causing an arrest that was abolished by 

simultaneous mutation of other the checkpoint components Mad2, Mad2, Bub1, or Bub3 

(Hardwick et al., 1996).  In budding yeast, the downstream target of Mps1 appears to be 

Mad1, which becomes hyperphosphorylated after Mps1 overexpression (Hardwick and 

Murray, 1995; Hardwick et al., 1996).  There is currently no evidence to support Mps1 

phosphorylation of Mad1 in human cells, though localisation data does support a role for 

Mps1 upstream in the signalling network in vertebrates.  Mps1 is required to recruit the 

checkpoint effector molecules Mad1 and Mad2 to kinetochores in human cells (Jelluma et 

al., 2008b; Liu et al., 2003; Liu et al., 2006; Martin-Lluesma et al., 2002; Tighe et al., 

2008; Xu et al., 2009).  Inhibition of Mps1 has also been shown to lead to BubR1 loss at 

kinetochores in human cells (Schmidt et al., 2005), and immunodepletion of Mps1 from X. 

laevis egg extracts reportedly perturbs Bub1, Bub3, Mad1, Mad2 and Cenp-E localisation 

(Abrieu et al., 2001; Vigneron et al., 2004).  
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Other than putative Mad1 phosphorylation in budding yeast (Hardwick et al., 1996), 

the targets of Mps1 that regulate checkpoint activity are yet to be fully elucidated.  Some 

progress has been made: a recent report found that Mps1 phosphorylated several sites in 

the N-terminal of Ndc80/Hec1 in budding yeast (Kemmler et al., 2009).  Mutation of 14 of 

the phosphorylation sites to alanine to prevent phosphorylation caused checkpoint failure; 

conversely, mutation of the same sites to phospho-mimetic aspartate residues caused 

metaphase arrest due to a constitutively active checkpoint.  Whether this function is 

conserved remains to be seen.  Mps1 has also been shown to phosphorylate Dam1, a 

protein implicated in microtubule binding at the budding yeast kinetochore (Shimogawa et 

al., 2006).  Mps1 phosphorylation of this protein impairs coupling between Dam1 and 

microtubules (Shimogawa et al., 2006).  As Dam1 is not conserved, it is currently unclear 

whether Mps1 performs an analogous function in higher organisms. 

In human cells, Mps1 was reported to contribute to BubR1 phosphorylation on 4 

serine residues: phospho-specific antibodies to the sites on BubR1 showed a decrease in 

signal after Mps1 depletion by RNAi (Huang et al., 2008).  While these Mps1 sites await 

more rigorous validation, and the functional relevance of this phosphorylation is not fully 

understood, Mps1 may be one of several mitotic kinases targeting BubR1 to control 

checkpoint signalling.  If the role of Mps1 in phosphorylation of Ndc80 is conserved in 

humans, this may be another example of human Aurora B and Mps1 converging upon the 

same substrates. 

1.8.4 | Mps1 and Aurora B in error correction 

The emerging relationship between Mps1 and Aurora B was the subject of a recent 

report from Jelluma and co-workers (2008b).  The authors used an RNAi complementation 

approach to replace endogenous Mps1 with active (wild type, WT) or inactive (kinase 

dead, KD) alleles, and found that cells lacking Mps1 activity had difficulty aligning 

chromosomes, even after cells were kept in mitosis for an extended period by treatment 

with the proteasome inhibitor MG132.  Jelluma et al found that these misalignments were 

attributable to a lack of error correction, which in turn was a consequence of decreased 

Aurora B activity, both globally (as shown by a decrease in immunoprecipitated Aurora B 

activity, and Aurora B substrate phosphorylation by western blot) and at centromeres (as 

shown by immunofluorescence using antibodies to Aurora B centromeric substrates).  

Furthermore, Mps1-catalysed phosphorylation of Borealin on 4 threonine residues was 

shown to be the cause of the decreased Aurora B activity (Jelluma et al., 2008b).  This 

report presented the first evidence that Mps1 was involved in alignment in human cells, 

though an earlier study had concluded that Mps1 was required for error correction in 
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budding yeast (Maure et al., 2007).  However, Maure and colleagues did not see any 

decrease in Ipl1 activity.  Whether or not the mechanisms are fully conserved, the 

requirement of Mps1 activity for both checkpoint signalling and error correction adds a 

new facet to the relationship between chromosome alignment and checkpoint signalling. 

The two processes might be controlled by an interwoven web of signalling pathways, 

rather than operating though distinct linear molecular networks.  Mps1 joins Bub1, Aurora 

B and BubR1 as kinases reported to have dual roles in alignment mechanics and the 

checkpoint surveillance mechanism. 

1.8.5 | Mps1 regulation  

Mps1 is maximally active and phosphorylated in mitosis (Hogg et al., 1994; Liu et 

al., 2003; Stucke et al., 2002).  Levels of Mps1 phosphorylation increase following 

treatment with nocodazole or taxol, suggesting this phosphorylation is linked to checkpoint 

activity (Stucke et al., 2002).  The amount of Mps1 protein in the cell is also cell cycle 

regulated: when analysed by western blot, Mps1 is visible in lysates derived from cells in 

all stages of the cell cycle, however its levels increase concomitant with cyclin B as cells 

enter mitosis, and drop again after mitotic exit (Palframan et al., 2006; Stucke et al., 2002).  

In budding yeast, the APC/CCdc20 degrades Mps1 after anaphase (Palframan et al., 2006); it 

is not yet known whether this mechanism is conserved. 

Several studies have reported that Mps1 can autophosphorylate, and that this 

autophosphorylation is required for full activity (Chu et al., 2008; Jelluma et al., 2008a; 

Kang et al., 2007; Mattison et al., 2007; Mills et al., 1992; Stucke et al., 2004).  Moreover, 

autophosphorylation at threonine 676 in the activation loop of the catalytic domain is 

important for full activity (Jelluma et al., 2008a; Kang et al., 2007; Mattison et al., 2007).  

The crystal structure of the Mps1 catalytic domain has been solved, and suggests that 

phosphorylation in the activation loop may cause a conformational change that allows 

proper orientation of the adenosine triphosphate molecule (ATP) in the active site, thus 

increasing kinase activity (Chu et al., 2008).  Mps1 is capable of trans-autophosphorylation 

at T676; indeed, forced dimerisation of Mps1 in cells hyperactivates the kinase (Kang et 

al., 2007).  This led to speculation that Mps1 may dimerise and trans-activate at 

kinetochores, though the relationship between T676 phosphorylation, kinetochore 

localisation and Mps1 activity is unknown. 

Like other checkpoint proteins, Mps1 localises to the kinetochores in mitosis (Abrieu 

et al., 2001; Stucke et al., 2002).  In human cells, this is dependent on proper assembly of 

the outer kinetochore: depletion of components of this complex, Hec1 (Martin-Lluesma et 

al., 2002) or Nuf2 (Stucke et al., 2004) leads to perturbation of the outer plate (DeLuca et 

42



 

al., 2005) and loss of Mps1 kinetochore localisation.  The kinetochore-binding region of 

Mps1 has been narrowed down to amino acids 1-301 of the N-terminal domain (Liu et al., 

2003; Stucke et al., 2004).  This region localises to kinetochores and behaves in a 

dominant-negative way, preventing endogenous Mps1 from localising to kinetochores and 

perturbing the mitotic checkpoint (Liu et al., 2003).  Analysis of fluorophore-tagged Mps1 

in living cells revealed that its localisation at the kinetochores is dynamic (Howell et al., 

2004). 

Little is known about the regulation of Mps1 kinetochore targeting.  Though the 

localisation of an N-terminal fragment lacking the catalytic domain to kinetochores 

suggests kinase activity is not intrinsically required for binding to kinetochores, it is not 

clear whether or not the fragment localises by virtue of interaction with the endogenous 

kinase (e.g. intermolecular phosphorylation).  There is conflicting data regarding the 

importance of Mps1 kinase activity to localise to kinetochores: while some studies report 

that kinase-dead mutant Mps1 is reduced at kinetochores compared to wild type in human 

cells or X. laevis egg extracts depleted of Mps1 (Xu et al., 2009; Zhao and Chen, 2006), 

other groups have shown that kinase-dead Mps1 is readily visible at kinetochores under 

comparable conditions (Abrieu et al., 2001; Jelluma et al., 2008b).  In X. laevis egg 

extracts and human cells, phosphorylation by MAP kinase at a conserved serine residue 

(S821 in human Mps1) reportedly promotes Mps1’s localisation to kinetochores (Borysova 

et al., 2008; Zhao and Chen, 2006). 

1.8.6 | The role of Mps1 kinase activity in the checkpoint and alignment 

The identification of substrates is an important goal in the quest to understand the 

role of a kinase’s activity in cells.  To date, a number of Mps1 substrates have been 

identified.  Several of these are relevant to SPB or centrosome function (see Table 1.1). 

Additionally, the reported phosphorylation of Smad2 and Smad3 implicated Mps1 activity 

in regulation of gene expression via a non-canonical Smad signalling pathway (Zhu et al., 

2007).  Mps1 was also reported to phosphorylate BLM (Bloom) helicase, and perturbation 

of this phosphorylation was associated with an increase in chromosomal instability in 

Bloom Syndrome (BS) cells (Leng et al., 2006); however the function of BLM helicase in 

mitosis is not known.  Intriguingly, Mps1 was reported to phosphorylated the DNA 

damage checkpoint protein Chk2 in response to DNA damage, mediating G2/M arrest, and 

leading to speculation that the mitotic checkpoint and DNA damage sensing machinery 

may be linked (Wei et al., 2005).   

Several substrates have been identified with direct relevance to checkpoint and/or 

chromosome alignment function, namely Ndc80, Mad1, Borealin, BubR1 and Mps1 itself  
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Mps1 substrates 
Protein Phosphorylation site Species Proposed function Reference(s) 
Mad1 Multiple residues Budding 

yeast 
Mitotic checkpoint 
signalling 

(Hardwick et al., 
1996) 

Ndc80 14 A and T residues in N-
terminus 

Budding 
yeast 

Mitotic checkpoint 
signalling 

(Kemmler et al., 
2009) 

Borealin T88, T94, T169, T230 Human Aurora B activation, 
error correction 

(Jelluma et al., 
2008b) 

BubR1 S435, S543, S670, S1043 Human S670: mediating end-
on attachments  

(Huang et al., 
2008) 

Mps1 T676 (activation loop) Human Auto-activation (Jelluma et al., 
2008a; Kang et 
al., 2007; 
Mattison et al., 
2007) 

Chk2 T68 Human G2 arrest in response 
to DNA damage 

(Wei et al., 
2005) 

BLM S144 Human Regulation of genome 
stability  

(Leng et al., 
2006) 

TACC2 Multiple residues Human Centrosome function (Dou et al., 
2004) 

Mortalin Multiple residues Human Centrosome cycle (Kanai et al., 
2007) 

Smad2/3 SSxS, C-terminal Human TGFβ-independent 
Smad signalling 

(Zhu et al., 
2007) 

Spc42 Multiple residues Budding 
yeast 

Centrosome assembly (Castillo et al., 
2002) 

Spc98 S60, S64, T68 Budding 
yeast 

Centrosome assembly (Pereira et al., 
1998) 

Spc110 Multiple residues Budding 
yeast 

Centrosome assembly (Friedman et 
al., 2001) 

 Table 1.1  Currently known Mps1 substrates. 

 

(see Table 1.1 and earlier sections for references and descriptions).  However, it is possible 

that more substrates remain to be discovered, and this is likely to be a key focus of future 

studies. 

Over the past few years, much effort has been focused upon understanding the role 

of Mps1 kinase activity.  Researchers have employed several strategies: in X. laevis, 

Abrieu and colleagues (2001) used immunodepletion followed by addition of wild type or 

kinase-dead mutant alleles to show that normal levels of Cenp-E recruitment depended on 

Mps1 kinase activity (Abrieu et al., 2001).  In human cells, RNAi complementation 

approaches (as opposed to simple RNAi-mediated protein repression) have been used to 

examine the role of Mps1 kinase activity (Jelluma et al., 2008b; Tighe et al., 2008).  The 
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work of Tighe and co-workers (2008) illustrates how this kind of technique can reveal 

differences between loss of protein and loss of kinase activity only: the authors found that 

while Mps1 depletion led to the loss of both Mad1 and Mad2 at the kinetochores in human 

cells, Mad1 levels could be partially rescued with kinase dead Mps1, whereas Mad2 levels 

could not (Tighe et al., 2008).  In other words, Mad2 localisation appeared exquisitely 

sensitive to loss of Mps1 activity, whereas Mad1 appeared less affected.  This suggested 

that either Mps1 was only structurally required for Mad1 recruitment [an explanation 

which seems at odds with the dynamic behaviour of Mps1 at kinetochores, and the stability 

of Mad1 (Howell et al., 2004; Shah et al., 2004)]; or Mad1 required much lower levels of 

Mps1 activity to promote its kinetochore binding.   

Cell-permeable small molecule inhibitors make excellent tools with which to discern 

the roles of kinase activity in cells, and have been used to great effect in the study of 

mitotic kinases like Plk1 and Aurora B (for review see Taylor and Peters, 2008).  Unlike 

RNAi, they rapidly exert their effects in cells, and therefore allow precise temporal control 

of kinase activity in a dose-dependent manner.  One way of achieving selective kinase 

inhibition is by mutagenesis of the active site of cloned kinases to render sensitivity to 

bulky analogues of ATP, providing specificity and potency in cells expressing the mutant 

form of the target kinase (reviewed in Bishop et al., 2001).  Expression of this analogue 

sensitive mutant combined with RNAi has proved an effective approach for study of Mps1 

activity in both human cells (Sliedrecht et al., 2010; Tighe et al., 2008) and budding yeast 

(Jones et al., 2005).  Jones and colleagues were able to specifically examine Mps1’s role in 

spindle assembly and chromosome segregation in mitosis (as distinct from its role in SPB 

duplication in S phase) by creating analogue-sensitive mutant strains.  One potential pitfall 

of this approach is that mutant analogue sensitive kinases tend to lose activity, as was 

observed for yeast and human Mps1 (Jones et al., 2005; Sliedrecht et al., 2010), meaning 

cells expressing the uninhibited mutant do not provide the ideal control for normal activity 

levels, even if (as is the case for Mps1) lower levels of activity apparently support normal 

functions (Jones et al., 2005; Sliedrecht et al., 2010).  Additionally, in human cells, RNAi 

knockdown is still required, adding a potential source of variability to experiments, though 

this issue has been alleviated somewhat by the creation of stable cell lines expressing 

Mps1 shRNA in a doxycycline-dependent manner (Sliedrecht et al., 2010).  A very recent 

report described an extension of the analogue-sensitive approach to Mps1 study: 

Maciejowski and co-workers described a novel human cell line in which the endogenous 

Mps1 gene had been replaced with an analogue-sensitive mutant allele (Maciejowski et al., 

2010). 
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Selective, potent small molecule inhibitors targeting endogenous kinases are 

desirable tools, since they can be used on unengineered cell lines, and avoid the need for 

RNAi.  Additionally, compounds targeting endogenous enzymes can be tested against 

cancer cell lines to assess any potential therapeutic value.  Therefore, effective small 

molecule inhibitors are sought for those mitotic kinases for which one is not yet available.  

The mitotic checkpoint kinase Mps1 is one such candidate for a small molecule tool.  An 

inhibitor of budding yeast Mps1 has been described, however use of this compound is 

limited since it is ineffective in mammalian cells (Dorer et al., 2005).  At the time this 

study commenced, only one inhibitor of human Mps1 had been reported: SP600125 

(Schmidt et al., 2005), a compound originally identified as a JNK inhibitor (Bennett et al., 

2001).  However, the specificity of SP600125 has been called into question (Bain et al., 

2007), making it a less than ideal tool.  As a result, more selective Mps1 inhibitors have 

been sought in recent years.  New compounds targeting Mps1 have been characterised and 

published concurrent with the one I describe here (published in Hewitt et al., 2010, 

appended): namely Mps1-IN-1 (Kwiatkowski et al., 2010) and Reversine (Santaguida et 

al., 2010).  

1.9 | Aims of this study 

Mps1 is a kinase with a dual role in mitosis: it controls anaphase onset, and also 

contributes to the mechanism of chromosome alignment.  The latter function is reportedly 

mediated through Aurora B activation (Jelluma et al., 2008b).  Despite these advances, the 

precise role of Mps1’s catalytic activity in the maintenance of genomic stability is far from 

being fully understood. 

The ultimate aim of this study was to examine the role of Mps1 kinase activity in 

cells, and by doing so shed more light upon the mechanisms by which cells ensure accurate 

transmission of genetic material to the next generation.  AZ3146, a novel small molecule 

Mps1 inhibitor originally developed by AstraZeneca, was a prospective tool for these 

studies, but characterisation was necessary before I could confidently use the inhibitor to 

probe the role of Mps1 in cells.  Thus, I set out to test AZ3146’s ability to inhibit Mps1 in 

vitro and in cells.  
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2 | Materials and Methods 

2.1 | Chemicals 

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich or Melford 

Laboratories. 

2.2 | Cell Culture 

All cell lines used in this study, and their origins, are listed in Table 2.1.  Cells were 

cultured as adherent monolayers at 37°C in a humidified chamber with 5% CO2.  Cell 

culture media consisted of Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine and 

10% (v/v) heat-inactivated foetal calf serum (FCS; Invitrogen). Cells were passaged and 

harvested by washing with warm phosphate-buffered saline (PBS) and incubating for 5 

minutes with warmed trypsin solution in PBS (10%).  Detached cells were resuspended in 

media, diluted and replated as required.  To determine cell density, an aliquot of cell 

suspension was transferred to an Improved Neubauer haemaocytometer (VWR) for 

counting.  For storage, cells were harvested and collected in a 15 ml tube, centrifuged at 

212 × g (1000 rpm) for 5 minutes and resuspended in FCS with 10% (v/v) dimethyl 

sulfoxide (DMSO).  The cell suspension was aliquotted into cryovials (Nunc) and frozen 

slowly by placing in a polystyrene box at -80°C for 24 hours before long-term storage in 

liquid nitrogen. 

 

Cell line Description Source/reference 

TA-HeLa Human cervical adenocarcinoma (Taylor and McKeon, 1997) 

DLD1 Human colorectal 
adenocarcinoma 

ATCC  

HCT116 Human colorectal carcinoma ATCC 

hTERT-RPE Human retinal pigmented 
epithelium 

Dr S. Doxsey, Univ. of 
Massachusetts 

HeLa FRT GFP-Histone H2B Human cervical 
adenocarcinoma; stable cell line 

(Morrow et al., 2005) 

DLD1 FRT/TO Myc-LAP CENP-
E tail, Histone-H2B-DsRed 

Human colorectal 
adenocarcinoma; stable cell line  

Dr A. Holland, UCSD 
(Gurden et al., 2010) 

HeLa FRT/TO GFP-Mps1 
WT/KD, RNAiR 

Human cervical 
adenocarcinoma; stable cell line 

Dr A. Tighe (Taylor lab) 
(Tighe et al., 2008) 

Table 2.1 – Cell lines used in this study.  ATCC = American type culture collection 
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Drug and source Stock concentration Final concentration 

Nocodazole  5 mg/ml 200 ng/ml 

Taxol  10 mM 10 µM 

Monastrol  100 mM 100 µM 

MG132 (Z-leu-leu-leu-al) 20 mM 20 µM 

Thymidine  200 mM 2 mM 

Tetracycline 1 mg/ml Dependent on cell line 

ZM447439 (Tocris Bioscience) 10 mM 2 µM 

AZ12783146 (AZ3146; AstraZeneca) 10 mM Various  (2 µM unless stated) 

Table 2.2 – Drugs used in this study  

2.2.1 | Drug treatments 

All compounds used to treat cells in this study were made up using sterile DMSO 

and stored at -20 or -80°C in glass vials, except for thymidine and tetracycline which was 

dissolved in autoclaved water, passed through a 0.2 µm filter and stored at 4°C (short term 

storage of thymidine) or -20 °C (tetracycline).  Unless otherwise stated, cells were treated 

with drugs diluted in warmed cell culture media to the final concentrations listed in Table 

2.2.  Drugs were purchased from Sigma-Aldrich unless indicated otherwise.  

2.2.2 | Use of tetracycline-inducible stable cell lines 

In this study I used two stable isogenic cell lines expressing tagged transgenes under 

the control of the Tet repressor.  Both were made using the Flp-In T-REx system 

(Invitrogen) and have been described previously (see Table 2.1, bottom two rows).   To 

induce expression of Myc-LAP-tagged CENP-E tail (amino acids 1547-2580 of Swiss-Prot 

entry Q02224-3) in the DLD1 cell line, media was supplemented with 50 ng/ml 

tetracycline and cells were cultured for 24 hours before analysis.  To induce expression of 

wild type (WT) or kinase-dead (KD) GFP-tagged Mps1 in the HeLa cell line, 1 µg/ml 

tetracycline was used and cells were left for 24-48 hours until analysis.  HeLa tetracycline-

inducible cell lines were cultured in hygromycin (40 µg/ml, Roche) and blasticidin (4 

µg/ml, Melford) 

2.2.3 | Cell synchronisation 

A double thymidine block was used to synchronise a cell population in early S phase.  

Cells were incubated with media containing thymidine for 16 hours, and then released 

from arrest by removing thymidine media, washing twice with PBS and replacing the 

media with plain media.  After 8 hours, thymidine was added again, for a further 16 hours. 
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When released from the second block, cells proceeded through the cell cycle as a 

synchronised population and were harvested and processed for flow cytometry (Section 

2.11) as required.  

2.2.4 | Monastrol wash-out experiments 

To study chromosome alignment I used a monastrol wash-out protocol.  Cells grown 

on glass coverslips were treated with monastrol for 4 hours, then washed twice with warm 

complete media and once with media containing MG132 with or without the kinase 

inhibitors AZ3146 or ZM447439.  After the third and final wash, cells were incubated in 

the same media (MG132 ± kinase inhibitors) for 60-90 minutes, and then cells were fixed 

and stained for immunofluorescence. 

2.3 | Molecular Biology 

2.3.1 | PCR to amplify a DNA coding sequence  

To amplify an open reading frame (ORF) for cloning into a vector, polymerase chain 

reaction (PCR) was used.   Primers were designed complementary to sequences at each end 

of the region of interest, with the addition of restriction enzyme cut sites to allow ligation 

into a vector.  Primers used are listed in Table 2.3 and were purchase from Invitrogen.  The 

template DNA for amplification of the human Mps1 catalytic domain was 

pcDNA5/FRT/GFP-Mps1 (originally made by P. Eyers).  PCR reaction mixtures included 

10 µl 10X Cloned Pfu DNA Polymerase Buffer (Stratagene), 10 µl dNTP mix (2.5 mM, 

Roche), 10 µl of 10 µM forward and reverse primers, ~600 ng of plasmid template DNA, 

0.5 µl cloned Pfu DNA polymerase (2.5 U/µl; Stratagene) and sterile water to a total  

 

Primer name Sequence (5ʼ to 3ʼ) Restriction site Purpose 

Mps1 catalytic 
domain (510-857) 
forward 

GCCGCCGGATCCGCATCTT
CTTCAGCAAATGAATGC 

BamH1 

Mps1 cat reverse GCCGCCGCGGCCGCTCATT
TTTTTCCCCTTTTTTTTTCAA
AAGTCTTGG 

Not1 

Cloning Mps1 catalytic 
domain (510-857) 
ORF into pET28a  

T7 Promoter 
(forward) 

TAATACGACTCACTATAGGG - Sequencing – pET28a 
inserts from 5ʼ vector 
region 

T7 Terminator 
(reverse)  

GCTAGTTATTGCTCAGCGG - Sequencing – pET28a 
inserts from 3ʼ vector 
region 

Table 2.3 – Primers used in this study, with restriction enzyme recognition sites in bold. 
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Temperature (°C) Time (min) Number of cycles 

Thermocycling conditions for ORF amplification 

94 3:00 1 

94 
45 
72 

0:30 
0:30 
2:00 (2 min per kb) 

2 

94 
55 
72 

0:30 
0:30 
2:00 

25 

72 5:00 1 

4 ∞ 1 

Thermocycling conditions for DNA sequencing 

96 1:00 1 

96 
50 
60 

0:10 
0:15 
4:00 

32 

4.0 ∞ 1 

Table 2.4 – Thermocycling conditions 

volume of 100 µl. Reactions were carried out in thin walled 0.2 ml PCR tubes in a 

GeneAmp® PCR System 2700 (Applied Biosystems).  Thermocycling conditions are 

described in Table 2.4.  5 µl of the completed PCR reaction was run on a 1% agarose gel to 

check the success of the reaction (see Section 2.3.3).  The PCR reaction was purified using 

a QIAQuick PCR Purification Kit (Qiagen) in accordance with the manufacturer’s 

instructions. 

2.3.2 | Restriction enzyme digest 

To prepare DNA for ligation, a standard double digest was set up containing plasmid 

or insert DNA (0.5-1 µg), 10 units of each restriction enzyme, the appropriate buffer and 

BSA if required (enzymes, buffers and BSA were from New England Biolabs).  Samples 

were incubated at 37 °C for 4 hours, then mixed with 5× DNA loading buffer (0.25% (w/v) 

bromophenol blue, 0.25% (w/v) xylene cyanol, 30% (v/v) glycerol).  Digested fragments 

were subjected to gel electrophoresis. 

2.3.3 | Gel electrophoresis and DNA purification from agarose gels 

DNA molecules were separated according to size by electrophoresis.  Gels were 

made with 1% agarose dissolved in TBE (88 mM Tris, 88 mM boric acid, 2 mM EDTA, 
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pH8.2). When DNA was to be excised and used directly in ligations (Section 2.3.4), low 

melting agarose (Flowgen) was used. Samples were mixed with DNA loading buffer 

before electrophoresis.  A lambda phage DNA ladder (New England Biolabs) was loaded 

alongside samples.  Gels were run at 100V for approximately 1 hour and stained with 

ethidium bromide, then DNA was visualised using a UV lamp.  The required insert or 

plasmid backbone bands were excised and used in ligations. 

2.3.4 | In-gel ligation 

‘Sticky-ended’ plasmid and insert DNA was ligated by an in-gel method.  First, gel 

slices were placed at 70 °C for 10 minutes to melt the agarose.  Then 7 µl of insert, 1 µl of 

plasmid, and 1 µl of T4 ligase buffer (New England Biolabs) were mixed, placed on ice 

and allowed to set and cool.  1 µl of T4 ligase (New England Biolabs) was pipetted on top 

of the solidified agarose and the mixture was placed at room temperature for at least 3 

hours.  After the addition of 40 µl of water, the mixture was heated to 70 °C for 10 minutes 

and 10 µl was used to transform competent bacteria.  Control ligations were performed in 

parallel using blank agarose in the place of either insert or plasmid. 

2.3.5 | Bacterial transformation and preparation of DNA 

Bacterial transformations were carried out according a standard protocol.  For 

plasmid propagation, XL-1 Blue chemically competent Escherichia coli were used.  A 50 

µl aliquot of thawed cells was incubated on ice for 20 minutes with 1 µl of plasmid DNA 

or 10 µl of ligation mixture.  Cells were heat-shocked at 42 °C for 90 seconds, 400 µl of 

LB medium was added, and the tubes were placed at 37 °C in a shaking incubator for 1 

hour to allow the cells to recover.  Cells were plated on agar containing 100 µg/ml 

carbenacillin or 50 µg/ml kanamycin, depending on the resistance conferred by the vector.  

Plates were incubated at 37 °C overnight.  Then, single colonies were picked and grown up 

overnight at 37 °C in a shaking incubator in 3 ml of Luria-Bertani medium (LB) with 25 

µg/ml ampicillin or 50 µg/ml kanamycin.  To isolate DNA from these cultures, a QIAprep 

Spin Miniprep kit (Qiagen) was used as per the manufacturer’s instructions. 

2.3.6 | Glycerol stock preparation 

To store transformed E. coli, a 15% glycerol stock was prepared from an overnight 

culture.  A mixture of 200 µl sterile 50% glycerol and 466 µl bacterial cell suspension was 

stored at -80 °C.  This stock was used to inoculate cultures or streaked on agar plates as 

required. 
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2.3.7 | Sequencing 

The BigDye v3.1 Terminator Sequencing Kit (Applied Biosystems) was used to 

sequence plasmid DNA.  A reaction mix was assembled containing 300-800 ng plasmid 

DNA, 10 pmol sequencing primer (see Table 2.3), 3.5 µl AB Buffer, 1 µl BigDye mix 

and sterile distilled water to a final volume of 20 µl.   Thermocycling conditions are shown 

in Table 2.4.  After completion of the reaction, the DNA was precipitated with ethanol as 

follows: the volume was made up to 100 µl with distilled water, then 10 µl of sodium 

acetate pH5.2, 250 µl 100% ethanol and 1 µl GlycoBlue (15 mg/ml, Ambion) was 

added.  The tubes were incubated on ice for 15 minutes, and then centrifuged at 17968 × g 

(14000 rpm) for 15 minutes in a Sigma 1-15K refrigerated microfuge with rotor 12124.  

The pellet was washed with 500 µl 70% ethanol and centrifuged again.  After careful 

removal of the supernatant, the pellet was air-dried at room temperature and sent to the in-

house DNA Sequencing Facility. 

2.4 | Production of recombinant Mps1CAT in E. coli. 

2.4.1 | Protein expression 

The C-terminal catalytic domain of Mps1, corresponding to amino acids 510-857, 

was cloned into the bacterial expression vector pET28a (Novagen), as detailed in Section 

2.3.  This vector allowed expression of a fusion protein with an N-terminal 6His-tag 

(Mps1CAT).   BL21 (DE3) pLysS E. coli (Novagen) were transformed with the plasmid and 

a glycerol stock was made (see Section 2.3.5 and 2.3.6).  The glycerol stock was used to 

inoculate 3 ml LB with 50 µg/ml kanamycin and incubated overnight at 37 °C with 

shaking.  This culture was diluted 1:1000 into 1 litre LB media and incubated at 37 °C with 

shaking until the optical density measured at 600 nm (OD600) was ~ 0.7.  Expression was 

induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and cultures were 

incubated for 16 hours at 18 °C with shaking.  After induction, cells were pelleted by 

centrifugation at 4302 × g (4500 rpm) in a Sigma 6K-15 centrifuge fitted with rotor 11150.  

The pellet was stored at -80 °C prior to purification. 

2.4.2 | Bacterial cell lysis and purification of 6His-tagged Mps1CAT by metal ion 

affinity chromatography 

Pelleted bacteria were resuspended in ice-cold lysis buffer containing 50 mM Tris-

HCl pH7.4, 300 mM NaCl, 0.1% (v/v) Triton X-100, 10 mM imidazole, 0.1 mM EDTA, 

0.1 mM EGTA, 0.03% β-mercaptoethanol, 0.4 mM phenylmethylsulfonyl fluoride (PMSF) 

1 mM benzamidine and complete EDTA-free protease inhibitor cocktail tablet (Roche) and 
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sonicated using a Vibracell ultrasonic processor (Sonics) on ice for 1 minute in 10 second 

pulses at 40% amplitude.  Insoluble debris was pelleted by centrifugation at 21036 × g 

(14000 rpm) in a Sigma 6K-15 centrifuge with rotor 12166 for 45 minutes, and the 

resulting supernatant was incubated with 1 ml of equilibrated TALON® metal affinity resin 

(Clontech) for 1.5 hours at 4 °C with end-over-end rotation.  The resin was washed with 50 

ml wash buffer (50 mM Tris-HCl pH7.4, 500 mM NaCl, 10 mM imidazole, 0.1 mM 

EDTA, 0.1 mM EGTA, 0.03% β-mercaptoethanol).  6His-tagged Mps1CAT was eluted 

from the resin in 0.5-1 ml fractions with elution buffer containing 50 mM Tris-HCl pH7.4, 

300 mM NaCl, 300 mM imidazole, 0.1 mM EDTA, 0.1mM EGTA and 0.01 % β-

mercaptoethanol.  A visual assay was performed using Coomassie Plus Bradford reagent 

(Pierce) to determine the fractions with the highest protein concentration. These were 

pooled, before changing the buffer by dialysis in a Slide-a-Lyzer dialysis cassette (3.5 kDa 

molecular weight cut-off, Pierce) against dialysis buffer containing 50 mM Tris-HCl 

pH7.4, 150 mM NaCl, 0.1 mM EGTA and 0.1 % β-mercaptoethanol.  Dialysis was 

performed overnight at 4 °C in a volume of 500 ml with gentle stirring, with one change of 

buffer after 2 hours.  Following dialysis, the purified 6His-Mps1CAT solution was 

concentrated by centrifugation at 4000 × g in a Vivaspin (Sartorius) 2 ml capacity 

concentrator column with a 5 kDa cut-off.  Total protein concentration was determined by 

Bradford assay using Coomassie Plus Bradford assay reagent, using bovine serum albumin 

(BSA) as standards.  SDS-PAGE and Coomassie staining (see Section 2.5) were used to 

estimate the concentration of full-length recombinant Mps1CAT.   The rest of the 

concentrate was split into single-use aliquots, snap-frozen on liquid nitrogen and stored at -

80°C until use in initial kinase assays (see Section 2.7) with a small range of inhibitor 

concentrations.    

For determination of AZ3146’s IC50 by assaying a wide range of inhibitor 

concentrations (Figure 3.2C), purified 6His-Mps1CAT was obtained from Matthew Chu 

(Tabernero lab, University of Manchester).  This was expressed and purified as described 

in (Chu et al., 2008).  

2.5 | SDS-PAGE and western blotting 

2.5.1 | SDS-PAGE 

Sodium-dodedcyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

used to separate proteins by size.  After running gels, proteins were visualised by 

Coomassie staining (see Section 2.5.2) or western blotting (see Section 2.5.3).  To prepare 

samples for SDS-PAGE, they were mixed with 6X SDS-PAGE sample buffer (350 mM 
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Tris-HCl pH6.8, 10% SDS (w/v), 600 mM dithiothreitol (DTT), 0.06% (w/v) bromophenol 

blue, 30% (v/v) glycerol) and boiled for 5 minutes. For SDS-PAGE of total cell lysates, 

cells were harvested by trypsinisation (see Section 2.2), washed once with PBS, followed 

by lysis of the pelleted cells directly into SDS-PAGE sample buffer by resuspending cells 

in the buffer and boiling for 5 minutes.  SDS-PAGE gel casting equipment and gel tanks 

were from Hoefer.  Gels were cast in plates separated by 1.5 mm or 0.75 mm spacers with 

10- or 15-well combs.  The acrylamide percentage in the resolving gel was selected 

according to the molecular weight of the proteins to be resolved. The resolving gel was 

poured first and allowed to polymerise before the stacking gel was layered on top. 

The polymerised gel was clamped into a Mighty Small SE250/SE260 running tank, 

which was filled with running buffer (25 mM Tris, 200 mM glycine and 0.1% (w/v) SDS).  

Protein samples and a molecular weight marker (Precision Plus Dual Colour, Bio-Rad) 

were loaded into wells and the gel was run at a constant voltage of 150V.   

2.5.2 | Coomassie staining 

To directly visualise relatively large amounts of protein after SDS-PAGE, gels were 

fixed and stained in Coomassie solution (0.2% (w/v) Coomassie Brilliant Blue, 40% 

methanol, 7% acetic acid) for up to 1 hour at room temperature whilst rocking gently.  

Gels were washed in destain solution (40% methanol, 7% acetic acid) at room temperature 

for several hours until bands were visible and background was reduced.   

2.5.3 | Western blotting 

For detection of a specific protein in a sample using an antibody, proteins were separated 

by SDS-PAGE then transferred to either an Immobilon P polyvinylidene fluoride (PVDF; 

Millipore) or nitrocellulose (Whatman) membrane.  A standard transfer sandwich was 

assembled with Whatman filter paper wetted with transfer buffer (25 mM Tris, 190 mM 

glycine, 0.1% (w/v) SDS and 20% methanol.  The membrane was placed on the anode side 

of the SDS-PAGE gel in a Trans-blot semi-dry transfer system (Bio-Rad), which was run 

at 15V for 1 h.  When the protein of interest was larger than 100 kDa, a wet transfer system 

(Bio-Rad) was used. In this case the tank was filled with wet transfer buffer (50 mM Tris, 

380 mM glycine, 0.2% (w/v) SDS, 5% methanol) and 50V was applied for 1 hour.   

After transfer of the proteins to the membrane, non-specific antibody binding was 

prevented by incubation with a blocking solution of TBST with 5% milk solution (100 mM 

Tris, 150 mM NaCl, 0.1% (v/v) Tween-20, 5% (w/v) non-fat powdered milk) for 30-60  
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minutes.  The primary antibody (see Table 2.5) was appropriately diluted in the blocking 

solution and incubated with the membrane overnight at 4 °C with gentle rocking. 

Membranes were then washed for 5 minutes 5 times with TBST (100 mM Tris, 150 

mM NaCl, 0.1% (v/v) Tween-20) before incubation for 1 h at room temperature with HRP-

conjugated secondary antibody.  After washing again 5 times with TBST, the membrane 

was incubated with SuperSignal West Pico Chemiluminescent Substrate (Pierce) was 

added to the membrane.  Luminescence was detected by exposure of the membrane to 

Biomax MR photographic film (Kodak). 

2.5.4 | Phos-tag SDS-PAGE gels 

To separate proteins in a total cell lysate according to their relative phosphorylation 

levels in addition to their size, Phos-tag (Phos-tag Consortium, Japan) was used according 

to the manufacturer’s instructions.  Briefly, Phos-tag (25 µM) and MnCl2 (50 µM) were 

added to standard SDS-PAGE resolving gels containing 6% (for anti-Mps1) or 8% (for 

anti-Aurora B) acrylamide.  To resolve the samples, a constant current of 30 mA was 

applied until the dye front reached the bottom of the gel.  Following washing of the gel in 

wet transfer buffer with EDTA (50 mM Tris, 380 mM glycine, 0.2% (w/v) SDS, 5% 

methanol and 100 mM EDTA), proteins were transferred to PVDF by wet transfer and 

processed for western blotting as described (see Section 2.5.3). 

Western blotting - primary antibodies 

Antibody Antigen Species Working dilution Source/Reference 

SMP1.1 hMps1 Sheep 1:2000 (Tighe et al., 2008) 

Phospho-
Aurora 

Phospho-hAurora A 
(T288)/hAurora B 
(T232)/hAurora C 
(T198) 

Rabbit 1:2000 Cell Signaling 
Technology 

Phospho-
Histone H3 

Phospho-S10 
hHistone H3 

Rabbit 1:10000 Millipore 

SAA1.1 hAurora A Sheep 1:5000 (Girdler et al., 2006) 

SAB1.2 hAurora B Sheep 1:1000 (Girdler et al., 2006) 

Mps1 CT Mps1 C-terminal Mouse 1:1000 Millipore 

His 6xHis tag Mouse 1:1000 Sigma 

Secondary antibodies 

HRP-
conjugated 
secondary 

Anti-sheep IgG Rabbit 1:500 Invitrogen 

HRP-
conjugated 
secondary 

Anti-rabbit/goat IgG Goat 1:500 Invitrogen 

Table 2.5 Antibodies used for Western blotting 
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2.6 | Immunoprecipitation from cell lysates 

2.6.1 | Preparation of cell lysates 

To prepare cell lysates for immunoprecipitation of endogenous Mps1 from mitotic 

TA-HeLas, cells plated on 15 cm dishes (1 dish per 5 IPs) were treated with nocodazole for 

14 hours.  Loosely-adherent mitotic cells were collected by shake-off, pelleted by 

centrifugation at 306 × g (1200 rpm) in a Sigma 6K15 centrifuge with rotor 11150, then 

washed once with chilled PBS.   The washed pellet was resuspended in 1.25 ml ice-cold 

mammalian cell lysis buffer (250 µl per IP) consisting of 50 mM Tris-HCl pH7.4, 100 mM 

NaCl, 0.5% NP-40, 5 mM EDTA, 5mM EGTA, 40 mM β-glycerophosphate, 0.2 mM 

PMSF, 1 mM DTT, 1 mM sodium orthovanadate, 20 mM sodium fluoride, 1 µM okadaic 

acid (Calbiochem) and complete EDTA-free protease inhibitor cocktail tablet (Roche).  

Cells were lysed on ice for 30 minutes with occasional mixing, and centrifuged at 17968 × 

g (14000 rpm) for 20 minutes in a Sigma 1-15K refrigerated microfuge with rotor 12124 to 

pellet insoluble cell debris.  The supernatant was split into 250 µl aliquots and used 

immediately, or snap frozen on liquid nitrogen, and stored at -80 °C until use.  

2.6.2 | Covalent cross-linking of antibody to beads 

Mps1 was immunoprecipitated from cell lysates using a sheep anti-Mps1 polyclonal 

antibody (SMP1.1, Tighe et al., 2008) coupled to a Protein G Sepharose 4 Fast Flow 

matrix (GE Healthcare).  100 µl of settled Protein G Sepharose beads was washed three 

times with 1 ml PBST (phosphate-buffered saline with 0.1% (v/v) Tween-20), centrifuging 

at 4000 × g at 4 °C for 2 minutes to pellet beads between washes.   After resuspending the 

washed beads in 0.5 ml of PBST, 6 µl of SMP1.1 or sheep non-specific IgG was added.  

Beads and antibody were allowed to bind by incubating for 1 hour at 4 °C with end-over-

end rotation.  After two washes with 1 ml PBST and two washes with 1 ml 0.2 M sodium 

borate pH9, beads were resuspended in 1 ml of sodium borate and the cross-linker 

dimethylpimelimidate (DMP) was added to final concentration of 20 mM.  This was 

incubated at room temperature for 45 minutes with end-over-end rotation.   The beads were 

pelleted, washed twice with 1 ml of 0.2 M ethanolamine pH 8 to quench the reaction, then 

resuspended in 1 ml ethanolamine and rotated for 1 hour at room temperature.   The 

coupled antibody-bead complexes were stored at 4 °C and washed three times with cell 

lysis buffer before use in IPs. 
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2.6.3 | Immunoprecipitation 

All immunoprecipitation steps were performed on ice using chilled buffers and 

centrifugation steps were carried out at 4°C.  To pre-clear the lysates of proteins binding 

non-specifically to the matrix, lysates were incubated with washed Protein G Sepharose 

beads (20 µl of 50% slurry per 250 µl lysate) and rotated at 4 °C for 30 minutes.  Beads 

were pelleted, and the pre-cleared supernatant was removed.  An aliquot of this lysate was 

removed for analysis and labelled as the IP input.  Antibody-coupled beads were added  

(20 µl of 50% slurry per 250 µl lysate), and samples were incubated at 4 °C for 2 hours 

with end-over-end rotation.  Non-specific sheep IgG-coupled beads were used alongside 

SMP1.1 as control IPs.  After binding of antibody-bead complexes to the target protein, the 

complexes were pelleted and washed once with 1 ml high salt wash buffer (50 mM Tris-

HCl pH7.4, 400 mM NaCl, 0.5% NP-40, 5 mM EDTA, 5mM EGTA, 40 mM β-

glycerophosphate, 0.2 mM PMSF, 1 mM DTT, 1 mM sodium orthovanadate, 20 mM 

sodium fluoride) and twice with 1 ml wash buffer (as high salt wash buffer, but with 100 

mM NaCl).   Pelleted immune complexes were used in kinase assays (see Section 2.7) or 

boiled in sample buffer for SDS-PAGE analysis (see Section 2.5) 

2.7 | γ32P incorporation assays (kinase assays) 

Radioactive in vitro assays were used to measure the effect of various concentrations 

of AZ3146 on the kinase activity of Mps1.  To measure the activity of recombinant 

Mps1CAT, the purified enzyme was added to an assay buffer containing 25 mM Tris-HCl 

pH7.4, 100 mM NaCl, 50 mg/ml BSA, 0.1 mM EGTA, 0.1% β-mercaptoethanol, 10 mM 

MgCl2 and 0.5 mg/ml of the exogenous substrate myelin basic protein (MBP; Upstate).  

The final assay volume was 40 µl.  In initial assays testing AZ3146 over a small 

concentration range (see Figure 3.2B), ~1 µg of Mps1CAT was used per assay.  For 

determination of the IC50 for AZ3146 in this assay (see Figure 3.2C) 500 ng of 

recombinant Mps1CAT was used.  Pelleted bead complexes were used in assays to measure 

the activity of immunoprecipitated Mps1 from cells (see Section 2.6). 1 µl of AZ3146 

diluted in DMSO was added to the assay mix to achieve the required final inhibitor 

concentration, and DMSO was included in control assays to account for the solvent.  

Assays were started by addition of [γ32P] ATP (Perkin Elmer) to a final concentration of 

100 µM (2 µCi per assay), followed by incubation at 30 °C for 20 minutes.  When assays 

contained bead-bound Mps1 from cells, samples were incubated with shaking at 250 rpm.  

Assays were then processed depending on the required read-out, as described below.  

57



 

2.7.1 | Quantitation of Mps1 kinase activity by Cerenkov counting 

For determination AZ3146’s IC50, proteins phosphorylated during the assay were 

captured on phosphocellulose paper to measure their radioactivity.  After completion of the 

incubation time, assays were spotted onto labelled squares of P81 paper (Whatman), then 

dropped into a beaker of 0.5% phosphoric acid containing a magnetic stir bar.  The papers 

were left to wash for 10 minutes before replacing the phosphoric acid and washing for 5 

minutes a further three times.  Papers were submerged in acetone for 2 minutes, air-dried, 

placed inside vials without scintillation fluid and the incorporated γ32P was measured by 

Cerenkov counting in a Packard 2100 scintillation counter for 1 minute per sample.  The 

background level of radioactivity, as determined by a no-kinase control, was subtracted 

from the sample readings.  All AZ3146-treated samples were normalised to the level of 

radioactivity in the solvent-only assay.  IC50s were determined by fitting a sigmoidal dose-

response curve using Prism v4.0 software (GraphPad Software). 

2.7.2 | Quantification of Mps1 kinase activity by 2D densitometry 

The activity of immunoprecipitated Mps1 from cells was measured by 2D 

densitometry of the MBP or Mps1 after separating proteins in the kinase assay by SDS-

PAGE.   After incubation at 30 °C, assays were stopped by addition of 10 µl 6X sample 

buffer, heated at 75 °C for 10 minutes and spun down.  Samples were loaded onto a 15% 

acrylamide gel and run as described in Section 2.5.  After resolving the proteins, the gel 

was Coomassie stained (Section 2.5.2) and dried down.  The dried gel was exposed to a 

Fugi phosphorimaging plate and imaged using a Fugi FLA 3000 phosphorimager.  

Quantification of 32P signal intensity was carried out using AIDA software (Raytest 

Isotopenmessgerate GmbH).  The background level of phosphorylation, as determined by a 

non-specific sheep IgG control IP, was subtracted from the values for each sample.  

AZ3146-treated samples were normalised to the signal in the Mps1 IP treated with DMSO 

alone, and graphs were drawn as above. 

2.8 | Selectivity screen 

To assess the selectivity of AZ3146, a single point screen was carried out by 

Invitrogen’s SelectScreen Kinase Profiling service.  A panel of 50 kinases were selected 

from those available and assayed with 1 µM AZ3146. 

2.9 | Colony formation assays 

To test the effect of various concentrations of AZ3146 on viability of cultured human 

cell lines, colony formation assays were carried out.  TA-HeLa, RPE-hTERT and HCT116 
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cells were seeded on 6-well plates at a density of 21 cells/cm2 (200 cells/well) and left 24 

hours to adhere.  Fresh media was then added, either without drug, or containing AZ3146 

at concentrations of 10, 5, 2, 1, and 0.5 µM.  After 8-9 days, cells were washed with PBS, 

fixed in 4% formaldehyde for 20 minutes, washed with distilled water and stained with 

0.1% (w/v) crystal violet solution for 5 minutes.  After further washes, plates were dried in 

an oven before counting the visible colonies and solubilising the stain with 10% (v/v) 

acetic acid (1 ml per well).  Aliquots of solubilised stain from each well were transferred to 

a microtitre plate, and the absorbance at 595 nm was read on a Biotek Synergy HT plate 

reader with KC4 software.  The background absorbance of 10% acetic acid-filled blank 

wells was subtracted from each sample measurement, and absorbance readings were 

normalised to control (no AZ3146) levels. 

2.10 | Flow cytometry 

Propidium iodide and anti-MPM2 (anti-phospho-Ser/Thr-Pro, Upstate) staining was 

used to analyse DNA content and mitotic index of a population of fixed cells.  Cells were 

grown on 10 cm dishes, treated with drugs when appropriate and harvested by 

trypsinisation, collecting all media and washes.  Harvested cells were washed with 5 ml 

cold PBS and pelleted by centrifugation at 212 × g (1000 rpm) for 5 minutes.  The pellet 

was resuspended in 100 µl cold PBS and 350 µl ice-cold ethanol was added drop-wise 

whilst gently vortexing.  Fixed cells were stored at -20 °C for at least 16 hours prior to 

staining.  Immediately before staining, cells were washed twice with PBS, centrifuging at 

478 × g (1500 rpm) to pellet cells.  Pellets were resuspended in 500 µl anti-MPM2 diluted 

1:2000 in PBS, then incubated with the antibody for 1-2 hours at 4 °C.  After further 

washing with PBS, the cells were incubated with FITC-conjugated donkey anti-mouse 

secondary antibody (Jackson Labs) for 1 hour at 4 °C in darkness.  Cells were then washed 

again with PBS.  To stain the DNA, cells were resuspended in 500 µl of propidium iodide 

(40 µg/ml) and ribonuclease A (RNase A, 50 µg/ml) in PBS and incubated for 30 minutes 

at room temperature in darkness.  Stained cells were analysed on a CyAn flow cytometer 

(Dako) with Summit software. 

2.11 | Immunofluorescence 

To allow visualisation of specific cellular proteins using antibody labelling, cells 

were seeded onto 19 mm glass coverslips at 5.4 × 104 per coverslip for analysis 24 hours 

later, or 3.6 × 104 per coverslip for analysis 48 hours later.  Cells were treated with 

compounds as required, washing coverslips once with drug-containing media before 
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addition of the final media.  Cells were fixed and stained by one of three protocols as 

detailed below.   

For most applications, the following fixation conditions were used:  Coverslips were 

washed once with PBS, fixed in 1% formaldehyde in PBS for 10 minutes, and then washed 

a further three times with PBS.  After incubation for 5 minutes in ~10 mM glycine block 

solution (1 drop of 1M glycine-Tris HCl pH8.5 in 4 ml PBS), cells were permeabilised by 

washing with 0.1% (v/v) Triton X-100 in PBS (PBS-T).  Primary antibodies were diluted 

in glycine block solution (see Table 2.6) and coverslips were incubated with antibodies for 

1 hour at room temperature.  Next, coverslips were washed twice with PBST and then 

incubated with the appropriate fluorophore-conjugated secondary antibodies for 1 hour at 

room temperature in darkness.  Following further washes with PBST, 1 µg/ml Hoechst 

33258 diluted in PBST was placed on coverslips for 2 minutes to stain DNA.  After two 

more washes, coverslips were mounted on slides on a drop of mounting media (90% 

glycerol, 20 mM Tris-HCl pH8.0).  The edges were sealed with clear nail varnish. 

To visualise tubulin, a microtubule-kinetochore stabilising buffer (MT-KC buffer: 

100 mM PIPES, 1 mM MgCl2, 0.1 mM CaCl2, 0.1% Triton X-100) was used to pre-extract 

the cells.  First, coverslips were washed once with PBS, then MT-KC buffer was added to 

the coverslips for 90 seconds at room temperature, followed by fixation in 4% 

formaldehyde in the same buffer for 10 minutes.  Blocking and staining proceeded as 

described in the previous paragraph.   

For staining of Cenp-E and components of the RZZ/Zwint complex, kinetochore 

buffer (KB: 20 mM Tris-HCl pH7.4, 150 mM NaCl, 0.1% BSA and 0.2% Triton X-100, 

Chan et al., 2000) was used to pre-extract cells.  After washing with PBS, coverslips were 

incubated with KB for 2 minutes at room temperature.  Cells were fixed in 4% 

formaldehyde in PBS for 7-10 minutes, then blocked and stained as detailed above.   

Slides were stored at -20 °C prior to viewing cells by fluorescence microscopy as 

described in Section 2.13. 

2.12 | Microscopy 

After fixation and staining, cells were analysed on a microscope. Two microscope 

systems were used in this study.  For routine analysis (referred to as ‘standard fluorescence 

microscopy’ in subsequent chapters), cells were viewed using a Zeiss Axioskop 2 upright 

microscope and images captured used a CoolSNAP HQ CCD camera (Photometrics).  

MetaMorph (Universal Imaging) software was used for image acquisition.  For high- 

quality, deconvolved images and where quantification was required, a Delta Vision 
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Immunofluorescence 

Antibody name Antigen Species Dilution Source/Reference 

Primary antibodies 

ACA Centromeres Human 1:500 Bill Earnshaw, University 
of Edinburgh, UK 

TAT1 α-Tubulin Mouse 1:100 Keith Gull, University of 
Oxford, UK 

Cenp-E hCenp-E Rabbit 1:2000 Don Cleveland, UCSD, 
USA 

SCF.2 hCenp-F Sheep 1:800 (Holt et al., 2005) 

SB1.3 hBub1 Sheep 1:1000 (Taylor et al., 2001) 

SBR1.1 hBubR1 Sheep 1:1000 (Taylor et al., 2001) 

SAA.1 hAurora A Sheep 1:5000 (Girdler et al., 2006) 

SAB.1 hAurora B Sheep 1:1000 (Girdler et al., 2006) 

Phospho-Aurora Phospho-
hAurora A 
(T288)/hAurora B 
(T232)/hAurora 
C (T198) 

Rabbit 1:500 Cell Signaling Technology 

9B10 hMad1 Mouse 1:1000 Abcam 

SM2.2 hMad2 Sheep 1:500 (Johnson et al., 2004) 

Cenp-A hCenp-A Rabbit 1:200 Millipore 

Phospho-Cenp-A Phospho-S7 
hCenp-A 

Rabbit 1:1000 Millipore 

Phospho-Histone H3 Phospho-S10 
hHistone H3 

Rabbit 1:500 Millipore 

MCAK MCAK Rabbit 1:1000 Cytoskeleton 

Rod hRod Rabbit 1:1000 Gordon Chan, University 
of Alberta, Canada 

ZW10 hZW10 Rat 1:1000 Gordon Chan, University 
of Alberta, Canada 

Zwich hZwilch Rat 1:500 Gordon Chan, University 
of Alberta, Canada 

Zwint hZwint Rabbit 1:5000 Gordon Chan, University 
of Alberta, Canada 

GFP GFP Rabbit 1:3000 Abcam 

Secondary Antibodies 

Cy2-, Cy3- and Cy5-
conjugated 
secondaries 
 

Anti-
sheep/mouse/ 

rabbit/human/rat 
IgG 

Donkey 1:500 
(1:250 for 
Cy5) 

Jackson Immunoresearch 

Table 2.6 Antibodies used for immunofluorescence. 
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RT (Applied Precision) restoration microscope was used, equipped with a 100×/1.40 

UPlan S Apo objective, a Sedat Quad 86000v2 filter set (Chroma Technology Corp.) and 

an API XYZ stage.  Images were captured using a CoolSNAP HQ CCD camera, with a Z-

optical spacing of 0.2 µm.  Raw image stacks were deconvolved using SoftWoRx software 

(Applied Precision).  Maximum intensity projections were created from deconvolved 

stacks; these images were used for quantification where required, and are shown in the 

Results. 

2.12.1 | Quantitation of kinetochore protein localisation  

Protein levels at kinetochores were quantified by normalising to the ACA signal of 

each kinetochore pair.  SoftWoRx software was used to capture the total pixel intensity of 

wavelengths in the kinetochore region, and background readings were taken in non-

kinetochore areas.  The background pixel intensity per pixel was calculated for each 

wavelength and appropriate values subtracted from the reading for each kinetochore pair.  

A ratio was calculated (protein of interest/ACA) for each kinetochore, and these were used 

to compare levels between control and drug-treated cells.  Datasets were normalised to the 

mean control ratio and graphs drawn using Prism software. 

2.13 | Live cell imaging 

HeLa cells stably expressing a GFP-tagged Histone H2B (see Table 2.1) were filmed 

to analyse mitotic timing and monitor chromosome segregation.  Twenty-four hours before 

filming, cells were plated onto either a 4-well glass bottomed chamber slide (LabTek) at 7 

× 104 cells per well, or onto a clear 24-well plate (Corning) at 9.6 × 104 cell per well.  On 

the day of filming, cells were treated with drugs or solvent alone as required, and filming 

commenced ~2 hours later.   Cells were viewed using a Zeiss Axiovert 200 microscope 

system with a 32×/0.4 LD A-Plan objective.  The microscope was equipped with an 

environmental control chamber (Solent Scientific) and a PZ-2000 motorised stage 

(Applied Scientific Instrumentation) to enable multiple XY point visiting.  Cells were 

maintained at 37 °C with a humidified stream of 5% CO2.  Images were captured every 2 

minutes with a CoolSNAP HQ camera (Photometrics), and acquisition was controlled by 

MetaMorph software.  Mitoses were analysed manually using MetaMorph.  Movies and 

sequential TIFFs were made in MetaMorph and exported to QuickTime (Apple) or 

Photoshop (Adobe). 

2.14 | Mps1 RNAi add-back experiments 

Endogenous Mps1 expression was perturbed in cells using a shRNA-based approach, 

followed by induction of an RNAi-resistant GFP-Mps1 transgene using tetracycline (Tighe 
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et al 2008, and see Section 2.2.2).  The procedure was essentially the same as that 

described previously (Tighe et al 2008).  Twenty-four hours prior to transfection, 4 × 104 

HeLa FRT/TO GFP-Mps1 WTR/KDR cells were seeded onto a 24-well plate in antibiotic-

free media.  Cells were transfected with pRS HuSH shRNA vectors (Origene) containing a 

21 nt Mps1 targeting sequence (target locus: nucleotides 1686-1706 of Mps1 coding 

sequence, NCBI ID CCDS4993.1) or a control pRS vector, mixed in a ratio of 9:1 with 

pcDNA5 DsRed-Histone H2B (Tighe et al., 2008).  Lipofectamine PLUS (Invitrogen) 

was used for transfections according the manufacturer’s instructions.  Briefly, 1 µl 

Lipofectamine and 4 µl PLUS reagent were used to form DNA-lipid complexes with 

400 ng total DNA per well (360 ng : 40 ng).  Media was replaced with 200 µl of serum and 

antibiotic-free media, and complexes were added to wells in a volume of 50 µl.  

Complexes were left on cells for ~6 hours before addition of 250 µl 20% serum media, 

with or without 2 µg/ml tetracycline, in order that final well concentrations were 10% 

serum and 1 µg/ml tetracycline.   Twenty-four hours later, cells were replated to coverslips 

for immunofluorescence, or 6 well plates for western blotting.  Cells were maintained in 

tetracycline where appropriate.  A further 24 hours later, coverslips were treated with 

nocodazole and MG132 for 2 hours before fixing and staining for immunofluorescence 

(Section 2.12).  Six-well plates were harvested by trypsinisation and lysed directly in SDS-

PAGE sample buffer before SDS-PAGE and western blotting (Section 2.5). 
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3 | Results Chapter I: AZ3146, a novel inhibitor of Mps1 

3.1 | Introduction 

A great deal of insight has been gained into the roles of human Mps1 in the mitotic 

checkpoint and chromosome alignment using RNAi-based techniques (Fisk et al., 2003; 

Jelluma et al., 2008b; Liu et al., 2003; Sliedrecht et al., 2010; Stucke et al., 2002; Tighe et 

al., 2008).  Despite these advances, the role of Mps1 kinase activity is far from fully 

understood.  When this study began, only one inhibitor of endogenous human Mps1 had 

been described: SP600125 (Schmidt et al., 2005).  However, this inhibitor is of limited use 

since it inhibits a broad range of kinases in cells (Bain et al., 2007).  Thus, new inhibitors 

of endogenous human Mps1 would be of great value.   

AZ3146 was developed at AstraZeneca, Macclesfield, after a high-throughput screen 

for inhibitors of Mps1 activity.  The original hit compound has been modified to increase 

potency and specificity, resulting in AZ3146, which is depicted in Figure 3.1A. The initial 

aims of this study were to assess the ability of this compound to inhibit Mps1.  In this 

chapter, I describe kinase assays designed to test the inhibitors potency and selectivity, 

followed by analysis of its effect on Mps1 in cells. 

3.2 | AZ3146 inhibits recombinant Mps1CAT in vitro 

To determine whether AZ3146 can indeed inhibit Mps1’s enzymatic activity, I set up 

an in vitro kinase assay using recombinant Mps1 purified from bacteria, MBP as an 

artificial substrate and γ32P-labelled ATP.  Instead of expressing and purifying the full-

length kinase, I used a C-terminal fragment encompassing the catalytic domain (amino 

acids 310-857) with an N-terminal 6xHis-tag (Mps1CAT) that has previously been shown to 

be active in vitro (Chu et al., 2008).  This fusion protein was expressed in E. coli and 

isolated from the bacterial cell lysate by metal ion affinity chromatography using Talon™ 

resin.  To assess the purity of the eluted protein, it was resolved by SDS-PAGE and the gel 

was stained with Coomassie Brilliant Blue.  The protein appeared largely free from 

contaminants and migrated at a position consistent with its expected molecular mass 

(Figure 3.1B, marked by an arrowhead).  The band appeared as a smear, consistent with 

reports that Mps1 purified from bacteria is highly phosphorylated (Mattison et al., 2007).  

To confirm that the affinity-purified protein was 6xHis-tagged Mps1CAT, I processed 

protein samples for western blot and probed them with antibodies against the Mps1 C-

terminal and the 6xHis-tag.  A band was detectable at the expected molecular weight with 
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Figure 3.1 The structure of AZ3146 and the purification of recombinant Mps1CAT from E. coli
(A) The chemical structure of AZ3146.

(B) Purified 6xHis-tagged Mps1CAT was expressed in E. coli and purified by metal ion affinity chromatog-

raphy using Talon® resin. The eluted protein was resolved by SDS-PAGE, and gel was Coomassie stained
to visualise total protein. The major band, which appears at the predicted molecular weight for 6xHis-tagged

Mps1CAT, is marked by an arrowhead.
(C) The purified protein was processed for western blotting and probed with antibodies raised against the C-
terminal domain of Mps1 (αMps1-CT, left panel) and the 6xHis-tag (right panel, αHis). The arrowhead
marks the band corresponding to the full-length 6xHis-tagged protein. The lower molecular weight bands
visible in the Mps1-CT blot are likely to represent degradation products.
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 both antibodies (Figure 3.1C), indicating that the protein I had purified was indeed 6xHis-

tagged Mps1CAT, and could be used in kinase assays. 

Several physiologically relevant substrates have been reported for human Mps1 (Dou 

et al., 2004; Jelluma et al., 2008b; Kanai et al., 2007; Leng et al., 2006; Wei et al., 2005; 

Zhu et al., 2007), and both full-length Mps1 and its catalytic domain have been shown to 

autophosphorylate (Chu et al., 2008; Jelluma et al., 2008a; Kang et al., 2007; Mattison et 

al., 2007; Mills et al., 1992; Stucke et al., 2004).  However, for convenience, I chose to use 

the non-specific substrate MBP in assays, since this acts as a good substrate for Mps1 in 

vitro (Lauze et al., 1995; Stucke et al., 2002).  Kinase assays were started by addition of 

[γ32P]ATP, incubated at 30°C for 20 minutes,  then the reactions were stopped by addition 

of SDS-PAGE sample buffer and proteins were separated by SDS-PAGE.  32P 

incorporation was visualised by exposing the dried gel to photographic film.  When 

Mps1CAT was included in the assays, bands corresponding to radiolabelled MBP and 

Mps1CAT were readily detectable by autoradiography (Figure 3.2A, lane 1), consistent with 

phosphorylation of the exogenous substrate and the kinase itself.  To rule out the presence 

of contaminants in the assay components, a no-kinase control was included (lane 8).  No 

radiolabelled MBP could be detected in the absence of the kinase, showing that the MBP 

phosphorylation relied upon the addition of affinity-purified Mps1CAT.  While I cannot 

completely exclude the presence of co-purifying kinases in the Mps1CAT prep, the lack of 

visible contaminants in the eluted protein (see Figure 3.1B), plus prior reports (Lauze et 

al., 1995; Stucke et al., 2002), allows a reasonable level of confidence that Mps1CAT kinase 

activity is responsible for MBP phosphorylation.  Therefore, these assays provide a useful 

read-out of Mps1 activity in vitro. 

Having set up a suitable in vitro assay of Mps1 activity, I tested the ability of 

AZ3146 to inhibit this activity.  Increasing concentrations of the compound were added to 

the assay mix before the reactions were started with [γ32P]ATP, producing a dose-

dependent decrease in 32P incorporation into both MBP and Mps1CAT itself when the 

proteins were visualised by autoradiography (Figure 3.2A).  The reduction in 32P-MBP and 
32P-Mps1CAT in response to AZ3146 treatment is consistent with the notion that the 

compound inhibits the catalytic activity of Mps1.  Taken together with data provided by 

AstraZeneca (Stephen Green, personal communication), these data verify that AZ3146 is a 

reasonably potent Mps1 inhibitor, justifying further investigation. 
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Figure 3.2 AZ3146 inhibits Mps1CAT kinase activity in vitro.

(A) Kinase assays were performed with bacterially-expressed Mps1CAT and concentrations of the inhibitor
ranging from 50 nM to 2 µM. Solvent only (lane 1) and no kinase (lane 8) controls were included. After

incubation with [γ32P]ATP, proteins were separated by SDS-PAGE and radiolabelled Mps1CAT (upper
panel) and MBP (middle panel) were visualised by autoradiography. The Coomassie-stained gel (lower
panel) shows roughly equal loading of MBP.

(B) In vitro kinase assays were carried out with Mps1CAT and a range of AZ3146 concentrations (0.1, 0.3, 1,

3, 10, 30 nM, 0.1, 0.3, 1, 3, 10, 30 µM) MpsCAT activity was measured by spotting assays onto P81 paper
followed by scintillation counting. Background readings were subtracted and values were normalised to the
solvent only control, and a sigmoidal dose response curve was fitted using Prism software. The dashed line
approximates the position of the IC50 calculated from the curve. Data points represent the mean values from

3 independent experiments, ± s.e.m.(error bars).
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Having shown that AZ3146 is indeed capable of inhibiting Mps1 in vitro, I sought to 

quantify its potency by establishing an IC50 for the compound.  To facilitate a more 

quantitative approach, I turned to Cerenkov counting, which measures the blue light given 

off by high-energy beta emitters such as 32P.  Kinase assays were carried out essentially as 

described above, except I used Mps1CAT provided by Matthew Chu (University of 

Manchester, purified as in Chu et al., 2008), and spotted the reactions onto negatively 

charged phosphocellulose paper before immersing the papers in phosphoric acid solution.  

This simultaneously stopped the reaction and conferred a positive charge to the proteins in 

the assays, causing them to stick to the phosphocellulose paper.  Unbound [γ32P]ATP was 

washed away, and the dry papers were placed in vials and counted in a scintillation counter 

(Hastie et al., 2006).  The background level of radioactivity in the no-kinase control was 

subtracted from each reading and the solvent-only control readings were set to 100% 

before plotting the data points on a graph, and fitting a sigmoidal dose-response curve 

using Prism v4.0 software (Figure 3.2B).   

The IC50 value calculated for the AZ3146 dose-response curve was 35 nM (Figure 

3.2B, marked on the graph by a dashed line).  It is noteworthy that at concentrations below 

3 nM, the radioactivity of the samples increased reproducibly to 115-120% of the control, 

solvent-only levels.  It is possible that the presence of the inhibitor, or some contaminant 

contained within the solution, may have had a stimulatory effect on kinase activity leading 

to an increase in radiolabelling in those samples.  Nevertheless, it is reasonable to conclude 

that their effect on the calculated IC50 would be relatively slight, so I proceeded to use the 

data to generate the IC50 value. 

The IC50 of 35 nM suggested a reasonable level of potency.  While it is difficult to 

compare the IC50s obtained for distinct kinase-inhibitor combinations under different assay 

conditions, it is nevertheless worth noting that this value is similar to the reported IC50 of 

an ATP-competitive Aurora B inhibitor, ZM447439 [50 nM, assayed at the same ATP 

concentration as this study (Girdler et al., 2006)].  ZM447439 potently inhibits Aurora B in 

cells at 2 µM (Ditchfield et al., 2003) and indeed has been widely used to investigate 

Aurora B function (Taylor and Peters, 2008).  It therefore seemed reasonable to speculate 

that AZ3146 might be able to yield similarly potent Mps1 inhibition.  Also noteworthy is 

the observation that AZ3146’s IC50 is value is ~10-fold lower than that of the other 

published human Mps1 inhibitor SP600125 (Schmidt et al., 2005) when used to inhibit 

Mps1CAT under identical assay conditions (356 nM – Matthew Chu, personal 

communication), indicating that AZ3146 is more potent than SP600125, and therefore 
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potentially more effective in cells at lower concentrations, which would make AZ3146 a 

preferential tool for study of Mps1 function.   

In summary, under the assay conditions used in this study, AZ3146 inhibits Mps1CAT 

with an IC50 of ~35 nM.  While it can be difficult to extrapolate in vitro data to predict 

efficacy in cells, this in vitro IC50 suggests that the potency of AZ3146 may indeed be 

sufficient to produce potent Mps1 inhibition in cells at low micromolar concentrations. 

3.3 | AZ3146 inhibits full-length Mps1 from cells 

The capacity of AZ3146 to inhibit recombinant Mps1CAT in vitro was encouraging.  

However, before moving on to cell-based assays, I wanted to check that AZ3146 could 

inhibit full-length Mps1 isolated from human cells.  For this purpose, I used endogenous 

Mps1 immunoprecipitated from cells in kinase assays.  HeLa cells were challenged with 

the microtubule-depolymerising drug nocodazole to arrest the population in mitosis, then 

harvested and a soluble lysate produced.  Mps1 was immunoprecipitated from these 

mitotic lysates and pelleted bead complexes were used in kinase assays.  A fraction of the 

reaction mix was analysed by western blot (Figure 3.3A, upper panel), indicating that the 

kinase was present in roughly equal amounts in each assay (lanes 1-8), unless a non-

specific IgG was used for immunoprecipitations, in which case Mps1 was absent (lane 9).  

To visualise and quantify the incorporation of 32P into both the MBP and the Mps1, the 

proteins were resolved by SDS-PAGE and exposed to a phosphorimaging plate.  

Representative images are shown in Figure 3.3A (middle and lower panels). 

Endogenous human Mps1 is maximally active and phosphorylated in mitosis (Liu et 

al., 2003; Stucke et al., 2002).  When immunoprecipitated Mps1 was used in kinase assays, 
32P was incorporated into both the MBP (Figure 3.3A, bottom panel) and the 

immunoprecipitated Mps1 (middle panel), consistent with the notion that the kinase is 

active against both the exogenous substrate and itself.  Note however that I am unable to 

rule out the contribution of co-immunoprecipitated kinases to this phosphorylation.  When 

a control immunoprecipitation was performed, no 32P-Mps1 was discernable (middle 

panel, lane 9).  I was, however, able to detect radiolabelled MBP (bottom panel, lane 9), 

indicating that contaminant MBP kinase(s) that bind non-specifically to the Protein G 

Sepharose™ beads or control sheep IgG were present in the assays.  However, when 

Mps1-bead complexes were assayed, 32P-MBP levels increased more than 5-fold compared 

to levels in the control assay (compare lanes 1 and 9, bottom panel), consistent with the 

notion that the immunoprecipitated Mps1 phosphorylates the substrate.  Therefore, I was 

able to use radiolabelling of both immunoprecipitated Mps1 itself and MBP as a read-out  
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Figure 3.3 AZ3146 inhibits endogenous Mps1 immunoprecipitated from mitotic cells.
Mps1 was immunoprecipitated from nocodazole-treated HeLa lysates. The bead-bound proteins were used
in kinase assays with the indicated concentrations of AZ3146. (A) A fraction of the assay was resolved by
SDS-PAGE and blotted for Mps1 (upper panel). Note the absence of Mps1 in the control IgG IP (lane 9).
Assays were also processed by SDS-PAGE followed by phosphorimaging to visualise both radiolabelled
Mps1 (middle panel) and MBP (lower panel). (B) Mps1 phosphorylation and (C) MBP phosphorylation was
quantified by 2D densitometry. Background readings from the IgG control were subtracted, and values were
normalised to the solvent only control. The dashed line approximates the position of the IC50 calculated

from the curve.

150

100
WB:

αMps1

kDa

32P
Mps1

0

[AZ]:

0.
1

1 10 10
0

1 10 30 Ig
G

IP
nM µM

32P
MBP

100

80

60

40

20

0
0

32
P

-M
ps

1
(%

)

-10 -9 -8 -7 -6 -5
Log [AZ3146] M

-4

32
P

-M
B

P
(%

)

100

80

60

40

20

0

0 -10 -9 -8 -7 -6 -5 -4
Log [AZ3146] M

A

B C

1 2 3 4 5 6 7 8 9

70



 

 of Mps1 activity in this assay.  

To verify the ability of AZ3146 to inhibit the immunoprecipitated Mps1, I included 

increasing doses of the compound in the assay mixes. Radiolabelling of Mps1 and MBP 

was quantified by 2D densitometry, the background levels from the IgG IP were 

subtracted, the control solvent-only readings were set to 100% and the data was graphed 

(Figure 3.3 B and C).  As predicted, the amount of 32P incorporated into both the Mps1 and 

the MBP fell in response to higher concentrations of AZ3146 (Figure 3.3 A and B). 32P-

Mps1 levels dropped markedly with 100 nM AZ3146, and decreased further at higher 

concentrations, becoming very low at 10 µM (Figure 3.3A, middle panel and 3.3B).  

Concurrent with the decrease in radiolabelling, a distinct band-shift from a slower mobility 

form of Mps1 (middle panel, marked by the open arrowhead) towards a faster mobility 

species (closed arrowhead) was evident as AZ3146 concentration in the assay increased, 

suggesting that this band-shift may be due to phosphorylation.  The decrease in 32P-MBP 

signal was more sudden, with a sharp fall in radiolabelling of the substrate between 10 nM 

and 100 nM AZ3146, after which levels plateaued (Figure 3.3A, bottom panel and 3.3C).  

The IC50s for AZ3146 in this assay were calculated to be ~80 nM and ~12 nM for Mps1 

phosphorylation and MBP phosphorylation respectively, which is in the same broad range 

as that determined using Mps1CAT (Figure 3.2B).   There are clearly slight differences 

between the IC50s and dose response curves obtained for MBP and Mps1 (Figure 3.3B and 

C), however more work would be required to establish whether or not these differences are 

reproducible and if so, what this might mean.  Taken together, these data provide evidence 

for AZ3146-mediated inhibition of full-length Mps1 immunoprecipitated from mitotic 

cells leading to a decrease in both Mps1 autophosphorylation and phosphorylation of the 

exogenous substrate MBP. 

3.4 | AZ3146 is a reasonably selective Mps1 inhibitor 

Having established that AZ3146 could inhibit the kinase activity of both recombinant 

Mps1CAT and also Mps1 immunoprecipitated from mitotic HeLa cells, I set out to gain an 

insight into its selectivity.  The selectivity of an inhibitor refers to its ability to inhibit its 

target kinase (or kinases) with a higher level of potency compared to other kinases.  

Selectivity is a desirable quality in most kinase inhibitors, since it means that the 

compound’s effect in cells are more likely to be specifically attributable to inhibition of the 

target, rather than to off-target effects.   Although the original hit compound had been 

optimised for enhanced selectivity and potency (Stephen Green, personal communication), 

I wanted to obtain an independent assessment of AZ3146’s selectivity.  To achieve this, I 

made use of Invitrogen’s SelectScreen™ Kinase Profiling Service, and screened panel of 
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50 diverse kinases with 1 µM AZ3146 (Figure 3.4). A broad range of both serine/threonine 

and tyrosine kinases were selected, including representatives from 7 of the 9 conventional 

kinase groups as classified by sequence homology (Manning et al., 2002).  Kinases with 

reported roles in control of mitotic events were selected for inclusion the screen, such as 

the Aurora kinases (Carmena and Earnshaw, 2003), cyclin dependent kinases (Malumbres 

and Barbacid, 2005), Tao1 (Draviam et al., 2007), Gsk3β (Tighe et al., 2007), Plk1 

(Archambault and Glover, 2009), Erk2 (Borysova et al., 2008; Chen, 2004; Chung and 

Chen, 2003; Zhao and Chen, 2006).  Unfortunately the mitotic checkpoint kinases Bub1 

and BubR1 were not available, and so could not be tested in this screen.  Mps1 was also 

unavailable for selection, and so could not be included in the panel as a control.  However, 

as shown in Figure 3.2B, the concentration used for the screen almost completely inhibited 

Mps1CAT in vitro (96%). The majority of kinases in the screen, 46 out of the 50, were not 

greatly affected by 1 µM AZ3146, with inhibition levels <40% (Figure 3.4).   

Four kinases were inhibited by more than 40%, namely FAK (43%), KIT (58%), 

JNK1 (68%) and JNK2 (64%).  FAK is cytosolic tyrosine kinase with roles in the 

regulation of proliferation, survival, adhesion and migration (Hauck et al., 2002).  KIT is a 

receptor tyrosine kinase of the platelet-derived growth factor receptor family particularly 

associated with haematopoietic stem cells, with reported roles in regulation of proliferation 

and survival (Masson and Ronnstrand, 2009).  JNK1 and JNK2 are MAP kinases 

associated with the JNK/p38 pathway, which are implicated in regulation of transcription 

in response to environmental stress, and have also been shown to regulate apoptosis 

(Weston and Davis, 2007).  To the best of my knowledge, none of these kinases have been 

implicated in the regulation of mitosis, so there is no precedent to suggest inhibition of 

these kinases could have cellular effects attributable to Mps1 inhibition.  However, it is 

interesting to note that both AZ3146 and SP600125 are capable of inhibiting both Mps1 

and JNK (this study and Schmidt et al., 2005), pointing to a level of similarity between the 

catalytic domain of JNK1/2 and Mps1 (Chu et al., 2008; Schmidt et al., 2005), and perhaps 

the mechanism of inhibitor binding.   

 In summary, the selectivity screen described above allows AZ3146 to be considered 

a reasonably selective inhibitor, since at a concentration that potently inhibits the kinase 

activity of Mps1, only a small fraction of the kinases screened were inhibited to moderate 

levels.  This confirmed data from AstraZeneca (Stephen Green, personal communication) 

and provided further support for the notion that AZ3146 will be a useful tool for studying 

Mps1 in cells. 
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Figure 3.4 AZ3146 has limited activity against a panel of 50 kinases.
A single point screen with 1 µM AZ3146 was carried out by Invitrogen’s SelectScreen™ Kinase Profiling
Service. 50 diverse kinases were selected from the available list. Kinases were assayed at the approximate
Km for ATP, except B-RAF, MEK1, MEK2, MAPK14, JNK1 and JNK2, which were assayed with 100 µM

ATP. The Mps1 data included in the table is from the assays described in this study, where ATP was at 100
µM.
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3.5 | AZ3146 affects Mps1 phosphorylation in cells 

Having determined AZ3146’s potency and selectivity in vitro, I determined to assess 

its effect on Mps1 in cells.  Currently, there are no reliable phosphospecific antibodies with 

which to estimate Mps1 activity in cells, so instead I looked for changes in the 

electrophoretic mobility of the kinase itself when AZ3146 was added to the culture 

medium.   To prepare extracts for analysis by western blot, HeLa cells were treated with 

nocodazole overnight, then collected by mitotic shake-off and replated into nocodazole or 

Taxol, with or without 2 µM AZ3146.  The proteasome inhibitor MG132 was also 

included to prevent mitotic exit, since the predicted effect of an Mps1 inhibitor would be to 

override the checkpoint-mediated mitotic arrest in the presence of spindle toxins, resulting 

in changes in the phosphorylation as a result of mitotic exit and obscuring the effect of 

Mps1 inhibition.  After incubation with the indicated drug combinations, harvested cells 

were lysed in SDS-PAGE sample buffer, and then resolved on a polyacrylamide gel 

supplemented with the phosphate-binding ligand Phos-tag (Phos-tag Consortium), which 

enhances phosphorylation-induced mobility shifts in SDS-PAGE by facilitating separation 

of differentially phosphorylated forms (Kinoshita et al., 2006).  Consequently, a ladder of 

bands was visible when the blot was probed with an anti-Mps1 antibody (Figure 3.5).  

When the lysate blotted was from interphase cells (adherent cells left behind after mitotic 

shake-off), Mps1 appeared as 3 relatively fast migrating bands (lane 1, marked with 

asterisks).  When nocodazole or Taxol-treated lysates were probed (lanes 2 and 4), the 

majority of Mps1 now largely appeared as 2 shifted, slower-mobility bands (marked by 

arrowheads).  Importantly, when mitotic cells were treated with 2 µM AZ3146, the 

uppermost band decreased markedly (lanes 3 and 5, white arrowhead).  This was true for 

both nocodazole and Taxol-treated samples.  The banding pattern produced from the Phos-

tag gel can be interpreted to mean that in nocodazole- or Taxol treated mitotic cells, the 

majority of Mps1 is more highly phosphorylated than in interphase cells (compare lane 1 

with lanes 2 and 4).  When mitotic cells are treated with AZ3146, the disappearance of this 

slow-mobility band likely reflects a decrease in phosphorylation of Mps1.  In support of 

this, work carried out by my colleague, Anthony Tighe, has confirmed using phosphatase 

treatment that the ladder of Mps1 bands observed after running mitotic samples on Phos-

tag gels are indeed due to phosphorylation (Hewitt et al., 2010).  While the identity of the 

site(s) in Mps1 which might be dephosphorylated with AZ3146 treatment are unknown, 

and I cannot rule out indirect effects, this provides evidence of an effect on Mps1 
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Figure 3.5 AZ3146 affects Mps1 autophosphorylation in cells.
HeLa cells were treated with nocodazole for 12 hours. Mitotic cells were collected and replated into the indi-
cated drug combinations (plus MG132 to prevent mitotic exit) for 2 hours. Adherent cells left behind after
mitotic shake-off were harvested and constituted the interphase sample (lane 1). AZ3146 was used at 2 µM
and DMSO was used in controls to account for the solvent. Harvested cells were lysed directly in SDS-
PAGE sample buffer and run on gels containing Phos-tag. Proteins were transferred to a PVDF membrane
and probed with an anti-Mps1 antibody. Asterisks mark the 3 bands evident in interphase samples; the
closed arrowhead indicates the major Mps1 band in mitotic lysates; the open arrowhead indicates the slow-
est-mobility band which virtually disappears from mitotic samples on treatment with AZ3146.

Contributions to this figure:
Cells were treated with drugs and harvested by Anthony Tighe. Samples were run on Phos-tag gels and
immunoblotted by Laura Hewitt.
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phosphorylation in response to AZ3146, in both nocodazole and Taxol.  As such, this is 

entirely consistent with AZ3146-mediated inhibition of Mps1 in cells. 

3.6 | Summary 

This chapter describes the initial stages in the characterisation of the novel Mps1 

inhibitor AZ3146.  The compound inhibited recombinant Mps1CAT in kinase assays, with 

an IC50 of ~35 nM.  At a concentration that inhibited Mps1 activity by 96%, the compound 

exhibited relatively low inhibition of a panel of 46 out of 50 diverse kinases, indicating 

some selectivity for Mps1.  Inhibition of full-length Mps1 immunoprecipitated from HeLa 

cells was also observed.  Importantly, when mitotic cells were cultured with media 

containing AZ3146, the banding pattern on a Phos-tag gel suggested that endogenous 

Mps1 phosphorylation was reduced.  Since Mps1 autophosphorylation has been shown to 

correlate with kinase activity (Jelluma et al., 2008a; Kang et al., 2007; Mattison et al., 

2007), this decrease in phosphorylation might correlate with a reduction in activity.  

Encouragingly, the effect was achieved with 2 µM AZ3146, a relatively low molarity, 

meaning the risk of off-target effects in cells is reduced.  Taken together, the above data 

show that AZ3146 is a potentially useful tool for studying the function of Mps1 kinase 

activity in cells.  I next sought to extend my characterisation of the inhibitor by 

establishing its effect on the viability and mitotic checkpoint response of cultured tumour 

cell lines. 
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4 | Results Chapter II: AZ3146 affects cell viability and leads to 

mitotic checkpoint override 

4.1 | Introduction 

Mps1 is a conserved component of the mitotic checkpoint, which delays anaphase in 

the presence of unattached or maloriented kinetochores, and thereby helps to safeguard 

against missegregation and the subsequent production of aneuploid daughter cells.  Several 

reports focusing on cultured human cancer cell lines have shown that complete abrogation 

of the spindle checkpoint by siRNA-mediated depletion of Mad2 or BubR1 results in 

widespread death in a cell population after 6 or 7 days due to catastrophic segregation 

errors (Kops et al., 2004; Michel et al., 2004).  Consistent with this, complete depletion of 

Mps1 by RNAi (Janssen et al., 2009), its replacement with a kinase-dead mutant (Jelluma 

et al., 2008a; Jelluma et al., 2008b), or replacement of endogenous Mps1 with a bulky ATP 

analogue-sensitive form (Sliedrecht et al., 2010) causes loss of viability in tumour cells.  

There has been some confusion in the literature regarding the effect of loss of Mps1 

activity on untransformed ‘normal’ cells: BJ-TERT fibroblasts were shown to be resistant 

to checkpoint override induced by the non-specific Mps1 inhibitor SP600125 (Schmidt et 

al., 2005), and, unlike tumour cell lines, VH-10 fibroblasts were resistant to death when 

treated with taxol concurrent with partial Mps1 depletion (Janssen et al., 2009).  However, 

recent work showed that ablation of Mps1 catalytic activity negatively affects proliferation 

and viability in both tumour cells lines and ‘normal’ untransformed cells lines 

(Kwiatkowski et al., 2010; Maciejowski et al., 2010).  

In this chapter, I sought to establish whether AZ3146-treated cells behaved as 

predicted for treatment with an Mps1 inhibitor.  The existing body of work on Mps1’s role 

in the mitotic checkpoint provided a clear framework with which to test the compound, and 

enabled me to make several predictions.  An inhibitor of Mps1 should: (1) kill tumour 

cells, and probably untransformed cells (Janssen et al., 2009; Jelluma et al., 2008b; 

Kwiatkowski et al., 2010; Maciejowski et al., 2010); (2) prevent cells arresting in the 

presence of drugs known to perturb the mitotic spindle (Jelluma et al., 2008b; Liu et al., 

2003; Schmidt et al., 2005; Stucke et al., 2002; Tighe et al., 2008); (3) hasten mitotic 

progression in an otherwise unperturbed mitosis, and lead to errors in chromosome 

segregation (Jelluma et al., 2008b; Maure et al., 2007; Tighe et al., 2008).   
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4.2 | AZ3146 affects the viability of cultured human cancer cell lines and 

immortalised untransformed cells 

To compare the effect of AZ3146 with published reports (Janssen et al., 2009; 

Jelluma et al., 2008a; Kwiatkowski et al., 2010; Maciejowski et al., 2010; Sliedrecht et al., 

2010), I sought to find out if AZ3146 treatment was detrimental to the survival of different 

cell lines.  I wanted to observe the compound’s effect on more than one class of tumour-

derived cell line, so I chose to test one aneuploid cervical adenocarcinoma cell line (HeLa) 

and one near-diploid colon carcinoma cell line (HCT116).  I also included the 

immortalised retinal pigmented epithelium cell line (hTERT-RPE) as an example of a non-

transformed human cell line (Jiang et al., 1999).   

To obtain a read-out of the viability of these cell lines in response to AZ3146-

treatment, I used colony-formation assays.  These assays measure the ability of single cells 

to give rise to colonies when cells are plated at low density and cultured for several days, 

i.e. the cloning efficiency.  Two hundred cells were plated into each well of a 6-well 

culture plate, allowed to adhere, then cultured in media containing a range of AZ3146 

concentrations for 8-9 days.  The colonies were visualised by fixing and staining the cells 

with crystal violet and photographed.  Representative images of stained plates are shown in 

Figure 4.1.  Stained colonies were readily visible in the control wells for all 3 cell lines 

(top left well of each plate).  The mean colony number ± s.e.m. for the HeLa, HCT116 and 

hTERT-RPE untreated controls were 157.3 ± 6.0, 142.7 ± 11.8, and 91.3 ± 6.8 

respectively, suggesting that, while the cloning efficiency was reasonably high for both 

HeLa and HCT116s, a more significant amount of cell death may have occurred in the 

hTERT-RPE controls.  However, it is also plausible that the hTERT-RPE colony number 

was slightly underestimated due to merging of the relatively widespread, less dense 

colonies seen in this cell type (Figure 4.1C).   

In order to quantify the cell number in each well without introducing inaccuracies 

due to counting difficulties, the crystal violet stain was solubilised and the absorbance at 

595 nm was read.  A further advantage of this method over simply counting the colonies is 

that differences in colony size, as well as number, are reflected in the absorbance readings.  

The A595 values for control, untreated wells were set to 100% and data for each cell line 

was graphed (Figure 4.1).  For all 3 cell lines tested, addition of AZ3146 concentrations of 

1 µM or higher to the wells produced a marked decrease in staining, reflecting decreased 

cell viability.  At 2 µM, 5 µM and 10 µM, very little colony staining was evident for any 

cell line; reflecting this, A595 readings plateaued at a low level.  It should be noted that 

small increases in A595 were observed for both HeLa (Figure 4.1A) and 
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Figure 4.1 AZ3146 affects the viability of human cancer cells and immortalised untransformed cells.
HeLa (A), HCT116 (B), and hTERT-RPE (C) cells were cultured in 6-well plates for 8-9 days in the presence
of AZ3146 at the indicated molarities, before fixation and staining with crystal violet to visualise colonies.
Representative images of stained plates are shown (left panel). To quantify cell survival, the crystal violet
was solubilised and the absorbance at 595 nm was read (see graphs, right panel). The black line represents
the mean level of absorbance from 3 independent experiments. The value for each independent replicate
(grey diamond) is itself a mean derived from 2 duplicate wells. Values are normalised to the absorbance
reading from untreated wells.
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hTERT-RPE (Figure 4.1C) when cells were cultured with 0.5 µM AZ3146.  Whilst I 

cannot rule out a stimulatory effect of AZ3146 on cell proliferation at low molarity, 

perhaps due to some unknown off target-effect, it is also possible that this increase is 

caused by slight inaccuracies in cell distribution between wells.   

To summarise, at concentrations of 1 µM or higher, AZ3146 had a severely 

detrimental affect on HeLa, HCT116 and hTERT-RPE cell viability in these colony 

formation assays.  The hTERT-RPEs appeared to be slightly more resistant to AZ3146-

induced cell death than HeLa and HCT116 cells, based on the comparatively large number 

of surviving hTERT-RPE cells after culture in 1 µM AZ3146 (44.5 ± 8.5% of control 

levels, compared to 24.6 ± 6.7 % for HeLa cells and 11.7 ± 2% for HCT116 cells; compare 

Figure 4.1C to A and B), but the differences between the cell lines was not large.  These 

data suggest that Mps1 inhibition by AZ3146 treatment can affect the viability of both 

cancer cell lines and immortalised untransformed cells. 

4.3 | AZ3146 causes degeneration of DNA content profiles in a dose-

dependent manner 

A plausible explanation for the reduction in of HeLa, HCT116 and hTERT-RPE cells 

after long term AZ3146 treatment is that perturbation of Mps1 activity at ≥1 µM AZ3146 

caused missegregation events which, over the 9-10 day duration of the assay, were not 

compatible with survival or growth of colonies.  To see if there were indeed segregation 

errors after AZ3146 treatment, I treated asynchronous populations of each cell line with a 

range of AZ3146 concentrations for 24 hours, which would allow for 1-2 divisions in the 

presence of the drug, then analysed the DNA content of the population by flow cytometry 

(Figure 4.2).  This kind of DNA content analysis is a relatively low-resolution method of 

detecting segregation errors, but it does provide a view of a relatively large cell population 

(in this case ~10,000 cells).  The DNA content profiles for the control populations showed 

slight variability between cell lines, presumably reflecting differences in the lengths of cell 

cycle phases, but all control profiles appeared to reflect a normal, cycling asynchronous 

population: 2N and 4N peaks were well defined, and an S-phase population was evident in 

between these (Figure 4.2, top row).  After 24 hours treatment with 1 µM AZ3146, profiles 

still appeared largely normal (second row).  When 2 µM of AZ3146 was used, the profiles 

for all 3 cell lines showed signs of deviation from the norm (third row):  the 2N and 4N 

peaks were wider than those in the control profiles.  Of the 3 cell lines tested, hTERT-

RPEs (right panel) appeared least severely affected by the compound in this assay; 2 µM 

AZ3146 caused only a slight effect on the DNA profile of this cell line.  At 5 µM and 10 

µM AZ3146, further deterioration of the profiles was evident for all 3 cell lines.  The 
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Figure 4.2 AZ3146 causes degeneration of DNA content profiles in a dose-dependent manner
Asynchronous HeLa (left panel), HCT116 (middle panel) and hTERT-RPE cells (right panel) were cultured
with DMSO as a solvent-only control, or AZ3146 at the indicated molarities for 24 hours then harvested and
processed for DNA content analysis by flow cytometry.
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widening of the 2N and 4N peaks reflects an increase in the number of cells with 

chromosome complements deviating from the normal copy number, and is therefore 

consistent with the notion that AZ3146-mediated Mps1 inhibition causes chromosome 

missegregation, giving rise to aneuploid cells.   

When treated with 5 µM or 10 µM AZ3146, the HCT116 population (middle panel) 

contained some cells abnormally high DNA contents of up to ~8N.  A fraction of HeLa 

cells treated with 5 µM or 10 µM of the compound (left panel) also had DNA contents of 

more than 4N.  These fractions presumably contain cells that have failed to segregate their 

chromosomes, but exited mitosis in a tetraploid state and proceeded into the next cell 

cycle, re-entering S phase.  There are at least two possible explanations for the existence of 

tetraploid cells.  Firstly, at the highest AZ3146 concentrations, Mps1 inhibition (and 

checkpoint override) may be more complete, meaning a larger proportion of cells might 

exit mitosis before bipolar spindle formation and cytokinesis can occur, as has been 

reported for DLD1 cells depleted of BubR1 (Morrow et al., 2005).  This might leave more 

tetraploid cells after exit from mitosis. Alternatively, perhaps higher concentrations of 

AZ3146 prevent cytokinesis itself from occurring in small subset of cells, through direct or 

indirect inhibition of pathways required for its completion.  Either way, since no prolonged 

mitotic arrest has occurred, some or all of these tetraploid cells may be capable of 

progression into the next S phase (Uetake and Sluder, 2007), as a similar effect was 

observed in cells where cytokinesis is prevented by depolymerising microtubules and 

inactivating the mitotic checkpoint (Kops et al., 2004; Taylor and McKeon, 1997), or 

inhibition of Aurora B (Ditchfield et al., 2003).  It is not possible to determine the 

mechanism governing formation of these >4N cells from the data shown here, however it 

seems reasonable to say that cytokinesis failure and/or the production of octaploid cells is a 

minor effect of AZ3146 treatment in asynchronous cells, but can occur in a subset of cells, 

most noticeably when AZ3146 is used at concentrations over 2 µM.   

The profiles shown in Figure 4.2 indicate that when cells were treated with 1 µM 

AZ3146 for 24 hours, the population appeared to be relatively unaffected.  However, the 

colony formation assays in Figure 4.1 showed that in the long term (9-10 days) cell 

viability was adversely affected by 1 µM of the compound in all 3 of the cell lines tested.  

How might this apparent contradiction be reconciled?  On possible answer is that with 1 

µM AZ3146, each mitosis produces only mild segregation errors leading to only very 

small deviations from the 2N and 4N populations, perhaps only in a proportion of cells.  

Such mild errors might be imperceptible in the DNA content profile of the cell population 

after only 24 hours, but might accumulate in the population over several rounds of division 

and be detrimental to survival over a longer period.  
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In summary, after incubation with AZ3146 at 2 µM or higher for 24 hours, HeLa, 

HCT116 and hTERT-RPE cells exhibit DNA content profiles consistent with chromosome 

loss or gain.  This is entirely consistent with premature inactivation of the mitotic 

checkpoint and an increased rate of missegregation as a consequence of Mps1 kinase 

activity reduction. 

4.4 | 2 µM AZ3146 causes degeneration of DNA content profiles over time. 

Having established the effect of a range of doses of AZ3146 on the DNA content of 

cells at a single time point, I wanted to see what effect AZ3146 treatment had on the cell 

population over a longer time period.  For this, I used 2 µM of the drug, since this molarity 

causes phenotypes consistent with Mps1 inhibition in cells: it affects the phosphorylation 

of Mps1 in cells (Figure 3.5), leads to loss of viability in colony formation assays (Figure 

4.1), and causes a phenotype consistent with checkpoint override when DNA content was 

analysed by flow cytometry (Figure 4.2).  HeLa, HCT116 and hTERT-RPE cells were 

cultured in the presence of 2 µM AZ3146 and harvested at 24 h, 48 h and 72 h time points 

before analysis by flow cytometry.  The control populations appeared as expected for the 

duration of the experiment (Figure 4.3, DMSO profiles).  When cells were treated with 2 

µM AZ3146 for 24 hours, aneuploid cells were evident in the DNA content profiles for all 

3 cell lines, in keeping with the results shown in Figure 4.2.  For HeLa and HCT116 cells, 

the widening of the 2N and 4N peaks became more pronounced after 48 and 72 hour 

treatment, signifying more severe aneuploidy; this was accompanied by an increase in sub-

2N DNA, suggestive of cell death by apoptosis.  This was particularly marked in HCT116 

cells, where the DNA content profile had degenerated considerably after 72 hours with 2 

µM AZ3146.  The hTERT-RPE cell population also exhibited DNA contents suggestive of 

aneuploidy over the course of the experiment, but the deterioration of the profiles over 

time was less marked.  The hTERT-RPE cells did not exhibit a noticeable increase in sub-

2N DNA, which can be interpreted to mean there was less cell death in the population.   

These data strongly suggest that 2 µM AZ3146 treatment causes chromosome loss or 

gain, which, certainly in HeLa and HCT116 cells, leads to production of increasingly 

aneuploid cells over 3 days in culture.  The increase in sub-2N DNA is indictative of 

apoptosis, suggesting that in some cases this aneuploidy is lethal.  hTERT-RPE cells also 

showed signs of aneuploidy, but less evidence of lethality, suggesting that changes 

chromosome number were largely tolerated by the cell population over the 3 day duration 

of the experiment.  The loss of viability observed in the colony formation assays with 

hTERT-RPE cells (Figure 4.1) could indicate that the chromosome gains and losses  
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Figure 4.3 AZ3146 treatment causes degeneration of DNA content profiles over time.
Asynchronous HeLa (top panel), HCT116 (middle panel), or hTERT-RPE (bottom panel) cells were cultured
in the presence of either DMSO (solvent-only control) or 2 µM AZ3146 for 24, 48 or 72 hours. Cells were
harvested and processed for DNA content analysis by flow cytometry.
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induced by 2 µM AZ3146 are not compatible with viability over a longer period.  Overall, 

the data from all 3 cell lines supports the idea AZ3146 treatment leads to accumulation of 

aneuploidy as a result of impaired Mps1 function.  It also seems likely that the reduced 

colony formation of these cells (Figure 4.1) is caused, at least in part, by missegregation 

events as a consequence of Mps1 inhibition.   

4.5 | AZ3146 treatment results in bypass of a nocodazole-induced mitotic 

checkpoint  

Next, I sought to investigate a likely contributing factor to chromosome 

missegregation: mitotic checkpoint malfunction.  The catalytic activity of Mps1 is required 

for the mitotic checkpoint-mediated arrest in the presence of microtubule toxins that 

prevent spindle assembly (Jelluma et al., 2008b; Kwiatkowski et al., 2010; Schmidt et al., 

2005; Tighe et al., 2008).  Therefore, AZ3146 treatment is predicted to override the 

checkpoint-mediated arrest induced by nocodazole treatment.  To test this, I treated an 

asynchronous population of HeLa cells with nocodazole and 2 µM AZ3146 for 24 hours, 

then analysed the DNA content of the population by flow cytometry, and determined the 

fraction of the cell population with DNA content over 4N.  The DNA content profiles 

obtained for the various combinations of drug treatments are shown in Figure 4.4A, with 

the percentage of DNA >4N indicated in the upper right corner of each profile.  The 

control population appeared as expected, with a clear 2N and 4N peak and very few cells 

with a DNA quota exceeding 4N (1.0%; Figure 4.4A).  With AZ3146 alone, DNA contents 

diverging from 2N and 4N were observed, as seen in Figure 4.2 and 4.3, and the proportion 

of cells with >4N DNA very slightly increased (4.4%).  Twenty-four hours of nocodazole 

treatment caused accumulation of tetraploid cells, consistent with a checkpoint-induced 

mitotic arrest, and very few cells (1.3%) contained more than 4N DNA.  Importantly, when 

AZ3146 was combined with nocodazole, 52% of cells had a DNA complement of more 

that 4N, implying that the mitotic checkpoint response to nocodazole had failed.  

Checkpoint-deficient cells had exited mitosis without segregating DNA, avoided arrest or 

activation of pro-death pathways and proceeded into the next cell cycle, reduplicating their 

DNA in the subsequent S phase (Kops et al., 2004; Taylor and McKeon, 1997).  This is 

consistent with an AZ1346-mediated mitotic checkpoint override, and inhibition of Mps1 

catalytic activity (Jelluma et al., 2008b; Kwiatkowski et al., 2010; Schmidt et al., 2005; 

Tighe et al., 2008).   

To confirm the apparent mitotic checkpoint override induced by AZ3146, I wanted 

to observe its effect on a synchronised cell population.  To achieve this, I arrested HeLa 

cells in early S phase using a double thymidine block-and-release method, and then  
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Figure 4.4 AZ3146 treatment compromises a nocodazole-induced mitotic checkpoint.
(A) Asynchronous HeLa cells were cultured with DMSO (control) or the indicated combinations of AZ3146
(2 µM) and nocodazole for 24 hours before harvesting and processing for DNA content analysis by flow
cytometry. The percentage of cells with DNA content over 4N is shown in the top corner of each profile. (B,
C, and D) HeLa cells were synchronised in early S phase using a double thymidine block protocol, then
released into DMSO (control) or the indicated drug combinations. Cells were harvested at time points post-
release, and analysed by flow cytometry. (B) DNA content profiles from the indicated timepoints (t=0 to 50
h post-release). (C) Mitotic indices in the first 18 h post-release. Mitotic cells were defined as those with
4N DNA content and MPM2 positivity. (D) The percentage of cells with DNA contents of more than 4N
were determined from DNA content profiles.
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released them into media containing the indicated combinations of nocodazole and 2 µM 

AZ3146.  Cells were harvested at subsequent time points and analysed to determine DNA 

content (Figure 4.4B).  Control DNA content profiles revealed cells progressing through S 

phase after release from thymidine block, then returning to 2N around 11 hours post-

release as cells went through mitosis.  Staining with the mitosis-specific phospho-antibody 

MPM2 confirmed that the mitotic index of the control population peaked around 10-11 

hours after release (Figure 4.4C).  Control cells then continued to cycle for the remainder 

of the experiment, and had lost synchrony by the final 50 hour time point (Figure 4.4B).  

Treatment with 2 µM AZ3146 alone caused the appearance of cells with abnormal DNA 

quotas after 1 or more rounds of division (11 hours post-release onwards), confirming 

previous observations (Figure 4.2, 4.3, 4.4A).  As predicted, cells released from thymidine 

into nocodazole arrested with 4N DNA content, with a mitotic index of ~50-60% up to 18 

hours after release (Figure 4.4B, C), indicative of a mitotic arrest due to spindle 

perturbation.  After 27 hours post-release, the appearance of sub-2N DNA suggested that 

many nocodazole-treated cells died (Figure 4.4B), while only a small fraction appeared to 

progress into the next cell cycle, reduplicating DNA (Figure 4.4D).  When cells were 

released into nocodazole and AZ3146, tetraploid cells began to accumulate in mitosis at a 

similar rate to cells treated with nocodazole alone, but, importantly, the mitotic index of 

AZ3146 and nocodazole treated cells fell dramatically after the 13 hour time point (Figure 

4.4B, C).  Furthermore, a large proportion of AZ3146 and nocodazole-treated cells went on 

to exhibit >4N DNA content (Figure 4.4B, C).  Strikingly, 27 hours after release from 

thymidine, 53% of AZ3146 and nocodazole-treated cells had >4N DNA, compared to only 

3% of cells that were released into nocodazole alone (Figure 4.4D).  These data indicate 

that AZ3146-treated cells fail to mount a robust mitotic checkpoint response to 

nocodazole, and continue to cycle in its presence.  This is in keeping with the previous data 

from asynchronous cells (Figure 4.4A).  Taken together, the data in Figure 4.4 strongly 

support the idea that AZ3146 treatment causes a mitotic checkpoint override, as one would 

expect from an Mps1 inhibitor. 

4.6 | AZ3146 accelerates mitotic exit in the presence of antimitotic drugs 

with varying mechanisms of action 

To extend the population-based analysis of AZ3146’s ability to induce mitotic 

checkpoint override in response to nocodazole (Figure 4.4), I next employed a direct, 

single cell approach to observe the compound’s effect in the presence of antimitotic drugs 

that target the spindle.  All three of these drugs prevent satisfaction of the mitotic 

checkpoint, leading to a mitotic arrest dependent on inhibition of the APC/CCdc20.  
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However, the mechanism of action for each drug differs.  Nocodazole causes 

depolymerisation of microtubules, and thus a multitude of unattached kinetochores.  Taxol, 

on the other hand, prevents microtubule disassembly, leading to stabilised, non-dynamic 

microtubules that can form attachments at kinetochores, but their ability to form stable, 

amphitelic, checkpoint-satisfying attachments is severely compromised (Yang et al., 2009).  

Thirdly, the Eg5 kinesin inhibitor monastrol does not affect microtubule dynamics, but 

prevents centrosome separation, leading to monopolar spindles, syntelic attachments 

consequently and mitotic checkpoint activation (Kapoor et al., 2000; Mayer et al., 1999).   

To observe the effect of AZ3146 treatment on the duration of the mitotic arrest 

caused by these compounds, asynchronous HeLa cells stably expressing GFP-tagged 

Histone H2B were treated with the antimitotic drugs with or without 2 µM AZ3146, and 

filmed by timelapse microscopy.  Mitotic entry was defined as the point of NEBD, and 

mitotic exit was judged to have occurred when chromatin visibly began to decondense.  

Survival curves were plotted to visualise the data (Figure 4.5).  In nocodazole, the vast 

majority of cells (69 out of 71) remained in mitosis, with condensed chromatin, for at least 

500 minutes, consistent with mitotic checkpoint-mediated arrest.  In contrast, almost all 

AZ3146-treated cells analysed (76 out of 81) had decondensed their chromatin by 500 

minutes post-NEBD.  The variation in length of mitotic delay was wide, but concurs with 

the mitotic index values exhibited in Figure 4.4C: most cells remained in mitosis for at 

least ~180 minutes, after which the number of cells in mitosis dropped steadily.  Taxol 

treatment also led to a prolonged mitosis as measured by chromatin condensation: most 

cells (83 out of 91) kept their chromatin condensed for 500 minutes or more.  When 

AZ3146 was present, all cells (139 out of 139) had exited mitosis by ~220 minutes after 

NEBD.  Monastrol caused a comparatively transient arrest, with 65 out of 92 cells exiting 

mitosis after fewer than 500 minutes arrest.  Many of these cells divided, albeit often 

aberrantly (data not shown).  This might be a reflection of monastrol’s somewhat low 

potency: despite the continued presence of the drug, spindles can frequently bipolarise, and 

in cells that cannot resolve the merotelic attachments that arise during monopolar arrest, 

satisfy the spindle checkpoint (Gascoigne and Taylor, 2008).  Nevertheless, it is clear that 

AZ3146 markedly accelerated mitotic exit in the presence of monastrol: all cells had 

decondensed their chromatin by ~350 minutes post-NEBD.   

The data described above suggest that the mitotic checkpoint response to different 

types of drug that target microtubule dynamics, namely nocodazole and taxol, is attenuated 

by AZ3146 treatment. AZ3146-treated cells exited mitosis fastest in taxol; all cells 

analysed left mitosis after a delay of less than ~220 minutes.  Nocodazole- and AZ3146-  
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Figure 4.5 AZ3146 accelerates mitotic exit in the presence of anti-mitotic drugs
Asynchronous HeLa cells stably expressing GFP-tagged Histone H2B were treated with nocodazole (top
left), taxol (top right) or monastrol (bottom centre), along with either DMSO (solvent-only control, blue
lines), or 2 µM AZ3146 (red lines) before tracking mitotic progression with fluorescence timelapse micros-
copy. The time each cell spent in mitosis was determined by recording the point of mitotic entry (NEB) and
exit (chromatin decondensation). Survival curves were plotted for each dataset.
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treated cells took longer to exit mitosis (up to 350 minutes), and showed much wider 

variation in the duration of arrest, as shown by the gently sloping survival curve (Figure 

4.5).  One possible explanation for this is that the checkpoint in taxol is somehow easier to 

silence than the checkpoint in nocodazole, resulting in more rapid mitotic exit when cells 

are treated with taxol and AZ3146. Perhaps the presence of microtubules allows more 

efficient trafficking of checkpoint components off the kinetochore, meaning the signal can 

be extinguished more efficiently (Howell et al., 2001; Musacchio and Salmon, 2007).  Or, 

because kinetochores occupied by taxol-stabilised microtubules stimulate much less Mad2 

recruitment than unoccupied kinetochores (Waters et al., 1998), and have even been shown 

to be able to eventually cause checkpoint satisfaction (Yang et al., 2009), AZ3146 

treatment might more easily counteract the checkpoint in taxol.  Additional inputs into the 

downstream signalling cascade may exist in nocodazole-treated cells: Bub1 is reported to 

monitor kinetochore-microtubule attachment, and is therefore activated by nocodazole but 

not taxol (Morrow et al., 2005).  This extra positive influence on checkpoint signalling 

might mean cells treated with AZ3146 are able to sustain an arrest for longer in nocodazole 

than in taxol.  However, even if such additional input/s are able to delay mitotic exit in 

nocodazole, they are not sufficient to prevent checkpoint override in nocodazole when 

cells are treated with AZ3146.  In both nocodazole and taxol, almost all cells analysed 

were unable to sustain a checkpoint-mediated arrest when AZ3146 was present.  

Taken together, the timelapse microscopy data shown in Figure 4.5 strongly suggests 

that 2 µM AZ3146 treatment leads to inactivation of the mitotic checkpoint and 

consequently mitotic exit, despite the presence of antimitotic compounds that usually cause 

a more prolonged delay in mitosis.  This is entirely consistent with Mps1 inhibition.  

4.7 | AZ3146 accelerates passage through an unperturbed mitosis and 

causes missegregations 

As well as mediating mitotic arrest in response to spindle perturbations which inhibit 

the formation of checkpoint-satisfying microtubule-kinetochore attachments, the mitotic 

checkpoint is active in a ‘normal’, unperturbed mitosis to delay the onset of anaphase until 

all sister kinetochore pairs have achieved biorientation (Rieder et al., 1995). RNAi 

complementation assays have been used to show that Mps1 catalytic activity is required to 

stop premature anaphase initiation in human tumour cell lines (Jelluma et al., 2008b; 

Kwiatkowski et al., 2010; Sliedrecht et al., 2010; Tighe et al., 2008).  Therefore, I asked 

whether 2 µM AZ3146 treatment accelerated passage through mitosis.  I used timelapse 

microscopy to film asynchronous cells and recorded the duration of mitosis (NEB to 

chromatin decondensation), and extended my analysis to include both hTERT-RPE and  
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Figure 4.6 AZ3146 accelerates passage through an unperturbed mitosis
Asynchronous HeLa (A) and hTERT-RPE (B) cells stably expressing GFP-Histone H2B were cultured in the
presence of DMSO (control) or 2 µM AZ3146 and filmed using fluorescence microscopy. Time in mitosis
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hTERT-RPE cells analysed per conditon. (***P < 0.0001, Mann-Whitney U-test.)
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HeLa cells stably expressing GFP-tagged Histone H2B (Figure 4.6).  Control HeLa cells 

took a mean time of 90 min to complete mitosis; strikingly, the mean duration of mitosis 

was reduced to 32 minutes when AZ3146 was present (Figure 4.6A).  Control hTERT-

RPEs completed mitosis in a mean time of 37 min, in keeping with reports that 

untransformed cells take less time in mitosis than transformed cells (Rieder and Maiato, 

2004).  Again, AZ3146 addition reduced the mean duration of mitosis: hTERT-RPE cells 

now took an average of only 27 min from NEB to chromatin decondensation (Figure 

4.6B).  These data indicate that, in both a tumour cell line (HeLa) and immortalised 

“normal” cell line (hTERT-RPE), AZ3146 accelerated mitotic exit.  This effect is 

attributable to Mps1 inhibition via AZ3146, and suggests that Mps1 activity is required to 

restrain mitotic exit in both transformed and untransformed cells. 

As well as causing accelerated passage through mitosis, loss of Mps1 kinase activity 

(and consequently mitotic checkpoint function) is also associated with missegregation 

events in human tumour cells lines (Jelluma et al., 2008b; Kwiatkowski et al., 2010; 

Sliedrecht et al., 2010; Tighe et al., 2008).  To assess the mitotic phenotype of AZ3146-

treated cells, I classified the same HeLa and hTERT-RPE cells analysed in Figure 4.6 

according to the presence or absence of certain mitotic abnormalities.  The vast majority of 

untreated HeLa cells appeared to complete a normal mitosis, restraining the onset of 

anaphase until all chromosomes were properly aligned at the metaphase plate and cleanly 

segregating chromatin into two new daughter cells (Figure 4.7 A, montage i).  A fraction 

of untreated HeLa cells had mitotic abnormalities (21%), predominantly anaphase bridges; 

however, when cells were filmed in the presence of AZ3146 the proportion of cells with 

visible mitotic abnormalities increased dramatically, reaching 91%.  Two major 

phenotypes were evident.  Of these, segregation of DNA in the presence of misaligned 

chromosomes was the most common: 53% of AZ3146-treated HeLa cells exhibited this 

defect.  The severity of the defect varied from anaphase in the presence of one or more 

unaligned chromosomes at the poles (montage ii), to the absence of visible metaphase plate 

formation, with chromatin apparently cleaved by ingression of the furrow at cytokinesis 

(montage iii).  This resembles a ‘cut’-like phenotype that has been described in Mps1-

depleted cells (Jelluma et al., 2008b).  Missegregations like these could clearly produce 

aneuploid cells, in concurrence with the flow cytometry data (Figures 4.2-4.4).  The second 

most common phenotype in AZ3146-treated HeLa cells is illustrated in montage iv: 32% 

of cells failed to segregate their DNA, exiting mitosis with a single mass of chromatin.  

These cells frequently appeared to initiate anaphase prior to bipolar spindle formation, in a 

similar manner to cells depleted of BubR1 (Morrow et al., 2005).  Although cells with >4N  
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DNA contents were uncommon in asynchronous AZ3146-treated HeLa cells analysed by 

flow cytometry (Figures 4.2-4.4), some of the tetraploid cells produced by treatment with 2 

µM AZ3146 might be capable of progression into the next S phase: a modest increase in 

cells with >4N DNA content was apparent by flow cytometry in asynchronous AZ3146-

treated HeLa cells (Figure 4.4A), and when synchronised HeLa cells were released into 2 

µM AZ3146 (Figure 4.4B, D).  This timelapse data is consistent with AZ3146-mediated 

mitotic checkpoint override in HeLa cells, in agreement with the flow cytometry data. 

Analysis of the control population of hTERT-RPE cells revealed that almost every 

mitoses was normal in appearance (97%; Figure 4.7B, montage i).  Strikingly, treatment 

with 2 µM AZ3146 meant 75% of mitoses were classified as abnormal, with two distinct 

phenotypes.  A relatively small fraction of cells (13%) appeared to have an anaphase 

bridge-like structure, as shown in montage ii.  However, the principal abnormality in 

AZ3146-treated hTERT-RPE cells was anaphase initiation in the presence of misaligned 

chromosomes (62% of mitoses), ranging in severity as exemplified in montages iii and iv.  

Divisions like these are likely to lead to loss or gain of a few chromosomes, resulting in the 

relatively minor aneuploidy seen by DNA content analysis of these cells when treated with 

2 µM AZ3146 for 24 hours (Figures 4.2 and 4.3).  Taken together, the data in Figure 4.6 

and 4.7 back up the DNA content analysis in Figures 4.2-4.4, providing direct evidence of 

a mitotic phenotype consistent with Mps1 inhibition.  

4.8 | Summary 

In this chapter I tested the effect of AZ3146 on three different human cell lines.  

Whilst this is not a comprehensive examination of the compound’s effects on various cell 

types, it enabled me to gain some insight into the response of both tumour cell lines and 

untransformed cell lines to Mps1 inhibition.  Overall, the results show that hTERT-RPE 

cells, like HeLa and HCT116s, are sensitive to Mps1 inhibition: all cell lines showed signs 

of mitotic checkpoint override and a decrease in viability in the presence of the drug.  

However, it is noteworthy that the mitotic defect exhibited by the hTERT-RPEs was less 

severe than that observed in HeLa cells, which is possibly why the untransformed cells 

appeared to tolerate treatment with 2 µM AZ3146 better then the tumour cell lines in the 

shorter term (Figure 4.3) and seemed slightly more resistant to long term treatment (Figure 

4.2).   

The major aim of this chapter was to characterise AZ3146’s effect in cells by using 

various read-outs of mitotic checkpoint inhibition.  To summarise, the data in this chapter 

provides evidence that AZ3146 treatment (1) decreases viability in both transformed and 

untransformed human cells; (2) abrogates the mitotic checkpoint response induced by 
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spindle-perturbing agents, and; (3) overrides the mitotic checkpoint in asynchronous cells, 

leading to accelerated passage through mitosis and aneuploidy.  Importantly, these 

observations are all wholly consistent with Mps1 inhibition.  Therefore, I am confident that 

AZ3146 is indeed a useful tool to probe Mps1 biology.  
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5 | Results Chapter III: AZ3146 leads to loss of Mad2 and 

accumulation of Mps1 at kinetochore 

5.1 | Introduction 

In the previous chapter, I found that AZ3146-mediated Mps1 inhibition abrogated 

mitotic checkpoint signalling.  In order to establish a possible mechanism for this, I 

focused my attention on the origin of the checkpoint signal: the unattached kinetochore 

(Rieder et al., 1995).  Proteins involved in the mitotic checkpoint localise to the fibrous 

corona of unattached kinetochores, and abolishing kinetochore localisation of core 

checkpoint proteins perturbs the checkpoint response (e.g. Taylor and McKeon, 1997; 

Zhao and Chen, 2006).  The work in this chapter focuses on the unattached kinetochore, 

and describes the effect of AZ3146 treatment on its components.  By making these 

observations, I hoped to gain some insight into the function of Mps1 catalytic activity in 

the mitotic checkpoint.  

5.2 | Mad2 localisation is highly sensitive to AZ3146 treatment  

To explore the cellular effects of AZ3146-mediated Mps1 inhibition, I used a simple, 

indirect immunofluorescence-based assay to observe the effect of AZ3146 treatment on 

localisation of several kinetochore proteins.  Briefly, HeLa cells were treated 

simultaneously with nocodazole, MG132 and 2 µM AZ3146 (or DMSO in controls) for 2 

hours before fixation and staining with antibodies to detect kinetochore proteins of interest.  

The addition of nocodazole created unattached kinetochores, and MG132 prevented 

mitotic exit, thereby keeping a proportion of the cells arrested in prometaphase where, 

under normal circumstances, the mitotic checkpoint is active and checkpoint proteins are 

recruited.  In these cells, selected protein levels were qualitatively assessed after fixation 

and staining with appropriate antibodies.  Standard fluorescence microscopy was used to 

view the cells, and levels were assessed by eye then classified as high, medium or low.  I 

intended the categories to correspond roughly to kinetochore staining levels of 100-66%, 

66-33% and 33-0% respectively.   

Loss of Mad2 at the prometaphase kinetochore is a relatively well-established 

indicator of loss of Mps1 function.  Mps1 depletion leads to loss of Mad2 at kinetochores 

in Xenopus egg extracts and in human cells (Abrieu et al., 2001; Fisk et al., 2003; Jelluma 

et al., 2008b; Liu et al., 2003; Martin-Lluesma et al., 2002; Tighe et al., 2008); 

furthermore, the use of kinase-dead and ATP analogue-sensitive mutants, along with the  

 
96



 

Kinetochore protein levels after treatment with nocodazole and 2 µM AZ3146 

Protein Level after AZ Protein Level after AZ 

Mad2 Low Bub1 High 

Mad1 Med BubR1 High 

Rod Med Aurora B High 

ZW10 Med Cenp-F Med 

Zwilch Med/Low Cenp-E Med 

Zwint High Cenp-A High 

Table 5.1  Summary of kinetochore protein levels in HeLa cells after treatment with AZ3146, 
nocodazole and MG132, derived from the data presented in Figure 5.1. 
 

recently-published Mps1-IN-1 inhibitor, has revealed that the catalytic activity of the 

kinase is necessary for Mad2 recruitment (Kwiatkowski et al., 2010; Sliedrecht et al., 

2010; Tighe et al., 2008).  Therefore, I would predict decreased levels of Mad2 staining 

after AZ3146 treatment in my immunofluorescence-based assay.  The majority of 

AZ3146-treated, prometaphase-arrested cells (66%) had faint or undetectable kinetochore 

Mad2, in stark contrast to the readily visible kinetochore staining pattern in control cells, 

where 83% of cells had high levels of staining (Figure 5.1A and Table 5.1).  In parallel 

with my analysis, A. Tighe’s quantification of pixel intensities in AZ3146-treated cells 

showed that this equates to an 85% reduction, on average (Hewitt et al., 2010).  

Importantly, these observations fit with previous work and confirm that Mps1 kinase 

activity is required for Mad2 recruitment and/or maintenance at the kinetochore. 

The effect of Mps1 depletion or inhibition on Mad1 localisation is somewhat 

controversial.  Whilst it is established that Mps1 RNAi leads to Mad1 loss (Jelluma et al., 

2008b; Liu et al., 2003; Tighe et al., 2008), there is some conflicting data regarding the 

requirement for Mps1 kinase activity for Mad1 localisation (Jelluma et al., 2008b; Schmidt 

et al., 2005; Tighe et al., 2008).  Therefore, I was particularly interested in finding out 

whether AZ3146 caused loss of Mad1 signal at kinetochores.  Mad1 is clearly affected by 

AZ3146 treatment in this assay: 36% or 42% of prometaphase cells had low or medium 

kinetochore staining levels, respectively (Figure 5.1B and Table 5.1).  Notably, however, 

the effect of AZ3146 on Mad1 is certainly less severe than on Mad2, which had almost 

twice the number of cells with low levels of staining (Figure 5.1A).  Therefore, it seems 

that Mps1 kinase activity is differentially required for Mad2 and Mad1 recruitment.  One 

possible explanation for this difference is that Mad1 kinetochore localisation may require 

less Mps1 activity: perhaps any residual catalytic activity remaining after treatment with 2 

µM AZ3146 is enough to recruit or maintain Mad1 at easily detectable levels in many  
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Figure 5.1 Localisation of kinetochore proteins after Mps1 inhibition with AZ3146
HeLa cells were treated with nocodazole, MG132 and DMSO or AZ3146 (2 µM), fixed after 2 h and pro-
cessed for immunofluorescence. Kinetochore levels of the protein shown in red were assessed by eye and the
results shown as bar graphs. Cells were co-stained with antibodies to phospho-histone H3 (pH3), Bub1, or
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cells, but not sufficient for detectable Mad2 localisation.  However, this may not be a 

complete explanation, since when higher molarities of AZ3146 are used, presumably 

minimising residual activity, there remains a difference between Mad2 and Mad1 

kinetochore levels: almost all prometaphase cells treated with 4 µM and 8 µM AZ3146 

have low levels of Mad2 staining at kinetochores (83% and 98% respectively, Figure 

5.2A), whereas medium levels of Mad1 staining are observed in ~50% of cells under the 

same conditions (Figure 5.2B).  In agreement with this variability in the population 

assessed in my assays, recent work carried out by A. Tighe suggests that inhibition of 

Mps1 activity can prevent Mad1’s recruitment to unattached kinetochore, but has less 

effect on Mad1 if it has already been recruited prior to Mps1 inhibition (Hewitt et al., 

2010).  This may provide an explanation for the data presented here, since the cells in my 

assay are likely to be a mixture of mitotic cells that had already recruited Mad1 to 

prometaphase kinetochores, and those which were in prophase or metaphase and therefore 

had no Mad1 at the kinetochore at the time of drug treatment.  Overall, my data provides 

evidence that, in mixed cell population, Mad1 localisation is clearly affected by AZ3146 

treatment, but in some cells is less sensitive to loss of Mps1 activity than Mad2, likely 

because of the different mitotic stages at which Mps1 inhibition takes place.   

After establishing the effect of AZ3146-meditated Mps1 inhibition on Mad1 and 

Mad2, I turned my attention to the RZZ complex.  The RZZ complex (Rod, ZW10 and 

Zwilch) is found in the fibrous corona region, interacts with the outer kinetochore plate 

component Zwint, and is required for Mad1-Mad2 recruitment to the kinetochore 

(reviewed in Karess, 2005).  After AZ3146 treatment, I observed a partial decrease in 

kinetochore staining for all three components of the RZZ complex (Figure 5.2C-E and 

Table 5.1).  There are minor differences between the data for the three constituents of the 

complex, possibly due to differences in antibody sensitivity.  Notably however, AZ3146’s 

effect on the RZZ complex closely resembles its effect on Mad1 staining.  This observation 

is corroborated by recently published work using the small molecule inhibitor Reversine, 

which implicates Mps1 activity in Zwilch recruitment (Santaguida et al., 2010).  The 

decrease in RZZ staining cannot be explained by a fall in kinetochore-bound Zwint, since 

treatment with AZ3146 produced only a relatively small fraction of cells with notably 

decreased Zwint signal (Figure 5.1F and Table 5.1).  Taken together, these data suggest a 

role for Mps1 kinase activity in the recruitment of Mad1-Mad2 via the RZZ complex. 
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5.3 | Bub1, BubR1 and Aurora B are relatively unaffected by AZ3146-

mediated Mps1 inhibition 

There are some discrepancies in the literature regarding the requirement of Mps1 for 

the kinetochore localisation of Bub1 (Jelluma et al., 2008b; Liu et al., 2006; Martin-

Lluesma et al., 2002; Santaguida et al., 2010; Sliedrecht et al., 2010; Tighe et al., 2008).  

When cells were treated with nocodazole, MG132 and 2 µM AZ3146, a small increase in 

the frequency of medium levels of kinetochore staining was observed (from 0% in the 

control population to 14% in AZ3146-treated cells).  It should also be noted that many 

cells classified as having high levels exhibited a small reduction in Bub1 levels.  In 

keeping with this, when pixel intensities were quantified by A. Tighe in identically treated 

cells, an average reduction of 25% was seen (Hewitt et al., 2010).  This suggests Bub1 

recruitment and/or maintenance at the kinetochore is largely unaffected by inhibition of 

Mps1 kinase activity.  The relatively mild nature of the defect may be partly due to 

residual Mps1 activity in cells treated with 2 µM AZ3146: when the AZ3146 dosage is 

increased to 8 µM, 52.5% of cells had either low or medium Bub1 levels (Figure 5.2C).  

Overall however, the results presented here do not exclude a role for Mps1 catalytic 

activity in Bub1 localisation, but they suggest a comparatively minor role. 

Like its role in Bub1 localisation, the role for Mps1 in BubR1 localisation has also 

been subject to debate (Jelluma et al., 2008b; Kang et al., 2007; Liu et al., 2006; Martin-

Lluesma et al., 2002; Santaguida et al., 2010; Schmidt et al., 2005; Sliedrecht et al., 2010; 

Tighe et al., 2008).  Several reports have suggested that perturbation of Mps1 kinase 

activity leads to a significant decrease in BubR1 kinetochore staining (Kang et al., 2007; 

Schmidt et al., 2005), however others have reported that the effect of inhibition on 

kinetochore-bound BubR1 is only marginal (Santaguida et al., 2010; Sliedrecht et al., 

2010).  When I analysed BubR1 levels in a population of 2 µM AZ3146-, nocodazole- and 

MG132-treated cells and compared them to control cells, I observed only a small fraction 

with significantly decreased, medium or low levels of BubR1 (26% compared to 1% in the 

control population, Figure 5.1H).  As with Bub1, many cells appeared to have slightly 

reduced BubR1 staining, but were still within the range considered ‘high’.  Whilst I cannot 

exclude the possibility that a more major defect may reveal itself at higher molarities of 

AZ3146, this data suggests at most a small, relatively minor role for Mps1 kinase activity 

in BubR1 recruitment and maintenance at kinetochores.   

Aurora B localises to the centromere/kinetochore region at prometaphase, and its 

kinase activity is known to be required for the recruitment of several other kinetochore 
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components (Ditchfield et al., 2003; Hauf et al., 2003).  Mps1 RNAi is reported to have 

very little effect on Aurora B’s immunolocalisation pattern (Jelluma et al., 2008b; Tighe et 

al., 2008).  When I analysed Aurora B staining following inhibition of Mps1 with AZ3146, 

I saw virtually no difference between the control and AZ3146-treated populations (Figure 

5.1I).  This data suggests that Mps1 kinase activity has no discernable role in recruitment 

or maintenance of Aurora B at the prometaphase centromere/kinetochore region, in 

agreement with published RNAi-based data. 

5.4 | Cenp-F and Cenp-E are reduced at kinetochores after AZ3146 

treatment 

I also used my immunofluorescence-based assay to look at the localisation of Cenp-

F, a component of the fibrous corona that is required for chromosome alignment (Holt et 

al., 2005; Yang et al., 2005).  After AZ3146-treatment, the population of prometaphase-

arrested cells exhibited noticeably lower levels of Cenp-F kinetochore staining than the 

control population (Figure 5.1J): 75% of cells analysed had medium or low levels.  Mps1 

knockdown by RNAi has been reported to have no effect on Cenp-F localisation (Liu et al., 

2006), or cause a 35% reduction (Tighe et al., 2008); the data presented here is in broad 

agreement with the latter.  This suggests Mps1 kinase activity has at least a partial role in 

recruitment and/or maintenance of Cenp-F at the kinetochore. 

The role of Mps1 in Cenp-E kinetochore localisation is somewhat controversial.  

Work in the Xenopus egg extract model system implicates Mps1 kinase activity in Cenp-E 

kinetochore localisation (Abrieu et al., 2001), and Mps1 RNAi in HeLa cells is reported to 

cause improper Cenp-E localisation during mitosis (Fisk et al., 2003).  However, several 

reports have concluded that Mps1 RNAi has no effect on Cenp-E immunolocalisation 

(Jelluma et al., 2008b; Martin-Lluesma et al., 2002; Tighe et al., 2008), and one recent 

report saw no effect on Cenp-E after inhibition of Mps1 kinase activity (Sliedrecht et al., 

2010).  In my assay, AZ3146-treatment clearly led to a reduction in Cenp-E staining at 

kinetochores: 92% of cells analysed had either medium or low levels (Figure 5.1K).  Thus, 

in contrast to a previous report (Sliedrecht et al., 2010), these data suggest that Mps1 

kinase activity contributes to Cenp-E kinetochore localisation in human cells.  This might 

be mediated via Cenp-F, since Cenp-F has been shown to interact with Cenp-E and 

promote its kinetochore localisation (Chan et al., 1998; Johnson et al., 2004; Yang et al., 

2005; Yao et al., 2000). 

I also wanted to extend my analysis to a structural component of the inner 

kinetochore, so I analysed the effect of AZ3146 on the histone H3 homologue, and 

constitutive centromere-binding protein, Cenp-A (Cheeseman and Desai, 2008).  AZ3146-
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mediated Mps1 inhibition had no effect on the levels of Cenp-A staining in the majority of 

AZ3146-treated cells, where levels were classified as high (Figure 5.1L and Table 5.1).  

However, a small increase in cells with medium or low Cenp-A staining levels was 

observed (from 20% in controls to 34% in AZ3146-treated cells).  This might indicate a 

small reduction in kinetochore levels in some cells.  However, it is unlikely that a small 

decrease would cause problems with subsequent assembly of other kinetochore 

components, since Cenp-A is thought to be in excess at the human kinetochore (Liu et al., 

2006).  Whilst more detailed analysis would be required to fully confirm the presence of 

other structural kinetochore proteins, this data, along with the near-normal Zwint levels 

described earlier (Figure 5.1F), means I have no evidence to suggest underlying inner and 

outer kinetochore structure is perturbed by AZ3146.   

Taken together, the data presented in the chapter so far show that AZ3146 treatment 

leads to kinetochore recruitment defects that could contribute to mitotic checkpoint 

malfunction (Chapter 4).  Crucially, Mad2 appeared exquisitely sensitive to AZ3146 

treatment; Mad1, while partially mislocalised, was less sensitive.  The requirement for 

Mps1 activity in Mad1 localisation might be indirect, since I also observed a decrease in 

kinetochore levels of the RZZ complex.  Cenp-E and Cenp-F staining levels were notably 

lower at kinetochores following AZ3146 treatment; interestingly, both of these proteins are 

involved in chromosome alignment, a process in which Mps1 is also implicated.  Other 

components of the kinetochore (Bub1, BubR1, Aurora B, Cenp-A, Zwint) were largely 

unaffected by AZ3146 treatment. 

5.5 | Mps1 accumulates at prometaphase kinetochores following AZ3146 

treatment 

Having established at AZ3146’s effect on the above kinetochore components, I 

turned my attention to Mps1 itself.  Mps1 localises to the kinetochore via its N-terminal 

domain (Liu et al., 2003; Stucke et al., 2004), and its interaction with the kinetochore is a 

dynamic one, with a half-life of recovery of 13 s (Howell et al., 2004).  However, the 

mechanism by which this interaction is regulated remains elusive.  I wanted to test the 

effect of loss of kinase activity on the kinetochore localisation of endogenous Mps1, so I 

used my indirect immunofluorescence assay to look at Mps1 localisation in nocodazole, 

MG132 and AZ3146-treated HeLa cells.  In control cells, Mps1 staining is evident at the 

kinetochore region, but the signal is rather weak (Figure 5.3A, top panel).  Strikingly, on 

addition of AZ3146, the signal increases markedly (Figure 5.3A, bottom panel).  

Quantification of pixel intensities revealed that Mps1 staining at the kinetochore increased 

5-fold on average in AZ3146-treated cells, suggesting that Mps1’s kinase activity 
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Figure 5.3 Endogenous Mps1 accumulates at kinetochores after AZ3146 treatment.
(A) HeLa cells were treated with either DMSO (Control) or 2 µM AZ3146 plus nocodazole and MG132 for 2
h, then processed for immunofluorescence with antibodies against Mps1 (red) and ACA (green). DNA was
visualised with Hoechst staining. Representative examples of a control and AZ3146-treated cell are shown.
Images are maximum intensity projections of deconvolved z-section stacks. Enlargements of boxed kineto-
chore pairs show enhanced Mps1 staining with AZ3146 treatment. Scale bar: 5 µm.
(B) Quantification of cells treated as in A. Mps1 pixel intensities at each kinetochore pair were quantified as
a ratio to the ACA signal. The data shown in the bar graph is combined from 3 independent experiments, in
which a total of 19 control cells or 18 AZ3146-treated cells were analysed. Numbers within bars refer to the
total kinetochore pairs in dataset. Ratios were normalised to the mean control value for each experiment.
Error bars represent the standard deviation. (***P < 0.0001, Mann-Whitney U-test.)
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 may be involved in regulating its localisation. 

In the above experiments, I detected endogenous Mps1 using a polyclonal antibody 

raised against an N-terminal 242-amino acid fragment of Mps1 (Tighe et al., 2008).  It is 

possible that the apparent accumulation I observed might be due to changes in the 

antibody’s affinity for kinetochore-bound Mps1 caused by epitope unmasking, perhaps due 

to changes in phosphorylation.  With this in mind, I set out to firmly establish whether the 

increase in signal seen in Figure 5.3 was indeed a consequence of raised levels of 

kinetochore-bound protein.  For this, I used HeLa cells stably expressing tetracycline-

inducible GFP-tagged wild type Mps1 (GFP-Mps1-WT, Tighe et al., 2008). 

 Firstly, I tested the propensity of GFP-Mps1-WT to accumulate after AZ3146 

treatment.  Levels of the exogenous kinase were detected by immunostaining with an anti-

GFP antibody.  In control cells, the kinetochore signal from GFP-Mps1WT staining was 

often so low that it was virtually undetectable after deconvolution (see Figure 5.4A, top 

panel).  Importantly, when cells were cultured with AZ3146, the anti-GFP signal 

increased, and was frequently readily detectable (Figure 5.4A, bottom panel).  When 

quantified, an average ~2-fold increase in GFP-Mps1-WT kinetochore staining was 

observed (Figure 5.4B).  As the standard deviation of the datasets indicates (error bars), 

there was wide variation in GFP-Mps1-WT levels in these experiments.  This was largely 

due to variability in transgene expression levels from cell to cell, a characteristic of the 

HeLa stable cells lines being used (data not shown and A. Tighe, personal 

communication).  In order to exclude any possibility that the ~2-fold increase observed in 

Figure 5.4B was due to sampling differences rather than a real trend towards higher GFP-

Mps1-WT staining after AZ3146 treatment, I assessed the kinetochore levels of the control 

and treated cell populations by eye.  As shown in Figure 5.4C, there was a clear shift 

towards brighter kinetochore staining when cell when AZ3146 was used.  Thus, I was able 

to recapitulate the kinetochore accumulation of inhibitor-treated Mps1 with a second 

antibody against the GFP-tag of stably expressed wild-type Mps1, further supporting the 

idea that AZ3146-treatment leads to Mps1 accumulation at kinetochores. 

As a second way of assessing the effect of AZ3146 on kinetochore levels of GFP-

Mps1-WT, I turned to an antibody-free approach.  GFP-Mps1-WT fluorescence was 

observed directly by standard fluorescence microscopy and levels assessed by eye.  

Control cells stably expressing GFP-Mps1-WT frequently had undetectable kinetochore 

levels, but in some cells, expression was high enough to allow visualisation of GFP-

Mps1WT at the kinetochore, and levels were classified as medium (Figure 5.4D, top panel). 

When cells were treated with AZ3146, cells frequently had intensely fluorescent 
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Figure 5.4 GFP-tagged wild-type Mps1 accumulates at kinetochores after AZ3146 treatment.
(A) HeLa cells expressing tet-inducible GFP-tagged wild-type Mps1 (GFP-Mps1-WT) were treated with
either DMSO (Control) or 2 µM AZ3146 plus nocodazole and MG132 for 2 h, then processed for immuno-
fluorescence with antibodies against GFP (green), Mps1 (red) and ACA (blue). Representative examples of
a control and AZ3146-treated cell are shown. Images are maximum intensity projections of deconvolved z-
section stacks. Enlargements of boxed kinetochore pairs show enhanced GFP and Mps1 staining with
AZ3146 treatment. (B) Quantification of kinetochore GFP-Mps1-WT levels in cells treated as in A. GFP
pixel intensities at each kinetochore pair were quantified as a ratio to the ACA signal. The data shown in the
bar graph is combined from 3 independent experiments, in which a total of 19 control cells and 18 AZ-
treated cells were analysed. Numbers within bars refer to the total kinetochore pairs in each dataset. Ratios
were normalised to the mean control value in each experiment. Error bars represent the standard deviation.
(***P < 0.0001, Mann-Whitney U-test.) (C) Levels of GFP-Mps1-WT were assessed by eye in the same
cells described in A and B. Data from one of the three repeats is shown. Values within the bars refer to the
number of cells counted. (D) GFP-Mps1-WT at kinetochores was visualised directly by virtue of GFP fluo-
rescence, in cells treated as in A, but by standard fluorescence microscopy. Cells were co-stained with ACA
(red). (E) Quantitation of GFP-Mps1-WT levels in cells treated and visualised as in D. Scale bars: 5 µm
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 points of GFP-Mps1-WT at the kinetochore, as in the example shown in Figure 5.4D 

(bottom panel), where levels were classed as high.  There was a clear increase in the 

proportion of cells with either medium or high GFP-Mps1-WT levels at kinetochores after 

AZ3146 treatment (Figure 5.4E).  Importantly, this confirms that the enhanced staining in 

Figure 5.3 and 5.4A-D is not caused by changes in antibody affinity, but by an increase in 

Mps1 protein levels at kinetochores following inhibition. 

5.6 | Kinase-dead Mps1 accumulates at unattached kinetochores following 

AZ3146 treatment 

In parallel with experiments to determine that wild type GFP-Mps1 was enriched at 

kinetochores, I also carried out the same experiments with cells expressing catalytically 

inactive, mutant GFP-Mps1 (GFP-Mps1-KD, Tighe et al., 2008).  Originally, I 

hypothesised that the kinetochore localisation of the catalytically inactive kinase would not 

be enhanced on addition of the inhibitor, since the kinase is already inherently inactive.  If 

lack of catalytic activity caused the kinetochore accumulation observed in Figure 5.3 and 

5.4, the GFP-Mps1-KD would already be maximally enriched at kinetochores before 

inhibitor treatment.  However, like GFP-Mps1-WT, GFP-Mps1-KD was frequently 

virtually undetectable when stained with an anti-GFP antibody in control cells (Figure 

5.5A, top panel).  Furthermore, when cells were treated with AZ3146, the anti-GFP signal 

at the kinetochores became substantially higher than in control cells, with GFP-Mps1-KD 

now readily visible (Figure 5.5A, bottom panel).  Quantification of the GFP signal showed 

an average ~5-fold increase at the kinetochore following AZ3146 treatment (Figure 5.5B), 

though levels were once again highly variable due to cell to cell expression level 

differences.  As with GFP-Mps1-WT, I was able to confirm the increase in kinetochore 

bound GFP-Mps1-KD by analysis of a larger sample of cells from the two populations by 

eye (Figure 5.5C).  Contrary to my original hypothesis, these data indicate that, like GFP-

Mps1-WT, GFP-Mps1-KD accumulates at prometaphase kinetochores after AZ3146 

treatment. 

One possible explanation for this observation is that the kinetochore accumulation of 

Mps1 is not dependent on the intrinsic activity of a single molecule, but instead on the 

level of Mps1 activity in the cell.  Thus, in the presence of endogenous Mps1 activity, 

GFP-Mps1-KD remains at a low level at the kinetochore, and only accumulates following 

AZ3146 treatment, presumably because it can no longer interact with active endogenous 

Mps1.  To further confirm this effect, I turned to an RNAi complementation approach, in 

which I repressed endogenous Mps1 with shRNA, and induced expression of RNAi- 
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Figure 5.5 GFP-tagged kinase-dead Mps1 accumulates at kinetochores after AZ3146 treatment.
(A) HeLa cells expressing tet-inducible GFP-tagged kinase-dead Mps1 (GFP-Mps1-KD) were treated with
either DMSO (Control) or 2 µM AZ3146 plus nocodazole and MG132 for 2 h, then processed for immuno-
fluorescence with antibodies against GFP (green), Mps1 (red) and ACA (blue). Representative examples of
a control and AZ3146-treated cell are shown. Images are maximum intensity projections of deconvolved z-
section stacks. Enlargements of boxed kinetochore pairs show enhanced GFP and Mps1 staining with
AZ3146 treatment. Scale bar: 5 µm (B) Quantification of kinetochore GFP-Mps1-KD levels in cells treated
as in A. GFP pixel intensities at each kinetochore pair were quantified as a ratio to the ACA signal. The data
shown in the bar graph is combined from 3 independent experiments, in which a total of 17 control cells and
16 AZ-treated cells were analysed. Numbers within bars refer to the total kinetochore pairs in dataset.
Ratios were normalised to the mean control value in each experiment. Error bars represent the standard devi-
ation. (***P < 0.0001, Mann-Whitney U-test.) (C) Levels of GFP-Mps1-KD were assessed by eye in the
same cells described in A and B. Data from one of the three repeats is shown. Values within the bars refer to
the number of cells counted.
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resistant GFP-Mps1-WT or GFP-Mps1-KD (Tighe et al., 2008).  Western blots (Figure 

5.6A) confirmed that transfection with shRNA targeting Mps1 caused a fall in endogenous 

protein levels, whilst levels of resistant GFP-Mps1 were unaffected.  When cells 

transfected with control shRNA were treated with nocodazole and MG132, staining with 

an anti-GFP antibody revealed virtually undetectable kinetochore levels of both WT and 

KD GFP-Mps1 (data not shown), in agreement with data from control cells in Figures 5.4 

and 5.5.  Following repression of endogenous Mps1, GFP-Mps1-WT levels at kinetochores 

remained very low; although the GFP-tagged form was now predominant in the cells, 

accumulation did not occur.  Importantly however, GFP-Mps1-KD levels increased 

markedly in shRNA-transfected cells (Figure 5.6B, C).  Quantification of anti-GFP pixel 

intensities indicated an ~8.5 fold increase in kinetochore-bound GFP-Mps1-KD on average 

(Figure 5.6C).  Again, the datasets had high levels of variability, but additional qualitative 

analysis of kinetochore GFP levels in each cell population showed a clear increase in the 

proportion of cells with high levels in Mps1-depleted, GFP-Mps1-KD expressing cells.  

Taken together, this data confirms that decreasing cellular levels of Mps1 catalytic activity 

leads to its accumulation at the kinetochore, and since kinase dead Mps1 only accumulates 

markedly following Mps1 shRNA, hints at the importance of inter-molecular interactions 

in regulating Mps1 localisation. 

5.7 | Summary 

To summarise, the data in this chapter provide evidence that AZ3146 treatment 

affects the localisation of kinetochore proteins essential for mitotic checkpoint function 

(Mad2, Mad1, RZZ complex).  Conversely, I also show that the levels of Mps1 itself 

increase markedly at kinetochores after ablation of the kinase’s activity: this novel 

observation may reflect an important aspect of the mechanism by which Mps1 inhibition 

causes mitotic checkpoint override.  

AZ3146 treatment also leads to an apparent decrease in kinetochore levels of 

proteins with a role in chromosome alignment (Cenp-E and Cenp-F).  The effect of 

AZ3146 treatment on this aspect of Mps1 function will be explored further in Chapter 6.   
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Figure 5.6 Kinase-dead GFP-Mps1 accumulates at kinetochores after depletion of endogenous Mps1
(A) HeLa cells stably expressing tet-inducible RNAi-resistant GFP-Mps1 wild-type (WT) or kinase-dead
(KD) were transfected with plasmids encoding shRNA targetting Mps1, or a control plasmid. Samples were
processed for western blot and probed with antibodies against Mps1 (top panel) or Aurora A (bottom panel)
as a loading control. (B) After endogenous Mps1 depletion and induction of GFP-Mps1 expression as in A,
cells were treated with nocodazole and MG132 for 2 hours. Cells were then fixed and processed for immun-
ofluorescence, staining with antibodies against GFP (green) and ACA (red). In each cell analysed,
shRNA/control plasmid transfection was confirmed by expression of co-transfected DsRed-histone H2B (not
shown). Representative examples of cells lacking endogenous Mps1, but expressing either wild-type or
kinase-dead GFP-Mps1 are shown. Note the enhanced kinetochore localisation of GFP-Mps1-KD. Scale
bar: 5 µm. (C) Quantification of kinetochore GFP-Mps1 levels in cells treated as in B. GFP pixel intensi-
ties at each kinetochore pair were quantified as a ratio to the ACA signal. The data shown in the bar graph is
combined from 3 independent experiments, in which at least 16 cells were analysed for each condition.
Numbers within bars refer to the total kinetochore pairs in the dataset. WT and KD ratios were normalised to
their respective mean control value in each experiment. Error bars represent the standard deviation. (***P <
0.0001, Mann-Whitney U-test) (D) Levels of GFP-Mps1 WT and KD were assessed by eye in the same
cells described in B and C. Values within the bars refer to the number of cells counted.
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6 | Results Chapter IV: Inhibition of Mps1 perturbs chromosome 

alignment by inducing mislocalisation of Cenp-E 

6.1 | Introduction 

Over the last few years, a dual role for Mps1 in mitosis has emerged.  Not only does 

it promote mitotic checkpoint signalling to delay anaphase until the appropriate time, but it 

also functions in the mechanics of chromosome alignment.  Some reports have found that 

Mps1’s role in chromosome alignment is mediated via phosphorylation of Borealin, a 

member of the chromosomal passenger complex (Jelluma et al., 2008b; Sliedrecht et al., 

2010).  This phosphorylation is said to be required for full activation of Aurora B, which 

itself has a well-documented role in error correction, promoting the destabilisation of 

erroneous kinetochore-microtubule attachments (reviewed in Ruchaud et al., 2007).  In 

addition, some of the observations documented in the previous chapter, namely Cenp-E 

and Cenp-F reduction, hinted at possible alternative ways in which Mps1 could influence 

alignment by its effect on the mitotic kinetochore.  The work described in this chapter 

focuses on the effect of AZ3146 on the mechanics of chromosome alignment, and the 

relationship between Mps1 and Aurora B. 

6.2 | Mps1 inhibition leads to alignment problems after enrichment for 

errors 

In order to detect problems with alignment, I treated cells with the proteasome 

inhibitor MG132.  Assays I have used in the previous chapters could not distinguish this 

type of defect, since either a spindle toxin was present, or premature mitotic exit was 

induced due to checkpoint malfunction.  By blocking proteolysis, MG132 prevents 

anaphase onset downstream of spindle checkpoint inactivation.  In normal cells, 

chromosomes will align, forming a metaphase plate, but chromatids will not separate.  If 

AZ3146-treated cells have problems with alignment, this will manifest as an inability to 

form a fully aligned metaphase plate, despite the extended time in mitosis afforded by 

MG132 treatment.  I assessed alignment in MG132-treated cell populations by fixing cells, 

staining to visualise DNA, kinetochores and the mitotic spindle to allow classification of 

cells according to their stage of mitosis (prophase, prometaphase, metaphase, or anaphase).  

A cell with one or more unaligned chromosomes was classified as being in prometaphase.  

When I treated either HeLa cells or DLD1 cells with MG132 (Figure 6.1A), a large 

proportion of control cells reached a fully aligned metaphase (39% of HeLa cells and 68% 

of DLD1s).  Surprisingly, this did not significantly decrease when cells were treated with  
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Figure 6.1 Inhibition of Mps1 does not affect alignment in an unperturbed prometaphase
(A) HeLa and DLD1 cells were treated with DMSO (Control) or 2 µM AZ3146 for 2 hours, and then fixed
and stained. The mitotic population was classified according to the phase of mitosis, and the results are rep-
resented in bar graphs. Note the decreased proportion of metaphase cells in when cells are treated with
AZ3146. HeLa data is combined from 2 independent experiments.
(B) HeLa and DLD1 cells were treated with MG132 and DMSO (Control) or 2 µM AZ3146 for 2 hours,
fixed, analysed and represented as in A.
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MG132 and AZ3146: 40% of HeLa cells and 57% of DLD1s had aligned all 

chromosomes.  Though an alignment defect did not appear to manifest under these 

conditions, Mps1 was inhibited in these cells: the mitotic checkpoint was compromised, as 

shown by analysis of the mitotic population of asynchronous cells (Figure 6.1B).  In both 

cell types, the proportion of cells in metaphase or prometaphase decreased, indicating cells 

rarely achieved alignment and were accelerated through prometaphase, as predicted 

following Mps1 inhibition. 

The lack of alignment defect observed after Mps1 inhibition was somewhat 

surprising.  To see if Mps1 activity really was entirely dispensable for alignment, I used a 

monastrol wash-out approach to enrich for erroneous attachments (Kapoor et al., 2000; 

Mayer et al., 1999). When spindle pole separation is prevented using monastrol, 

kinetochore pairs frequently become attached to the same spindle pole (syntelic 

attachment).  Monastrol can be efficiently washed out of cells, allowing spindle pole 

separation and correction of the erroneous attachments so that alignment can be achieved 

(Kapoor et al., 2000).  The mechanism of alignment after monastrol wash-out has been 

dissected (see Figure 1.6): Aurora B activity mediates the first steps towards alignment by 

promoting K-fibre disassembly, moving the chromosome polewards (Lampson et al., 

2004).  Mono-oriented chromosomes can then congress from the polar region towards the 

spindle equator via the action of the plus-end directed kinesin Cenp-E, and in doing so, 

increase their chances of becoming bioriented (Kapoor et al., 2006).  To detect any 

problems in this process following Mps1 inhibition, HeLa cells were released from 

monastrol into MG132 with or without AZ3146, then fixed and stained to allow 

classification of the mitotic population.  Cells were also released into ZM447439 and 

MG132 to provide examples of the phenotype induced by direct Aurora B inhibition. 

Ninety minutes after monastrol removal, the majority of control cells had formed a bipolar 

spindle and a fully aligned metaphase plate (65.1%; Figure 6.2A, B).  By contrast, 96.9% 

of cells released into ZM447439 were still in prometaphase with many misaligned 

chromosomes spread along the spindle.  Strikingly, AZ3146-treated cells also rarely 

achieved alignment: 85.9% of mitotic cells remained in prometaphase, sometimes with 

numerous unaligned chromosomes in the polar region (e.g. Figure 6.2A, ‘AZ major’) and 

sometimes with just a few unaligned chromosomes (e.g. ‘AZ minor’).  Thus, though 2 µM 

AZ3146 does not elicit an alignment defect in cells treated with MG132 alone (Figure 6.1), 

this level of Mps1 inhibition does lead to an alignment defect in the presence of an 

artificially high number of incorrect attachments.  There are several possible explanations 

for the emergence of the alignment defect following monastrol treatment.  Perhaps residual 

Mps1 activity in cells treated with 2 µM AZ3146 is enough to ensure alignment of any 
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erroneous attachments in an unperturbed metaphase, though insufficient to support full 

mitotic checkpoint function (Figure 6.1).  It is also possible that in the cells I used, during a 

normal prometaphase where the spindle poles are allowed to move apart normally, so few 

erroneous attachments actually occur that Mps1 activity may not be required at all.  Arrest 

with a monopolar spindle may be required to increase the number of mono-oriented 

chromosomes in order for the defect to become visible.  Whatever the explanation, it is 

clear that AZ3146-mediated Mps1 inhibition does indeed compromise the alignment 

process, as previously reported (Jelluma et al., 2008b; Sliedrecht et al., 2010). 

6.3 | Aurora B activity remains high after Mps1 inhibition 

The alignment defect exhibited after loss of Mps1 activity was previously explained 

by decreased Aurora B activity (Jelluma et al., 2008b; Sliedrecht et al., 2010).  With this in 

mind, I set out to see if I could detect Aurora B inhibition in AZ3146-treated cells.  My 

first strategy was to treat nocodazole-arrested HeLa cells with AZ3146 or ZM447439, 

along with MG132 to prevent mitotic exit, then harvest cells and probe the lysates with 

phospho-specific antibodies against markers of global Aurora B activity, namely the 

autoactivation site Thr232 (Yasui et al., 2004) and the endogenous Aurora B substrate 

Ser10 of Histone H3 (Fischle et al., 2005; Hirota et al., 2005).  To look at phospho-Thr232, 

I used a phospho-antibody with reactivity against the phosphorylated autoactivation 

residue of Aurora A, B and C.  In control lysates, the antibodies recognised bands at the 

expected sizes for both phospho-Thr232 Aurora B and phospho-Ser10 Histone H3 (Figure 

6.3A).  Direct inhibition of Aurora B with ZM447439 abolished the phospho-T232 signal, 

and significantly reduced the phospho-Ser10 Histone H3 signal.  However, AZ3146 did 

not noticeably affect the signal from either phospho-antibody, even at the highest 

concentration tested (10 µM).  Although this data not absolutely conclusive, Figure 6.3A 

suggests that under these conditions, Mps1 inhibition does not significantly affect Aurora 

B autoactivation or Ser10 Histone H3 phosphorylation in cells.  

To extend my analysis of Aurora B activity in cells with inhibited Mps1, I turned to 

an immunofluorescence-based approach, which allowed me to look specifically at mitotic 

cells in an asynchronous population.  Again, I used reactivity of an antibody against 

phosphorylated Histone H3 as a read-out of Aurora B activity in asynchronous HeLa cells 

treated with either only ZM447439 or AZ3146.  As expected, prometaphase cells stained 

brightly for phospho-Histone H3 around the condensed chromatin (Figure 6.3B); 

ZM447439 effectively abolished this staining.  By contrast, prometaphase cells treated 

with AZ3146 still had high levels of phospho-Histone H3 staining, suggestive of 

comparatively high levels of Aurora B activity.  I also looked at the localisation of the 
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microtubule-depolymerising kinesin MCAK in the centromere/kinetochore region as a 

read-out for Aurora B activity in prometaphase cells (Andrews et al., 2004; Lan et al., 

2004): as shown in Figure 6.3C, while centromeric MCAK staining was much reduced 

after ZM447439 treatment, AZ3146 had no discernable effect, implying the cells had 

sufficient Aurora B activity to support recruitment of the kinesin.   

Although the western blot shown in Figure 6.3A did not show a global decrease in 

phospho-Thr232 Aurora B signal following AZ3146 treatment, it could be argued that the 

western blot analysis might lack the sensitivity to detect changes in Aurora B activation at 

the centromere.  To address this, I used the Aurora autoactivation residue phospho-

antibody described above to stain fixed HeLa cells for immunofluorescence.  This antibody 

detects phospho-Thr232 Aurora B at the centromere, as well as the active forms of the 

other Aurora family members.  Cells were arrested in prometaphase, either with normal 

microtubule dynamics but erroneous, unstable kinetochore-microtubule attachments 

(monastrol) or with depolymerised microtubules and unattached kinetochores 

(nocodazole).  Levels of centromeric staining were assessed by eye as previously described 

(Chapter 5).  In both monastrol (Figure 6.3D) and nocodazole (Figure 6.3E), the majority 

of control cells exhibited high levels of staining in the centromeric region, reflecting the 

expected localisation of active, phospho-Thr232 Aurora B.  As predicted, most 

ZM447439-treated cells had low levels of centromeric staining in both monastrol and 

nocodazole, pointing to loss of phospho-Thr232 and inactivation of Aurora B.  By contrast, 

the majority of AZ3146-treated cells had high levels of centromeric phospho-Aurora 

staining, suggesting Aurora B was phosphorylated at Thr232 and therefore active.  It is 

worth noting that I cannot rule out the contribution of phospho-Thr198 on Aurora C to the 

centromeric staining pattern: while the lesser-studied Aurora family member is usually 

associated with male meiosis (e.g. Tang et al., 2006), it is also expressed in several human 

cancer cell lines derived from different tissues, including HeLa cells (Kimura et al., 1999) 

and is reported to localise to centromeres (Li et al., 2004; Sasai et al., 2004).  However, I 

saw little effect on the centromeric phospho-threonine pattern after AZ3146 treatment.  

I also carried out a similar analysis using another read-out of Aurora B activity at the 

centromere: phosphorylation of the Ser7 of the Histone H3 variant, Cenp-A (Zeitlin et al., 

2001).  In monastrol (Figure 6.3F) and nocodazole (Figure 6.3G), brightly stained 

kinetochores were evident in control cells; this staining largely disappeared on treatment 

with ZM447439, but was still present at high levels in cells treated with AZ3146.  In 

keeping with the data presented above, this suggests Aurora B is relatively active at 

centromeres when Mps1 is inhibited.   

117



 

Taken together, the data in Figure 6.3 suggest that, contrary to previous reports 

(Jelluma et al., 2008b; Kwiatkowski et al., 2010; Sliedrecht et al., 2010), Aurora B activity 

remains relatively high after Mps1 inhibition.  One possible explanation for this is that 

residual Mps1 activity in cells treated with 2 µM AZ3146 is enough to promote sufficient 

Borealin phosphorylation which, in turn, supports relatively normal levels of Aurora B 

catalytic activity towards the substrates I looked at.  However, phospho-Ser7 Cenp-A 

levels at kinetochores were still high in most nocodazole-treated HeLa cells at 

concentrations of AZ3146 up to 8 µM (Figure 6.3H), and phospho-Thr232 Aurora B levels 

by western blot remain high in nocodazole-treated cells at 10 µM AZ3146 (Figure 6.3A).  

While I have not been able to look directly at the phosphorylation of Borealin itself, and 

cannot rule out effects on specific Aurora B substrates that I have not examined, I have no 

evidence to suggest Aurora B’s kinase activity is decreased after Mps1 inhibition.  

6.4 | Aurora B inhibition affects Mps1 phosphorylation in cells and its 

kinetochore localisation 

To extend my investigations into the relationship between Mps1 and Aurora B, I 

used Phos-tag gels to look at the phosphorylation status of both kinases in nocodazole-

arrested mitotic HeLa cells following treatment with AZ3146 and ZM447439.  Both Mps1 

and Aurora B appeared as a ladder of multiple bands after immunoblotting of mitotic 

samples run on Phos-tag gel, likely representing differentially phosphorylated forms 

(Figure 6.4A).  As previously described in Chapter 3 (Figure 3.5), treatment of mitotic 

cells with the Mps1 inhibitor AZ3146 led to the loss of the slowest-mobility band on the 

Mps1 blot (compare lanes 2 and 3); most Mps1 migrates as a major, faster-mobility band 

in samples treated with AZ3146, which suggests a decrease in phosphorylation.  Similarly, 

treatment with the Aurora B inhibitor ZM447439 led to a marked decrease in intensity of 

the two slowest-mobility Aurora B bands (compare lanes 2 and 4), leaving the majority of 

protein as two faster-migrating bands, and suggesting the kinase becomes 

dephosphorylated following direct inhibition.  AZ3146 had little effect on the Aurora B 

banding pattern (lane 3), which agrees with data presented above (Figure 6.3A) and 

supports the notion that Aurora B activity remains high after Mps1 inhibition.   

Surprisingly, direct inhibition of Aurora B caused a clear loss of the uppermost Mps1 

band; this suggests Aurora B inhibition affects the phosphorylation of Mps1 in cells 

(Figure 6.4A, lane 4).  It is not possible to determine whether Aurora B itself influences 

Mps1 phosphorylation directly or indirectly from this data; however, it strongly suggests 

that Aurora B is positioned upstream from Mps1 in a mitotic signalling cascade.  

Furthermore, while Aurora B’s localisation in nocodazole-treated cells is unaffected by  
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Figure 6.4 Aurora B inhibition leads to a decrease in Mps1 phosphorylation and mislocalisation of
kinetochore-bound Mps1
(A) HeLa cells were treated with nocodazole for 12 hours. Mitotic cells were collected and replated into the
indicated drug combinations (plus MG132 to prevent mitotic exit) for 2 hours. Adherent cells left behind
after mitotic shake-off were harvested and constituted the interphase sample (lane 1). AZ3146 and
ZM447439 was used at 2 µM and DMSO was used in controls to account for the solvent. Harvested cells
were lysed directly in SDS-PAGE sample buffer and run on gels containing Phos-tag. Proteins were trans-
ferred to a PVDF membrane and probed with anti-Mps1 or anti-Aurora B antibodies. Several bands were
visible for both proteins in mitotic lysates. Bands decreased in mitotic samples following direct inhibition of
the respective kinases are marked by open arrowheads. Faster-migrating bands remaining after inhibition are
marked by closed arrowheads. Note than the slowest-migrating species on the Mps1 blot disappears after
inhibition of Aurora B with ZM447439, as well as after direct inhibition with AZ3146. Part of the anti-Mps1
blot was also presented in Figure 3.5.
(B) HeLa cells were treated with nocodazole, MG132 and DMSO (control) or 2 µM ZM447439 for 2 h, then
fixed and processed for IF using antibodies against the indicated proteins. Mps1 kinetochore staining levels
were assessed by eye in prometaphase-arrested cells; data is represented as a bar graph. Scale bar: 5 µm.

Contributions to part A of this figure:
Cells were treated with drugs and harvested by Anthony Tighe. Samples were run on Phos-tag gels and
immunoblotted by Laura Hewitt.
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Mps1 inhibition (see Figure 6.3B, also Jelluma et al., 2008b; Tighe et al., 2008), Mps1 

kinetochore staining is reduced when cells are treated with ZM447439 (Figure 6.4B): only 

12% of cells assessed had high levels Mps1 at kinetochores after ZM447439 treatment, 

compared to 86% of control cells.  This data implicates Aurora B activity in Mps1 

recruitment and/or maintenance at unattached kinetochores, possibly through a direct or 

indirect effect on its phosphorylation. 

Taken together, the data presented in this Chapter so far point to a model where 

Mps1 inhibition compromises chromosome alignment, as previously reported (Jelluma et 

al., 2008b), but I have seen no evidence that this is mediated via reduced Aurora B activity.  

It is not immediately clear why this discrepancy should exist, though other groups have 

recently published similar findings using different methods of Mps1 inhibition 

(Maciejowski et al., 2010; Santaguida et al., 2010).  With Aurora B inhibition not apparent, 

I sought alternative explanations for the alignment problem seen in Figure 6.2. 

6.5 | Mps1 inhibition reduces Cenp-E levels at unaligned chromosomes  

The alignment defect seen after monastrol wash-out (Figure 6.2) shared some 

characteristics with the defect seen after Cenp-E depletion (Kapoor et al., 2006; Weaver et 

al., 2003; Wood et al., 1997; Yao et al., 2000), and Mps1 activity has been shown to be 

required for maximal Cenp-E localisation in Xenopus egg extracts (Abrieu et al., 2001).  

This, along with the reduction in Cenp-E staining in AZ3146 and nocodazole-treated cells 

(Figure 5.1K), prompted me to investigate Cenp-E localisation in AZ3146-treated 

unaligned chromosomes.  To do this, I performed monastrol wash-outs as described earlier, 

and released cells into MG132 with or without 2 µM AZ3146 for 1 hour before fixation 

and staining to detect Cenp-E (Figure 6.5A).  Control cells still in the process of aligning 

their chromosomes had kinetochores with bright staining for Cenp-E; however, in AZ3146 

cells, despite the presence of numerous unaligned chromosomes, very little Cenp-E was 

apparent at kinetochores.  To compare levels in control and Mps1-inhibited cells, I 

quantified Cenp-E pixel intensities at unaligned kinetochores judged to be in the polar 

region of the spindle (see inset schematic in Figure 6.5B).  Strikingly, in AZ3146-treated 

cells, kinetochore Cenp-E levels fell dramatically, to an average 7% of control levels.  This 

decrease in Cenp-E is more drastic than that which I observed in nocodazole (Figure 

5.1K): this may, at least in part, be due to the presence of polymerised microtubules, which 

have been shown to facilitate loss of microtubule motors from kinetochores (Murata-Hori 

and Wang, 2002).  In support of this, I observed near-disappearance of Cenp-E at 

kinetochores in monastrol- and AZ3146-treated cells (Figure 6.5C).  Cenp-E could  
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Figure 6.5 Cenp-E is absent from unaligned chromosomes when Mps1 is inhibited
(A) HeLa cells were treated with monastrol for 4 hours, followed by wash-out and incubation with MG132
and DMSO (control) or 2 µM AZ3146 for 1 h. Cells were fixed and stained to detect DNA and with antibod-
ies against the proteins indicated. Representative examples of a control and AZ3146-treated cell are shown.
Images are maximum intensity projections of deconvolved z-section stacks. Enlargements of boxed polar
kinetochore pairs show absence of Cenp-E following AZ3146 treatment.
(B) Quantification of polar kinetochore Cenp-E levels in cells treated as in A. Polar kinetochores were
defined as those situated in the approximate equivalent of the shaded region on the schematic diagram.
Cenp-E pixel intensities at each kinetochore pair were quantified as a ratio to the ACA signal. The data
shown in the box-and-whiskers plot is combined from 3 independent experiments, in which a total of 23 con-
trol cells (315 kinetochores) and 23 AZ-treated cells (308 kinetochores) were analysed. Ratios were
normalised to the mean control value in each experiment. Whiskers represent the full range; boxes the
interquartile range, and the line shows the median. (***P < 0.0001, Mann-Whitney U-test.)
(C) HeLa cells were treated with monastrol, MG132 and DMSO (control) or 2 µM AZ3146 for 2 h, then
fixed and processed for IF using antibodies against the indicated proteins. Cenp-E kinetochore staining lev-
els were assessed by eye in monopolar cells; data is represented as a bar graph. Values of n refer to the num-
ber of cells counted. Scale bars: 5 µm.
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sometimes be seen decorating what appear to be microtubules instead (Figure 6.5C, lower 

panel).  Taken together, this implicates Mps1 activity in the promotion of proper Cenp-E 

localisation. 

Cenp-E binds kinetochores via a region within its carboxyl-terminus tail domain 

(Chan et al., 1998).  To investigate whether this interaction might be perturbed after Mps1 

inhibition, and so help to confirm the requirement for Mps1 activity in Cenp-E localisation, 

I used a DLD1 stable cell line expressing a GFP- and Myc-tagged ~122 kDa Cenp-E tail 

fusion protein which has been described previously (Gurden et al., 2010).  This tool 

allowed me visualise Cenp-E tail’s subcellular localisation directly via the GFP tag, and 

therefore potentially exclude the contribution of epitope masking following Mps1 

inhibition.  After fixation of the cells and visualisation of the GFP, I could clearly see 

Cenp-E tail at kinetochores in nocodazole-treated cells (Figure 6.6A).  Importantly, when 

AZ3146 was present, the GFP tagged protein was markedly decreased at kinetochores.  

When GFP-Cenp-E tail levels were assessed by eye, the vast majority of AZ3146-treated 

cells had either low or medium levels (70%), compared to only 12 % of control cells 

(Figure 6.6B).  This strongly suggests that Mps1 inhibition does indeed result in a loss of 

Cenp-E protein from unattached kinetochores.  Importantly, work carried out by my 

colleague Anthony Tighe shows that perturbation of Mps1 activity by replacement of the 

endogenous kinase with an inhibitable, ATP analogue-sensitive mutant also causes loss of 

Cenp-E at unaligned kinetochores (Hewitt et al., 2010).  This is consistent with Cenp-E 

loss being an on-target effect of AZ3146, and supports the existence of a link between 

Mps1 kinase activity and Cenp-E localisation in human cells.   

6.6 | Summary 

This chapter has focused on the role of Mps1 catalytic activity in chromosome 

alignment.  Using AZ3146, I have confirmed that inhibition of Mps1 leads to an alignment 

defect after enrichment for mono-oriented chromosomes using a monastrol wash-out 

protocol.  Previously, reduced Aurora B activity has been shown to be the cause of this 

defect; however, I was unable to detect any decrease in Aurora B activity levels in cells 

treated with AZ3146.  In fact, it appeared that Aurora B was upstream of Mps1, since 

direct inhibition of Aurora B affected both Mps1’s phosphorylation status and its 

kinetochore localisation.  Interestingly, as a possible alternative explanation for the 

alignment problem observed after Mps1 inhibition, I found that Cenp-E levels were 

drastically reduced at unaligned kinetochores when Mps1 was inhibited.  This might 

indicate either an indirect link between the two, or a direct phosphorylation event, as has 

been shown in vitro for Xenopus Cenp-E and Mps1  (Espeut et al., 2008).  Loss of  
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Figure 6.6 Exogenous Cenp-E tail is displaced from kinetochores when Mps1 is inhibited
(A) DLD1 cells expressing GFP-tagged Cenp-E tail were treated with nocodazole, MG132 and either
DMSO (control) or 2 µM AZ3146, then fixed and processed for immunofluorescence, staining to visualise
centromeres (ACA, blue). Cenp-E tail was detected directly via GFP fluorescence, and chromatin was
visualised by DsRed-histone H2B fluorescence. Representative examples of a control and AZ3146-treated
cell are shown. Images are maximum intensity projections of deconvolved z-section stacks. (B) In cells
treated as in A, Cenp-E tail levels at kinetochores were assessed by eye and the results depicted as bar
graphs; n values refer to the number of cells counted.
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Cenp-E from unaligned kinetochores may, at least in part, explain the inability of Mps1 

treated cells to achieve a fully aligned metaphase. 
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7 | Discussion 

The ultimate aim of this study was to investigate the role of Mps1 in mitotic 

checkpoint signalling and the process of chromosome alignment, two key aspects of 

mitotic control that contribute towards the fidelity of genome propagation.  To achieve 

this, I used the small molecule inhibitor AZ3146, a novel compound originally developed 

by AstraZeneca.  Initial characterisation of the compound gave me confidence that 

AZ3146 was a useful tool with which to dissect the role of Mps1’s kinase activity in cells: 

the compound appeared relatively selective and potent in in vitro assays, and affected the 

phosphorylation status of Mps1 in HeLa cells (Chapter 3).  Furthermore, the compound 

decreased the viability of cultured human cell lines, and perturbed the mitotic checkpoint 

(Chapter 4).  I turned to an immunofluorescence-based approach to assess the effect of 

Mps1 inhibition on various components of the kinetochore.  In agreement with previous 

studies, the localisation of the checkpoint effector molecule Mad2 was exquisitely 

sensitive to Mps1 inhibition (Chapter 5).  Interestingly, Mps1 abundance at unattached 

kinetochores markedly increased following AZ3146 treatment.  This novel finding implied 

that Mps1’s release from kinetochores might be regulated by its activity.  Additionally, 

kinase-dead Mps1 accumulated at kinetochores, but only after removal of endogenous 

Mps1 activity, suggesting inter-molecular interactions may regulate Mps1’s release from 

the kinetochore (Chapter 5).  Finally, I used AZ3146 to investigate the role of Mps1 kinase 

activity in chromosome alignment: an alignment defect was apparent, but in contrast to 

other studies (Jelluma et al., 2008b; Sliedrecht et al., 2010) I was unable to detect Aurora B 

inhibition (Chapter 6).  Mps1 inhibition also caused levels of the plus-end directed kinesin 

Cenp-E to decrease markedly at kinetochores of unaligned chromosomes, providing a 

novel possible alternative cause of the chromosome alignment defects in human cells. 

In this chapter, I will discuss: firstly, the merits of AZ3146 as a tool to investigate 

Mps1 function; secondly, my findings with respect to checkpoint regulation in human 

cells; thirdly, my observations pertaining to Mps1’s role in chromosome alignment and the 

link between Mps1 and Aurora B; fourthly, and lastly, data relating to Mps1 and cell 

viability.   

7.1 | AZ3146: a novel tool to probe Mps1 function 

In this study, I present AZ3146, a novel Mps1 inhibitor originally developed at 

AstraZeneca.  AZ3146 has proved a useful tool, and enabled me to make several novel 

observations relating to Mps1’s role in the regulation of mitosis (see above). Small 

molecule kinase inhibitors are desirable tools: they are a favourable alternative to RNAi-
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based strategies, since they avoid variability and technical challenges associated with these 

approaches, and offer exquisite temporal control over target inhibition.  Ideally, small 

molecule inhibitors should be both potent and selective, to enable complete inhibition of 

the target kinase and minimise the potential for confusing off-target effects in cells.  

AZ3146 is potent enough to be useful in cells: in vitro, the compound perturbed Mps1CAT 

dependent phosphorylation with an IC50 of ~35 nM (Figure 3.2), and elicited effects in 

cells consistent with Mps1 inhibition at 2 µM (Figures 3.5-5.1).  There may be some 

residual activity in cells treated with 2 µM AZ3146, as implied by the increase in the 

severity of the phenotype when cells were treated with higher molarities (see Figure 4.2 

and 5.2).  A reliable biomarker for Mps1 activity would facilitate accurate assessment of 

Mps1 activity levels.  

In vitro selectivity screens are commonly used to gain some insight into the ability of 

a compound to inhibit a wide range of kinases, and can help to predict selectivity in cells 

(Knight and Shokat, 2005; Smyth and Collins, 2009).  The Invitrogen SelectScreen™ data 

(Figure 3.4) indicated that 1 µM AZ3146 was capable of partially inhibiting several 

kinases out of a diverse panel of 50 in vitro: Fak, Kit, and the two JNK isoforms were 

inhibited by more that 40%, and several other kinases were inhibited by more than 20% 

(Figure 3.4). However, it was encouraging that none of the kinases tested in the panel were 

inhibited to the same degree as Mps1, which is almost completely inactive in the presence 

of 1 µM AZ3146 under my assay conditions (Figure 3.4).  To place this data in context, 

although some kinase inhibitors have been described with a higher degree of selectivity 

[e.g. the Plk inhibitors BI 2536 (Steegmaier et al., 2007) or Cyclapolin 9 (McInnes et al., 

2006) which have minimal activity against a kinase panel at 10 or 100 µM, and very 

potently inhibit Plks], AZ3146 can be considered a reasonably selective Mps1 inhibitor.  

While I cannot rule out AZ3146-mediated inhibition of kinases other than the fifty I 

included in my panel, the screen gave me confidence that the cellular phenotypes I 

observed were likely to be due to Mps1 inhibition. 

Further support for AZ3146’s validity as an Mps1 inhibitor comes from the 

observation that AZ3146-treated cells behaved similarly to cells in which endogenous 

Mps1 was replaced with an exogenous kinase-dead mutant form of the kinase (Jelluma et 

al., 2008b; Tighe et al., 2008) in several important respects.  As well as abrogating the 

mitotic checkpoint and leading to errors in chromosome segregation (see Chapter 4), 

AZ3146 led to the loss of anti-Mad2 staining at the kinetochore (Figure 5.1).  This has 

been observed following Mps1 inhibition in our laboratory and others (Jelluma et al., 

2008b; Tighe et al., 2008).  By comparing the results of AZ3146 treatment with Mps1 

RNAi followed by kinase-dead mutant add-back, I have also been able to support the idea 
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that the accumulation of Mps1 at kinetochores is an on-target effect (Figure 5.6).  

Additionally, my colleague A. Tighe has shown that Cenp-E loss at unaligned kinetochores 

is common to both AZ3146-treated cells and those in which analogue-sensitive Mps1 is 

inhibited using the ATP-analogue 1NM-PP1 (Hewitt et al., 2010), suggesting that this too 

is an on-target effect.   

Whilst these approaches have proved helpful, an AZ3146-resistant Mps1 mutant 

would aid confirmation that the effects in cells are caused by on-target Mps1 inhibition.  

Mutation of the Mps1 active site gatekeeper residue from methionine to glutamine 

(M602Q) imparts a degree of resistance to both SP600125 (Schmidt et al., 2005) and 

Mps1-IN-1 (Kwiatkowski et al., 2010); expression of the mutant kinase was shown to 

lessen the severity of some of the drug-induced effects.  However, expression of Mps1 

M602Q in HeLa cells did not lessen the severity of the mitotic defects caused by 2 µM 

AZ3146 treatment when cells were observed by timelapse microscopy (data not shown).  

Future efforts might include a search for an AZ3146-resistant mutant form of Mps1, 

perhaps by conducting a screen for resistance in hypermutagenic HCT116 cells (e.g. 

Girdler et al., 2008), or by a systematic mutation of residues in the active site, where the 

inhibitor is likely to bind (e.g. Scutt et al., 2009).  The crystal structure of the Mps1 kinase 

domain in complex with AZ3146 should be informative for the latter approach.   

Whilst further work could help to firmly establish the degree of inhibition in cells, 

and strengthen the case for selectivity, as it stands AZ3146 is an important part of the 

newly-expanded toolbox for investigation of Mps1’s role in cells.  Until very recently, only 

the relatively nonspecific compound SP600125 (Schmidt et al., 2005) was available for 

inhibition of endogenous Mps1 in human cells; now, AZ3146 (this study and Hewitt et al., 

2010), Reversine (Santaguida et al., 2010), and Mps-IN-1 (Kwiatkowski et al., 2010) have 

been introduced.  Reversine also directly inhibits Aurora B (D'Alise et al., 2008), albeit 

less potently than Mps1 (Santaguida et al., 2010).  This may have the potential to cause 

problems with the dissection of the two kinases’ roles.  AZ3146 and Mps1-IN-1 do not 

appear to target Aurora B (this study and Kwiatkowski et al., 2010).  The existence of 

several small molecule inhibitors targeting Mps1, as well as cell lines engineered to 

express ATP-analogue sensitive Mps1 alleles, (Maciejowski et al., 2010; Sliedrecht et al., 

2010) means data can be corroborated and off-target effects are more likely to be 

recognised as such.  However, this does not entirely preclude discrepancies between 

groups, such as those discussed in Section 7.8. 

Much of the data I present in this study has been built upon and extended by further 

work using AZ3146 in the Taylor laboratory.  Along with data presented in this thesis, 
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some of this work is published in the appended journal article (Hewitt et al., 2010).  

Discussion of data presented in this study will be followed by reference to, and discussion 

of, relevant data obtained by my colleague Anthony Tighe and published in Hewitt et al 

(2010).   

7.2 | Mps1 and checkpoint signalling 

Mps1 is an established member of the signalling network governing mitotic 

checkpoint activation (Abrieu et al., 2001; Stucke et al., 2002; Weiss and Winey, 1996).  

Recently published work has implicated Mps1 kinase activity in the establishment and 

maintenance of the mitotic checkpoint (Hewitt et al., 2010; Jelluma et al., 2008a; 

Kwiatkowski et al., 2010; Santaguida et al., 2010; Sliedrecht et al., 2010; Tighe et al., 

2008), and the data I presented in Chapter 4 is consistent with the notion that Mps1 activity 

is required for checkpoint function.  

The kinetochore has long been understood play a critical role in mitotic checkpoint 

signalling (Rieder et al., 1995).  Kinetochore protein recruitment is known to be crucial for 

the mitotic checkpoint to restrain anaphase in the presence of unaligned chromosomes 

(Meraldi et al., 2004).  However, evidence exists for a preformed APC/C inhibitor, which 

acts as a kinetochore independent ‘timer’, preventing anaphase onset in early mitosis, 

before kinetochores have reached maturity (Meraldi et al., 2004; Sudakin et al., 2001).  

Reports suggest cytosolic MCC-like complexes containing Cdc20, Mad2 and/or BubR1 

(Kulukian et al., 2009; Sudakin et al., 2001) exist in interphase and determine the 

minimum length of mitosis, independently of kinetochore-derived checkpoint signalling.  

Perturbing solely kinetochore-based checkpoint signalling (e.g. by depletion of Mad1) 

does not cause a significant shortening of an unperturbed mitosis comparative to controls; 

however, depletion of components of the proposed timer does drastically reduce mitotic 

timing (Meraldi et al., 2004).  Interestingly, Mps1 inhibition by via AZ3146 hastens 

mitotic exit in an unperturbed mitosis, in both HeLa and hTERT-RPE cells (Figure 4.6), 

consistent with a role in formation of the cytosolic timer.  This study has not examined this 

aspect of Mps1 function, but a recent publication has: Maciejowski and colleagues (2010) 

report that cells in which Mps1 is potently inhibited have reduced levels of cytosolic 

Cdc20-bound Mad2 and BubR1 in interphase and mitotic cell extracts, implicating Mps1 

activity in the creation of an APC/C inhibitory complex both outside and within mitosis.  

Furthermore, a mutant form of Mps1 lacking its kinetochore targeting region (Mps1ΔN) 

could restore formation of Cdc20-Mad2, mitotic timing, and partially rescue the mitotic 

checkpoint defect in response to nocodazole, though not the alignment defect caused by 

Mps1 inhibition (Maciejowski et al., 2010).  The apparent functionality of the 
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predominantly cytosolic Mps1ΔN mutant seems to contradict earlier work, which found the 

kinetochore localisation of Mps1 was important for spindle checkpoint function (Liu et al., 

2003; Zhao and Chen, 2006).  However, Mps1ΔN was only partially competent to restore 

checkpoint function when challenged with nocodazole, implying that active Mps1 at the 

kinetochore is necessary for sustained checkpoint signalling (Maciejowski et al., 2010).  It 

will be interesting to see if this new data implicating cytosolic Mps1 activity in mitotic 

timing can be replicated with other Mps1 inhibitors.   

7.2.1 | Mps1 regulates Mad1 and Mad2 levels at the kinetochore 

Although the newly-emerging cytosolic role of Mps1 may contribute to mitotic 

timing, evidence suggests the recruitment of the checkpoint effectors molecules Mad1 and 

Mad2 to unattached kinetochores is a critical step in the amplification and maintenance of 

the checkpoint signal (Musacchio and Salmon, 2007), and one that Mps1 has been 

proposed to regulate in human cells (Jelluma et al., 2008b; Liu et al., 2003; Martin-

Lluesma et al., 2002; Sliedrecht et al., 2010; Xu et al., 2009).  Previous work from our 

laboratory using an RNAi complementation approach had observed a difference between 

Mad1 and Mad2 localisation in terms of the requirement for Mps1 kinase activity: while 

Mad2 was exquisitely sensitive to loss of Mps1 activity, Mad1 localisation was only 

partially decreased (Tighe et al., 2008).  This implied that either Mps1’s role in Mad1 

recruitment was predominantly structural, or that a far lower level of enzymatic activity 

was necessary for Mad1 recruitment than for Mad2 recruitment.  In keeping with this, I 

saw a similar effect with AZ3146 treatment: with 2 µM AZ3146, most cells had low levels 

of Mad2 staining at kinetochores, whereas Mad1 levels were less severely affected (Figure 

5.1).  However, while both Mad1 and Mad2 are decreased after treatment with AZ3146, 

the apparent difference between Mad1 and Mad2 sensitivity to Mps1 inhibition is 

maintained even when higher molarities of AZ3146 are used in cells (Figure 5.2), 

indicating that the difference is unlikely to be solely attributable to residual Mps1 activity.  

The data I present in this study confirms a role for Mps1 kinase activity in both Mad1 and 

Mad2 kinetochore localisation, and points to a more critical role for Mps1 activity in Mad2 

recruitment.  The implications of this data, along with recent work extending the analysis 

of Mad1 and Mad2 recruitment after Mps1 inhibition, are discussed below. 

The apparent difference in requirement for Mps1 catalytic activity in Mad1 and 

Mad2 recruitment (Figure 5.1 and Hewitt et al., 2010) is at odds with data from other 

laboratories, where both Mad1 and Mad2 were lost from kinetochores following Mps1 

inhibition (Santaguida et al., 2010).  However, this difference might be explained by 

differences between assay designs, affecting the timing of Mps1 inhibition.  The 
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immunofluorescence-based assay I used to assess kinetochore protein localisation involved 

simultaneous treatment with AZ3146, nocodazole and MG132.  All cells undergo 

microtubule depolymerisation via nocodazole, and proteasome inhibition via MG132 

prevents cells from either leaving or entering mitosis.  As a result, a mixed population of 

mitotic cells, undistinguishable from one another, is created for analysis: some were 

already in prometaphase at the time of treatment, some were at metaphase with 

kinetochores stripped of Mad1/2 (DeLuca et al., 2003), and some were in early mitosis, 

prior to recruitment of checkpoint proteins to kinetochores.  The question arises: could the 

reason for the variability in Mad1 levels following AZ3146 treatment (Figure 5.1), which 

leads to the partial effect when staining levels are quantified (Hewitt et al., 2010), stem 

from differences between the sub-populations of mitotic cells?  Work carried out by A. 

Tighe and published in Hewitt et al (2010) suggests that this is indeed the case.  When 

cells were pre-treated with nocodazole to trigger recruitment of checkpoint protein to 

unattached kinetochores, then incubated with AZ3146 and MG132 to inhibit Mps1 and 

prevent mitotic entry/exit respectively, Mad1 levels remained high.  By contrast, when 

cells were treated first with MG132 to arrest cells at metaphase (with Mad1 gone from 

kinetochores), then with nocodazole to destroy the spindle, control cells re-recruited Mad1 

to newly unattached kinetochores, whereas Mps1-inhibited cells did not.  Thus, it appears 

that high levels of Mps1 activity are required to recruit (or re-recruit) Mad1 to unattached 

kinetochores, but Mps1 activity is less important for the maintenance of Mad1 at 

kinetochores at which it is already established.  Notably, Mad2 levels were always 

predominantly low when Mps1 was inhibited; implying sustained Mps1 activity is critical 

for both recruitment (via Mad1) and maintenance of Mad2 at unattached kinetochores. 

When this data is placed in the context of the currently favoured Mad2 template 

model (see Intro Figure 1.5 and De Antoni et al., 2005a; Musacchio and Salmon, 2007), 

further questions arise.  As discussed in detail in the Chapter 1, Mad2 is capable of 

forming two very different conformations, which can dimerise: an open conformation (O-

Mad2) and a closed conformation (C-Mad2).  At the unattached kinetochore, Mad1 and C-

Mad2 form a stable core complex consisting of Mad1 and C-Mad2, which then acts as a 

receptor for soluble O-Mad2, facilitating its conversion to C-Mad2 bound to Cdc20, and 

consequently APC/CCdc20 inhibition (De Antoni et al., 2005a; Fang et al., 1998; Luo et al., 

2004; Mapelli et al., 2007; Yang et al., 2008).  Importantly, the Mad1-C-Mad2 core 

complex is highly stable (Howell et al., 2004; Shah et al., 2004; Vink et al., 2006), and 

exists at the nuclear pore in interphase (Campbell et al., 2001; Shah et al., 2004), 

suggesting it might be recruited to the kinetochore pre-complexed.  Thus, biochemical and 

cell-based data implies that the interaction between Mad1 and C-Mad2 is an improbable 
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candidate for regulation by Mps1 activity.  Rather, it seemed more likely that the 

recruitment of O-Mad2 might be the step at which Mps1 acts.  So, why does the Mad2 

signal at kinetochores largely disappear after AZ3146 treatment, when Mad1 remains 

relatively high (this study and Hewitt et al., 2010)?  One possible explanation is that the 

antibody with which Mad2 was detected in these assays (SM2.2, Tighe et al., 2008) may 

only detect Mad2 in cells when it is in the open conformation.  C-Mad2 may either be 

masked in cells, or have no affinity for the antibody.  If this is indeed the case, C-Mad2 

might be present at the kinetochore when Mps1 is inhibited, but remain undetectable by 

immunofluorescence with SM2.2, reconciling the immunofluorescence data with current 

knowledge regarding the biochemical behaviour of the Mad1-Mad2 complex (see Figure 

7.1).  

Work carried out by A. Tighe and described in Hewitt et al (2010) has provided 

substantial data to support this hypothesis.  Using stable cell lines expressing Myc-tagged 

Mad2 fusion proteins, it was found that anti-Myc antibodies could readily detect Myc-

Mad2 at the nuclear envelope in interphase cells, in contrast to SM2.2.  This supports the 

notion that SM2.2 has low affinity for C-Mad2, the conformer present at the nuclear pore 

(Shah et al., 2004), and suggests the anti-Myc antibody recognises C-Mad2.  Both SM2.2 

and anti-Myc antibodies yielded a kinetochore staining pattern in mitotic cells; crucially, 

however, AZ3146 treatment only partially ablated the anti-Myc signal, while the SM2.2 

signal disappeared almost completely.  Thus, unlike SM2.2, the anti-Myc antibody 

recognises both conformers formed by the exogenous Myc-Mad2 pool:  the anti-Myc 

kinetochore signal decreases as Myc-O-Mad2 is absent, but Mad1-bound Myc-C-Mad2 

remains at readily detectable, relatively high levels (Hewitt et al., 2010).   

The hypothesis was further confirmed by examining the kinetochore localisation of 

two Myc-Mad2 mutants initially characterised by Mapelli et al (2007): Mad2ΔC, which 

cannot form the closed conformation or bind to Mad1, represents an ‘open only’ form of 

Mad2; and Mad2RQ, which cannot dimerise, only binds kinetochores via Mad1, therefore 

only adopts the closed conformation (Mapelli et al., 2007).  As predicted, AZ3146 

treatment severely compromised Myc-Mad2ΔC kinetochore localisation, decreasing it to 

levels comparable to that seen when SM2.2 was used.  Conversely, Myc-Mad2RQ showed 

only a slight decrease after AZ3146 treatment (Hewitt et al., 2010).  Taken together, this 

data indicates that C-Mad2, presumably as part of the core complex with Mad1, is not 

severely affected by AZ3146-mediated Mps1 inhibition (unless Mps1 is inhibited prior to 

mitotic entry); however, O-Mad2 is exquisitely sensitive to Mps1 inhibition, and requires 

sustained Mps1 activity to both recruit and maintain it at unattached kinetochores.  
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Figure 7.1 Schematic describing the role of Mps1 in Mad1 and Mad2 recruitment at the kinetochore
(A) Mps1 activity recruits and maintains the stable Mad1-C-Mad2 core complex and O-Mad2 at unattached
kinetochores during mitosis. O-Mad2 at the kinetochore is recognised by the anti-Mad2 antibody SM2.2
(Hewitt et al, 2010), which I used in this study (Figure 5.3).
(B) Mps1 activity is required to recruit Mad1-C-Mad2 to unattached kinetochores in early mitosis. This can
be inferred from data showing that when unattached kinetochores are created in cells where Mad1 and Mad2
have been stripped from kinetochores, Mps1 inhibition via AZ3146 prevents re-recruitment of the proteins to
unattached kinetochores (Hewitt et al, 2010). When Mad1-C-Mad2 cannot be recruited, O-Mad2 cannot
dimerise at the kinetochore, and the SM2.2 does not stain kinetochores.
(C) Mps1 activity is required to maintain O-Mad2 levels at unattached kinetochores during mitosis. When
cells are arrested with nocodazole to induce Mad1 and Mad2 recruitment to unattached kinetochores, then
treated with AZ3146 to inhibit Mps1, Mad1-C-Mad2 levels remain relatively high, whereas O-Mad2 levels
(and consequently SM2.2 kinetochore staining) are very low (Hewitt et al, 2010). The specificity of SM2.2
for O-Mad2 in cells explains the low levels of SM2.2 staining compared to Mad1 staining, and the difference
in effect of Mps1 inhibition depending on the point of inhibition contributes to the variability in Mad1 levels
in the mixed mitotic population analysed in Figure 5.3.
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7.2.2 | Mps1 appears to have an indirect role in Mad1-Mad2 core complex 

recruitment 

The data discussed above, along with work from other groups highlighting the 

importance of Mps1 kinase activity in recruiting Mad1 and Mad2 to kinetochores (Jelluma 

et al., 2008b; Kwiatkowski et al., 2010; Liu et al., 2003; Maciejowski et al., 2010; Martin-

Lluesma et al., 2002; Santaguida et al., 2010; Sliedrecht et al., 2010; Tighe et al., 2008; Xu 

et al., 2009), provides a mechanistic explanation for the spindle checkpoint malfunction in 

Mps1-inhibited cells.  How exactly Mps1 might promote initial recruitment of the Mad1-

C-Mad2 core complex to the kinetochore in prometaphase is unknown; notably, however, 

data in this study (Figure 5.1) and concurrently from others (Maciejowski et al., 2010; 

Santaguida et al., 2010) indicated that kinetochore levels of the RZZ complex, which is 

necessary for full Mad1 recruitment (Buffin et al., 2005; Kops et al., 2005), are also 

lowered following Mps1 inhibition.  Therefore, Mps1’s role in Mad1 recruitment might be 

indirect, perhaps by mediating the interaction between RZZ and Zwint: along with other 

members of the outer kinetochore KMN network, Zwint remains at kinetochores following 

Mps1 inhibition (this study, Figure 5.1 and Santaguida et al., 2010).  The kinetochore 

binding sites for the RZZ complex are not fully understood (Civril et al., 2010), and further 

understanding of specific requirements for kinetochore assembly could help clarify any 

role for Mps1. 

7.2.3 | Regulation of Mad2 dimerisation – the “cap” hypothesis 

As well as it’s role in initial recruitment of the core Mad1-C-Mad2 complex to 

kinetochores, likely via mediation of RZZ localisation, Mps1 kinase activity seems to be 

important in both the recruitment and subsequent maintenance of soluble O-Mad2 levels at 

the kinetochore (Hewitt et al., 2010).  How O-Mad2 recruitment is promoted remains a key 

question.  The fact that the dynamics of Mad1-Mad2 binding can be recreated in vitro 

(Vink et al., 2006) suggests that promotion of Mad2 dimerisation in cells likely involves 

removal of some inhibitory element that is not present in the in vitro experiments.  

Structural and biochemical data have led to the hypothesis that p31comet acts as a kind of 

“cap” on the core complex, inactivating the checkpoint (Mapelli et al., 2006; Vink et al., 

2006; Yang et al., 2007a).  It is hypothesised that some factor(s) at kinetochores might 

regulate p31comet, perhaps via post-translational modification, to allow Mad2 dimerisation 

and checkpoint signalling when unattached kinetochores are present.  The subsequent 

reactivation of p31comet might contribute to the cessation of checkpoint signalling when all 

chromosomes have aligned (Musacchio and Salmon, 2007).  Mps1 is a candidate p31comet 
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regulator: conceivably, its sustained activity could prevent association of p31comet with C-

Mad2, allowing Mad2 dimerisation.  Currently, this remains speculation, but work is 

underway to elucidate the mechanism by which p31comet regulates the checkpoint.   

A striking novel observation described in this study suggests a possible alternative 

mechanism controlling O-Mad2’s association with C-Mad2.  When Mps1 activity was 

decreased in nocodazole-arrested cells, either by inhibition of Mps1 with AZ3146 or by 

expressing a kinase-dead mutant and depleting the endogenous kinase by RNAi, Mps1 

increases in abundance at the kinetochores (Figure 5.3-5.6).  As FRAP-based experiments 

have shown, Mps1 is not a stable resident at unattached kinetochores: it cycles with an 

apparent half-life of recovery of 13 seconds (Howell et al., 2004).  Therefore, the increased 

levels of Mps1 at kinetochores I observed by immunofluorescence might reflect a decrease 

in the rate at which Mps1 cycles on and off the kinetochore. In the future, FRAP 

experiments might prove useful to determine whether or not Mps1’s residency at 

kinetochores is extended after inhibition of its kinase activity. 

One important implication of this data is that Mps1 activity might regulate its own 

kinetochore localisation, and that this may relate to checkpoint signalling.  Since Mps1 

activity levels peak as cells enter mitosis (Liu et al., 2003; Stucke et al., 2002), it is 

plausible that Mps1 itself might act as the inhibitory cap on the Mad1-C-Mad2 core 

complex: its activation on mitotic entry could trigger its release from kinetochores, 

enabling Mad2 dimerisation and activating checkpoint signalling (see schematic diagram 

in Figure 7.2).  Following checkpoint satisfaction, Mps1 levels at kinetochores decrease 

(Howell et al., 2004; Liu et al., 2003; Stucke et al., 2002), as do levels of Mad1 and Mad2 

at kinetochores due to Dynein-dependent stripping (Howell et al., 2001).  Perhaps Mps1 

reprises its role as a cap on the core complex as the proteins are stripped from aligned 

kinetochores, as has been suggested for p31comet (Musacchio and Salmon, 2007).  There is 

currently a lack of biochemical data to support the Mps1 cap hypothesis: no physical 

interactions between Mps1 and members of the core complex have been reported.  Indeed, 

none were detected in immunoprecipitations performed in this laboratory (A. Tighe, 

unpublished results).  Nevertheless, it is possible that such interactions may exist despite 

these negative results, since they may be relatively weak and difficult to detect by 

immunoprecipitation.   

7.2.4 | Mps1 molecules interact with each other in cells 

The increase in Mps1 levels at kinetochores also pointed to important aspects of 

Mps1 regulation.  Specifically, the fact that the exogenous kinase-dead GFP-Mps1 levels 

did not increase significantly relative to wild-type levels at kinetochores, unless 
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endogenous activity was removed by RNAi (Figure 5.6), or ablated by AZ3146 treatment 

(Figure 5.5), was intriguing.  The inactive transgene was apparently prevented from 

accumulating when active, endogenous Mps1 was present, which hinted at some 

interaction between the two pools of Mps1 in the cell.  Evidence from several laboratories 

implies that Mps1 molecules do indeed interact with each other: the kinase is capable of 

trans-molecular autophosphorylation, and this autophosphorylation is required for full 

kinase activity (Jelluma et al., 2008a; Kang et al., 2007; Mattison et al., 2007; Tyler et al., 

2009).  Artificially induced dimerisation leads to hyperactivity of immunoprecipitated 

Mps1 (Kang et al., 2007).  A hypothesis presents itself based on these findings: perhaps 

Mps1 functions as a dimer, which comes together at the kinetochore, trans-

autophosphorylates, activates and also triggers its own release from kinetochores.  One 

might therefore predict that dimers in which both Mps1 molecules are inactive fail to trans-

autophosphorylate and are retained at the kinetochore.  

Work published in Hewitt et al (2010) supports this hypothesis.  Importantly, my 

colleague A. Tighe found the first evidence of Mps1 dimers in mitotic cells, observing an 

interaction between immunoprecipitated Myc- and GFP-tagged Mps1.  If at least one of 

the members of the immunoprecipitated dimer was active, wild type Mps1, the 

immunoprecipitated kinase appeared to be phosphorylated, as measured by band-shift on 

an SDS-PAGE gel.  However, when both members of the dimer were inactive kinase dead 

mutants, this apparent phosphorylation was markedly reduced.  This work supports Mps1 

dimerisation and trans-phosphorylation in cells, but the significance of these findings with 

regard to regulation of Mps1 kinetochore localisation is as yet unknown.  The identity of 

the Mps1 target phosphorylation site(s), whether autophosphorylation or otherwise, will be 

important in helping to understand the regulation of its localisation.   

7.3 | Mps1 and chromosome alignment 

As detailed in Chapter 1, Mps1 has a dual role in mitosis, regulating the mitotic 

checkpoint via Mad1/Mad2, and also facilitating chromosome alignment (Jelluma et al., 

2008b; Maciejowski et al., 2010; Santaguida et al., 2010; Sliedrecht et al., 2010).  In 

agreement with this, AZ3146-treated cells failed to reach metaphase after removal of 

monastrol (Figure 6.2).  However, in contrast to some previous reports (Jelluma et al., 

2008b; Kwiatkowski et al., 2010; Sliedrecht et al., 2010), I did not see any evidence of 

Aurora B inhibition in Mps1 inhibited cells (Figure 6.3; discussed below), but I did see a 

significant decrease in Cenp-E levels at kinetochores in both nocodazole- and monastrol-

treated cells, and at unaligned chromosomes after monastrol wash-out.  Previous reports 

indicate Cenp-E is relatively unaffected after RNAi of Mps1 (Jelluma et al., 2008b; Tighe 

136



 

et al., 2008), raising the possibility that Cenp-E loss after AZ3146 treatment may be caused 

by Mps1 accumulation at the kinetochore.  Cenp-E and Mps1 may occupy mutually 

exclusive binding sites at kinetochores, meaning Cenp-E can localise via its tail domain 

relatively normally when Mps1 is active and rapidly cycling, but is prevented from binding 

when inactive Mps1 does not auto-release from kinetochores (see Figure 7.2). 

The above hypothesis is speculative, but if true, suggests that Mps1’s role in Cenp-E 

recruitment is not through direct protein-protein interaction.  However, evidence does exist 

to support a direct substrate-kinase interaction between Xenopus Mps1 and the Cenp-E tail 

domain, at least in vitro (Espeut et al., 2008).  In this system, Mps1 phosphorylation of the 

Cenp-E tail is proposed to relieve autoinhibition of the kinesin, thereby presumably 

activating it at the kinetochore (Espeut et al., 2008).  Cdk1 is also known to phosphorylate 

the Cenp-E tail domain (Espeut et al., 2008; Liao et al., 1994), and out of the 4 mitotic 

phospho-sites identified in the Cenp-E tail by phosphoprotemic methods (Dephoure et al., 

2008; Nousiainen et al., 2006), 2 match the consensus site for proline-directed kinases 

(Cdk1 or MAPKs).  The fact that 2 of these sites are not in proline-directed motifs suggests 

Cenp-E’s kinetochore localisation domain is phosphorylated by other kinase(s) in mitotic 

human cells: Mps1 is a possible candidate.  However, to date there is no evidence that 

Mps1 phosphorylates Cenp-E in cells.  Preliminary data I obtained from mass spectrometry 

on Cenp-E tail from mitotic cells identified one of these non-Cdk1 sites (S2651 in the full-

length protein), and saw no change in its phosphorylation level after AZ3146 treatment, 

though the level of phosphorylation at a Cdk1 consensus site (S2654) was increased 

slightly (data not shown).  This preliminary data requires both repetition and consolidation 

before any conclusions can be confidently drawn from it, however it is tempting to 

speculate that the increase in phosphorylation at S2654 might be a consequence of Cenp-E 

tail’s mislocalisation from kinetochores into the cytoplasm where Cdk1 has access to the 

substrate.  Further analysis of Cenp-E phosphorylation in both Mps1-inhibited and Cdk1-

inhibited cells will be required to determine whether or not this holds true. 

Whether or not it is regulated by phosphorylation, Cenp-E’s disappearance from 

kinetochores may at least partly explain the problems with alignment in Mps1 inhibitor-

treated cells.  Notably, Mps1 activity is a requirement for efficient Cenp-E recruitment to 

kinetochores in X. laevis egg extracts (Abrieu et al., 2001), and my observations have 

recently been corroborated in hTERT-RPE cells expressing analogue-sensitive Mps1as 

(Maciejowski et al., 2010).  Lack of Cenp-E at kinetochores would prevent chromosomes 

from congressing from the poles toward the metaphase plate.  It is likely, however, that 

Mps1-deficient cells might have multiple problems with the mechanism of alignment.  

Kinetochores in AZ3146-treated cells also have lowered levels of Cenp-F (Figure 5.1), 
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which, in addition to binding Cenp-E (Chan et al., 1998; Johnson et al., 2004; Yang et al., 

2005; Yao et al., 2000), has also been linked to Dynein-dynactin recruitment via Nde1 

(Vergnolle and Taylor, 2007).  This may mean AZ3146-treated cells have a reduced ability 

to move chromosomes polewards prior to biorientation, a process that is thought to 

contribute to the efficiency of alignment (Yang et al., 2007b).  More detailed analysis of 

AZ3146-treated cells could shed light on the contributions of these proteins to the 

alignment defect. 

7.3.1 | Mps1 and Aurora B – who regulates whom? 

As previously mentioned, Mps1 has previously been placed upstream of Aurora B in 

a signalling network controlling the correction of erroneous kinetochore-microtubule 

attachments, thereby facilitating alignment (Jelluma et al., 2008b; Sliedrecht et al., 2010).  

In the process of conducting this study, I found no evidence that Aurora B activity is 

diminished in cells treated with an Mps1 inhibitor (Figure 6.3).  On the contrary, both 

Mps1’s phosphorylation status and its kinetochore localisation were affected by treatment 

with the Aurora B inhibitor ZM447439, positioning Aurora B upstream of Mps1 (Figure 

6.4).  It remains to be determined whether Mps1 is a direct substrate for Aurora B, or 

whether the decrease in phosphorylation is linked to the lowered kinetochore levels of 

Mps1.  This, in turn, might reflect an increase in the rate of cycling Mps1, or a lower level 

of Mps1 cycling normally: FRAP experiments would be necessary to distinguish between 

these two possibilities.    

The apparent lack of Aurora B inhibition after AZ3146 treatment was surprising in 

light of previous publications (Jelluma et al., 2008b; Kwiatkowski et al., 2010; Sliedrecht 

et al., 2010).  However, concurrent with the publication of our report (Hewitt et al., 2010), 

two other laboratories published similar findings, arrived at by different means: Santaguida 

and colleagues (2010) used another small molecule, Reversine; Maciejowski et al (2010) 

used targeted gene deletion followed by replacement with bulky purine analogue-sensitive 

Mps1as.  Both reports show that potent Mps1 inhibition had no appreciable effect on 

Aurora B activation levels, meaning the lack of Aurora B inhibition I observed is unlikely 

to be due to be solely attributable to residual Mps1 activity.  The contrasting conclusions 

concerning who regulates whom might point to a non-linear signalling network involving 

the kinases, maybe involving cross-talk between the two.  But why would different labs 

produce such divergent results?  The answer is currently unclear, but one possibility is that 

differences between cells lines may be important.  Aurora B appears to be regulated by 

Mps1 in U2OS and HCT116-derived cell lines (Sliedrecht et al., 2010), but not in HeLa 

cells (Hewitt et al., 2010, and this study; Santaguida et al., 2010) or in untransformed 
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hTERT-RPE cells (Maciejowski et al., 2010).  This suggests the differences are not simply 

due to use of transformed versus untransformed cell lines.  However, it is still conceivable 

that other differences between cell lines might explain these results.  Perhaps Aurora B 

activity is regulated in RPE and HeLa cells by Mps1-independent mechanism(s) that are 

non-functional in U2OS and HCT116 cells.  Another possible explanation is that 

expression, or regulation of Aurora C, the third, lesser-studied member of the Aurora 

family, might differ between cells lines, potentially masking Aurora B inhibition in Mps1 

treated cells.  Aurora C might be able to compensate for loss of Aurora B activity in Mps1-

inhibited cells (Li et al., 2004; Sasai et al., 2004; Slattery et al., 2008), meaning Aurora B 

appears active, but is not.  Aurora C expression has been reported in an untransformed 

human fibroblast cell line (WI-38 cells), plus several cancer cell lines including both HeLa 

and HCT116 cells (Sasai et al., 2004), suggesting the explanation may not be as simple as 

presence or absence of the kinase.  The situation is further complicated by the fact that, 

like Aurora B, Aurora C can also form a complex with the apparent Mps1 substrate 

Borealin, along with other members of the CPC (Li et al., 2004; Slattery et al., 2008), but it 

is not known whether these complexes are regulated identically, or whether Aurora C only 

functions as part of the CPC.  This situation certainly warrants further exploration: it would 

be interesting to find out if Aurora C expression or activation levels might differ between 

cell lines, and whether these correlate with Aurora B activity levels following Mps1 

inhibition.  Whilst the relationship between Mps1 and Aurora B is far from completely 

understood, newly described tools for Mps1 inhibition, including AZ3146, should facilitate 

further investigation into the function of the two kinases in mitosis.  

7.4 | Mps1 inhibition and cell viability 

The discovery that inactivation of the mitotic checkpoint cause cell death due to 

catastrophic errors in segregation (Kops et al., 2004; Michel et al., 2004) gave rise to the 

idea that inhibition of the mitotic checkpoint could represent a useful anti-cancer strategy.  

However, evidence suggests that Mps1 inhibition kills both cancer cells lines and “normal” 

untransformed cell lines (Figure 4.1 and Kwiatkowski et al., 2010; Maciejowski et al., 

2010), making it less than ideal for therapeutic use, where drugs that are selective for 

tumour cells are desirable.  Another important caveat is that effective checkpoint inhibition 

might be difficult to achieve in vivo without a more potent drug than those currently 

available.   

Prior publications have shown that a low level of Mps1 activity (~10-40%) is 

sufficient to maintain viability of cultured cells (Janssen et al., 2009; Jelluma et al., 2008a; 

Maciejowski et al., 2010).  My data appears to conflict with this: colony formation assays 
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showed that treatment with 1 µM AZ3146, a concentration that does not cause significant 

aneuploidy after 24 hour treatment (as measured by the appearance of the DNA content 

profile of treated cells, Figure 4.2) significantly affected the long-term viability of HeLa, 

HCT116 and hTERT-RPE cells (Figure 4.1).  In the absence of a more detailed analysis of 

the level of inhibition caused by 1 µM AZ3146 in cells, and a more sensitive measurement 

of chromosome missegregations it may cause, it is difficult to compare my data with 

earlier publications. However, it has been shown that even relatively severe chromosome 

missegregations can take several doublings to cause widespread death in a population 

(Kops et al., 2004), so if 1 µM AZ3146 causes loss or gain of a few chromosomes with 

each division (which may not be visible by the relatively insensitive DNA content profiling 

I used in Figure 4.2) it seems reasonable that this may have a detrimental effect on cell 

survival over 9-10 days (Figure 4.1).  While the contribution of off-target effects to the 

decrease in viability in AZ3146-treated cells cannot be excluded, taking together my data 

and that from other laboratories, (Janssen et al., 2009; Jelluma et al., 2008a; Kwiatkowski 

et al., 2010; Maciejowski et al., 2010) it is clear that Mps1 activity is necessary for the 

survival of both transformed and untransformed cell lines.   

Although current data casts doubt upon its selectivity for cancer cell lines, AZ3146 

and other new Mps1 inhibitors will allow further evaluation of Mps1 targeting as an anti-

cancer strategy by assessing its effect in more tumour cell lines and in tumour models.  It 

has been suggested that Mps1’s dual role in chromosome alignment and checkpoint 

signalling can be exploited to selectively kill cancer cells: RNAi-based studies indicate that 

partial Mps1 depletion combined with a low, sub-lethal dose of Taxol leads to an increased 

rate of chromosome missegregation, providing selective toxicity towards cultured cancer 

cell lines (Janssen et al., 2009). The fact that partial depletion of Mps1 was enough to 

synergise with Taxol treatment in cancer cells is encouraging, since partial inhibition is 

likely to be easier to achieve in vivo than complete inhibition.  It remains to be seen 

whether AZ3146 or other Mps1 inhibitors will also have a selective synergy with Taxol, 

and more importantly whether this strategy of enhancing the rate of chromosome 

missegregation will prove selective for tumour cells in in vivo models.   

7.5 | Perspectives and future directions 

Mps1 activity has a dual role in the maintenance of genomic stability and cell 

viability: it is involved in both the mechanism of chromosome alignment and control of 

mitotic timing in human cells.  The dynamic nature of Mps1’s interaction with the 

kinetochore may prove critical in the regulation of both of these processes.  Further 

dissection of the relationship between Mps1 and Aurora B is a key challenge for the future: 
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it has become apparent that the two kinases are closely linked and converge upon some of 

the same substrates: for example, Ndc80 and BubR1 are targets of both kinases 

(Cheeseman et al., 2002; Ditchfield et al., 2003; Hauf et al., 2003; Huang et al., 2008; 

Kemmler et al., 2009).  Interestingly, a key Mps1 substrate appears to be Mps1 itself: a 

role for dimerisation and trans-autophosphorylation in regulation of Mps1 activity has 

emerged (Hewitt et al., 2010; Kang et al., 2007), and might also be involved in regulation 

of Mps1’s kinetochore localisation (see speculative model in Figure 7.2).  It seems likely 

that further Mps1 substrates remain to be discovered, and AZ3146, along with other Mps1 

inhibitors, should prove valuable in this endeavour and help to further understanding of the 

processes of mitotic checkpoint regulation and chromosome alignment. 
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Introduction
The Mps1 protein kinase plays an essential role in the spindle as-
sembly checkpoint (SAC; Weiss and Winey, 1996), an inhibitory 
network that restrains anaphase until all kinetochores are stably 
attached to spindle microtubules (Musacchio and Salmon, 2007). 
Recent efforts have revealed that its catalytic activity is required 
for SAC function and chromosome alignment (Jelluma et al., 
2008a,b; Tighe et al., 2008; Kwiatkowski et al., 2010; Sliedrecht 
et al., 2010; see Santaguida et al. in this issue). Exactly how Mps1 
does this is unclear; although its SAC function is linked to kineto-
chore recruitment of Mad1 and Mad2 (Martin-Lluesma et al., 
2002; Liu et al., 2003), Mps1 has also been implicated in aurora B  
regulation (Jelluma et al., 2008b), possibly explaining its role in 
chromosome alignment.

Previously, when we used an RNAi complementation  
assay to inhibit Mps1’s catalytic activity, Mad2 was largely un-
detectable at kinetochores (Tighe et al., 2008). However, Mad1 

recruitment was only partially affected, suggesting two possi-
bilities: either Mps1 recruits Mad1 via a noncatalytic role or 
only low level Mps1 activity is required for Mad1 recruitment. 
Either way, because Mad1 directly recruits Mad2 to the kineto-
chore (Chung and Chen, 2002), the simplest explanation was 
that Mps1 activity promotes the Mad1–Mad2 interaction.

This notion is at odds with current views of Mad2 function 
(Mapelli et al., 2007). The Mad2 template model posits that a Mad1 
dimer acts as the kinetochore receptor for Mad2, which can adopt 
two conformations, open (O-Mad2) and closed (C-Mad2). When 
Mad2 binds Mad1, it adopts the closed conformation, forming the 
Mad1–C-Mad2 core complex. Because Mad2 can dimerize, this 
core complex in turn recruits two O-Mad2 molecules. These are 
handed over to Cdc20, and in doing so, Mad2 closes, generating 
two Cdc20–C-Mad2 complexes. Because the Mad1–C-Mad2 
complex is very stable (Howell et al., 2004; Shah et al., 2004; Vink 
et al., 2006) and probably present in interphase where it binds the 

Mps1 is an essential component of the spindle 
assembly checkpoint. In this study, we describe 
a novel Mps1 inhibitor, AZ3146, and use it to 

probe the role of Mps1’s catalytic activity during mitosis. 
When Mps1 is inhibited before mitotic entry, subsequent 
recruitment of Mad1 and Mad2 to kinetochores is abol-
ished. However, if Mps1 is inhibited after mitotic entry, 
the Mad1–C-Mad2 core complex remains kinetochore 
bound, but O-Mad2 is not recruited to the core. Although 
inhibiting Mps1 also interferes with chromosome align-
ment, we see no obvious effect on aurora B activity.  

In contrast, kinetochore recruitment of centromere protein E  
(CENP-E), a kinesin-related motor protein, is severely 
impaired. Strikingly, inhibition of Mps1 significantly in-
creases its own abundance at kinetochores. Furthermore, 
we show that Mps1 can dimerize and transphosphory-
late in cells. We propose a model whereby Mps1 trans-
phosphorylation results in its release from kinetochores, 
thus facilitating recruitment of O-Mad2 and CENP-E and 
thereby simultaneously promoting checkpoint signaling 
and chromosome congression.
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inhibitor that was modified to enhance potency and selectiv-
ity, resulting in AZ3146 (Fig. 1 A). In in vitro kinase assays, 
AZ3146 inhibited human Mps1Cat with an IC50 (50% inhibi-
tory concentration) of 35 nM (Fig. 1, B and D). AZ3146 
also efficiently inhibited autophosphorylation of full-length 
Mps1 immunoprecipitated from human cells (Fig. 1 C). 
Screening a panel of 50 other kinases demonstrated minimal 
activity against 46 enzymes (Fig. 1 E). Only four kinases 
were inhibited by >40%, namely FAK, JNK1, JNK2, and 
KIT. Together, these data suggest that AZ3146 is a reasonably 
potent and selective Mps1 inhibitor. To measure the effect  
on Mps1 in cells, we used Phos tag gels to resolve phos-
phorylated isoforms (Kinoshita et al., 2006). When isolated 
from mitotic cells, Mps1 appeared as a major band and a  
minor, slower-migrating band (Fig. 1 F). Upon exposure to 
AZ3146, the minor band largely disappeared, demonstrating 
that it clearly inhibits phosphorylation of Mps1 in cells  
(Fig. 1 F and Fig. S1 B). Mitotic-specific phospho forms of 
aurora B and BubR1 were not affected by AZ3146 (Fig. S1 C),  
and AZ3146 did not inhibit Cdk1 or aurora B in mitotic cells 
(Fig. S1, A and D).

nuclear envelope (Campbell et al., 2001), it seems unlikely that 
Mps1 promotes binding of Mad2 to Mad1.

An alternative explanation comes from the fact that our ob-
servations were derived using an antibody against Mad2, called 
SM2.2 (Tighe et al., 2008). Because kinetochore-bound Mad2  
effectively represents two different species, we reasoned that the  
effect observed in Mps1-deficient cells was not necessarily caused 
by a complete inability to recruit Mad2, but may reflect an inability 
to detect it using SM2.2 either because the antibody is conforma-
tion specific (i.e., it cannot bind C-Mad2) or possibly because  
C-Mad2 is masked. If either possibility is true, an attractive hypoth-
esis emerges; if SM2.2 only detects O-Mad2 at kinetochores for 
whatever reason, perhaps Mps1 kinase activity is required to recruit  
O-Mad2 to the Mad1–C-Mad2 core complex. In this study, we test 
this hypothesis using a novel small molecule Mps1 inhibitor.

Results and discussion
AZ3146, a novel Mps1 inhibitor
To identify Mps1 inhibitors, we used a high throughput in vitro 
kinase assay to screen a compound collection, yielding an 

Figure 1. AZ3146, a novel Mps1 inhibitor. 
(A) AZ3146 (AZ) is shown. (B) In vitro kinase 
assay measuring the ability of Mps1Cat to  
phosphorylate myelin basic protein (MBP).  
(C) In vitro kinase assays measuring the activity 
of Mps1 immunoprecipitated from nocodazole-
arrested HeLa cells. (D) Dose–response curve 
showing inhibition of Mps1Cat by AZ3146.  
(E) Activity of AZ3146 against a kinase panel. 
(F) Phos tag immunoblot of Mps1 isolated from 
interphase cells or nocodazole-arrested cells 
treated with MG132 ± 2 µM AZ3146 for  
2 h. Arrowhead, major band; asterisk, minor 
band. Error bars indicate SEM derived from 
three experiments.
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Although AZ3146 had a dramatic effect on kinetochore localiza-
tion of Mad2, reducing its levels to 15%, its effect on Mad1 was 
less pronounced, with levels remaining at 60% (Fig. 2, C and D). 
These data are entirely consistent with our prior observations, 
namely a dramatic inhibition of Mad2 and a partial effect on 
Mad1 (Tighe et al., 2008). Thus, taking together the enzyme 
data, the SAC override phenotype, and the effect on Mad1 
and Mad2 localization, these data show that AZ3146 behaves as 
one would predict for an Mps1 inhibitor, strongly arguing that it 
is a useful tool for probing Mps1 function.

Mps1 plays two roles when recruiting 
Mad1 and Mad2 to kinetochores
We were puzzled why inhibiting Mps1 had a dramatic effect on 
kinetochore localization of Mad2 but only partially effected 
Mad1. Indeed, other studies suggest that Mps1 inhibition does 

AZ3146 overrides the spindle checkpoint
Cell cycle analysis showed that HeLa cells treated with no-
codazole and 2 µM AZ3146 only delayed mitosis briefly and 
then rereplicated their genomes (Fig. S2, A–C), demonstrating 
that the drug overrides the SAC. AZ3146 also silenced an al-
ready established SAC signal; after release from a nocodazole 
block, AZ3146 dramatically accelerated mitotic exit (Fig. S2 D). 
This was blocked by MG132, a proteasome inhibitor (Fig. S2 E), 
ruling out direct inhibition of Cdk1 activity. Time-lapse analysis 
of HeLa cells expressing a GFP-tagged histone showed that  
during an otherwise unperturbed mitosis, AZ3146 reduced the 
time to complete mitosis from 90 min in controls to 32 min  
(Fig. 2 A). Strikingly, 90% of AZ3146-treated cells underwent 
abnormal mitoses; although 50% entered anaphase without  
aligning all of their chromosomes, 30% exited mitosis with-
out undergoing obvious chromosome segregation (Fig. 2 B).  

Figure 2. AZ3146 compromises SAC function 
and inhibits Mad2 localization. (A) Box and 
whisker plot of HeLa GFP-H2B cells treated 
with or without AZ3146 (AZ) and analyzed 
by time-lapse microscopy, showing the time 
from nuclear envelope breakdown to chromo-
some decondensation. Values were derived 
from ≥75 cells. (B) Bar graph quantifying mi-
totic phenotypes. Values were derived from 
≥115 cells. (C) Images of HeLa cells treated 
with nocodazole and MG132 for 2 h with or 
without AZ3146, fixed, and stained to detect 
centromeres (ACA) and either Bub1, Mad1, 
or Mad2. Insets show higher magnification 
views of individual kinetochore pairs (boxed 
regions). (D) Bar graph quantifying pixel in-
tensities at kinetochores normalized to ACA 
in mitotic HeLa cells treated with or without 
AZ3146. Values were derived from ≥228 
kinetochores. (E) Bar graphs scoring kineto-
chore staining of Mad1/2 as high, medium, 
or low after exposure to nocodazole (Noc) or 
MG132 (MG) plus either AZ3146 or reversine 
(Rev). Data were derived from a two experi-
ments in which at least 50 cells were counted 
per condition. (F) Images of HeLa cells stained 
to detect Zwilch and centromeres after expo-
sure to nocodazole, reversine, and MG132 in 
the sequences indicated. AZ3146 was used at 
2 µM and reversine at 500 nM. Ctrl, control. 
Error bars indicate SEM. Bars: (C and F) 5 µm; 
(C, insets) 0.5 µm.
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data showing that the Mad1–C-Mad2 interaction is very stable 
(Howell et al., 2004; Shah et al., 2004; Vink et al., 2006).  
Because a key step in checkpoint activation is recruitment of  
O-Mad2 to kinetochore-bound Mad1–C-Mad2 (Musacchio 
and Salmon, 2007), we hypothesized that perhaps Mps1 activ-
ity is required to recruit O-Mad2 to Mad1–C-Mad2 complexes 
already at kinetochores. In that case, upon Mps1 inhibition,  
kinetochore-bound Mad2 should only fall to 50% (Fig. 3 A), 
yet AZ3146 abolishes Mad2 localization (Fig. 2, C–E). There-
fore, we speculated that the Mad2 antibody SM2.2 does not ef-
ficiently detect C-Mad2 at the kinetochore either because the 
antibody cannot bind C-Mad2 or because the relevant epitopes 
are masked.

To test this, we generated cells expressing Myc-tagged 
Mad2 (Fig. 3 B and Fig. S3 B), reasoning that anti-Myc antibodies 
might detect it regardless of conformation or cellular context.  
Interestingly, Mad1 and Mad2 localize to the nuclear envelope in 
interphase (Campbell et al., 2001; Shah et al., 2004), and although 
we could readily detect Mad2 there using anti-Myc antibodies, 
SM2.2 did not decorate the envelope (Fig. 3 C), suggesting that it 
does not recognize C-Mad2 when bound to Mad1. In mitosis, 
both anti-Myc antibodies and SM2.2 decorated kinetochores 
(Fig. 3 D). Significantly, although AZ3146 reduced SM2.2 signal 
to background levels, anti-Myc antibodies still gave obvious  
kinetochore staining (Fig. 3, D and E). Importantly, however, quan-
titation showed that anti-Myc staining was reduced to 45 ± 5%  
(Fig. 3 E), i.e., approaching the 50% value predicted by  
our hypothesis.

To test the hypothesis further, we analyzed two Mad2 mu-
tants. Mad2C cannot adopt the closed conformation (Mapelli  
et al., 2007) or bind Mad1 and, thus, can only bind kinetochores 
via dimerizing with endogenous C-Mad2 (Fig. 3 A). Mad2RQ 
can bind Mad1 but cannot dimerize (Mapelli et al., 2007) and, 
thus, can only target kinetochores by binding Mad1 (Fig. 3 A).  
If Mps1 is required to recruit O-Mad2 to the core, upon exposure to 
AZ3146, Mad2C should be absent from kinetochores, whereas 
Mad2RQ should be unaffected (Fig. 3 A). We generated stable 
cell lines expressing Myc-Mad2C and Myc-Mad2RQ (Fig. 3 B 
and Fig. S3 B). Although both mutants localized to kinetochores 
in mitosis (Fig. 3 D), Myc-Mad2C did not bind the nuclear en-
velope (Fig. S3 C). However, consistent with our hypothesis in 
response to AZ3146, Mad2C was no longer abundant at kineto-
chores, whereas Mad2RQ appeared unaffected (Fig. 3 D). Indeed, 
quantitation showed that Myc-Mad2C was reduced to a back-
ground level, whereas Myc-Mad2RQ remained at 90% 
(Fig. 3 E). Thus, these observations strongly support the notion 
that during mitosis, Mps1 kinase activity is required to recruit  
O-Mad2 to kinetochore-bound Mad1–C-Mad2.

Mps1 is required for  
chromosome alignment
To confirm and further probe the role of Mps1 in chromosome 
alignment (Maure et al., 2007; Jelluma et al., 2008b), we ana-
lyzed the effect of AZ3146 after a monastrol washout (Mayer  
et al., 1999; Kapoor et al., 2006). Note that cells were also treated 
with MG132 to prevent mitotic exit caused by SAC override.  
Under these conditions, AZ3146 inhibited chromosome alignment 

dramatically affect Mad1 (Jelluma et al., 2008b; Kwiatkowski  
et al., 2010; Sliedrecht et al., 2010); e.g., inhibition of Mps1 using 
another small molecule, reversine, blocked recruitment of Mad1 
and its kinetochore receptor, the Rod–Zw10–Zwilch (RZZ) 
complex (Santaguida et al., 2010). We reasoned that these dif-
ferences may be a result of when Mps1 was first inhibited either 
before or during mitosis. To test this, we designed three experi-
ments, exposing cells to nocodazole, MG132, and AZ3146, but 
in different orders. After treatment, cells were fixed, stained, and 
the intensity of Mad1 at kinetochores was scored as high, me-
dium, or low (Fig. S3 A).

First, we treated cells with nocodazole and AZ3146 for  
2 h, adding MG132 for the last hour. Like our previous experi-
ments, in this regimen, some cells should enter mitosis in the 
presence of AZ3146, whereas others would already be in mito-
sis. This yielded a mixed effect on Mad1: although some cells 
still had high levels of Mad1 at kinetochores, others had low 
levels (Fig. 2 E, Expt. 1). Thus, the aforementioned partial ef-
fect on Mad1 (Fig. 2 D) appears to arise from the fact that when 
we quantitate pixel intensities in a small population of cells, 
some have relatively normal levels of Mad1 at kinetochores, 
whereas in others, it is markedly reduced (Fig. S3 A). Next,  
we treated cells with nocodazole and MG132 for 2 h, adding 
AZ3146 for the last hour. Because MG132 blocks entry into and 
exit out of mitosis, in this regimen, all mitotic cells should have 
entered mitosis before AZ3146 exposure. Under these condi-
tions, Mad1 was now largely unaffected (Fig. 2 E, Expt. 2).  
Finally, we treated cells with MG132 for 2 h, adding nocodazole 
and AZ3146 for the last hour. In this regimen, before AZ3146 
treatment, all mitotic cells should have aligned chromosomes 
with kinetochores stripped of Mad1/2 (DeLuca et al., 2003). 
Therefore, adding nocodazole to destabilize microtubules 
should lead to rerecruitment of Mad1. Significantly, although 
Mad1 was present at kinetochores in controls, kinetochores in 
cells treated with nocodazole plus AZ3146 were devoid of 
Mad1 (Fig. 2 E, Expt. 3). Note that AZ3146 inhibited kineto-
chore localization of Mad2 regardless of the experimental  
regimen (Fig. 2 E).

The simplest explanation for these data is that Mps1 is in-
volved in two distinct steps. First, it is required upon mitotic  
entry to get Mad1 to kinetochores (or, in the case of experiment 3,  
it is required in mitosis to rerecruit Mad1 when microtubules 
are removed from attached kinetochores). Although Mps1 activ-
ity is no longer needed to maintain Mad1 localization, it is 
continuously required during mitosis to promote Mad2 recruit-
ment. Importantly, reversine yielded virtually identical pheno-
types (Fig. 2 E). Furthermore, when cells were treated with 
reversine before mitotic entry, the RZZ component Zwilch was 
largely absent from kinetochores (Fig. 2 F). However, when 
cells accumulated in mitosis before exposure to reversine, 
Zwilch localization was normal.

Mps1 activity is required to recruit  
O-Mad2 to the Mad1–C-Mad2 core
The aforementioned data suggest that during mitosis, Mps1 activ-
ity is required continuously to recruit Mad2 to kinetochore-
bound Mad1 (Fig. 2 E, Expt. 2). However, this notion contradicts 
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efficient chromosome alignment, whereas the severe phenotype, 
at least in some cells, may be a consequence of the prolonged 
mitotic arrest.

Mps1 activity is required for centromere 
protein E (CENP-E) localization
In light of Mps1 regulating aurora B via borealin phosphoryla-
tion (Jelluma et al., 2008b), we were surprised that the alignment 

in >85% of cells (Fig. 4, A and B), yielding either a mild pheno-
type with few unaligned chromosomes or a severe phenotype with  
most chromosomes near the poles (Fig. 4 A). Time-lapse micros-
copy showed that AZ3146-treated cells typically aligned all  
but a few chromosomes (Fig. 4 C, 96 min). However, sometime 
later, sister chromatids appeared to separate followed by rather 
chaotic attempts to realign (Fig. 4 C, 184 min; and Fig. S2 F). 
Thus, the mild phenotype appears to reflect Mps1’s role in 

Figure 3. AZ3146 inhibits kinetochore recruitment of O-Mad2. (A) A scheme is shown predicting the behavior of endogenous Mad2 and Myc-tagged 
mutants in cells after inhibition of Mps1 activity. (B) Immunoblots of Tet-induced HeLa lines probed to detect Mad2. (C) Images of an interphase HeLa cell 
expressing Myc-Mad2 wild type stained to detect Mad1, Mad2 using SM2.2, and an anti-Myc antibody. (D) Images of nocodazole-treated cells stained to 
detect the Myc tag (red), Mad2 (green), and centromeres (ACA; blue) after a 2-h exposure to 2 µM AZ3146 (AZ) and MG132. Insets show higher magnifi-
cation views of individual kinetochore pairs (boxed regions). (E) Bar graph quantitating either Mad2 (red) or Myc tag (blue) pixel intensities at kinetochores 
normalized to ACA. WT, wild type; RQ, Mad2RQ. Values indicate SEM derived from ≥245 kinetochores. Bars: (C and D) 5 µm; (C, insets) 0.5 µm.
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Figure 4. AZ3146 inhibits chromosome alignment. (A) Images of HeLa cells stained to detect the chromosomes (blue), tubulin (red), and aurora B (green) 
after monastrol washout into 2 µM AZ3146 (AZ) and MG132 for 90 min. (B) Bar graph quantitating the mitotic phenotypes observed after monastrol 
washout into AZ3146 or ZM447439 (ZM). Values were derived from ≥115 cells in three independent experiments. Ctrl, control. (C) Time-lapse sequences 
of GFP-H2B HeLa cells after monastrol washout into AZ3146 and MG132. Numbers represent minutes after monastrol washout. (D) Images of HeLa cells 
stained to detect the chromosomes (red), aurora A (green/blue), CENP-E (red), and centromeres (ACA; green) after monastrol washout into AZ3146 and 
MG132 for 60 min. Insets show higher magnification views of individual kinetochore pairs (boxed regions). (E) Bar graph quantitating CENP-E staining 
normalized to ACA at polar kinetochores in AZ3146-treated cells. The mean control value is normalized to 100%. At least 300 polar kinetochores were 
analyzed in ≥23 cells. Error bars indicate SEM. Bars: (A, C, and D) 5 µm; (D, insets) 0.5 µm.
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inactive, the Myc-Mps1 band shift was absent (Fig. 5 F, lane 4). 
Together, these observations support the notion that Mps1 does 
dimerize and transphosphorylate in mitotic cells. Whether this 
regulates its localization requires further investigation.

Coupling SAC signaling with  
chromosome congression
Our observations suggest a two-step role for Mps1. Around the 
onset of mitosis, Mps1 activity is required to first recruit the 
Mad1–C-Mad2 core to kinetochores, possibly indirectly by pro-
moting RZZ recruitment. During mitosis, Mps1 activity is con-
tinuously required to recruit O-Mad2 to the Mad1–C-Mad2 core. 
Although Mps1 may achieve this directly, e.g., by phosphorylat-
ing the core or O-Mad2, this seems unlikely because the Mad2 
template mechanism can be recapitulated in vitro without Mps1 
activity (Vink et al., 2006). Therefore, perhaps Mps1 kinase  
activity counters a cellular inhibitor not present in these in vitro 
assays. Interestingly, p31comet may act as an inhibitory “cap” on the 
Mad1–C-Mad2 core (Musacchio and Salmon, 2007). Thus, an 
attractive hypothesis is that Mps1 phosphorylates and inactivates 
p31comet, removing the inhibitory cap to allow recruitment of  
O-Mad2 and thereby kick starting the Mad2 template reaction. 
However, we presently have no evidence linking Mps1 and 
p31comet. As Mps1 levels at kinetochores increase when its activ-
ity is blocked, perhaps Mps1 is itself an inhibitory cap that must 
be released for checkpoint signaling. Having first recruited the 
Mad1–C-Mad2 core, perhaps Mps1 transphosphorylation pro-
motes an autorelease mechanism that allows recruitment of  
O-Mad2, kick starting the Mad2 template mechanism.

We confirm a role for Mps1 activity in chromosome align-
ment. Although we observe no obvious effect on aurora B func-
tion, Mps1 activity is clearly required for CENP-E recruitment after 
monastrol washout. Interestingly, however, Mps1-RNAi did not 
prevent CENP-E recruitment (Jelluma et al., 2008b; Tighe et al., 
2008). Because inactive Mps1 accumulates at kinetochores, perhaps 
Mps1 and CENP-E occupy mutually exclusive binding sites. In this 
scenario, Mps1 autorelease would normally expose the CENP-E–
binding site. However, when its catalytic activity is inhibited, Mps1 
blocks CENP-E recruitment by remaining bound to the kinetochore. 
In contrast, when the entire Mps1 protein is depleted by RNAi, the 
CENP-E–binding site is vacant, allowing its recruitment. Consistent 
with this notion, the levels of kinetochore-bound CENP-E have been 
observed to increase after Mps1 depletion (Jelluma et al., 2008b). 
Although speculative, these ideas warrant further exploration and 
should provide interesting insights into how Mps1 coordinates spin-
dle checkpoint signaling and chromosome congression.

Materials and methods
Inhibitor screen
N-terminal GST-tagged full-length human Mps1 kinase (GenBank accession 
no. NM_003318) was expressed in insect cells and purified via the GST epi-
tope tag. A 12 µl mixture of recombinant enzyme, an FITC-labeled peptide 
substrate (FITC-DHTGFLTEYVATR-CONH2), 12 µM ATP, and a buffer solution 
(50 mM Hepes, pH 7.5, 0.015% vol/vol Brij-35, 1 mM DTT, and 10 mM 
MgCl2) were incubated with test compounds at room temperature for  
25 min. Test compounds were prepared and further diluted in DMSO and 
placed into 384-well low volume white polystyrene plates (Greiner) using an 
acoustic liquid handler (Echo; Labcyte, Inc.). Reactions were stopped by the 

defect was not typical of that observed after aurora B inhibition 
(Ditchfield et al., 2003). Indeed, AZ3146 had no obvious effect 
on several bona fide aurora B substrates (Fig. S1, D–F). There-
fore, we turned our attention to other factors to explain the  
chromosome alignment defect. The phenotype observed in 
AZ3146-treated cells is quite exquisite; most chromosomes align, 
K-fibers are evident (Fig. 4 A), and only a few chromosomes re-
main near the spindle poles (Fig. 4, A–C). This reminded us of the 
phenotype typical of CENP-E inhibition (Wood et al., 1997; 
Weaver et al., 2003; Kapoor et al., 2006). Strikingly, 1 h after 
monastrol washout, the level of CENP-E at kinetochores was re-
duced to 10% (Fig. 4, D and E). Consistent with this being an 
on-target effect of AZ3146, when Mps1-RNAi cells were recon-
stituted with the Mps1M602A allele, 1NM-PP1 inhibited kineto-
chore localization of CENP-E (Fig. S3 D). Thus, CENP-E appears 
to be an important downstream effector of Mps1 kinase activity. 
Note that this is entirely consistent with a previous study analyz-
ing Xenopus laevis egg extracts (Abrieu et al., 2001).

Inhibition of Mps1 increases its abundance 
at kinetochores
These data indicate that Mps1 contributes to mitotic fidelity by 
promoting kinetochore recruitment of O-Mad2 and Cenp-E.  
Although detailing the exact molecular mechanisms will require 
further experimentation, one observation may prove informative. 
In the presence of AZ3146, Mps1 staining at kinetochores  
increased by about sixfold (Fig. 5, A and B). This is not simply 
caused by increasing epitope accessibility, as direct fluorescence 
from a GFP-Mps1 fusion was also more evident at kinetochores 
in AZ3146-treated cells (Fig. 5 E).

To confirm that this reflected an on-target effect of AZ3146, 
we compared kinetochore localization of wild-type and kinase-
dead GFP-Mps1 fusions after repression of the endogenous ki-
nase by RNAi (Tighe et al., 2008). Strikingly, the kinase-dead 
mutant was about eightfold more abundant at kinetochores  
compared with wild-type (Fig. 5, C and D), supporting the notion 
that inhibiting Mps1’s activity does indeed increase its levels at 
kinetochores. Because FRAP experiments have shown that 
GFP-Mps1 has a relatively short residency time at kinetochores 
(Howell et al., 2004), one explanation is that inhibiting Mps1 activ-
ity reduces its turnover at kinetochores.

Mps1 dimerizes and transphosphorylates
Importantly, the GFP-Mps1 kinase-dead fusion only increased at 
kinetochores when we repressed the endogenous kinase (Fig. 5 C). 
Therefore, we wondered whether Mps1 functions as a dimer that 
requires transphosphorylation to be released from the kinetochore. 
Interestingly, Mps1 transphosphorylation has been demonstrated 
in vitro, but there is no evidence to support dimerization in cells 
(Kang et al., 2007). Therefore, we transiently transfected GFP-
tagged Mps1 into cells stably expressing Myc-tagged Mps1. Myc-
tagged proteins were immunoprecipitated and blotted to detect 
GFP. When we immunoprecipitated Myc-Mps1, GFP-Mps1 was 
readily detectable (Fig. 5 F and Fig. S3 E), which is consistent 
with dimerization. Interestingly, when either fusion was catalyti-
cally active, a portion of the Myc-tagged protein was phosphory-
lated (Fig. 5 F). In contrast, when both fusions were catalytically 
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addition of 40 mM, 0.1% coating reagent (Caliper Life Sciences), 100 mM 
Hepes, pH 7.5, 0.015% vol/vol Brij-35, and 5% DMSO. Inhibitors of Mps1 
activity were identified using a microfluidic chip and laser-induced fluores-
cence (LabChip LC3000; Caliper Life Sciences) to measure the conversion of 
the fluorescent-labeled peptide to a phosphorylated product.

In vitro kinase assays
His-tagged human Mps1Cat encoding amino acids 510–857 was gener-
ated as described previously (Chu et al., 2008). For kinase assays, 500 ng 
was added to buffer (25 mM Tris-HCl, pH 7.4, 100 mM NaCl, 50 µg/ml 
BSA, 0.1 mM EGTA, 0.1% -mercaptoethanol, 10 mM MgCl2, and 0.5 µg/ml 

Figure 5. AZ3146 enhances kinetochore localization of Mps1. (A) Images of HeLa stained to detect Mps1 (red), centromeres (ACA; green), and the 
chromosomes after treatment with nocodazole and MG132 for 2 h ± 2 µM AZ3146 (AZ). (B) Bar graph quantitating Mps1 at kinetochores normal-
ized to ACA. Values were derived from ≥345 kinetochores in ≥18 cells with the mean in control cells normalized to 100%. (C) Images of HeLa cells 
expressing GFP-Mps1, either wild type (WT) or kinase dead (KD), stained to detect GFP-Mps1 (green), centromeres (ACA; red), and chromosomes. Note 
that endogenous Mps1 was first repressed by RNAi. Before fixation, cells were treated with nocodazole and MG132 for 2 h with or without AZ3146.  
(D) Bar graph quantitating GFP pixel intensities at kinetochores normalized to ACA. Values were derived from ≥240 kinetochores in ≥17 cells with the 
mean in controls cells normalized to 100%. (E) Images of HeLa cells expressing GFP-Mps1 treated with or without AZ3146 and a bar graph scoring direct 
GFP fluorescence from kinetochores as high, medium, or low are shown. Data are representative of two independent experiments in which ≥50 cells 
were counted. Ctrl, control. (F) Immunoblots of anti-Myc immune complexes isolated from HEK293 cells stably expressing Myc-tagged Mps1 transgenes 
and transiently transfected with vectors encoding GFP-tagged Mps1 transgenes, either wild type or kinase dead. Membranes were blotted as indicated.  
IP, immunoprecipitation. (A and C) Insets show higher magnification views of individual kinetochore pairs (boxed regions). Error bars indicate SEM.  
Bars: (A, C, and E) 5 µm; (A and C, insets) 0.5 µm.
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(Millipore), blocked in 5% milk, and primary antibodies were added over-
night. After washing and incubation with appropriate secondary anti-
bodies, proteins were visualized using chemiluminescence (SuperSignal; 
Thermo Fisher Scientific) and imaged on film (Biomax MR; Kodak). For  
immunofluorescence, cells grown on coverslips were fixed in 1% formalde-
hyde, quenched in glycine, pH 8.5, permeabilized using PBS plus 0.1% 
Triton X-100 (PBST), and incubated with primary antibodies. After washes 
in PBST and incubation with appropriate secondary antibodies, cells were 
counterstained with 1 µg/ml Hoechst 33358 in PBST and mounting in 90% 
glycerol and 20 mM Tris-HCl, pH 8.0. To visualize microtubules, cells were 
preextracted in 100 mM Pipes, 1 mM MgCl2, 0.1 mM CaCl2, and 0.1% 
Triton X-100 for 90 s before fixation in 4% formaldehyde in the same buffer 
for 10 min. To stain for CENP-E, cells were preextracted with a buffer con-
taining 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% BSA, and 0.2%  
Triton X-100 for 2 min before fixation with 4% formaldehyde in PBS (Chan  
et al., 2000). Phos tag (Wako Chemicals USA, Inc.) was used according 
to the manufacturer’s instructions. In brief, 25 µM Phos tag and 50 µM 
MnCl2 were added to standard SDS-PAGE gels containing 6% acrylamide 
and visualized by immunoblotting.

Image acquisition and processing
Immunofluorescence images were acquired at room temperature on a resto-
ration microscope (Delta Vision RT; Applied Precision) using a 100× 1.40 NA  
Plan Apo objective and a filter set (Sedat Quad; Chroma Technology 
Corp.). The images were collected at room temperature using a charge- 
coupled device camera (CoolSNAP HQ; Photometrics) with a z-optical spac-
ing of 0.2 µm. Raw images were deconvolved using the SoftWorx software 
(Applied Precision), and maximum intensity projections of these deconvolved 
images are described in Results and discussion. Time-lapse microscopy was 
performed on a manual microscope (Axiovert 200; Carl Zeiss, Inc.) equipped 
with an automated stage (PZ-2000; Applied Biosystems) and an environmen-
tal control chamber (Solent Scientific), which maintained the cells at 37°C in 
a humidified stream of 5% CO2. Imaging was performed using either a 32× 
0.40 NA long-distance A-Plan or a 40× 0.75 NA Neo Fluor objective. Shut-
ters, filter wheels, and point visiting were driven by MetaMorph software 
(Universal Imaging). Images were taken using a camera (CoolSNAP HQ; 
Photometrics), and individual tagged image file format files were imported 
into PhotoShop (Adobe) for printing or into QuickTime (Apple) for videos.

Online supplemental material
Fig. S1 shows that AZ3146 does not inhibit Cdk1 or aurora B. Fig. S2 
shows that AZ3146 overrides the spindle checkpoint. Fig. S3 shows that 
Mps1 activity is required for kinetochore localization of CENP-E. Table S1 
lists the PCR primers used in this study. Table S2 lists the antibodies used in 
this study. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201002133/DC1.
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Figure S1.  AZ3146 does not inhibit Cdk1 or aurora B. (A) Immunoblot of mitotic-arrested HeLa cells treated for 2 h with MG132 and either AZ3146 (AZ; 
Mps1 inhibitor), ZM447439 (ZM; aurora B inhibitor; Ditchfield et al., 2003), or RO-31-8220 (RO; Cdk1 inhibitor; Tighe et al., 2007) and blotted with an 
antibody to detect phosphonucleolin. Bub3 is used as a loading control. AZ3146 does not inhibit phosphorylation of nucleolin, suggesting that it does not 
target Cdk1. (B) Phos tag immunoblot of cell extracts isolated from interphase cells or nocodazole (Noc)-arrested cells treated with -phosphatase (P) ± 10 
mM sodium orthovanadate (P + I), demonstrating that the super-shifted species are Mps1 phospho forms. (C) Phos tag immunoblot of extracts isolated from 
interphase cells or nocodazole-arrested cells treated with MG132 (MG) and either AZ3146 or ZM447439 for 2 h. When isolated from mitotic cells, Mps1 
appeared as a major band (arrowhead) and a minor slower-migrating band (asterisk). The super-shifted isoform of Mps1 (asterisk) is reduced upon treat-
ment with either AZ3146 or ZM447439. The faint super-shifted aurora B isoform (arrow) is absent in the presence of ZM447439. Short and long expo-
sures of the aurora B blot are shown. Collectively, these data are consistent with aurora B being upstream of Mps1. The super-shifted forms of BubR1 are 
not affected by either drug. (D) Immunoblots of nocodazole-arrested HeLa cells treated with MG132 and increasing concentrations of AZ3146 for 2 h, then 
blotted to detect aurora B, aurora B when phosphorylated on threonine 232 in the T loop, and pHistone H3Ser10. Note that although ZM447439 inhibits 
phosphorylation of aurora B and histone H3, AZ3146 does not. Black lines indicate that intervening lanes have been spliced out. (E) Immunofluorescence 
images of cells treated with ZM447439 or AZ3146 for 2 h and stained to detect aurora B, pHistone H3Ser10, and DNA (left); pCENP-ASer7, ACA, and au-
rora A (middle); and pAurora A/B, ACA, and aurora A (right). The cells were also treated with nocodazole (left) or monastrol (middle and right) and 
MG132. Note that ZM447439 inhibits phosphorylation of histone H3Ser10 and CENP-ASer7 as well as the centromere signal revealed by the pan pAurora 
antibody. In contrast, AZ3146 inhibits none of these markers of aurora B activity. (F) Bar graphs scoring pCENP-ASer7 and centromeric pAurora staining as 
either high, medium, or low in cells treated with spindle toxins and MG132 plus either AZ3146 or ZM447439 (as in E), confirming that although 
ZM447439 inhibits CENP-ASer7 and aurora B phosphorylation, AZ3146 does not. Data are representative of two independent experiments in which ≥50 
cells were counted per condition. (G) Projections of deconvolved image stacks showing HeLa cells treated with nocodazole and MG132 plus AZ3146 
and/or ZM447439 and stained to detect Mps1 (red) and centromeres (ACA; green). Insets show magnified views of kinetochore pairs (boxed regions). 
Consistent with data in Fig. 5, kinetochore localization of Mps1 is more apparent in AZ3146-treated cells. However, this is reversed in cells treated with 
ZM447439, suggesting that kinetochore localization of Mps1 requires aurora B activity. AZ3146 was used at 2 µM in all experiments except that shown 
in D. Bars: (E and G) 5 µm; (G, insets) 0.5 µm.
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Figure S2.  AZ3146 overrides the spindle checkpoint. (A) DNA content histograms of HeLa cells treated with either nocodazole (Noc), AZ3146 (AZ), or 
nocodazole plus AZ3146 for 24 h. (B) DNA content histograms of HeLa cells synchronized at G1/S using a double-thymidine block and released into no-
codazole or nocodazole plus AZ3146. (C) Line graph showing mitotic index determined by MPM-2 staining of drug-treated HeLa cells after release from 
a G1/S block. (D) Line graph showing mitotic index determined by MPM-2 staining of drug-treated HeLa cells after release from a nocodazole block. Sym-
bols in D are the same as those in C. (E) Line graph showing mitotic index determined by MPM-2 staining of nocodazole-blocked HeLa cells released into 
taxol or taxol plus AZ3146 ± MG132. (F) Bar graph quantitating cells with separated sister chromatids after release from a 2-h monastrol block into 
MG132 ± AZ3146 (MG + AZ) for 3 h. Images show examples of paired (MG) and separated chromatids (MG + AZ). AZ3146 was used at 2 µM in all 
cases. Bar, 1 µm.
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Figure S3.  Mps1  activity  is  required  for  kinetochore 
localization of CENP-E. (A) Images of HeLa cells treated 
simultaneously with nocodazole, MG132, and AZ3146 
and stained to detect Mad1 and ACA. Mad1 levels are 
scored as low and high in cells 1 and 2, respectively. In 
this protocol, although some cells will already be in mi-
tosis when exposed to the AZ3146, others will enter mi-
tosis in the presence of the Mps1 inhibitor. (B) Immunoblot 
of HeLa cells expressing Myc-tagged Mad2 proteins 
blotted with antibodies to detect the Myc tag. WT, wild 
type; RQ, Mad2RQ; C, Mad2C. (C) Immunofluores-
cence images of interphase HeLa cells expressing Myc-
tagged Mad2C and Mad2RQ proteins stained with 
antibodies to the Myc tag. (D) HeLa cells harboring an 
RNAi-resistant and tetracycline-inducible Myc-tagged 
Mps1M602A transgene were transfected with an shRNA 
designed to repress endogenous Mps1 (Tighe et al., 
2008). Tetracycline was used to induce Mps1M602A, thus 
restoring Mps1 function (Tighe et al., 2008). The cells 
were treated with monastrol for 2 h to inhibit bipolar 
spindle assembly. After monastrol washout, the ATP ana-
logue 1NM-PP1 was added for 1 h to inhibit the enzy-
matic activity of Mps1M602A. The cells were fixed and 
stained to detect CENP-E (red), centromeres (ACA; 
green), and DNA. Insets show magnified views of indi-
vidual kinetochore pairs (boxed regions). In controls, 
i.e., cells retaining endogenous Mps1 activity, CENP-E 
is readily apparent at kinetochores. In contrast, in cells 
in which Mps1 activity is inhibited, kinetochore localiza-
tion of CENP-E is severely affected; note that although 
background spindle staining is apparent, kinetochores 
are not. (E) Immunoblots of anti-Myc immune complexes 
isolated from HEK293 cells stably expressing Myc-
tagged Mps1 transgenes and transiently transfected 
with vectors encoding GFP-tagged Mps1 transgenes, ei-
ther wild-type or a kinase-dead mutant. Membranes 
were blotted as indicated.
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Table S1. PCR primers used in this study

Oligo Sequence Purpose

1 5-CACGGATCCGCGCTGCAGCTCTCCCGG-3 Forward primer for amplification of Mad2
2 5-CACGCGGCCGCTCAGCTATTTACTTTGTGGATTGTAG-3 Reverse primer for Mad2C (196–205)
3 5-GAAATCCGTTCAGTGATCGAAGCGATCACAGCTACGGTGAC-3 Forward mutagenic primer for Mad2 R133E, Q134A
4 5-GTCACCGTAGCTGTGATCGCTTCGATCACTGAACGGATTTC-3 Reverse mutagenic primer for Mad2 R133E, Q134A

Table S2. Antibodies used in this study

Antibody Description Dilution Source

SAA.1 Sheep anti–aurora A 1:5,000 Girdler et al., 2006
SAB.1 Sheep anti–aurora B 1:1,000 Girdler et al., 2006
SB1.3 Sheep anti-Bub1 1:1,000 Taylor et al., 2001
SB3.2 Sheep anti-Bub3 1:500 Gurden, 2010
SMP1.1 Sheep anti-Mps1 1:1,000 Tighe et al., 2008
ACA Human anticentromere 1:500 B. Earnshawa

9B10 Mouse anti-Mad1 1:500 Abcam
SM2.2 Sheep anti-Mad2 1:500 Johnson et al., 2004
4A6 Mouse anti-Myc 1:5,000 Millipore
CENP-E Rabbit anti–CENP-E 1:2,000 D. Clevelandb

GFP Rabbit anti-GFP 1:5,000 Abcam
TAT1 Mouse antitubulin 1:100 K. Gullc

pAurora Rabbit anti–pAurora A (Thr288)/ 
B (Thr232)/C (Thr198)

1:2,000 Cell Signaling Technology

CENP-A Rabbit anti–CENP-A 1:200 Millipore
Phospho–CENP-A Rabbit anti–phospho (Ser7) CENP-A 1:1,000 Millipore
PH3 Rabbit anti–phospho (Ser10) histone H3 1:500 

(WB, 1:10,000)
Millipore

MPM-2 Mouse anti–MPM-2 1:2,000 Millipore
TG3 Mouse anti-phosphonucleolin 1:25 P. Daviesd

Cy2-, Cy3-, and Cy5-anti–  
 sheep/mouse/rabbit/human

Conjugated secondaries 1:500 Jackson ImmunoResearch Laboratories, Inc.

HRP anti–sheep/mouse/rabbit Conjugated secondaries 1:2,000 Invitrogen
FITC-anti–mouse Conjugated secondary 1:1,000 Jackson ImmunoResearch Laboratories, Inc.

WB, western blot.
aUniversity of Edinburgh, Edinburgh, Scotland, UK.
bUniversity of California, San Diego, La Jolla, CA.
cOxford University, Oxford, England, UK.
dAlbert Einstein College of Medicine, Yeshiva University, New York, NY.
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