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Abstract 

The permeation of drugs across the blood-brain barrier (BBB) is a prerequisite for 

central nervous system (CNS) drug penetration. The BBB, possessing efflux transporters and 

tight junctions, limits drug penetration to the brain. Consequently, the discovery of novel 

drugs to treat CNS diseases remains problematic and is lagging behind other therapeutic areas.  

In vitro assays have progressed understanding of the factors that govern brain 

penetration. Central nervous system drug penetration is now thought to be modulated by three 

main processes, namely BBB permeability, active transport at the BBB and drug binding in 

blood and brain tissue. A more integrated approach to CNS drug discovery programmes is 

emerging which encompasses these processes in order to examine the rate and extent of drug 

brain penetration across species and improve predictions in human. 

A primary porcine in vitro BBB model was developed and characterised for the 

prediction of CNS drug permeability in vivo. Characterisation confirmed that the model 

exhibited physiologically realistic cell architecture, the formation of tight junction protein 

complexes, transcellular electrical resistance consistently >2000 Ω.cm
2
, functional expression 

the P-gp efflux transporter and γ-glutamyl transpeptidase and alkaline phosphatase activities. 

Transport of 12 centrally acting test drugs was investigated across four in vitro BBB 

models in order make comparisons between models and to generate in vitro permeability and 

efflux measurements. Blood-brain barrier permeability and active efflux processes are two 

major influences on the rate of drug penetration across the BBB. 

 Species differences in fublood and fubrain, two prime influences on the extent of drug 

penetration, were investigated using equilibrium dialysis. Fraction unbound in brain was 

shown to be comparable across species suggesting that species differences in brain penetration 

could be due to variation in fublood for drugs that cross the BBB by passive diffusion, and/or 

species differences in transporter characteristics for drugs that are subject to active transport 

processes at the BBB.  

An in-house hybrid-PBPK rat CNS model was used to predict calculated rat Kp,uu using 

in vitro permeability, efflux, fublood and fubrain parameters generated during this work. The 

predicted Kp,uu generated using the rat CNS hybrid-PBPK model were within 3-fold of 

calculated Kp,uu. The rat CNS hybrid-PBPK model has potential use, as a tool for drug 

discovery scientists to aid the prediction of the extent of drug penetration in the early stages of 

drug discovery. 

This work has demonstrated that in vitro permeability and unbound drug fraction can 

be used to predict CNS drug penetration. 
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1.0 Chapter 1: Introduction 

1.1 Background 

Central nervous system (CNS) diseases are prevalent, dramatically decrease quantity 

of life and can be fatal. It has been proposed by the World Health Organisation that CNS 

diseases account for 35% of the total disease burden in Europe (Olesen et al. 2003) with 

annual costs estimated at around £300 billion of which approximately £11 billion is spent on 

drug treatment (Andlin-Sobocki et al. 2005).  

Currently, there are shortages of efficacious drugs to treat CNS diseases, for instance, 

Alzheimer‟s, Parkinson‟s and Huntington‟s disease, whereas many non-CNS diseases, for 

example, cardiovascular diseases can be controlled using drug treatment.  

The incidence of CNS diseases increases with age and it has been predicted that by 

2020 the number of people older than 65 years will increase by 50% (Pardridge 2007) 

highlighting an urgent need for more drugs to treat CNS disorders.  

Development times for CNS drugs (12-16 years) are significantly longer, compared to 

those for non-CNS drugs (10-12 years) (Palmer et al. 2005) and success rates of CNS drugs 

candidates (~8%) are much lower than most other therapeutic areas such as cardiovascular 

disease (~20%) (Kola et al. 2004). Despite immense endeavour from the pharmaceutical 

industry to discover and develop novel CNS active drugs to meet the current demand, attrition 

rates still remain higher than in any other therapeutic area (Pangalos et al. 2007). 

Successful CNS drug disposition is hindered by the complex anatomy, physiology and 

disease pathology of the brain (Abbott 2005) and also by the high degree of protection 

afforded to the brain via the blood-brain barrier (BBB) (Begley et al. 2003). The effect of 

disease on the integrity of the BBB, transporter function and expression is relatively unknown 

(Palmer 2009) and consequently clinical symptoms are often used for diagnosis instead of 

disease mechanisms.  

The use of in vitro assays has aided understanding of the factors that govern brain 

penetration. Central nervous system drug penetration is now thought to be modulated by three 

main processes; BBB permeability, active transport at the BBB and drug binding in blood and 

brain tissue (Jeffrey et al. 2010). A more integrated approach to CNS drug discovery 

programmes is now emerging which encompasses these processes in order to examine the rate 
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and extent of drug brain penetration across species and improve predictions in humans 

(Hammarlund-Udenaes et al. 2008; Reichel 2009).  

In vitro assays are routinely employed to screen and eliminate compounds prior to in 

vivo studies helping to reduce attrition rates (Jeffrey et al. 2007). However, most in vitro and 

in vivo assays to date have been rodent based, due to difficulties in obtaining human 

measurements, thus impeding human predictions.  

Drug metabolism and pharmacokinetics have become an important predictive tool for 

use in drug discovery (Summerfield et al. 2006). The ability to more accurately predict drug 

penetration across the BBB is integral to aiding drug discovery and development. Therefore, a 

physiologically based pharmacokinetic model (PBPK) of the CNS to predict the extent of drug 

brain penetration in the early stages of drug discovery is highly desirable. This would reduce 

cost, decrease time from drug discovery through development to the market, and most 

importantly lead to more successful treatments for patients with CNS disorders.  

 

1.2 The blood-brain barrier 

1.2.1 History of the blood-brain barrier 

Studies performed by German microbiologist Paul Ehrlich in 1885 (Ehrlich 1885; 

Pardridge 1983) initially introduced the concept of a barrier existing between the blood and 

brain. Injecting a vital dye systemically into laboratory animals revealed uptake of the dye in 

all parts of the body except the CNS. Ehrlich interpreted these findings as lack of adsorption 

of the dye in the CNS. In 1909 Edwin Goldman (Ehrlich‟s student) demonstrated adsorption 

of a vital dye by the CNS via direct injection into the tissue, whilst the rest of the body 

remained unstained. Subsequently Goldmann concluded the existence of a blood-brain barrier 

(Goldmann 1913).  

 

1.2.2 Protection of the brain 

The brain is the control centre of the body. It regulates functions vital for life, for 

example, the control of muscles such as the heart, respiration and hormone production. 

Neuronal cell division is limited in adult brains (Lennington et al. 2003) and cell death causes 

neurodegeneration and neuropathological diseases. A high level of protection of the brain is 

therefore crucial for human survival.  
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The CNS is protected by three physiological barriers; the BBB, the blood-

cerebrospinal fluid barrier formed by the epithelial cells of the choroid plexus, and the 

arachnoid epithelium of the meninges which forms an avascular barrier between the 

extracellular fluids of the CNS and the rest of the body (Abbott et al. 2006).  

The BBB has the largest surface area of all three interfaces (9-15 m
2
.kg

-1
 brain) 

(Abbott 2005), creating an extremely high density capillary network throughout the brain 

parenchyma, providing almost every neurone with an individual blood supply (Reichel 2009). 

Hence, the BBB is considered to be the primary interface of the brain and forms the focus of 

this research.  

The BBB controls the transport of material into and out of the brain, and maintains the 

neural microenvironment required for optimum synapse signalling (Abbott 2002). The BBB 

protects the brain from potentially neurotoxic, physiological metabolites, peripheral 

neurotransmitters (e.g. glutamate) (Abbott 2002), xenobiotics from diet or environment 

(Begley et al. 2003) and pathogens (Wolburg et al. 2002). The BBB also permits the entry of 

nutrients such as glucose via specific influx transporters (Abbott 2005) and allows the free 

diffusion of small molecules, such as oxygen and carbon dioxide and the exit of waste 

products (Ballabh et al. 2004). 

 

1.2.3 Physiology of the blood-brain barrier 

The BBB (Figure 1.1) consists of a continuous monolayer of cerebral endothelial cells 

(CECs) that compose the walls of the cerebral microvascular capillaries present throughout the 

brain parenchyma. In addition to CECs, neighbouring cells namely astrocytes, pericytes and 

neurones, as well as a capillary-secreted basement membrane constitute the functional unit of 

the BBB and in combination are often referred to as the neurovascular unit. 
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The CECs are highly specialised for their protective barrier function and are characterised 

by:- 

 Tight junctions (zonulae occludentes) between adjacent CECs creating a restrictive 

paracellular pathway (Reese et al. 1967). 

 Sparse pinocytotic vesicular transport which limits fluid phase uptake (Bauer et al. 

2000). 

 The absence of fenestrations (Gaillard et al. 2005). 

 Numerous influx and efflux transporters (Abbott et al. 2009) 

 High density of mitochondria in the cytosol (de Vries et al. 1997). 

 The presence of protective enzymes, for example, cytochrome P450 (Dauchy et al. 

2009) and monoamine oxidase (Abbott 2002).  

 

These specific features distinguish CECs from peripheral endothelial cells found in the  

rest of the body, and describe the term „BBB phenotype‟. 

 

Figure 1.1  The blood-brain barrier 

 

     

 

 

(a) Cross section of the neurovascular unit of the BBB formed by cerebral endothelial cells, 

astrocytes, pericytes, neurones and a basement membrane. The cerebral endothelial cells form 

tight junctions at their boundaries. Adapted from (Abbott et al. 2008) (b) Three dimension 

schematic of the BBB components, CECs, astrocytes and pericytes. Adapted from (Abbott et 

al. 2008). 
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1.2.3.1 The role of astrocytes at the blood-brain barrier 

Astrocytes, located within the brain parenchyma, have end foot processes which 

surround the CECs (Kacem et al. 1998) and play an important role in the induction of the 

„BBB phenotype‟ (Janzer et al. 1987). In 1981, Stewart and Wiley (Stewart et al. 1981) 

transplanted brain tissue from quail embryos into the gut of chick embryos. The brain tissue 

became vascularised by chick endothelial cells and the capillaries formed were reported to 

exhibit BBB properties. However, when the experiment was reversed and avascular tissue 

from embryonic quail gut was transplanted into embryonic chick brain, the chick endothelial 

vessels which invaded the quail gut tissue grafts were found to be permeable. This suggested 

that the barrier properties of the BBB were not intrinsic to CECs, although, it was not 

concluded which other cells were responsible. A continuation of this work (Janzer et al. 1987) 

which involved transplanting neonatal rat brain astrocytes into the rat eye and chick placenta 

provided evidence that astrocytes contributed to the formation of non-leaky junctions between 

endothelial cells from origins other than the CNS, strongly suggesting induction of tight 

junction properties and improved barrier function of the BBB. 

 

1.2.3.2 The role of pericytes at the blood-brain barrier 

Pericytes are multifunctional perivascular cells morphologically situated closest to 

CECs sharing a basement membrane (Correale et al. 2009). The role of pericytes at the BBB is 

still being elucidated.  

Pericytes are thought to provide mechanical stability to CECs (von Tell et al. 2006). 

Pericytes may also aid regulation of capillary blood flow, expression of the smooth muscle 

isoform of actin (α-SM actin, a contractile protein), has been found in pericytes but no 

expression has been found in CECs (Bandopadhyay et al. 2001). In addition, pericytes are 

thought to play a regulatory role in the formation of new cerebral blood vessels during the 

initiation, proliferation, differentiation and branching out of the vessels (Smith et al. 2006). 

Further, platelet-derived growth factor produced by CECs is thought to aid the association of 

pericytes to CECs, and studies using platelet-derived growth factor knock out mice have 

reported increased BBB permeability and edematous phenotype, which was suggested to be 

caused through the absence of pericytes (Hellstrom et al. 2001). Additionally, the up 

regulation of the tight junction protein occludin has been demonstrated using in vitro BBB 
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models cultured with pericyte-conditioned medium, suggesting that pericytes play a role in the 

formation of a restrictive paracellular properties of the BBB (Hori et al. 2004). 

 

1.2.3.3 The role of neurones at the blood-brain barrier  

There is currently little in-depth understanding of the role of neurones in the formation 

of the BBB phenotype (Cardoso et al. 2010). Neurones are electrically excitable cells that play 

a role in the induction and regulation of BBB properties by electrical and chemical signalling 

(Bauer et al. 2000). Cerebral endothelial cells cultured with cortical neurones have been 

shown to increase the expression of the BBB marker enzyme γ-glutamyl transpeptidase 

demonstrating that neurones can induce BBB properties (Tontsch et al. 1991). However, the 

BBB plays a reciprocal role in maintaining the neural microenvironment which is required for 

optimum synapse signalling. 

 

1.2.3.4 The role of the basement membrane at the blood-brain barrier 

The basement membrane is composed of collagen type IV, heparan sulphate, 

fibronectin and laminin (Scherrmann 2002) and connects the CECs with astrocytes, pericytes 

and neurones, constituting an essential part of the BBB. The basement membrane supports the 

CECs, and is thought to influence drug transport as some of its components form a negatively 

charged interface, discriminating against negatively charged molecules (Vorbrodt 1989).  

 

1.2.4 Protective functions of the blood-brain barrier 

1.2.4.1 The physical element of the blood-brain barrier– tight junction proteins  

Tracer experiments with the electron dense probe horseradish peroxidase (Reese et al. 

1967) first revealed that CECs formed a restrictive barrier between the blood and the brain due 

to the presence of tight junctions between adjacent CECs.  

Tight junctions are the main physical barrier component of the BBB restricting 

paracellular penetration of ions, polar solutes and macromolecules from blood to brain. The 

restriction of ion transport results in high transcellular electrical resistance (TER) across the 

BBB in vivo >1000 Ω.cm
2
 (Crone et al. 1982; Butt et al. 1990). 

Over recent years, significant advances have been made in understanding the formation 

of tight junctions (Figure 1.2) and the identification of their individual components. Tight 
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junctions are composed of three integral transmembrane proteins, occludin (Furuse et al. 

1993), claudins (Furuse et al. 1998) and junction adhesion molecules (JAM) (Martin-Padura et 

al. 1998). Occludin, claudin and JAM possess extracellular domains responsible for limiting 

paracellular permeability and intracellular domains which form a junctional complex with 

cytoplasmic proteins such as ZO-1 (Martin-Padura et al. 1998), ZO-2 (Gumbiner et al. 1991), 

ZO-3 (Haskins et al. 1998) and cingulin (Citi et al. 1988) which connect the integral 

membrane proteins to actin within the cytoskeleton.  

Most recently, a novel tight junction protein, called epithelial membrane protein 

(EMP1) has been discovered at the BBB (Bangsow et al. 2008). Epithelial membrane protein 1 

is structurally similar to occludin and claudin, and is thought to play a role in the formation of 

the tight junction between adjacent endothelial cells and limit paracellular permeability across 

the BBB.  

 

Figure 1.2  Composition of a tight junction between two adjacent cerebral endothelial cells 

 

 

The tight junction between two adjacent CECs is composed of integral membrane proteins 

occludin, claudin and JAM forming a complex with ZO-1, ZO-2, ZO-3 and cingulin which are 

connected to actin within the cytoskeleton. The tight junctional complex limits paracellular 

transport of molecules across the BBB. Adapted from (Abbott et al. 2009). 
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1.2.4.2 Adenosine 5’-triphosphate binding cassette transporters at the blood-brain 

barrier 

In addition to tight junctions, the BBB possess adenosine 5-triphosphate (ATP) 

binding cassette (ABC) efflux transporters, situated in the cell membrane of CECs. These 

ABC efflux transporters serve as an additional defence mechanism of the brain, excluding 

harmful lipophilic substances (Abbott 2005). Adenosine 5-triphosphate binding cassette 

efflux transporters have broad substrate specificity and can limit efficacy of novel CNS active 

drugs because potential drug candidates are often substrates of these efflux transporters 

(Potschka 2009). Previously, drug discovery programmes have increased the lipophilicity of 

novel compounds in an attempt to enhance BBB permeation. However, this has not always 

proven successful as this strategy can also increase the chance of the compound becoming a 

substrate of an efflux transporter (Abbott et al. 2009), hence limiting brain penetration.  

Adenosine 5-triphosphate binding cassette efflux transporters are a superfamily of 

multidomain integral membrane proteins classified into seven sub families, ABCA-ABCG 

(Dean et al. 2001), that can transport solutes across cell membranes. P-glycoprotein (P-gp, 

ABCB1), multidrug resistance-associated proteins (MRPs, ABCC1, 2, 4, 5 and possibly 3 and 

6) and breast cancer resistance protein (BCRP, ABCG2) are currently thought to be the 

principle efflux transporters at the BBB (Begley 2004; Dauchy et al. 2008). The mechanism of 

action of ABC efflux transporters involves the binding of a substrate molecule to two 

transmembrane domains of the ABC efflux transporter molecule. This stimulates binding of 

ATP to two cytosolic nucleotide-binding domains. Adenosine 5-triphosphate is consequently 

hydrolysed providing energy to translocate the substrate across the membrane (Linton 2007). 

To date, the impact of ABC efflux transporters in relation to drug disposition in the brain is 

still being elucidated (Ward 2008; Potschka 2009). 

Good knowledge and understanding of ABC efflux transporters is extremely useful 

during drug discovery and development because efflux transporters can reduce brain 

penetration (Dorner et al. 2009) of drugs which are substrates of efflux transporters. 

Additionally, over expression of efflux transporters at the BBB can lead to drug resistance in 

some CNS disorders including depression and epilepsy (Bauer et al. 2010). Induction or 

inhibition of efflux transporters at the BBB by one drug can alter the pharmacokinetics and 

efficacy of another drug resulting a drug-drug interaction (Zhou 2008). 
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1.2.4.2.1 P-glycoprotein (ABCB1)  

P-glycoprotein was the first ABC efflux transporter to be discovered in 1976 (Juliano 

et al. 1976). P-glycoprotein is a phosphorylated glycoprotein of 170 kDa encoded by the 

human multidrug resistance gene (MDR1 also known as ABCB1) and was originally 

discovered with the occurrence of multidrug resistant tumours (Juliano et al. 1976; Kartner et 

al. 1983). P-glycoprotein is also expressed in various non-malignant human tissues including 

placenta, kidney and intestine (Zhou 2008) and was the first ABC transporter to be detected in 

CECs of the human BBB in 1989 (Cordon-Cardo et al. 1989; Thiebaut et al. 1989). 

P-glycoprotein excludes drugs from the brain by either preventing molecules from 

entering the brain from the systemic circulation (gatekeeper function) or by effluxion of drugs 

that have entered the CECs, back out into the lumen of the capillary (Demeule et al. 2002; 

Hammarlund-Udenaes et al. 2008). 

P-glycoprotein is currently deemed the most understood and clinically relevant ABC 

efflux transporter at the BBB in drug discovery programmes due to its wide range of 

substrates (Schinkel 1999) varying  in size (range from 300 - 4000 Da) and structure (Miller et 

al. 2008) which makes it difficult to define accurate structure activity relationships for P-gp. 

Identification of the structural features of typical P-gp substrates could be a useful tool for 

drug development scientists during lead optimisation, in order to obtain the desired interaction 

of the drug with the efflux transporter for example no interaction, inhibition or interaction 

(non-CNS drugs) (Zhou 2008).   

In vivo studies comparing brain penetration of drugs in genetically modified knock out 

mice and wild type mice have demonstrated that P-gp at the BBB can limit brain penetration 

of drugs, which are substrates of this efflux transporter, highlighting the importance of P-gp at 

the BBB (Doran et al. 2005). 

Brain uptake of P-gp substrates in humans has been investigated using positron 

emission tomography (PET) using the P-gp substrate radiotracer 
11

C-N-desmethyl-loperamide, 

(Kreisl et al. 2010). The study showed low brain uptake of 
11

C-N-desmethyl-loperamide. 

However, brain uptake was increased 4-fold when a sufficient dose of the P-gp inhibitor 

tariquidar (6 mg.kg
-1

) was co-administered with 
11

C-N-desmethyl-loperamide demonstrating 

that P-gp can limit brain uptake of P-gp substrates in humans.  
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Up regulation of P-gp can occur in response to drug treatment (for example 

phenobarbital (Volk et al. 2005), hence reducing efficacy of drug therapy. A P-gp substrate 

(unnamed) labeled with 
11

C has recently shown potential to detect upregulation of P-gp 

function, using PET, in response to drug treatment (van Waarde et al. 2009) allowing further 

investigation into P-gp function and expression in relation to CNS diseases.  

Positron emission tomography has emerged as a useful non-invasive in vivo tool to aid 

understanding of the role P-gp at the BBB. Positron emission tomography has potential 

application for in vivo assays employed in drug discovery programmes after high throughput 

in vitro screening assays in order to investigate the affinity of novel drugs for P-gp at the BBB 

in humans (Elsinga et al. 2005).  

 The literature has highlighted the importance of P-gp at the BBB in respect to drug 

penetration. Hence, the P-gp efflux transporter is the ABC efflux transporter of interest during 

this study.  

 

1.2.4.2.2 Multidrug resistance-associated protein (ABCC) 

 Multidrug resistance-associated protein was first discovered in the human lung cancer 

cell line, H69AR (Cole et al. 1992). Multidrug resistance-associated protein is expressed in the 

intestine, kidney, liver and at the BBB (Liu et al. 2010). At the BBB MRP is principally 

expressed at the basolateral membrane (Soontornmalai et al. 2006). Expression of MRP has 

been reported in isolated CECs from a range of species for example, rat (Regina et al. 1998), 

porcine (Zhang et al. 2006; Smith et al. 2007) bovine (Bachmeier et al. 2006), and humans, 

where it has been shown to limit drug penetration (Potschka et al. 2003). 

 

1.2.4.2.3 Breast cancer resistance protein (ABCG2)  

 The ABC transporter BCRP was recently discovered on the apical membrane of a 

multidrug resistance breast cancer cell line (Doyle et al. 1998). Breast cancer resistance 

protein has also been detected on the apical membrane of human CECs (Cooray et al. 2002). 

The development of Abcg2
−/− 

knock out mice have demonstrated how BCRP limits drug brain 

penetration at the BBB (Vlaming et al. 2009). 
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1.2.4.3 The enzymatic element of the blood-brain barrier 

In addition to the metabolism of drugs in the liver, further metabolism may take place 

at the BBB. The presence of enzymes expressed on the plasma membrane of the CECs 

forming the BBB (Joo 1993) constitute the protective metabolic element of the „BBB 

phenotype‟ limiting penetration of exogenous and endogenous substrates (El-Bacha et al. 

1999).  

The presence of metabolising enzymes at the BBB, for example phase 1 cytochrome 

P450 enzymes (Dauchy et al. 2009), may also limit drug penetration to the brain. The presence 

of cytochrome P450 enzymes have been characterised in the hCMEC/D3 cell line and human 

brain microvessels (Dauchy et al. 2009). The hCMEC/D3 cell line expressed genes encoding 

for cytochrome P450 isoforms including CYP2U1 and CYP2S1 which showed the strongest 

expression. The genes of the other isoforms were either weakly expressed (6 isoforms) or 

barely detectable (4 isoforms). Expression of 11 of the 12 genes encoding isoforms expressed 

in the hCMEC/D3 cell line were also expressed in the human brain microvessels and included 

CYP2U1 and CYP2S1, however their role in drug metabolism remains to be elucidated. 

Genes for 16 cytochrome P450 isoforms were also detected in human CECs isolated 

from healthy human brains including genes that encoded for CYP1A1, CYP1B1 and CYP3A4 

(Ghosh et al. 2010). The expression of 11 of these genes, including CYP3A4, known to 

metabolise antiepileptic drugs, was significantly increased in human CECs isolated from 

brains of drug–resistant epileptic patients, compared to human CECs isolated from healthy 

human brains. 

Other metabolising enzymes, including monoamine oxidases, which have been shown 

to metabolise the antidepressant citalopram (Kosel et al. 2001), have also been characterised at 

the human BBB (Kalaria et al. 1987). 

 

1.3 Drug transport across the blood-brain barrier  

Drugs are transported across the BBB via two routes namely the paracellular route and the 

transcellular route (Figure 1.3). The paracellular route is highly restrictive due to the presence 

of tight junctions between adjacent CECs which prevent the penetration of even relatively 

small polar compounds, for example nutrients such as glucose and amino acids, across the 
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BBB. The dominant route of drug transport across the BBB is via the transendothelial route 

which involves the following processes:- 

 

1. Passive diffusion 

2. Receptor-mediated transcytosis 

3. Adsorptive mediated transcytosis  

4. Carrier mediated influx  

 

Figure 1.3  Routes of drug transport cross the blood-brain barrier 

 

 

 (a) Paracellular route, drugs permeate the BBB between adjacent CECs of BBB. (b) Passive 

diffusion of drugs through the CECs from the blood into the brain. (c) Receptor-mediated 

transcytosis involving specific interaction of the drug at a receptor on the cell membrane 

triggering internalisation of the extracellular material and drug and transportation of it across 

the CECs (d) Adsorptive medium transcytosis, cationic drugs bind to the negatively charged 

glycocalyx on the cell surface inducing internalisation and transfer of drug across the cell (e) 

Carrier medium influx transporters transport drugs across the CECs from the blood into the 

brain. Adapted from (Begley et al. 2003). 
 

Drugs can passively diffuse from the polar environment of the blood directly through the 

CECs into the brain.  Physicochemical drug properties can be related to the ability of a drug to 

passively permeate the BBB, although these properties are not always indicative of CNS 

penetration (e.g. drugs that are substrates of efflux transporters may still be excluded from the 

CNS). A general trend between lipophilicity and CNS drug penetration exists where the rate of 

BBB penetration increases with increasing lipophilicity of the drug (Levin 1980; Liu et al. 

2004; Summerfield et al. 2006; Summerfield et al. 2007). However, optimum lipophilicity has 

been shown to correspond to a logD of approximately 2-3 (van de Waterbeemd et al. 2001; 

Summerfield et al. 2007). 

(a) (b) (c) (d) (e) 
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Other physiochemical properties of drugs that are considered optimum for passive drug 

diffusion across the BBB are a MW <400-600 (Pardridge 1998), polar surface area (PSA) <70 

Å
2
 (Kelder et al. 1999) and formation of <6 hydrogen bonds with water (Pardridge 1998). 

Basic drugs passively diffuse across the BBB more easily than acidic drugs because bases are 

cationic and interact with negatively charged glycocalyx and the phospholipid heads of the 

cerebral cell membranes (Abbott et al. 2009). 

Transcytosis is the main route of transport across the BBB for drugs with large molecular 

weight such as proteins like insulin (Banks 1999). Transcytosis is a process that involves the 

invagination of the cell membrane which forms a free vesicle that internalises both 

extracellular fluid and drug molecules. The free vesicle then travels through the cell where it 

fuses with the opposite membrane and releases the contents (Begley et al. 2003). Receptor-

mediated transcytosis involves a specific interaction of the drug at a receptor on the cell 

membrane which triggers internalisation of the extracellular material and drug and transports 

them across the CECs (Smith et al. 2006). Adsorptive-mediated transcytosis is a less specific 

process where a cationic drug binds to the negatively charged glycocalyx on the cell surface 

inducing internalisation and transfer of drug across the CEC into the brain (Abbott et al. 

2009). 

Essential polar nutrients such as glucose and amino acids are unable to passively diffuse 

across the BBB into the CNS.  More than 20 specific solute carriers for a range of different 

solutes have now been identified at the BBB (Zhang et al. 2002). For example, the glucose 

transporter, large neutral amino acid transporter and organic cation transporters (Abbott et al. 

2009). Transporters may be located on either the apical or basolateral membrane or both, 

meaning that solutes may be transported across the CECs from the blood to the brain or from 

the brain to the blood. Carrier mediated transport may be utilised for drug delivery for 

example L-DOPA and gabapentin which are substrates for the large neutral amino acid 

transporter and lidocaine, imipramine and propranolol which are substrates for the cationic 

transporter (OCT) (Begley 2004). 
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1.4 Methods for studying central nervous system brain penetration 

Numerous in vitro and in vivo models and techniques exist to study brain penetration. 

The main in vitro and in vivo techniques commonly applied in CNS drug discovery are 

discussed below.     

 

1.4.1 In vitro blood-brain barrier models for studying blood-brain barrier penetration 

Since the discovery of the BBB around 100 years ago (Goldmann 1913), its 

permeability function has been the main focus of BBB research. A variety of in vitro BBB 

models from a range of species cell types and tissues have been employed since the 1970s 

generating vast amounts of literature within this field and making comparisons between 

different models extremely difficult. Currently, there is no single in vitro BBB model that is 

considered to be the „gold standard‟.  

The main aims of a valid in vitro BBB model are to mimic the BBB in vivo and predict 

in vivo permeability. The model should display in vivo BBB characteristics such as similar cell 

architecture, tight junctions forming a restrictive paracellular pathway, reproducible solute 

permeability, functional expression of key transporters, such as P-gp, and expression of BBB 

marker enzymes, for example alkaline phosphatase and γ-glutamyl transpeptidase (Gumbleton 

et al. 2001). Additionally, the model should be low cost, allow ease of culture and high 

throughput screening (Gumbleton et al. 2001). In vitro BBB models carry some advantages 

over in vivo BBB models, in that they permit the examination of the BBB in isolation, can 

eliminate compounds prior to in vivo studies thereby reducing animal experimentation and are 

more cost effective.  

In general, in vitro BBB models consist of a confluent monolayer of cells grown on a 

filter representing the CECs of the in vivo BBB. Either side of the cell monolayer is a buffer 

filled compartment, one representing the blood (apical) and the other representing the brain 

(basolateral) (Figure 1.4). In vitro studies are performed to measure the rate of drug transport 

from the apical (A) compartment across the cell monolayer into the basolateral (B) 

compartment and vice versa.  

Apparent permeability (Papp Equation 1.1) is the traditional measure of rate of drug 

transport across an in vitro BBB model. Equation 1.1 is accurate when drug transport is linear 

over time, <10% of the drug is transported across the cell monolayer, there is inappreciable 
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backflow and good mass balance (Youdim et al. 2003). More recently, an alternative 

measurement of permeability, called exact permeability, has been derived (Pexact Equation 1.2a 

and 1.2b) (Tran et al. 2004). The exact permeability measurement is thought to provide a more 

accurate measure of rate of drug transport because it provides a mathematical solution for the 

whole transport curve not just the linear phase unlike the apparent permeability solution. 

Additionally, the exact permeability solution can be applied when >10% of the drug is 

transported across the cell monolayer and when there are mass balance problems. Both 

apparent and exact permeability solutions were used in this work in order to make 

comparisons between the two solutions. 
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DV  = Donor compartment volume (cm
3
) 

RV = Receiver compartment volume (cm
3
) 

A  = Surface area of the permeability barrier (cm
2
) 

 t  = Time of measurement (s) 

RC  = Drug concentration in the receiver compartment (mol.l
-1

) at time t  

 tC  = Average system concentration of drug defined by Equation 1.2b 
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DC = Drug concentration in the donor compartment (mol.l
-1

) at time t  
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The rate of drug transport is often determined from both the apical to the basolateral 

compartment and from the basolateral to the apical compartments in order to determine an 

efflux ratio (ER) (B-A/A-B) for the drug. These studies are also performed with a potent 

transporter inhibitor, for example the P-gp inhibitor GF120918. For a drug with a high efflux 

ratio, if the efflux ratio returns to unity in the presence of the inhibitor, it is likely that the 

efflux observed without the inhibitor is due to the efflux transporter P-gp and hence the drug 

could be a substrate of P-gp. 

 

Figure 1.4  Schematic of an in vitro blood-brain barrier model 

 

The upper compartment (apical) represents the blood side of the BBB. A cell monolayer is 

grown on a filter at the base of the apical compartment which is suspended in the lower 

(basolateral) compartment which represents the brain side of the BBB. 

 

Cell monolayer integrity, reflecting the extent of paracellular and transcellular 

permeation of ions across the cell monolayer of an in vitro BBB model, can be assessed by 

measuring transcellular electrical resistance (TER). The literature reports a wide variation of 

TER between in vitro BBB models, ranging from very low TER values, for example 300 

Ω.cm
2
 obtained with an immortalised porcine cell line co-cultured with the C6 glioma cell line 

(Lauer et al. 2004), to much higher TER values for example 1650 Ω.cm
2
 obtained using 

primary porcine CECs co-cultured with primary rat astrocytes (Cohen-Kashi Malina et al. 

2009). An ideal model would display TER representative of the BBB in vivo which has been 

reported to be between 1490 Ω.cm
2
 (across the rat BBB) (Butt et al. 1990) and 1870 Ω.cm

2 

(across the frog BBB) (Crone et al. 1982). 

Cell 

monolayer 

Basolateral  

compartment  

Apical 

compartment 
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1.4.1.1 In vitro blood-brain barrier models using primary cultured cells 

Ferenc Joo and co-workers were the first to successfully isolate viable brain capillaries 

from rat brains in 1973 (Joo et al. 1973).  Bowman et al. improved and modified this work and 

were the first to use an in vitro BBB model containing a filter, by culturing bovine endothelial 

cells on a collagen coated nylon mesh insert (Bowman et al. 1983). Since then the literature 

reports numerous in vitro BBB models using primary cell culture based on rodents (Lundquist 

et al. 2002; Calabria et al. 2006; Nakagawa et al. 2009), bovine (Rubin et al. 1991; Gaillard et 

al. 2000) and porcine (Franke et al. 2000; Zhang et al. 2006; Smith et al. 2007) as difficulties 

in obtaining human tissue limits the use of human CECs for primary cell culture. Although, 

most recently a primary human in vitro BBB model demonstrating high TER and expression 

of tight junction proteins, the efflux transporter P-gp and endothelial cell markers such as von 

Willebrand factor has been reported (Bernas et al. 2010). 

 The main advantage of using primary CECs is that they exhibit the closest phenotypic 

resemblance to the in vivo BBB retaining in vivo characteristics such as tight junctions (Rubin 

et al. 1991), expression of transporters (Zhang et al. 2006) and BBB enzymes (Smith et al. 

2007). However, drawbacks include difficulties in obtaining pure cultures and isolation of 

primary cells and cell culture can be labour intensive (Gumbleton et al. 2001). Despite primary 

CEC cultures providing the closest phenotypic resemblance to the in vivo BBB, down 

regulation or loss of in vivo BBB characteristics can still occur on isolation from brain tissue 

(DeBault et al. 1980).  

 

1.4.1.1.1 Modulation of in vitro blood-brain barrier model properties 

The correct culturing techniques and conditions can help to maintain BBB 

characteristics of primary cultured CECs which are often down regulated or lost on isolation. 

These include co-culture with astrocytes or culture with astrocyte-conditioned medium 

(ACM), adding supplements to the medium, removing serum from the medium and 

purification of CECs using puromycin treatment. 

Co-culture of primary CECs with astrocytes or culturing in ACM typically improves 

barrier properties of in vitro BBB models (Abbott 2002; Abbott et al. 2006). Co-culture with 

astrocytes has been shown to induce BBB properties such as tight junction formation and 

decreased permeability (Dehouck et al. 1990; Rubin et al. 1991; Sobue et al. 1999). Co-culture 
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with astrocytes has also been shown to induce BBB-associated enzymes such as alkaline 

phosphatase (Sobue et al. 1999; Smith et al. 2007) and γ-glutamyl transpeptidase (El Hafny et 

al. 1996) and the expression of the efflux transporter P-gp (El Hafny et al. 1997; Gaillard et al. 

2000). A large increase in the expression of the efflux transporter P-gp in bovine CECs co-

cultured with astrocytes compared to bovine CECs cultured alone has been reported (Cecchelli 

et al. 1999). As P-gp is currently deemed the most important transporter regarding drug 

penetration at the in vivo BBB, co-culture with astrocytes can provide an in vitro BBB model 

more representative of the in vivo BBB and potentially provide an accurate permeability 

screen. 

The components of the cell culture medium can also enhance the restrictive nature of 

in vitro BBB models. Supplements added to the medium have been shown to enhance tight 

junction protein expression between adjacent cells of in vitro BBB models. Hydrocortisone 

has been shown to increase TER and decrease cell monolayer sucrose permeability (Hoheisel 

et al. 1998; Calabria et al. 2006). Supplementing medium with cyclic adenosine 

monophosphate (cAMP) has also been shown to increase TER across an in vitro BBB model 

(Rubin et al. 1991), since cAMP is thought to act as a second messenger which induces 

phosphorylation of tight junction proteins and therefore tightens the barrier. Additionally, 

agents that increase intracellular cAMP levels, for example chlorophenylthio-cyclic adenosine 

monophosphate (CPT-cAMP) and RO-20-1724, have also been shown to increase TER 

(Igarashi et al. 1999). 

The role of serum in cell culture is to provide the cells with nutrients, hormones, 

growth factors, proteins and trace minerals to aid cell proliferation (Nitz et al. 2003). 

However, PBEC monolayers were reported to exhibit lower TER and higher sucrose 

permeability when cultured with serum-containing medium compared to serum-free medium 

(Hoheisel et al. 1998; Nitz et al. 2003). The serum in the cell culture medium was thought to 

inhibit CEC differentiation and reduce barrier tightness of established confluent cell 

monolayers. The serum-derived factors responsible for this and their mode of action are still to 

be elucidated, although it has been hypothesised that vascular endothelial growth factor 

(VEGF) and lysophosphatidic acid could play a role along with other serum-derived factors 

(Nitz et al. 2003). 
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Contamination of CECs from cells such as astrocytes and pericytes is an inevitable 

problem associated with the isolation of primary CECs. Contamination can result in 

incomplete barrier formation of the cultured cell monolayers (Parkinson et al. 2005) and low 

reproducibility between isolations. A recent study showed that addition of the P-gp substrate 

puromycin to isolated primary CECs eliminated contaminating cells and showed no toxic 

effects towards CECs (Perriere et al. 2005). Another study using primary cultured rat CECs 

repeatedly achieved purities of 99.8% using a similar approach (Calabria et al. 2006).  

 

1.4.1.2 Immortalised cell lines employed as in vitro blood-brain barrier models 

To overcome the problems encountered with harvesting and maintaining primary 

cultured CECs, immortalised CEC lines have been developed. The literature documents a 

large variety of in vitro BBB model based on immortalised cell lines using various cell types 

which employ a range of culturing techniques and conditions, for example co-culture with 

astrocytes (Sobue et al. 1999) and addition of supplements to the culture medium 

(Muruganandam et al. 1997). Immortalised brain capillary cell lines have been documented 

from a range of species, for example the rat GPNT cell line (Regina et al. 1999) and RBEC1 

cell line (Kido et al. 2000), the mouse MBEC cell line (Tatsuta et al. 1992), the bovine cell 

line SV-BEC (Durieu-Trautmann et al. 1991), the porcine cell line PBMEC/C1-2 (Lauer et al. 

2004) and the human cell line hCMEC/D3 (Weksler et al. 2005).  

In vitro BBB models based on immortalised CEC lines retain some in vivo 

characteristics such as expression of key transporters (Wang et al. 2005) and BBB marker 

enzymes such as alkaline phosphatase (Sobue et al. 1999). The main advantages of these in 

vitro BBB models are ease of culture and their potential use in high throughput screening. 

However, a major disadvantage is that they demonstrate insufficient barrier properties 

(Reichel et al. 2003). As a result, drug discovery groups within the pharmaceutical industry 

tend to use in vitro BBB models based on cell lines from non-cerebral origins, such as the 

MDR1–MDCKII and Caco-2 cell line, for BBB permeability screening, which demonstrate 

better barrier properties. Several immortalised cell lines were employed as in vitro BBB 

models in this thesis and will now be discussed in more detail. 
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1.4.1.2.1 The hCMEC/D3 cell line 

The development of a well characterised human endothelial in vitro BBB model would 

be the ultimate model for studying human in vivo BBB penetration. However, healthy human 

brain tissue for primary cell culture is extremely difficult to routinely obtain. The main source 

of human brain tissue is from surgical procedures or post mortems, but the tissue is often 

damaged or diseased.  

To overcome the limitations of primary culture, and reduce variation in tissue 

composition/expression levels of transporters, several immortalised human endothelial cell 

lines have been established, for example the BB19 cell line which is flawed by high sucrose 

permeability (Kusch-Poddar et al. 2005) and the NKIM-6 cell line (Ketabi-Kiyanvash et al. 

2007) which offers no permeability data at present.  

The hCMEC/D3 cell line is the first example of an extensively characterised human 

brain endothelial cell line. The hCMEC/D3 cell line was developed by infection of primary 

endothelial cultures by lentiviral vectors encoding hTERT and SV40 large T antigen (T-SV40) 

(Weksler et al. 2005). The hCMEC/D3 cell line retains most morphological and functional 

characteristics of the in vivo BBB even without co-culture with astrocytes and shows no 

indication of phenotypic drift up to passage 35. The hCMEC/D3 cell line expresses, the tight 

junction proteins ZO-1, JAM-A and claudin-5 (Weksler et al. 2005) and functional ABC 

transporters P-gp, MRP1 and BCRP (Poller et al. 2008). However, this model is potentially 

flawed by high sucrose permeability 1.65 ± 0.18 x 10
-3

 cm.min
-1

 and extremely low TER (<40 

Ω.cm
2
 compared to 1490-1870 Ω.cm

2
 in vivo (Crone et al. 1982; Butt et al. 1990)).  

Modification of culture conditions with the addition of human serum reduced passive sucrose 

permeability by up to 39% (Poller et al. 2008). The authors suggested that the observed 

reduction in passive sucrose permeability made the in vitro BBB model suitable for drug 

transport studies, however, this is questionable. Further work using the hCMEC/D3 cell line 

has lead to the development of a humanised dynamic in vitro BBB model, where hCMEC/D3 

cells were grown inside hollow microporous fibres and exposed to pulsatile flow. 

Transcellular electrical resistances of hCMEC/D3 cells grown dynamically (approximately 

1200 Ω.cm
2
) were greater than hCMEC/D3 grown on Transwell® inserts (60-80 Ω.cm

2
 in this 

study) (Cucullo et al. 2008) and were hence, more representative of the in vivo BBB. 
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1.4.1.2.2 The MDCK cell line 

The Madin-Darby canine kidney (MDCK) cell line is a canine epithelial cell line that 

has previously been used as an in vitro BBB model (Veronesi 1996; Wang et al. 2005; 

Summerfield et al. 2006; Summerfield et al. 2007) despite being epithelial not endothelial, 

from kidney not from brain and derived from dog and not from human. Madin-Darby canine 

kidney wild type cells express low levels of P-gp. However, MDCK type II cells can be 

transfected with the human MDR1 cDNA to produce the MDR1-MDCKII cell line which 

exhibits polarised expression of P-gp (Pastan et al. 1988). An advantage of the MDR1-

MDCKII cell line is that it can be used in automated high throughput screening, requiring only 

3-4 days of culture prior to use and monolayers demonstrate very low sucrose permeability  

(1-3 x 10
-6

 cm.s
-1

) (Gumbleton et al. 2001). Consequently, this cell line is often the in vitro 

BBB model of choice in CNS drug discovery programmes for estimation of drug permeability 

and identification of P-gp substrates. A relatively recent study investigating nine in vitro cell 

line-based BBB models for their suitability as a BBB permeability screen concluded that the 

MDCK cell line transfected human MDR1 was the most promising used in the study (Garberg 

et al. 2005). Wang et al. also conclude the MDR1-MDCKII cell line employed as an in vitro 

BBB model is suitable for use in high throughput drug discovery programmes (Wang et al. 

2005). 

 

1.4.1.2.3 The Caco-2 cell line  

The Caco-2 cell line is a well characterised human colorectal adenocarcinoma cell line 

developed by the Sloan-Kettering Institute for Cancer Research. The Caco-2 cell line possess 

tight junctions (Hilgers et al. 1990) and expresses the efflux transporters P-gp (Hunter et al. 

1993), MRP2 (Gutmann et al. 1999), MRP3, MRP1 (low levels) and MRP5 (low levels) 

(Hirohashi et al. 2000) and BCRP (Xia et al. 2005). Traditionally, the Caco-2 cell line has 

been used as a model of the human intestine because in vitro intestinal permeability has been 

shown to correlate with in vivo data (Yee 1997). The literature also reports the use of the 

Caco-2 cell line as an in vitro BBB model (Kalvass et al. 2002; Garberg et al. 2005). However, 

the cell line expresses some transporters and enzymes that are not present at the BBB in vivo 

(Sun et al. 2008) and takes approximately 21 days in culture to form confluent cell monolayers 

(Sun et al. 2008), which are limitations to its use as an in vitro BBB model. 
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1.4.2 In vivo techniques for studying central nervous system drug penetration 

In vivo techniques are the most reliable techniques for studying CNS drug penetration 

as they use living tissue and they examine the overall effect of the whole body on an 

experiment. In vivo techniques are also important for validating in vitro techniques that can 

then be used for higher throughput studies. However, drawbacks include the requirement of 

large numbers of live animals, low throughput, the need for expensive equipment and 

experimental expertise and the highly invasive nature (apart from some imaging studies) of the 

studies. Additionally, in vivo techniques have limited application in humans and consequently 

extrapolation of data from preclinical species to humans is often required, which can be 

subject to problems regarding species differences.  

 

1.4.2.1 Measurements of total blood and brain tissue drug concentration 

Traditionally, brain penetration in vivo is determined from the total brain to blood 

concentration ratio (also known as the partition coefficient Kp) in rodents. Rodents are acutely 

dosed orally, subcutaneously or intraperitoneally, blood and brain samples are then taken at 3-

5 time points. Alternatively, rodents are dosed via intravenous infusion and blood and brain 

samples are taken at one time point (Doran et al. 2005; Summerfield et al. 2006).  

 

1.4.2.2 The mdr1a/1b (-/-) knock out mouse model  

Humans possess one gene (MDR1) that encodes the P-gp efflux transporter whereas 

rodents possess two genes (mdr1a and mdr1b). The development of genetically modified 

mdr1a/1b (-/-) knock out mice has provided a suitable in vivo model for studying the effect of 

P-gp on CNS drug disposition, as in combination the mdr1a and mdr1b genes are thought to 

execute the equivalent function as the MDR1 gene in humans (Schinkel 1999). The „gold 

standard‟ assay for P-gp substrate identification, involves determination of the fold difference 

of a drugs Kp in wild type and mdr1a/1b (-/-) knock out mice (Summerfield et al. 2006). An 

alternative in vivo mouse model is the chemical knock out mouse in which mice are pre-

treated prior to studies with an optimal dose of a potent P-gp inhibitor, for example 

GF120918, which allows the role of P-gp in CNS drug distribution to be studied (Cutler et al. 

2006).  
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1.4.2.3 Microdialysis 

Microdialysis is the only in vivo technique that can directly measure unbound 

concentrations of drugs simultaneously in the blood and brain tissue (Hammarlund-Udenaes 

2000). The technique is semi-invasive and involves the insertion of a microdialysis probe into 

the tissue or fluid being examined. The technique can be used in pre-clinical studies (Xie et al. 

1998) and in the clinic (Ederoth et al. 2004). However, poor recovery of lipophilic compounds 

and low throughput limit its use in drug discovery programmes (Hammarlund-Udenaes et al. 

2008). 

 

1.4.2.4 In situ brain perfusion  

The in situ rat brain perfusion technique was developed by Takasato et al. to study 

transport of drugs into the brain (Takasato et al. 1984). The technique involves inserting a 

cannula into the carotid artery of an anaesthetised animal, the cardiac blood supply is cut off 

and the brain circulation is taken over by infusing the animal with blood or buffer containing 

the drug of interest (Summerfield et al. 2007). After perfusion the animal is sacrificed and the 

brain is removed for analysis. 

 

1.4.2.5 Positron emission tomography 

Positron emission tomography (PET) is a non invasive in vivo tracer technique 

(Cunningham et al. 2004) that can be used to give quantitative information on the 

biodistribution and receptor occupancy of drug and P-gp function and expression within the 

CNS of humans with high sensitivity and resolution (Summerfield et al. 2008). Positron 

emission tomography also has applications in the clinic, for example to monitor tumor 

progression (Grosu et al. 2010), as well as in a drug discovery setting. 

 In drug discovery PET can be used to investigate P-gp functionality (Elsinga et al. 

2005) at the BBB in disease states, for example investigation of depression using probes such 

as [
11

C]verapamil (de Klerk et al. 2009), P-gp interactions at the BBB, intra brain distribution 

of novel drugs, and to make direct comparisons between preclinical species and humans 

(Syvanen et al. 2009) in order to investigate species differences.  However, this technique is 

not currently widely applicable because it requires expensive specialist equipment, 

radiolabelling of substrates with short half lives on site and expertise. 
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1.4.3 Equilibrium dialysis 

In addition to the role of the BBB, nonspecific drug binding in blood and brain tissue is 

another important factor to be considered in the brain penetration of drugs. Drug fraction 

unbound in blood (fublood) is important because it determines the amount of free drug available 

to cross the BBB. Drug fraction unbound in brain (fubrain) tissue is important because it 

determines the amount of free drug able to interact with target sites and the amount of drug 

available for potential efflux out of the CNS. 

Equilibrium dialysis is an in vitro technique that can be used to determine the drug 

fraction unbound in blood and brain tissue. Equilibrium dialysis is often chosen over other 

methods such as ultrafiltration and ultracentrifugation because it is less prone to experimental 

artifacts (Kariv et al. 2001). The 96-well format equilibrium dialysis plate enables multiple 

compounds with replicates to be screened simultaneously and is made of Teflon® which 

reduces nonspecific binding to the apparatus (Banker et al. 2003). The technique is easy to 

perform, low cost, and is more comparable to the in vivo situation as results are obtained under 

equilibrium. The literature mainly reports equilibrium dialysis studies using rodent blood and 

brain tissue (Kalvass et al. 2002; Maurer et al. 2005; Summerfield et al. 2006; Kalvass et al. 

2007; Summerfield et al. 2007). However, more recently, the use of porcine and human blood 

and porcine, marmoset, cynomolgous monkey and dog brain tissue in equilibrium dialysis 

studies (Summerfield et al. 2008; Read et al. 2010) has been documented. 

 

1.4.4 Brain slice 

The brain slice technique is an alternative in vitro technique to equilibrium dialysis for 

determining the drug fraction unbound in brain tissue (Becker et al. 2006; Friden et al. 2009). 

The fundamental difference between the two techniques is that equilibrium dialysis requires 

homogenisation of brain tissue with a buffer prior to dialysis, whereas the brain slice 

technique maintains the cellular structure of the brain tissue. The validity of using 

homogenised brain tissue has caused debate because homogenisation destroys tissue 

components and may expose binding sites that would otherwise not be available for drug 

binding with intact tissue (Becker et al. 2006) and could lead to an underestimation of fubrain. 

However, this is of more relevance for compounds that are highly bound to brain tissue     

(>99 %) (Read et al. 2010). Additionally, the disruption of acidic organelles, for example 
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lysosomes, could alter the distribution of basic lipophilic drugs (Clausen et al. 1993) and also 

differences between interstitial fluid drug concentration and intracellular drug concentration 

may not be reflected in the fraction unbound (Reichel 2009). However, studies have shown 

agreement between unbound fractions when the brain homogenate method was compared to 

the brain slice method (Becker et al. 2006). 

 

1.5 The challenge of effective drug penetration across the blood-brain barrier 

Appearances can often be deceptive and the BBB is a prime example of this. Although 

the BBB has a short diffusional pathway, a large surface area (100-200 cm
2
.g

-1
 brain (Begley 

2003)) and is a dense capillary network with high blood flow, it remains an excellent barrier 

and effective drug delivery to the brain is still a massive challenge for scientists.  

 

Central nervous system drug penetration is thought to be modulated by three main 

processes (Jeffrey et al. 2010):-  

 

1. Blood-brain barrier permeability 

2. Facilitated transport at the BBB  

3. Drug binding in blood and brain tissue 

 

These three processes act in concert to determine three separate but inter-related facets 

of CNS drug delivery, namely the rate and extent of brain penetration and brain distribution of 

compounds (Hammarlund-Udenaes et al. 2008; Reichel 2009).  

 

1.5.1 The role of the blood-brain barrier in modulating brain drug penetration  

1.5.1.1 Blood brain barrier permeability 

Cell barrier permeability has been shown to be a factor that can differentiate between 

drugs that permeate the BBB and drugs that do not. In vitro permeability was investigated, 

using MDR1-MDCKII cells, for a group of CNS active drugs (n = 48) and a group of non-

CNS active drugs (n = 45) (Mahar Doan et al. 2002). The CNS active drug group was 

predominantly (46 out of 48 drugs) characterised by passive permeability (described using the 

apparent permeability coefficient Papp) > 150 nm.s
-1

. In the non-CNS active group, Papp for 13 
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out of 45 drugs were < 150 nm.s
-1

 compared to 2 (sumitriptan and zolmitriptan, both 

antimigraine drugs) out of 48 for the CNS active drug group. Furthermore, it has been 

suggested that sumitriptan and zolmitriptan may not have to cross the BBB to exert a clinical 

effect (Goadsby 2000).  

In a similar study Wang et al. used MDR1-MDCKII cells to compare the passive 

permeability of CNS active and non-CNS active drugs (Wang et al. 2005). Central nervous 

system active drugs were also characterised by greater Papp values (> 30 nm.s
-1

) compared to 

non-CNS active drugs. However, CNS active drugs were characterised by Papp > 30 nm.s
-1

 

which was lower than Papp >150 nm.s
-1 

(Mahar Doan et al. 2002) reported previously.  

A comparison of 14 drugs (Jeffrey et al. 2007) common to both studies (Mahar Doan et 

al. 2002; Wang et al. 2005) revealed a poor correlation between apical to basal (A-B) 

permeability between the two data sets which highlights the difficulties in comparing data 

from different groups and the impact of different assay conditions.  

 

1.5.1.2 P-glycoprotein efflux at the blood-brain barrier 

P-glycoprotein is currently deemed the most understood and clinically relevant ABC 

efflux transporter at the BBB in drug discovery programmes (Zhou 2008) due to its wide 

range of substrates (Schinkel 1999). To date, P-gp is also the only efflux transporter at the 

BBB that has been shown to reduce, although not entirely prohibit, CNS drug penetration 

(Doran et al. 2005). In vitro assays are routinely employed ahead of in vivo studies (with key 

compounds) to screen for P-gp substrates as an integral component of CNS drug discovery 

(Jeffrey et al. 2007). In vitro efflux ratios have been shown to correlate with in vivo data 

obtained from mdr1a/1b (-/-) knock out mice (Summerfield et al. 2006). Despite this, Doran et 

al. have observed some inconsistencies where compounds were found to be substrates of P-gp 

using the mdr1a/1b (-/-) knock out mice model but were not found to be substrates using in 

vitro P-gp assays (Doran et al. 2005). Substrates of P-gp may exhibit a reduced therapeutic 

window due to the effect of P-gp and require higher free blood concentrations to compensate, 

running the risk of peripheral toxicity (Liu et al. 2008).  

One study evaluated brain penetration of 32 CNS active drugs using the mdr1a/1b (-/-) 

knock out mouse and wild type mouse model (Doran et al. 2005). The majority (27 of 32) of 

CNS active drugs possessed an efflux ratio significantly greater than unity, although only 4 of 
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32 were greater than 2-fold, suggesting that P-gp substrates can still penetrate the brain. 

However, it must be noted that despite most of the drugs in this study being subjected to P-gp 

active efflux, the US Food and Drug Administration does not consider a drug to be a substrate 

unless it has an efflux ratio greater than 2 (Zhang et al. 2008).  

P-gp substrates have been shown to penetrate the CNS (Summerfield et al. 2006) 

suggesting that, although P-gp may limit CNS penetration of substrates, it does not entirely 

preclude it. Summerfield et al. summarised effective CNS drug penetration as a balance 

between good passive permeability, low P-gp efflux, correct physicochemical properties and 

sufficient brain tissue binding (which was suggested to provide a concentration gradient to 

overcome some of the affects of P-gp and thereby favour CNS penetration). Hence, although 

low P-gp efflux is beneficial, it is important not exclude all P-gp substrates during drug 

discovery, especially if they exhibit other properties considered favourable for CNS 

penetration or are particularly potent so even small amounts at the active site in the brain can 

have the desired efficacious outcome. 

 

1.5.2 Fraction unbound in blood and brain tissue and blood-brain barrier penetration 

Drug-protein binding is the reversible interaction of drugs with proteins in blood and 

tissues. It is only the fraction of drug that is unbound (fu Equation 1.3) that is able to 

pharmacologically interact at a target site (Banker et al. 2003).  

Free drug + free protein ↔ drug-protein complex 

 

Fraction unbound is defined as the extent to which a drug is bound to proteins in plasma, 

blood or tissues: 

drug total

drug unbound
(fu) unbound Fraction                       Equation 1.3 

The fraction of drug unbound is dependent upon the affinity of the drug for the binding 

protein, the concentration of the binding protein(s) and the concentration of the drug relative 

to the concentration of the binding protein(s) (Birkett 2006). Knowledge of the extent of 
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binding of a drug is important in terms of predicting the pharmacokinetics, pharmacodynamics 

and pharmacological interaction of a drug with the target site. The major drug binding blood 

proteins are albumin, alpha1-acid glycoprotein and lipoproteins (Maurer et al. 2005). 

Knowledge of the proteins involved in drug tissue binding is lacking, however, it is thought 

that the overall extent of nonspecific tissue binding can be used to obtain pharmacokinetic 

information (Maurer et al. 2005). 

As drugs penetrate the brain, several equilibrium drug distribution processes between 

the bound and unbound drug molecules occur concomitantly within the brain compartments 

(Figure 1.5). Equilibrium takes place across the BBB between the blood and the brain 

interstitial fluid, within the brain interstitial fluid, across cell membranes between the brain 

interstitial fluid and the intracellular fluid and within the brain cells. All equilibrium processes 

effect how fast steady state between blood and brain is reached (Hammarlund-Udenaes et al. 

2008).  

 

Figure 1.5  Equilibrium processes between bound and unbound drug within brain compartments 

 

Equilibrium processes between bound and unbound drug within brain compartments. BBB is 

the blood-brain barrier, ISF is the interstitial fluid, ICF is the intracellular fluid, BCSFB is the 

blood cerebral spinal fluid barrier and CSF is the cerebral spinal fluid. Adapted from 

(Hammarlund-Udenaes et al. 2008). 

 

Equilibrium dialysis is an in vitro technique used to measure drug-protein binding in 

blood and brain tissue which has become a recent addition to traditional in vitro BBB models 

for studying CNS brain penetration. Fraction unbound in blood and brain tissue determined by 
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using equilibrium dialysis can be used to calculate the in vitro blood to brain partition 

coefficient (fublood:fubrain) also known as Kbb (Summerfield et al. 2006), which has previously 

been used as an in vitro measure of brain penetration for drugs that passively diffuse (Kalvass 

et al. 2002; Maurer et al. 2005).   

 

Since 

blooduC ,  = brainuC ,                    Equation 1.4 

And  

fuCu  x totalC                                                                                                                                          Equation 1.5                                                                                                               

Therefore  

bloodfu  x  bloodC  = brainfu  x  brainC                  Equation 1.6 

And 

blood

brain

C

C
 = 

brain

blood

fu

fu
                   Equation 1.7 

 

Where, Cu is the unbound concentration, Ctotal is the total concentration, Cu,blood and Cu,brain are 

the unbound concentration in blood and brain respectively, Cblood and Cbrain are the total 

concentration in blood and brain respectively, fu is the fraction unbound, and fublood and fubrain 

are the fraction unbound in blood and brain respectively. 

 

Kalvass et al. investigated the relationship between Kbb and Kp (in vivo total brain to 

blood concentration ratio) in mice (Kalvass et al. 2002). For compounds that showed no 

evidence of P-gp efflux an excellent correlation (R
2
 = 0.98) between Kbb and Kp was 

observed. For compounds that were considered to be P-gp substrates, Kbb over predicted Kp in 

every case. For one P-gp substrate (unnamed in the study) Kbb over predicted Kp in FVB mice 

suggesting that the over prediction was a function of P-gp efflux. Kbb also over predicted Kp 

in mdr1a/1b (+/+) mice to the same extent as the ratio of Kp mdr1a/1b (-/-) mice to Kp 

mdr1a/1b (+/+) mice showing the influence of P-gp at the BBB on relative tissue binding in 

plasma and brain tissue. Analogous to the finding of Kalvass and Maurer, Summerfield et al. 

found Kbb to predict Kp for non-P-gp substrates (Summerfield et al. 2006). The prediction of 
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Kp in rats using Kbb was improved for P-gp substrates when the P-gp efflux ratio was 

incorporated into the Kbb estimate (i.e. Kbb/ER) where Kbb represents the distribution of the 

compound into the brain tissue and the efflux ratio represented the effect of the BBB on drug 

brain penetration. A further study (Maurer et al. 2005) has also shown Kbb to predict Kp in 

mice for drugs that passively diffuse across the BBB, confirming that fraction unbound in 

blood and brain tissue can be used to examine CNS brain penetration. 

 

1.6 Integrated concept of central nervous system drug penetration  

The literature reports various measures and models of CNS drug penetration. However, 

the parameters that describe „good CNS penetration‟ are still under debate. Traditionally, brain 

penetration was most often determined from the total brain to blood concentration ratio (also 

known as the partition coefficient, Kp) (Kalvass et al. 2002; Maurer et al. 2005; Summerfield 

et al. 2006; Summerfield et al. 2008). However, a lot of criticism now surrounds the use of Kp 

as a measure of brain penetration. A study performed by Doran et al (Doran et al. 2005) 

highlights a good example of this, where a range of Kp values (0.06-24) were determined in 

mouse for a group of 34 CNS active drugs. These findings suggest that a high Kp is not always 

a prerequisite for effective CNS penetration. However, a high Kp can be an indication of a 

high degree of nonspecific binding to brain tissue, potentially reducing the amount of free 

drug available for pharmacological interaction with receptors. It has been suggested that Kp 

may only represent a measure of inert partitioning of a drug into lipid material (van de 

Waterbeemd et al. 2001) such as the brain. The differences in protein and lipid composition 

may be used to explain this, since in brain the weight fraction of lipid and protein are 

comparable (0.11 and 0.079 respectively) whereas in blood the weight fraction of protein 

(0.18) is substantially greater than that of lipid (0.0065) (Jeffrey et al. 2007). Another 

limitation of the Kp parameter is that it represents a combination of all processes that govern 

CNS brain penetration including BBB permeability, active transport processes, relative drug 

binding between brain and blood, metabolism and bulk flow and does not permit the effect of 

each process on CNS brain penetration to be individually examined (Jeffrey et al. 2007). 

 

It is now accepted that CNS drug penetration can no longer be defined by a single 

parameter and a more holistic view to CNS drug discovery is now emerging. The new 
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integrated concept to CNS drug discovery focuses on three individual but inter-related 

components of CNS penetration:- 

 

 Rate of drug transport 

 Extent of drug penetration concentration equilibrium between blood and brain tissue 

 Drug distribution within brain tissue 

 

The new approach puts more emphasis on free drug concentrations at the site of action 

within the brain (Hammarlund-Udenaes et al. 2008; Liu et al. 2008; Reichel 2009). All aspects 

of this new approach can be addressed using current in vitro and in vivo methods.  

 

1.6.1 Rate of drug penetration across the blood-brain barrier 

The rate of drug penetration across the BBB is determined by BBB permeability which 

is a function of passive permeability related to physicochemical properties of drugs, active 

transport processes at the BBB, blood protein binding which determines the amount of free 

drug available to cross the BBB and, cerebral blood flow (Reichel 2009). In vitro BBB models 

are used to generate permeability measurements to represent the rate of drug transport across 

the in vivo BBB. In vivo, the rate of drug transport across the BBB can be determined from 

several methods including microdialysis and in situ permeability studies. 

 

1.6.2 Extent of drug penetration across the blood-brain barrier 

The use of Kp to determine the extent of CNS drug penetration is limited because it is a 

composite of all processes influencing brain penetration. Instead, the concentration ratio of 

unbound drug in the brain to unbound drug in the blood (Kp,uu  Equation 1.8)  is a much more 

useful parameter, which can be used as a measure of the extent of brain penetration 

(Hammarlund-Udenaes et al. 2008).  

When the Kp of the drugs used in a study by Doran et al (Doran et al. 2005) was 

compared to the Kp,uu (Liu et al. 2008), the fold difference was reduced from 240-fold between 

the Kp values to 34-fold between the Kp,uu values, demonstrating the effect of nonspecific 

binding on determination of Kp.  
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When the Kp and Kp,uu of the S- and R-enantiomers of certirizine were characterised 

(Gupta et al. 2006), Kp values of 0.22 and 0.04 were determined for S- and R-enantiomers 

respectively, initially suggesting that the S-enantiomer would preferentially penetrate the 

brain. However, the Kp,uu values (0.17 and 0.14 for S- and R-enantiomers respectively) were 

similar for both enantiomers, suggesting no stereoselective brain penetration. Differences in 

plasma protein binding were found to be the cause of stereoselective Kp values, highlighting 

the affect of drug binding in plasma (or blood) and brain tissue on this parameter. 

 Kp,uu is derived from the relationship between influx and efflux clearances and 

describes the affect of passive permeability and active transport processes at the BBB on the 

extent of CNS drug penetration (Hammarlund-Udenaes et al. 2008). When Kp,uu is close to 

unity passive diffusion across the BBB is assumed, when Kp,uu < 1 efflux at the BBB is 

assumed and when Kp,uu > 1 influx at the BBB is assumed. Kp,uu has been suggested to be the 

most pertinent parameter for predicting which drugs will be CNS active (Hammarlund-

Udenaes et al. 2008), with a high Kp,uu being most desirable (Liu et al. 2008). 

Microdialysis is currently the only in vivo method for directly determining Kp,uu, 

(Hammarlund-Udenaes 2000) however, this approach has limited use in a drug discovery 

setting. A more practical approach is to calculate Kp,uu (Equation 1.9) using fublood and fubrain 

determined using equilibrium dialysis and Kp determined from in vivo studies. A strong 

correlation between Kp,uu determined from microdialysis and calculated Kp,uu has recently been 

described (Liu et al. 2008). 
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bloodu

brainu

uup
AUC

AUC
K

,

,

,                                            Equation 1.8 

 

Where AUCu,brain is the area under the concentration-time curve for unbound concentration in 

brain tissue and AUCu,blood the area under the concentration-time curve for unbound 

concentration in blood. 

 

blood

brain

puup
fu

fu
KK ,                                                                                                   Equation 1.9 

Where Kp is the total brain to blood concentration ratio, fubrain is the fraction unbound in brain 

tissue and fublood is the fraction unbound in blood. 

 

1.6.3 Drug distribution within brain tissue 

The unbound volume of distribution in the brain (Vu,brain Equation 1.10) describes the 

relationship between the total drug concentration in the brain and the unbound drug 

concentration and is used to measure the extent of drug distribution in the brain (Hammarlund-

Udenaes et al. 2008; Reichel 2009). Unbound volume of distribution in brain is dependent 

upon the affinity of drugs for brain tissue components and indicates whether a drug is 

distributed solely in the interstitial fluid (Vu,brain  approx 0.2 ml.g
-1

 brain), throughout the 

interstitial fluid and intercellular fluid (Vu,brain  approx 0.8 ml.g
-1

 brain) or if the drug mainly 

nonspecifically binds to brain tissue (Vu,brain > 0.8 ml.g
-1

 brain) (Hammarlund-Udenaes et al. 

2008; Reichel 2009). Microdialysis can be used to determine Vu,brain  in vivo, though this is an 

experimentally complex, low throughput approach. Unbound volume of distribution can also 

be estimated in vitro using fubrain obtained from brain slice (Friden et al. 2007) or equilibrium 

dialysis (Reichel 2009). 
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D  = the dilution factor in diluted brain homogenate 

fu )(apparent = Measured fraction unbound of drug in diluted brain homogenate 

To summarise, the methods used to determine the delivery of novel CNS active drugs to 

the brain has surmounted enormous uncertainty and debate. It has now been established that 

effective drug delivery to the brain can not be defined by a single parameter and instead is a 

multifactorial concept. The pharmacokinetic parameters required to describe drug delivery to 

the brain, using the newer integrated approach are: 

 

1. A measure of the rate (Papp and Pexact in this work) of drug transport across the BBB.  

2. A measure of the extent of drug penetration across the BBB (Kp and Kp,uu calculated 

from Kp and fublood and fubrain  in this work). 

3. A measure of the distribution within the brain (Vu,brain, calculated using fubrain from 

equilibrium dialysis in this work). 

 

High BBB permeability, a low propensity for transporter-mediated efflux, high Kp,uu, high 

fublood and high fubrain in relation to fublood are favourable drug properties for effective drug 

delivery to the brain. However, drugs with low BBB permeability, drugs that are substrates of 

efflux transporter and drugs with low fublood or low fubrain in relation to fublood can still exert a 

therapeutic effect since it is a balance between all of these factors which determine effective 

drug delivery to the brain. It is also important to remember that favourable pharmacokinetic 

properties must also be combined with appropriate physicochemical properties, good 

pharmacological and toxicology data in order for novel CNS active drug candidates to be 

successful in the clinic. 

 

1.7 Physiologically based pharmacokinetic modelling 

An ability to be able to predict the extent of drug brain penetration in the early stages 

of drug discovery would be a valuable tool for the selection of novel CNS active drugs. 
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However, at present there is a lack of mathematical predictive models that can use in vitro 

parameters to accurately predict CNS drug penetration in vivo in order to reduce the quantity 

of expensive, complicated and time consuming in vivo studies required. Recently, a hybrid-

PBPK model of the rat CNS has been developed and validated, using in vivo parameters, by 

Dr Raj Badhan (manuscript in preparation) to predict rat in vivo CNS drug penetration. The 

use of in vitro-derived parameters, unbound drug fraction and permeability as input 

parameters for this hybrid-PBPK model of the rat CNS will be investigated during this thesis 

in order to establish whether in vitro parameters can be used in the early stages of drug 

discovery to predict CNS drug penetration.  

 

1.8 Pre-clinical animal species and central nervous system drug discovery 

Rodent models have historically been used widely throughout CNS drug discovery 

programmes to predict outcomes in humans. However, positive effects observed with rodents 

in the laboratory have not been mirrored in clinical trials. The exciting development of 

transgenic mouse models in the 1990s  (Schinkel et al. 1997) have failed to reduce attrition 

rates of novel CNS active drugs and added to the surmounting uncertainty regarding the use of 

rodent models in CNS drug discovery. Currently, there is limited knowledge concerning the 

reasons for species differences in CNS drug penetration.  

In vitro studies using cell lines transfected with P-gp from a range of species have 

demonstrated species differences in P-gp functionality (Ohe et al. 2003; Katoh et al. 2006; Xia 

et al. 2006; Baltes et al. 2007) despite close amino acid homology across species (Kim et al. 

2008). In one example different efflux ratios were obtained from monolayer efflux assays for 

several compounds out of a compound set with mouse (L-mdrla) and human (L-MDR1) P-gp-

transfected cell lines, suggesting that in vitro mouse studies did not always provide a good 

prediction of the effect of human P-gp upon drug penetration  in vivo (Yamazaki et al. 2001). 

In another example antiepileptic drugs including phenytoin and levetiracetam did not 

exhibit an efflux ratio using MDR1-MDCK and LLC-MDR1 cell lines (cell lines that 

expressed human P-gp) in monolayer efflux assays whereas studies using the LLC-mdrla (cell 

line that expressed mouse P-gp) classed phenytoin and levetiracetam as substrates suggesting 

species differences in substrate recognition or P-gp transport efficacy (Baltes et al. 2007). 
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Positron Emission Tomography (PET) is an in vivo technique that permits drug interaction 

with P-gp to be directly compared between preclinical species and humans (Syvanen et al. 

2009). In vivo studies using PET radioligands to study P-gp activity have shown differences in 

brain uptake of the PET radioligands in human compared to rodents suggesting species 

differences in P-gp function (Yasuno et al. 2006; Liow et al. 2007; Zhang et al. 2007; Syvanen 

et al. 2009).  

A recent PET study using three radiolabelled P-gp substrates demonstrated species 

differences in Kp values, with a higher brain uptake of the radiolabelled substrates observed in 

humans, monkey and minipig compared to guinea pig and rat suggesting the possibility of 

species differences in P-gp transport (Syvanen et al. 2009). However, in the presence of a P-gp 

inhibitor (cyclosporin A; this part of the study did not include humans) species differences in 

brain uptake were still observed, suggesting that species differences in P-gp alone were not 

responsible.  

Species differences observed in the presence of the P-gp inhibitor could suggest 

differences in the expression of other active transporters such as MRPs and BCRP, active 

transporters unidentified currently but present at the BBB or differences in plasma protein or 

brain tissue binding across species.  

Higher concentrations of the P-gp inhibitor GF120918 in guinea pig have been reported to 

achieve full P-gp inhibition compared to mice and rat (Cutler et al. 2006) again suggesting 

differences in P-gp functionality. Species differences in P-gp functionality between rodents 

and higher species such as monkeys and human must therefore be taken into account when 

extrapolating data from animal studies to human.  

The pregnane X receptor (PXR) plays a vital role in the regulation of P-gp expression, 

since xenobiotics bind to PXR and induce expression of P-gp (Ott et al. 2009). Functional 

similarities between pig and human pregnane X receptors have been documented (Ott et al. 

2009). Xenobiotics that induced P-gp expression in human, for example hyperforin and 

rifampicin, also induced P-gp expression in porcine brain endothelial cells (PBECs) but not in 

rat CECs, proposing the use of a porcine model for the prediction of xenobiotic-PXR 

interactions in human. 

Species differences in drug binding in plasma has been reported and may also account for 

differences observed in CNS efficacy between different species. Drug efficacy has been 
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demonstrated for one compound class in guinea pig whilst not in rat (Summerfield et al. 

2006). Species differences in pharmacology and active transporters were ruled out and fubrain 

was found to be comparable in guinea pig and rat. However, higher drug plasma binding was 

reported in rat compared guinea pig resulting in lower free fraction available to penetrate the 

BBB leading the authors to postulate that BBB penetration was restricted as a result of relative 

drug binding in blood exceeding that in brain.  

Species differences have been demonstrated at the BBB in relation to P-gp functionality 

and also in drug plasma protein binding which are both factors thought to govern CNS drug 

penetration and will be examined further during this thesis.  

Species differences have been highlighted between rodent and human which emphasises 

the problem of using rodent models to predict human CNS drug penetration. A preclinical 

species that is more representative of human would therefore be highly advantageous. As 

difficulties still remain in using a human primary cell model in research, the use of a porcine 

(a higher species) model will be examined during this work. Important similarities between 

humans and pigs have been illustrated such as extent of brain drug penetration (Syvanen et al. 

2009), functional similarities between pig and human PXR (Ott et al. 2009) and drug binding 

in blood and brain (Summerfield et al. 2008). Porcine models have been considered the gold 

standard in cardiovascular (Hughes 1986) and wound healing research (Simon et al. 2000) for 

many years due to their similarities to humans. Their use in CNS research may be just as 

valuable. 
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1.9 Aim and objectives  

The overall aim of this work is to use in vitro unbound drug fraction and permeability in 

order to predict CNS drug penetration. 

 

The specific objectives of this work are:- 

 

1. To develop and characterise a primary porcine in vitro BBB model to predict CNS 

drug permeability in vivo. 

2. To compare in vitro BBB models regarding their potential for the prediction of in vivo 

BBB permeability. 

3. To determine species differences in drug binding in blood and brain tissue. 

4. Employ in vitro-derived parameters, unbound drug fraction and permeability, in an in-

house a hybrid-PBPK model of the rat CNS to predict CNS drug penetration. 
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2.0 Chapter 2: Materials and methods 

2.1 Materials  

2.1.1 Chemicals, solutions and media composition 

An alphabetical list of all chemicals used and their suppliers is documented in 

Appendix 1. Solutions and media composition are documented in Appendix 2. 

 

2.1.2 Blood and brain tissue  

Rat blood and brain tissue were collected from male Sprague Dawley rats           

(approximately 250 g) (Charles Rivers Laboratories, Tranent, Scotland). Rats were sacrificed 

via cervical dislocation. Blood was collected by cardiac puncture and potassium 

ethylenediaminetetraacetic acid (EDTA) stabilised (final concentration 1.8 mg per ml blood) 

to prevent coagulation. Brains (1.8-2.0 g) were removed and placed in phosphate buffered 

saline (PBS, 137.0 mM NaCl, 2.7 mM KCl, 10.0 mM Na2HPO4 and 2.0 mM KH2PO4, pH 7.4) 

containing penicillin G sodium (100 U.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

) on ice. 

Porcine blood and brain tissue from Landrace pigs (80-90 kg) were collected from a 

local abattoir (C.S Morphets and Sons Ltd, Widnes, UK) immediately after sacrifice. Blood 

was collected from the jugular vein and carotid artery and stabilised with potassium EDTA 

(final concentration 1.8 mg per ml of blood). Brains (170-190 g) were isolated and transported 

in Leibovitz-15 medium (L-15) containing penicillin G sodium (100 U.ml
-1

) and streptomycin 

sulphate (100 µg.ml
-1

) on ice. 

Dog blood and brain tissue from male Swiss Beagles (10-15 kg) were supplied in-

house at GlaxoSmithKline (GSK, New Frontiers Science Park, Harlow, Essex, UK). The dogs 

were sacrificed by terminal anaesthesia with sodium pentobarbitone and death was confirmed 

by the cutting of the brachial artery. Blood was collected by jugular puncture and potassium 

EDTA (final concentration 1.8 mg per ml of blood) stabilised.  Brains were removed and 

placed in PBS containing penicillin G sodium (100 U.ml
-1

) and streptomycin sulphate (100 

µg.ml
-1

) on ice. 

Human blood was collected from volunteers (staff at University of Manchester, 

Manchester, UK) into plastic Vacutainer tubes lined with potassium EDTA (final 

concentration 1.8 mg per ml of blood). 
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2.1.3 Test drug selection    

Twelve centrally-acting test drugs were chosen by GSK for use in equilibrium dialysis 

and transport studies. All the drugs chosen have a molecular weight < 505 and liphophilicities, 

cLogP, that range from 0.4-6.1. The drugs studied are amprenavir, carbamazepine, 

chlorpromazine, citalopram, clozapine, haloperidol, mesoridazine, primidone, quetiapine, 

risperidone, ziprasidone. Their physicochemical properties are documented in Appendix 3.  

 

2.2 Methods 

2.2.1 Culture of cell lines  

The Caco-2 cell line was obtained from European Collection of Animal Cell Cultures 

(ECACC, Salisbury, Wiltshire, UK). Cell stocks were rapidly thawed at 37 °C in a water bath 

and seeded in a 25 cm
2
 tissue culture flask (T-25) using Caco-2 culture medium (Dulbecco‟s 

Modified Eagle Medium (DMEM) containing 10 % (v/v) foetal bovine serum (FBS),          

100 U.ml
-1

 penicillin G sodium, 100 µg.ml
-1

 streptomycin sulphate, 2 mM L-glutamine and 1 

% (v/v) non-essential amino acids (NEAA)).  

The medium was replaced on alternate days until the cells reached confluency, 

typically 5 to 7 days post-seeding.  Upon confluency, the medium was aspirated, the cells were 

washed twice with PBS pre-warmed to 37 °C, and incubated with enough 0.25 % (w/v) 

trypsin-EDTA solution to cover the entire cell layer (0.5 ml for a T-25 flask).  

The flask was incubated at 37 °C in a humidified atmosphere of 5 % CO2 in air with 

occasional agitation. Once the cells had detached, Caco-2 culture medium was immediately 

added to prevent the further action of trypsin-EDTA. The resulting cell suspension was 

transferred to a 25 ml universal tube and centrifuged at 1000 x g for 5 min. 

The pellet was resuspended in culture medium and either reseeded in flasks for further 

culture or seeded onto Transwell


 inserts (seeding density of 1.2 x 10
5
 cells.cm

-2
). Cells were 

cultivated for at least 3 passages prior to experimental use in order to stabilise the phenotype 

(Polli et al. 2001). Cells with a defined interval of passage were used (50-60) as the phenotype 

of low and high passage cells can vary. 

The human cerebral microvascular endothelial cell line hCMEC/D3 (passage 25) was 

obtained under license from INSERM, France. Cell stocks were rapidly thawed at 37 °C in a 

water bath and seeded in T-25 flasks (pre-coated with rat tail collagen type 1 (100 µg.ml
-1

 in   
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1 mM acetic acid) as were all hCMEC/D3 tissue culture surfaces, (section 2.2.3.1) and 

maintained in hCMEC/D3 culture medium (EBM2 basal medium containing 2.5 % (v/v) FBS, 

100 U.ml
-1

 penicillin G sodium, 100 µg.ml
-1 

streptomycin sulphate, 125 µl VEGF, 125 µl IGF, 

125 µl EGF, 50 µl hydrocortisone (from EGM-2 MV bullet kit), 1 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and 200 ng.ml
-1

 bFGF) at 37 °C in a humidified 

atmosphere of 5 % CO2 in air.  

Culture medium was removed and replaced with fresh culture medium on alternate 

days. The cells were subcultured as described above for Caco-2 cells and cultivated for at least 

3 passages prior to experimental use in order to stabilise the phenotype. The cells were 

passaged twice a week (INSERM recommend use of cells until passage 35 without loss of 

BBB properties). 

Two different Madin-Darby Canine Kidney Cells (MDCK) cell lines were used in this 

study, the human-MDR1-transfected MDCK cell line (MDR1-MDCKII) and its corresponding 

non-transfected parent wild-type (MDCKwt). Both cell lines were obtained from The 

Netherlands Cancer Institute (Amsterdam, Netherlands), at a concentration of 1 x 10
7
 cells per 

vial (passage 33).  

Each vial was rapidly thawed at 37 °C and seeded onto a 175 cm
2 

tissue culture flask 

(T-175) in 50 ml of MDCK culture medium (DMEM with Glutamax containing 10 % (v/v) 

FBS, 100 U.ml
-1

 penicillin G sodium and 100 µg.ml
-1 

streptomycin sulphate). The medium 

was replaced 24 h post-seeding and on alternate days thereafter. The cells were cultured at    

37 °C in a humidified atmosphere of 5 % CO2 and passaged at 80-90 % confluence (every 3-4 

days) using 0.5 % (w/v) trypsin-EDTA solution. Cells were passaged for two weeks from 

frozen before use, in order to stabilise the phenotype and establish a growth pattern. 

 The rat astrocyte cell line CTX-TNA2 (passage 8) was received as a gift from the 

laboratory of Professor Dame Nancy Rothwell (University of Manchester, Manchester, UK). 

Cell stocks were revived and cells were routinely cultured in astrocyte culture medium 

(DMEM containing 10 % (v/v) FBS, 100 U.ml
-1

 penicillin G sodium and 100 µg.ml
-1 

streptomycin sulphate) as described above. Cells were passaged twice a week and the culture 

medium was harvested from the astrocytes for use in subsequent studies and referred to as 

astrocyte conditioned medium (ACM).  
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2.2.1.1 Trypan blue assay 

A trypan blue assay was used to determine the number of viable cells for use in 

subsequent studies. Cells were detached from growth surfaces (section 2.2.1) and resuspended 

in 1 ml of culture medium. A 20 µl volume of cell suspension and 20 µl of 0.4 % (w/v) trypan 

blue were mixed together in an Eppendorf tube and incubated for approximately 5 min at 

room temperature in order to allow the dye to traverse the membrane of non-viable cells. A 

cover slip was placed on top of the haemocytometer, 10 µl of trypan blue-cell suspension was 

placed in each of the two chambers of the haemocytometer and the number of viable cells 

(cells which were not stained blue) were counted. The estimated number of viable cells per ml 

was calculated as follows: 

Viable cells (cell.ml
-1

) = Average count (unstained cells) per grid square x dilution factor x 

10
4  

 

       Equation 2.1 

2.2.1.2 Cryopreservation of cell stocks 

After harvesting cells, as described in section 2.2.1, the cell pellet was resuspended in 

freezing medium (90 % (v/v) FBS, 10 % (v/v) DMSO) for all cell lines except hCMEC/D3  

(95 % (v/v) FBS, 5 % (v/v) DMSO) for cryopreservation. Cells were frozen down at a 

concentration 2 million cells.ml
-1

. A 1 ml volume of cell suspension was aliquoted into 

cryovials and stored overnight at -80 °C in a cell cooling box (Nalgene
®
 Labware Roskilde, 

Denmark). This allows controlled cell freezing at a rate of -1 °C.min
-1

, prior to long term 

storage in liquid nitrogen (-196 °C). 

 

2.2.2 Culture of primary rat astrocytes 

Primary rat astrocytes were received as a gift from the laboratory of Professor Dame 

Nancy Rothwell (University of Manchester, Manchester, UK). Mixed glial cell cultures were 

prepared using a method previously described (McCarthy et al. 1980).  

In brief, 0-to 2-day-old rat pups were sacrificed and the cerebral cortices were removed 

and rolled on a piece of sterile filter paper to remove the meninges. Cortices were dissociated 
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through an 80 µm nylon mesh (Plastok Associates Ltd, Birkenhead, UK), the filtrate collected 

and centrifuged at 200 x g for 10 min (Mistral 3000i, MSE Ltd, Loughborough, UK).  

The remaining pellet was resuspended in 10 ml of DMEM containing 10 % (v/v) FBS, 

penicillin G sodium (100 U.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

). Cells were counted 

and seeded
 
at 5 x 10

5 
cells.ml

-1
 in 75 cm

2 
tissue culture flasks (T-75) pre-coated with poly-D-

lysine and grown at 37 °C in a humidified atmosphere of 5 % CO2 in air.  

The culture medium was initially changed 5 days post-seeding and then every third day 

until the cells reached confluency (approximately 12-13 days post-seeding). Upon confluency, 

mixed glial cultures were incubated overnight at 37 °C in a humidified atmosphere of 5% CO2 

in air. They were shaken at 245 rpm (Orbital incubator S150 with shaker, Stuart Scientific, 

Staffordshire, UK), in order to detach contaminating progenitor cells whilst the astrocytes 

remained adhered to the flask.  

The astrocytes were harvested by treatment with 0.25 % (w/v) trypsin-EDTA solution 

(section 2.2.1), centrifuged (200 x g, 5 min) (Mistral 30001, MSE Ltd, Loughborough, UK) 

and seeded onto 12 well plates at 1 x 10
5
 cells

 
per well and maintained in astrocyte culture 

media (DMEM containing 10 % (v/v) FBS, 100 U.ml
-1

 penicillin G sodium, 100 µg.ml
-1 

streptomycin sulphate) for 10 days at 37 °C in a humidified atmosphere of 5 % CO2 in air. The 

medium was harvested and replaced with fresh medium on alternate days and the ACM was 

stored at -20 °C for use in subsequent studies. 

 

2.2.3 Isolation of porcine cerebral microvascular capillaries  

Porcine brain endothelial cells (PBECs) were isolated based on a method by Rubin et 

al (Rubin et al. 1991), with adaptations. Fresh porcine brain hemispheres (10-12) were 

collected and any bruised or damaged hemispheres were rejected. 

The hemispheres were washed in PBS and placed on ice. Using curved forceps, the 

meninges were removed and discarded. The resulting hemispheres were placed in ice-cold 

PBS containing penicillin G sodium (100 U.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

). 

  White matter was removed, carefully in order not to remove cortical grey matter using 

curved forceps, and discarded. The remaining cortical grey matter was dissected and passed 

through a 50 ml syringe into a 225 cm
2
 tissue culture flask (T-225) containing Minimal 

Essential Medium (MEM) with 25 mM HEPES supplemented with 10 % (v/v) FBS, penicillin 



Chapter 2: Materials and Methods 

 74 

G sodium (100 U.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

) and placed on ice. Final 

composition brain tissue:medium was 1:4 (w/v).  

Cortical grey matter was homogenised (Dounce Homogeniser 40 ml, Jencons, UK) in 

MEM/HEPES supplemented with 10% (v/v) FBS, penicillin G sodium (100 U.ml
-1

) and 

streptomycin sulphate (100 µg.ml
-1

). Homogenisation commenced with a loose pestle         

(89-127 µm clearance) for 15 strokes followed by homogenisation with a tight pestle          

(25-76 µm clearance) for a further 15 strokes. 

 Homogenate (100 ml per nylon mesh filter) was sequentially filtered under vacuum, 

initially through a 150 µm pore size nylon mesh (Plastok Associates Ltd, Wirral, UK) 

followed by 60 µm pore size nylon mesh (Plastok Associates Ltd, Wirral, UK). The material 

retained on the 60 µm pore nylon mesh was digested in 15 cm diameter cell culture grade petri 

dishes containing 80 ml of digest mix  (Appendix 2) with incubation at 1 h at 37 °C on an 

Orbital Incubator S150 Shaker (Stuart Scientific, Staffordshire, UK) at 100 rpm. 

 Material retained on the filters was then washed off with MEM/HEPES, the digest mix 

centrifuged at 1000 x g (Mistral 3000i, MSE Ltd, Loughborough, UK) for 10 min. The pellet 

containing the cerebromicrovessels was washed twice in MEM/HEPES supplemented with   

10 % (v/v) FBS, penicillin G sodium (100 U.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

).   

The remaining pellet was re-suspended in 10 ml of 90 % (v/v) FBS and 10 % (v/v) 

DMSO). A proportion (usually 1 ml) of the microvessels and freezing medium suspension was 

diluted in 11 ml PBEC culture media (Appendix 2) and 2 ml was added to each well of a pre-

coated (section 2.2.3.1) 6-well plate.  

The remainder of the suspension was transferred into cryogenic vials (1 ml per vial) 

and maintained at -80 °C overnight in a cell-freezing container (-1 °C.min
-1

 cooling rate), 

before transfer to liquid nitrogen (-196 °C) for long term storage until use.  

 

2.2.3.1 Coating cell culture surfaces with collagen and fibronectin 

Porcine brain endothelial cells do not demonstrate optimum growth on plastic surfaces. 

In order to overcome this problem, the surfaces of 6-well plates were coated to aid attachment 

and proliferation. Each well was initially coated with 1 ml of rat tail collagen type 1           

(100 µg.ml
-1

 in 1 mM acetic acid) and incubated for 2 h at room temperature under gentle 

agitation to ensure homogeneous surface coating. The collagen was aspirated away and the 
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wells were washed twice with PBS to remove any excess collagen. The surface of Transwell® 

inserts were also coated in a similar manner. 

Each well was then treated with 1 ml of human fibronectin (7.5 µg.ml
-1

 in sterile 

distilled water) and incubated overnight at 4 °C, followed by 1 h at room temperature under 

gentle agitation. The fibronectin was aspirated and the wells were washed twice with PBS. To 

prevent the wells from drying out, the final PBS wash was left in the wells until cell seeding.   

The coating process was performed on all surfaces used to grow PBECs including 

Transwell® inserts and 96-well plates. The volume of collagen and fibronectin used to treat 

other surfaces was adjusted for the surface area, based upon the volume used to treat 6-well 

plates. The hCMEC/D3 cell line was seeded onto surfaces coated only with collagen as 

described above. 

 

2.2.3.2 Culture of primary porcine brain endothelial cells 

  Aliquots of cerebromicrovascular suspension were removed from liquid nitrogen, 

rapidly thawed at 37 °C, resuspended in PBEC culture medium at 37 °C and seeded onto pre-

coated 6-well plates (section 2.2.3.1).  

The cerebromicrovessels were maintained at 37 °C in a humidified atmosphere of 5 % 

CO2 in air for 24 h to ensure that the cells had adhered to the plates. One vial of 

cerebromicrovascular suspension was seeded onto two pre-coated 6-well plates (2 ml culture 

medium per well).  

In order to eradicate contaminating cells such as pericytes, 24 h post-seeding, the cells 

were treated with puromycin dihydrochloride (3 µg.ml
-1

) in PBEC culture medium:CTX-

TNA2 ACM (1:1) for three days. Medium containing puromycin was then removed and the 

cells were maintained in PBEC culture medium: CTX-TNA2 ACM (1:1) at 37 °C in a 

humidified atmosphere of 5 % CO2 in air, until 70-80 % confluent (approximately seven days 

post-seeding). Culture medium was replaced on alternate days (Figure 2.1). 

At 70-80 % confluency culture medium was aspirated away and the cells were washed 

twice with PBS pre-warmed to 37 °C and then once with PBS containing 0.2 mg.ml
-1 

EDTA. 

Each well was incubated with 300 µl of 0.5 % (w/v) trypsin-EDTA solution at 37 °C in a 

humidified atmosphere of 5 % CO2 in air for 10 min. An equal volume of PBEC culture 

medium was then added to each well to inactivate the trypsin.  
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The resulting cell suspension was centrifuged at 1500 x g (Mistral 3000i, MSE Ltd, 

Loughborough, UK) for 5 min, the remaining cell pellet was resuspended in PBEC culture 

medium:CTX-TNA2 ACM (1:1) and used in subsequent studies.  

 

Figure 2.1  Culture of primary porcine brain endothelial cells 

 

   Day 

 

Porcine brain endothelial cell were revived from frozen on day 0 and maintained in 1:1 PBEC 

culture medium:CTX-TNA2 until day  7 when the PBECs were approximately 70-80 % 

confluent. On day 1,  24 h post seeding, the PBECs were treated with puromycin (3 µg.ml-1) 

until day 4 to eradicate contaminating cells. 

 

 

2.2.3.3 Seeding porcine brain endothelial cells onto 96-well plates 

96-well plates were coated with collagen and fibronectin as described in section 

2.2.3.1. Cells were homogeneously resuspended in PBEC culture medium:CTX-TNA2 ACM 

(1:1) at a density of 100,000 cell.ml
-1

, 200 µl (20,000 cells per well of the suspension was 

added to each well) and plates maintained at 37 °C in a humidified atmosphere of 5 % CO2 in 

air.  

 

2.2.4 Primary porcine in vitro blood-brain barrier model 

The primary porcine in vitro blood-brain barrier model  (Figure 2.2) consisted of a 

monolayer of PBECs grown on pre-coated (section 2.2.3.1) Transwell®  polycarbonate inserts 

(pore size 0.4 µm, diameter 12 mm, growth area 1.12 cm
2
, 12-well cell culture cluster) in non-

contact co-culture with the rat astrocyte cell line CTX-TNA2 (section 2.2.1). 

Porcine brain endothelial cells were seeded at a density 8 x 10
4
 cells per insert and 

maintained in PBEC culture medium:CTX-TNA2 ACM (1:1), for six days. The medium was 

replaced on alternate days when transcellular electrical resistance (TER) measurements were 

taken (section 2.2.5). Inserts containing PBEC monolayers were placed into the wells of 12 

0 1 4 

1:1 PBEC culture mediun:CTX-TNA2 (ACM) 

Puromycin treatment 

7 
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well plates containing confluent monolayers of astrocytes and the co-culture was maintained 

for 3 days (from day 4 to day 6 post-seeding of PBECs onto Transwell® inserts). Twenty four 

hours (day 6) prior to transport studies the medium was replaced with  PBEC transport 

medium (DMEM containing, 100 U.ml
-1

 penicillin G sodium, 100 µg.ml
-1 

streptomycin 

sulphate, 125 µM heparin, 2 mM L-glutamine, 312.5 µM  cAMP,  17.5 µM RO-20-1724 and 

550 nM hydrocortisone).  

Porcine brain endothelial cells were maintained at 37 °C in a humidified atmosphere of     

5 % CO2 in air throughout growth on Transwell® inserts. Inserts contained 0.5 ml medium in 

the apical compartment and 1.5 ml in the basolateral compartment. During medium changes, 

medium was aspirated first from the basolateral compartment of all wells and then carefully 

and slowly from the apical compartment to ensure monolayer maintenance. Fresh medium was 

initially replaced in the apical compartment followed by the basolateral compartment. 

Porcine brain endothelial cell monolayer with TER<1000 ohm.cm
2
 were discarded and not 

used for experiments.  

 

Figure 2.2  Primary porcine in vitro blood-brain barrier model 

 

Day 

 

Porcine  brain endothelial cells were seeded at a density of 8 x 104 cells per insert and 

maintained in 1:1 PBEC culture medium:CTX-TNA2 until day 6. Porcine brain endothelial 

cells were maintained in co-culture with CTX-TNA2 astrocytes from day 4 to day 6. On day 6 

the PBECs were removed from co-culture and the medium was switched to PBEC transport 

medium.  

 

 

 

 
 

0 4 

1:1 PBEC culture mediun:CTX-TNA2 (ACM) 

6 

Co-culture with  

CTX-TNA2 

astrocytes 

PBEC transport 

medium 

7 
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2.2.5 Measurement of transcellular electrical resistance  

During growth on Transwell® inserts, and directly before and after all transport studies, 

the integrity (reflecting the extent of paracellular and transcellular permeation of ions) of cell 

monolayers was assessed, using a voltohmmeter (EVOM) (World Precision Instruments, 

Aston, Stevenage, UK), to measure TER.  

The „chop-stick‟ electrodes were placed with the current-passing electrode in the apical 

compartment and the voltage-measuring electrode in the basolateral compartment of each 

filter unit and well in order to measure the resistance across the filter and cell monolayer.  

Control measurements were also taken using a filter with no cells seeded (blank filter). 

Transcellular electrical resistance was calculated (Equation 2.2) by subtraction of the electrical 

resistance of the blank filter from the electrical resistance of the filter with the cell monolayer, 

followed by correction for the filter surface area.  

 

)().( 2

filtermonolayercell RRAcmohmTER   

        Equation 2.2 

 

cellR monolayer   = Resistance across Transwell® insert with cell monolayer (Ohm) 

filterR  = Resistance across Transwell® insert without cell monolayer (Ohm) 

A  = Surface area of Transwell® insert (cm
2
) 

 

2.2.6 Transmission electron microscopy of confluent cell monolayers 

Transmission electron microscopy (TEM) was used for qualitative assessment of 

PBEC monolayers grown on Transwell® inserts. Medium was aspirated from inserts 

containing confluent cell monolayers and the cells were washed twice with PBS.  

The filters were carefully cut out of the Transwell® inserts, removed from the 

Transwell® supports and fixed overnight in sodium cacodylate buffer containing 0.1 M 

gluteraldehyde. The filters were then washed for 20 min with sodium cacodylate buffer and 

post-fixed in 1 % (w/v) osmium tetroxide in 0.1 M in sodium cacodylate for 30 min. The fixed 

cells were washed in sodium cacodylate buffer and dehydrated in an increasing concentration 



Chapter 2: Materials and Methods 

 79 

series of ethanolic solutions 70 % (v/v) [20 min], 90 % (v/v) [20 min] and 100 % (v/v) [30 min 

x 2].  

The cells were then treated twice with propylene oxide for 30 min and infiltrated with 

epoxy resin (Araldite), 50 % (v/v) [40 min at 40 
o
C] and 100 % (v/v) for 1 h at 40 

o
C. The 

cells were then embedded into fresh Araldite resin, by positioning the filters into the 

embedding moulds containing a layer of prepolymerized resin to lift the filter away from the 

bottom of the mould so that transverse sections of the filter could be cut.  

Sections, 100 nm thick, of the resin-embedded filters were cut using a diamond knife 

on a Reichert OMU 4 Ultracut Ultramicrotome (Vienna, Austria) and collected onto 400-mesh 

copper grids (Agar, Scientific, UK). The Sections were stained with 1 % (w/v) uranyl acetate 

for 40 min at room temperature (DNA and RNA stain), washed with distilled water and then 

stained with Reynolds lead citrate for 10 min at room temperature before a final wash with 

water. Sections were examined using a transmission electron microscope (Philips CM10, 

Cambridge, UK) and digital images were recorded on an AMT LR44 digital camera (Deben, 

UK).  

Transmission electron microscopy studies were carried out by Dr Alan Curry at the 

Department of Clinical Sciences, Manchester Royal Infirmary. 

 

2.2.7 Immunocytochemical detection of tight junction proteins in primary porcine brain 

endothelial cell monolayers 

Porcine brain endothelial cell monolayers cultured on Transwell
®
 inserts (section 

2.2.4) were immunostained for the detection of tight junction proteins. The culture medium 

was gently aspirated taking care not to disrupt the PBEC monolayer and the cells were washed 

twice with PBS warmed to 37 °C.  

The PBECs were fixed in ice-cold methanol:acetone solution (1:1 v/v) for 2 min on 

ice, then washed twice with PBS warmed to 37 °C. The cell monolayers were incubated with 

250 µl per well blocking solution (10 % (v/v) horse serum in PBS) in order to block 

nonspecific binding sites, for 1 h at room temperature with gentle agitation.  

The blocking solution was aspirated, the cell monolayers washed with PBS warmed to 

37 °C and incubated with rabbit anti-human occludin (1:100), or rabbit anti human-ZO-1 

(1:100) primary antibody in blocking solution for 1 h at room temperature.  
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The primary rabbit antibody was aspirated and the cell monolayers washed four times 

with PBS warmed to 37 °C and incubated with secondary antibody, fluorescein iso-

thiocyanate (FITC) -labeled mouse anti-rabbit IgG (1:200) in blocking solution, for 45 min at 

room temperature in the dark. The secondary antibody was aspirated and the cell monolayers 

were washed four times in PBS warmed to 37 °C.  

The filters were then cut from the Transwell® inserts using a scalpel, rinsed with 

distilled water, mounted onto a glass microscopy slide and enclosed with a cover slip. 

Specimens were viewed using the Leica DM IRBE confocal microscope (Leica Microsystems, 

Milton Keynes, UK) using a FITC filter, excitation  494 nm and emission  521 nm.  

 

2.2.8 Cell staining using fluorescein iso-thiocyanate conjugated isolectin B4 for 

examination of porcine brain endothelial cell morphology  

Porcine brain endothelial cells were grown to confluence on Transwell
®
 inserts 

(section 2.2.4). The cells were washed twice with PBS. FITC-conjugated isolectin B4 (IB4 

1:200 dilution) was added to the donor compartment of the insert for 30 min in the dark. The 

cells were then washed twice with PBS warmed to 37 ºC and fixed with 4 % (v/v) 

paraformaldehyde and mounted using ProLong
®
 mounting media containing DAPI.  

The filters were then cut from the Transwell® inserts using a scalpel, rinsed with 

distilled water, mounted onto a glass microscopy slide and enclosed with a cover slip. 

Specimens were viewed using a fluorescent microscope (Olympus, Middlesex, UK) attached 

to a digital camera. The images were captured using METAVUE imaging software (Nikon, 

Kingston Upon Thames) and processed using Adobe Photoshop. 

 

2.2.9 Assessment of paracellular permeability across the in vitro porcine blood brain 

barrier model 

In order for the primary porcine in vitro BBB model to act as a permeability screen, it 

is essential that it displays a restrictive paracellular pathway. Lucifer yellow was used to 

assess paracellular permeability and integrity of the in vitro primary porcine BBB model. 

Paracellular permeability was measured in both the apical to basolateral (A-B) and basolateral 

to apical (B-A) directions. 
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Porcine brain endothelial cells were grown to confluence on Transwell® inserts (section 

2.2.4) for seven days prior to assessment of paracellular permeability. Transcellular electrical 

resistance of cell monolayers was measured using an EVOM chopstick electrode (section 

2.2.5) before and after the study. The growth medium was replaced with PBEC transport 

medium containing 100 µM of Lucifer yellow in the donor compartment and PBEC transport 

medium alone in the acceptor compartment (n=5, 12 replicate determinants).  

The PBEC monolayers were incubated at 37 °C in a humidified atmosphere of 5 % 

CO2 in air for 60 min. Samples of 150 µl were removed from both the donor and acceptor 

compartments after 60 min and transferred to black flat bottom 96-well plates. Lucifer yellow 

in the samples was quantified by fluorescence spectroscopy (Tecan Safire, Männedorf, 

Switzerland) excitation  425 nm and emission  515 nm. Each plate contained a Lucifer 

yellow calibration curve.  

 

Apparent permeability coefficient (Papp) was determined using the following equation:  

 

P )/).(/().( 0

1 ACVdtdcscmapp                   Equation 2.3 

 

dtdc /  = Change in receiver compartment concentration over time (mol.l
-1

.s
-1

) 

V  = Volume in the receiver compartment (cm
3
) 

A  = Surface area of Transwell® insert (cm
2
) 

0C  = Initial concentration of probe in the donor compartment (mol.l
-1

) 

                     

2.2.10 Measurement of P-glycoprotein efflux activity in porcine and human brain 

endothelial cells using the calcein accumulation assay 

The calcein acetoxymethyl ester (calcein-AM) intracellular accumulation assay was 

adapted from previous methods reported in the literature (Liminga et al. 1994; Tiberghien et 

al. 1996). Porcine brain endothelial cells were seeded (section 2.2.3.3) at 2 x 10
4
 cells per well 

on clear 96-well flat bottom plates, with the appropriate pre-treatment (section 2.2.3.1), and 

maintained in culture medium. The assay was performed once the cells had reached 

confluency (3-4 days post-seeding).  
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Upon confluency, the medium was carefully aspirated away and the cells were washed 

twice with PBS warmed to 37 °C. Cells were then equilibrated in 200 µl of appropriate 

transport medium (PBEC transport medium: DMEM containing 100 U.ml
-1

 penicillin G 

sodium, 100 µg.ml
-1 

streptomycin sulphate, 125 µM heparin, 2 mM L-glutamine, 312.5 µM  

cAMP,  17.5 µM RO-20-1724 and 550 nM hydrocortisone) for 30 min at 37 °C in a 

humidified atmosphere of 5 % CO2 in air.   

The cells were then incubated for a further 30 min 37 °C in either transport medium or 

transport medium containing the P-glycoprotein (P-gp) inhibitor GF120918 (2 µM). The P-gp 

substrate calcein-AM was added to all wells (final concentration 0.25 µM) and the plate 

incubated at 37 °C for 30 min (n= 3 independent studies each with 8 replicates). The medium 

was aspirated away and the cells washed with PBS warmed to 37 °C to remove any calcein-

AM which had not been internalised. Intracellular calcein accumulation was measured by 

fluorescence spectroscopy using a multi-plate reader (Tecan Safire, Männedorf, Switzerland) 

excitation  484 nm and emission  530 nm.  

 

2.2.11 Determination of P-glycoprotein expression by western blotting 

2.2.11.1 Preparation of cell lysates for sodium dodecyl sulfate polyacrylamide gel 

electrophoresis and western blotting 

Cells from frozen stocks were rapidly thawed at 37 °C, resuspended in 1 ml PBS and 

centrifuged at 1000 x g (Centaur 2, Sanyo, IL, USA) for 10 min. The supernatant was 

discarded and the remaining pellet was resuspended in 1 ml PBS and the above step repeated. 

The cell pellet was then resuspended in 1 ml of lysis buffer with protease inhibitor cocktail  

(50 mM Tris-HCl pH 7.8, 5 mM EDTA, 2 µl.ml
-1

 protease inhibitor cocktail (4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF), pepstatin A, E-64, bestatin, leupeptin, and aprotinin))  and  

centrifuged at 2000 x g (Centaur 2, Sanyo, IL, USA) for 10 min. The remaining pellet was 

resuspended in 500 µl of lysis buffer with protease inhibitor and centrifuged at 165,000 x g 

(Beckman TLX-120 Optima Ultracentrifuge, rota TLA120.2, Beckman Coulter, High 

Wycombe, UK) for 90 min at 4 °C. The final pellet was resuspended in 1 ml lysis buffer 

(without protease inhibitor) and stored at -80 °C until required. The protein concentration of 

the cell membrane preparation was quantified using the Bradford protein assay (Bradford 

1976), section 2.2.11.6.  
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2.2.11.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

A standard 6 % (w/v) sodium dodecyl sulphate polyacrylamide (SDS-PAGE) gel was 

used to separate proteins on a Bio-Rad Mini Protean II Dual Slab Cell (Biorad Laboratories 

Ltd, Hemel Hempstead, UK). The glass plates were cleaned with 70 % (v/v) ethanol in 

distilled water and air dried. For gel preparation, a small and a large glass plate were separated 

by rubber spacers and clamped together in the casting cassette. 

The resolving and stacking gels were prepared as outlined in Tables 2.1 and 2.2 

respectively. The components were added in the order stated in the tables and mixed in a 

beaker by gently swirling in order to prevent the addition of air which hinders polymerisation. 

 

Table 2.1 Composition of sodium dodecyl sulphate polyacrylamide resolving gel (5 ml, 6 % (w/v) gel) 

Materials Ml 

Deionised H2O 2.700 

1.5 M Tris-HCl pH 8.8, 0.4 % (w/v) SDS  1.250 

30 % (v/v ) acrylamide/bisacrylamide (30:1) in deionised H2O  1.000 

10 % (w/v) APS in deionised H2O 0.050 

TEMED 0.004 

 

Table 2.2 Composition of  sodium dodecyl sulphate polyacrylamide stacking gel  (5 ml, 5 % (w/v) gel) 

Materials Ml 

Deionised H2O 2.870 

0.5 M Tris-HCl pH 6.8, 0.4 % (w/v) SDS 1.250 

30 % (v/v ) acrylamide/bisacrylamide (30:1) in deionised H2O  0.830 

10 % (w/v) APS in d H2O 0.050 

TEMED 0.005 

 

After the addition of TEMED the resolving gel was gently poured into the casting 

cassette of the Bio-Rad Mini Protean II Dual Slab Cell until the gel reached 1 cm from the 

bottom of the comb position. A small volume of water was immediately and gently poured on 

top of the resolving gel to prevent oxygen diffusing into the gel. The gel was left for 

approximately 45 min at room temperature to set. The water was removed and the top of the 
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gel was dried with blotting paper. The stacking gel was then cast on top of the resolving gel in 

the casting cassette, and the Teflon® comb inserted. The stacking gel was left to set for 

approximately 45 min at room temperature. The comb was removed and the wells were 

washed out with running buffer (deionised H2O containing 3.75 mg.ml
-1 

Tris base,             

17.63 mg.ml
-1

 glycine, 1.25 mg.ml
-1

 SDS). 

The glass plates were assembled in the electrophoresis tank, the central reservoir was 

filled with running buffer and running buffer was added to the external chamber to cover the 

bottom of the plates and complete the electrical circuit. 

Protein samples were added to SDS-sample buffer (1:4 v/v)  (composition of 8 ml 

SDS-sample buffer: 1.0 ml Tris base 0.025 M,  3.8 ml deionised H2O, 0.8 ml glycerol, 1.6 ml 

10 % (vv) SDS, 0.4 ml mercaptoethanol, 0.4 ml bromophenol blue 1 % (w/v)) and loaded into 

the wells of the stacking gel (30 µg protein per lane).   

The molecular weight marker was heated to 95-100 °C for 3-5 min prior to loading 

onto stacking gel. Electrophoresis was carried out at 7 V.cm
-1

 until the bromophenol blue 

(present in the sample buffer) reached 1 cm above the bottom of the gel. 

 

2.2.11.3 Electrotransfer of proteins 

The Bio-Rad Mini Trans-Blot Cell System (Biorad Laboratories Ltd, Hemel 

Hempstead, UK) was used to transfer the proteins from the SDS-PAGE gel to Hybond
™

-P 

polyvinylidene fluoride (PVDF) membrane. 

  Following electrophoresis, the SDS-PAGE gel was immersed in chilled transfer buffer 

(10 mM CAPS, pH 11) for 15 min to equilibrate. The PVDF membrane was cut to size and 

soaked in methanol for 10 s followed by deionised water for 5 min and finally in transfer 

buffer for 10 min. Gels were then placed onto the PVDF membranes and sandwiched between 

blotting paper and fibre pads, both previously soaked in transfer buffer.  

Protein transfer took place in ice-cold transfer buffer at 200 mA for 2 h. Following 

transfer, the membranes were placed in blocking buffer (TBS-T containing 50 mg.ml
-1 

Marvel


 milk) at 4 °C overnight. The membranes were then washed three times in TBS-T for 

10 min each time prior to immunological detection of P-gp. 
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2.2.11.4 Immunological detection of P-glycoprotein 

The PVDF membranes containing electrotransferred proteins were incubated with 

either C219 anti-P-gp monoclonal antibody (Abcam, Cambridge, UK) 1:100 dilution in TBS-

T or with TBS-T alone for 2 h at room temperature with gentle agitation. The membranes 

were then washed three times in excess TBS-T for 10 min and then incubated for 2 h at room 

temperature with horse radish peroxidise-conjugated sheep anti-mouse secondary IgG 

antibody (GE Healthcare Buckinghamshire, UK) 1:2000 dilution in TBS-T. The PVDF 

membranes were washed three times in excess TBS-T for 10 min followed by a final wash in 

TBS-T for 15 min. 

 

2.2.11.5 Chemiluminescent detection of P-glycoprotein 

Chemiluminescent protein detection was carried out in a dark room. ECL Plus
®

 

Western Blotting Detection System (GE Healthcare, Buckinghamshire, UK) was used for 

protein detection. Solutions A and B were mixed together (40:1) to generate the detection 

solution.  

Excess wash buffer was drained from the PVDF membranes, the detection solution 

applied to the protein side of the membranes, and the membranes were incubated for 5 min at 

room temperature. The membranes were drained of detection solution and exposed to film 

(Hyperfilm™ ECL, Amersham Pharmacia Biotech, Buckinghamshire, UK) in an x-ray film 

cassette for 3-5 min.  

Developer (Kodak Developer, Sigma-Aldrich Chemical Company, Poole, Dorset, UK) 

was then applied for approximately 3-5 min. The membranes were then rinsed in deionised 

water and fixed (Kodak Fixer, Sigma-Aldrich Chemical Company, Poole, Dorset, UK) for 

approximately 3-5 min.  

 

2.2.11.6 Determination of protein concentration in cell lysates using the Bradford protein 

assay  

Prior to use, working Bradford reagent was prepared by diluting Bradford dye reagent 

with distilled water (1:4 v/v). The solution was filtered through a Whatman grade I filter paper 

and equilibrated to room temperature. Bovine serum albumin (BSA) was used as the protein 

standard.  
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Serial dilutions of 1, 2, 4, 6, 8 and 10 µg.ml
-1

 BSA in PBS were prepared from a stock 

solution of 1 mg.ml
-1

 BSA in PBS. One ml working Bradford reagent was added directly to  

20 µl of the sample to be quantified (either diluted BSA solution or cell lysate) in a cuvette. 

The solution was gently mixed and incubated at room temperature for 5 min. Absorbance was 

measured at 595 nm using A WPA UV1101 Biotech Photometer (Pharmacia Biotech, 

Cambridge, UK).  

The protein content of the samples was determined using a standard curve derived 

from BSA serial dilutions. The experimental blank contained 20 µl of PBS instead of protein 

solution. 

 

2.2.12 Determination of protein concentration of primary porcine brain endothelial cell 

monolayers in 96-well plates using the Bradford protein assay 

Primary porcine brain endothelial cells were grown on clear 96-well flat bottom plates 

(section 2.2.3.3) to confluency in either PBEC culture medium alone, PBEC culture 

medium:CTX-TNA2 ACM (1:1), or PBEC culture medium:primary rat ACM (1:1 v/v). 

Cell monolayers were washed with PBS warmed to 37 °C. A volume of 160 µl PBS 

was then added to each well followed by 40 µl of concentrated Bradford reagent dye and the 

plate was incubated for 5 min at room temperature. Absorbance was measured as described in 

section 2.2.11.6.  

The protein content of the samples was determined using a standard curve derived 

from BSA (10, 20, 40, 60, 80, 100, 120 µg.ml
-1

) within the 96-well plate. 

 

2.2.13 Measurement of alkaline phosphatase activity in primary porcine brain 

endothelial cells 

Alkaline phosphatase activity was determined as previously described by Sobue et al. 

1999 with modifications (Sobue et al. 1999). Briefly, PBECs were grown on clear 96-well flat 

bottom plates (section 2.2.3.3) to confluency in either PBEC culture medium alone, PBEC 

culture medium:CTX-TNA2 ACM (1:1) or PBEC culture medium:primary rat ACM (1:1). 

Cell monolayers were washed with PBS warmed to 37 °C and incubated in the dark with     

275 µl per well of assay buffer comprising of  0.7 M 2-amino-2-methyl-1-propanol, 1 mM 
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MgCl2 and 10 mM p-nitrophenyl phosphate pH 10.2, for 10 min at 37 °C in a humidified 

atmosphere of 5 % CO2 in air. The reaction was stopped by the addition of 55 µl 1 N NaOH.  

The amount of p-nitrophenol product formed by the cells was determined 

spectrophotometrically using a multi-plate reader (Tecan Safire, Männedorf, Switzerland) at 

410 nm using a molar extinction coefficient (ε) of 17,000 M
-1

.cm
-1

. Enzyme activity was 

expressed as specific enzyme activity (nmol.min
-1

.mg protein
-1

). The protein content of the 

cells was determined by the method described by Bradford 1976 (Bradford 1976) (section 

2.2.12). 

 

2.2.14 Measurement of γ-glutamyl transpeptidase activity in primary porcine brain 

endothelial cells 

γ-glutamyl transpeptidase activity in PBECs was assessed according the method 

previously document by (William B 1981). In brief, PBECs were grown to confluence on 96-

well plates under the same conditions described in section 2.2.3.3. The cells were washed with 

PBS warmed to 37 °C followed by incubation with 275 µl per well of assay buffer comprising 

of 0.1 M Tris-HCl pH 8, 20 mM glycylglycine and 1 mM L-γ-glutamyl-p-nitroanilide. The 

plates were incubated at 37 °C in a humidified atmosphere 5 % CO2 in air for 40 min. The 

reaction was stopped by the addition of 55 µl of 1 N NaOH. 

 The amount of p-nitroanilide product formed by the cells was determined 

spectrophotometrically using a multi-plate reader (Tecan Safire, Männedorf, Switzerland) at 

410 nm, using a ε of 8,800 M
-1

.cm
-1

. Enzyme activity was expressed as specific enzyme 

activity (nmol.min
-1

.mg protein
-1

). The protein content of the cells was determined as 

described in section 2.2.12. 

 

2.2.15 Assessment of test drug concentration on cell viability  

2.2.15.1 Determination of optimal seeding density for the cell viability 

(methylthiazolyldiphenyl-tetrazolium bromide) assay  

Cells were required to remain in the exponential growth phase throughout the cell 

viability (methylthiazolyldiphenyl-tetrazolium bromide (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide, MTT) assay to avoid underestimating drug toxicity. Therefore, 

it was important to determine optimal seeding density for each cell type used in these studies. 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Cells were plated in a 96-well plate at a range of densities from 625-20,000 cells per well in 

quadruplicate. Cells were incubated at 37 °C in a humidified atmosphere of 5 % CO2 for 48 h 

and a MTT assay was then performed (section 2.2.15.3). The seeding density that gave an 

absorbance of approximately 1 (at 570 nm) was chosen for subsequent MTT studies.  

 

2.2.15.2 Test drug preparation 

Four sterile dilutions (stock made in DMSO) of each test drug (30 µM, 3 µM, 0.3 µM 

and 0.03 µM) were freshly prepared on the day of the study. Culture medium was used as the 

diluent and the final solvent concentrations in all test drug concentrations did not exceed 1 % 

(v/v).  

 

2.2.15.3 Cell viability (methylthiazolyldiphenyl-tetrazolium bromide) assay 

Each cell type was seeded at the optimal density determined from a preliminary study 

(section 2.2.15.1) onto clear flat bottom 96-well plates until cells were approximately 70-80 % 

confluent, ensuring optimal sensitivity of the assay. Sterile water was dispensed into the outer 

most wells of each plate to reduce uneven evaporation of the culture medium during 

incubation which could produce erroneous results. 

The MTT assay was performed under sterile conditions. Prior to commencing the 

assay the cells were inspected with a microscope to ensure that they were evenly distributed 

between wells and appeared to be healthy. Culture medium was changed to the corresponding 

transport medium for each cell type (Appendix 2) 30 min prior to the start of the assay to 

allow the cells to equilibrate.  

The cells were washed with PBS pre-warmed to 37 °C and 200 µl of transport medium 

containing the test drug at the desired concentration was added. Four concentrations of each 

test drug in quadruplicate, in the presence and absence of the P-gp inhibitor GF120918A       

(2 µM), were assessed. The plates were incubated as described above for 60 min. 

The medium was removed and the cells were carefully washed twice with PBS pre-

warmed to 37 °C and incubated with fresh culture medium (200 µl per well) for 24 h at 37 °C 

in a humidified atmosphere of 5 % CO2 in air. Methylthiazolyldiphenyl-tetrazolium bromide 

powder was dissolved in PBS (5 mg.ml
-1

) and filtered through a 0.2 µm pore size Nalgene 

filter to sterilise the solution and to remove insoluble residues. Pre-warmed (37 °C) MTT 
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solution, 20 µl, was added to each well, the plates were protected from light and incubated at 

37 °C in a humidified atmosphere of 5 % CO2 in air for 4 h. The medium was removed and 

100 µl of DMSO was added to all wells to stop the reaction and solubilise the purple formazan 

reaction product. The plates were incubated for a further 90 min at room temperature on an 

Orbital Incubator S150 Shaker (Stuart Scientific, Staffordshire, UK) at 100 rpm. 

The absorbance of the samples was measured on a multi-plate reader (MRX, Dynatech 

Laboratories, Guernsey UK) using 570 nm as the test wavelength and 630 nm as the reference 

wavelength. 

Percentage cell viability was determined using the following: 

 

% cell viability = (absorbance of sample) / (absorbance of control) x 100 

Equation 2.4 

 

The mean blank absorbance was subtracted from the absorbance of each of the samples and 

controls before the percentage cell viability was calculated. 

 

2.2.15.4 Quality control of the cell viability (methylthiazolyldiphenyl-tetrazolium 

bromide) assay 

The solvent control (control containing no drug) corresponded to a cell viability of 100 

%. Solvent controls were placed on both the left and the right side of the plates in order to 

detect systematic errors. The assay was considered acceptable if the means of each of the two 

solvent controls did not vary by more than ± 15 %. Growth controls (cells not exposed to 

drug) were present to detect the effect of solvent. As a positive control, DMSO (no growth 

medium) was added to kill the cells to demonstrate that the assay was working as expected. 

 

2.2.16 In vitro cell monolayer permeability studies  

2.2.16.1 The Caco-2 in vitro blood-brain barrier model 

The Caco-2 in vitro BBB model consisted of Caco-2 cells seeded onto Transwell® 

polycarbonate inserts (pore size 0.4 µm, diameter 12 mm, growth area 1.12 cm
2
, 12-well cell 

culture cluster). Cells were seeded at a density of 1.2 x 10
5
 cell.cm

-2
 and were cultured for 21-

29 days in Caco-2 culture medium (DMEM containing 10 % (v/v) FBS, 2 mM L-glutamine,   
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1 % (v/v) NEAA, 100 U.ml
-1

 penicillin G sodium and 100 µg.ml
-1 

streptomycin sulphate). 

Inserts contained 0.5 ml in the apical compartment and 1.5 ml in the basolateral compartment, 

and were maintained at 37 °C in a humidified atmosphere of 5 % CO2 in air.  The medium was 

initially changed 24 h post-seeding to remove non-adherent cells and reduce the risk of 

multilayer formation. Thereafter, the medium was changed on alternate days and TER 

measurements were taken as described in section 2.2.5.  

 

2.2.16.2 The hCMEC/D3 in vitro blood-brain barrier model  

The hCMEC/D3 cells were seeded at a density of 5 x 10
4
 cells.cm

-2 
onto Transwell® 

polycarbonate inserts (pore size 0.4 µm, diameter 12 mm, growth area 1.12 cm
2
, 12-well cell 

culture cluster), pre-coated with rat tail collagen type 1 (100 µg.ml
-1

 in 1 mM acetic acid) 

(section 2.2.3.1). The cells were cultured for 7 days and maintained at 37 °C in a humidified 

atmosphere of 5 % CO2 in air. Medium was replaced every third day when TER measurements 

were taken (section 2.2.5). 

 

2.2.16.3 The MDR-1 MDCKII in vitro blood-brain barrier model  

The MDR-1 MDCKII in vitro BBB consisted of MDR-1 MDCKII cells grown on a 

BD Falcon
TM

 HTS 24-Multiwell Insert System for automated high throughput screening 

assays. The insert system consisted of a cell culture insert assay platform, composed of a 

multiwell insert plate with microporous polyethylene terephthalate membrane (1.0 µM pore 

size, diameter 6.5 mm, growth area 0.31 cm
2
, 24 well clusters), a feeder tray and a lid. The 

MDR-1 MDCKII and the corresponding wild type cells were seeded at a density of 7.5 x 10
4
 

cells per well. The medium was changed 24 h post-seeding and the day before the study. Cells 

were ready for use 3-4 days post-seeding.  

 

2.2.17 Measure of apparent permeability, exact permeability and P-glycoprotein efflux 

activity 

Transport assays were conducted using all of the in vitro BBB models described in 

section 2.2.4 and 2.2.16. The permeability of centrally-acting test drugs (section 2.1.3) was 

assessed bi-directionally by measuring A-B and B-A transport, in the presence and absence of 

the P-gp inhibitor, GF120918 (2 µM). To assess cell monolayer integrity Lucifer yellow     
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(100 µM) was added to the donor compartment of all wells. All test drugs were assayed in 

duplicate, in three independent experiments.  

Transport assays using PBEC, hCMEC/D3 and Caco-2 in vitro BBB models were 

performed at University of Manchester as follows; the cell monolayers were carefully washed 

with PBS and equilibrated in the appropriate transport medium/solution (Appendix 2) for      

30 min at 37 °C. For incubations containing inhibitor, the cell monolayers were pre-incubated 

for 30 min in transport medium containing 2 µM GF120918 (in both apical and basolateral 

compartments). Cells were incubated with 3 µM of test drug (and 100 µM Lucifer yellow) in 

transport medium in the donor compartment. Transport across the confluent cell monolayer 

was measured in both A-B and B-A directions in the presence and absence of GF120918. The 

in vitro BBB models were incubated for 60 min at 37 °C. At a single 60 min sampling time 

point, 25 µl was taken from the apical and basolateral compartment of each Transwell® insert. 

A blank (no cells seeded) plate with the same insert coating (section 2.2.3.1) as the 

corresponding in vitro BBB model was prepared containing 0.5 ml of dose solution in the 

apical compartment, from which a 25 µl sample was taken at t=0 min and t=60 min to factor 

possible nonspecific binding to the plate over time. Samples were transferred to a 96-deep 

well block containing an internal standard (SB243213) and analysed using liquid 

chromatography-tandem mass spectroscopy (LC-MS/MS) as described in section 2.2.17.1. 

The drug peak area to internal standard ratio was used to calculate Papp (Equation 2.3) and 

Pexact (Equation 2.5 and 2.6) in both directions, efflux ratios (fold difference between B-A rate 

of drug transport across in vitro BBB model relative to A-B rate of drug transport) and test 

drug recoveries (Equation 2.7). 

 At 60 min, 150 µl was removed from the apical and basolateral compartments to 

assess Lucifer yellow levels fluorometrically: excitation  425 nm and emission  515 nm, on 

a multi-plate reader (MRX, Dynatech Laboratories, Guernsey UK). Transcellular electrical 

resistance was also measured before and after each transport assay.  
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DV  = Donor compartment volume (cm
3
) 

RV = Receiver chamber volume (cm
3
) 

A  = Surface area of the permeability barrier (cm
2
) 

 t  = Time of measurement (s) 

RC  = Drug concentration in the receiver compartment (mol.L
-1

) at time t  

 tC  = Average system concentration of drug defined by Equation 2.6 
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Equation 2.6  

DC = Drug concentration in the donor compartment (mol.L
-1

) at time t  

           

Percentage Recovery = 100 x
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Equation 2.7 

 

rV = Volume in the receiver compartment (cm
3
) 

dV = Volume in the donor compartment in (cm
3
)  

0C  = Concentration of dosing solution (µM)  

final

rC  = Cumulative receiver concentration at the end of the incubation period (µM) 

final

dC  = Concentration in the donor compartment at end of the incubation period (µM) 

 

          Transport assays using MDR1-MDCKII and MDCKwt in vitro BBB models were 

performed at GSK (New Frontiers Science Park, Harlow, Essex, UK) (using Dulbecco‟s 

phosphate buffered saline (DPBS) containing 1 mM HEPES as transport solution) as above 
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with modifications. The assays were carried out using a Packard Multiprobe 2 HT ex-robot 

(Perkin Elmer, Massachusetts, USA) for high throughput screening in 24 Transwell
®
 clusters, 

under gentle agitation. An acceptance criteria for Lucifer yellow Pexact was employed for this 

assay, where Pexact < 80 nm.s
-1

. If more than five wells on a 24-well plate failed, the run failed 

and was repeated.  

The efflux substrate amprenavir (also a test drug) was included in every assay 

performed at GSK as a positive control. MDR-1 MDCKII cells were expected to exhibit 

functional P-gp activity whereas MDCKwt were not. Amprenavir being one of the twelve test 

drugs was also used in all transport studies using the other in vitro BBB models.  

 

2.2.17.1 Analysis of test drugs using liquid chromatography-tandem mass spectroscopy 

Samples were analysed by LC-MS/MS on a Quattro Ultima (Waters Ltd, Herts, UK) 

mass spectrometer, employing an electrospray interface in positive mode at a source 

temperature of 125 °C. Each drug was initially tuned to give specific mass transitions to 

monitor (Appendix 4). Samples, 10 µl, were injected into a 2795 HPLC system (Waters Ltd, 

Herts, UK) onto a Luna C18 50 x 4.6 mm 3 µm column (Phenomenex, Cheshire, UK) 

operated at 40 °C and at an eluent flow rate of 1 ml.min
-1

, which was split by an accurate 

splitter (Presearch, Hampshire, UK) to deliver 0.25 ml.min
-1

 to the mass spectrometer. 

Gradient elution of each analyte was achieved over a 5 min runtime. 

  

2.2.18 Equilibrium dialysis measurement of nonspecific drug binding  

Equilibrium dialysis methodology was adapted from Summerfield et al. (Summerfield, 

Stevens et al. 2006). Fraction unbound drug in blood and brain for each test drug was 

determined using 96-well equilibrium dialysis equipment (HT dialysis LLC, Gales Ferry, CT) 

(Banker et al. 2003).  

Dialysis membrane strips (molecular weight cut off (MWCO) 6-8-kDa) were 

conditioned sequentially in deionised water for 40 min followed by deionised water:ethanol 

80:20 (v/v) for 20 min. The membranes were gently separated and maintained in the ethanolic 

solution until required. Prior to use, membranes were rinsed twice in deionised water and 

excess water removed.  



Chapter 2: Materials and Methods 

 94 

Brains were weighed, added to PBS (brain:PBS 1:2 (w/v)) and homogenised (Dounce 

Homogeniser, Jencons, UK). Homogenisation commenced using a loose pestle (89-127 µm 

clearance) for 15 strokes followed by a tight pestle (25-76 µm clearance) for 15 strokes. 

Alternatively, brains were homogenised (brain:PBS 1:2 (w/v)) with a Heidolph Silent Crusher 

M (Heidolph Instruments GmbH & Co, Walpersdorfer, Schwabach) at 26,000 rpm. Blood was 

diluted (1:1 (v/v)) with PBS. Both diluted blood and brain homogenate were mixed 

continuously prior to dialysis studies on an orbital plate micro shaker (Orbital incubator S150 

with shaker, Stuart Scientific, Staffordshire, UK) at 125 rpm. 

Diluted blood and brain homogenate were spiked with each of the test drugs to give a 

final concentration of 1 µg.ml
-1

 and 100 µl aliquots of spiked diluted blood and brain 

homogenate were loaded into the 96-well equilibrium dialysis equipment (6 replicate 

determinants in each study, n of at least 3 for all drugs). Diluted blood and brain homogenate 

were dialysed against 100 µl PBS on an orbital plate micro shaker (Orbital incubator S150 

with shaker, Stuart Scientific, Staffordshire, UK) at 125 rpm at 37 °C for 5 h.  

The plate (Figure 2.3) was sealed to eliminate evaporation. A positive control 

compound (GW633104) (n=6 in blood or brain or both) was present in every equilibrium 

dialysis study. For the equilibrium dialysis plate to be accepted the results from the control 

compound in blood and brain were within 2-fold of the mean replicate data.  
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Figure 2.3  A schematic of the equilibrium dialysis study using 96-well equilibrium dialysis 

equipment 

 

 

A 100 µl volume of diluted blood and brain homogenate spiked with centrally-acting test drug 

was dialysed against 100 µl PBS for 5 h at 37 °C, n of at least 3, 6 replicate determinants. 

 

Following 5 h incubation, 50 µl PBS, 20 µl diluted blood and 20 µl of brain 

homogenate were transferred from the 96-well equilibrium dialysis equipment to SreenMate 

tubes (Matrix Technologies, Hudson, NH, USA). A 20 µl volume of control diluted blood 

(diluted blood containing no drug) or control brain homogenate (brain homogenate containing 

no drug) was added to the corresponding 50 µl PBS sample, 50 µl of control PBS was added 

to the 20 µl diluted blood sample and 50 µl of control PBS added to the 20 µl brain 

homogenate sample to produce the same matrix composition for analysis (Figure 2.4). Test 

drugs were extracted by the addition of 200 µl of acetonitrile containing an internal standard 

(SB243213, 50 ng.ml
-1

). Samples were allowed to mix for 15 min, centrifuged at 2465 x g for 

20 min (Mistral 3000i, MSE Ltd, Loughborough, UK) and the supernatant assayed using    

LC-MS/MS section 2.2.17.1. 
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Figure 2.4 Flow diagram of matrix matching in equilibrium dialysis studies 

 

 

 

A PBS, blood or brain sample was taken from each well of the 96-well plate and matrix 

matched with the corresponding PBS, blood or brain control. Samples were then extracted with 

acetonitrile containing an internal standard, centrifuged and analysed by LC-MS/MS.  

Fraction unbound was determined as the ratio of the test drug peak area to internal 

standard peak area in PBS divided by the ratio of the test drug peak area to internal standard 
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peak area in diluted blood or brain homogenate with correction for dilution factor according to 

Equation 2.8  (Summerfield et al. 2006).  

)/1()1)(/1(

)/1(

Dapparentfu

D
fu


  

Equation 2.8 

D  = the dilution factor in diluted blood and brain homogenate 

fu )(apparent = Measured fraction unbound of drug in diluted blood and brain homogenate. 

2.2.19 Determination of the extent of test drug penetration in rat 

The extent of test drug penetration in rat described as the total brain to blood 

concentration ratio (Kp) was supplementary data, determined by GSK, at GSK (New frontiers 

Science Park, Harlow, Essex, UK) and remains the property of GSK. In brief, rats were dosed 

via intravenous infusion. At the end of the infusion period rats were sacrificed and blood and 

brain tissue were removed and analysed.   

 

2.2.20 Physiologically based pharmacokinetic modelling 

An in-house hybrid-physiologically-based pharmacokinetic (PBPK) model of the rat 

CNS (Appendix 7) was developed by Dr Raj Badhan using MATLAB Version 7.5b 

(manuscript in preparation) to predict the extent of drug penetration in vivo. The model was 

generated using literature derived physiological parameters for Sprague-Dawley rats.  

The ratio of unbound drug concentration in the brain to unbound drug concentration in 

the blood (Kp,uu) was the parameter that was predicted to quantify the extent of drug 

penetration. The model has been validated by Dr Raj Badhan using drug-specific parameters 

of 7 model compounds. The predicted Kp,uu of the 7 model compounds was within 3-fold of 

observed values reported in microdialysis studies.  

In the current studies, simulations using the rat CNS hybrid-PBPK model were ran for 

5 test drugs used throughout this work, namely chlorpromazine, citalopram, clozapine, 

haloperidol and risperidone in order to predict the extent of CNS drug penetration, as 
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described by Kp,uu using in vitro unbound drug fraction and permeability and in situ 

permeability.  

The drug-specific pharmacokinetic input parameters were rat volume of distribution 

(Vd) and clearance (CL) obtained from the literature (see Table 6.1). The drug-specific 

permeability input parameters were in vitro permeability generated from transport studies 

using MDR1-MDCKII (Chapter 4) and porcine in vitro BBB models (Chapter 4), rat in situ 

permeability data sourced from the literature (Summerfield et al. 2007) and efflux ratios 

derived from knock out mice studies obtained from the literature (Doran et al. 2005). The 

drug-specific fraction unbound input parameters were rat fublood and fubrain obtained using 

equilibrium dialysis (Chapter 5).  

The model predictions were compared to Kp,uu values calculated (Equation 2.9) using 

rat Kp (supplementary data, determined by GSK and the property of GSK) and rat fublood and 

fubrain determined using equilibrium dialysis (Chapter 5). Predictions were considered to be 

similar to calculated Kp,uu if they were within 3-fold of the calculated values. 

 

blood

brain

puup
fu

fu
KK ,                                                                                                 Equation 2.9 

Where Kp is the total brain to blood concentration ratio, fubrain is the fraction unbound in brain 

and fublood is the fraction unbound in blood. 
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3.0 Chapter 3: Characterisation of a primary porcine in vitro blood-brain barrier model 

3.1 Background 

The development of novel drugs to treat disorders of the CNS is the fastest growing 

sector within the modern drug discovery paradigm (Summerfield et al. 2007). A well 

characterised, physiologically-representative in vitro BBB model that is able to predict in vivo 

BBB permeability is a valuable tool to aid the discovery of new centrally acting drug 

candidates.  

A primary porcine in vitro BBB model was characterised, for use, as a drug 

permeability screen. For the model to be used as a permeability screen it must exhibit  

physiologically realistic cell architecture, tight junction protein complexes between adjacent 

cells, a restrictive paracellular pathway, functionally active efflux transporters and BBB 

marker enzymes.  

The primary porcine in vitro BBB model was characterised by; studying endothelial 

cell morphology, expression of tight junction proteins, measurement of γ-glutamyl 

transpeptidase and alkaline phosphatase marker enzyme activity and functional expression of 

P-gp, since this efflux transporter is a major contributor to BBB barrier properties in vivo.  

It is essential to demonstrate that a robust in vitro model possesses many of the key in 

vivo characteristics if it is to be used successfully in BBB permeability studies. 

 

3.2 Results 

3.2.1 Isolation of porcine brain microvascular capillaries 

Porcine brain microvascular capillaries were successfully isolated (section 2.2.3), seeded 

onto 6-well plates pre-coated with collagen and fibronectin (section 2.2.3.1) and maintained in 

culture (section 2.2.3.2) until the porcine brain endothelial cells (PBECs) had reached 

confluency, approximately 10 days post-seeding. The morphology of the PBECs was 

examined using a light microscope (Olympus CK30, Olympus Europa, Hamburg, Germany). 

Initially, the isolated capillaries were observed as short, occasionally branched, 

microvascular capillary fragments, although, contaminating cells for example pericytes were 

also present.  The capillary fragments attached quickly in clusters to the surfaces of the 6-well 

plates 2 to 4 h post-seeding. Once attached, the PBECs grew out from the capillary fragments 

forming islands of cells.  
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The capillary fragments and cells were treated with puromycin (section 2.2.3.2) 24 h post-

seeding to purify the PBECs (the presence of contaminating glial cells are inevitable in 

primary isolated cultures). Three to 5 days post-seeding the PBECs had differentiated to 

exhibit typical, elongated, spindly, fusiform morphology, characteristic of CECs. By day 7 the 

PBECs were approximately 70 % confluent and free from contaminating cells.  

Phase contrast photographs of the PBECs on day 10 revealed a uniform, tightly packed, 

confluent monolayer (Figure 3.1). The morphology of the PBECs was consistent both within 

and between isolations.  

 
Figure 3.1  Phase contrast photograph of a confluent porcine brain endothelial cell monolayer 

 

 
 

Porcine brain endothelial cells exhibited typical elongated, spindly, fusiform morphology 
characteristic of CECs and formed a uniform, tightly packed, confluent monolayer. Scale bar 

50 µm. Magnification x 40. 

 

3.2.2 Effect of culture conditions on porcine brain endothelial cell monolayer 

transcellular electrical resistance and morphology 

Previous studies have shown culture conditions significantly modulate the properties of 

in vitro BBB models (Dehouck et al. 1990; Rubin et al. 1991; El Hafny et al. 1996; El Hafny 

et al. 1997; Sobue et al. 1999; Gaillard et al. 2000; Gumbleton et al. 2001; Nitz et al. 2003; 

Haseloff et al. 2005; Calabria et al. 2006). Consequently, the effects of supplements        

(312.5 µM cAMP, 17.5 µM RO-20-1724 and 550 nM hydrocortisone) and co-culture with 

primary rat astrocytes on PBEC monolayer TER (Figure 3.2) and cellular morphology (Figure 

3.3) was investigated in order to determine the TER and morphology most representative of 

BBB in vivo.  
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Porcine brain endothelial cells monolayers maintained in medium containing 

supplements (cAMP, RO-20-1724 and hydrocortisone) and co-cultured with primary rat 

astrocytes achieved significantly higher TER, 385 ± 28 Ω.cm
2
 (Figure 3.2

 
yellow bar), 

compared to all other culture conditions.  

Porcine brain endothelial cell monolayers maintained in mono-culture (i.e. without 

astrocytes) in medium containing supplements achieved TER of 233 ± 32 Ω.cm
2
 (Figure 3.2 

red bar). Porcine brain endothelial cell monolayers maintained in medium containing no 

supplements and co-cultured with astrocytes, achieved TER of 200 ± 17 Ω.cm
2 

(Figure 3.2 

green bar). Porcine brain endothelial cells maintained in medium containing no supplements 

and without astrocytes achieved the lowest TER of 40 ± 10 Ω.cm
2
 (Figure 3.2 blue bar). 

 

Figure 3.2           Effect of culture conditions on transcellular electrical resistance of porcine brain                                                                                                   

                            endothelial cell monolayers  
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Porcine brain endothelial cells were maintained on Transwell® inserts for 7 days. The PBECs 
were maintained in PBEC growth medium (DMEM containing 10 % (v/v) plasma-derived 

serum, 100 U.ml-1 penicillin G sodium, 100 µg.ml-1 streptomycin sulphate, 125 µM heparin and 
2 mM L-glutamine) until day 6 and in mono-culture (no astrocytes) (blue, red) or in co-culture 

with primary rat astrocytes in a non-contact model for 3 days (from days 4 to 6) (green, 

yellow). On day 6 the astrocytes were removed from the monolayers in co-culture and PBEC 

growth medium was replaced (in all Transwell® inserts) with transport medium (DMEM 
containing, 100 U.ml-1 penicillin G sodium, 100 µg.ml-1 streptomycin sulphate, 125 µM 

heparin, 2 mM L-glutamine) with (red, yellow) or without supplements (312.5 µM cAMP, 17.5 

µM RO-20-1724 and 550 nM hydrocortisone) (blue, green) 24 h before TER was measured, on 

day 7. Data are expressed as mean TER ± standard deviation of at least 4 Transwell® inserts 
from one PBEC isolation employing 10-12 pooled brains. Statistical significance was 

determined using a Mann-Whitney test: * = P< 0.05 and ** = P< 0.01. 

A – Astrocytes 

 

S - Supplements 



Chapter 3: Characterisation of a Primary Porcine In Vitro Blood-Brain Barrier Model 

 103 

 

Figure 3.3  Effect of culture conditions on porcine brain endothelial cell morphology 

 

 
 
 

Porcine brain endothelial cells were maintained on Transwell® inserts for 7 days in either 
mono-culture (a, b) or co-culture with primary rat astrocytes (c, d) and maintained with (b, d) or 

without (a, c) supplements (312.5 µM cAMP, 17.5 µM RO-20-1724 and 550 nM 

hydrocortisone). The cells were labeled with isolectin B4 and examined by fluorescent 

microscopy. Scale bar: 10 µm and magnification x 100.  

 

 

            Porcine brain endothelial cells maintained in co-culture with primary rat astrocytes 

exhibited a more discrete spindle-like morphology (Figure 3.3c and 3.3d), indicative of the in 

vivo BBB phenotype, compared to PBECs maintained in mono-culture (Figure 3.3a and 3.3b). 

Porcine brain endothelial cells maintained in medium containing supplements and co-cultured 

with astrocytes (Figure 3.3d) demonstrated a spindle-shaped morphology similar to PBECs 

maintained without supplements and co-cultured with astrocytes (Figure 3.3c) suggesting that 

co-culture with astrocytes had a greater influence on the morphology of the PBECs compared 

to supplements.  

 

3.2.3 Purification of porcine brain endothelial cells with puromycin treatment. 

Porcine brain endothelial cell monolayer maintained in transport medium containing 

supplements and co-cultured with primary rat astrocytes have been shown to achieve the 

highest TER (385 ± 28 Ω.cm
2
,
 
section 3.2.2) compared to PBEC monolayers maintained in 

a 

d c 

b 
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other culture conditions. To optimise culture conditions and increase TER further, purification 

of PBECs prior to seeding onto Transwell® inserts was investigated. 

 Endothelial cells are known to be more sensitive to trypsin than pericytes (and other 

contaminating cells) and detach from 6-well plates before contaminating cells during 

trypinisation. By monitoring the plates closely under the microscope, approximately 3 min 

after the addition of trypsin, the majority of the PBECs detached first and were collected 

leaving pericytes and other contaminating cells adhered to the culture matrix. However, this 

step was difficult to carry out and standardise between each 6-well plate. 

To increase purity of PBECs, treatment with puromycin was investigated (Perriere et 

al. 2005). Isolated porcine brain microvascular capillaries were treated with 3 µg.ml
-1

 

puromycin for 3 days 24 h post-seeding onto 6-well plates (section 2.2.3.2). Puromycin, a P-

gp substrate, is toxic to contaminating glial cells that either lack or express P-gp at lower 

levels than PBECs. 
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Figure 3.4  Effect of puromycin treatment on transcellular electrical resistance of porcine brain 

endothelial cell monolayers 
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Porcine brain endothelial cells grown on 6-well plates were treated with puromycin (3 µg.ml-1 

for 3 days 24 h post-seeding (red)) or no puromycin treatment (blue). Porcine brain endothelial 

cells were harvested, seeded onto Transwell® inserts and maintained in PBEC growth medium 
and in co-culture with primary rat astrocytes for 3 days (from day 4-6). On day 6 PBEC growth 

medium was replaced with transport medium containing supplements (312.5 µM cAMP, 17.5 

µM RO-20-1724 and 550 nM hydrocortisone) 24 h before TER was measured, on day 7. Data 

are expressed as mean TER ± standard deviation, of 8 Transwell® inserts from one PBEC 
isolation employing 10-12 pooled brains. Statistical significance was determined using a Mann-

Whitney test: *** = P<0.001. 

 

Transcellular electrical resistance of PBEC monolayers was significantly increased  

from 341 ± 71 Ω.cm
2
 (P< 0.001) for PBEC monolayers not treated with puromycin to

 
867 ± 

74 Ω.cm
2 

for PBEC monolayers treated with puromycin (Figure 3.4).  

The presence of contaminating cells appears to reduce the TER of the PBEC 

monolayers. Purification with puromycin treatment has standardised and enhanced the 

purification step, whilst producing PBEC monolayers with significantly greater TER. 

 

3.2.4 Effect of astrocyte cell type on transcellular electrical resistance of primary porcine 

brain endothelial cell monolayers 

It is widely reported in the literature that glial cells, in particular astrocytes, play a role 

in the induction the BBB phenotype of CECs. Astrocytes have been shown to up-regulate the 

expression of tight junction proteins (Dehouck, Meresse et al. 1990), the BBB marker enzyme 
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γ-glutamyltranspeptidase (El Hafny et al. 1996) and several specific transport systems (El 

Hafny et al. 1997).  

Parallel studies in our laboratory have shown that PBEC monolayers co-cultured with 

the CTX-TNA2 rat astrocyte cell line and maintained in PBEC growth medium:CTX-TNA2, 

ACM (1:1) (CTX-TNA2, ACM is DMEM containing 10 % (v/v) FBS, 100 U.ml
-1

 penicillin G 

sodium and 100 µg.ml
-1 

streptomycin harvested from CTX-TNA2 rat astrocytes) routinely 

demonstrate TER > 2000 Ω.cm
2
 (personal communication with Dr Carina Cantrill). Such 

TERs are substantially higher than PBEC monolayers maintained in co-culture with primary 

rat astrocytes and are similar to electrical resistances reported for the in vivo BBB (Crone et al. 

1982; Butt et al. 1990). 

 

3.2.5 Time course of transcellular electrical resistance across the primary porcine in vitro 

blood-brain barrier  

Following the results obtained from previous studies (section 3.2.2 and 3.2.3) and 

personal communication with Dr Carina Cantrill, PBEC monolayer TER (pre-treated with 

puromycin and co-cultured with CTX-TNA astrocytes) was examined over a time course of 7 

days.  
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Figure 3.5  Transcellullar electrical resistance of the primary porcine in vitro blood-brain barrier 

model over a time course of seven days  
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Porcine brain endothelial cells treated with puromycin were seeded onto Transwell® inserts and 

maintained in PBEC growth medium:ACM (CTX-TNA2 rat astrocyte cell line) (1:1). Porcine 

brain endothelial cells were co-cultured with the CTX-TNA2 rat astrocyte cell line in a non-

contact model for 3 days (from day 4-6). On day 6 the astrocytes were removed and the 

medium changed to transport medium containing supplements (312.5 µM cAMP, 17.5 µM  

RO-20-1724 and 550 nM hydrocortisone) 24 h before TER was measured. Transcellular 

electrical resistance was routinely measured on days 2, 4, 6 and 7. Each data point represents 

the mean TER ± standard deviation of 8 Transwell® inserts from one typical PBEC isolation 
employing 10-12 pooled brains. 

 

The TER of the PBEC monolayers co-cultured with the CTX-TNA2 rat astrocyte cell 

line and maintained in PBEC growth medium:CTX-TNA2, ACM (1:1) and supplements 

consistently achieved TER>2000 Ω.cm
2
 seven days post-seeding (Figure 3.5) (TER           

2132 ± 169 Ω.cm
2
 typical example from one isolation), compared to the TER of PBEC 

monolayers co-cultured with primary rat astrocytes and maintained in PBEC supplemented 

growth medium (TER 867 ± 74 Ω.cm
2
 section 3.2.3).  

Porcine brain endothelial cell monolayers examined under these specific culture 

conditions achieved TER higher than was observed in other studies performed during this 

work (section 3.2.2 and 3.2.3). Porcine brain endothelial cells maintained under the conditions 

of this study will be referred to as the primary porcine in vitro BBB model throughout the rest 

of this work and will be used for subsequent transport studies (Chapter 4). 
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3.2.6 Ultrastructural morphology of the primary porcine in vitro blood-brain barrier 

model  

Ultrastructural morphological features of the primary porcine in vitro BBB were 

qualitatively examined by transmission electron microscopy (section 2.2.6) seven days post-

seeding onto Transwell
®
 inserts (Figure 3.6a and 3.6b).  

 

Figure 3.6 Transmission electron micrographs of the primary porcine in vitro blood-brain barrier 

model 

 

 

 

. 

 
  

(a) Transmission electron micrograph of a cross section of the primary porcine in vitro BBB 

model, showing spindle-shaped morphology and the formation of tight junction complexes 

between adjacent cells. Bar is 1.25 µm. Magnification 17,000 x. (b) Transmission electron 

image showing preservation of mitochondria, a prominent basal lamina on the under-surface of 
the cells and a number of intracellular vesicles within the cell cytoplasm. Bar indicates 2.5 µm. 

Magnification  17,000 x. 

 

Transmission electron micrographs confirmed the formation of PBEC monolayers. The 

PBECs retained the spindle-shaped morphology characteristic of endothelial cells (perinuclear 

cell diameter ~1.0 µm) which extended peripherally into thin attenuations (diameter ~0.1 µm). 

Vesicular bodies 
Mitochondria 

Basal lamina  

a 

b 

 

 

Tight junctions 
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Tight junction protein complexes appear as electron dense structures at contact points 

between adjacent cells (Figure 3.6a). Mitochondria and a prominent basal lamina were 

present, as well as vesicular bodies throughout the cells (Figure 3.6b). 

 

3.2.7 Detection of the tight junction proteins occludin and ZO-1 in the primary porcine 

in vitro blood-brain barrier 

Transmission electron micrographs of the primary porcine in vitro BBB model 

confirmed the presence of tight junctions between apposing cells (Figure 3.6a). To confirm the 

expression and localisation of tight junction proteins in PBEC cell monolayers, 

immunofluorescence studies were conducted. 
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Figure 3.7  Immunofluorescent detection of tight junction proteins in porcine brain endothelial cell 

monolayers 

 

                

 

Porcine brain endothelial cell monolayers were washed with PBS warmed to 37 °C and fixed in 
ice cold methanol:acetone solution (1:1) for 2 min on ice followed by incubation with 10 % 

(v/v) horse serum in PBS, for 1 h at room temperature. Cell monolayers were washed with PBS 

and incubated with rabbit anti-human occludin (1:100) (a) or rabbit anti human-ZO-1 (1:100) 

(b) primary antibody for 1 h at room temperature. The cell monolayers were washed with PBS 

warmed to 37 °C and incubated with FITC labeled mouse anti-rabbit IgG (1:200) secondary 

antibody for 45 min at room temperature in the dark. The cell monolayers were washed with 

PBS, the filters cut from the Transwell® inserts using a scalpel, mounted onto a glass 
microscopy slide and enclosed with a cover slip. Specimens were viewed using a Leica DM 

IRBE confocal microscope (Leica Microsystems, Milton Keynes, UK) using FITC filter. 

Magnification x 200 scale bar 10µM. 

 

Immunofluorescence studies confirmed the expression the tight junction proteins 

occludin (Figure 3.7a) and ZO-1 (Figure 3.7b) between the cells of the primary porcine in 

vitro BBB model. Both occludin and ZO-1 were localised at the points of membrane contact 

between the individual cells forming tight junction protein complexes around PBEC borders.  

Negative controls showed negligible fluorescence compared to samples. 

Occludin and ZO-1 are vital components of tight junction protein complexes and a 

major contributor to the restrictive paracellular transport of molecules across the BBB in vivo 

(Furuse et al. 1993; Martin-Padura et al. 1998). These studies indicate that the primary porcine 

in vitro BBB model displays a BBB phenotype representative of the BBB in vivo with 

potential for low paracellular permeability, a necessity if the model is to serve as a 

permeability screen.  

b a 
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Lucifer yellow was used to assess paracellular permeability of the primary porcine in 

vitro BBB model. The apparent permeability coefficient (Papp) of Lucifer yellow across the 

primary porcine in vitro BBB model, from apical to basal compartments, was                      

2.16 x 10
-5

 ± 0.72 x 10
-5

 cm.s
-1

 (Data are the mean ± standard deviation of 5 independent 

experiments, with at least 12 replicates in each experiment). 

 

3.2.8 Expression of P-glycoprotein in porcine brain endothelial cells 

The P-gp efflux transporter is known to be highly expressed at the BBB and may limit 

entry of therapeutics into the CNS (Cordon-Cardo et al. 1989). In order for the primary 

porcine in vitro BBB model to be representative of the BBB in vivo it must possess 

functionally active P-gp. Expression of P-gp in PBECs was investigated by western blot 

analysis. Immunoblotting with the mouse monoclonal C219 antibody (P-gp specific) produced 

a single cross reactive band with an apparent molecular weight of approximately 170 kDa 

(Figure 3.8) confirming the expression of P-gp at the protein level in PBECs.  
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Figure 3.8  Expression of P-glycoprotein in porcine brain endothelial cells  

                                                                 

 

 

 

Caco-2 cell (lane 1 and lane 3) and porcine brain endothelial cell (lane 2 and lane 4) 

membranes were isolated by differential centrifugation. Solubilised proteins (30 µg protein per 

lane) were separated by SDS-polyacrylamide gel electrophoresis, electrotransfered to PVDF 

membrane, incubated with either mouse monoclonal C219 antibody and then with sheep anti-

mouse horse radish peroxidase labelled IgG (lanes 1 and 2) or with sheep anti-mouse horse 

radish peroxidase labelled IgG alone (lanes 3 and 4). P-gp was detected by enhanced 

chemiluminescence.  

 

Parallel western blot studies in our laboratory also confirmed expression of the efflux 

transporter BCRP in the PBECs (Personal communication with Sergio Mares-Samano).   

 

3.2.9 Measurement of P-glycoprotein efflux activity in porcine brain endothelial cells  

Calcein acetoxymethyl ester (calcein AM) is a non-fluorescent, membrane permeable 

compound which undergoes hydrolysis by intracellular esterases to produce calcein, a strongly 

fluorescent membrane impermeant compound which is retained within the cell. Calcein AM is 

a substrate of the P-gp efflux transporter (Tiberghien et al. 1996). P-glycoprotein activity in 

PBECs was assessed by measuring intracellular calcein accumulation with and without the P-

gp inhibitors GF120918 (Figure 3.9).  
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Figure 3.9  Intracellular accumulation of calcein in porcine brain endothelial cells with and without 

GF120918 
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Porcine brain endothelial cells were pre-incubated in PBEC transport medium or PBEC 

transport medium containing 2 µM GF120918 (P-gp inhibitor) for 30 min prior to incubation 
with calcein AM (final concentration 0.25 µM) for 30 min. Intracellular calcein accumulation 

was measured by fluorescence spectroscopy (484 nm excitation and 530 nm emission). Data as 

relative fluorescence units are expressed as the mean ± standard deviation of at least 8 

replicates, n=3 independent experiments. Statistical significance was determined using a Mann-

Whitney test: *** = P<0.001. 

 

A significantly greater (P<0.001) accumulation of intracellular calcein, 366.7 ± 89.3 

RFU, was observed in the PBECs pre-incubated with the P-gp inhibitor GF120918 (Figure 

3.9, red) compared to control (no pre-incubation with P-gp inhibitor GF120918 Figure 3.9, 

blue) at 162.4 ± 71.6 RFU. These findings indicate that P-gp is functionally active in the 

PBECs employed in our studies.  

 

3.2.10 Monolayer efflux assay 

A monolayer efflux assay was performed to confirm functional P-gp activity within the 

primary porcine in vitro BBB model. Amprenavir is a known P-gp substrate (Polli et al. 2004) 

and was used as a marker of efflux function. The ratio of the basolateral–apical (B-A) 

permeability versus the apical to basolateral (A-B) permeability of amprenavir was compared 
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to measure the efflux function of the primary porcine in vitro BBB model directly. The 

monolayer efflux assay was also performed with amprenavir and the P-gp inhibitor 

GF120918. 

 

Figure 3.10 Directional permeability of amprenavir across the primary porcine in vitro blood-brain 

barrier model 
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Permeability of amprenavir was measured in basolateral–apical (B-A) (blue) and apical to 

basolateral (A-B) (red) directions in the primary porcine in vitro blood-brain barrier model. 

Amprenavir permeability (B-A) (yellow) and (A-B) (green) permeability was also measured 

with GF120918. Data are presented as the mean Papp (nm.s-1) ± standard deviation of duplicates 

n=3 independent experiments. Statistical significance was determined using a Mann-Whitney 
test: *= P<0.05, ** = P<0.01 

 

The B-A apparent permeability (Papp) of amprenavir (206.0 ± 40.8 nm.s
-1

 Figure 3.10, 

blue) is significantly greater (P<0.01) than A-B permeability (35.0 ± 17.2 nm.s
-1

 Figure 3.10, 

red) suggesting that the primary porcine in vitro BBB model possesses functional P-gp which 

is pumping the amprenavir into the apical compartment.  

Complete inhibition of P-gp activity would be expected to reduce B-A permeability and 

increase A-B such that there would be no appreciable difference between the two 
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measurements. In the presence of the P-gp inhibitor GF120918 B-A permeability was 

significantly reduced (from 206.0 ± 40.8 nm.s
-1 

Figure 3.10 blue
 
to 79.0 ± 11.3 nm.s

-1
, Figure 

3.10 yellow) and A-B permeability was significantly increased (from 35.0 ± 17.2 nm.s
-1 

Figure 

3.10 red to 59.49 nm.s
-1 

± 36.3 Figure 3.10 green).  

The ratio of (B-A)/(A-B) apparent permeabilities is 5.91 in the absence of GF120918, 

compared to 1.33 (close to unity) with GF120918. An efflux ratio >2 is regarded to represent 

involvement of functional P-gp activity, and hence this confirms functional P-gp activity 

within the primary porcine in vitro BBB model.  

 

3.2.11 Measurement of γ-glutamyl transpeptidase activity in primary porcine brain 

endothelial cells 

In vivo, brain endothelial cells exhibit high levels of γ-glutamyltranspeptidase activity 

which can be used as a marker enzyme for brain CECs (Caspers et al. 1984). It has been 

reported that in vitro the enzyme activity is lost from the cells as they migrate outwards from 

isolated capillary fragments (DeBault et al. 1980).  

Astrocytic growth factors have been widely reported to induce γ-

glutamyltranspeptidase activity in brain endothelial cells (el Hafny, Bourre et al. 1996). To 

confirm the functional activity of γ-glutamyltranspeptidase in isolated PBECs and the effect of 

astrocytic growth factors, γ-glutamyltranspeptidase activity was measured 

spectrophotometrically. 
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Figure 3.11  γ-glutamyl transpeptidase activity in porcine brain endothelial cells 
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Porcine brain endothelial cells were grown to confluency on clear 96-well flat bottom plates in 

either PBEC culture medium (blue), PBEC culture medium:primary rat ACM, 1:1 (red) or 

PBEC culture medium:CTX-TNA2, ACM, 1:1 (green). Enzyme activity was determined 

spectrophotometrically by measuring production of p-nitroanilide at 410 nm, using ε = 8,800 

M-1.cm-1. Enzyme activity is expressed as specific activity (nmol.min-1.mg protein-1). Data are 
expressed as mean ± standard deviation of 6 replicates, n=3 independent experiments. 

Statistical significance was determined using a Mann-Whitney test: * = P< 0.05 and *** = P < 

0.001. 

 

 

γ-glutamyl transpeptidase activity was detected in PBECs grown in all three culture 

conditions (Figure 3.11). The specific activity of γ-glutamyl transpeptidase in PBECs 

maintained in PBEC culture medium:primary rat, ACM (1:1) (16.6 ± 5.2 nmol.min
-1

.mg 

protein
-1

) and in PBEC culture medium:CTX-TNA2, ACM  (1:1) (22.3 ± 6.1 nmol.min
-1

.mg 

protein
-1

 ) was significantly higher than PBECs maintained in PBEC culture medium        

(12.8 ± 5.4 nmol.min
-1

.mg protein
-1

). Thus, in these studies, γ-glutamyl transpeptidase activity 

was retained on isolation of PBECs from brain tissue and increased when cells were exposed 

to astrocytic growth factors. 
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3.2.12 Measurement of alkaline phosphatase activity in primary porcine brain 

endothelial cells 

Alkaline phosphatase activity can be used as a BBB marker enzyme. The expression of 

alkaline phosphatase is often reduced in primary cultured endothelial cells, but has been 

shown to be restored by astrocytic factors (El Hafny et al. 1996). To confirm the functional 

expression of alkaline phosphatase in isolated PBECs and the effect of astrocytic growth 

factors on activity, the formation of p-nitrophenol in PBECs was measured 

spectrophotometrically. 

 

Figure 3.12  Alkaline phosphatase activity in primary porcine brain endothelial cells 
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Porcine brain endothelial cells were grown on clear 96-well flat bottom plates to confluency in 
either; PBEC culture medium (blue), PBEC culture medium:primary rat ACM, 1:1 (red) or 

PBEC culture medium:CTX-TNA2, ACM, 1:1 (green).Enzyme activity was determined 

spectrophotometrically at 410 nm, using ε 17,000 M-1.cm-1. Enzyme activity is expressed as 

specific enzyme activity (nmol.min-1.mg protein-1). Data are expressed as mean ± standard 

deviation of 6 replicates, n=3 independent experiments. Statistical significance was determined 

using a Mann-Whitney test. 
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Although, specific enzyme activity was retained on isolation of PBECs maintained in 

PBEC culture medium, 9.1 ± 2.6 nmol.min
-1

.mg protein
-1

 (Figure 3.12 blue), alkaline 

phosphatase activity was not significantly increased in PBECs maintained in either PBEC 

culture medium:primary rat, ACM 1:1 (9.3 ± 1.9 nmol.min
-1

.mg protein
-1

) or in PBEC culture 

medium:CTX-TNA2, ACM, 1:1 (9.2 ± 3.0 nmol.min
-1

.mg protein
-1

), suggesting astrocytic 

factors did not significantly affect specific activity of alkaline phosphatase in these in vitro 

studies.  

 

3.3 Discussion 

The primary aim of this chapter was to develop and characterise a primary porcine in 

vitro BBB model for the prediction of CNS drug permeability in vivo. Primary CEC cultures 

exhibit the closest phenotypic resemblance to the in vivo BBB, retaining in vivo characteristics 

such as tight junctions (Bowman et al. 1983; Rubin et al. 1991; Abbott et al. 1992), expression 

of transporters (Zhang et al. 2006; Smith et al. 2007) and BBB marker enzymes (El Hafny et 

al. 1996; Smith et al. 2007). Despite this, down regulation or loss of in vivo BBB 

characteristics can still occur on isolation from brain tissue (DeBault et al. 1980) although, the 

correct culturing techniques and conditions can help to maintain these characteristics.  

For an in vitro BBB model to serve as a permeability screen it must display a 

restrictive paracellular pathway. Hence, the first part of this chapter focussed on determining 

the optimum culture conditions that would produce the greatest TER across PBEC monolayers 

and consequently develop a reproducible primary porcine in vitro BBB model. 

The primary porcine in vitro BBB model was then characterised to demonstrate that 

the model exhibited other key in vivo characteristics required for use as a permeability screen 

including endothelial cell morphology, expression of tight junction proteins, measurement of 

γ-glutamyl transpeptidase and alkaline phosphatase enzyme activity and the presence of 

barrier functionality such as functional expression of P-gp (Gumbleton et al. 2001). 

Porcine brain endothelial cells were successfully isolated from freshly harvested porcine 

brains and grown on 6-well plates before being seeded onto Transwell® inserts. The PBECs 

grown on the 6-well plates were fully confluent within ten days of isolation forming a 

uniform, tightly packed monolayer. Phase contrast images using light microscopy showed that 

the cells exhibited typical, elongated, spindly, fusiform morphology, characteristic of CECs. 
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These images were consistent with other isolated primary PBECs reported in the literature 

(Zhang et al. 2006; Smith et al. 2007). 

Although, primary cultured CECs provide the closest phenotypic resemblance to CECs 

in vivo, down regulation or loss of in vivo BBB characteristics can still occur on isolation of 

CECs from brain tissue (DeBault et al. 1980). Co-culture with astrocytes or ACM has been 

shown to induce in vivo BBB properties for example tight junction formation and decreased 

permeability (Dehouck et al. 1990; Rubin et al. 1991; Sobue et al. 1999), expression of the 

efflux transporter P-gp (El Hafny et al. 1997; Gaillard et al. 2000) and BBB enzyme activity 

such as alkaline phosphatase (Sobue et al. 1999) and γ-glutamyl transpeptidase (El Hafny et al. 

1996) which are necessary if the in vitro BBB model is to be used as  a permeability screen.  

Supplements added to the medium have also been shown to enhance tight junction 

protein expression between adjacent cells of in vitro BBB models (Rubin et al. 1991; Hoheisel 

et al. 1998; Igarashi et al. 1999; Calabria et al. 2006). 

 The effect of co-culture with primary rat astrocytes and the addition of supplements 

namely hydrocortisone, cAMP and RO-20-1724 to the culture medium on cellular morphology 

and PBEC monolayer TER was investigated in order to determine the conditions which 

produced morphology and TER most representative of BBB in vivo. Porcine brain endothelial 

cells monolayers co-cultured with primary rat astrocytes and maintained in medium containing 

supplements (cAMP, RO-20-1724 and hydrocortisone) achieved significantly higher TER 

(385 Ω.cm
2
) and the morphology most representative of the in vivo BBB compared to PBECs 

cultured alone and with no supplements, alone with supplements or in co-culture without 

supplements. 

Astrocytes have been shown to secrete chemicals that are thought to induce BBB 

properties for example glial-derived neurotrophic factor (GDNF), basic fibroblast growth 

factor (bFGF) and transforming growth factor-ß (TGFß) (Tran et al. 1999; Abbott 2002; 

Haseloff et al. 2005; Abbott et al. 2006). Addition of supplements to culture medium has also 

been shown to increase TER (Rubin et al. 1991; Gaillard et al. 2001) explaining why the 

combination of co-culture with astrocytes and the addition of supplements to the medium 

resulted in the optimum culture conditions observed in this study.  

There is still large speculation over which astrocytic factors induce the specific „BBB 

phenotype‟. However, GDNF in combination with CPT-cAMP and RO20-1724 has been 
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shown to synergistically decrease mannitol permeability and increase TER of PBECs (Igarashi 

et al. 1999). Chlorophenylthio-cyclic adenosine monophosphate and RO-20-1724 increase 

intracellular cAMP which is thought to induce phosphorylation of tight junction proteins and 

hence increase TER (Igarashi et al. 1999). In addition, bFGF has been shown to decrease       

L-glucose permeability and increase alkaline phosphatase activity in bovine brain endothelial 

cells (Sobue et al. 1999). Addition of hydrocortisone to culture medium has also resulted in 

increased TER and decreased cell monolayer sucrose permeability (Hoheisel et al. 1998; 

Calabria et al. 2006).  

Although, co-culture with astrocytes and the use of supplemented medium were the culture 

conditions that produced the greatest PBEC monolayer TER, the TER (385 Ω.cm
2
) was still 

not representative of that reported in vivo 1490 Ω.cm
2
 and 1870 Ω.cm

2
 (Crone et al. 1982; Butt 

et al. 1990).  

Contamination from astrocytes and pericytes during CEC isolation can result in the 

formation of an incomplete barrier of primary cultured CECs (Parkinson et al. 2005) and low 

reproducibility between studies. In order to optimise culture conditions and increase TER 

further, the method used to purify the PBECs prior to seeding them onto Transwell® inserts 

was investigated.  

Porcine brain endothelial cells were treated with 3 µg.ml
-1

 puromycin for 3 days 24 h post 

seeding onto 6-well plates. Transcellular electrical resistance across PBEC monolayers was 

significantly increased for PBEC monolayers treated with puromycin (867 Ω.cm
2
)

 
compared 

to the control. These results were reproducible between PBEC isolations and puromycin 

treatment was found to be a simple way to standardise the purification step. Puromycin is an 

aminonucleoside antibiotic produced by streptomyces alboniger which prevents peptidyl 

transfer in the ribosome and hence prevents protein synthesis (Calabria et al. 2006). 

Endothelial cells can survive relatively large concentrations of puromycin which is a P-gp 

substrate, as they express the P-gp efflux transporter in contrast puromycin is cytotoxic to 

contaminating glial cells that either lack or express P-gp at lower levels than PBECs. These 

findings were consistent with previous studies.  

Primary rat CECs, co-cultured with astrocytes, maintained in medium supplemented with 

cAMP and purified using puromycin treatment showed a reduction in sodium fluorescein 

permeability and an increase in TER across cell monolayers (Perriere et al. 2005).  
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Further validation of purification using puromycin treatment was documented, (Calabria et 

al. 2006) where puromycin treatment was used to purify primary rat CECs. Puromycin 

treatment was considered to be the best purification method in the study and cells treated with 

both puromycin and glucocorticoid attained higher TER than with glucocorticoid treatment 

alone. 

Co-culture of primary cultured PBECs with primary cultured rat astrocytes have shown 

to induce BBB properties in this work. Parallel studies in our laboratory (personal 

communication with Dr Carina Cantrill) have shown that PBEC monolayers co-cultured with 

the CTX-TNA2 rat astrocyte cell line routinely demonstrate TER > 2000 Ω.cm
2
. These TER 

were substantially higher than TER obtained across PBEC monolayers maintained in           

co-culture with primary rat astrocytes and are similar to electrical resistances reported across 

the in vivo BBB (Crone et al. 1982; Butt et al. 1990). 

The precise reasons why PBECs co-culture with the CTX-TNA2 rat astrocyte cell line 

resulted in higher TER values across cell monolayers than PBECs co-cultured with primary rat 

astrocytes are not known. However, it is possible that the CTX-TNA2 cell line could produce 

a variety of astrocytic factors, such as GDNF, bFGF and TGFß, or produce higher levels of 

astrocytic factors compared to the primary rat astrocytes, the levels of which may be more 

representative of the in vivo situation and hence, produce TER similar to in vivo TER. It is also 

possible that the primary cultured astrocytes may loose some of their phenotypic properties on 

isolation. Therefore, the CTX-TNA2 astrocytes in culture may be more representative of the 

astrocytes at the BBB in vivo and PBECs co-cultured with CTX-TNA2 astrocytes may 

produce higher TER than PBECs co-cultured with primary rat astrocytes. 

 Astrocytes used for co-culture (or ACM) are most often sourced from either the rat C6 

glioma cell line (Lauer et al. 2004; Smith et al. 2007) or from primary rat astrocytes (Gaillard 

et al. 2000; Kido et al. 2002). However, TER of primary porcine in vitro BBB models co-

cultured with the C6 glioma cell line have reported TER values of up to 900 Ω.cm
2 

(Smith et 

al. 2007) and, primary porcine in vitro BBB models co-cultured with primary rat astrocytes 

have reported TER up to 550 Ω.cm
2 

(Zhang et al. 2006). None of these TER values were as 

high as the TER values obtained in our laboratory when PBECs were co-cultured with the 

CTX-TNA2 cell line.  
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The literature documents numerous in vitro BBB models using primary and 

immortalised cell lines, from a range of species and tissues which are cultured under various 

conditions, some which have reported high TER, although, not as high as those achieved in 

our laboratory. The highest in vitro BBB model TER reported in the literature to date is     

1650 Ω.cm
2
, and, like our model, was achieved using an in vitro BBB model composed of 

primary PBECs (purified with puromycin) but this model was co-cultured with primary rat 

astrocytes seeded onto the underside of the Transwell
®
 insert and also onto the base of the well 

(Cohen-Kashi Malina et al. 2009).   

As in vitro BBB models using primary PBECs have resulted in the highest model TER 

in the literature, the development of an in vitro BBB model using immortalised PBECs could 

be beneficial in terms of ease of culture and higher throughput of studies. However, in vitro 

BBB models using immortalised cell lines have been shown to exhibit much lower model 

TER. A porcine in vitro BBB model based upon the PBMEC/C1-2 cell line co-cultured with 

C6 glioma conditioned medium and maintained in medium supplemented with cAMP and 

R20-1724 (Lauer et al. 2004) obtained TER up to 300 Ω.cm
2 

despite similar conditions to the 

primary porcine in vitro BBB model in this thesis. 

Following the results obtained from these studies and personal communication with  

Dr Carina Cantrill, purification using puromycin treatment, co-cultured with astrocytes from 

the CTX-TNA astrocyte cell line and the use of supplemented medium were deemed the 

optimum culture conditions for PBECS in the development of an in vitro BBB model for use 

as permeability screen. The primary porcine in vitro BBB model routinely attained TER 

>2000 Ω.cm
2
 7 days post-seeding onto Transwell inserts

®
. Porcine brain endothelial cells 

cultured under these optimised conditions were referred to as the primary porcine in vitro BBB 

model and the rest of this work focussed on characterisation of this model in order to validate 

its use as a permeability screen. 

Transmission electron micrographs showed that the PBECs of the porcine in vitro BBB 

retained spindly, attenuated morphology, characteristic of primary cultured CECs (Abbott et 

al. 1992; Zhang et al. 2006; Smith et al. 2007) and formed cell monolayers. These findings 

were consistent with the images taken of the PBECs on 6-well plates using the light 

microscope before seeding them onto Transwell
®
 inserts. The presence of tight junction 

protein complexes between adjacent cells was also confirmed, using the electron microscope. 
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Tight junction protein complexes are imperative if the primary porcine in vitro BBB model is 

to serve as a permeability screen. Tight junction protein complexes are also indicative of the 

high TER values obtained across PBEC monolayers of the porcine in vitro BBB model in 

these studies.  

The transmission electron micrographs in this study are comparable with transmission 

electron micrographs of PBEC monolayers reported in the literature (Zhang et al. 2006; Smith 

et al. 2007). Vesicular bodies, a basal lamina and mitochondria were also observed.  

Supportive immunofluorescence studies confirmed the presence of the tight junction 

proteins occludin and ZO-1, at the points of membrane contact between the individual PBECs. 

The immunofluorescence images taken in these studies depicted fluorescence around the cell 

borders associated with the presence of occludin and ZO-1 between adjacent PBECs. These 

images were consistent with images documented in the literature from previous studies which 

also confirmed the presence of occludin and ZO-1 between CECs (Rubin et al. 1991; Neuhaus 

et al. 2008; Cohen-Kashi Malina et al. 2009). 

In order to assess the restrictive nature of the porcine in vitro BBB model, Lucifer yellow 

was used to quantify the paracellular permeability of the model. The mean Papp of Lucifer 

yellow across the primary porcine in vitro BBB model was 2.16 x 10
-5

 ± 0.72 x 10
-5

 cm.s
-1

 

reflecting low paracellular permeability of the model. 

The permeability of Lucifer yellow across intact rat pial vessels has been reported in the 

literature as 31.6 x 10
-6

 cm.s
-1

 (Easton et al. 1994) which is comparable with the Lucifer 

yellow permeability of 2.16 x 10
-5

 cm.s
-1

 (21.6 x 10
-6

 cm.s
-1

) obtained across the porcine in 

vitro BBB model in these studies. However, Lucifer yellow permeabilities across a primary 

bovine in vitro BBB model were reported to be 6.3 x 10
-4

 cm.s
-1

 (Culot et al. 2008) which 

were greater than the permeabilities obtained in these studies. Lucifer yellow permeabilities of 

2.22 x 10
-5 

cm.s
-1

 have also been reported across the immortalised human cell line hCMEC/D3 

(Poller et al. 2008) which are consistent with these studies, although TER values across cell 

monolayers were low (<40 Ω.cm
2
) (Weksler et al. 2005). For further discussion please refer to 

Chapter 4 discussion. 

For the porcine in vitro BBB model to serve as a permeability screen it is important that it 

can discriminate between drugs of different permeabilities. Parallel studies in our laboratory 

(Cantrill 2009) reported a 10-fold difference between the permeabilities of fluorescent 
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dextrans (FD), FD4 (4,000 molecular weight) permeability was 10-fold greater than FD10 

(10,000 molecular weight) permeability.   

Transmission electron microscopy has depicted evidence of the presence of tight junction 

protein complexes, immunofluorescence studies have confirmed the presence of the tight 

junction proteins occludin and ZO-1 and Lucifer yellow permeability has been quantified and 

reflects low paracellular permeability of the model. Therefore, characterisation of the primary 

porcine in vitro BBB model has confirmed that it possesses a restrictive paracellular pathway 

and is suitable for use as a permeability screen. 

P-glycoprotein, an efflux transporter expressed on the apical membrane of the CECs of the 

BBB (Cordon-Cardo et al. 1989), functions as a defence mechanism of the brain, expelling 

harmful  substances (Abbott 2005), but can also limit the penetration of drugs across the BBB. 

Therefore, functional expression of P-gp is a requirement of the in vitro BBB model if it is to 

be physiologically representative of the in vivo BBB and to serve as a permeability screen, in 

order to integrate the effect of P-gp efflux into the overall permeability measurement.  

Western blot analysis confirmed the expression of P-gp at the protein level in PBECs. The 

expression of P-gp appeared exceptionally large in the PBEC sample. Expression of P-gp has 

also been reported in primary PBECs documented in the literature at the protein level using 

western blotting (Smith et al. 2007) and at the mRNA level using RT-PCR (Zhang et al. 2006; 

Smith et al. 2007). Parallel western blot studies in our laboratory also confirmed expression of 

the efflux transporter BCRP in PBECs (Personal communication with Sergio Mares-Samano).   

Once expression of P-gp in the PBECs was confirmed, it was important to ensure that the 

P-gp efflux transporter was functionally active. A calcein AM accumulation assay (Eneroth et 

al. 2001; Bauer et al. 2003) was used to assess P-gp activity in the PBECs. A significantly 

greater intracellular accumulation of calcein was observed in PBECs pre-incubated with the P-

gp inhibitor GF120918 compared to control cells (no pre-incubation with GF120918), which 

suggested that the P-gp expressed in PBECs was functionally active. 

Similar assays have been employed in the literature also confirming functional expression 

of P-gp in primary PBECs using rhodamine-123 as a P-gp substrate and using verapamil as a 

P-gp inhibitor (Smith et al. 2006). 

After the functional expression of the P-gp in PBECs had been confirmed it was also 

important to ensure that the primary porcine in vitro BBB model demonstrated directional     
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P-gp activity. To investigate this, amprenavir was used as a P-gp substrate in a monolayer 

efflux assay. Amprenavir exhibited an efflux ratio significantly greater than unity suggesting 

functional P-gp activity of the model. However, a much greater efflux ratio would have been 

expected considering the large expression of P-gp exemplified by the western blot. However, 

it is possible that not all of the P-gp expressed in the PBECs was functionally active.  P-gp 

activity was confirmed when the efflux ratio of amprenavir was reduced to almost unity with 

the addition of GF120918, a P-gp inhibitor used as a control.  

To further characterise the primary porcine in vitro BBB model the functional 

expression of BBB marker enzymes γ-glutamyltranspeptidase and alkaline phosphatase were 

investigated as enzyme activity can be lost when cells are isolated (DeBault and Cancilla 

1980). Although, astrocytic growth factors have been reported to induce enzyme activity in 

brain endothelial cells (El Hafny et al. 1996). 

γ-glutamyl transpeptidase activity was detected in PBECs maintained in PBEC culture 

medium, PBEC culture medium:primary rat ACM (1:1) and PBEC culture medium:CTX-

TNA2  ACM  (1:1). However, γ-glutamyl transpeptidase activity was significantly greater in 

PBECs maintained in both PBEC culture medium:primary rat ACM (1:1) and PBEC culture 

medium:CTX-TNA2 ACM  (1:1) compared to PBECs maintained in culture medium alone. 

This suggested up-regulation of γ-glutamyl transpeptidase activity, in response to astrocytic 

factors. This is consistent with previous studies in the literature which have shown induction 

of γ-glutamyl transpeptidase activity by astrocytic factors, for example, in the mouse ME-2 

endothelial cell line co-cultured with the C6 glioma cell line (DeBault et al. 1980). 

Alkaline phosphatase activity was detected in PBECs maintained in PBEC culture 

medium, PBEC culture medium:primary rat ACM (1:1) and PBEC culture medium:CTX-

TNA2 ACM  (1:1). However, no significant difference in activity was observed between the 

different culture conditions. The reasons for this are still to be elucidated and are contradictory 

to the literature as expression of alkaline phosphate has been shown to be upregulated in 

primary PBECS exposed to C6 glioma cell line conditioned media (Smith et al. 2007).  

Optimised culture conditions for PBECs were shown to include purification with 

puromycin treatment to eliminate contaminating cells, co-culture with the CTX-TNA2 

astrocyte cell line and the use of supplemented medium. These optimised culture conditions 

have been used to develop a primary porcine in vitro BBB model exhibiting an extremely 
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restrictive barrier representative of the BBB in vivo. The primary porcine in vitro BBB model 

has been characterised to confirm; physiologically realistic cell architecture, the formation of 

tight junction protein complexes, a restrictive paracellular pathway, functional expression of 

efflux transporters and BBB-associated marker enzymes. The primary porcine in vitro BBB 

model therefore possesses key physiological features of the BBB in vivo and can be used as a 

valid model for use in subsequent drug permeation studies and potentially as a permeability 

screen for use in drug discovery programmes. 

Primary CECs provide the closest phenotype to the in vivo BBB and in general provide 

a more restrictive paracellular transport pathway compared to immortalised cell lines. Primary 

cell based in vitro BBB models, for routine use as a permeability screen in drug discovery 

settings may be limited due to the time and expertise required to set up the in vitro BBB 

model. However, the high yield of CECs from a porcine brain, which can also be 

cryopreserved, is a distinct advantage of this in vitro BBB model. Reproducibility is often a 

problem associated with primary cell culture, good reproducibility within and between batches 

was observed using this model. In order to investigate interlaboratory variation, future work 

using this model could involve repetition of the isolation and cell culture techniques of the 

model in other laboratories. Another limitation to the use of a porcine in vitro BBB model is 

species differences between porcine and human. Although, the literature reports similarities 

between porcine and human in terms of brain uptake and differences between human and rat 

(Syvanen et al. 2009).  

Finally, further characterisation of active transporters at the primary porcine in vitro 

BBB model would be beneficial. For example, characterisation of the MRP efflux transporter 

which has been shown to be expressed at other primary porcine CECs (Gutmann et al. 1999; 

Zhang et al. 2006) and influx transporters such as GLUT1 and LAT1 (Zhang et al. 2006; 

Smith et al. 2007) would be useful as the purpose of this model is to serve as a permeability 

screen. 
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4.0 Chapter 4: Transport of a series of centrally acting test drugs across in vitro blood-

brain barrier models 

 

4.1 Background 

A well characterised, physiologically-representative in vitro BBB model for the 

prediction of in vivo BBB permeability is a valuable tool to aid the discovery of novel 

centrally acting drugs. In vitro BBB models can be used to obtain permeability measurements 

of novel CNS drug candidates in drug discovery programmes which can be used as a surrogate 

for rate of drug brain penetration and can also give information on the potential of a drug to be 

a substrate of an efflux transporter(s) highlighting possible limitations to BBB penetration. 

The literature documents numerous in vitro cell-based BBB models, using primary and 

immortalised cells, different cell types and cells from a range of species and tissues making it 

difficult to combine and compare data. All of these in vitro BBB models have advantages and 

limitations but none to date have been deemed the „gold standard‟ for the prediction of in vivo 

BBB permeability. A set of 12 centrally-acting test drugs of interest, (based on in-house 

studies by GSK) were used in transport studies employing five in vitro BBB models which 

include examples of primary and immortalised cells, cells from cerebral and non-cerebral 

origin, and cells from different species (dog, pig and human). Data obtained using the caco-2 

in vitro BBB model can be found in Appendix 5 because only a small number of studies were 

conducted using this in vitro BBB model. 

The overall objective of these studies was to compare in vitro BBB models regarding 

their potential for the prediction of in vivo BBB permeability. The individual aims were to; 

determine a suitable test drug concentration for use in subsequent transport studies across in 

vitro BBB models, perform transport studies across five in vitro BBB models in order to 

investigate the relationship between in vitro BBB model permeabilities and investigate the 

relationship between in vitro BBB model permeability and rat in situ permeability surface 

product. 
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4.2 Results 

4.2.1 Methylthiazolyldiphenyl-tetrazolium bromide assay 

4.2.1.1 Determination of optimum seeding density of cells employed as in vitro blood-

brain barrier models for the methylthiazolyldiphenyl-tetrazolium bromide assay 

Preliminary studies were carried out to determine the optimum seeding density of each 

cell type (employed as in vitro BBB models) to be used in a methylthiazolyldiphenyl-

tetrazolium bromide (3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium bromide, MTT) 

assay. Optimum sensitivity of the assay is achieved using near confluent cells that are in the 

exponential growth phase to avoid underestimating drug toxicity. Following 48 h in culture, 

the seeding density for each cell type that gave an absorbance of approximately 1 was chosen 

as the optimum seeding density for subsequent MTT assays. Optimum seeding densities 

chosen were as follows; PBEC 15,000 cells/well, hCMEC/D3 15,000 cells/well, MDR1-

MDCKII 12,500 cells/well and MDCKwt 15,000 cells/well.  

 

4.2.1.2 Assessment of test drug concentration for use in transport studies across in vitro  

blood-brain barrier models 

Prior to conducting transport studies with each in vitro BBB model, an MTT assay was 

performed to examine the effect of test drug concentration (3 µM was a desirable 

concentration to remain consistent with in-house studies at GSK) on the viability of each cell 

type. A range of test drug concentrations were used in the assay for each cell type in order to 

obtain an alternative test drug concentration if required.  
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Figure 4.1  Effect of test drug concentration on cell viability 
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Each cell type (a) PBEC, (b) hCMEC/D3, (c) MDR1-MDCKII, and (d) MDCKwt were seeded 

onto 96-well plates at a pre-determined cell density and incubated for 24 h. Cells were then 

incubated with test drugs at 0.03 µM (blue), 0.3 µM (yellow), 3 µM (green) and 30 µM (red) 

for 60 min, washed with PBS and incubated for 24 h in growth medium. 

Methylthiazolyldiphenyl-tetrazolium bromide in PBS (5 mg.ml-1) was added to all wells (10 µl 

per 100 µl medium) and the cells were incubated for 4 h. The MTT-formazan produced was 

solubilised and quantified colourmetrically using a spectrophotometer. The control (cells 

exposed to solvent at the same concentration as all test drug solutions) corresponded to a cell 

viability of 100 %. Data are expressed as mean ± standard deviation of 4 replicates from one 
independent experiment.  
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Figure 4.2  Effect of test drug concentration and GF120918 on cell viability 
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Each cell type (a) PBEC, (b) hCMEC/D3, (c) MDR1-MDCKII and (d) MDCKwt were seeded 

at a pre-determined density and incubated for 24 h. Each cell type was then co-incubated with 

the test drugs that were to be used in subsequent transport studies at a range of concentrations 

(blue 0.03 µM, yellow 0.30 µM, green 3.00 µM and red 30.00 µM) and GF120918 (2 µM) for 

60 min. The cells were washed and incubated for 24 h in growth medium. 

Methylthiazolyldiphenyl-tetrazolium bromide in PBS (5 mg.ml-1), was added to all wells (10 µl 

per 100 µl medium) and the cells were incubated for 4 h. The MTT-formazan produced was 

solubilised and quantified colourmetrically using a spectrophotometer. The control (cells 

exposed to solvent at the same concentration as all test drugs solutions) corresponded to a cell 
viability of 100 %. Data are expressed as mean ± standard deviation of 4 replicates from one 

independent experiment.  

 

None of the test drugs at the desired test concentration (3 µM) were shown to 

substantially decrease the viability of any cell type (Figure 4.1) compared to control cells. 

Analogous findings were obtained when cell viability was measured following exposure of 

each cell type to both test drug and the P-gp inhibitor GF120918 (Figure 4.2).  The 

paracellular marker Lucifer yellow (100 µM) alone, employed in all studies to monitor cell 

monolayer integrity, did not appreciably affect cell viability of any cell type (PBEC 100.72 %, 

hCMEC/D3 99.43 %, MDR1-MDCKII 124.21 % and MDCKwt 109.33 %) compared to 

control cells (100 %). Similarly, there was no appreciable effect on cell viability when cells 

were exposed to GF120918 (2 µM) alone (PBEC 128.88 %, hCMEC/D3 95.97 %, MDR1-

MDCKII 102.52 %, and MDCKwt 100.05 %) or exposed to a combination of Lucifer yellow 

(100 µM) and GF120918 (PBEC 160.81 %, hCMEC/D3 111.44 %, MDR1-MDCKII      

111.85 % and MDCKwt 100.38 %) compared to control cells. This study confirmed that a test 

drug concentration of 3 µM, the P-gp inhibitor GF120918 (2 µM) and the paracellular marker 

(d) 
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Lucifer yellow (100 µM) did not substantially decrease cell viability of any cell type and were 

therefore suitable to be used in subsequent transport studies. 

 

4.2.2 Characterisation of in vitro blood-brain barrier model integrity and efflux function 

The integrity and efflux function of all in vitro BBB model monolayers was 

characterised, in order to identify differences between the models and similarities of the 

models to the BBB in vivo. Paracellular permeability, expressed as apparent permeability  

(Papp nm.s
-1

) and exact permeability (Pexact nm.s
-1

) and TER (Ω.cm
2
) were used as markers of 

monolayer integrity. Amprenavir a known P-gp substrate (Polli et al. 1999) was used as a 

marker of functional P-gp activity.  

 

Table 4.1 Markers of monolayer integrity and efflux function 

 

In vitro BBB 

model 
Lucifer yellow 

Papp (nm.s
-1

) 
Lucifer yellow 

Pexact (nm.s
-1

) 
TER 

(Ω.cm
2
) 

Efflux ratio 

(Papp) 
Efflux ratio 

(Pexact) 
Porcine 216.2 ± 72.2 230.0 ± 76.8 2000-2200 5.9 5.6 

hCMEC/D3 54.5 ± 29.4 60.1 ± 31.3 20-40 1.2 0.8 

MDR1-MDCKII 25.0 ± 12.0 26.4 ± 12.6 100-140 12.0 12.8 

MDCKwt 28.5 ± 13.3 30.1 ± 14.0 40-50 2.0 2.0 

 

The table shows A-B apparent permeability (Papp nm.s-1) and exact permeability (Pexact nm.s-1) of 

Lucifer yellow (100 µM), transcellular electrical resistance (Ω.cm2) and efflux ratio (B-A/A-B) 

of amprenavir determined from both apparent permeability (Papp nm.s-1) and exact permeability 

(Pexact nm.s-1) across porcine, hCMEC/D3, MDR1-MDCKII and MDCKwt in vitro BBB 

models. Lucifer yellow data are expressed as mean ± standard deviation of at least 6 replicates, 

n=3 independent experiments, transcellular electrical resistance data are expressed as range of 

at least 12 replicates, n=3 independent experiments and efflux ratios (B-A/A-B) (Papp and Pexact) 

for amprenavir are calculated from mean of duplicates, n=3 independent experiments.  
 

 

Lucifer yellow permeability (Papp and Pexact) (Table 4.1) was similar across hCMEC/D3, 

MDR1-MDCKII, and MDCKwt in vitro BBB models, whereas for the porcine model, Lucifer 

yellow permeability was an order of magnitude greater. No substantial differences were 

observed between Lucifer yellow Papp and Pexact for all in vitro BBB models. 

The porcine in vitro BBB model displayed the greatest TER (2000-2200 Ω.cm
2
) 

compared to all other in vitro BBB models in the study (Table 4.1) which was comparable to 

estimated in vivo TER (1490-1870 Ω.cm
2
) (Crone et al. 1982; Butt et al. 1990). In comparison, 

the TER values of hCMEC/D3, MDR1-MDCKII and MDCKwt and were relative low and not 

representative of the BBB in vivo. Low Lucifer yellow permeability did not correlate with 
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high TER which would be expected if these parameters were connected, for example the 

porcine model displayed the highest Lucifer yellow permeability and also the highest TER.  

 A test drug with an efflux ratio greater than, or the same as 2, and, where efflux is 

inhibited by a potent P-gp inhibitor will be considered as a potential P-gp substrate during this 

work (Zhang et al. 2008), in keeping with FDA guidelines on identification of Pgp substrates. 

The porcine and MDR1-MDCKII in vitro BBB models both showed functional P-gp activity, 

the MDCKwt model exhibited borderline P-gp activity (efflux ratio = 2) and the hCMEC/D3 

in vitro BBB model did not demonstrate any functional P-gp activity (Table 4.1). 

This study has shown that the porcine and MDR1-MDCKII in vitro BBB models 

exhibit markers of monolayer integrity and P-gp efflux function which are desirable properties 

of an in vitro BBB model and representative of the BBB in vivo. 

 

4.2.3 Transport studies 

4.2.3.1 Permeability measurements of test drugs across the porcine in vitro blood-brain 

barrier model 

Test drugs were used in permeability studies across the porcine in vitro BBB model. 

Tables 4.2 and 4.3 detail apparent permeability and exact permeability respectively, with and 

without the P-gp inhibitor GF120918 across the porcine in vitro BBB model for amprenavir, 

carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine 

and risperidone. Percentage recoveries for all test drugs were similar.  
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Table 4.2 Apparent permeability and efflux ratio of test drugs across the porcine in vitro blood-

brain barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Papp A-B Papp B-A ER Papp A-B Papp B-A ER 

Amprenavir 35.0 ± 17.2 206.9 ± 40.8 5.9 59.5 ± 36.3 79.4 ± 11.3 1.3 

Carbamazepine 49.3  198.1 4.0 ND ND ND 

Chlorpromazine 56.0 ± 20.0 17.6 ± 6.5 0.3 31.5 ± 8.3 43.8 ± 9.3 1.4 

Citalopram 24.8 ± 12.4 63.3 ± 12.8 2.6 16.8 ± 8.4 18.0 ± 2.7 1.1 

Clozapine 38.5 ± 3.7 55.9 ± 39.2 1.5 55.8 42.4 0.8 

Donepezil 41.4  384.3  9.3 ND ND ND 

Haloperidol 70.9 ± 32.4 108.2 ± 31.4 1.5 65.2 ± 15.6 73.7 ± 19.7 1.1 
Mesoridazine 49.3 ± 13.0 55.2 ± 14.5 1.1 53.2 ± 21.2 88.9 ± 7.0 1.7 

Risperidone 47.9 ± 14.4 62.4 ±  19.5 1.3 54.3 ± 11.1 93.3 ± 22.1 1.7 

 
Apparent permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine and risperidone (3 µM) across the porcine in vitro BBB 

model in both A-B and B-A directions, with and without the potent P-gp inhibitor GF120918  

(2 µM), was measured over 60 min. The apparent permeability (Papp nm.s-1) and efflux ratio 

(ER) were calculated. Apparent permeability data are expressed as mean ± standard deviation 

of duplicates, n=3 independent experiments for all test drugs apart from carbamazepine, 

clozapine (with inhibitor only) and donepezil where data are expressed as the mean of 

duplicates from one independent experiment. Efflux ratios (B-A/A-B) were calculated from 

mean apparent permeability values. ND denotes not determined. 

 

 

Table 4.3  Exact permeability and efflux ratio of test drugs across the porcine in vitro blood-brain 

barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Pexact A-B Pexact B-A ER Pexact A-B Pexact B-A ER 

Amprenavir 33.7 ± 15.8 189.7 ± 45.0 5.6 45.1 ± 21.2 65.4 ± 10.4 1.5 
Carbamazepine 44.9 164.5 3.7          ND          ND ND 

Chlorpromazine 91.8 ± 13.5 17.1 ± 6.1 0.2 59.6 ± 22.1 45.5 ± 10.4 0.8 

Citalopram 22.2 ± 8.8 72.6 ± 17.1 3.3 34.8 ± 14.6 51.9 ± 31.5 1.5 

Clozapine 81.3 ± 47.1 57.5 ± 33.2 0.7 90.8 42.5  0.5 

Donepezil 39.3 383.9 9.8 ND          ND ND 

Haloperidol 66.2 ± 29.5 67.9 ± 13.5 1.0 67.5 ± 7.0 64.3 ± 19.1 1.0 

Mesoridazine 42.6 ± 9.4 66.8 ± 24.2 1.6 64.6 ± 15.4 78.3 ± 14.9 1.2 

Risperidone 61.8 ± 21.6 74.3 ± 19.7 1.2 68.0 ± 5.8 105.3 ± 22.0 1.6 

 

Exact permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine and risperidone (3 µM) across the porcine in vitro BBB 

model in both A-B and B-A directions, with and without the potent P-gp inhibitor GF120918  

(2 µM), was measured over 60 min. The exact permeability (Pexact nm.s-1) and efflux ratio (ER) 

were calculated. Exact permeability data are expressed as mean ± standard deviation of 
duplicates, n=3 independent experiments for all test drugs apart from carbamazepine clozapine 

(with inhibitor only) and donepezil where data are expressed as the mean of duplicates from 

one independent experiment. Efflux ratios (B-A/A-B) were calculated from mean exact 

permeability values. ND denotes not determined. 

 

The Papp A-B ranged from 24.8-70.9 nm.s
-1

 and the Papp B-A ranged from               

17.6-384.3 nm.s
-1

 without inhibitor. The Pexact A-B ranged from 22.2-91.8 nm.s
-1

 and Pexact    
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B-A ranged from 17.1-383.9 nm.s
-1

 without inhibitor. No appreciable difference between Papp 

B-A and Pexact B-A was observed which would be expected given that percentage recoveries of 

all test drugs were good and thus had little impact on the two permeability calculations.  

Efflux ratios ranged from 0.3-9.3 (calculated using Papp) and 0.2-9.8 (calculated using 

Pexact) indicating that the porcine in vitro BBB model can identify substrates of efflux 

transporters. Amprenavir, carbamazepine, citalopram and donepezil (ER Papp 5.9, 4.0. 2.6 and 

9.3, Pexact 5.6, 3.7, 3.3 and 9.8 respectively) were all identified as substrates of an efflux 

transporter(s) using the porcine in vitro BBB model. Efflux ratios were less than 2 (Papp 0.8-

1.7, and Pexact 0.5-1.6) for all test drugs with the inhibitor suggesting that any efflux observed 

could potentially be due to P-gp (ER for carbamazepine and donepezil with GF120918 was 

unavailable). 

 

4.2.3.2 Permeability measurements of test drugs across the hCMEC/D3 in vitro blood-

brain barrier model 

Test drugs were used in permeability studies across the hCMEC/D3 in vitro BBB 

model. Tables 4.4 and 4.5 detail apparent and exact permeability respectively, with and 

without the P-gp inhibitor GF120918, for amprenavir, carbamazepine, chlorpromazine, 

citalopram, haloperidol, mesoridazine and risperidone. Percentage recoveries for all test drugs 

were similar. 
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Table 4.4  Apparent permeability and efflux ratio of test drugs across hCMEC/D3 in vitro blood-

brain barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Papp A-B Papp B-A ER Papp A-B Papp B-A ER 

Amprenavir 30.1 ± 9.1 37.4 ± 16.1 1.2 20.6 ± 10.7 32.4 ± 9.6 1.6 

Carbamazepine 385.0 559.9 1.5 510.8 766.3 1.5 

Chlorpromazine 37.4 ± 16.3 48.3 ± 8.3 1.3 35.5 ± 9.6 50.4 ± 14.5 1.4 

Citalopram 505.1 474.6 0.9 457.7 343.5 0.8 

Haloperidol 88.0 ± 14.7 80.7 ± 18.2 0.9 72.0 ± 38.7 113.8 ± 13.4 1.6 

Mesoridazine 33.4 ± 15.3 76.0 ± 40.8 2.3 39.1 ± 13.3 61.8 ± 17.9 1.6 
Risperidone 28.2  200.0  7.1 57.3  96.0  1.7 

 
Apparent permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, haloperidol, 
mesoridazine and risperidone (3 µM) across the hCMEC/D3 in vitro BBB model in both A-B 

and B-A directions, with and without the potent P-gp inhibitor GF120918 (2 µM), was 

measured over 60 min. The apparent permeability (Papp nm.s-1) and efflux ratio (ER) were 

calculated. Apparent permeability data are expressed as mean ± standard deviation of 

duplicates, n=3 independent experiments for all test drugs apart from carbamazepine, 

citalopram and risperidone where data are expressed as the mean of duplicates from one 

independent experiment. Efflux ratios (B-A/A-B) were calculated from mean apparent 

permeability values. 

 

Table 4.5 Exact permeability and efflux ratio of test drugs across hCMEC/D3 in vitro blood-brain 

barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Pexact A-B Pexact B-A ER Pexact A-B Pexact B-A ER 

Amprenavir 47.6 ± 15.9 36.1 ± 15.9 0.8 22.0 ± 5.9 42.6 ± 8.1 1.9 

Carbamazepine 632.3 829.2 1.3 876.1 1019.3 1.2 

Chlorpromazine 46.3 ± 14.5 48.4 ± 10.3 1.1 43.7 ± 17.2 69.9 ± 17.0 1.6 
Citalopram 747.8  1676.6 2.2 1297.8 618.9 0.5 

Haloperidol 81.2 ± 7.9 72.4 ± 21.2 0.9 88.6 ± 50.0 121.6 ± 16.1 1.4 

Mesoridazine 26.5 ± 7.5 53.7 ± 21.4 2.0 43.7 ± 15.9 64.2 ± 21.0 1.5 

Risperidone 33.5 237.5 7.1 81.2 115.7 1.4 

 

Exact permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, haloperidol, 

mesoridazine and risperidone (3 µM) across the hCMEC/D3 in vitro BBB model in both A-B 

and B-A directions, with and without the potent P-gp inhibitor GF120918 (2 µM), was 

measured over 60 min. The exact permeability (Pexact nm.s-1) and efflux ratio (ER) were 

calculated. Exact permeability data are expressed as mean ± standard deviation of duplicates, 

n=3 independent experiments for all test drugs apart from carbamazepine, citalopram and 

risperidone where data are expressed as the mean of duplicates from one independent 

experiment. 

 
The Papp A-B ranged from 28.2–505.1 nm.s

-1
 and the Papp B-A ranged from            

37.4-559.9 nm.s
-1

 without inhibitor. The Pexact A-B ranged from 26.5–747.8 nm.s
-1

 and Pexact 

B-A ranged from 36.1–1676.6 nm.s
-1

 without inhibitor. An appreciable difference between 

Papp B-A and Pexact B-A was observed.  
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The efflux ratios ranged from 0.9-7.1 (calculated using Papp) and 0.8-7.1 (calculated 

using Pexact). Risperidone and mesoridazine were shown to be substrates of efflux transporters 

using Papp to calculate efflux ratio (7.1 and 2.3 respectively), whereas citalopram and 

risperidone were shown to be substrates of efflux transporters using Pexact to calculate efflux 

ratio (2.2 and 7.1 respectively) and mesoridazine was shown to be a borderline substrate 

(efflux ratio 2.0).  

These results suggest that the hCMEC/D3 in vitro BBB model exhibits functionally 

active efflux transporter(s), contradicting the data obtained for amprenavir (a known P-gp 

substrate) which was used as a marker of  P-gp efflux function (Table 4.1 efflux ratio Papp 1.2, 

Pexact 0.8). The efflux ratios for all test drugs were less than 2 (Papp 0.8-1.7, Pexact 0.5-1.9) with 

the inhibitor GF120918 suggesting that the active efflux observed was due to P-gp or 

inhibition of another efflux transporter by GF120918.  

 

4.2.3.3 Permeability measurements of test drugs across the MDR1-MDCKII in vitro 

blood-brain barrier model 

Test drugs were used in permeability studies across the MDR1-MDCKII in vitro BBB 

model using a high throughput screening technique. Table 4.6 and 4.7 detail apparent 

permeability and exact permeability respectively, with and without the P-gp inhibitor 

GF120918, across the MDR1-MDCKII in vitro BBB model for amprenavir, carbamazepine, 

chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine, primidone, 

quetiapine, risperidone and ziprasidone. Percentage recoveries for all test drugs were similar 

for all cell types. 
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Table 4.6  Apparent permeability and efflux ratio of test drugs across MDR1-MDCKII in vitro 

blood-brain barrier model 

 

 With out inhibitor With inhibitor 

Test drugs Papp A-B Papp B-A ER Papp A-B Papp B-A ER 

Amprenavir 53.5 ± 8.5 460.6 ± 70.0 8.6 307.8 ± 39.4 306.9 ± 61.8 1.0 

Carbamazepine 910.7 ± 226.7 939.2 ± 105.2 1.0 776.0 ± 156.6 721.0 ± 78.5 0.9 
Chlorpromazine 213.1 ± 52.8 136.4 ± 21.6 0.6 340.8 ± 96.3 185.3 ± 52.5 0.5 

Citalopram 748.0 ± 188.7 918.9 ± 165.4 1.2 737.4 ± 131.0 706.6 ± 121.1 1.0 

Clozapine 574.0 ± 162.7 502.6 ± 110.1 0.9 510.9 ± 123.5 399.8 ± 59.7 0.8 

Donepezil 645.6 ± 169.6 604.0 ± 107.7 0.9 615.6 ± 176.6 554.5 ± 153.0 0.9 

Haloperidol 481.2 ± 119.8 480.5 ± 143.9 1.0 424.5 ± 96.2 380.9 ± 82.1 0.9 

Mesoridazine 306.7 ± 71.5 683.5 ± 126.9 2.2 598.5 ± 105.0 480.8  ± 87.5 0.8 

Primidone 421.6 ± 74.9 237.0 ± 54.9 0.6 421.0 ± 72.5 223.8 ± 32.4 0.5 

Quetiapine 1023.7 ± 168.5 823.0 ± 127.5 0.8 995.8 ± 242.6 816.5 ± 136.3 0.8 

Risperidone 527.1 ± 129.3 705.7 ± 118.0 1.3 804.5 ± 226.8 561.4 ± 116.2 0.7 

Ziprasidone 188.3 ± 57.2 192.9 ±  58.6 1.0 526.7 ± 102.3 121.1 ± 35.2 0.2 

 
Apparent permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone        

(3 µM) across the MDR1-MDCKII in vitro BBB model in both A-B and B-A directions, with 

and without the potent P-gp inhibitor GF120918 (2 µM), was measured over 90 min. The 

apparent permeability (Papp nm.s-1) and efflux ratio (ER) were calculated. Apparent 

permeability data are expressed as mean ± standard deviation of duplicates, n=3 independent 

experiments for all test drugs. Efflux ratios (B-A/A-B) were calculated from mean apparent 

permeability values. 

 

Table 4.7  Exact permeability and efflux ratio of test drugs across MDR1-MDCKII in vitro blood-

brain barrier model 

 

 With out inhibitor With inhibitor 
Test drugs Pexact A-B Pexact B-A ER Pexact A-B Pexact B-A ER 

Amprenavir 56.2 ± 11.2 570.4 ± 58.0 10.2 362.8 ± 39.7 363.1 ± 63.4 1.0 

Carbamazepine 1037.1± 122.8 1078.2 ± 147.4 1.0 960.8 ± 128.4 897.1 ± 74.5 0.9 
Chlorpromazine 511.9 ± 58.6 221.1 ± 64.3 0.4 756.1 ± 61.8 225.8 ± 62.1 0.3 

Citalopram 822.7 ± 167.5 997.2 ± 168.6 1.2 898.9 ± 118.4 760.9 ± 110.2 0.9 

Clozapine 763.3 ± 148.0 576.3 ± 138.7 0.8 745.9 ± 90.0 430.4 ± 51.9 0.6 

Donepezil 814.5 ± 154.9 674.8 ± 79.9 0.8 746.9 ± 138.8 659.0 ± 162.6 0.9 

Haloperidol 761.5 ± 90.3 517.1 ± 78.5 0.7 670.9 ± 49.6 446.1 ± 60.0 0.7 

Mesoridazine 347.4 ± 74.5 737.2 ± 60.2 2.1 697.4 ± 112.0 512.4 ± 83.9 0.7 

Primidone 479.1 ± 138.6 253.0 ± 46.8 0.5 417.5 ± 63.5 251.4 ± 50.01 0.6 

Quetiapine 1135.5 ± 219.7 993.7 ± 127.8 0.9 1062.1 ± 215.0 986.1 ± 178.4 0.9 

Risperidone 546.8 ± 118.5 778.0 ± 133.2 1.4 821.4 ± 197.7 659.6 ± 154.4 0.8 

Ziprasidone 430.0 ± 82.8 333.9 ± 61.7 0.8 1055.0 ± 144.5 188.3 ± 41.9 0.2 

 
Exact permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone        

(3 µM) across the MDR1-MDCKII in vitro BBB model in both A-B and B-A directions, with 
and without the potent P-gp inhibitor GF120918 (2 µM), was measured over 90 min. The exact 

permeability (Pexact nm.s-1) and efflux ratio (ER) were calculated. Exact permeability data are 

expressed as mean ± standard deviation of duplicates, n=3 independent experiments for all test 

drugs. Efflux ratios (B-A/A-B) were calculated from mean exact permeability values. 
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The Papp A-B ranged from 53.5-1023.7 nm.s
-1

 and the Papp B-A from                     

136.4-939.2 nm.s
-1

 without inhibitor. The Pexact A-B ranged from 56.2-1135.5 nm.s
-1

 and Pexact 

B-A from 221.1-1078.2 nm.s
-1

 without inhibitor. No appreciable difference between Papp B-A 

and Pexact B-A was observed. Eleven out of the 12 test drugs exhibited permeability values > 

150 nm.s
-1

 which has been documented in the literature to be characteristic of CNS indicated 

drugs using the MDR1-MDCKII in vitro BBB model (Mahar Doan et al. 2002; Reichel 2009). 

The efflux ratios ranged from 0.6-8.6 (calculated using Papp) and 0.4-10.2 (calculated 

using Pexact) which returned to less than 2 with the P-gp inhibitor GF120918, 0.2-1.0 

(calculated using Papp) and 0.2-1.0 (calculated using Pexact) indicating that the MDR1-MDCKII 

in vitro BBB model could identify P-gp substrates. Both Papp and Pexact used to calculate efflux 

ratios identified amprenavir and mesoridazine to be substrates of efflux transporters (Papp 

efflux ratio 8.6 and 2.2 respectively and Pexact 10.2 and 2.1 respectively).  

 

4.2.3.4 Permeability measurements of test drugs across the MDCKwt in vitro blood-brain 

barrier model 

Test drugs were used in permeability studies across MDCKwt in vitro BBB model 

using a high throughput screening technique. Tables 4.8 and 4.9 detail apparent permeability 

and exact permeability, with and without the P-gp inhibitor GF120918 across MDCKwt cell 

monolayers for amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, 

haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone. Percentage 

recoveries for all test drugs were similar. 
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Table 4.8  Apparent permeability and efflux ratio of test drugs across MDCKwt in vitro blood-brain 

barrier model 

 

 With out inhibitor With inhibitor 

Test drugs Papp A-B Papp B-A ER Papp A-B Papp B-A ER 

Amprenavir 206.2 ± 24.7 416.3 ± 71.5 2.0 401.5 ± 68.3 369.7 ± 69.1 0.9 

Carbamazepine 787.7 ± 119.7 776.4 ± 114.8 1.0 732.6 ± 107.6 688.1 ± 86.8 0.9 
Chlorpromazine 303.2 ± 75.9 205.2 ± 38.0 0.7 414.9 ± 52.3 190.0 ± 35.1 0.5 

Citalopram 880.9 ± 147.3 750.9 ± 46.1 0.9 860.1 ± 135.0 737.2 ± 85.0 0.9 

Clozapine 490.2 ± 129.7 393.6 ± 93.7 0.8 416.6 ± 56.1 311.2 ± 74.4 0.8 

Donepezil 662.5 ± 82.1 554.5 ± 52.8 0.8 650.8 ± 121.2 591.9 ± 108.8 0.9 

Haloperidol 484.6 ± 66.9 377.9 ± 57.0 0.8 453.6 ± 86.7 405.8 ± 78.8 0.9 

Mesoridazine 493.6 ± 84.4 474.5 ± 41.0 1.0 620.2 ± 77.7 515.3 ± 62.2 0.8 

Primidone 305.9 ± 64.4 206.0 ± 50.6 0.7 417.3 ± 145.5 236.1 ± 65.5 0.6 

Quetiapine 1722.7 ± 252.2 1312.0 ± 139.4 0.8 1386.4 ± 198.1 1008.5 ± 122.4 0.7 

Risperidone 878.6 ± 169.1 722.9 ± 122.9 0.8 892.2 ± 147.1 729.8 ± 99.6 0.8 

Ziprasidone 340.6 ± 89.1 140.0 ± 31.2 0.4 729.2 ± 141.1 124.6 ± 28.6 0.2 

 
Apparent permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone        

(3 µM) across the MDCKwt in vitro BBB model in both A-B and B-A directions, with and 
without the potent P-gp inhibitor GF120918 (2 µM), was measured over 90 min. The apparent 

permeability (Papp nm.s-1) and efflux ratio (ER) were calculated. Apparent permeability data are 

expressed as mean ± standard deviation of duplicates, n=3 independent experiments for all test 

drugs. Efflux ratios (B-A/A-B) were calculated from mean apparent permeability values. 

 

Table 4.9  Exact permeability and efflux ratio of test drugs across MDCKwt in vitro blood-brain 

barrier model 

 

 With out inhibitor With inhibitor 

Test drugs Pexact A-B Pexact B-A ER Pexact A-B Pexact B-A ER 

Amprenavir 237.4 ± 26.8  485.0 ± 36.6 2.0 415.6 ± 27.5 395.9 ± 22.9 1.0 

Carbamazepine 1001.1 ± 103.6 968.6 ± 76.7 1.0 906.6 ± 118.2 893.5 ± 89.5 1.0 

Chlorpromazine 557.3 ± 69.4 275.7 ± 48.8 0.5 818.8 ± 73.3 253.0 ± 44.7 0.3 

Citalopram 950.9 ± 79.4 885.8 ± 92.0 1.0 915.1 ± 102.9 806.2 ± 66.7 0.9 

Clozapine 694.4 ± 111.5 472.7 ± 101.8 0.7 598.1 ± 52.9 360.4 ± 89.5 0.6 

Donepezil 782.7 ± 137.5 644.6 ± 68.7 0.8 718.7 ± 136.1 660.2 ± 81.9 0.9 

Haloperidol 674.3 ± 71.6 499.3 ± 92.3 0.7 613.4 ± 92.5 485.3 ± 92.0 0.8 

Mesoridazine 757.4 ± 100.5 585.6 ± 38.3 0.8 731.4 ± 70.9 597.1 ± 80.4 0.8 
Primidone 337.1 ± 47.3 240.7 ± 68.6 0.7 427.8 ± 147.6 228.4 ± 40.5 0.5 

Quetiapine 1585.3 ± 212.9 1554.5 ± 140.7 1.0 1450.7 ± 148.4 1188.5 ± 95.9 0.8 

Risperidone 903.4 ± 144.4 822.0 ± 121.6 0.9 989.2 ± 184.0 805.7 ±114.7 0.8 

Ziprasidone 629.9 ± 96.9 335.8 ± 49.1 0.5 1521.7 ±178.1 204.8 ± 46.0 0.1 

 

Exact permeability of amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone        

(3 µM) across the MDCKwt in vitro BBB model in both A-B and B-A directions, with and 

without the potent P-gp inhibitor GF120918 (2 µM), was measured over 90 min. The exact 

permeability (Pexact nm.s-1) and efflux ratio (ER) were calculated. Exact permeability data are 

expressed as mean ± standard deviation of duplicates, n=3 independent experiments for all test 

drugs. Efflux ratios (B-A/A-B) were calculated from mean exact permeability values. 

 

The Papp A-B ranged from 206.2-1722.7 nm.s
-1

 and the Papp B-A from 205.2-1312.0 nm.s
-1

 

without inhibitor. The Pexact A-B ranged from 237.4-1585.3 nm.s
-1

 and Pexact B-A from 240.7-
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1554.5 nm.s
-1

 without inhibitor. No appreciable difference between Papp B-A and Pexact B-A 

was observed. The efflux ratios ranged from 0.4-1.0 (calculated using Papp) and 0.5-1.0 

(calculated using Pexact) for 11 of the 12 test drugs whilst amprenavir (a known P-gp substrate) 

was shown to be a borderline P-gp substrate (efflux ratio Papp 2.0, Pexact 2.0).  

 

4.2.4 Relationship between in vitro blood-brain barrier model permeabilities  

The permeability data (Tables 4.2-4.9) obtained from in vitro BBB models was 

compared in order to evaluate similarities between in vitro BBB models. The A-B 

permeability (Papp and Pexact) with and without the P-gp inhibitor GF120918 was compared 

between the porcine, hCMEC/D3, MDR1-MDCKII and MDCKwt in vitro BBB models 

(Figures 4.3-4.7).  
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Figure 4.3  Relationship between porcine and hCMEC/D3 in vitro blood-brain barrier model 

permeabilities  
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Relationship between porcine and hCMEC/D3 in vitro BBB model A-B permeabilities (Papp 
and Pexact nm.s-1) without the P-gp inhibitor GF120918 (a and b) for amprenavir, 

carbamazepine, chlorpromazine, citalopram, haloperidol, mesoridazine and risperidone and 

with 2 µM of the P-gp inhibitor GF120918 (c and d) for amprenavir, chlorpromazine, 

citalopram, haloperidol, mesoridazine and risperidone. The data from the porcine in vitro BBB 

model are expressed as mean of duplicates, n=3 independent experiments for all test drugs 

except carbamazepine where data are expressed as the mean of duplicates from one 

independent experiment with and without the inhibitor GF120918. Data from the hCMEC/D3 

in vitro BBB model are expressed as mean of duplicates, n=3 independent experiments for all 

test drugs apart from carbamazepine, citalopram and risperidone where data are expressed as 

the mean duplicates from one independent experiment with and without the inhibitor 

GF120918. 
 

No relationship was observed between porcine and hCMEC/D3 in vitro BBB model A-

B permeability (Papp and Pexact) for the test drugs without the inhibitor GF120918 (Papp            

r
2 

= -0.50, Pexact r
2 

= -0.53) (Figure 4.3a and 4.3b). For amprenavir, chlorpromazine, 

haloperidol, mesoridazine and risperidone both Papp and Pexact values from porcine and 

hCMEC/D3 in vitro BBB models were < 100 nm.s
-1

. Carbamazepine (Papp 385.0 nm.s
-1

, Pexact 

632.3 nm.s
-1

) and citalopram highlighted in red above (Papp 505.1 nm.s
-1

, Pexact 747.8 nm.s
-1

) 

r2 = -0.50 r2 = -0.53 

Citalopram 
Citalopram 

Carbamazepine 
Carbamazepine 

(a) (b) 

r2 = -0.76 r2 = -0.76 

Citalopram 
Citalopram 

(c) (d) 
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both showed higher permeability across the hCMEC/D3 in vitro BBB model compared to the 

porcine model carbamazepine (Papp 49.3 nm.s
-1

, Pexact 44.9 nm.s
-1

) and citalopram highlighted 

in red above (Papp 24.8 nm.s
-1

, Pexact 22.2 nm.s
-1

) and compared to all other tests drugs across 

both models. 

An efflux ratio > than 2 (Papp 2.6, Pexact 3.3) was observed for citalopram, suggesting it 

was a substrate of an efflux transporter, using the porcine in vitro BBB model. Although using 

hCMEC/D3 in vitro BBB model citalopram was only shown to be an efflux substrate when 

efflux ratio was calculated using Pexact (Papp 0.9, Pexact 2.2).  

No appreciable change to the relationships between porcine and hCMEC/D3 in vitro 

BBB model A-B permeability (Papp and Pexact) for the test drugs was observed with the 

inhibitor GF120918 (Papp r
2 

= -0.76, Pexact r
2 

= -0.76) (Figure 4.3c and 4.3d) compared to the 

relationships without the inhibitor. Citalopram (Papp 457.7 nm.s
-1

, Pexact 1297.8 nm.s
-1

) again 

showed higher permeability across the hCMEC/D3 in vitro BBB model compared to the 

porcine model (Papp 16.8 nm.s
-1

, Pexact 34.8 nm.s
-1

).  
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Figure 4.4  Relationship between porcine and MDR1-MDCKII in vitro blood-brain barrier model               

permeabilities  
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Relationship between porcine and MDR1-MDCKII in vitro BBB model A-B permeabilities 

(Papp and Pexact nm.s-1) (a and b) without the P-gp inhibitor GF120918, for amprenavir, 

carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine 

and risperidone and with 2 µM of the P-gp inhibitor GF120918 (c and d) for amprenavir, 

chlorpromazine, citalopram, clozapine, haloperidol, mesoridazine and risperidone. Data from 
the porcine in vitro BBB model are expressed as mean of duplicates, n=3 independent 

experiments for all test drugs except carbamazepine, clozapine and donepezil with out the 

inhibitor and except clozapine with the inhibitor where data are expressed as the mean of 

duplicates from one independent experiment. Data from the MDR1-MDCKII in vitro BBB 

model are expressed as mean of duplicates, n=3 independent experiments for all test drugs with 

and without the inhibitor GF120918.  

 

 

No relationship was observed between the porcine and MDR1-MDCKII in vitro BBB 

model A-B permeability values (Papp r
2 

= -0.15, Pexact r
2 

= 0.03) without the inhibitor 

GF120918 (Figure 4.4a and 4.4b). The permeability rank order (lowest to highest based on 

Papp) of the test drugs from the porcine (citalopram, amprenavir, clozapine, donepezil, 

r2 = -0.15 r2 = 0.03 

(a) (b) 

r2 = -0.30 r2 = 0.11 
(c) (d) 
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risperidone, mesoridazine, carbamazepine, chlorpromazine and haloperidol) and MDR1-

MDCKII (amprenavir, chlorpromazine, mesoridazine, haloperidol, risperidone, clozapine, 

donepezil, citalopram and carbamazepine) in vitro BBB models showed no similarity apart for 

with risperidone which held the median permeability value for both models.  

No similarities were observed between the porcine and MDR1-MDCKII in vitro BBB 

model and A-B permeability values (Papp r
2 

= -0.30, Pexact r
2 

= 0.11) with the inhibitor 

GF120918 (Figure 4.4c and 4.4d). In general, the permeability values (both Papp and Pexact) 

obtained with the MDR1-MDCKII model were of an order of magnitude greater than the 

permeability values obtained with the porcine model. The permeability rank order (lowest to 

highest based on Papp) of the test drugs from the porcine (citalopram, chlorpromazine, 

mesoridazine, risperidone, clozapine, amprenavir and haloperidol) and MDR1-MDCKII 

(mesoridazine, chlorpromazine, risperidone, haloperidol, clozapine and citalopram) in vitro 

BBB model showed no similarity.  
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Figure 4.5  Relationship between hCMEC/D3 and MDR1-MDCKII in vitro blood-brain barrier 

model permeabilities  
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Relationship between hCMEC/D3 and MDR1-MDCKII in vitro BBB model A-B permeability 

(Papp and Pexact nm.s-1) without the P-gp inhibitor GF120918 for amprenavir, carbamazepine, 

chlorpromazine, citalopram, haloperidol, mesoridazine and risperidone (a and b) and with 2 µM 

of the P-gp inhibitor GF120918. The data from the hCMEC/D3 in vitro BBB model are 
expressed as mean of duplicates, n=3 independent experiments for all test drugs apart from 

carbamazepine, citalopram and risperidone, with and without the inhibitor GF120918, where 

data are expressed as the mean of duplicates from one independent experiment. Data from the 

MDR1-MDCKII are expressed as mean of duplicates, n=3 independent experiments for all test 

drugs, with and without the inhibitor GF120918.  

 

 

A stronger correlation (Papp r
2
 = 0.81, Pexact r

2
 = 0.75) was observed between the 

hCMEC/D3 and MDR1-MDCKII in vitro BBB models (Figure 4.5a and 4.5b). However, 

similarities between the actual permeability values for the test drugs were not observed 

between the models.  

In general, the permeabilities values obtained from the MDR1-MDCKII in vitro BBB 

model were at least an order of magnitude greater (for 6/7 test drugs Papp 213.1-1023.7 nm.s
-1

, 

r2 = 0.81 r2 = 0.75 
(a) (b) 

Carbamazepine 

Carbamazepine 

Citalopram 

Citalopram 

r2 = 0.63 r2 = 0.65 
(c) (d) 

Carbamazepine 
Carbamazepine 

Citalopram 

Citalopram 
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Pexact 347.4-1135.5 nm.s
-1

) than those obtained with the hCMEC/D3 (for 5/7 Papp                

28.2-72.0 nm.s
-1

, Pexact 22.0-88.8 nm.s
-1

) except for carbamazepine (Papp 910.7 nm.s
-1

 and Pexact 

1037.1 nm.s
-1

 from MDR1-MDCKII model, Papp 385.0 nm.s
-1

 and Pexact 632.3 nm.s
-1

 from 

hCMEC/D3 model) and citalopram (Papp 748.0 and Pexact 822.7 nm.s
-1 

from MDR1-MDCKII 

model and Papp 505.1 and Pexact 747.8 nm.s
-1 

from hCMEC/D3 model) which were of the same 

order of magnitude as the MDR1-MDCKII model permeabilities for these test drugs.  

The relationship between A-B permeability of MDR1-MDCKII and hCMEC/D3 in 

vitro BBB models with inhibitor was not as strong (Papp r
2
 = 0.63, Pexact r

2
 = 0.65) (Figure 4.5c 

and 4.5d) as without the inhibitor (Papp r
2
 = 0.81, Pexact r

2
 = 0.75 (Figure 4.4a and 4.5b). 

Comparable with permeability values observed in Figures 4.5a and 4.5b the permeability 

values obtained from the MDR1-MDCKII in vitro BBB model were at least an order of 

magnitude greater than those obtained with the hCMEC/D3 model, exceptions to this being 

carbamazepine and citalopram, which had the highest permeability values with hCMEC/D3 

cells. 
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Figure 4.6  Relationship between MDR1-MDCKII and MDCKwt in vitro blood-brain barrier model 

permeabilities 
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Relationship between MDR1-MDCKII and MDCKwt in vitro BBB model A-B permeability 

(Papp and Pexact nm.s-1) without the P-gp inhibitor GF120918 (a and b)  and with 2 µM of the    

P-gp inhibitor (c and d) for amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone. The 

data from the MDR1-MDCKII in vitro BBB model are expressed as mean of duplicates, n=3 

independent experiments for all test drugs with and without the inhibitor GF120918. Data from 
the MDCKwt control are expressed as mean of duplicates, n=3 independent experiments for all 

test drugs with and without the inhibitor GF120918.  

 

The strongest relationship (Papp r
2
 = 0.84 and Pexact r

2
 = 0.81) was observed between 

MDCKwt and MDR1-MDCKII A-B permeability without the P-gp inhibitor GF120918 

(Figure 4.6a and 4.6b) compared to the relationship between the other in vitro BBB models. 

Amprenavir (efflux ratio Papp 8.6 and Pexact 10.2) and mesoridazine (efflux ratio Papp 2.2 and 

Pexact 2.1) were the only 2 test drugs that were shown to be substrates of efflux transporters 

using the MDR1-MDCKII in vitro BBB model. Amprenavir was shown to be a borderline 

substrate using the MDCKwt model (efflux ratio Papp 2.0 and Pexact 2.0). The permeability 

values for each test drug using both in vitro BBB models were of the same magnitude of order 

(a) (b) 

r2 = 0.92 r2 = 0.90 

Amprenavir 
Amprenavir 

Mesoridazine 

Mesoridazine 

(c) (d) 

Amprenavir 
Amprenavir 

Mesoridazine 

Mesoridazine 

r2 = 0.84 r2 = 0.81 
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and the permeability rank order (lowest to highest based on Papp) of the test drugs from the 

MDR1-MDCKII (amprenavir, ziprasidone, chlorpromazine, mesoridazine, primidone, 

haloperidol, risperidone, clozapine, donepezil, citalopram carbamazepine and quetiapine) and 

MDR1-MDCKII control MDCKwt (amprenavir, chlorpromazine, primidone, ziprasidone, 

haloperidol, clozapine, mesoridazine, donepezil, carbamazepine, risperidone, citalopram and 

quetiapine) although not identical were similar.  

 The relationship was improved (Papp r
2
 = 0.92, Pexact r

2
 = 0.90) (Figure 4.6c and 4.6d) 

when A-B permeability was measured across MDR1-MDCKII in vitro BBB model and 

MDR1-MDCKII control MDCKwt cells with the P-gp inhibitor GF120918 in order to 

eliminate the effect of P-gp on permeability.  

 

4.2.5 Relationship between in vitro and in situ permeability  

 The relationship between in vitro apparent and exact permeability determined using the 

porcine, hCMEC/D3 and MDR1-MDCKII in vitro BBB models and the in situ permeability 

measurement, permeability surface product (P) (values obtained from the literature), in rat was 

investigated in order to determine the in vitro BBB model that best predicted rat in situ BBB 

permeability. In brief, rats were anaesthetised, the left common artery was cannulated, the 

cardiac blood supply was cut off and the rat brains were perfused with Krebs-Ringer 

bicarbonate buffer, containing each test drug (fuperfusate =1), pH 7.4, oxygenated with a mixture 

of 95 % oxygen and 5 % CO2 for 30 s. Each test drug was perfused in 3 rats. 
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Table 4.10 Rat in situ permeability data for a series of centrally acting test drugs 

 

Test drug 

Rat in situ  permeability  

(P) nm.s
-1

 

Amprenavir - 

Carbamazepine 1066 

Chlorpromazine 2900 

Citalopram 645 

Clozapine 2512 

Donepezil 1757 

Haloperidol 1864 

Mesoridazine 930 

Primidone - 

Quetiapine 2369 

Risperidone 944 

Ziprasidone 1109 

 

Rat in situ permeability data (P) nm.s-1 sourced from the literature for 10 of the 12 test drugs 

(Summerfield et al. 2007) data unavailable for amprenavir and primidone. 

 

 
Figure 4.7  Relationship between porcine in vitro blood-brain barrier permeability and rat in situ 

permeability surface product 
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Relationship between in vitro A-B permeability (Papp and Pexact nm.s-1) (Table 4.2 and 4.3) 

determined using porcine in vitro BBB model and rat in situ permeability surface product       

(P nm.s-1) determined using a rat in situ brain perfusion model (Table 4.11) for carbamazepine, 

chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine and risperidone.  

 

A strong correlation (Pearson‟s r
2
 = 0.85) between exact permeability determined using 

the porcine in vitro BBB model and rat in situ permeability surface product was observed 

(Figure 4.7b). Although a weak correlation (r
2
 = 0.35) between apparent permeability 

determined using the porcine in vitro BBB model and rat in situ permeability surface product 

(Figure 4.7a) was observed for the same test drugs. In Figure 4.7b risperidone and donepezil 

r2 = 0.35 r2 = 0.85 

(a) (b) 

Donepezil 

Risperidone 
Risperidone 

Donepezil 
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have been highlighted as outliers to the correlation. Donepezil exhibited an efflux ratio > than 

2 using the porcine in vitro BBB model (efflux ratio Pexact 9.8) suggesting that it was a 

substrate of an efflux transporter(s) whereas risperidone did not (efflux ratio Pexact 1.2). In 

addition, a Spearman‟s rank correlation (r=0.83) was performed on this data, which also 

showed a strong correlation between exact permeabilities, derived from the porcine in vitro 

BBB model, and rat in situ permeabilities. 

 

Figure 4.8  Relationship between hCMEC/D3 in vitro blood-brain barrier permeability and rat in situ 

permeability surface product 
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Relationship between in vitro A-B permeability (Papp and Pexact nm.s-1) (Table 4.4 and 4.5) 
determined using hCMEC/D3 in vitro BBB model and rat in situ permeability surface product 

(P nm.s-1) determined using a rat in situ brain perfusion model (Table 4.11) for carbamazepine, 

chlorpromazine, citalopram, haloperidol, mesoridazine and risperidone.  

 

No relationship was observed between apparent or exact A-B permeability (Papp       

r
2
=-0.49 and Pexact r

2
= -0.48) using the hCMEC/D3 in vitro BBB model and rat in situ 

permeability for the test drugs (Figure 4.8a and 4.8b). Both carbamazepine and citalopram 

(Papp and Pexact) were shown to have the largest permeability values using hCMEC/D3 in vitro 

BBB models compared to the other test drugs. However, carbamazepine and citalopram were 

not shown to have the largest permeability values compared to the other test drugs using the 

rat in situ permeability model. 

 

 

 

 

 

 

r2 = -0.49 r2 = -0.48 
(a) (b) 

Citalopram 

Citalopram 

Carbamazepine 

Carbamazepine 
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Figure 4.9  Relationship between MDR1-MDCKII in vitro blood-brain barrier permeability and rat 

in situ permeability surface product 

 

0 1000 2000 3000 4000
0

500

1000

1500

Rat P (nm.s -1)

M
D

R
1
- 

M
D

C
K

II
 P

a
p

p
 (

n
m

.s
-1

)

0 1000 2000 3000 4000
0

500

1000

1500

Rat P (nm.s -1)

M
D

R
1

-M
D

C
K

II
 P

e
x

a
c

t
(n

m
.s

-1
)

 
  

Relationship between in vitro A-B permeability (Papp and Pexact nm.s-1) (Table 4.6 and 4.7) 
determined using MDR1-MDCKII in vitro BBB model and rat in situ permeability surface 

product (P nm.s-1) determined using a rat in situ brain perfusion model (Table 4.11) for 

carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine, 

quetiapine, risperidone and ziprasidone.  

 

No relationship was observed between apparent or exact A-B permeability (Papp r
2
 = -0.04 

and Pexact r
2
 = -0.20) (Figure 4.9a and 4.9b) using the MDR1-MDCKII in vitro BBB model and 

in situ rat permeability. There were also no similarities between the permeability rank order 

(Papp or Pexact) from the MDR1-MDCKII in vitro BBB model and rat in situ permeability.  

 

4.3 Discussion  

 At present, there is no in vitro BBB model that is considered to be the „gold standard‟ 

for the prediction of in vivo permeability. The literature documents a great variety of in vitro 

BBB models employing different cell types, from various species and tissues, developed using 

a range of culture techniques. Consequently, comparing permeability data between in vitro 

BBB models remains problematic.  

However, the main aim of an in vitro BBB model, for transport studies, is to accurately 

predict in vivo BBB permeability. Therefore, it may not be a question of comparing 

permeability data across in vitro BBB models, but instead a question of finding an in vitro 

BBB model that best predicts in vivo BBB permeability. 

Prior to commencing transport studies across each of the in vitro BBB models, it was 

necessary to determine a test drug concentration that did not affect the viability of the cells 

r2 = -0.04 r2 = 0.20 

(a) (b) 
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employed as in vitro BBB models. The MTT assay was the assay of choice because of its 

rapidity, precision, high throughput and cost effectiveness (Mosmann 1983).  

Methylthiazolyldiphenyl-tetrazolium bromide is a yellow tetrazolium salt that is reduced to 

formazan, a purple water insoluble product, by mitochondrial succinate dehydrogenases which 

are only active in living cells (Liu et al. 1997). After solubilisation the formazan product can 

be quantified to determine the percentage of viable cells. The MTT assay demonstrates a 

linear relationship between cell number and MMT formazan product over a large range (200-

50,000 cells per well)(Mosmann 1983). 

Preliminary studies were carried out to determine the optimum cell seeding density (of 

each cell type employed as in vitro BBB models), for use in a subsequent cytotoxic MTT 

assay. Optimum sensitivity of the MTT assay is achieved using near confluent cells that are in 

the exponential growth phase to avoid underestimating drug toxicity. The seeding density that 

produced an absorbance of approximately 1 with cells maintained in culture for 48 h was 

chosen as the optimum cell seeding density.  

None of the test drugs substantially decreased the viability of any cell type at 3 µM 

compared to control cells. A test drug concentration of 3 µM was desirable to remain 

consistent with studies performed routinely at GSK. The MTT assay was also performed with 

the potent P-gp inhibitor GF120918, because transport studies were to be conducted both with 

and without the inhibitor, in order to assess the possible effect of P-gp on drug transport across 

in vitro BBB models. None of the test drugs substantially decreased cell viability of any cell 

type at 3 µM in combination with GF120918 compared to control cells. In addition, the 

paracellular marker Lucifer yellow (with and without GF120918) had no substantially affect 

on cell viability at 100 µM. The test drug concentration of 3 µM was used in all subsequent 

transport studies.  

The integrity of in vitro BBB model monolayers was characterised using Lucifer 

yellow as a paracellular permeability marker and TER measurements. Lucifer yellow 

permeabilities were shown to be comparable across hCMEC/D3, MDR1-MDCKII, MDCKwt 

and Caco-2 in vitro BBB models.  

For MDR1-MDCKII and Caco-2 monolayers Lucifer yellow permeabilities were also 

in concordance with data reported in the literature (Madgula et al. 2007). However, for the 

hCMEC/D3 in vitro BBB model Lucifer yellow permeabilities reported in the literature     
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(221 nm.s
-1

) (Poller et al. 2008) were approximately 4-fold greater than those obtained in this 

thesis (under similar experimental conditions), which may be explained by interlaboratory or 

inter-batch variation. Interlaboratory variation also makes the comparison of experimental 

drug permeability data, using the same in vitro BBB model, between laboratories difficult.  

The Lucifer yellow permeability across the porcine in vitro BBB model was an order 

of magnitude greater than Lucifer yellow permeabilities across the other 4 in vitro BBB 

models used in the study. This suggests that the primary porcine in vitro BBB model 

monolayers were more permeable to Lucifer yellow than the other in vitro model monolayers 

used in the study, which all employed cells from continuous cell lines. This was not to be 

expected, because in general, continuous cell lines form less restrictive barriers than primary 

cultured CECs (Gumbleton et al. 2001). However, the permeability of Lucifer yellow across 

intact rat pial vessels has been reported in the literature to be 316 nm.s
-1

 (Easton et al. 1994) 

which is comparable to the Lucifer yellow permeability obtained across the porcine in vitro 

BBB model (216 nm.s
-1

) in these studies.  

No appreciable differences were observed between apparent and exact Lucifer yellow 

permeabilities, obtained using any of the in vitro BBB models. Lucifer yellow demonstrated 

good mass balance (data not shown) which could explain why there were no differences 

between Papp and Pexact values. Other reasons could be that Lucifer yellow transport was linear 

with time and <10 % of Lucifer yellow was transported across the in vitro BBB monolayers. 

Primary porcine in vitro BBB model monolayers exhibited the highest TER compared 

to all other in vitro BBB models in the study. The TER achieved across the monolayers of the 

primary porcine model (2000-2200 Ω.cm
2
) were comparable to reported in vivo TER values of 

1490 Ω.cm
2
 and 1870 Ω.cm

2
  (Crone et al. 1982; Butt et al. 1990). Caco-2 monolayers also 

achieved high TER (1500-1800.cm
2
) which was concordant with the literature (Garberg et al. 

2005).  

However, hCMEC/D3, MDR1-MDCKII and MDCKwt in vitro BBB models achieved 

relatively low TER which was not representative of in vivo BBB TER values (Crone et al. 

1982; Butt et al. 1990). The TER values for the hCMEC/D3, MDR1-MDCKII and MDCKwt 

were consistent with those reported in previous studies (Garberg et al. 2005; Weksler et al. 

2005).  
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Although, there is no direct correlation between the permeability of paracellular probes 

and TER (Deli et al. 2005), it is expected that the monolayers with the lowest paracellular 

permeability would also exhibit the highest TER which was not the case in these studies.  

The reasons for the discrepancy observed during this would is still to be elucidated. 

Possible explanations for the differences in TER could be due to different sized Transwell
®

 

inserts were used for each of the in vitro BBB models. An insert size of 1.12 cm
2
 was used for 

in vitro BBB models using PBEC, hCMEC/D3 and Caco-2 cells. Whereas an insert size of 

0.33 cm
2
 was used for in vitro BBB models using MDR1-MDCKII and MDCKwt cells. Future 

work should include taking TER measurements across all in vitro BBB models grown on the 

same insert type and size for more accurate comparison. 

Lucifer yellow was used as a marker of paracellular permeability to remain consistent 

with studies performed at GSK. However, future work should include measuring sucrose 

permeability across all in vitro BBB models employed in this work for further comparison and 

better comparison with the literature as sucrose permeability measurements across in vitro 

BBB models are most widely reported in the literature. 

Using amprenavir as a marker of functional P-gp efflux activity, the porcine and 

MDR1-MDCKII in vitro BBB models both showed functional P-gp activity (also see Chapter 

3 section 3.2.9 and 3.2.10) as expected from reports in the literature (Pastan et al. 1988; 

Hunter et al. 1993). However, the hCMEC/D3 in vitro BBB model did not exhibit any 

functional P-gp activity which was contradictory to reports in the literature (Poller et al. 2008) 

from studies using Rhodamine 123. A reason for this could be variation between batches of 

hCMEC/D3. 

The MDCKwt model exhibited borderline P-gp activity with amprenavir (ER= 2), 

which is consistent with reports that the MDCKwt cell line constitutively expresses low levels 

of P-gp (Horio et al. 1989), also substantiated by Luo et al., which has a negligible effect on 

drug transport (Luo et al. 2002). Luo at al. also showed expression of P-gp was similar 

between Caco-2 and MDR-MDCKII cell line which was much greater than the MDCKwt cell 

line (Luo et al. 2002).  

Following characterisation of in vitro BBB model integrity and efflux function, test 

drugs were used in permeability studies across all of in vitro BBB models, with and without 
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the potent P-gp inhibitor GF120918, in order to determine permeability measurements and 

efflux ratios.  

The porcine in vitro BBB model permeabilities of the test drugs demonstrated the 

lowest dynamic range compared to the other in vitro BBB models, despite exhibiting the 

highest Lucifer yellow permeability. In general, the hCMEC/D3 model also exhibited low 

permeabilities comparable to permeabilities obtained with the porcine model, with two 

exceptions, carbamazepine and citalopram, which were an order of magnitude greater than 

those obtained with the porcine model. 

The MDR1-MDCKII and MDCKwt in vitro BBB models showed permeabilities of the 

same order of magnitude and were in general higher than those obtained with the porcine and 

hCMEC/D3 in vitro BBB models, despite the MDR1-MDCKII and MDCKwt in vitro BBB 

models demonstrating the lowest Lucifer yellow permeabilities in the study.    

For the porcine, MDR1-MDCKII and MDCKwt in vitro BBB models no appreciable 

differences between the apparent and exact permeabilities was observed. However, with the 

hCMEC/D3 in vitro BBB model an appreciable difference between apparent and exact 

permeabilities was observed which was more obvious for some test drugs, for example, 

citalopram, compared to other test drugs. As percentage recoveries for all test drugs were 

good, the difference between Papp and Pexact was unlikely to be related to mass balance issues. 

Instead it is possible that differences between Papp and Pexact were due to > 10 % of the test 

drug being transported across the hCMEC/D3 cell monolayers or that the transport of the test 

drugs was not linear over time. 

Different laboratories use different classification systems to determine substrates of 

efflux transporters. For example, Wang et al. consider a drug to be a substrate of an efflux 

transporters if it exhibits an efflux ratio >2 (Wang et al. 2005). In contrast, Mahar Doan et al. 

consider a drug to be a substrate of an efflux transporter if it displays an efflux ratio >2.5 

(Mahar Doan et al. 2002). Tests drug were considered to be substrates of efflux transporters in 

this thesis when they exhibited an efflux ratio >2, in concordance with the US Food and Drug 

Administration (Zhang et al. 2008).  

Identification of substrates of efflux transporters showed conflicting data across in 

vitro BBB models. Citalopram was shown to be a P-gp efflux substrate using the porcine 
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(using Papp and Pexact) and hCMEC/D3 (using Pexact only, as appreciable differences were 

observed between Papp and Pexact for this test drug) in vitro BBB models.  

Previous studies including studies using knock out mice (Mahar Doan et al. 2002; 

Maurer et al. 2005; Summerfield et al. 2008) have suggested that citalopram is not subject to 

active efflux at the BBB. In addition, another previous studies using the MDR1-MDCKII in 

vitro BBB model obtained an efflux ratio of 20.1 (Summerfield et al. 2007) suggesting that 

citalopram is a substrate of P-gp, although citalopram exhibited an efflux ratio of <2 in this 

thesis using the MDR1-MDCKII in vitro BBB model. 

Mesoridazine was shown to be a substrate of an efflux transporter (calculated with Papp 

and Pexact) using the hCMEC/D3 and MDR1-MDCKII in vitro BBB models. These data are in 

concordance with a previous study using an MDR1-MDCKII in vitro BBB model (ER 87.1) 

(Summerfield et al. 2007).  

Risperidone was shown to be a substrate of an efflux transporter (calculated with Papp 

and Pexact) using only the hCMEC/D3 in vitro BBB model. Risperidone has been shown to be a 

P-gp efflux substrate in previous studies using the MDR1-MDCKII in vitro BBB model 

(Summerfield et al. 2007) and in studies using knock out mice (Doran et al. 2005; 

Summerfield et al. 2006). However, in another study, risperidone was not shown to be a P-gp 

substrate using MDR1-MDCKII and Md1a-MDCK monolayer efflux assays (Feng et al. 

2008). 

Carbamazepine was shown to be a substrate of an efflux transporter (efflux ratio Papp 

4.0, Pexact 3.7) using only the porcine in vitro BBB model. However, this study was not 

performed in the presence of the potent P-gp inhibitor GF120918 so it is possible that the 

efflux ratio observed efflux could be due to P-gp and/or other transporter(s). It has been 

suggested from previous studies that carbamazepine is a substrate of the MRP2 transporter 

(Potschka et al. 2001), thus the ER of 4.0-3.7 observed in the present study could be explained 

if MRP2 is functionally active in the porcine in vitro BBB model.  

Donepezil was shown to be an efflux substrate using only the porcine in vitro BBB 

model. As with carbamazepine this study was not performed in the presence of the potent P-gp 

inhibitor GF120918 making if difficult to determine if the efflux was due to P-gp. However, in 

a previous study using the MDR1-MDCKII in vitro BBB model (Summerfield et al. 2007) it 
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was suggested that donepezil was a P-gp efflux substrate as an efflux ratio of 2.3 was 

obtained. There are currently no in vivo studies to support this. 

None of the other test drugs were shown to be substrates of efflux transporters with 

any of the in vitro BBB models used in these studies. 

 Examining the permeabilities and efflux ratios obtained with each of the in vitro BBB 

models highlights differences between the models and demonstrates difficulties in comparing 

permeability data obtained with different in vitro BBB models and in different laboratories. 

However, as the models are from different cell types (endothelial and epithelial, primary 

isolated cells and continuous cell lines), tissues (brain and kidney) and species (porcine, 

human and dog), it is not surprising that there is variation in the data obtained. In addition, it is 

likely that there will be differences in the types of transporters present in each model which 

may or may not have yet been characterised. There may also be differences in the abundances 

of  transporters and possibly species differences in substrate specificity between the 

transporters (Ohe et al. 2003; Syvanen et al. 2009). In addition, some test drugs may be 

substrates for more than one efflux transporter and therefore may show differences in efflux 

ratios using models that express different types of transporters with different abundances. 

The relationship between drug permeability obtained using the in vitro BBB models 

was further examined in order to investigate similarities between the in vitro BBB models.  

No relationship was observed between the porcine and hCMEC/D3 or the porcine and 

MDR1-MDCKII in vitro BBB model permeabilities when they were plotted against each 

other. The relationship between the permeabilities was not improved in the presence of the 

potent P-gp inhibitor GF120918.  

Although, the porcine and hCMEC/D3 in vitro BBB model both employ CECs, 

differences in Lucifer yellow permeabilities, TER values, P-gp functionality of the in vitro 

BBB models and species differences in transporter substrate identification could explain why 

there was no relationship between the model permeabilities. There may also be differences in 

active influx and efflux transporters that have not yet been characterised at these models.  

Differences in cell architecture between PBECs and MDR1-MDCKII may explain 

differences between test drug permeabilities across porcine and MDR1-MDCKII in vitro BBB 

models. Porcine brain endothelial cells exhibit elongated, spindly, fusiform morphology 
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(Chapter 3), in contrast, MDR1-MDCKII (epithelial) cells are columnar in shape exhibiting 

micro villi (Udo et al. 2010) and originate from the dog kidney.  

A relationship between drug permeabilities across the hCMEC/D3 and MDR1-

MDCKII in vitro BBB models was observed, which was not improved in the presence of the 

potent P-gp inhibitor GF120918. However, the permeabilities obtained using the MDR1-

MDCKII in vitro BBB model were greater for all test drugs than the permeabilities obtained 

using the hCMEC/D3 model. Although, both in vitro BBB models displayed comparable 

Lucifer yellow permeabilities and TER values.   

A relationship was observed between the MDR1-MDCKII and the MDCKwt in vitro 

BBB model permeabilities. This was somewhat expected as both models employ the same cell 

type and demonstrate similar Lucifer yellow permeabilities and TER values. The main 

difference between the two models is that the MDR1-MDCKII model exhibits functional P-gp 

activity that has an appreciable effect on drug transport whereas the MDCKwt model does not. 

Since only 2 test drugs were classified as P-gp substrates using the MDR1-MDCKII model, 

the presence of functionally active P-gp did not appreciably affect the relationship between the 

MDR1-MDCKII and MDCKwt models.  

However, the relationship was improved in the presence of the inhibitor GF120918, 

which demonstrated the effect of P-gp efflux on test drug transport even for test drugs that 

were not classified P-gp substrates. The presence of P-gp at the MDR1-MDCKII in vitro BBB 

model did not appreciably affect the permeabilities all the test drugs. However, the efflux 

ratios derived using the MDR1-MDCKII in vitro BBB model for most of the test drugs 

decreased in the presence of the potent P-gp inhibitor GF120918 even for test drugs that not 

been classified P-gp substrates.  

Differences and inconsistencies between the permeability function of the porcine, 

hCMEC/D3, MDR1-MDCKII and MDCKwt in vitro BBB models have been observed, 

highlighting problems associated with comparing data between in vitro BBB models. 

However, the main aim of an in vitro BBB model is to predict in vivo BBB permeability. The 

relationship between in vitro BBB permeability and rat in situ permeability was therefore 

investigated in order to determine which in vitro BBB model best predicted rat in situ BBB 

permeability. 
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Exact permeabilities obtained using the porcine in vitro BBB model showed a strong 

relationship with rat in situ permeability (Pearson‟s correlation coefficient). The relationship 

was stronger than the relationship between; porcine (apparent permeabilities) and rat in situ 

permeability and both hCMEC/D3 and MDR1-MDCKII (apparent and exact permeabilities) 

and rat in situ permeability. 

 For the porcine model, in addition to the strong correlation observed using Pearson‟s 

correlation coefficient, a strong correlation was also observed using Spearman‟s rank 

correlation. Despite observing no appreciable differences between apparent and exact 

permeabilities using the porcine model (section 4.2.3), the exact permeability showed a 

stronger relationship with in situ rat permeability compared to the apparent permeability.  

Although the differences between apparent and exact permeabilities did not appear to 

be appreciable, inaccuracies, however small, may be responsible for the poor relationship 

observed with the apparent permeabilities.  

The porcine in vitro BBB model employs primary cultured cells which exhibit the 

closest phenotypic resemblance to the in vivo BBB cells (de Boer et al. 1999) unlike in vitro 

BBB models which employ cells from continuous cell lines that are often hindered by their 

insufficient barrier properties (Gumbleton et al. 2001; Reichel et al. 2003). The PBECs have 

been extensively characterised (Chapter 3) to confirm physiologically realistic cell 

architecture, the formation of tight junction protein complexes, a restrictive paracellular 

pathway, functional expression of efflux transporters and BBB-associated marker enzymes. 

The findings of the present study are consistent with previous studies demonstrating a 

strong relationships between in vitro BBB permeability using a primary porcine BBB model 

and rat in situ permeability (Zhang et al. 2006). Additionally, primary bovine in vitro BBB 

models have also shown good correlations with in vivo permeability (Cecchelli et al. 1999). 

Hence, the porcine in vitro BBB model utilised in this thesis appears to be a valid model for 

predicting in vivo BBB permeability. 

A poor correlation was observed with hCMEC/D3 and MDR1-MDCKII in vitro BBB 

model permeabilities and rat in situ permeability in this thesis. However, in contrast, a 

previous study reported a strong correlation (r=0.938) between in vitro permeability and rat in 

situ brain perfusion (Weksler et al. 2005). These studies were performed with different test 

drugs to those in this study. Furthermore, previous studies comparing in vitro permeability 
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using the MDR1-MDCKII model and in vivo mouse data did not show a strong relationship 

(Garberg et al. 2005) in agreement with in vitro-in vivo correlations in this thesis using the 

MDR1-MDCKII  in vitro BBB model. 

The in vitro BBB models employed in these studies demonstrated differences in terms 

of Lucifer yellow permeabilities and TER values as well as P-gp efflux function, suggesting 

that they would demonstrate differences regarding test drug permeabilities. Transport studies 

across each of the in vitro BBB models confirmed differences in model permeability function. 

This showed that the comparison of data between in vitro BBB models was not possible and 

highlighted the importance of an in vitro BBB model to be able to accurately predict in vivo 

BBB permeability. The in vitro porcine BBB model exact permeabilities demonstrated a 

strong relationship with rat in situ permeability suggesting the potential of this model to 

predict in vivo BBB permeability.  
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5.0 Chapter 5: Species comparison of nonspecific drug binding in blood and brain tissue 

5.1 Background 

This chapter focuses on determining the fraction of drug unbound in rat, dog, pig and 

human blood (fublood) and the fraction of drug unbound in rat, dog and pig brain (fubrain), as 

currently there is limited understanding of the relationship of fublood and fubrain across species 

(Summerfield et al. 2008; Read et al. 2010) and hence the utility of interspecies extrapolation. 

The brain to blood partition coefficient (Kp Equation 5.1) is the most widely documented 

in vivo measure of the extent of brain penetration (Kalvass et al. 2002; Summerfield et al. 

2006; Kalvass et al. 2007; Summerfield et al. 2007). The brain to blood partition coefficient 

(Kp) represents a combination of all processes that govern CNS brain penetration, BBB 

permeability, active influx and efflux mechanisms and drug binding in blood and brain tissue. 

However, more recently the unbound brain to blood partition coefficient (Kp,uu, Equation 5.2 

and 5.3) has been introduced as a measure of the extent of brain penetration (Gupta et al. 2006) 

which also accounts for drug binding in blood and brain tissue. 

Extrapolating preclinical data to predict clinical outcomes in humans has become a key 

component of modern drug discovery. A greater understanding of differences in drug binding 

in blood and brain tissue across species could lead to more accurate predictions of drug 

binding in humans and consequently aid predictions of the extent of drug penetration and 

improve understanding of differences in the  extent of drug penetration across species.  

The specific aims of the work in this chapter were to investigate species differences in 

fublood and fubrain and measures of the extent of brain penetration and investigate the prediction 

of CNS drug penetration in vivo using in vitro parameters. 
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blood

brain
p

AUC

AUC
K                      Equation 5.1 

 

Where AUCbrain is the area under the concentration-time curve for total (bound and unbound) 

concentration in brain tissue and AUCblood is the area under the concentration-time curve for 

total (bound and unbound) concentration in blood. 

 

bloodu

brainu

uup
AUC

AUC
K

,

,

,                                Equation 5.2 

             

Where AUCu,brain is the area under the concentration-time curve for unbound concentration in 

brain tissue and AUCu,blood is the area under the concentration-time curve for unbound 

concentration in blood.   

 

blood

brain

puup
fu

fu
KK ,                                                                                                   Equation 5.3 

 

Where Kp is the total brain to blood concentration ratio, fubrain is the fraction unbound in brain 

tissue and fublood is the fraction unbound in blood. 

 

5.2 Results 

5.2.1 Nonspecific drug binding-preliminary studies  

Nonspecific drug binding studies using pig and human blood and, pig brain tissue were 

conducted at the University of Manchester (Manchester, UK) for 12 centrally acting test 

drugs. Nonspecific drug binding studies using dog blood and brain tissue were conducted at 

GSK (New Frontiers Science Park, Harlow, Essex, UK) for the same 12 test drugs. 

Nonspecific drug binding studies using rat blood and brain tissue, for all 12 test drugs, were 

conducted at both the University of Manchester and GSK. The fraction of drug unbound in rat 

blood and rat brain tissue for all 12 test drugs was shown to be comparable between sites with 

no significant differences observed (Appendix 6). Therefore, interlaboratory variation was not 

considered to be an issue during these studies. 
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5.2.2 Species comparison of nonspecific drug binding in blood and brain tissue 

Equilibrium dialysis is a technique that enables nonspecific drug binding in blood and 

brain tissue to be examined in isolation of the BBB. A greater understanding of how fublood and 

fubrain varies across species could be used to understand and potentially predict human drug 

binding in vivo. In vitro drug binding of a set of 12 centrally acting test drugs was measured 

and compared across rat, dog, pig and human blood and rat, dog and pig brain tissue, using 

equilibrium dialysis, in order to investigate differences in fublood and fubrain across species. 
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Table 5.1  Species comparison of unbound drug fraction in blood and brain tissue for twelve centrally acting test drugs  

 

 Rat Dog Pig Human 

Test drug fublood fubrain fublood fubrain fublood fubrain fublood fubrain 

Amprenavir 0.164±0.027 0.186±0.046 0.206±0.040 0.157±0.040 0.192±0.055 0.166±0.035 0.080±0.018  

Carbamazepine 0.340±0.146 0.257±0.117 0.238±0.016 0.187±0.020 0.211±0.058 0.182±0.075 0.178±0.064  

Chlorpromazine 0.024±0.008 0.002±0.001 0.020±0.004 0.004±0.0004 0.018±0.007 0.002±0.001 0.016±0.003  

Citalopram 0.251±0.040 0.066±0.014 0.250±0.047 0.080±0.014 0.184±0.057 0.052±0.009 0.207±0.049  

Clozapine 0.119±0.075 0.014±0.004 0.073±0.015 0.014±0.003 0.044±0.016 0.014±0.004 0.043±0.005  

Donepezil 0.215±0.054 0.143±0.038 0.265±0.036 0.145±0.018 0.284±0.077 0.117±0.059 0.129±0.037  

Haloperidol 0.099±0.025 0.018±0.004 0.129±0.017 0.027±0.003 0.069±0.015 0.036±0.023 0.099±0.042 0.023±0.002* 

Mesoridazine 0.195±0.048 0.041±0.015 0.146±0.010 0.039±0.006 0.122±0.055 0.029±0.008 0.059±0.015  

Primidone 0.690±0.129 0.634±0.044 0.500±0.110 0.489±0.157 0.641±0.244 0.447±0.285 0.673±0.139 0.733±0.171* 

Quetiapine 0.132±0.031 0.047±0.006 0.159±0.012 0.052±0.012 0.142±0.046 0.031±0.009 0.079±0.014  

Risperidone 0.164±0.044 0.133±0.049 0.194±0.023 0.124±0.023 0.148±0.042 0.119±0.034 0.162±0.043  

Ziprasidone 0.015±0.002 0.017±0.006 0.054±0.020 0.032±0.024 0.027±0.010 0.016±0.005 0.019±0.007  

 
Data are expressed as mean ± standard deviation of 6 replicates, n= at least 3 independent experiments.  

* (Summerfield et al. 2008)  
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The fublood of rat, dog, pig and human and fubrain of rat, dog and pig were successfully 

determined for all 12 test drugs using equilibrium dialysis (Table 5.1). It was not possible to 

obtain fubrain values for human tissue because of difficulties in obtaining human brain tissue so, 

where available, literature values have been used. 

  The fubrain values for all species spanned over a larger range (rat 317-fold difference, 

dog 122-fold difference and pig 224-fold difference) than the fublood values (rat 46-fold 

difference, dog 25-fold difference and pig 36-fold difference).  

 

5.2.2.1 Nonspecific drug binding across species –linear regression analysis 

 

Figure 5.1 Species comparison of fubrain in rat, dog and pig 
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The fubrain of rat, dog and pig was determined by equilibrium dialysis for amprenavir, 
carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine, 

primidone, quetiapine, risperidone and ziprasidone, (a) comparison of rat fubrain and dog fubrain, 

(b) comparison of rat fubrain and pig fubrain and (c) comparison of pig fubrain and dog fubrain. Data 

are expressed as mean ± standard deviation of 6 replicates, n = at least 3 independent 

experiments. 
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Figure 5.2 Species comparison of fublood in rat, dog, pig and human 
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The fublood of rat, dog, pig and human was determined by equilibrium dialysis for amprenavir, 

carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, mesoridazine, 

primidone, quetiapine, risperidone and ziprasidone, (a) comparison of rat fublood and dog fublood, 

(b) comparison of pig fublood and rat fublood, (c) comparison of human fublood and rat fublood, (d) 

comparison of pig fublood and dog fublood, (e) comparison of human fublood and dog fublood and (f) 

comparison of human fublood and pig  fublood. Data are expressed as mean ± standard deviation of 

6 replicates, n = at least 3 independent experiments. 
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Table 5.2  Summary of linear regression analysis of fubrain across species 

fubrain comparison  R
2
 Slope y-intercept 

Rat vs dog 0.992 0.748 0.015 

Rat vs pig 0.990 0.701 0.010 

Pig vs dog 0.989 1.060 0.006 

   

Comparison of correlation, slope and y-intercept from linear regression analysis of fubrain 

comparisons across rat, dog and pig. 

 

Table 5.3 Summary of linear regression analysis of fublood across species 

fublood comparison  R
2
 Slope y-intercept 

Rat vs dog 0.896 0.668 0.052 

Rat vs pig 0.907 1.015 0.025 

Human vs rat 0.906 0.961 0.061 

Pig vs dog 0.947 0.732 0.059 

Human vs dog 0.847 0.656 0.091 

Human vs pig 0.888 0.893 0.044 

 

Comparison of correlation, slope and y-intercept from linear regression analysis of fublood 

comparisons across rat, dog, pig and human. 

 

When, comparing fubrain of the test drugs across species (Figure 5.1) a strong 

correlation was observed between all species. The strongest correlation was noted between rat 

and dog brain (R
2
 = 0.992) (Figure 5.1 (a)), whilst the correlation coefficients for rat and pig 

brain (Figure 5.1 (b)) and pig and dog brain (Figure 5.1 (c)) were   R
2
 = 0.990 and R

2
 = 0.989 

respectively.  

When comparing drug fublood across species the correlations, although strong, were not 

as strong as the correlations observed for fubrain with the same 12 test drugs and more scatter of 

the points was observed compared to the correlations for fubrain. Regarding human fublood, the 

strongest correlation was observed with rat fublood, R
2
 = 0.906 (Figure 5.2(c)), whilst the 

correlation coefficients for fublood human and pig and fublood human and dog were R
2 

= 0.888 

(Figure 5.2 (f)) and R
2 

= 0.847 (Figure 5.2 (e)) respectively. The strongest fublood correlation 

was observed between pig and dog, with a correlation coefficient of R
2 

= 0.947 (Figure 5.2 

(d)).  
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For fubrain comparisons across species, the slopes of the regression lines ranged from 

0.701 to 1.060 (Table 5.2) compared to 0.668-1.015 (Table 5.3) for fublood comparisons across 

species suggesting close agreement of both fubrain and fublood across species. The y-intercepts of 

the regression lines for fubrain (0.006 to 0.015) were closer to zero than those for fublood (0.025-

0.095). These findings suggest that although, similarities between fublood across species have 

been shown drug, fubrain is more consistent across species (rat, dog and pig) than fublood. 

 

5.2.2.2 Nonspecific drug binding across species –Spearman’s rank correlation 

The rank order of fublood and fubrain for the test drugs was investigated across species in 

order to identify trends in the data. The fublood (Table 5. 6) and fubrain (Table 5.4) values for the 

test drugs for each species were ranked from 1 to 12, with 1 being the largest fublood or fubrain 

value and 12 being the smallest. A Spearman‟s rank correlation coefficient was also calculated 

for each of the fublood (Table 5.7) and fubrain (Table 5.5) comparisons. 
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Table 5.4  Rank order of fubrain across rat, dog and pig 

 

Rank Rat Dog Pig 

order Test drug fubrain Test drug fubrain Test drug fubrain 

1 Primidone 0.634 Primidone 0.489 Primidone 0.447 

2 Carbamazepine 0.257 Carbamazepine 0.187 Carbamazepine 0.182 

3 Amprenavir 0.186 Amprenavir 0.157 Amprenavir 0.166 

4 Donepezil 0.143 Donepezil 0.145 Risperidone 0.119 

5 Risperidone 0.133 Risperidone 0.124 Donepezil 0.117 

6 Citalopram 0.066 Citalopram 0.080 Citalopram 0.052 

7 Quetiapine 0.047 Quetiapine 0.052 Haloperidol 0.036 

8 Mesoridazine 0.041 Mesoridazine 0.039 Quetiapine 0.031 

9 Haloperidol 0.018 Ziprasidone 0.032 Mesoridazine 0.029 

10 Ziprasidone 0.017 Haloperidol 0.027 Ziprasidone 0.016 

11 Clozapine 0.014 Clozapine 0.014 Clozapine 0.014 

12 Chlorpromazine 0.002 Chlorpromazine 0.004 Chlorpromazine 0.002 

 

Table 5.5  Spearman’s rank correlation for fubrain across rat, dog and pig 

fubrain comparison  Spearman r P value 

Rat vs dog 0.993 P<0.0001 

Rat vs pig 0.972 P<0.0001 

Pig vs dog 0.951 P<0.0001 

 

The rank order of fubrain for the 12 test drugs across rat, dog and pig was shown to be 

similar across all species (Spearman r, 0.951-0.993) (Table 5.5). The closest rank orders were 

observed between rat and dog (r=0.993), followed by rat and pig (r=0.972) and the rank orders 

that showed the largest difference were observed between pig and dog (r=0.951). All 

comparisons were shown to be statistically significant with P<0.0001.  

When looking at fubrain in terms of which species had the largest or smallest values, for 

carbamazepine, mesoridazine, and risperidone fubrain pig<dog<rat and for primidone 

pig<dog<rat<human. For citalopram, donepezil, quetiapine and ziprasidone fubrain 

pig<rat<dog. For, chlorpromazine pig=rat<dog and for clozapine pig=dog=rat. These trends 

suggest that in general pig fubrain was smaller or the same compared to rat and dog fubrain. 

Outliers were thought to be amprenavir where dog<pig<rat (although amprenavir was in the 



Chapter 5: Species Comparison of Nonspecific Drug Binding in Blood and Brain Tissue 

 174 

same rank order across species) and haloperidol where rat<human<dog<pig (haloperidol had a 

different rank order in pig compared to rat and dog).  

 

Table 5.6 Rank order of fublood across rat, dog, pig and human 

 
 

Table 5.7  Spearman’s rank correlation for fublood across rat, dog and pig 

fublood comparison  Spearman r 

Rat vs dog 0.914 

Rat vs pig 0.897 

Human vs rat 0.844 

Pig vs dog 0.979 

Human vs dog 0.895 

Human vs pig 0.853 

 

The rank order of fublood across rat, dog, pig and human was shown to be similar (Table 

5.6), Spearman‟s rank correlation (r) ranged from 0.844 to 0.979 (Table 5.7) However, rat, 

dog and pig comparisons not as similar as those observed with fubrain (Table 5.4) (fublood 

Spearman‟s r ranged from 0.891-0.979 and fubrain ranged from 0.951-0.993). Regarding human 

fublood the closest rank orders were observed between human and dog (r=0.895), followed by 

Rank Rat Dog Pig Human 

order Test drug fublood Test drug fublood Test drug fublood Test drug fublood 

1 Primidone 0.690 Primidone 0.500 Primidone 0.641 Primidone 0.673 

2 Carbamazepine 0.340 Donepezil 0.265 Donepezil 0.284 Citalopram 0.207 

3 Citalopram 0.251 Citalopram 0.250 Carbamazepine 0.211 Carbamazepine 0.178 

4 Donepezil 0.215 Carbamazepine 0.238 Amprenavir 0.192 Risperidone 0.162 

5 Mesoridazine 0.195 Amprenavir 0.206 Citalopram 0.184 Donepezil 0.129 

6 Risperidone 0.164 Risperidone 0.194 Risperidone 0.148 Haloperidol 0.099 

7 Amprenavir 0.164 Quetiapine 0.159 Quetiapine 0.142 Amprenavir 0.080 

8 Quetiapine 0.132 Mesoridazine 0.146 Mesoridazine 0.122 Quetiapine 0.079 

9 Clozapine 0.119 Haloperidol 0.129 Haloperidol 0.069 Mesoridazine 0.059 

10 Haloperidol 0.099 Clozapine 0.073 Clozapine 0.044 Clozapine 0.043 

11 Chlorpromazine 0.024 Ziprasidone 0.054 Ziprasidone 0.027 Ziprasidone 0.019 

12 Ziprasidone 0.015 Chlorpromazine 0.020 Chlorpromazine 0.018 Chlorpromazine 0.016 
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human and pig (r=0.853) and then human and rat (r=0.844). All comparisons were to shown to 

be statistically significant with P ranging from < 0.0001 to <0.001.  

When looking at fublood in terms of which species had the largest or smallest values, 

trends in the data were less obvious than for fubrain. For carbamazepine, chlorpromazine, 

clozapine and mesoridazine fublood human<pig<dog<rat, for amprenavir and quetiapine 

human<rat<pig<dog, for risperidone pig<human<rat<dog and haloperidol 

pig<human=rat<dog, for citalopram pig<human<dog<rat, for donepezil human<rat<dog<pig 

and for ziprasidone rat<human<pig<dog. Primidone was thought to be an outlier where 

dog<pig<human<rat because it exhibited the only rank order where dog had the smallest 

fublood value and human was the third smallest fublood value. 

Where comparing fublood to fubrain values there were only 3 cases where fublood <fubrain 

which were in rat for amprenavir and ziprasidone and human for primidone. For dog and pig 

fublood > fubrain for all 12 test drugs.  

 

5.2.2.3 Nonspecific drug binding in human brain 

    Due to difficulties in obtaining human brain tissue, where available, literature values for 

fubrain have been used. The literature only documents fubrain for 2 of the test drugs used in these 

studies, namely haloperidol and primidone. Hence linear regression analysis and Spearman‟s 

rank correlation could not be performed on these data. Fraction unbound in brain was 

compared across rat, dog, pig and human for haloperidol and primidone in order to investigate 

similarities between fubrain human and the other species used in this study.   
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Figure 5.3  Species comparison of fubrain for haloperidol 
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The fubrain rat (blue), dog (red), pig (green) and yellow (human) were compared for haloperidol. 

Fraction unbound in brain for rat, dog and pig were determined by equilibrium dialysis, data 

are expressed as mean ± standard deviation of 6 replicates, n = at least 3 independent 

experiments. Fraction unbound in brain for human was obtained from the literature (Table 5.1). 
 

 

Figure 5.4  Species comparison of fubrain for primidone 
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The fubrain rat (blue), dog (red), pig (green) and yellow (human) were compared for primidone. 

Fraction unbound in brain for rat, dog and pig were determined by equilibrium dialysis, data 

are expressed as mean ± standard deviation of 6 replicates, n = at least 3 independent 

experiments. Fraction unbound in brain for human was obtained from the literature (Table 5.1). 
 

 

 Fraction of drug unbound in brain was comparable across all species for both 

haloperidol (0.018-0.036, Figure 5.3) and primidone (0.447-0.733, Figure 5.4). For 

haloperidol dog fubrain was closest to human fubrain and for primidone rat fubrain was closest to 

human fubrain. Haloperidol fraction unbound was thought to be an outlier to trends in rank order 

of fubrain across species observed in section 5.2.2.2. These data suggest that fubrain could be 

Rat             Dog             Pig            Human 

Rat              Dog               Pig            Human 
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consistent across rat, dog, pig and human. However, more human brain equilibrium dialysis 

data are required to validate this suggestion.  

 

5.2.3 Comparison between rat in vitro blood to brain fraction unbound ratio and in vivo 

brain to blood concentration ratio 

 Stemming from the free drug hypothesis, for compounds that passively diffuse across 

the BBB the in vitro blood to brain fraction unbound ratio can used to predict the in vivo brain 

to blood concentration ratio under steady state conditions. 

 

As 

blooduC ,  = brainuC ,                    Equation 5.4 

And  

fuCu  x totalC                                                                                                                                          Equation 5.5                                                                                                                

Therefore  

bloodfu  x  bloodC  = brainfu  x  brainC                  Equation 5.6 

And 

blood

brain

C

C
 = 

brain

blood

fu

fu
                   Equation 5.7 

 

Where, Cu is the unbound concentration, Ctotal is the total concentration, Cu,blood and Cu,brain are 

the unbound concentration in blood and brain tissue respectively, Cblood and Cbrain are the total 

concentration in blood and brain tissue respectively, fu is the fraction unbound, and fublood and 

fubrain are the fractions unbound in blood and brain tissue respectively. 

 

The relationship between the in vitro blood to brain faction unbound ratio 

(fublood:fubrain, referred to as Kbb) was compared to the in vivo brain to blood concentration 

ratio (Kp) for rat, to investigate whether an in vitro parameter could be used to predict an in 

vivo measure of CNS penetration for the test drugs. Rat was the species chosen for this 

comparison because a more complete in vivo data set (for 11 of the 12 test drugs, no value 

available for amprenavir) was available for rat. The in vivo rat data are supplementary data, 
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provided by GSK (New Frontiers Science Park, Harlow, Essex, UK) and are the property of 

GSK. 

 
Table 5.8 Comparison between rat in vitro Kbb and in vivo Kp 
 

Test drug Rat Kbb Rat Kp Fold difference 

Amprenavir 0.88 - - 

Carbamazepine 1.32 1.39 1.0 

Chlorpromazine 9.86 27.31 2.8 

Citalopram 3.78 6.84 1.8 

Clozapine 8.44 22.87 2.7 

Donepezil 1.51 3.43 2.3 

Haloperidol 5.48 16.79 3.1 

Mesoridazine 4.80 1.04 4.6 

Primidone 1.09 0.46 2.4 

Quetiapine 2.78 4.00 1.4 

Risperidone 1.23 0.29 4.2 

Ziprasidone 0.84 1.51 1.8 

 
Fraction unbound in rat blood and brain tissue were determined by equilibrium dialysis for 

amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, 

mesoridazine, primidone, quetiapine, risperidone and ziprasidone (data are expressed as mean ± 
standard deviation of 6 replicates, n = at least 3 independent experiments) and used to calculate 

Kbb. Rat Kp data for carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, 

haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone are 

supplementary data, determined by GSK and are the property of GSK. The Kp value for 

amprenavir was not available from GSK.  
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Figure 5.5  Relationship between rat in vitro Kbb and in vivo Kp   
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The relationship between rat Kbb and Kp for carbamazepine, chlorpromazine, citalopram, 

clozapine, donepezil, haloperidol, mesoridazine, quetiapine, risperidone and ziprasidone (Table 

5.2). Brain to blood concentration ratio (Kp) was not available for amprenavir.  
 

Figure 5.6  Improved relationship between rat in vitro Kbb and in vivo Kp 
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The relationship between rat Kbb and Kp for carbamazepine, chlorpromazine, citalopram, 

clozapine, donepezil, haloperidol, mesoridazine, quetiapine, risperidone and ziprasidone (Table 

5.2). Brain to blood concentration ratio (Kp) was not available for amprenavir. was improved 

when efflux was incorporated into the prediction using data obtained from the MDR1-MDCKII 

in vitro BBB model Chapter 4.  
 

A strong correlation using linear regression analysis was observed between rat in vitro 

Kbb and the in vivo measure of CNS penetration Kp, Figure 5.5 (R
2 

= 0.865). The Kbb for 8 of 

y = 0.296x + 1.423 

R2 = 0.865 

 y = 0.613x +0.294 

 R2 = 0.902 

Mesoridazine 

Risperidone 

Haloperidol 
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the 11 test drugs were within 3-fold of the Kp values (for individual test drug values see Table 

5.8), suggesting a passive diffusion mechanism for these drugs across the BBB. Haloperidol, 

mesoridazine and risperidone were the only test drugs in the set where Kbb did not lie within 

3-fold of Kp. The Kbb under predicted Kp for haloperidol suggesting an active influx 

mechanism across the BBB. In vitro Kbb over predicted in vivo Kp for both mesoridazine and 

risperidone suggesting active efflux mechanism across the BBB. The relationship between 

Kbb and Kp was improved (linear regression analysis) (R
2
 = 0.985) when haloperidol, 

mesoridazine and risperidone were removed from the data set, data not shown. 

Using Spearman‟s rank correlation, the correlation was also improved when 

haloperidol, mesoridazine and risperidone were removed from the data set, from r = 0.781 

using all 11 test drugs in the analysis to r = 0.929 data not shown.   

When the Kbb prediction of Kp incorporated efflux (using data obtained form the 

MDR1-MDCKII in vitro BBB model as a full data set was available) as apposed to Kbb alone 

the correlation was improved from R
2
 = 0.865 (Figure 5.5) to R

2
 = 0.902 (Figure 5.6). In 

addition, the gradient of the line was nearer to 1 (0.613) when the Kbb prediction incorporated 

efflux compared to Kbb alone (0.296) and the y intercept was also closer to zero (0.294 

compared to 1.423 for Kbb alone). 

 

5.2.4 Species comparison of in vitro Kbb for the prediction of in vivo Kp 

The relationship between in vitro Kbb across rat, dog, pig and human (where values 

were available) and also the relationship between in vitro Kbb across rat, dog, pig and human 

and human Kp (values obtained from the literature, Table 5.9) was investigated to assess 

whether Kbb from any one species could be used as a predictor of human Kp. Human Kp 

values from the literature were only available for 5 of the test drugs. 
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Table 5.9 Rat, dog, pig and human in vitro Kbb and human in vivo Kp  

  

Test drug Rat Kbb Dog Kbb Pig Kbb Human Kbb Human Kp 

Amprenavir 0.883 1.306 1.157   

Carbamazepine 1.324 1.271 1.159  1.100a 1.78b 

Chlorpromazine 9.857 5.109 7.648   

Citalopram 3.782 3.126 3.508  1.320c 

Clozapine 8.435 5.145 3.133   

Donepezil 1.505 1.824 2.420   

Haloperidol 5.476 4.784 1.916 4.304 10.000-30.000d 

Mesoridazine 4.800 3.760 4.240  ~ 2.500e 

Primidone 1.088 1.023 1.433 0.918 0.870f 

Quetiapine 2.784 3.050 4.624   

Risperidone 1.226 1.556 1.241   

Ziprasidone 0.837 1.714 1.667   

 

Rat, dog and pig Kbb was calculated from fublood and fubrain determined by equilibrium dialysis 

(data are expressed as mean ± standard deviation of 6 replicates, n = at least 3 independent 

experiments) for amprenavir, carbamazepine, chlorpromazine, citalopram, clozapine, 

donepezil, haloperidol, mesoridazine, primidone, quetiapine, risperidone and ziprasidone. 

Human Kbb was calculated for haloperidol and primidone using fublood determined by 

equilibrium dialysis (data are expressed as mean ± standard deviation of 6 replicates, n = at 

least 3 independent experiments) and fubrain from the literature. Human Kp values were reported 
in the literature for carbamazepine, citalopram, haloperidol, mesoridazine and primidone from 

post mortem data. Literature values for the remaining test drugs are currently unavailable. 
 
a(Morselli et al. 1977)  
b(Rambeck et al. 2006) 
c(Fu et al. 2000) 
d(Kornhuber et al. 1999)  
e(Svendsen et al. 1988), brain and plasma concentrations were from different subjects                    

(Summerfield et al. 2008) 

f(Houghton et al. 1975) Kp was derived from linear regression analysis (Summerfield et al. 

2008) original literature source quoted data as 1/Kp. 
 

Fraction unbound in blood and brain ratio (Kbb) was within 3-fold for all test drugs 

across rat, dog, pig and human (Table 5.9), although for some test drugs more variation 

between species was observed, for example, clozapine (highly variable) compared 

carbamazepine (very little variation).  

 

 

 

 

 



Chapter 5: Species Comparison of Nonspecific Drug Binding in Blood and Brain Tissue 

 182 

Figure 5.7  Comparison of rat, dog, pig and human in vitro Kbb with human in vivo Kp 
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Comparison of human Kp (purple) from the literature with rat (blue), dog (red) and pig (green) 

Kbb for, carbamazepine, citalopram, haloperidol, mesoridazine and primidone and with human 

Kbb (yellow) for haloperidol and primidone (human Kbb values available only for these test 

drugs). Where more than one Kp value from the literature was available the mean Kp was used 

for comparisons. 

 

Rat, dog, and pig Kbb was within 3-fold of human Kp for carbamazepine, citalopram 

and mesoridazine and rat, dog, pig and human (human values only available for haloperidol 

and primidone) Kbb was within 3-fold of human Kp for primidone (Figure 5.7). For 

haloperidol Kbb under predicted human Kp by more than 3-fold for all species including 

human (rat 3.1-fold, dog 3.1-fold, pig 7.8-fold, human 3.5-fold) (Figure 5.7) suggesting higher 

brain penetration than by passive diffusion and the possibility of an active influx mechanism 

(as suggested in section 5.2.3). No single species was shown to give a better prediction of 

human Kp for carbamazepine, citalopram, haloperidol, mesoridazine and primidone (test drugs 

where Kp values were available from the literature) compared to other species in the study.  

 

5.2.5 Comparisons of in vitro predictions of human Kp 

Studies in section 5.2.2 have shown that fubrain is similar across rat, dog and pig for all 

12 test drugs (and also similar in human for haloperidol and primidone). In order to investigate 

whether any one species in this study can be used to predict human Kp more accurately than 

the others, (for carbamazepine, citalopram, haloperidol, mesoridazine and primidone, the 5 test 

drugs where human Kp values were available from the literature) the ratio of fublood (human) to 

fubrain of rat, dog and pig were compared to human Kp. The ratio of fublood human to fubrain 

human for haloperidol and primidone was also compared to human Kp. 
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Figure 5.8  Comparisons of in vitro Kbb predictions of human in vivo Kp  
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Human Kp obtained from the literature for carbamazepine, citalopram, haloperidol, 

mesoridazine and primidone was compared to the ratio of fublood (human) to fubrain of rat (blue), 
dog (red), and pig (green) determined from equilibrium dialysis studies (data are expressed as 

mean ± standard deviation of 6 replicates, n = at least 3 independent experiments) and to the 

ratio of fublood (human) determined from equilibrium dialysis studies (data are expressed as 

mean ± standard deviation of 6 replicates, n = at least 3 independent experiments) to fubrain of 

human from literature values (purple) for haloperidol and primidone. Where more than one Kp 

value from the literature was available the mean Kp was used for comparisons. 

 

Predictions of human Kp using fublood human and fubrain rat, dog, pig and human  (i.e. 

Kbb) were within 3-fold of human Kp apart from the fublood, human to fubrain, (dog 4.1-fold, pig 

5.5-fold and human 3.5-fold) for haloperidol (Figure 5.8) (also see section 5.2.3 and 5.2.4 

relating to haloperidol). The results indicated that the use of fublood human instead of rat, dog 

or pig fublood and fubrain (from the same species) to calculate Kbb did not improve the 

prediction of human Kp.  From these studies, use of human fublood in combination with either 

rat, dog or pig fubrain yielded comparable predictions of the human Kp parameter.  

Equilibrium dialysis is a valuable in vitro technique for the determination of fublood and 

fubrain. Studies using equilibrium dialysis have shown fubrain to be comparable across rat, dog 

and pig for the test drugs used in theses studies (section 5.2.2). This suggests that brain tissue 

from any of the species (rat, dog or pig) used in this study has the potential to be used as a 

surrogate for human brain. However, further validation using more test drugs in human brain 

tissue would help to confirm this.  
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5.2.6 Comparison of rat and human Kp 

Human Kp values are available from the literature (Table 5.9) for 5 of the test drugs 

and were compared to rat Kp values to determine if any species differences in Kp were 

apparent between rat and human. 

 

Figure 5.9  Comparison of rat and human Kp 
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Rat (blue) Kp values for carbamazepine, citalopram, haloperidol, mesoridazine and primidone, 

(supplementary data, determined by GSK and are the property of GSK) were compared to human 
(yellow) Kp values obtained from the literature. Human Kp values were reported in the literature for 

carbamazepine, citalopram, haloperidol, mesoridazine and primidone. Literature values for the 

remaining test drugs are currently unavailable. 

 

Rat and human Kp values were within 3-fold for carbamazepine, haloperidol, 

mesoridazine and primidone (Figure 5.9). For citalopram, rat and human Kp values were 5.2-

fold apart suggesting a species difference between rat and human Kp, which was atypical when 

compared to the other 4 test drugs used in the comparison.  

 

5.2.7 Comparison between measures of extent of drug brain penetration 

Traditionally, Kp has been used as a measure of brain penetration, although more 

recently the use of Kp has been questioned. The brain to blood concentration ratio (Kp) is 

governed by drug permeability across the BBB, active influx and efflux mechanisms at the 

BBB and drug binding in blood and brain tissue. However, the ratio of unbound drug 

concentration in the brain to unbound drug concentration in the blood (Kp,uu) is independent of 

nonspecific drug binding in brain tissue and blood and is it now thought that Kp,uu could be 
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better than Kp in assessing the extent of drug brain penetration, with a high Kp,uu being most 

desirable (Liu et al. 2008; Hammarlund-Udenaes 2010).  

Kp,uu describes the effect of the BBB on drugs in terms of passive permeability and 

active transport processes (Gupta et al. 2006; Hammarlund-Udenaes et al. 2008; Reichel 

2009). When Kp,uu is close to unity passive diffusion across the BBB is assumed, when 

Kp,uu<1 active efflux at the BBB is assumed and when Kp,uu > 1 active influx at the BBB is 

assumed.  

Rat Kp for 11 of the 12 test drugs (no rat Kp data was available for amprenavir) was 

compared to rat Kp,uu which was calculated using rat Kp and rat fublood and fubrain (Table 5.1 

and Equation 5.3) determined from equilibrium dialysis to investigate the effect of nonspecific 

binding on Kp. Rat Kp are supplementary data, provided by GSK (Harlow Site, Essex, UK) 

and are the property of GSK. 

 

Table 5.10 Comparison between rat Kp and Kp,uu for a series of central nervous system targeted 

drugs 

 

Test drug Rat Kp Rat  Kp,uu Fold-difference between Kp and Kp,uu 

Carbamazepine 1.39 1.05 1.3 

Chlorpromazine 27.31 2.77 9.9 

Citalopram 6.84 1.81 3.8 

Clozapine 22.87 2.71 8.4 

Donepezil 3.43 2.28 1.5 

Haloperidol 16.79 3.07 5.5 

Mesoridazine 1.04 0.22 4.8 

Primidone 0.46 0.42 1.1 

Quetiapine 4.00 1.44 2.8 

Risperidone 0.29 0.24 1.2 

Ziprasidone 1.51 1.81 1.2 

 

Rat Kp for carbamazepine, chlorpromazine, citalopram, clozapine, donepezil, haloperidol, 

mesoridazine, primidone, quetiapine, risperidone and ziprasidone, supplementary data, 

provided by GSK and the property of GSK was compared to Kp,uu calculated using rat Kp and 

rat fublood and fubrain determined by equilibrium dialysis Table 5.1.  

 

Analogous to reports in the literature (Gupta et al. 2006; Hammarlund-Udenaes et al. 

2008) the fold-difference between Kp values was found to be greater than the fold-difference 

between corresponding Kp,uu values (94-fold and 13-fold respectively) for rat. The Kp values 

ranged from 0.29-27.31 whilst the Kp,uu values ranged from 0.22-3.07 Table 5.10. The 

differences between Kp and Kp,uu values for each test drug demonstrates the effect of 
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nonspecific drug binding on Kp and suggests that a high Kp may sometimes reflect a high 

degree of nonspecific binding to brain tissue, reducing the amount of free drug available to 

interact with receptors, and that Kp,uu could be a better measure of the extent of drug brain 

penetration. 

It was only possible to calculate human Kp,uu values for 2 of the test drugs, namely 

haloperidol and primidone. The human Kp,uu values for haloperidol and primidone were 

comparable to rat Kp,uu values (haloperidol rat Kp,uu = 3.07, human Kp,uu = 3.48 and primidone 

rat Kp,uu = 0.42, human Kp,uu = 0.80).  

 

5.2.8 Drug distribution in brain tissue 

  Drug distribution in the brain is predominantly dependent upon drug binding to brain 

tissue. Drug distribution can be described by the relationship between the total drug 

concentration in the brain and the unbound drug concentration in brain which is also known as 

the unbound volume of distribution in the brain (Vu,brain). As fubrain has been shown to be 

consistent across rat, dog and pig for all test drugs and also across human for haloperidol and 

primidone (section 5.2.2) species differences would not be expected for this parameter. In 

addition other various brain properties have also been shown to be consistent across species 

(Stephan et al 1982). 

However, Vu,brain can instead can be used to give information on how a drug is 

distributed once it has entered the brain i.e. whether a drug is completely distributed in the 

interstitial fluid (Vu,brain approximately 0.2 ml.g
-1

) throughout the interstitial fluid and 

intercellular fluid (Vu,brain approximately 0.8 ml.g
-1

) or if the drug is in the main 

nonspecifically bound to brain tissue (Vu,brain >0.8 ml.g
-1

) (Hammarlund-Udenaes et al. 2008).  

Drugs with similar Kp,uu may show differences in distribution behaviour which 

becomes more relevant in terms of location of the target receptor and evoking a clinically 

significant response.   

 The unbound volume of distribution in the brain was calculated for all 12 test drugs 

across rat, dog, pig and human (for haloperidol and primidone) according to Equation 5.8 

(Friden et al. 2007) in order to understand more about the distribution of the test drugs in the 

brain and to establish any species differences for the this parameter. 
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                           Equation 5.8 

D  = the dilution factor in diluted brain homogenate 

fu )(apparent = Measured unbound drug fraction in diluted brain homogenate 

Table 5.11 Unbound volume of distribution across rat, dog and pig for a series of central nervous 

system targeted drugs 

 

  Vu,brain (ml.g
-1

) 

 Test drug Rat Dog Pig 

Amprenavir 5.66±1.38 7.11±1.52 6.65±1.59 

Carbamazepine 4.75±1.88 6.57±1.63 6.32±1.87 

Chlorpromazine 535.52±106.34 348.45±45.20 633.58±142.87 

Citalopram 21.20±2.17 16.25±3.11 21.96±5.70 

Clozapine 94.10±27.28 97.75±16.04 96.99±24.57 

Donepezil 8.49±2.00 8.22±1.21 8.94±2.87 

Haloperidol 69.56±16.12 47.44±10.76 52.27±16.56 

Mesoridazine 40.78±9.13 34.79±6.22 46.47±11.62 

Primidone 0.78±0.15 1.85±0.78 2.53±1.64 

Quetiapine 28.13±3.81 25.58±6.69 44.59±10.61 

Risperidone 8.62±2.83 10.00±1.97 10.09±2.41 

Ziprasidone 80.78±26.74 49.66±18.38 74.56±14.09 

 

The unbound volume of distribution was calculated for all 12 test drugs across rat, dog and pig 

using fuapparent determined using equilibrium dialysis data are expressed as mean ± standard 

deviation of 6 replicates, n = at least 3 independent experiments. 

 

The Vu,brain values for the test drugs exhibited a large range of values across rat (0.78-

535.52), dog (1.85-348.45) and pig (2.53-633.58) (Table 5.11).  For 11 of the 12 test drugs 

Vu,brain > 0.8 ml.g
-1

 indicating that the test drugs were mainly nonspecifically bound to brain 

tissue and no species differences were observed for these test drugs. For primidone a species 

difference was observed where rat Vu,brain (0.78) suggested that distribution of primidone was 

throughout the interstitial and intercellular fluid, whereas for dog and pig Vu,brain (1.85, 2.53 

respectively) suggested that primidone was mainly nonspecifically bound to brain tissue.  
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5.3 Discussion  

Central nervous system drug penetration is governed by three main processes namely; 

BBB passive permeability, active transport processes at the BBB and relative drug binding 

between brain and blood.  

To date, a key component in drug discovery programmes has been the use of in vitro BBB 

models to generate in vitro permeability and P-gp efflux measurements (Chapter 4) to predict 

the rate of CNS drug penetration. However, the relevance of determining the rate of 

penetration is debatable as most medication is administered under a regular dosing regimen 

and rapid rate of penetration may only be required when treating medical emergencies such as 

seizures and strokes or during anaesthesia.  

The importance of determining fublood and fubrain for the prediction of the extent of drug 

penetration in drug discovery programmes has more recently emerged. Due to ethical, 

practical and cost implications it was not possible to obtain human brain tissue for use in these 

studies, this is an obstacle faced by all researchers in this area of study. Hence, a surrogate 

animal species for use in this type of study in place of human brain tissue is highly desirable.  

The focus of this chapter was to determine rat, dog, pig and human fublood and rat, dog and 

pig fubrain in order to understand how drug fraction unbound varies across species and how this 

can be used to improve the prediction of human CNS drug penetration.  

Nonspecific drug binding in blood and brain tissue for 12 centrally acting test drugs was 

examined using equilibrium dialysis. Fraction unbound in brain was found to be consistent 

across rat, dog and pig brain tissue (homogenate) for 10 of the 12 test drugs and rat, dog, pig 

and human brain tissue (homogenate) for the remaining 2 test drugs, where human fubrain 

values were available from the literature (Summerfield et al. 2008). All vertebrate have a BBB 

which has been shown to be conserved across species (Cserr et al. 1984). It has been 

hypothosised that the protective nature of the BBB has resulted in conservation of morphology 

and composition of the brain across species (Summerfield et al. 2008). If brain composition is 

similar across species it is likely that nonspecific drug binding in the brain will also be 

consistent across species as demonstrated by data from these studies.  

Since, commencing this work the literature has reported two other examples where fubrain 

has been shown to be consistent across species, also using brain tissue homogenate. 



Chapter 5: Species Comparison of Nonspecific Drug Binding in Blood and Brain Tissue 

 189 

The first example reports fubrain to be consistent across rat, pig and human for 11 marketed 

drugs and 10 PET tracers (Summerfield et al. 2008) with correlation coefficients from linear 

regression analysis of R
2
 = 0.916 for human vs rat and R

2 
= 0.929 human vs pig.  

The second example showed fubrain to be consistent across mouse, rat, guinea pig, dog, pig, 

marmoset, cynomolgus monkey and human (Read et al. 2010) for 7 unnamed test compounds 

demonstrating a range of fubrain values. The correlation coefficient R
2
 (linear regression 

analysis) was not stated for all the comparisons, however, fubrain in rat and human showed an 

excellent correlation (R
2
 = 0.98).  

From the work in this chapter and the data reported in the literature it could be suggested 

that fubrain in any preclinical species could be used to predict fubrain in humans. If this is the 

case then most fubrain data to date that has been derived in rodents (Kalvass et al. 2002; Maurer 

et al. 2005; Summerfield et al. 2006; Summerfield et al. 2007) will still be of use to scientists. 

However, in terms of further research, the use of species with larger brains such as porcine 

(approximately 180 g compared to 2 g for rat, data not shown) could improve the throughput 

of the equilibrium dialysis technique.  

The use of porcine tissue is more ethical, practical and cost effective than other preclinical 

species such as rodents and monkeys as it can be routinely obtained from abattoir after pigs 

are slaughtered for meat and where brain tissue would normally go to waste. 

Fraction unbound in blood was shown to be similar across rat, dog, pig and human,
 

although, not as similar as fubrain across species. Differences in fublood across species may be 

explained by adaptation to environmental factors which would not affect the brain due to the 

protective nature of the BBB (Summerfield et al. 2008). 

 Variation in major drug binding plasma proteins albumin and alpha1-acid glycoprotein 

levels has been documented across species. Albumin levels of 3.16 g.100 ml
-1

,                    

2.63 g.100 ml
-1

,
 
4.18 g.100 ml

-
1 (Guarino et al. 1973) have been reported for rat, dog and 

human respectively and alpha1-acid glycoprotein levels of 1.18 g.100 ml
-1

, 0.37 g.100 ml
-1 

and 

0.18 g.100 ml
-1

 (Guarino et al. 1973) have been reported for rat, dog and human respectively 

which may explain differences in nonspecific binding in blood across species. 

 Fraction unbound in blood of rat, pig and human has also been reported to show more 

variation across species compared to fubrain (Summerfield et al. 2008). However, larger 

variation in fublood across species was documented (R
2
 0.492-0.876) compared to this work (R

2
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0.847-0.947) which may be attributed to differences in the compound sets chosen. The test 

drugs used in this work are all CNS active marketed drugs with similar physicochemical 

properties (Appendix 3), whereas, Summerfield et al. used a combination of marketed drugs 

(not all CNS active) and PET tracers.  

In a recent study a species mismatch in fublood highlighted the effect of species differences 

on CNS brain penetration and efficacy (Summerfield et al. 2007). In rat, lower fublood and CNS 

brain penetration was reported compared to guinea pig which resulting in efficacy being 

observed only in guinea pig. The differences observed in efficacy were thought to be due 

lower fublood available to cross the BBB and also because nonspecific binding in blood was 

much greater than that in rat brain. Species difference in fublood is of less of a problem in drug 

discovery as human blood can be easily obtained and used for binding studies.  

Fraction unbound in brain across species was shown to span a larger range than fublood 

which may be explained by the larger proportion of lipid in brain; weight fraction of 0.11 

compared to 0.0065 in blood (Jeffrey et al. 2007) resulting in a higher degree of nonspecific 

binding in brain and the possibility of lower fubrain values.  

Fraction unbound in blood was greater than fubrain for all test drugs in dog and pig and for 

rat with two exceptions (amprenavir and ziprasidone) and human for primidone. As all the test 

drugs in the study were marketed CNS active drugs fublood>fubrain may be a desirable property 

for CNS active drugs providing free drug in the blood to cross the BBB. Relative binding 

affinities in blood and brain may also be of importance for drugs with low fublood for example, 

chlorpromazine which has still been shown to penetrate (section 5.2.3 and 5.2.7) the brain and 

where binding in brain is greater than blood. 

The rank order of the 12 test drugs in fubrain across rat, dog and pig was shown to be 

similar across all species using Spearman‟s rank correlation. The rank order of fraction 

unbound in blood was also shown to be similar, although, not as similar as fubrain which can be 

explained by a higher degree of conservation in brain across species compared to blood.  

Pig fubrain had the lowest values for 10 of the 12 test drugs compared to rat and dog. For 

fublood trends in the data were less obvious, although, in general human fublood was always the 

lowest or second lowest value across species apart from with primidone. The literature does 

not document any other studies that have looked at the rank order of test drug fublood and fubrain 

across species.  
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The relationship between in vitro Kbb and in vivo Kp was investigated in order to 

determine whether an in vitro parameter could be used to predict an in vivo measure of the 

extent of brain penetration. Lack of human in vivo Kp data meant that this analysis was 

conducted using rat Kp data. The Kbb was considered predictive of Kp if the 2 values were 

within 3-fold of each other, 3-fold was chosen to remain consistent with similar work in the 

literature (Maurer et al. 2005; Summerfield et al. 2008) and to take into account experimental 

variation or actual differences of no significance.  

For 8 of the 11 test drugs (no Kp data available for amprenavir) Kbb predicted Kp within  

3-fold. This demonstrated that nonspecific binding in blood and brain tissue described as Kbb 

could be used to predict the extent of brain penetration for these 8 test drugs and suggested a 

passive diffusion mechanism across the BBB. 

 When haloperidol, mesoridazine and risperidone, the 3 test drugs where the Kbb did not 

lie within 3-fold of the Kp were removed from the data set, the correlation was improved. For 

haloperidol the Kbb under predicted the Kp suggesting an active influx mechanism across the 

BBB, which was consistent with reports in the literature (Ruiu et al. 2003). 

 For mesoridazine, Kbb over predicted in vivo Kp suggesting an active efflux mechanism at 

the BBB which was consistent with the literature, where a MDR1-MDCKII cell monolayer 

efflux assay had reported an efflux ratio of 87.1 (Summerfield et al. 2007).  

For risperidone, the Kbb also over predicted Kp which was consistent with the literature 

where risperidone had been shown to be an efflux substrate in a MDR1-MDCKII cell 

monolayer assay (efflux ratio 20.8) (Summerfield et al. 2007) and in studies comparing Kp in 

wild type mice to Kp in mdr1 knock out mice (Doran et al. 2005; Summerfield et al. 2006) 

(efflux ratio 10 and 21 respectively). Although, risperidone was not shown to be a P-gp efflux 

substrate in human MDR1-MDCKII or mouse Mdr1a-MDCK monolayer efflux assays 

documented in another study (Feng et al. 2008). It has also been noted in the literature that in 

vitro P-gp efflux data were not always consistent with in vivo mouse data (Doran et al. 2005).  

The Kp,uu values calculated in this work were also in agreement that haloperidol could be 

subject to active influx mechanisms at the BBB as the Kp,uu  >1.  For mesoridazine and 

risperidone the Kp,uu were both less than 1 suggesting active efflux at the BBB, which was also 

in agreement with Kbb over predicting Kp suggestive of active efflux mechanisms at the BBB 

for these test drugs. From transport studies, documented in Chapter 4 haloperidol was not 
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shown to be a substrate of an efflux transporter using any of the in vitro BBB models. 

However, mesoridazine was shown to be an efflux substrate in monolayer efflux assays using 

hCMEC/D3 cells and MDR1-MDCKII cells and risperidone was only shown to be an efflux 

substrate in monolayer efflux assays using the hCMEC/D3 in vitro BBB model. 

To account for the influence of the BBB on test drug penetration the effect of efflux 

was incorporated into the Kbb prediction using the MDR1-MDCKII in vitro BBB model 

permeability data (only Papp was used for this analysis as no substantial differences between 

Papp and Pexact were observed Chapter 4). 

When efflux was incorporated into Kbb (by multiplying Kbb by (Papp A-B/Papp B-A)) 

the prediction of Kp was improved. These studies have shown that Kbb, representing the 

extent of penetration into the brain, is an in vitro parameter that can be used to predict in vivo 

Kp for drugs that passively diffuse across the BBB. Further, combining the Kbb and efflux (by 

multiplying Kbb by (Papp A-B/Papp B-A)) to account for the effect of the BBB on drug 

penetration, in combination are two in vitro parameters that can be used to predict in vivo Kp 

for drugs that are subject to active transport mechanisms at the BBB.  

These findings are consistent with reports in the literature for mice (Kalvass et al. 

2002; Maurer et al. 2005) where Kbb has been shown to be predictive of Kp for test drugs that 

passively diffuse across the BBB including chlorpromazine, citalopram, clozapine and 

haloperidol (Maurer et al. 2005) and also for rat where Kbb and efflux ratio have been used to 

predict Kp for test compounds including the test drug risperidone. In vitro Kbb has also been 

shown to predict Kp for marketed CNS drugs and PET tracers that passively diffuse across the 

BBB in humans (Summerfield et al. 2008). 

The Kbb for rat, dog, pig and human (where values were available) were compared to 

human Kp for the 5 test drugs where values were available from the literature in order to 

establish whether or not one species could give a better prediction of human Kp compared to 

the other species in the study. Human Kbb values were only available for haloperidol and 

primidone because of a lack of human fubrain values and were calculated from fublood 

determined using equilibrium dialysis and human fubrain documented in the literature 

(Summerfield et al. 2008).  

The Kbb across species was shown to be within 3-fold of each other, which was to be 

expected because fubrain has been shown to be consistent across species and fublood has shown 
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similarities across species for this set of test drugs. For rat, dog, pig and human (where 

available) Kbb was within 3-fold of human Kp for carbamazepine, citalopram, mesoridazine 

and primidone.  

Haloperidol Kbb for all species under predicted human Kp by more than 3-fold suggesting 

the possibility of active influx mechanisms at the BBB in humans which is consistent with 

observations made in section 5.2.3 for rat and with Kp,uu values for rat (section 5.2.7) and the 

literature. However, this observation was not consistent with the fold-differences between rat 

and human Kbb and human Kp documented in the  literature (Summerfield et al. 2008) which 

were within 3-fold of each other.  

The Kbb for citalopram and mesoridazine in rat, dog and pig were within 3-fold of human 

Kp, which was consistent with reports in the literature with rat and human Kbb and human Kp 

for both citalopram and mesoridazine (Summerfield et al. 2008). However, the Kbb for 

citalopram and mesoridazine in rat, dog and pig were greater than human Kp, also consistent 

with the literature for rat and human (Summerfield et al. 2008) which may suggest a very low 

propensity for active efflux which did not appreciably effect the predictions.  

Additionally, this may show a species difference between rat and human in terms of active 

efflux at the BBB, as rat Kbb did not predict rat Kp for mesoridazine within 3-fold whereas rat, 

dog and pig  Kbb for was within 3-fold of human Kp for mesoridazine.  

There are conflicting reports in the literature regarding citalopram as an substrate of active 

efflux at the BBB (Doran et al. 2005) (Summerfield et al. 2007) as well as conflicting data 

from monolayer efflux assays (Chapter 4). Species differences in P-gp functionality between 

rat and human have been reported (Syvanen et al. 2009).  

Blood to brain fraction unbound ratio (Kbb) for carbamazepine predicted human Kp for rat, 

dog and pig within 1.3-fold and Kbb for primidone predicted human Kp for rat, dog, pig and 

human within 1.7-fold suggesting passive diffusion mechanisms for these test drugs.  

As human Kp values were available for only 5 of 12 test drugs it was not possible to 

establish whether one species gave a better prediction of human Kp compared to others 

species. However, as the Kbb values were within 3-fold of each other for all species for this 

test drug set it was unlikely that any significant differences between predictions would be 

observed.  



Chapter 5: Species Comparison of Nonspecific Drug Binding in Blood and Brain Tissue 

 194 

As fubrain has been shown to be consistent across species, it can be hypothesised that fubrain 

values could be combined with human fublood to calculate Kbb in order to predict human Kp 

more accurately. Fraction unbound in brain from rat, dog, pig and human (where available) 

was combined with human fublood in order to establish whether the fubrain values from one 

species can be used as a better prediction of human Kp compared to the other species. Kbb 

predictions for all test drugs were within 3-fold except for haloperidol. Haloperidol Kbb under 

predicted Kp in all species, as expected from previous reports in this thesis, that it could be 

subjected to active influx at the BBB (see above). Although, these Kbb predictions showed no 

improvement from Kbb predictions calculated from the same species, it is more accurate to 

combined human fublood with fubrain from a preclinical species to make predictions of human 

Kp.   

Rat and human Kp values were compared for the test drugs (carbamazepine, 

citalopram, haloperidol, mesoridazine and primidone) where human Kp values were available 

from the literature. A species mismatch was observed for citalopram only. Similarities have 

been shown (section 5.2.2) between rat and human fublood for citalopram and although no 

human fubrain was available for citalopram similarities in rat, dog and pig fubrain have been 

demonstrated (section 5.2.2). The differences between rat and human Kp could therefore be 

due to differences in transporter mechanism between the two species as previously mentioned. 

These results suggest that a rodent model may not always be representative of humans. 

Kp describes the total concentration in brain relative to the total concentration in blood 

at steady state (Hammarlund-Udenaes et al. 2008). However, it is the unbound drug in blood 

that is able to cross the BBB and the unbound drug in brain that is pharmacologically active at 

the target site (Hammarlund-Udenaes 2010). A large Kp may just represent a large amount of 

nonspecific drug binding in brain tissue and hence drug that can not interact at the target site 

to evoke a response, explaining why Kp may be of limited use for predicting CNS drug effects 

(Hammarlund-Udenaes 2010) and the criticism that is emerging over the use of this parameter. 

However, Kp,uu which describes the unbound concentration in brain relative to the unbound 

concentration in blood is independent of nonspecific binding in blood and brain tissue and is 

becoming increasingly accepted as a superior measure of brain penetration in drug discovery 

(Hammarlund-Udenaes et al. 2008). 
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When rat Kp was compared to Kp,uu, the fold-difference between the Kp values was 

shown to be greater than the fold-difference between the Kp,uu values and the Kp,uu values for 

each test drug were less than the corresponding Kp values, demonstrating the effects of 

nonspecific drug binding on Kp. It was noted that test drugs with different Kp values, for 

example chlorpromazine (27.31) and clozapine (22.87), were shown to have similar Kp,uu 

values 2.77 and 2.71 respectively. Using Kp as a measure of brain penetration for these test 

drugs would suggest that chlorpromazine exhibits a greater extent of brain penetration 

compared to clozapine, Kp,uu would suggest a similar extent of brain penetration for both test 

drugs.  

Routine determination of Kp,uu in drug discovery programmes would offer several 

advantages. A high Kp,uu is desirable when brain penetration is required, so knowledge of Kp,uu 

could be useful for CNS drug discovery and also when CNS effects are undesirable when 

developing peripherally acting drugs. 

 Additionally, Kp,uu can give quantitative information on transport processes at the 

BBB and quantitative information on the interaction potential of novel drugs at the BBB 

where a lower Kp,uu indicates more potential for interaction (Hammarlund-Udenaes et al. 

2008). A relationship between molecular structure and Kp,uu  in relation to hydrogen bonding 

has recently been described (Friden et al. 2009) which could also be used in the development 

of centrally and peripherally acting drugs. The addition of 2 hydrogen bond donors to centrally 

acting drugs was shown to reduce unbound brain exposure by 2-fold whereas adding 2 

hydrogen bond donors to peripherally acting drugs with CNS side effects, decreased CNS side 

effects by reducing passive permeability and increasing the potential for interaction with 

efflux transporters at the BBB. Therefore it is beneficial for centrally acting drugs to have a 

low number of hydrogen bond donors which is exemplified using the test drugs in this study 

which are all centrally acting marketed drugs with a low number of hydrogen bond donors 

(range from 0-4). 

 Species differences in Kp,uu still requires some investigation. From this work human 

Kp,uu values were only available for 2 of the test drugs and were within 3-fold of rat Kp,uu 

values. However, further validation with many more test drugs is required. Equilibrium 

dialysis is a useful technique for determining fublood and fubrain to aid the predication of the 

extent of drug penetration.  As human blood for determination of fublood can be easily obtained 
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and fubrain has been shown to be consistent across species these parameters generated using 

equilibrium dialysis can be used to calculate Kp,uu along with Kp (Equation 5.3). This would 

mean that the Kp parameter would not be entirely redundant. Further investigation into species 

differences is required to validate the abundance of rodent data available for use in this 

calculation.  

Microdialysis is the only in vivo method to determine Kp,uu but this method is limited in 

a drug discovery setting due to low throughput, high cost and poor recovery of lipophilic 

compounds (Liu et al. 2008). However, validation of Kp,uu calculated using a combination of in 

vivo and in vitro parameters (fublood and fubrain using equilibrium dialysis) (Ekblom et al. 1992) 

(Equation 5.3) means that this parameter is widely applicable in the drug discovery setting. 

The distribution of test drugs in the brain described as the relationship between total 

and unbound drug concentration in the brain (Vu,brain) was calculated in order to understand 

more about the distribution of the test drugs in the brain using an in vitro parameter (fubrain) 

and to establish any species differences in Vu,brain. For all 12 test drugs in dog and pig and, 11 

of the 12 test drugs in rat Vu,brain > 0.8 ml.g
-1

 suggesting that these test drugs were mainly 

nonspecifically bound to brain tissue. Whilst for primidone in rat Vu,brain was close to the value 

of brain water volume (0.8 ml.g
-1

) (Hammarlund-Udenaes et al. 2008) suggesting uniform 

distribution throughout the whole brain. Primidone also had the lowest Vu,brain value in dog and 

pig which may be explained by primidone exhibiting the lowest lipophilicity out of the test 

drug set (Log D 0.4) and the highest fubrain values. 

As with any study there were several caveats associated with this work. The use of brain 

homogenate could be a potential caveat leading to an underestimation of fubrain in vitro because 

homogenisation of brain tissue destroys cell membranes exposing intracellular binding sites. 

The brain homogenate technique has been validated with the brain slice technique (Becker et 

al. 2006) for determining fubrain. However, the use of the brain slice technique is recommended 

for determining Vu,brain. This is because intracellular and extracellular concentrations of a drug 

may vary and the brain homogenate method can not distinguish between intracellular and 

extracellular drug distribution. When the brain slice method was compared to the brain 

homogenate method (Friden et al. 2007) Vu,brain for 14 of the 15 compounds were within 3-fold 

of in vivo microdialysis for the brain slice method whilst for only 10 of the 15 compounds 

using the brain homogenate method.  
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Another drawback is the use data derived from post mortem because of the possibility of 

redistribution of drug in the tissue after death (Rodda et al. 2006).  

Another limitation is, sourcing human fubrain and Kp from the literature where there are not 

multiple sources of data for each test drug to make comparisons with and also methods of data 

collection may vary for each test drug.  

During this work the importance of nonspecific binding in drug discovery has been 

highlighted and equilibrium dialysis has proven to be a useful in vitro technique for routinely 

determining fublood and fubrain. Fraction unbound in brain has been shown to be comparable 

across species suggesting that species differences in brain penetration could be due to 

variation in fublood for drugs that cross the BBB by passive diffusion or species differences in 

transporter homology or affinity for drugs that are subject to active transport processes at the 

BBB (Baltes et al. 2007).  

Fraction unbound in blood and fubrain have been shown to be important parameters for 

predicting the extent of drug penetration in the CNS. For drugs that are thought to passively 

diffuse across the BBB fublood and fubrain described as Kbb can be used to predict Kp. For drugs 

that are thought to be subjected to active transport processes at the BBB a combination of Kbb 

(to represent drug distribution into the brain) and efflux ratio (to account for the effect of the 

BBB on drug transport) can be used to describe Kp. The effect of nonspecific drug binding on 

Kp has been shown by the determination of Kp,uu, which is now thought to be a superior 

measure of the extent of brain penetration and can also provide information on transport 

processes at the BBB and interaction potential. Volume of distribution in the brain has been 

determined using fubrain to provide information on drug distribution which could be used in 

drug discovery. Overall in vitro parameters have been shown to play a key role in the 

prediction of the extent of CNS drug penetration across species. 

To further this work, more validation to establish if fubrain across species is consistent with 

human fubrain would be beneficial. Investigation of species differences in Kp would also be 

useful in order to use Kp in human Kp,uu calculations. Further work to investigate species 

differences between active transport mechanisms at the BBB would help to improve in vitro 

predictions of the extent of in vivo drug brain penetration as rodent models may not always 

provide the best in vitro predictions. 
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6.0 Chapter 6: The use of a physiologically based pharmacokinetic model of the rat 

central nervous system to predict central nervous system drug penetration   

6.1 Background 

Currently, there is a lack of effective drug treatments for diseases of the CNS. The 

prevalence of the majority of CNS diseases increases with age, for example dementia and 

Alzheimer‟s disease, which dramatically reduce quality of life. In a growing ageing population 

there is an urgent requirement for novel CNS active drugs. The formidable obstacle of the 

BBB, possessing tight junctions and efflux transporters, is an additional challenge to overcome 

when delivering drugs, to the brain. Consequently, the BBB contributes to higher attrition 

rates during development of novel CNS active drugs compared to rates in other therapeutic 

areas (Kola et al. 2004). 

Poor success in CNS drug discovery may also be linked to uncertainty regarding how 

to interpret results from assays used in drug discovery programmes and the methods used to 

select novel drug candidates. The use of a physiologically based pharmacokinetic model 

(PBPK) of the CNS to accurately predict the extent of drug brain penetration in the early 

stages of drug discovery could be used to improve the selection of novel CNS active drugs 

without the need for complex, expensive and time consuming in vivo studies. For example, 

microdialysis to the quantify the extent of brain penetration, which tends to be conducted late 

in drug development, after considerable time, resources and expense have been invested    

Work documented in Chapter 5 (section 5.2.3) has shown that in vitro Kbb can be used 

to predict an in vivo measure of the extent of brain penetration, namely Kp, where passive 

diffusion of test drugs across the BBB was assumed. However, more recently it has been 

suggested that Kp,uu provides a better measure of the extent of brain penetration than Kp 

(Hammarlund-Udenaes et al. 2008).  

The aim of this work was to use an in-house hybrid-PBPK rat CNS model (Appendix 

7) developed and validated, using in vivo parameters, by Dr Raj Badhan (manuscript in 

preparation, Development of a Physiologically-Based Pharmacokinetic Model of the Rat 

Central nervous System) as a tool to predict rat in vivo Kp,uu using in vitro input parameters, 

which could reduce the number of in vivo studies required in a drug discovery setting. The 

drug specific in vitro parameters used for the prediction of Kp,uu were permeability 

measurements generated from transport studies (Chapter 4) and unbound drug fraction in 

blood and brain tissue generated by equilibrium dialysis (Chapter 5). Rat in situ permeability 
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(Summerfield et al. 2007) and knockout mouse data (Doran et al. 2005) were also used in 

simulations to make comparisons with predictions that used in vitro permeabilities. 

 

6.2 Results  

6.2.1 Drug-specific input parameters 

Drug-specific input parameters (Table 6.1) for clearance (CL), volume of distribution 

(Vd) and fraction unbound in blood, brain tissue and CSF (fuCSF) were used in all rat PBPK 

simulations. 

 

Table 6.1  Drug-specific parameters used in all rat physiologically based pharmacokinetic central 

nervous system model simulations 

 

Parameter Unit Chlorpromazine Citalopram Clozapine Haloperidol Risperidone 

   Vd   ml.kg
-1

  29100
a 

 24000
c 

 7624
e 

 9633
f 

 1770
g 

CL ml.h
-1

.kg
-1 

3660
b 

5550
d 

2549
e 

4984
f 

15240
g
 

fublood no unit 0.024 0.251 0.119 0.099 0.164 

fubrain no unit 0.002 0.066 0.014 0.018 0.133 

 

Rat volume of distribution (Vd) and clearance (CL) were obtained from the literature. Rat fublood 

and fubrain were determined by equilibrium dialysis, data are expressed as mean of 6 replicates, 

n = at least 3 independent experiments. These values were used in all model simulations using 

chlorpromazine, citalopram, clozapine, haloperidol and risperidone. 

 
a (Sawada et al. 1984) 
b (Evans et al. 2006) 
c (Poulin et al. 2002) 
d (Fredricson Overo 1982) 
e (Gershkovich et al.) 

f (Cheng et al. 1992) 

g (De Buck et al. 2007) 

 

 

The permeability parameters were varied between simulations in order to investigate 

the effect of permeability (Papp and Pexact) generated from porcine (Table 6.2) and MDR1-

MDCKII (Table 6.3) in vitro BBB models on predictions. In addition, permeability 

measurements, generated from rat in situ permeability studies with efflux measurements 

obtained from knock out mice studies, were employed in the hybrid-PBPK model (Table 6.4). 

Fraction unbound in cerebral spinal fluid was set at 1, due to low levels of drug binding 

protein in CSF (Shen et al. 2004), for all test drugs as it was not possible to determine this 

experimentally or obtain values from the literature. 
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Table 6.2 Drug-specific permeability parameters used for physiologically based pharmacokinetic 

model simulations using the porcine in vitro blood-brain barrier model permeabilities  
 

In vitro BBB 

 model 

 Parameter  

ml.h
-1

.kg
-1
 Chlorpromazine Citalopram Clozapine Haloperidol Risperidone 

Porcine  PSbbb   61 28 79 112 119 

(Papp) PScp  607 281 791 1120 1190 

  PSebbb   28 102 90 174 101 

  PSecp  283 1021 901 1745 1006 

Porcine  PSbbb   85 70 107 106 140 

 (Pexact) PScp  847 699 1075 1063 1397 

  PSebbb   28 117 93 110 120 

  PSecp  275 1171 928 1095 1199 

 
Drug-specific passive (PSbbb and PScp ml.h-1.kg-1) and active (PSebbb and PSecp ml.h-1.kg-1) 

permeability parameters for chlorpromazine, citalopram, clozapine, haloperidol and risperidone 
calculated from apparent and exact permeabilities determined from transport studies using the 

porcine in vitro BBB model (chapter 4). 

 

 

Table 6.3  Drug-specific permeability parameters used for physiologically based pharmacokinetic 

model simulations using the MDR1-MDCKII in vitro blood-brain model permeabilities 

 

In vitro BBB 

model 

 Parameter  

ml.h
-1

.kg
-1

 Chlorpromazine Citalopram Clozapine Haloperidol Risperidone 

MDR1- PSbbb   117 322 203 180 305 

MDCKII  PScp  1174 3223 2033 1798 3049 

(Papp) PSebbb   61 410 224 215 315 

  PSecp  609 4102 2244 2145 3150 

MDR1- PSbbb   219 370 263 249 331 

MDCKII  PScp  2192 3705 2626 2493 3306 

(Pexact) PSebbb   99 445 257 231 347 

  PSecp  987 4452 2573 2308 3473 

 

Drug-specific passive (PSbbb and PScp ml.h-1.kg-1) and active (PSebbb and PSecp ml.h-1.kg-1) 

permeability parameters for chlorpromazine, citalopram, clozapine, haloperidol and risperidone 

calculated from apparent and exact permeabilities determined from transport studies using the 

MDR1-MDCKII in vitro BBB model (chapter 4). 
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Table 6.4 Drug-specific permeability parameters used for physiologically based pharmacokinetic 

model simulations using rat in situ permeabilities  

 

 

Paramete

r Unit Chlorpromazine Citalopram Clozapine Haloperidol Risperidone 

PSbbb   ml.h-1.kg-1 322 72 279 207 104 

PScp  ml.h-1.kg-1 3220 720 2790 2070 1040 

Efflux 

ratio ml.h-1.kg-1 1.3 1.9 0.95 1.4 10 

PSebbb   ml.h-1.kg-1 419 136 265 290 1049 

PSecp  ml.h-1.kg-1 4189 1362 2652 2900 10489 

 
Drug-specific passive (PSbbb and PScp) and active (PSebbb and PSecp) permeability parameters 

(calculated using passive permeabilities and efflux ratio from knockout mice (Doran et al. 

2005) for chlorpromazine, citalopram, clozapine, haloperidol and risperidone using the rat in 

situ model (Summerfield et al. 2007). For clozapine an efflux ratio was not available from 

knockout mice, so an average efflux ratio determined from transport studies using MDR1-

MDCKII and porcine in vitro BBB models was used. 

 

6.2.2 Prediction of the extent of central nervous system drug penetration 

The calculated Kp,uu (Chapter 2, Equation 2.9 for details of calculation) were compared 

to the predicted Kp,uu obtained from simulations using the rat hybrid-PBPK model with drug-

specific permeability parameters from MDR1-MDCKII and porcine in vitro BBB models and 

rat in situ and knock out mice studies (Tables 6.1-6.4) detail the drug-specific permeability 

input parameters).  

 

Figure 6.1  Comparison of calculated and predicted Kp,uu using drug-specific permeability 

parameters from porcine in vitro blood-brain barrier model permeabilities 
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The calculated Kp,uu were compared to the predicted Kp,uu simulated by the rat hybrid-PBPK 

CNS model for chlorpromazine, citalopram, clozapine, haloperidol and risperidone using 
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permeability parameters (a) Papp and (b) Pexact from transport studies using the porcine in vitro 

BBB model. Solid line represents line of unity. 

For simulations performed using drug-specific permeability parameters calculated 

from permeabilities (Papp and Pexact) obtained using the porcine in vitro BBB model, the 

predicted Kp,uu was within 3-fold (for individual fold-differences see Table 6.5 and 6.6) of the 

calculated Kp,uu for all 5 test drugs used in the simulations (chlorpromazine, citalopram, 

clozapine, haloperidol and risperidone) (Figure 6.1). Citalopram, clozapine and haloperidol 

provided excellent predictions using both Papp (within 1.5-fold of calculated) and Pexact (within 

1.1-fold of calculated) permeability parameters. The greatest difference between predicted and 

calculated Kp,uu was observed with risperidone (Papp and Pexact 3.0 fold-difference). No 

appreciable differences were observed in predicted Kp,uu when either Papp and Pexact 

permeability parameters were used. This suggests that the rat CNS hybrid-PBPK model can 

accurately predict calculated Kp,uu using in vitro permeability parameters from the porcine in 

vitro BBB model and in vitro drug binding data.  

 

Table 6.5 Predicted and calculated Kp,uu using drug-specific apparent permeability parameters 

obtained using the porcine in vitro blood-brain barrier model permeabilities 

 

Test drug Predicted Kp,uu Calculated Kp,uu Fold-difference 

Chlorpromazine 6.5 2.8 2.3 

Citalopram 1.2 1.8 1.5 

Clozapine 2.4 2.7 1.1 

Haloperidol 2.3 3.1 1.3 

Risperidone 0.6 0.2 3.0 

 

Table 6.6 Predicted and calculated Kp,uu values using drug-specific exact permeability parameters 

obtained using the porcine in vitro blood-brain barrier model permeabilities 

 

Test drug Predicted Kp,uu Calculated Kp,uu Fold-difference 

Chlorpromazine 7.0 2.8 2.5 

Citalopram 1.8 1.8 1.0 

Clozapine 2.7 2.7 1.0 

Haloperidol 2.7 3.1 1.1 

Risperidone 0.6 0.2 3.0 

 

 

 

 



Chapter 6: The Use of a Physiologically Based Pharmacokinetic 

Model of the Rat Central Nervous System to Predict  

Central Nervous System Drug Penetration 

 204 

 

Figure 6.2  Comparison of calculated and predicted Kp,uu using drug-specific permeability 

parameters from the MDR1-MDCKII in vitro blood-brain barrier model permeabilities 
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The calculated Kp,uu were compared to the predicted Kp,uu simulated by the rat hybrid-PBPK 

CNS model for chlorpromazine, citalopram, clozapine, haloperidol and risperidone using (a) 

Papp and (b) Pexact permeability parameters obtained from transport studies using the MDR1-

MDCKII in vitro BBB model. Solid line represents line of unity. 

 

For simulations performed using drug-specific permeability parameters calculated 

from MDR1-MDCKII in vitro BBB model permeabilities (Papp and Pexact), the predicted Kp,uu 

was within 3-fold (for individual fold-differences see Table 6.7 and 6.8) of the calculated Kp,uu 

for all 5 test drugs used in the simulation (chlorpromazine, citalopram, clozapine, haloperidol 

and risperidone) (Figure 6.2). For citalopram, clozapine and haloperidol excellent predictions 

were observed using both Papp (within 1.2-fold of calculated Kp,uu) and Pexact (within 1.1-fold 

of calculated Kp,uu). The greatest difference between predicted and calculated Kp,uu was 

observed with risperidone (Papp and Pexact 3.0-fold difference). No appreciable differences were 

observed with predicted Kp,uu and calculated Kp,uu when either Papp or Pexact. was used. The 

results from these simulations suggest that the rat CNS hybrid-PBPK model can accurately 

predict calculated Kp,uu using in vitro permeability parameters from the MDR1-MDCKII in 

vitro BBB model and in vitro drug binding data. 
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Table 6.7 Predicted and calculated Kp,uu using drug-specific apparent permeability parameters 

obtained using the  MDR1-MDCKII in vitro blood-brain barrier model permeabilities 

 

Test drug Predicted Kp,uu Calculated Kp,uu Fold-difference 

Chlorpromazine 6.6 2.8 2.4 

Citalopram 2.0 1.8 1.1 

Clozapine 2.5 2.7 1.1 

Haloperidol 2.5 3.1 1.2 

Risperidone 0.6 0.2 3.0 

 

Table 6.8 Predicted and calculated Kp,uu using drug-specific exact permeability parameters 

obtained using the  MDR1-MDCKII in vitro blood-brain barrier model permeabilities 

 

Test drug Predicted Kp,uu Calculated Kp,uu Fold-difference 

Chlorpromazine 7.2 2.8 2.6 

Citalopram 2.0 1.8 1.1 

Clozapine 2.6 2.7 1.0 

Haloperidol 2.8 3.1 1.1 

Risperidone 0.6 0.2 3.0 

 

Figure 6.3  Comparison of calculated and predicted Kp,uu using drug-specific permeability 

parameters from the rat in situ model and mdr1a/1b knock out mice data 
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The calculated Kp,uu was compared to the predicted Kp,uu simulated by the rat hybrid-PBPK 

CNS model for chlorpromazine, citalopram, clozapine, haloperidol and risperidone using 

permeability parameters obtained from rat in situ model and efflux ratio obtained from knock 

out mice (Table 6.4). For clozapine an efflux ratio was not available from knockout mice so an 

average efflux ratio determined from transport studies using porcine and MDR1-MDCKII in 

vitro BBB models was used. Solid line shows line of unity. 
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For simulations performed using drug-specific permeability parameters calculated 

from permeability measurements obtained using the rat in situ model and knockout mice data, 

the predicted Kp,uu was within 2-fold (for individual fold-differences see Table 6.9) of the 

calculated Kp,uu for all 5 test drugs used in the simulation (chlorpromazine, citalopram, 

clozapine, haloperidol and risperidone) (Figure 6.3). Hence, provided marginally better 

predictions than predictions using permeability parameters from porcine and MDR1-MDCKII 

in vitro BBB models. Analogous to predictions obtained using the in vitro BBB models, 

citalopram, clozapine and haloperidol provided the best predictions (all within 1.3-fold). 

Comparable to predictions obtained using the and porcine MDR1-MDCKII in vitro BBB 

permeabilities the greatest difference between predicted and calculated Kp,uu was observed for 

chlorpromazine and risperidone (2.0-fold). This suggests that the rat CNS hybrid-PBPK model 

can accurately predict calculated Kp,uu using in situ rat, in vivo knockout mouse and in vitro 

drug binding data and although these predictions were marginally better than those using 

porcine and MDR1-MDCKII in vitro BBB models, they were not substantially better. 

 

Table 6.9 Predicted and calculated Kp,uu values using drug-specific permeability parameters from 

rat in situ model and knock out mice data 

 

Test drug Predicted Kp,uu Calculated Kp,uu Fold-difference 

Chlorpromazine 5.5 2.8 2.0 

Citalopram 1.6 1.8 1.1 

Clozapine 2.7 2.7 1.0 

Haloperidol 2.3 3.1 1.3 

Risperidone 0.1 0.2 2.0 

 

Discussion 6.3 

 The aim of this work was to use an in-house PBPK model of rat CNS developed and 

validated by Dr Raj Badhan (manuscript in preparation, Development of a Physiologically-

Based Pharmacokinetic Model of the Rat Central nervous System) as a tool to predict rat in 

vivo Kp,uu using in vitro input parameters. The rat CNS hybrid-PBPK model successfully 

predicted Kp,uu within 3-fold of the calculated Kp,uu for chlorpromazine, citalopram, clozapine, 

haloperidol and risperidone using drug-specific permeability parameters calculated from 

permeabilities (both Papp and Pexact) obtained using the porcine and MDR1-MDCKII in vitro 
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BBB models and in vitro drug binding data. The PBPK model also predicted Kp,uu within 2-

fold using rat in situ, knockout mice and in vitro drug binding data.  

 The permeability input parameters and the blood flow at the BCSFB was set at 10-fold 

compared to the permeability input parameter at the BBB due to validation studies performed 

by Dr Raj Badhan (manuscript in preparation, Development of a Physiologically-Based 

Pharmacokinetic Model of the Rat Central nervous System). These studies revealed that when 

the permeability and blood flow parameters where set at 10-fold greater than at the BBB that 

Kp,uu and CSF:plasmau (used for model validation) model predictions for 7 model compounds 

were within 3-fold of in vivo values. These observations are consistent with reports in the 

literature where the blood flow to and permeability of, the choroidal epithelium of the choroid 

plexus are greater than those of the BBB (Del Bigio 1995; Saito el al. 1987). 

These data suggest that the rat CNS hybrid-PBPK model could be used to accurately 

predict calculated Kp,uu from in vitro and in situ drug specific permeability parameters and in 

vitro drug binding parameters. 

 The model simulations using the rat in situ permeabilities and knock out mice data 

provided slightly better predictions of Kp,uu than the simulations using in vitro BBB model 

permeabilities from the porcine and MDR1-MDCKII in vitro BBB models. In situ 

permeability data is likely to be a more accurate permeability measurement than in vitro BBB 

model permeability because it accounts for the whole interplay of factors that influence drug 

permeability for example, blood and brain tissue drug binding, blood flow and the effect of a 

variety of efflux and influx transporters etc. In addition in vivo studies are experimentally 

complex, expensive and low throughput. However, the use of in vitro BBB model 

permeabilities still provided a prediction of Kp,uu within 3-fold and could therefore be used as a 

surrogate for in situ permeability in order to increase throughput and reduce costs in drug 

development. 

A strong relationship was observed between rat in situ permeability and porcine in 

vitro BBB model permeability (Chapter 4, Figure 4.8), although low concordance was 

observed between rat in situ permeability and MDR1-MDCKII in vitro BBB model 

permeability for the test drugs studied (Chapter 4, Figure 4.9). Despite this, incorporation of 

permeabilities obtained from the MDR1-MDCKII in vitro BBB model into the rat PBPK 

model provided a good prediction of Kp,uu. In addition, the actual permeability values from the 
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porcine and MDR1-MDCKII in vitro BBB models and rat in situ permeabilities were shown to 

be quite different. This would suggest that permeability is not the most important factor in 

determining extent of CNS drug penetration. Permeability measurements are most often used 

to predict the rate of CNS drug penetration. Most medication is administered under a regular 

doing regimen, where rate of penetration is not of high importance. Rapid rate of penetration 

is more important when treating condition such as seizure and stroke or during anaesthesia.  

The importance of determining fublood and fubrain for the prediction of the extent of drug 

penetration was highlighted in Chapter 5. Predicted Kp,uu values were within 2-fold of the 

calculated Kp,uu values for citalopram, clozapine and haloperidol whose fubrain values ranged 

from 0.012-0.060. However, predicted Kp,uu values were between 2 and 3-fold of the calculated 

Kp,uu values for chlorpromazine whose fubrain (0.002) was an order of magnitude lower than the 

fubrain values of citalopram, clozapine and haloperidol and for risperidone whose fubrain (0.144) 

was an order of magnitude higher than the fubrain values of citalopram, clozapine and 

haloperidol. This suggests that fubrain in the rat CNS PBPK model could have a greater impact 

of the prediction of Kp,uu than permeability. However, it must be noted that the rat CNS 

hybrid-PBPK model can predict calculated Kp,uu values within 3-fold for a range of fublood 

(0.028-0.264) and fubrain (0.002-0.144) values. 

There are shortages of predictive models in the literature for the quantification of CNS 

drug penetration. Non-physiological models are composed of either 1 compartment 

representing the brain or two compartments, of which one compartment represents the brain 

and the other compartment represents the body (Hammarlund-Udenaes et al. 1997) or 

blood/plasma (Liu et al. 2005). The literature recently described as semi-physiological model 

to predict CNS pharmacokinetics using in vitro and in vivo parameters (Liu et al. 2005). The 

model differed to the model used in this thesis as it utilised both in vitro and in vivo 

parameters and predicted time to achieve equilibrium unlike the model in this thesis which 

was used to predict the extent of CNS drug penetration. Liu et al concluded high BBB 

permeability and high fubrain was required to achieve rapid brain equilibrium.  

Currently all models in the literature are deficient of a distinct CSF component. The in-

house hybrid-PBPK model of rat CNS described in this thesis is the most complex CNS rat 

model to date and the first model that incorporates a brain and detailed CSF compartment to 

accurately predict the extent of CNS drug penetration.  



Chapter 6: The Use of a Physiologically Based Pharmacokinetic 

Model of the Rat Central Nervous System to Predict  

Central Nervous System Drug Penetration 

 209 

The rat PBPK model has the potential to be validated further with regard to fuCSF. 

Fraction unbound in cerebrospinal fluid is not always available in the literature and is difficult 

to determine experimentally. In order to obtain an optimal fuCSF value for use in the rat PBPK 

model when fuCSF is unavailable, the impact of varying the fuCSF value on the predicted Kp,uu 

value could be investigated which could validate the model further. 

Human Kp,uu data (calculated using human Kp and human fublood and fubrain, for details 

of calculation see Equation 2.9) was only available for 2 of the test drugs used throughout this 

work, namely haloperidol and primidone. Calculated human Kp,uu for haloperidol and 

primidone were within 3-fold of calculated rat Kp,uu (haloperidol: rat Kp,uu = 3.07, human Kp,uu 

= 3.48 and primidone: rat Kp,uu =  0.42, human Kp,uu = 0.80 Chapter 5). As calculated rat and 

human Kp,uu were comparable for haloperidol and primidone, rat Kp,uu could have the potential 

to act as a surrogate for human Kp,uu and hence this model may have the potential to predict the 

extent of drug penetration in humans when using rat Kp,uu as a surrogate for human. However, 

more human Kp,uu values are required to validate this suggestion. In addition the model would 

need to be modified to incorporate other human input parameters, for example, blood flow to 

the BBB and bulk flow of interstitial fluid.  

Future work could also include the development of a whole body PBPK human model 

containing a CNS component for the prediction of CNS pharmacokinetics. Incorporating the 

impact of disease on the prediction of CNS pharmacokinetics would be useful addition to this 

PBPK model.  

This work demonstrates the potential of the rat CNS hybrid-PBPK model as a useful 

tool for drug discovery scientists to aid the prediction of the extent of drug penetration in the 

early stages of drug discovery thereby potentially reducing attrition rates and providing novel 

efficacious CNS drugs which are urgently required. Additionally, the rat CNS hybrid-PBPK 

model has potential use in non-CNS drug development to predict brain penetration of 

peripherally targeted drugs which could lead to CNS side effects limiting their use.  
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7.0 Chapter 7: Summary and Conclusion 

The overall aim of this work was to use in vitro permeability and unbound drug fraction to 

predict CNS drug penetration. In order to investigate this, it was necessary to derive in vitro 

permeability and unbound drug fraction measurements. 

The first part of the work in this thesis involved developing and characterising a primary 

porcine in vitro BBB model for use as a permeability screen. Optimised culture conditions for 

the model were determined. These included purification of PBECs with puromycin treatment, 

co-culture with CTX-TNA2 astrocyte cell line and the use of supplemented medium. 

Characterisation of the primary porcine in vitro BBB model confirmed; physiologically 

realistic cell architecture, the formation of tight junction protein complexes, a restrictive 

paracellular pathway, functional expression of efflux transporters and BBB-associated marker 

enzymes. Characterisation concluded that the primary porcine in vitro BBB model possessed 

key features that were representative of the BBB in vivo and could be used in subsequent drug 

permeation studies. 

In order to determine permeability measurements, the next part of this work involved 

comparing four in vitro BBB models regarding their potential for the prediction of in vivo 

BBB permeability. The in vitro BBB models employed in these studies demonstrated 

differences regarding barrier integrity and efflux function. Further differences between the in 

vitro BBB models were exhibited during drug permeation studies using a set of centrally-

acting test drugs chosen by GSK. This showed that the permeability data between in vitro 

BBB models was not comparable and highlighted the importance of using an in vitro BBB 

model that could accurately predict in vivo BBB permeability. The in vitro porcine BBB 

model permeabilities demonstrated the strongest relationship with rat in situ permeability 

suggesting the potential of this model to predict in vivo BBB permeability.  

 To obtain unbound drug fraction, fublood and fubrain were investigated across species. 

Fraction unbound in brain was shown to be comparable across species suggesting that any 

species could be used as a surrogate for human brain, as human brain tissue is difficult to 

obtain. Variation in fublood was observed across species. However human blood for use in 

binding studies is easily obtainable and therefore a surrogate is not required. This work 

suggested that species differences in brain penetration could be due to variation in fublood for 
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drugs that cross the BBB by passive diffusion and/or species differences in transporter 

homology or affinity for drugs that are subject to active transport processes at the BBB.  

The final part of this work involved the use of an in-house hybrid-PBPK rat CNS 

model to predict the extent of drug penetration (Kp,uu) in vivo for rat, using in vitro parameters. 

The drug specific in vitro parameters used for the prediction of Kp,uu were permeability 

measurements generated from transport studies and unbound drug fraction in blood and brain 

generated by equilibrium dialysis. The rat CNS hybrid-PBPK model was shown to accurately 

predict calculated Kp,uu within 3-fold from in vitro drug specific permeability parameters and 

in vitro drug binding parameters. 

 In conclusion in vitro, permeability measurements and unbound drug fraction in blood 

and brain determined during this work have been shown to predict CNS drug penetration. 
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Appendix 1: Materials 

 

Acetic acid       Fisher Scientific, Leicestershire, UK 

Acetonitrile (HPLC grade)    Fisher Scientific, Leicestershire, UK 

Acrylamide/bisacrylamide Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Amprenavir Toronto Research Chemicals. Toronto, 

Canada 

2-amino-2-methyl-1-propanol Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Bovine serum albumin  Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Bradford reagent BioRad Laboratories Ltd, Hertfordshire, 

UK 

Bromophenol blue     Sigma-Aldrich Chemical Co, Poole,  

(33 5 5  tetrabromo phenolsulphonephthalein)  Dorset, UK     

Calcein acetoxymethyl ester (Calcein-AM)  InVitrogen, Paisley, Scotland, UK 

cAMP: (8-(4-chlorophenylthio) adenosine      Sigma-Aldrich Chemical                                                                                      

3, 5-cyclic monophosphate sodium salt)   Co, Poole, Dorset, UK 

CAPS: (3-(cyclohexylamino)-1-propane sulfonic   VWR International (Leicestershire, UK).                                                                           

Acid) 

Carbamazepine Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Chlorpromazine hydrochloride Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Citalopram hydrobromide Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Clozapine Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 
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Collagen type 1, rat tail 3.75 mg.ml
-1   

BD Biosciences, Oxford, UK 

Collagenase type III from Clostridium    Worthington Lorne Laboratories                                                                            

histolycitcum. Specific activity 130 units.mg
-1 

Twyford, Reading, UK 

Coomassie blue stain BioRad Laboratories Ltd, Hertfordshire, 

UK 

Deoxyribonuclease I partially purified from      Worthington Lorne Laboratories,                                                                             

bovine pancreas. Specific activity 2740 units.mg
-1 

Twyford, Reading, UK 

Donepezil > 99 % pure    Chemical Development GSK 

Dulbecco‟s Modified Eagle Medium   Invitrogen, Paisley, Scotland, UK 

Dulbecco‟s Modified Eagle Medium   Invitrogen, Paisley, Scotland, UK                                                                            

with Gluatmax  

Dulbecco‟s PBS     Invitrogen, Paisley, Scotland, UK  

ECL Plus western blotting reagent GE Healthcare Life Sciences, 

Buckinghamshire, UK. 

Ethanol HPLC grade     Fisher Scientific, Leicestershire, UK 

Falcon
TM

 HTS 24-Mulitwell insert systems    Becton Dickinson,. NJ, USA                                                                   

(polyethylene terphthalate, 1.0 µM pore size,                                                                   

diameter 6.5 mm, growth area 0.31 cm
2
,                                                                                      

24 well clusters) 

Fibronectin (human)     BD Biosciences, Oxford UK 

Fluorescein iso-thiocyanate (FITC)-labelled IB4 Invitrogen, Paisley, Scotland, UK   

Fluorescein-labelled goat anti-rabbit IgG      Vector Laboratories Ltd,                                                                                     

secondary antibody     Peterborough, UK 

Foetal Bovine Serum      Invitrogen, Paisley, Scotland, UK  

GF120918 Gift from Chemical Development GSK, 

Harlow site, Essex, UK 

Glycerol Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Glycine      Fisher Scientific, Leicestershire, UK 
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Glycylglycine Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

GW633104X Gift from Chemical Development GSK, 

Harlow site, Essex, UK 

Haloperidol Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Heparin 170 USP unit.mg
-1

   Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

HEPES 1M buffer solution    Invitrogen, Paisley, Scotland, UK 

Horse serum      Zymed, Paisley, Scotland, UK 

Hydrocortisone Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Leibovitz-15 medium  Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

L-glutamine 200mM 100 X    Invitrogen, Paisley, Scotland, UK  

L-glutamyl-p-nitroanilide Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Lucifer Yellow CH dilithium salt Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

M199 Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Magnesium chloride  Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Mesoridazine benenesulfonate Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Methanol Fisher Scientific, Leicestershire, UK 

Minimum Essential Medium Eagle modified  MP Biomedicals, Illkirch, France                                                                    

with Earle‟s Salts and 20 mM HEPES x 1 

MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl     Invitrogen, Paisley, Scotland, UK                                                     

tetrazolium bromide 
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2-mercaptoethanol Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Non-essential amino acids 100 X   Invitrogen, Paisley, Scotland, UK 

PAGE protein marker, broad range (2-212 kDa) New England Biolabs, Hertfordshire, UK 

Penicillin G sodium 10,000 units,ml
-1  

Sigma-Aldrich Chemical Co, Poole, 

streptomycin sulphate 10,000 µg.ml
-1

   Dorset, UK                               

Plasma derived serum     First Link UK, Birmingham, UK 

p-nitrophenyl phosphate Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Potassium chloride Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Potassium phosphate   Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Primary antibody: rabbit anti-human occludin Zymed, Paisley, Scotland, UK 

Primary antibody: rabbit anti-human ZO-1  Zymed, Paisley, Scotland, UK 

ProLong
® 

mounting medium containing DAPI InVitrogen, Paisley, Scotland, UK 

Protease inhibitor cocktail Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Puromycin dihydrochloride Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK    

RO20-1724           Merck Bioscience, Nottingham, UK                                                                                                                            

(4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone)                                            

SB243213  Gift from Chemical Development GSK, 

Harlow site, Essex, UK           

Sodium chloride     Analab, Dorset, UK 

Sodium phosphate Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK    

TEMED (N,N,N,N-tetramethylethylenediamine) Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK, 
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T-Flask- 25 cm
2     

Greiner Biosciences, Stonehouse, UK 

T-Flask- 75 cm
2     

Greiner Biosciences, Stonehouse, UK 

T-Flask- 175 cm
2     

Greiner Biosciences, Stonehouse, UK 

Tissue culture-treated 6-well plates   Greiner Biosciences, Stonehouse, UK 

Tissue culture-treated 96-well flat     Corning Costar, High Wycombe, UK                                                                                       

bottomed plate  

Transwell™ polycarbonate inserts                                Corning Costar, High Wycombe, UK                                                                                            

(pore size 0.4 µm, diameter 12 mm, growth area                                                                      

1.12 cm
2
, 12-well cell culture cluster   

Tris (Tris [hydroxymethyl]aminomethane) Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Triton x-100 Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Trypan Blue solution 0.4 % (w/v) Sigma-Aldrich Chemical Co, Poole, 

Dorset, UK 

Trypsin partially purified from bovine pancreas Worthington Lorne Laboratories,                                                                                

Specific activity 216 units.mg
-1   

Twyford, Reading, UK 

Trypsin-EDTA solution                       Invitrogen, Paisley, Scotland, UK                                                                                            

(1 x 500 Na-Benzoyl-Arginine Ethyl Ester                                                                             

units porcine trypsin and EDTA, 180 µg.ml
-1

) 

Quetiapine > 99 % pure Gift from Chemical Development GSK, 

Harlow site, Essex, UK 

Risperidone > 99 % pure Gift from Chemical Development GSK, 

Harlow site, Essex, UK 

Ziprasisdone > 99 % pure Gift from Chemical Development GSK, 

Harlow site, Essex, UK 
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Appendix 2: Solutions and Media Composition 

 

Digest mix  

Collagenase         210 U.ml
-1 

Trypsin    91 U.ml
-1 

DNase 1   114 U.ml
-1 

 

Freshly prepare on the day of isolation. Dissolve enzymes in M199 containing 10 % (v/v) FBS 

and penicillin G sodium (100 units.ml
-1

) and streptomycin sulphate (100 µg.ml
-1

) and filter 

sterilise. Correct each enzyme batch for differences in activity (U.mg
-1

). 

 

Phosphate buffered saline pH 7.4. 

NaCl  137.0 mM 

KCl                         2.7 mM 

Na2HPO4                10.0 mM   

KH2PO4                   2.0 mM 

 

Dissolved in distilled water and adjusted to pH 7.4. Autoclave to sterilise when required for 

cell culture. 

 

Culture media 

Astrocyte 

DMEM 

FBS   10 % (v/v) 

Penicillin G sodium 100 u.ml
-1

   

Streptomycin sulphate 100 µg.ml
-1 

 

Caco-2 

DMEM 

FBS 10 % (v/v) 

L-glutamine 2 mM 

NEAA 1 % (v/v) 

Penicillin G sodium                                           100 u.ml
-1

   

Streptomycin sulphate                                                   100 µg.ml
-1

  

 

hCMEC/D3 advised by INSERM  

EBM2 basal media  500 ml 

FBS 2.5 % (v/v) 

Penicillin G sodium 100 u.ml
-1

   

Streptomycin sulphate 100 µg.ml
-1

  

VEGF 125 µl (from EGM-2 MV bullet kit) 

IGF 125 µl (from EGM-2 MV bullet kit) 

EGF 125 µl (from EGM-2 MV bullet kit) 

Hydrocortisone 50 µl (from EGM-2 MV bullet kit) 

HEPES  1 mM 

bFGF  200 ng.ml
-1

  



Appendix 2 

 218 

MDCK  

DMEM + Glutamax 

FBS 10 % (v/v) 

Penicillin G sodium 100 u.ml
-1

   

Streptomycin sulphate 100 µg.ml
-1

  

 

PBEC 

DMEM 

Penicillin G sodium 100 u.ml
-1

 

Streptomycin sulphate 100 µg.ml
-1

  

L-glutamine 2 mM  

PDS 10 % (v/v) 

Heparin  125 mM   

 

Transport media/solution 

Caco-2 

HBSS 

HEPES  1 mM 

  

hCMEC/D3 advised by INSERM  

EBM2 basal media  500 ml 

FBS 2.5 % (v/v) 

Penicillin G sodium 100 u.ml
-1

   

Streptomycin sulphate 100 µg.ml
-1

  

Hydrocortisone 2.8 mM 

HEPES 1mM 

bFGF
 

200 ng.ml
-1

 

 

MDCK  

DPBS 

HEPES  1 mM   

 

PBEC  

DMEM 500 ml 

Heparin  125 µM 

L-glutamine  2 mM 

Penicillin G sodium 100 u.ml
-1

   

Streptomycin sulphate 100 µg.ml
-1

  

cAMP                    312.5 µM  

RO-20-1724          17.5 µM 

Hydrocortisone      550 nM  
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Reagents for Western Blotting 

 

Lysis buffer without protease inhibitor 

50 mM Tris-HCl pH 7.8 

5 mM EDTA  

 

Sonicate and heat if required. For lysis buffer with protease inhibitor, add protease inhibitor 

cocktail (2 µl.ml
-1

) to the above solution. 

  

1.5M Tris - pH 8.8 

Tris Base     340 mg.ml
-1 

Adjust pH with HCl and store at 4 °C 

 

0.5M Tris –pH 6.8 

Tris base    76.25 mg.ml
-1 

Adjust pH with HCl and store at 4 °C 

 

SDS Sample buffer (8 ml) 

Tris base 0.025M   1.0 ml   

dH2O      3.8 ml  

Glycerol     0.8 ml  

10% SDS     1.6 ml  

Mercaptoethanol    0.4 ml  

bromophenol blue 1 %  0.4ml  

 

5 X Running buffer 

dH2O 

Tris base   15 mg.ml
-1 

Glycine  72 µl.ml
-1

  

SDS     5 mg.ml
-1 

 

Store at 4°C and dilute with dH2O to 1X when required 

 

 

De-staining solution (40% methanol, 7% acetic acid) 

dH2O 

Methanol   40 % (v/v) 

Acetic acid     7 % (v/v) 

Store at room temperature 

 

Transfer buffer 

CAPS-pH 11  10 mM 

 

  

 

 



Appendix 2 

 220 

TBS-T 

 

Tris base     10 mM 

NaCl    150 mM   

Tween-20   0.05 % (v/v) 

 

Blocking buffer 

CAPS Marvel milk  50 mg.ml
-1 

TBS-T 
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Appendix 3: Physicochemical Properties of Test Drugs 

 

Test drug 

Molecular 

weight 

 

acd-

clogP 

acd-

clogD 

(pH7.4) 

 

 

PSA 

Hydrogen 

bond 

donors  

Hydrogen 

bond 

acceptors 

 

Ion 

class 

Amprenavir 505.6 4.2 4.2 139.4 4 9 Neutral 

Carbamazepine 236.3 2.7 2.7 46.33 2 3 Neutral 

Chlorpromazine 318.9 5.2 3.2 6.48 0 2 Basic 

Citalopram 324.4 2.5 0.4 36.26 0 3 Basic 

Clozapine 326.8 3.5 3.3 30.87 1 4 Basic 

Donepezil 379.5 4.7 3.3 38.77 0 4 Basic 

Haloperidol 375.9 3.0 2.1 40.54 1 3 Basic 

Mesoridazine 386.6 6.1 3.9 6.48 0 4 Basic 

Primidone 218.3 0.4 0.4 58.20 2 2 Basic 

Quetiapine 383.5 1.6 1.6 48.30 1 6 Basic 

Risperidone 410.5 2.9 2.3 64.16 0 6 Basic 

Ziprazidone 412.9 4.0 3.0 48.47 1 4 Basic 
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Appendix 4: Mass Spectroscopy 

 

Amprenavir 

 

MS set up 

Electrospray interface +ve mode  

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 

 

 Amprenavir 

Mass transitions:   506.35>245.25 

Cone voltage: 50 V  Collision voltage: 15 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Amprenavir = 3.0 

      IS = 4.4 

 

 

Carbamazepine 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1 

Capillary voltage: 3.5 kV 

 



Appendix 4 

 223 

Carbamazepine 
Mass transitions:   237.05>194.1 

Cone voltage: 90 V  Collision voltage: 220 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 35 50 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Carbamazepine = 2.9 

      IS = 4.4 

 

 

Chlorpromazine 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 

 

 Chlorpromazine 

Mass transitions:   319.15>86.25 

Cone voltage: 50 V  Collision voltage: 20 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 25 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 
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Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Chlorpromazine = 2.4 

      IS = 3.3 

 

 

Citalopram 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 

 

 Citalopram 

Mass transitions:   325.35>109.1 

Cone voltage: 60 V  Collision voltage: 25 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 25 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 
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Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Citalopram = 2.4 

      IS = 4.4 

 

 

Clozepine 

 

MS set up 

Electrospray +ve mode 

Source temp: 125 ºC  Desolvation temp: 350ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 

 

 Clozepine 

Mass transitions:   327.15>270.2 

Cone voltage: 50 V  Collision voltage: 225 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Clozapine = 2.4 

      IS = 3.3 
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Control (GW633104) 
 

MS set up 

Electrospray interface +ve mode 

Source temp: 125ºC  Desolvation temp: 350ºC 

Cone gas: 150 L/hr  Desolvation gas: 600 L/hr 

Capillary voltage: 3.5 KV 

 

 Control 

Mass transitions:   409.15>92.2 

Cone voltage: 90 V  Collision voltage: 30eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 35 50 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Control = 4.0 

      IS = 4.4 

 

 

Donepezil 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 
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Donepezil 

Mass transitions:   380.25>91.25 

Cone voltage: 100 V  Collision voltage: 35 eV 

 

SB414796(IS) 

Mass transitions:   537.2>334.25 

Cone voltage: 140 V  Collision voltage: 25 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min - - - 100 6 

4 min - - - 100 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Donepezil = 3.9 

      IS = 3.7 

 

 

Haloperidol 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 

 

 Haloperidol 

Mass transitions:   376.05>165.05 

Cone voltage: 60 V  Collision voltage: 25 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 25 eV 
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LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Haloperidol = 2.3 

     IS = 3.3 

 

 

Mesoridazine 

 

MS set up 

Electrospray interface +ve mode  

Source temp: 125 ºC  Desolvation temp: 350ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 KV 

 

 Mesoridazine 

Mass transitions:   387.3>126.15 

Cone voltage: 60 V  Collision voltage: 25 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 25 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 
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Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Mesoridazine = 2.5 

      IS = 4.4 

 

 

Primidone 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 KV 

 

 Primidone 

Mass transitions:   218.95>162.05 

Cone voltage: 60 V  Collision voltage: 12eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 25 60 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Primidone = 2.4 

     IS = 4.2 
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Quetiapine 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125ºC  Desolvation temp: 350ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 KV 

 

 Quetiapine 

Mass transitions:   384.15>253.1 

Cone voltage: 100 V  Collision voltage: 20eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 25 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Quetiapine = 2.6 

     IS = 3.3 

 

 

Risperidone 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 kV 
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Risperidone 

Mass transitions:   411.25>191.15 

Cone voltage: 100 V  Collision voltage: 30eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 

 

LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml/min 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 15 - 10 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Risperidone = 2.4 

     IS = 3.3 

 

 

Ziprasidone 

 

MS set up 

Electrospray interface +ve mode 

Source temp: 125 ºC  Desolvation temp: 350 ºC 

Cone gas: 150 L.hr
-1

  Desolvation gas: 600 L.hr
-1

 

Capillary voltage: 3.5 KV 

 

 Ziprazidone 

Mass transitions:   413.2>194.15 

Cone voltage: 100 V  Collision voltage: 225 eV 

 

SB243213(IS) 

Mass transitions:   429.15>228.15 

Cone voltage: 90 V  Collision voltage: 225 eV 
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LC set up 

Luna 5u C18 50x4.6 mm column from Phenomenex 

 

Gradient elution at 1ml.min
-1 

 A B C D Curve 

0 min - - 100 - 1 

1 min - - 100 - 11 

3 min 5 - 20 75 1 

4 min - 15 - 85 1 

5 min - - 100 - 1 

 

Where  A = 90 % H2O, 10 % MeCN + 0.05 % formic acid  

 B = 10 % H2O, 90 % MeCN + 0.05 % formic acid   

 C = 90 % H2O, 10 % MeCN + 1 mM ammonium acetate  

 D = 10 % H2O, 90 % MeCN + 1 mM ammonium acetate 

 

Retention times: Ziprasidone = 2.8 

     IS = 3.3 
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Appendix 5: Caco-2 Transport Studies 

 

A5.1 Assessment of test drug concentration for use in transport studies across in vitro 

blood-brain barrier models 

 

Figure A5.1  Effect of test drug concentration on cell viability 
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Caco-2 were seeded onto 96-well plates at a pre-determined cell density (17,500 cells.cm-2) and 

incubated for 24 h. Cells were then incubated with test drugs at 0.03 µM (blue), 0.3 µM 

(yellow), 3 µM (green) and 30 µM (red) for 60 min, washed with PBS and incubated for 24 h in 

growth medium. Methylthiazolyldiphenyl-tetrazolium bromide in PBS (5 mg.ml-1) was added 

to all wells (10 µl per 100 µl medium) and the cells were incubated for 4 h. The MTT-formazan 

produced was solubilised and quantified colourmetrically using a spectrophotometer. The 

control (cells exposed to solvent at the same concentration as all test drug solutions) 
corresponded to a cell viability of 100 %. Data are expressed as mean ± standard deviation of 

one independent experiment, with 4 replicate determinants.  

 

 

Figure A5.2 Effect of test drug concentration and GF120918 on cell viability 
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Caco-2 cells were seeded at a pre-determined density of 17,500 cells.cm-2 (and incubated for 24 

h. The cells were then co-incubated with the test drugs that were to be used in subsequent 

transport studies at a range of concentrations (blue 0.03 µM, yellow 0.30 µM, green 3.00 µM 

and red 30.00 µM) and GF120918 (2 µM) for 60 min. The cells were washed and incubated for 

24 h in growth medium. Methylthiazolyldiphenyl-tetrazolium bromide in PBS (5 mg.ml-1), was 

added to all wells (10 µl per 100 µl medium) and the cells were incubated for 4 h. The MTT-

formazan produced was solubilised and quantified colourmetrically using a spectrophotometer. 

The control (cells exposed to solvent at the same concentration as all test drugs solutions) 
corresponded to a cell viability of 100 %. Data are expressed as mean ± standard deviation of 4 

replicates from one independent experiment.  
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Lucifer yellow (100 µM) alone, employed in all studies to monitor cell monolayer 

integrity, did not appreciably affect Caco-2 cell viability (101.99 %) compared to control cells 

(100 %). Similarly, there was no appreciable effect on cell viability when cells were exposed 

to GF120918 (2 µM) alone (99.20%) or exposed to a combination of Lucifer yellow (100 µM) 

and GF120918 (100.94 %) compared to control cells. This study confirmed that a test drug 

concentration of 3 µM, the P-gp inhibitor GF120918 (2 µM) and the paracellular marker 

Lucifer yellow (100 µM) did not substantially decrease cell viability of Caco-2 cell type and 

were therefore suitable to be used in subsequent transport studies. 

 

A5.2 Characterisation of Caco-2 in vitro blood-brain barrier model integrity and efflux 

function 

 

Table A5.1 Markers of monolayer integrity and efflux function 

 

In vitro BBB 

model 

Lucifer yellow 

Papp (nm.s
-1

) 

Lucifer yellow 

Pexact (nm.s
-1

) 

TER 

(Ω.cm
2
) 

Efflux ratio 

(Papp) 

Efflux ratio 

(Pexact) 

Caco-2 37.2±13.3 39.3±14.0 1500-1800 8.6 10.2 

 

The table shows A-B apparent permeability (Papp nm.s-1) and exact permeability (Pexact nm.s-1) of 

Lucifer yellow (100 µM), transcellular electrical resistance (Ω.cm2) and efflux ratio (B-A/A-B) 

of amprenavir determined from both apparent permeability (Papp nm.s-1) and exact permeability 

(Pexact nm.s-1) across Caco-2 in vitro BBB model. Lucifer yellow data are expressed as mean ± 

standard deviation of at least 6 replicates, n=3 independent experiments, transcellular electrical 

resistance data are expressed as range of at least 12 replicates, n=3 independent experiments 

and efflux ratios (B-A/A-B) (Papp and Pexact) for amprenavir are calculated from mean of 
duplicates, n=3 independent experiments.  

 

 

A5.3 Permeability measurements of test drugs across the Caco-2 in vitro BBB model 

Four of the 12 test drugs were used in permeability studies across the Caco-2 in vitro 

BBB model. Table A5.2 and A5.3 detail apparent permeability and exact permeability 

respectively, with and without the P-gp inhibitor GF120918, across the Caco-2 in vitro BBB 

model for amprenavir, chlorpromazine, haloperidol and mesoridazine.  
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Table A5.2 Apparent permeability and efflux ratio of test drugs across the Caco-2 in vitro blood-

brain barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Papp A-B Papp B-A ER Papp A-B Papp B-A ER 

Amprenavir 19.4 ± 10.4 248.5± 89.4 12.8 43.1 ± 10.6 225.8± 24.9 5.2 

Chlorpromazine 54.0 ± 21.1 82.6± 25.7 1.5 45.6 ± 8.2 95.8 ± 16.9 2.1 

Haloperidol 60.0 ± 9.3 221.7 ± 35.5 3.7 48.9 ± 1.6 122.3 ± 21.5 2.5 

Mesoridazine 40.0 58.8 1.5    

 

Apparent permeability of amprenavir, chlorpromazine, haloperidol and mesoridazine (3 µM) 

across the Caco-2 in vitro BBB model in both A-B and B-A directions, with and without the 

potent P-gp inhibitor GF120918 (2 µM), was measured over 60 min. The apparent permeability 

(Papp nm.s-1) and efflux ratio (ER) were calculated. Apparent permeability data are expressed as 

mean ± standard deviation of duplicates, n=3 independent experiments for all test drugs apart 
from mesoridazine where data are expressed as the mean of duplicates from one independent 

experiment. Efflux ratios (B-A/A-B) were calculated from mean apparent permeability values. 

 

Table A5.3  Exact permeability and efflux ratio of test drugs across the Caco-2 in vitro blood-brain 

barrier model 

 

 With out inhibitor With inhibitor 

Test Drug Pexact A-B Pexact B-A ER Pexact A-B Pexact B-A ER 

Amprenavir 21.2 ± 12.4 252.4± 95.6 11.9 50.7 ± 12.5 237.6 ± 38.5 4.7 

Chlorpromazine 93.0± 25.8 105.8 ± 36 1.1 68.9 ± 22.6 98.0 ± 26.2 1.4 

Haloperidol 72.1 ± 10.7 211.0 ± 43.2 2.9 54.1 ± 12.3 110.7 ± 24.0 2.1 

Mesoridazine 48.8 65.8 1.4    

 

Exact permeability of amprenavir, chlorpromazine, haloperidol and mesoridazine (3 µM) 

across the Caco-2 in vitro BBB model in both A-B and B-A directions, with and without the 

potent P-gp inhibitor GF120918 (2 µM), was measured over 60 min. The exact permeability 

(Pexact nm.s-1) and efflux ratio (ER) were calculated. Exact permeability data are expressed as 

mean ± standard deviation of duplicates, n=3 independent experiments for all test drugs apart 

from mesoridazine where data are expressed as the mean of duplicates from one independent 

experiment. Efflux ratios (B-A/A-B) were calculated from mean exact permeability values. 
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A5.4 Relationship between in vitro blood-brain barrier model permeabilities  

Figure A5.3 Relationship between porcine and Caco-2 in vitro BBB model permeabilities 
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Relationship between Caco-2 and porcine in vitro BBB model A-B permeabilities (Papp and 

Pexact nm.s-1) without the P-gp inhibitor GF120918 for amprenavir, chlorpromazine, haloperidol 

and mesoridazine. The data from the Caco-2 in vitro BBB model are expressed as mean of 

duplicates, n=3 independent experiments for all test drugs apart from mesoridazine where data 

are expressed as the mean of duplicates from one independent experiment. Data from the 

porcine in vitro BBB model are expressed as mean of duplicates, n=3 independent experiments 

for all test drugs.  
 

 

Figure A5.4 Relationship between Caco-2 and porcine in vitro blood-brain barrier model passive 

permeabilities 
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Caco-2 and porcine in vitro BBB model A-B passive permeabilities (Papp and Pexact nm.s-1) for 

amprenavir, chlorpromazine and haloperidol. Studies were carried out with 2 µM of the P-gp 

inhibitor GF120918. Data from the both Caco-2 and porcine in vitro BBB model are expressed 

as mean of duplicates, n=3 independent experiments for all test drugs.  
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Figure A5.5  Relationship between Caco-2 and hCMEC/D3 in vitro BBB model permeabilities 

0 20 40 60 80 100
0

100

200

300

400

500

hCMEC/d3 Papp (nm.s
-1

)

C
a
c
o

-2
 P

a
p

p
(n

m
.s

-1
)

 

0 20 40 60 80 100
0

100

200

300

400

500

hCMEC/d3 Pexact (nm.s
-1

)

C
a
c
o

-2
 P

e
x

a
c

t
(n

m
.s

-1
)

 
 

Relationship between Caco-2 and porcine in vitro BBB model A-B permeabilities (Papp and 

Pexact nm.s-1) without the P-gp inhibitor GF120918 for amprenavir, chlorpromazine, haloperidol 

and mesoridazine. The data from the Caco-2 in vitro BBB model are expressed as mean of 

duplicates, n=3 independent experiments for all test drugs apart from mesoridazine where data 

are expressed as the mean of duplicates from one independent experiment. Data from the 

h|CMEC/d3 in vitro BBB model are expressed as mean of duplicates, n=3 independent 

experiments for all test drugs.  

 

Figure A5.6 Relationship between Caco-2 and hCMEC/D3 in vitro blood-brain barrier model passive 

permeabilities 
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Caco-2 and hCMEC/d3 in vitro BBB model A-B passive permeabilities (Papp and Pexact nm.s-1) 
for amprenavir, chlorpromazine and haloperidol. Studies were carried out with 2 µM of the P-

gp inhibitor GF120918. Data from the both Caco-2 and hCMEC/d3 in vitro BBB model are 

expressed as mean of duplicates, n=3 independent experiments for all test drugs. 
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Figure A5.7  Relationship between Caco-2 and MDR1-MDCKII in vitro BBB model permeabilities 
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Relationship between Caco-2 and MDR1-MDCKII in vitro BBB model A-B permeabilities 

(Papp and Pexact nm.s-1) without the P-gp inhibitor GF120918 (2 µM) for amprenavir, 

chlorpromazine, haloperidol and mesoridazine. The data from the Caco-2 in vitro BBB model 

are expressed as mean of duplicates, n=3 independent experiments for all test drugs apart from 

mesoridazine where data are expressed as the mean of duplicates from one independent 

experiment. Data from the MDR1-MDCKII in vitro BBB model are expressed as mean of 

duplicates, n=3 independent experiments for all test drugs.  

 

 

Figure A5.8 Relationship between Caco-2 and MDR1-MDCKII in vitro blood-brain barrier model 

passive permeabilities 
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Caco-2 and MDR1-MDCKII in vitro BBB model A-B passive permeabilities (Papp and Pexact 
nm.s-1) for amprenavir, chlorpromazine and haloperidol. Studies were carried out with 2 µM of 

the P-gp inhibitor GF120918. Data from the both Caco-2 and MDR1-MDCKII in vitro BBB 

model are expressed as mean of duplicates, n=3 independent experiments for all test drugs. 
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A5.5 Relationship between in vitro and in situ permeability 

 
Figure A5.9 Relationship between Caco-2 in vitro blood-brain barrier permeability and in sit rat 

permeability surface product 
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Relationship between in vitro A-B permeability (Papp and Pexact nm.s-1) (Table A5.2 and A5.3) 

determined using Caco-2 in vitro BBB model and in situ rat permeability surface product (P 
nm.s

-1
) determined using a rat in situ brain perfusion model (Table 4.11) for chlorpromazine, 

haloperidol and mesoridazine. 
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Appendix 6: Nonspecific Drug Binding Preliminary Studies 

 

A6.1 Nonspecific drug binding-preliminary studies 

Table A6.1  Rat fublood determined for test drugs at GlaxoSmithKline and The University of  

   Manchester 

 

Test drug fublood GSK fublood Manchester 

Amprenavir 0.179±0.006 0.178±0.031 

Carbamazepine 0.239±0.015 0.197±0.049 

Chlorpromazine 0.026±0.002 0.030±0.006 

Citalopram 0.227±0.015 0.236±0.049 

Clozapine 0.232±0.043 0.127±0.030 

Donepezil 0.224±0.017 0.223±0.056 

Haloperidol 0.110±0.011 0.087±0.031 

Mesoridazine 0.178±0.031 0.222±0.051 

Primidone 0.690±0.129 0.636±0.151 

Quetiapine 0.160±0.012 0.103±0.005 

Risperidone 0.200±0.046 0.153±0.024 

Ziprasidone 0.015±0.002 0.017±0.006 

 

Data are expressed as mean ± standard deviation of 6 replicates, n= 1 independent experiment.  

 

 
Table A6.2 Rat fubrain determined for test drugs at GlaxoSmithKline and The University of 

Manchester 

 

Test drug fubrain GSK fubrain Manchester 

Amprenavir 0.169±0.019 0.174±0.057 

Carbamazepine 0.169±0.021 0.283±0.200 

Chlorpromazine 0.003±0.0002 0.002±0.001 

Citalopram 0.085±0.014 0.060±0.002 

Clozapine 0.012±0.001 0.015±0.004 

Donepezil 0.135±0.033 0.139±0.008 

Haloperidol 0.021±0.002 0.019±0.004 

Mesoridazine 0.046±0.008 0.041±0.022 

Primidone 0.634±0.044 0.626±0.044 

Quetiapine 0.051±0.008 0.046±0.002 

Risperidone 0.116±0.034 0.107±0.019 

Ziprasidone 0.016±0.005 0.015±0.006 

 
Data are expressed as mean ± standard deviation of 6 replicates, n= 1 independent experiment. 
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Appendix 7: Physiologically-Based Pharmacokinetic Model of the Rat 

Central Nervous System 

 

 

 
 
 

 
Figure A7.1 Rat hybrid central nervous system physiologically based pharmacokinetic model 

 

 The rat hybrid central nervous system physiologically based pharmacokinetic model. 

CP: Choroid plexus epithelium, ISF: intravascular space, ISF: interstitial fluid, PSbbb 

bi-directional permeability –surface area product for the blood-brain barrier, PSebbb: 
permeability-surface area product for efflux at the blood-brain barrier, PScp: 

permeability-surface area product for the choroidal epithelium of the choroid plexus, 

PSecp1: permeability surface area product for drug efflux into the systemic circulation 

from the choroidal epithelium of the choroid plexus, PSecp2: permeability surface area 

product for drug efflux into the systemic circulation from the choroidal epithelium of 

the choroid plexus into the CSF, Qbbb: flow through the blood-brain barrier, Qbf: bulk 

flow of ISF, Qcp: flow through the CP.
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