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Abstract of Thesis 

Wind power is seen as one of the most effective means available to combat the twin crises of 

global climate change and energy security. The annual market growth has established wind 

power as the leading renewable energy technology. Due to the availability of sparsely 

populated and flat open terrain, the Yucatán Peninsula located in eastern México is a 

promising region from the perspective of wind energy development but no comprehensive 

assessment of wind resource has been previously published. 

A basic requirement when developing wind power projects is to study the main characteristic 

parameters of wind in relation to its geographical and temporal distribution. The analysis of 

diurnal and seasonal wind patterns are an important stage in the move towards commercial 

exploitation of wind power. The research developed during the PhD has comprehensively 

assessed the wind behaviour over the Yucatán Peninsula region covering long term patterns 

at three sites, a spatial study using short term data for nine sites, a vertical profile study on 

one inland site and an offshore study made on a pier at 6.65km from the North shore. 

Monthly trends, directional behaviours and frequency distributions were identified and 

discussed. The characteristics of the wind speed variation reflected their proximity to the 

coast and whether they were influenced by wind coming predominantly from over the land or 

predominantly from over the sea. The atmospheric stability over the eastern seas was also 

analysed to assess thermal effects for different wind directions. Diurnal wind speed variations 

are shown to be affected in particular by the differing wind conditions associated with fetches 

over two distinct offshore regions. Seasonal behaviour suggests some departure from the 

oscillations expected from temperature variation. The offshore wind is thermally driven 

suggesting largely unstable conditions and the potential development of a shallow Stable 

Internal Boundary Layer. 

 

Keywords: Wind resource assessment, Seasonal wind patterns, Diurnal wind patterns, Wind 

frequency distribution, Atmospheric stability, Offshore winds, Vertical wind profile, 

Temperature patterns.  
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II    GGeenneerraall  IInnttrroodduuccttiioonn  

 

 

 

This chapter presents the foundation for the subjects studied during 

this PhD research project. The main sources of data are defined in 

order to evaluate the temporal, horizontal and vertical wind resource 

in the Yucatán Peninsula, México. A general literature review is 

introduced to present previous work published which relates to the 

research during this PhD. Then, the theoretical models that support 

the research are introduced as well as a general description of the 

Yucatán Peninsula and the Gulf of México. Finally an outline of the 

PhD thesis is presented. 
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I.1  Research context 

Wind power is seen as one of the most effective means available to combat the twin crises of 

global climate change and energy security, providing a possible solution to the problems 

associated with volatility in the fossil fuel markets for coal, gas and oil. The “Global Wind 

Energy Council” (GWEC) in their report “Global Wind Report 2006” [1] presented the state of 

development in each geographical region for the period 2000 to 2006 for leading countries in 

wind energy. According to this report, the annual market for wind energy grew at a rate of 

32% in 2006, with over 15GW of new capacity installed worldwide. The market continued to 

broaden with installations in over 70 countries, establishing wind power as the leading 

renewable energy technology. Globally, the value of new generating plant installed in 2006 

reached US$24 billion with Europe was the world leader, with 65% of the global market. 

Recently, the GWEC reported a global wind power industry of 120.8 GW at the end of 2008 

[2], mainly driven by the growth in the USA up to 25.2GW and the Chinese market which 

doubled its installed capacity reaching 12.2GW. 

The capacity installed in Latin America and the Caribbean during 2006 was 296MW, 

increasing the total installed capacity to 508MW. México is one of the most promising regions 

for wind energy development being in the list of countries that more than doubled its installed 

capacity to 87MW, mainly located in the Isthmus of Tehuantepec in the State of Oaxaca. Due 

to the availability of sparsely populated and flat open terrain, the Yucatán Peninsula located 

in eastern México is a promising region from the perspective of wind energy development but 

no comprehensive assessment of wind resource has been previously published. 

A basic requirement when developing wind power projects is to study the main characteristic 

parameters of wind in relation to its geographical and temporal distribution. The predicted 

energy yield for a Wind Energy Conversion System (WECS) is highly dependent on the 

measurement precision of the wind speeds used to compute the wind energy potential. In 

order to assess the wind power potential for a wide area, it may not be feasible to install a 

large number of masts with measurements made at typical wind turbine hub heights 

(presently 80m - 120m). Therefore, wind speed data from existing meteorological stations 

are often used for this purpose with an additional test tower, measuring at several heights, 

which helps to compute the wind shear and estimate the wind speed at the turbine hub 

height. 

The research during this PhD has been concerned with a comprehensive assessment of the 

wind behaviour over the Yucatán Peninsula region using long-term data measured from 

three sites, short-term data from nine sites, detailed vertical profile data from one inland site 
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and data from a tower installed on a pier in order to study offshore wind patterns. Table I.1 

below shows the data available for each measurement period. 

Table I.1. Wind data sources that were available for this research 

Data sources Available 
averages 

Measurement 
period Stations 

Local Meteorological centres 
Observatories Daily 1986 - 2005 3 
Automatic Stations 10 minutes 2000 - 2007 9 

Inland tower to study wind vertical profile 10 minutes 2003 - 2005 1 
Offshore measurement tower 10 minutes 2007 - 2009 1 

 

The data described in Table I.1 can be classified in three research dimensions to assess the 

temporal, horizontal and vertical wind resources in the Yucatán Peninsula on and offshore. 

More specific information about these data sources is given below:  

a) Local meteorological centres provide data from three observatories and nine 

automatic stations, installed around the Yucatán Peninsula: 

a.1) Observatories monitor sensors every 15 minutes and have recorded daily 

averages since 1986, in the best-case, and since 1997, in the worst-case. 

Thus, the diurnal behaviour is not represented and just seasonal and yearly 

patterns could be studied using these data to describe the long-term temporal 

behaviour of the wind resources in the Yucatán Peninsula. 

a.2) Automatic Stations distributed across the whole Yucatán Peninsula measure 

data every 2 seconds to record 10 minutes averages since 2000, in the best-

case, and since 2004, in the worse-case. This geographically distributed 

short-term data is later used to describe the spatial behaviour of the wind 

resources over the most relevant areas of the Yucatán Peninsula with regard 

to wind power. 

b) An inland wind measurement tower, which was the first measurement system 

installed in Yucatán Peninsula to specifically study the wind resources, with two 

mechanical polar anemometers (installed at 10m and 30m above ground level 

(a.g.l.)), a temperature sensor and an atmospheric pressure sensor. The data 

measured on this tower were used to evaluate the behaviour of the vertical wind 

profile. 

c) An offshore measurement station installed on a pier 6.65km from the North shore of 

the Yucatán Peninsula. Two ultrasonic orthogonal anemometers and two temperature 

sensors were configured at two different heights to monitor offshore winds.  
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I.2  Literature review 

An initial detailed review of the scientific literature was undertaken to identify the appropriate 

research direction for this PhD, and this has been included in Appendix VIII.1 .  

In this section, the review is concerned with previous studies of measurement sites with 

similar characteristics to the Yucatán Peninsula, in particular, sites where the wind resource 

has not been extensively studied, but where raw data were collected at intervals between 10 

minutes and a day. This included measurements on towers at more than one height, and 

regions close to coastal zones. The review was classified according to the three main 

research dimensions defined in the previous section: 

Long term temporal research 

A basic requirement when developing wind power projects is to study the geographical 

distribution of wind and its main characteristics. Herbert et al [3] presented in 2007 a general 

review of wind energy technologies briefly describing the main results published in the 

scientific literature, covering more than 20 research projects undertaken around the world. 

The review revealed the critical role of the wind resource assessment over the temporal and 

spatial scales in the determination of the wind energy potential. Average wind speed and 

temporal wind patterns have been identified using short-term measurements, such as in the 

study by Essa and Embaby [4] to describe the winds of a site close to the Egyptian 

Mediterranean coast over one year. Similarly, Li and Li [5] analyzed data over five years to 

determine the annual, seasonal and diurnal wind characteristics for the Waterloo region in 

Canada.  

Long-term studies for periods of at least 10 years have been reported using wind data 

measured at meteorological stations on islands and in coastal areas. Farrugia and Scerri [6], 

collated wind data over 24 years at a height of 11m above the ground level (a.g.l.) from Luqa 

International Airport in the Maltese Archipelago to analyze wind parameters and to identify 

diurnal trends. Shata and Hanitsch, [7,8] presented two complementary studies, where the 

wind power potential of two different Egyptian coastal regions was analyzed in terms of their 

wind characteristics over 10 years at a height of 10m a.g.l. using monthly averaged 

measurements for a total of 17 coastal meteorological stations. 

Another Mediterranean coastal study, in the eastern region of Turkey, was undertaken by 

Sahin et al [9] with the explicit purpose of “quantifying the wind energy potential of and 

identify locations with better wind resources”. Seven meteorological stations were chosen in 

this study at sites situated between 4m and 100m above mean sea level (a.m.s.l.) with hourly 

measurements over 10 years (1992-2001). The Weibull parameters were computed for all 
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sites using the last five years of the study period. A diurnal pattern was identified with the 

lowest wind speeds around 7:00 in the morning local time and the highest wind speeds 

during the afternoon. The monthly mean wind speeds showed a seasonal pattern with the 

highest wind speeds in July and August and the lowest in November and December, in 

almost all of the stations that were studied.  

Long-term studies for peninsular regions have been also undertaken. For a site located on 

the west coast of Saudi Arabia, Rehman [10], studied the annual, seasonal and diurnal 

patterns of the wind speed over 14 years in order to make wind energy yield calculations 

using wind turbines of different capacities. Because of the relatively low wind speeds 

identified, the author found better capacity factors for smaller wind turbines. Later, Rehman 

and Ahmad [11], extended their study to five meteorological stations located at coastal sites 

around Saudi Arabia. In this study, long-term hourly mean wind speeds were estimated at 

three different heights by means of the power law and the authors presented the hourly 

mean wind speeds during an average day and the monthly mean wind speeds during an 

average year at four different heights for each site. 

In tropical regions, Tchinda and Kaptouom [12] reported in 2003 a study of the wind energy 

distributions for two Cameroon provinces using ten years of meteorological data. The authors 

found that the annual mean wind speeds for the windiest site exceeded 2m/s for over 53% of 

the time and that the wind resource could be useful for applications such as small distributed 

water pumping systems. Further studies to reinforce the results presented were proposed. 

Many of the studies mentioned above used a Weibull probability distribution function (PDF) 

to represent the statistical behaviour of the wind. Nevertheless, other distributions have been 

used for this purpose. Akpinar and Akpinar initially used the Weibull PDF to characterize the 

wind energy potential in Turkey [13] but later, in 2007, extended the study reporting better 

results using the Maximum Entropy Principle (MEP) when assessing the wind energy 

potential for the range of study sites [14]. More recently, in 2008, Vicente [15], published the 

results of a comprehensive study undertaken in the Canary Islands, which showed that the 

use of probability distribution functions more complex than the Weibull distribution to fit wind 

speed experimental data did not give a significant improvement in the prediction of annual 

mean energy yield, particularly in cases where the probability of null wind speed was close to 

zero. The results described in this subsection have shown that the study of long-term wind 

patterns over periods of time of 10 years or more can be undertaken using daily averages in 

environments similar to islands and peninsulas. 

Spatial wind research 
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Wind energy potential for five coastal regions of the Kingdom of Saudi Arabia was evaluated 

by Rehman and Ahmad in 2004 covering a period between 1970 and 1983 [16] using hourly 

mean values of wind speed and wind direction, thus the turbulence intensity were no studied. 

The authors analysed seasonal and diurnal changes in wind speed values and identified 

Yanbo site as the best location for exploiting in terms of wind power. This site was later 

studied in detail by Rehman [17]. To the North-West of Saudi Arabia, in the State of Kuwait, 

Al-Nassar et al. in 2005 [18] presented a study with hourly averaged wind speeds from six 

meteorological stations made at 10m a.g.l. over a four year period (January 1998 - 

December 2002). Monthly averages for the wind power density at 10m a.g.l. and their 

extrapolation to 30m a.g.l. were tabulated for each study station by means of the power law. 

The authors highlighted that the summer season showed higher potential wind power 

coinciding with the period of highest electricity demand during the year. 

An assessment of wind energy in Egypt was carried out by Essa and Mubarak in 2006 [19]. 

Data were collected from 18 meteorological stations around Egypt measuring at 10m a.g.l. 

and recording averages every 15 minutes over a five years period (April 2000 to December 

2004). The hourly, daily, monthly and yearly behaviour of the wind speeds were computed. 

The authors concluded that the Red Sea, Mediterranean (El-Arish) and some inland zones 

(Aswan and Ismailia) would be favourable locations for wind energy applications and that the 

Red Sea winds were strongest in the summer while in the Mediterranean coastal zones, 

winds were strongest in winter and spring seasons. 

The eastern Mediterranean region of Turkey was studied by Sahin et al. in 2005 [20] using 

hourly data from seven meteorological stations which were measured between 1992 and 

2001. The authors computed the wind energy at 10m and 25m a.g.l. using a linear wind flow 

model (WAsP) developed by Troen et al. [21]. Three areas with wind energy potential up to 

500W/m2 were identified. Also in Turkey, Akpinar et al. in 2005 [22] studied different regions 

using hourly averages of wind data between 1998 and 2003 reporting the seasonal patterns 

and the energy available in the wind. The same authors in 2009 [23] focused their research 

on the probability density distribution of wind for 4 weather stations over 8 years proposing a 

mixture of distributions to represent the wind patterns for the area studied. 

For the Indian region of Karnataka, Ramachandra et al. in 2005 [24] studied the wind 

resource using a geographical information system. The authors studied the spatial and 

seasonal patterns reporting wind speed averages between 0.9m/s and 9.2m/s with the higher 

seasonal values registered between May and September. 

In the case of México, Jaramillo at al [25] in 2004 undertook a study of the wind potential 

along the coast line of “Baja California Sur” in the North-West of México. Measurement 

masts at 15 sites were installed with instruments at 10m a.g.l. and a year of data was 
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collected (February 1997 to February 1998) by the Electrical Research Institute. After a 

preliminary evaluation of all 15 sites, the authors chose one site to study the monthly wind 

speed behaviour, calculating the wind rose and the frequency distribution. Also, Cancino-

Solórzano and Xiberta-Bernat [26] in 2009, studied the diurnal and seasonal patterns of wind 

speed in the eastern Mexican state of Veracruz using 5 meteorological stations, during 2001 

- 2006. The authors reported maximum seasonal wind in winter and minimum over the 

summer in the majority of the studied sites. A clear diurnal pattern was also reported 

conditioned by the geographical distribution of the studied sites along or close to the coastal 

regions. 

Onshore and offshore vertical wind profile research 

In the case of offshore conditions, Van Wijk et al. [27] obtained good estimates for the 

seasonal mean wind speed in the North Sea after applying a “diabatic” approach to calculate 

the wind speed profile as a function of height when wind speed, sea water temperature and 

air temperature are known and when neutral conditions are not dominant in the atmosphere. 

This diabatic method was also used by Coelingh et al. to study offshore [28] and onshore 

sites [29]. These two studies of the North Sea and its coastal areas concluded that diurnal 

variations are very similar in autumn and winter and that the thermal circulation leads to sea 

breezes with important effects up to 30km offshore for wind speeds lower than 7m/s.  

For the marine environment of the Danish Baltic Sea, Lange et al. [30] studied the influence 

of thermal effects on wind speed profiles computing the Obukhov length using three different 

methods. Their results showed that the standard Monin-Obukhov theory predicted lower wind 

speed values than measured for stable and near-neutral conditions, especially at large 

distances from the shore.  

Using wind speed and air temperature data measured from one onshore site and two 

offshore towers, Pryor and Barthelmie [31] applied parameterization methods to compute the 

Monin-Obukhov length in a study of wind speed, stability and surface roughness. They 

reported that wind speed distributions onshore and offshore were statistically different for 

heights less than 20m regardless of the atmosphere stability conditions, at distances less 

than 2km from the shore. In an extended study using data from the Danish monitoring 

network [32], the same authors concluded that sites located within 2km from the coastline 

could experience significant vertical shear and differing turbulence because the wind speeds 

close to the sea surface were frequently decoupled from the wind characteristics above 30m 

in height. 
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Lapworth [33] reported diurnal patterns with maximum winds overnight and minimum values 

occurring during the afternoon for the offshore surface winds around the English coast after 

applying numerical models for stable boundary layers to offshore measurements made in 

static vessels. On the other hand, Barthelmie et al. [34] studying the coastal meteorology of 

Denmark found that the offshore sites which receive winds from over the land showed a 

typical onshore pattern with lowest wind speeds overnight and highest wind speeds during 

the afternoon. The offshore wind speed generally presents the opposite pattern increasing 

overnight as a result of the lower roughness of the sea surface and the transition from stable 

conditions over land to less stable conditions over sea. While during the daylight time, the 

transition from unstable conditions over land to stable conditions offshore conditions that the 

surface layer becomes decoupled from higher wind speeds aloft and the wind speed close to 

the surface layer is lower, as was reported by Barthelmie at al. [35].  

In cases where not enough data were available to apply the Monin-Obukhov similarity theory 

(this theory will be introduced in subsection I.3 below), the use of the power law to compute 

the wind shear exponent has been used as an alternative to predict the vertical profile. 

Farrugia [36] studied the wind shear from measurements at two different heights on Malta’s 

South West coast, in the central Mediterranean, reporting that the monthly values decrease 

in summer and increase in winter and that the daily pattern has a period of a minimum from 

9:00 to 15:00 and a period of a maximum from 21:00 to 5:00. Similar diurnal patterns were 

found by Rehmana and Al-Abbadib over a period of 3 years [37] and 5 years [38] for a site in 

the coast of the Gulf region of Saudi Arabia. In this case, no regular seasonal trends were 

identified.  

Kirchhoff and Kaminsky [39] remarked that basic errors could be introduced because of the 

random nature of the wind speed and the deterministic characteristic of the power law when 

computing the wind shear from measured wind speeds at two different heights. Kirchhoff and 

Kaminsky made 173 wind speed measurements to study the wind shear, in a statistically 

significant way. Their data analysis indicated a normal distribution for the wind shear in three 

of the synoptic weather categories: I (in a warm section), III (behind a cold front) and IV 

(under a continental polar or arctic high).  

 

The review presented in this subsection has shown that there has been important research 

undertaken to study wind resource in regions with similar characteristics to the Yucatán 

Peninsula. Nevertheless, more research needs to be done and the following conclusions 

were identified: 
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• The three research dimensions (temporal, spatial and vertical) are relevant and 

timely. 

• The wind data available for the Yucatán Peninsula, see Table I.1, are sufficient to 

undertake studies of the wind characteristics for each of the three research 

dimensions. 

• The wind resource in the Yucatán Peninsula region has not been previously 

investigated. 

I.3  Wind speed profiles 

A widely accepted procedure to compute the theoretical wind speed profile is described by 

the Monin-Obukhov similarity theory, as can be seen below in equation (I.1):  

u(z)=
u∗
k
�ln �

z
z0
� -Ψm �

z
L
�� I.1 

 

In the equation (I.1), k is the von Karman constant and the wind speed u at height z is 

represented as a function of the friction velocity u*, roughness length z0 and Obukhov length 

L. ψm(z/L) is the stability function which can be calculated with the equation (I.2), formulated 

by Businger [68]. In this equation the “γ“ was evaluated by Högström [69] as 19.3. 
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L
�
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An important magnitude to evaluate the behaviour of the wind is the stability conditions of the 

atmosphere. The atmosphere stability can be quantified by means of the Obukhov length L, 

Monin and Obukhov [76]. This parameter gives information about the relative magnitudes of 

vertical air movements produced by mechanically generated vertical turbulence as opposed 

to thermally generated vertical turbulence. Mechanically generated turbulence is the result of 

the surface roughness and thermally generated turbulence arises as a consequence of the 

air density gradients created when the temperature of the air and the sea surface are 

different. The atmospheric stability can be allocated to one of five stability classes [74], as 

given in Table I.2. 
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Table I.2. Stability classes in terms of the Obukhov length scale (L). 

Stability class Obukhov Length 
L [m] z/L for 10m height 

Very stable         0 < L <  200      0.05 < z/L 
Stable       200 < L <  1000  0.01 < z/L <  0.05 

Near-neutral                |L| > 1000            |z/L| > 0,01 
Unstable  -1000 < L < -200 -0.05 < z/L < -0.01 

Very unstable -200 < L <   0              z/L < -0.05 
 

A relation to compute the Obukhov length L was proposed by Businger [68] and Högström 

[69] in terms of the Richardson number R at z’ height, see equation (I.3) below. 

L = 

⎩
⎪
⎨

⎪
⎧ �

z'

R
�     R < 0

z'(1 – 5R)
R

0 < R < 0.2

�                  where    z' = 
zLo -  zHi

ln �zLo
zHi

�
 I.3 

 

Equation (I.4) and (I.5) presents expressions to compute the Gradient and Bulk Richardson 

number respectively, from ambient temperatures and wind speeds measured at two different 

heights (zlo and zhi) [74, 75, 30]. These expressions are valid at the height z’ defined in 

equation (I.3) which was proposed by Larsen [77]. Equation (I.4) is used when measurement 

of wind speed and temperature are available at both different heights. In this case, the 

differences in height, virtual temperature and wind speed are represented by ∆z, ∆Tv and ∆u 

while Cp and g are the specific heat of air at constant pressure and the gravity acceleration 

respectively. 

Ri�z'�=

g

T� �
∆T�v
∆z + g

Cp
�

�∆u�
∆z�

2  I.4 

Rb�z'�=
g
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∆θ
∆z�  z�2
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Equation (I.5) is used when just wind speed at high height is available. In this equation,  Δθv 

is the difference between the virtual potential temperature at the two measurement heights.  

Then, the theoretical wind speed ratio between high and low heights can be calculated by the 

relation shown below in the equation (I.6). 

u(zhi)
u(zlo)

 = 
ln �zhi
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L �

ln �zlo
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L �
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Table I.3 below presents the relation between roughness length and the terrain 

characteristics for common conditions used by Troen and Petersen for developing the 

European Wind Atlas [70]. 

Table I.3. Values of roughness length for common landscape [70]. 
Roughness 
Length [m] Landscape Type 

0.0002 Water surface. 

0.0024 Completely open terrain with a smooth surface, e.g. concrete runways in airports, mowed 
grass, etc. 

0.03 Open agricultural area without fences and hedgerows and very scattered buildings. Only 
softly rounded hills. 

0.055 Agricultural land with some houses and 8m tall sheltering hedgerows with a distance of 
approx. 1250m 

0.1 Agricultural land with some houses and 8m tall sheltering hedgerows with a distance of 
approximately 500m. 

0.2 Agricultural land with many houses, shrubs and plants, or 8m tall sheltering hedgerows with a 
distance of approx. 250m. 

0.4 Villages, small towns, agricultural land with many or tall sheltering hedgerows, forests and 
very rough and uneven terrain. 

0.8 Larger cities with tall buildings. 
1.6 Very large cities with tall buildings and skyscrapers. 

 

In conditions close to neutral states of the atmosphere, the wind speed profile proposed by 

the Monin-Obukhov similarity theory, see equation (I.1), can be simplify to the Log law. 

Alternately to this adiabatic log law, the empirical power law, equation (I.7) below, simplify 

even more the estimation of the vertical wind profile. 

α
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where “α” represents the wind shear exponent which can be calculated, see equation (I.8), 

when the wind speed values at two different heights, u(z) and u(zr), are available:  
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I.4  The Weibull probability Distribution 

An important statistical tool to estimate the frequency distribution of wind speed u is the 

Weibull function defined as a two parameter Probability Distribution Function (PDF) using the 

following equation (I.9) [51]: 
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Equation (I.9) depends on the wind speed u and on two other parameters namely shape (K) 

and scale (C) which succinctly represent the characteristics of the wind speed distribution at 

a particular site. These two parameters can be found from a time series of wind speed using 

conventional graphical methods [52]. A better approach can be obtained using the Maximum 

Likelihood Estimator Method [53,54] by mean of equation (I.10) and equation (I.11): 
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Where K is the dimensionless shape parameter and C is the scale parameter with 

dimensions of m/s2. The K parameter can be computed iteratively by means of numerical 

methods from a filtered dataset of n wind speed observations with ui greater than zero. Then, 

C parameter can be directly evaluated from equation I.11.  

The wind power density Pw can be estimated from the Weibull parameters using equation 

(I.12) [52]: 

( )K/3+= 1Γ3Cρ
2
1

WP  I.12 

 

Where “ρ” is the air density and "Γ" is the incomplete Gamma function defined by the 

equation (I.13) below, which can also be evaluated numerically. 
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Γ(1 + 3 K⁄ ) = � t3 K⁄  e−t  dt
∞

0

 I.13 

 

The mean wind speed, its standard deviation and the most frequently wind speed value can 

also be expressed as function of the Weibull parameters [55,56] through equations (I.14), 

(I.15) and (I.16) respectively: 
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� I.14 
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2
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1
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A widely used way to classify the wind power density is through the to use wind power 

classes. Table I.4 below presents the wind power classes definition as function of the wind 

speed and the Wind power density [58]. In this classification, the equivalent mean wind 

power density was used with the Rayleigh Probability Distribution to compute the mean wind 

speeds. Wind speeds are considered at mean sea level conditions. Vertical extrapolation of 

wind speed to 30m and 50m height were calculated from the 1/7 power law. This is a general 

approximation to initially classify the type of wind available at a particular site. 

Table I.4 Wind power classes definition as function of the wind speed and the Wind power density at 
10m, 30m and 50m height. 

Height 10m 30m 50m 

Class 
Wind power 

density 
[W/m2] 

Wind speed 
[m/s] 

Wind power 
density 
[W/m2] 

Wind speed 
[m/s] 

Wind power 
density 
[W/m2] 

Wind speed 
m/s 

1 0 - 100 0 - 4.4 0 - 160 0 - 5.1 0 - 200 0 - 5.6 

2 100 - 150 4.4 - 5.1 160 - 240 5.1 - 5.9 200 - 300 5.6 - 6.4 

3 150 - 200 5.1 - 5.6 240 - 320 5.9 - 6.5 300 - 400 6.4 - 7.0 

4 200 - 250 5.6 - 6.0 320 - 400 6.5 - 7.0 400 - 500 7.0 - 7.5 

5 250 - 300 6.0 - 6.4 400 - 480 7.0 - 7.4 500 - 600 7.5 - 8.0 

6 300 - 400 6.4 - 7.0 480 - 640 7.4 - 8.2 600 - 800 8.0 - 8.8 

7 400 - 1000 7.0 - 9.4 640 - 1600 8.2 - 11.0 800 - 2000 8.8 - 11.9 
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I.5  Satellite SST images 

The sea surface temperature (SST) is defined as the water temperature close to its surface. 

Significant differences can be found between measurements made at different depths, 

especially during the daytime when low wind speed and high sunshine conditions may lead 

to the formation of a warm layer at the ocean's surface and strong vertical temperature 

gradients (a diurnal themocline). There are three layers to the ocean: the first is the surface 

layer; below this lie the already mentioned thermocline; and immediately below is the deep 

ocean which comprise the 75% of the ocean depth. 

In practical terms, the exact meaning of the SST is conditioned by the method used to 

register the measurements: 

• A satellite using an infrared radiometer: measures indirectly the temperature within a 

layer of approximately 10µm of depth of the sea (skin temperature) where the infrared 

radiation takes place [59, 60]. 

• A microwave sensor monitors the sub-skin temperature located around 1mm depth.  

• An underwater thermometer installed below a marine buoy usually measures the 

temperature at 1m below the sea surface. This temperature is identified during the 

day with the temperature of the above mentioned warm layer. 

Satellites have the advantage to monitor the spatial and temporal variation of the Sas 

Surface Temperature. Usually, the satellite monitor the radiation from the sea several 

wavelengths of the infrared spectrum which can then be empirically related to SST. These 

wavelengths are chosen because they are within the peak of the blackbody radiation 

expected from the earth, and able to transmit well through the atmosphere. However, there 

are several difficulties with satellite based absolute SST measurements [61, 62]: 

• The infrared radiation monitored comes from the upper or “skin" layer of the sea (close 

to the top 0.01mm) which does not described the bulk temperature of the upper meter of 

ocean due primarily to effects of solar surface heating in the daytime, reflected radiation, 

as well as sensible heat loss and surface evaporation. 

• Satellites are unable to monitor through clouds, creating a "fair weather bias" in the long 

term trends of SST.  

The NOAA's GOES (Geostationary Operational Environmental Satellites) are located in geo-

stationary orbit above the Western Hemisphere. This characteristic enables hourly 

measurements. 
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GOES SST data are derived from imagers with five-band multispectral capability, 10 bit 

precision and high spatial resolution derived from GOES East and GOES West Satellites. 

This data is available in the form of one hour gridded sea surface temperatures with the 

following main characteristics: 

• Temporal resolution: One hour, three hour, and 24 hour gridded sea surface 

temperatures.  

• Spatial resolution: 6 km 

• Region grid: Western Hemisphere bounded horizontally from 180°W to 30°W and 

vertically from 60°N to 45°S. 

The GOES 6km hourly SST, generated by GOES 11-12, is available from the Physical 

Oceanography / Distributed Active Archive Centre (PO.DAAC) within a few hours of real time 

since May 2003 [63]. These data are in the form of flat binary files which include 2100 rows 

of 3000 unsigned one-byte binary integers that contain the SST values. This two dimensional 

matrix represents a rectangular grid of 3000 longitude coordinates by 2100 latitude 

coordinates aligned by longitudes from 179.975°W to 30.025°W and by latitudes from 

59.975°N to 44.975°S with a spatial resolution of 0.05 degrees. 

In this research, the Physical Oceanography/Distributed Active Archive Centre (PO.DAAC) 

software was used to decode the binary files and to generate temperature maps such as that 

shown in Figure I.1 below.  

 
Figure I.1. Example of the original full thermal map produced hourly by the GEOS Satellite. 
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I.6  The Yucatán Peninsula and the Gulf of México 

The geographical location of the Yucatán peninsula at the western of Mexico is show below 

in Figure I.2(a). It could be also appreciated from Figure I.2(b) that the topography of this 

region is mainly flat particularly in sites close to coastal zones. 

  
(a) (b) 

Figure I.2. (a) Geographical location of the Yucatán Peninsula in relation to the North American 
subcontinent. (b) Yucatán Peninsula map representing the terrain heights by means of shadow zones. 

The North coast of the Yucatán Peninsula is located at the South-East of the Gulf of México 

close to the tropic of Cancer covering almost 400km of coast approximately parallel to the 

tropic line. Its sea depth is very shallow increasing around 1m every 1km in the majority of 

the regions while the onshore terrain is almost flat reaching just 7m above the sea mean 

level at 30km inland. The vegetation grows up to an average of 3m height. These particular 

characteristics make the North of the Yucatán Peninsula a strategic natural laboratory to 

study the ABL at coastal regions. Field measurements under these naturally controlled 

conditions can potentially simplify the validation of numerical models. 

On the other hand, the Gulf of México covers a surface area of approximately 1.5 million km2 

[57]: ~1600km from East to West and ~900km from North to South. The average depth is 

~1.61km and approximately [64]: 

• 38% of shallow and intertidal areas (less than 20m deep).  

• 22% of continental shelf (less than 180m) 

• 20% of continental slope (between 180m  and 3km)  

• 20% of abyssal areas (deeper than 3km). 
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Figure I.3. A 3D representation of the Gulf of México region. 

The Gulf of México is the 9th biggest body of water in the world. Often identified as part of the 

Atlantic Ocean, it is an ocean basin surrounded by the South Coast of the United States, the 

East Coast of Mexico and the North West of the island of Cuba, see Figure I.3. The reduced 

area of contact with the Atlantic produces small tidal regimes (shallow intertidal waters cover 

roughly half of the basin). The Gulf of México could be created ~300 million years ago driven 

by sinking processes developed in its seafloor [65].  

Seven main regions area usually classified within the Gulf of México [66]: 

• Gulf of México Basin: including the Sigsbee Deep and the Mississippi Cone.  

• Northeast Gulf of México: from the East of the Mississippi Delta to the Eastern of 

Appalachian Bay.  

• South Florida Continental Shelf and Slope: Along the coast, from Appalachian 

Bay to the Straits of Florida.  

• Campeche Bank: from the Yucatán Straits in the East to the “Tabasco/Campeche 

Basin” in the west, covering all the North and West coast of the Yucatan 

Peninsula.  

• Bay of Campeche (isthmian embayment): from the Western edge of Campeche 

Bank to the East of Veracruz’s Port.  

• Western Gulf of México: from Veracruz to the “Rio Grande”.  

• Northwest Gulf of México: from Alabama to the USA/México border.  

The Gulf Stream is a strong warm ocean current originating in the Gulf of México as a result 

of the extension of the current system created from the “Caribbean Current” / “Yucatán 

Current” Loop. The warm temperature of the water in the Gulf of Mexico usually create 

conditions for the formation of highly intense Atlantic hurricanes [67].  
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I.7  Thesis outline 

This thesis presents the results of the research organised into eight chapters. A general 

introduction section is presented to describe the foundation for this research as well as a 

general literature review covering the main findings published in the scientific literature which 

relate to this PhD, the theoretical foundations that support the research in this PhD thesis to 

evaluate the wind resource in the Yucatán Peninsula and a general description of the 

Yucatán Peninsula and the Gulf of Mexico considering the characteristics relevant for wind 

resource assessment. 

Chapter II  studies the wind patterns and their long-term behaviour by means of data 

measured at three meteorological stations for a period between 10 and 20 years. Monthly 

trends of ambient temperature, atmospheric pressure and wind speed data were identified 

and are discussed. The directional behaviour of the winds, their frequency distributions and 

the related Weibull parameters are presented. 

Chapter III  analyzes the spatial distribution of winds around the Yucatán Peninsula based on 

ten-minute averaged wind speed data from nine meteorological stations. Hourly and monthly 

patterns of the main environmental parameters are examined. The characteristics of the wind 

speed variation observed at the studied sites reflected their proximity to the coast and 

whether they were influenced by wind coming predominantly from over the land or 

predominantly from over the sea. The atmospheric stability over the eastern seas of the 

Yucatán Peninsula was also analysed to assess thermal effects for different wind directions. 

Chapter IV studies the vertical wind profile for a site at the Autonomous University of Yucatán 

which experiences the tropical conditions of the Yucatán Peninsula in México. The wind 

shear is analyzed in terms of the directional, diurnal and seasonal patterns. A detailed look at 

frequency distributions has been undertaken to facilitate a comprehensive understanding of 

the local climatic conditions. Diurnal wind speed variations are shown to be affected in 

particular by the differing wind conditions associated with fetches over two distinct offshore 

regions. Seasonal behaviour suggests some departure from the oscillations expected from 

temperature variation. 

Chapter V analyzes the properties of the offshore wind close to the North coast of the 

Yucatán Peninsula using a communication tower installed on a pier 6.65km from the coast. 

The results show that the offshore is wind thermally driven and sea breezes which veer to 

blow parallel to the coast in the late afternoon under the action of the Coriolis force. Mast 

measurements suggested largely unstable conditions, yet the observed shear was greater 

than that predicted using standard Monin-Obukhov theory. A dataset of sea surface 
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temperatures was also used to study stability and the results potentially suggested the 

development of a shallow Stable Internal Boundary Layer. 

Finally, the main results and general conclusions from the research undertaken as well as 

the recommendations for further research are presented. The thesis concludes with a 

reference section listing the literature reviewed and an appendices section which presents 

additional information related with the work undertaken in relevant stages of the research. 
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IIII    LLoonngg  tteerrmm  tteemmppoorraall  wwiinndd  ppaatttteerrnnss  

 

 

 

This chapter presents an analysis of the meteorological parameters 

relevant to an evaluation of the wind resource in order to identify 

patterns in their long-term behaviour and to establish a foundation for 

subsequent research into the wind power potential of the Yucatán 

Peninsula. Three meteorological stations with data measured for a 

period between 10 and 20 years were used in this study. The monthly 

trends of ambient temperature, atmospheric pressure and wind speed 

have been identified and their main features have discussed. The 

directional behaviour of the winds, their frequency distributions and 

the related Weibull parameters are presented. Wind power densities 

have been also estimated for the study sites showing a relatively low 

wind potential (Wind Power Class 1). 
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II.1  Introduction 

The studies described in the reference review, section I.2 , have been undertaken mainly in 

the last ten years in different regions around the world close to coastal sites. The majority of 

these studies used wind data measured at meteorological stations at 10m a.g.l. over long-

term periods to compute wind averages, identify trends over different time scales and to 

analyze the wind energy potential at the study sites. At the beginning of this research, no 

proper assessment of the wind resource in the Yucatán Peninsula of México had been 

published.  

The first step in this work was to select three coastal sites following a survey conducted to 

locate available data recorded by the Observatories of the “Servicio Meteorológico Nacional 

de la Comisión Nacional del Agua” (National Meteorological Service). Secondly, a 

conventional procedure to validate the data measured over a period of between 10 and 20 

years was applied for each study site. Then, the monthly and yearly behaviour of the main 

environmental parameters were studied. Finally, wind speed data were analysed to assess 

temporal patterns as well as the wind direction statistics, wind frequency distributions and 

estimated power densities. 

The main purpose of this chapter is to present, for the first time, a preliminary analysis of the 

long-term behaviour of meteorological parameters relevant to the wind resource in the 

Yucatán Peninsula.  

II.2  The measurements at the observation sites 

II.2.1  Measurement sites 

A detailed study was undertaken to select suitable meteorological measurement sites within 

the Yucatán Peninsula. Ideally, more than 30 years of data contribute to describe properly 

the varaiblity of the long-term patterns. Nevertheless, following quality checks for 

completeness and reliability of the available meteorological data, three strategic locations 

around the Yucatán Peninsula were chosen where meteorological data had been collected 

over a period of between 10 and 20 years. As can be seen from Figure II.1, these sites, also 

known as observatories, are distributed around the Yucatán Peninsula close to the coast line 

that surrounds the West, North and East of the Peninsula. Each site was identified by the 

name of the city where it is located, namely: “Campeche”, “Mérida” and “Chetumal”.  
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Figure II.1. Map of the Yucatán Peninsula area representing the geographical position of the 

meteorological observatories: Campeche, Mérida and Chetumal. 

The geographical coordinates of the measurement sites and their heights a.m.s.l. are 

presented in Table II.1. This table also shows the distance between each observatory and its 

closest coast line. As shown in Figure II.1, these coasts are the Bay of Campeche, the Gulf 

of México and the Caribbean Sea for Campeche, Mérida and Chetumal, respectively. 

Table II.1. Geographical coordinates of the meteorological observatories. 

Station Latitude Longitude Height 
a.m.s.l. [m] Distance from the closest coast 

Campeche 19° 50'N 90° 30'E 5 4.3km in West direction to Bay of Campeche 
Mérida 20° 57'N 89° 39'E 11 38.4km in North direction to Gulf of México 

Chetumal 18° 30'N 88° 19'E 9 2.1km in East direction to Caribbean Sea 
 

The main meteorological parameters recorded for each observatory are listed in Table II.2. 

As can be seen from the Table II.2, the daily averages for wind data were computed from 96 

values measured each 15 minutes. The other parameters were measured every hour and 

thus their daily averages were produced using 24 measured values.  

Table II.2. Details of the meteorological parameters measured at each site. 

Parameters Height 
a.g.l. [m] Units Measurement’s 

Frequency Stored average data 

Wind speed 10 m/s 15 minutes Daily average, maximum and minimum. 
Wind direction 10 Degrees 15 minutes Daily preferential direction 

Ambient temperature 1.5 °C Hour Daily average, maximum and minimum. 
Atmospheric pressure 1.5 hPa Hour Daily average, maximum and minimum. 
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II.2.2  Study period and data validation 

Ambient temperature, atmospheric pressure, wind speed and wind direction data were 

processed for the observatories described above. These long-term data consist of daily 

averages that cover 20 complete years for the Mérida observatory, 16 complete years for the 

Campeche observatory and 10 complete years for the Chetumal observatory within a period 

between 1986 and 2005, as shown Table II.3. 

Table II.3. Available data for each measurement site where the darker shaded boxes represent the 
years with measured data. 
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Each of the meteorological observatories in the Yucatán Peninsula was scrutinised for their 

suitability in this study. This was done to discard the data that could be misleading due to 

local obstacles or poor instrumentation. Accordingly, the following data quality control 

measures were undertaken: 

• All measured parameters with values outside the operational limits of their 

corresponding measurement sensors were excluded. Parameters with values below 

the sensor threshold were also eliminated and data values were rounded to the 

resolution appropriate to the sensor used. 

• As the raw data represent daily averages from sites located in a tropical region, 

ambient temperatures below 0°C were discarded. Atmospheric pressure values were 

also screened for unrealistically high and low values. 

• The directional values for each of the sites were homogenized as some sites reported 

direction in degrees and some using symbols representing compass points, e.g. N, 

NNE, NE, ENE, E, etc. 

• A graphical browser tool was used to visually review the data and identify and filter 

out any remaining abnormal data points. In this case, just the data clearly outside of 

the physical range of each parameter was filtered in order to avoid to skew the data. 

After applying this quality control stage, the percentage of remaining data compared with the 

full possible data in the measuring period shown in Table II.3 was 97.12% for Campeche, 

96.84% for Mérida and 98.67% for Chetumal. Thus, each measurement site fulfilled the 

requirement of having at least 90% of the data available during the measurement period for 

subsequent analysis [42]. 
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The daily average data recorded at each measurement site were used to compute the 

monthly and yearly averages for each of the measured parameters. In order to compare the 

measurements from the three study sites under the same conditions, only the common ten 

years between 1996 and 2005 were considered unless otherwise stated. 

II.3  Main environmental parameters 

Ambient temperature 

Figure II.2 shows the ambient temperature (a) averaged monthly throughout the year and (b) 

averaged annually for the three study sites in the period 1996 to 2005. Figure II.2(a) seems 

to show two different temperature trends: one for Chetumal and the other for Mérida and 

Campeche. This difference is discussed below in relation to the directional characteristics of 

the winds. The three temperature patterns cover a range of 6°C from 23.5°C to 29.5°C with 

minimum values between December and January. The maximum temperature at Chetumal 

was reached between July and September while for Mérida and Campeche, the hottest 

month was May. Mérida had the lowest average temperatures among the study sites. 

  
(a) (b) 

Figure II.2. Monthly (a) and yearly (b) averages of the ambient temperature for the three observatories 
for data measured between 1996 and 2005.  

The yearly behaviour of temperature did not show any particular pattern for the study sites 

during the ten years included in the plots showed in Figure II.2(b). Yearly temperature for all 

sites was within a band of around 1°C.  

Atmospheric pressure 

The monthly average atmospheric pressure shows a semi-annual cycle as shown in Figure 

II.3(a) with a large maximum during January, a smaller maximum in July/August and minima 

during May/June and September/October. This semi-annual cyclic behaviour is also 
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confirmed by Amador et al [43] and is particularly associated with the annual movement of 

the Intertropical Convergence Zone (ITCZ) which perturbs the pressure gradients within this 

region. The range of the seasonal pressure differences is 7hPa. 

  
(a) (b) 

Figure II.3. Monthly (a) and yearly (b) averages of atmospheric pressure for the three observatories for 
data measured between 1996 and 2005. 

There was little variation in annual average pressure values for the ten year study period 

(see Figure II.3(b)), with a range of annual values of less than 2hPa. 

II.4  Wind behaviour 

The monthly averages between 1996 and 2005 for each observatory are listed in Table II.4 

for wind speed and wind direction, considering that the wind directions are measured from 

the North in clockwise direction. Of the three sites, Campeche showed the highest individual 

monthly average wind speed in April of 3.76m/s and the highest annual average wind speed 

of 2.93m/s at 10m a.g.l. Mérida registered an annual average wind speed 0.16m/s less than 

Campeche, and Chetumal had the lowest average annual wind speed of 2.24m/s. The 

majority of the monthly wind direction averages were concentrated within a range of 45 

degrees to 96 degrees and the winds at all three sites were noted to be very directional as 

described below. 
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Table II.4. Monthly averages of wind speed and wind direction measured at 10m a.g.l. during the study 
period for each site. 

 Wind speed averages [m/s] Wind direction averages [degrees] 
Campeche Mérida Chetumal Campeche Mérida Chetumal 

M
on

th
s 

January 2.94 2.74 2.20 47 64 54 
February 3.25 2.94 2.35 66 75 72 

March 3.61 3.43 2.81 85 88 89 
April 3.76 3.47 2.62 90 93 88 
May 3.40 3.41 2.34 94 95 89 

June 3.16 2.88 2.57 95 96 85 
July 2.68 2.50 1.96 92 91 85 

August 2.32 2.28 2.34 88 85 83 
September 2.39 2.12 1.87 70 80 80 

October 2.60 2.31 2.06 68 58 24 
November 2.53 2.54 1.86 56 55 45 
December 2.51 2.38 1.74 61 57 51 

 Yearly Mean 2.93 2.76 2.24 79 81 76 
 

II.4.1  Wind speed patterns 

In order to clearly visualize wind speed trends, Figure II.4 shows the monthly and yearly 

averages of the wind speed during the study period. In the case of the monthly averages, 

Figure II.4(a) shows that during the first 8 months of the year, between January and August, 

all the sites showed similar patterns with a maximum between March and April. It should be 

noted that the peak for Chetumal over this period is somewhat less pronounced. During the 

last four months of the year, there was not such a defined pattern and the variations in wind 

speed averages were below 0.42m/s for each site in this period. Over the year, Chetumal 

shows significantly less variation in wind speed than both Mérida and Campeche. 

  
(a) (b) 

Figure II.4. Monthly (a) and yearly (b) averages of the wind speed for the three observatories for data 
measured between 1996 and 2005. 

Figure II.4(b) shows the annual wind speed variation for three sites during the study period. It 

can be seen that both Mérida and Campeche show increases in wind speed from around 
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2000 and a reduction in wind speed around 2003/2004. This variation is not seen at 

Chetumal, where, once again, little variation in wind speed is seen over the study period. 

In order to understand the results presented in Figure II.4(a) and Figure II.4(b), it should be 

remembered that the Atmospheric Boundary Layer (ABL) is essentially controlled by 

atmospheric motions governed by spatial variations of air pressure and temperature. The 

variations with height of horizontal pressure gradients or geostrophic winds occur in 

response to local temperature gradients created by surface topographical features. Because 

of the diurnal variations of solar energy at the surface, there are large diurnal variations in air 

temperature in the ABL over land surfaces, but in contrast, these are much smaller over the 

sea. Consequently, the ABL depth over the sea varies relatively slowly in space and time 

[44]. 

This difference in behaviour of the heating and cooling processes of the sea and land is 

produced by differences in the absorbed, transported and re-radiated energy. The opacity of 

the land concentrates the absorption in a very thin layer, producing rapid and intense 

heating, while the solar irradiation penetrates deeper in the water distributing the available 

energy in a wider zone because the fluid characteristics of water facilitate vertical and 

horizontal mixing. Thus, while land experiences significant temperature variations on a daily, 

inter-annual and intra-annual basis, sea water cools downs and heats up far more slowly 

[45]. This in turn means larger changes in vertical temperature gradients over the land 

compared with the sea. Because these temperature gradients are responsible for the transfer 

of momentum from upper levels, then it can be seen why greater temporal changes in wind 

speed are seen for winds coming off the land than for those coming off the sea. 

As can be seen in Figure II.6, the prevailing wind comes from an easterly direction over the 

Caribbean shore of the Yucatán Peninsula. Thus, Chetumal, which is situated just 2km from 

the shore, is influenced primarily by wind coming off the sea. This is not the case for Mérida 

and Chetumal which are located more than 250km from the Caribbean shore. It can also be 

seen that the monthly temperatures at Mérida and Campeche seen in Figure II.2(a) peak 

earlier in the year (May/June) compared to Chetumal (August/September). This is consistent 

with air which is heated by the land as opposed to that by the sea. The far greater thermal 

mass of the sea means that there is a greater lag between temperature and absorbed solar 

irradiation for the sea, i.e. maximum annual sea temperature is reached several months later 

than maximum annual land temperature. In summary, different vertical temperature gradient 

and wind behaviour is observed in the case of Mérida and Campeche compared with 

Chetumal. The changes in wind speed during the year and over the study period driven by 

heating and cooling cycles over the land at Mérida and Campeche are thus far more 

pronounced than for the marine winds observed at Chetumal. 
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II.4.2  Wind directional patterns 

In this section, wind direction statistics for the three sites are presented individually and so 

the whole period for which data were measured are used in each case, namely: 20 years for 

Mérida, 16 years for Campeche and 10 years for Chetumal. Figure II.5 shows the wind 

speed averages classified for each direction using 16 direction sectors.  

 
Mérida 

  
Campeche Chetumal 

Figure II.5. Wind speed averages for each direction using 16 directional sectors for the three 
observatories using all the data available at each site. 

Figure II.6 shows the wind roses for the three study sites. In this figure, the percentage of the 

time the wind blows from a given sector as well as the fraction of this time the wind speed is 

within a given range are both shown, represented by the length of each segment. It can be 

seen that the majority of the winds come from the East or East-South-East. In the case of 

Campeche and Mérida, there is also a smaller contribution from the North while northerly 

winds at Chetumal are negligible. 
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Mérida 

  
Campeche Chetumal 

Figure II.6. Wind roses representing the full study period for the three observatories. 

The results presented in Figure II.6 show that winds at the three study sites are highly 

directional. The results in Table II.5 confirm this. At least 89% of the winds between 1996 

and 2005 in the Yucatán Peninsula came from directions between North and South-East. 

The proportion of the wind speed for each site at 10m a.g.l. is also tabulated when the wind 

speeds are higher than 3m/s. 

Table II.5. Percentage of wind between North (N) and South-East (SE) sectors for each site. 

 Campeche Mérida Chetumal 

Percentage of all wind speed data 89% 93% 93% 

Percentage where wind speed >3 m/s 61% 60% 38% 

 

II.5  Wind frequency distribution and wind power density 

As was already mentioned in the introduction, several studies have shown that the Weibull 

distribution function is suitable for representing wind speed frequency distributions, in 

particular for peninsulas [46] and islands [47]. More recently, other distributions have been 
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applied particularly in circumstances where the proportion of low winds is larger than 

predicted by a Weibull or where the observed distribution shows a variety of shapes which 

cannot be fitted by a Weibull distribution [48,49,50]. But as will be shown in Figure II.7, these 

characteristics are not present in the data of any of the three sites included in this study. 

Thus for ease of fitting, the Weibull distribution, see equation I.9, has been chosen to 

parameterize the frequency distribution of the measured wind speed data. 

An iterative computer algorithm was implemented to calculate the K Weibull shape 

parameter using the Maximum Likelihood Estimator Method, see equation I.10. Then, the C 

Weibull scale parameter was evaluated with the equation I.11. In this case, the whole 

available data for each study site was used to compute the Weibull parameters. Figure II.7 

shows the frequency distribution of the wind speed and the computed Weibull probability 

density function (PDF). It can be seen from these fits that the Weibull curve provides a 

relatively good fit to the data. There is no evidence of a high proportion of low wind speed 

values or unusual structure in the observed distributions that would merit more complicated 

distributions which are more difficult to fit. In addition, the Weibull distribution provides a 

simple way to calculate the wind power density. 

 
Mérida 

  
Campeche Chetumal 

Figure II.7. Wind speed frequency distributions and Weibull PDFs using the wind data for the whole 
study period for the three observatories. 

Table II.6 lists the associated K and C parameters of the Weibull PDF computed for each 

site.  
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Table II.6. Shape (K) and scale (C) parameters for the fitted Weibull distributions and the estimated 
power densities at the three study sites. 

Station 
Weibull parameters Power density 

[W/m2] K C 
Campeche 2.79 3.33 23.3 

Mérida 2.60 3.12 19.9 
Chetumal 2.15 2.53 12.2 

 

The wind power density calculated for the three sites using equation I.12 is shown in the final 

column in Table II.6. It can be seen that all three sites would be Wind Power Class 1 

(<100W/m2 at 10m a.g.l.), see Table I.4, which would not normally be economically viable for 

wind farm development. It should be noted, however, that the Weibull parameters here are 

based on daily averaged values of wind speed. This will give less wind speed variability than 

hourly averages and thus larger values of K than for hourly values. If hourly values were 

available and gave Weibull PDFs with K close to 2 (Rayleigh distributions), there would be a 

significant increase in power density, e.g. the power density at Campeche would increase 

from 23.3W/m2 to 30W/m2, close to 30%. Nonetheless, this increase does not represent a 

high power density compared with other sites usually reported with significant wind potential. 

II.6  Remarks 

This chapter has presented long-term wind statistics for three measurement sites spread 

around the Yucatán Peninsula in México. Trends in the long-term behaviour of pressure, 

temperature, wind speed and wind direction have been identified. The first important 

conclusion is that the winds are highly directional with the majority of wind coming from the 

East and East-South-East sectors.  

It has been seen that the two sites which experience predominantly land-based winds, 

Mérida and Campeche, show the larger degree of temporal variation in wind speed on intra-

annual and inter-annual timescales compared with the site at Chetumal where the winds are 

predominantly marine in origin. This is due to the different thermal properties of land and sea 

giving rise to different degrees of vertical temperature variation and hence different degrees 

of vertical mixing. 

Weibull PDFs have been fitted to the wind speed distributions at the three sites and appear 

to give relatively good representations of the wind speed variations at the three sites. The 

Weibull scale and shape parameters have been used to compute the estimated wind power 

densities at the three sites which all fall within Wind Power Class 1.  
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The results presented in this chapter have stated an important reference milestone producing 

the first dataset of long-term data for wind power applications from the most reliable data 

available in the meteorological observatories of the Yucatán Peninsula. Therefore, this 

dataset can be used through Measure-Correlate-Predict (MCP) to estimate the seasonal 

patterns of wind energy available in other regions of the Yucatán Peninsula.  

The diurnal distributions of wind characteristics were not identified in this chapter because 

the dataset were based on daily averages. Another useful result that cannot be properly 

derived from the results at this stage is the vertical wind profile which allows the estimation of 

the wind potential at the usual height of the wind power generators. The identification of both 

characteristics will be addressed in the next chapters of this PhD thesis. 
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IIIIII    SSppaattiiaall  bbeehhaavviioouurr  ooff  tthhee  wwiinndd  rreessoouurrccee  

 

 

 

An analysis of the characteristics of the wind resource of the Yucatán 

Peninsula is presented in this chapter, based on ten-minute averaged 

wind speed data from nine meteorological stations, between 2000 

and 2007. Hourly and monthly patterns of the main environmental 

parameters have been examined. Highly directional behaviour was 

identified that reflects the influence of winds coming from the 

Caribbean Sea and the Gulf of México. The characteristics of the 

wind speed variation observed at the studied sites reflected their 

proximity to the coast and whether they were influenced by wind 

coming predominantly from over the land or predominantly from over 

the sea. The atmospheric stability over the eastern seas of the 

Yucatán Peninsula was also analysed to assess thermal effects for 

different wind directions. The findings were consistent with the 

variation in average wind speeds observed at the coastal sites where 

winds came predominantly from over the sea. 
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III.1  Introduction 

The reference review presented in section I.2  revealed that a study of the seasonal variation 

of the wind resource is an important stage in assessing the reliability of the energy produced 

by wind turbines. In addition, wind data collected from automatic meteorological stations, 

measured every two seconds and with averages recorded every ten minutes, give useful 

information for studying local wind patterns. Considering these facts and the lack of any 

detailed analysis of the short-term variability of wind speeds in the Yucatán Peninsula 

(Eastern México), this chapter describes the second stage in this PhD research project to 

characterize the wind resource in the Yucatán Peninsula. This stage complements the 

previous analysis by: covering a wider geographical region in the Yucatán Peninsula; 

increasing the number of meteorological stations; using data from offshore marine buoys; 

and increasing the resolution of the source data from 1 day to 10 minutes. 

More specifically, the data analysed in this chapter consists of ten-minute averaged values 

recorded at nine onshore and inland meteorological stations between 2000 and 2007. Hourly 

and monthly patterns of the main meteorological parameters were studied to infer the 

temporal and spatial wind patterns. Finally, atmospheric stability, over the adjoining sea 

areas was computed using data from marine buoys of the National Oceanic and Atmospheric 

Administration (NOAA-USA) to identify thermal effects on the wind patterns observed at the 

nine meteorological sites, particularly those close to the coast. 

III.2  Measurement conditions 

III.2.1  Study region 

Figure III.1 shows the locations of the measurement sites used in this more detailed study of 

the short-term variability in wind speed over the Yucatán Peninsula. The sites are denoted by 

their three ID letters, described in Table III.1. The terrain height represented by levels of 

shading over the map shows that, except for a small region in the South, the majority of the 

Yucatán Peninsula lies below a height of 50m a.m.s.l. 
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Figure III.1. Location of the study sites (sea details in Table 1) on the Yucatán Peninsula. Terrain 

height represented by the shading is also shown. 

Nine automatic meteorological stations of the “Servicio Meterológico de la CNA” (the 

National Meteorological Service) were selected to be analysed. Locations, elevations and the 

World Meteorological Organization (WMO) code of the nine stations are given in Table III.1. 

As will be shown in the next section, the main winds in the study region come mainly from 

sectors around the Easterly direction. Thus, two columns have been included in Table III.1 

with the distances to the coast in the Easterly direction and additional observations of 

relevance to the wind characteristics. 

Table III.1. Locations, elevations and WMO codes of the nine study sites N.B. GM=Gulf of México 
coast, CS=Caribbean Sea coast. 

Meteorological 
station ID Station 

WMO code 
Geographical 
coordinates 

Station 
height 
a.m.s.l. 

Distance to 
shore in east 

direction 
Observations 

Chetumal CHE MXCNA-QR02 18°30’02’’N  
88°19’40’’W 14m 5km to CS  

Sian Ka An SKN MXCNA-QR03 20°07’40’’N 
87°27’56’’W 8m 0.12km to CS  

Cancún CAN MXCNA-QR01 21°01’30’’N  
86°51’33’’W 5m 4.7km to CS 7.5km to GM in North 

direction 

Rio Lagartos RIO MXCNA-YC03 21°34’16’’N  
88°09’37’’W 5m 120km to CS 10km to GM in East-North-

East direction 
Ciudad del 

Carmen CMN MXCNA-CM01 18°38’53’’N 
91°49’21’’W 8m 430km to CS Approx. 51km of harbour in 

East direction 

Campeche CAM MXCNA-CM02 19°50’10’’N 
90°30’26’’W 11m 304km to CS  

Celestún CEL MXCNA-YC02 20°51’29’’N  
90°22’59’’W 10m 363km to CS 13km to GM in North 

direction 

Mérida  MDA MXCNA-YC01 20°56’47’’N  
89°39’06’’W 8m 292km to CS 40km to GM in North 

direction 

Tantakin TAN MXCNA-YC04 20°01’49’’N  
89°02’50’’W 30m 164km to CS  
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To complete the description of each measurement site, Figure III.2 shows a satellite image 

with a 500m radius around each measurement location. The ID codes used for each site 

image in Figure III.2 are described in Table III.1 and will be used during the rest of the thesis 

to denote each measurement station. As can be seen from Figure III.2, three of the nine 

measurement stations (CMN, CAM and MDA) have several buildings in their immediate 

vicinity. 

   
CHE SKN CAN 

   
RIO CMN CAM 

   
CEL MDA TAN 

Figure III.2. Satellite images of 500m radius centred on each automatic meteorological station. 

III.2.2  Measurement stations 

The measurement stations selected for this research use two types of structures to support 

the sensors at 10m height, see Figure III.3. Type A stations support the sensors on a 

scaffolding structure and Type B stations locate the sensors on a tower. Figure III.3 shows 
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photographic examples of both types of structure; in these cases, RIO and CAN automatic 

measurement stations. 

  
RIO CAN 

Figure III.3. Photos showing the two types of meteorological measuring structures used at the study 
sites (Type A: Scaffolding and Type B: Tower), in these cases, the RIO and CAN stations. 

The main parameters measured by the automatic meteorological stations are described in 

Table III.2. These parameters were measured every two seconds to store averages every 

ten minutes by means of dedicated dataloggers. 

Table III.2. Main characteristics of the parameters recorded. 

Parameter Unit Range Accuracy Threshold Resolution 

Sensor height  
a.g.l. [m] 

Type A  
station  

Type B  
station  

Wind speed km/h 2.4 / 160 ± 2 % 2.4 km/h 0.1 km/h 10 10 
Wind direction Degrees 0 / 360 ± 5 ° 2.4 km/h 1 ° 10 10 

Temperature  °C -51 / +60 0.2 °C - 0.1 °C 10 10 
Relative humidity % 0 / 100 ± 2 % - 0.10 % 10 10 

Atmospheric pressure hPa 600 / 1060 ± 0.5 hPa - 0.01 hPa 1.5 10 
Solar radiation W/m2 305 / 2800 nm - - - 5 10 

 

Taking into account the range, accuracy, threshold and resolution of each sensor, the 

collected data were subject to quality checking, selection and some filtering to remove 

erroneous data points which were outside of the ranges specified in Table III.2. As 

mentioned above, the recorded data covered the period between 2000 and 2007. However, 

not all stations were fully commissioned by 2000 and several interruptions to data collection 

occurred, mainly as a result of hurricanes passing over the Yucatán Peninsula during the 

period of interest. Table III.3 shows the recording periods for each station from April 2000 to 

May 2007. Each rectangle represents a measurement month numbered from 1 for January to 

12 for December. 
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Table III.3. Data availability for all sites studied. The shaded boxes represents the periods with 
available data. 

Year

Month 4 5 6 7 8 9 1
0

1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2 1 2 3 4 5

CMN
CAM
CEL

MDA
TAN
CAN
CHE
SKN
RIO

20072000 2001 2002 2003 2004 2005 2006

 

III.3  Directional characteristics of the wind in the study region 

The information recorded about the wind direction for each study site was classified into 16 

directional sectors and four wind speed bins: ≤3m/s; >3m/s and ≤6m/s; >6m/s and ≤9m/s; 

and >9m/s. These results are represented in the form of wind roses in Figure III.4. It can be 

seen that for all of the study sites, the prevailing winds come from directional sectors 

between North-North-East (NNE) and East-South-East (ESE). 
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Figure III.4. Wind roses for the nine study sites. 

Following the results presented in Figure III.4 and the geographical locations of the study 

sites (Figure III.1), the sites have been grouped according to whether the prevailing Winds 

Come from over the Sea (WCS) or Winds Come from over Land (WCL). The results 

presented in the next two sections, Figure III.5 to Figure III.8, are organized in two columns: 
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the first column (A) to showing four WCS sites (CHE, SKN, CAN and RIO) and the second 

column (B) showing the remaining five WCL sites (CMN, CAM, CEL, MDA and TAN). This 

classification takes into account that each group of sites should have different wind 

characteristics reflecting the different heating and cooling patterns of the sea and the land 

around them and their impact on the atmospheric boundary layer [71]. 

III.4  Daily patterns 

III.4.1  Environmental parameters 

Figure III.5 shows the daily patterns of ambient temperature, atmosphere pressure and 

relative humidity based on hourly averages throughout the study period given in Table III.3.  

The ambient temperatures for the WCS sites show the least variation between the daily 

minimum and maximum temperatures ranging from 2°C for CAN to 7°C for RIO.  In the case 

of the WCL sites, TAN (located in the middle of the Peninsula) shows the largest temperature 

range of 12°C whereas CMN, with a range of around 5°C, exhibits the least variation. 

Globally, the maximum daily temperature for the sites with WCS is on average 3°C lower 

than the sites with WCL. As was expected, the WCL sites registered less thermal influence 

from the air which has been heated over the sea. This sea-heated air will see a much lower 

range of temperature variation due to the large thermal capacity of the sea compared to the 

air which has been heated over the land. 

The shape of the relative humidity patterns follows in general, as expected, an inverse 

relationship with the temperature pattern. The atmospheric pressure for all study sites shows 

a double peaked variation within the day. The first peak is located between the 08:00 and 

10:00 and the second one between 20:00 and 00:00. This diurnal and semi-diurnal behaviour 

of atmospheric pressure, particularly pronounced near the equator is well known and is due 

to solar radiation causing eddy convection and the generation of gravity waves propagating 

throughout the atmosphere at integral values of the length of the day [72]. The semi-diurnal 

(S2) component of pressure variation is larger than the diurnal (S1) for the WCS sites and the 

amplitude of the S1 component is larger for the WCL sites which would appear to be 

consistent with Dai and Wang [72], who reported a similar behaviour in similar geographical 

conditions. 
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A.  WCS sites B.  WCL sites 

  
Ambient temperature Ambient  temperature 

  
Relative Humidity Relative Humidity 

  
Atmospheric Pressure Atmospheric Pressure 

Figure III.5. Hourly averages of the main parameters for each study sites, grouped by sites with winds 
coming predominantly from the sea (column “A”) and sites with winds coming predominantly from the 

land (column “B”). 

III.4.2  Wind behaviour 

In the case of the WCS sites shown in column A of Figure III.6, the diurnal wind variation 

reduces due to convective mixing transferring momentum from higher in the atmospheric 

boundary layer to the surface. The overall magnitude of the wind speed increases moving 

from CHE in the South-East, through to SKN in the East, to CAN in the North-East of the 

Yucatán Peninsula, see map in Figure III.1. These effects result from the contribution of the 

winds coming from ENE which are more influenced by the Northern part of the East coast 

and the thermal influence of the Gulf of México discussed later at the end of Section IV.3. 
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Due to its position on the North-East coast, the winds at RIO show more diurnal variation 

than the other WCS sites. The wind patterns at RIO reflect the contribution of wind coming 

not just from the Gulf of México in the ENE direction but also from the land in the E and ESE 

directions (see the Figure III.1 and the wind rose in Figure III.4). Therefore, RIO shows 

characteristics of being both a WCS and WCL type site. 

In the case of the WCL sites, column B of Figure III.6, there is a pattern of higher wind speed 

during daylight hours but with a peak in the morning and another generally higher peak in 

mid afternoon. The reason for this double-peaked behaviour becomes apparent by observing 

the diurnal variation in wind direction in Figure III.6. There is little variation for the WCS sites, 

but the WCL sites see a significant backing from E to N at around 10:00 and then a gradual 

veer back to E after around 16:00. This would be consistent with a sea breeze developing in 

the early afternoon causing the wind to change to an onshore breeze which later changes to 

an along shore easterly breeze as the Coriolis force takes effect. In the case of the WCS 

sites, the effect is less apparent as the wind is already coming predominantly from over the 

sea. For the WCL sites, this effect results in a change in wind coming over the land to wind 

which comes from over the sea with an attendant increase in wind speed giving rise to the 

larger peak in the afternoon. This characteristic is less marked in the case of CMN than in 

the remaining four WCL sites and is due to the influence of a natural harbour situated within 

51km and aligned with the prevailing winds (see Figure III.1 and details in Table III.1). 

Finally, CEL located on the North-West coast experiences higher winds than the other WCL 

sites because of the combined effect of the prevailing winds coming from the land and from 

the Gulf of México (see the wind rose for CEL in Figure III.4). 
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A.  WCS sites B.  WCL sites 

  
Wind speed Wind speed 

  
Wind direction Wind direction 

Figure III.6. Hourly averaged wind speeds for each study site, grouped by sites with winds coming 
predominantly from the sea (column “A”) and sites with winds coming predominantly from the land 

(column “B”). 

III.5  Seasonal variation 

III.5.1  Environmental parameters 

This section examines the pattern of seasonal variation using monthly averages determined 

from the whole study period. Ambient temperature variation for WCS sites, column A in 

Figure III.7, indicates a maximum at around July-August while WCL sites show a double 

peak curve: with a global maximum reached in May and a less defined secondary peak 

located in the middle of September prior to a fall to a December-January annual minimum. 

This double peak in the temperature of the WCL sites can be explained by considering that 

the heat source (solar radiation) peaks in April-May and then again in July-August. This is 

due to the rainy season around June-July resulting in more cloud cover and the resulting 

reduced solar radiation. The temperature for sites where the winds are coming from over the 

land tends to reflect the changes in the solar radiation. On the other hand, the WCS sites 

receive winds from over the sea therefore the temperature shows a weaker correlation to the 

local solar radiation flux [71]. 



R. Soler-Bientz PhD Thesis   Spatial behaviour of the wind resource 
 

58 
 

The relative humidity in the case of the WCL sites, column B of Figure III.7, has a well 

defined pattern for all sites: with a marked minimum in April and a less well defined maximum 

around September-October. From November to July, MDA and TAN (which is the site 

located deeper inland) show a less clear pattern for relative humidity than the rest of the 

WCL sites. 

Generally, the atmospheric pressure shows an annual maximum at around January and a 

secondary peak in July. WCS sites have minimum values around September, in the middle 

of the Hurricane season. 
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A.  WCS sites B.  WCL sites 

  
Solar Radiation Solar Radiation 

  
Ambient temperature Ambient temperature 

  
Relative Humidity Relative Humidity 

  
Atmospheric Pressure Atmospheric Pressure 

Figure III.7. Monthly average of the main parameters for each study site, grouped by the sites with 
winds coming predominantly from over the sea (column “A”) and sites with winds coming 

predominantly from over the land (column “B”). 
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III.5.2  Wind behaviour 

Monthly behaviour of the wind is shown in Figure III.8. More significant variations in the wind 

speed are seen for the CAN and RIO sites on the most exposed part of the Yucatán 

Peninsula. These two WCS sites have similar trends between May and November but 

outside of this period, CAN shows a significant peak of monthly wind speed in December 

while RIO shows just a slight increase. This could be produced by the extreme hurricane 

events recorded during the first three years of the study period which affected CAN more 

than the other sites in this study. The rest of the measurement sites show less variation in 

wind speed with generally higher wind speeds in the months between April and May and 

lowest wind speeds in the months between September and October. The average monthly 

wind directions for both classes of sites show just a few significant variations. 

A.  WCS sites B.  WCL sites 

  
Wind speed Wind speed 

  
Wind direction Wind direction 

Figure III.8. Wind monthly averages for each study site, grouped by the sites with winds coming from 
sea (column “A”) and sites with winds coming from land (column “B”). 

III.6  Atmospheric stability over the surrounding sea 

As described above, the winds that arrive at the Yucatán Peninsula come mainly from NNE 

to ESE where the Easterly part of the Gulf of México and the Westerly part of the Caribbean 

Sea are located, as can be seen in Figure III.1. The stability of the atmosphere over these 

seas influences the winds that arrive on the Yucatán Peninsula. Thus to study this in more 
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detail, the wind speeds, air and sea temperatures available from marine buoys of the NOAA 

[73] have been used to evaluate the atmospheric stability. 

Marine buoys 

Two of the NOAA marine buoys were selected due to their geographical position and 

availability of data during the study period. They are located as shown in Figure III.9, where 

buoy “1” lies in the Eastern Gulf of México (EG), and buoy “2” in the West of the Caribbean 

Sea (YB, “Yucatán Basin”). 

 
Figure III.9. Locations of the two selected NOAA marine stations (buoys) in the vicinity of the Yucatán 

Peninsula: “1. East Gulf” and “2. Yucatán Basin”. 

The EG buoy is located in water which is approximately 1.2km shallower than that of the YB 

buoy. In addition, the YB buoy is inside the tropical region, whilst the EG buoy is located 

around 4 degrees North of the Tropic of Cancer as confirmed by data shown in Table III.4. 
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Table III.4. Information concerning the NOAA marine stations used to evaluate the atmosphere 
stability [73]. 

 East Gulf (EG) Yucatán Basin (YB) 

Marine buoy image 

  
Buoy diameter 10m 12m 

Coordinates 25.74 N,  85.73 W 19.87 N,  85.06 W 
Site elevation sea level sea level 

Air temperature height 10m above site elevation 10m above site elevation 
Sea temperature depth 1m below site elevation 1m below site elevation 

Anemometer height 10m above site elevation 10m above site elevation 
Barometer elevation sea level sea level  

Water depth 3233m 4446m 
Averaging period Hourly Hourly 

Available measurement 
months  

Jan.  2005,   
Aug. 2005 – Dec. 2006 

May 2005 – Jan. 2006, 
Apr. 2006 – Dec. 2006  

 

The EG buoy is located in water which is approximately 1.2km shallower than that of the YB 

buoy. In addition, the YB buoy is inside the tropical region, whilst the EG buoy is located 

around 4 degrees North of the Tropic of Cancer as confirmed by data given in Table III.4. 

Figure III.10 below shows that the wind roses in both cases follow the same pattern 

described for the WCS sites. 

EG YB 

  

Figure III.10. Wind roses representing the directional distribution of wind for the data available from the 
EG and YB marine stations. 

An analysis of the hourly averages during the day, shown in Figure III.11(a) and Figure 

III.11(b), shows that the winds at YB are up to 1m/s higher than for EG while the average 
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hourly wind direction for both sites remains almost constant at around 90 degrees (E). An 

analysis of monthly averages during the year, shown in Figure III.11(c) and Figure III.11(d), 

indicates lower wind speeds in September and the maximum towards the end of the year. A 

change in the direction of the winds from E to S, during August and September, can be seen 

(Figure III.11(c)) for EG buoy around the same period that the lower wind speeds are 

evident. The limited data available for the YB buoy, see Figure III.11(d), does not allow an 

analysis of wind speed and direction trends for the first three months of the year. Both 

offshore wind speed profiles show an important wind potential; this result suggests the 

relevance of studying offshore sites closer to the coastline. 

EG YB 

  
(a) (b) 

  
(c) (d) 

Figure III.11. Average hourly (a and b) and monthly (c and d) wind speed and wind direction for EG 
and YB marine buoys over the available data periods described in Table III.4. 

Temperature patterns 

Temperature data for the sea surface (WaterT) and the air (AirT) are required in order to 

evaluate the atmosphere stability at the two buoys. Figure III.12(a) and Figure III.12(b) show 

the hourly variation through the day where a significant difference between sea surface and 

air temperatures is revealed. This difference is approximately twice as large for EG than for 

YB. The YB air temperature is around 3°C higher than the EG air temperature while the sea 

surface temperature is around 1.5°C higher at YB than at EG over the entire day. Little 
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diurnal fluctuation in either air or sea surface temperature is seen at both sites as would 

expected due to the high thermal mass of the water. 

Monthly averages for the temperature variation throughout the year are presented in Figure 

III.12(c) and Figure III.12(d). These show that the maximum annual air and sea surface 

temperatures occurred in August having approximately the same magnitude at both buoys. 

EG air temperature in December was around 4°C colder than YB air temperature and the 

sea surface temperature was 2°C colder at EG than at YB. With the limited data available at 

YB, it would seem that there was less annual variation in air and sea surface temperature in 

the Yucatán basin (YB) compared with the Eastern Gulf (EG); which cannot be explained 

with the results obtained so far although it should be related with stability of the atmosphere 

as will be analyzed in the next subsection. 

EG YB 

  
(a) (b) 

  
(c) (d) 

Figure III.12. Daily (a and b) and yearly (c and d) sea surface and air temperatures for EG and YB 
marine stations averaged over the available data period described in Table III.4. 

Stability classes 

The atmosphere stability, which can be estimated by the Obukhov length L through the 

equation I.3, was computed using the Bulk Richardson number parameterization, see 

equation (I.5), where z’ is 10m height, u is the wind speed measured at 10m height, T� is the 

average of the air and sea surface temperatures and Δθv is the difference between the virtual 
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potential temperature at 10m height and sea surface temperature. Then, the values of L were 

grouped according to the stability classes defined in Table I.2 and the frequency distribution 

of these classes shown in Figure III.13.  

Considering that the sign of the Bulk Richardson number is negative for both sites, because 

the temperature gradient is negative as was shown by Figure III.12 above, it should be 

expected that the atmosphere present very low stable states in both sites. It can be seen that 

the atmosphere at EG is unstable or very unstable approximately 70% of the time and near-

neutral for 30% of the time. On the other hand, the atmosphere at YB is near-neutral for 

approximately 65% of the time and the rest of the time is unstable or very unstable. 

 
Figure III.13. Distribution of the stability classes from their values of the Obukhov length computed with 

equations I.3 and I.5 and classified using Table I.2 for EG and YB marine stations. 

In a neutral atmosphere, mechanically generated turbulence is dominant and the wind speed 

at a specific height depends solely on the roughness of the sea surface and the geostrophic 

wind speed. Thus, the winds coming from the Caribbean Sea will tend to be influenced 

mainly due the surface properties following the predominance of near-neutral conditions 

observed at YB.  

In an unstable atmosphere, the air virtual potential temperature is lower than the sea surface 

virtual potential temperature. Under these conditions, thermally generated turbulence 

dominates causing enhanced vertical mixing allowing greater transfer of wind momentum 

downwards and increased wind speed at lower heights compared with near-neutral 

conditions. Therefore, the sites with wind coming from over the Eastern Gulf of México 

should see higher wind speeds which is consistent with the results shown for CAN and RIO 

as seen in column A and for CEL and CMN (despite the proximity of buildings) as seen in 

column B of Figure III.6. 
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III.7  Remarks 

The results obtained confirm that the winds on the Yucatán Peninsula are highly directional 

in nature which is not surprising given its location in the tropics and its proximity to the sea. 

Due to its geographical position, the mainly unstable atmosphere of the Eastern Gulf of 

México plays a key role in determining the higher wind speeds seen on the North and North 

East coasts of the Yucatán Peninsula, despite the slightly higher winds observed at the buoy 

in the West Caribbean Sea. It was seen that the atmosphere over the Eastern Gulf was near 

neutral for less than the 30% of the time studied, whilst the atmosphere over the Western 

Caribbean was predominantly near neutral. 

In the main, the wind climatology seen at each study site reflects the geographical position in 

relation to the coast. Just two sites, Celestún (CEL) and Rio Lagartos (RIO), exhibited mixed 

behaviour with characteristics of both land and sea wind sites. 

The sites with higher wind were Cancún (CAN), Rio Lagartos (RIO) and Celestún (CEL), all 

located in the Northern part of the Yucatán Peninsula with winds coming predominantly from 

over the Eastern Gulf. These more exposed sites have the best wind potential though, in 

absolute terms, the wind speeds at these sites, with the possible exception of Cancún (CAN), 

are modest in terms of wind energy potential. 

It can also be noticed that another important reference for wind energy applications has been 

created through a geographically distributed dataset from the most reliable data available in 

the automatic meteorological stations of the Yucatán Peninsula. In this case, this dataset can 

be used through Measure-Correlate-Predict (MCP) to estimate the diurnal and seasonal 

patterns of wind energy in other regions of the Yucatán Peninsula.  

The results presented in this stage of the PhD research have improve the level of description 

of the wind characteristic in the Yucatán Peninsula revealing the diurnal patterns, the 

conditions of the atmosphere in the surroundings seas and confirming the behaviour of the 

seasonal patterns identified in the long-term study undertook in the previous chapter. They 

have also stated the relevance of the surface roughness and the stable nature of the winds 

coming from eastern directions especially for the sites locates inland in the Yucatan 

Peninsula. In the next chapter, an inland site will be study to identify the vertical profile of the 

wind and the corresponding wind shear behaviour. 
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IIVV    IInnllaanndd  vveerrttiiccaall  wwiinndd  pprrooffiillee  

 

 

 

This chapter presents an analysis of wind speed and wind shear in 

terms of the directional, diurnal and seasonal patterns for a site at the 

Autonomous University of Yucatán which experiences the tropical 

conditions of the Yucatán Peninsula in México. This analysis takes a 

detailed look at frequency distributions to facilitate a comprehensive 

understanding of the local climatic conditions. Diurnal wind speed 

variations are shown to be affected in particular by the differing wind 

conditions associated with fetches over two distinct offshore regions. 

Seasonal behaviour suggests some departure from the oscillations 

expected from temperature variation. In addition, the use of rate of 

change of temperature at one height is proposed as an alternative to 

vertical temperature gradient inferred from two heights as an 

approximate indicator of atmospheric stability which will affect the 

wind shear. 



R. Soler-Bientz PhD Thesis   Inland vertical wind profile 
 

68 
 

IV.1  Introduction 

Many research results have been published addressing the subject of the vertical wind profile 

in the surface boundary layers and have considered, among other factors, the amount and 

kind of meteorological data available, the geographical location (inland, onshore or offshore), 

the topography and the distribution of buildings around the study site (mainly for urban 

cases). When the atmospheric stability is neutral and the terrain is reasonably flat and 

homogeneous, the  adiabatic log law is reasonably effective in predicting the wind profile, but 

for other stability conditions additional information is required to accurately estimate the wind 

shear according to Monin-Obukhov similarity theory [76,78].  

The simplicity of the power law has made it perhaps the most widely applied model of wind 

shear. Nevertheless, atmospheric conditions and geographical characteristics of a particular 

region can create important variations in the wind shear patterns. This chapter presents a 

comprehensive analysis of the wind speed and wind shear at a specific site in the Yucatán 

Peninsula in terms of the directional, diurnal and seasonal patterns. In particular the 

frequency distribution of the key parameters is examined to account for the diverse wind 

shear characteristics identified. This research is focused on a region where the vertical 

behaviour of the wind has not been studied previously. 

IV.2  Study site 

IV.2.1  Geographical location 

The measurement site is located in eastern México in the State of Yucatán close to the north 

coast of the Yucatán peninsula. This is therefore a tropical climate which should be strongly 

influenced by the proximity of the Caribbean Sea to the East and the Gulf of México to the 

North and West. The measurement tower is installed at the Science and Engineering 

Campus of the Autonomous University of Yucatán which is shown in Figure IV.1 with a small 

star. 
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Figure IV.1. The geographical location of the measurement site is shown in the North of the Yucatán 

peninsula with a small star. 

The topography of the North of the Yucatán Peninsula is mainly flat. Particularly, the 

measurement site which is located at around 25km from the North shore is just about 7m 

a.m.s.l. Table IV.1 lists the main geographical parameters for the measurement site. 

Table IV.1. Parameters for the geographical location of the measurement tower. 
Site parameters Values 

Geographical coordinates 
GPS GEO  21°02’55.69’’ N, 89°38’36.68’’ W 

UTM WGS84-16  225262 E, 2329831 N 
Site height a.m.s.l. 6.9m 

Distance from the near coast 25.3km  (Northerly direction) 
Measurement heights a.g.l. 10m and 30m 

IV.2.2  Measurement sensors 

Figure IV.2(a) shows an overall view of the measurement tower which was designed, 

installed and operated as part of the works undertook in this research project. The nearest 

obstacle is located to the west of the tower at a distance of 5m with a height of 7m; see 

Figure IV.2(b). In the right hand side image, Figure IV.2(c), a close up of the measurement 

tower is presented to identify the relative positions of the wind sensors at 10m and 30m a.g.l. 

and at a distance of 1.5m from the measurement tower. The wind sensors were installed 

facing the ENE direction as preliminary measurements showed that the westerly direction 

contributes less than 10% of the total winds at the site. 
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(a) (b) (c) 

Figure IV.2. Images of the measurement tower: (a) overall view from the westerly direction, (b) view 
from the northerly direction showing the tower base, (c) close up view from the northerly direction 

showing the position of the installed sensors. 

As well as two cup anemometers at 10m and 30m a.g.l. and a wind vane installed at 10m 

a.g.l., a temperature sensor was also installed at 10m a.g.l. The wind sensors were fully 

calibrated by the manufacturer and at the end of the study period this calibration was verified 

using a new ultrasonic wind sensor. The basic operational characteristics of the sensors are 

shown in Table IV.2. 

Table IV.2. Technical specifications of the sensors installed on the measurement tower. 

Parameters 
Sensors 

Anemometer Wind Vane Temperature 
RM Young 3101 RM Young 3101 Vaisala CS500 

Measurement  range 0 to 50 m/s 0° to 360° - 40 °C to 60 °C 
Resolution 0.01 m/s 0.1° 0.01 °C 
uncertainty 1 % ± 5° ± 0.5 °C 

Starting threshold 0.5 m/s 0.8 m/s N/A 
 

The data used in this work comprise 64,451 records which were computed over 18 months of 

measurements since April 2003. These records contain the average every 10 minutes of the 

measurements sampled every 2 seconds from the installed sensors. The directional, diurnal 

and seasonal patterns were computed applying conventional averaging statistical methods 

from the 10 minute records. Frequency distribution patterns of wind speed and wind shear 

were also obtained classifying and processing the 10 minute records. 

IV.2.3  Main obstacles 

The behaviour of the wind speeds, especially at low heights, is affected by the surface 

characteristics. Thus, the immediate surroundings, as with all meteorological sites, are of 
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importance because of their influence on the wind speeds and the wind shear in particular. 

Figure IV.3(a) shows a satellite photo of approximately 1.6km around the measurement 

tower. The closest region to the measurement point is marked with a square in the centre of 

Figure IV.3(a) and it has been magnified in Figure IV.3(b). This magnified area of 

approximately 400m x 400m shows the closer obstacles that could influence the wind 

patterns across the site. 

  
(a) (b) 

Figure IV.3. Satellite photos showing an aerial view of the measurement site.  (a) A square area of 
1600m x 1600m (b) a close up of the 400m x 400m area with the directional sectors around the 

measurement tower. 

Sixteen directional sectors have been drawn in Figure IV.3(b) to identify the angular position 

of the main obstacles relative to the measurement tower. Figure IV.4 shows panoramic views 

of the four main regions that surround the measurement tower. These regions were defined 

considering the position of the main group of obstacles and the results presented in the 

following sections. The photos show a view as seen from the sensors installed at 10m a.g.l. 

on the measurement tower. 
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Figure IV.4. Panoramic views of the terrain surrounding the measurement tower grouped in four main 

directions. 

Due to the number of obstacles close to the tower, the analysis is concentrated on the 

relative wind shear observed rather than absolute wind speed values. It is assumed that for 

the purposes of assessing wind energy potential at wind turbine hub height that, as 

mentioned in the theoretical background, the wind profile in the atmospheric surface layer is 

commonly described by the Monin-Obukhov similarity theory [76], which predicts an 

extended log-linear form shown in equation I.1. It describes the wind speed u at a particular 

height z as function of the friction velocity u*, the roughness length z0 and the Obukhov 

length L. Different models have been proposed to compute the parameters in the equation 

I.1 which usually involve the measurement of the ambient temperature at two different 

heights.  

In this case, temperature measurements were only available at one height. In addition 

equation I.1 requires estimates of the surface roughness which are quite complex to infer 

with buildings in the immediate vicinity of the mast. The main item of concern here is the 

wind shear observed at the mast from the wind speeds measured at two heights and thus the 

empirical power law is used as given in equation I.8 to calculate the wind shear exponent (α). 
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In the case presented in this chapter z=30m and zr=10m, thus equation I.8 can be expressed 

as: 









•=α

)10u(
)30u(Log2.0959  IV.1 

 

 

IV.3  Directional behaviour 

The distribution of the wind over 16 direction sectors is presented in Figure IV.5(a) for all of 

the data available in the study period. The majority of the winds comes from the sectors 

clustered around the South and less than 8% of the wind comes from the West to the North-

East, which have been shaded in Figure IV.4(a). Therefore in the rest of this chapter, the 

directions from West to North-East will not be considered.  

In order to study the diurnal directionality of the wind at the site, the wind distribution for each 

hour was grouped in three time periods according the daytime/night-time and rate of change 

of temperature: 1) from 21:00 to 8:00 for predominantly night-time/negative rate of change of 

temperature, 2) from 9:00 to 14:00 for predominantly daytime/positive rate of change of 

temperature and 3) from 15:00 to 20:00 for predominantly daytime/negative rate of change of 

temperature. The resulting wind distributions for the three time periods have been plotted in 

Figure IV.5(b) along with the wind distribution for the whole day (denoted 00:00 to 23:00). It 

can be seen that during the night, the wind comes over the land from around the South, and 

during the morning, the contribution to the wind is greater from the South to the South-West 

while in the afternoon the contribution from the East to the South-East are greatest. This 

behaviour is fairly typical of a coastal site where the winds are thermally driven and a land-

sea breeze develops during the day. 
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(a) 

 

(b) 

 
Figure IV.5. (a) Wind frequency distribution for each directional sector over the whole study period and 

(b) the contribution to the whole wind distribution of the three main diurnal periods.  

The wind speed average for each direction, see Figure IV.6, shows that the highest wind 

speeds are located between the East and South-West direction sectors. As might be 

expected, the largest differences in wind speed measured at 30m and 10m a.g.l. were also 

located in the directions with the highest wind speeds reflecting the effect of the buildings 

which tend to reduce the wind speed at 10m a.g.l. but give some degree of acceleration at 

30m a.g.l. (see the location of the obstacles in Figure IV.3(b) and Figure IV.4(a)). This result 

makes evidence the role of wind shear as a measure of the percentage of increase of the 

wind with the height, as will be study in the following sections. 

 
Figure IV.6. Wind speed averages over the whole study period for each direction sector. 

Generally, the wind shear over a relatively flat surface with short vegetation can be computed 

by the one-seventh power law, i.e. α=0.14 in equation I.7. For the study site, as was 
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expected because of the surroundings, the wind shear average computed, using equation 

IV.1, over the whole study period was 0.21 varying between 0.17 and 0.26 over the different 

direction sectors as shown in Figure IV.7. Notably, the largest and closest region of buildings 

located from the NE to the SE (NE-SE) gives rise to wind shear averages above 0.22 while 

the region with fewer and further obstacles from the SSW to the WSW (SSW-WSW) gives 

rise to wind shear averages above 0.19. There is a small region, from the SSE to the S 

(SSE-S), and a larger region, from the WSW to the NNE, giving wind shear averages under 

0.19 corresponding with regions where there are no obstacles close enough to the 

measurement tower to have an appreciable effect, as can be in Figure IV.3(b) and Figure 

IV.4. The wind shear averages in Figure IV.7 are not significantly influenced by the obstacles 

with average heights under 10m located further than 300m away (ten times the height of the 

measurement tower), namely: the large region of buildings to the South and another group of 

buildings located to the North, see Figure IV.3(a) and Figure IV.4. The main influence on the 

wind shear comes from the closer obstacles. 

 
Figure IV.7. Wind shear averages over the whole study period for each direction sector.  

Frequently in the literature [34,35,36,37] an average based analysis is used to evaluate the 

wind shear patterns but, as was reported by Kirchhoff and Kaminsky [39], basic errors could 

be obtained as result of the deterministic property of the wind shear computed from the 

power law. On the other hand, different stability conditions could be present in the 

atmosphere over the study period introducing unexpected values of wind shear. Thus, as the 

stability of the atmosphere cannot be derived from the data available in this research, the 

frequency distribution of the wind shear was computed to shed further light on the range of 

wind shear values. 

The wind shear computed from the 10-minutes data was grouped by bins of size 0.05 before 

to be normalized to obtain the frequency distribution of the wind shear over all the directional 

sectors, see Figure IV.8. As can be seen the wind shear values are distributed between -0.2 

and 0.6 with a peak at 0.2 which is consistent with the average value of 0.21 previously 

computed. However, it is noticeable that there is a significant range of wind shear values 



R. Soler-Bientz PhD Thesis   Inland vertical wind profile 
 

76 
 

observed which cannot be explained by differing roughness conditions by direction. Clearly, 

the effect of atmospheric stability is significant conditioning different rate of turbulence. 

 
Figure IV.8. Frequency distribution of the wind shears over all directions. 

IV.4  Diurnal behaviour 

The diurnal wind speed behaviour is shown in Figure IV.9(a). Three particular features are 

notable: a period of reduced wind speed at night, an abrupt increase in the wind speed early 

in the morning followed by fairly constant wind speeds during the early afternoon and finally a 

peak in the wind speed during the late afternoon/early evening. In general terms, this diurnal 

pattern is consistent with results for other coastal regions, e.g. by Barthelmie at al. [34] in the 

marine environment of Denmark, by Farrugia [36] for Malta and by Rehmana and Al-Abbadib 

[37,38] in the Gulf region of Saudi Arabia.  
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(a) 

 

(b) 

 
Figure IV.9. (a) Hourly wind speed averages and (b) hourly wind direction averages, computed for the 

whole study period. 

In addition, the hourly average wind direction, shown above in Figure IV.9(b), was divided 

into two periods: from 23:00 to 13:00 with averages in the S sector and from 14:00-22:00 

with average directions in the SE and SSE sectors. For both of these periods the wind is 

blowing from the landward direction; see Figure IV.1(b), which is not enough to explain the 

daily pattern shown by the wind speeds in Figure IV.9(a). To give more information, the 

distribution of the wind in each direction for the diurnal periods was computed, see Figure 

IV.10 below. The higher concentration of winds during the time period (21:00-8:00) came 

from the SE to the SW sectors, which is from the land area of the Yucatán Peninsula. Then, 

during the time period (9:00-14:00) the sun was rising and a larger fraction of the winds was 

coming from the SSW to the NNW sectors, which is from the West of the Gulf of México. 

Finally, during the time period (15:00-20:00) when the sun is setting, the winds were clearly 

concentrated in the NNW to the SE sectors from the North-East of the Gulf of México and the 

East of the Caribbean Sea, see maps in Figure IV.1.  

In summary, the wind speed patterns in Figure IV.9(a) show wind mainly coming from the 

sea during the daytime and from the land during the night time. This is the standard pattern 

observed for sites close to the coast where the climate is determined not only by vertical 

thermal convection [79] but also by the horizontal movement produced by thermal circulation 

of the sea breeze [29,80]. However, in this case, a particular characteristic is seen for the 

daytime which shows two different sea regions driving the winds in different daylight periods 

and with different wind speed magnitudes. 

S 

SSE 

SE 
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Figure IV.10. Distribution of the wind by directions, for the three main diurnal time periods. The 

shadowed region marks the directional sectors with less than 1.5% of wind over the whole study 
period, see distributions in Figure IV.5. 

The diurnal pattern of the wind shear along with the ambient temperature averages are 

shown in Figure IV.11. The resulting pattern can be explained by means of the wind shear 

averages for each direction presented in Figure IV.7 and the distribution of winds for the 

three main diurnal time periods from Figure IV.10, excluding the low frequency region (W-

NNE). During the night time (21:00-8:00) the wind comes mainly from the SSE-S with lower 

wind shear averages, whereas during the morning (9:00-14:00) the main wind from the SSW-

WSW gives rise to an increase in the wind shear averages and finally during the afternoon 

(15:00-20:00) the wind from the NE-SE dominates with the highest wind shear averages. The 

wind shear observed in these cases results from the combined effect of the location of the 

main obstacles; see Figure IV.3(b), and from the thermal effects over the land and the sea 

around the measurement site. 

 
Figure IV.11. Diurnal pattern over the full study period for the averages of wind shear and ambient 

temperature. 

Figure IV.12 below show the diurnal pattern for each season of the averages for the ambient 

temperature and the wind shear. It can be seen that with some degree of dispersion, the 

spring, summer and autumn patterns describe the same pattern presented above in Figure 

IV.11. In the case of the winter season, the distribution of lower temperatures create more 
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stable conditions in the atmosphere which condition a wind shear pattern dominated by 

diurnal cycles with higher values over the night than over the daylight times. 

(a) 

 

(b) 

 
Figure IV.12 Diurnal pattern for each season for the averages of ambient temperature (a) and wind 

shear (b). 

Figure IV.13 below shows the frequency distribution of the wind shear over the whole study 

period classified by the three main diurnal time periods. It can be seen that the night time 

(21:00-8:00) period gives the greatest spread of values indicating a larger range of stability 

conditions. In contrast, during the daytime (9:00-14:00 and 15:00-20:00) the distribution is 

more centred around 0.20 which could indicate stability values closer to neutral. 

 
Figure IV.13. Frequency distribution of the wind shear for the three main diurnal periods. 

Thermal effects 
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At this site, temperature measurements were only available at one height so it was not 

possible to calculate the Obukhov length L in equation I.1 to determine whether the change 

in the observed wind shear was consistent with that seen from the wind speed 

measurements. As an alternative, the rate of change of temperature at one height was used 

as a proxy for the stability. The data from Figure IV.8 was used to plot the wind shear as a 

function of rate of change of temperature ΔT/Δt. Where ΔT is the temperature difference 

between the two consecutive instance represented by Δt. These results are shown in Figure 

IV.14. 

 
Figure IV.14. Wind shear as a function of rate of change of temperature. 

It can be seen from Figure IV.14 that there is a clear trend whereby the wind shear 

decreases as the rate of change of temperature increases, though clearly there is some 

degree of scatter in the data. Negative values represent cooling which lead to stable 

conditions. This inhibits vertical mixing and leads to an increase in wind shear as expected. 

Positive values relate to heating and convection from the ground leading to unstable 

conditions. This increases mixing and reduces wind shear which is again what would be 

expected. In addition, the sensitivity of the wind shear to stable conditions is greater than that 

for unstable conditions. This is consistent with the Businger-Dyer relations [81,82] which, 

when integrated, give the diabatic term m in equation I.1. Though further investigation is 

required and the lasso in Figure IV.14 reveals some influence of the surroundings, it is 

proposed that for a climate where strong diurnal heating and cooling is observed, the rate of 

change of temperature may be used as a proxy for vertical temperature gradient to infer 

atmospheric stability. 

IV.5  Seasonal behaviour 

The seasonal pattern of the wind speed can be seen in Figure IV.15(a) showing that the wind 

reaches its maximum in March and its minimum in September. Figure IV.15(b) shows that 

the monthly wind direction averages are close to the SSE for much of the year except for 
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May and June when the wind comes more from the South and during December when the 

wind comes more from the SE. 

(a) 

 

(b) 

 
Figure IV.15. (a) Monthly wind speed averages and (b) monthly wind direction averages computed for 

the whole study period. 

Figure IV.16 below shows the annual temperature pattern which has a double peak produced 

by a decrease in the ambient temperature during the rainy season in June, July and August. 

The wind shear shows an increase in the winter months which is consistent with cooler 

stable conditions and is lower in the summer when warmer convective conditions dominate. 

The exception to this is during the rainy season, particularly during July and August. 

 
Figure IV.16. Combined plot of the monthly averages for the wind shear (left axis) and the averages of 

the seasonal ambient temperature (right axis). 

S 

SSE 

SE 
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During this period, an abrupt increase in the wind shear is seen. To shed further light on this, 

the frequency distribution of the wind shear for these two months and for the months where 

the  minimum (March) and maximum (January) wind shear value are observed, is shown in 

Figure IV.17. The January and March distributions are fairly peaked while the distributions for 

July and August are more widely spread. It is clear that during the rainy season, a wider 

range of climatic conditions is observed and it is likely that the cloudier conditions are 

inhibiting ground heating and convection thus increasing the observed wind shear. 

 
Figure IV.17. Wind shear frequency distributions for the months January, March, July and August. 

IV.6  Remarks 

Wind speed and wind shear patterns have been studied for a site at the Autonomous 

University of Yucatán which experiences the tropical conditions of the north Yucatán 

Peninsula of western México. Simple averaged values were found to be inadequate in 

describing the wind shear characteristics at the site in question. An analysis based on 

direction and frequency distribution proved to be more effective in describing the vertical 

wind profile. 

Night time diurnal wind speed variations were identified with characteristics as expected for 

near coastal sites with lowest wind speeds blowing from land to sea. In contrast, during 

daytime, the higher winds coming from over the sea exhibit particular characteristics that 

reflect the two rather distinct fetches of offshore sea. At sunrise the wind tends to come from 

the west part of the Gulf of México while towards sunset, the highest wind speeds come from 

the north-east of the Gulf of México and the east of the Caribbean Sea where sea 

temperatures are rather different. 

An analysis of the rate of change of temperature showed a correlation between wind speed 

and rate of change of temperature reflecting stable conditions during periods of cooling and 

unstable conditions during periods of heating. Though more data would be required to 

investigate this further, it is proposed that rate of change of temperature may be used as a 

proxy for vertical temperature gradient to infer atmospheric stability when temperature 
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measurements are only available at one height, particularly where winds are dominated by 

thermal conditions.  

The seasonal characteristics of the wind shear appear to be mainly driven by the 

temperature changes with some anomalous values during the rainy season which reflect 

cooler conditions and lower levels of convection. 

In summary, the study illustrates that a complex coastal environment, as provided by the 

proximity of both the Gulf of México and Caribbean Sea with their different sea conditions, 

can result in unusual wind characteristics, and in particular, non-standard diurnal wind 

variations and shear profiles.  

At this stage, three different dimensions of the wind characteristics in the Yucatán Peninsula 

have been addressed: Temporal (long-term), spatial (short term, horizontal) and vertical wind 

profile (inland). Considering, the results presented in chapter III for the buoys in the 

surroundings seas, which reveals high wind patterns, and the current importance of the 

offshore wind power for the future use in the Yucatan Peninsula; the next chapter will present 

a comprehensive study of the wind characteristics in a site located offshore of the North 

coast of Yucatán Peninsula. 



R. Soler-Bientz PhD Thesis   Offshore wind characteristics 
 

84 
 

VV    OOffffsshhoorree  wwiinndd  cchhaarraacctteerriissttiiccss  

 

 

 

In order to complete the analysis of the wind characteristics for the 

Yucatán Peninsula, this chapter presents a study of the properties of 

the offshore wind close to the North coast of the Yucatán Peninsula. 

Around two years of measurements were recorded using a 

communication tower installed on a pier which extends 6.65km from 

the coast. The results show that the offshore wind is thermally driven 

by differential heating of land and sea producing sea breezes which 

veer to blow parallel to the coast in the late afternoon under the action 

of the Coriolis force. Mast measurements of wind speed and 

temperature suggested largely unstable conditions, yet the observed 

shear was greater than that predicted using standard Monin-Obukhov 

theory. To investigate further, a dataset of sea surface temperatures 

derived from satellite thermal maps was combined with the onsite 

measured data to study stability measures at different measurement 

heights. The results potentially suggested the development during the 

day of a shallow Stable Internal Boundary Layer which occurs when 

warm air from the land advects over the cold sea.  
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V.1  Introduction 

In the previous chapters the temporal, spatial and vertical wind characteristics were studied 

for sites located inland and onshore of the Yucatán Peninsula. Also, a preliminary analysis of 

the winds for the Caribbean Sea and the Gulf of México was presented in chapter III  section 

III.6  to support the analysis of these wind patterns. In order to complete the evaluation of the 

wind characteristics, this chapter presents a study of data recorded over a period of around 

two years 6.65km offshore of the North coast of the Yucatán Peninsula. The data were 

recorded using a 25m height communication tower installed at the end of a long pier that 

runs almost perpendicular to the shoreline. These data were analysed in order to study the 

characteristics of the wind speed and direction as well as the wind shear at the site and how 

it varied as a function of atmospheric stability. 

V.2  Site description 

The site that was available for the offshore study in this research project is located at the end 

of the “Progreso” pier. This pier extends 6.65km into the Gulf of México from the North shore 

of the Yucatán Peninsula with geographical coordinates: 21°20’45.18”N, 89°40’17.32’W. The 

mast erected on this pier that was available to this study will be referred to as the API tower. 

Table V.1 below shows satellite images of the pier and the location of the measurement 

tower close to the end of the pier on its east side. 

Table V.1 (a) Location of the “Progreso” pier in relation to the Yucatán Peninsula, (b) location relative 
to the North shore, (c) One kilometre radius and (d) 250m radius around measurement tower. 

(a) (b) (c) (d) 

    
 

The terrestrial view of the API tower in Table V.2 shows a solid cylinder, located above the 

pier surface, of 1m diameter at the tower base and 70cm at the top of the tower. An 

autonomous monitor system including sensors, a data-logger and a remote communication 

device was configured, installed and operated as part of the PhD research project. The 

relative position of the sensors, wind and air temperature, as well as the surroundings is also 

shown in Table V.2. 
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Table V.2 Different terrestrial views of the measurement tower showing the location of the tower on the 
pier and the position of the sensors on the tower. 

 

  
 

Surrounding panoramic views are presented in Table V.3 below around the North, South, 

East and West directions. These images were taken from the top of the tower at 25m height 

and reveal an almost clear fetch for the wind coming from the East and North directions. A 

long road (around 6.65km) is located in the South direction and an area of approximately 

1km long by 500m wide covered by isolated buildings of up to 4m height is located to the 

West. 

Table V.3 Panoramic views of surrounding areas taken at 25m height above the pier surface. 
 Upper view Side view around the tower from 25m height 
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V.3  Onsite measurements 

The parameters measured by the sensors installed on the API tower are listed in Table V.4 

below. The sensor heights are given relative to the base of the API tower mounted on the 

pier surface. These sensors were installed on a boom at a distance of at least 1.5m from the 

side of the tower. 

Table V.4. Measurement parameters. 
 Parameter Unit Sensors height 

a.g.l. [m] 
Orthogonal Ultrasonic anemometer  

Gill WindSonic 2-D 
Wind Speed m/s 10 and 25 

Wind Direction Degrees 10 and 25 
Vaisala CS500 Temperature  °C 10 and 25 

 

Table V.5 shows the main operational characteristics of the installed sensors. The orthogonal 

wind sensor is a digital one which measured variations in the speed of two perpendicular 

ultrasonic beans to infer the wind speed and wind direction on the sensor plane. More details 

of all the sensors and devices installed as well as a scheme of the whole measurement 

system can be seen in Appendix VIII.2 . 

Table V.5. Summary of the main sensor characteristics 

Characteristics 
Sensors 

Wind Speed Wind Direction Air Temperature 
Measurement Range 0 – 60m/s 0 – 360° - 5°C to 95°C 

Operation Temperature -35°C to 70°C -35°C to 70°C - 5°C to 95°C 
Uncertainty ±2% ±3° ±0.2°C 
Resolution 0.01m/s 1° 0.1°C 

 

The measurements were taken during 23 months starting in August 2007. A total of 87470 

10-minute averaged values were available after filtering for measurement errors. Figure V.1 

show the data available for each month over the whole measurement period. As can be 

seen, less than the 50% of the data were available during May and July due to maintenance 

problems at the end of the first year of measurement. 
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Figure V.1. Data availability by month over the whole measurement period. 

V.4  Effects of the solid mast on the measurements 

In order to evaluate the effect of the solid cylindrical tower on the measurements made at 

API mast, a second lattice tower (API2) located approximately 50m from the API tower was 

configured with two sets of wind and air temperature sensors, see Table V.6 (a) and (b) 

below. One set of sensors was installed at 10m height and the other one at 16.5m height 

which was the highest available position on the API2 tower, see Table V.6 (d). For this 

reason, an additional set of wind and air temperature sensors was also temporally installed 

at 16.5m height on the original API tower, see Table V.6 (c). The sensors installed had the 

same operational characteristics as those installed on the API tower, see Table V.5. 

Table V.6 (a) Locations of API and API2 towers. (b) A view of API2 from API tower. Sensors position 
on API (c) and API2 (d) masts. 

(a) (b) (c) (d) 

    
 

Table V.7 below shows the fetches (distances from mast to pier edge) for the main 

directional sectors for both measurement towers. These directional sectors, as can be seen 

in section V.5 , contained the majority of the winds observed during the study period. 
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Table V.7 Distance from the mast to the edge of the pier (fetch) at (a) API and at (b) API2 for each 
directional sector. 

(a) (b) 

 

Dir Fetch 
[m] 

N 50 
NNE 40 

NE 34 
ENE 40 

E 50 
ESE 74 

SE 102 
SSE 220 

 

 

Dir Fetch 
[m] 

N 52 
NNE 40 

NE 44 
ENE 40 

E 41 
ESE 46 

SE 61 
SSE 117 

 
 

During 20 days, between 27/05/2009 and 15/06/2009, 2465 measurements of 10 minute 

averages of wind speed and air temperature were simultaneously measured at 10m and 

16.5m heights on both towers API and API2. Figure V.2 and Figure V.3 show scatter plots of 

the data measured simultaneously on the two towers with a line of best fit shown in each 

case. 

Figure V.2 shows that there was a relatively poor correlation between the wind speeds 

measured at 10m height but that the correlation coefficient increased significantly at 16.5m 

height. As the characteristics of both towers are the same at both measurement heights, the 

low correlation at the 10m height is not produced by the structure of the towers but by the 

surrounding conditions, see Table V.2 and Table V.6, or by different atmospheric conditions 

at the two measurement heights. 

  
(a) (b) 

Figure V.2. Correlation between the ten minute averages of wind speed at API and API2 for both 
measurement heights: (a) 10m and (b) 16.5m. 

Figure V.3 shows the air temperature correlation. It can be seen that there is no significant 

difference between the slope and the correlation coefficient at both heights. This would 

indicate the temperature measurements at the two masts were consistent. 
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(a) (b) 

Figure V.3. Correlation between the ten minute averages of air temperature at API and API2 for both 
measurement heights: (a) 10m and (b) 16.5m. 

V.5  Wind speed patterns 

In this section, the results of the statistical analysis applied to the ten-minute averages for the 

wind speed will be presented. Firstly, the distribution of the data measured in directional 

sectors is studied on three different time scales: over the entire study period, by season and 

by time of day. Then, in the following two subsections, the averages of the wind speed data 

and the frequency distribution of the measured wind speeds are presented by direction 

sector, season and time of day. 

Directional distribution of the measurements 

The distribution of the direction data using 22.5 degree bins to cover 16 directional sectors is 

shown in Figure V.4. The symbol “lo” will represent the 10m height and “hi’ will represent 

25m height in the next figures of this chapter unless any other meaning is specified. 

Figure V.4(a) shows that the winds at both measurement heights are mainly distributed in a 

region from the N to the SSE sectors, in a clockwise direction. The sectors outside of this 

region receive just less than 1% of the winds available. The majority of the wind direction 

distribution is clustered around a principal maximum in the NE-ENE sectors and around a 

secondary maximum in the ESE-SE sectors. 
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(a) (b) 

Figure V.4. Frequency distribution by direction of the measurements over the whole study period: (a) 
at both measurement heights and (b) during every season for the “hi” height measurements. 

In Figure V.4(b), the months were grouped by season: Winter (December, January and 

February), Spring (March, April and May), Summer (June, July and August) and Autumn 

(September, October and November). Then, frequency distributions were grouped on a 

single chart of plots in order to simplify the comparison among the four seasons. The 

distribution of wind direction for each season at the “hi” height shows that all seasons 

displayed broadly the same distribution shown in Figure V.4(a) but there is some variation in 

the fraction of measurements in the NE-ENE sectors, with the greatest number seen during 

the Autumn season. 

Figure V.5 shows, every three hours during the day, the frequency distributions of the data 

measured for each directional sector over the whole study period. The time period when the 

atmosphere goes from cooling to heating is shown in Figure V.5(a) from midnight up to 9:00 

in the middle of the morning. The transition between heating and cooling, from midday to 

21:00 hours, can be seen in Figure V.5(b). 

  
(a) (b) 

Figure V.5 Directional frequency distributions for the data measured at 8 different hours over the whole 
study period: (a) from midnight up to before midday, (b) from midday up to before midnight. 

Figure V.6 shows the frequency distributions of the main 8 directional sectors, from N to SSE 

during the diurnal cycle, using the measurements recorded over the whole study period. The 

distributions for directional sectors between E and SSE shown in Figure V.6(a) represent the 
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contribution of the winds coming from the land located at the North East of the Yucatán 

Peninsula, see Error! Reference source not found.(a) and Table V.7 (a). The winds 

coming from the sea located around the North East of the Gulf of México are represented by 

the directional sectors from N to ENE, see Figure V.6(b). 

  
(a) (b) 

Figure V.6 Diurnal frequency distributions for the main directional sectors over the whole study period: 
(a) for winds coming from the land, (b) for winds coming from the sea. 

Figure V.5(a) and Figure V.6(a) indicate that in the morning the wind is coming 

predominantly off the land, but this starts to back towards the NE between sunrise and noon. 

Figure V.5(b) and Figure V.6(b) show that between 12:00 and 15:00 the wind is coming 

predominantly from the sea. Later in the afternoon and evening the wind veers somewhat so 

that it is more parallel to the coast. This would seem indicative of a thermally driven sea 

breeze developing off the North coast of the Yucatán Peninsula which changes direction 

during the late afternoon as the Coriolis force takes effect. 

Figure V.7 below shows a diagram summarizing the hourly periods for the dominant wind in 

each of the main directional sectors. It can be observed that at 09:00 in the morning, there is 

a transition period with no particular dominant direction when the land breeze is diminishing 

and the sea breeze begins to build up. 

 

Figure V.7 Diagram for the directions of the dominant wind during the diurnal cycle. 
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Wind speed averages 

The aggregated 10 minute wind speed averages are shown in Figure V.8 (a), (b) and (c) as a 

function of direction, time of day and month of the year, respectively. The highest wind 

speeds are seen to come from the ENE direction which also shows the greatest difference 

between the “hi” and “lo” wind speed averages with approximately 2m/s faster average wind 

speed at “hi” height. This wind coming off the sea tends to be greater in magnitude than 

those off the land which probably reflects the lower surface roughness. 

 
(a) 

  
(b) (c) 

Figure V.8. Wind speed averages over the whole study period for each direction (a), diurnal cycle (b) 
and seasonal pattern (c). 

Figure V.8(b) shows that there is a relatively constant wind speed (WS) and wind direction 

(WD) from midnight to early morning when the winds are mainly coming from the land around 

the 90 degree direction, see Error! Reference source not found. (a) and (b). From early 

morning to 14:00 in the afternoon, the winds gradually increase their intensity changing their 

direction to North East. At 16:00, the maximum speed is reached and the difference between 

the “hi” and “lo” wind also reaches its maximum. The wind direction then returns to 90 

degrees from 16:00 to midnight while the wind speed decreases gradually over this period. 

This is much like the behaviour at RIO described in Chapter III section III.5.2 reflecting their 

similar coastal locations. The behaviour seen at these sites represents the combination of 

thermally driven winds, the effect of the sea-breeze and the effect of surface roughness, 

where the winds coming over the smoother sea fetch tend to be higher. 
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Figure V.8(c), shows a decrease in the wind speed in June, July and August; followed by a 

peak during September and a relatively constant wind speed during the rest of the year. The 

mean wind direction shows that the highest wind speeds are observed when the wind is 

coming from the ENE-E and reduce when the winds come from the ESE. This behaviour is 

again consistent with conditions described in the previous paragraph when analysing the 

diurnal behaviour. 

Frequency distribution of the recorded wind speeds 

Figure V.9 shows the wind speed frequency distribution at both measurement heights for the 

whole study period. It can be seen that almost 60% of the “hi” wind speeds are between 

5.5m/s and 9.5m/s. 

 
Figure V.9. Frequency distribution of the wind speeds over the whole study period at both 

measurement heights. 

Figure V.10 shows the frequency distribution of the wind speed grouped by direction, time of 

day and season. In the case of the wind direction, four groups were selected considering the 

results of the previous chapters and the results shown in Figure V.4(a). Winds coming from 

the directional group NE-SSE represent more than 73% of the total available winds while 

less than 2% of the wind comes from the SSW-WSW group, see Figure V.10(a). 

The diurnal period was divided into three groups, see Figure V.10(b), based on the behaviour 

shown by the wind speeds in Figure V.8(b). The period between 15:00 and 20:00 contains 

the strongest winds distributed around 7.5 - 8.5m/s as can be appreciated from the position 

of the distribution peak and from the greater proportion of wind located between 9.5m/s and 

15.5m/s. 
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(a) 

 

(b) 

 

(c) 

 
Figure V.10. Frequency distribution of wind speed over the whole study period at the “hi” height: (a) for 

four directional groups, (b) for three periods within the day and (c) during each season. 

The strongest correlation between the wind direction and the diurnal pattern, previously 

presented, is consistently confirmed by the Figure V.10 (a) and (b). The distributions of wind 

for each season are shown in Figure V.10(c). The summer shows the weakest winds, whilst 

the spring season shows a significantly larger fraction of higher wind speeds and the autumn 

season displays a double-peaked pattern. This double peak generated by the increase in the 

wind speed in September, see Figure V.8(b), is almost certainly related to the end of the 

Hurricane season which usually includes a number of high wind speed events coming from 

the North to North-East sectors which is  also confirmed in Figure V.4(b) for the Autumn 

season. 
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V.6  Temperature analysis 

This section begins with the study of the air temperature originally measured at the API tower 

at the two measurement heights. Then, the atmospheric stability at the mast is inferred from 

onsite and remote sensing measurements and discussed. For this purpose, satellite sea 

surface temperature (SST) data were extracted and combined with onsite measurements. 

This section concludes by presenting the vertical temperature profile inferred from the 

measurements. 

Onsite air temperature 

Figure V.11 shows the average air temperature as a function of time of day and season at 

both measurement heights over the whole study period. The diurnal pattern in Figure V.11(a) 

shows a maximum around 12:00 which decreases steadily reaching a minimum at 06:00. A 

difference of approximately 2°C between the temperature at “lo” and “hi” height is present 

during the day which on this initial evidence would suggest a very unstable convective 

boundary layer. 

  
(a) (b) 

Figure V.11. Average of ambient temperature at both measurement heights: (a) Diurnal pattern and (b) 
Seasonal pattern 

The seasonal pattern in Figure V.11(b) displays the double peak already described in 

previous chapters, sections II.3 and III.5 which is related to the rainy season in June-July. 

V.6.1  Satellite thermal images 

The GOES SST data was obtained from the JPL Physical Oceanography DAAC (Distributed 

Active Archive Centre) [63]. Using a decoding algorithm from NOAA, an application was 

developed to extract SST data expressed in degree Celsius from binary data format satellite 

maps. The following steps were implemented:  

• Identify the SST map of the Gulf of México region between the Longitudes 80°W and 

98°W; and the Latitudes 18°N and 32°N. 
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• Extract the region immediately around the study area (“Progreso” Pier) between the 

Longitudes 89.30°W, 90°W; and the Latitudes 21.25°N, 21.70°N containing an array of 

18x18 SST data points. 

• Extract the closest data point to the API measurement tower: Latitude 21.345836°N, 

Longitude 89.671496°W. 

Table V.8 (a) and (b) show the geographical areas of the Gulf of México and the selected 

region around the “Progreso” Pier respectively. Their extracted SST images are shown in 

Table V.8 (c) and (d). 

Table V.8 (a) Gulf of México and (b) “Progreso” pier areas with an example of an SST temperature 
map for each region (c) and (d). 

(a) (b) 

  
(c) (d) 

  
 

Table VIII.4., Table VIII.5. and Table VIII.6. in Appendix VIII.3  show 24 hour SST thermal 

maps for four example days for the Gulf of México area. 
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V.6.2  Correlation between Satellite SST and underwater temperature measurements 

There were 105 days available of underwater temperature recorded at the API site between 

2003 and 2006. These data was measured by a local coastal meteorological station using an 

instrument located at a water depth of approximately 3m with measurements averaged over 

each hour. During the period of measurement, 2046 temperature values were available 

corresponding to 81% availability for the recording period. The SST data for the same 105 

days were extracted from the GEOS database yielding 1090 hourly values, representing 43% 

availability. A total of 890 hourly values (35%) were available simultaneously. 

 
Figure V.12. Available SST measurements during the correlation period for onsite (API), satellite 

(GEOS) and the synchronized data where values from both sources were available simultaneously 

Figure V.13 shows examples for six different days of hourly SST measured underwater at the 

API site and available from the GEOS Satellite. 
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(a)  (b)  

  
(c)  (d)  

Figure V.13. Examples of hourly behaviour for: (a) and (c) underwater measurements of SST at API 
site; and (b) and (d) GEOS Satellite SST  

The correlation for the same six day period between the measurements from the underwater 

sensor at the API site and from GEOS is shown in Figure V.14. The same figure shows also 

the daily average values during the correlation period. 

  
(a) (b) 

Figure V.14. Correlation between the SST measured from GEOS Satellite and the underwater 
measurements at API site: Examples of hourly data for six days in the correlation period (a) and daily 

average for the whole correlation period (b). 
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It can be seen that there is no significant correlation between the two datasets. The data 

measured from the GEOS satellite show a stronger diurnal thermal cycle than the 

underwater data which generally shows little diurnal variation. For the sample days, just 

November 28th 2006 has a slight correlation with the satellite SST. This could be caused by 

the fact that the underwater temperature was measured at 3m depth whilst the satellite SST 

data reflect the conditions of the environment immediately above the sea surface which is 

more significantly influenced by the atmospheric Surface Boundary Layer (SBL) conditions. 

For the purpose of the research presented in this thesis, the satellite SST represents a more 

useful parameter than the underwater temperature to study the structure of the SBL at the 

API site. 

V.6.3  Satellite SST data for the study period 

A time period between 25/07/2007 and 26/06/2009 was selected covering the period of 

measurements recorded on the API mast (703 days). A total of 38.5% SST values 

concurrent with the mast measurements was successfully extracted from the GEOS satellite 

thermal images corresponding to 6500 hourly values. Figure V.15 below shows the 

distribution of SST data available binned by hour of the day and averaged over the entire 

study period. 

 
Figure V.15. SST data available from GEOS Satellite during the day averaged over the entire study 

period between 25/07/2007 and 26/06/2009. 

Figure V.16 below shows hourly SST patterns for four example days selected from those 

days that had the highest availability of daily data. It can be seen that on some days, e.g. 2nd 

December 2007, there is little diurnal variation, but on others, e.g. the 8th May 2009, a 

definite diurnal cycle is observed. 
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Figure V.16. Four examples of diurnal SST pattern from the GEOS Satellite. 

The set of 24 hour satellite thermal images for the Gulf of México region for these four days 

can be seen in Table VIII.4, Table VIII.5 and Table VIII.6 of Appendix VIII.3 . 

Figure V.17(a) below show the daily averages of the satellite SST data over the whole study 

period. The peaks in the seasonal temperature pattern discussed in previous chapters, 

sections II.3 and III.5 , are identifiable in September 2008 and May 2009 as well as the 

minimum between December and January of each year. 

(a) 

 

(b) 

 
Figure V.17. Averages of SST from the GEOS Satellite over the whole study period: (a) daily and (b) 

hourly. 
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Hourly averages of the Satellite SST over the whole study period were computed and are 

shown in Figure V.17(b). Though the SST varies little during the day, on average there is 

evidence of a diurnal cycle. 

V.6.4  Vertical temperature profile 

Averages of the measured temperature as a function of height have been plotted in Figure 

V.18, for the whole study period, for every three hours during the day. The temperature 

trends over the day at all heights display a diurnal cycle with the highest temperature at noon 

and the lowest just around sunrise, e.g. 06:00. However, the ranges of temperatures differ: 

there is range of around 6 degrees Celsius at 10m and 25m height, but the range at the sea 

surface is less than 2 degrees Celsius. This is as one would expect due to the high thermal 

mass of the water. What is interesting to note is the lapse rate between 0m and 10m and that 

between 10m and 25m height. The temperatures at 10m and 25m would suggest very 

unstable conditions throughout the day, whereas those between 0m and 10m would suggest 

stable or close to neutral conditions with the most stable conditions at midday and the least 

stable (closer to neutral) at sunrise (06:00). 

(a) 

 

(b) 

 
Figure V.18. Vertical temperature profile using the measurements from the GEOS Satellite for SST 
and from the API mast at “hi” and “lo” heights: (a) average and extreme values over the whole study 

period (b) hourly averages for selected times of the day. 
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V.7  Offshore wind speed ratio as function of stability 

In this section, the ratio of the wind speeds measured at “hi” and “lo”’ heights have been 

analyzed as function of the stability through four stability measures obtained from the 

Gradient and Bulk Richardson numbers. The expressions to compute both Richardson 

numbers, equation (I.4) and equation (I.5), were presented in the general introduction. The 

relation presented in equation (I.3) was used to compute the stability parameter “z/L”. Strictly 

speaking this relationship is only valid for the Gradient Richardson number, though in this 

case it is assumed to be a reasonable approximation for the Bulk Richardson number. The 

wind speed ratio was then calculated using Monin-Obukhov similarity theory using equation 

(I.6). 

Monin-Obukhov similarity theory was developed for stationary steady-state flow conditions. 

Thus, two filtering strategies were considered in order to exclude events which were unlikely 

to be representative of a steady state: 

• To filter large variations in consecutive mean wind speed values (WS Filter). Each ten 

minute average of wind speed was compared to its two previous and to its following 

neighbours. Then, records with variations above a predefined Level of Filter (LoF) 

were discarded [30]. 

• To filter large variations of the standard deviation of the wind speed values (SD 

Filter). Samples for which the variation in standard deviation measured was above a 

predefined LoF were discarded. 

Several LoFs were analyzed and a 20% LoF was finally selected for both filtering strategies, 

as this was  the lowest LoF value for which no more than the 30% of the original measured 

data were discarded. Table V.9 below show the percentage of data filtered out for all the 

stability measures calculated. In the case of the Bulk Richardson number calculated from the 

SST, no standard deviation was available to apply the corresponding filter. 

Table V.9. Percentages of remaining data after the filters were applied for each stability measure. 
Filters WS Filter SD Filter 
Ri Tho-Tlo 78.25% 70.03% 
Rb Thi-Tlo 78.25% 69.38% 
Rb Tlo-SST 69.59%  
Rb Thi-SST 69.57%  

 

The percentage of data available after the filtering to exclude conditions outside of the steady 

states is significant higher than the one reported by other authors. In particular, Lange [30] 

studying the effects of the temperature profiles in offshore conditions reported around 50% of 

data available after filtering with similar parameters to the ones described above.  
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The ratio of wind speeds measured at “hi” and “lo” height were binned every 0.01 value of 

the stability measure z/L, where z was taken as the lower measurement height on the API 

mast. 

V.7.1  Stability measures derived from onsite measurements 

Figure V.19 shows the measured and calculated values of the wind shear using 0.0003 as 

sea surface roughness length. The Obukhov length L used to bin the ratio of wind speeds 

was computed using the Gradient Richardson number Ri and the Bulk Richardson number 

Rb. Wind speed and air temperature measured at ‘lo” and “hi” height on the API tower were 

used to derive the Gradient Richardson number. Wind speed at the higher measurement 

height and both air temperatures were used to derive the Bulk Richardson number 

represented by the symbol “Rb Thi-Tlo” in Figure V.19.  

No filter was applied to the wind speed data used in Figure V.19(a). The mean wind speed 

filter described above was applied in Figure V.19(b). The standard deviation filter described 

above was applied in Figure V.19(c). In general, the ratio of the wind speeds is not 

represented well by applying the Monin-Obukhov similarity theory. It can be seen that the 

filter for the mean wind speed variation does not significantly change the binned values of Ri 

while the binned values of “Rb Thi-Tlo” are closer to the theoretical ratio. In contrast, applying 

the standard deviation filter makes a significant difference particularly to “Rb Thi-Tlo” 

although the number of values is now significantly reduced, Figure V.19(c). 
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(a) 

 

(b) 

 

(c) 

 
Figure V.19. Ratio of wind speed at “lo” and “hi” heights versus the stability measure z/L calculated 
using the Gradient Richardson number (Ri) and Bulk Richardson number (Rb Thi-Tlo). (a) No filter 

applied, (b) Filter applied to the wind speed variations and (c) Filter applied to the wind speed standard 
deviation. 

Figure V.20 shows the frequency distribution of the stability measure z/L based on Ri and 

“Rb Thi-Tlo”. The values at the far left of the graph represent the frequency for z/L <=-.21. 

Similarly, the value on the far right represents the frequency for z/L>=.01. 

It can be seen that the use of either Ri or “Rb Thi-Tlo” to calculate the stability measure z/L 

makes a significant difference. It is well known that the use of Ri for calculating the stability 

can be problematic when there are small differences in the wind speed between the two 

heights. This problem is likely to be more acute when the situation is predominantly unstable 

as opposed to stable as the wind shear will be expected to be less. On the other hand, “Rb 

Thi-Tlo” is only an approximation to Ri and using the relationships in the General Introduction 

to relate Rb to z/L may not necessary be so accurate. 
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Figure V.20. Frequency distributions of the stability measure z/L calculated using Ri and “Rb Thi-Tlo”. 

V.7.2  Stability measures derived from Satellite SST measurements  

Figure V.21 shows the ratio of wind speed at both measurement heights as a function of the 

stability measure z/L using data filtered with the wind speed variation filter described at the 

beginning of this section and 0.0003 as sea surface roughness length. The stability measure 

was calculated using the Bulk Richardson number with SST and air temperature at “lo" 

height (a) and “hi” height (b). A greater scatter in the values is observed in this case 

compared with the results presented above in Figure V.19. It should be noted that these 

results were based on considerably fewer data as they were produced with hourly data 

synchronized with available SST data from the GEOS satellite. It can be seen that neither 

case is particularly consistent with the theoretical wind shear, though the higher 

measurements give a slightly better fit. 

  
(a) (b) 

Figure V.21. Ratio of wind speeds at “lo” and “hi” height as function of the stability measure “z/L” using 
SST and air temperature at “lo” height (a) and “hi” height (b) to compute the Bulk Richardson number. 

The filter for mean wind speed variations was applied in both cases. 

Figure V.22 shows the frequency distributions of the stability measure z/L calculated using 

the SST and air temperature at “lo” and “hi” height. The bin at the far left of the graph 

represents the frequency for z/L <= -.21. Similarly, the bin at the far right of the graph 

represents the frequency for z/L >= .20. In this case, the stability computed from Tlo-SST 

shows a higher proportion of data in the highly stable region, as was observed from the lapse 
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rate patterns in Figure V.18. The value calculated using Thi-SST shows a distribution shifted 

to more neutral conditions. 

 
Figure V.22. Frequency distributions of the stability measure z/L computed from the SST and air 

temperature at “lo” and “hi” heights. 

V.8  Distribution of the atmospheric stability classes 

In this section, the stability classes inferred using four methods will be analyzed in more 

detail looking at diurnal, seasonal and directional dependence in order to cast further light on 

the variation in wind speed and direction at the API site off the Yucatán Peninsula. Figure 

V.23 below shows the distribution of the stability classes over the whole study period for the 

stability measure calculated from the Gradient Richardson number (Ri) and for the three 

stability measures calculated from the Bulk Richardson number (i.e. “Rb Tlo-SST”, “Rb Thi-

SST” and “Rb Thi-Tlo”). It can be seen that there is a change from a predominance of very 

stable states to very unstable states when the parameters used to calculate the stability 

measures are measured at greater height.  

 
Figure V.23. Distribution of stability classes during the whole measurement period using as stability 

measure: (a) “Rb Tlo-SST”, (b) “Rb Thi-SST”, (c) “Rb Thi-Tlo” and (d) “Ri”. 

The distribution of stability classes calculated using “Rb Tlo-SST” suggest a very stable layer 

close to the sea surface whereas the layer above, inferred using “Rb Thi-Tlo” suggest a 
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much more unstable or near neutral layer. This qualitative description will be estimated 

quantitatively in the next section. 

Figure V.24 show the directional distribution of stability states, excluding the sectors between 

SSW and WNW, which receive less than 1% of the wind available (see Figure V.4). It can be 

seen that there is a decrease in stable states and an increase in unstable states when the 

winds approach the ESE direction which represent the higher contribution of the winds 

coming from the land, see Figure V.4. Looking back at Figure V.5(a), the wind will tend to 

come from the ESE direction sector during the night which would be when cooler winds 

would be more frequently blowing over warmer water. The greatest number of stables states 

are observed when the winds are coming from the sea in the NE direction which occurs most 

frequently (see Figure V.5(b)) during the late afternoon and early evening when the land 

surface (and thus the wind which originate from off the land) is more frequently warmer than 

the sea. 

  
(a) (b) 

Figure V.24. Stability classes for each directional sector using as stability measure: (a) “Rb Tlo-SST” 
and (b) “Rb Thi-SST”. 

The diurnal behaviour of the stability classes is shown in Figure V.25. In this case clear 

diurnal patterns are seen for the fraction of stable and unstable states, consistence with the 

preliminary analysis of temperatures shown in Figure V.18(b). It can be seen that the fraction 

of stable states decreases to a minimum at sunrise (close to 06:00) when the air temperature 

is least, increasing to a maximum at midday (around 12:00) when the air temperature is 

highest. This is consistence with the results presented in the previous figure. 
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(a) 

 

(b) 

 
Figure V.25. Distribution of stability classes over the day using as stability measure: (a) “Rb Tlo-SST” 

and (b) “Rb Thi-SST”. 

Figure V.26 below, shows the seasonal distribution of stability classes confirming the 

previous results observed for the diurnal patterns. The fraction of stable states increases in 

the months with higher ambient temperatures. 

  
(a) (b) 

Figure V.26. Seasonal distribution of stability classes using as stability measure: (a) “Rb Tlo-SST” and 
(b) “Rb Thi-SST”. 

The results presented above, would suggest that initially, after sunrise, the wind blows off the 

land over the sea. This results in a layer of warm air advecting over the sea and the 
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development of a thin Stable Internal Boundary Layer (SIBL). As the day develops, a more 

onshore sea breeze results which eventually veers to be parallel to the coast and after 

sunset reverts to a more offshore breeze with cooler air advecting over the sea and a 

diminishing of the SIBL with the development of a more Convective Boundary Layer (CBL) at 

night until the cycle is repeated the following day. This is an example of an inverted diurnal 

cycle (compared to the land). 

V.9  The Stable Internal Boundary Layer. 

For conditions where the wind blows off warmer land onto colder sea, a stable thermal 

internal boundary layer SIBL grows offshore as a result of the advection, driven by the 

geostrophic wind. This is due to the wind flow offshore of well mixed air from the land 

resulting from convective turbulence created by the heating of the land from sunrise until the 

early afternoon, Stull [85], see Figure V.27. If the height of the SIBL is denoted (δθ(x)) as a 

function of the distance X to the coast, then the growth rate, ∂ δθ(x)/∂x, is less than 10-3 [86], 

thus this SIBL grows very slowly downwind as can be seen from the values shown in Figure 

V.27 for δθ(100km). 

 

Figure V.27. Schematic of the SIBL profile (δθ(x)) created when warn air is advected over colder sea 
(θs< θl). 

Through aircraft observations [87], a two dimensional numerical mesoscale model and a 

physical model [86]; Garratt reported an expression, see equation (V.1), to describe the SIBL 

height (δθ(x)) as a function of the fetch (X), the component of the geostrophic wind normal to 

the coast (U) and the potential temperature difference between the land mixed-layer air and 

the sea-surface (Δθ):                 

δθ(x)= C X1 2⁄  U �g ∆θ
θ�
�
−1

2�
   with “C” independent of X and equals to 0.014 V.1 
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This result was analyzed for steady state and diurnally varying flow and was found to be 

consistent with Mulhearn [88], Hsu [89], and Sutton [90]. Clear diurnal variations in the SIBL 

up to 150km from the coast and significant turbulence levels at the height of and above the 

SIBL up to a distance of 50km from the coast were also reported. Similar behaviour is 

observed in the API site at 6.65km from the shore, where the diurnal pattern can be seen 

and the number of unstable states increases with height revealing a higher level of 

turbulence for “Rb Thi-SST”, see Figure V.25. 

A simpler approximation of equation (V.1) to determine the height of the SIBL in kilometres 

as function of the fetch downwind in metres was also reported by Hsu [91]: 

𝛿𝛿θ(x)= 12.28 X0.59  V.2 

 

This equation is very useful to estimate the approximate average height of the SIBL for the 

following conditions: 

• For fetches (X) between 3.2km and 107.8km. 

• For a component of the geostrophic wind normal to the coast (U) of between 6.7m/s 

and 17.9m/s. 

• For a potential temperature difference between the land mixed-layer air and the sea-

surface (Δθ) of between 3.1°K and 10°K. 

The average height of the predicted SIBL at the API site calculated using equation (V.2) with 

a fetch of approximately 6.65km is 35.4m. The height of the SIBL at a specific hour can be 

estimated from equation (V.1) using the results presented in chapter IV section IV.4  (which 

corresponds with the evaluated site closer to the API site), where at midday: Δθ=6.4°K, 

θ�=305.3°K and U=8.1m/s, after extrapolation to 300m height as suggested by Kaimal and 

Finnigan [92]. In this case, the height of the predicted SIBL at midday is approximately 

20.5m. These results confirm what was qualitatively stated in the previous sections: the 

sensor installed at 25m height is significantly influence by the turbulent conditions usually 

found at and above the SIBL height as reported by Garratt [86] which is consistent with the 

fraction of highly unstable states represented by “Ri Thi-Tlo” and “Rb Thi-Tlo”. 

V.10  Remarks 

The diurnal and seasonal behaviours identified in the previous chapters for the wind and air 

temperature have been consistent with the patterns resulted from the offshore analysis in 

offshore conditions at the North coast of the Yucatán Peninsula. 
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The wind speed and direction measured in the offshore conditions of the API site follow the 

expected pattern of a diurnal cycle produced by the difference in the heating rates between 

the land and the sea which drive alternating pressure gradients. There is also a significant 

influence of the Coriolis force which causes the sea breeze to blow in a direction more 

parallel to the shoreline of the North of the Yucatán Peninsula later in the afternoon. 

The wind shear at the API site is not well represented by Monin-Obukhov theory, partly 

because of the persistent thin SIBL observed at the site, whose height is frequently between 

10m and 25m with a larger level of turbulence intensity at the higher height which is close to 

the predicted height of the SIBL. 
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VVII    MMaaiinn  rreessuullttss,,  ggeenneerraall  ccoonncclluussiioonnss  aanndd  

rreeccoommmmeennddaattiioonnss  

Four main research subjects concerning the wind energy characteristics of the Yucatán 

Peninsula region have been comprehensively addressed for the first time in this thesis: 

• Trends in the temporal long-term behaviour of pressure, temperature, wind speed 

and wind direction have been identified using daily averages recorded by 

meteorological observatories of periods between 10 and 20 years.  

• The spatial distribution of hourly and monthly patterns of these meteorological 

parameters across the Yucatán Peninsula have been examined using ten minute 

averaged data recorded over an average period of four and a half years. 

• A comprehensive analysis of the vertical wind profile has been made in terms of the 

directional, diurnal and seasonal patterns on an inland site using measurements at 

two different heights over a year and a half. 

• A study of the offshore wind properties was made on a tower at 6.65km from the 

North coast of the Yucatán Peninsula for around two years using onsite and satellite 

measurements. 

The results derived from the research undertook in each chapter have been proved to be 

consistent among them. The main results obtained during the PhD research have been 

published in the scientific literature, see appendices VIII.4.1 , VIII.4.2 and VIII.4.3 , and 

presented in International Wind congress, see appendices VIII.4.4  and VIII.4.5 . The 

following integrated conclusions can be drawn from the research undertaken:  

• The long-term temporal patterns showed highly directional behaviour with the majority 

of winds coming from the East and East-South-East sectors. Therefore, those sites 

located further from the East coast of the Yucatán peninsula will be dominated by 

land-based wind which exhibits a larger degree of temporal variations on intra-annual 

and inter-annual timescales. 

• Weibull Probability Distributions give relatively good representations of the wind 

speed frequency distributions over the temporal long term period. Therefore, the use 

of such distributions would be reasonable in order to predict wind potential at sites 

around the Yucatán Peninsula. 
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• From the offshore buoy measurements, the atmosphere over the Western Caribbean 

appeared to be predominantly near neutral, whilst the atmosphere over the Eastern 

Gulf was predominantly unstable. These conditions produce particular spatial 

distributions of the wind with higher speeds on the North and North East coasts of the 

Yucatán Peninsula. 

• The wind climatology of the Yucatán Peninsula for the inland sites reflects their 

geographical position in relation to the East coast. Those sites located on the North 

coast exhibited mixed behaviour with characteristics of both inland and coastal sites. 

• The wind shear exponent of the empirical power law was inadequately represented 

by averaged values for inland conditions, as generally used by other authors. Instead 

of averages, directional and frequency distributions proved to be more effective in 

describing the vertical wind profile from the power law. 

• Near coast inland sites exhibited expected characteristics during the night time with 

lower wind speeds blowing from land to sea. In contrast, non-standard wind variations 

and shear profiles occur during the daytime when the higher wind speeds coming 

from over the sea exhibit particular characteristics that reflect the two rather distinct 

sea thermal conditions displayed by the Gulf of México and the Caribbean Sea. 

• The seasonal behaviour of the inland wind shear appears to be mainly driven by the 

temperature changes with the exception of the rainy season when the decrease in the 

air temperature reduces the effects of the convection processes. 

• A preliminary correlation was identified between inland wind speed and rate of 

change of temperature reflecting stable conditions during periods of cooling and 

unstable conditions during periods of heating.  

• The rate of change of inland air temperature may be used as a proxy for vertical 

temperature gradient to infer atmospheric stability when temperature measurements 

are only available at one height, particularly where winds are dominated by thermal 

conditions. However, more data and a thorough analysis would be required to 

develop this further. 

• The offshore wind speed and direction at the North coast follow the expected pattern 

of a diurnal cycle produced by the difference in the heating rates between the land 

and the sea which drive alternating pressure gradients. There is also a significant 

influence of the Coriolis force which causes the sea breeze to blow in a direction 

more parallel to the shoreline of the North of the Yucatán Peninsula during the late 

afternoon. 

• The offshore wind shear at the API site is not well represented by Monin-Obukhov 

theory, partly because of the persistent thin SIBL observed at the site, whose height 

is frequently between 10m and 25m and partly because of the number of non steady-

state events. 
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The results presented in this thesis have established for first time the basis for the 

development of a Yucatán Wind Atlas. Historical (long-term) and geographically distributed 

analysis have been established from the most reliable meteorological measurements which 

can be used to extrapolate the wind characteristics through Measure-Correlate-Predict 

algorithm to other regions in the Yucatán Peninsula. Nevertheless, future work needs to 

consider data collected at more than one height at several sites in order to analyse the wind 

shear profile and allow an accurate extrapolation to potential wind turbine hub height. 

The analysis of the offshore data revealed a non-uniform surface boundary layer and it is 

clear that more detailed profile measurements are required offshore to gain greater insight 

into the atmospheric boundary layer offshore. The application of numerical models, e.g. 

mesoscale models, would help to give more detail on the horizontal and vertical fluxes in this 

region. If offshore wind power is to be developed then this further work is necessary to 

provide confidence in the predicted wind speed at potential wind turbine hub height. 

It is also recommended that the data recoded at the offshore site be used be used to identify 

the behaviour of the rate of change of temperature as function of the other atmosphere 

stability parameter evaluated in the last chapter. It is also highly recommended to undertake, 

at the end of the research project, a carefully comparison of the temperature measure by the 

sensors used placing them at the same height and without any change in the connections 

conditions, in order to identify any calibration issue. 
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VVIIIIII    AAppppeennddiicceess  

VIII.1  Classified critical literature review 

Reflecting the wind data available for the Yucatán Peninsula, an initial detailed literature 

review was organized into three main groups, which later derived the three research 

dimensions defined in the introduction section:  

• Temporal assessments: related to research using at meteorological observations over 

at least a 10 year period, a limited number of sites compared with the whole study 

zone, and with typically daily average values.  

• Spatial assessments: related to research undertaken mainly using data from 

meteorological stations during time periods of less than 10 years at a large number of 

sites that cover the whole study zone and with data averaging periods no greater than 

an hour. 

• Inland vertical wind profile: Research from sites instrumented to study the wind 

resource at two different heights, generally at one site, specially installed for wind 

resource evaluation instead of meteorological purposes. These measured data 

should be recorded at least every two seconds and average values stored every 10 

minutes. 

The most up to date papers have been included in the critical review, chosen covering the 

three categories, and mainly dealing with close to coastal or island zones. A summary table 

of the publications included in each group followed by their chronological critical review is 

presented for each research paper. Each critical review included the following elements [84]:  

• Research: Title of the published paper.  

• Summary: Outline of the research undertaken considering five analysis areas: 

AAAnnnaaalllyyysssiiisss   aaarrreeeaaasss   MMMaaaiiinnn   qqquuueeesssttt iiiooonnn   tttooo   aaannnssswwweeerrr    iiinnn   eeeaaaccchhh   ssstttaaagggeee    
Purposes Aim of the research 

Context Where is the proposed study situated within the wider research field? 
Methods How the research was conducted? 
Results What was found? 

Conclusions Which are the meaning and implications of the obtained results? 

• Evaluation: A judgement of the research on the basis of the five analysis areas. 
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VIII.1.1  Temporal assessment 

The papers selected were published between 2004 and 2006. One of the papers deals with 

basic daily data while the others use hourly data. The sites cover two coastal zones and one 

inland site with study periods between 10 and 14 years. The Table VIII.1 below summarises 

the basic information for each paper.  

Table VIII.1. Temporal data researches. 

YYYeeeaaarrr    RRReeefffeee---
rrreeennnccceee   

SSStttuuudddyyy   
PPPeeerrr iiioooddd   
[[[yyyeeeaaarrrsss]]]    

AAAvvveeerrraaagggeee   
pppeeerrr iiioooddd   

MMMeeettt    
SSStttaaattt iiiooonnnsss   SSSiii ttteee’’’sss   lllooocccaaattt iiiooonnn   

2004 [11] 14 Hourly 5 Coastal locations of the Kingdom of Saudi Arabia 
2005 [9] 12 Hourly 7 Eastern Mediterranean region of Turkey 
2006 [41] 10 Daily 1 Zhurihe, Inner Mongolia region in China 

 

 

Critical reviews: 

 
Research:  
Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia 

[11]. 

 
Purposes: The authors propose to undertake a wind data analysis including seasonal and 

diurnal behaviour, energy generation and capacity factor for onshore sites of Saudi 

Arabia. 

Context: The authors draw attention to the environmental effects and energy potential of the 

wind energy in a global context. Some examples of the fundamental role played by the 

wind data analysis to properly evaluate the wind energy potential were also mentioned. 

After a brief exploration of previous works done in the Kingdom of Saudi Arabia, related 

with studding and using the wind energy potential, the authors summarise their 

motivations and establish that using relatively windy sites in the Kingdom of Saudi 

Arabia, analysis of seasonal and daily wind behaviour and calculation of the 

parameters related with wind energy generation will be the main content of the 

proposed research. 

Methods: Considering the availability of meteorological data, locations in coastal sites were 

chosen as data source. The following table summarizes the main described parameter 

of such sites: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  5 Meteorological stations in the coastal locations of the Kingdom 

of Saudi Arabia (Dhahran, Yanbo, Al-Wajh, Jeddah, and Gizan). 
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MMeeaassuurreemmeenntt  hheeiigghhtt  10m 
AAvveerraaggee  ffrreeqquueennccyy  Hourly 

SSttuuddyy  ppeerriioodd  14 years (1970-1983) 
DDaattaa  SSoouurrccee  Not directly specified 

Some general procedures to discard erroneous data values from the data bank were 

also presented. The authors did not introduce any formal research plan. 

Results: The long-term hourly mean wind speed data were used to estimate the mean 

values at 3 different heights (40, 50 and 60m above ground level a.g.l.) by means of 

the 1/7th wind power law. Then, the authors present the hourly mean wind speeds 

during the day (Diurnal behaviour) and the monthly mean wind speeds during the year 

(seasonal behaviour) at four different heights for each site as well as a comparison 

among all the sites at 10m height. Then, the percent frequency distribution at 10m was 

presented for all sites. 

The power curve of nine wind generators with power from 150kW to 2.5MW were 

considered to compute the energy output in MWh and the capacity factor at 10m and 

50m height for all study sites. 

Conclusions: The authors concluded that the seasonal variations were significant just in 

three (Dhahran, Yanbo and Gizan) of the five studied sites. It was also mentioned that 

the seasonal and diurnal behaviour match respectively the summer and daily electrical 

load requirements. The authors range Yanbo and Dhahran as the best sites in 

reference to their energy production and capacity factor. 
Evaluation: The topic of the study was introduced in general terms citing some previous 

investigations but despite of the purpose being clearly stated, the authors did not 

establish a clear relation between the proposed study and previous studies. The 

introduction section supports the proposed research using general arguments about 

the importance of the wind energy to Middle Eastern countries  

No specific explanations were provided to justify the selection of the five study sites 

and the chosen study period. The authors did not establish a research methodology 

and it was not explicitly expressed why the computations made were specially selected 

for the proposed study. A general procedure was described to validate the source data 

but there was not any mention of the relevant technical details of the sensors used. No 

arguments were presented to support the power selection of the wind generators 

included in the research and the brief description about how compute the energy output 

in “MWh” was not enough clear or it should have included the corresponding 

mathematical equation.  

The conclusions make a review of the obtained results in relation with the daily and 

yearly electric load but the author did not present any additional information to support 

this fact. In general, just qualitative conclusions were presented and finally the authors 
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match the conclusions with the results and the research purpose stating that “Yanboo” 

was the best site to install wind power generators. 

 

 

Research:  
The wind power potential of the eastern Mediterranean region of Turkey [9]. 

 
Purposes: The authors declared as research purpose: “to quantify the wind energy potential 

of the east Mediterranean region of Turkey and identify locations with the best wind 

source”. 

Context: The authors described some general arguments about the fast development of the 

Turkey, its energetic requirements and the potential of the wind energy in the region. 

Some results of previous papers issued about the wind power potential in Turkey and 

in other parts of the world were also presented. The authors indicated that the 

proposed research was dealing with sites not covered in previous studies about wind 

energy availability. 

Methods: The data were selected from seven sites located mainly in coastal regions. The 

following table summarizes the main described parameters of the sites: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  7 Met stations, Eastern Mediterranean region of Turkey 

MMeeaassuurreemmeenntt  hheeiigghhtt  Between 8 and 17m (in sites from 4 to 100m above sea level). 
AAvveerraaggee  ffrreeqquueennccyy  Hourly 

SSttuuddyy  ppeerriioodd  10 years (1992–2001) 
DDaattaa  SSoouurrccee  Turkish Meteorological Service 

A map with the study sites was presented as well as a table with the average directions 

of the wind speed for the seven study sites. 

Results: The Weibull parameters were computed for all sites using the last 5 years of the 

study period. The wind speed frequency distribution was plotted for each site and the 

daily behaviour of the hourly wind speed for all the sites were graphically presented, 

showing that all sites had the lowest wind speeds around the seven o’clock in the 

morning and the highest during the afternoon. Yearly mean wind speeds for all stations 

were also plotted in the same graph making evident which was the site with better wind 

resource. The monthly mean wind speed was separately plotted for each site during 

the last 5 years of the study period. These graphs showed a seasonal pattern where 

the highest wind speeds were during July and August and the lowest during November 

and December, in almost all the studied stations. 

Using the WASP model, a table was presented to show the percentage of decrease in 

wind speed as a consequence of surrounding obstacles for all the sites, in each 
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direction and for 10, 25, 50 and 100m height. Finally, the authors presented two maps 

of the study region showing the mean energy potential at 10 and 25m heights. 

Conclusions: The authors concluded that there were many areas with potential for wind 

power generation within the study region. 
Evaluation: The authors stated that not all the regions of Turkey had been properly studied.   

No clear arguments were presented to explain the site selection. There was no 

explanation as to how the Weibull parameters were computed and why just 5 years 

were selected to calculate them. The table of Weibull parameters listed the mean wind 

speed and energy density but it was not clearly stated if these values were calculated 

from the measured data or derived from the Weibull parameters.  

The authors did not explain properly the procedure followed to compute the wind speed 

in each direction for 10, 25, 50 and 100m height. The first part of the conclusions 

included statements that cannot be directly derived from results obtained in the 

presented research. 

 

 

Research:  
Wind Power Density Statistics Using the Weibull Model for Inner Mongolia, China [41], 

 
Purposes: Calculate the probability distribution function and the wind power density for the 

region of Inner Mongolia in China. 

Context: The authors reviewed the availability of wind energy reported by previous studies. 

The region of study is described as a zone without electrical grid supplies and with 

important wind energy potential. Thereafter, the authors mention that few studies have 

been made in the study zone and consequently the proposed that research could 

contribute to an improved knowledge of the wind energy distribution in this part of 

China. 

Methods: A meteorological station located at Zhurihe at an elevation of 1151m above sea 

level has been chosen as the source of data:  

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  1 Met station in Zhurihe, Northeast of Inner Mongolia, China 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m above ground level, at an altitude of 1151 m. 
AAvveerraaggee  ffrreeqquueennccyy  Daily 

SSttuuddyy  ppeerriioodd  10 years (1991–2000) 
DDaattaa  SSoouurrccee  China Meteorological Administration 

The Zhurihe station was selected for analysis because it has the largest long term (10 

years) record of wind speed measurements in Inner Mongolia. The average wind 

speed is 5.5m/s at 10m height.  
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Results: A method to calculate and validate the Weibull distribution and the mean power 

density for Weibull distribution was presented. The authors have calculated the monthly 

mean wind speed and the corresponding Weibull parameters. Then the “goodness of 

fit” was studied finding good correlation values.  

The frequency distribution for the measured wind speed was plotted for each month of 

the 10 years of data. Then, the probability density and cumulative distribution were 

plotted for the whole study period. In a comparison bar graph, the wind power density 

for the measured data and the wind power density calculated from the Weibull function 

were presented to finally show the monthly error derived from the wind power density 

calculated with the Weibull function. 

Conclusions: The conclusions summarised the main calculations undertaken in the 

research: Weibull distribution model, wind speed probability density and wind power 

density to finally outline that the Weibull function represented the measured data and 

allowed to estimate the power density. 
Evaluation: The authors presented a general introduction that identified the research 

proposed in the context of the wind energy assessment in China but some concrete 

examples about previous research in China and in the study region could have helped 

to fit better the proposed research in what is already known for this country. More 

details about how was computed the “goodness of fit” were required to support the 

values presented and the graph that represented the monthly probability derived from 

the measured data should have included the corresponding monthly probability 

computed with the Weibull model.. A seasonal graph on a yearly basis and an hourly 

analysis on a daily basis could have being helpful 

 

 

VIII.1.2  Spatial assessment 

Published papers were selected from the last three years and cover regions with costal 

zones. The density of measurement sites per study area allows a reasonable 

characterization of the geographical zone under investigation. Table VIII.2, summarizes the 

sites selected:  

Table VIII.2. Spatial data researches. 

Year Refe-
rence 

Study 
Period 
[years] 

Average 
period 

Met 
Stations Site’s location 

2004 [25] 1 10 minutes 15 State of “Baja California Sur”, México 
2005 [18] 9 Hourly 6 State of Kuwait 
2006 [19] 5 15 minutes 18 Egypt 
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Critical reviews: 

 
Research:  
Wind power potential of Baja California Sur, México, Renewable Energy [25] 

 
Purposes: To study of the wind potential of “Baja California Sur” in the North-West of México 

and to estimate the wind energy output, the capacity factor and the production costs by 

means of the Weibull probability distribution function. 

Context: A general introduction about the state of the wind energy evaluation in México was 

presented by the authors in order to mention the support given by the Government of 

the State of “Baja California Sur” to undertake the assessment of wind energy on its 

geographical region. Thus, the authors established that the proposed research will be 

focused in studying the wind power density along the shore line of the study region and 

through the Weibull function to evaluate in one site the energy output and the capacity 

factor for two generators. 

Methods: A set of measurement sites were installed along the coastline of “Baja California 

Sur” and a year of data was collected. Some characteristics of the sensors used and 

the measurement procedure were also described. The general parameters are 

summarized in the following table: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  15 wind stations located along the western coastline of “Baja 

California Sur”, México. 
MMeeaassuurreemmeenntt  hheeiigghhtt  10 m 

AAvveerraaggee  ffrreeqquueennccyy  10 minutes 
SSttuuddyy  ppeerriioodd  13 months (February 1997 to February 1998) 
DDaattaa  SSoouurrccee  The Electrical Research Institute 

The models used to compute the Weibull function, the wind power, the energy density, 

the vertical wind profile (power law) were also presented. 

Results: A table with the yearly mean wind speed, the standard deviation, the Weibull 

parameters, the power and energy were presented as results of the whole study period 

for each of the 15 sites. After this, the authors selected “El Cardón” to study its wind 

speed monthly behaviour, its wind rose and its calculated (Weibull) and measured 

frequency distribution. Using the power law, the authors extrapolated the wind speed 

up to 55m height and using two different generators of 750 W a calculation was made 

to the annual energy production, the capacity factor and the production cost. 

Conclusions: The authors concluded that there were good conditions to develop a wind 

farm at the site called “El Cardon” with capacity factor close to 25% and production 

costs between 4.5 and 6.2 US¢/kW h (considering investment of 1000-1100 US$/kW). 
Evaluation: The content of the study was introduced in logical and general terms 

considering the lack of research in México about the wind energy resource. 
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The measurement sites were directly presented without any description to support their 

selection in terms of the amount of sites and their geographical locations, mainly 

considering that these sites were installed specially for the proposed study.   

The quality and reliability of the data was not assessed. There was no mention of the 

method used to compute the Weibull parameters. The selection of the “El Cardon” as 

the site that better describes the complete region was not fully supported. The authors 

had also over-simplified the presented criterion to choose a coefficient of 1/7 in the 

estimation of the vertical wind profile by means of the power law.  

Finally, the conclusions were just presented in terms of the evaluation made at just  

one  site and there was no discussion related with the results obtained by others. 

 

 

Research:  
Potential wind power generation in the State of Kuwait [18]. 

 
Purposes: Evaluate the wind energy potential in Kuwait. 

Context: The research purpose was to as “assess the wind energy potential in Kuwait” and a 

brief description about the measurement stations, study period and main calculations 

that will be obtained during the proposed research. 

Methods: A historical data set covering 46 years of monthly averages, extreme winds and 

wind directions from the Kuwait International Airport at 10m height were presented. The 

measurement conditions were defined as follows: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  6 meteorological stations in the State of Kuwait 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m above ground level 
AAvveerraaggee  ffrreeqquueennccyy  Hourly 

SSttuuddyy  ppeerriioodd  4 years (January 1998 - December 2002) 
DDaattaa  SSoouurrccee  Meteorological stations in the State of Kuwait 

Mathematical formulations to compute the vertical wind profile by means of the power 

law, the Weibull parameters and wind power density were presented. A computer 

program was designed to execute some basic validation tasks. 

Results: Monthly averages for the wind power density at 10m height and their extrapolation 

to 30m height were tabulated for each study site highlighting the summer season with 

the highest power available. Weibull parameters were also computed and tabulated for 

each site to compare the mean wind power density predicted by Weibull with the one 

computed from the measured values of wind speed. Also wind speed frequency 

distribution and the corresponding Weibull function were plotted in the same graph for 
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each site at 10m height. Finally, the authors presented a map with the distribution of 

the wind power density over Kuwait. 

Conclusions: The authors summarised the main results for the annual average of wind 

speed and wind power density underlying that the summer season was identified with 

higher wind power, coinciding with the high electricity demand season during the year 

in Kuwait. Finally, the authors conclude that the higher wind power was found at open 

flat desert areas in the northern, north-western and southern parts of Kuwait and 

proposed studies to implement wind farm on those areas. 
Evaluation: The site selection and measurement conditions were accurately described, the 

authors introduced a set of results of 46 years wind data corresponding, but from  a site 

not included in the proposed study. This information creates some confusion.  The 

authors generated the Kuwait wind power density map at 30m height but without 

presenting how it was derived and which roughness values, digital elevation and 

obstacles information were used.  

 

 

Research:  
Survey and Assessment of Wind-speed and Wind power in Egypt including Air Density 

Variation [19] 

 
Purposes: The authors did not explicitly establish the study purpose and the better way of 

summarize a purpose is by means of the research title: “Survey and Assessment of 

Wind-speed and Wind power in Egypt including Air Density Variation” 

Context: The introduction briefly described that meteorological data will be analyzed from 

several stations around Egypt. 

Methods: Meteorological data from stations around Egypt were used to process the wind 

speed, temperature and atmospheric pressure. The next table gives information about 

these stations: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  18 Met stations, throughout Egypt. 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m  
AAvveerraaggee  ffrreeqquueennccyy  15 minutes 

SSttuuddyy  ppeerriioodd  5 years ( since 9/3/2000 to 31/12/2004) 
DDaattaa  SSoouurrccee  It is not explicitly specified 

The equation to calculate the power density was shown and an analysis of an air 

density correction factor to sites not at sea level was developed. Here, the authors 

define the cross correlation coefficient between the wind speed cube and the air 

density, the correction factor and finally the coefficient of variation of air density and of 
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the wind speed cube. The authors established that the random variability in daily 

temperature, pressure, air density and wind speed will be presented for 18 Egyptian 

stations during 5 years. 

Results: A table was presented with averages of wind speed, maximum, minimum and 

frequency distribution during 5 years for all study sites. A clear oscillating pattern in 

daily behaviour of the air density was showed for two sites and a table was included 

with the calculations for all study sites about the statistical properties of air density and 

wind speed cube. Tabulated values were presented for the sites showing the defined 

cross-correlation, coefficient of variation, correction factor and power density. 

The formulation to compute Weibull function and several derived parameters was 

described by the authors and years 2003 and 2004 were selected to compute the 

hourly, daily, monthly and yearly of the wind speed, frequency distribution and wind 

power. Then for 2004 the stations with lowest and highest wind speed averages were 

selected to represent the yearly frequency distribution and the monthly averages of the 

energy potential with values measured and with values computed by Weibull and 

Rayleigh functions. The best fitting were obtained in all cases for Weibull function. 

Finally, tables with monthly and yearly averages for wind speed were presented for all 

stations and for 2003 and 2004. 

Conclusions: The authors concluded the following:  

• In the Red Sea the wind was strongest in the summer while at the Mediterranean 

coast zones wind was strongest in winter and spring seasons.  

• The random wind energy potential formulation showed that the average wind energy 

production was not only a function of the coefficient of variation of the air density 

and wind speed cubed, but also of the cross-correlation coefficient. 

• The Red Sea, Mediterranean (expect El-Arish) and some Inland zones (Aswan and 

Ismailia) can be chosen as favorable locations for wind energy. 
Evaluation: The caption of the table that shows the statistical data for all the study station 

during 5 years was incomplete and produces several doubts that must be solved 

reading the text. The authors selected years 2003 and 2004 to derive the Weibull and 

Rayleigh parameters but did not explain why only two of the five years of data were 

used. The authors come to acceptable conclusions classifying their comments by 

geographical areas and presenting facts related with the obtained results to underlying 

the better regions and seasons.  
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VIII.1.3  Inland vertical wind profile 

In this case, papers were selected considering those sites specially installed to measure the 

wind characteristics at two different heights. The papers were published between 2003 and 

2004 and include one coastal site and two others inland sites close to shore zones. The 

Table VIII.3 shows general information about the mentioned researches.  

Table VIII.3. Vertical wind profile researches. 

YYYeeeaaarrr    RRReeefffeee---
rrreeennnccceee   

SSStttuuudddyyy   
PPPeeerrr iiioooddd   

[[[MMMooonnnttthhhsss]]]    
AAAvvveeerrraaagggeee   
pppeeerrr iiioooddd   

MMMeeeaaassssss...    
HHHeeeiiiggghhhtttsss   SSSiii ttteee’’’sss   lllooocccaaattt iiiooonnn   

2003 [36] 72 10 minutes 10 and 25m Swatar, on Malta’s South West coast 
2003 [83] 16 10 minutes 10 and 30m Campus of Izmir Institute of Technology, Turkey 
2004 [40] 20 10 minutes 10 and 30m Dumlupınar University, Kütahya, Turkey 

 

 

Critical reviews:  

 
Research:  
The wind shear exponent in a Mediterranean island climate [36]. 

 
Purposes: Study the wind shear exponent of the power law using measurements at two 

different heights on the central Mediterranean island of Malta. 

Context: The role of the wind shear by means of the power law to estimate wind speed was 

expressed by the authors, mainly considering that usually wind data records come from 

meteorological stations installed on average at 10m height. The use of the 1/7 value for 

the wind shear exponent has proved to be useful, said the authors, to describes 

atmospheric wind profiles in the lower boundary layer when neutral stability conditions 

apply. However, wind shear also depends on others parameters related with wind 

speed, roughness length, and the height interval. Thus, the authors draw attention to 

significant errors that could be made by using a single exponent wind shear. Finally, 

the authors proposed a research to find more descriptive values for the wind shear by 

means of measurements of the wind speed made at different heights in the case of a 

Mediterranean island 

Methods: A special tower was installed in a typical Maltese farmland with low height trees on 

a site at 216m above mean sea level. The following table shows the main details: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  Swatar, on Malta’s South West coast 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m and 25 m.  
AAvveerraaggee  ffrreeqquueennccyy  10 minutes 
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SSttuuddyy  ppeerriioodd  72-month period (August 1995–July 2001) 

None validation procedure was used with the measured data and just the power law 

expression was presented without any particular research plan. 

Results: The wind shear exponent for the whole study period was estimated using the mean 

wind speeds at 10 and 25 m. The obtained value was 0.36 which means that an error 

of 17% could be introduced if the wind speed had been estimated from 10 to 25m by 

means of the 1/7th exponent. A table and a graph were presented to show the monthly 

wind shear during the whole period and a clear decrease in wind shear is observed in 

the summer season. Finally, a daily behaviour of the wind share was plotted to 

illustrate its decrease in the middle of the day. 

Conclusions: The authors state that the computed value for the wind shear could be useful 

in other Mediterranean sites and a mention was made about the increase in the 

precision of the expected energy generated by the wind turbine. 
Evaluation: The authors did not present enough quantitative material to establish the 

boundaries of the 1/7 exponential approximation for the wind shear. Consequently, it 

was not clearly established the role of the proposed research in the study field. The 

measurement conditions were described but considering the study length, some 

validation procedure should have been applied to increase the reliability of the results. 

The monthly average values of the wind share should not be tabulated because they 

were better represented by the graph that clearly shows the seasonal wind share 

behaviour. It could be useful that the authors had included the yearly behaviour of the 

wind share to complete the presented research.. 

 

 

Research:  
An investigation of wind characteristics on the campus of Izmir Institute of Technology, 

Turkey [83]. 

 

Purposes: Contribute to increase the reliability of the wind data for Turkey by means of 

studying the wind characteristics on one site close to coastline of the Aegean Sea. 

Context: The authors made a general and qualitative introduction about the cost effective of 

the electricity produced by wind generators compared with others renewable 

technologies. Some mention was also made relative to the importance of developing 

wind data measurement to design reliable wind conversion systems. Some authors 

were also named because of their work related with the study of wind energy in Turkey 
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and finally the authors of the current paper declared that their study was an “attempt to 

bridge the gap” of the “absence of a reliable and accurate Wind Atlas of Turkey”. 

Methods: A 30m height measurement tower was installed at 460m height over the see level 

in the Izmir Institute of Technology campus. A set of sensors were installed to measure 

wind speed and wind direction, atmospheric pressure, temperature and relative 

humidity. The wind speed was measured at two heights such as is summarized in the 

following table: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiittee  Izmir Institute of Technology campus, Turkey 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m and 30m 
AAvveerraaggee  ffrreeqquueennccyy  1 hour before 2001 and 10 minutes after 2001 

SSttuuddyy  ppeerriioodd  16 months (July 2000 and November 2001) 

The authors provided a table with the main properties of the used sensors and 

mentioned that just the 3.7% of the data was missing. “Encarta Digital Atlas” was used 

as a source for digital height counter map and surface roughness map. All data was 

processed using the “WinPro” software. 

Results: A table was presented with the monthly averages values of the atmospheric 

pressure, relative humidity and temperature. Thereafter, the authors will always present 

the results for both 10 and 30m heights. The monthly behaviour of the wind speed were 

computed and plotted. The wind speed, wind direction and turbulence intensity for the 

whole study period were also showed. A table with the Weibull parameters, the 

calculated mean wind speed, the frequency and the wind shear were shown. The wind 

speed frequency distribution for the measured data and using the Weibull function were 

plotted in the same graph for each direction (using 12 sectors). Finally, the authors 

presented a map of the study area and plots with the turbulence intensity computed by 

frequency and by direction. 

Conclusions: The authors conclude that the studied site presented “high wind potential” and 

claimed that “an attempt to promote wind energy in Turkey and to bridge the gap in 

order to create prospective Turkish Wind Atlas”. Weibull model was expressed as 

better that Rayleigh one. A mention also was made to express that the importance to 

the study of the computed turbulence intensity. 
Evaluation: More quantitative information should have been included to describe the 

previous work made in Turkey and to shown the lack of reliability of the previously used 

wind data. The authors described the site selection and the sensors but there was no 

explanation about how the measured data with hourly averages was used in 

conjunction with the 10 minutes averages to evaluate the site. Also, the resolution of 

the digital heights and roughness data used was not specified and the areas selected 

in both cases were introduced without any supporting argument. The monthly wind 

speed at 10 and 30m should have been presented in the same plot to simplify the 

comparison between the two heights and the wind shear was mentioned and showed 
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in a table but the authors do not analysis this result in any way. The plots that represent 

the behaviour of the wind speed, wind direction and turbulence intensity did not 

contribute to the discussion presented. 

There was no mention as to how the Weibull parameters were calculated. In this 

sense, another questionable aspect was the conclusion that the Weibull distribution 

was better that Rayleigh one. This conclusion were not supported by the results 

presented because the authors did not compare Weibull and Rayleigh distributions 

again the measured data, they just said “Shape factor (k) for 30m height is 2.473 which 

means that measured data differ from the Rayleigh distribution” and this is not enough 

to say that the Weibull distribution was the best one to the study site. Another 

shortcoming was the turbulence intensity results, in this case the authors did not clearly 

define the concept and the representation presented was not the one found in the 

usual Wind Energy literature.  

 

 

Research:  
An evaluation of wind energy potential as a power generation source in Kütahya, Turkey [40]. 

 
Purposes: Study the potential of wind energy to be used as electricity supply in the region of 

Kütahya (Turkey) by means of a measurement site at the Dumlupınar University Main 

Campus. 

Context: The necessity of sites specially designed to evaluate the wind energy potential was 

established by the authors. The author indicated that a site had been installed at 

University campus to develop a reliable characterization of the wind energy potential at 

the central western part of Turkey. 

Methods: A mast of 30m height was installed at 1100m above sea level with no surrounding 

obstacles. The technical information about the sensors: two cup anemometers, one 

wind vane, ambient Temperature, relative humidity and atmospheric pressure data was 

provided by the authors. The following table shows the relevant parameters of the site: 

MMMaaaiiinnn   mmmeeeaaasssuuurrreeemmmeeennnttt    ccchhhaaarrraaacccttteeerrr iiisssttt iiicccsss   
MMeeaassuurreemmeenntt  ssiitteess  Kütahya, at the central western part of Turkey 

MMeeaassuurreemmeenntt  hheeiigghhtt  10m and 30 m 
AAvveerraaggee  ffrreeqquueennccyy  10 minutes 

SSttuuddyy  ppeerriioodd  20 months, (July 1, 2001 and February 28, 2003) 

Some comments were made by the author about the calibration of the sensors and the 

missing data, which was less that 2%. None formal research plan was established. 

Results: A table was presented with the monthly averages of the wind speed at 10 and 30m, 

wind direction, direction of the strongest winds, temperature, relative humidity and 
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atmospheric pressure during the 20 study months using the 10 minutes average data. 

The author also graphs the monthly average of wind speed at 10 and 30m height. The 

frequency distribution of the measured data at 30m and the Weibull and Rayleigh 

probability distribution function were shown graphically when the Weibull parameter 

were computed applying the variable least square method. Finally, the author had 

chosen a wind generator of 600 kW at 65m height and presented graphically the power 

duration curve of the wind turbine for the measured data, Weibull and Rayleigh 

functions. The capacity factor was 15.6% to produce 1372.2MWh during the 20 study 

months. 
Conclusions: General statements were made by the author about the use of wind energy 

potential in Turkey, prior to conclude that the available technology was not enough to 

use efficiently the measured wind energy in the study site. The measurements should 

be evaluated in the long term, said the author, in accordance with technological 

developments and reduction in the cost of turbines. 
Evaluation: The author presented fairly qualitative information, and the research could not 

be considered an evaluation exercise.  

The strongest argument that supported the study “The wind data from meteorological 

sites are not fully reliable for wind power prediction in Turkey” was not clearly 

established until the section number 3 “Material and Methods”. The measurement 

system used in the research and their configuration procedure were well presented by 

the author but the results and analysis done were insufficient, considering the available 

data and the research purpose.  

 

 

The detailed evaluation showed that despite some weaknesses in analysis, the selected 

research papers have made important contributions to the study of the wind characteristics. 

This initial review of the scientific literature, about research undertaken in regions with similar 

characteristics to the Yucatán Peninsula, was the support to define the base structure and a 

relevant research direction for this PhD. Consequently, three initial research subjects were 

initially selected to be developed in the following conditions: 

Temporal wind characteristics. 
DDDaaatttaaa   mmmeeeaaasssuuurrreeemmmeeennnttt    cccooonnndddiii ttt iiiooonnnsss:::       

WWiinndd  ddaattaa  uusseedd  From three meteorological observatories in the Yucatán Peninsula 
MMeeaassuurreemmeenntt  hheeiigghhtt  10m a.g.l. 

AAvveerraaggee  ffrreeqquueennccyy  Daily 
SSttuuddyy  ppeerriioodd  10 - 20 years (1986-2005). 
DDaattaa  SSoouurrccee  Department within the Mexican national meteorological service 

(CNA). 
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Spatial evaluation of wind energy distribution. 
DDDaaatttaaa   mmmeeeaaasssuuurrreeemmmeeennnttt    cccooonnndddiii ttt iiiooonnnsss:::    

WWiinndd  ddaattaa  uusseedd   From nine weather stations around the Yucatán Peninsula. 
MMeeaassuurreemmeenntt  hheeiigghhtt  10m a.g.l. 

AAvveerraaggee  ffrreeqquueennccyy  10 minutes 
SSttuuddyy  ppeerriioodd  3 - 7 years (2000-2007) 
DDaattaa  SSoouurrccee  Department within the Mexican national meteorological service 

(CNA). 
 

Online wind vertical profile 
DDDaaatttaaa   mmmeeeaaasssuuurrreeemmmeeennnttt    cccooonnndddiii ttt iiiooonnnsss:::    

WWiinndd  ddaattaa  uusseedd  From a 33 m tower installed in Mérida, Yucatán, México. 
MMeeaassuurreemmeenntt  hheeiigghhtt  10m and 30m a.g.l. 

AAvveerraaggee  ffrreeqquueennccyy  10 minutes 
SSttuuddyy  ppeerriioodd  1.5 years (2003-2005) 
DDaattaa  SSoouurrccee  Faculty of Engineering of the Autonomous University of Yucatan 

 

A wider selection of scientific papers was included in the next stages of the research, see 

general introduction section I.2 , as well as the vertical wind profile in offshore conditions. 

The research subjects identified in the tables showed above were developed during the 

course of this PhD research and the results were presented in Chapters II , III and IV . 

Finally, a set of three research papers were published covering these subjects, which are 

attached in Appendices VIII.4.1 , VIII.4.2 and VIII.4.3 . 
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VIII.2  Devices and sensors 

This appendix presents tables that summarizes the main characteristics of the sensors and 

devices used to configure the measurement stations installed during the PhD project to 

obtain the results presented in chapters IV  and V . 

 

Polar Mechanical Anemometer Sensor: RM Young 03001-5 

 

Specifications 
Sensor 

Wind Speed Wind Direction 

Measurement Range 0 - 50 m/s 0 – 360° (mechanical) 
0 – 355° (electrical) 

Starting Threshold 0.5 m/s 0.8 m/s (10º ) 
1.8 m/s (5º ) 

Distance Constant 2.3 m N/A 
Operating Temperature Range -50  to  50 °C -50  to  50 °C 

System Error ± 0.1 m/s ±5º 
 

 

Orthogonal Ultrasonic Anemometer: Gill WindSonic 2D 

 

Specifications 
Sensor 

Wind Speed Wind Direction 
Measurement Range 0 – 60 m/s 0 - 360o 

Starting Threshold 0.01 m/s 0.01 m/s 
Operating Temperature Range -35  to  70 ºC -35  to  70 ºC 

System Error ±2 % ±3 % 
Recording Resolution 0.01 m/s 1º 

 

 

Temperature and Relative Humidity Sensor: Vaisala CS500 

 

Specifications 
Sensor 

Temperature Relative Humidity 
Measurement Range -40  to  60 ºC 0  to  100 % 

Operating Temperature Range -40  to  60 ºC -40  to  60 ºC 
Operating Humidity Range 0  to  100 % 0  to  100 % 

System Error  
0   – 10%   RH:     N/D 
10 – 90%   RH:   ± 3 % 
90 – 100% RH:   ± 6 % 
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Datalogger: Campbell CR10X. 

 

Specifications Values 

Differential analogue Channels 6 
Digital Ports 8  I/O 

Maximum Input Voltage ± 2500 mV 
Resolution 0.33 µV 

A/D Bits 16 
Execution Rate 64 Hz 

Data Storage  (Data points) 62,280 
Operation Temperature Range -25  to  50 ºC 

 

 

Ethernet communication module: Campbell Network Link interface NL100. 

 

Specifications Values 

Communication Protocol TCP/IP 
Power supply 12 VDC 

Current 130 mA 

Temperature range -25° to +50°C 

 

 

Mobile communication module: GPS Digital Mobile Modem – AirlInk/Raven 110 

 

Specifications Values 

Communication Protocol Cingular digital cellular networks. 
Communication speed Up to 384 Kbps 

Transmit power 1.0 W for 1900 MHz 
Power supply 12 VDC 

Current 20 – 250 mA 
Temperature range -30° to +70°C 

 

 

Configuration of the measurement system installed at the API site: 
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Using the raw data measured from the digital ultrasonic sensors, the scalar parameters of 

wind speed and wind direction were calculated through the definitions show in the following 

table: 

Parameter Definition Where: 

Scalar mean wind speed (S)   

Resultant mean wind speed (U) 
2
n

2
e UUU +=  

      Resultant mean wind direction ( UΘ ) 







=Θ

n

e
U U

UArcTan  

On this table, N represents the number of measured samples within the corresponding ten 

minutes averaging period. It should be 300 samples when there were not data lost. 
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VIII.3  Sea surface temperature maps from GEOS Satellite 

Table VIII.4. Example of hourly Satellite SST images of the Gulf of México region selected from four 
days with the higher amount of images available. The temperature-colour scale is the same introduced 

in Table V.8 (c) and (d). N/A stands for “Not Available” in the following tables. 
Hours 02/12/2007 27/11/2008 27/02/2009 08/05/2009 

0 

    

1 

   

N/A 

2 

   

N/A 

3 

    

4 

    

5 

    

6 

    

7 
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Table VIII.5. Continuation of Table VIII.4 
Hours 02/12/2007 27/11/2008 27/02/2009 08/05/2009 

8 

    

9 

    

10 

    

11 

  

N/A 

 

12 

  

N/A 

 

13 

    

14 

    

15 
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Table VIII.6. Continuation of Table VIII.5 
Hours 02/12/2007 27/11/2008 27/02/2009 08/05/2009 

16 

    

17 

    

18 

    

19 

    

20 

    

21 

    

22 

    

23 
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VIII.4  Published results 

 

The research subjects initially identified with the detailed reference review of the scientific 

literature and presented in Chapters II , III , IV  were published in three scientific journal as 

follow: 

• R. Soler-Bientz, S. Watson, and D. Infield, Preliminary study of long-term wind 

characteristics of the Mexican Yucatán Peninsula. Energy Conversion and 

Management, 2009. 50(7): p. 1773-1780. 

• R. Soler-Bientz, S. Watson, and D. Infield, Wind characteristics on the Yucatán 

Peninsula based on short term data from meteorological stations. Energy Conversion 

and Management, 2010. 51(4): p. 754–764. 

• R. Soler-Bientz, S. Watson, and D. Infield, Evaluation of the Wind Shear at a Site in 

the Northwest of the Yucatán Peninsula, México. Wind Engineering, 2009. 33(1): p. 

93-107. 

 

Also, selections of the results described in the chapter V  were also presented in the 

European Wind Energy Conference: 

• R. Soler-Bientz, S. Watson and D. Infield. Study of the offshore winds and its 

propagation inland of the northern zone of the Yucatan Peninsula, Eastern Mexico. in 

European Wind Energy Conference and Exhibition (EWEC2009). 2009. Marseille, 

France. 

• R. Soler-Bientz, S. Watson, and D. Infield. Preliminary results of a statistical wind 

resources analysis in offshore conditions in the Eastern Gulf of Mexico. in European 

Wind Energy Conference and Exhibition (EWEC2010). 2010. Warsaw, Poland. 

 

The next subsections display the first page of the published papers. 
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VIII.4.1  Energy Conversion and Management Journal, 2009 
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VIII.4.2  Energy Conversion and Management Journal, 2010 
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VIII.4.3  Wind Engineering Journal, 2009 
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VIII.4.4  European Wind Energy Conference 2009 
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VIII.4.5  European Wind Energy Conference 2010 
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