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Abstract 

Energy markets have become increasingly sophisticated, requiring modelling techniques of 

analogous calibre. This thesis deals with models of changing regime for the petroleum complex. 

Modelling the conditional distribution of energy prices as a regime switching process is 

motivated by the market-specific characteristics of oil: different market conditions, such as 

backwardation and contango, involve different dynamics. The first empirical part examines the 

very short-end of the futures curve volatility. To address in a realistic way the potential diverse 

response of oil volatility to fundamentals across high and low volatility regimes, augmented 

regime volatility models are employed. Results indicate that volatility can be decomposed to a 

highly persistent conditional volatility process and a relatively short-lived non-stationary 

process. Apart from evaluating the size of price risk, risk managers must also design a 

framework for mitigating their exposures. This is the focus of the second empirical part which 

estimates dynamic hedge ratios. Linking the concept of disequilibrium with that of uncertainty 

across high and low volatility regimes, a state-dependent error correction model with time-

varying second moments is introduced. Finally, the third empirical part, examines the 

information content of the dependence structure between correlated petroleum futures curves. 

Term structure is decomposed into level, slope and curvature shocks. Introducing a multi-

regime framework, these factors are utilised to study inter-commodity and inter-market spreads. 

Results suggest markedly different state-dependent speeds of mean reversion and 

volatility/correlation dynamics across regimes. Overall, the employed models provide superior 

forecasting performance and indicate that state-dependent dynamics may provide significant 

benefits to market participants. The findings of this thesis have important implications for 

energy market trading and risk management, as well as energy market operations, such as 

refining and budget planning, by providing valuable information on the oil price volatility 

dynamics and the ability to predict risk. 

 



 
 

Chapter 1: Introduction and Summary of the Thesis 
 
 

Chapter 1  

 

Introduction and  

Summary of the Thesis 

  
1.1 Motivation and Aim of the Thesis 

After the two oil price shocks and the development of derivatives markets in the 1980’s, 

oil consumption has increased by more than 20 million barrels per day whereas the total trading 

volume of futures contracts has far exceeded total world oil production. Since then, apart from 

“traditional” market players having exposure in the physical market (producers, refiners, 

marketers etc.), other participants such as commodity portfolio managers, hedge funds, index 

speculators and investment banks have progressively increased their share and exposure in the 

energy sector. As a result, energy commodity prices have experienced an unparalleled growth 

over the last decade with prices of crude oil showing an extremely persistent momentum going 

from $20/bbl in the early 2000’s to above $80/bbl in the mid-2005 and over $140/bbl in July 

2008. Although the 2008 recession had a significant negative effect on commodity prices with 

crude oil falling, in less than six months, to below $40/bbl, recovery was fast and at the end of 

2009 oil fluctuated around $80/bbl. What is more, the OPEC oil crisis and deregulation in the 

1980’s was followed by remarkable increases in energy price volatility. The main contributors 

of this phenomenon are the geographic concentration of oil supply at high political tension 

regions, weather sensitive demand, absence of readily available substitutes and the overall 

market structure, from the major determinants of prices of these commodities and the pricing 

mechanisms to cartel behaviour and the specific design of the supply chain network.  

Therefore, given the policy implications at both macroeconomic and microeconomic 

level, modelling the dynamics of petroleum commodities has been a field where a vast amount 

of research has been conducted with the particular sector attracting considerable interest as a 

financial investment vehicle in recent years. This can also be attributed to the unique market 

forces driving exhaustible resources’ price dynamics like oil and its products. Petroleum 

commodity markets have undergone fundamental changes, have become more sophisticated, 

and investors are continually confronted with new challenges.  
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In a naturally dynamic world that is characterised by continuously changing 

relationships, the energy industry has several reasons to promote applications in risk analysis. 

First, it is the capital intensive character of the industry. For example, oil field development and 

refinery capital investments call for reliable risk assessments and accurate decision making. 

Second, it is the diverse mix of participants involved in the physical markets. Households, 

corporations and governments are all involved in the industry, either as direct or indirect 

consumers, thus verifying, the significance of hydrocarbons which are indispensable for 

transportation, industrial and residential uses. For instance, crude oil represents a significant 

component of operating costs to large energy consumers such as refineries, shipping companies 

and airlines. Furthermore, petroleum importing countries are particularly susceptible to oil price 

increases as the price transmission to these economies is more consequential and governments 

are forced to adjust their revenue and expenditure policies accordingly. Third, it is the recent 

emergence of energy assets as financial investment vehicles. Significant amounts of funds have 

been and are being constantly allocated to energy commodities; they have become very popular 

among institutional investors of versatile risk attitudes either as a pure speculation instrument or 

as a diversification tool. Finally, although trading in petroleum commodities has existed for 

decades it is only around 30 years after deregulation and the organisation of exchanges around 

the world. It was only recently that a competitive market framework - where prices are 

determined freely under the fundamentals of supply and demand - was developed.  

In such an exigent environment, price volatility has become an important feature of the 

market forming a market ripe with opportunities, but in turn increasing the need for risk 

measurement and management using derivative contracts such as futures.  The main motivation 

of this thesis is to build on modern quantitative techniques with a view to address several issues 

of oil price modelling and risk management which are very relevant and fashionable topics in 

the industry. The driving force for the development of such models of petroleum markets is the 

need, by market agents, to ensure accurate estimation of risk measures, successful 

implementation of hedging strategies as well as thorough evaluation of investment policies. This 

thesis is a compilation of three closely related essays in petroleum risk modelling and 

management, dealing with several practically relevant issues in empirical energy economics. 

That said, three central aims are determined. The first is to quantify the risk of the more liquid 

and volatile near to maturity contracts where market activity is mainly concentrated. The second 

is to develop a methodology for futures hedging designed to support risk management 

programmes. The third is to understand and explore fundamental relationships, long-run 
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equilibria, and interdependencies between petroleum commodities and reveal the mechanics in 

the functioning of the term structure of futures and futures spreads in the energy complex.  

Empirical stylised facts of petroleum return series suggest that risk is time-varying and 

depends on market conditions. This thesis addresses the explicit modelling of nonlinearities in 

the underlying data-generating process, as well as the conditional second moments in petroleum 

markets. Although significant quantitative advances in a Markov Regime Switching (MRS) 

framework have been made since the seminal paper of Hamilton (1989), moving these concepts 

into applied research in petroleum commodities is still underdeveloped. This thesis analyses the 

relative merits of regime switching models to describe change in the context of energy risk. The 

exploration of the dynamics of petroleum markets is aimed at improving the understanding and 

modelling of the real-world dynamics. We consider petroleum commodity cycles in the form of 

low and high volatility regimes and the switching between these cycles is assumed to be driven 

by Markov dynamics.  

We argue that traditional single state models are not sufficiently flexible to explain real 

world dynamics. Price, volatility and correlation change as new information arrives in the 

market, causing market dynamics to switch back and forth among different processes. The focus 

of this thesis will be on explaining this behaviour in oil markets and further demonstrate 

whether the existence of such states prompts for the need to assess risk differently. In doing so, 

we benefit from the flexible family of MRS models that permit us to accommodate many of the 

stylised facts that these markets exhibit such as non-normality, asymmetries and time-varying 

dependence. The information content derived from MRS models will be thoroughly discussed 

with the aim to assess their role and effectiveness in quantifying risk under different market 

conditions, evaluate the extent to which regimes convey relevant information on risk 

management objectives and finally uncover fundamental interactions in a multi-regime 

framework.  

The topics studied range from risk quantification, volatility/ correlation forecasting, 

futures hedging as well as identification of risk factors, term structure dynamics and co-

integration. All essays have many things in common; first, they all focus on time series 

properties of petroleum prices; second, they all explicitly model the return volatilities and/or 

correlations of these assets as time varying; third, they all deal with nonlinear models; and forth 

they all aim on accurate risk assessment and enhanced forecasting ability. Policy makers, 

investors and, in general, all market players (crude oil producers and consumers, refiners, 

portfolio managers, commodity traders etc.) need to address these issues by delicately 

measuring the degree of energy risk exposure and the impact of price and volatility variability 
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on their cash flows in order to devise sound risk management strategies and reduce income 

uncertainty.  

 

1.2 Thesis Objectives and Contribution  
This thesis consists of three essays that discuss both theory and applications of regime 

switching models to energy futures markets. The thesis contributes to the existing literature by 

addressing three main issues: the application of regime switching processes to the volatility of 

short-term energy futures, the regime switching behaviour of the futures-spot relationship with 

application to minimum variance hedging and empirical evidence of regime shifts in the 

petroleum commodities market with specific interest in the interdependence between different 

commodities comprising economically meaningful spreads.  

In the second chapter, Introduction to oil markets and energy risk, we review 

fundamental concepts of the petroleum market structure and dynamics. The chapter begins with 

an introduction on how petroleum markets have evolved. This section is followed by an 

overview of the particular market-specific characteristics and illustrates the environment that the 

industry operates in as well as the risks inherent in the energy sector. After an outline of the 

fundamentals (supply-demand) and a brief reference to market structure and the role of OPEC 

(Organisation of Petroleum Exporting Countries), we provide a synopsis of historical 

developements in oil prices; this serves as a bridge to discuss the implications of oil price 

volatility and the emergence of organised exchanges for petroleum commodities. The term 

structure of future prices and the incentives for risk management, including risk quantification 

and minimum variance hedge ratios, are also discussed. Next, the chapter discusses the 

importance of flexible risk management programmes by means of a case study 

(Metallgesellschaft Refining and Marketing, MGRM; 1993) highlighting the lessons that can be 

learnt from the past.  

In the third chapter, Regime switching models and applications in finance, we provide a 

literature review with the objective to present several applications of regime switching models 

in finance and furthermore, showcase some important findings from the energy markets in 

general. A conformable introduction of the basic concepts behind MRS models is also 

presented; for this reason we briefly review mixture distribution models and Markov Chains. 

This is followed by the basic set up of the MRS model and estimation techniques.    

The fourth chapter, Forecasting petroleum futures market volatility: the role of regimes 

and market conditions, is the first empirical chapter of the thesis and proposes the use of various 

volatility regime models (mixture distribution and MRS GARCH) in the petroleum futures 
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markets. Only few studies have analysed in depth the nature of the volatility regimes of oil 

futures prices and their forecasting ability. We extend previous research by accounting for the 

effect of deviations of the term structure (as measured by the squared lagged basis of futures 

prices) in the conditional volatility processes. Investigating volatility components under 

different regimes will enable us to investigate for the first time the asymmetric dependence of 

volatility to the basis and draw some new interesting insights regarding the effect of 

disequilibrium and the persistence of volatility under different market conditions. State 

dependent models are found superior in representing volatility persistence than the traditional 

GARCH models, and also tend to perform better in an out-of-sample basis. The conditional 

regime volatility process can be described by long memory and low sensitivity to market 

shocks, when the market is in the low variance state, and a relatively short-lived nonstationary 

process with higher sensitivity to shocks, when the market is in the high variance state. In 

addition, we link the regime volatility framework with tail estimation by examining the tails of 

the conditional distributions of the models and extending the above framework to a conditional 

extreme value theory setting. Volatility and Value-at-Risk forecasts are tested across periods of 

backwardation and contango, since the risk-return profile of energy prices is known to change 

fundamentally between the two different states. Overall, by identifying different volatility 

components for normal and highly volatile periods, market participants may benefit in terms of 

accurate risk quantification. 

The fifth chapter, A Markov regime switching approach for hedging petroleum 

commodities, proposes a new way to estimate time-varying hedge ratios and compares it with 

several other benchmark methods to establish its accuracy. The innovation is in generalising the 

computation of hedge ratios to allow for both discrete shifts in the distribution (MRS) and 

GARCH effects. Moreover, the inclusion of the error correction mechanism in the regime 

switching framework enables us to examine whether the speed of adjustment of spot and futures 

petroleum prices to the long-run relationship changes across different regimes introducing an 

informative link between volatility and cointegration allowing for both time dependency and 

asymmetric behaviour across different states in the market. The suggested two state MRS vector 

error correction GARCH model shows improved in-sample fit and superior forecasting 

performance for both long and short hedges. Overall, by identifying time varying state 

dependent hedge ratios for normal and highly volatile periods, market agents may be able to 

obtain significantly superior gains, measured in terms of variance reduction and increase in 

utility. 
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The sixth chapter, Petroleum Term Structure Dynamics, Inter-Commodity 

Dependencies and the Role of Regimes, proposes non-linear multivariate equilibrium models of 

the term structure of correlated petroleum forward curves. We decompose the term structure 

into level, slope and curvature shocks and examine their mean-reverting and co-integrating 

properties in a futures spreads setting. Then, for the first time in the literature, a multi-regime 

multivariate MRS model is fitted to describe the risk factors, motivated by the fact that factor-

specific features are typically inherited by the asset returns. In addition, we extend this model by 

allowing for independent switching among factors and commodities, in an attempt to capture 

the complex interaction of petroleum market mechanisms and accommodate several stylised 

features of forward curves which are observed real life phenomena1. We find evidence in favour 

of the existence of a long-run relationship between level and slope factors, however, curvatures 

are found to be mean-reverting to commodity-specific equilibria. Results indicate that each 

regime clearly differentiates two distinct market dynamics for both the conditional mean and the 

volatility of the underlying process. Moreover, it seems that when one market is in the low and 

the other in the high variance state, it is more likely to observe lower correlations. Although the 

evolution of the oil term structure in the market has important implications in the fields of 

energy risk management and derivatives pricing, the issue of predictability of oil price curves 

has surprisingly received little attention. While the model can in principle be employed to 

analyse interrelationships of correlated petroleum futures curve dynamics, we also aim to fill in 

this gap in the literature by providing a new unified approach to obtain forecasts of the term 

structure of futures spreads, the variance-covariance matrices and risk management downside 

risk measures. Results from these exercises indicate that the multi-regime factor model can 

sometimes achieve significant gains compared to competing models. 

In the seventh Chapter Concluding remarks and further research, we conclude by 

summarising the main empirical findings of this study. We also examine some common themes 

that appear throughout the thesis and outline potential interesting and challenging paths of 

future research as directed by the findings of this thesis.    

All empirical applications serve the purpose to analyse which modelling technique is 

superior by employing appropriate benchmarks. The benefits of modelling and forecasting time-

varying risk are evaluated appropriately using relevant loss functions. Robustness with respect 

to data snooping bias is also addressed by employing contemporary methodologies based on 

                                                 
1 For instance, it is quite common to observe simultaneously high volatility in the product market and low 
in the crude oil market, due to the presence of backwardation and contango in the two curves. The high 
price volatility in the product market may be due to refining capacity constraints no matter whether crude 
oil production flows smoothly.  
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bootstrap simulations; this way, we also assess the practical relevance of taking time-variation 

of model parameters in a Markov framework.  

To conclude, all the above topics have never previously been examined in the energy 

economics literature in a similar approach as offered by this thesis, thus making its contribution 

an original source of reference for academics and a practical tool for practitioners.  The findings 

of this thesis have important implications for energy market participants that deal with trading 

and risk management as well as energy market operations, such as refining and budget planning, 

by providing valuable information on oil price differentials, volatility behaviour and co-

dependence as well as their predictability. Overall, market agents may be also able to improve 

the forecasting accuracy and enhance the performance of their hedges. 

 

1.3 Summary of Thesis Structure 
The original contribution of this work commences in Chapter 4. The empirical body of 

the thesis involves Chapters 4 to 6. Note that each chapter covers a topic on its own, so that they 

can be read independently of previous and subsequent chapters. Part of Chapter 4 has been 

published in Energy Economics (Nomikos and Pouliasis, 2011). Part of Chapter 5 has been 

published in the Journal of Banking and Finance (Alizadeh, Nomikos, and Pouliasis, 2008) and 

an earlier version was presented at the Commodities and Finance Centre (CFC) Conference of 

Birkbeck University in London. The specific organisation of the thesis follows the objectives 

mentioned above in section 1.2 and the remainder of this study is organised as follows: 

Chapter 2 offers an outlook of energy markets and the market structure and also 

provides some basic background on energy risk, risk measurement and risk management. 

Chapter 3 provides the necessary literature review on the employed models and the 

mathematical foundation that will be used throughout the thesis; it is also meant to fix notation. 

Chapter 4 is the first empirical study of this thesis. It deals with volatility forecasting and risk 

quantification of petroleum futures suggesting the use of Markov regime switching augmented 

models of the conditional moments. Chapter 5 proposes a new method of futures hedging using 

multivariate Markov regime switching vector error correction models with conditionally 

heteroscedastic error structure. Chapter 6 deals with the information content of the dependence 

structure between correlated petroleum futures curves. Using a factor decomposition of the term 

structure of futures prices, factors of petroleum spreads are modelled as multivariate MRS 

models and are used to replicate volatility and correlation dynamics.  Finally, Chapter 7 

concludes this thesis and gives directions for future research. 
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Chapter 2  

 

Introduction to Oil Markets and  

Energy Risk 

 

2.1 Introduction 
Petroleum commodities constitute a relatively young market that has emerged over time 

to be a vital resource of our modern civilisation. In ancient times, oil was collected from oil 

seepages and it was not until 1859 when the first successful commercial oil well was drilled in 

Titusville, Pennsylvania, signalling the beginning of a new era for mankind. Early drillers began 

large scale oil production (mainly of kerosene) in the 1860’s and, as an effect energy prices for 

illumination were significantly reduced. With more quantities being released into the market, oil 

prices in the US experienced a sharp decrease falling from $10/bbl to $0.5/bbl by the end of 

1861. Although crude oil was still principally used for lighting, the new industry started to 

evolve with the development of sophisticated and more efficient technologies in the refining 

process. As a result, the systematic exploration, extraction, production and refinement of crude 

oil for commercial use started growing at a very fast pace. By 1890, kerosene was the only 

major by-product of oil until gasoline and fuel oil came on scene. Since then, rapid 

technological changes eventually led to the dominance of petroleum industry as a source of 

energy. Gasoline as a motor fuel became commercially viable after the invention of thermal 

cracking in 1913 and, with the boom of the automobile industry in the 1920’s, a new market 

was created for oil, not only as a fuel but also as asphalt to construct roadways. Furthermore, 

heating oil was first produced on a large scale basis for heating purposes in the 1930’s but was 

widely used only after 1945. The switch of railroad locomotives and ships from coal to oil, as 

well as the growth of the aviation industry critically raised petroleum demand for transportation. 

Soon after World War II (WWII), oil replaced coal and steam power and essentially became the 

main contributor of energy for transportation and commercial purposes.  

More than half a century later, crude oil has steadily increased its share of providing 

energy for human activity in every sense. Since 1965, both oil production and consumption 

have almost tripled. Households, corporations and governments are all involved in the industry, 
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either as direct or indirect consumers, thus verifying, the significance of hydrocarbons which are 

indispensable for transportation, industrial and residential uses to our urbanised society. As a 

result, it is not surprising that oil is the world’s most actively traded commodity with recorded 

trade movements in excess of 50 million barrels per day (bpd1) over the last 5 years; this figure 

represents approx. 65% of the world’s oil production. Additionally, in 2004 world consumption 

exceeded the threshold of 80 million bpd and has remained above that ever since, reaching its 

maximum in 2007 at 85.6 million bpd. Even though recent technological advances enhanced the 

development of substitute energy sources, oil delivers superior efficiency of use; therefore, 

industries are still vastly dependent on oil. The dominant position of oil in the energy sector is 

also apparent from the fact that oil corresponded to more than a third of the worldwide energy 

consumption for the years 2008 and 2009; second and third place was occupied by coal and 

natural gas with shares of 29% and 24%, respectively.  

In this chapter we describe the structure of the oil markets. The next section presents the 

stylised facts of the world oil market. This is followed by a presentation of the demand and 

supply framework and the role of OPEC (Organization of Petroleum Exporting Countries). 

Section 2.4 offers a historical overview of fluctuations in oil prices as far as the 1860’s. Section 

2.5 is devoted on oil price volatility.  Section 2.6 provides an introduction in petroleum futures 

markets and gives a brief note on the role of market speculation in price formation. The next 

section  deals with risk management with separate sub-sections on quantifying oil price risk and 

minimum variance hedging whereas we also highlight the need of sound risk measurement and 

risk management strategies in the modern energy markets with a case study: the hedging 

debacle of Metallgesellschaft. Section 2.8 offers an introduction to oil term structure of futures 

and, finally, the last section concludes.  

 

2.2 Main Features of the Oil Market 
This section provides an overview of facets that make the oil market special. The 

analysis describes the environment that the industry operates in and the inherent energy sector 

risks. Throughout the last century, the specific market characteristics and the rapidly evolving 

setting in the hydrocarbon market have added several complexities to the price determination 

process. As for any other commodity, the price of oil and its products is determined by the 

interaction of demand and supply. Yet, understanding the oil markets goes far beyond basic 

economics. Key elements such as the response of the market to several events (such as wars), 

                                                 
1 The statistics used in this chapter are from the British Petroleum Review 2010 report unless otherwise 
stated.  
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the nature of the commodity, the structure of the industry, the regulatory framework, and the 

behaviour and interaction of market participants (such as OPEC) define the mechanics of oil 

fundamentals and bear immense risks for the participants of the sector. The process of searching 

for economically viable oil wells until usage by the ultimate consumer divides the supply chain 

into three segments: upstream, midstream and downstream2. It is widely accepted that the oil 

business has an oligopolistic structure with high-cost producers operating at maximum capacity 

and low-cost producers controlling the excess supply to satisfy demand surges or even cut 

production to balance market shares and protect their interests.  

Market participants usually price crude oil at a discount or premium with respect to 

particular benchmarks and subject to differences in quality and location-specific characteristics. 

There are many specifications of crude oil and these are based on the chemical composition and 

physical properties. Oil is a non-standard commodity and in particular, its sulphur content 

(sweet or sour), gravity (light or heavy), viscosity and acidity define how easy it is to be refined, 

affecting, as a result, the operating costs and the refining yields. In the US, the most prominent 

crude oil grade and the primary pricing marker for North American crude is West Texas 

Intermediate (WTI) which is a high quality crude with small amounts of sulphur. In Europe, the 

Brent blend crude oil, sourced from the North Sea oil fields, constitutes the benchmark for 

pricing European, Middle Eastern and African crude oil. This is also a high grade crude but of 

relatively lower quality than WTI. Another benchmark is the heavy sour Dubai/Oman crude, a 

marker for Middle Eastern crude sold in the Far East markets. Heavy crude oil achieves lower 

yields of the more valuable light distillates and higher yields of the less valuable heavy 

distillates, thus reducing the refining industry’s profit margins. Moreover, OPEC collects 

pricing data for the different types of export crude produced by its members so as to provide 

systematic crude oil pricing information. This is known as the OPEC Basket, which is heavier 

than WTI and Brent.  

In the literature, there is evidence of strong regionalisation across oil markets (Weiner, 

1991). However, more recent studies such as Gülen (1996) and Kleit (2001) support the 

                                                 
2 Upstream refers to exploration and production. The capital intensive nature of this industry and the 
varying costs (conditional on various geopolitical factors, climate, land or offshore wells etc.) - call for 
reliable and precise valuation techniques. Sophisticated methods are employed including gravity, 
magnetic and seismic surveys before the phase of exploratory oil drilling (wildcat) to further reveal the 
geological formation of potential reservoirs (well logging). On completion of successful projects the well 
is equipped with a drilling rig and necessary apparatus to facilitate extraction. Midstream refers to the 
collection, storage and transportation of crude oil to refiners. Downstream refers to the refining and 
distribution of the processed products. Refineries are chemical plants that convert crude oil to light, 
middle and heavy distillates. Crude is heated and separated into its component hydrocarbons (fractional 
distillation) which are then purified - further chemically altered - to fit commercial purposes 
(desulphurisation). Heavy cuts are usually reprocessed using various forms of cracking (thermal, 
catalytic, hydro) to manufacture more valuable lighter distillates, resulting improved yields.  
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hypothesis that crude oil markets have become more unified and move closely together. 

Milonas and Henker (2001) show that the price spreads of different crude grades represent 

variations in quality and regional supply/demand as well as transportation costs, seasonal factors 

and volatility. For instance, due to the location factor, squeezes or seasonality in one market can 

switch the price differential from positive to negative and vice versa, irrespective of quality. 

Furthermore, they find that the Brent and WTI markets are not fully integrated and there may be 

periods that prices evolve independently in the short term. Price differentials increase or 

decrease with certain bounds, linked through the cost of carry relationship, and any divergence 

can be restored by arbitrage. Therefore, although the oil market is global, wide variations in 

price differentials are common and a single unified price cannot serve the industry accurately; 

for instance, in the case of forecasts.  

As a mineral commodity, every owner of crude oil has the option to either extract the 

resource now or hold on to it to extract it in the future. Based on the seminal paper of Hotelling 

(1931), the per unit price of a non-renewable resource over its extraction cost grows at the rate 

of interest (at least in the long run) and the production trajectory depletes monotonically until 

exhaustion. If oil prices rise at a slower rate, all producers would keep their stocks in the 

ground, decreasing the current supply in the market and thus increasing the current price. Oil 

exhaustibility implies that the production and consumption levels of upcoming periods depend 

on the production and consumption of past periods. Unlike standard commodities, producers 

receive a scarcity rent, a premium representing the compensation for holding stocks in reserve 

for use tomorrow. Petroleum markets exhibit incomparable marketplace dynamics because, on 

the one hand, both developed and developing economies are highly reliant on oil-driven 

technologies for sustaining their regular energy requisites or fuelling their growth and 

industrialisation rates and, on the other hand, there are marked geopolitical asymmetries 

regarding the location of the supply and demand centres. This in turn, has triggered political 

intervention originating from the need to guarantee energy security in the long-term, buffer 

against physical disruptions in the short term and mitigate market power risks. 

Figure 2.1 demonstrates the fundamental imbalances in the setting of the world oil 

industry for 2009. For instance, production in North America, Europe and Asia Pacific regions’ 

is much less than the levels of consumption as opposed to Middle East, Former Soviet Union 

and Africa. In addition, proven reserves are concentrated in the Middle East region. As of the 

end of 2009, 20% of the proven reserves are located in Saudi Arabia whereas, in total, 57% of 

the reserves lie in the Middle East. Total proven reserves are currently estimated to be 1.3 

trillion barrels. Regarding oil consumption, Middle East is responsible for more than one third 

of the world’s production but consumes less than 10%. United States and Europe (excl. Former 
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Soviet Union) are the largest importers of crude and consume jointly around half of the global 

production but produce less than 20% of it. In addition, China and Japan are also large 

consumers with shares of 10% and 5%, respectively and they have less than 5% stake in world 

production together. In South and Central America, Venezuela holds 87% of the proven 

reserves in the region (172 billion barrels), with a share of less than 1% of the total consumption 

and more than 3% of the total production. Nigeria, Angola, Algeria and Libya produce jointly 

less than 10% of the world production but African countries, in total, consume less than 4%.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Proven Reserves 
North America 73***_***_** 
S. & C. America 199***_***_****_***__****_******_ 
European Union 6 
Former S.Union 122***_***_*****_***_** 
Middle East 754***_***_****_***__****_******_***_***_****_***__****_******_***_***_****_***__****_******_***_***_****_***__** 
Africa 128***_***_*****_***_*** 
Asia Pacific 42***_* 

FORMER SOVIET UNION
Production 13.2********** 
Refining 8.1***** 
Consumption 4.0* 

 
ASIA PACIFIC 

Production 8.1*****  
Refining 26.8 **********************  
Consumption 26.0 *********************  

 
MIDDLE EAST

Production 24.3 ************************ 
Refining 7.6***** 
Consumption 7.1**** 

NORTH AMERICA 
Production  13.3********* 
Refining  21.1************** * 
Consumption  22.8 ********************** 

 EUROPEAN UNION
Production 2.1 
Refining 15.6*********** 
Consumption 14.1********** 

 
S. & C. AMERICA 

Production 6.7**** 
Refining 5.7*** 
Consumption 6.6**** 

AFRICA
Production 9.7******* 
Refining 3.2 
Consumption 3.1 

a. Proven Reserves are in billion barrels.  
b. Production/Consumption/Refining are in million bpd.  

Figure 2.1: Imbalances in the World Oil Market Structure 

 

The outlook has not been constant throughout the years. In America, for instance, since 

1980 the Northern part’s proven reserves have depleted by 20% to 73 billion barrels, whereas in 

South and Central America, reserves have experienced a sevenfold increase to 199 billion 

barrels. Overall, production and consumption have increased by 27% and 37%, respectively, 

and proven reserves have doubled with OPEC members controlling more than 77% of the 

reserves compared to 67% in the 1980’s. Additionally, Middle East has expanded its 

domineering supply-side role throughout the years.  

Figure 2.2 confirms the role of Middle East as a swing producer since most of the spare 

capacity is concentrated in this area. The correlation of the production deficit of OECD 

(Organisation for Economic Co-operation and Development) with the Middle East surplus since 

1965 is 95%. The deficit is greater than the surplus which is balanced from Former Soviet 

Union, African and South & Central American imported crudes.  
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Figure 2.2: Middle East as a Swing Producer 

 

Finally, refining capacity has developed steadily following the consumption 

requirements of each region. In 1980 refining throughput i.e. the quantity of crude being 

processed per day was around 60 million barrels (almost twice over that of 1965) with an 

estimated daily capacity (upper limit) of 80 million, as opposed to 73 million bpd throughput 

(91 million bpd capacity) in 2009. Before WWI, international trade of crude oil was too costly 

due to its low value and refineries were located near production oil sites. However, the market’s 

nexus until then was the biggest producer and exporter of oil at the time; that is the US. With 

the demand boom after 1920, the gradually strengthening position of Middle East’s production 

and the developments in the shipping industry, the market was essentially restructured with 

refineries being relocated next to demand poles since the transportation of low value crude 

could benefit from economies of scale. 

 

2.3 Demand and Supply Framework 
Traditionally, energy markets function with a unique structure of supply and demand 

mechanisms, which introduce a degree of complexity along with elevated levels of volatility. 

Economic theory asserts that excess demand (supply) results in an upward (downward) pressure 

on prices. Those forces that affect the price levels merit discussion at the outset because should 

any potential imbalances arise this will have a direct impact on volatility. 

Crude oil is characterised by a global demand curve which is derived from the energy 

consumption rates of the finished and intermediate products, given the transportation, industrial 

and residential needs. Obviously this is directly linked to the global economic activity; hence 

population growth and the degree of industrialisation are of paramount importance. In general, 

demand for oil is a composite of global economic activity, demographics, competing energies 
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and consumer preferences, refining capacity, storage and advances in demand-side technologies. 

Price controls and government/organisation policies are also key elements of the demand side. 

For instance, importing countries influence the market via environmental regulations (e.g. 

Kyoto protocol, 1997), research and development of alternative energy resources or even 

political intervention to ensure sufficient flow of the commodity from secure supply sources and 

national investments in oil ventures. On the other hand, the product markets in the world differ 

from one place to another and are characterised by a regional demand curve. Different 

economic activities, climate, level of technological development and diverse lifestyles around 

the globe lead to different consumption patterns; for instance, 50% of the total oil product 

consumption of the US concerns light distillates as opposed to Europe where the prominent role 

is held by middle distillates.  

In the short-term, global demand for crude oil may be mismatched with the underlying 

regional demand for petroleum products as a result of regional inventory building for products 

to meet seasonal demand and the timing effect of production. Regional consumption is 

susceptible to the refineries’ flexibility in adjusting the yields, storage policies and capacity 

constraints, implying that when imbalances occur, international trade will accommodate the 

need for oil. Among the importing countries, as already mentioned, the largest importer and 

consumer of oil is the US. In 2009 over 11 million bpd were imported in the United States, with 

20% representing petroleum products. Canada, Mexico and South and Central America feed 

more than half of the US oil needs, whereas imports from the Middle East and Africa account 

for more than 15% and 19% of the total figure, respectively.  

Turning now to the supply side, this aspect concerns the amount of oil offered by 

producers based on the optimisation of their revenue. The capital intensive nature of the 

industry, the varying extraction costs over time, heterogeneity of the commodity and the 

depleting reserves that are occasionally augmented through exploration and development 

projects, are some of the stylised facts of the supply function. This side is a composite of proven 

reserves, estimates of undiscovered reserves, stocks, supply-side technologies to improve 

production process and rates of extraction, geopolitical uncertainty arising form the imbalances 

in production, as well as political events. Oil supply chain disruptions might occur at every 

stage of production i.e. upstream (extraction capacity, cost of drilling, environmental policies, 

etc.), midstream (transportation infrastructure, extreme weather conditions etc.) and downstream 

(availability and location of refineries, capacity constraints, taxes and legal systems etc.), 

affecting the price either by causing bottlenecks in the production process or by changing the 

overall costs.  
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In addition, the behaviour, role and interests of OPEC and non-OPEC suppliers add a 

certain complexity to the supply side, introducing the necessity to distinguish between two 

supplier profiles (see also next section). OPEC, founded in 1960 in Baghdad, consists of twelve 

countries controlling more than 70% of the world’s proven oil reserves and is responsible for 

less than half of the world oil production (40% on average since 1965). After the first oil crisis 

of the 1970’s non-OPEC suppliers increased their share and the resulting geographical 

dispersion of the oil fields served to smooth the supply process. However, non-OPEC 

production is associated with more technological difficulties and higher costs; for instance in 

North Sea and Alaska. Moreover, the industry involves six large multinational vertically 

integrated corporations (ExxonMobil, ChevronTexaco, ConocoPhillips, Total, British Petroleum 

and Royal Dutch Shell) and several smaller independent firms. The world’s largest oil 

corporation in terms of both reserves and production is state-owned, the Saudi Arabian Aramco 

which was fully nationalised in 1980.  

In summary, oil prices at any point in time should reflect the balance between supply 

and demand for crude oil. First, in the short run, both demand and supply curves are known to 

be very inelastic implying that supply shortages or severe positive demand shocks are translated 

to large price increases (Krichene, 2006). Inelastic demand is due to the fact that substitution 

and energy conservation requires huge investment and certain time to set up the proper 

infrastructure. Inelastic supply is due to the fact that releasing additional quantities in the market 

given low inventory levels is impracticable: neither non-OPEC members (they already operate 

at full capacity) nor OPEC members that control spare capacity (due to the timing effect of 

production) can respond instantaneously. Second, a more elastic, though still relatively inelastic, 

demand and supply is observed in the long run. This is due to the fact that more supplies can be 

brought in the market by increasing OPEC production, growing activity in exploration-

development and utilisation of unexploited wells, technological advances that lead to more 

efficient use or even substituting oil with alternative energies. In such a setting of fundamentals, 

demand and supply shocks under tight market conditions are translated to large price 

movements, which in turn introduce increased volatility and have direct implications on the 

energy policies for both governments and companies susceptible to energy risk.  

 

2.3.1 The OPEC effect  

The strategic importance of oil was first depicted in the years after John D. Rockefeller 

and the Standard Oil Company came on the scene in 1870. From the beginning of the 20th 

century and after the break up of Standard Oil, it was obvious that laissez faire et laissez passer 
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did not fit in the nature of the industry and limited competition was always a distinctive feature 

of the market. After WWI and the dissolution of the Ottoman Empire, an early attempt for the 

creation of an international cartel took place in Achnacarry involving Royal Dutch Shell, 

Standard Oil and Anglo-Persian companies to stabilise the market, prevent price wars and freeze 

market shares - known also as the “As is” meeting, in 1928. The products of this association 

were the Red Line Agreement and the creation of the Iraq Petroleum Company (IPC) which 

controlled most oil of the Iraq region up to 1961: each partner agreed to jointly exploit any new 

reserves. Since the 1960’s, a key factor in the price determination process is the behaviour of 

OPEC countries.  

The bargaining power of the major producing countries is rooted in the strategic 

importance of oil due the degree of concentration of the reserves and the need for energy 

security. Outside the cartel several suppliers exist that do behave competitively, holding 23% of 

the proven reserves and possessing a 60% production share, on average, for the last 45 years. 

OPEC’s mission, being the low cost producer, is to secure a regular supply of oil and smooth 

the market whilst at the same time ensuring fair prices for its members by coordinating its 

production output and allocating quotas. On the other hand, the response of non-OPEC 

countries to oil prices is relatively lower (Krichene, 2006). Oil prices do fluctuate depending on 

how OPEC calculates quotas and how its members comply with these decisions. For example, 

although producers do not incur any storage costs by altering production rates -oil is basically 

left in the ground- most exporting countries rely heavily on oil revenues and might be unwilling 

to lessen output.  

The market power of the organisation has been challenged in a plethora of studies. The 

branch of empirical research studying the behaviour of OPEC starts with the seminal paper of 

Griffin (1985). Studying the supply functions for individual countries, the author concludes that 

most OPEC members behave as if they were part of a collusive cartel. Later, several studies 

attempted to analyse OPEC influence and the determinants of OPEC supply. For instance, 

Kaufmann et al. (2004) find that OPEC can manipulate real oil prices via altering production 

quotas and operable capacity whereas OECD stocks and the amount of cheating those quotas are 

critical aspects. Generally, literature is far from consistent on the issue but, overall, confirms the 

oligopolistic market character of oil; for a related review see Smith (2005). As Kaufmann et al. 

(2008) note “There is no reason to expect a simple model to describe the production behaviour 

by members of an international organisation that consists of sovereign nations, which have 

vastly different geological endowments, economic structures, and political/social aspirations”. 

Another interesting observation is the fact that the reaction of OPEC members and the 

corresponding influence in the market is not clear-cut and has proven to be asymmetric and 
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complex with uncertain success rate. For instance, De Santis (2003) confirms that Saudi Arabia, 

the most powerful member of OPEC, will cut production to protect the revenues of her 

producers and the organisation members but at the same time has little incentive to adjust output 

accordingly in response to positive demand shocks. Of course, it is not a part of OPEC’s 

objective to set unjustified price ceilings. However, maintaining healthy growth and preventing 

strong trends in energy substitution rates are natural concerns since persistence of high prices 

can be proven damaging for the whole market in the long-run.  

Real practice shows that OPEC’s political economic response depends on the market 

sentiment and expectations regarding the ability of the cartel to operate effectively. Some OPEC 

meetings are overlooked whereas others create excessive notice, prompting speculative activity. 

Lin and Tamvakis (2010) carry out an event study examining how OPEC announcements 

influence major international crude prices and find that the magnitude of these effects depends 

mainly on the prevailing price zone. In particular, they identify low, normal and high price 

regimes and report that quota cuts (increases) lead to price increases (decreases), except in the 

low (high) price band. In theory, the pricing function does rely on OPEC and the organisation is 

expected to gain power, given the current and potential tight fundamentals. The ratio of OPEC 

to non-OPEC proven reserves has grown steadily over the years from 2.7 in 1980 to 5.7 in 2009, 

while the corresponding production ratio fluctuates around unity for the last 5 years, with an 

increasing trend since the 1980’s. Shrinking reserves in the North Sea, US and Mexico and the 

concentration of supply capacity at high political tension regions define new risk perceptions for 

demand, supply and volatility effects. Finally, although the process of adjusting OPEC supply 

can only hope to put pressure on prices, given the high response of the oil market to news, 

OPEC meetings and decisions, the degree of timely response, flexibility to follow quotas and 

expectations regarding compliance and credibility of its members as well as speculation of the 

overall cartel’s behaviour and interests, do contribute to raise volatility in the short term. This is 

especially true in turbulent periods where recovery takes time and planning.  

 

2.4 Historical Overview of Fluctuations in Oil Prices 
In the 1860’s the industry was characterised by considerable levels of volatility mainly 

due to market disorder, poor rules of ownership and the particular market structure comprising 

small independent firms or individuals. As Dvir and Rogoff (2010) note, during these early 

years, the persistent growth shocks due to intense industrialisation, on the demand side, and the 

uncertainty surrounding easy consumer access, on the supply side, had a significant effect on 

price fluctuations. Moreover, oil production was concentrated mainly to north-western 
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Pennsylvania and railroad monopoly over the transportation of oil was a constraining factor 

against producers’ margins. Consequently, temporal variations and cycles were common. After 

1870, Standard Oil initiated a tactic to exploit that disorder and by gradually acquiring most of 

the existing businesses it managed to transform the market into a monopoly.  
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Figure 2.3: Crude Oil Prices, 1869 - 1969 

 

By 1880, Standard Oil controlled 90% of the oil production and trade in the US at all 

stages of production, which had a stabilising effect on prices: from $8/bbl in 1864, prices 

dropped and remained in the $1/bbl region up and until the dissolution of Standard Oil in 1911 

(Figure 2.3). In fact, prices remained relatively low for many years forward regardless of the 

political turmoil in the international arena such as the Mexican nationalisation, the Iranian 

nationalisation, the Suez Canal closure (which increased considerably transportation 

requirements for oil) and the apparent demand surge. This is attributed to the end of the railroad 

monopoly over the transportation of oil in the US with the construction of Tidewater, the 

continuous discovery of new reserves, such as the East Texas oilfield in the early 1930’s, the 

rise of Middle East as a major producer and the expanding production so that depleting 

reservoirs were not yet an issue. As a result, crude oil was in abundance and producing 

countries would produce as much it was needed and importing countries could accumulate this 

way a safe amount of inventories, sufficient to absorb any potential demand shocks. However, 

with the strong demand growth and given that oil was now cheaper than coal, dependence on oil 

mounted in the 1960’s.   
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Due to the supply abundance, prices remained depressed and stable up to 1973 (Figure 

2.4). With OPEC now in the scene and the excessive dependence of the industrialised 

economies on oil imports, the market was about to change fundamentally: the industry was 

evolving rapidly and becoming more and more sophisticated. To add, US production had 

already reached its peak, implying that excess capacity was concentrated exclusively in the 

Middle East. A falling dollar, in the beginning of the decade, meant that producers received 

decreasing streams of income for their production. Therefore, OPEC asserted its power and 

started negotiations.  
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Figure 2.4: Crude Oil Prices, 1970 - 2000 

 

In 1971, after a process of nationalisation of western oil companies’ concessions in the 

regions of oil exporting countries, OPEC raised tax rates, signed the Tehran and the Tripoli 

Agreement and decided on an increase in the posted prices to be followed by further increases in 

order to counterbalance the dollar depreciation. In October 1973, Saudi Arabia, Libya, and other 

Arab states proclaimed an oil-exports embargo to retaliate for the US decision to assist Israel in 

the Yom Kippur War. Although short-lived (until March, 1974) the embargo led to what is 

known as the first oil price shock with the cost of crude more than quadrupling to nearly 

12$/bbl. Yet, the oil craving of the economies was so intense that demand, production and 

exports remained strong throughout the 1970’s. Consequently, the second oil price shock was 

not far ahead when another political event agitated the status quo: the Iranian Revolution in 

1979 which resulted in the dissolution of the western oil companies in the region. 

With the price of oil reaching $40/bbl, a new phase begun and the entire humankind 

was forced to reconsider many issues. First, demand starts to drop in view of the high prices 
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since energy conservation and fuel switching was encouraged. Second, non-OPEC production 

was increasing since the two crises revealed that the value of politically safe reserves and 

energy security became once again a first priority issue for many governments (providing 

incentives for domestic exploration and development or alternative projects). Hence, new 

supply patterns emerged with high-cost suppliers such as the UK, Alaska and Canada increasing 

their share and bringing forward their own oil industries. Obviously, OPEC’s control 

deteriorated and any decisions for production cuts did not have the desirable effect because they 

were offset from the non-OPEC supply.  

Saudi Arabia’s crude oil output, from over 10 million barrels bpd in 1980, fell to just 

3.6 million bpd in 1985. By the mid 1980 prices had fallen to lower levels than the aftermath of 

the 1973 embargo. Saudi Arabia’s decision to aggressively increase its market share and 

abandon the role of the swing producer also contributed to this end. In 1986 Saudis increased 

production by 45% to 5.2 million bpd and applied the netback pricing system, thereby bearing 

the price risk of their customers by guaranteeing refiners’ profit margins. This led to a record 

low price of around $10/bbl in 1986 causing struggle to all producers, OPEC and non-OPEC. 

Since then, several events contributed to a completely different price behaviour compared to the 

preceding two decades. Markets became more competitive and efficient and, especially after the 

introduction of derivatives in 1983, more transparent, liquid and open. The oil business was now 

responding much more frequently to the arrival of new information and political events (e.g. 

Persian sGulf Crisis, Nigeria workers’ strike), weather conditions and supply/demand dynamics; 

once the balance was restored prices reverted back i.e. shocks became less persistent. We can 

observe (Figure 2.4) that after the Asian Crisis of 1998 a barrel of crude was traded for even less 

than $10, a historical low of more than two decades.  
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In July 2008, the refiner acquisition cost of imported crude in the US reached the 

$130/bbl range and the corresponding WTI and Brent spot markets reached $145/bbl. Apart 

from the rapid growth of demand for commodities in emerging countries (mainly China) and the 

relatively low US stocks, several events contributed to the apparent upward trend (see Figure 

2.5), including the 9/11 attacks, the Venezuelan strike in late 2002, the US military action in 

Iraq after 2003, North Korea’s missile launches, the Hurricanes in the Gulf of Mexico, the 

conflict between Israel and Lebanon in 2006 and the Iranian nuclear brinkmanship. Changes in 

federal oil policies, a falling dollar and of course the sizeable entry of index speculators into the 

futures markets also contributed to the July peak and what some call the third oil price shock. 

The outcome was for prices to collapse below $40/bbl due to a drop in demand for oil in 

combination with oversupply, and the financial crisis which lead to the subsequent deleveraging 

of commodity portfolios from risky assets. To conclude, the third oil price shock was realised in 

the course of 5 years (2003-2008) rather than being caused essentially by OPEC members (1st 

and 2nd oil price shocks). Nevertheless, all three shocks were followed by economic recessions. 

 

2.5 Oil Price Volatility  
Oil prices were mainly controlled by the Seven Sisters3 during the 1950’s and 1960’s 

and by OPEC during the mid-1970’s to the mid- 1980’s. After the two oil price crises and the 

introduction of the market-based pricing system in the 1980’s individual investors and energy 

market participants have always been faced with high levels of uncertainty. As previously 

demonstrated, the price of oil is determined by distinctive supply and demand interactions 

augmented by a complex game of interdependencies among market participants. As a result, 

price volatility has become an important feature of the industry due to the detrimental effects 

that can occur from under- or over- estimating its impact on the revenue and cost sides (in all 

lines of oil-related business) and in general, the cash flows and earnings from relevant 

investment strategies. It is vital for oil price related decision makers such as governments, firms, 

individuals and multinational organisations (such as OPEC) to understand, quantify, monitor 

and control the risk matrix associated with the petroleum industry.  

Oil price volatility has been studied on several aspects since it has economic 

consequences of general interest. First, it plays an important role to regional and global 

economic activity because sharp price fluctuations lead to economic instability for both oil-

                                                 
3 This is a common term referring to the seven major Anglo-American oil companies that structured the 
Consortium for Iran after WWII. These were Royal Dutch Shell, Anglo-Persian Oil Company, Gulf Oil, 
Texaco, Standard Oil of New Jersey, Standard Oil New York and Standard Oil of California. Operating as 
a cartel, they essentially dominated the global oil markets until OPEC raised its prominence.  
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exporting and oil-importing countries affecting government and companies corporate policies as 

well as individuals. Oil volatility has a certain impact on the macroeconomy (see Lee et al., 

1995; Federer, 1996; Hamilton, 2003 and Chen and Chen, 2007) and on the financial stock 

markets (see Sadorsky, 1999, 2003 and Driesprong et al., 2008). Second, oil price volatility has 

an unfavourable effect on investments by increasing the uncertainty regarding future cash flows 

(especially on high capital intensive projects such as exploration and production) and causing 

project delays (see for instance Pindyck, 1991) whereas persistent uncertainty induces the 

longer term effect of reallocating the available resources to less volatile sectors and competing 

energies. Third, Pindyck (2004a) argues that volatility affects the demand for storage, thus, the 

firms’ operating options and opportunity cost of the current production. Finally, being a pivotal 

input to the value of contingent claims, volatility behaviour is indispensable for pricing, hedging 

and evaluating strategic alternatives.  

Economic theory manifests that asset returns tend to exhibit volatility clustering; in 

other words, large (small) price changes tend to be followed by large (small) price changes 

(Mandelbrot, 1963). This indicates that oil price changes might follow time-varying 

distributions and, therefore, if this is the case, risk should also be time-varying; this has been a 

central issue in various studies. To accommodate autocorrelation in the squared return process, 

Engle (1982) provided the first insight into modelling the time dependency of volatility in the 

financial markets with the development of the Autoregressive Conditional Heteroscedasticity 

(ARCH) models; later generalised by Bollerslev (1986) (GARCH).  

To provide an overview of volatility movements, Figure 2.6 displays the volatilities and 

correlations of WTI crude oil spot prices at Cushing Oklahoma and conventional gasoline and 

heating oil at the New York Harbour as estimated by a simple tri-variate GARCH(1,1) model. 

Annualised volatility lies within 22%-90% for WTI, 27%-105% for gasoline and 22%-120% for 

heating oil. Largely, the time varying nature of risk in the oil markets has been the norm in the 

literature for modelling either individual petroleum commodities (Kang et. al, 2009 and 

Agnolucci, 2009) or portfolios of such commodities (Haigh and Holt, 2002). As an example, 

Pindyck (2004b) finds significant fluctuation in crude oil volatility with short-lived shocks 

(reporting a half life 5 to 10 weeks) and a small upward trend which is however of no economic 

significance; this implies that the volatility path is more relevant to shorter duration oil-based 

derivatives rather than long term real options. Narayan and Narayan (2007) show that oil price 

shocks have asymmetric and persistent effects on volatility. However, this relationship weakens 

or even disappears across sub-periods implying that oil price behaviour experiences sudden 

changes.  
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Figure 2.6: Annualised Spot Volatilities & Correlations of Main US Petroleum 

Commodities and Crack Spreads 

 

Volatility behaviour has also implications for refiners or portfolio managers since 

dynamic interdependence of risks implies correlation risk and diversification effects for market 

participants. For example, the annualised volatility of the 3:2:1 crack spread varies from 13% to 

76% with correlations of WTI vs. heating, WTI vs. gasoline and heating vs. gasoline ranging 

from 10% to 90%, -1% to 80% and 6% to 81%, respectively. When producers, refiners, 

consumers, portfolio managers and, in general, investors, are risk averse there is reason to 

mitigate the risks arising from oil price volatility. Theoretically, to eliminate the effects of 

severe price variation there are several choices available such as integration, diversification, and 

inventory management. However, for agents involved in the physical market this entails huge 

investment whereas the efficiency of such procedures to limit risk is questionable. Usually the 

most efficient way to deal with market risk is by using derivatives (paper contracts) such as 

forwards, swaps, futures and options. These are discussed next.  
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2.6 The Petroleum Futures Market 
Derivative securities are financial contracts whose value is derived from some 

underlying asset. Over-the-Counter (OTC) trading of such contracts has existed since ancient 

times, even for options. A form of bilateral tailor-made forward agreements was always needed 

to facilitate trades, improve communication between the buy and sell side and deal with the 

typical arrangements of transportation, delivery, regulation, etc. Modern derivative instruments 

date back to the mid 1860’s with the introduction of standardised commodity future contracts at 

the Chicago Board of Trade. The birth of exchange-regulated contracts was mainly due to the 

concerns of U.S. merchants to improve the effectiveness of the commercial marketplace by 

ensuring liquidity (bringing together potential buyers and sellers), creating the opportunity to 

hedge against adverse price changes and most importantly mitigating credit risk which was a 

severe hazard of the financial system at that time. A petroleum futures contract is a legally 

binding standardised agreement between two parties to buy or sell a given amount of the 

underlying commodity at an agreed forthcoming date with pre-specified arrangements regarding 

the quality, location and method of delivery. A party who holds contracts at the expiration date 

is obliged to make or take physical delivery unless otherwise specified (some contracts are only 

cash-settled). Throughout the life of a contract the buyers’/sellers’ gains or losses are daily 

settled (marked to market). The security and performance of the contract is guaranteed by the 

exchange (no credit risk). To initiate a trade two types of margins are maintained: an initial 

deposit to the exchange’s clearing house and a daily variation margin which covers deductions 

that arise after the daily revaluation of the futures portfolio.  

In 1872, the New York Mercantile Exchange (NYMEX) was established by a group of 

dairy merchants and was later developed to the largest energy commodities exchange. Sixteen 

years later the National Petroleum Exchange in Manhattan facilitated the first oil futures-like 

derivative instrument when John D. Rockefeller issued certificates against oil stored in 

pipelines. The first energy exchange-regulated market was launched in 1978 with the 

introduction of the NYMEX heating oil futures contract in view of the first oil price shock and 

the subsequent upward trend in oil prices. Later, in 1983 and 1984 crude oil and gasoline futures 

were also introduced, respectively. Since August 2008, NYMEX has been integrated with 

Chicago Mercantile Exchange (CME Group) and now constitutes the most mature futures 

market trading petroleum futures on WTI, heating oil, unleaded gasoline, Brent, 3:2:1 and 1:1 

cracks as well as New York Jet Fuel, Gulf Coast Heating Oil, European Jet Kerosene, among 

others. Another major exchange providing oil derivative contracts was the International 

Petroleum Exchange (IPE) launched in 1980 in London which is now known as the 

 24



 
 

Chapter 2: Introduction to Oil Markets and Energy Risk 
 
 

Intercontinental Exchange (ICE) after its acquisition in 2001 by the homonym company. The 

first contract for gas oil futures was introduced in 1981 followed by the Brent crude oil contract 

in 1988. The exchange trades a variety of energy futures including gas oil crack, Brent-WTI 

spread and heating oil - gas oil spread and US oil futures, among others. Other exchanges that 

trade oil-related contracts are the Tokyo Commodity Exchange (TOCOM) since 1999 (crude 

oil, gas oil, gasoline and kerosene futures) and the Dubai Mercantile Exchange (DME) since 

2007 (crude oil futures). Finally, Singapore Mercantile Exchange (SMX) opened the third 

quarter of 2010 and launched petroleum futures (WTI and euro priced Brent).  

NYMEX WTI contracts are traded for all consecutive months within the current and the 

next 5 years. Contracts are also listed for every June and December delivery up to 9 years 

forward. New contracts are listed on an annual basis, after expiration of the December contract. 

Each contract is traded until the close of business on the 3rd business day prior to the 25th 

calendar day of the month preceding the delivery month. If the 25th calendar day of the month 

preceding the delivery month is a non-business day, trading shall cease on the 3rd business day 

prior to the business day preceding the 25th calendar day. Delivery shall be made free-on-board 

(FOB) at any pipeline or storage facility in Cushing, Oklahoma, whereas delivery shall come to 

effect between the 1st and last calendar day of the contract month. The size of the contract is 

1,000 barrels and is quoted in US dollars per barrel (US$/bbl). NYMEX gasoline contracts are 

traded for all 36 consecutive months and the underlying is Reformulated Gasoline Blendstock 

(RBOB) for delivery at the New York Harbor. Each contract is terminated the last business day 

of the month preceding the delivery month. Contract size is 42,000 US gallons is quoted in US$ 

cents per gallon. Similar are the specifications for NYMEX heating oil contracts based on No. 2 

fuel oil, deliverable at New York Harbor4.  

Turning to ICE, Brent crude oil contracts are traded for all deliveries within the next 72 

consecutive months.  Six additional contracts are listed for June and December deliveries for up 

to 9 years forward. Each contract is traded until the close of business of the 15th day before the 

1st day of the delivery month. If such day is a non-business day, trading shall cease on the next 

business day. The ICE Brent crude contract is a deliverable contract containing 1,000 barrels of 

crude, based on Exchange Futures for Physical (EFP) with an option for cash settlement and 

                                                 
4 Note that the two refined products, accounting for more than 70% of the refining yield, have undergone 
changes in their respective contract specifications throughout the years. First, heating oil was regularly 
traded for all deliveries within the next 18 months up to 2007 when delivery months increased to 36; the 
specifications of heating oil contract is also expected to change due to regulatory changes that intend to 
reduce the sulphur content of the commodity in the New York Harbour area - the last listed contract 
expires in January 2013. Second, in 2006 the unleaded gasoline contract with 12 forward delivery months 
was replaced by the RBOB for Blending with 10% Denatured Fuel Ethanol (92% purity), a change 
imposed to meet government emissions regulations.  
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reference price the ICE Brent Index for the day following the last trading day of the contract. 

Settlement price is the weighted average price of all trades during a 3 minute settlement period 

commencing at 19:27, London time. Size and quotation are the same with WTI. ICE gas oil 

contracts are traded for all deliveries for 36 consecutive months forward, then quarterly out to 

48 months and then half-yearly out to 60 months. Contracts expire at 12.00 hours, 2 business 

days prior to the 14th calendar day of the delivery month. Its underlying physical market is 

heating oil barges (or coasters up to 10,000 deadweight) or in-tank or inter-tank transfer from an 

Exchange Recognised Customs and Excise bonded storage installation or refinery delivered in 

ARA (Antwerp, Rotterdam, Amsterdam). Contract size is 100 tonnes of gasoil at a density of 

0.845 kg/litre and is quoted in US$ and cents per tonne.  

Figure 2.7 (left panel) displays the annual aggregated volume of crude oil futures traded 

in NYMEX and ICE. The dashed line is the annual world production. Notably, as early as 1990 

the traded volume of the recently launched NYMEX contract matched global output. Apart from 

hedgers, the success of exchange traded oil-related contracts stimulated trading activity, 

attracting a broad range of new participants such as portfolio managers and index speculators. 

The same figure (on the right) depicts the evolution and variability of daily traded volume of the 

nearest to expiration NYMEX WTI contract since 1988. Again, the upward trend after 2002 is 

noticeable.  
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Figure 2.7: Trading Activity of NYMEX & Brent Crude Oil Futures  

 

Fleming and Ostdiek (1999) examined the impact of energy derivatives trading on the 

crude oil market and found evidence of a sudden increase in volatility after the introduction of 

crude oil futures (for a period of 3-4 weeks). In the longer term, despite a rise in volatility 

estimates for the following year, this effect cannot be disentangled from the impact of several 

coincided exogenous factors such as deregulation and the rapid growth of the industry. Overall, 

the relation between futures trading activity and spot market volatility showed that futures 
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trading improved both depth and liquidity, having a mitigating impact on volatility rather than 

destabilising the underlying market. Furthermore, focusing on the subsequent introduction of 

new derivative contracts - including options-, volatility effects seem to disappear as the market 

gradually becomes more complete.  

The rationale for the existence of derivative markets is to facilitate price discovery and 

offer the means to price and hedge risk. There is a plethora of studies in the literature that have 

investigated the extent to which this dual role of the futures market is indeed performed. For 

instance, Moosa (2002) showed that futures account for a rather high portion of the price 

discovery function (60%) and are also successful in transferring the risk from participants who 

want to reduce the variance of their portfolio to participants that are willing to bear those risks; 

confirming earlier studies supporting futures as the leader in the price discovery process 

(Silvapulle and Moosa, 1999). This is not a surprising fact though since the physical oil market 

is relative illiquid characterised by a declining physical volume of the main benchmarks (WTI 

and Brent) and is also much less transparent with fewer participants compared to futures. 

However, spot prices endow supply and demand forces with economic substance and it is not 

surprising that they also play a key role rather than just being satellites of derivatives prices. 

Moreover, futures have been found to be unbiased predictors of future spot prices (Crowder and 

Hamed, 1993; Schwarz and Szakmary, 1994 etc.) On the other hand, hedging effectiveness has 

also been a fashionable topic and several studies support the ability of oil contracts as a risk 

management tool. Due to liquidity limitations it is accepted that the “most effective hedge is the 

nearby contract” (Chen et al., 1987) where trading volume is mainly concentrated. That said, 

longer term hedges are expected to be less effective mainly due to varying convenience yields 

that create basis risk (lower futures-spot correlation) in the process of rolling futures positions 

forward. Haigh and Holt (2002) analyse the problem of refiner who is exposed to crack spread 

fluctuations and his ability to trim down efficiently the price risks involved, using NYMEX 

futures. Results illustrate substantial rewards in terms if risk reduction and certainty equivalent 

income.  

 

2.6.1 Speculation and Investor Behaviour  

After the development of organised exchanges, derivatives products expanded giving 

easy access to the industry. They increasingly gained importance, motivating a large entry of 

new financial players. According to the purpose of involvement in the market, active investors 

can be classified to hedgers, arbitrageurs and speculators. Hedgers provide the founding 

economic substance of the market linked to the physical underlying market. Their aim is to 
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reduce the risks to which they are exposed. Arbitrageurs play a correction role in the market; 

engaging simultaneously in two or more related markets, they restore the balance by exploiting 

economically meaningful counterfactual relationships e.g. between two different quality crudes, 

two different location crudes, spot vs. futures, deferred futures, crude vs. products etc. Their aim 

is to profit from deviations of fundamental relationships. Lastly, speculators are investors who 

willingly bear price risks in view of the profit potential; in effect, they constitute the polar 

opposite of hedging. Especially nowadays, there is always a speculative part in the demand for 

oil, either by hedge funds, commodity traders, institutional and individual investors with 

primary reasons to exploit the tight fundamentals (i.e. stagnant supply and demand surge) and/or 

use petroleum commodities as a diversification tool.  

In 2006, the US Senate Subcommittee on Investigations (“The role of market 

speculation in rising oil and gas prices”) reported that increased speculation activity in turn 

swelled paper demand and prolonged the bullish markets. The speculative money released was 

believed to have changed the fundamentals i.e. crude oil market was characterised by both high 

prices and large inventories. In 2008, Michael Masters with a written testimony to the 

Committee on Homeland Security and Governmental Affairs of the US Senate found that assets 

allocated to commodity index trading strategies had increased from $13 to $260 billion between 

2003 and 2008.  Over the same five-year period, index speculators demand for petroleum 

futures has increased by 848 million barrels (equivalent to the increase in China’s demand over 

the last five years - 920 million barrels) and have stockpiled futures with an underlying quantity 

of 1.1 billion barrels (eight times higher than the oil added to the Strategic Petroleum Reserves 

of the US).  

Although speculators serve an important role regarding market efficiency, transparency 

and enhancing liquidity, some side effects cause deviations from the equilibrium prices and 

increased volatility, at least temporarily. Kaufmann and Ullman (2009) confirm the significance 

of speculation in the oil market, concluding that high prices and the upward trend up to March 

2008 has been indeed triggered by a change in fundamentals with increasing demand and 

sluggish non-OPEC supply. This setting, being identified by speculators, caused oil prices to 

overshoot their fundamental equilibrium, slowing in effect demand growth and economic 

activity. 

 

2.7 Petroleum Price Risk Management  
Since the first oil price shock, oil price volatility has clearly demonstrated the potential 

to significantly impact the ordinary conduct of business of many companies and consumers’ 
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income. Numerous pressures arising from geo-political instability, unexpected or extreme 

weather conditions, political decisions, refining capacity constraints, limited and concentrated 

spare supply and sudden demand surges can and often do create price swings which affect 

revenues, financial performance and elevate budgetary requirements. Derivative markets 

provide an essential tool to transmit price exposure and reduce the portfolio uncertainty. 

Reducing cash flow volatility also entails indirect benefits for companies. First, it reduces the 

cost of financial distress by avoiding large firm value changes or even limiting the downside 

during bankruptcy proceedings. Second, it reduces the expected value of income tax payments 

by smoothing taxable earnings throughout time. Third, it can improve efficiency by avoiding 

under-investment. Fourth, it can increase debt capacity and lower the cost of funds by reducing 

the possibility of sudden cash shortages leading to costly financing (see Smith and Stulz, 1985 

for the benefits of hedging to the firm’s value).  

In the oil market, producers act as natural sellers of futures contracts (short hedge) to 

protect themselves against a decline in crude oil prices. In contrast, refiners act as natural buyers 

of crude oil futures contracts (long hedge) to protect against a price increase which would in 

effect increase their production costs. Moreover, refiners are also short hedgers of their 

production, thus they will often sell futures contracts of refined products to protect their 

margins. Other natural hedgers in the industry (i.e. investors with commercial interest in the 

physical commodity) are governments, marketers, distributors and in general, everyone engaged 

in the supply chain of oil up and to the final consumer being either a household or a business. 

There is expected to be a wide variation in the value of each market participant derivative 

holdings for hedging purposes. For instance, vertical integration in the oil business can act 

substitutive to other means of risk management; petroleum firms have limited need to hedge in 

this case, since they are involved in all stages of production process. However, the mainstream 

of the business is active in a certain field of expertise e.g. either producing or refining or 

trading/shipping etc. and the need for sound hedging strategies is vital.  

Hedging using financial derivatives is a challenging task because hedging strategies, if 

not appropriately utilised and fully understood, can be equally problematic to unhedged 

positions or even worse; by creating a deceptive sense of security. Improper control and 

supervision of risk management systems, inadequately defined rules and inaccurate valuation of 

the open positions as well as poorly defined strategies can lead to a debacle. For optimum risk 

management strategies, financial management needs to create accountability to prevent extreme 

unforeseen losses and understand the financial consequences of the hedged portfolio - in various 

market scenarios - through a well defined tested structure, since by eliminating price risk other 

risks might be introduced such as basis, liquidity and credit risk, among others. The main 

 29



 
 

Chapter 2: Introduction to Oil Markets and Energy Risk 
 
 

hurdles of every hedging plan are hedging costs, absence of suitable products and the perception 

that shareholders use the firm as a vehicle to obtain oil price risk exposure. Most importantly, 

basis risk, arising from differences in the derivative contract written and the actual underlying 

asset could prove disastrous in hedging due to fragile correlation structure. The steeper the basis 

risk, the larger the disincentive to hedge. In particular, Haushalter (2000) reports evidence that 

oil and gas producers’ fraction of production hedged decreases with basis risk. As an extreme 

example of basis risk consider marine bunker prices. Bunker fuel oil is a residual oil that is used 

as a fuel for vessels (IFO180, IFO380 and marine diesel oil) and represents a significant input in 

the cost function of shipowners and/or ship operators. Alizadeh et al. (2004) find crude oil and 

petroleum futures inadequate to hedge marine bunker prices in Rotterdam, Singapore and 

Houston. The reduction in the portfolio variance (hedged vs. unhedged) reaches at best 43%; 

this is attributed to basis risk since first, the underlying commodity is different and second, the 

balance of supply and demand is regional.  

 

Table 2.1: Volatility Across Different Assets 
  Annualised % Volatility  Return Percentiles (%) 
Asset   Overall 1989-1999 2000-2009  1% Tail 5% Tail 99%Tail 95% Tail 
Energies          

Heating oil  39.80 38.15 41.47  -6.66 -3.65 6.29 3.68 
Gasoline  41.51 36.32 46.29  -7.33 -4.11 6.46 3.88 
WTI  39.99 38.21 41.76  -7.09 -3.75 6.38 3.67 
Natural Gas  58.33 55.15 61.29  -9.33 -5.50 10.13 5.68 
Electricity PJM  59.86  59.86  -8.64 -4.44 13.31 4.73 

Metals:           

Gold  16.08 12.53 19.07  -3.05 -1.56 2.58 1.54 
Silver  27.97 24.23 31.38  -5.15 -2.77 4.62 2.58 
Copper  27.48 23.70 30.91  -4.93 -2.67 4.45 2.72 
Palladium  32.11 27.55 36.25  -6.00 -2.99 5.56 3.13 
Platinum  22.38 17.41 26.55  -3.96 -2.11 3.57 2.03 

Agriculture          

Kansas Wheat  25.23 21.42 28.66  -4.45 -2.33 4.36 2.54 
Minneapolis Wheat  25.81 21.10 29.93  -4.32 -2.27 4.40 2.43 
CBOT Wheat  28.40 23.99 32.35  -4.54 -2.63 4.89 2.84 
Corn  25.75 21.55 29.48  -4.21 -2.44 4.69 2.54 
Oats  33.29 30.54 35.95  -5.47 -3.30 5.96 3.34 
Cotton  28.14 24.17 31.74  -4.79 -2.65 4.62 2.64 
Soybean Meal  26.46 22.38 30.12  -4.87 -2.47 4.43 2.59 
Soybean Oil  23.76 20.73 26.53  -3.92 -2.29 4.14 2.53 
Soybeans  23.84 20.09 27.17  -4.39 -2.33 4.06 2.28 
Sugar  34.79 34.07 35.54  -6.26 -3.34 5.68 3.46 
Cocoa  31.91 29.37 34.33  -5.25 -3.07 5.65 3.28 
Coffee  39.46 42.79 35.64  -6.68 -3.73 6.68 3.87 
Orange Juice  33.08 35.00 30.96  -5.72 -3.16 5.63 3.07 
Lumber  30.62 28.37 32.81  -4.00 -3.05 4.79 3.09 

Meats          

Feeder Cattle  13.70 12.69 14.69  -2.47 -1.42 2.18 1.37 
Live Cattle  16.02 14.81 17.19  -2.52 -1.56 2.50 1.54 
Pork Bellies  37.66 42.16 32.42  -5.07 -3.50 5.38 3.52 
Lean Hogs  33.27 32.07 34.48  -4.53 -2.77 5.19 2.55 

Financial & Others          

S&P 500  18.60 14.19 22.25  -3.15 -1.79 3.30 1.69 
30 Year T- Bond  9.69 8.83 10.51  -1.70 -1.01 1.50 0.94 
Com. Res. Bureau   6.68 5.25 7.88  -1.29 -0.61 1.13 0.64 
Goldman Sachs CI  22.19 17.23 26.36  -3.86 -2.17 3.55 2.21 
Baltic Dry Index  21.40 11.30 28.28  -4.04 -1.78 4.17 1.88 
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To illustrate the importance of risk management in the energy markets the annual 

historical price volatility for a number of commodities from 1989 to 2009 is shown in Table 2.1. 

The financial group has the lowest overall volatility, and the energy group has by far the 

highest. Generally, energy commodities have distinctly higher volatility than other types of 

commodities. The properties of the tails of the distribution are also shown. For the petroleum 

market, for instance, the 1% tail is around 6-7% representing the maximum expected loss on a 

daily basis. Comparable markets are Palladium, Coffee and Sugar with also 6% tail and 

volatilities above 32%.  

 

2.7.1 Quantifying Market Risk  

After a series of derivatives disasters in the 1990’s such as Barings Bank, 

Metallgesellschaft and Orange County, the need to accurately measure market risk exposure 

became a demanding task. According to 1988 Basle’s Committee Accord, banks are required to 

preserve a certain level of capital requirements to guarantee that potential losses will not lead to 

financial distress. One popular method widely adopted in the mid 1990’s to facilitate risk 

management practices, is Value-at-Risk (VaR); the maximum expected loss with a specified 

probability over a given horizon. Therefore, based on Basle Accord and Capital Adequacy 

Rules (Basle II), VaR is indispensable for regulatory requirements to discourage irrational risk 

taking and justify risk with sufficient maintained funds. Risk managers have accepted VaR as a 

key measure to quantify market risk. In 19945 J.P. Morgan publicised its internal set of 

assumptions and estimation procedure of VaR (RiskMetrics) triggering the attention of both 

academics and practitioners. The energy complex and their financial derivatives form a key 

element of the present financial system, and definition of unambiguous risk measurement 

policies is crucial. However, measuring the market risk of oil and petroleum products is a 

delicate issue. This is due to a combination of factors such as time-dependence (leading to 

changes volatility behaviour), non-linear dynamics, heavy tails in oil returns and the 

complications associated with multiple risk factors.  

VaR acts as a practical decision making tool for risk management, indicating the 

potential downside risk of a portfolio in a single number, easily communicated to all interested 

parties such as shareholders, management and regulators. As such, VaR plays a manifold role in 

the modern energy markets. First, being aware of the amount at risk, oil-related businesses can 

                                                 
5 For banks, the first regulatory capital requirements was imposed after the Great Depression era that 
followed the stock market crash (October 29, 1929) with the establishment of the Securities and 
Exchange Commission (SEC) in 1934.  For a historical review of the VaR theory and practice the reader 
is referred to Holton (2003).  
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employ hedging instruments to mitigate unwanted exposure. Second, lenders (banks) financing 

energy projects can assess their risk in providing funds. Third, traders can assess any changes in 

the value of their maintained portfolios under the probability of adverse scenarios. Fourth, when 

trading oil derivatives it is always helpful to know the potential loss, especially when contracts 

are cleared and margins should be maintained. For instance, consider the case of Amaranth 

Advisors LLC natural gas derivatives debacle in September 2006 which resulted in a loss of 

approx. $6 billion of the $9 billion assets under management: Chincarini (2007) finds that 

Amaranth portfolio strategy was aggressive and - assuming hypothesised positions- estimates 

that a simple VaR calculation would explain 65% of their losses, the rest being explained by 

liquidity risk. Finally, there is a growing concern for energy price risk quantification among 

market participants, given the complexity inherent in the fundamentals and the volatile nature of 

the industry.  

 

Figure 2.8: Value at Risk approx. using WTI vs. a Diversified Portfolio  
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As a simple example on how VaR works Figure 2.8 represents the empirical 

distributions of nearby WTI crude oil futures daily returns for the period 1990-2009 together 

with a diversified portfolio where only 50% of the wealth is allocated to WTI crude oil futures 

and the rest 50% are divided into equal amounts (12.5%) to S&P 500 index, gold futures, 30-

year US government bond futures and $ US / GBP currency. We can observe diversity in shapes 

illustrating interesting risk differences. The bottom panel presents some statistics showing that 

the diversified portfolio has reduced risk by 47% (=[36.3-19.1]/36.3) with a daily VaR figure of 

10% at 1% confidence level, as opposed to 19% for WTI. In addition, the expected shortfall i.e. 

the expected value of the loss under the condition that maximum expected loss has been 

exceeded provides more information in the tail. In that case the 10-day loss for a $5 million 

fund will be 0.23 and 0.43 million for the portfolio and the WTI contract, respectively. Bottom 

right panel of Figure 2.8 shows a closer look on the left tail of the distribution. 

Oil price risk can have diverse effects on different market participants; for instance, 

when crude oil prices fall this has a negative impact on the producers’ cash flows, thus reducing 

refiners’ production costs. However, it is the price transmission mechanisms and crude-products 

spillover effects that determine whether this outcome will subsequently lead to improved profit 

margins. From Figure 2.8 we can also observe a small asymmetry in the distribution of WTI 

returns, implying that the downside risk of producers is higher than that of refiners (19.3% vs. 

18.5% for 10-day VaR at 1% level, respectively which is equivalent to $40K per $5 million 

value of crude with an expected shortfall difference of $90K=[27.5-25.2]x5).  

By exploring the particular structure of the tails, VaR is commonly applied by 

practitioners to disclose market risk and avert higher than sought levels of uncertainty.  While 

the application of VaR is not infallible, it provides a simple and moderately safe method for 

extrapolating information under difference tolerance levels and horizons, being used to allocate 

capital, measure diversification effects, compare riskiness of portfolios or projects, estimate the 

impact of price changes on cash flows, provide a measure of credibility for companies, evaluate 

the effectiveness of hedges etc. Nonetheless, given the implications of mispricing capital at risk 

in the oil markets, rather than relying on a single metric, risk measurement includes a modus 

operandi that should be purposefully adopt to new information and changing market conditions. 

Therefore, an extensive set of actions is necessary, such as educating risk analysts and risk 

managers, reviewing the models, back-testing, stress testing, scenario analysis as well as clearly 

defining budgets, position limits, guidelines and policies.  

In Chapter 4 we will have a closer look on market price variation and evolution of VaR 

across time and across different market conditions for the main petroleum commodities. Chapter 

4 is completely devoted to examining volatility dynamics with a view of obtaining efficient risk 
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metrics, as well as consistent VaR and volatility forecasts. Particular focus will be given to the 

benefits of accommodating within the GARCH framework, changes of fundamentals and 

changes of the overall volatility behaviour. For this reason, our models will be dependent on 

both changes in the term structure and changes of unobserved regimes in order to realistically 

represent some of the stylised facts of the examined markets. The robustness of such forecasting 

strategies will be compared to benchmarks, using both statistical tests and risk management loss 

functions. After the two oil price crises in the 1970’s energy market participants have always 

been faced with high levels of uncertainty and, as mentioned above, it is vital not only to 

develop sound models for risk quantification but review and back-test their performance.  

 

2.7.2 Minimum Variance Futures Hedging  

Keynes (1930) was the first to assume that futures act as an insurance scheme for 

hedgers, who pay premiums to speculators to carry their risk. For example, if a refiner holds a 

barrel of crude oil and the price falls (rises), he realises a certain capital loss (gain). Thus, a risk-

averse refiner would want to unwind such price risk by simultaneously taking an equivalent 

reverse position in the futures market - to be settled on cash upon delivery - in order to offset 

any capital loss, or in other words, lock the price today to avoid unfavourable surprises. The 

proportion of futures contracts that should be held to effectively reduce the risk of each unit of 

the assumed inventory is called hedge ratio. Although conventional wisdom suggests that this 

should be one-to-one (naïve hedge), this strategy fails to deliver because due to imperfect 

futures-spot correlation and the term structure of volatility, a residual capital gain or loss is 

expected; price movements are neither parallel nor synchronised. This has triggered the interest 

at an academic level by the works of Johnson (1960) and Stein (1961) who introduced the 

concept of portfolio theory in the hedging problem. The foundations of modern risk analysis 

date back to Markowitz (1952). According to portfolio theory, investors construct the optimal 

portfolio by combining risky assets in such a way that offers the highest reward for the 

minimum amount of risk. Ederington (1979) applied this concept in determining a minimum-

variance hedge ratio and proposed a measure of hedging effectiveness. Physical inventories are 

viewed as fixed and the decision on how much to hedge is determined by the optimum hedge 

ratio which minimises the variance of the portfolio of futures and spot positions; this is 

essentially the ratio of the unconditional covariance between spot and futures price changes over 

the unconditional variance of futures price changes. Consider the case of an oil producer who 

wants to secure his income in the petroleum futures market. The return on the producer’s 

hedged portfolio, rpt, is: 
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t trp S Ftγ= Δ − Δ                               (2.1) 

 

where Δ is the difference operator, St and Ft, spot and futures prices, respectively, such as that 

the change in the spot (futures) position between t-1 and t is ΔSt = St - St-1 (ΔFt = Ft - Ft-1); γ is 

the hedge ratio. Let Var(ΔSt), Var(ΔFt) and Cov(ΔSt,ΔFt ) be, respectively, the unconditional 

variance of the spot and futures returns and their unconditional covariance. The producer must 

choose the value of γ that minimises the variance of his portfolio returns which is found as the 

solution to: 

 

2( ) ( ) 2 ( , ) (t t t tVar rp Var S Cov S F Var Fγ γ= Δ − Δ Δ + Δ )t              (2.2) 

 

Taking the partial derivative of Equation (2.2) with respect to γ and setting it equal to 

zero yields the variance minimising hedge ratio (MVHR), γ*: 

 

* ( ,

( )
t t

t

Cov S F

Var F
γ Δ Δ= Δ

)
                   (2.3) 

 

The value of γ* is equivalent to the slope coefficient of a simple regression of spot 

against futures returns. For example a value of γ*=0.9 would indicate that the hedger should sell 

0.9 barrels in futures for every unit held in the underlying. The variance reduction of the hedged 

vs. the unhedged portfolio is equal to the coefficient of determination R2 [=1- 

VaR(rpt)/VaR(ΔSt)]. 

Figure 2.9 displays the variance of the WTI and heating oil producer’s hedged position. 

The optimum hedge ratio is in both cases less than one (at 1% significance level). Compared to 

a naïve hedger, a minimum variance hedge strategy would have achieved an additional 

reduction in risk of 100 basis points. However, note that these hedge ratios are estimated 

historically for the period January 1995 to December 2009 using daily data. Investors are 

mainly concerned for forecasts of the hedge ratios to cover their current and future positions.  
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Figure 2.9: Dependence of Variance on the Hedge Ratio 

 

Myers and Thompson (1989) generalised the estimation of optimal hedge ratios to 

account for conditioning information that is available up to the time of the hedging decision, 

demonstrating that conventional MVHR is too restrictive and it might be non minimum-

variance efficient; the processes generating the covariance matrix of futures and cash prices are 

usually non-constant throughout time and the expected return to holding a futures contract 

might be nonzero. Consequently, it is more appropriate to establish a market model of 

equilibrium including lags of futures and spot prices, plus any other known key price drivers 

(such as stocks and storage costs) to make an informed decision. They suggest that as new 

information arrives in the market hedge ratio changes to reflect new market conditions and 

hedging models that manage to accommodate time-variation in risk time are expected to 

generate superior performance. 

We will discuss in more detail the construction of optimum hedge ratios in Chapter 5. 

We will demonstrate how multivariate analysis may be employed for describing the joint return 

distribution of futures and spot prices. Following the suggestion of Myers and Thompson 

(1989), to devise our hedging strategy we will base our approach on an equilibrium model that 

permits both asymmetric and non-linear adjustment in the futures-spot relationship (see for 

instance Ng and Pirrong, 1996) and asymmetric persistence of volatility shocks while also 

allowing for sudden changes in the unconditional variance covariance matrix. This way, Chapter 

5 presents a model that encompasses all the features discussed so far, used to generate time-
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varying hedge ratios that produce economically significant results, having relevant implications 

for the locus of hedgers and portfolio managers.  

 

2.7.3 Metallgesellschaft Hedging Debacle 

The purpose of this section is to demonstrate what can go wrong in the risk 

management process through the Metallgesellschaft AG (MG) experience. MG was formerly 

one of Germany’s largest industrial conglomerates being active in quite a few areas, from 

mining and engineering to commodity trading and financial services. In the early 1990’s, 

Metallgesellschaft’s U.S. oil subsidiary MGRM (Metallgesellschaft Refining and Marketing) 

reported huge derivatives losses, later estimated to $1.4 billion. The architecture of the hedges 

that MGRM devised to protect against oil price adverse movements created a large controversy 

over their capability to facilitate risk reduction and lock merchandising profits. MGRM’s case 

study deals with the execution of a failed oil price hedging strategy where a firm, ignoring the 

stochastic behaviour of the term structure of petroleum prices as well as cash flow requirements 

to support their hedging plan managed to escalate the risk matrix function of the corporation. 

In 1992, MGRM set in motion an innovative marketing plan offering long-term fixed 

price guarantees on deliveries for gasoline, heating oil, and diesel fuel, for up to 10 years. These 

contracts were mainly of two types. The first type included contracts wherein delivery schedules 

were pre-specified (firm-fixed) with an attached option-like feature to terminate at customer’s 

will and receive as a payment half the difference of the prevailing WTI spot price and the 

guaranteed fixed price, multiplied by the remaining contracted quantity. In the second type 

contracts, the price and total quantity was fixed (firm-flexible), allowing customers to decide on 

the timing and volume of deliveries. Of course, the contracted total quantity should have been 

exhausted by expiration; these contracts also gave customers the option to terminate and receive 

the full difference between the 2-month futures price and the contract price. By September 

1993, MGRM had committed to deliver over 150 million barrels of petroleum products at fixed 

prices the bulk of which was negotiated during the summer of 1993, when the oil prices 

fluctuated around $20/bbl.  

The large underlying volumes (around 20% of the futures market total open interest) 

indicated that MGRM was facing a substantial amount of price risk. Due to the structural design 

of the underlying marketing program, hedging was not a plain-vanilla case and MGRM’s 

implemented a stack and roll strategy6: long-term exposure was offset by buying short term 

                                                 
6 Although, the management had two other alternatives, they were associated with significant costs (see 
Edwards and Canter, 1995). First, MGRM could commit to physical storage by purchasing and storing 
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futures and OTC swaps (stack and roll) on a barrel-to-barrel basis. The main shortcoming of the 

stack-and-roll strategy was the systematic process of selling the maturing contracts and 

simultaneously buying new short-dated contracts to maintain the hedge, implying a rollover cost 

if energy prices were in contango. At first, based on historical data it appeared that since 

backwardation is the norm for the oil markets (Litzenberger and Rabinowitz, 1995) this strategy 

was indeed the most cost-effective even offering a potential for making profits from the trades. 

Nevertheless, market conditions changed and the expectations to receive rollover gains from 

inverted markets collapsed leading MGRM to the brink of bankruptcy. In fact, given the high 

traded volumes rollover costs became so acute that repetitively margin calls soon led to a 

liquidity crisis; while changes in the value of the actual commodity do not generate matching 

inflows or outflows until the realisation of delivery, futures positions do because of marking to 

market. In view of the large losses and funding requirements of MGRM, the supervisory board 

dictated liquidation of the hedges and started a process of negotiating the withdrawal of 

MGRM’s long-term contracts. In the meantime, NYMEX revoked MGRM’s “hedging 

exemption” demanding higher margins which further accelerated the liquidation process.  

The Metallgesellschaft debacle including the original long-term strategy and the manner 

in which it was hedged as well as the decision to rapidly liquidate the hedges triggered long 

discussions in the academic community as well as among practitioners. Supporters of the 

strategy (such as Culp and Miller, 1994; 1995a; 1995b) claim that the firm’s plan was 

economically sound and MGRM would not had suffered such losses if the hedge position had 

not been hastily terminated. In fact, they argue that forward delivery contracts increased in value 

by the same amount as the short term contracts decreased in value when energy prices fall. It 

was a plain liquidity crisis that should have been dealt with by the MGRM’s bankers so as to 

realise the long-run profit potential of the strategy. Regarding the concept of the amount hedged 

(1:1) as opposed to a MVHR alternative, Culp and Miller argue first, the data are subject to 

considerable error that will inevitably produce imperfect hedges and second, MVHR does not 

maximise firm value; informed speculation is a regular part of risk management strategies. 

Finally, Culp and Miller (1995b) support the hedging program, pointing out that basis risk was 

                                                                                                                                               
the necessary quantity of oil to meet supply obligations. This would imply prohibitive costs (including 
financing costs for the immediate purchase of oil, storage costs and a certain investment to facilitate such 
stock) and a non-negligible residual risk (uncertainty regarding future carrying costs such as interest rates 
and some remaining market risk arising from the possibility that customers would exercise their option). 
Second, the firm could engage in long-term forwards matching exactly the expiration dates of the supply 
obligations. Since there was not much of a market for oil up to 10 years (futures were traded for up to 3 
years and illiquidity in the distant end of the futures curve was a serious constraint) OTC dealers would 
have requested a premium for accommodating the rollover cost and credit risk, creating also significant 
costs. 
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not a real threat due to high correlation of nearby and spot which would definitely reduce the 

risk of an outright position.   

Conversely, opponents of the MGRM strategy (inter alios, Mello and Parsons, 1995) 

argue that the firm’s hedging strategy had an inherent speculative component: provided that 

backwardation persists when the roll-over takes place, the nearest to maturity contract price will 

exceed deferred contracts’ prices thus a profit will be realised (selling the nearby at Ft, T with T 

days to expiry and buying a deferred contract with maturity T+n at Ft,T+n); it essentially was 

designed to exploit the term structure. According to Edwards and Canter (1995), MGRM’s 

hedging strategy rollover risk was 15% of its price risk, a risk that apparently the MGRM 

managers were willing to bear, justified on the grounds that crude oil is more often in 

backwardation than contango7. Moreover, Pirrong (1997) estimates that the MVHR for delivery 

obligations with maturities of 15 months was typically around 0.5 (similar to Edwards and 

Canter, 1995 and Mello and Parsons, 1995): less than 0.5 for the September 1992 - June 1993 

period and between 0.5 and 0.6 for the period June - December, 1993; this implies that MGRM 

did not possess superior information and a barrel-for-barrel strategy actually increased oil price 

risk by overhedging, creating thus excessive basis risk due to the Samuelson effect (1965). 

Pirrong (1997) further shows that an implementation of a minimum variance hedging program 

would have saved roughly $1 billion, generating 57% less losses than the ones realised. 

Furthermore, Edwards and Canter (1995) argue against Culp and Miller by emphasising that an 

economically sound hedging strategy should allow the hedger to unwind its positions at any 

time without sustaining extensive losses rather than locking him until the end of the original 

scheme.    

In 1993, with OPEC overproduction, surging North Sea output and weak demand, oil 

prices plummeted and energy markets went into contango. The shifting of fundamentals was the 

main affair that caused the debacle. In retrospect, it seems that MGRM was indeed hedged 

against price risk but backwardation prevalence was a vital assumption to prevent other risks 

from exacerbating. Coming across significant term structure risk (or calendar basis risk) in 

combination with overhedging proved that was sufficient to create a domino effect in the 

existing risk matrix. Rollover cash-flow risk created excessive price risk of cash-settling the 

stack of short term futures contracts whereas the corresponding cash inflow from declining 

prices could not support the mark-to-market outflows since it was to be realised gradually over 

                                                 
7 For instance, an investor who wanted to roll the September ’93 contract 1- week prior to expiry i.e. 
September 14, 1993 selling the nearby at $16.96/bbl and buying the 3-month contract (December ‘93) at 
17.67 with Ft, T<Ft, T+1 realises a loss of $0.71/bbl, accumulating to more than $0.1 billion for the 
equivalent position of MG (=150 million barrels x $ 0.71/bbl).  
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the next 10 years. Funding liquidity risk for MGRM was gradually aggravated by margin calls 

which resulted in accumulated losses. Although MGRM was benefiting from a network of large 

financial institutions as shareholders, poor communication between the management and the 

parent MG added a liquidity burden on the parent who was not prepared to bear. There were a 

series of risks inbuilt in MGRM’s hedging strategy apart from the aforementioned.  For instance 

MG was also facing credit risk in that the counterparties might default on such long-dated 

physical obligations. Furthermore, operational risk was an important obstacle since the firm 

failed to accurately recognise, communicate and quantify the perils of the strategy designed.  

Establishing a framework to analyse and rank such risks is fundamental not only to 

quantify and manage risk exposure but to be aware of the downside potential and decide on the 

risk appetite of the organisation so as to take further actions by reporting risk, establishing 

position limits and thresholds to potential losses. Nowadays there are several risk management 

tools to set some prerequisites and avoid recurrence of hedging cul-de-sacs. It is important to 

stress test assumptions for a wide range of market scenarios such as persisting backwardation 

and contango (to prevent extreme rollover losses), collapsing correlation of short vs. long term 

prices (which can lead to under- or over- hedging due to basis risk), extreme volatility or in 

general, worst case scenarios. VaR could also play a key role to assess the risk from physical vs. 

derivatives positions or even Cash flow at Risk (CFaR) which focuses on the operating cash 

flow during a period.  

 

2.8 Term Structure of Futures Prices 
The shape of the futures curve is of great interest to energy market participants since the 

pattern of futures prices at different maturity dates reflects market expectations integrating 

anticipated trends about current price and inventory levels, supply and demand schedules, 

OPEC behaviour, speculative activity, political involvement and possibly many other factors. 

An upward sloping futures curve is consistent with an expected spot price increase that 

compensates inventory owners for the cost of carrying inventories, i.e. warehousing costs and 

the interest foregone on the capital invested in storing the commodity (cost-of-carry). In finance 

theory, this condition is known as contango. Since futures prices are bound to converge to spot 

at delivery, in contango derivative prices will decrease until expiry, ceteris paribus. However, 

the cost-of carry relation (derived using standard no-arbitrage arguments) cannot effectively 

explain a downward sloping futures curve since lower expected future spot prices imply 

negative storage costs. Futures are said to be in backwardation or inverted when futures prices 

fall with maturity at a given point in time.  
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Several theories have been advanced to reconcile the issue of inverted markets with the 

two most widespread interpretations of the phenomenon put forth by the theory of normal 

backwardation (Keynes, 1930) and the theory of storage, (Kaldor, 1939; Working, 1949; Telser, 

1958 and Brennan, 1958). It is useful to note beforehand that these are not mutually exclusive 

but rather complement each other. According to Keynes, backwardation is the result of the risk 

transferring function of futures markets and hedging pressures: agents involved in the physical 

commodity markets use futures to hedge their positions and unless hedging demand of the two 

sides of the market (buyers and sellers) is matched, risk cannot be transferred at zero cost. 

Hedgers will in effect have to induce speculators to bear their risk; that is, pay them a premium 

as compensation for this service/insurance. The second strand of literature identifies as the main 

determinant of storable commodity prices the inventories and introduces a fudge factor in the 

cost-of carry relationship, the convenience yield: consumption assets, such as oil, bestow 

benefits8 to inventory holders. If marginal convenience yield (net of storage costs) is high, the 

spot (prompt) price will exceed the futures (distant futures) price causing backwardation. Large 

convenience yields are a feature observed during low inventory periods where supply is rigid - 

so spot prices are high due to tight market conditions. Inversely, in periods of supply abundance 

spot prices fall and physical market participants are better off not having to pay the cost of 

storage. This shrinks convenience yields and the market switches to contango.   

Figure 2.10 shows snapshots of the historical evolution of the futures curve for 

NYMEX heating oil against the spot price, spanning from January 2000 to December 2009. We 

can see strong diversity in shapes throughout time. First, different maturity futures can switch 

from backwardation to contango (and vice versa). Second, movements along the curve can be 

non-synchronised e.g. inverted markets in the short term and contangoed in the long end (and 

vice versa) or even display autonomy. Moreover, seasonality has a noticeable effect in the 

formation of heating oil curve indicating that agents allow for such cyclical behaviour in 

pricing. In the US, demand for heating oil always peaks in the winter, giving rise to a price 

premium for futures expiring then. The curve can shift upwards or downwards, rotate and/or 

swing form convex to concave, representing the differences in the dynamic behaviour of the 

                                                 
8 Holding stocks can absorb demand shocks, mitigate the risk of supply disruptions, smooth the refining 

process and circumvent frequent revisions in the production process. In addition, there is an embedded 
timing option attached regarding the timing of making the stocks available i.e. sell at high prices. For an 
extractive resource commodity such as crude oil, convenience yield is also associated with the benefits of 
holding reserves and leaving oil in the ground. Litzenberger and Rabinowitz (1995) estimated that 
80−90% of the time the oil forward curve is in backwardation and this is attributed to the fact that 
backwardation is a necessary to keep production running. If extraction costs grow by no more than the 
interest rate while discounted futures prices are higher than the spot then all producers have the incentive 
to leave the oil in the ground and postpone production.  
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nearby and deferred contracts. To demonstrate this, consider the impact of a refining facility 

closing for a month and that of a sudden large oilfield discovery; the former will certainly not 

affect the long term prices as much as the latter and vice versa. Therefore, various short-, 

medium- and long-term risks interact in a complex way to determine the shape of the curve. 

 

Figure 2.10: Evolution of Heating Oil Term Structure vs. Spot (New York) 

 

A stylised fact of the futures curve is that variances and correlations between the nearest 

and subsequent futures decline with maturity (Samuelson, 1965); as futures contracts approach 

expiry, they are more sensitive to information due to offsetting positions to prevent delivery, 

inevitable convergence of future prices to spot and the stronger linkage of the short-term part of 

the curve to current demand and supply conditions. This effect is depicted in Figure 2.11. Grey 

columns are the estimated annualised volatilities of contracts with maturities from 1 up and to 

18 months. The negative volatility-maturity relationship is also observable from the drawn lines 

that show the evolution of individual futures curves on arbitrary chosen consecutive days. Two 

sets of lines are presented. At the bottom there are typical inverted futures curves, each 

representing a random day during October 1999, whereas at the top there are typical contagoed 

futures curves for March 2009. In the displayed downward sloping curves, the nearby futures 

experience much larger fluctuations. For instance, 1 month to maturity contract lies in the range 

of $21 - $24 per barrel whereas 18 month contract fluctuates around the smaller range of $19 - 

$20/bbl (having a 3:1 ratio of absolute movements: $3/bbl vs. $1/bbl window). This also holds 

for the upward sloping curves. The nearest to maturity contract is in the wider range of $38 - 

$48/bbl whereas 18 month lies in the narrower window of $53 - $56/bbl (again, a 3:1 ratio: 

$10/bbl vs. $3/bbl). 
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In petroleum economics, storage and transportation costs are major factors in the 

pricing function of futures, forming complex term structures relative to the financial markets 

(see Alizadeh and Nomikos, 2004a on the impact of transportation costs). Consistent with the 
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theory of storage, the levels of oil volatility are directly linked to the futures curve. The role of 

the slope or the (interest and storage) adjusted calendar spread as a proxy for temporal 

deviations of demand and supply has been successfully tested and findings indicate that 

volatility increases with falling inventories i.e. under backwardation (see Ng and Pirrong, 1996 

for refined petroleum products; Geman and Ohana, 2009 for oil and gas). In practice, the need 

to model the whole term structure simultaneously to optimise portfolios, measure and hedge risk 

is important. Figure 2.12 illustrates the dynamics of the WTI curve for three different deliveries 

in the form of premium or discount of 1- compared to 6- and 18-month contracts. Up to the 

summer of 2008, the market has historically been in backwardation, on average; nearby futures 

were above long term prices. After 2008, the curve altered, with a strong and relatively 

persistent contango.  

Literature has shown (see for instance Cortazar and Schwartz, 1994; Clewlow and 

Strickland, 2000 and Tolmasky and Hindanov, 2002) that price curve movements can be 

distinguished to a parallel shift (level factor), a tilt (slope factor) and a twist (curvature factor) of 

the curve. Sensitivities regarding these underlying factors indicate a flat level factor capturing 

most of the variance, a slope factor with opposite signs at both ends of the term structure and a 

curvature factor having equal signs at both ends of the maturity spectrum, but an opposite sign 

in the middle. Effective use of futures contracts requires a thorough understanding of the risk 

factors determining futures prices and of the price sensitivities regarding these underlying 

factors. For energy market participants these implied risk factors that explain futures curve 

movements are essential from different perspectives. The term structure provides an 

information-rich framework that can be used as an input to value derivatives, to identify the 

risk-return profile of maintained physical portfolios (businesses maintain receivable accounts 

and liabilities across a wide range of maturities) and investment funds (investors trade in a wide 

range of maturities), to manage inventory making decisions on whether to “carry” or liquidate 

the maintained stock, to evaluate future demand growth and supply trends based on market 

expectations and to set up sound hedging strategies (for instance systematic 

backwardation/contango might lead to automatic rollover losses if the nearest to maturity 

contract is used for hedging; see for instance the Metallgesellschaft case study in section 2.7.3).  

It is the aim of Chapter 6 to provide a rigorous multivariate statistical analysis of the 

main petroleum futures prices as well as economically meaningful petroleum spreads. In doing 

so, we will particularly look into the information content of the dependence structure between 

correlated petroleum futures curves which has not received much attention in the literature. We 

will particularly study the long-run equilibrium components for inter-commodity spreads’ risk 

factors and explore the information content derived from sophisticated regime switching 
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models. The goal will be to reveal possible disequilibria between the stochastic processes of 

same-nature risk factors (e.g. level of WTI vs. level of Brent), disaggregate their dynamics 

across different market conditions and examine how these can be utilised to exploit futures 

curve movements. We will present a unified approach, flexible enough to accommodate more 

than two cross-factors and tractable enough to forecast the whole term structure and derive risk 

measures such as volatility and value-at-risk. We will tackle exactly this issue in Chapter 6 and 

postpone the discussion to the corresponding sections. 

 

2.9 Conclusion 
In this chapter we described the structure of the oil markets. We presented the stylised 

facts surrounding the markets from the basic fundamental forces (demand-supply) to the power 

of cartels throughout time and the role of speculators. By reviewing historical fluctuations in oil 

prices since the inception of the industry in 1859, we offered a detailed outlook with 

chronological justification on how the main price drivers work and how the market has evolved 

today. Additionally we demonstrated important elements of energy risk and introduced the basic 

background to risk management issues such Value-at-Risk, optimum hedging and the term 

structure which will be the main topics of this thesis, analysed further in Chapters 4, 5 and 6, 

respectively. We also attempted to highlight the need of sound risk analysis and risk 

management strategies in the modern energy markets with the real recent hedging debacle of 

Metallgesellschaft. This case study, overall, summarises how adverse oil price shocks can lead 

to huge losses if speculation is inherent in a risk mitigating program.  

The next chapter, Regime Switching Models and Applications in Finance, deals with an 

important class of econometric models, namely the Markov Regime Switching (MRS) models. 

Flexible to accommodate sudden changes in stochastic processes such as the dynamic 

adjustment of prices to equilibrium relationships, volatility and correlation, MRS models will be 

employed for empirical validation of our objectives in the field of energy risk. Our empirical 

applications in subsequent chapters will essentially confirm that this regime-switching 

specification turns out to exhibit many of the salient features of oil markets and will essentially 

present how to exploit the information content of such models. Chapter 3 will first, provide a 

short introduction regarding the use of MRS models; this will be followed by a survey regarding 

their development in the field of finance and energy economics; next, a detailed explanation of 

theoretical background and the estimation procedure and will be supplied by means of simple 

real life examples.   
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Chapter 3  

 

Regime Switching Models and  

Applications in Finance  

  

3.1 Introduction  

Regardless of how sophisticated, models that attempt to describe the conditional 

distributions of oil prices, interdependencies within the market and the possibility of extreme 

phenomena, face a challenging task in capturing plausible scenarios, forecasting the path of the 

market and assessing the implications of such moves. Less than fifty years ago, Mandelbrot 

(1963) observed that the tails of the distributions of price changes are “extraordinarily long” 

with variances that “vary in an erratic fashion”. Arguing that there need not be any 

discontinuity between outliers and the rest of the distribution, Mandelbrot challenged the 

assumption of the Gaussian hypothesis, and put forward the stable-Lévy or stable Paretian 

family of distributions to model price changes, which includes the normal as a special case. As a 

by-product of this study, the famous volatility clustering phenomenon was first put in print. In 

this seminal work, the author also mentions the possibility of utilising, alternatively, a mixture 

of normal distributions, to tackle the issue. Subsequently, in a classic study of stock prices’ 

behaviour, Fama (1965) showed that the empirical distributions of daily price returns are 

usually highly peaked and heavy tailed; in fact, departures from normality are as predicted by 

Mandelbrot.  

Non-normality, asymmetries and time-varying dependence are well-documented 

concerns in all commercial markets. As it also often happens, different segments of the data 

may favour different models since markets evolve and the underlying dynamics are generated 

by diverse mechanisms. Energy commodity markets show intricate behaviour and it frequently 

occurs that no model is likely to be precisely correct. Based on empirical evidence, researchers 

seek to discover a posteriori causal relationships, rationalise how the majority of the data works 

and reflect in the best possible way, the attributes of ever-changing petroleum economics and 

market conditions.  
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The focus of this thesis will be on explaining the prevalence and magnitude of different 

regimes in oil markets and whether these regimes trigger a change in the way risk should be 

perceived. Traditional models of energy markets rely on single state relationships being thus, 

relatively rigid to explain real world dynamics. Yet, more often than not, several incidents might 

produce such market shocks that their impact is capable of drastically altering the behaviour of 

the series’ either permanently (structural break) or transitory (regime shift). The latter effects 

can be of different durations while depending on the nature of the episode these can occur on a 

regular (e.g. seasonality) or irregular (e.g. backwardation/contango) basis and can be highly 

persistent or very short-lived (jumps and spikes). Moreover, these events can repeatedly affect 

the market in a non-standard manner, creating risk factors of different shapes and forms which 

change through time in complicated ways and cause the market to switch back and forth among 

different processes. In such cases, it is natural to resort to nonlinear estimation methods for the 

temporal evolution in volatility dynamics and co-dependence across assets; in the presence of 

regimes, the application of linear models seems inadequate and non-informative, providing thus 

little insight into market patterns or the variability of prices, volatilities and correlations 

throughout time. Given the complexities met in the empirical validation of the energy markets, 

the thesis will attempt to offer a further perspective on energy risk by providing new framework 

for risk analysis aimed at assessing the significance of regime inference on practical 

considerations. The novelty of this approach, as applied to the petroleum industry, is to 

determine the information content derived from models of switching regime and assess their 

role and effectiveness in uncovering fundamental interactions, quantifying risk under different 

market conditions and, finally, evaluating the extent to which regimes convey relevant 

information on risk management objectives.  

This chapter draws on the literature and estimation issues of MRS models. Particular 

interest will be given in petroleum markets; oil prices are assumed to be drawn from a 

Markovian system of alternating distributions. The subsequent section provides a brief 

introduction of MRS models. Next, a selective overview of the MRS literature in finance and 

energy economics is supplied. Some supplementary evidence regarding nonlinearities and 

evidence of structural changes in the oil markets is also presented. Next, the basic concepts 

behind MRS model calibration are laid down. This is followed by a detailed description of the 

process. Final section concludes. The usefulness of this methodology is demonstrated in real life 

applications in later chapters where various extensions are considered.  
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3.1.1 A Primer on Models of Changing Regime  

Regime switching models comprise an important division of financial time series 

models and a functional approach to model nonlinearities. Ultimately, two broad nomenclatures 

of switching models exist, differing in the means of regime identification. The first category 

presupposes directly observable states and formulates regimes as a deterministic function of a 

known variable. This framework dates back to the switching regression of Quandt (1958) and 

the threshold autoregressive models of Tong (1978, 1983), soon after developed by Tsay 

(1989); further extended to smooth transition models (see also Chan and Tong, 1986 and 

Teräsvirta, 1994) which essentially allowed for the possibility of gradual rather than definite 

movement among regimes. Note that since only Markov Regime Switching (MRS) models are 

relevant for the context of this chapter and for the applications in the empirical part of the thesis, 

the latter framework will not hereafter be considered. MRS models constitute the second kind of 

switching nonlinear models. Although they can be traced back to Goldfeld and Quandt (1973), 

they were developed and popularised towards the end of the 1980’s in finance and 

econometrics, by Hamilton (1989, 1990). Unlike the first category which inexorably requires 

auxiliary information or prior beliefs about why or how regime-switching is manifested within 

the data, the key feature of the Markovian structure is that regimes are assumed to be unknown; 

they are fully determined by a latent stochastic process and the transition probability matrix 

driving the motion among and within states.  

Of the main advantages of MRS models is their ability to capture cyclical behaviour and 

unknown breaks. First, model parameters are functions of a hidden Markov chain and regime 

classification is based on optimal probabilistic inference. This way, instead of adhering to a 

strict pre-specified form on the junctures and the persistence of shifts, empirical data reveal their 

own structure without constraints. Second, discrete time MRS models are characterised by a 

number of distinct regimes within which different model parameters apply. Third, since the 

probabilities of each state change over time, model parameters become time-dependent. In 

essence, these probabilities play a weighting role in the switching scheme because it is not 

strictly required for a process to be in neither of the defined states e.g. it can alternatively be in-

between e.g. in one state with probability 90% and in another with 10%; this way asymmetric 

behaviour across parameters and across time is also addressed. Forth, being an approach 

essentially based on mixture of distributions it can produce densities with nonstandard shapes 

and accommodate thus, some of the stylised facts of financial time series such as fat-tails and 

nonlinearities. Finally, due to their modularity, MRS models introduce certain flexibility, 

usually translated to improved ‘fit’ of real world data; specifying multi-state conditional means, 
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variances, correlations dynamics is therefore expected not only to be information-rich but also 

resourceful in every manner, such as enhancing forecast ability.   

 

3.2 Literature Review   

After the path-breaking paper of Hamilton (1989), the use MRS models for describing 

nonlinear behaviour of asset returns and nonlinear dependence among assets, has become 

widespread. By separating price trajectories into economically meaningful regimes, they allow 

for a great deal of flexibility in the parameterisation of conditional distributions. Related interest 

grows at a very fast pace, with a variety of contributions for several branches of the literature, as 

a sign of the highly multidisciplinary nature of regime-switching models. Therefore, they are 

extensively applied in various fields of finance and petroleum economics. 

 

3.2.1 General Review   

Hamilton (1989) developed a two-regime autoregression to model the post-war dating 

of business cycles. To derive a criterion for defining economic recessions, measuring their 

persistence and dealing with asymmetries in the business cycles, the author studied the real US 

GNP (Gross National Product) growth rate regime shifts between periods of recessions and 

expansions. He found distinct dynamics between the two states while the predicted dates of the 

turning points accurately matched the official dates set by the National Bureau for Economic 

Research. Hamilton’s framework generated a remarkable amount of subsequent research. There 

is a wide range of papers analysing real business cycles, and turning points in a regime 

switching context such as Diebold and Rudebusch (1996) who combined the concepts of 

dynamic co-movement of economic variables throughout cycles and regime switching, Kim and 

Nelson (1998), Clements and Krolzig (2004) and so on. Others link financial stock market 

cycles to the evolution of economic conditions (Hamilton and Lin, 1996; Maheu and McCurdy, 

2000). Issues such as financial crises (Coe, 2002 for the Great Depression) and contagion effects 

during crises (Guo et al., 2011 for the Great Recession) have also been the focus of various 

studies.  

Regime switching models have also provided important insights in asset allocation 

(Ang and Bekaert, 2002 & 2004; Guidollin and Timmermann, 2008). Perez-Quiros and 

Timmermann (2000) show relatively high cyclical asymmetries in the risk-return profile of 

small firms compared to large ones, being particularly sensitive to recessions and monetary 

policy shocks. Using MRS based portfolios to capture regimes in the distribution of small and 

large stocks’ returns they report substantial predictability during recessions. In addition, 
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Guidollin and Timmermann (2007) investigate optimal asset allocation under crash, slow 

growth, bull and recovery regimes for stock and bond returns and find that portfolio weights 

strongly depend on the state of the economy, verifying thus the economic implications of 

different regimes, in- and out- of sample. Their model captures both short- and long-term 

fluctuations in the joint stock-bond distribution with investors allocating more of their wealth to 

stocks as investment horizon increases only in the crash state; the more persistent bullish 

markets are associated with a decline in stock allocation as investment horizon increases. 

Moreover, they find that the utility cost of ignoring regimes is 3% p.a. at the short 1 month 

horizon while for longer annual investment horizons this falls to 1.3% p.a. Another substantial 

body of literature concentrates mainly on quantifying and forecasting portfolio risk such as 

Billio and Pelizzon (2000, 2003) who estimate regime switching Value-at-risk (VaR). Overall, 

they find that the regime switching model is superior at long horizons compared to simple 

Gaussian and multivariate GARCH specifications, suggesting a more conservative view of risk. 

Furthermore, in view of Gray (1996), who successfully modelled the short term interest 

rate as a regime switching process, many papers studied the impact of regime shifts on the entire 

yield curve using dynamic term structure models. One of the earlier studies includes the one-

factor, continuous time formulation of Naik and Lee (1997) who assumed constant market 

prices of regime-specific risk. Several others have extended the framework including Bansal 

and Zhou (2002) who considered regime-dependent market price of risk (see also Dai and 

Singleton, 2003). Apart from these models, the regime switching behaviour of interest rate term 

structure has also been studied in a cointegration scheme. Tillmann (2004) presents a contextual 

link of the yield curve in a switching error correction equilibrium model. The author discovers 

that the short-run adjustment of US interest rates and the term premium of long-term rates do 

experience regime changes while the underlying states are mainly triggered by Federal Reserve 

policies. Of course, the same econometric framework has been also applied to other markets. 

For instance, Clarida et al. (2003) find that a three-state MRS cointegration model for spot and 

forward exchange rates can outperform the random walk, especially for longer-term horizons.  

MRS models have also penetrated the derivatives markets literature to explore and 

assess price discovery, market interrelationships, hedging and pricing. Sarno and Valente (2000) 

examine the existence of regime shifts in the relationship between spot and futures returns in the 

FTSE 100 and S&P 500 stock index futures markets and establish strong evidence of nonlinear 

mean reversion to the cost of carry spread. In the same markets, Alizadeh and Nomikos (2004b) 

argued that, in the view of these shifts, by allowing the minimum-variance hedge ratio to be 

dependent upon the state of the market, one may obtain more efficient forecasts; overall, their 
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results confirmed that by exploiting regime changes, market participants may be able to 

effectively improve hedging performance. Apart from the futures markets, switching models 

have also been employed in option valuation, after Naik (1993) addressed the issue of pricing 

and hedging contingent claims on assets that exhibit discontinuous volatility shifts. The author 

developed an analytical solution for European call options in terms of the integral of the Black 

and Scholes (1973) formula. A more general discrete model was suggested by Bollen et al. 

(2000) by using a lattice-based algorithm and simulation to price both European and American 

options. Duan et al. (2002) considers GARCH option pricing under regime switching proposing 

a lattice type approximation whereas Buffington and Elliott (2002) draws on risk-neutral 

valuation methods.  

There is a plethora of studies prompted by the attractive features of MRS models and 

different extensions and perspectives have emphasised different views of their benefits and 

economic significance. Other empirical evidence includes Fong and See (2001) for commodity 

indices, Elliott and Hinz (2002) for portfolio and chart analysis, Mayfield (2004) for estimating 

the market risk premium, Mount (2006) for capturing the volatile behaviour of electricity 

markets and predicting spikes, Pelletier (2006) for regime switching dependence structures, 

Elliott et al. (2006) for MRS GARCH option pricing using Esscher transforms, Chung et al. 

(2007) for monetary and fiscal policy. Related literature continues to expand, in several modern 

topics like measuring hedge fund risk exposure (Billio, 2010), real options (Driffil et al., 2009) 

and in comparatively young markets such as the CO2 emission allowances (Benz and Trück, 

2009).  

 

3.2.2 Evidence from the Oil Markets 

Petroleum markets have always been at the core of economic research agenda mainly 

due to the far-reaching implications of oil price uncertainty on the economic and financial 

system. Numerous studies, such as Morana (2001), Giot and Laurent (2003), Sadorsky (2006) 

and Hung et al. (2008), have all well documented that energy markets do exhibit the properties 

that triggered the concern of Mandelbrot in 1963 i.e. non-normality, fat tailed distribution and 

volatility clustering. Energies are prone to sudden changes, not only in response to shifts in the 

fundamentals; such as periodic supply contractions or demand surges (for instance, due to the 

emergence of new large consumers like China and India, nowadays). Several events/episodes 

disrupt stability within the industry including, inter alia, exogenous geopolitical events, weather 

catastrophes, strikes, access to reserves and OPEC policies.  
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For instance, under different conditions such as backwardation/contango, the risk-return 

profile of oil is known to change dramatically: periods of low inventories are associated with 

higher volatility and reduced correlation in the term structure (Fama and French, 1987; Ng and 

Pirrong, 1994). Failure to account for these effects will inevitably lead to under- or over-

estimation of volatility and correlation which in turn will have adverse repercussions on market 

participants’ wealth in the form of non-robust hedge ratios, large contingent claims pricing 

errors etc. Pirrong (1997), in order to accommodate these features, calculated backwardation 

adjusted GARCH hedge ratios by incorporating the cost of carry relationship in the variance-

covariance evolution. The author’s findings indicated that minimum variance hedge ratios for 

crude oil were far less than the naïve 1:1 ratio in the period 1992 to 1994. Nevertheless, apart 

form the second moments, different market conditions are also expected to affect the price 

response function. For example, in equilibrium models, the sensitivity of price changes to the 

deviations from the long-run mean is not expected to be uniform under positive and negative 

errors. Ng and Pirrong (1996) were the first to report that the process of futures-spot price 

convergence of refined petroleum products is non-linear and asymmetric. In particular, the 

speed of adjustment is faster for large deviations from equilibrium and when the market is in 

contango1. Fattouh (2009) examined the regime dynamics of the basis in the crude oil market to 

measure the effects of stocks and OPEC behaviour. The results showed that the basis-stocks 

relationship is nonlinear with higher basis elasticity when inventories are low. Contrary to what 

the theory of storage would predict, the author found that as the stocks increase the probability 

of staying in the contango regime decreases and this can be attributed to the role of OPEC in 

deciding output cuts in view of accumulation of excess stockpiles. The evidence presented 

above confirms that the behaviour of oil markets might not be described well when we assume a 

single underlying stochastic process. Backwardation and contango conditions are one simple 

example that can illustrate this phenomenon. For instance Fattouh (2010) using a threshold 

regime-switching model found evidence of non-linearity in the adjustment process of different 

quality crudes.  

                                                 
1 Other relevant studies are Huang, Yang and Hwang (2009) and Ye et al. (2006) among others. Huang, 
Yang and Hwang (2009) investigate the dynamic interaction between the futures and spot prices for crude 
oil within three observed regimes classified according to the magnitude of the basis and find significant 
interaction when the basis is less or above a certain threshold value. Furthermore, Ye et al. (2006), in a 
simple regression framework include relative inventory levels to forecast WTI in the short run. This study 
supports the predictive power of inventories on prices especially after accounting for asymmetric price 
responses in high and low inventory periods. Allowing for nonlinearities (by including the squared low 
and high relative inventory levels) improved the fit of the data, especially during periods of large price 
swings (e.g. in July 2000 and in December 2002) and the forecast ability on an out-of-sample basis.    
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In reality, many are the events which might cause a changing market structure in the 

world oil market. Dvir and Rogoff (2010), taking a long-term view, test for changes in 

persistence and volatility of real crude oil prices for the period 1861-2009. They identify “three 

epochs of oil”: the persistent and volatile (28% vol. p.a.) period of 1861-1877, the less 

persistent and much less volatile (14% vol. p.a.) phase of 1878-1972, and finally, the 1973 

onwards era where oil price behaviour revisited last century’s dynamics, however with 

relatively less pronounced volatility (23% vol. p.a.). The authors also observe a breakpoint in 

1934 that coincides with the major discovery of the East Texas oilfield; up and to 1972 

volatility was even lower than 1878-1933. 1972 is linked to the peak production of this oilfield 

which essentially ended US control over excess reserves giving OPEC the power to coordinate. 

The first and third transition points in 1878 and 1972 had two main differences in that first, in 

1972 the oil industry was much bigger and second, economies were much more reliant on the 

use of oil. Both happened during years of expanding demand and overall economic growth as 

opposed to the 1934 breakpoint which actually occurred in a period of economic recession.  

Wilson et al. (1996) looked at sudden changes in volatility2. Employing an iterated 

cumulative sum-of-squares (ICSS) algorithm, the authors attempt to detect structural 

unconditional volatility changes in the NYMEX oil futures contract as well as a portfolio of oil 

and gas companies’ stock prices and the S&P index. Regarding the oil futures, 15 significant 

volatility changes were detected, between March 1983 and December 1992, 5 of which 

exceeded 100% in absolute terms. The most remarkable increase in daily volatility (239%) 

occurred in the period from November 1985, through December 1986, from 0.85% to 2.9%. 

Another significant upward change was observed during the eight day period following the 

invasion of Kuwait in the mid-January 1991 (213%) which was followed by the largest decrease 

(83%) in the study’s sample. Moreover, including this information in an ARCH framework the 

author finds a significant decrease in the persistence parameters.  

More formally, Fong and See (2002, 2003) studied the temporal volatility dynamics in a 

combined GARCH and MRS setting. They found significant and distinct switches in the WTI 

futures market, mainly prompted by events that had profound influence in fundamentals. Within 

the high volatility state, an increase in backwardation is likely to increase regime persistence 

due to low inventories. In the same state, changes in the basis are more likely to affect futures 

volatility, consistent with the theory of storage. Moreover, GARCH persistence is significantly 

reduced showing that regime shifts dominate GARCH effects. In particular, the high variance 

                                                 
2Rather than the variance, other studies such as Maslyuk and Smyth (2008) tested the existence of 
structural breaks in a unit root context and found significant and meaningful breaks that may affect the 
intercept, the trend or both elements of the test. 
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state is associated with a six fold increase in the unconditional volatility whereas, within this 

state, volatility has no memory. In the low variance state, the GARCH persistence parameter is 

0.50 compared to 0.99 of the single regime GARCH model. Out-of-sample forecasting 

comparisons favour regime switching models and the inferior performance of the simple 

GARCH is attributed to the presence of structural breaks; for the reason that these breaks make 

estimators reflecting essentially the persistence of volatility regimes rather than true volatility. 

Another study by Vo (2009) married the concept of regime switching with that of stochastic 

volatility to forecast the dynamics of WTI crude oil. The author finds that the simple MRS 

model captures better the in-sample dynamics in terms of mean absolute errors whereas out-of-

sample, stochastic volatility with regime shifts is favoured.  

Various studies have focused on revealing regime-dependent interrelationships and 

asymmetric effects. Noel (2007) and Lewis and Noel (2010) for instance examine the pricing 

and price response functions of retail gasoline prices. Other studies are focused on 

interrelationships between oil and the macroeconomy such as Raymond and Rich (1997). More 

recently, Cologni and Manera (2009) also employ an MRS analysis for the G-7 countries and 

show that net oil price increases and oil price volatility contribute to the output growth whereas 

their role in explaining recessions has not been steady over time. Additional evidence for the US 

business cycles is also provided by Clements and Krolzig (2002) who explore the role of oil in 

generating asymmetries (see also Holmes and Wang, 2003 for the UK). Finally, Aloui and 

Jammazi (2009, 2010) investigate the relationship of crude oil shocks and stock markets 

behaviour and Choi and Hammoudeh (2010) study the relative regimes and regime durations of 

the oil and equity markets as well as for industrial commodities.  

 

3.3 Fundamental Concepts of Markov Processes 

Before introducing the formulation of MRS models, it is helpful to briefly review the 

necessary groundwork behind hidden Markov models. The following subsections deal with two 

essential concepts to facilitate the designing and implementation of regime shifts in the 

modelling process, mixed distributions and Markov chains.  

 

3.3.1 Mixture of Distributions  

The main setback when approximating the distribution of a non-normal variables with 

the Gaussian is that we underestimate the probability of extreme price changes (fat-tails), we 

under- or over- estimate the probability that these may be positive or negative (positive and 

negative skewness, respectively), and we overestimate the probability of returns around the 
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mean (excess kurtosis). These features, as well as population heterogeneity can be efficiently 

addressed by hypothesising that price shocks are drawn from a mixture of several normal 

distributions that can have different moments and this conjecture can be helpful to determine the 

mean and variance changing process.  

Fama (1965) argued that different components may be the result of recurrent features of 

financial series such as day-of-the-week effects. In addition, Kon (1984) suggested that the 

dissimilar distributions for a particular series arise due to diverse information signals; for 

instance, a mixture of three normals for the return distribution of stock prices might arise 

because of firm-specific information, market-specific information and noninformation. In the oil 

market similar conclusions can be drawn. For example, a mixture distribution might arise due to 

existence of two distinct market conditions, namely backwardation and contango, due to the 

dimorphic nature of supply for crude oil (low cost OPEC, high cost non-OPEC supply), due to 

uneven concentration of demand and supply around the world, global vs. regional effects, and 

so on, which may influence the underlying fundamentals and further alter price sensitivities, 

equilibria, risk-return profiles and dynamic linkages.  

In the two component case, a random variable Xt, whose increments follow a mixture of 

two normal distributions, can be defined by ΔX1t with probability π1 and ΔX2t with probability 

π2 = (1 − π1), where ΔX1t and ΔX2t are independent normal random variables while 0 < π1, π2 < 1 

are the mixture coefficients (weights). In the general K component case, the sequence of a 

random variable ΔXt with time index t∈[1…T] can be described by K probability density 

functions (pdf), denoted as fk(ΔXt|st=k) for k = 1, …, K. The mixing process can be defined as 

the discrete random variable st which determines the particular distribution each observation is 

drawn from, with an assigned probability of occurrence πk:  
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Note that the probabilities πk‘s are considered as weights to calculate the pdf of process 

ΔXt as a linear combination of the state-dependent densities:  
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Under conditional normality, the pdf is: 
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The parameters of a mixture distribution model can be estimated using Maximum 

Likelihood (ML). In particular, given Eq. (3.3) and (3.4), the likelihood of the K components 

mixture of normals model, is equivalent to:  
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Table 3.1: Fitted Finite Mixtures  

 WTI crude oil Heating oil Brent crude oil Gas oil    

 

 1-M 3- M 6- M 9- M 1- M 3- M 6- M 9- M 1- M 3- M 6- M 9- M 1- M 3- M 6- M 9- M

Panel A: Normal Distribution  
μ 0.038 0.039 0.040 0.041 0.038 0.037 0.037 0.038 0.040 0.041 0.042 0.042 0.038 0.037 0.037 0.039

σ 2.267 2.000 1.786 1.664 2.242 1.985 1.772 1.647 2.198 1.974 1.785 1.670 2.068 1.845 1.647 1.537

Panel B: Mixture of Two  Normal Distributions 
μ1 0.087 0.096 0.088 0.082 0.069 0.057 0.058 0.058 0.102 0.092 0.088 0.074 0.075 0.066 0.077 0.082

μ2 -0.272 -0.240 -0.191 -0.156 -0.070 -0.006 -0.013 -0.012 -0.260 -0.136 -0.128 -0.093 -0.083 -0.069 -0.079 -0.084

σ1 1.814 1.532 1.336 1.244 1.790 1.470 1.284 1.201 1.699 1.424 1.284 1.230 1.607 1.421 1.214 1.125

σ2 4.092 3.476 3.145 2.925 3.358 2.829 2.578 2.436 3.756 3.221 2.961 2.854 3.130 2.909 2.521 2.323

π1 0.864 0.832 0.828 0.826 0.775 0.695 0.702 0.718 0.828 0.777 0.785 0.808 0.766 0.786 0.747 0.736

π2 0.136 0.168 0.172 0.174 0.225 0.305 0.298 0.282 0.172 0.223 0.215 0.192 0.234 0.214 0.253 0.264

Panel C: Mixture of Three Normal Distributions 
μ1 0.205 0.192 0.150 0.127 -0.176 -0.070 -0.008 0.032 0.179 0.140 0.122 0.132 0.179 0.195 0.156 0.186

μ2 0.036 0.034 0.047 0.045 0.135 0.123 0.105 0.077 0.032 0.018 0.042 0.024 -0.035 -0.048 -0.066 -0.096

μ3 -0.519 -0.412 -0.372 -0.318 -0.457 -0.259 -0.297 -0.297 -0.405 -0.314 -0.328 -0.218 -0.054 0.114 0.224 0.262

σ1 0.983 0.838 0.743 0.788 1.028 1.034 1.001 0.958 1.062 1.015 0.925 0.868 1.179 1.014 0.953 0.894

σ2 2.165 1.904 1.672 1.580 2.155 1.947 1.839 1.817 2.128 2.012 1.775 1.637 2.240 1.872 1.727 1.584

σ3 4.964 4.351 3.891 3.600 4.045 3.454 3.320 3.319 4.660 4.350 3.750 3.572 4.902 3.757 3.339 2.994

π1 0.200 0.218 0.222 0.265 0.162 0.247 0.344 0.432 0.250 0.349 0.348 0.331 0.342 0.310 0.385 0.381

π 2 0.741 0.717 0.707 0.662 0.759 0.654 0.582 0.516 0.684 0.591 0.576 0.596 0.632 0.629 0.552 0.544

π3 0.059 0.065 0.071 0.073 0.079 0.099 0.075 0.052 0.066 0.060 0.075 0.073 0.026 0.061 0.063 0.075• Estimation period uses daily observations from June 1994 to December 2009.  • The table presents the parameters of fitting a normal and mixture of normals distribution to 1- month, 3- month, 
6- month and 9- month to maturity petroleum futures of NYMEX WTI crude and heating oil and ICE Brent
crude and gas oil.  • Let the petroleum returns be ΔlnF(t,T)= ΔXt, then the fitted distributions are ΔlnF(t,T)~N1{E[ΔXt] = μ, 
Var(ΔXt) = σ2},~ N2{E[ΔXt] = μ1 π1+μ2 π2, Var(ΔXt) = π1[μ1

2+σ1
2] + π2[μ2

2+σ2
2]-μ2}and ~N3 {E[ΔXt] = μ1

π1+μ2 π2+μ3 π3, Var(ΔXt) = π1[μ1
2+σ1

2] + π2[μ2
2+σ2

2]+ π3[μ3
2+σ3

2]-μ2}.  • Estimates are based on Maximum Likelihood (ML) estimation, by maximising Eq. (3.5) subject to the

constraints that 
1

1
K

k k
π= =∑  and 0kπ ≥ , for k = 1, …, K.  

Table 3.1 gives a comparison of the means and volatilities for different petroleum 

commodities futures price changes. The corresponding second moments of the two states in 

Panel B, show a twofold increase, on average, whereas the probability of the low variance state 

is much higher. Moreover, in Panel C, volatilities involve a threefold to fivefold increase 

between the two extreme cases, whereas the medium- volatility state is associated with higher 
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probability. What merits attention is that, as basic economic theory predicts (Samuelson effect, 

1965; see Chapter 2, section 2.7), the futures prices become increasingly volatile as they 

approach maturity; an observation that holds even within regimes. More complex is the 

behaviour of probabilities of different contracts as they display some autonomy. Notice as well 

in Panel C that the probability of the low variance state seems to increase with maturity.  
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Figure 3.1: Fitted Mixture of Two Normals for WTI Crude Oil 

 

Additionally, Figure 3.1 illustrates how the mixture distribution accommodates fatter 

tails and excess kurtosis. It displays the estimated mixed distribution (shaded areas) of 1- month 

WTI crude oil vs. the fitted simple normal distribution (dashed line). Looking at the resulting 

shape of the distribution it can be seen that this is asymmetric towards the left. This is 

accommodated by the fact that μ1  μ2. If the difference of component means is not statistically 

significant i.e. μ1 = μ2 =… = μK, the shape of the distribution is bound to be symmetric.  

≠
An interesting feature of mixture distribution models is that, ex-post, we can conduct 

inference about which state was more likely at each step t by obtaining a conditional probability 

that, the process was drawn from state k. Using the law of total probability and Bayes’ rule3:  

                                                 
3Denote c the complementary event, say of A i.e. the event of “not A”. The law of total probability relates 
marginal probabilities with conditional probabilities. We can express the law of total probability as: 

 58



 

 

Chapter 3: Regime Switching Models and Applications in Finance 

 

 
 

( )
( )

( )( )1

|

1
1

1

| , | ,

|
| ,

k k t t t k k t t t

kt T K

t t
k k t t t

k
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f X
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π
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−−=

Δ = Ω Δ = Ω= = Δ ΩΔ = Ω∑
1−

                         (3.7) 

 

Mixture distribution models can be considered as a special case of Markov models, with 

constant regime probabilities and a transition probability matrix of rank 1. For the case where 

the components’ weights are obtained by hidden Markov models, more details will be provided 

in the next section.  

 

3.3.2 Markov Chains 

Defining any particular Markov chain requires a set of K possible states (state space) 

and a transition matrix which assigns probabilities to the state transitions. We will be interested 

in discrete time Markov chains that are described by a countable state space. Let st be a latent 

random variable with st∈ [1,…,K], K≥ 2 and finite and t∈ [1,…,T]. The process will start in one 

of these states and then move successively among them. The first observation of such an order 

is called initial state. A Markov chain is a particular stochastic process with the distinctive 

property of restricted memory, in the sense that the current state contains as much information 

for the future as the whole history of the process4. This facet, the so called Markov property, 

can be expressed in mathematical form as: 

=

                                                                                                                                              

 

( ) ( )
01 1 1Pr | , ,..., Pr |t t t t t ts k s s s s k s+ − += =                             (3.8) 

 

The equation above illustrates that the future state st+1 depends on the current state st 

alone and not on earlier consecutive realisations st-n, with . As for any stochastic process, 

probabilities must be assigned to the cascade of possible values. The conditional probabilities 

1n ≥

 

)Pr()|Pr()Pr()|Pr()Pr()Pr()Pr( ccc AABAABBABAB +=∩+∩=
)Pr()|Pr()Pr()| AABBBA =

. Bayes’ theorem, on the other 

hand, states that: Pr( . Hence, combining these two rules:   

)Pr()|Pr()Pr()|Pr(

)Pr()|Pr(
)|Pr(

cc AABAAB

AAB
BA +=  

4 Note that, when this holds, the process follows a first-order Markov chain. It is possible to construct 
higher order chains by assuming that future states depend on the current and certain number of past states. 
It is also possible to construct zero-order Markov chains i.e. the processes are independent of both the 
current state and the whole history (Bernoulli processes). However these are beyond the scope of this 
chapter and therefore, are not hereafter discussed.  
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Pr(st+1=k|st) that the process will be in some state k, one step ahead at time t+1, are given by the 

transition kernel Ψ = (pij): 

 

( )
11 12 1

21 22 2

1

1 2

...

...
; Pr

... ... ... ...

...

K

K

ij t t

K K KK

p p p

p p p
p s j s i

p p p

+

⎛ ⎞⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎝ ⎠
Ψ 0= = ≥             (3.9) 

 

where i, j are indices with i,j∈ k. The main diagonal p11, p22, …,pKK gives the probability that state 

st will remain the same in the following period; off diagonal elements pij, give the transition 

intensities i.e. the probability that state i will be followed by state j, with i j. Of 

course, holds for every i because the events collected at each row of matrix Ψ 

constitute an exclusive and exhaustive partition of the space. That is, given the state at time t, 

the sum of the probabilities of transition to other states plus the probability of no change in the 

state must sum to 1.  

≠
1

1
K

ijj
p= =∑
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Figure 3.2: Illustration of the Structure of a Three-State Markov Process 
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To illustrate the application of the abovementioned definitions consider the states of 

backwardation and contango in the oil market.  Figure 3.2 displays the state transitions of WTI 

crude oil and heating oil among three states i.e. both commodities being in backwardation (B), 

both commodities being in contango (C) and one commodity being in (B) while the other in (C). 

Calculations are based on actual NYMEX futures daily data from 1994 to 2009. Classification 

in regimes was carried out using the overall short-term to medium term slope of the term 

structure including the first 10 contract maturities. A negative (positive) slope is indicative of 

backwardation (contango). According to the figure, a joint crude-heating downward sloping 

futures curve has a 95.7% probability of repeating the following day. An interesting observation 

is that the lower probability of no transition pii (that is, equal to 90%) is assigned to the reverse 

state conditions (A) which means that this state is of a more transient nature. In addition, the 

probability of transition from (B) to (C) or vice versa is too low (0.1%) implying that the market 

will most certainly pass through (A) to transit from (B) to (C) and vice versa from (C) to (B). 

Apart from Ψ, it is important to define the n-step transition kernel; that is, the 

conditional probabilities Pr(st+n|st) that the process will be in some state, n- steps ahead at time 

t+n. The Markov chain should obey the following relationship, known as Chapman-

Kolmogorov equation: 

 

( ) ( ) ( ) ( ) ( )ttttntntntnttnt ssssssssss |Pr|Pr...|Pr|Pr|Pr 112211 +++−+−+−+++ =          (3.10) 

 

Therefore, the full set of forward transition probabilities can be expressed in matrix 

form as the n- power of Ψ, that is Ψn
 = (pij

(n)). In our example the 1-day and 2-weeks ahead 

transition probabilities are:  

 

(10)

95.7 4.2 0.1 70.9 23.8 5.3

5.4 90.5 4.1 ; 30.5 47.4 22.1

0.1 5.2 94.7 8.3 28.0 63.7

⎛ ⎞ ⎛⎜ ⎟ ⎜= =⎜ ⎟ ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝
Ψ Ψ

⎞⎟⎟⎟⎠
 

 

Thus the probability that both crude oil and heating oil are inverted (in backwardation), 

given that they were inverted 2-weeks ago is Pr (st+10= B | st = B) = Ψ10
(1,1) = 70.9%. Eq. (3.10) 

implies also that due to the Markov property, the distribution of a Markov chain is fully 

specified by its initial distribution Pr ( ) and the transition probability matrix as: 
0t

s

 

 61



 

 

Chapter 3: Regime Switching Models and Applications in Finance 

 

 ( ) ( ) ( ) ( )
( ) ( )

0 0 0 0

0 0

1 1 1 0

1

1

Pr , ..., Pr Pr | ...Pr | ,...,

Pr |

t t t t t t t t t

t

t t

s s s s s s s s s

s Pr s sτ ττ

− + −

−
+=

= =

= ∏
             (3.11) 

 

Moreover, the distribution of st for large t converges to a limit πk irrespective of the 

initial point Pr ( ). This is called the unconditional probability of being in state k which 

essentially determines the long-term behaviour of each state. Let π represent the vector 

containing these unconditional probabilities i.e. π = (πi πj) with πi = Pr(st=i). It can be shown 

that these are the solution to the system π = π Ψ, subject to the constraint that . In 

the two regime case this is:  

0t
s

1
1

=∑ =
K

k kπ

 

( )
( ) (

11 11

1 2

22 22

1 2 1 11 2 22 1 11 2 22

1
 =

1

(1 ) (1 )

p p

p p

)p p p

π π

π π π π π π

−⎛ ⎞⇒⎜ ⎟−⎝ ⎠
= + − − +

π = π Ψ

p

2

                (3.12) 

 

Hence,          

1 1 11 2 22 1 11 1 2

2 1 11 2 22

1 2

(1 ) (1 ) (1 )(1 )

(1 ) ...

...1

p p p p

p p

π π π π π
π π π
π π

= + − − = − −⎧ ⎧⎪ ⎪= − + ⇒⎨ ⎨⎪ ⎪+ = ⎩⎩
 

 

Finally, solving yields:  

 

22
1

11 22

11
; Pr( )

2 2

j j

ii j j

pp
or st i

p p p p
π −−= = =− − − −                         (3.13) 

 

 

3.4 The Baseline Markov Regime Switching Model  

A Markov model in its basic first-order, K-state form is a multi-stochastic process, 

based on an underlying sequence of observations. It is a special class of dependent mixtures and 

consists of two processes: a latent K-state Markov chain that drives the regimes, and a state-

dependent process of observations. Assume the price changes for oil futures, say ΔXt follow the 

dynamics:  
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2; ~ (0,t t t tX iid N )μ ε ε σΔ = +                           (3.14) 

 

where εt is a Gaussian white noise process and μt can represent, for instance, a simple drift μt = 

μ, a mean reversion process μt = α (Xt – μ), an autoregressive (AR) process μt = α (ΔXt-1 – μ) or 

any regression for that matter. In general, μt is some predictable process. Assume now that we 

wish to assign different values to different subsamples. Say, for example, we want to capture the 

oil upward trending 1970-1981 years and the downward trending period of 1981 - 1987. We 

could include a dummy variable to represent this change and specify the conditional mean as μt 

= μ +α It>t* with I the indicator function taking values of 1 for [t*, .., T] and zero otherwise. 

However, rather than claiming one abrupt structural change in the model we can specify a more 

general form that encompasses both specifications and many more. Mathematically:  

 

2

, , ,; ~ ( ,
t t t t tt s t s t s t s sX Nμ ε ε μ σΔ = + )

)

)

                         (3.15) 

 

where st is a first order Markov chain defined by the probability law of Eq. (3.8) and having a 

transition probability matrix Ψ as in Eq. (3.9). If we consider a simple two regime process, the 

dynamics of the process ΔXt and the transition kernel Ψ would be, respectively:   

 

2

1, 1, 1, 1 1

2

2, 2, 2, 2 2

; ~ ( ,

; ~ ( ,

t t t

t

t t t

N
X

N

μ ε ε μ σ
μ ε ε μ σ
⎧ +⎪Δ = ⎨ +⎪⎩                       (3.16) 

 

11 12 11 11

21 22 22 22

1

1

p p p p

p p p p

−⎛ ⎞ ⎛= =⎜ ⎟ ⎜ −⎝ ⎠ ⎝Ψ
⎞⎟⎠              (3.17) 

 

In this case εt has a conditional mixture of normals distribution with first and second 

moments given by a modification - regarding the mixing weights - of Eq. (3.6). If the shock that 

occurred at the breakpoint t* is permanent, then we would expect that p22=1, implying that the 

second state is an absorbing state; once the market enters that condition is not expected to revert 

back. However, Markov models have the flexibility to allow for pKK < 1 since there are also 

transitory shocks that usually occur repeatedly.  For instance, if the regime shift reflects a 

tightening of supply coupled with demand surge, it would be a sensible postulation to account 

for the possibility that the market will eventually absorb the imbalance at some point in time i.e. 
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p22<1. Every Markov chain that it is possible to move from every regime to every regime is 

called ergodic or irreducible.  

A strength provided by this MRS model is that different regime-specific means for the 

mixture allow for time varying skewness and appropriate treatment of dynamic asymmetries; 

two statistically different means cause the mixture to be bimodal (Gray, 1996). Moreover, the 

regime-switching model supposes that st is unobserved and the time series is decomposed into 

two generating processes with different variances. These different variances are weighted by the 

conditional regime probabilities (defined in the next section) which are a function of t. Thus, 

even if state dependent variances are constant, the aggregate process will be time-dependent. To 

determine the timing of the states, the econometrician has to make inferences relying on the 

Markov probabilities. Furthermore, to determine the duration of the states i.e. how persistent 

each state is, we can use the transition probability matrix Ψ. The average expected duration of 

being in state 1 is calculated using the formula suggested by Hamilton (1989):  

    

1 1

11 11 11

1

(1 ) (1 )k

k

kp p p
∞ − −
=

− = −∑                 (3.18) 

 

Because of the latent nature of st, calibration of MRS models is rather demanding. 

Hamilton (1990) introduced the Expectation Maximisation (EM) algorithm, later refined by 

Kim (1994), Hamilton (1994) and Gray (1996). In general, estimation is based on Bayesian 

updating of the likelihood function using a recursive filter, based on the recursive nature of 

conditional regime probabilities.  

 

3.4.1 Regime Inference and Maximum Likelihood 

Assume θ contains all the MRS parameter estimates. Based upon θ estimated from data 

spanning through the time index t∈[1…T], three estimates about the unobserved state variable 

st, can be made. The first is the estimated probability that the unobserved state variable at time t 

equals k given the information set up to t-1, Ωt-1; this is the expected, predicted or ex-ante 

probability πkt|t-1 = Pr(st=k|Ωt-1). The ex ante probability is of particular interest in forecasting 

simulations. The second is the estimated probability that the unobserved state variable at time t 

equals k given all the information set up to t, Ωt, with t < T; this is termed the filter probability 

πkt|t = Pr(st=k|Ωt). The third is the estimated probability that the unobserved state at time t equals 

k given the entire time index t∈[1…T] of the sample; this is termed the smooth probability πkt|T 

Pr(st=1|ΩT). The smooth probability has been traditionally used to identify and establish the 
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timing of regime shifts. Although the econometrician observes directly ΔXt he/she can only 

make inferences about the value of st based on ΔXt.  

To estimate any MRS specification, we can use the conditional distributions of each 

state and the assigned probabilities to integrate out the state variable. Rewriting ΔXt in terms of 

the conditional distribution of f(ΔXt|Ωt-1) this can be done as:  
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∑
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)− =

              (3.19)  

 

By conditioning on the regime at t-1, the ex-ante probability that the process is in state 

1, is given by the transition probabilities and the filter probabilities at t-1, as:  

 

( ) ( ) (

( )

1 | 1 1 1 1 1

1

1 1| 1

1

Pr 1| Pr 1| Pr |
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K

t t t t t t t t

k

K

t t kt t

k
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π
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= = =

∑
∑

         (3.20) 

 

with Pr(st-1=k| Ωt-1) = πkt-1|t-1 being the filter probability at t-1. In the two regime case, it follows 

that:  

 

( ) ( )2

1 | 1 1 1 1

1

11 1 1| 1 21 2 1| 1 11 1 1| 1 22 1 1| 1

Pr 1| Pr |

(1 )(1 )

t t t t t t
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s s k s k

p p p p

π
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− − − −=

− − − − − − − −

= = = = Ω =

= + = + − −

∑
          (3.21) 

 

Following Hamilton (1994) and Gray (1996), by Bayes’ rule the filter probability can be 

written as a function of the previous’ step ex-ante probability ( )21 |Pr −− Ω= tt ks  i.e. π1t-1|t-2: 
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and conditional on the normality assumption: 
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Consequently, the ex-ante probability can be written as a simple recursive filter. In 

more general form:  

 

( )11

1 1

11

tt t

t t t t t t

tt t

−−Τ
1

Τ
− − −Τ −−
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π f

π Ψ π Ψ π
1 π f

=             (3.24) 

 

where πt|t and πt|t-1 denote vectors containing the probabilities of being in each regime at time t 

conditional on the observations up to time t and up to time t-1, respectively, ft-1 is a vector of 

state dependent densities conditional on t-1 and is the element-by-element multiplication.   

Subject to the constraints that | 11
1

K

kt tk
π −= =∑  and 0≤  πkt|t-1 ≤1 and iterating the 

expressions in Eq. (3.24), the log-likelihood function L(θ) to be maximised using numerical 

optimisation methods is: 

 

( ) ( ) ( )2

,

1 | 1 2
1 1 1 ,,

1 1
log | exp

22

T T K
t k t

t t kt t

t t k k tk t

X
L f X

μπ σπσ− −= = =

⎧ ⎫Δ −⎪ ⎪= Δ Ω = −⎨ ⎬⎪ ⎪⎩ ⎭∑ ∑∑θ           (3.25) 

 

Extensions of the above framework for the multivariate case are straightforward. For 

instance, if we are looking at the joint distribution of many variables, say collected in the vector 

ΔXt, then, define: 
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Under the normality assumption Eq. (3.23) and (3.25) change to: Under the normality assumption Eq. (3.23) and (3.25) change to: 
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For more on multivariate MRS models please refer to Chapters 1 and 3. We now just 

present that in the bi-variate case we can write: 
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In summary, estimation of MRS models is obtained by: First, calculating ex-ante 

probabilities using the transition matrix and the filter probabilities (Eq. 3.20). Second, calculate 

the densities, conditional on regime realisation (Eq. 3.23). Third, integrate out the state variable 

to obtain the unconditional (on regime) density (Eq. 3.19). Finally, update the probabilities (Eq. 

3.20 to 3.22) and repeating the procedure for the next t.  

 Following estimation of MRS models - conditional on the specified model- and after 

obtaining the n step ahead forecasts of both the state-dependent variance-covariance and mean 

equations as well as step ahead forecasts of the regime probabilities, first and second moment 

forecasts of the overall process are obtained as: 
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where i, j denotes the asset with i j. Regime probabilities at t + n ≠ tntk |, +π  can be obtained by 

utilising the estimates of the transition matrix at time t, Ψt, and the estimated regime 

probabilities at time t as πkt|t-1Ψt+n, where πkt|t-1 the vector of the ex-ante probabilities. 

After maximising the log-likelihood function and obtain the parameter vector θ, smooth 

probabilities can also be estimated i.e. πkt|T = Pr(st=k|ΩT). The filter recursion before can be 

considered as a limited information technique since not all observations of the sample are used. 

Inference regarding the timing of regimes can be improved by utilising all the available 

information up to T. An efficient algorithm to calculate these probabilities has been developed 

by Kim (1994). Kim’s smoothing algorithm can be considered as a backward iterating 

procedure on the previous recursive filter i.e. from t = T to t =1 which is based on the following 

relationship:  
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Starting from T and iterating backwards we do know all the elements of the right hand-

side of Eq. (3.27) and we perform this calculation for each t. To exemplify this procedure, 

consider that our dataset includes only 2 observations and follows a two state process, hence t = 

{1, 2}. The smooth probability ( 21 |1Pr )Ω=s for the process being in state 1, with T = 2 given, 

is:  
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Table 3.2: Simple MRS Models of Petroleum Spreads 
2

1 , ; ~ ( ,
t t t t tt s s t s t t s sSpread Spread Nμ α ε ε μ σ−Δ = + +  

 μ1 μ2 α1 α2 σ1 σ2 p11 p22 

Panel A: NYMEX Heating crack spread 
OLS 0.221  -0.0155  1.007  1  

MRS 0.189 0.289 -0.0136 -0.0190 0.716 1.506 0.989 0.971 

Panel B: WTI-Brent Spread 
OLS 0.060  -0.0127  0.64    

MRS 0.024 0.109 -0.0062 -0.0203 0.370 1.067 0.970 0.925 

• Estimation period uses daily observations of nearby futures from June 1994 to December 2009.  • The table presents the parameters of fitting an MRS model for the NYMEX 1:1 heating crack (Panel A) 
and the WTI-Brent intercrude spread (Panel B).   

Consider the parameter estimates in Table 3.2 as an example. Using a simple mean 

reverting equation, we can see that first, high variance states are associated with greater speed of 
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mean reversion and second, high variance states are associated with less persistent regimes. The 

difference in the daily volatility between the regimes is for both spreads, more or less, 70 basis 

points, equivalent to around 11% on an annual basis.  

Following the estimation of the above MRS model we also estimate and show the ex-

ante and smooth regime probabilities for the NYMEX heating crack spread (1 barrel of crude 

vs. 1 barrel of heating). The result is plotted in Figure 3.3.   

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

3
0

/0
6

/9
4

3
0

/0
6

/9
5

3
0

/0
6

/9
6

3
0

/0
6

/9
7

3
0

/0
6

/9
8

3
0

/0
6

/9
9

3
0

/0
6

/0
0

3
0

/0
6

/0
1

3
0

/0
6

/0
2

3
0

/0
6

/0
3

3
0

/0
6

/0
4

3
0

/0
6

/0
5

3
0

/0
6

/0
6

3
0

/0
6

/0
7

3
0

/0
6

/0
8

3
0

/0
6

/0
9

1.00

exante
smoothed

Figure 3.3: Ex-ante & Smooth Regime Prob. for NYMEX Heating Crack 
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In addition, the Figure 3.4 is presented to demonstrate the evolution of volatility under 

the MRS models. Volatility is displayed as 3± standard deviations vs. the actual returns. 

Finally, regime classification (shaded area) according to the smooth probabilities is also plotted. 

 

3.4.2 Path Dependency in Volatility  

Due to the time varying nature of the regime probabilities, the overall conditional 

volatility of an MRS model implies that second moments are time varying, even if the within 

state variances are assumed constant. An alternative specification to model volatility has been 

the well-known GARCH framework which by definition is an ARMA process of the variance. 

The first to combine these two approaches in a unified framework are Hamilton and Susmel 

(1994) and Cai (1994). To accommodate within regime time variation they capture the volatility 

dynamics using ARCH family models. However, an important assumption of any Markov chain 

is that the state variable process does not depend on its history.  
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Figure 3.5: Volatility Path-Dependency in the GARCH Model  

 

Hamilton and Susmel (1994) and Cai (1994) noted that to avoid the conditional density 

to be dependent on the entire history, as is inherent in the GARCH structure the AR term need 

not be in the variance. The main drawback of their approach is that many lags of ARCH terms 

are needed in order to capture the volatility dynamics. Gray (1996) was the first to suggest a 

possible tractable method and offer a solution for preserving in a way the popular GARCH 

dynamics in a regime switching scheme. Essentially, his approach was to integrate the 

unobserved regime at each step by using the conditional expectation of the past variance rather 
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then the regime specific variances (see also Chapter 4). The conditional expectation of the past 

variance is given by Eq. (3.29). Thus, recursive estimation of the GARCH-like equation 

2 2

, 1k t k k t k tA B 2

1σ ω ε σ−= + + − becomes feasible by recombining the state-dependent variances at 

ach time step. Dueker (1997) also uses another collapsing procedure, but he essentially adopts 

the same framework of Gray (1996). Klaassen (2002) adopts the same recombining method but 

utilises the probabilities at t-1 rather than t-2. An alternative approach is offered by Haas et al. 

(2004a, 2004b) who assume K independent GARCH processes where all exist as latent 

variables (see also Chapter 4). Lee and Yoder (2007a) extend Gray’s model to the bivariate case 

and fully solve the path dependency problem by developing a similar collapsing procedure for 

the covariance (see also Chapter 5).   

2

,tkσ

 

3.5 Conclusion 

In this chapter we reviewed some of the empirical evidence regarding the use of regime 

switching models in financial applications. This chapter addressed several aspects of an 

important class of econometric models, namely the Markov Regime Switching (MRS) models. 

Pioneered by Hamilton (1989) to model the evolution of business cycles, applications of MRS 

models for describing nonlinear behaviour of asset returns and nonlinear dependence among 

assets has expanded. Introducing a great amount of flexibility in modelling the conditional 

distributions of asset returns, they have been applied in various fields of finance and economics, 

from portfolio allocation and portfolio risk to forecasting and derivatives pricing. Furthermore, 

this chapter has also provided the theoretical background regarding some basic concepts behind 

estimation issues and inference in a regime switching setting. The fundamental frameworks that 

will be adopted in the subsequent empirical applications have been outlined. 

Non-normality, asymmetries and time-varying dependence are well-documented 

features in energy markets. Modelling the petroleum price economic series with a Markov 

Regime Switching process in their conditional means and their conditional second moments 

permits us to consider many of the stylised facts that these markets exhibit. Our empirical 

applications in the three subsequent empirical chapters will essentially confirm that the 

Markovian formulation turns out to exhibit many of the salient features of petroleum markets. A 

common feature of the ensuing models that will be presented is that regime switches are driven 

by an unobserved latent variable driven by a Markov Chain. In doing so, we will consider 

univariate and multivariate models as well as Markov GARCH models.  
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Proper assessment of energy risk relies on models that reflect a number of important 

properties of the underlying assets which affect the performance of the participants’ portfolios 

such as time-dependent volatility and heavy tails. Next, in Chapter 4: Forecasting Petroleum 

Futures Markets Volatility: The Role of Regimes and Market Conditions, we will focus on the 

short end of the futures curve. The purpose is to provide an in-depth analysis of forecasting 

volatility and Value-at-Risk for the more volatile nearest to expiry contracts. In doing so, as it 

will be seen, we will use both the information of the futures curve, regime switching models and 

another class of models, the family of Autoregressive Conditional Heteroscedasticity (ARCH) 

models, introduced by Engle (1982). What makes this a non-trivial exercise is the complex 

dynamics of petroleum commodities, compounded with the difficult task of simultaneously 

modelling the volatility as a GARCH and a Markov process. Finally, we will link the 

performance of models to the position of the futures curve to examine whether there is a 

tendency for the forecast errors to be better or worse under different market conditions, such as 

backwardation and contango. Before presenting our empirical evidence, Chapter 4 will first, 

provide a short introduction regarding volatility forecasting. This will be followed by some 

technical details on Mixture and Markov GARCH and next, a thorough explanation of the 

theoretical background and the estimation procedure will be supplied. The model will be fitted 

to daily historical futures prices from 1991 to 2008, providing strong statistical evidence, not 

only regarding the presence of regime shifts but also concerning the forecasting performance. 

 

 

 

 73



 

 

Chapter 4: Forecasting Petroleum Futures Markets Volatility 

 

 

 74

Chapter 4  

 

Forecasting Petroleum Futures Markets 

Volatility: The Role of Regimes and Market 

Conditions  

 

4.1 Introduction 

In the volatile world of energy markets, quantifying and mitigating price risk presents a 

number of challenges due to the time-dependence in volatility, non-linear dynamics and heavy 

tails in the distribution of oil returns. Petroleum price volatility has always been at the core of 

economic research agenda not only because of its effect on the cash flows of oil-related 

businesses, but also due to the far-reaching implications of oil price uncertainty on the 

macroeconomy (Hamilton, 2003 and Chen and Chen, 2007) and the financial markets 

(Driesprong et al., 2008 and Aloui and Jammazzi, 2009). It is not surprising therefore that in the 

energy economics literature there is a plethora of empirical studies examining the issue of 

modelling volatility and risk management.  

Traditionally, the family of Autoregressive Conditional Heteroscedasticity (ARCH) 

models - introduced by Engle (1982) - have been widely used to describe the conditional 

volatility of oil prices, due to their flexibility. However, empirical research suggests that in the 

presence of asymmetries, fat tails and time-dependent higher order moments, the standard 

Generalised ARCH model of Bollerslev (1986) is not appropriate and thus, numerous 

extensions have been developed in the literature either by assuming different distributions of the 

error structure or by adding asymmetric terms, such as leverage effects, in the variance process. 

Kang et. al (2009) for instance, compare the forecasting ability of different GARCH models in 

the WTI, Brent and Dubai crude oil futures markets and find that Fractionally Integrated 

GARCH processes provide more accurate volatility forecasts, concluding that persistence and 

long memory are essential elements of energy markets volatility. Agnolucci (2009) investigates 

the market volatility of WTI futures and finds that extensions of GARCH models with 

asymmetric effects and different error distributions out-perform implied volatility models’ 
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predictive accuracy. Fan et al. (2008) show that the assumption of normality leads to 

underestimation of risk and GARCH models based on the Generalised Error Distribution (GED) 

produce more reliable forecasts compared to ordinary GARCH models. Hung et al. (2008) also 

highlight the importance of selecting the appropriate distribution in a GARCH context and find 

that crude oil and oil products’ Value-at-Risk (VaR) is better captured by fat-tail distributions. 

Overall, the findings of this study imply that the assumption of fat tails plays an important role 

in VaR estimates since it directly affects the required quantiles. Costello et al. (2008) on the 

other hand, employ a GARCH filter and rely on historical simulations (semi-parametric 

GARCH) to forecast VaR whereas Huang, Yu, Fabozzi and Fukushima (2009) employ an 

alternative CAViaR (Conditonal Autoregressive VaR) technique based on regression quantiles. 

Other studies testing different variants of GARCH models include Duffie et al. (2004), 

Sadorsky (2006), Cheong (2009) and Wei et al. (2010).  

A major shortcoming of GARCH models is that they induce a high degree of 

persistence in shocks, that falsely implies high predictability but, in essence reflects regime 

shifts or structural breaks in the volatility process (Lamoureux and Lastrapes, 1990). This means 

that a regime-switching GARCH model may be more suitable for modelling volatility 

particularly in the energy markets where structural breaks are quite common1. Another 

advantage of a regime GARCH process is its ability to deal with fat-tails (see Haas et. al, 2004a 

and 2004b for more details and derivation of higher moments of mixed normal distributions); 

this is very important for modelling volatility in the oil futures markets where demand shocks 

result in an asymmetrically higher volatility when the market is at the steep part of the supply 

stack.  

In addition, oil market volatility is characterised by different dynamics under different 

market conditions. For instance, Fong and See (2002; 2003) document strong evidence of 

regime switching in the temporal volatility dynamics of oil futures, consistent with the theory of 

storage; an increase in backwardation is more likely to increase regime persistence in the high 

volatility state, due to low inventories. In the next chapter we will employ a Markov Regime 

Switching (MRS) approach for determining optimum hedge ratios in NYMEX energy futures 

markets. The findings will show that in a low variance regime, error correction coefficients are 

in accordance with convergence towards a long-run equilibrium relationship, while the high 

variance state is characterised by insignificant speed of adjustment coefficients, which 

                                                 
1 See for instance Wilson et al. (1996). Employing an iterative cumulative sums-of-squares (ICSS) 
approach, they show evidence of sudden changes in the unconditional volatility of oil futures contracts. In 
particular, 15 significant volatility changes were detected from 1984 to 1992, whereas 5 of these exceeded 
100% in absolute terms e.g. the eight day period following the invasion of Kuwait in 1991 was associated 
with a 213 percent upward change in the unconditional volatility.  
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effectively results in a widening of the basis thus explaining the high variance regime; hence, 

the adjustment process undergoes regime shifts and does not behave uniformly to shocks to 

equilibrium across different states. Another study by Vo (2009) combined the concept of regime 

switching with that of stochastic volatility to forecast the dynamics of WTI crude oil. The 

author finds that the simple MRS model captures better the in-sample dynamics in terms of 

mean absolute errors whereas out-of-sample, stochastic volatility with regime shifts is favoured. 

Building on these studies, this chapter investigates the volatility dynamics for the 

NYMEX WTI crude and heating oil as well as the ICE Brent crude and gas oil futures contracts. 

In doing so, it contributes to the existing literature in a number of ways. First, we employ 

various volatility regime models, to accommodate some of the stylised features of the oil 

markets such as volatility clustering, non-normality, time-varying skewness and excess kurtosis. 

In particular, we consider the Mix (distribution) GARCH and the MRS GARCH models based 

on the mixed conditional heteroscedasticity models of Haas et. al (2004a) and Alexander and 

Lazar (2006) and the Markov model of Haas et. al (2004b), respectively.  Our study is different 

from the above mentioned research in the sense that we provide a thorough empirical 

application of the provided framework in the energy markets. Although volatility modelling and 

forecasting in a regime framework has been widely documented in equity and foreign exchange 

markets (see  Marcucci, 2005; Li and Lin, 2004; Giannikis et al., 2008), few studies have 

analysed in depth the nature of the volatility regimes of oil futures prices and the forecasting 

ability of those models in the specific market. 

Second, we extend previous research by including the squared lagged basis of futures 

prices in the specification of the conditional variance in what is termed the GARCH-X model 

(Lee, 1994; Ng and Pirrong, 1996). A principal feature of the basis is that the time paths of spot 

and futures prices are influenced by the extent of deviations from their long-run equilibrium 

(Engle and Granger, 1987). As prices respond to the magnitude of disequilibrium then, in the 

process of adjusting, they may become more volatile. If this is the case then the inclusion of the 

basis term in the conditional variance specification may lead to the estimation of more accurate 

volatility forecasts. Examining different volatility components will enable us to investigate 

whether the dependence of volatility to the basis changes across different regimes and uncover 

how these asymmetries are transmitted. To the authors knowledge this is the first time that the 

GARCH –X methodology is tested in a regime volatility setting. Implementing such models 

allows us to draw some new interesting insights regarding the effect of disequilibrium and the 

persistence of volatility under different market conditions. 
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Third, we extend the above framework to a conditional extreme value theory (EVT) 

setting and use the estimated volatility models as filters, in order to combine the forecasts with 

EVT-based methods for quantile estimation and link the regime volatility background with tail 

estimation. From a risk management perspective, the tails of the conditional distributions of the 

models may contain important information that needs to be considered. Existing literature that 

addresses the issue is limited to the EVT-Switching ARCH model of Samuel (2008), applied in 

estimating VaR in the stock index market. In the oil market there is limited evidence on 

conditional EVT based VaR provided by Krehbiel and Adkins (2005) for the NYMEX complex 

and Marimoutou et al. (2009) for WTI and Brent crude oil.      

Fourth, the forecasting performance of the proposed models is assessed and contrasted 

using a battery of forecast statistics which measure both the tracking errors from actual volatility 

measures, as well as the degree of volatility under or over-prediction. In addition, we evaluate 

the effectiveness of the proposed models in VaR applications for both long and short positions 

and this way, we provide robust evidence on the performance of the proposed volatility models. 

VaR forecasts are assessed by means of risk management loss functions and their relative 

performance is ranked using White’s (2000) Reality Check. 

Finally, volatility and VaR forecasts are tested across periods of backwardation and 

contango. Many authors (see Fama and French; 1987 and Geman and Ohana; 2008) have shown 

that price volatility has a negative correlation with inventory levels, in line with the theory of 

storage. Consequently, it is worth examining the performance of different models under 

conditions of backwardation and contango, since the risk-return profile of energy prices is 

known to change fundamentally, between the two different states. 

The remainder of this chapter is organised as follows. Section 4.2 demonstrates the 

Regime GARCH models estimation procedure. In section 4.3, the data and their properties are 

discussed. This is followed by an evaluation of the proposed strategies in section 4.4. Finally, 

conclusions are given in the last section.  

 

4.2 Methodology 

To estimate the volatility models, the methodology used in this study follows the Mix-

GARCH model of Haas et. al (2004a) and Alexander and Lazar (2006) and the MRS-GARCH 

model of Haas et. al (2004b). Both assume more than one individual component variances and 

differ in the way that they treat regime probabilities. For the former, what is important is the 

overall regime probability; for the latter, the probability of each observation belonging to any 

given regime is more important. However, both models assume that asset returns are generated 
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from different information distributions and in this regard, they can accommodate parameter 

shifts or switches among a finite number of regimes; this is expected to improve the 

performance of these models in financial applications, such as VaR. Besides, those models are 

also expected to address the issue of asymmetric behaviour not only across different market 

conditions (regimes) but also across short and long positions.  

The GARCH model in its basic form is not tractable in the Markov framework because 

the conditional variance is a function of all past information, rather than a function of the 

current regime alone, thus violating the Markov property. Gray (1996) is the first to develop a 

tractable MRS-GARCH model where the conditional regime variance processes are a function 

of the conditional expectation of the overall variance. A similar approach is proposed by Dueker 

(1997) and Klaassen (2002). Haas et al. (2004b) argue that inferences about the variance process 

within the above setting are complicated by the fact that state dependent variances are 

conditioned on the aggregate variance - which in turn is a function of both regime probabilities 

and regime variances rather than own lagged values. Consequently, based on mixture of 

distribution models, Haas et al. (2004b) proceed to develop a framework that allows for 

different GARCH behaviour in different regimes whilst preserving the direct association of the 

GARCH parameters within each regime2. In our analysis we use the latter formulation due to its 

flexibility and the ease of making straightforward inferences.  

Let rt represent daily observations of the log returns on the four petroleum commodities 

under study. Consider the following general conditional mean and variance dynamics of the 

form: 

 

, ,; ~ (0, )
t t t tt s s t s ,t s tr ε ε N hμ= +                        (4.1) 

2 2

, , 1 , 1 1 {1, 2}
t t t t t t ts t s s s t s s t s t th A B h Z sω ε ϕ− − −= + + + =  

 

with ωst>0 and αst, βst , φst ≥ 0 to guarantee nonnegative variance. εst,t is a Gaussian white noise 

process, hst,t the conditional variance and Zt the basis, defined as the difference between the 

nearby and second nearby futures contracts. The state variable st={1, 2} describes the 

                                                 
2 Consider a regime shift from low to high variance state. In Gray’s (1996) model the variance dynamics 
are determined by the last period’s overall variance which was effectively driven by the low volatility 
regime since in the previous period the low variance state prevailed. In contrast, Haas et al. (2004b) allow 
the variance dynamics to be directly determined by the current state (i.e. high variance regime) since the 
model implies two independent GARCH processes; when a regime shift occurs, this has an immediate 
impact on volatility.      
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state/regime that the system is in. In this setting, st is unobserved and follows a two-state, first 

order Markov process with the following transition probability matrix: 

 

t t-1 11 t t-1 21 12 21

t t-1 12 t t-1 22 12 21

Pr(s  1|s   1)  p Pr(s  1|s   2)  p  1 - p  p
ˆ 

Pr(s  2|s   1)  p Pr(s  2|s   2)  p p 1 - p  

= = = = = =⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟= = = = = = ⎝ ⎠⎝ ⎠P    (4.2) 

 

where p12 gives the probability that state 1 will be followed by state 2, p22 gives the probability 

that there will be no change in the state of the market in the following period given that we are 

in state 2 etc. These transition probabilities are assumed to remain constant between successive 

periods. Furthermore, assuming that the state dependent residuals follow a normal distribution3, 

the likelihood function for the entire sample is formed as a mixture of the probability 

distribution of the state variables as: 

 

1

( ) log ( ; )
T

t

L f
=

= ∑ tθ X θ                  (4.3) 

2 2

1, 1, 2, 2,

1, 2,1, 2,

1 1
( ; ) exp exp

2 22 2

st t st t st t st t

st t st tst t st t

f
h hh h

π ε π ε
π π

= = = =
= == =

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠tX θ                           

                 

where 
1 1 1 2 1 21 2 1 2 1 2 1 2 1 2 | |( , , , , , , , , , , , )

t t t tst st st st st st st st st st s s s sA A B B p pμ μ ω ω ϕ ϕ = − = = − == = = = = = = = = ==θ  is the 

vector of parameters to be estimated, πst,t are the regime probabilities of being in regime st and 

are caculated recursively using Bayes rule, and L(θ) is maximised using numerical optimization 

methods, subject to the constraints that π1,t + π2,t = 1 and 0 ≤  π1,t , π2,t ≤  1. 

As already mentioned, the Mix-GARCH model differs from the MRS-GARCH model 

described above in the definition of regime probabilities. For the Mix-GARCH what is 

important is the overall regime probability over the total sample. Vlaar and Palm (1993) and 

Palm and Vlaar (1997) were the first to suggest the Mix-GARCH model. Their formulation 

assumes that the state 2 variance process is given by hst,t=2= hst,t=1+ζ2, where ζ represents a scale 

parameter to be estimated. Another study by Lin and Yeh (2000) allows for each variance 

component to change through the intercept in the variance equation. In our analysis we use the 

                                                 
3 Note that we also tested the models under the distributional assumption of a Generalised Error 
Distribution (GED). Model parameters were found to be robust irrespective of the distribution chosen and 
results were similar to those reported in Table 4.2. Moreover, the high variance state was, as expected, 
associated with lower degrees of freedom i.e. fatter tails than the low variance state. GED distribution was 
preferred over alternative distributions, most notably student-t, due to its flexibility to accommodate both 
thin and fat tails, as emphasised in the energy economics literature by Fan et al. (2008) and Hung et al. 
(2008). Parameter estimates of the models under the GED distribution are presented in Appendix 4.A.    
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Mix-GARCH formulation of two component variances with no lagged-cross equation terms, 

based on Haas et al. (2004a). In this case Eq (1) still applies, only now st={1,2} does not 

represent an unobserved state variable but the number of component variances. Furthermore, 

the likelihood function of Eq (3) also applies, but vector θ reduces to 

1 2 1 2 1 2 1 2 1 2 1( , , , , , , , , , , )st st st st st st st st st st stA A B Bμ μ ω ω ϕ ϕ π= = = = = = = = = = ==θ , since for every t , 

πst=1,t = πst=1, in other words, the regime probabilities are assumed to be constant. 

Summarising, an important feature of the Markovian formulation is time-variation of 

the model parameters due to the fact that state probabilities are a function of time. Furthermore, 

MRS models allow for the tendency that commodity markets exhibit when an event which 

caused volatility to reach high levels is followed by another similar event, i.e. persistence in the 

regimes; in economic terms, such behaviour has significant implications in derivatives pricing, 

among other things, because the switching mechanism - as reflected in the transition probability 

matrix - provides information on the current volatility state, the probability of switching to a 

different state and their respective expected durations. However, occasionally MRS models do 

not provide accurate forecasts on an out-of-sample basis. This may be due to parameter 

instability between in-sample and out-of-sample periods as well as uncertainty regarding the 

unobserved regime, as mentioned in Engel (1994) and Marsh (2000). Another reason may be 

the fact that in markets that exhibit extreme price spikes these might dominate the high variance 

state, making the latter short-lasting and rare (see also next chapter). All these issues may be 

addressed, using a more parsimonious parameterisation of the regimes such as the one provided 

by the Mix-GARCH specification. In fact, the Mix-GARCH can be considered a restricted 

version of the Markov model with the rank of transition probability matrix equal to one. 

Finally, in order to integrate the state dependent conditional variances and conditional mean 

equations, Gray’s (1996) integrating method applies for both models: 

 

1, 1, 1, 2,(1 )t st t st t st t st tμ π μ π μ= = = == + −                 (4.4) 

( )2
2 2

1, 1, 1, 1, 2 , 2 ,( ) (1 )( )t st t st t st t st t st t st t th h hπ μ π μ μ= = = = = == + + − + −              (4.5) 

 

4.3 Description of the Data and Preliminary Analysis 

The data set for this study comprises daily futures prices for four energy commodities: 

NYMEX WTI crude and heating oil and ICE Brent crude and gas oil. NYMEX futures cover 

the period from January 23, 1991 to December 31, 2008, and ICE futures from April 19, 1991 to 

December 31, 2008. All daily closing futures prices of 4,485 observations are obtained from 
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Datastream. Assuming 252 business days in a year, the first 3,225 observations are used for 

estimation of the models; out-of-sample analysis is carried out using the remaining 1,260 

observations i.e. 5 years. In all cases, the nearest to expiry contract is used, rolling forward to 

the next nearby on the first business day of the delivery month in order to mitigate the impact of 

thin trading and expiration effects in the estimation and forecasting results.    

 

 

Figure 4.1 displays the evolution of log-prices for the NYMEX WTI crude and heating 

oil futures markets. The impact of several economic and geopolitical events is evident in this 

graph. From 1991 until 1995 oil prices were relatively stable and this can be attributed to the 

restoration of Kuwait’s oil production after the Gulf war and overproduction from the OPEC 

countries, in combination with weak demand. In the period 1997 and 1998, we can notice a 

downward trend due to tension in the Middle East and the Asian crisis. Later on, in early 1999 

OPEC cut down production and prices started to increase. In combination with the relatively 

low US stocks, the subsequent upward trend was fuelled by several other factors, such as the 

9/11 attacks, the US military action in Iraq after 2003, North Korea’s missile launches, the 

conflict between Israel and Lebanon in 2006, and the Iranian nuclear brinkmanship. Changes in 

federal oil policies also contributed to the price increases until the July 2008 peak. Afterwards, 

prices declined steadily due to a drop in demand for oil and the global financial crisis. The ICE 

market displays identical dynamics, so the corresponding figures are not displayed (see also 

Chapter 2, section 2.4 for more on the evolution of oil prices).   

Figure 4.1: Log-Prices of NYMEX WTI and Heating Oil Futures 
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• In Sample period for the NYMEX futures is from January 23, 1991 to December 19, 2003 whereas for the 
ICE futures is from April 19, 1991 to January 30, 2004 (3,225 daily observations each). The remaining 1,260 
daily observations are used for the out-of-sample tests.  • Skew and Kurt are the estimated centralised third and fourth moments of the data, denoted 3m̂ and 4

ˆ( 3)m − , 

respectively; their asymptotic distributions under the null are 3
ˆ ~ (0,6)T m N and 4

ˆ( 3) ~ (0, 24)T m N− .  

• J-B is the Bera and Jarque (1980) test for normality of changes in log oil prices and the statistic is χ2(2) 
distributed. • Q(5) and Q(10) are the Ljung-Box (1978) Q statistics for the 5th and 10th order sample autocorrelation of the 
returns series, whereas Q2(5) and Q2(10) refer to the squared returns series. These tests are distributed as χ2(5) and χ2(10), respectively. • PP is the Phillips and Perron (1988) unit root test, which tests the null hypothesis that the variable is non 
stationary, I(1), against the alternative that the variable is stationary, I(0). KPSS is the Kwiatkowski-Phillips-
Schmidt-Shin (1992) test for unit roots, which tests the null hypothesis that the variable is I(0), against the 
alternative that the variable is I(1). • The standardised return is defined as (rt-Mean)/SD where rt is the daily return at time t and SD the standard 
deviation. Note that the absolute of the 1% critical value of a standard normal distribution is 2.326 whereas 
the 5% critical value is 1.645.  • Asterisks ***, ** , * indicate significance at 1%, 5% and 10% levels, respectively. 

 

Table 4.1 reports the summary statistics of the return series as well as the unit root tests. 

Annualised mean returns for crude oil are higher than those of the corresponding petroleum 

product - within each market - consistent with the unconditional annualised volatilities which 

Table 4.1: Summary Statistics & Unit Root Tests for NYMEX & ICE Petroleum 
Futures 

 WTI Crude  

(CL) 

Heating Oil 

(HO) 

Brent Crude  

(CB) 

Gas Oil  

(GO) 

Panel A: Returns’ Desciptive Statistics 

Annualised Mean (%) 3.326 3.226 3.276 2.822 
Annualised Vol (%) 31.62 31.14 30.30 29.92 
Skew -0.419*** -0.454*** -0.226*** -0.272*** 
Kurt 4.322*** 3.518*** 3.704*** 3.686*** 
J-B  2,604*** 1,773*** 1,871*** 1,864*** 

Q(5) 8.221 5.596 13.33*** 2.856 
Q(10) 18.32** 12.92 31.59*** 10.18 
Q2(5)   90.67***      89.21*** 177.9***     218.7*** 
Q2(10)   155.1***      135.0*** 247.2***     334.7*** 

Panel B: Unit Root Tests 

Log-Levels     
PP -1.789 -1.816 -1.795 -2.000 
KPSS      2.595***       2.091***      2.740***     1.920*** 
Returns     
PP    - 56.42***      -58.53***    - 57.64***     -56.12*** 
KPSS 0.098 0.122 0.064 0.068 
          

Panel C: Estimates of 1% & 5% empirical critical values for the oil futures 

standardised returns  

1% tail (left) -2.678 -2.751 -2.649 -2.632 
5% tail (left) -1.612 -1.564 -1.629 -1.627 
95 % tail (right) 1.562 1.571 1.586 1.546 
99 % tail (right) 2.486 2.472 2.635 2.590 
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also follow a similar pattern; that is, crude oil is more volatile than the corresponding petroleum 

product. In addition, NYMEX futures appear to be more volatile than ICE futures. The Ljung-

Box (1978) Q statistic on the first five and ten lags of the sample autocorrelation function is 

significant only in the Brent crude oil market, at the 1% significance level. Engle’s (1982) 

ARCH test, carried out as the Ljung-Box Q statistic on the squared series, indicates the 

existence of heteroscedasticity for all the return series. According to Phillips and Perron (1988) 

(PP) non-parametric unit root tests, performed on the log-levels and log-differences of all four 

petroleum futures, all futures prices’ series under study follow unit root processes, while their 

first differences are stationary. Kwiatkowski et al. (1992) unit root tests (KPSS) confirm the 

results obtained from the PP test.  

The coefficients of skewness and excess kurtosis indicate departures from normality for 

all the returns series. In particular, the observed negative skewness coefficients imply that long 

positions are associated with greater risk since more extreme losses are placed on the left side of 

the distribution of oil returns. The existence of fat-tails in the underlying series is also evidenced 

by calculating the empirical critical values of the standardised returns from the historical 

distributions. These imply that all futures returns series are fat-tailed relative to the 1% left and 

right tail regions, since the historical quantiles are greater in absolute value than the 1% critical 

value of standard normal distribution, i.e. 2.326. At the 5% tail regions the standardised returns 

are thin-tailed, since historical quantiles are less than the 1.645 critical value. Fat tails at the 1% 

regions imply that extreme events have higher probability of occurrence relative to the standard 

normal distribution. 

 

 

 

 

 

 

 

 

 
Figure 4.2: NYMEX WTI Crude Oil Futures Log – Returns (standardised) 

Historical PDF vs. Standard Normal PDF   
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Left skewness and tail-fatness are confirmed graphically in Figures 4.2 and 4.3. These 

illustrate the historical distribution of standardised returns and their deviation from the 

corresponding normal probability density function. One potential explanation for the non-

normality may be the existence of structural changes in the series (see Li and Lin, 2004) which 

can be captured by a regime model since these models assign different weights to different 

states of the market and, effectively, presuppose that sub-samples of the estimation period are 

drawn from different distributions.  

 

4.4 Empirical results 

This section presents the empirical results on the dynamics of the augmented regime 

volatility models of oil futures. First, the results of MRS- and Mix- GARCH models are 

presented; then, the out-of-sample forecasting performance of the proposed volatility models is 

compared to that of the benchmark restricted versions of those models, without the squared 

basis term; and, finally, the performance of the models is also assessed using risk management 

loss functions in VaR applications. Markov and Mixed distribution GARCH models are 

estimated assuming two regimes. The choice of a two-regime process is motivated by the fact 

that this model captures the dynamics of oil futures in a more efficient way and is intuitively 

appealing since these two regimes can be associated with periods of low and high volatility (see 

also Appendix 4.B). Table 4.2 presents the estimation results for the two regime GARCH-X 

models. 

Figure 4.3: Heating Oil # 2 Futures Log – Returns (standardised) 

Historical PDF vs. Standard Normal PDF
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Figures in (·) are the estimated standard errors; LogLik is the Log-Likelihood function; SBIC is the Schwarz (1978) Bayesian 
Information Criterion; E[σ1t], E[σ2t] are the annualised unconditional volatilities in the low and high volatility states, respectively 
whereas E[σt] is the corresponding figure for the aggregate variance process; Ast+ Bst is the regime specific degree of volatility 
persistence; MRS-GARCH-X models are the two regime GARCH-X models  defined in Eq. (4.1) to (4.5); Mix- GARCH-X models 
are defined by the same equations but with a restricted transition probability matrix (with a rank equal to one) and constant mixing 
weights i.e. in Eq. (4.5), πst=1,t = πst=1 is a parameter to be estimated along with the other parameters of the model; See also notes in 
Table 41. 

Table 4.2: Estimates of Switching GARCH-X Models for NYMEX & ICE Petroleum Futures 

, ,; ~ (0, )t st st t st,t st tr ε ε N hμ= +  

2 2

, , 1 , 1 1 {1, 2}
t t t t t t ts t s s s t s s t s t th A B h Z sω ε ϕ− − −= + + + =  

   WTI Crude Oil Heating Oil #2 Brent Crude Oil Gas Oil  

 (CL) (HO) (CB) (GO) 

 Mix-  MRS-  Mix-  MRS-  Mix-  MRS-  Mix-  MRS-  

  

 GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X

Panel A: Low Volatility Regime 

E[σ1t]  19.66 19.70 20.95 21.02 18.01 18.03 18.64 19.12 

          

μ0,st=1  0.0413 0.0358 0.0618 0.0571 0.0269 0.0239 0.0137 0.0139 

  (0.034) (0.035) (0.034) * (0.035) * (0.033) (0.033) (0.035) (0.035) 

ωst=1  0.0126 0.0128 0.012 0.0114 0.0089 0.0087 0.002 0.0019 

  (0.005) *** (0.005) *** (0.005) ** (0.005) ** (0.003) ** (0.004) ** (0.002) (0.003) 

st=1  0.0191 0.0191 0.0192 0.0192 0.0179 0.018 0.0201 0.0231 

  (0.004) *** (0.004) *** (0.004) *** (0.004) *** (0.004) *** (0.004) *** (0.004) *** (0.004) *** 

st=1  0.9621 0.9608 0.965 0.9647 0.9638 0.9634 0.9672 0.9625 

  (0.007)*** (0.007) *** (0.006) *** (0.006) *** (0.007) *** (0.007) *** (0.005) *** (0.006) *** 

φ st=1  0.0044 0.0046 0.0016 0.0016 0.0049 0.0049 0.0007 0.0006 

  (0.001)
 ***

 (0.001)
 ***

 (0.001)
 **

 (0.001)
 **

 (0.002)
 ***

 (0.002)
 ***

 (0.001) (0.001) 

π st=1  0.8456 0.8243 0.8571 0.8413 0.812 0.8034 0.7764 0.7641 

  (0.034) *** - (0.037) *** - (0.040) *** - (0.033) *** - 

p11  - 0.8043 - 0.8209 - 0.7949 - 0.7243 

    - (0.047) *** - (0.049) *** - (0.049) *** - (0.047) *** 

Panel B: High Volatility Regime 

E[σ2t]  41.99 41.87 43.09 42.73 37.57 37.57 34.98 35.29 

          

μ0,st=2  -0.0918 -0.0273 -0.2069 -0.1496 0.0158 0.0342 0.0933 0.0888 

  (0.171) (0.156) (0.186) (0.165) (0.132) (0.127) (0.148) (0.140) 

ωst=2  0.7523 0.7782 1.0758 1.0652 0.4436 0.4546 0.6363 0.6902 

  (0.538) (0.479) (0.730) (0.625) * (0.268) * (0.266) * (0.216) (0.205) 

st=2  0.4362 0.4804 0.3651 0.4038 0.363 0.3779 0.2939 0.3257 

  (0.226) ** (0.231) ** (0.222) (0.231) * (0.161) ** (0.172) ** (0.115) *** (0.123) *** 

st=2  0.7441 0.716 0.7274 0.7064 0.7848 0.7745 0.7384 0.7103 

  (0.130) *** (0.126) *** (0.145) *** (0.137) *** (0.089)*** (0.094) *** (0.089) *** (0.088) *** 

φ st=2  0.1137 0.1156 0.0825 0.0841 0.1002 0.1014 0.1207 0.1295 

  (0.096) (0.087) (0.061) (0.055) (0.080) (0.078) (0.059)
 **

 (0.057)
 **

 

π st=2  0.1544 0.1757 0.1429 0.1587 0.188 0.1966 0.2236 0.2359 

  (0.034) *** - (0.037) *** - (0.040) *** - (0.033) *** - 

p22  - 0.082 - 0.0508 - 0.1616 - 0.1068 

    - (0.051) - (0.055) - (0.069) ** - (0.062) * 

Panel C: Diagnostics 

LogLik  -6473.0 -6471.9 -6470.0 -6468.6 -6316.7 -6316.6 -6262.6 -6261.3 

SBIC  13,035 13,041 13,029 13,034 12,722 12,730 12,614 12,619 

E[σt]  24.49 25.06 25.38 25.75 23.00 23.21 23.32 23.95 

A1 + B1  0.981 0.980 0.984 0.984 0.982 0.981 0.987 0.986 

A2 + B2  1.180 1.196 1.092 1.110 1.148 1.152 1.032 1.036 

Skew  -0.096 -0.098 0.004 0.012 0.007 0.008 0.722*** 0.758*** 

Kurt  2.77*** 2.66*** 2.38*** 2.31*** 2.92*** 2.89*** 9.56*** 9.86*** 

Q(10)  6.63 6.08 4.36 4.06 20.63** 20.33** 8.97 8.36 

Q2(10)   13.39 8.68 15.09 10.69 12.09 9.61 2.07 1.43 
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Regarding the coefficients of both the Mix- and MRS- GARCH equations the pattern is 

similar for all four commodities. First, there is marked asymmetry across regime variances, 

suggesting that the dynamics of the variance are different under the two regimes. The long term 

variances in the high volatility regimes are almost twice as large as the corresponding figures of 

the stable regime. Second, the degree of persistence in the variance, measured by the sum of Ast 

+ Bst coefficients for st =1, 2, indicates that low variance states are characterised by lower 

persistence in volatility, whereas in the high variance state persistence increases. This is in line 

with other studies in the literature such as Gray (1996), Haas et al. (2004a; 2004b) and 

Alexander and Lazar (2006) and in the oil futures markets with Fong and See (2002). Also, all 

high volatility states are explosive; however, note that the overall variance process is covariance 

stationary in all cases. 

In addition, as measured by the coefficients Ast, which show the sensitivity to shocks 

and Bst, which show the memory regarding market events, the low volatility state is associated 

with low sensitivity to shocks that nevertheless have long memory and die out very slowly; this 

is evidenced by the high values of the lagged variance coefficient, above 0.96 in all cases. On 

the other hand, in the high volatility regime (state 2) shocks that occur in the market tend to 

affect the variance more but die out much faster. This is confirmed visually in Figure 4.4 which 

displays the two volatility processes for the WTI crude oil market. The stable regime appears to 

be smooth, whereas in the high volatility state the process is more erratic. The overall volatility 

process, calculated using Eq. (4.5) is also presented in the graph as the line which lies between 

the two state variances. 

Furthermore, the coefficients of the lagged squared basis4 are significant at the 1% level 

for the two crudes and at the 5% level for heating oil, in the low variance state. This can be 

attributed to the fact that under normal market conditions, the dynamics of the volatilities are 

expected to be more predictable and deviations from the equilibrium appear to have a certain 

degree of explanatory power on volatility. On the other hand, when the market is in the high 

volatility state, volatility movements occur mainly due to short-lived random shocks which are 

difficult to foresee, as is also shown in Figure 4.4. This is also evident from the estimated 

unconditional probability of being in the low variance regime, πst=1, which is close to 80%, 

across all commodities, indicating that the high variance regime is of relatively short duration as 

opposed to the low variance regime which is the prevailing stable state. However, this does not 

                                                 
4 For the basis we performed a cointegration test using the Johansen (1988) procedure. The results of the 
λtrace and λmax statistics indicate in all cases that the components of the basis stand in a long-run 
relationship, at conventional significance levels. Moreover, parameter restriction tests on the 
cointegrating relationship indicate that there is a one to one relationship between the two nearest to expiry 
contracts, at 1% significance level.  
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hold in the ICE gas oil market, where the lagged squared basis term is significant at the 5% 

level only in the high variance state. This may be due to the fact that the specific market has the 

highest probability of occurrence for the high variance state as well as the lowest unconditional 

annualised volatility in the high variance state (35% p.a.). Also, note that although in all the 

other markets the state 2 volatility is more than double the state 1 volatility, in the gas oil case 

this does not hold; this may be another factor contributing to this since the regime dependent 

volatility dynamics appear to be relatively similar across the two regimes, compared to the other 

markets. 
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Figure 4.4: WTI Crude Oil Futures Volatility  
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Figure 4.5: WTI Crude Oil Regime Probabilities of being in the Stable Regime 

(MRS-GARCH-X Model)
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Finally, considering the MRS models, Figure 4.5 demonstrates the evolution of the 

regime probability of being in the low variance state for the WTI crude oil market as estimated 

by the MRS-GARCH-X model. It can be observed that switching occurs frequently, however, 

the high variance state is short lived, in line with the estimated transition probabilities of the 

MRS models in Table 4.2  - the probability of staying in the high variance state, p22 , ranges 

between 8% and 16% - and other studies in the literature such as Haas et. al (2004b).  

Diagnostic tests for all models are also presented in Panel C of Table 4.2. Tests on the 

standardised residuals, εt/(ht)
1/2, and standardised squared residuals ε2

t/(ht), indicate that there are 

no significant signs of autocorrelation at the 1% significance level. Moreover, by comparing the 

unconditional and conditional coefficients of skewness in Table 4.1 and 4.2, we can note that 

both models achieve to eliminate the excess skewness for all the commodities with the 

exception of the ICE gas oil market. For the same group of commodities, there is a nominal 

reduction in the level of excess kurtosis which nevertheless still remains significantly different 

from zero in all cases. Finally, the negative of the Log-likelihood function is maximised for the 

MRS-GARCH models whereas the Schwarz Bayesian Information Criterion (SBIC) suggests 

that the Mix-GARCH models provide a more parsimonious representation of the volatility 

process.  

 

4.4.1 Out-of-Sample Performance of Volatility Forecasts 

In order to further examine the appropriateness of our volatility models, we test the 

performance of the proposed models in predicting the volatility of energy prices. The 

benchmark models considered in each case are two-regime MRS-GARCH and Mix-GARCH – 

with the restriction that the coefficient of the lagged basis term is zero - as well as single regime 

GARCH and GARCH-X models. This is done by estimating each model over the period 

January 1991 to December 2003, for NYMEX futures, and April 1991 to December 2003, for 

ICE futures, and leaving the last five years (1,260 daily observations) for out-of-sample 

forecasting. We perform one-step ahead forecasts of the state dependent variances of the regime 

models and obtain the one-step ahead forecast at time t+1 using Eq. (4.1)5. In order to reduce 

the computational burden of this process we update the parameters of the model once a month 

(every 20 business days).  

                                                 
5 In the case of the MRS-GARCH models, estimates of the transition matrix at time t,

tP̂ , and the 

estimated regime probabilities, 
tts ,1

ˆ)1Pr( π== and 
tts ,2

ˆ)2Pr( π==  are used to forecast regime probabilities 

at time  t+1. 
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Since volatility is an unobserved variable, we compare the accuracy of out-of-sample 

volatility forecasts from different models against the realised squared returns. Forecast 

performance is assessed using the Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) which measure how close the variance estimates track the changes in the markets (see 

notes in Table 4.3 for further details on how these measures are calculated). However, none of 

the abovementioned metrics provide any information on the asymmetry of the prediction 

variance errors; that is, whether there is any difference between forecast errors when the model 

over-predicts or under-predicts the actual variance. This is an important forecast metric because, 

although we expect forecast errors to be unbiased on average, there might be occasions when a 

model produces small errors but consistently over-predicts or under-predicts the variance. Thus, 

we also look at the proportion of negative and positive forecast errors for each model, since a 

model with symmetric forecast errors should produce about 50% positive and 50% negative 

forecast errors, with similar means. For that, we use the Brailsford and Faff (1996) Mixed Mean 

Error statistic, which uses a mixture of positive and negative forecast errors with different 

weights: 

 

2 2 2 2

1 1

1
ˆ ˆ( ) | |

U O

t i t i t i t i

i i

MME O r r
N

σ σ+ + + += =
⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ ∑               (4.6) 

2 2 2 2
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ˆ ˆ( ) | |

U O

t i t i t i t i

i i

MME U r r
N

σ σ+ + + += =
⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ ∑               (4.7) 

 

The results are presented in panels A to D of Table 4.3. First of all it can be observed 

from the RMSE’s and MAE’s that the errors are smaller for the petroleum products compared to 

their corresponding crudes. The same, but with less pronounced effect, holds for the overall 

over- and under- prediction statistics, of the volatility forecasts. This is in line with the historical 

figures of volatility in Table 4.2, where volatilities for products seem to be lower. Second, we 

can note that percentage over-prediction occurs more often than under-prediction across all 

alternative volatility forecasting methods, and across all commodities. On average, all models 

over-predict volatility 70% of the time.  
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For the out-of-sample tests 1,260 volatility forecasts (5 years of data) are obtained by the rolling window forecasting scheme (3,225 in-sample observations at each step); See also Notes in Tables 4.1 & 4.2; The 
MRS- and Mix- GARCH models are restricted versions of Eq. (4.1). The restriction that applies for both is that φ st=1 = φ st=2 = 0; RMSE is the root mean squared error of each volatility forecast compared to the 

realised squared demeaned returns, whereas MAE is the corresponding mean absolute error. These measures are calculated as ∑= ++ −= N

i

itit

N

r
RMSE

1

222 )ˆ(σ  and 
2 2

1

ˆN
t i t i

i

r
MAE

N

σ + +
=

−=∑ , respectively, where N 

represents the number of forecasts. MME(O) and MME(U) are Mixed Mean Error statistics (Brailsford and Faff, 1996) for comparisons of asymmetries in volatility forecasts; Mean Over (Under) Prediction is the 
average of forecast errors when predicted volatility is higher (lower) than the realised one (see Eq. 4.6 and 4.7). Percentage (%) U and O is the proportion of under prediction and over prediction, respectively, over 
the forecast period; All the error statistics are multiplied by 100; The column named W-Sum is the weighted summation of the Mean Over and Under Prediction error weighted according to the estimates % U and O, 
respectively; Asterisks ***,**, *, indicate that the loss function of the corresponding model is significantly higher than that of competing models at 1%, 5% and 10%, respectively; the p-values are provided from 
White’s (2000) Reality Check using the stationary bootstrap of Politis and Romano (1994); The number of bootstrap simulations is set to 3,000 and the smoothing parameter is q = 0.1. 

Table 4.3: Comparisons of Out-Of-Sample Forecasting Performance of Volatility Models 

 Overall Volatility Error Statistics Backwardation Volatility Error Statistics Contango Volatility Error Statistics 

 
RMSE

 

MAE 

 

O 

(%) 

MME

(O) 

U 

(%)

MME 

(U) 

W- 

Sum 

RMSE

 

MAE

 

O 

(%)

MME 

(O) 

U 

(%) 

MME 

(U) 

W- 

Sum 

RMSE

 

MAE 

 

O 

(%) 

MME

(O) 

U 

(%) 

MME

(U) 

W- 

Sum 

Panel A: NYMEX WTI Crude Oil  
GARCH 10.61* 5.667*** 74.8 3.716*** 25.2 4.071 3.805*** 6.840 4.899*** 76.5 3.631*** 23.5 3.321 3.558*** 12.92 6.300*** 73.5 3.786*** 26.5 4.690 4.026*** 

Mix-GARCH 10.48 5.168*** 68.6 3.055*** 31.4 4.077 3.376** 6.743 4.379*** 69.6 2.878*** 30.4 3.392** 3.034*** 12.77 5.820 67.7 3.201* 32.3 4.643 3.667 

MRS-GARCH 10.72** 5.429*** 69.2 3.337*** 30.8 4.116 3.577*** 7.012** 4.688*** 70.0 3.254*** 30.0 3.396** 3.297*** 13.01* 6.041*** 68.6 3.405*** 31.4 4.711* 3.815** 

GARCH-X 10.46 5.357*** 71.6 3.323*** 28.4 4.066 3.534*** 6.761 4.568*** 72.3 3.172*** 27.7 3.354 3.222*** 12.73 6.009*** 71.0 3.447*** 29.0 4.654 3.797*** 

Mix-GARCH-X 10.49 5.060 67.2 2.887 32.8 4.101 3.285 6.746 4.228 67.5 2.655 32.5 3.414** 2.902 12.78 5.748 67.0 3.079 33.0 4.669 3.604 

MRS-GARCH-X 10.59 5.309*** 68.3 3.233*** 31.7 4.067 3.497*** 6.943** 4.522*** 68.2 3.013*** 31.8 3.425** 3.144*** 12.84 5.958** 68.4 3.416*** 31.6 4.598 3.790** 

Panel B: NYMEX Heating Oil # 2 
GARCH 8.924 4.965 67.6 3.022 32.4 3.909 3.309 8.745 5.069 68.0 3.122 31.9 3.937 3.379 9.115 4.851 67.1 2.914 32.9 3.877 3.231 

Mix-GARCH 8.909 5.045** 67.5 3.141*** 32.5 3.896 3.386** 8.771 5.167* 67.5 3.220** 32.5 3.963 3.461** 9.057 4.912** 67.6 3.054*** 32.4 3.822 3.303** 

MRS-GARCH 9.095*** 5.287*** 67.5 3.452*** 32.5 3.879 3.591*** 9.011*** 5.464*** 67.6 3.590*** 32.4 3.950 3.707*** 9.186** 5.093*** 67.4 3.301*** 32.6 3.801 3.464*** 

GARCH-X 8.962 4.990 67.0 3.032 33.0  3.928* 3.328 8.805 5.119 67.8 3.151 32.2 3.965 3.413 9.130 4.848 66.1 2.901 33.9 3.887* 3.235 

Mix-GARCH-X 8.946 4.963 66.9 2.988 33.1   3.939**
3.303 8.797 5.078 66.9 3.062 33.1 4.006** 3.374 9.105 4.837 66.9 2.908 33.1 3.866 3.225 

MRS-GARCH-X 9.027** 5.157*** 68.0 3.252*** 32.0    3.917 3.465*** 8.889** 5.283*** 68.2 3.350*** 31.8 3.968 3.547*** 9.175* 5.018*** 67.8 3.144*** 32.2 3.861 3.375*** 

Panel C: ICE Brent Crude Oil 
GARCH 10.06** 5.546*** 77.6 3.835*** 22.4 3.827 3.833*** 6.489*** 4.881*** 79.6 3.768*** 20.4 3.185 3.649*** 12.12* 6.061*** 76.1 3.887*** 23.9 4.324 3.991*** 

Mix-GARCH 9.954 4.773* 68.4 2.824* 31.6 3.820 3.139 6.252 4.012** 69.6 2.634*** 30.4 3.171 2.797** 12.06 5.362 67.5 2.971 32.5 4.324 3.411 

MRS-GARCH 10.07** 5.019*** 69.3 3.144*** 30.7 3.805 3.347*** 6.426* 4.261*** 70.7 2.926*** 29.3 3.191 3.004*** 12.16* 5.605*** 68.2 3.313*** 31.8 4.281 3.621** 

GARCH-X 9.847 5.096*** 74.0 3.300*** 26.0 3.778 3.424*** 6.305 4.346*** 76.2 3.100*** 23.8 3.152 3.112*** 11.89 5.676*** 72.3 3.454*** 27.7 4.262 3.678*** 

Mix-GARCH-X 9.860 4.680 67.1 2.713 32.9 3.806 3.073 6.255 3.873 67.3 2.434 32.7 3.183 2.679 11.93 5.305 66.9 2.928 33.1 4.288 3.378 

MRS-GARCH-X 10.05* 4.909*** 67.8 3.013*** 32.2 3.786 3.262* 6.363 4.059** 68.4 2.654*** 31.6 3.197 2.826** 12.16* 5.566** 67.3 3.291** 32.7 4.242 3.602* 

Panel D: ICE Gas Oil 
GARCH 7.475 4.642*** 71.8 3.112*** 28.2 3.467 3.212*** 7.679 4.861*** 71.7 3.248*** 28.3 3.601 3.348*** 7.291 4.449*** 71.9 2.992*** 28.1 3.349 3.092*** 

Mix-GARCH 7.470 4.470*** 69.6 2.883*** 30.4 3.460 3.058*** 7.648 4.663*** 69.2 2.988*** 30.8 3.589 3.173** 7.310 4.299** 69.9 2.790*** 30.1 3.346 2.957** 

MRS-GARCH 7.553** 4.594*** 69.8 3.023*** 30.2 3.473 3.159*** 7.731 4.820*** 69.5 3.171*** 30.5 3.597 3.301*** 7.392** 4.395*** 70.1 2.892*** 29.9 3.364 3.033*** 

GARCH-X 7.457 4.511*** 70.2 2.944*** 29.8 3.460 3.098***
7.637 4.732*** 70.4 3.098*** 29.6 3.579 3.240*** 7.294 4.316*** 70.1 2.809*** 29.9 3.354 2.972*** 

Mix-GARCH-X 7.490 4.344 66.7 2.684 33.3 3.494* 2.954 7.641 4.502 65.6 2.753 34.4 3.614 3.049 7.354 4.204 67.7 2.622 32.3 3.388 2.869 

MRS-GARCH-X 7.521** 4.480*** 68.3 2.873*** 31.7 3.478 3.065*** 7.696 4.678*** 68.2 2.980*** 31.8 3.609 3.180** 7.362* 4.306** 68.5 2.778*** 31.5 3.362 2.962** 
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Furthermore, looking at the scale of over- and under- prediction errors, on average, 

mean under-prediction is higher than mean over-prediction, implying that all models fail to 

capture the large sudden jumps of volatility, which is nevertheless expected since jumps are due 

to random shocks that are very hard to predict. Asymmetric error statistics have important 

implications for different players of the energy markets. For instance, a regulatory body such as 

a bank (lender) that has financed a company’s energy project (e.g. for oil exploration and 

extraction) may prefer a model which over-predicts risk since the company (borrower) would be 

required to allocate more funds for capital adequacy requirements. Conversely, energy 

companies, depending on their risk aversion, would prefer a model that ‘efficiently’ under-

predicts risk, since this way they have to allocate fewer resources for future risks. Another 

example is in the pricing of oil options. In particular, under-prediction of volatility is 

undesirable to the writers of options since it leads to a downward bias of the option price.  

Linking the shape of the forward curve to the magnitude of forecast errors has not been 

addressed in the context of commodities volatility forecasting. Our definition of backwardation 

(contango) market days is short-term, based on the two nearest to expiry futures contracts and it 

occurs when the second nearby futures price is less (greater) than the prompt month price. 

Therefore, we examine whether the performance of volatility forecasts differs over alternative 

market conditions and in what respect; in general, we would expect high volatility levels under 

backwardation and low volatility levels under contango since, due to the highly inelastic supply 

of oil in the short run, demand shocks usually cause price jumps. This applies to the whole 

forward curve since when supplies are short - in the case of inverted markets - correlations 

between spot and deferred futures prices decrease due to the abovementioned increases in 

futures and spot volatilities, whilst when the market is at full carry and inventories are high 

correlation increases (see Ng and Pirrong; 1994).  

A striking result which can be observed in all markets but for gas oil, is that forecast 

errors are larger in periods of contango. This pattern contradicts the theory of storage and 

essentially implies that volatility dynamics under backwardation are more predictable. This 

finding directed us to divide the sample in sub-periods and examine in more depth the evolution 

of the errors throughout the out-of-sample period. Results are presented in Table 4.4. We can 

see that overall results are materially different for 2008. In contango, the futures contracts 

present a positive slope, which can normally be explained by interest and storage costs. 

Although strong contango has been evidenced in the second half of 2008, volatility levels rose 

significantly in that period (see also Figure 4.6 which shows that returns are much more erratic 

in 2008). It is possible that price formation during the turbulent year of 2008 was less dependent 



 

 

Chapter 4: Forecasting Petroleum Futures Markets Volatility 

 

 

 92

on the fundamental drivers of supply and demand. The second half of 2008 saw a sudden drop 

in the price of oil (see as well Figure 4.1) and was a period of extraordinary market conditions 

characterised by a tightening in the availability of credit after the global economic downturn, 

postponement or cancellation of investments for the development of future petroleum 

production capacity, as well as low liquidity in commodity derivatives markets. It is possible 

that the combination of those factors, coupled with the fact that during that period there were 

selling pressures in the market from speculators who wanted to liquidate their positions, have 

interacted to link higher volatility levels with contango. Looking at Table 4.4, we can see that 

this has been indeed the case. Up to 2007 backwardation is associated with higher forecast 

errors as suggested by the theory of storage. In 2008 this picture is reversed and we can see the 

magnitude of errors is 2-3 times higher in contango. In addition, our results imply that 

backwardation related volatility is more or less the same in the two sub-periods; it is contango 

volatility that increased significantly in 2008. Overall, for the period 2004 to 2007, the 

annualised average volatility forecasts under backwardation are within the range of 30% to 

37%, and under contango between 28% to 35%, whereas the corresponding figures for 2008 are 

30% to 37% and 33% to 40%, corresponding to an average annualised increase of 500 basis 

points. Also, note that although petroleum products in 2004-2007 were more predictable than 

the two crudes, this is also reversed in 2008.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In this Table the out-of-sample period is divided into two sub-samples, 2004-2007 and 2008. The first period consists of 1,008 observations and the days that the WTI crude oil, heating oil, Brent crude oil and gas oil are in 
backwardation (contango) are 451 (557), 556 (452), 459 (549) and 484 (584), respectively. The second period consists 252 observations and the corresponding days of backwardation (contango) for the four commodities are 

119 (133), 102 (150), 91 (161) and 107 (145), respectively; MVol is the average one-step ahead daily volatility forecast, annualised as ( )1

1
252

t
N σ−

+∑ . See also notes in Table 4.3.  

TABLE 4.4: Comparisons of out-of-sample forecasting performance of volatility models under different periods 

 2004-2007 2008 

 Overall Statistics Backwardation Statistics Contango  Statistics Overall Statistics Backwardation Statistics Contango  Statistics 

 MVol RMSE MAE W-Sum MVol RMSE MAE W-Sum MVol RMSE MAE W-Sum MVol RMSE MAE W-Sum MVol RMSE MAE W-Sum MVol RMSE MAE W-Sum 

Panel A: NYMEX WTI Crude Oil  
GARCH 36.15 5.861

**
4.353

***
3.277

***
 37.03 6.562 4.834

***
3.528

***
35.42 5.224

***
3.965

***
3.075

***
46.63 20.63 10.92

***
6.243 35.60 7.804 5.149

***
3.670

***
 38.82 27.43 16.08 9.266 

Mix-GARCH 31.61 5.717 3.828
**

 2.742
**

 32.54 6.475 4.341
*
 3.028

**
 30.83 5.019 3.413 2.513 45.63 20.47 10.53

*
 6.049 31.25 7.671 4.520

***
3.050

*
 34.84 27.22 15.90 9.186 

MRS-GARCH 33.03 5.954
***

4.084
***

2.955
***

 34.39 6.804
**

4.659
***

3.294
***

31.89 5.165
**

3.618
***

2.682
***

46.09 20.81
*
 10.81

***
6.215 33.61 7.750 4.794

***
3.297

***
 37.44 27.69

**
16.19 9.286 

GARCH-X 33.79 5.740 4.036
***

2.954
***

 34.56 6.475 4.518
***

3.207
***

33.16 5.066 3.647
***

2.752
***

45.72 20.38 10.64
***

6.125 33.94 7.750 4.758
***

3.280
***

 36.06 27.09 15.90 9.169 

Mix-GARCH-X 30.78 5.708 3.744 2.663 31.31 6.477 4.220 2.916 30.35 4.998 3.358 2.463 43.98 20.48 10.33 6.021 31.01 7.682 4.257 2.850 33.09 27.24 15.76 9.215 

MRS-GARCH-X 32.38 5.897
**

4.007
***

2.882
***

 33.30 6.721
*

4.537
***

3.179
***

31.63 5.134
**

3.578
***

2.645
***

46.52 20.52 10.51
*
 6.134 33.73 7.728 4.466

*
 3.011 35.50 27.29 15.93 9.154 

Panel A: NYMEX Heating Oil #2  
GARCH 33.58 7.360 4.410 3.046 34.98 8.986 5.185 3.435 31.76 4.633 3.456 2.566 38.35 13.47 7.187 4.483 34.14 7.297 4.441 3.083 35.86 16.39 9.054 5.449 

Mix-GARCH 34.14 7.386 4.514
*
 3.136

**
 35.58 9.012 5.308

*
 3.540

**
 32.28 4.664 3.538

**
2.641

***
39.08 13.37 7.170 4.504 35.20 7.317 4.400 3.055 36.60 16.24 9.053 5.463 

MRS-GARCH 35.51 7.592
***

4.751
***

3.336
***

 37.27 9.263
**

5.600
***

3.788
***

33.21 4.797
***

3.706
***

2.782
***

40.93 13.53
*
 7.430

***
4.719

***
 37.08 7.490

*
 4.722

**
3.282

**
 38.25 16.41 9.272

**
5.690

***
 

GARCH-X 33.71 7.407 4.461 3.084 35.26 9.050 5.259 3.487 31.70 4.649 3.479 2.584 37.47 13.50 7.105 4.460 35.63 7.330 4.357 3.025 36.34 16.41 8.973 5.431 

Mix-GARCH-X 33.40 7.392 4.435 3.058 34.75 9.032 5.218 3.451 31.66 4.638 3.471 2.576 37.17 13.47 7.077 4.438 35.07 7.385 4.317 2.998 35.67 16.37 8.953 5.385 

MRS-GARCH-X 34.72 7.492
**

4.618
***

3.218
***

 36.35 9.139
*

5.430
***

3.637
***

32.61 4.737
**

3.618
***

2.702
***

38.85 13.52
*
 7.312

**
4.604

*
 36.91 7.382 4.484 3.101 37.57 16.44

*
9.236

*
 5.611

*
 

Panel A: ICE Brent Crude Oil 
GARCH 36.64 5.439

***
4.292

***
3.356

***
 37.69 6.292

**
4.873

***
3.661

***
35.73 4.606

***
3.806

***
3.102

***
46.74 19.67 10.56

*
 6.106 36.96 7.406

**
4.926

***
3.588

***
 40.45 23.98 13.75 7.889 

Mix-GARCH 30.30 5.110 3.460
**

 2.517
***

 31.44 6.043 4.007
**

2.807
**

 29.31 4.172 3.002
*
 2.275

*
 43.69 19.77

*
 10.02 5.826 30.33 7.214 4.037 2.745 35.31 24.14

*
13.41 7.742 

MRS-GARCH 31.47 5.287
**

3.668
***

2.688
***

 32.98 6.270
*

4.281
***

3.033
***

30.14 4.296
**

3.155
***

2.400
***

46.56 19.87
*
 10.42

*
 6.149

*
 32.71 7.158 4.158

**
2.869

**
 37.18 24.27

*
13.96

*
 8.100

*
 

GARCH-X 33.59 5.197
*
 3.807

***
2.864

***
 34.48 6.089 4.342

***
3.129

***
32.82 4.311

***
3.360

***
2.641

***
45.84 19.41 10.25 5.949 33.63 7.297 4.371

***
3.033

***
 37.97 23.66 13.57 7.855 

Mix-GARCH-X 29.31 5.099 3.358 2.423 30.13 6.039 3.869 2.683 28.60 4.152 2.931 2.207 43.78 19.55 9.970 5.908 29.45 7.249 3.892 2.684 33.91 23.84 13.40 7.768 

MRS-GARCH-X 30.33 5.221
*
 3.529

***
2.562

***
 31.38 6.185 4.077

**
2.849

**
 29.43 4.252 3.071

**
2.323

**
 46.88 19.91

*
 10.43

*
 6.231

*
 31.35 7.199 3.971 2.738 35.45 24.31

*
14.08

*
 8.230

*
 

Panel A: ICE Gas Oil 
GARCH 33.49 6.514 4.229

***
3.008

***
 35.15 7.650 4.914

***
3.380

***
31.87 5.250 3.597

***
2.670

***
37.29 10.47 6.295

***
4.032

***
 35.65 7.805 4.623

***
3.210

***
 37.43 12.07 7.530

*
 4.713 

Mix-GARCH 32.10 6.484 4.052
***

2.848
***

 33.94 7.610 4.745
***

3.231
**

 30.31 5.232 3.412
***

2.498
***

35.98 10.53 6.141
*
 3.908 34.28 7.815 4.292 2.906 36.80 12.15 7.505

*
 4.673 

MRS-GARCH 32.78 6.572
*
 4.178

***
2.947

***
 34.83 7.691 4.893

***
3.350

***
30.76 5.334

* 
3.517

***
2.578

***
36.57 10.61 6.260

***
4.016

***
 35.20 7.911 4.489

**
3.072

**
 37.78 12.22 7.567

**
4.744

*
 

GARCH-X 32.63 6.478 4.105
***

2.900
***

 34.51 7.607 4.802
***

3.288
***

30.80 5.223 3.461
***

2.545
***

35.98 10.49 6.137
*
 3.901 35.84 7.769 4.416

**
3.023

**
 37.12 12.12 7.407 4.621 

Mix-GARCH-X 30.73 6.484 3.928 2.740 32.26 7.606 4.578 3.105 29.25 5.237 3.327 2.414 34.31 10.60 6.009 3.819 33.81 7.790 4.158 2.794 34.79 12.26 7.375 4.629 

MRS-GARCH-X 31.88 6.534 4.063
***

2.850
***

 33.70 7.658 4.751
***

3.229
**

 30.11 5.287 3.428
***

2.504
***

35.69 10.58 6.148
*
 3.941

*
 35.92 7.864 4.347 2.956 36.11 12.21 7.477 4.699 
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Finally, looking at the individual models across the different markets in Table 4.3, the 

GARCH-X model achieves the lowest RMSE’s and it is dominant for the overall sample, with 

the exception of heating oil where the Mix-GARCH is preferred. In periods of backwardation 

the Mix-GARCH model achieves lower RMSE’s in 2 out of 4 cases. The same holds for 

GARCH-X in contango. The better MAE is realised by the Mix-GARCH-X model across all 

markets and under different market conditions, with the exception of heating oil in periods of 

backwardation); this implies that, compared to the GARCH-X model, Mix-GARCH-X moves 

closer to the true volatility but some outliers result in a higher RMSE, since RMSE penalises 

large errors more than MAE. The forecast accuracy results seem to be more in favour of Mix-

GARCH-X for balancing over- and under- prediction errors as given by the weighted sum of 

MME(O) and MME(U), across all commodities and market conditions. The same holds for the 

MME(O) statistics whereas results for under-prediction are mixed in periods of backwardation 

and contango, with the GARCH-X model appearing to be better in backwardation and the 

regime switching models better under contango (3 out of 4 cases), especially the augmented 

versions (2 out of those 3 cases). In Table 4.4, the overall dominance and consistency of Mix-

GARCH-X model is confirmed across all markets, periods and market conditions. The only 

exception occurs in the heating oil market in 2004-2007 where the simple GARCH model is the 

best performer. However, in more volatile periods (2008) the GARCH model fails to provide 

the best forecasts and according to the weighted sum of MME(U) and MME(O) the Mix-

GARCH and Mix-GARCH-X models are preferred.  

Volatility forecast comparison using different loss functions is simply a historical 

measurement of how models would have performed in the out-of-sample period under study. 

Following Diebold and Mariano (1995) several papers have tested the hypothesis of equal 

predictive ability (see for instance Kang et al. 2009). However, considering only the nominal 

values of the loss function scores across models, results are prone to data snooping bias. In other 

words, by relying solely on the mean value of a statistical loss function it is difficult to refute 

that results would be qualitatively dissimilar in different periods or that they might be 

coincidental. Sullivan et al. (1999) and White (2000) proposed a new approach to handle such 

biases by approximating the empirical distribution of a performance measure. We consider the 

following relative loss differential:  

 

, 1 1 1

k benchmark

k t t tfm LF LF+ + += −                                                   (4.8) 

 

where k represents the kth model and LF is the corresponding loss function. The null hypothesis 

to be tested is H0 = max{E[fmk]} ≤ 0 , i.e. there is no model better than the benchmark; a small 
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p-value indicates that there exists a model which provides superior forecasting results, based on 

a specific loss function. In the energy economics literature similar procedures have been applied 

to test volatility forecasts by Wei et al. (2010) and VaR forecasts by Huang, Yu, Fabozzi and 

Fukushima (2009). We use the stationary bootstrap (see Appendix 4.C) of Politis and Romano 

(1994) to obtain the average loss differential (Eq. 4.8) of each bootstrapped sample
* ( )kfm b , 

based on 3,000 bootstrap simulations. The so called bootstrap RC p-value is obtained by 

comparing the observed statistic ( ){ }1/2RC

n k
k

T m a x N fm=  with the quantiles of the empirical 

distribution of 
*RC

nT . The simulated  statistic 
*RC

nT is calculated as: 

 

( ){ }* 1/2 * ( )RC

n k k
k

T m a x N fm b fm= −                                   (4.9) 

 

The superiority of the Mix-GARCH-X model is evident across all markets, market 

conditions and periods, especially in terms of MAE and the weighted sum of MME(U) and 

MME(O), as well as MME(O) alone (Tables 4.3 and 4.4). The results indicate that, overall, no 

model is significantly superior to the Mix-GARCH-X, at conventional significance levels. Even, 

in cases where the nominal value of the loss function statistic is not the lowest (see for instance 

the heating oil market in backwardation and the same market for 2004 -2007 in Tables 4.3 and 

4.4, respectively), the performance of Mix-GARCH-X is not significantly different from that of 

alternative models. Thus, we can conclude that this model is not outperformed by other 

competing models, at conventional significance levels. 

 

4.4.2 Evaluating the Predictive Performance of Value-at-Risk 

Forecasts  

One of the most popular approaches for quantifying market risk is VaR, the 

computation of which is pivotal in risk management. VaR is the maximum expected loss in 

value of an asset or a portfolio of assets over a target horizon, given a specific confidence level 

1-c6. Then, conditional on the information set at t (Ωt), VaR can be defined as the solution to the 

following expression:  

 

                                                 
6 c is typically chosen to be 1% or 5%. The confidence level reflects the degree of risk aversion of an 
investor since higher c is associated with lower number of violations of the maximum expected loss 
estimate.  
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1 1Pr( )c

t t tr VaR c+ +≤ Ω =                   (4.10) 

 

The fact that different VaR approaches are highly likely to yield significantly different 

risk estimates is a central concern in VaR inference and thus, the concept of VaR has attracted 

much attention from researchers leading to a wide spectrum of alternative estimation methods. 

This stresses the importance of backtesting in order to assess and monitor - on a continuous 

basis - the accuracy of competing VaR techniques.  

Estimating VaR using the Mix- and MRS-GARCH model outlined above further allows 

for structural changes in the GARCH processes and overcomes some of the limitations that 

traditional GARCH models exhibit. First, the switching formulation improves on the 

autoregressive nature of GARCH-based VaR and ensures a better fit of the data as well as a 

better estimate of market risk by additionally conditioning on the state that the market is in. 

Second, the high volatility persistence imposed by single regime models decreases and the 

forecasting performance is expected to be better (see for example Cai, 1994 and Dueker, 1997). 

Consequently, one expects Mix- and MRS- based VaR to outperform the conventional VaR 

techniques. For instance, Li and Lin (2004) estimated the VaR of several stock indices using the 

model of Hamilton and Susmel (1994). Switching ARCH forecasts were found to be more 

accurate than ARCH and GARCH in terms of violation rate tests (especially at 99% confidence 

level) and were found to be superior in mitigating the non-normalities of the data. Another study 

by Marcucci (2005) applied GARCH and MRS-GARCH models to the S&P 100 stock index 

market in order to assess the predictive accuracy of volatility and VaR forecasts. The findings of 

the paper supported the superiority of those models at forecast horizons of less than one week.  

To evaluate the performance of the estimated volatility models the one step ahead 

forecast of the VaR estimate at time t+1 is calculated using Eq. (4.11). For all calculations we 

consider interval forecasts with nominal coverage rates of 1% and 5% as well as 99% and 95% 

in order to account for both long and short positions. Let Φt+1 be the inverse cumulative 

distribution function and μst,t+1 and hst,t+1 the mean and volatility forecasts in regime st, for st = 

{1,2}. Based on Eq. (4.10) the estimated VaR at time t+1 given all the available information up 

to t, at a specified tail probability level c ∈  (0, 1) can be written as (see also Billio and Pellizon, 

2000 and Marcucci, 2005): 

 

( )( ) ( )( )1/2 1/2

1 1, 1 1, 1 1 1, 1 1, 1 2, 1 1 2, 1( ) (1 ) ( )c

t st t st t t st t st t st t t st tVaR c h c hπ μ π μ+ = + = + + = + = + = + + = += +Φ + − +Φ   (4.11) 
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We also estimate VaR based on Historical Simulation (HS) as well as Extreme Value 

Theory (EVT). Regarding EVT, we employ the standard Peaks-Over-Threshold (POT) approach 

by fitting the GPD to a certain data set that exceeds a pre-set threshold, using maximum 

likelihood. Consider a threshold, say u = rt+1,N taken from the (t+1)th descending order statistic. 

Following McNeil and Frey (2000) as a tail we define the exceedances over the 90th percentile. 

For high thresholds (u), the distribution of the excess losses i.e. y = rt – u ≥  0 can be 

approximated by the Generalised Pareto Distribution (GPD). In addition, EVT is also adopted to 

explicitly model the tails of the standardised residual distributions from the various GARCH 

models. Based on the conditional EVT methodology, after fitting the GARCH models to 

petroleum futures returns, the distribution of the excess negative shocks i.e. y = εt – u ≥  0 can 

also be approximated by the GPD to model the quantile implied by Φt+1(c) of Eq. (4.11) and 

derive VaR. Assuming scale and shape (tail index) parameters ϑ and ξ, respectively7: 

 

                

        

                           

(4.12) 

 

Next, to formally assess the performance of the VaR estimates three tests are 

constructed: the likelihood ratio tests of unconditional coverage (LRUC), conditional coverage 

(LRCC) and independence (LRIND), developed by Christoffersen (1998). LRUC 8 tests the null 

hypothesis that the probability of realising a loss in excess of the forecasted VaR is statistically 

equal to the nominal confidence level c. VaR violations that occur more frequently than c % of 

the time imply that the VaR method used systematically underestimates the true level of risk, 

and vice-versa. However, as noted by Christoffersen (1998) and Lopez (1999) the power of this 

                                                 
7 ( ) ( ) ( )

( ) Pr
1 ( )

u
u t t

F y u F u
y r u y R u

F u

+ −Φ = − ≤ > = −
 This can be approximated by the GPD with the tail cumulative 

distribution function: ( )( ) 1/
( ) 1 / 1 /u uy N N y

ξξ ϑ −Φ = − + ,where Nu is the number of observations above the 

threshold. One-step ahead VaR at confidence level 1-c is then estimated as: 

( ) ( ){ }1 / 1c

tVaR u N Nu c
ξϑ ξ −

+ = + −⎡ ⎤⎣ ⎦ . Our results indicated that, in most cases, the tail index ξ of unconditional 

returns and standardised residuals series’ is not significantly different from zero, implying that the 
limiting distributions of the four commodities are of the Gumbel type apart from some exceptions when 
GPD is applied to the unconditional returns where Fréchet distribution is more appropriate (ξ>0).  
8The likelihood ratio statistic is based on the assumption of a binomial distribution. Let n be the number 

of outcomes that fall outside the forecast interval, N the number of forecasts and ĉ the empirical level of 

coverage. Then, the statistic is expressed as: 2(1 )
2 log ~ (1)

ˆ ˆ(1 )

n N n

UC n N n

c c
LR

c c
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test is small in distinguishing between close alternatives, particularly when the returns series are 

non-normal and/or exhibit volatility clustering. For instance, in periods of low volatility the 

interval VaR forecasts are expected to be relatively narrower compared to high volatility 

periods. Thus, tests for conditional coverage are also addressed since a model with correct 

unconditional coverage may have limited accuracy conditionally and thus, may not be able to 

capture the clustering of volatility 9.  

The results of the above tests are presented in Table 4.5. First, we can see that 

unconditional EVT produces the most conservative VaR estimates in all markets whereas the 

lowest VaR forecasts are from the Mix-GARCH-X (as well as the Mix-GARCH-X models 

combined with EVT at the 5% and 95% tails) which implies that this model is the most efficient 

in terms of allocating capital reserves. At the 1% region for both long and short positions MRS-

GARCH, GARCH-X, EVT-Mix-GARCH-X and EVT-MRS-GARCH-X are the models that 

pass all the tests (LRUC, LRIND and LRCC, at 5% significance level). At the 5% VaR level this 

occurs for the Mix-GARCH and GARCH-X only whereas the two regime dependent GARCH-

X specification fails to pass the tests for the short positions in the Brent crude oil market.  

Turning next to the largest unexpected loss (UL), calculated as the average loss in 

excess of VaR violations, this occurs in the case of HS and EVT, which sometimes is more than 

double than the one calculated from the other models. For instance at the 99% tail for Brent 

crude oil, the improvement of the average unexpected loss of the EVT-Mix-GARCH-X model 

over HS and GARCH models is 200% (=2.17/0.72-1) and 23%, respectively. This implies that, 

conditional that a VaR violation occurs, an investor maintaining a $1 million position on Brent 

futures is expected to lose $21,680 on that day, based on the HS VaR estimates, whereas if the 

EVT-Mix-GARCH-X or Mix-GARCH-X method is employed this amount reduces to less than 

$7,400, which is 3 times less.   

                                                 
9The conditional Coverage is a joint test of correct unconditional coverage and independent VaR 
exceptions against the alternative of a first order Markov process for the failures, thus, LRCC = LRUC + 

LRIND. If nij for i, j = {0,1} denotes the number of  i’s followed by j’s in the failure process with {0,1} = 

{success, failure}, πij the probability that i is followed by j and  π̂ = (n01+n11)/(n00+n01+n10+n11), LRUC 

and LRIND are, respectively: 
00 01 10 11
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VaR is the average forecasted Value-at-Risk for the out-of-sample period; PF presents the percentage of failures (violations) of each model;  ** Asterisks in the PF column, indicate that the model fails to pass all the tests of unconditional coverage, independence and 

conditional coverage (see footnote 8 and 9 for more details); UL is the unexpected loss which is defined as the average loss in excess of the VaR estimate; AQLF is the Average Quadratic Loss Function; QL is the asymmetric Quantile Loss Function of Koenker and 
Bassett (1978); Regarding the asymmetric Quantile Loss Function (QL) we perform White’s (2000) Reality Check using the stationary bootstrap of Politis and Romano (1994); All error statistics are multiplied by 100; ***, ** and * asterisks in the QL column indicate 
that the QL of the corresponding model is significantly higher than that of the competing models at 1%, 5% and 10%, respectively; The last column (QL’) is a relative measure calculated as the sum of the QL functions at all confidence levels normalised according to 
the minimum QL, as shown in  Eq. (4.15); See also the notes in Table 4.1. 

Table 4.5: Value-at-Risk & Risk Management Loss Functions for Long & Short Positions   

 Long Positions Short Positions 

 1% VaR 5% VaR 99% VaR 95% VaR 

Relative 

Sum of QL 

 VaR  PF UL AQLF QL VaR  PF UL AQLF QL VaR  PF UL AQLF QL VaR  PF UL AQLF QL QL′ Rank 

Panel A: NYMEX WTI Crude Oil                                 
HS 5.331 1.746** 1.589 8.301 8.127** 3.315 6.667** 1.461 31.32 26.42** 5.193 1.587 1.738 10.160 7.930** 3.291 6.587** 1.410 31.590 25.640** 1.224 10 
 EVT 7.097 0.556 1.586 2.298 8.000*** 4.564 2.778** 1.663 14.40 27.55*** 6.345 0.794 1.903 5.770 7.834*** 4.422 3.095** 1.443 16.350 26.460*** 1.236 11 
 GARCH 5.489 1.032 0.823 1.818 6.360 3.866 3.254** 1.293 10.34 23.65 5.591 0.556 1.251 1.351 6.264 3.968 3.413** 1.177 9.488 23.750 1.032 9 
 Mix- GARCH 4.891 1.349 0.990 2.960 6.248 3.444 5.238 1.047 12.79 22.82 4.984 1.270 0.785 1.619 5.959 3.538 6.190 0.937 11.670 23.380 1.002 1 
 MRS - GARCH 5.034 1.270 1.020 3.273 6.351 3.546 5.238 0.995 12.91 23.05 5.125 1.032 0.956 1.610 6.090 3.637 5.873 0.949 11.530 23.650 1.017 7 
 GARCH - X 5.177 1.032 1.040 2.109 6.272 3.647 4.127 1.150 11.12 23.09 5.268 0.952 0.881 1.342 6.085 3.738 4.127 1.159 10.300 23.360 1.011 4 
 Mix-GARCH - X 4.739 1.349 1.147 3.668 6.309 3.336 5.873 1.033 14.24 22.86 4.843 1.349 0.878 1.793 6.006 3.440 6.508** 0.988 12.760 23.520 1.008 3 
 MRS-GARCH - X 4.942 1.270 1.114 3.504 6.379 3.479 5.635 0.999 13.60 23.13 5.050 1.111 0.889 1.459 6.015 3.586 6.111 0.952 11.360 23.640 1.016 5 
 EVT-GARCH - X 5.957 0.397** 1.131 0.899 6.428 3.631 4.127 1.162 11.22 23.06 5.507 0.714 0.836 0.937 6.082 3.564 5.635 1.007 12.310 23.390 1.017 6 
 EVT-Mix-GARCH - X 5.418 0.794 1.063 1.917 6.284 3.335 5.794 1.044 14.11 22.83 5.069 1.190 0.735 1.253 5.921 3.287 7.222** 1.040 15.150 23.840 1.007 2 
 EVT-MRS-GARCH - X 5.660 0.714 1.085 1.842 6.457 3.477 5.635 0.996 13.47 23.11 5.264 0.952 0.773 0.998 5.977 3.421 7.222** 0.959 13.630 23.920 1.020 8 

  Panel B: NYMEX Heating Oil #2                                 
 HS 5.417 0.873 1.666 3.941 6.903** 3.285 5.873 1.296 19.83 24.19** 5.169 1.587 1.459 5.910 7.454* 3.316 7.460** 1.193 23.88 25.33* 1.100 10 
 EVT 7.141 0.397** 1.303 0.985 7.690*** 4.582 2.381** 1.151 7.480 25.81*** 6.244 1.032 1.075 2.564 7.322* 4.447 2.857** 1.379 10.54 26.02*** 1.154 11 
 GARCH 4.958 1.111 1.090 2.262 6.200 3.495 5.079 0.950 10.81 22.46 5.033 1.825** 1.047 3.510 6.913 3.569 5.873 1.117 15.34 24.25 1.020 3 
 Mix- GARCH 5.024 1.032 1.147 2.266 6.240 3.541 4.206 1.072 10.40 22.38 5.101 1.667** 1.035 2.984 6.794 3.618 5.079 1.240 14.31 24.23 1.016 2 
 MRS - GARCH 5.193 1.032 1.121 2.158 6.381 3.661 3.730** 1.133 9.992 22.69 5.264 1.429 1.086 2.353 6.784 3.732 5.000 1.182 13.01 24.41 1.027 6 
 GARCH - X 5.177 0.952 0.718 0.913 5.892 3.647 4.127 0.998 7.758 22.51 5.268 1.429 1.167 3.792 6.904 3.738 4.762 1.192 13.57 24.21 1.007 1 
 Mix-GARCH - X 4.872 1.111 1.272 2.931 6.317 3.430 4.921 1.050 11.99 22.47 4.976 1.825** 1.098 3.694 6.949 3.534 5.952 1.148 15.66 24.35 1.027 7 
 MRS-GARCH - X 5.040 1.032 1.299 2.614 6.412 3.548 4.603 1.017 11.08 22.58 5.145 1.746** 0.991 2.783 6.844 3.653 5.873 1.068 13.93 24.38 1.029 8 
 EVT-GARCH - X 5.645 0.714 1.004 1.135 6.394* 3.414 5.079 1.040 12.12 22.51 5.280 1.349 1.125 2.718 6.765 3.465 6.587** 1.085 16.68 24.31 1.024 4 
 EVT-Mix-GARCH - X 5.497 0.714 1.194 1.526 6.382* 3.383 5.476 0.987 12.44 22.47 5.204 1.508 1.089 2.870 6.814 3.426 6.587** 1.139 17.26 24.47 1.026 5 
 EVT-MRS-GARCH - X 5.707 0.794 0.968 1.258 6.508* 3.504 4.683 1.041 11.47 22.55 5.361 1.349 1.064 2.102 6.765 3.537 6.429** 1.083 15.52 24.49 1.031 9 

  Panel C: ICE Brent Crude Oil                                 
 HS 5.102 1.825** 1.393 6.876 7.681** 3.283 5.714** 1.529 26.73 25.33** 5.201 1.270 2.168 10.56 7.919** 3.272 6.190 1.384 30.37 24.75** 1.259 10 
 EVT 6.765 0.556 1.490 2.115 7.628*** 4.464 2.540** 1.636 11.91 26.66*** 6.314 0.635 2.560 5.888 7.904*** 4.370 2.302** 1.848 16.66 25.92*** 1.284 11 
 GARCH 5.546 0.635** 0.856 1.148 6.126 3.905 2.778** 1.143 7.849 22.88 5.659 0.635 0.883 0.898 6.184 4.018 2.937** 1.184 8.268 23.39 1.069 9 
 Mix- GARCH 4.677 1.111 0.912 2.473 5.725 3.292 5.238 0.967 10.96 21.70 4.777 1.429 0.714 1.638 5.761 3.392 5.952 1.023 12.22 22.87 1.013 3 
 MRS - GARCH 4.851 1.032 0.945 2.451 5.862 3.417 5.079 0.912 10.06 21.90 4.943 1.111 0.790 1.348 5.785 3.508 5.635 0.988 11.07 22.93 1.023 6 
 GARCH - X 5.177 0.714 0.977 1.183 5.910 3.647 3.889 0.999 7.326 22.30 5.268 1.032 0.768 1.014 6.024 3.738 4.127 1.126 9.838 23.16 1.043 7 
 Mix-GARCH - X 4.538 1.429** 0.773 2.415 5.677 3.192 5.873 0.930 11.13 21.60 4.653 1.429 0.732 1.496 5.663 3.307 6.429** 1.021 12.21 22.92 1.006 1 
 MRS-GARCH - X 4.698 1.032 1.048 2.628 5.815 3.305 5.873 0.885 10.82 21.90 4.813 1.508 0.636 1.402 5.737 3.420 6.349** 0.958 11.52 23.00 1.020 4 
 EVT-GARCH - X 5.808 0.159** 2.015 0.668 6.163 3.597 3.730** 1.016 8.148 21.95 5.640 0.397** 0.974 0.518 5.991 3.639 4.683 1.011 9.678 22.75 1.045 8 
 EVT-Mix-GARCH - X 5.087 0.635 1.033 1.469 5.779 3.180 5.952 0.926 11.19 21.59 4.980 0.873 0.717 0.914 5.570 3.230 7.063** 1.006 13.46 23.08 1.008 2 
 EVT-MRS-GARCH - X 5.264 0.635 1.082 1.699 5.986 3.292 5.873 0.895 10.93 21.90 5.156 0.873 0.631 0.828 5.671 3.343 6.508** 1.012 12.64 23.12 1.026 6 

Panel D: ICE Gas Oil                                  
 HS 5.132 1.190 1.018 2.612 6.383*** 3.246 6.349** 1.072 15.00 23.23*** 5.321 1.349 0.850 1.737 6.428 3.196 6.190 1.171 16.28 23.04* 1.057 10 
 EVT 6.763 0.317** 1.078 0.546 7.144*** 4.462 1.905** 1.216 15.10 24.82*** 6.216 0.397** 0.921 0.590 6.543 4.337 2.063** 1.401 5.667 24.38*** 1.128 11 
 GARCH 4.906 1.032 0.921 1.534 5.895 3.453 5.159 0.957 9.117 22.40 5.012 1.032 1.251 2.298 6.264 3.559 4.286 1.070 9.494 22.19 1.011 3 
 Mix- GARCH 4.681 1.667** 0.758 1.781 5.983 3.295 6.032 0.989 10.72 22.64 4.779 1.270 1.111 2.686 6.151 3.394 5.079 1.056 10.85 22.14 1.012 5 
 MRS - GARCH 4.758 1.587 0.808 1.880 6.080 3.350 5.873 1.010 10.84 22.88 4.858 1.032 1.319 2.646 6.179 3.449 5.238** 1.002 10.50 22.30 1.022 8 
 GARCH - X 5.177 0.952 0.773 1.143 5.952 3.647 4.365 0.907 6.965 22.39 5.268 1.032 1.130 2.495 6.395 3.738 4.048 1.008 9.150  22.57 1.023 9 
 Mix-GARCH - X 4.463 2.302** 0.709 2.434 6.134 3.137 6.429** 1.059 12.86 22.69 4.593 1.508 1.087 3.353 6.193 3.266 5.794 1.041 12.35 22.17 1.021 7 
 MRS-GARCH - X 4.612 1.905** 0.759 2.086 6.096 3.242 6.190 1.028 11.84 22.77 4.740 1.508 0.946 2.865 6.128 3.371 5.476 1.017 11.06 22.23 1.018 6 
 EVT-GARCH - X 5.211 0.794 0.745 0.871 5.842 3.293 6.032 0.958 10.53 22.43 5.280 0.873 1.102 1.670 6.203 3.392 5.079 1.035 10.83 22.02 1.004 1 
 EVT-Mix-GARCH - X 4.898 1.190 0.776 1.243 5.862 3.101 6.746** 1.039 13.22 22.71 4.933 0.952 1.280 2.433 6.119 3.188 6.111 1.063 13.35 22.24 1.007 2 
 EVT-MRS-GARCH - X 5.042 1.111 0.770 1.041 5.937 3.205 6.270** 1.045 12.16 22.77 5.085 0.794 1.340 2.107 6.109 3.279 6.032 1.012 12.16 22.31 1.012 4 
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Overall, results are mixed concerning which model is the best alternative. Nevertheless, 

all GARCH models perform better than HS and EVT. Moreover, the GARCH-X model is the 

only one that passes all the tests, and provides superior performance than the restricted 

unaugmented version. Regarding the magnitude of the percentage of failures there is not a 

specific pattern as to which model is superior. Finally, the augmented version of the regime 

models provide less conservative VaR estimates whereas if the residuals are filtered with EVT, 

more conservative estimates are obtained (with the exception of 99% tail).  

Finally, Figure 4.6 depicts the excess losses of the 5% and 95% VaR from the single 

and two-regime GARCH-X models. Comparing the regime-switching models, it seems that the 

Mix-GARCH-X based VaR is smoother. This reflects that for the Mix-GARCH model the 

averaging between the two regimes is based on constant regime probabilities and, conditional 

on the fact that the MRS model produces accurate forecasts of the state that the market will be 

in, indicates that the latter model may capture more efficiently sudden changes in the volatility 

of the returns. On average, as shown in Table 4.5, the percentage of failures for the MRS 

models is most of the times lower and closer to the nominal coverage rates than the 

corresponding Mix-GARCH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.1 Measuring Forecasting Performance with Risk Management 

Loss Functions  

To provide a more informative insight into the economic benefits from different VaR 

strategies we also estimate risk management loss functions. In particular, following Lopez 
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Figure 4.6: WTI Crude Oil 5% VaR  Estimates for Long & Short Positions 
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(1999) and Sarma et al. (2003) we calculate the Average Quadratic Loss Function (AQLF), 

which considers the magnitude of the violations, and penalises more the large failures. If I{·} is 

the indicator function that takes a value of 1 when a return exceeds the VaR level (in absolute 

terms) i.e. 1 1

c

t tr VaR+ +< , the loss function becomes:  

 

 ( )2

{ }
1

1
c

t i t i

N
c

t i t i r VaR
i

AQLF r VaR I
N + ++ + <=

= −∑                          (4.13) 

 

Furthermore, following Koenker and Bassett (1978) we also employ another loss 

function, the predictive quantile loss (QL) which is based on quantile regression. The QL 

function penalises more heavily observations for which a violation occurs, and is actually a 

measure of fit of the predicted tail at a given confidence level. The objective is to minimise QL:  

 

 ( ){ } { }
1

1
(1 ) c c

t i t i t i t i

N
c

t i t i r VaR r VaR
i

QL r VaR c I cI
N + + + ++ + < ≥=

= − − +∑             (4.14) 

 

The economic intuition behind the use of the QL is that capital charges should also be 

taken into account, hence, the capital forgone from overpredicting the true VaR should not be 

neglected. This latter loss function is asymmetric in view of the fact that underprediction and 

overprediction of VaR estimates have diverse implications. For instance, underprediction of risk 

might lead to liquidity problems and reoccurring underprediction causes insolvency. On the 

other hand, overprediction implies higher capital charges which, although are not a cause of 

bankruptcy, reflect the opportunity cost of keeping a high reserve ratio. 

The results of the above loss functions are presented in Table 4.5. First the AQLF seems 

to be better for the EVT methods (unconditional and conditional) which is expected since this 

approach produces more conservative VaR estimates, as it has already been mentioned. 

Specifically, in 11 out of 16 cases the EVT approach is better than the alternatives in providing 

the lowest underprediction measures over VaR, and in 4 of those cases the EVT-GARCH-X 

model is better. In 6 cases the unconditional EVT is better but failing to pass the LRUC, LRIND 

and LRCC tests. Isolating the models that do pass the latter tests, the GARCH-X model is better 

in 12 out of 16 cases (8 times the GARCH-X and 4 the EVT-GARCH-X), consistent with  the 

MME(U) statistics in Table 4.3.  

 



 

 

QL′ is the normalised sum of the quantile-loss functions of Eq. (4.15). See also notes in Table 4.5. 

Table 4.6: Quantile Loss Across Different Market Conditions and Periods 

 2004-2008 2004-2007 2008 

 Backwardation Quantile Loss Contango Quantile Loss Relative Sum of Quantile Loss ( QL′) 
 QL1% QL5% QL99% QL95% QL′ QL1% QL5% QL99% QL95% QL′ All Back. Cont. All Back. Cont. 

Panel A: NYMEX WTI Crude Oil 
 HS 6.251 22.39 5.520 22.25 1.028 9.677*** 29.75*** 9.921*** 28.44*** 1.383 1.043 1.031 1.069 1.717 1.029 1.041 
 EVT 7.300*** 25.33*** 6.344*** 22.48 1.145 8.579*** 29.38*** 9.064*** 29.75*** 1.315 1.217 1.155 1.296 1.334 1.177 1.092 
 GARCH 6.093 23.14* 5.686 21.48 1.029 6.581 24.07 6.740 25.62 1.045 1.042 1.029 1.068 1.053 1.037 1.054 
 Mix- GARCH 6.203 22.29 5.324 21.66 1.009 6.285 23.25 6.483 24.80 1.006 1.005 1.014 1.007 1.036 1.025 1.061 
 MRS - GARCH 6.241 22.17 5.420 21.72 1.014 6.441 23.78 6.643 25.24 1.029 1.017 1.033 1.015 1.060 1.040 1.079 
 GARCH - X 6.204 22.64 5.578 21.44 1.022 6.328 23.47 6.504 24.94 1.012 1.018 1.021 1.028 1.037 1.062 1.033 

 Mix-GARCH - X 6.210 22.29 5.486 21.93 1.020 6.391 23.32 6.436 24.83 1.009 1.006 1.021 1.003 1.058 1.017 1.070 
 MRS-GARCH - X 6.199 22.17 5.446 21.97 1.016 6.527 23.93 6.486 25.02 1.025 1.014 1.028 1.013 1.063 1.041 1.080 
 EVT-GARCH - X 6.232 22.61 5.673 21.57 1.029 6.590 23.44 6.420 24.88 1.018 1.035 1.027 1.060 1.014 1.044 1.045 
 EVT-Mix-GARCH - X 6.108 22.28 5.422 22.40 1.018 6.428 23.28 6.334 25.02 1.008 1.017 1.023 1.025 1.025 1.027 1.074 
 EVT-MRS-GARCH - X 6.241 22.16 5.429 22.38 1.022 6.635 23.89 6.431 25.19 1.029 1.031 1.033 1.044 1.036 1.051 1.083 

Panel B: NYMEX Heating Oil #2 
 HS 6.488 23.75 7.870 26.61* 1.071 7.356** 24.68 6.999 23.92 1.173 1.057 1.076 1.056 1.280 1.075 1.082 
 EVT 7.592*** 25.84*** 7.166 26.00 1.109 7.798*** 25.76 7.493 26.04 1.249 1.166 1.097 1.314 1.160 1.069 1.057 
 GARCH 6.094 22.82 7.650 25.08 1.022 6.316 22.06 6.107 23.35 1.052 1.008 1.023 1.014 1.095 1.070 1.067 
 Mix- GARCH 6.137 22.62 7.480 25.14 1.016 6.351 22.11 6.044 23.24 1.050 1.007 1.015 1.024 1.082 1.034 1.067 
 MRS - GARCH 6.243 22.79 7.438 25.22 1.022 6.532* 22.57 6.070 23.54 1.068 1.017 1.023 1.038 1.097 1.037 1.069 
 GARCH - X 6.199 23.40 7.801 25.32 1.040 5.557 21.54 5.923 22.99 1.000 1.020 1.039 1.021 1.000 1.066 1.062 
 Mix-GARCH - X 6.066 22.57 7.838 25.40 1.028 6.592 22.37 5.978 23.19 1.061 1.011 1.028 1.012 1.120 1.065 1.089 
 MRS-GARCH - X 6.177 22.50 7.634 25.40 1.024 6.667* 22.66 5.981 23.27 1.068 1.015 1.029 1.022 1.112 1.040 1.084 
 EVT-GARCH - X 6.335 22.79 7.377 25.25 1.024 6.458 22.20 6.097 23.28 1.059 1.020 1.021 1.047 1.075 1.075 1.049 

 EVT-Mix-GARCH - X 6.255 22.57 7.546 25.67 1.028 6.521 22.37 6.015 23.17 1.059 1.019 1.025 1.040 1.087 1.058 1.088 
 EVT-MRS-GARCH - X 6.394 22.49 7.422 25.65 1.028 6.632* 22.62 6.047 23.22 1.069 1.028 1.030 1.054 1.079 1.050 1.085 

  Panel C: ICE Brent Crude Oil 
 HS 5.651 21.46 5.826 22.00 1.051 9.254** 28.33** 9.541** 26.88* 1.414 1.069 1.054 1.095 1.775 1.100 1.052 
 EVT 6.979*** 24.29*** 6.247** 22.58 1.174 8.131** 28.49*** 9.187** 28.51*** 1.370 1.264 1.177 1.361 1.396 1.231 1.083 
 GARCH 5.778* 22.35** 5.856 21.38 1.061 6.395 23.29 6.438 24.94 1.079 1.094 1.064 1.134 1.058 1.086 1.045 
 Mix- GARCH 5.239 21.08 5.522 21.55 1.007 6.102 22.19 5.946 23.89 1.022 1.004 1.011 1.007 1.081 1.033 1.009 

 MRS - GARCH 5.403 21.12 5.517 21.53 1.015 6.218 22.50 5.993 24.01 1.034 1.017 1.025 1.019 1.085 1.053 1.033 
 GARCH - X 5.834** 21.98 5.873 21.53 1.062 5.969 22.55 6.141 24.43 1.035 1.068 1.066 1.080 1.031 1.107 1.072 
 Mix-GARCH - X 5.257 21.09 5.645 21.88 1.018 6.002 21.99 5.678 23.73 1.002 1.005 1.020 1.000 1.054 1.040 1.016 
 MRS-GARCH - X 5.300 21.09 5.559 21.82 1.015 6.214 22.53 5.874 23.92 1.028 1.010 1.022 1.008 1.090 1.066 1.028 
 EVT-GARCH - X 5.877** 21.48 5.837 21.26 1.053 6.385 22.31 6.111 23.91 1.043 1.076 1.054 1.107 1.016 1.084 1.053 
 EVT-Mix-GARCH - X 5.421 21.09 5.439 22.15 1.019 6.055 21.98 5.671 23.80 1.004 1.017 1.023 1.021 1.031 1.061 1.023 
 EVT-MRS-GARCH - X 5.561 21.09 5.470 22.03 1.026 6.316 22.52 5.828 23.97 1.030 1.030 1.035 1.034 1.063 1.087 1.044 

Panel D: ICE Gas Oil 
 HS 6.336 23.85 6.597 23.80* 1.049 6.424 22.68 6.279* 22.37 1.081 1.070 1.070 1.092 1.147 1.080 1.155 
 EVT 7.227*** 25.36*** 6.465 23.84* 1.097 7.070*** 24.35*** 6.611** 24.86*** 1.172 1.178 1.106 1.282 1.100 1.114 1.061 
 GARCH 6.155 23.65 6.604 22.41 1.024 5.665 21.30 5.963 21.98 1.013 1.020 1.035 1.023 1.105 1.083 1.074 
 Mix- GARCH 6.214 23.56 6.558 22.42 1.024 5.778 21.82 5.791 21.88 1.015 1.011 1.025 1.015 1.139 1.049 1.068 
 MRS - GARCH 6.132 23.53 6.504 22.70 1.021 6.034 22.30 5.893 21.95 1.037 1.019 1.022 1.036 1.155 1.058 1.037 

 GARCH - X 6.159 23.44 6.652 22.63 1.026 5.769 21.45 6.168 22.53 1.034 1.052 1.045 1.079 1.047 1.043 1.126 
 Mix-GARCH - X 6.327 23.24 6.667 22.56 1.031 5.963 22.21 5.774 21.81 1.026 1.016 1.037 1.012 1.164 1.042 1.089 
 MRS-GARCH - X 6.319 23.34 6.434 22.62 1.023 5.900 22.27 5.857 21.89 1.029 1.014 1.027 1.019 1.157 1.038 1.068 
 EVT-GARCH - X 6.098 23.34 6.407 22.28 1.009 5.616 21.64 6.023 21.79 1.015 1.014 1.020 1.027 1.093 1.089 1.049 
 EVT-Mix-GARCH - X 6.076 23.28 6.366 22.71 1.011 5.672 22.20 5.901 21.83 1.019 1.006 1.017 1.014 1.133 1.052 1.055 
 EVT-MRS-GARCH - X 6.187 23.36 6.234 22.78 1.011 5.716 22.25 5.999 21.89 1.026 1.011 1.015 1.026 1.136 1.064 1.044 
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Turning next to the more interesting results of the asymmetric Quantile Loss function 

the results are somewhat different and, as expected, the augmented versions perform better and 

are more able to capture the asymmetries penalised by the loss function. The GARCH-X model 

is superior in 7 out of 16 cases, of which 3 are EVT-based. The performance of the Mix-

GARCH models is similar, since they outperform the other models in 7 out of 16 cases, of 

which 4 cases correspond to the Mix-GARCH-X model, of which 3 cases are EVT-based VaR. 

Overall, the conditional EVT VaR is preferred in 8 cases. In an attempt to construct a unified 

performance measure, Table 4.5 also presents the relative weighted sum of the QL functions. 

Because of the fact that at different confidence levels QL is not comparable (it is much higher at 

lower confidence levels) we propose a relative measure which is constructed by averaging the 4 

quantile losses QL1%,  QL5%, QL95% and QL99%, normalising each individual loss by the 

minimum QL (best performer) at the corresponding confidence level as: 
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′ = =∑                    (4.15) 

 

where k represents the kth model. Clearly, the closer to one, the better the VaR performance of 

the model. A value of 1 indicates that the model is the best in all cases. The last column of 

Table 4.5 ranks all the models according to that measure and Mix-GARCH, GARCH-X, Mix-

GARCH-X and EVT-GARCH-X perform better in the WTI crude oil, heating oil, Brent crude 

oil and gas oil, respectively. Even so, the most consistent model seems to be the EVT-Mix-

GARCH-X model which is the second best in all markets but the heating oil in which ranks 5th. 

For instance, although the GARCH-X is superior in the heating oil market, it fails to be among 

the top three performers in the other commodities and ranks 9th in the ICE gas oil market.  

Separate results for periods of backwardation and contango are presented in Table 4.6. 

The economic implications regarding the magnitude of the QL functions follow the discussion 

of Tables 4.3 and 4.4. Now, it seems that when the markets are backwardated the Mix-GARCH 

is the more safe choice, being best for all commodities except for gas oil. The MRS-GARCH is 

also consistent and accurate being second for all commodities and third for the gas oil market. 

Looking at the individual QL, out of 16 cases in backwardated markets, 10 times the augmented 

GARCH versions are selected, of which 8 belong to the two-regime augmented models and 7 

fall into the category of the conditional EVT. In contango markets on the other hand, the 

augmented models are chosen in 12 cases whereas regime models 8 with the Mix-GARCH 

being the best in the WTI crude oil market and the Mix-GARCH-X in the Brent crude oil 
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market. As for the petroleum products simple GARCH and GARCH-X appear to be superior in 

the gas oil and heating oil markets, respectively.  

Table 4.6 also presents the QL′ function for the two sub-periods i.e. 2004-2007 and 

2008. In the relatively lower volatility period of 2004-2007 the Mix-GARCH model is 

dominant, overall. In contango markets, the Mix-GARCH-X has performed better. In 

backwardation, again, the two regime models perform better with Mix-GARCH being best in 

the WTI crude oil and heating oil markets, whereas for the ICE Brent crude and gas oil markets 

the Mix-GARCH and EVT-MRS-GARCH-X are better, respectively. The more interesting 

period of 2008, is associated with less consistency, especially under contango. In general, the 

results indicate that more sophisticated models might perform better under both high and low 

volatility periods.  

Finally, we also apply White’s (2000) RC on the VaR-based QL function to test 

whether the quantile loss functions from each model are significantly different10. From Tables 

4.5 and 4.6, the overall conclusion is that it is more difficult to achieve significance using the 

quantile loss; this is consistent with other studies in the literature, such as Bao et al. (2006). In 

our study, only the unconditional HS and EVT methods seem to perform significantly worse 

than the GARCH methods, irrespective of whether the latter follow a two regime process or 

whether they are augmented or combined with EVT. Exceptions are the GARCH for the 1% and 

5% QL of Brent crude oil in periods of backwardation, as well as all the MRS based 1% QL of 

the NYMEX heating oil in periods of contango. 

 

4.5 Conclusions 

In this chapter we examined the performance of Regime Switching models in 

forecasting volatility and Value at Risk in the energy markets. Given that the excess kurtosis, 

skewness and volatility clustering are prominent features of oil price changes, both the Mix-

GARCH and MRS-GARCH models are attractive candidates for modelling and forecasting risk. 

The rationale behind the use of these models stems from the fact that the volatility of these 

markets may be characterised by regime shifts and by allowing the second moments to be 

                                                 
10 Note that QL in this case is not differentiable due to the presence of the indicator function. However, 
according to supporting evidence by Sullivan and White (1998) the stationary bootstrap reality check 
delivers good approximations to the desired limiting distribution even when an indicator function is used. 
Instead, a smoothing function can be used as a proxy for QL as in Gonzalez-Rivera et. al (2004). 
However they find almost identical results of the smooth and nonsmooth version of QL, so we use the 
original form of the loss function. In addition when parameter estimation is involved, the impact of 
parameter estimation error is asymptotically negligible when the prediction period grows at a slower rate 
than the estimation period. Thus, in our study, we choose the out-of-sample period (1,260 observations) to 
be much smaller than the in-sample period (3,224 observations).   
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dependent upon the “state of the market”, one may obtain more efficient volatility and VaR 

estimates and hence, superior forecasting performance compared to the methods which are 

currently being employed. We apply those models in the NYMEX and ICE petroleum futures 

markets. 

Our results indicate that the Mix-GARCH and MRS-GARCH models are better at 

capturing the persistence in volatility than the GARCH models, and also tend to perform better 

in an out-of-sample basis. Energy economists and financial analysts should consider these 

features in the modelling process of oil price volatility, since the Mix-GARCH-X model for all 

petroleum futures demonstrate better forecasting accuracy than the other models, in terms of 

balancing the under- and over-prediction of errors. This holds, irrespective of whether the 

market experiences backwardation or contango. Regarding the VaR application of the models, 

the augmented GARCH-X model is the most consistent one passing all the tests for all 

examined markets. Also, conditional EVT poses as a conservative alternative to VaR forecasts, 

thus, being more appropriate to risk averse investors. Further investigation, by employing risk 

management loss functions indicates that in both contango and backwardation periods, inclusion 

of the squared futures spread when predicting volatility is important. Overall, the magnitude of 

disequilibria is a factor that does have explanatory power in determining potential changes in oil 

price volatilities and, in addition, by identifying different volatility components for normal and 

highly volatile periods, market participants may benefit in terms of accurate quantification of 

risk as this is reflected in VaR forecasts.  

In this chapter we presented the futures prices risk profile and focused on accurate oil 

volatility modelling. Price risk in the energy complex is likely to occur due to demand and 

supply changes, refinery capacity constraints, OPEC policy, regional and global economic 

activity and geopolitical risks, among others. The process of oil price risk measurement, as 

commonly applied to the measurement of exposures, involves evaluation of the size of 

exposures conditional on current market conditions; this is traditionally done based on the 

predictive probability distribution’s summary statistics such as VaR. However, risk managers 

must also design a framework for mitigating firm's daily exposure to price changes conditional 

on current market conditions. Next, in Chapter 5: A Markov Regime Switching Approach for 

Hedging Petroleum commodities, we will focus on this aspect of energy risk. When hedging 

price risk, the optimal proportion of the future contract that should be held to offset the cash 

position is called the optimal hedge ratio. This ratio is traditionally estimated by examining the 

ratio between the covariance between cash and futures prices and the variance of the price of 

futures. The classes of Markov and GARCH models represent two of the most important 
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techniques to model conditional volatility. In many practical applications it is necessary to adapt 

the procedures that were discussed above in the context of multivariate conditional 

heteroscedasticity. In doing so, as it will be seen, we will use the futures and spot long run 

equilibrium relationship, regime switching models and GARCH. The originality of this study is 

the challenge of simultaneously modelling the entire variance covariance matrix and linking the 

concept of disequilibrium (as measured by cointegration) with that of uncertainty (as measured 

by the conditional second moments) across high and low volatility regimes. Before presenting 

our empirical evidence, Chapter 5 will first, provide a short literature review on minimum 

variance hedging. This will be followed by some technical details on multivariate MRS 

cointegration GARCH models and next, a thorough explanation of the theoretical background 

and the estimation procedure will be supplied. The model will be successfully fitted to weekly 

historical futures and spot prices from 1991 to 2006. 
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APPENDIX 4.A: Alternative Distribution Assumptions 

The results under the assumption of the Generalised Error Distribution (GED) are 

presented in Table 4.A.1. Although the degrees of freedom coefficient was found to be, overall, 

less than 2 in both regimes, in the low variance state it is not significantly different than 2, 

indicating that the assumed distribution is normal. Moreover, looking at the estimated models 

throughout the out-of-sample period, sometimes the low variance state had degrees of freedom 

of more than 2 (indicating thin tails). Note that, the GED distribution was preferred, over 

Student-t, because it is more flexible and can accommodate both fat and thin tails as opposed to 

Student-t which is only able to fluctuate from fat tailed distributions to normal. The fact that the 

GED may be a more appropriate distribution than Student-t in our empirical analysis is also 

supported by the evidence in the energy economics literature. There are several studies within 

the GARCH framework that test different distributional assumptions; for instance Agnolucci 

(2009), using data for WTI crude futures, reports that in GARCH models the GED assumption 

is superior to normal and Student-t and four of the five tested models have lower mean squared 

and absolute errors when assuming GED. Moreover, Hung et al. (2008) and Fan et al. (2008) 

note that because the Student-t distribution cannot deal simultaneously with fat-tails and 

leptokurtic distributions, it cannot appropriately capture the empirical distribution of oil prices. 

In the stock indices market, Marcucci (2005) also reports that MRS-GARCH models with GED 

outperform the MRS-GARCH under the Student-t distribution. As Haas et al. (2004b) conclude: 

“it may often be the case that the specification of heavy tailed distributions in the context of 

regime switching models is avoidable…”. The main reason why the corresponding forecasting 

results for the GED are not presented in this chapter is because, qualitatively, they fail either to 

add more information or to perform in any way better than the assumed distribution which is 

also why we present the results of the simpler case.  
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Table 4.A.1: Estimates of Switching GARCH-X Models for NYMEX & ICE Petroleum  
Futures Under the  Assumption of Generalised Error Distribution 

  WTI Crude Oil Heating Oil #2 Brent Crude Oil Gas Oil  
  (CL) (HO) (CB) (GO) 
  Mix-  MRS-  Mix-  MRS-  Mix-  MRS-  Mix-  MRS-  

  GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X GARCH-X 

Panel A: Low Volatility Regime 

E[σ1t]  
21.65 20.66 25.84 21.62 19.24 18.86 14.34 18.70 

          

μ0,st=1  0.0320 0.0299 0.0426 0.0431 0.0133 0.0153 -0.0016 0.0048 
  (0.032) (0.033) (0.032) (0.038) (0.033) (0.031) (0.058) (0.056) 
ωst=1  0.0155 0.0153 0.0138 0.0100 0.0091 0.0094 0.0009 0.0013 
  (0.007)** (0.007)** (0.007)** (0.006)** (0.004)** (0.004)** (0.003) (0.003) 
A st=1  0.0221 0.0218 0.0215 0.0206 0.0209 0.0212 0.0181 0.0200 
  (0.006)*** (0.006)*** (0.005)*** (0.005)*** (0.005)*** (0.005)*** (0.004)*** (0.005)*** 
Bst=1  0.9610 0.9606 0.9647 0.9675 0.9661 0.9655 0.9730 0.9703 
  (0.008)*** (0.008)*** (0.007)*** (0.006)*** (0.007)*** (0.007)*** (0.005)*** (0.006)*** 

φ st=1  0.0051 0.0051 0.0018 0.0014 0.0055 0.0057 0.0001 0.0001 

  (0.002)
***

 (0.002)
***

 (0.001)
**

 (0.001)
*
 (0.002)

***
 (0.002)

***
 (0.001) (0.001) 

π st=1  0.8978 0.8816 0.9205 0.8577 0.8833 0.8936 0.6635 0.6736 
  (0.072)*** - (0.051)*** - (0.082)*** - (0.094)*** - 
p11  - 0.8726 - 0.8341 - 0.8952 - 0.6068 
   - (0.089)*** - (0.074)*** - (0.081)*** - (0.138)*** 
gst=1  1.8470 1.8464 2.4154 1.6805 1.6706 1.7771 2.0068 1.9722 

  (0.876)
**

 (0.773)
**

 (1.248)
*
 (0.105)

***
 (0.737)

**
 (0.842)

**
 (0.201)

***
 (0.187)

***
 

Panel B: High Volatility Regime 

E[σ2t]  
47.35 42.82 63.39 38.81 37.39 37.36 21.59 28.53 

          

μ 0,st=2  -0.0388 0.0037 -0.2375 -0.1073 0.1077 0.0955 0.1102 0.0946 
  (0.246) (0.223) (0.249) (0.213) (0.203) (0.204) (0.141) (0.142) 
ωst=2  1.0049 0.8905 2.0527 1.1650 0.5561 0.5909 0.2967 0.4417 
  (1.186) (0.778) (2.124) (0.848) (0.641) (0.529) (0.199) (0.241)* 
A st=2  0.6763 0.6200 0.8074 0.3340 0.5857 0.5910 0.1319 0.2086 
  (0.857) (0.529) (1.097) (0.206)* (0.725) (0.610) (0.075)* (0.100)** 

st=2  0.6909 0.6770 0.6832 0.6686 0.6943 0.6957 0.7564 0.7346 
  (0.229)*** (0.204)*** (0.243)*** (0.210)*** (0.208)*** (0.225)*** (0.096)*** (0.101)*** 
φ st=2  0.1620 0.1450 0.1692 0.1042 0.1438 0.1392 0.0736 0.1121 

  (0.224) (0.162) (0.215) (0.104) (0.207) (0.199) (0.053) (0.067)
*
 

π st=2  0.1022 0.1184 0.0795 0.1423 0.1167 0.1064 0.3365 0.3264 
  (0.072)*** - (0.051)*** - (0.082)*** - (0.094)*** - 
p22  - 0.0515 - 0.0001 - 0.1202 - 0.1885 
   - (0.065) - (0.094) - (0.105) - (0.123) 
gst=2  1.6675 1.6790 1.7011 1.6580 1.5976 1.5993 1.4124 1.4285 

  
(0.104)

***
 (0.105)

***
 (0.109)

***
 (0.412)

***
 (0.097)

***
 (0.099)

***
 (0.168)

***
 (0.180)

***
 

Panel C: Diagnostics 

LogLik  -6468.7 -6468.3 -6466.0 -6465.1 -6310.5 -6310.5 -6258.5 -6257.5 
SBIC  13,042 13,050 13,037 13,043 12,726 12,734 12,622 12,628 
E[σt]  25.50 24.364 30.597 24.822 22.152 21.607 17.159 22.411 

A1 + B1  0.983 0.9824 0.9862 0.9881 0.9870 0.9867 0.9911 0.9903 
A2 + B2  1.367 1.2970 1.4906 1.0026 1.2800 1.2867 0.8883 0.9432 

Skewness  -0.191*** -0.194*** -0.089 -0.082 0.015 0.012 0.752*** 0.743*** 
Kurtosis  5.830*** 5.774*** 5.457*** 5.346*** 6.089*** 6.073*** 13.33*** 12.92*** 
Q(10)  6.320 5.716 4.260 3.957 22.04** 22.05** 9.835 8.459 
Q2(10)  16.53* 13.82 15.26 13.75 28.46* 29.79* 3.232 1.719 

See Notes in Table 4.2; gst denote the degrees of freedom parameter of the GED distribution.  
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APPENDIX 4.B: Tests of Two versus Three Regimes  
 

The purpose of this appendix is to present some formal statistical tests and answer the 

question why a two-regime specification was preffered over a three regime specification. First, a 

three regime specification would have resulted in a rather large increase in the computational 

cost of the models, without necessarily a corresponding increase in model fit.  Currently, we 

estimate two-regime processes involving 12 parameters for the MRS-GARCH-X specification: 

2 for the mean equation, 8 for the variance (including the X term) and 2 for the transition 

probabilities. Increasing the number of regimes would result in the estimation of 9 additional 

parameters (1 mean, 4 variance and 4 transition probabilities parameters). The flexibility of the 

model would possibly increase, however, at the expense of over-parameterization. What is 

more, the assumption of a two-regime process is intuitively appealing since the data generating 

process is disaggregated into periods of high and low volatility. Haas et al. (2004b) estimate 

three regime models and find some signs of over parameterization in the exchange rate market. 

Sarno and Valente (2000) essentially show that the third regime only captures the effects of 

rolling over futures contracts: “Regimes 1 and 2 seem to characterize a very large fraction of 

the movements of the spot price and the futures price, with each regime being somewhat 

persistent but with a rather large number of switches over the sample…. Regime 3 is much less 

persistent and is likely to pick up outliers that do not fall within either Regime 1 or Regime 2”. 

 

Table 4.B.1: Model Selection Criteria  

  WTI Crude Oil Heating Oil Brent Crude Oil Gas oil 

Model 

No of 

param. LogLik SBIC LogLik SBIC LogLik SBIC LogLik SBIC 

Panel A: 2 Regime Models 

Mix-GARCH 9 -6,484.10 13,040.90 -6,481.15 13,035.00 -6,334.32 12,741.34 -6,277.11 12,626.92

MRS-GARCH 10 -6,490.66 13,062.10 -6,480.81 13,042.40 -6,328.62 12,738.03 -6,276.50 12,633.79

Mix-GARCH-X 11 -6,472.99 13,034.83 -6,470.00 13,028.86 -6,316.67 12,722.21 -6,262.57 12,614.00

MRS-GARCH-X 12 -6,471.88 13,040.71 -6,468.59 13,034.12 -6,316.56 12,730.06 -6,261.26 12,619.47

Panel B: 3 Regime Models 

Mix-GARCH 14 -6,473.82 13,060.74 -6,473.04 13,059.17 -6,316.67 12,746.43 -6,269.28 12,651.66

MRS-GARCH 18 -6,463.91 13,073.23 -6,468.37 13,082.15 -6,314.53 12,774.48 -6,258.88 12,663.17

Mix-GARCH-X 17 -6,455.91 13,049.14 -6,451.07 13,039.47 -6,300.65 12,738.64 -6,257.57 12,652.47

MRS-GARCH-X 21 -6,459.82 13,089.28 -6,452.93 13,075.50 -6,301.23 12,772.11 -6,242.33 12,654.30

See notes in Table 4.2; SBIC is calculated as 2LogLik+Nlog(T); T denotes the number of (in-sample) 
observations i.e. 3,224.    

 

Table 4.B.1 presents the log-likelihood function value along with the Bayesian 

Information Criterion (BIC) for two- and three-regime models. As expected, the Log-Likelihood 

is improved in the 3 regime case; however the BIC suggests that the 2 regime models are more 
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parsimonious. We also compare the three regime models in terms of likelihood ratio tests based 

on Davies (1987) upper bound test. These tests are constructed as 2(LogLikUNCON-LogLikCON), 

where LogLikUNCON and LogLikCON  represent the unconstrained (3 regime) and the constrained 

(2 regime) maximum likelihood, respectively, and are distributed as χ2(r) where r is the number 

of restrictions imposed. Due to the existence of nuisance parameters, LR statistics are adjusted 

according to the upper bound of Davies’ (1987) test. Under the assumption that the Log-

Likelihood function has a single peak i.e. Θ  = 2M1/2, where M is the LR statistic, and denoting 

the gamma function as Γ(·) the p-value of the modified LR statistic is given by: 

 

( ) ( /2)
2 ( 1)/2 /2 2

Pr ( ) exp
( / 2)

r
r Mr M M

r
χ −− −> +Θ Γ                        (4.B.1) 

 

Overall results are mixed and show that at the 1% significance level, in 8 cases the two-

regime model is preferred and in the remaining 8 cases the three-regime model is preferred. It is 

important to note here that there exist several econometric issues related to LR tests. Several 

studies have used Davies (1987) upper bound to test the number of regimes. However, mainly 

because the Markov model has a problem of nuisance parameters, it is possible that this test will 

only be valid if the null model is a linear model. In addition, the fact that innovations are 

heteroscedastic only complicates matters further. Therefore, Davies (1987) test seems to be 

rather weak because the distribution of the LR test probably differs from the χ2. Due to those 

issues, we additionally follow McLachlan (1987) and Rydén et al. (1998) and employ a 

bootstrap methodology, in order to estimate the p-values for the LR tests. As already mentioned, 

the main problem of performing standard Likelihood ratio tests in the context of regime 

switching models is the lack of identifiability in the presence of nuisance parameters and the 

fact that LR statistics do not follow the usual χ2 distribution. Therefore, we approximate the 

empirical distribution of the LR statistic using the stationary bootstrap of Politis and Romano 

(1994) to resample the original data. Given the Maximum Likelihood parameter estimates, we 

feed the model with the bootstrapped samples and each time we obtain a simulated LR statistic. 

The number of bootstrap replications is set to 1,000 with a smoothing parameter of q=0.1, 

following Sullivan et al. (1999). Table 4.B.2 presents the maximum values of the simulated LR 

statistic along with the corresponding p-values constructed as the number of times the simulated 

statistic exceeds the observed one. The null hypothesis is that the two regime model describes 

the data better. We can see that it is only in the case of the augmented GARCH models in the 
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heating oil market that the hypothesis of a two regime model can be rejected. In all the other 

cases p-values indicate that a two-regime model is preferred at 1% significance level.   

 

 

• LR stat is the Likelihood Ratio statistic calculated as 2(LogLik3REGIME-LogLik2REGIME); The 
first p-value is calculated assuming a χ2 distribution with degrees of freedom equal to the 
number of restrictions. Rejection of the null hypothesis implies that restrictions imposed 
are not valid.  • Davies upper Bound is a correction to the p-value of the LR stat to accommodate that fact 
that the test might not be valid due to nuisance parameters.  • Max Simulated LR stat is the maximum value after using 1,000 bootstrap simulations of 
the original data and feeding each model with the new data to obtain the LR statistic.  • P-value is calculated as the number of simulated LR statistics that exceed the observed 
statistic. 

 
 
 
 

 

 

 

 

 

 

 

Table 4.B.2: Likelihood Ratio Tests – 2 vs. 3 Regimes 

 

Mix- 

GARCH 

MRS- 

GARCH 

Mix- 

GARCH-X 

MRS- 

GARCH-X 

Panel A: WTI Crude Oil 

LR stat 20.55 53.49 34.16 24.13 

Davies LR Upper Bound {0.020} {0.000} {0.000} {0.077} 

Max simulated LR stat 46.10 69.04 44.51 57.13 

{p-value} {0.257} {0.021} {0.012} {0.244} 

Panel B: Heating Oil 
LR stat 16.22 24.87 37.87 31.32 

Davies LR Upper Bound {0.091} {0.033} {0.000} {0.007} 

Max simulated LR stat 58.73 61.69 42.21 46.48 

{p-value} {0.786} {0.527} {0.002} {0.002} 

Panel C: Brent Crude Oil 
LR stat 35.30 28.18 32.04 32.66 

Davies LR Upper Bound {0.000} {0.010} {0.000} {0.010} 

Max simulated LR stat 54.94 106.1 63.87 60.86 

{p-value} {0.046} {0.150} {0.300} {0.312} 

Panel D: Gas Oil 
LR stat 15.66 35.25 9.992 27.88 

Davies LR Upper Bound {0.110} {0.001} {0.968} {0.001} 

Max simulated LR stat 75.84 77.47 33.57 81.74 

{p-value} {0.747} {0.069} {0.249} {0.024} 
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APPENDIX 4.C: The Stationary Bootstrap 

 

Here we present the algorithm that is used to implement the stationary bootstrap 

resampling technique of Politis and Romano (1994). The description of the algorithm here 

follows from Appendix C of Sullivan et al. (1999). The stationary bootstrap is calculated as 

follows: Given the original sample of T observations, X(t), t = {1,…,T}, we start by selecting a 

“smoothing parameter”, q = qT, 0 < qT  ≤ 1, TqT → ∞ as T → ∞, and from the bootstrapped 

series, X(t)*, as follows: 

1. At t = 1, select X(1)* at random, independently and uniformly from {X(1),…,X(t)}. 

Say for instance that X(1)* is selected to be the Jth observation in the original series, 

X(1)* = X(J) where 1 ≤ J ≤ T. 

2. Increment t by 1. If t > T, then stop. Otherwise draw a standard uniform random 

variable U independently of all other random variables 

(a) if U < q, then select X(2)* at random, independently from {X(1),…,X(T)} 

(b) if U > q, then expand the block by setting X(2)* = X(J + 1), so that X(2)* is 

the next observation in the original series following X(J). If J + 1 > T, then 

reset J + 1 to 1, so that the block continues from the final observation in the 

sample. 

3. Repeat step 2 until we reach X(T)*. 

4. Repeat steps 1-3, 1000 times 

Therefore, the stationary bootstrap re-samples blocks of varying length from the 

original data, where the block length follows a geometric distribution, with mean block length 

1/q. In general, given that X(t)* is determined by the Jth observation X(J), in the original series, 

then X(t + 1)* will be equal to the next observation in the block X(J + 1) with probability 1-q 

and picked at random from the original observations with probability q. Regarding the choice of 

q, a large value of q is appropriate for data with little dependence, and a smaller value of q is 

appropriate for data that exhibit serial dependence. The value of q chosen in our experiments is 

0.1, corresponding to a mean block length of 10. This follows other studies in the literature, 

most notably Sullivan et al. (1999). Furthermore, we also perform sensitivity tests with different 

values of q, and find that the results presented in this section are not sensitive to the choice of q. 
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Chapter 5  

 

A Markov Regime Switching Approach for 

Hedging Petroleum Commodities  

 

5.1 Introduction 

Oil price sensitivity to political and economic events, high levels of petroleum price 

volatility and growing concerns with respect to the security of energy supplies, all stress out the 

need for the development of a reliable and efficient petroleum price risk management 

programme. Hedging energy market price exposures involves locking in prices and margins 

(e.g. refining profit margins) to reduce cash flow uncertainty. Although the risk matrix of 

energy companies is high dimensional, containing foreign exchange risk, political and country 

risk, credit risk, regulatory risk, operational risk, force majeure etc., this chapter deals with the 

most important of all, that is, energy price risk. 

Derivative markets allow market agents to reduce their price risk exposure. One 

parameter which is critical for the development of effective hedging strategies is the hedge ratio 

which provides the number of futures contracts to buy or sell for each unit of the underlying 

asset on which the hedger bears risk. Ederington (1979) derives hedge ratios that minimize the 

variance of the hedged portfolio, based on portfolio theory. Let ΔSt and ΔFt represent the price 

changes in spot and futures prices, respectively. Then, the minimum-variance hedge ratio is the 

ratio of the unconditional covariance between cash and futures price changes over the variance 

of futures price changes; this is equivalent to the slope coefficient, , in the following 

regression:  

 

2~ (0,t t t tS F iid )μ γ ε ε σΔ = + Δ +                                     (5.1) 

 

The estimated R2 of Eq. (5.1) represents the hedging effectiveness of the minimum 

variance hedge. However, the fact that many asset prices follow time-varying distributions 

suggests that the minimum variance hedge ratio should be time-varying (Kroner and Sultan, 

1993) which in turn raises concerns regarding the risk reduction properties of hedge ratios based 
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on Eq. (5.1). To address this issue, a number of studies apply multivariate GARCH (Generalised 

Autoregressive Conditional Heteroscedasticity) (Engle & Kroner, 1995) models and derive 

time-varying hedge ratios directly from the estimated second moments (see for instance, Kroner 

and Sultan, 1993 and Kavussanos and Nomikos, 2000). The consensus from these studies is that 

GARCH hedge ratios change as new information arrives and, on average, tend to outperform, in 

terms of risk reduction, constant hedge ratios derived from Eq. (5.1). However, these gains are 

market specific and vary across different contracts while, occasionally, the benefits in terms of 

risk reduction seem to be minimal (Lien and Tse, 2002). 

By allowing the volatility to switch stochastically between different processes under 

different market conditions, one may obtain more robust estimates of the conditional second 

moments and, as a result, more efficient hedge ratios compared to other methods such as 

GARCH models or OLS. For instance, as already mentioned in the previous chapter, a common 

feature of GARCH models is that they tend to impute a high degree of persistence to the 

conditional volatility which is generated by persistence in volatility regimes -in the presence of 

structural breaks (see Wilson et al., 1996 for oil futures) - rather than reflecting predictability 

(Lamoureux and Lastrapes, 1990; Fong and See, 2002, 2003). Alizadeh and Nomikos (2004b) 

examined the hedging effectiveness of FTSE-100 and S&P 500 stock index futures contracts, 

using MRS models for the estimation of dynamic hedge ratios. Allowing Eq. (5.1) to switch 

between two state processes, they provided evidence in favour of those models in terms of 

variance reduction and increase in utility both in- and out-of-sample. Similarly, Lee and Yoder 

(2007a) extend the univariate MRS-GARCH model of Gray (1996), to a state dependent 

multivariate GARCH model. They apply their model to the corn and nickel futures markets and 

they report higher, yet insignificant, variance reduction compared to OLS and single-regime 

GARCH hedging strategies. Similar results are obtained from the Lee and Yoder (2007b) MRS 

model of time varying correlation (MR-TVC-GARCH) as applied to the Nikkei 225 and Hang 

Seng index futures.  

This chapter investigates the hedging effectiveness of the MRS models for the WTI 

Crude Oil, Unleaded Gasoline and Heating Oil futures contracts traded on NYMEX. In doing 

so, it contributes to the existing literature in a number of ways. First, we extend the univariate 

MRS model in the hedging literature by introducing, for the first time, a Regime Switching 

Vector Error Correction Model (VECM) with GARCH error structure, which includes in the 

mean equation the cointegrating relationship between spot and futures prices. Empirical 

evidence suggests that if spot and futures prices are cointegrated, omitting the equilibrium 
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relationship will lead to misspecification problems by underestimating the true optimal hedge 

ratio (see for instance Kroner and Sultan, 1993, Ghosh, 1993 and Lien, 1996).  

Sarno and Valente (2000) provide a further dimension to the literature using a 

multivariate extension of the Markov Regime Switching (MRS) model proposed by Hamilton 

(1989) and Krolzig (1999). They find that the relationship between spot and futures is regime 

dependent and MRS models can explain this relationship better than simple linear models. 

Some preliminary evidence on the relationship between volatility and the long-run equilibrium 

of futures, as represented by the basis, was shown in the previous chapter; we saw that in the 

high volatility state, volatility movements occur mainly due to short-lived random shocks which 

are difficult to foresee whereas, in the low variance state, the dynamics of the volatilities are 

more predictable and deviations from the equilibrium appeared to have a certain degree of 

explanatory power on volatility. The inclusion of the error correction mechanism in the present 

chapter will enable us to examine whether the speed of adjustment of spot and futures prices to 

the long-run relationship changes across different regimes. The motivation for this stems from 

the fact that since the relationship between spot and futures prices changes over time, the 

adjustment to the equilibrium process should also be time-dependent. This in turn introduces an 

informative link between volatility and cointegration allowing for both time dependency and 

asymmetric behaviour across different states in the market. This chapter therefore is different 

from the Lee and Yoder (2007a) Switching BEKK study in the sense that our model also allows 

for switching in the error correction coefficients.  

In addition, we evaluate the hedging effectiveness of the proposed model using both in- 

and out-of-sample tests. The performance of the MRS hedge ratios is compared to that of 

alternative hedge ratios generated from a variety of models that have been proposed in the 

literature and is assessed in terms of variance reduction, increase in utility and reduction in the 

value-at-risk for a given position. This way we provide robust evidence on the performance of 

the proposed hedging strategy. Finally, in addition to providing evidence on the statistical 

significance of the hedging performance from the competing models using White’s (2000) 

Reality Check, we also address the issue of downside risk by examining whether the effects of 

mean-variance hedge ratios differ between long and short hedges.  

The structure of this chapter is as follows. Section 5.2 presents the minimum-variance 

hedge ratio methodology and demonstrates the MRS-BEKK model estimation procedure. In 

section 5.3, the data and their properties are described. Section 5.4 discusses the empirical 

results. This is followed by an evaluation of the hedging effectiveness of the proposed strategies 
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in section 5.5; Section 5.6 describes the reality check for data snooping bias. Section 5.7 

provides a note on downside risk and finally, conclusions are given in the last section. 

 

5.2 Markov Regime Switching GARCH Models & Hedging 

Market participants in futures markets choose a hedging strategy that reflects their 

individual goals and attitudes towards risk. The degree of hedging effectiveness in futures 

markets depends on the relative variation of spot and futures price changes as well as the hedge 

ratio. The hedge ratio that minimises the variance of the hedge portfolio is derived as the slope 

coefficient of spot price changes on futures price changes, as in Eq. (5.1). This can also be 

expressed as:  

 

 = 
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t
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ΔΔ

                      (5.2) 

 

Therefore, the minimum variance hedge ratio of Eq. (5.2) is the ratio of the 

unconditional covariance between cash and futures price changes over the variance of the 

futures price changes.1 Eq. (5.2) can also be extended to accommodate the conditional 

minimum-variance hedge ratio, 1,t, which is the time varying equivalent of the conventional 

hedge ratio 1, in Eq. (5.1). This is believed to be more efficient in reducing the risk of a hedged 

position, because it is updated as it responds to the arrival of new information in the market. To 

estimate this dynamic hedge ratio, we employ an MRS VECM for the conditional means of spot 

and futures returns with a multivariate GARCH error structure. The conditional means of spot 

and futures returns are specified as: 
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           (5.3) 

 

 
1 It can be shown that if expected futures returns are zero, i.e. if futures follow a martingale process 
Et(Ft+1) = Ft  then, the minimum variance hedge ratio of Eq. (5.2) is equivalent to the utility-maximizing 
hedge ratio. A proof of this result is available at Kroner and Sultan (1993). The martingale assumption of 
futures returns implies that the expected returns from the hedged portfolio are unaffected by the number 
of futures contracts held, so that risk minimization becomes equivalent to utility maximization. The 
assumption of zero expected returns is also in line with the descriptive statistics presented in Table 5.1, 
which show that the unconditional futures returns have a mean of zero.    
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where Xt  is the vector of spot and futures returns, Γi,st and Пst are 2x2 state 

dependent coefficient matrices measuring the short- and long-run adjustment of the system to 

changes in Xt, respectively, and εst,t 

( t tΔS ΔF= T)
( ), , , ,t tS s t F s tε ε= T is a vector of Gaussian white noise 

processes with time varying state dependent covariance matrix Hst,t.  

The following steps are involved in our analysis. First, assuming a single regime 

process, the existence of a stationary relationship between spot and futures prices, is 

investigated through the λmax and λtrace statistics (Johansen, 1988) which test for the rank of Π. 

The rank of Π in turn determines the number of cointegrating relationships. In particular, if Π 

has a reduced rank, that is rank (Π) = 1, then there exists one cointegrating vector and the 

coefficient matrix Π can be decomposed as Π = αβ′, where α and β′ are 2x1 vectors. Using this 

factorisation β′ represents the vector of cointegrating parameters and α is the vector of error 

correction coefficients measuring the speed of convergence to the long-run steady state. The 

significance of incorporating the cointegrating relationship into the statistical modelling of spot 

and futures prices is emphasised in studies such as Kroner and Sultan (1993), Ghosh (1993), 

Chou et al. (1996) and Lien (1996); hedge ratios and measures of hedging performance may 

change sharply when this relationship is unduly ignored from the model specification. 

The second step involves the introduction of Markovian regime shifts to the system. In 

order to reduce the computational burden, regime switching is allowed only through the error 

correction coefficients i.e. Πst = αstβ′. The unobserved state variable st={1, 2} follows a two-

state, first order Markov process with the following transition probability matrix: 

 

t t-1 11 t t-1 21 12 21

t t-1 12 t t-1 22 12 21

Pr(s  1|s   1)  p Pr(s  1|s   2)  p  1 - p  p
ˆ 

Pr(s  2|s   1)  p Pr(s  2|s   2)  p p 1 - p  

= = = = = =⎛ ⎞= =⎜ ⎟ ⎜ ⎟= = = = = = ⎝ ⎠⎝ ⎠P
⎛ ⎞

        (5.4)

       

where p12 gives the probability that state 1 will be followed by state 2, p22 gives the probability 

that there will be no change in the state of the market in the following period etc. These 

transition probabilities are assumed to remain constant between successive periods. 

Moreover, the conditional second moments of spot and futures returns are specified as 

a GARCH(1,1) model (Bollerslev,1986). However, in the regime-switching framework, the 

GARCH model in its basic form would be intractable because both the conditional variance and 

the conditional covariance would be a function of all past information. Hamilton and Susmel 

(1994) and Cai (1994) solve the path dependency problem by eliminating the GARCH term. 

The main drawback of their model is that many lags of ARCH terms are needed in order to 
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capture the volatility dynamics. Gray (1996) suggests a possible formulation for the conditional 

variance process by using the conditional expectation of the variance. Lee and Yoder (2007a) 

extend Gray’s model to the bivariate case and fully solve the path dependency problem by 

developing a similar collapsing procedure for the covariance.  Following the augmented Baba 

et al. (1987) (henceforth BEKK) representation (see Engle and Kroner, 1995), the GARCH-like 

formulation of the variance/covariance matrix is:  

 

1s − − −= + +T T T T

t,t st st st t 1 t st st t 1 stH ω ω A ε ε A Β H Β                            (5.5) 

 

for st = {1, 2}, where, ωst is a 2x2 lower triangular matrix of state dependent coefficients, Ast 

and Bst are 2x2 state dependent coefficient matrices restricted to be diagonal2. In this 

formulation, the state dependent conditional variances are a function of the lagged values of 

both the lagged aggregated variances and aggregated error terms (after integrating the 

unobserved state variable) and Ht,st is positive definite for all t. In order to integrate the state 

dependent variances and residuals we use Gray’s (1996) integrating method as adopted by Lee 

and Yoder (2007a). For instance, collapsing the variance and residuals of spot returns can be 

expressed as: 

 

22 2

, 1, ,1, ,1, 1, ,2, ,2, 1, ,1, 1, ,2,( ) (1 )( ) (1 )ss t t s t ss t t s t ss t t s t t s th h hπ μ π μ π μ π μ⎡ ⎤= + + − + − + −⎣ ⎦    (5.6) 

, 1, ,1, 1,(1 ) ,2,s t t t s t t sSε π μ π μ⎡= Δ − + −⎣ t
⎤⎦                                                   (5.7) 

 

where hss,t is the aggregate spot returns’ variance which is an element of the state independent 

variance matrix Ht and hss,st,t is the state dependent spot returns’ variance for st = {1, 2}, an 

element of the state dependent variance matrix Ht,st. μs,st,t is the state dependent mean equation 

of spot price changes, and tst ,π  the conditional regime probability that the process will be in a 

given state at a point in time.  

Similar to the variance, the state dependent conditional covariance is a function of 

lagged aggregated covariance and lagged cross products of the aggregated error terms.  

Denoting hsf,t the aggregate and hsf,st,t the state dependent covariance, the unobserved state 

variable is integrated out as follows:  

                                                 
2 Coefficient matrices A and B are restricted to be diagonal for a more parsimonious representation of the 
conditional variance (see Bollerslev et al. 1994). For a discussion of the properties of this model and 
alternative representations see also Engle and Kroner (1995). 
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, 1, ,1, ,1, ,1, 1, ,2, ,2, ,2, 1, ,1, 1, ,2, 1, ,1, 1, ,2,(1 ) (1 ) (1 )sf t t s t f t sf t t s t f t sf t t s t t s t t f t t f th h hπ μ μ π μ μ π μ π μ π μ π μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= + + − + − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦       (5.8) 

 

Under the specifications of Eq. (5.5), (5.6), (5.7) and (5.8) the MRS-BEKK model 

becomes path-independent because the variance/covariance matrix depends on the current 

regime alone and not on its entire history. Consequently, the Markov property for a first order 

Markov process is not violated and we can allow for a GARCH error structure. Finally, 

assuming that the state dependent residuals follow a multivariate normal distribution with mean 

zero and time varying state dependent covariance matrix Ht.st, the likelihood function for the 

entire sample is formed as a mixture of the probability distribution of the state variables as: 

 

1 1
1, 2,2 2

1 1
( ; ) exp exp

2 2 2 2

t t
f

π π
π π

− −⎛ ⎞ ⎛= − + −⎜ ⎟ ⎜⎝ ⎠ ⎝
T -1 T -1

t 1,t 1,t 1,t 1,t 2,t 2,t 2,t 2,t
X θ H ε H ε H ε H ε ⎞⎟⎠                   (5.9) 

∑== T

t

fL
1

);(log)( θXθ t
              (5.10) 

 

where θ  is the vector of parameters to be estimated and εt,st  and Ht,st are defined in Eq. (5.3) 

and (5.5), respectively. L(θ) can then be maximised using numerical optimization methods, 

subject to the constraints that π1,t + π2,t = 1 and 0 ≤  π1,t , π2,t ≤  1.  

Using the MRS specifications outlined above, the second moments of spot and futures 

returns are conditioned on the information set available at time t -1. Based on Eq. (5.2) the 

estimated hedge ratio at time t given all the available information up to t-1 can be written as: 

 

1,

1,

1

*

−
−

− =Ω
tff

tsf

tt
h

hγ                                                         (5.11) 

 

where hsf,t-1 and hff,t-1 are calculated from the collapsing procedure as presented in Eq. (5.8) and 

(5.6), respectively.   

Estimating the optimal hedge ratio using the MRS-BEKK model outlined above further 

allows for structural changes in the GARCH processes and overcomes some of the limitations 

that traditional GARCH models exhibit. First, by allowing the volatility equation to switch 

across different states, we relax the assumption of constant parameters throughout the 

estimation period thus improving the ‘fit’ of our model to the data. Second, the Markovian 

formulation improves on the autoregressive nature of GARCH-based hedge ratios and ensures a 

better estimate of the optimal hedge ratio by additionally conditioning on the state that the 

 119



              

 

             Chapter 5: A Markov Regime Switching Approach for Hedging Petroleum Commodities 

 

  

 120

market is in. Finally, by accounting for regime switching, the high volatility persistence 

imposed by single regime models decreases and the forecasting performance is expected to be 

better (see for example Lamoureux and Lastrapes, 1990; Cai, 1994 and Dueker, 1997). 

Consequently, one expects MRS hedge ratios estimated by the variance/covariance matrix to 

outperform the conventional hedging strategies.  

 

5.3 Description of the Data & Preliminary Analysis 

The data set for this study comprises weekly spot and futures prices for three energy 

commodities traded on NYMEX: WTI crude oil, Unleaded Gasoline and Heating oil, covering 

the period January 23, 1991 to December 27, 2006, resulting 832 weekly observations. Spot and 

futures prices are Wednesday prices; when a holiday occurs on Wednesday, Tuesday’s 

observation is used in its place. The above dataset was obtained from Datastream and the 

Energy Information Administration (US Department of Energy) along with volume and open 

interest data. Data for the period January 23, 1991 to June 15, 2005 (752 observations) are used 

for the in-sample analysis; out-of-sample analysis is carried out using the remaining data for the 

period June 22, 2005 to December 27, 2006 (80 observations). In order to deal with thin trading 

and expiration effects, it is assumed that the hedger will switch contracts the next business day 

after trading activity has shifted from the nearest to the second nearest to maturity contract. 

Consequently, in all cases the nearest contract available is chosen as the appropriate hedging 

contract, and rolling over to the front month contract occurs the business day following the day 

that both trading volume and open interest exceed that of the nearest to expiry contract3.  

Having constructed a continuous time series for the futures contracts prices, spot and 

futures prices are then transformed into natural logarithms. Summary statistics of the levels and 

return series are presented in Table 5.1, Panel A. Jarque-Bera (1980) tests indicate significant 

departures from normality for all the commodities and for both spot and futures returns. The 

Ljung-Box (1978) Q statistic on the first six lags of the sample autocorrelation function is 

significant for all spot/futures   prices and spot returns revealing that serial correlation is 

present. Engle’s (1982) ARCH test, carried out as the Ljung-Box Q statistic on the squared 

series, indicates the existence of heteroscedasticity for all the return series, with the exception of 

WTI futures. Finally, Phillips and Perron (1988) unit root tests on the levels and first differences 

indicate that spot and futures prices are first difference stationary. 

                                                 
3 For instance the November 2002 WTI futures contract expires on October, 22. The rollover to the 
December 2002 contract takes place on October 15 because open interest crossover between the two 
nearby contracts occurred on October 10 while volume crossover on October, 14. 



 

  

 121

Table 5.1: Summary Statistics, Unit Root & Cointegration Tests for Spot and Futures Prices of WTI Crude Oil, Unleaded Gasoline and Heating Oil # 2 

Panel A: Descriptive Statistics 

  WTI light sweet crude oil   Unleaded Gasoline   Heating Oil # 2 

 Log Levels   % Returns  Log Levels   % Returns  Log Levels   % Returns 

  Spot Futures   Spot Futures   Spot Futures   Spot Futures   Spot    Futures   Spot Futures 
Mean (Weekly) 3.1329 3.1313  0.0723 0.0807  -0.4211 -0.3894  0.0762 0.0862  -0.4606 -0.4628  0.0699 0.0759 
Vol    (Weekly) 0.3220 0.3209  4.7890 4.3665  0.3180 0.3127  5.7356 4.8695  0.3284 0.3216  5.2694 4.4268 
Skew 0.5997 0.6315  -0.6110 -0.9638  0.4409 0.5948  -0.1889 -0.4207  0.6589 0.7173  0.2695 -0.4255 
Kurt 0.1872 0.2357  2.8064 5.2401  0.0371 0.0805  1.0019 2.2969  0.4183 0.5468  8.5998 2.5458 
J-B 46.169 51.727  293.57 976.79  24.405 44.551  35.924 189.48  59.905 73.863  2326.4 225.77 
Q(6) 4267.4 4289.6  15.684 5.5913  4084.5 4183.3  23.411 10.653  4167.6 4264.5  23.069 8.6217 
Q2(6) 4276.8 4297.5  23.921 7.7469  3748.9 3889.1  24.902 14.733  4017.9 4070.2  110.11 45.342 
PP  -1.0591 -0.8972  -29.405 -28.550  -1.3475 -1.0522  -31.230 -28.697  -1.3995 -0.9490  -26.117 -27.353 

 

Panel B: Cointegration Tests 

    Statistic  Normalized CV LR test  Restricted  

 Lags H0:  λmax test λtrace test  ( 1   β1   β0) H0: β1 = 1  CV 

WTI light sweet crude oil 1 r=0  419.73 420.90  (1   -1.002   0.543) 1.2190  (1   -1   0.162) 

  r=1  1.1697 1.1697   [0.270]   

Unleaded Gasoline 1 r=0  71.212 73.339  (1   -1.004   2.982) 0.0711  (1   -1    3.173) 

  r=1  2.1270 2.1270   [0.790]   

Heating oil #2  1 r=0  101.44 102.55  (1   -1.014   -0.904) 1.2422   (1   -1   -0.237) 

  r=1  1.1091 1.1091   [0.265]   

• Sample period is from January 23, 1991 to June 15, 2005 (752 weekly observations). • J-B is the Bera and Jarque (1980) test for Normality. The test follows a χ2 distribution with 2 degrees of freedom. • Q(6) and Q2(6) are Ljung-Box (1976) tests for 6th order autocorrelation in the level and squared series, respectively. The statistics are χ2(6) distributed. • PP is the Phillips and Perron (1988) unit root test. 1%, 5% and 10% critical values for this test are -3.4388, -2.8652 and -2.5689, respectively.  • Lags is the lag length of the unrestricted VAR model in levels. A VAR with p lags of the dependent variable can be reparameterized in a VECM with p-1 lags of first differences of the dependent 
variable plus the error-correction term. Lag length is based on Schwarz (1978) Information Criterion and the autocorrelation function of the estimated residuals from the VECM model.   • λmax tests the null hypothesis of r cointegrating vectors against the alternative of r+1. The 5% critical values for H0: r=0 and H0: r=1 are 15.67 and 9.24, respectively. λtrace tests the null hypothesis that 
there are at most r cointegrating vectors against the alternative that the number of cointegrating vectors is greater than r. The 5% critical values for H0: r=0 and H0: r=1 are 19.96 and 9.24, respectively. 
Critical values obtained from Osterwald-Lenum (1992). 

• The LR tests the hypothesis that the cointegrating vector (β2 β1 β0) is  (1 -1 β0). The statistic is–T [ln(1 - λ̂ *
1) – ln(1 - λ̂ 1)] where *

1 and 1 denote the largest eigenvalues of the restricted and the 

unrestricted models, respectively. The statistic follows a χ2(1) distribution Figures in [ ] represent the corresponding p-values.  

λ̂ λ̂
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Next, cointegration techniques are used to investigate the existence of a long run 

relationship between spot and futures price series. Johansen (1988) cointegration tests, 

presented in Table 5.1, Panel B, indicate that all physical commodity prices stand in a long-run 

relationship with the corresponding futures contracts. The normalized coefficient estimates of 

the cointegrating vector β′ = (β2 β1  β0) represent this long-run relationship between the series. 

Furthermore the results of likelihood ratio tests on the hypothesis that there is a one-to-one 

relationship between spot and futures prices, that is that the cointegrating vector is the lagged 

basis: H0: β′ = (1, -1, β0), show that the null hypothesis cannot be rejected at conventional 

significant levels. Therefore, we use the restricted cointegrating vectors presented in Table 5.1, 

in the joint estimation of the conditional mean and the conditional variance.    

 

5.4 Empirical Results 

MRS models are estimated assuming two states (see also Chapter 4, Appendix 4.B). 

The choice of a two-state process is motivated by the fact that this model captures the dynamics 

of the spot and futures returns in a more efficient way and is intuitively appealing since these 

two states can be associated with periods of low and high volatility. On the other hand, Sarno 

and Valente (2000) use a three-state process to model spot-futures relationship in stock indices; 

nonetheless, in their study the third state seems to capture only jumps in the futures prices at the 

time of switching between contracts of different maturities and does not reflect fundamental 

changes in market conditions. Table 5.2 presents the single and two regime GARCH models.  

Several observations merit attention. First, looking at the estimated MRS-BEKK 

models in Table 5.2, in the low variance regime (st=1), the speed of adjustment of spot and 

futures prices to their long-run relationship, measured by the αS,st=1 and αF,st=1 estimated 

coefficients respectively, are all negative. In the spot equation they are consistently negative and 

significant whereas in the futures equation they are either insignificant (Unleaded Gasoline) or 

of less magnitude than the coefficients of the spot equation (WTI and Heating oil). This means 

that in the low variance regime the estimated error correction coefficients are in accordance with 

convergence towards a long-run equilibrium relationship; that is, in response to a positive 

deviation at period t-1 (i.e. St-1> Ft -1), the spot price in the next period will decrease while the 

futures price will either be unresponsive or less responsive than spot prices thus restoring the 

long-run equilibrium. This can be attributed to the fact that petroleum spot prices are usually 

more sensitive to news since new information is automatically absorbed in the cash markets 

whereas in the futures markets the speed of adjustment to the available information is a function 

of several factors like maturity and liquidity.  
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Table 5.2: Estimates of Markov Regime Switching BEKK Hedge Ratios for NYMEX Energy Commodities  
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*, ** and *** indicate significance at 1%, 5% and 10% respectively. Figures in ( ) are the estimated standard errors; See also notes in Table 5.1. 

 West Texas Intermediate Unleaded Gasoline Heating Oil # 2 

 GARCH (BEKK) MRS-BEKK GARCH (BEKK) MRS-BEKK GARCH (BEKK) MRS-BEKK 
Mean Equation         
αS,st=1 -0.8715 (0.144)

***
 -1.2146    (0.014)

***
 -0.2321 (0.034)

***
 -0.1765 (0.075)

**
 -0.3269 (0.111)

***
 -0.1958 (0.021)

***
 

αF,st=1 0.1151 (0.132) -0.2259    (0.004)
***

 -0.0760 (0.030)
**

 -0.0658 (0.051) -0.1538 (0.084)
*
 -0.0359 (0.010)

***
 

             
αS,st=2   -0.1671    (0.282)   -0.2923 (0.146)

**
   -0.0337 (0.181) 

αF,st=2   0.2588    (0.300)   -0.0828 (0.102)   -0.4658 (0.127)
***

 

Variance Equation         ω11,st=1 1.8627 (0.271)
***

 3.8193     (0.145)
***

 2.7691 (0.500)
***

 3.3327     (0.140)
***

 2.5436 (0.372)
***

 2.2771 (0.137)
***

 ω12,st=1 2.2698 (0.270)
***

 3.8381     (0.145)
***

 1.5910 (0.227)
***

 3.1188     (0.135)
***

 2.4436 (0.326)
***

 2.0762 (0.144)
***

 ω22,st=1 2.7x10
-6 

(0.062) -0.3307     (0.035)
***

 0.5541 (0.481)   3.0x10
-6

     (0.043)  1.6x10
-6 

(0.053) 0.3472 (0.006)
***

 

11,st=1 0.3084 (0.155)
**

 -0.0938     (0.006)
***

 0.3073 (0.039)
***

 0.1916 (0.125) 0.3636 (0.047)
***

 0.2686 (0.015)
***

 

22,st=1 0.2453 (0.260) -0.0802     (0.005)
***

 0.2695 (0.045)
***

 0.1714 (0.100)
*
 0.1626 (0.039)

*
 0.2251 (0.007)

***
 

11,st=1 0.8686 (0.042)
***

  1.0x10
-5

    (0.017) 0.8137 (0.059)
***

 0.4477 (0.047)
***

 0.8010 (0.060)
***

 0.7549 (0.034)
***

 

22,st=1 0.8210 (0.077)
***

  3.2x10
-6

    (0.011) 0.8976 (0.028)
***

 0.3242 (0.083)
***

 0.8291 (0.085)
***

 0.7978 (0.032)
***

 

      ω11,st=2   5.2067 (0.781)
***

  4.8480 (0.419)
***

   9.4070 (0.607)
***

 ω12,st=2   4.2802 (0.818)
***

  3.4792 (0.402)
***

   7.7234 (0.791)
***

 ω22,st=2  -1.7314 (0.347)
***

  2.8075 (0.245)
***

   1.8x10
-4 

(0.986) 

11,st=2  0.2766 (0.107)
***

  -0.3345 (0.165)
**

   0.3544 (0.202)
*
 

22,st=2  0.6196 (0.145)
***

  -0.4611 (0.178)
***

   -0.2848 (0.137)
**

 

11,st=2  0.5259 (0.247)
**

  0.9423 (0.059)
**

   0.9350 (0.077)
***

 

22,st=2  0.2783 (0.183)  0.8873 (0.092)   0.2719 (0.164)
*
 

Transition Probabilities
  

   
p12  0.2563 (0.029)

***
  0.3810 (0.070)

***
   0.0160 (0.005)

***
 

p21  0.7407 (0.049)
***

  0.7001 (0.050)
***

   0.6011 (0.074)
***

 

Residuals Diagnostics  

LogLik -3454.8 +390.2 -4055.3 +129.7 -3577.1 +223.7 
 Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures 

SBIC -3484.6 -3583.7 +353.8 +512.5 -4085.1 -4061.9 +93.3 +129.7 -3606.9 -3461.5 +187.3 +101.5 
Skewness -0.448

***
   -0.763

***
 -0.085 -0.151

*
 -0.204

**
   -0.282

***
 -0.061 -0.063 0.261

***
 0.269

***
  -0.077 -0.028 

Kurtosis 2.160
***

   3.458
***

 -0.075    0.399
**

 0.868
***

   1.427
***

    -0.654
***

    -0.599
***

 2.810
***

 8.599
***

  -0.192 -0.047 
J-B 171.4

***
   447.6

***
 1.084    7.867

**
 28.82

***
   73.75

***
     13.85

***
    11.75

***
 256.0

***
 2326

***
  1.898  0.168 

Q(6) 3.032 3.222 5.795 4.436 16.44  
**

8.496 9.998 9.592 9.706 7.544  7.076   8.873 
Q

2
(6) 6.893 4.072  14.40

**
   15.17

**
 15.78

**
 5.601 7.152 4.552 10.79

*
 12.44

*
    20.78

***
      21.59

***
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Second, in the high variance regime, the same condition holds only in the Gasoline 

market. In the WTI market, both error correction coefficients are not significant. In the Heating 

oil market the results show that in response to a positive deviation the spot price in the next 

period will remain unresponsive while the futures price will decrease, leading thus to the 

differential between spot and futures prices to further deviate, which in turn explains the high 

variance state. This diverse behaviour that arises from assuming two states in the market is not 

reflected in the single regime VECM GARCH model where the error correction estimates are all 

in accordance with convergence towards the long-run equilibrium relationship, at 1% 

significance level. This suggests that the dynamics of the spot-futures relationship vary across 

the two states of the market; in other words, the adjustment process undergoes regime shifts and 

does not behave uniformly to shocks to equilibrium across different states but it is rather 

dependent on the state of volatility (high /low variance state). 

Turning next to the conditional variance equation estimates, we can note an evident 

association between the degree of persistence (A2
ii,st +B 

2
ii,st, for st =1, 2) and the state of the 

market; as expected, a high variance state is associated with high persistence in the variance and 

vice versa. This is in line with other studies in the literature such as Fong and See (2002) in the 

oil futures market. The only exception is the Heating oil market, where the low futures variance 

state incorporates longer memory; this can be attributed to the fact that the high variance regime 

occurs rarely, particularly at points when we have upward jumps of the basis. Visual inspection 

of the futures and spot prices shows that these jumps are caused solely by spot price spikes. As a 

result, the low variance state is dominant throughout the sample period and occasional spot 

price jumps are captured by the model as the high variance state. We can also note that overall 

volatility persistence is reduced compared to the single-regime GARCH model. In particular, 

the “low” state-dependent conditional variance is less sensitive to shocks which in turn have a 

short-lasting effect. On the other hand, in the high variance state volatility persistence is lower 

than the single regime GARCH model only in the WTI market4.  

From the estimated transition probabilities p12 and p21 we can calculate the duration of 

being in each regime5. For instance in the case of WTI crude oil market the transition 

probabilities of MRS-BEKK (Table 5.2) are estimated as p12 = 25.6% and p21 = 74.1%; these 

                                                 

1

4 We also estimate the MRS-BEKK model using time-varying transition probabilities, conditioned on 
inventory levels. The results indicated that neither the variation in transition probabilities nor the 
improvement in the log-likelihood function were significant. The variances of the hedged portfolios did 
not offer any significant improvement in terms of variance reduction. See Appendix 5.A for some 
estimation results. 
5 The average expected duration of being in state 1 as suggested by Hamilton (1989) can be calculated as:

    1 1

11 11 11 12

1

(1 ) (1 ) ( )i

i

ip p p p
∞ − − −
=
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indicate that the average expected duration of being in regime 1 is about 4 (=1/0.256) weeks 

compared to 1.3 (=1/0.741) weeks in regime 2. Thus, high variance states are less stable and are 

characterized by shorter duration compared to low variance states.  
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Figure 5.1: Smooth Regime Probabilities for WTI Crude Oil: 

Probability of being in the Low Variance State. 
 

 

The “smooth” regime probability for the WTI crude oil market derived from the 

estimated MRS-BEKK model is presented in Figure 5.16. This indicates the likelihood of being 

in state 1 (low variance state). We can see that state 1 is prevailing whereas the high variance 

state is short-lasting. For the WTI market until 1995 the low variance state can be attributed to 

the restoration of Kuwait’s production after the Gulf war and overproduction from the OPEC 

countries, in combination with relatively weak demand. The low variance state is then disturbed 

by bad weather conditions in the US and Europe as well as by tension in the Middle East and 

the Asian crisis in 1998. Similar results emerge when we consider the Unleaded Gasoline and 

Heating oil markets (graphs are not presented here). In the Unleaded Gasoline market for 

instance, the low variance regime is less persistent compared to WTI. This is expected since 

backwardation and supply shortages for light distillates are more frequent, due to constrained 

refining capacity and the fact that the level of production is also dependent on the quality of the 

                                                 
6Based upon the estimated parameter vector , estimated from data spanning the period t=1 to T, three 

estimates about the unobserved state variable st, can be made. The first is the estimated probability that 
the unobserved state variable at time t equals 1 given the observations 1 to t < T and is termed the filtered 
probability about st. The second is the estimated probability that the unobserved state at time t equals 1 
given the entire sample of observations from 1 to T, termed the “smooth” probability. The third is the 
estimated probability that the unobserved state variable at time T+1 equals 1 given observations 1 to T 
and is termed the expected or predicted probability about st. See Chapter 3, section 3.4.1 and Hamilton 
(1994) for further details.  
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crude. Even in periods of crude oil oversupply, constrained refining capacity may disturb the 

supply/demand dynamics of the refined products. For the heating oil market, on the other hand, 

the regimes seem to be more ‘distinct’ with the low variance state being dominant.  

Finally, diagnostic tests of all models are also presented at the bottom of Table 5.3. 

Tests on the standardised residuals, εt/(ht)
1/2, and standardised squared residuals ε2

t/(ht), indicate 

that all models are well specified with no signs of autocorrelation.  

 

MRS_BEKK_HR VECM_GARCH_HR CONSTANT_OLS
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5.5 Time Varying Hedge Ratios & Hedging Effectiveness 

Following estimation of the MRS-BEKK models, smooth probability estimates are used 

to calculate an in-sample state-dependent hedge ratio for each market using Eq. (5.11), after 

integrating out the unobserved variable st as described in Eq. (5.6), (5.7) and (5.8). The in-

sample OLS, GARCH and MRS-BEKK hedge ratios for the WTI market are presented in 

Figure 5.2. The variation in both time-varying hedge ratios indicates that the portfolio of spot 

and futures contracts must be revised frequently.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Constant OLS, VECM-GARCH and MRS: 

BEKK Hedge Ratios for WTI Crude Oil. 

 

 

 

Figure 5.3 presents the basis for the crude oil market. We can note that when the basis is 

close to zero the market is in the low variance state (state 1). During these periods the hedge 
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ratio is higher and less volatile7. Similarly, when the market is in the high variance state (state 

2) the basis is further away from zero. This indicates that there is a positive relationship between 

the volatility and the magnitude of the basis; this is consistent with the findings of other studies 

such as Lee (1994), Choudhry (1997) and Kavussanos and Nomikos (2000). 
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Figure 5.3: Basis for  WTI Crude Oil. 
 

To formally assess the performance of these hedges, portfolios implied by the computed 

hedge ratios each week are constructed and the variance of returns of these portfolios over the 

sample is calculated as: 

 

Var ( )                                          (5.12)  ttt FS Δ−Δ *γ
 

where are the computed hedge ratios. To evaluate the hedging performance of the MRS 

models, we estimate hedge ratios based on the naïve model - by taking a futures position which 

exactly offsets the spot position (i.e. = 1), on the OLS model of Eq. (5.1), on a VECM (Engle 

& Granger, 1987; Johansen, 1988), as well as time varying hedge ratios generated from a 

VECM with GARCH error structure (denoted as GARCH). For benchmarking purposes, we 

also consider the use of univariate MRS models based on Eq. (5.1)

*

tγ
*

tγ

8.  

                                                 
7 The relationship between the MRS-BEKK hedge ratio and the basis is also investigated by regressing 
the hedge ratio on the absolute value of the basis. The results indicate that the slope coefficient is 
significantly negative i.e. the more the basis deviates from zero (high variance), the lower the hedge ratio.  
8 The univariate MRS specification, yields two hedge ratios, 1,1 and 1,2, which represent the minimum 

al  rvariance hedge ratios, given the state of the market. The optim  hedge atio at any point in time can be 
expressed as: 

2,1,11,1,1

* )1( γπγπγ ttt −+= , where π1,t and π2,t = 1 - π1,t the regime probability of the market 
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The in-sample period is from January 23, 1991 to June 15, 2005. The in-sample 

portfolio variances for the three energy commodities are presented in Table 5.3, Panel A. The 

same table also presents the incremental variance improvement of the MRS-BEKK model 

against the other models. It can be seen that the MRS hedging strategies outperform the other 

models in terms of in-sample variance reduction (Panel A). Among the MRS models, the MRS-

BEKK is the best model for both the WTI (3.8% - 8.4% improvement) and Heating oil markets 

(3.9% - 16.8% improvement); in the Unleaded Gasoline market the univariate MRS delivers 

better variance reduction compared to alternative strategies. Nevertheless, MRS-BEKK is the 

second best strategy (0.9%-4.6% improvement). 

The in-sample performance of the alternative hedging strategies gives an indication of 

their historical performance. Since investors are more concerned with how well they can hedge 

their positions in the future, we mainly focus on the out of sample performance of the 

competing strategies. The out-of-sample period spans from June 22, 2005 to December 27, 2006 

(1.5 years) and the assessment is implemented by estimating the models recursively, using only 

data up to the specific date. 

In the case of the MRS-BEKK models, hedge ratios at time t + 1 are obtained using a 

three step procedure. First, estimates of the transition matrix at time t, tP , and the estimated 

smooth regime probabilities at time t, tts ,1
ˆ)1Pr( π== and tts ,2

ˆ)2Pr( π==  are used to 

forecast regime probabilities at time  t+1, that is,  and  : 
e

t 1,1 +π e

t 1,2 +π
 

( ) ( ) ⎟⎟⎠
⎞

⎜⎜⎝
⎛=++

tt

tt

tt

e

t

e

t
PP

PP

,22,21

,12,11

,2,11,21,1 ˆˆ

ˆˆ
ˆˆ ππππ                                       (5.13) 

 

Second, we perform one step ahead forecasts of both the variance-covariance of Eq. 

(5.5) and fitted state-dependent mean equations of Eq. (5.3). Third, by using the Eq. (5.6), (5.7) 

and (5.8) we integrate the state variable st at each step of the recursive estimation in order to 

obtain the one step ahead forecast of the optimal hedge ratio at time t+1 is computed using Eq. 

(5.11). The next week (June 29, 2005) the models are re-estimated with the new observation 

included in the dataset, and this exercise is repeated for every week in the out-of-sample period. 

For GARCH-based hedges, the model is re-estimated each week during the out-of-sample 

period and hedge ratios are generated by one-step ahead forecasts of the time varying variance-

                                                                                                                                               
being in state 1 and 2, respectively, at any point in time with 0 ≤ π1,t ,π2,t ≤ 1 (see Alizadeh and 
Nomikos, 2004b).  
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covariance matrix. In the case of VECM a different hedge ratio is obtained each week by re-

estimating the model. Finally, for the univariate-based MRS hedges the one-step ahead optimal

hedge ratio at time t+1, is calculated as the mean hedge ratio weighted by the forecasts of the 

regime probabilities.  

Table 5.3, Panel B

 

 displays the results from the out-of-sample performance of the 

competing hedging strategies. The sa

tic hedges since they 

require frequent updatin

1 1 1( ) ( ) ( )t t t t t t

g and rebalancing of the hedged portfolio. Consequently, hedging 

effectiveness is more appropriately assessed by considering the economic benefits from hedging 

using the hedger’s utility function as in Kroner and Sultan (1993), and Lafuente and Novales 

(2003). If η is the degree of risk aversion (η > 0) of the individual investor and 1trp +  represents 

the returns from the hedged portfolio i.e. ΔSt+1 -γ*
t+1ΔFt+1, the relevant utility function employed 

is: 

 

me table also presents the incremental variance 

improvement of the MRS-BEKK model against the other models. Looking at the results for 

both WTI and Unleaded Gasoline market, the highest reduction in the out-of-sample portfolio 

variance is achieved by the MRS-BEKK model. Compared to the OLS hedge the gain in 

variance reduction is 6.3% for WTI and 14.7% for Unleaded Gasoline. Regarding the Heating 

oil market, the greatest variance reduction is provided by the naive hedge whereas the MRS-

BEKK model achieves almost the same level of variance reduction as the OLS hedge ratio. One 

possible explanation for this surprising result may be the fact that occasionally MRS models do 

not provide accurate forecasts on an out-of-sample basis. This may be due to parameter 

instability between in-sample and out-of-sample periods as well as uncertainty regarding the 

unobserved regime, as mentioned in Engel (1994) and Marsh (2000). Another reason may be 

attributed to the fact that in the specific market extreme spot price spikes are identified as the 

high variance state, making the latter short-lasting and rare.    

Dynamic hedging strategies are more costly to implement than sta

E U rp E rp Var rpη+ + += −                           (5.14) 
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Table 5.3: Hedging Effectiveness of MRS Against the Constant and Alternative Time-Varying Hedge Ratio Models 

• The in-sample period is from January 23, 1993 to June 15, 2005 (752 observations) whereas the out-of-sample period is from June 22, 2005 to December 27, 2006 (80 
observations).  

 WTI light sweet Crude Oil Unleaded Gasoline Heating Oil #2 

 Variance 

Variance  
Improvement  

of MRSBEKK Utility 
   VaR(5%)

 

  ( $)  Variance 

Variance  
Improvement  

of MRSBEKK Utility 
   VaR(5%)

 

  ( $)  Variance 

Variance  
Improvement  

of MRSBEKK Utility 
   VaR(5%)

 

  ( $) 

Panel A: In- sample Hedging Effectiveness 

Unhedged 22.935  83.53% -91.740 78,772.9  32.897 74.97% -131.59 94,342.1  27.767 68.95% -111.07 86,674.6 

Naïve 3.9277 3.82% -15.711 32,598.4  8.3128 0.94% -33.251 47,424.3  9.0238 4.45% -36.095 49,410.8 

Constant 3.9276 3.81% -15.710 32,598.0  8.3048 0.85% -33.219 47,401.5  9.0145 4.35% -36.058 49,385.3 

VECM 3.9323 3.93% -15.729 32,617.5  8.3073 0.88% -33.229 47,408.6  9.0181 4.39% -36.072 49,395.2 

GARCH 4.1249 8.42% -16.500 33,406.7  8.6316 4.60% -34.526 48,325.1  10.362 16.79% -41.448 52,947.9 

MRS 3.9273 3.81% -15.709 32,596.7    8.1256 -1.34% -32.502  46,887.3  8.9699 3.88% -35.880 49,263.0 

MRS-BEKK  3.7778 - -15.111  31,970.3  8.2345 - -32.938 47,200.4  8.6221 -  -34.488 48,298.5 

Panel B: Out-of- sample Hedging Effectiveness 

Unhedged 14.286    88.48%*** -57.144 62,170.2  71.163      82.25%*** -284.65 138,756.8  22.869     89.92%*** -91.476 78,659.4 

Naïve 1.7484 5.89%** -6.994 21,749.4  15.141 16.59%*** -60.564 64,003.6  2.2943 -0.48% -9.177   24,914.5 

Constant 1.7550 6.25%** -7.020 21,790.4  14.796 14.65%*** -59.184 63,270.2  2.3052 -0.01% -9.220 24,973.6 

VECM 1.7420 5.55%** -6.968 21,709.6  14.777 14.54%*** -59.108 63,229.6  2.3160 0.46% -9.264 25,032.1 

GARCH 1.7741 7.25%** -7.096 21,908.7  13.710    6.38%*** -53.956 60,904.0  2.4467 5.78% -9.787 25,728.7 

MRS 1.7475 5.84%** -6.990 21,743.8  14.284 11.59%*** -57.136 62,165.9  2.3331 1.19% -9.332 25,124.3 
MRS-BEKK 1.6454 - -6.582 21,099.1  12.629 - -50.516  58,453.7  2.3054 - -9.222 24,974.7 

• Variance denotes the variance of the hedged portfolio. Note that the variance corresponds to logarithmic returns multiplied by 100 [Eq. (5.12)]. Figures in Bold denote 
the best performing model for each criterion.   • Variance Improvement of MRSBEKK measures the incremental variance reduction of the MRS-BEKK model versus the other models. This is estimated using the 
formula: [Var(Modeli) – Var(MRS-BEKK)]/Var(Modeli). • Utility is the average weekly utility for an investor with a mean-variance utility function [ Eq. (5.14)] and a coefficient of risk aversion of 4, using different hedging 
strategies. • VaR(5%)  is the Value-at-Risk estimated using Eq. (5.15) with Φ(c) equal to the normal distribution 5% quantile i.e. -1.645.  • Asterisks (*,**,***) in the column named “Variance Improvement of MRS-BEKK” indicate that the MRS-BEKK model outperforms the competing model at 1%, 5% 
and 10%, respectively; the p-values are provided from White’s (2000) Reality Check using the stationary bootstrap of Politis and Romano (1994).  
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Another way of considering the economic benefits from the proposed hedge is to look at 

the reduction in the Value-At-Risk (VaR) exposure, arising from the different hedging 

strategies. Assuming a normal distribution, if we denote as W0 the initial value of the portfolio 

and Φ(c) the inverse of the standard Gaussian cumulative distribution function, the portfolio 

VaR is simply a constant multiple of the hedged portfolio standard deviation where the multiple 

is determined by the VaR confidence level 1-c: 

 

( )0 1 ( ) ( )t tVaR W E rp c Var rp+ +⎡ ⎤= +Φ⎣ ⎦1

) )

             (5.15) 

 

From Table 5.3, Panel B the average weekly variance of returns from the hedged 

position in the Unleaded Gasoline market is 14.8 when the constant hedge ratio is used and 12.6 

when the MRS-BEKK model is used. Assuming that expected returns from the hedged portfolio 

are equal to zero and the degree of risk aversion is 4 then, on average, one obtains a weekly 

utility of = - 4 (14.8)= - 59.2 if the constant hedge ratio is used and = - 4 

(12.6) = - 50.5 when the MRS-BEKK hedge ratio is used. Hence, by using the MRS-BEKK, 

hedgers in the market can benefit from an increase in the average weekly utility of 8.7 - y, over 

the constant hedge ratio, where y represents the reduced returns caused by the transaction costs 

incurred due to portfolio rebalancing; assuming transaction costs in the range of 0.01-0.02% 

(due to rebalancing), the MRS hedge would still result in an improvement in utility for an 

investor with a mean–variance utility function and η = 4. Similarly, results of the weekly VaR 

for a portfolio value of $1m with 95% confidence level indicate that one obtains a weekly VaR 

= $1m[- 1.65 (14.8)1/2] = - $63,230 if the constant hedge ratio is used and a VaR of $1m[- 1.65 

(12.6)1/2] = - $58,454 when the MRS-BEKK hedge ratio is used. Hence, by using the MRS-

BEKK, hedgers in the market can benefit from a decrease in the average weekly VaR of $4,776 

over the OLS hedge, which results in an annualised decrease in VaR of $34,440 or a decrease of 

3.4% over the initial investment. Therefore, investors would prefer the MRS-based strategies to 

the constant strategy since the increase in utility and decrease in VaR more than offsets the 

higher transaction costs due to rebalancing. 

1( tU rp + 1( tU rp +

 

5.6 Data Snooping Bias  

Regardless of the encouraging results of the performance of the proposed MRS-BEKK 

hedging strategy, an important issue which has to be considered is that of data snooping. 

According to Sullivan et al. (1999) and White (2000) data snooping occurs when a dataset is 
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used more than once for data selection and inference purposes. In other words, using the same 

dataset frequently for testing different strategies may increase the probability of having 

satisfactory results purely due to chance or due to the use of posterior information rather than 

the superior ability of the competing strategies. In order to discount the possibility that the 

performance of the MRS-BEKK model may be due to data snooping bias we implement 

White’s (2000) Reality Check (RC), in a similar way as was employed in Chapter 4. In doing 

so, we first construct a relative performance measure which can be defined as: 

 

2 2
* *

, 1 1 , 1 1 1 , 1 1
ˆ ˆ

k t t k t t t MRS BEKK t tfm S F S Fγ γ+ + + + + − + +⎡ ⎤ ⎡= Δ − Δ − Δ − Δ⎣ ⎦ ⎣ ⎤⎦                                  (5.16) 

 

where k represents the kth benchmark model and the expression in [·] is the loss function 

chosen; that is the squared out-of-sample portfolio return which in fact is an unbiased estimate 

of the true conditional variance (see for instance Andersen and Bollerslev, 1998). If the MRS-

BEKK model outperforms the kth model, the expected value of the performance measure will be 

positive. Therefore, we set the null such as that rejecting it would imply that the MRS-BEKK 

model is superior in terms of variance reduction compared to the competing hedging strategy. 

Mathematically: 

 

( ){ }0 : 0k
k

H m a x E fm ≤                                (5.17) 

 

Then, following White (2000), we can test the null hypothesis by obtaining the test 

statistic of the RC as ( 1/2RC

n k
k

T m a x n fm= )  where 1

,1

n

k t k tfm n fm−
== ∑ and n is the number of 

one-step ahead periods. In order to construct the test statistic, we use the stationary bootstrap 

technique of Politis and Romano (1994) to regenerate random paths of portfolio returns, whilst 

maintaining the distributional properties of the original series9. We then construct the loss 

function of Eq. (5.16) using the simulated portfolio returns which, in turn, generates a 

distribution of hedging statistics under the different hedging strategies. Let 
* ( )kfm b represent the 

sample mean of the relative performance measure calculated from the bth bootstrapped sample 

for b = 1, …, B. The RC p-value is obtained by comparing  with the quantiles of the 

empirical distribution of : 

RC

nT

*RC

nT

                                                 
9
 Politis and Romano (1994) method re-samples blocks of varying length from the original data, where the 

block length follows a geometric distribution, with a given mean block length. 
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n k
k

T m a x n fm b fm= − k

                                                

                                             (5.18) 

 

The null hypothesis that the variance improvement from the MRS-BEKK is not a better 

hedge from the other models is tested using White’s RC with 1,000 bootstrap simulations and a 

smoothing parameter of q=0.1 (see Politis and Romano, 1994 for more technical details on the 

stationary bootstrap as well as Appendix 4.C). Results are reported in Table 5.3. The MRS-

BEKK model provides significantly greater variance reduction in the WTI and Unleaded 

Gasoline markets across all models, at conventional significance levels. In the Heating oil 

market the MRS-BEKK model fails to outperform the competing strategies; however, when we 

invert the null and set the MRS-BEKK model as the benchmark in Eq. (5.16), we still cannot 

reject the null of no superior predictive ability of the naïve hedge over the MRS-BEKK model 

(p-value = 0.241).  

 

5.7 Downside Risk Measures  

Although variance reduction gives the overall picture about how well a hedging strategy 

performs, it does not consider whether there are any differences in the degree of hedging 

performance between long and short positions. The motivation for investigating this stems from 

both the pitfalls associated with variance as a measure of hedging effectiveness and the specific 

properties inherent in the MRS-BEKK model.  

First, variance assigns the same weight to positive gains and negative losses. Under the 

assumption of either quadratic utility functions or multivariate elliptical distributed returns the 

investor is only concerned about the expected return and the standard deviation of the hedged 

portfolio10. However, in practice these assumptions are not likely to hold and a number of 

metrics have recently been proposed in the literature that are able to deal with possible 

asymmetries in the profiles of risk averse investors. For instance, Cotter and Hanly (2006) 

evaluate the hedging performance of short and long hedging positions based on Lower Partial 

Moments (LPM) and Value-at-Risk (VaR) estimates and find differences in terms of the best 

strategy compared to the traditional variance metric.  

Second, it is of interest to test whether regime switching models are capable of 

adequately capturing the skewness and kurtosis typical of financial data and, if this is true, 

whether this can be used effectively to eliminate downside risk within the minimum-variance 

 
10

 That is because the hedged portfolio and the assets comprising the portfolio share the same distributional 
properties.  
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framework. Under the Markovian formulation, as specified in Eq. (5.3), (5.4) and (5.5), the 

dynamics of conditional means and variances imply that time-varying skewness and excess 

kurtosis are inherent in the model (see Haas et. al, 2004a for more details and derivation of 

higher moments of mixed normal distributions). Consequently, one would expect the MRS 

based hedge ratios to capture possible asymmetries that may affect short and long hedging 

positions differently. 

In order to remove the effect of upside gains from the variance, the semi-variance 

metric is employed which acts as a measure for a downside risk averse investor, who is 

concerned about the variability of negative losses. Mathematically, this can be expressed as: 

( ){ }2

( ) 1

1

1
min 0,

T

t

i

sv rp u
T

− +=
= −∑              (5.19) 

 

This is equivalent to the second order lower partial moment (LPM) where the target 

return (threshold) u is set to zero in order to distinguish between positive and negative realised 

portfolio returns rpt+1. A short hedging position is equivalent to selling futures contracts against 

the purchase of the underlying asset; hence the investor is concerned about negative semi-

variance (the payoff of a short hedger is rpt+1 = ΔSt+1 - γ*
t+1ΔFt+1). Similarly, a long hedger is 

concerned about positive semi-variance, in which case in Eq. (5.19) we only consider the 

positive returns.  

Table 5.4 presents the negative and positive semi-variance figures in Panel A and B, 

respectively where negative and positive semi-variance reflect the downside variation in the 

performance of short and long hedging strategies, respectively. Overall, the results indicate that 

the improvement in the semi-variance using the MRS-BEKK model is better in 4 out of 6 cases, 

thus supporting the suggested strategy. We also assess the different strategies using White’s 

(2000) RC.  The results in Table 5.4 illustrate that the MRS-BEKK is significantly better in the 

WTI market only for long hedgers (but not against GARCH) at 10% significance level. In the 

Unleaded Gasoline market the MRSBEKK model is significantly better than the competing 

models in hedging short positions (the improvement in semi-variance against the GARCH is 

22%). For long hedgers the simple MRS model significantly outperforms the other models. In 

the Heating oil market, the MRS-BEKK is significantly better than the GARCH in short 

hedging positions but it is significantly outperformed by the VECM model. In long hedging 

positions the MRS-BEKK is not significantly better than the competing models, according to 

the Reality Check.  
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Table 5.4: Effectiveness Long/Short Hedging Positions of Markov Regime Switching Against the Constant and Alternative Time-Varying Hedge Ratio Models 

• Results are pr  the out- f-sample per  i.e. June 22 5 to December 27, 2006 (80 observations).  esented for o iod , 200• Semi-Variance denotes the semi-variance of the hedged portfolio. [Eq. (5.19)]. • Semi-Variance Improvement of MRSBEKK measures the incremental semi-variance reduction of the MRS-BEKK model versus the other models. This is estimated using the 
formula: [SVar(Modeli) – SVar(MRS-BEKK)]/SVar(Modeli). •  Semi-Utility is the average weekly semi-utility for an investor with a mean-variance utility function [ Eq. (5.14)] and a coefficient of risk aversion of 4, using different hedging 
strategies. 

• VaR(5%)  is the Value-at-Risk estimated by using Eq. (5.15) with Φ(c) equal to the normal distribution 5% quantile i.e. -1.645.  • A cross (+) indicates that the benchmark model outperforms the MRS-BEKK model at conventional significance levels; the p-values are provided from White’s (2000) Reality 
Check using the stationary bootstrap of Politis and Romano (1994).  • See also notes in Table 5.3. 

 

  

 

 WTI light sweet Crude Oil Unleaded Gasoline Heating Oil #2 

 
Semi- 

Variance 

Semi-Variance 
 Improvement  
of MRSBEKK 

Semi- 
Utility 

   VaR(5%)
 

  ( $)  
Semi- 

Variance 

Semi-Variance 
 Improvement  
of MRSBEKK 

Semi- 
Utility 

   VaR(5%)
 

  ( $)  
Semi- 

Variance 

Semi-Variance 
 Improvement  
of MRSBEKK 

Semi- 
Utility 

   VaR(5%)
 

  ( $) 

Panel A: Short Hedgers Positions (Negative Semi-Variance) 

Unhedged 6.7703     87.16%*** -27.081 42,798.7  30.879       89.77%*** -123.516 91,402.7  10.469    87.38%*** -41.874 53,220.6 

Naïve 0.8935 2.68% -3.574 15,548.3    5.2580 39.95%*** -21.032 37,717.0  1.2902 -2.41% -5.161 18,683.4 

Constant 0.9011 3.49% -3.604 15,614.1    5.1261 38.40%*** -20.504 37,241.0  1.2728 -3.80% -5.091 18,557.0 

VECM 0.8863 1.88% -3.545 15,485.1  5.0341 37.27%*** -20.136 36,905.3  1.2724 -3.84%
(+)

 -5.090 18,554.1 

GARCH 0.9257 6.05% -3.703 15,825.4  4.0500 22.03%** -16.200 33,102.0  1.4199     6.95%** -5.680 19,600.0 

MRS 0.8933 2.65% -3.573 15,546.2  5.0575 37.57%*** -20.230 36,990.9  1.3046 -1.27% -5.219 18,787.4 

MRS-BEKK 0.8696  -3.479 15,338.9  3.1576 - -12.631 29,228.5  1.3212 - -5.285 18,906.5 

Panel B: Long Hedgers  Positions (Positive Semi-Variance) 

Unhedged 7.3477    89.72%*** -29.391 44,586.4  39.405   76.25%*** -157.62 103,253.1  12.115    92.08%*** -48.460 57,251.8 

Naïve 0.8330 9.29%* -3.332 15,012.6  9.7001   3.54%*** -38.800 51,228.9  0.9774 1.88% -3.910 16,261.6 

Constant 0.8319 9.17%* -3.328 15,002.7  9.4908   1.41%** -37.963 50,673.2  1.0054 4.62% -4.022 16,492.9 

VECM 0.8340 9.39%* -3.336 15,021.2  9.5673     2.20%*** -38.269 50,877.1  1.0165 5.65% -4.066 16,583.7 

GARCH 0.8265 8.57% -3.306 14,953.3  9.5698  2.22% -38.279 50,883.7  0.9978 3.89% -3.991 16,430.4 

MRS 0.8324 9.22%* -3.329 15,006.5  9.0516
 

  -3.38%
(+) 

-36.206 49,486.9  1.0014 4.23% -4.005 16,460.0 

MRS-BEKK 0.7556  -3.023 14,298.2  9.3571 - -37.429 50,315.0  0.9590 - -3.836 16,107.8 
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Table 5.4 reports also the semi-utility and asymmetric VaR calculated from Eq. (5.14) 

and (5.15), respectively by replacing variance with semi variance. Symmetric distributions 

would imply that utility is equal in both short and long positions , 

which is not the case, at least in the Gasoline market. Moreover, with the downside risk 

expressed this way we can still use the quantiles of normal distribution (assuming that 

positive/negative returns follow half normal distribution) and calculate VaR estimates. It can be 

seen that these figures are reduced compared to the variance measure but the distributions have 

fat tails since the sum of short and long VaR is greater than the VaR estimated from the 

standard deviation. 

( ) ( )

1 1( ) ( )t t t tE U rp E U rp+ −+ +=

 

5.8 Conclusions 
 

In this chapter we examined the performance of hedge ratios generated from Markov 

Regime Switching models in the oil futures markets. The rationale behind the use of these 

models stems from the fact that the dynamic relationship between spot and futures prices may 

be characterized by regime shifts. This, in turn, suggests that by allowing the hedge ratio to be 

dependent upon the “state of the market”, one may obtain more efficient hedge ratios and hence, 

superior hedging performance compared to the methods which are currently being employed. 

We introduce a Markov Regime Switching Vector Error Correction model with GARCH error 

structure. This specification links the concept of disequilibrium (as measured by the error 

correction coefficients) with that of uncertainty (as measured by the conditional second 

moments) across high and low volatility regimes. The effectiveness of the MRS time-varying 

hedge ratios is investigated in the NYMEX WTI Crude Oil, Unleaded Gasoline and Heating Oil 

markets. The estimated models indicate that there is marked asymmetry in both conditional 

means and conditional volatilities under different market conditions. Moreover, all the MRS 

based hedge ratios appear to be higher when the volatility in the market is low, a finding that is 

in line with theory. In and out-of-sample tests indicate that by allowing the variances and the 

covariance of spot-futures returns to be state dependent, hedging effectiveness is significantly 

improved in most cases, as indicated by White’s (2000) Reality Check. Overall, the results 

indicate that using MRS models market agents may be able to obtain superior gains, measured 

in terms of both variance reduction and increase in utility. This finding holds even when we 

examine the downside risk and consider the asymmetric risk profile of long and short hedgers.      

The next chapter, Petroleum Term Structure Dynamics, Inter-Commodity Dependencies 

and the Role of Regimes, deals with an important issue of petroleum market dynamics, the term 

structure of petroleum futures. As opposed to Chapters 4 and 5 which employed the nearest to 

 136



 

               

             Chapter 5: A Markov Regime Switching Approach for Hedging Petroleum Commodities 

 

               
expiry and volume based futures contracts, Chapter 6 will deal with the entire forward curve. 

The objective of this study is to exploit the information content of the dependence structure of 

petroleum futures curves and describe inter-dependencies between petroleum commodities 

under different regimes. Before presenting our empirical evidence, Chapter 6 will first, provide 

a short introduction regarding the use of term structure models. This will be followed by some 

technical details on factor decomposition and next, a thorough explanation of the theoretical 

background and the estimation procedure will be supplied. A parsimonious regime switching 

model of correlated futures curves will then be presented where each state has its dynamic 

characteristics. The model will be successfully fitted to daily historical futures curves from 1994 

to 2009, providing strong statistical evidence, not only regarding the presence of changes in 

regime but also concerning the specific properties of factor dynamics, mean reversion, co-

integration and co-movement. After presenting the empirical results and some relevant and 

potentially useful applications in forecasting, as it will be seen, the model offers great 

improvement over appropriately assumed benchmarks. 
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APPENDIX 5.A : Time Varying Transition Probabilities 

In this appendix, we explore whether inclusion of inventory levels in the MRS set up is 

able to provide any further improvement in the hedging performance perhaps by driving the 

switches between volatility regimes. Weekly and monthly data for the industrial inventories of 

crude oil and petroleum products for all OECD countries are available from the US Department 

of Energy - Energy Information Administration (EIA). Table 5.A.1 below displays the estimated 

MRS-BEKK model for the three petroleum futures markets with transition probabilities 

conditioned on the lagged inventory levels. These transition probabilities are estimated using the 

following logistic function:  

 

,

,1 ,2 1

1

1 exp( )
ij t

i i t

p
INφ φ −

= + +  for i ≠ j and i,j ={1, 2}                   (5.A.1) 

 

where φ1,1, φ1,2, φ2,1, φ2,2 are parameters to be estimated by maximum likelihood along with the 

other parameters of the model. INt-1 represents the more recent update of 

inventories11.Comparing the results between these models and the restricted versions (presented 

in Table 5.2) we can note that the coefficients of the conditional means and variances are very 

similar both in terms of magnitude and sign as well as in terms of statistical significance. In 

addition, transition probabilities do not seem to vary (since the estimated coefficients φi,j are 

insignificant) and, actually, the time varying transition probabilities are very close to the 

constant probabilities p12 and p21 as estimated by the restricted MRS-BEKK. This is also 

confirmed by looking at Figure 5.A.1 where we can see that the time-varying transition 

probabilities of WTI have a mean value very close to the unconditional ones; these are 0.256 

and 0.741, respectively, according to Table 5.2. The same holds for Unleaded Gasoline 

probabilities, also depicted in the graph; however, for the particular product market we can 

observe a certain degree of variation, especially for p12 which fluctuates between 0.27 and 0.50 

(this corresponds to the 0.381 probability of Table 5.2). What is more, the improvement in the 

Log-Likelihood is negligible and not statistically significant using standard Likelihood Ratio 

(LR) tests.  

 

 

 

                                                 
11 In the analysis we use the logarithmic demeaned and detrended inventory levels so that the series 
reflects deviations from the normal inventory levels.  
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Table 5.A.1: MRS-BEKK models with Transition Probabilities Conditioned on Inventories 

 West Texas Intermediate  Unleaded Gasoline  Heating Oil # 2 

Mean Equation 

αS,st=1 -1.2143 (0.113)***  -0.1716 (0.018)***  -0.1964 (0.027)*** 
αF,st=1 -0.2268 (0.113)**  -0.0633 (0.016)***  -0.0370 (0.033) 

         
αS,st=2 -0.1585 (0.277)  -0.2959 (0.089)***  -0.0118 (0.209) 
αF,st=2 0.2703 (0.255)  -0.0837 (0.061)  -0.4707 (0.245)** 

Variance Equation ω11,st=1 3.8205 (0.127)***  3.3637 (0.222)***  2.3358 (0.281)*** ω12,st=1 3.8392 (0.128)***  3.1566 (0.201)***  2.1321 (0.244)*** ω22,st=1 -0.3324 (0.029)***  3.8x10-6 (0.066)  0.3443 (0.062)*** 

11,st=1 -0.0954 (0.033)***  0.1922 (0.118)  0.2783 (0.035)*** 

22,st=1 -0.0815 (0.027)***  0.1709 (0.095)*  0.2252 (0.055)*** 

11,st=1 6.7x10-7 (0.010)  0.4391 (0.008)***  0.7441 (0.040)*** 

22,st=1 8.6x10-7 (0.012)  0.3074 (0.028)***  0.7899 (0.030)*** 

         ω11,st=2 5.1883 (0.686)***  4.8385 (0.415)***  9.3251 (1.247)*** ω12,st=2 4.2739 (0.861)***  3.4693 (0.439)***  7.7145 (0.564)*** ω22,st=2 1.7292 (0.336)***  2.8070 (0.322)***  -0.0002 (1.727) 

11,st=2 0.2786 (0.163)*  0.3402 (0.120)***  0.3608 (0.185)* 

22,st=2 0.6226 (0.200)***  0.4617 (0.170)***  -0.2764 (0.162)* 

11,st=2 0.5391 (0.081)***  0.9404 (0.043)***  0.9326 (0.072)*** 

22,st=2 0.2852 (0.127)**  0.8870 (0.088)***  0.2478 (0.223) 

Transition Probabilities  

p12:                
1 ,1φ  

1.0762 (0.166)*** 
 

0.4938 (0.239)** 
 

4.0971 (0.865)*** 

2 ,1φ  
1.4053 (2.675) 

 
4.1741 (2.465)* 

 
1.4895 (3.505) 

         

p21:                
1 , 2φ  

-1.0678 (0.245)*** 
 

-0.8264 (0.309)*** 
 

-0.8535 (0.968) 

2 , 2φ  
-1.6487 (4.600)  -1.8260 (3.962)  -4.2478 (3.932) 

LogLik 3,064.4  3,924.1  3,351.5 
Compared to  
constant transition Prob. +0.25 

 
+1.68 

 
+1.9 

LR-stat 0.50 
[0.779] 

 3.36 
[0.186] 

 3.80 
[0.150] 

In-sample Variance of  
hedged portfolio 3.7793 

 
8.2377 

 
8.6416 

Compared to  
constant transition  
Prob. (%) -0.040 

 

-0.039 

 

-0.226 
Compared to  
Naïve Hedge (%) 3.927 

 
0.912 

 
4.423 

See also notes in Table 5.1 and 5.2. 
 
 

 Finally, in-sample variances of the hedged portfolio indicate that the new model does 

not offer any significant improvement in terms of variance reduction. In fact, the variances of 

the hedged portfolios appear to be marginally higher than the ones obtained by the restricted 

MRS-BEKK model.  Nevertheless, compared to the naïve hedge, there is still improvement of 

the range 0.9-4.4%. Summarising, it seems that inventories are not significant predictors of 

transition between regimes. This could be due to the fact that it is the expectations of 

inventories, rather than their actual realisations, that actually drive energy prices or 

alternatively, that a certain amount of inventory levels beliefs is captured by the regime 
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probabilities as unobservable component. More sophisticated models may be estimated, for 

instance the MRS-BEKK-X models (as a multivariate extension to the models presented in 

Chapter 4 with the conditional variances equations augmented by the inventory levels. 

However, given that our model is already complex, by including an exogenous variable in the 

conditional variance equation involves four additional parameters to be estimated and, therefore, 

this approach is not pursued here.  
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Figure 5.A. 1: Time Varying Transition Probabilities of WTI Crude Oil 
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APPENDIX 5.B: A Note on Seasonality and Hedging 

Crude oil, unleaded gasoline and heating oil exhibit differences in the individual 

supply/demand fundamentals. First, crude oil is the leading commodity in international trade 

and its price is determined mainly by global economic conditions, thus, crude oil prices are not 

expected to show signs of strong seasonal patterns. Demand for petroleum products in the US, 

on the other hand, depends on local supply and demand conditions, as well as the availability of 

refining capacity near the centres of demand. Thus, crude oil distillates exhibit seasonality in 

their price behaviour with heating oil demand increasing in winter while Gasoline demand 

increasing in the summer. However, although seasonal patterns12 are not modelled explicitly in 

the MRS framework, a certain degree of seasonal variation should be captured by the regime 

probabilities and regime dependent volatilities and correlations. That is one of the advantages of 

the Markov formulation, the fact that its flexible structure can capture unobserved components. 

Treating seasonality as an unobserved component is plausible (see for instance Harvey and 

Scott, 1994) since seasonality is not always obvious and irregular seasonality patterns in energy 

prices are not uncommon (seasonal breaks i.e. different seasonal behaviour throughout the 

years).  

In order to remove seasonality we should be able to identify consistent peaks and 

troughs throughout a given time period (month or quarter) that can be explained by 

                                                 
12 Seasonality in financial time series has traditionally been dealt with either by using deseasonalised data 
or by including additional explanatory variables in the model setting i.e. dummies or trigonometric 
functions. The limitations of the first approach have been reported in several studies. First, the question of 
which method to use is of crucial importance since different methods produce different results. For 
instance, Jaeger and Kunst (1990) examine the robustness of persistence to shocks in seasonally adjusted 
series and show that Census X-11 method overestimates the persistence of shocks compared to seasonal 
differencing or seasonal dummy adjustment. Second, Ghysels et al. (1996) demonstrate that seasonal 
adjustment is possible to introduce nonlinear behaviour in linear unadjusted series. Third, although 
smoothing eliminates some of the predictable seasonal variation, it is possible to either introduce artificial 
autocorrelation or retain a residual seasonal pattern (see also Ghysels, 1994). More recently, seasonally 
adjusted data have been also questioned in the regime switching setting by studies such as Frances and 
Paap (1999) and Luginbuhl and de Vos (2003). Both studies report longer and shallower recession 
periods when using seasonally adjusted data. In general, it is accepted that adjusted data can distort the 
information about the extent and timing of structural breaks causing problems in regime forecasting (see 
also Matas-Mir and Osborn; 2004). Finally, since seasonality is not constant, the effects throughout time 
are expected to be asymmetric across regimes and seasonally adjusted series are expected to result in loss 
of information across the identified regimes. Addressing the issue of seasonal adjustment is admittedly a 
controversial issue (see also Wallis; 1974 and Harvey and Jaeger; 1993) especially in the Markov 
switching framework which is employed in our study. Alternatively, the seasonal component can be a part 
of the model to be estimated. For instance, Fong and See (2003) modelled crude oil futures as a regime 
switching GARCH process and incorporated a dummy variable in the conditional variance equation to 
account for higher demand in winter seasons driven by heating oil. However, in a multivariate Markov 
setting such an analysis would complicate the estimation procedure since including dummy variables or 
sinusoidal/cosine functions would increase substantially the number of parameters to be estimated (over-
parameterisation) and any gains would most likely be marginal. 
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fundamentals. The most common reasons for seasonality of petroleum commodities are weather 

and holidays but the pattern is not clear because factors such as OPEC policy, build-up of 

strategic reserves and in general, the politics surrounding the balance of demand and supply are 

key factors that affect the fundamentals in these markets. Seasonality in oil prices is rather a 

“hidden” function. Market anticipates seasonal prices by building stocks (subject to storage 

costs) but changes in demand can be at a great extent irregular. To gain an insight into the issue, 

we performed a test regressing the aggregate standardised, εt/(ht)
1/2 and squared standardised, 

ε2
t/(ht),  residuals of the MRS-BEKK model on monthly and quarterly dummies. The results in 

Table 5.B.1 indicate that for all three markets the null hypothesis that the coefficients of the 

dummies are jointly zero cannot be rejected at conventional significance levels, indicating that 

there are no seasonal effects in the εt/(ht)
1/2 series. However, at 1% significance level there is 

evidence of seasonality only in the Heating oil Market as indicated by the squared series. 

 

Table 5.B.1 : LR Tests on the Residuals of the MRS-BEKK Model 

 WTI Crude Oil Unl. Gasoline Heating Oil # 2 

  Spot Futures Spot Futures Spot Futures 

Panel A: Standardized Residuals LR test  

Monthly Dummies 8.678 8.219 17.24 12.47 14.25 12.04 

Quarterly Dummies  2.563 3.194 0.752 3.103  2.201 5.918  

Panel B: Squared Standardized Residuals LR test 

Monthly Dummies 19.40* 17.54* 12.90 13.23 38.73*** 32.87*** 

Quarterly Dummies 7.805* 5.906 3.191 5.962 19.58*** 14.45*** 
Figures presented above are the statistics of a chi squared distribution with degrees of freedom equal to 11 (monthly 
dummies) and 3 (quarterly dummies). Asterisks *, ** and *** indicate significance at 10%, 5% and 1% significance levels, 
respectively.  

Figure 1: Seasonal Component of Spot - Futures Volatilities
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Figure 5.B.1: Monthly Seasonal Components of Spot-Futures Weekly Volatilities  

 
 

Moreover, Figures 5.B.1 and 5.B.2 present the estimated average weekly conditional 

volatilities and correlation estimates across the different months of the year from the MRS-
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BEKK model. We see that, only in the Heating oil market there is a significant drop in 

volatilities and a corresponding rise in correlation during the summer months. Heating oil stocks 

tend to be highest in October and November and reach a minimum in the February - March 

when demand declines. June and July represent the summer fill season in anticipation of the 

colder weather ahead. The peak (trough) in the estimated volatilities (correlation) in February 

can be explained by the fact that when stocks normally reach the minimum levels at the same 

month, changes in demand (due to unexpected cold weather) result in more erratic price changes 

because supply is inelastic in the short-run.  

 

Figure 2: Seasonal Component of Correlations of Futures and Spot 
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Figure 5.B.2: Monthly Seasonal Components of Spot-Futures Correlations 
 
 

Furthermore, regressing the regime probabilities on dummies, resulted the following 

equation in Heating oil market13: 

 

2 3

1, *** *** ***

0.926 0.030 0.064 0.059

(0.018) (0.021) (0.017) (0.019)
t

Quarter Quarter Quarterπ + + += 4

                                                

 

 

implying that the probability of being in the low variance regime is around 6% higher for the 

period June-November (Quarter2 + Quarter3) at 1% significance level. However, again, the 

adjusted R2 indicates that only 3% of the regime probabilities can be explained by seasonal 

variations.  

Summarising, although seasonality in petroleum prices is a stylised fact, this not of 

major concern in hedging. Myers and Thomson (1989) and Viswanath (1993) argue that the 

 
13 In the WTI and Gasoline Markets regime the dummies as regressors of regime probabilities were not 
significant (at least at 5% significance level). This does not necessarily imply that seasonality has no 
impact in the regime probabilities. It may be that seasonal component is stochastic and the effect is differs 
from year to year.  
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predictable component of spot and futures price changes should be removed and this can be 

achieved by adding explanatory variables in the regression equation. A relevant study by 

Ederington and Salas (2007) examines the bias and efficiency of the OLS hedge ratio when spot 

price changes are partially predictable. Using the Henry Hub Natural Gas futures contract to 

hedge gas prices from 17 local gas hubs they find that incorporation of the futures - spot spread 

as an explanatory variable results in significant improvement in the hedging performance. 

However, although gas prices are highly seasonal, including seasonal dummies does not result 

in significantly higher gains14 since the seasonal component of returns is reflected by the basis. 

In our study, the mean equation of futures and spot prices also includes the futures – spot spread 

and seasonality is expected to be reflected in the cointegration relationship. Moreover, we also 

have to consider that adding parameters increases substantially the computational costs and the 

log likelihood function might become ill formatted. On the other hand we could use seasonal 

adjustment methods to overcome this difficulty but evidence suggests that seasonally adjusted 

data result in longer and shallower regimes. This in turn raises questions regarding regime 

forecasting. Finally, when a time series is dominated by irregular components, as the oil market 

does, it is not an easy task to identify and remove the seasonal pattern. Thus in our analysis we 

restrict ourselves in unadjusted data as this is the standard in the hedging literature.  

 

 

 

 

 

 

 

 

 

 

                                                 
14 The predictive power of seasonals was found to be significant only in cases where the futures-spot 
market was less connected.  
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Chapter 6  

 

Petroleum Term Structure Dynamics,  

Inter-Commodity Dependencies and  

the Role of Regimes. 

 

6.1 Introduction 

Several studies in the energy economics literature indicate that oil markets around the 

world are interrelated and prices move together over time1. The size of petroleum spreads is 

most prominently affected by transitory divergences between supply and demand, seasonal 

factors, transportation costs, convenience yields and the volatility of the underlying (Milonas 

and Henker, 2001). A shock that might affect a given pair of commodities will most probably 

have an asymmetric impact not only on each leg of the pair, but also across different maturities 

of the term structure. It is obvious that such non-parallel relative movements of correlated 

forward curves are important for the pricing of real assets such as power plants and might also 

create profitable investment opportunities. However to date, research in commodity futures term 

structure has primarily focused on the evolution of a single curve (Brennan and Schwartz, 1985; 

Gibson and Schwartz, 1990; Schwartz, 1997; Schwartz and Smith, 2000; Borovkova, 2006) 

whereas the issue of co-movement of multiple curves has received less attention despite the 

multi-asset nature of oil investments. For instance, oil companies involved in the management 

of physical assets, such as refineries, are mainly concerned with the relationship of crude oil and 

its distillates to optimise their operations.  

Hence, little is known about the joint term structures of different commodities and their 

implied dependence. Two of the exceptions include Clewlow and Strickland (2000) and 

                                                 
1 For example, Silvapulle and Moosa (1999) find that oil spot and futures prices react simultaneously to 
the arrival of new information to the market. Ewing and Harter (2000) provide evidence that Brent blend 
and Alaska North Slope crude oil prices move together over time and react similarly to shocks in the 
world oil market. Lin and Tamvakis (2001) investigate the information transmission mechanism between 
WTI and Brent futures and find that there are price and volatility spillovers between the two markets with 
the WTI market being the dominant in terms of information discovery.  
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Tomalsky and Hindanov (2002) on seasonal energy commodities. More recently, Ohana (2010), 

developed a model for the evolution of correlated forward curves for US natural gas and heating 

oil, based on the long/short term decomposition of Schwartz and Smith (2000), Manoliu and 

Tompaidis (2002) and Geman and Nguyen (2005), the study links the literature on correlated 

forward curves with the concept of cointegration and the results signify causal relations and 

stochastic volatility among the different shocks, whereas a bi-directional feedback effect is 

revealed in the formation of the long-term price. Building on this field of research, the present 

chapter investigates the co-movement and linkages of petroleum futures curves’ factors. The 

objective is to develop a model and provide a new empirical framework not only to characterise 

the term structure of petroleum spreads but to test their predictive ability as well. The findings 

of this chapter have important implications and are of interest to oil and commodity traders, oil 

companies, refineries, and investment funds. For instance, if there are significant price 

discrepancies in the cross-market futures prices, due to say regional supply and demand 

imbalances, seasonal factors etc. then these departures should be reflected in the factor 

dynamics which will, consequently, signal anticipated trends.  

This chapter contributes to the existing literature in several ways. First, based on the 

arbitrage-free evolution of the futures prices under the HJM framework (Heath et. al, 1992) our 

starting point is to perform Principal Components Analysis (PCA) (as in Cortazar and Schwartz, 

1994) to derive sets of latent factors that drive the evolution of the individual forward curves of 

NYMEX and ICE petroleum futures. PCA is a powerful non-parametric tool that utilises all the 

available information to derive orthogonal factors that explain term structure fluctuations, 

eliminating thus the problem of collinearity. This provides an advantage over the approach of 

Ohana (2010) who proxied long- and short- term factors using arbitrary points on the forward 

curve by selecting a far futures contract (level) and the differential of a far and a nearby contract 

(slope). 

Next, we introduce for the first time, a flexible multi-regime model of the joint 

evolution of futures curves factors’ dependence. Regime switching models have been used in 

the energy economics literature in different contexts including studying the conditional 

volatility (Fong and See, 2002; 2003) or investigating the relationship of crude oil shocks and 

stock markets behaviour (Aloui and Jammazi, 2009; 2010). Also, in this thesis we have seen in 

Chapters 4 and 5, applications in risk measurement and hedging effectiveness, respectively. 

However, they have yet to be applied in studying the relationship between futures curves. By 

allowing for non-linearities in the term structure generating process, the conditional moments 

(means, volatilities and correlations) switch stochastically between different states 
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accommodating the dynamic relationship between pairs of commodity factors. To capture 

regime shifts in the conditional distributions of the commodities under study, we employ 

Markov Regime Switching (MRS) models. The rationale for the MRS approach to describe the 

risk factors lies in the fact that factor-specific dynamic features are typically inherited by asset 

returns. In the notion of the level-slope-curvature setting, all factors are allowed to switch 

independently, thus extending Bollen et al. (2000) model to the multivariate case. This way we 

effectively permit factor specific regimes to demonstrate diversity i.e. one being in the high 

volatility state and another in a low volatility state and hence, we can disaggregate the regimes 

as level, slope and curvature driven and study their interaction.  

Third, we allow for nonlinear short run causality and mean reversion towards long run 

equilibrium. The motivation of a dynamic equilibrium correction regime switching model of the 

factor structure stems from the underlying economics of commodity markets. On the one hand, 

in a contango market, oil producers build inventories in the expectation of a rise in prices since 

higher future spot prices would compensate them for the total cost of carrying inventories. On 

the other hand, demand shocks and tight supplies raise the convenience yield and this will lead 

to negative sloped forward curves. The risk-return profile of the asset is known to change 

fundamentally, between these two different states i.e. low inventory levels lead to 

backwardation, high volatility and reduced correlation in the term structure (Fama and French, 

1987; Ng and Pirrong, 1994) resulting concave or convex forward curves since additional units 

of inventory have uneven effects on different delivery dates. However, despite these short-run 

deviations supply and demand will eventually move towards a long-run equilibrium level. In a 

multivariate setting, the same should hold for deviations in the relative supply/demand function 

between two commodities. Due to refining capacity constraints, supply chain disruptions, 

seasonality, replenishing use of inventories and timing effect in production, among others, the 

simultaneous presence of contango and backwardation between the two curves is possible 

which in turn, may affect the adjustment pattern of the prices. However, these are transitory 

deviations and all these determinants may have different effects, creating diverse reactions to 

news and disproportional transmission mechanisms. It is the complex interaction of these 

mechanisms that we aim to capture with our model.  

Finally, we evaluate the forecasting performance of these models using out-of-sample 

tests, in terms of statistical and risk management loss functions. MRS forecasts are compared to 

those from alternative models of correlated commodity curves either by modelling the 

individual contracts or by employing alternative specifications for the factor structure. 

Regarding the variance-covariance matrices we also use a GARCH Dynamic Conditional 
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Correlation (DCC) parameterisation, thus providing, robust evidence on the performance of the 

proposed framework. In addition, we refine the possible gains from using more sophisticated 

models by testing the statistical significance of the relative performance measures of the 

competing models employing White’s (2000) Reality Check. 

The chapter is structured as follows. Section 6.2 introduces multi-factor models of the 

forward curve dynamics, demonstrates the factor decomposition and derives the properties of 

the regime switching specification for the factors. In Section 6.3, the data along some 

preliminary results are discussed. This is followed by the empirical results from the model 

calibration. Section 6.5 carries out a numerical exercise of forecasting the whole term structure 

of both prices and risk. Finally, the last section concludes.  

 

6.2 Methodology  

Before specifying our model mathematically, for the purpose of clarity, we briefly 

review the concept of PCA in the framework of forward curves. We then formulate the MRS 

error correction models applied to test for dependency structures between correlated 

commodities.    

 

6.2.1 Factor Decomposition 

PCA is a procedure for extracting the systematic dynamics of correlated data in the 

form of orthogonal latent components, whilst making no ad hoc assumptions for their 

underlying process. After a spectral decomposition of the covariance matrix H - so that H = 

UΛU
T, where T is the transpose operator, U is the orthonormal matrix of eigenvectors and Λ a 

diagonal matrix of ordered eigenvalues - the resultant components are affine combinations of 

the original features and usually only a few are sufficient to mimic the volatility and correlation 

structure. The variance of each principal component is maximised so that each one portrays as 

large a part of the total variance as possible. Let F(t,T) represent the futures daily prices at time t 

with delivery date T, k be the number of tradable contracts for m={1,…, k } and σX some 

volatility functions. We impose the following futures curve dynamics for each individual 

commodity i: 
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Applying PCA to the panel of log future price changes will result in k orthogonal 

factors (ΔX) describing the total variation in futures prices. We will retain the so-called level 

(ΔL), slope (ΔS), and curvature (ΔC)2 risk factors, motivated by the fact that these shocks 

capture the futures curve dynamics efficiently; for example, Reisman and Zohar (2004) showed 

that principal components of higher order are relatively unstable. Besides, most term structures 

can be economically explained by these risk factors; see e.g. Litterman and Scheinkman (1991) 

for yield curves, Cortazar and Schwartz (1994) for copper, Borovkova (2006) for electricity and 

Clewlow and Strickland (2000) for crude oil and gas futures.  

Notice that in Eq. (6.1), to address seasonal variations in volatility levels evidenced in 

the data (see Appendix 6.A, for instance), volatility functions are also dependent on the season, 

Q, as follows. Let H to depend only on the season and the commodity and all HQ’s to share a 

unique eigenvector k x k matrix U which jointly diagonalises H. In practice, to find the volatility 

functions we will use the PCA on the unconditional covariance matrix H* of the standardised – 

by seasonal volatilities - historical returns. If we denote DQ the diagonal matrix containing the 

standardised seasonal volatilities of the observed variables and R the unconditional correlation, 

each HQ can be decomposed to DQRDQ. Principal components ΔX are then the weighted 

average of the (seasonally) standardised price changes with weights given by U, whereas the 

variance of the principal components i.e. eigenvalue λ, becomes the product of the standardised 

eigenvalues λ* and the corresponding seasonal volatility of each contract contained in DQ. The 

kth column of U corresponds to the kth eigenvalue (factor variance) where the latter are sorted as 

1(Q) >…> k(Q), for each subperiod Q. The main advantage of using this formulation is that we 

can characterise the evolution of futures prices in a realistic fashion by considering the full set 

of historical data and capture the average variability throughout the sample period across 

                                                 
2
Note that, to explain all the variance in the sample, all k principal components must be used. In any other 

case, where the dimension of the vector of latent factors is i < k a T x k idiosyncratic component must be 
added, representing risk factors that have not been incorporated in the system. This implies that factor 
communalities (in other words the R2 of a regression of the original series on the principal components) 
are less than one.  
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seasons3. The seasonal behaviour of energies has been documented by Girma and Paulson 

(1998), Tomalsky and Hindanov (2002) and Borovkova and Geman (2006), among others. For 

example, heating oil, experiences an upward (downward) pressure during winter (summer), 

whereas the storage cycle might not be able to absorb seasonal demand shocks, especially late in 

the peak demand season. Thus, a higher volatility is anticipated in winter, as opposed to the 

inventory build up period during summer. Crude oil demand, on the other hand, is derived by its 

products and their individual features might induce complex spill over effects. Although 

controls for seasonality could easily accommodate other frequencies, quarters were chosen for 

parsimony.  

Moreover, factor variances are also assumed to evolve through time; therefore, Ht also 

changes as a function of UΛtU
T. Note that the time varying nature of the eigenvalues Λt’s, or 

equivalently the second moments of the principal components, can be modelled independently 

of the PCA, following the estimation of the factor loadings – eigenvectors; hence, their time-

dependent parametric form will be common to all futures series’ volatilities. The core of this 

idea has been advocated in several forms. For instance, in the asset pricing framework, Engle et 

al (1990), adopt a two-step method in which static factors are extracted from the unconditional 

covariance matrix before being modelled as univariate ARCH processes. They note that 

assuming constant eigenvector and time-varying eigenvalue structure is a statistically 

convenient yet reasonable assumption which essentially implies constant relative riskiness and 

varying total riskiness. In short, this factor approach has a substantive motivation that produces 

a realistic variance-covariance structure. 

To accommodate now two future curves, denote Λ12,t the cross-commodity covariance 

matrix of the risk factors for commodities 1 and 2 and H12,t the square matrix containing the 

cross-commodity covariances of futures returns both depending on time (as well as season; 

however, ignore seasonal parameterisation for notational convenience). Then, given that 

ΔlnFi(t,T) ~ IN(0,Hi,t) for i={1,2} the (2k x 2k) full covariance matrix of the original system of 

correlated factors Vt (see also Alexander, 2008, vol. II, pp. 179-180) can be specified as: 

 

                                                 
3 Therefore in this chapter of the thesis, we standardised the returns by quarterly volatilities. An 
alternative approach would be to let both eigenvalues and eigenvectors to be seasonally dependent by 
performing PCA on seasonal blocks of futures returns; however, this specification would be less 
parsimonious compared to the one used. In addition some preliminary results showed that factor loadings 
were less stable in this case, indicating overfitting and the presence of noise in the factors; also, in this 
case, seasonality effects were not reduced to the same extent as was evidenced by the autocorrelation 
functions.  
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6.2.2 Modelling the Information in the Term Structure 

Once the shocks that determine futures prices fluctuations have been retrieved, we 

investigate the co-movement and volatilities-correlation structure of cross-commodity 

underlying factors. The discussion in this section suggests another perspective, unexplored by 

the present literature, on the linkages between forward curves that are linked by fundamental 

economic relationships such as the crack spread. The concept of cointegrated forward curves 

has been introduced by Ohana (2010) for heating oil and natural gas futures. What differentiates 

our approach - apart from the factor construction and the inclusion of the curvature factor - is 

that, first, we attempt to shed light on the relative short- and long-run dynamics across different 

regimes and second, our regime switching formulation allows the coefficients of short run 

causality and error correction mechanism to be time-varying i.e. state dependent. 

Let ΔXt represent the t x 2 vector of pairs of factor shocks (i.e. level, slope or curvature) 

across two commodities, Γi,st and Пst the state dependent 2x2 coefficient matrices measuring, 

respectively, the short- and long-run adjustment of the system to changes in a specific factor Xt  

and εt,st a vector of Gaussian white noise processes with state dependent covariance matrix Σst. 

We employ the following MRS Vector Error Correction Model (VECM): 

 

 ),0(~; 1,

1

,1 sttst,tstt

p

i

itstitststt IN ΣεεXΓXΠX −= −− Ω+Δ++=Δ ∑             (6.3) 

 

Throughout the chapter, the focus is on the long-term equilibrium relationships across 

the same factors (e.g. heating oil level- crude oil level) as these exhibit the stronger linkages. 

Moreover, although orthogonality holds only unconditionally, we do not consider conditional 

correlation dynamics among orthogonal factors and/or cross-commodity cross-factors in order 

to maintain applicability and avoid more complex structures. Besides, the proposed 

decomposition is very versatile and, as it will be shown, it is possible to blend the MRS models 

for the levels, slopes and curvatures, making our MRS framework capable of handling multiple 

models and dealing with heterogeneity in preferences. For example, a market agent might want 

to consider only one risk factor whereas a more risk-averse agent might prefer to include more. 
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Therefore, the proposed model provides, in our view, the most parsimonious representation of 

correlated forward curves.  

The following steps are involved in our analysis. First, following Krolzig (1999) and 

assuming a single regime process, the existence of a stationary relationship between the cross-

commodity factors is examined, through the λmax and λtrace statistics (Johansen, 1988) which test 

for the rank of Π, once each factor’s path has been derived by setting some arbitrary initial 

value Xt0=0, as tt

t

t ttt XXXXX Δ+=Δ+= −= ∑ 10
00

. If Π has a reduced rank, that is rank (Π) = 

1, then there exists one cointegrating vector and Π can be decomposed to αβ′, where β 

represents the vector of cointegrating parameters and α the vector of error correction 

coefficients measuring the speed of convergence to the long run mean. However, the VECM of 

Equation (6.3) provides a framework for valid inference only in the presence of I(1) variables. 

Should I(0) processes for the factors emerge, we adjust Π to a diagonal matrix Π*
 = diag(α1, α2) 

representing the univariate mean reversion rates. Thus, the model reduces to a modified Vector 

Autoregression (VAR) with a different equilibrium mechanism for each process. In this case, 

the Augmented Dickey Fuller (1979, 1981) regression is employed, further augmented by cross 

commodity factor lags, to allow for causality feedback.  

The second step involves the introduction of Markovian regime shifts to the system. 

Regime switching is allowed in all coefficient matrices vst, Γi,st , Пst = αstβ′ as well as the second 

moments Σst. Extending the Bollen et al. (2000) specification4 to the bi-variate case, we permit 

an independent two-state first order MRS process for each factor. This way, although each 

equation of the system (Eq. 6.3) follows a two-state self-directed process, the joint system can 

be characterised by a four-state, first order combined Markov process with constant transition 

probabilities pii, implied by the individual probability matrices. To illustrate this, consider the 

transition probability matrix P for each element Xi of factor X (Xi being either L or S or C, for 

the respective commodities) which is given as:  

 

( )istjsp
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P              (6.4) 

 

                                                 
4 Bollen et al. (2000) define a four regime univariate model with two independent state processes (thus, 
limiting the number of the specified parameters compared to the unrestricted four regime case): one for 
the mean and one for the variance. In our case, however, we allow each process of the system to be 
governed by high-low volatility regimes which occur independently from the states of the second process.  
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where st = {1, 2}, p11 and p22 give the probability that state st will remain the same in the 

following period and p12=1-p11 and p21=1-p22 give the probability that state 1 will be followed 

by state 2 and 2 by 1, respectively. Consequently, two local factor-specific regimes are defined 

for each pair of commodities, implying that each factor follows an independent two-state 

process, motivated by the fact that specifying periods of low and high volatility is intuitively 

appealing. To account for the possibility that factor specific regimes across commodities might 

display diversity i.e. one being in the high volatility state and another in a low volatility state, 

we link these two processes by estimating the joint transition probability matrix Ψ based on the 

transition matrices of the two factors, say, P and Q, resulting the following four state process: 

  

11 11 11 11 11 11 11 11

22 11 22 11 22 11 22 11

11 22 11 22 11 22 11 22

22 22 22 22 22 22 22 22

(1 ) (1 ) (1 )(1 )

(1 ) (1 )(1 ) (1 )

(1 ) (1 )(1 ) (1 )

(1 )(1 ) (1 ) (1 )

p q p q p q p q

p q p q p q p q

p q p q p q p q

p q p q p q p q

− − − −⎛ ⎞⎜ ⎟− − − −⎜ ⎟= ⊗ = ⎜ ⎟− − − −⎜ ⎟− − − −⎝ ⎠
Ψ P Q        (6.5) 

 

where ⊗ denotes the Kronecker product. This way we obtain the 22 x 22 ΨL, ΨS and ΨC 

matrices, corresponding to the level, slope and curvature set of factors, respectively. The 

elements in the off-diagonal of the transition matrix Ψ denote the probabilities of a regime 

switch, while the elements in the main diagonal reflect the probability that the same state will be 

maintained. Focusing on the main diagonal of Ψ in Eq. (6.5), the upper left and lower right 

element of  Ψ i.e. Ψ(1,1) and Ψ(4,4), show the probability that both commodity factors are 

jointly in state 1 and 2, respectively; for clarification define state 1 (2) as the local factor-

specific low (high) variance state. Similarly,  element Ψ(2,2) shows the probability of the first 

factor being in the high and the second being in the low variance state and Ψ(3,3) the 

probability of the two factors being in the low and high variance states, respectively. Hence the 

new constructed combined regimes are four: low-low, high-low, low-high and high-high 

variance states. Next, given that the pairs of the log factor changes evolve according to the 

process defined in Eq. (6.3), for each pair of commodity factors the density function for each 

regime is used to construct the likelihood function f(Xt;θ). This can be formed as a mixture of 

the probability distribution of the state variables, with θ being the vector of parameters to be 

estimated, including Ψ. The weights of the mixture of the distributions are the conditional 

regime probabilities which are estimated recursively along with the likelihood function as 

shown in Hamilton (1994) and Gray (1996), using the Markov property and Bayes rule as (see 

also Chapter 3, section 3.4.1): 
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where πt|t and πt|t-1 denote vectors containing the probabilities of being in each regime at time t 

conditional on the observations up to time t (filtered) and up to time t-1 (ex-ante), respectively, 

ft-1 is a vector of state dependent densities conditional on the observations up to time t-1 and 

symbolises the element-by-element multiplication. Then, given Eq. (6.3) and subject to the 

constraints π1,t + π2,t + π3,t + π4,t = 1 and 0≤  π1,t , π2,t, π3,t, π4,t ≤ 1 - where πst,t are elements of the 

ex-ante πt|t-1 probability matrix with πst,t = Pr(st=i|Ωt-1) - iterating the expressions in Eq. (6.6), the 

log-likelihood function L(θ) to be maximised using numerical optimisation methods is: 
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Finally, following the estimation of the MRS models, global joint probabilities that are 

commodity pair-specific (e.g. heating oil crack spread) can also be constructed in a similar way 

to Eq. (6.5) as Ψ*
 = ΨL⊗ΨS⊗ΨC. This results in a versatile multi-regime system that 

enhances the pertinence of our model; although common forces drive oil market regimes, we do 

not loose valuable information such as correlation break downs that arise from the possibility 

that pairs of commodities might not be at the same state e.g. one might be in backwardation and 

the other in contango. For instance, in Chapter 5, we have seen that in the unleaded gasoline 

market, the low variance regime was less persistent compared to WTI and this is attributed to 

the fact that light distillates volatility is vulnerable to the quality of the crude, constrained 

refining capacity and prone to frequent backwardations and supply shortages.  
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6.3 Data Description and Preliminary Analysis 

The data set for this study comprises daily closing prices for NYMEX WTI (CL), 

NYMEX heating (HO), ICE Brent (CB) and ICE gas oil (GO) futures, from June 27, 1994 to 

December 31, 2009. All prices are obtained from Datastream. We use constant maturity futures, 

constructed by linear interpolation from the market prices of traded contracts5. Closer 

examination of volume and open interest data lead us to consider a block of 10 contracts for 

each commodity from 1 up to 10 months to maturity6. Our choice of constant maturity contracts 

ensures that all prices are measured at the same point in time and we avoid problems associated 

with thin trading and expiration effects that might complicate inference regarding the volatility 

functions (Eq. 6.1). This way, therefore, we deal with three main concerns that can potentially 

cause estimation issues. First, we avoid discontinuities arising from the limited life span of 

individual contracts. Second, we mitigate the problems that nonstationary volatilities impose 

which may be due to increased demand for offsetting positions as contracts approach maturity 

or rolling futures forward to prevent delivery (Samuelson, 1965). And finally, we effectively 

address the issue of futures-spot convergence at expiry; for instance, a continuous futures series 

in a backwardated market will inevitably experience a downward trend near delivery which 

might distort the results.  

Results of the PCA on the correlation matrix of the normalised by seasonal volatilities 

futures returns (see also section 6.2.1 and Eq. 6.1) of each individual futures curve are presented 

in Panel A of Table 6.1. Three factors are adequate to explain more than 99% proportion of 

prices fluctuations. Because the purpose of the chapter is to describe commodity 

interdependencies we also present the results after combining the factors to explain petroleum 

market spreads rather than individual petroleum term structures; we can observe that the 

explanatory power of three factors now is less. What merits attention is that the importance of 

the first factor diminishes (with a lower bound of 77% in the WTI-Brent spread) as opposed to 

an increase in the importance of the second and third factors (with an upper limit of 12.4% for 

the slope and 3.2% for the curvature, both occurring for the WTI-Brent spread). The relative 

contribution of each factor across seasons is also presented.  

                                                 
5 Prices of constant maturity futures are calculated by averaging near and distant contracts, weighted 
according to their respective days from maturity. This way, we obtain an actual price for exactly x days 
prior to expiry; in fact, the resulting series is a “perpetual” contract with constant rolling delivery date 
(see Pelletier, 1983). 
6 1 contract of crude oil is 1,000 barrels whereas those of heating and gas oil are 42,000 US gallons and 
100 tonnes, respectively. A barrel is equivalent to 42 gallons or 7.45 (in line with ICE calculations) 
tonnes. Prices are converted to $US/bbl and transformed to natural logarithms for the ensuing analysis. 
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The data sample is from 27 June 1994 to 31 December 2009, resulting 3,780 observations; Panel A shows the 
proportion of variance explained by each principal component (PC) – overall and by season - for each commodity, as 
given by the PCA analysis in section 6.2.1; Note that for the ‘by season’ figures the relative importance is calculated 
i.e. how much of the first three factors contributes to their total variance by season, hence, their sum is always equal to 
100; Superscripts min and max denote the season where the contribution to the total variance is lowest and highest, 
respectively; Panel B shows the estimated annualised volatilities of the returns series by season with superscripts min 
and max denoting the season where volatility is lowest and highest, respectively; Panel C displays the descriptive 
statistics of changes in the principal components; Skew and Kurt are the estimated centralised third and fourth 
moments of the data, denoted 3â and )3ˆ( 4 −a , respectively; their asymptotic distributions under the null are 

)6,0(~ˆ
3 NaT and )24,0(~)3ˆ( 4 NaT − ; J-B is the Jarque-Bera (1980) test for Normality. The test follows a χ2 

distribution with 2 degrees of freedom; Q(5) and Q(20) are the Ljung-Box (1978) Q statistics for the 5th and 20th 
order sample autocorrelation of the series, whereas Q2(5) and Q2(20) refer to the squared returns series. These tests are 

distributed as χ2(5) and χ2(20), respectively; Asterisks *, ** and *** indicate significance at 10%, 5% and 1% level.   

Table 6.1: Preliminary data analysis & PCA results 

Panel A: % of Explained Variance of the First Three Factors & Relative Importance by Season (Q) 
Comdty F Overall Winter  Spring  Summer Autumn Spread F Overall Winter  Spring  Summer Autumn 

CL  L 98.23 98.22 min 98.38 98.73 max 98.83 HO-CL L 83.43 78.96 min 87.46 88.88 max 86.19 
CL  S 1.531 1.594 max 1.494 1.161 1.091 min HO-CL S 12.08 18.18 max 10.42 9.276 min 11.90 
CL  C 0.130 0.181 max 0.126 0.106 0.079 min HO-CL C 2.135 2.861 max 2.117 1.843 min 1.916 
(Cumulative) (99.89)      (97.65)     
HO  L 97.91 97.35 min 98.76 98.80 max 98.29 GO-CB L 95.28 96.63 max 96.57 96.00 95.71 min 
HO  S 1.580 2.332 max 1.040 min 1.015 1.447 GO-CB S 3.011 2.792 2.659 min 3.219 3.576 max 
HO  C 0.257 0.317 max 0.203 0.187 min 0.267 GO-CB C 0.701 0.578 min 0.774 0.779 max 0.718 
(Cumulative) (99.75)      (98.99)     
CB  L 97.61 98.44 min 98.51 98.56 98.79 max CL-CB L 77.90 85.05 87.00 max 78.82 79.66 min 
CB  S 1.620 1.336 max 1.329 1.233 1.057 min CL-CB S 12.40 11.59 10.44 min 17.19 max 15.93 
CB  C 0.263 0.223 max 0.158 0.211 0.151 min CL-CB C 3.199 3.356 2.554 min 3.993 4.402 max 
(Cumulative) (99.49)      (93.50)     
GO  L 97.54 97.86 min 98.66 max 98.33 97.89 HO-GO L 96.16 96.49 97.48 max 97.07 96.05 min 
GO  S 1.834 1.920 max 1.083 min 1.431 1.900 HO-GO S 2.602 2.976 1.961 min 2.363 3.289 max 
GO  C 0.326 0.216 0.252 max 0.235 0.212 min HO-GO C 0.571 0.534 min 0.555 0.567 0.659 max 
(Cumulative) (99.70)      (99.33)     

Panel B: Annualised Unconditional Volatilities by Season 
Comdty % Vol. p.a. 1 MTM 2 MTM 3 MTM 4 MTM 5 MTM 6 MTM 7 MTM 8 MTM 9 MTM 10 MTM 
CL σwinter 42.12 max 39.67 37.72 36.22 35.41 33.91 33.09 32.23 31.49 30.85 
 σspring 37.57 35.07 33.01 31.55 30.48 29.62 28.99 28.39 27.96 27.60 
 σsummer 31.49 min 29.72 min 28.29 min 27.18 min 26.30 min 25.64 min 25.09 min 24.63 min 24.13 min 23.75 min 
 σautumn 42.01 40.31 max 38.45 max 37.08 max 35.95 max 34.89 max 33.97 max 33.11 max 32.40 max 31.88 max 
            
HO σwinter 41.65 max 38.13 35.84 34.27 33.27 32.48 31.78 31.18 30.48 29.91 
 σspring 38.74 36.38 34.50 33.19 32.08 31.28 30.17 29.53 28.84 28.46 
 σsummer 33.02 min 31.76 min 30.49 min 29.28 min 28.32 min 27.36 min 26.64 min 25.83 min 25.18 min 24.73 min 
 σautumn 40.24 38.34 max 36.67 max 35.16 max 33.79 max 32.74 max 31.95 max 31.36 max 30.89 max 30.47 max 
            
CB σwinter 40.75 38.62 36.72 35.54 34.55 33.48 32.71 32.05 31.45 30.93 
 σspring 35.84 33.89 32.42 31.27 30.36 29.56 28.82 28.06 27.64 27.31 
 σsummer 30.10 min 28.88 min 27.77 min 27.27 min 26.19 min 25.55 min 25.10 min 24.68 min 24.49 min 23.76 min 
 σautumn 40.92 max 39.09 max 37.43 max 36.06 max 35.25 max 34.39 max 33.35 max 32.43 max 31.77 max 31.22 max 
            
GO σwinter 38.41 max 36.00 34.11 32.52 max 31.39 30.50 29.74 max 29.16 28.69 max 28.19 max 
 σspring 34.85 33.09 31.29 30.18 29.34 28.58 27.92 27.35 26.85 26.62 
 σsummer 29.60 min 28.61 min 27.50 min 26.60 min 25.86 min 25.31 min 24.71 min 24.20 min 23.80 min 23.53 min 
 σautumn 38.13 36.54 max 34.83 max 33.22 31.88 max 30.73 max 29.72 28.91 max 28.38 27.92 

Panel C: Summary Statistics 
Comdty F % Vol. p.a. Min Max Skew Kurt J-B Q(5) Q(20) Q2(5) Q2(20)  
CL  L 49.74 -18.88 17.24 -0.155*** 2.634*** 1,109.0*** 22.53*** 56.11*** 505.8*** 1,670***  
CL  S 6.208 -2.000 2.754 0.185*** 3.599*** 2,062.9*** 62.47*** 84.73*** 447.8*** 980.6***  
CL  C 1.788 -0.895 0.999 0.430*** 10.29*** 16,796*** 29.13*** 57.13*** 603.4*** 1,195***  
            
HO  L 49.65 -15.78 15.91 -0.048 1.687*** 449.76*** 23.86*** 46.76*** 297.8*** 952.6***  
HO  S 6.308 -4.032 2.428 -0.207*** 5.430*** 4,672.9*** 48.39*** 92.39*** 581.1*** 1,029***  
HO  C 2.545 -1.723 2.443 0.553*** 23.58*** 87,769*** 36.41*** 102.4*** 544.2*** 601.7***  
            
CB  L 49.58 -18.78 18.38 -0.113*** 2.598*** 1,071.4*** 25.02*** 60.04*** 452.4*** 1,435***  
CB  S 6.387 -3.437 2.716 -0.072* 4.701*** 3,484.9*** 9.310* 44.23*** 243.4*** 526.0***  
CB  C 2.574 -1.750 1.556 -0.073* 14.61*** 33,614*** 300.4*** 326.8*** 784.7*** 861.7***  
            
GO  L 49.56 -20.62 16.64 -0.019 2.138*** 720.41*** 2.942 31.47*** 183.4*** 568.5***  
GO  S 6.796 -2.584 3.236 -0.085** 3.825*** 2,308.9*** 2.375 25.67 257.5*** 780.5***  
GO  C 2.863 -1.003 1.050 -0.036 2.921*** 1,344.3*** 85.20*** 104.2*** 359.1*** 796.4***  
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For all commodities, the level has the lower explanatory power during winter, whereas 

the importance of slope and curvature factors increases that same period. Regarding the spreads, 

although no clear-cut results are obtained, there are larger variations in the relative contribution 

values especially in the crack spread series. For instance in the HO-CL (GO-CB) spread, the 

contribution of the level factor is maximised during summer (spring) and minimised during 

winter (summer) with a difference of around 1,000 (800) basis points. Overall, these results 

indicate that the performance of PCA differs across seasons thus, further justifying the use of 

seasonal volatilities. 

 

 

 

 

 

 

 

Figure 6.1 Seasonality Adjusted Weights of Principal Components for 

Heating Oil & WTI Crude Oil.  
 

This can also be confirmed by looking at the factor loadings of NYMEX heating and 

crude oil for the winter and summer seasons, presented in Figure 6.1. It is clear that in winter 

months there is an upward shift in the level, a clockwise rotation in the slope and an increased 

convexity in the curvature. This indicates that a shock of the same magnitude has greater impact 

on prices during winter, illustrated also in Panel B of Table 6.1 which represents the annualised 

unconditional futures returns volatilities by season across maturity. The seasonal pattern appears 

fairly consistent and the amplitude of volatility varies across quarters for all commodities. 

Summer months (June-August) are associated with relatively lower volatility whereas the latter 

reaches its peak either in autumn (September-November) or winter (December-February). 

Seasonal demand and storage might be some of the reasons; various studies have used different 

approaches to remove this seasonal behaviour such as Clewlow and Strickland (2000) and 

Borovkova and Geman (2006), just to mention a few. For comparison we also perform PCA on 

the panel of futures prices without seasonal controls. In terms of the proportion of variance 

explained results are qualitatively similar, yet, the seasonal behaviour of the futures prices is 

markedly evident in the factor process, thus justifying the use of the approach presented in the 

chapter. Finally, Panel B, Table 6.1 shows that the volatility of shorter term contracts exceeds 



 

 
Chapter 6: Petroleum Term Structure Dynamics and Inter-Commodity Dependencies 

  

 
 

 158

that of the more distant contracts, thus, shocks in the market are expected to spread out 

gradually (Samuelson effect) along the futures curve.  

Descriptive statistics of the principal components log-returns are reported in Table 6.1, 

Panel C. Annualised unconditional volatilities for the crude oil level factor are slightly higher 

than those of the corresponding petroleum product - within each market - whereas the opposite 

is observed for the slope and curvature. The former are in the range of 49% p.a.,  the latter 6.5% 

and 2.5% p.a., respectively, whereas, ICE short run factors appear more volatile than NYMEX. 

Note that these annualised volatilities are actually the eigenvalues λ (elements of diagonal 

matrix Λ) as measured over the whole sample period; using Eq. (6.1) and Eq. (6.2), the whole 

covariance matrix of the actual futures contracts can be replicated since the factor log-returns 

are just linear portfolios of the futures log returns. As their variance decreases so does their 

importance in explaining futures curve movements. The Ljung-Box (1978) Q statistic on the 

first five and twenty lags of the sample autocorrelation function is significant in all cases, with 

the exception of gas oil slope. Engle’s (1982) ARCH test, carried out as the Ljung-Box Q 

statistic on the squared series, indicates the existence of time-varying heteroscedasticity.  

The coefficients of skewness and excess kurtosis indicate departures from normality 

which is also confirmed by the Jarque-Bera (1980) test. In particular, the coefficient of 

skewness is negative for all level factors which means that long positions involve greater risk 

since large negative level shocks are more likely than positive ones. Regarding the slope factors 

negative shocks that will essentially push short term prices down and long term prices up are 

more likely in all cases apart from WTI. Similarly, regarding the curvature factors positive 

curvature shocks that will drive both short- and long- term prices up and medium term prices 

down are more likely in the NYMEX market, while in the ICE market, curvature shocks are 

balanced in terms of skewness, at the 5% significance level. 

 

 

6.3.1 Unit Root and Co-integration Results 

To determine the order of integration of petroleum principal components, we perform 

Augmented Dickey-Fuller (1979, 1981) and Phillips and Perron (1988) non-parametric unit root 

tests. Results (Panel A, Table 6.2) show that both level and slope series follow unit root 

processes while their first differences are stationary, rendering support for the use of VECM to 

capture the short run dynamics and long run trends. In contrast, all curvature factors are I(0) 

variables, hence the use of VAR is more appropriate. Figure 6.2 plots the estimated WTI and 

heating oil sets of factors. It seems that while they drift apart in the short run, factors move 
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together in the long run, pair-wise. Long run co-movement can be attributed to common driving 

forces, such as the prevailing global oil market conditions, while differences in the short run 

dynamics to temporary supply/demand imbalances caused by seasonality, refining capacity 

constraints etc. The mean revering behaviour of the curvature factor is also obvious.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Estimated Level (top), Slope (2nd, middle) and Curvature (3rd, bottom) 

factors prices for WTI crude oil and Heating oil 
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Lags is the lag length of the unrestricted VAR model in levels chosen on the basis of Schwarz Information Criterion (1978); λmax tests the null 
hypothesis of r cointegrating vectors against the alternative of r+1. λtrace tests the null hypothesis that there are at most r cointegrating vectors 
against the alternative that the number of cointegrating vectors is greater than r. Critical values obtained from Osterwald-Lenum (1992); 
Figures in (·) are standard errors, which are calculated using a Newey-West (1987) correction for serial correlation and heteroscedasticity; 
Asterisks *, ** and *** indicate significance at 10%, 5% and 1%, respectively; β' = (1 β1 β0) are the coefficient estimates of the cointegrating 
vector where the coefficient of X1,t-1 is normalised to be unity, β1 is the coefficient of X2,t-1 and β0 is the intercept term; The rolling 
cointegration tests are conducted by applying the Johansen multivariate approach to rolling daily ten-year sub-samples. The first trace test 
statistic is obtained by using observations from the beginning of the sample period through to the 2530th observation. The next test statistic is 
obtained by using data from the second observation through to the 2531st  observation, and so on, until the last observation was used; Numbers 
in [·] correspond to the 10 % confidence interval of the λmax  and λtrace statistics throughout the rolling period; Numbers in {·}correspond to the 
% of times that the null hypothesis of no cointegration cannot be rejected at 10% significance level using critical values obtained from 
Osterwald-Lenum (1992) i.e. 13.75 and 17.85 for the λmax  and λtrace statistics, respectively. 

 

Pair wise Johansen (1988) cointegration tests for the levels and slopes (Panel B, Table 

6.2), assuming a single regime process, indicate that all stand in a long-run relationship. 

Therefore, these pairs evolve in close proximity to one and other and any deviations signal 

disequilibria, which will eventually be restored. Note that correct specification of the 

deterministic components in the VECM is important because the asymptotic distributions of the 

cointegration test statistics are dependent upon the presence of trends and/or constants. In our 

case likelihood ratio tests indicated that the intercept term should be restricted to lie on the 

cointegrating space - in Eq (3) for a single regime process v is a 2x1 zero matrix- hence, the 

vector series becomes Xt-1 = (X1,t  X2,t 1), with a cointegrating vector (1 β1 β0), where the 

coefficient of Xt-1 is normalised to be unity, β0 is the intercept term, and β1 is the coefficient on 

Table 6.2: Unit Root & Johansen Cointegration tests for Petroleum Futures Factors 
Panel A: Unit Root Tests 

  Augmented Dickey Fuller Phillips Perron 
  Level Slope Curvature Level Slope Curvature 

CL  -1.923 -2.185 -4.491*** -1.903 -2.083 -3.172** 
HO  -1.732 -1.927 -4.955*** -1.733 -1.847 -4.375*** 
CB  -1.803 -1.996 -3.460*** -1.818 -1.906 -6.300*** 
GO  -1.651 -1.696 -3.317** -1.595 -1.715 -5.151*** 
ΔCL      -65.31***     -54.11*** -56.94***     -65.43***     -54.02*** -56.80*** 
ΔHO      -66.23***     -55.14*** -23.87***     -66.31***     -54.97*** -61.93*** 
ΔCB      -66.19***    -62.61*** -37.95***     -66.23***     -62.70*** -97.43*** 
ΔGO      -62.81***     -61.59*** -50.15***     -62.85***     -61.58*** -70.68*** 

Panel B: Johansen Cointegration Tests & Mean Reversion Rates 

 
    Statistics  

Adjust. 
Coefficients  

CV: (1   β1  
β0) 

Rolling    Statistics 

 Lags H0:  max 
 

trace
  a1 a2  Normalised max test 

trace test 

Level Factors Pair wise Cointegration    
HO - CL 1 r=0  32.51*** 36.08***  -1.2984 0.2597  (1  -1.107  -0.089) [18.9   27.2] [19.7   33.4] 
  r=1  3.578 3.578  (0.679)* (0.782)   {0.1%} {2.1%} 
GO -CB 4 r=0  24.95*** 27.78***  -1.6328 0.7522  (1  -1.195  -0.071) [18.4   26.1] [19.9   29.1] 
  r=1  2.833 2.833  (0.612)*** (0.679)   {0.8%} {2.2%} 
CL –CB 2 r=0  43.45*** 47.17***  0.5988 3.6512  (1  -0.950   0.018) [20.3   26.1] [21.7   29.3] 
  r=1  3.721 3.721  (1.617) (1.603)**   {0.0%} {0.0%} 
HO-GO 3 r=0  55.01*** 57.77***  -2.4590 5.5925  (1  -0.884   -0.007) [27.7   65.3] [29.6   66.6] 
  r=1  2.758 2.758  (1.285)* (1.168)***   {0.0%} {0.0%} 

Slope Factors Pair-wise Cointegration      
HO-CL 1 r=0  37.08*** 40.34***  -0.8513 0.8933  (1  -1.148  -0.016) [21.8  26.9 ] [23.3   32.3] 
  r=1  3.259 3.259  (0.267)*** (0.263)***   {0.0%} {0.0%} 
GO-CB 1 r=0  52.72*** 55.50***  -1.7678 0.9514  (1  -1.266  -0.004) [23.8   32.8] [26.3   34.6] 
  r=1  2.779 2.779  (0.333)*** (0.318)***   {0.0%} {0.0%} 
CL-CB 2 r=0  36.37*** 40.24***  -1.2101 1.4913  (1  -0.995   0.007) [16.9   26.7] [18.7   31.3] 
  r=1  3.875 3.875  (0.539)** (0.545)***   {6.3%} {2.9%} 
HO-GO 4 r=0  39.37*** 42.23***  -1.6184 1.8876  (1  -0.903  -0.004) [21.6   30.8] [22.8   34.9] 

  r=1  2.866 2.866  (0.518)*** (0.530)***   {0.0%} {0.0%} 
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X2,t. The normalised coefficient estimates of the cointegrating vector (1 β1 β0) represent the long-

run relationship which can be regarded as a spread e.g. L1,t – β1L2,t – β0. All the error coefficients 

have the correct sign (negative for the first leg of the spread and positive for the second) 

implying that in response to a positive deviation from their long-run mean at period t-1, i.e. 

when L1,t-1 – β1L2,t-1 > β0, L1,t will decrease and L2,t will increase the following period to restore 

balance. This adjustment process is not uniform across factors. For the level factors it is 

primarily driven by the refined products, while for the slopes both crude and refined products 

move in response to disequilibrium. For instance, looking at the level factor for the crude - 

refined product pairs, equilibrium is restored following the adjustment of petroleum products. In 

the inter-crude market, WTI is non responsive to the differential. This is expected since the US 

reflects by far the largest oil consumer and importer of crude oil and this introduces a high 

degree of sensitivity to the US oil prices, which perhaps makes the WTI market dominant in 

terms of information discovery (Lin and Tamvakis, 2001). In the inter-product market the 

estimates of the error correction coefficients, in terms of magnitude and significance, indicate 

that both heating and gas oil prices move to adjust equilibrium for the both level and slope 

equations, at 10% significance level. Overall, regarding the slope factors, there is a two-way 

feedback relationship in all cases, at 5% significance level.  

Finally, to discount the possibility that convergence is sample specific we use rolling 

cointegration tests that explicitly take into account the possibility that two or more series may be 

more integrated during some periods but less so or not at all during other periods. These tests 

are conducted by applying the Johansen (1988) procedure to rolling ten-year sub-samples (i.e. 

using a moving window of 2,530 daily observations). The 90% confidence intervals from the 

rolling cointegration tests are reported in the last two columns of Panel B, Table 6.2 along with 

an associated failure rate i.e. the percentage of sub-samples that the null hypothesis of 

cointegration is rejected. Overall, cointegration is confirmed over the sub-samples and the 

highest rejection percentage occurs in the WTI-Brent slopes spread (=6.3%), where only 78 sub-

samples out of 1,250 are not cointegrated.   

 

6.4 Empirical Results  

Having identified the cointegration and mean reversion properties of the data, MRS 

Models are employed next to investigate the dynamic relationships between the petroleum 

futures factors, as described in section 6.2.2 (Eq. 6.3, 6.4 and 6.5). Given the results of the 

previous section for the level and slope shocks, an MRS-VECM is specified whereas curvature 
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shocks are linked through a VAR-X (in first differences) with each equation augmented by the 

level of the dependent variable, setting Π (Eq. 6.3) equal to a diagonal matrix Π*. Individual 

shocks follow an independent two-state process by disaggregating each data generating process 

to periods of low and high volatility. In order to accommodate the possibility that one factor 

might be in the high volatility state and the other in a low volatility state and thus get a more 

realistic representation of the correlation structure, we link these two processes by maximising 

the joint log-likelihood function of Eq. (6.7); log-likelihood is maximised each time by taking 

the pairs of same factors (L1-L2, S1-S2 and C1-C2). In the ensuing analysis four cases are 

considered; the NYMEX heating crack (HO-CL), the ICE gas oil crack (GO-CB), the inter-

crude (WTI-Brent) and the inter-product (HO-GO) spreads. Results are presented in Table 6.3.  

Several points are worth noting. First, looking at the estimated regime switching 

intercepts across the two regimes results are mixed but the coefficients display asymmetries in 

several ways. For instance, when considering gas oil slope shocks in the inter-product spread 

equations this asymmetry is manifested as a sign change; another example is the WTI crude oil 

level shocks in the inter-crude equations where the intercept becomes much higher in the high 

variance state. Overall, intercepts are larger in the high variance state in terms of absolute values 

(19 out of 24 cases). Note that for the MRS models of Eq. (6.3) we modify the cointegrating 

vector to (1  β1) in order to allow switching in the equilibrium means; removing β0 from the 

cointegrating vector, this is now incorporated in the system vector of intercepts vst so that the 

results in Table 6.3 display the aggregate switching. This way, intercepts depend on both the 

drifts and the equilibrium mean of the system; shifts in the intercept term of the system can be 

decomposed into changes in the drift E[ΔXt |st]= st and equilibrium mean E[β΄ Xt|st]= st as vst = 

st+ast st, where st= β┴(αst΄┴ β┴)-1αst΄┴vst and st= - ( β΄αst )
 -1[β΄vst], ┴ denoting the orthogonal 

complement. Given the above property, it is clear that for the I(1) series of levels and slopes 

(see Table 6.2), intercepts depend on all endogenous variables because they share a system-

specific common long run mean; therefore, it is not unusual to observe diversity across same-

commodity shocks’ intercepts of different systems i.e. the gas oil level in the ICE crack MRS-

VECM implies a low (high) volatility state intercept of  0.042 (0.184) whereas for the inter-

market (HO-GO) equation the corresponding figure is 0.082 (-0.023). Such variation across 

same-commodity factors does not occur for curvatures because intercepts depend only on the 

individual corresponding shock, that is, α1,st[ C1,t –  μ1,st] and α2,st[ C2,t –  μ2,st]; the equilibrium 

mean is not common because C’s are already I(0) processes.  

 

 



 

 
Chapter 6: Petroleum Term Structure Dynamics and Inter-Commodity Dependencies 

  

 
 

 163

The table presents the coefficient estimates of the MRS-VECM of (Eq. 6.3). L and S refer to the level and slope of the 
MRS VECM models, respectively. The first and second sets of coefficients are in the order they are defined i.e. for the 
crack spread HO-CL, ν1,st corresponds to HO and ν2,st to CL; C represents the curvature equations which are modelled 
as a VAR model augmented with the level of curvature of each C factor or in other words an MRS - ADF regression 
(Mean Reversion with lags) augmented with lags of the other commodity C factor (in changes); Short run Causality is 
tested by restricting the coefficient of the cross-commodity lags to be zero i.e. the null hypothesis is that there is no 
short run causality. The results of the likelihood ratio test follow a χ2 distribution with degrees of freedom equal to the 
number of restrictions in the system of equations.  

Table 6.3: Estimates of Markov Regime Switching Models (unrestricted models) 

 HO-CL GO-CB CL-CB HO-GO 

  L    S C L S C L S C L S C 
Intercepts  
ν1,st=1 0.0783 0.0069 0.0028 0.0421 0.0096 0.0104 0.0072 -0.0036 -0.0024 0.0082 0.0003 0.0036 

 (0.080) (0.006) (0.002)* (0.063) (0.006)* (0.003)*** (0.062) (0.006) (0.002) (0.048) (0.006) (0.002) ** 

ν2,st=1 -0.0053 -0.0081 -0.0014 -0.0321 -0.0097 -0.0008 0.0342 -0.0006 -0.0020 -0.2374 0.0013 0.0145 

 
(0.076) (0.007) (0.002) (0.070) (0.006)* (0.002) (0.062) (0.006) (0.002) (0.046)*** (0.006) 

(0.003) 

*** 

ν1,st=2 0.1802 0.0378 -0.0074 0.1844 0.0050 0.0081 0.0156 -0.0058 -0.0200 -0.0229 0.0499 -0.0095 

 (0.148) (0.025) (0.009) (0.112)* (0.016) (0.005)* (0.083) (0.017) (0.010) ** (0.097) (0.020)** (0.009) 

ν2,st=2 -0.1076 -0.0181 -0.0172 -0.3019 0.0072 -0.0088 0.0772 0.0201 -0.0052 -0.0168 -0.0209 0.0055 

 (0.140) (0.019) (0.010)* (0.231) (0.012) (0.009) (0.070) (0.012)* (0.009) (0.074) (0.018) (0.006) 

Equilibrium Adjustment Coefficients 
α1,st=1 -0.6360 -0.6466 -0.7865 0.3226 -1.3867 -1.2442 -0.8079 -0.2991 -0.3136 0.0048 -0.1461 -0.9779 

 (0.386)* (0.243)*** (0.147)*** (0.696) (0.327)*** (0.259)*** (1.669) (0.458) (0.114)*** (1.901) (0.457) (0.148)*** 

α 2,st=1 0.6928 0.2733 -0.2045 2.0827 0.1062 -1.4084 1.2443 0.6841 -1.1592 19.8547 1.3904 -1.7631 

 (0.636) (0.239) (0.115)* (0.715)*** (0.306) (0.294)*** (1.682) (0.404)* (0.282)*** (1.817)*** (0.477)*** (0.251)*** 

α 1,st=2 -1.9650 -1.3434 -0.7985 -2.5001 -2.0762 -1.4184 2.8555 -2.2145 -1.6054 -3.6538 -5.9570 -0.4510 

 (1.075)* (0.645)** (0.503) (0.828)*** (0.572)*** (0.325)*** (2.007) (1.135)* (0.594)*** (2.120)* (1.444)*** (0.468) 

α 2,st=2 0.6607 1.8932 -1.3259 0.9274 1.4461 -3.3320 4.3518 2.2344 -3.8025 2.4165 2.2965 -1.2529 

 (0.973) (0.570)*** (0.576)** (1.221) (0.481)*** (1.008)*** (1.808)** (0.851)*** (1.036)*** (1.384)* (1.178)* (0.366)*** 

Short Run Causality  
LR1,st=1 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.029] [0.157] [0.423] [0.437] 

LR2,st=1 [0.424] [0.807] [0.000] [0.000] [0.648] [0.056] [0.000] [0.000] [0.000] [0.154] [0.000] [0.000] 

LR1,st=2 [0.000] [0.000] [0.000] [0.000] [0.001] [0.000] [0.001] [0.289] [0.012] [0.000] [0.159] [0.021] 

LR2,st=2 [0.000] [0.863] [0.000] [0.000] [0.888] [0.011] [0.000] [0.000] [0.402] [0.205] [0.000] [0.000] 

Volatilities (% p.a.) 
σ1,st=1 43.466 4.467 1.543 33.249 4.269 1.176 47.704 4.469 1.051 39.472 4.200 1.533 

 (0.492) 

*** 
(0.063) 

*** 
(0.016) 

*** 
(0.603) 

*** 
(0.079) 

*** 
(0.016) 

*** 
(0.429) 

*** 
(0.063) 

*** 
(0.016) 

*** 
(0.476) 

*** 
(0.063) 

*** 
(0.016) 

*** 

σ2,st=1 41.394 4.170 1.046 39.499 3.661 1.341 47.138 3.858 1.372 33.038 4.334 1.433 

 (0.492) 

*** 
(0.079) 

*** 
(0.016) 

*** 
(0.603) 

*** 
(0.063) 

*** 
(0.016) 

*** 
(0.460) 

*** 
(0.063) 

*** 
(0.016) 

*** 
(0.381) 

*** 
(0.079) 

*** 
(0.032) 

*** 

σ1,st=2 60.025 9.468 4.351 52.421 9.328 3.353 52.630 8.696 3.065 62.571 8.944 4.172 

 (0.889) 

*** 
(0.159) 

*** 
(0.063) 

*** 
(0.698) 

*** 
(0.159) 

*** 
(0.032) 

*** 
(0.571) 

*** 
(0.175) 

*** 
(0.048) 

*** 
(1.016) 

*** 
(0.159) 

*** 
(0.063) 

*** 

σ2,st=2 63.581 9.063 3.084 67.092 8.174 4.064 51.079 7.755 4.099 55.219 8.741 3.491 

 (0.778) 

*** 
(0.190) 

*** 
(0.048) 

*** 
(1.445) 

*** 
(0.095) 

*** 
(0.063) 

*** 
(0.444) 

*** 
(0.095) 

*** 
(0.063) 

*** 
(0.730) 

*** 
(0.159) 

*** 
(0.048) 

*** 

Correlations 
ρ1,st=1,1 0.9557 0.4859 0.1767 0.8005 0.4336 0.1492 0.9921 0.8052 0.3897 0.7333 0.4616 0.3532 

 (0.002)*** (0.019)*** (0.023)*** (0.011)*** (0.024)*** (0.035)*** (0.000)*** (0.009)*** (0.021)*** (0.009)*** (0.020)*** (0.025)*** 

ρ2,st=2,1 0.8790 0.4401 0.1486 0.7137 0.2887 0.1285 0.8265 0.5959 0.3634 0.3789 0.2729 0.2691 

 (0.007)*** (0.036)*** (0.046)*** (0.017)*** (0.051)*** (0.026)*** (0.016)*** (0.043)*** (0.039)*** (0.057)*** (0.042)*** (0.083)*** 

ρ3,st=1,2 0.9537 0.5819 0.0885 0.4882 0.2616 0.3411 0.9588 0.5439 0.0646 0.9425 0.3593 0.1207 

 (0.004)*** (0.026)*** (0.038)** (0.053)*** (0.031)*** (0.097)*** (0.002)*** (0.019)*** (0.043) (0.006)*** (0.037)*** (0.028)*** 

ρ4,st=2,2 0.9425 0.3334 0.2754 0.6496 0.3327 0.0434 0.9794 0.6749 0.3167 0.7723 0.4767 0.3167 

 (0.004)*** (0.029)*** (0.042)*** (0.017)*** (0.025)*** (0.034) (0.002)*** (0.015)*** (0.042)*** (0.010)*** (0.025)*** (0.027)*** 

Transition Probabilities 
p11,1 0.9868 0.9631 0.9675 0.9674 0.9831 0.9548 0.9639 0.9792 0.9557 0.9960 0.9763 0.9869 

 (0.003)*** (0.006)*** (0.005)*** (0.006)*** (0.003)*** (0.006)*** (0.007)*** (0.004)*** (0.006)*** (0.001)*** (0.004)*** (0.003)*** 

p22,1 0.9547 0.9105 0.8899 0.9035 0.9806 0.8676 0.9564 0.9726 0.8573 0.9941 0.9601 0.9811 

 (0.008)*** (0.013)*** (0.014)*** (0.016)*** (0.003)*** (0.014)*** (0.007)*** (0.004)*** (0.015)*** (0.002)*** (0.007)*** (0.003)*** 

p11,2 0.9876 0.9853 0.9741 0.9800 0.9627 0.9854 0.9911 0.9699 0.9658 0.9951 0.9789 0.9751 

 (0.003)*** (0.003)*** (0.004)*** (0.005)*** (0.006)*** (0.004)*** (0.003)*** (0.005)*** (0.005)*** (0.001)*** (0.004)*** (0.004)*** 

p22,2 0.9650 0.9500 0.9150 0.9771 0.9377 0.9848 0.9674 0.9196 0.8816 0.9854 0.9517 0.9266 

 (0.007)*** (0.008)*** (0.011)*** (0.005)*** (0.010)*** (0.002)*** (0.008)*** (0.013)*** (0.015)*** (0.003)*** (0.008)*** (0.010)*** 
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Turning next to the estimated speeds of adjustment ast to the long-run equilibrium level, 

overall, level and slope error correction coefficients’ signs are consistent with the corresponding 

single regime estimates (α1 and α2), given in Table 6.2. Moreover, they are in line with theory 

having the correct sign across both regimes, in the sense that the first is negative, the second 

positive and at least one of them is statistically significant, consistent with convergence towards 

the long-run equilibrium. An exception is the WTI-Brent equation for the levels where both 

error correction coefficients are positive in the high variance state but only the coefficient for 

Brent is statistically significant. It is also interesting to note that in the high volatility state for 

both crack spread markets, crude oil leads the information discovery process; this can be 

explained by the fact that first, crude oil prices are determined by the worldwide supply and 

demand and constitute a much larger market as opposed to refined products where regional 

supply/demand dynamics are important and second, crude is the single most important 

production cost for those products affecting their price formation accordingly (see also Alizadeh 

and Nomikos, 2008). However, although for the NYMEX crack this holds globally - in both low 

and high variance states - this is not the case for the ICE crack levels since under the low 

volatility state gas oil leads Brent; this can in turn be attributed to the fact that crude oil demand 

is derived from refined products. Note though that this apparent contradiction may be explained 

considering that Europe’s gasoil market relative to crude is much more important than the 

heating market in the US. For instance, the relative volumes of futures contracts of 

crude/heating in NYMEX was around 5:1 as opposed to less than 2:1 in ICE for crude/gasoil. In 

the inter-product market both commodities constitute goods with seasonal and capacity 

constrained flow of supply and are vulnerable to supply disruptions. As such, in the high 

variance state, a two way feedback effect is observed. Nevertheless, heating oil is not responsive 

to the differential in the low variance state; perhaps this reflects the  transient nature of 

temporary imbalances in the European market, which are more vulnerable to extreme weather 

conditions (Milonas and Henker, 2001), the faster response of heating to the larger market of 

crude so that gasoil seems to follow the discovery process at a slower pace, or even different 

inventory policies in a way that the US efficiently accumulates stocks to deal with temporary 

demand shocks.   

For the slope factors, error correction coefficients are all larger in the high variance 

state implying that high volatility is associated with faster reversion to the long-run equilibrium. 

Here we can see a more clear pattern compared to the Level factors. First, in the low volatility 

state, a one way (long-run) feedback effect is detected with the equilibrium relationship having 

explanatory power only on refined products and not on the crudes (for the cracks) and the US 
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market leading the European market. Second, in the high volatility regime, a two way feedback 

effect is reported across all cases. As for the curvature factors, all mean reversion rates are 

significant - apart from the heating oil high volatility state process in both NYMEX crack and 

inter-product equations - and, overall, high volatility state is associated with faster reversion to 

the long-run factor-specific (rather than common as for levels and slopes) mean. Finally, short 

run causality tests, carried out as a likelihood ratio (LR) statistic on the lagged cross-factor 

terms indicate that in almost all cases there is a two way feedback in the short run dynamics. 

Notable exceptions are the slope shocks where crude oil (in case of the cracks) and heating oil 

(in case of the inter-product spread) lead the markets in the short run.  

Table 6.3 also reports annualised volatilities and correlation across regimes. First, 

regime dependent volatilities from the estimated models indicate that there is marked 

asymmetry in all cases. Regarding the level factors, volatilities of the high variance state are 

overall 40%-70% higher compared to the low variance state, apart from the WTI-Brent equation 

where the percentage increase drops to 10%. The corresponding figures for slopes and 

curvatures are 95%-120% and 140%-200%, respectively. Therefore, each regime clearly 

differentiates two distinct market dynamics for the volatility of the underlying process. As for 

the state dependent correlations, it seems that when one market is in the low and the other in the 

high variance state, it is more likely to observe, on average, lower correlations (10 out of 12 

cases). This holds even when we compare the average correlations of high-low and low-high 

variance states with the low-low and high-high variance states individually (both times 10 out of 

12 cases) whereas high correlations seem to be a feature of the low variance state (9 out of 12 

cases). Overall, both level and slope shocks display strong dependence structure with 

correlation bounds of 0.35-0.99 and 0.26-0.81, respectively, whereas curvature shocks 

correlation is not as strong, being between 0.08-0.35. Correlations are positive and significant, 

at the 1% significance level; only for the curvature shocks of ICE crack and inter-crude spread 

we observe a zero state dependent coefficient. Furthermore, a far stronger co-movement is noted 

in the NYMEX crack and WTI-Brent spreads than in the ICE crack and heating-gas oil spreads, 

while the largest variations in correlation measures occur in the inter-product level shock pair 

with a spread of 0.56 (0.38-0.94). For the slopes and curvatures, inter-crude shocks involve the 

highest spread of 0.26 (0.54-0.8) and 0.33 (0.06-0.39), respectively. Curvature correlations 

diverge across regimes by a factor of 3 (heating-gas oil) to a factor of nearly 8 (ICE crack, 0.04-

0.34). Overall, results suggest that there is variation in the volatilities and correlation processes 

across regimes.  
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The findings up to now indicate that caution should be taken when making inferences 

about the dynamics of the adjustment to the long-run equilibrium, because convergence and 

direction of causality cannot be known a priori. Results indicate differences not only between 

factors but between markets as well. For instance crack spreads in the US and European markets 

present dissimilar dynamics across regimes, indicating different pass through mechanisms, an 

effect not accommodated by linear models (e.g. in Table 6.2, Panel B). In addition, the estimates 

for the slopes present an interesting facet which can be attributed to the theory of storage. Under 

normal market conditions (i.e. low volatility regime) products will respond to the crude oil slope 

in order to restore the long-run equilibrium of relative backwardation/contango. On the other 

hand, in volatile periods the crude will also respond to the product’s slope. This is expected 

since if crude oil inventories are low, products’ inventories will also deplete after some time 

period subject to product-specific inventories. If both enter extreme backwardation then demand 

for products will play a key role since small changes in demand, for e.g. residential needs, will 

drive both crude and refined products’ prices up in view of constrained capacity and time lag of 

production. Another interesting feature is that correlations, at least for level factors, are much 

stronger in the US crack (0.88-0.96 for levels) and the inter-crude spreads (0.83-0.99) as 

opposed to the European crack (0.65-0.80) and the inter-product market (0.73-0.94). For the 

crack spread markets this difference can be attributed to differences in market structure. First, as 

already mentioned, European petroleum products are more susceptible to extreme weather 

conditions. Second, the European market is more dependent on middle distillates, such as gas 

oil, and consumption has been historically higher than in the U.S where light distillates, such as 

gasoline, play a prominent role. Also, another reason as to why gas oil seems to display this 

relative autonomy might be that gas oil market has been growing at a faster pace than the US 

heating market for the last 5 years - futures volume and open interest data have surpassed the 

corresponding NYMEX heating oil figures. On the whole, MRS specification results in a more 

rich structure which produces economically meaningful results concerning the factor dynamics, 

being flexible enough to accommodate several fundamentals across diverse market conditions. 

The estimates of the transition probabilities in Table 6.3, p11 and p22, imply that the 

individual factor-specific regimes are fairly persistent. For instance, looking at the curvature 

factor for the ICE crack, p11 is 0.955 for gas oil and 0.985 for Brent whereas p22  is 0.868 and 

0.985, respectively. Therefore, the probabilities of a low-to-high (p12) volatility regime shift are 

1-0.955=4.5% and 1-0.985 = 1.5% for gas oil and Brent, respectively. Similarly, the 

corresponding probabilities of a high-to-low (p21) volatility regime shift are 13.2% and 1.5%, 

respectively. In Table 6.4, Panel A we also calculate the unconditional regime probabilities as 
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well as the duration7 of being in each regime. For the individual factor-specific regimes these 

are fairly high for the low variance state, nearly 70% on average, and relatively lower for the 

high variance state, nearly 30% on average. 

 

Table 6.4: Unconditional Probabilities & Expected Duration  

 HO-CL GO-CB CL-CB HO-GO 

  L    S C  L   S C  L   S C  L    S C 
Panel A: Factor-Specific Regimes 
π1,st=1 0.774 0.708 0.772 0.747 0.534 0.745 0.547 0.568 0.763 0.596 0.627 0.591 
 {15.2} {5.4} {6.2} {6.1} {11.8} {4.4} {5.5} {9.6} {4.5} {50.0} {8.4} {15.3} 
π1,st=2 0.226 0.292 0.228 0.253 0.466 0.255 0.453 0.432 0.237 0.404 0.373 0.409 
 {4.4} {2.2} {1.8} {2.1} {10.3} {1.5} {4.6} {7.3} {1.4} {33.9} {5.0} {10.6} 
π2,st=1 0.738 0.773 0.766 0.534 0.626 0.490 0.786 0.728 0.776 0.749 0.696 0.747 
 {16.1} {13.6} {7.7} {10.0} {5.4} {13.2} {22.5} {6.6} {5.8} {40.8} {9.5} {8.0} 
π2,st=2 0.262 0.227 0.234 0.466 0.374 0.510 0.214 0.272 0.224 0.251 0.304 0.253 
 {5.7} {4.0} {2.4} {8.7} {3.2} {13.7} {6.1} {2.5} {1.7} {13.7} {4.1} {2.7} 

Panel B: Joint Factor-Specific Regimes 
πFG,st=1,1  0.572 0.547 0.592 0.399 0.334 0.380 0.430 0.414 0.592 0.446 0.437 0.441 
 {7.9} {3.9} {3.5} {3.9} {3.7} {3.4} {4.5} {4.0} {2.6} {22.5} {4.5} {5.3} 
πFG,st=2,2  0.059 0.066 0.053 0.118 0.174 0.125 0.097 0.118 0.053 0.102 0.113 0.104 
 {2.5} {1.5} {1.1} {1.7} {2.5} {1.4} {2.7} {1.9} {0.8} {9.8} {2.3} {2.2} 

Panel C: Global Regimes 
πG1,st=1   0.185   0.051   0.105   0.086  
  {1.6}   {1.3}   {1.2}   {2.3}  
πG2,st=2   0.000   0.003   0.001   0.001  
  {0.6}   {0.7}   {0.5}   {1.1}  
             
pG11  0.872   0.844   0.837   0.912  
pG22  0.649   0.694   0.625   0.814  

This table reports the unconditional probabilities for each regime as implied from the estimated transition 
probability matrices of Table 3; πi,st is the unconditional individual factor specific probability of being in 
regime st, where subscripts i denotes the commodity i.e. 1 for the first and 2 for the second leg; πFG,st is 
the unconditional joint-factor specific global regime probability of two factors being simultaneously in 
either the low (st=1 & st=1) or high (st=2 & st=2) volatility regimes i.e. L-L, S-S and C-C. Obviously 1-
(πFG,1,1 +πFG,2,2) will give the probability of two factors being in different states i.e. either low-high or 
high-low states. πGi,st is the unconditional global regime of all six factors corresponding to a specific 
spread being simultaneously in volatility regime i (hence, global regime); pGii is the (transition) 
probability of all six factors staying in volatility regime i, in the following period; Numbers in {·} display 
the expected weekly durations of being in regime st. 

 

Looking at the joint factor-specific regime probabilities in Panel B, the low variance 

state is more stable lying in the range of 33%-59%, as opposed to 5%-17% for the high variance 

state; these represent the joint unconditional probabilities of both factors being in either st = 1 or 

2. Note that in each case, unconditional probabilities are the solution to π = π Ψ (see Chapter 3, 

section 3.3.2, pp. 62), where π the vector of the equilibrium state probabilities e.g. for levels this 

would be  πL = πL ΨL. The joint unconditional probability that the components of a pair of 

factors are at different regimes is 33%-50% and this is the area where of the lower relative 

                                                 
7 The average expected duration of being in state 1 is calculated using the formula suggested by Hamilton 

(1989):    1 1

11 11 11

1

(1 ) (1 )i

i

ip p p
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correlations are observed; this is implied from the table as 1- (πFG,st=1,1+ πFG,st=2,2). Next, after 

the Ψ* matrices are calculated as ΨL⊗ΨS⊗ΨC (see section 6.2.2), the upper left elements of 

the global transition probability matrices are equivalent to ( p11,1 p11,2)L ( p11,1 p11,2)S ( p11,1 p11,2)C 

and vary between 0.84-0.91; that is, the probability of staying in the pair-specific global low 

volatility regime denoted as pG11 in Panel C. Similarly the lower right element of global Ψ*
 lies 

between 0.62-0.81, showing that low volatility regime is associated with greater persistence. 

Overall, local factor-specific regimes (Panel A) are more persistent with expected duration 

ranging from more than a month to nearly a year. For joint factor-specific regimes (Panel B) this 

falls to a maximum of 6 months and for global regimes (Panel C) persistency falls radically to a 

maximum of 2.3 weeks for the low and 1.1 for the high variance state. Consequently, the multi-

regime factor model allows for frequent transitions since the probabilities of being in one 

regime fall as we include more factors, in other words, it is more difficult for each of the 

underlying processes to coincide within the same regime. Therefore, a one factor model is 

characterised by 4 regimes, a two factor by 42 and a three factor by 43 regimes (given Eq. 6.5). 

Overall, high variance states are less stable and are characterised by much shorter duration 

compared to low variance states, consistent with other studies in the literature (see also Chapters 

4 and 5). 

For exposition purposes, the “smooth” regime probabilities for the principal 

components’ processes derived from the estimated MRS model are presented in Figures 6.3 and 

6.4 for the NYMEX crack and WTI-Brent cases8. These indicate the likelihood of a pair of 

factors being in the low variance state with the shaded areas in the graphs identifying the 

periods when the same factors are in the high variance state. Note that the actual regimes for 

each pair of factors are four and thus, state probabilities do not add to one.  

 

 

 

 

 

 

 

 

                                                 
8 Based upon the estimated parameter vectorθˆ , estimated from data spanning the period t=1 to T, 

“smooth” probability is the estimated probability that the unobserved state at time t equals 1 given the 
entire sample of observations from 1 to T. See Chapter 3, section 3.4.1 and Hamilton (1994). 
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Figure 6.3: NYMEX Heating Crack Regime Smoothed Probabilities for  

Level, Slope & Curvature Factors 

 

 
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.4: WTI – Brent Spread Regime Smoothed Probabilities for  

Level, Slope & Curvature Factors 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

01
-J
ul
-9
4

01
-J
an
-9
6

01
-J
ul
-9
7

01
-J
an
-9
9

01
-J
ul
-0
0

01
-J
an
-0
2

01
-J
ul
-0
3

01
-J
an
-0
5

01
-J
ul
-0
6

01
-J
an
-0
8

01
-J
ul
-0
9

High Vol Regime Low Vol Regime

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

01
-J
ul
-9
4

01
-J
an
-9
6

01
-J
ul
-9
7

01
-J
an
-9
9

01
-J
ul
-0
0

01
-J
an
-0
2

01
-J
ul
-0
3

01
-J
an
-0
5

01
-J
ul
-0
6

01
-J
an
-0
8

01
-J
ul
-0
9

High Vol Regime Low Vol Regime



 

 
Chapter 6: Petroleum Term Structure Dynamics and Inter-Commodity Dependencies 

  

 
 

 170

Figure 6.5 plots the volatility of the NYMEX crack spread for 1- month, 2- months and 

9- months to maturity futures, estimated from the factor MRS model of Eq. (6.2); in this case, Λ 

becomes a function of the estimated state dependent volatilities. Time-variation arises from 

estimating the lower (low variance state) and upper (high variance state) bounds of variance and 

weighting these by the estimated regime probabilities. Evident is the presence of the Samuelson 

(1965) effect where shorter maturity contracts volatility is always at the top. NYMEX Crack 

spreads appear to be more volatile but volatility persists and has longer memory whereas the 

WTI-Brent market (Figure 6.7) is associated with more noise, increases in the volatility are in 

the form of jumps and shocks die out fast. This is also manifested in the time evolution of 

correlations. Short term spreads are associated with lower correlation between their components 

e.g. 1- month vs. 9- month NYMEX cracks, as observed in Figure 6.6. This holds for all spreads 

(not presented; for illustration we also present the WTI-Brent case in Figure 6.8). Medium term 

spreads, on the other hand, are more balanced in terms of correlation, being higher (on average) 

with less temporary decreases of magnitude e.g. 1- month NYMEX crack correlation falls to 

nearly 0.8, whereas the minimum value for the  3- month spread is never below 0.85. On the 

other hand, longer term spreads’ correlation lies in-between the medium and short term spreads’ 

correlations. 
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Figure 6.5: NYMEX Heating Crack 1, 3 & 9 Month Futures Spread Volatilities 
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Figure 6.6: NYMEX Heating Crack Correlations of 1, 3 & 9 Month Futures 
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Figure 6.7: WTI- Brent 1, 3 & 9 Month Futures Spread Volatilities 
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Figure 6.8: WTI- Brent Correlations of 1, 3 & 9 Month Futures 

 

Finally, diagnostic tests of all models are presented in Table 6.5. Tests on the 

standardised residuals and standardised squared residuals indicate that most of the 

autocorrelation in the principal component series has been removed; however, some signs still 

remain e.g. Brent slope and curvature factors, at 1% significance level. By comparing the 

conditional and unconditional coefficients of skewness (in Table 6.1), we can note a nominal 

reduction in the levels of excess skewness and kurtosis. Moreover, linearity tests, using 

likelihood ratio (LR) statistics are also reported in Table 6.5. P-values indicate in each case the 

rejection of the linear model in favour of a nonlinear alternative. The same holds for the 

restricted two state regime switching model. Due to the existence of nuisance parameters, both 

LR tests are adjusted according to Davies (1987). Notably, the LR test of a regime-dependent 

intercept and heteroscedasticity model versus the full MRS model of Eq. (6.3) implies that the 

model can be reduced for the level and slope factors of NYMEX and ICE cracks. However, in 

the following section, to allow for a richer interaction between factors, we use all models to 

obtain the out-of-sample forecasts.  
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LR1 is a test statistic of the null hypothesis of a regime-dependent intercept and heteroscedasticity model versus an MRS model 
where all coefficients are subject to regime switching. LR2 tests the null of a 4-regime model versus a 2-regime model whereas 
LR3 is the linearity test of a 4-regime model against a single regime alternative. These tests are constructed as 2(LLUNCON-LLCON) , 
where LLUNCON and LLCON  represent the unconstrained and the constrained maximum likelihood respectively and are distributed as 
χ2 (r) where r is the number of restrictions imposed. Due to the existence of nuisance parameters, LR2 and LR3 are adjusted and 
they represent the upper bound of Davies’ (1987) bound test. Under the assumption that the LL function has a single peak i.e. Θ  = 
2M1/2 and denoting the gamma function as Γ(·) the p-values of LRstat for M = {LR2, LR3} are given by: 

 ( ) ( /2)
2 ( 1)/2 /2 2

Pr ( ) exp
( / 2)

r
r Mr M M

r
χ −− −> +Θ Γ . 

 

6.5 Forecasting the Futures Curve Dynamics 

Oil term structure evolution has important implications in the fields of energy risk 

management and derivatives pricing. To the authors’ knowledge, the issue of predictability of 

the dynamics of oil price curves has received surprisingly little attention. Most papers deal with 

forecasting the very short end of the futures curve (for instance, see Sadorsky, 2002 for return 

forecasts and Chapter 4 for volatility forecasts) where most of the liquidity is concentrated. An 

exception is Chantziara and Skiadopoulos (2008), who by applying PCA on the futures curve of 

petroleum futures attempt to forecast the term structure by utilising lags of the estimated 

principal components; however, they find poor forecasting performance results. In contrast to 

the oil market, literature is more extensive in forecasting yield curves. Diebold and Li (2006), 

extract the level, slope and curvature factors and extend the Nelson–Siegel yield curve to a 

dynamic model, able to generate encouraging prediction results, especially for longer horizons 

(for more recent related studies the reader is referred to Moench, 2008 and Yu and Zivot, 2010).  

In this section of the chapter we attempt to test the validity of the MRS futures curve 

model on an out-of-sample basis. While the model can in principle be employed to analyse 

interrelationships of correlated petroleum futures curve dynamics, we also provide evidence on 

Table 6.5: Model Diagnostics 

 HO-CL GO-CB CL-CB HO-GO 

  L    S C  L   S C  L   S C  L    S C 
LogLik -14,832 -2,451.2 5,904.9 -17,087 -2,990.5 4,180.0 -13,391 -1,664.3 6,305.8 -16,849 -2,599.1 4,136.3 
             
LR1 [0.271] [0.119] [0.002] [0.233] [0.113] [0.000] [0.011] [0.005] [0.000] [0.000] [0.000] [0.000] 
LR2 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
LR3 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
             
Skew -0.011 -0.088** 0.069* -0.063 0.079** -0.249*** -0.166*** 0.075* 0.113*** -0.101** -0.121*** 0.037 
Kurt 1.283*** 1.974*** 4.753*** 1.850*** 2.154*** 9.348*** 2.481*** 2.059*** 6.493*** 1.169*** 1.889*** 4.674*** 
J-B 259.3*** 618.0*** 3,559*** 541.3*** 734.3*** 13793*** 986.5*** 670.8*** 6,643*** 221.6*** 570.8*** 3,439*** 
Q(5) 2.507 2.880 57.30*** 3.195 3.574 8.722 4.752 1.868 4.873 0.932 3.978 43.79*** 
Q(20) 23.97 29.32* 121.3*** 21.74 20.83 36.68** 39.24*** 18.65 22.22 21.44 29.13* 106.2*** 
Q2(5) 102.0*** 118.0*** 172.4*** 97.48*** 56.67*** 25.38*** 426.8*** 59.78*** 66.27*** 69.14*** 118.5*** 193.5*** 
Q2(20) 318.4*** 226.2*** 210.0*** 172.5*** 125.9*** 25.95 1,371*** 170.4*** 91.54*** 176.7*** 218.6*** 230.2*** 
             
Skew -0.150*** 0.135*** 0.089* -0.171*** -0.001 0.457*** -0.115*** -0.017 0.617*** 0.090** -0.035 -0.226*** 
Kurt 1.338*** 2.321*** 6.386*** 1.777*** 2.203*** 12.56*** 2.539*** 2.332*** 14.39*** 2.584*** 2.181*** 5.442*** 
J-B 296.2*** 859.3*** 6,423*** 515.4*** 763.9*** 24,951*** 1,023*** 855.9*** 32860*** 1,056*** 749.3*** 4,694*** 
Q(5) 4.956 1.213 5.201 0.557 7.573 16.82*** 2.817*** 13.62** 9.484* 4.911 1.697 7.298 
Q(20) 32.06** 18.34 22.08 26.15 25.25 39.21*** 36.61** 35.51** 39.98*** 26.44 23.54 29.58* 
Q2(5) 142.1*** 37.99*** 61.65*** 92.94*** 52.91*** 26.42*** 427.0*** 56.04*** 24.21*** 32.50*** 77.93*** 23.22*** 
Q2(20) 393.8*** 137.1*** 85.59*** 237.4*** 99.97*** 45.27*** 1344*** 114.2*** 41.53*** 61.85*** 144.7*** 31.26* 
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the usefulness of our approach in forecasting returns, variance-covariance matrices and risk 

management downside risk measures. Thus, to provide a more informative insight into the 

economic benefits and the appropriateness of our framework, we perform an out-of-sample 

comparison to study and corroborate the predictability of futures curves evolution, based on the 

suggested framework. For this reason, we estimate each model over the period 1994 to 2004, 

leaving the last five years (1,250 daily observations) for out-of-sample forecasting. Historical 

estimators of the PCA loadings, the co-integration equation coefficients and the model-specific 

parameters are updated on a quarterly basis (every 63 business days), using a rolling window of 

10 years (2,530 daily returns). To provide robust evidence we investigate the performance of 

four models. The MRS models we test can be classified into two categories denoted as I-MRS 

(independent MRS) and R-MRS (restricted MRS). I-MRS stands for the case where each factor 

is modelled as an independent two-state first order MRS process, resulting a four regime MRS-

VECM for the level and slope factors and a four-regime MRS-VAR-X for the curvature; this is 

the model that was tested empirically in section 6.4. R-MRS stands for the restricted case where 

each pair of factors is modelled as a two-state first order MRS process. For both I-MRS and R-

MRS, apart from the unrestricted models where switching is permitted to all parameters of the 

model (see for instance Table 6.3 for the unrestricted I-MRS models), we also estimate two 

restricted versions (see also footnote of Table 6.6), one with switching permitted only in the 

intercepts νst and the variance covariance matrix Σst and one with switching intercepts νst, 

equilibrium adjustment coefficients αst and variance covariance matrix Σst (i.e. no switching in 

the short run dynamics of the system, in which case Γi,st of Eq. (6.3) is regime independent). In 

addition, we obtain forecast results from a linear single-regime version of the MRS models, 

denoted as F-DCC. Regarding the second moments, we employ a Dynamic Conditional 

Correlation (DCC) GARCH(1,1). Hence, once the time varying factor Σt is estimated from the 

DCC specification, the full futures returns’ variance-covariance matrix Vt is obtained using Eq. 

(6.2). Considering all factor models, note that each time we obtain a set of three outcomes, 

using either 1-, 2- or 3- factors in obtaining the forecast; for instance, in the I-MRS case, these 

are denoted as I-MRS(1), I-MRS(2) and I-MRS(3), respectively. Finally, the natural benchmark 

that we employ (denoted as AR-DCC) is also a DCC model applied directly to the futures 

returns (20 series), filtered using an AR-GARCH model. Of course, for the returns forecasting 

results we also report the simple Random Walk’s performance for completeness.  
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6.5.1 Forecasting Petroleum Spreads 

The first experiment we put forth is to examine whether there is an improvement in 

forecasting the term structure of petroleum futures spreads using the suggested framework. To 

evaluate the forecasting error we use the root mean squared error (RMSE) of contemporaneous 

petroleum futures spreads. Let N be the number of out-of-sample observations (1,250), T the 

number of contact maturities (10), ho the forecast horizon and superscript e denote the 

forecasted value. The RMSE metric used, can be represented as:  

 

 

{ } { } 2

1 2 1 2

1 1

1
ln ( , ) ln ( , ) ln ( , ) ln ( , )

N T
e e

t T

F t ho T F t ho T F t ho T F t ho T
NT = =

⎡ ⎤Δ + −Δ + − Δ + −Δ +⎣ ⎦∑∑  (6.8) 

 

 

Table 6.6 presents this aggregate RMSE between the actual and forecasted spreads, for 

the entire out-of-sample period and also between the short term end of the spreads’ futures 

curve and the longer term end.  The first involves only the first five maturities under study 

whereas the latter the more distant months from six months to expiry, up to ten. Results of the 

forecast performance statistics for each model across the different forecast horizons 1-day, 1-

week, 2-weeks and 1- month ahead are also reported.  
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The out-of sample data include 1,250 observations i.e. 5 years of data ending  on 31 December 2009; For any given day, squared errors are calculated as the sum of the squared errors of 1 Month, up to 10 

Month petroleum spreads (overall); for the Short End case we include only squared errors up to the 5th Month to maturity spreads, whereas for the Long term End case we include the squared errors for the 

contracts after the 5th Month and up to the 10th Month prior to expiry. Numbers in bold indicate the best performing model; The benchmark models are a simple Random Walk (RW) and an Autoregressive 

Process (AR) of the individual futures returns (20 time series) with an overall optimum lag order 2 –according to both the Schwarz information criterion (1978) and the autocorrelation function of futures 

returns; R-MRS and I-MRS are the 2- and 4- regime models, described in section 6.2. For economy of space we report the best performing model of each set. For instance I-MRS includes 9 models depending 

on the regime switching parameters and the number of factors utilised  i.e. MSIH, MSICH and MSIACH each of them either a 1-, 2- or a 3- factor model; Asterisks *,**,*** indicate that the RMSE of the 

corresponding model is significantly higher than the competing models at 1%, 5% and 10%, respectively; the p-values are provided from White’s (2000) Reality Check using the stationary bootstrap of Politis 

and Romano (1994). The number of bootstrap simulations is set to 3,000 and the smoothing parameter is q = 0.1.  

Table 6.6: Root Mean Squared Errors, Forecasting the term structure of contemporaneous spreads
 

 HO-CL 

% Gain/Loss 

against RW GO-CB 

% Gain/Loss 

against RW CL-CB 

% Gain/Loss 

against RW HO-GO 

% Gain/Loss 

against RW 

Panel A: 1-Day ahead forecasts         
Overall : Random Walk 0.8008  1.7790***  0.3532  1.7111***  

 AR-DCC 0.8007 0.01 1.7260*** 3.07 0.3618* -2.38 1.6535*** 3.49 

 F-DCC 0.8050 -0.52 1.5750 12.95 0.3704*** -4.65 1.3991 22.30 

 R-MRS 0.8056** -0.60 1.5743 13.00 0.3634 -2.81 1.3957 22.60 

 I-MRS 0.8049 -0.51 1.5718 13.18 0.3612 -2.21 1.3954 22.63 
          

Short Term End: Random Walk 0.8896  1.8820***  0.4032  1.7847***  

 AR-DCC 0.8906 -0.11 1.8407*** 2.25 0.4132* -2.41 1.7442*** 2.32 

 F-DCC 0.8971* -0.84 1.6779 12.17 0.4242*** -4.94 1.4622 22.05 

 R-MRS 0.8979** -0.92 1.6768 12.24 0.4170 -3.29 1.4578 22.42 

 I-MRS 0.8969* -0.81 1.6736 12.45 0.4144** -2.68 1.4550 22.66 
          

Long Term End:  Random Walk 0.7008  1.6696***  0.2947  1.6343***  

 AR-DCC 0.6994 0.21 1.6031*** 4.15 0.3017* -2.31 1.5575*** 4.93 

 F-DCC 0.7009 -0.01 1.4650 13.97 0.3074** -4.11 1.3329 22.61 

 R-MRS 0.7013 -0.07 1.4646 14.00 0.3004 -1.89 1.3306 22.82 

 I-MRS 0.7009 -0.01 1.4630 14.13 0.2986 -1.31 1.3331 22.59 

Panel B: 1-Week ahead forecasts        
Overall : Random Walk 1.7250  2.2933***  0.7396**  1.8235***  

 AR-DCC 1.7206 0.25 2.2259*** 3.03 0.7396** -0.01 1.7560*** 3.84 

 F-DCC 1.7175 0.43 2.0950 9.46 0.7306 1.23 1.7124 6.49 

 R-MRS 1.7167 0.48 2.0922 9.61 0.7302 1.28 1.7080 6.76 

 I-MRS 1.7160 0.52 2.0955 9.44 0.7296 1.36 1.7054 6.92 
          

Short Term End: Random Walk 2.0146  2.5060***  0.8960*  1.8971***  

 AR-DCC 2.0103 0.21 2.4468*** 2.42 0.8971* -0.12 1.8484*** 2.63 

 F-DCC 2.0084 0.31 2.2946 9.21 0.8849 1.26 1.7833 6.38 

 R-MRS 2.0070 0.38 2.2909 9.39 0.8848 1.26 1.7778 6.71 

 I-MRS 2.0053 0.46 2.2932 9.28 0.8853 1.21 1.7772 6.74 
          

Long Term End:  Random Walk 1.3758  2.0586  0.5396**  1.7468***  

 AR-DCC 1.3711 0.34 1.9804 3.95 0.5380* 0.30 1.6584* 5.33 

 F-DCC 1.3661 0.71 1.8743 9.83 0.5334 1.16 1.6383 6.62 

 R-MRS 1.3660 0.71 1.8726 9.93 0.5325 1.33 1.6353 6.82 

 I-MRS 1.3668 0.65 1.8771 9.67 0.5301 1.79 1.6304 7.14 

Panel C: 2 Weeks ahead forecasts        
Overall : Random Walk 2.1756  2.4336***  0.9624  1.9110**  

 AR-DCC 2.1764 -0.04 2.3790** 2.30 0.9629 -0.05 1.8475 3.44 

 F-DCC 2.1618 0.64 2.2966 5.97 0.9485 1.46 1.8764 1.84 

 R-MRS 2.1620 0.63 2.2939 6.09 0.9481 1.51 1.8694 2.23 

 I-MRS 2.1586 0.79 2.3006 5.78 0.9491 1.40 1.8642 2.51 
          

Short Term End: Random Walk 2.5439  2.6924**  1.1640  1.9998*  

 AR-DCC 2.5456 -0.07 2.6460* 1.75 1.1662 -0.19 1.9548 2.31 

 F-DCC 2.5313 0.49 2.5456 5.77 1.1498 1.23 1.9709 1.47 

 R-MRS 2.5300 0.55 2.5416 5.93 1.1489 1.31 1.9611 1.98 

 I-MRS 2.5234 0.81 2.5454 5.77 1.1482 1.38 1.9523 2.44 
          

Long Term End:  Random Walk 1.7307  2.1438**  0.7054  1.8178***  

 AR-DCC 1.7300 0.04 2.0780* 3.17 0.7030 0.34 1.7335 4.86 

 F-DCC 1.7144 0.95 2.0170 6.29 0.6909 2.10 1.7769* 2.30 

 R-MRS 1.7168 0.81 2.0160 6.34 0.6912 2.06 1.7729* 2.53 

 I-MRS 1.7179 0.74 2.0263 5.80 0.6952 1.47 1.7718* 2.59 

Panel D: 1-Month ahead forecasts        
Overall : Random Walk 3.0534  2.9752**  1.2624  2.0381  

 AR-DCC 3.0657 -0.40 2.9307 1.52 1.2667 -0.34 1.9863 2.61 

 F-DCC 3.0284 0.82 2.8838 3.17 1.2367 2.08 2.1079** -3.31 

 R-MRS 3.0309 0.74 2.8836 3.18 1.2360 2.13 2.0983** -2.87 

 I-MRS 3.0226 1.02 2.8849 3.13 1.2352 2.21 2.0928** -2.61 
          

Short Term End: Random Walk 3.5618  3.3639  1.5489*  2.1398  

 AR-DCC 3.5766 -0.41 3.3295 1.03 1.5566* -0.49 2.1055 1.63 

 F-DCC 3.5378 0.68 3.2644 3.05 1.5256 1.53 2.2339** -4.21 

 R-MRS 3.5367 0.71 3.2613 3.14 1.5242 1.63 2.2184* -3.54 

 I-MRS 3.5185 1.23 3.2568 3.29 1.5006 3.22 2.2048* -2.95 
          

Long Term End:  Random Walk 2.4414  2.5275  0.8877  1.9311  

 AR-DCC 2.4505 -0.37 2.4683 2.40 0.8866 0.13 1.8596 3.85 

 F-DCC 2.4139 1.14 2.4446 3.39 0.8552 3.81 1.9738** -2.16 

 R-MRS 2.4216 0.82 2.4482 3.24 0.8558 3.73 1.9710** -2.02 

 I-MRS 2.4276 0.57 2.4573 2.85 0.8941 -0.71 1.9744** -2.19 
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First, we can observe that by allowing the factor structure to follow a Markov 

specification forecasts are overall improved. Looking at the results for the entire sample period, 

it is only in the NYMEX crack spread and inter-crude spread markets for the short term 1- day 

ahead forecasts that the RW model achieves better performance. However, RMSE values are 

marginally better at 0.5% and 2.2%, respectively. On the other hand, in the ICE crack and inter-

product market, the I-MRS model achieves an improvement of 13.18% and 22.63%, 

respectively. We can also note that, forecast errors increase with the forecast horizon, reflecting 

the fact that uncertainty regarding future prices increases as well. NYMEX crack and inter-

crude spreads display threefold increase in forecast errors from 1-day to 1- month horizon, 

whereas the corresponding increase for the ICE crack is less than twofold, and HO-GO seems to 

be the least affected with less than 20% increase in forecast errors. This is also reflected in the 

relative performance compared to RW, indicating the difficulties in forecasting longer term 

prices; for example, the 13.18% RMSE improvement of the I-MRS over the RW model in the 

GO-CB case is reduced at the 1- month horizon to 3.13%. On the whole, Markov models (I-

MRS and R-MRS) are better in 12 out of the 16 cases. Comparing now the short and long term 

end of the futures spreads curve, the above effect is more pronounced for the more volatile, 

prompt months’ spreads, where RMSE’s are 15%-27% higher in the 1 month horizon, compared 

to the 1-day ahead forecasts. It is only the HO-GO spread that involves less than 2% increase in 

the RMSE’s in the short term end of the futures curve.  Results of the two sub-cases are 

consistent with the overall period, however, we can note that longer maturity months are 

associated with smaller forecast errors; this is expected since volatility increases as we approach 

expiry (Samuelson, 1965; see also Table 6.1, Panel B). Finally, I-MRS and R-MRS are better in 

13 out of the 16 cases of the short term end contracts and 7 out of 16 cases of the long term end 

contracts, highlighting their ability to capture better, markets that exhibit higher volatility.  

Finally, we also investigate whether modelling the factor structure leads to more 

accurate predictions of future prices using formal statistical tests because by considering only 

the nominal values of the RMSE scores across models, results are prone to data snooping bias. 

For that, we assess whether the forecasting performance of the competing models is equally 

accurate, employing White’s (2000) reality check9 and the stationary bootstrap of Politis and 

                                                 
9 Forecast comparison is a historical measurement of how models would have performed in the out-of-
sample period. However, by relying solely on the mean value of a statistical loss function it is difficult to 
refute that results would be qualitatively dissimilar in different periods or that they might be coincidental. 
Sullivan et al. (1999) and White (2000) proposed an approach to handle such biases by approximating the 
empirical distribution of a performance measure. Consider the loss differential: 

, 1 1 1

k benchmark

k t t tfm LF LF+ + += − , 

where k represents the kth model and LF is the corresponding loss function. The null hypothesis to be 
tested is H0 = max{E[fmk]} ≤ 0 , i.e. there is no model better than the benchmark; a small p-value 
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Romano (1994) (see Appendix 4.C for more technical details on bootstrap simulations). Results 

indicate that only in 3 cases out of 48, the I-MRS model is found to significantly underperform 

the competing models at 5% significance level. That is, the HO-GO 1-month ahead forecasts for 

the overall and longer term contracts, where AR-DCC is significantly better, and the CL-CB 1-

day ahead forecasts for the prompt months contracts where Random Walk is better. On the 

contrary, at the same significance level, RW and AR-DCC are found to provide poor relative 

forecasts in 19 and 12 cases out of 48, respectively.  

 

6.5.2 Forecasting the Variance Covariance Matrix 

The second experiment we put forth is to examine whether there is any improvement in 

forecasting the full variance-covariance matrix of the petroleum futures curves’ components.    

Since variance-covariance matrix is unobserved, the proxy that we use to compare the accuracy 

of out-of-sample forecasts from different models is the realised variance-covariance matrix, 

denoted as RVt. For each date t in the out-of-sample period, each element of RVij,t+1 is 

calculated as (ri,t+1-Et[ri,t+1])(rj,t+1-Et[rj,t+1]), so that RV11,t+1 is (r1,t+1-Et[r1,t+1])
2, RV12,t+1 is (r1,t+1-

Et[r1,t+1])(r2,t+1-Et[r2,t+1]) and so on, where r is the actual realised return. Thus, realised variances 

are the squared demeaned returns whereas realised covariances are the cross products of the 

realised demeaned returns. Next, having defined a proper proxy for the true variance-covariance 

matrix, to formally assess the performance of the conditional second moments estimates we use 

the following set of loss functions to summarise the information of the multidimensional 

matrices of forecast errors:  

 

1, 1 1 ij,t+1 ij,t+1

,

V V ; , 1,..20; 1, 2
pp

t p

i j

LF R i j p+ + += = − = =∑t tV - RV            (6.9) 

 

( )( )1, max 1 1 1 1t EIGENLF λ+ + + + +⎡ ⎤= ⎣ ⎦T

t t t tV - RV V - RV             (6.10) 

 

                                                                                                                                               
indicates that there exists a model which provides superior forecasting results, based on a specific loss 
function. We use the stationary bootstrap of Politis and Romano (1994) to obtain the average loss 
function of each bootstrapped sample * ( )kfm b , based on 3,000 bootstrap simulations. The so called 

bootstrap RC p-value is obtained by comparing the observed statistic ( ){ }1/2RC

n k
k

T m a x N fm=  with the 

quantiles of the empirical distribution of 
*RC

nT . The simulated  statistic *RC

nT is calculated 

as: ( ){ }* 1/2 * ( )RC

n k k
k

T m a x N fm b fm= −  (see also Chapters 4 and 5 for similar applications in volatility loss 

functions and hedged portfolios, respectively).     
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( )
( )

2

1 1

1,

1 1

logt TRACE

trace
LF

trace

+ +
+

+ +

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
T

t t

T

t t

V V

RV RV
             (6.11) 

 

The first two loss functions are Frobenius distances between the actual and the 

forecasted variance covariance matrix. For p = 2 the loss function is the natural extension of the 

RMSE to the multivariate case and is defined as the square root of element-wise squared 

differences. For p=1 the loss function resembles the MAE (Mean Absolute Error) and is defined 

as the square root of element-wise absolute differences. We employ both functions, denoted as 

LFRMSE and LFMAE, respectively. Note that for each t we consider only the triangular of the 

variance-covariance matrix; this is because every variance covariance matrix is symmetric, thus, 

taking into account the full matrix would lead to double counting the errors of the covariances. 

The next loss function of Eq. (6.10) is the square root of the largest eigenvalue of the matrix 

containing the squared forecast errors; this is the known as the Hermitian distance. The last loss 

function of Eq. (6.11) measures the proportional loss as the difference between the trace of the 

forecasted to that of the realised variance-covariance matrix; this was first introduced by 

Moskowitz (2003); see also Laurent et al. (2009) for more on the employed loss functions. 

Results are presented in Table 6.7. The two loss functions based on the Forbenius 

distances, namely LFRMSE and LFMAE are consistent and direct us each time to the same model; 

that is, the I-MRS model. The only exception is the WTI-Brent case where the restricted version 

the Markov model i.e. the R-MRS is the best alternative. Similar are the results based on the 

LFEIGEN apart from the ICE crude-product market which shows that the 1- factor DCC is slightly 

better, whereas the LFTRACE supports the 1- factor R-MRS model for the CL-HO and CL-CB 

markets and the 1- factor DCC for the GO-CB and HO-GO markets. A noteworthy observation 

is that 1- factor models are adequate to forecast the true variance-covariance matrix, consistent 

with the initial PCA results (Table 6.1) where the first factor explains more than 97% of the 

variation of each individual futures curve. Including more factors only marginally changes the 

results and 2- and 3- factor models are ranked exactly next to each of the 1-factor models e.g. 

(in the HO-CL case, best model according to LFRMSE is the 1 factor I-MRS, second and third 

best the 2- and 3- factor I-MRS).  
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• For the out-of-sample tests 1,250 forecasts (5 years of data) of the variance-covariance matrix are obtained by the rolling window forecasting scheme (2,531 in-
sample observations at each step); Numbers in (·) indicate the 1-, 2- and 3- factor model; See also notes in Table 6.6.  • The regime switching models presented in this table, both R-MRS and I-MRS are the models where all coefficients are subject to regime switching.  • LFRMSE and LFMAD are given in Eq. (6.9), for p = 2 (RMSE) and p = 1 (MAE), respectively; LFEIGEN and LFMTR are given in Eq. (6.10) and Eq. (6.11), 
respectively; Mixed error loss functions of over- and under- prediction i.e. LLFMME(O), LLFMME(U) are both given in Eq. (6.12);  (%) U and O is the proportion of 
under prediction and over prediction, respectively, over the forecast period. All the error statistics are the average value of the loss functions defined in the above 
equations. All are rescaled for exposition purposes (e.g. RMSEs with a multiple of 104 and MAE of 102). The column named W-Sum is the weighted summation 
of the Mean Over and Under Prediction error according to the estimates % U and O, respectively. • Asterisks *,**,*** indicate that the loss function of the corresponding model is significantly higher than the competing models at 1%, 5% and 10%, respectively; the 
p-values are provided from White’s (2000) Reality Check using the stationary bootstrap of Politis and Romano (1994). The number of bootstrap simulations is set 
to 3,000 and the smoothing parameter is q = 0.1. 

 
 
 

Results of White (2000) reality check are also presented in Table 6.7 in form of 

asterisks. We can see that the I-MRS is never significantly outperformed at 1% significance 

level. On the other hand, AR-DCC produces larger errors in all cases, at 10% significance level 

Table 6.7: Forecasting the Variance Covariance Matrix of correlated futures curves 
 LFRMSE LFMAE LFEIGEN LFTRACE LFMME(U) % U LFMME(O) % O LFW-sum 

Panel A: HO-CL 
AR-DCC 4.4885* 1.7995*** 9.1041* 3.2483** 12.1352*** 32.40 8.6392 67.60 9.7720* 

F- DCC(1) 4.4921** 1.7935*** 9.1113** 3.2327** 11.3286*** 32.69 8.8725*** 67.31 9.6755  

F- DCC(2) 4.4943** 1.7940*** 9.1132** 3.2336** 11.4755*** 32.69 8.8357** 67.31 9.6985  

F- DCC(3) 4.4944** 1.7940*** 9.1132** 3.2336** 11.4858*** 32.68 8.8333** 67.32 9.7003  

R-MRS(1) 4.4186 1.7602 8.9589 3.1630 10.7869 33.92 9.0514*** 66.08 9.6401 

R-MRS(2) 4.4211 1.7607 8.9612 3.1641 10.9372 33.91 9.0038*** 66.09 9.6593 

R-MRS(3) 4.4213 1.7608 8.9612 3.1641 10.9469 33.90 9.0011*** 66.10 9.6607 

I-MRS(1) 4.3960 1.7504 8.9132 3.1780 10.6847 34.14 9.0797*** 65.86 9.6277 

I-MRS(2) 4.3984 1.7509 8.9154 3.1791 10.8468 34.14 9.0206*** 65.86 9.6441 

I-MRS(3) 4.3986 1.7509 8.9154 3.1791 10.8593 34.14 9.0171*** 65.86 9.6460 

Panel B: GO-CB 
AR-DCC 4.1908* 1.7215*** 8.2127 2.2177 12.1458*** 30.74 8.3419 69.26 9.5111 

F- DCC(1) 4.1172 1.6862 8.0899 2.1578 11.3561 32.55 8.6030** 67.45 9.4992 

F- DCC(2) 4.1185 1.6865 8.0908 2.1582 11.4728 32.55 8.5692** 67.45 9.5142 

F- DCC(3) 4.1186 1.6866 8.0908 2.1581 11.4776 32.55 8.5682** 67.45 9.5151 

R-MRS(1) 4.2854*** 1.7453*** 8.4277*** 2.3663*** 12.5149*** 29.63 8.4190 70.37 9.6328 

R-MRS(2) 4.2875*** 1.7457*** 8.4291*** 2.3669*** 12.6723*** 29.63 8.3890 70.37 9.6582* 

R-MRS(3) 4.2877*** 1.7458*** 8.4291*** 2.3670*** 12.6797*** 29.63 8.3879 70.37 9.6594* 

I-MRS(1) 4.1149 1.6814 8.1020 2.2258* 11.2828 32.27 8.6293** 67.73 9.4856 

I-MRS(2) 4.1166 1.6818 8.1031 2.2263* 11.4285 32.24 8.5925** 67.76 9.5068 

I-MRS(3) 4.1167 1.6818 8.1031 2.2263* 11.4393 32.23 8.5899** 67.77 9.5083 

Panel C: CL-CB 
AR-DCC 4.5687* 1.7938*** 9.3165* 4.1141*** 12.1458*** 31.49 8.3419 68.51 9.5399 

F- DCC(1) 4.5851** 1.7890*** 9.3477** 4.1006*** 11.3206*** 31.94 8.6067*** 68.06 9.4736 

F- DCC(2) 4.5873** 1.7895*** 9.3500** 4.1017*** 11.4351*** 31.95 8.5691** 68.05 9.4847 

F- DCC(3) 4.5875** 1.7895*** 9.3500** 4.1017*** 11.4399*** 31.95 8.5678** 68.05 9.4853 

R-MRS(1) 4.4319 1.7133 9.0367 3.8813 10.1732 36.01 9.0029*** 63.99 9.4243 

R-MRS(2) 4.4338 1.7138 9.0387 3.8825  10.3378 35.98 8.9461*** 64.02 9.4468 

R-MRS(3) 4.4340 1.7138 9.0387 3.8825 10.3485 35.98 8.9435*** 64.02 9.4490 

I-MRS(1) 4.5133 1.7433* 9.2027 4.0494** 10.6505* 34.00 8.8318*** 66.00 9.4502 

I-MRS(2) 4.5153 1.7437* 9.2048 4.0504** 10.7848** 33.99 8.7958*** 66.01 9.4720 

I-MRS(3) 4.5154 1.7438* 9.2048 4.0504** 10.7939** 33.99 8.7932*** 66.01 9.4733 

Panel D: HO-GO 
AR-DCC 4.0737*** 1.7226*** 7.9691** 2.1235** 11.3924*** 31.63 7.5947 68.37 8.7959*** 

F- DCC(1) 3.9717 1.6811** 7.7964 2.0409 8.9466** 33.54 8.3933*** 66.46 8.5788 

F- DCC(2) 3.9730 1.6814** 7.7975 2.0413 9.0593*** 33.52 8.3491*** 66.48 8.5872 

F- DCC(3) 3.9731* 1.6814** 7.7975 2.0413 9.0757*** 33.52 8.3432*** 66.48 8.5887 

R-MRS(1) 3.9453 1.6634 7.7719 2.0656 8.5563 34.17 8.6124*** 65.83 8.5933 

R-MRS(2) 3.9470 1.6638 7.7734 2.0662 8.7268 34.16 8.5367*** 65.84 8.6016 

R-MRS(3) 3.9472 1.6638 7.7734 2.0662 8.7528 34.15 8.5248*** 65.85 8.6027 

I-MRS(1) 3.9302 1.6588 7.7428 2.0690 8.6102 34.10 8.5221*** 65.90 8.5521 

I-MRS(2) 3.9319 1.6591 7.7440 2.0695 8.7602 34.08 8.4560*** 65.92 8.5596 

I-MRS(3) 3.9320 1.6592 7.7440 2.0695 8.7782 34.08 8.4478*** 65.92 8.5604 
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indicating the benefits of dynamic factor models; F-DCC is also not very consistent - only in the 

GO-CB case performs well - indicating the benefits of modelling the factor as Markov 

processes.  

Because none of the abovementioned metrics provide any information on the 

asymmetry of the prediction variance errors; that is, whether there is any difference between 

forecast errors when the model over-predicts or under-predicts the actual variance we employ an 

extension of the Brailsford and Faff (1996) Mixed Error statistics to the multivariate case. This 

uses a mixture of positive and negative forecast errors with different weights. This is an 

important forecast metric because, although we expect forecast errors to be unbiased on 

average, there might be occasions when a model produces small errors but consistently over-

predicts or under-predicts the conditional second moments. Thus, we also look at the proportion 

of negative and positive forecast errors for each model, since a model with symmetric forecast 

errors should produce about 50% positive and 50% negative forecast errors, with similar means. 

The corresponding loss functions employed are:  

 

1 ij,t+1 ij,t+1 ij,t+1 ij,t+1

, ,

( ) V V V V ;
O U

t

i j i j

ME U R R+
⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ ∑   

1 ij,t+1 ij,t+1 ij,t+1 ij,t+1

, ,

( ) V V V V ; , 1,..20
U O

t

i j i j

ME O R R i j+
⎛ ⎞= − + − =⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ ∑          (6.12) 

 

Results are now more informative. The proportion of over- and under- prediction is 

similar across all models and markets: 29%-35% of all models underpredict second moments 

whereas overprediction ranges between 65%-71% in line with Chapter 4. Furthermore, looking 

at the scale of over- and under- prediction errors, it can be seen that, on average, mean under-

prediction is higher than mean over-prediction, implying that all models fail to capture the large 

sudden jumps of volatility, which is nevertheless expected since jumps are due to random 

shocks that are very hard to predict. Overprediction results support the same models as the 

previous metrics, whereas if someone is only interested in underprediction then the errors are 

significantly minimised by full modelling of the 20 individual contracts series each time as an 

AR-DCC-GARCH model (involving 82 parameters). Asymmetric error statistics have important 

implications for different players of the energy markets. For instance, a regulatory body such as 

a bank (lender) that has financed a company’s energy project (e.g. for oil exploration and 

extraction) may prefer a model which over-predicts risk since the company (borrower) would be 
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required to allocate more funds for capital adequacy requirements. Conversely, energy 

companies, depending on their risk aversion, would prefer a model that ‘efficiently’ under-

predicts risk, since this way they have to allocate fewer resources for future risks. However, the 

more balanced models that produce the optimum trade-off of over- and under- prediction are the 

1-factor I-MRS for the two crude-refined product and the inter-product market whereas in the 

inter-crude market, the 1-factor R-MRS is more accurate.  

 

6.5.3 An Application to Value-at-Risk 

Having obtained the full variance covariance matrix forecasts for each pair of petroleum 

futures we finally examine the practical relevance and usefulness of our findings in estimating 

risk management measures, in particular Value-at-Risk. In doing so, we consider portfolios 

consisting of 20 futures contracts each time. We assume that we hold a portfolio W = [W1, W2] 

of futures, with W1 = [w1,1, w1,2, …, w1,10] being the position in the ith futures contract of the 

first commodity of the pair and W2 = [w2,1, w2,2, …, w2,10] the position in the second commodity 

of the pair. We consider four different portfolios with constant weights throughout time. Each 

portfolio consists of 10 long positions and 10 short positions. The first portfolio is an equally 

weighted portfolio of spreads: we assign a weight of 10% to each of the maturities (i.e. 

w1,1=…=w1,10=10% for the long leg of the spread and w2,1=…=w2,10=-10% for the short leg of 

the spread) and the weight vector is W = [W1=1(1x10) W2= -1(1x10)]/10. The second portfolio is a 

slope portfolio constructed by taking opposite positions in the long and short end part of the 

term structure of the spreads: the weight vector is W1 = [1(1x5) -1(1x5)] and W2 = [-1(1x5) 1(1x5)]. 

The third is a curvature portfolio of spreads constructed by taking the same positions in the long 

and short end part of the term structure of the spreads, but opposite in the medium part: the 

weight vector consists of W1 = [1(1x3) -1(1x4) 1(1x3)] and W2 = [-1(1x3) 1(1x4) -1(1x3)]. The last is an 

arbitrary calendar portfolio of spreads where the weight vector consists of W1 = [1, -1, 1, -1, 1, 

-1, 1, -1,] and W2 = -W1. Note that in each case we examine both long and short positions.  

VaR is one of the most popular approaches for quantifying market risk, defined as the 

maximum expected loss in value of an asset or a portfolio of assets over a target horizon, given 

a specific confidence level 1-c. Then, conditional on the information set at t (Ωt), VaR can be 

defined as the solution to 1 1Pr( )c

t t tr VaR c+ +≤ Ω = , where rt+1 are the actual returns of each 

examined portfolio. VaR forecasts are obtained using the forecasted matrix Vt as 

1 1 1 1( )c T

t t tVaR c+ + + += +Φ
t

Wμ WV W , where μ is a column vector consisting of the daily 

return forecasts. Note that by assigning weights and constructing commodity portfolios we 
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obtain portfolio returns with different distributional properties, hence, instead of assuming a 

normal distribution we use the filtered unconditional historical simulation quantile Φt+1(c). This 

way, Φt+1(c) is the same across models and we compare the VaR forecasts purely on the 

forecasted V, and μ matrices. Comparisons are made on the basis of the likelihood ratio test of 

unconditional coverage. LRUC
10 tests the null hypothesis that the probability of realising a loss 

in excess of the forecasted VaR is statistically equal to the nominal coverage rate c. VaR 

violations that occur more frequently than c % of the time imply that the VaR method used 

systematically underestimates the true level of risk, and vice-versa. Furthermore, following 

Koenker and Bassett (1978) we also employ a loss function, the predictive quantile loss (QL) 

which is based on quantile regression (similar to Chapter 4, section 4.4.2.1). The QL function 

penalises more heavily observations for which a violation occurs, and is actually a measure of 

fit of the predicted tail at a given confidence level. The objective is to minimise QL:  

 

 ( )( ){ } { }
1

1
(1 ) c c

t i t i t i t i

N
c

t i t i r VaR r VaR
i

QL r VaR c I cI
N + + + ++ + < ≥=

= − − +∑                (13) 

 

The economic intuition behind the use of the QL is that capital charges should also be 

taken into account, hence, the capital forgone from overpredicting the true VaR should not be 

neglected. This latter loss function is asymmetric in view of the fact that underprediction and 

overprediction of VaR estimates have diverse implications. For instance, underprediction of risk 

might lead to liquidity problems and reoccurring underprediction causes insolvency. On the 

other hand, overprediction implies higher capital charges which, although are not a cause of 

bankruptcy, reflect the opportunity cost of keeping a high reserve ratio. 

Results are presented in Table 6.8. We report the VaR violation rates for the four 

portfolios at the 1%, 2.5%, 5% and 10% level for both long and short positions. In contrast to 

the variance-covariance forecasts, results are mixed. There does not seem to be much difference 

across models, or consistency. Performance is associated with the specific portfolios. All 

models perform rather good across all confidence levels. An exception is the slope portfolio - 

for all models - and the inter-crude related portfolios.  

                                                 
10 Let n be the number of outcomes that fall outside the forecast interval, N the number of forecasts and 

ĉ the empirical level of coverage. Then, the statistic is expressed as: 2(1 )
2log ~ (1)

ˆ ˆ(1 )

n N n

UC n N n

c c
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c c
χ−

−
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*Asterisks indicate that the nominal value of the percentage of failures is not significantly different than the theoretical 
level; The Qualtile Loss Function is given in Eq. (13); Numbers in bold indicate that the model that minimises the 
quantile loss functions. See also Table 6.6. 

Table 6.8: Forecasting Portfolio Value-at-Risk 

  Empirical Coverage Rates Quantile Loss Function 

  1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0 1.0 5.0 95.0 99.0 

Panel A: Equally Weighted Portfolio 
HO-CL AR-DCC 0.7 2.2 4.6 10.0 10.4 6.0 3.3 1.2 0.0190 0.0705 0.0849 0.0270

 F-DCC 0.8 2.6 4.7 10.6 11.4 6.6 4.0* 1.6 0.0193 0.0718 0.0874 0.0286
 R-MRS 1.1 3.1 5.3 9.5 12.1 6.6 3.4 1.8 0.0229 0.0780 0.0889 0.0308
 I-MRS 1.4 2.7 4.9 9.0 11.7 6.8* 3.4 2.1* 0.0243 0.0790 0.0899 0.0305
              

GO-CB AR-DCC 0.3* 1.8 5.0 12.0 11.2 6.0 2.9 1.0 0.0476 0.1688 0.1789 0.0476
 F-DCC 0.4 1.7 4.6 11.7 11.5 5.7 3.1 1.3 0.0438 0.1525 0.1620 0.0436

 R-MRS 0.7 1.9 4.5 9.4 10.8 5.4 3.2 1.5 0.0492 0.1654 0.1721 0.0510
 I-MRS 0.9 2.2 4.7 10.3 11.4 6.1 3.6 1.8 0.0491 0.1655 0.1770 0.0543
              

CL-CB AR-DCC 0.1* 1.1* 2.5* 6.9* 6.6* 1.7* 0.8* 0.0* 0.0125 0.0357 0.0341 0.0115
 F-DCC 0.5 2.8 5.4 10.6 11.0 5.4 2.2 0.3 0.0126 0.0387 0.0350 0.0104

 R-MRS 0.2* 0.6* 2.6* 6.0* 5.7* 2.0* 0.6* 0.0* 0.0134 0.0378 0.0366 0.0124
 I-MRS 0.4 2.2 4.0 8.2 7.7* 2.6* 1.3* 0.1* 0.0120 0.0362 0.0329 0.0105
              

HO-GO AR-DCC 0.9 2.8 5.3 11.2 11.0 5.2 1.8 0.5 0.0454 0.1749 0.1701 0.0471
 F-DCC 1.4 3.3 5.7 12.1 10.3 4.2 1.6 0.4 0.0387 0.1464 0.1429 0.0423

 R-MRS 2.2* 3.8* 7.0* 13.1* 10.9 4.4 2.1 0.9 0.0432 0.1549 0.1460 0.0451
 I-MRS 2.0* 3.6 6.9* 12.9* 10.2 4.5 1.9 1.0 0.0428 0.1545 0.1475 0.0463

Panel B: Slope Portfolio 
HO-CL AR-DCC 0.3* 1.5 3.1* 7.3* 8.6 3.5 1.7 0.3* 0.0060 0.0208 0.0202 0.0061

 F-DCC 0.6 1.8 4.9 10.8 9.7 4.6 2.5 0.6 0.0057 0.0201 0.0211 0.0062
 R-MRS 0.8 1.4* 3.1* 8.2 8.6 4.1 2.0 0.9 0.0066 0.0210 0.0224 0.0074
 I-MRS 0.5 1.4* 3.1* 8.6 9.3 4.4 1.9 0.8 0.0064 0.0208 0.0220 0.0070
              

GO-CB AR-DCC 0.4 1.2* 4.2 8.9 8.3 3.5 1.4* 0.3* 0.0062 0.0206 0.0198 0.0058

 F-DCC 0.2* 1.0* 2.2* 6.6* 6.9* 2.9* 1.4* 0.2* 0.0061 0.0202 0.0207 0.0059
 R-MRS 0.2* 0.6* 1.8* 4.5* 5.3* 2.2* 0.8* 0.3* 0.0073 0.0227 0.0231 0.0071
 I-MRS 0.2* 0.6* 1.6* 4.7* 5.5* 2.2* 0.9* 0.2* 0.0069 0.0221 0.0226 0.0068
              

CL-CB AR-DCC 0.4 1.0* 2.2* 6.5* 6.2* 2.7* 0.9* 0.0* 0.0040 0.0130 0.0124 0.0040
 F-DCC 0.5 1.1* 3.4* 7.2* 9.6 4.0 1.3* 0.2* 0.0039 0.0130 0.0122 0.0039

 R-MRS 0.4 1.0* 2.4* 5.6* 6.3* 2.6* 1.3* 0.1* 0.0045 0.0148 0.0141 0.0045
 I-MRS 0.6 1.1* 2.6* 6.5* 6.7* 3.3* 1.3* 0.1* 0.0043 0.0141 0.0138 0.0042
              

HO-GO AR-DCC 0.2* 1.0* 1.9* 5.4* 6.2* 2.1* 0.5* 0.1* 0.0055 0.0184 0.0171 0.0057

 F-DCC 0.1* 0.4* 1.1* 4.8* 3.9* 1.4* 0.7* 0.1* 0.0054 0.0168 0.0180 0.0059
 R-MRS 0.1* 0.2* 0.9* 3.8* 2.9* 1.3* 0.5* 0.1* 0.0060 0.0187 0.0196 0.0066
 I-MRS 0.0* 0.2* 0.6* 3.3* 2.3* 1.0* 0.4* 0.0* 0.0061 0.0187 0.0197 0.0066

Panel C: Curvature Portfolio 
HO-CL AR-DCC 0.3* 1.4* 3.7 9.6 10.1 4.9 2.4 1.0 0.0048 0.0177 0.0203 0.0062

 F-DCC 0.8 2.2 5.0 12.1 12.6* 7.1* 3.5 1.5 0.0047 0.0178 0.0211 0.0063
 R-MRS 1.0 2.8 4.7 9.5 11.6 6.1 3.4 1.5 0.0052 0.0191 0.0215 0.0071
 I-MRS 1.1 2.3 4.8 8.9 11.6 5.8 3.5 1.4 0.0055 0.0192 0.0215 0.0068
              

GO-CB AR-DCC 0.6 1.9 5.0 10.4 11.2 5.4 2.6 1.1 0.0100 0.0364 0.0370 0.0099
 F-DCC 0.5 2.2 4.6 9.8 11.4 5.4 3.0 1.1 0.0093 0.0329 0.0340 0.0095

 R-MRS 0.8 1.8 4.5 7.8* 10.2 5.2 2.6 1.4 0.0107 0.0352 0.0364 0.0106
 I-MRS 0.9 2.0 4.6 9.1 11.0 6.1 2.9 1.6 0.0107 0.0353 0.0370 0.0111
              

CL-CB AR-DCC 0.1* 1.2* 2.7* 8.1 7.8* 3.4* 1.2* 0.1* 0.0033 0.0096 0.0102 0.0037
 F-DCC 0.5 2.8 5.8 11.0 11.5 5.2 2.6 0.1* 0.0032 0.0106 0.0106 0.0032

 R-MRS 0.2* 1.4* 3.0* 6.3* 7.8* 3.0* 1.0* 0.2* 0.0036 0.0108 0.0112 0.0040
 I-MRS 0.4 2.2 3.5 8.2 8.9 3.8 1.5 0.2* 0.0034 0.0106 0.0109 0.0037
              

HO-GO AR-DCC 0.9 2.6 5.5 9.9 10.2 5.0 1.8 0.6 0.0093 0.0361 0.0352 0.0098
 F-DCC 1.0 2.6 4.9 10.2 8.8 3.7 1.0* 0.4 0.0079 0.0303 0.0301 0.0091

 R-MRS 1.4 3.0 5.7 10.5 9.4 4.0 1.6 0.7 0.0084 0.0316 0.0308 0.0097
 I-MRS 1.4 3.2 5.4 10.2 8.8 3.8 1.4* 0.7 0.0084 0.0317 0.0312 0.0098

Panel D: Calendar Portfolio 
HO-CL AR-DCC 0.2* 1.5 4.6 10.0 10.4 5.4 2.6 1.3 0.0043 0.0159 0.0186 0.0058

 F-DCC 0.6 2.5 5.5 11.4 11.7 7.0* 3.6 1.8 0.0042 0.0163 0.0194 0.0060
 R-MRS 1.1 2.9 5.4 10.2 11.5 6.5 3.4 1.6 0.0047 0.0175 0.0199 0.0065
 I-MRS 1.0 2.3 5.1 8.9 11.2 6.5 3.6 1.7 0.0050 0.0176 0.0199 0.0062
              

GO-CB AR-DCC 0.2* 1.8 5.0 11.0 11.8 5.8 2.7 1.0 0.0099 0.0350 0.0361 0.0095
 F-DCC 0.3* 2.1 4.4 10.6 12.2 5.4 3.0 1.2 0.0092 0.0317 0.0332 0.0091

 R-MRS 0.7 1.8 4.6 8.4 11.3 5.8 3.0 1.4 0.0106 0.0342 0.0355 0.0104
 I-MRS 0.6 2.2 4.6 9.3 11.7 6.2 3.0 1.8 0.0105 0.0343 0.0362 0.0111
              

CL-CB AR-DCC 0.1* 1.1* 2.6* 7.6* 7.8* 2.6* 1.3* 0.2* 0.0029 0.0085 0.0089 0.0032
 F-DCC 0.6 3.0 5.5 11.0 11.4 5.9 2.8 0.5 0.0029 0.0093 0.0097 0.0030

 R-MRS 0.2* 1.4* 2.9* 6.4* 8.3 2.8* 1.0* 0.3* 0.0031 0.0092 0.0096 0.0036
 I-MRS 0.5 2.2 4.0 8.2 9.1 4.6 1.5 0.3* 0.0028 0.0091 0.0092 0.0032
              

HO-GO AR-DCC 1.1 2.7 5.3 9.9 10.7 5.0 1.8 0.6 0.0092 0.0356 0.0344 0.0096
 F-DCC 1.1 2.8 5.0 11.2 8.9 3.8 1.4* 0.4 0.0079 0.0297 0.0294 0.0089

 R-MRS 1.7 3.4 6.2 11.8 9.8 4.1 1.8 0.8 0.0085 0.0314 0.0301 0.0095
 I-MRS 1.8 3.1 6.2 11.4 8.9 4.1 1.9 0.9 0.0086 0.0314 0.0305 0.0096
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However, we can observe that violation rates mainly arise from overprediction of 

volatility rather than underprediction, implying that all forecasts of portfolios volatilities are 

rather conservative. For instance, in the slope portfolio of the HO-GO spread, all models fail to 

pass the LRUC test. At the low level of 1% VaR for both long and short positions the maximum 

number of violations is 0.2% form the AR-DCC model (i.e. 2-3 violations only). Similar is the 

performance at lower confidence levels e.g. 90% where again actual losses exceed the AR-DCC 

based VaR at 10% only 6.2% of the time (76-78 exceedances instead of the theoretical 125 [ 

=10%x1,250]). Turning next to the quantile loss functions the results are not at all the same as 

we would have predicted based on Tables 6.6 and 6.7. The main competitors now are the AR-

DCC and factor F-DCC models, where the latter is better 66% of the time. However, a closer 

look reveals that in fact, models are marginally different in nominal values.   
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Figure 6.9: NYMEX Crack 5% VaR Estimates for the Equally Weighted Portfolio 

(Long & Short Positions) 

 

 
Finally, Figure 6.9 and 6.10 depict the excess losses of the 5% and 95% VaR from the 

AR-DCC, F-DCC(3) and I-MRS(3) models for the equally weighted portfolio (Table 6.8, Panel 

A) and the calendar portfolio (Table 6.8, Panel D). Comparing the AR-DCC and F-DCC(3) 

model, it seems that the estimates are very similar. Another observation that can be made is that 

in highly volatile periods e.g. the last quarter of 2008 and the first of 2009, GARCH models are 

more responsive to sudden market changes than the I-MRS with relatively higher average VaR 

estimates. This may be due to parameter instability in the specific period as well as uncertainty 

regarding the unobserved regime, as mentioned in Engel (1994) and Marsh (2000). However, as 

shown in Table 6.8, the percentage of failures for the I-MRS models is more accurate for the 
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long positions on the equally weighted and calendar portfolios that are plotted in Figures 6.9 

and 6.10 whereas the AR-DCC is the best alternative for short positions.  
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Figure 6.10: NYMEX Crack 5% VaR Estimates for the Calendar Portfolio 

(Long & Short Positions) 
 

 

6.6 Conclusions 

In this chapter we examined linkages in pairs of the main underlying orthogonal factors 

explaining the variation of petroleum futures. Using non-linear equilibrium adjustment models, 

we examined the short and long run relationships between the extracted factors in respective 

petroleum futures, namely the components of the NYMEX and ICE crack spreads (heating and 

gas oil) and the inter-commodity spreads (inter-crude and inter-product). We find evidence in 

favour of the existence of a long-run relationship between level and slope factors, however, 

curvatures are found to be mean-reverting to commodity-specific equilibria. Specifying flexible 

dynamic regime switching evolution equations for the respective factors changes, we introduced 

a new functional multi-regime model driven by Markov dynamics. The rationale behind the use 

of these models stems from the fact that first, the dynamics of correlated futures curves should 

be inherent in the common factors explaining the price variation and second this relationship 

may be characterised by regime shifts, suggesting that by allowing the data generating process 

to be dependent upon the “state of the market”, one may obtain more efficient estimates. Results 

indicate that each regime clearly differentiates two distinct market dynamics for both the 

conditional mean and the volatility of the underlying process. Moreover, it seems that when one 

market is in the low and the other in the high variance state, it is more likely to observe lower 

correlations. A far stronger co-movement is noted in the NYMEX crack and WTI-Brent than 
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that of ICE crack and heating-gas oil. Overall, both level and slope shocks display strong 

dependence structure (0.35-0.99 and 0.26-0.81, respectively), whereas curvature shocks are 

correlated to a lesser extent (0.08-0.35). While our multi-regime framework is primarily 

designed to aid our understanding of nonlinear behaviour and inter-dependencies in the factor 

structure of correlated futures curves we also provide evidence on the predictive ability of such 

models in forecasting the conditional first and second moments as well as in forecasting popular 

risk measures such as portfolio Value-at-Risk. Results from these exercises indicate that the 

multi-regime factor MRS models can sometimes achieve significant gains compared to 

competing models. Overall, the resulting model is very promising, providing a very practical 

policy analysis tool to market participants for identifying and timing the possible states that the 

market of combined futures curves is in, as well as forecasting large covariance matrices and 

estimating risk metrics for large portfolios.  

In this chapter, we provided a thorough analysis of linkages and analysis of risk in a 

multivariate multi-regime switching framework. This essay completes the empirical part of the 

thesis. Overall, there seem to be some insightful benefits from assuming regime switching 

behaviour of petroleum dynamics. We examined linkages, interdependencies and risk attitudes, 

volatilities and VaR as well as optimum hedging. Summary of findings, formal conclusions and 

potential directions for further future research will be given in chapter 7, Concluding Remarks 

and Future Research which concludes the thesis.  
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APPENDIX 6.A: Factor Seasonality and Auto-correlogram  

 
In this Appendix we briefly illustrate the effects of allowing the resulting eigenvalues of 

PCA factor decomposition, to be dependent on seasonal volatilities. Note that, in terms of the 

proportion of variance explained when performing traditional PCA results are qualitatively the 

same, yet, the periodic behaviour of the futures prices is markedly reflected in the factor 

process, as confirmed by the sample autocorrelation functions (ACF). The seasonal features of 

futures prices were mainly absorbed by higher order components, mostly the curvature. Figure 

6.A.1 plots the autocorrelation function (ACF) of heating oil (left panel) and WTI crude oil 

(right panel) before (grey) and after (black) the adjustment for seasonality. Figure 6.A.1 clearly 

verifies that for heating oil curvature a big proportion of seasonality is mitigated using Eq. (6.1) 

whereas crude oil seasonal behaviour is not evident in either case. 

 

 
 
 
 
 
  
 
 
 
 
 
 

Figure 6.A.1: ACF of the 3rd Factor (Curvature) for Heating (left) & WTI Crude Oil 

(right), before and after the Adjustment for Seasonality. 
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Chapter 7  

 

Concluding Remarks and  

Future Research  

 

7.1 Summary and Conclusions 
With the fast growing energy sector, providing robust, innovative and resourceful 

financial solutions is crucial for the success of any oil business. Petroleum commodity prices are 

determined by supply and demand but these forces are driven by complex interactions, from 

events in the Middle East and country-specific energy security policies to climatic conditions 

and speculative money flows. As a result, the specific properties of oil prices call for reliable 

and consistent models. In turn, these models are an essential tool for market participants to 

comprehend the evolution of prices, volatilities, correlations and economic relationships with 

the aim to develop efficient risk measurement schemes and devise sound risk management 

strategies.  

Some of the major empirical properties of the price series data employed in Chapters 4, 

5 and 6 (as well as Chapters 2 and 3 to a smaller degree) illustrate that petroleum prices’ 

distributions are heavy tailed and asymmetric while volatilities and correlations are time-

dependent. These stylised facts of the energy markets motivate the modelling of change and the 

use of advanced quantitative techniques to describe their conditional distributions. The present 

work dealt with the modelling of change in the context of established concepts in energy 

economics. In particular, the focus was on explaining regime switching behaviour in oil 

markets, since, more often than not, market shocks alter the properties of the series’ in various 

ways;  some shocks are persistent, some transitory, some regular and some irregular.  

One potential setting that involves regime changes in the mechanism that generates oil 

prices is the transition from backwardation to contango market conditions and vice versa. The 

theory of storage (Kaldor, 1939; Working, 1949; Telser, 1958 and Brennan, 1958) asserts that 

during low inventory periods, where supply is exhausted, due to tight market conditions spot 

prices are high and delivery in the future is priced at a discount. Moreover, empirical findings 

show that volatilities (correlations across the term structure) increase (decrease) with falling 

inventories i.e. under backwardation (see for example Ng and Pirrong, 1996 for refined 
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petroleum products and Geman and Ohana, 2009 for oil and gas as well as Fama and French, 

1987 and Ng and Pirrong, 1994). Inversely, in periods of supply abundance i.e. under contango, 

spot prices fall and delivery in the future is priced at a premium- whereas volatilities are 

expected to be lower due to the flexible supply conditions. These different types of regimes 

serve as motivation for our regime switching approach to characterise oil prices. Driven by 

several complexities in the empirical validation of the energy markets, this thesis offered an 

alternative viewpoint on energy risk, providing a new framework for risk analysis that 

concentrated on practical applications.  

Regime switching models are designed to capture cyclical behaviour and unknown 

breaks. Model parameters are functions of a hidden Markov chain and empirical data reveal 

their own structure. These models are characterised by a pre-specified number of distinct 

regimes within which different model parameters apply, whereas the probabilities of each state 

change over time and model parameters become time-dependent. Models of changing regime 

demonstrated the potential to benefit energy market participants in many applications. Three 

major research themes were carried out: a) to compare the different modelling techniques’ 

ability to characterise and accurately predict the time-varying nature of oil price risk in a Value-

at-Risk context, b) to explore the practical relevance of state-dependent time varying hedge 

ratios and c) to derive the most important energy risk factors and provide a risk analysis 

framework of correlated futures curves. The next section reviews the main findings throughout 

the thesis. Next, potential future directions to continue research are pointed out.  

 

7.1.1 Risk Measurement  

Chapter 4 addressed the concept of oil price risk and how to deal with non-normality, 

non-linearity, and non-constant conditional second moments in the risk measurement process. 

Traditionally, the family of GARCH models (Bollerslev, 1986) has been widely used to 

describe conditional volatility. Nevertheless, empirical evidence suggests that those models are 

rigid to accommodate the modelling complexities that energy markets exhibit. For instance, 

they induce a high degree of persistence in shocks, implying, falsely, highly predictability 

(Lamoureux and Lastrapes, 1990). For a robust estimation of the volatilities and the quantiles of 

the returns distributions, regime switching models were employed. By allowing the second 

moments to be dependent upon the state of the market, the volatility and VaR forecasts obtained 

were more efficient.  

Results indicated a longer duration low volatility state, associated with low sensitivity 

to market shocks that die out very slowly, and a transitory high volatility state with shocks that 

affect the variance more but die out faster; this implies that the regime-based models are 
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superior at capturing persistence in volatility. Moreover, our volatility modelling framework 

extended previous research by including the squared deviations of futures from their long-run 

equilibrium as represented by the lagged basis (Lee, 1994; Ng and Pirrong, 1996) because as 

prices respond to the magnitude of disequilibrium then, in the process of adjusting, they become 

more volatile. The findings implied that in the low volatility state, the dynamics of the 

volatilities are more predictable; in the high volatility state, volatility changes mainly due to 

short-lived random shocks. Finally, market participants should consider regime behaviour in the 

modelling process, since augmented regime volatility models for all petroleum futures 

demonstrated improved forecasting accuracy under both periods of backwardation and 

contango. These models were also combined with Extreme Value Theory which posed as a 

conservative alternative in forecasting VaR, thus, being more apt to risk averse investors. 

Overall, the magnitude of disequilibria is a factor that does have explanatory power in 

determining potential changes in oil price volatilities and by identifying different volatility 

components in different periods, market participants may benefit in terms of accurate 

quantification of risk. 

 

7.1.2 Risk Management  

While the risks faced by industry are various and differ throughout the sectors of the 

industry, - from upstream to downstream - price risk is universal to all. Chapter 5 addressed the 

concept of hedging oil price risk. Oil price risk management has always been a vital part of the 

successful operation of oil-related businesses. A key parameter in devising effective futures 

hedging strategies is the hedge ratio. Traditionally, hedge ratios are estimated to minimise the 

variance of the hedged portfolio (Ederington, 1979). To allow for time-dependency in the 

hedging decision, GARCH models have been widely used (Kroner and Sultan, 1993). This 

chapter extended Chapter 4 and presented a multivariate regime error correction GARCH model 

to investigate the hedging effectiveness of petroleum futures.  

The regime dependent conditional variances uncovered a link between persistence and 

the state of the market, consistent with the results of Chapter 4 as well as other studies in the 

petroleum economics literature such as Fong and See (2002). Overall, the high variance state is 

associated with high variance-covariance persistence and low duration and vice versa. 

Furthermore, combining  the concept of disequilibrium (as measured by the error correction 

coefficients) with that of uncertainty (as measured by the conditional second moments) across 

high and low volatility regimes, the regime error correction GARCH model illustrated that the 

dynamics of the spot-futures relationship do not behave uniformly to shocks to equilibrium 

across different states. For instance, only in the low variance regime the speeds of adjustment of 
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spot and futures prices to their long-run relationship were in accordance with convergence 

towards a long-run equilibrium relationship; that is, equilibrium is primarily restored by the spot 

price as cash markets are more sensitive to news while futures depend on several factors like 

maturity and liquidity.  Regarding the regime-dependent hedge ratios, these were found to be 

higher when the volatility in the market is low. Overall, the forecasting results indicated that 

regime dependent hedge ratios may be able to offer superior gains to market agents, measured in 

terms of both variance reduction and increase in utility. These findings held even when we 

examined the downside risk and considered the asymmetric risk profile of long and short 

hedgers.      

. 
7.1.3 Term Structure of Correlated Curves 

The last empirical part of the thesis, Chapter 6, dealt with an important issue in 

petroleum market dynamics, correlated petroleum futures curves. Little is known about the joint 

term structures of different commodities and their implied dependence. Exceptions are Clewlow 

and Strickland (2000), Tomalsky and Hindanov (2002) and Ohana (2010). The price and 

volatility pattern across prompt and deferred contracts, as well as the correlation term structure, 

have been a cause of concern for market participants. This chapter exploited the information 

content of the dependence structure of petroleum futures curves and described inter-

dependencies between petroleum commodities under different regimes. Employing a flexible 

multivariate error correction multi-regime framework we extended Chapters 4 and 5 and 

assessed the forecast ability of those models.  

After decomposing the individual petroleum futures curves to the main risk factors i.e. 

level, slope and curvature we employed regime switching model for pairs of factors. All factors 

were allowed to switch independently, extending Bollen et al. (2000) model to the multivariate 

case; this way we effectively permitted factor specific regimes to demonstrate diversity i.e. one 

being in the high volatility state and another in a low volatility state, and hence, we 

disaggregated the regimes as level, slope and curvature driven and studied their interaction. 

Each regime clearly differentiated two distinct market dynamics for both the conditional mean 

and the volatility of the underlying process. Moreover, when one market was in the low and the 

other in the high variance state, it seemed more likely to observe low correlations. A far stronger 

co-movement was noted in the US crack and intercrude spreads than that of European crack and 

inter-product spreads. Results indicated that both level and slope shocks displayed strong 

dependence structure, sharing a common equilibrium relationship (in comparable pairs e.g. level 

with level) whereas curvature shocks were correlated to a lesser extent and were mean-reverting 

and stationary. While our multi-regime framework was primarily designed to aid our 
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understanding of regime behaviour and co-movement in the factor structure of correlated futures 

curves, the model was found useful when forecasting the conditional first and second moments 

as well as in risk measures such as portfolio Value-at-Risk. Results from these exercises 

indicated that the multi-regime factor MRS model can sometimes achieve significant gains 

compared to competing approaches. Overall, the resulting model is very promising, providing a 

very practical policy analysis tool to market participants for identifying and timing the possible 

states that the market of combined futures curves is in, as well as forecasting large covariance 

matrices and estimating risk metrics for large portfolios.  

 

7.2 Directions for Further Research 
All three studies in this thesis reveal the complex evolution of the conditional 

volatilities and correlation dynamics in petroleum markets. Furthermore the last two chapters 

reveal dependencies in two correlated assets, such as spot-futures, or in two correlated futures 

curves. The experiments considered indicate that efficiency improves and regime switching 

models serve for a better understanding of the conditional distribution of petroleum returns 

whereas the gains from using regime models are translated to enhanced forecasting ability. 

Future research should therefore be devoted to the development of models that allow for more 

realistic dynamics and new experiments can be set up with more flexible formulation. 

First, given the results of Chapter 4, 5 and 6, an interesting extension would be to add a 

second part in each of these analyses and study and compare the potential pros and cons of 

specifying observed regime models rather than latent state models. Although unobserved state 

models let the data speak for themselves it might be beneficial for both academics and 

practitioners to reveal the specific behaviour of the price, volatility and correlation process 

under pre-specified regimes. Backwardation and contango will serve as an ideal alternative 

regime identification process to discover the particular backwardation-contango GARCH 

dynamics, backwardation-contango hedge ratios and backwardation-contango factor structure. 

For this reason we suggest the use of either, a model that will include dummies to differentiate 

the parameter estimates in periods of backwardation and contango or, alternatively, the family 

of smooth transition models. This can be applied to all parts of the thesis. 

Second, within the setting of Chapters 4 and 5, multivariate extensions will be more 

appealing to market participants and more challenging on an academic level, since the risk 

measurement and risk management process in practice concerns portfolios rather than specific 

assets. For instance, oil companies involved in the management of physical assets, such as 

refineries, are mainly concerned with upstream-downstream commodities interrelationships to 

plan and optimise their operations. Also, investors without commercial interest in the real asset, 
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such as hedge funds, are genuinely interested in investment strategies that contain more than 

one assets. For instance, Haigh and Holt (2002) estimate time-varying hedge ratios for an 

energy trader exposed to the crack spread. Another study by Börger et al. (2009) examine risk 

measures and implications to risk management for economically meaningful energy related 

portfolios using data for crude oil, electricity, coal and CO2 emission allowances; they mainly 

focus on gas and coal fired power plants. Our regime switching framework could be adopted to 

study the information content of regimes in risk measures and hedge ratios of such portfolios. 

Given that the number of parameters increases substantially with the inclusion of additional 

assets, a solution to this can be a regime switching copula model which will explicitly model the 

dependence as a regime switching process - rather than the whole set of marginal distributions.  

Third, a challenging extension would be to apply the proposed regime switching 

framework in markets which entail non-linear payoffs i.e. options. Conventional option pricing 

models of commodity prices that rely on the Geometric Brownian Motion assumption are too 

simplistic and more sophisticated approaches may benefit market participants in terms of 

market understanding as well as the division of sound trading strategies and risk management 

techniques. The Markov GARCH class of models might be able to improve the pricing and 

hedging performance. Under the GARCH setup markets are incomplete and a finite number of 

risk-neutral densities exist. Duan (1995) described a technique, the Local Risk Neutral 

Valuation to approximate prices in a GARCH option valuation setting. In addition Badescu et 

al. (2008) studied the pricing function of options under normal mixture GARCH processes and 

further applied Esscher transforms and the Girsanov principle; this model is a restriction of 

Haas, Mittnik and Paolella (2004b) model and it would be interesting to investigate their 

relative performance. Finally, a more demanding study would be to extend the above into 

spread options such as the exchange-traded European Calendar options of the petroleum 

markets. Then, based on Duan and Pliska (2004)1 and Duan and Theriault (2007) who propose a 

co-integration GARCH volatility framework we can also derive cointegration risk premia within 

the local risk neutral valuation scheme and extend to regime switching approaches (see also 

Duan et al., 2002).  

                                                 
1 This study was the first to apply a discrete time approach to model the multivariate dynamics of spread 
options using co-integration and GARCH volatility. They approximate European option prices using 
Monte Carlo techniques and further examine the Greeks and the sensitivity of the estimated prices to the 
inclusion of co-integration. Moreover, they provide a diffusion limit for co-integrated systems with 
constant volatility, which constitutes a complete market model as opposed to the discretised version 
which becomes complete only after applying the Local Risk Neutral Valuation (LRNV) technique, 
described in Duan (1995). 
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