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ABSTRACT 
 

All-male fry are preferred to prevent uncontrolled reproduction before harvest in intensive Nile 
tilapia (Oreochromis niloticus) aquaculture. Males also grow faster than females. An alternative 
approach to direct hormonal masculinisation of tilapia fry is to produce fry that are genetically 
male. However, sex determination system in tilapia is fairly complex. Recent developments have 
resulted in a linkage map and genetic markers that can be used to analyse the sex determination 
system. To analyse the genetic sex determination mechanism and to develop marker-assisted 
selection in the Stirling Nile tilapia population, a fully inbred line of clonal females (XX) was 
verified using test crosses and DNA markers (mostly microsatellites) to use as a standard reference 
line in sex determination studies. A series of crosses were performed involving this line of females 
and a range of males. Three groups of crosses were selected (each group consisted of three 
families) from progeny sex ratio distributions, and designated as type ‘A’ (normal XY males x 
clonal XX females), type ‘B’ (putative YY males x clonal XX females) and type ‘C’ (unknown 
groups of males x clonal XX females), for sex linkage study. For type ‘A’, inheritance of DNA 
markers and phenotypic sex was investigated using screened markers from tilapia linkage group 1 
(LG1) to confirm the LG1-associated pattern of inheritance of phenotypic sex and the structure of 
LG1. Screened markers from LG1, LG3 and LG23 were used to investigate the association of 
markers with sex in families of type ‘B’ and ‘C’. In addition, a genome-wide scan of markers from 
the other 21 LGs was performed to investigate any association between markers and sex, in only 
families of cross type ‘B’. LG1 associated pattern of inheritance of phenotypic sex was confirmed 
by genotype and QTL analyses in families of cross type ‘A’. Analyses of genotypes in families of 
type ‘B’ and ‘C’ showed strong association with LG1 markers but no association with LG3 and 
LG23 markers. Genome wide scan of markers from all other LGs did not show any significant 
association between any markers and the sex. The allelic inheritance of two tightly linked LG1 
markers (UNH995 and UNH104) in families of type ‘B’ and ‘C’ identified polymorphism in the 
sex determining locus: one of the alleles was associated mostly with male offspring whereas 
another allele was associated with both progeny (mostly males in type ‘B’ families, and 
approximately equal numbers in type ‘C’ families). This knowledge was used to identify and 
separate supermales (‘YY’ males) that should sire higher proportions of male progeny, reared to 
become sexually mature for use as broodstock. Two of them were crossed with XX females (one 
clonal and one outbred) to observe the phenotypic expression of the strongest male-associated 
allele in progeny sex. The observations of 98% male (99 males out of 101 progeny) and 100% male 
(N=75) from these two crosses respectively, suggest that a marker-assisted selection (MAS) 
programme for genetically male Nile tilapia production could be practical. This study also suggests 
that the departures from the sex ratios predicted using a “simple” XX/XY model (i.e., YY x XX 
should give all-male progeny) were strongly associated with the XX/XY system, due to multiple 
alleles, rather than being associated with loci in other LGs (e.g., LG3, LG23). This study also 
tentatively names the allele(s) giving intermediate sex ratios as “ambivalent” and emphasizes that 
the presence and actions of such allele(s) at the same sex-determining locus could explain 
departures from predicted sex ratios observed in some earlier studies in Nile tilapia. 
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Chapter 1. General Introduction 
 
This chapter gives an account of the historical background and production trends of tilapia, 

importance of monosex (male) production in the species of tilapia and possible ways of 

producing all males with an emphasis on genetically male tilapia production. The sex 

determination systems in tilapia are also described with complexities and challenges and 

compared with those in other species along with the importance of using molecular 

markers to unveil the sex determination mechanism. Marker-assisted selection in 

commercially important fish species are given with monosex production approach in Nile 

tilapia, and finally the objectives of the present research work are mentioned.  

 

1.1 Historical background, farming potential and production trends of tilapia  

Tilapia, sometimes referred to as St. Peter's fish (since it is thought to be the fish caught by 

St. Peter in the Sea of Galilee), have been important sources of food for man since 

recorded history began. Drawings of tilapia farming have been found on Egyptian tombs 

dating back to 2,500 B.C (Bardach et al., 1972). Tilapia consist of some 80 species, 

including three main genera (Trewavas 1983); Oreochromis (about 30 species), 

Sarotherodon (over 10 species) and Tilapia (about 40 species). However, only a few of 

these are of major importance in aquaculture: the Nile tilapia Oreochromis niloticus 

Linnaeus, the blue (or Jordan) tilapia O. aureus Steindachner, the Mozambique tilapia O. 

mossambicus and to a lesser extent the Sabaki tilapia O. spilurus spilurus Gunther, the 

three-spotted tilapia O. andersonii Castelnau, the blackchin tilapia S. melanotheron 

Ruppell and the redbreast tilapia  T. rendalli Boulenger. Originating from Africa, where 

they and other cichlids dominate freshwater lakes, they are part of the large cichlid family 

also found in South and Central America, the Indian subcontinent, and the Middle East. 
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Throughout the 20th century, mostly for commercial purposes, introduction of tilapia 

spread all over Asia, Europe and the USA (Keenleyside, 1991). Farming of tilapia is now 

in a dynamic state of expansion to satisfy both domestic and international markets and they 

are cultured in 85 countries currently according to FAO (2009) and consist predominantly 

(~75%) Nile tilapia. 

There are a good number of advantages that favour Nile tilapia farming. They can be 

cultured in freshwater, brackishwater and even in full-strength seawater and can tolerate 

poor water quality and environmental fluctuations. They may grow well at high density, 

feed low in the food chain, either as column feeders or benthic omnivores and can be 

grown using many by-products. The offspring can be produced all the year round in some 

countries. They have mild-tasting good quality white flesh attractive to consumers and are 

popular in different forms (such as whole or fillet, fresh or frozen, salted or smoked). The 

fillet yield of Nile tilapia varies from 25.4% (Clement and Lovell, 1994) to 35.7% (Rutten 

et al., 2004),  processing yield (total fish weight minus weight of head, skin and viscera) is 

51.0%, fat content of fillet is low (only 5.7 g/100 g), protein content of fillet is high (20.3 

g/100 g), caloric value of fillet is 139 kcal/100 g, monounsaturated fatty acid comprise an 

average of 54.6 g/100 g of total fatty acids, n-3 highly unsaturated fatty acids comprises an 

average of 2.2 g/100 g of total fatty acids and the cholesterol content of fillet is only 31.3 

mg/100 g (Clement and Lovell, 1994). All of these qualities explain much of their appeal 

to become a unique food fish to be cultured in a wide range of aquaculture ventures. Their 

culinary versatility and flexibility in preparation, reasonable price and classic flavour have 

established a market in almost every country in the world. Tilapias are now the second 

most farmed group of fish (behind carps) with annual global production exceeding 2.5 

million metric tons in 2007 (FAO, 2009). 
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The production trend of tilapia is very positive. The dramatic annual increase in tilapia 

production from the top countries is given in Table 1. For example, tilapia production in 

China has increased from 44,832 metric tons in 1980 to over 1.2 million metric tons in 

2007. In Indonesia, this figure is from 14,901 metric tons to 248,305 metric tons. The 

global production of tilapia in 2007 is 25 times higher than that in 1980. 

Table1.1 Tilapia production (t) in the top ranked countries from 1980 to 2007 

Country 1980 1985 1990 1995 2000 2005 2007 

China 
(including 
Taiwan) 

44,832 76,542 159,313 361,346 598,109 928,163 1,210,167 

Egypt 9,000 22,346 24,916 21,969 157,425 217,019 265,862 

Indonesia 14,901 29,302 53,768 74,125 85,179 189,570 248,305 

Philippines 13,214 42,640 76,142 81,954 92,575 163,004 241,183 

Thailand 8,419 16,542 22,895 76,383 82,581 203,911 190,258 

Brazil nr nr nr 12,014 32,459 67,851 95,091 

Malaysia 366 314 1145 8,866 18,471 28,635 32,258 

Honduras 6 35 120 172 927 28,376 28,356 

Columbia 93 300 2040 16,057 22,870 27,953 27,960 

Global 107,459 211,594 379,184 703,712 1,190,016 1,980,450 2,505,465 

Source: FAO–Fisheries and Aquaculture Information and Statistics Service (2009).  nr, not recorded. 
 

 

In the 1960s and 1970s tilapia culture was aimed at the production of food for local 

consumption, utilizing primarily extensive or semi-intensive culture methods with minimal 

inputs of fertilizer or feeds (Watanabe et al., 2002). Advances in technology associated 

with the intensification of culture practices (for example,  development of new strains and 

hybrids, monosex male culture, formulated diets and the utilization of greenhouses, 
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geothermal, or industrial waste heat and advanced water treatment methods) have resulted 

in the expansion of tilapia culture rapidly.  

 

The culture practices of tilapia can be extensive, semi-intensive or intensive (Tsadik and 

Bart, 2007). There has been a gradual shift in tilapia culture from traditional semi-intensive 

to non-traditional intensive farm systems (El-Sayed and Kawanna, 2008). The 

diversification of culture systems as well as marketing programmes has also nurtured a 

growing demand for tilapia in domestic and international markets. But deciding the 

optimal culture method for tilapia farming can be quite complex (Graaf et al., 2005). 

Traditionally tilapia is often cultured in earthen ponds without supplemental feeding (Liti 

et al., 2005). Intensive monoculture in the concrete tanks is carried out in a few countries. 

Although practiced in some countries, cage culture of tilapia is yet to be commercialised 

on a wide scale basis. Pen culture of tilapia in open waters is practiced in the Philippines 

on an appreciable scale (Pillay, 1993). 

 

Extensive culture systems in pond and reservoir ranching are widely practiced in 

developing countries and production ranges from 300-700 kg/ha/crop.  In most developing 

countries, this type of producer has a low social, cultural, and economic status and limited 

access to technology, markets, and credit (Alceste, 2000). While its impact is hard to 

measure, extensive tilapia culture has also helped the rural poor to improve their household 

nutrition and raise the standard of living in some areas of the Americas (Fitzsimmons, 

2000). Semi-intensive pond culture of tilapia is typically integrated with agricultural or 

animal husbandry activities because pond fertilization with organic fertilizers can promote 

natural pond productivity. In Brazil, for example, 0.1-ha ponds stocked with sex-reversed 
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male tilapia in monoculture or in polyculture with common carp and Chinese carp yield 

3000 to 4000 kg/ha/crop when ponds are integrated with pig husbandry (Lovshin, 2000).  

 

Intensive culture of tilapia is done in ponds, raceways, cages and tanks. This approach is 

useful for producers who use public or communal waters, including reservoirs, lakes, bays, 

irrigation systems, or village ponds. In the U.S., tilapia are being cultured in cages placed 

in abandoned phosphate mining pits in Florida and in watershed ponds in Alabama (Popma 

and Rodriquez, 2000). In Mexico, cage culture systems include floating cages, net pens 

that use staked sides and rest on the bottom, and wooden corrals that enclose portions of a 

lagoon (Fitzsimmons, 2000). Cage volumes and stocking densities range from 4m3 units 

stocked at 200 to 300 fish/m3 to cages of 100 m3 or larger, stocked at 25 to 50 fish/m3. 

Yields range from 150 kg/m3/crop in 4 m3 cages to 50 kg/m3/crop in 100 m3. In Colombia, 

cage culture is practiced in large reservoirs constructed for hydroelectric generation 

(Popma and Rodriquez, 2000). Cages range from 2.7 to 45 m3 in volume, with total 

volume of the reservoir exceeding 13,000 m3. Sex-reversed males produced in land-based 

hatcheries are stocked into grow out cages at 30 g and are raised to 150 to 300 g in 6 to 8 

months. Fish are fed extruded feeds with 24 to 34% crude protein. Annual yields at final 

densities of 160 to 350 fish/m3 are 67 to 116 kg/m3 (Popma and Rodriquez, 2000).  

 

Intensive ponds of 1 ha or less and raceways or tanks supplied with large amounts of 

flowing water from rivers or streams are preferred for large-scale commercial production. 

In countries like the Caribbean and Central and South America, companies that grow 

tilapia using intensive systems target a high quality product for export markets. Such 

companies have access to monetary institutions to finance production, add value, and ship 
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to distant markets (Alceste, 2000). An example of a progression of tilapia culture from 

semi-intensive to intensive and highly intensive practices can be Jamaica, where the lowest 

level is the small farmer with 1 to 4 ha (75% of farms) that usually owns their land. Final 

yield averages 9000 kg/ha/y. The second level is the medium size operator with 5 to 20 ha 

(19% of farms). Fish are sold pond side, but are also sold to distributors or to a contract 

farming system. Final yield averages 16,000 kg/ha/y. The third level is the large operator 

with 21 to 45 ha (6% of farms). Large farms are typically partnerships or subsidiaries of 

larger firms engaged in other businesses. These farms stock at higher densities, use greater 

water exchange and aeration, and manage integrated systems for maintaining broodstock, 

producing fingerlings, processing, and marketing. Input costs are higher and feed 

efficiencies slightly lower, but larger fish are produced, and much greater yields of 

45,000/kg/ha/y are generated. The production cost for a medium farm is $1.62/kg, while 

that of a large farm is estimated at $1.25 to 1.55/kg. This compares with a selling price of 

$2.65/kg (reviewed by Watanabe et al., 2002). Although definitive data on the economics 

of tilapia aquaculture production systems are lacking, diversified culture systems and some 

unique characters of this species has already established its market demand all over the 

world.   

However tilapia present some big challenges to the fish culturist when significant 

proportion of yields become unmarketable due to their biological features. Swingle (1960) 

found that in 169-196 day culture cycles of mixed sex Mozambique tilapia, Oreochromis 

mossambicus, production exceeded 3,000 kg/ha but >90% of the harvest was composed of 

fish <100g. Verani et al. (1983) produced 4,944 kg/ha of mixed sex Nile tilapia (O. 

niloticus) in 11 months but the average weight harvested was <100g. High yields and 

efficient nutrient utilizations are meaningless unless a significant portion of the production 
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is marketable. Market sizes may vary but top prices are guaranteed for larger fish in 

exports and supermarkets. 

 

1.2 Significance of Monosex production in Nile tilapia 

Tilapia mature early and can be easily bred in captivity all the year round. They attain 

sexual maturity in 4 to 6 months while still being smaller than marketable size. They also 

spawn frequently (females every two to four weeks during the spawning season). 

Therefore, culture areas can become saturated with vast numbers of smaller and uneven 

sized fish, which are often unwanted by fish producers or hatchery operators (Pechsiri and 

Yakupitiyage, 2005). Females grow slower in this species. Males, and especially females, 

divert energy which could be utilised for somatic growth, into gamete production and 

behavioural interactions. In addition, competition with recruits in confined environments 

further suppresses the growth of stocked fish and can result in 30-50% of harvested 

biomass consisting of largely unmarketable recruits (Mair et al., 1995). Therefore in semi-

intensive or intensive aquaculture, male tilapia are preferred for culture and harvest to 

reduce the possibility of unwanted reproduction and stunting in grow-out ponds, to obtain 

fast growing, more uniform sized fish and to gain more profit.  

 1.3 Possible ways of all male production in Nile (and other) tilapia 

All (or mostly) male populations can be obtained in a number of ways in Nile tilapia. The 

first method is manual separation of males from females by visual observation on the basis 

of the genital papilla (the male genital papilla is elongated while the female papilla is 

rounded), which is labour intensive, time consuming and wasteful of discarded females. 

Monosex culture by either manually or mechanically selecting (grading by size) males 
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results in half of the fish being rejected. Fingerlings need to be 20-30 g for sexing, 

producing the equivalent of 4,000 kg/ha of females, which need to be discarded (Popma et 

al., 1984). 

 

Inter-specific hybridization has also been used to result in male biased population in 

tilapia. Many Oreochromis hybrids are characterized by a majority of males, the 

occurrence of all-male broods is relatively common and this is where the major interest in 

hybridisation lies (Beardmore et al., 2001). Early attempts to control the sex of fingerlings 

by interspecific hybridization began half a century ago, by Hickling (1960). The report of 

monosex hybrids by Pruginin et al. (1975) created significant interest where they obtained 

98-100% of males by crossing Oreochromis niloticus (♀) and O. variabilis (♂), O. nigra 

(♀) and O. urolepis hornorum (♂), O. vulcani (♀) and O. u. hornorum (♂), and, O. vulcani 

(♀) and O. aureus (♂) crosses.  Hybridization between Nile tilapia (O. niloticus) and the 

blue tilapia (O. aureus) results in the production of predominantly male offspring and 

reduces unwanted natural reproduction in grow out ponds (Rosenstein and Hulata, 1993). 

In some commercial fish farms in Israel and Taiwan, the O. niloticus and O. aureus cross 

is utilized (Liao and Chen, 1983). This cross produces predominately males because of 

different sex-determining mechanisms in the two species: Nile tilapia has the XX/XY 

system with the male being heterogametic, whereas blue tilapia has ZZ/ZW with the 

heterogametic genotype being female (Lahav and Lahav, 1990; Wohlfarth, 1994). Other 

tilapia crosses producing predominately male offspring are Nile tilapia (♀) with Wami 

tilapia, O. hornorum or with the longfin tilapia, O. macrochir (♂) and the Mozambique 

tilapia, O. mossambicus (♀) crossed with the Wami tilapia (♂) (Wohlfarth, 1994).  
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However, the problem of consistency of producing all males by interspecific hybridization 

is apparent. Mass spawns between O. niloticus females and O. aureus males resulted in 

varied percentage of males, between 59 and 81% (Wohlfarth, 1994).  It seems that 

although the inter-specific hybridization is a means of monosex tilapia production, it often 

leads to accidental introgression between the species, affecting the sex ratio (Beardmore et 

al., 2001). Attempts to commercialise monosex hybrids using O. niloticus female x O. 

aureus male cross or using male O. u. hornorum with females from O. niloticus or  O. 

mossambicus have been disappointing in some cases (for example, in Israeli industry 

where tolerance to low temperature is also desirable character) with females usually 

occurring in putatively all-male broods. Failure to sustain production of all-male tilapia 

hybrids is most likely due to insufficient care in keeping broodstock segregated by sex and 

species, and in preventing introduction of hybrids into the broodstock ponds. However, 

with O. niloticus accepted as the best commercial species for the majority of freshwater 

aquaculture environments, dilution of the O. niloticus genome with genes from other 

species tends to reduce the performance potential in aquaculture, compared to pure O. 

niloticus (Beardmore et al., 2001). Table 1.2 summarises the hybrid combinations in tilapia 

with their possible effects. 
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Table 1.2 Hybridizations in tilapia with their effects on traits of interest 
 
 
Species of tilapia hybridised 

(female parent x male 

parent) 

Effect/advantage  Reference 

Nile tilapia x blue tilapia 

 (O. niloticus x O. aureus) 

 

Hybrids are fertile with increased cold and salinity 

tolerance compared to Nile tilapia. Crosses of some 

strains yield all-male offspring; hybrid males have 

superior growth to blue tilapia. Applied commercially 

but results inconsistent. Some strains produce red 

colouration. 

Lahav and Lahav, 

1990; 

Wohlfarth, 1994; 

Bartley et al., 2001; 

Beardmore et al., 2001 

Nile tilapia x Wami tilapia 

 (O. niloticus x O.urolepis 

hornorum) 

Cross yields predominantly male offspring with some 

strains producing red-skinned fish with salt tolerance. 

Some commercial applications. 

Wohlfarth, 1994; 

Beardmore et al., 2001 

 

Nile tilapia x long-finned 

tilapia 

 (O. niloticus x O. macrochir) 

Cross yields predominately male offspring, but strain 

of Nile tilapia important for good fry production. 

Wohlfarth, 1994 

 

O. niloticus x O. variabilis All progenies monosex (male) Beardmore et al., 2001 

Mozambique tilapia x blue 

tilapia (O. mossambicus  x O. 

aureus) 

All progenies monosex (male) Beardmore et al., 2001 

Mozambique tilapia x Wami 

tilapia/blue tilapia (O. 

mossambicus x O. urolepis 

hornorum) 

 

Cross yields predominately male offspring. Hybrids 

are fertile, however often with slow growth and dark 

colour. Certain strains produce the Florida red tilapia 

with good growth and salinity tolerance. 

Krasnai, 1987; 

Bartley et al., 2001; 

Head et al., 1994; 

Wohlfarth, 1994 

 

Mozambique tilapia x Nile 

tilapia (Oreochromis 

mossambicus x O. niloticus) 

 

Hybridization of some strains produced tilapia with 

salinity tolerance. Also known as the Taiwan red 

tilapias, progeny of these hybrids display a variety of 

different skin colours. 

Lim et al., 1993 

 

O. spilurus niger x O. 

macrochir/ O. u. hornorum 

All progenies monosex (male) Beardmore et al., 2001 

O. aureus x O. u. hornorum All progenies monosex (male) Beardmore et al., 2001 

T. zilli x O. andersonii All progenies monosex (male) Beardmore et al., 2001 
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Chromosome set manipulation can provide alternative mechanisms for monosex 

production by single parent genome contribution. In contrast to the production of monosex 

females (e.g., Pongthana et al., 1999) by gynogenesis (one of the chromosome set 

manipulation techniques), this and other techniques (e.g., androgenesis) can be used as 

routes to monosex male production. Production of all-male triploid tilapia Androgenesis 

should result in offspring of equal sex ratio; females would be XX and males would be 

YY. Progeny testing will be required during experimental development to confirm that the 

males are fertile and that only male offspring (XY) will result when spawned with normal 

females (XX). Sex ratio of progeny from crosses of androgenetic females with normal 

males should be 1:1, and presumptive YY-male androgenetics crossed with normal females 

would be expected to produce only male progeny. The YY-males would then be a basis for 

developing a unique broodstock that would produce all-male progeny and add insight into 

the stability and fidelity of the sex-determining system in tilapia. However, autosomal 

modifier genes may alter the theoretical 1:1 progeny sex ratio (Shelton et al., 1983; 

Wohlfarth and Wedekind, 1991; Mair, 1993). In addition, thermal (cold or hot) or pressure 

shock treatment during the process must be timed to coincide with a cytological event, 

such as disruption of the spindle fibers during metaphase to prevent karyokinesis, or 

interference with the cell duplication during cytokinesis (Shelton, 2002). Thus, shock type 

and intensity, duration, and time of application need to be carefully combined and 

controlled for maximum yield of diploid progeny. Poor survival of androgenetic 

individuals of tilapia is attributed to these factors. The low probability of producing mature 

YY-males and the increasing evidence of complications with reference to sex 

determination for tilapias have become the major concerns of successful ploidy 

manipulation technique in tilapia. 
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Hormonal sex reversal is another option for the production of monosex male tilapia. The 

treatment of sexually undifferentiated fry by administration of androgen hormones has 

been shown to work well under carefully controlled conditions. Hormone treatment does 

not alter the genotype of the fish but directs the expression of the phenotype. A treated 

population of fish may be phenotypically mono-sex but genetically will be the same as 

determined at the moment of fertilization. As a result of hormone treatment, it is possible 

to have phenotypically male fish which are genetically female following androgen 

treatment or phenotypically female fish that are genetically male following estrogen 

treatment. The use of hormones to alter the sex ratios of fish was first demonstrated in 

medaka  by Yamamato (1953) who concluded that the sex hormones, in addition to 

modification of secondary sex characters, also affect the gonads. He produced 100% 

female medaka (Oryzias latipes) with an estrogen and a nearly all male population with an 

androgen (Yamamoto, 1953, 1955). The technique of sex reversal has been used in over 25 

species including rainbow trout Oncorhynchus mykiss, goldfish Carassius auratus 

(Yamazaki, 1976), grass carps, Ctenopharyngodon idella (Stanley et al., 1978) and tilapias 

(Clemens and Inslee, 1968; Nakamura and Takahashi, 1973).  

 

Production of all male populations through administration of the androgen 17-α-

methyltestosterone (MT) is considered to be the most effective and economically feasible 

method for obtaining all male tilapia populations (Guerrero and Guerrero, 1988). Such 

efficiency and simplicity in production techniques has resulted in hormone sex reversal 

becoming the commercial procedure of choice to produce male tilapia fingerlings and has 

been a significant factor in the rapid growth of the tilapia industry. However, failure to 

optimise the necessary parameters such as age and size of fry and feeding frequency can 

result in lower than expected rates of sex reversal (Mair et al., 1995). Concerns persist over 
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the safety of commercial sex reversal treatments both with regard to the safety of the 

farmer and of the consumer together with the possible environmental (hatchery, local 

environment) impacts. Hormone residues are likely to have negative impacts on 

environmental safety and could cause adverse developmental, neurobiological, genotoxic 

and carcinogenic effects (Al-Dobaib and Mousa, 2009); this procedure needs high level of 

control in use and dispersion of the products. In many countries, therefore, hormonal sex 

reversal is unacceptable.  

 

The other major alternative way to produce (nearly) all males is the production of 

genetically male tilapia (GMT).  Here supermales (YY) are created (Figure 1.1, usually the 

initial step is hormonal feminisation of XY males and crossing to untreated XY males), 

grown up as broodstock and crossed with females (XX) to obtain all normal males (XY).  

 

25% XX Female + 50% XY Male + 25%YY Male

XY maleXX female X

Oestrogen

XX female +   ‘XY’ Female 

‘XY’ Female XY MaleX

 

Figure 1.1 Conventional production technique of putative YY males 
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The success of this technology depends on the production of ‘true’ YY brood males with 

the hypothesis that the ultimate control of the sexual phenotype is by an XX/XY (male 

heterogametic) sex-determination system. The production of YY broods involves a number 

of crucial steps and once a pure YY line is established, it can be used for producing XY 

male progeny on a sustainable basis. The production of GMT from YY broodstock is an 

accepted, legal (environment-friendly) method of producing “all male” Nile tilapia.  

 

However, the wide variation in progeny sex ratios resulting from putative YY questions the 

actual sex determination mechanism in this species. Putative YY-males have been found to 

produce 67-100% male populations (Mair et al., 1993). This wide variation indicates that 

the sex determining mechanism in tilapia is complex, and is a big barrier to the feasibility 

of application of this technology on a commercial scale. Therefore, a general 

understanding of sex determination mechanism in this species along with a comparison of 

that with other animals is needed before undertaking any large scale monosex production 

scheme.  

 

1.4 Sex determination system in different animals 

Sex determination is the genetic and/or environmental process by which sexual identity is 

established in an organism. It begins with the initial commitment by embryonic cells to a 

particular sexual fate and ends with sex-specific terminal differentiation. Sex determination 

results in the development of individuals with characteristics that allow them to be 

identified as males, females, or in some cases, hermaphrodites. In certain species, like the 

soil nematode Caenorhabditis elegans, differences in sexual characteristics can be very 

small (in C. elegans, the only distinguishing sexual characteristic is the presence of a testis 
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versus an ovotestis). In other species, the phenotypic differences between the sexes can be 

quite significant (Hake and O'Connor, 2008). 

The first major breakthrough in understanding sex determination was the discovery of sex 

chromosomes in the early 1900s (Wenrich, 1946). From meticulous analyses of male and 

female insect chromosomes, scientists discovered that, although most chromosomes were 

present in equal numbers in both males and females, there were one or two additional 

chromosomes that were unequally represented in the two sexes. Analyses of additional 

species over the years have revealed that such chromosomal differences are associated with 

sex determination in many animals. However, this is not certain in all animals, and a 

subject of investigation whether single locus (XY or WZ) plays primary role (rather than 

chromosomal differentiation) in sex determining mechanism. 

The mechanisms of sex determination can be classified into two broad categories: genetic 

sex determination (GSD) and environmental sex determination (ESD). The GSD system is 

principally based on the evidence of genetic factors and their variations between sexes, for 

example, presence or absence of heteromorphic sex chromosomes, allelic variation etc 

(Sarre et al., 2004). Sex determination by environmental factors such as temperature, pH, 

social environment etc defines ESD.  

A brief description of sex determination systems (GSD and/or ESD) in other vertebrates, 

followed by a detailed discussion on the sex determination in some cultured fish species 

including tilapia is given in the next section.  
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1.4.1 Sex determination in humans and other mammals 

The most defining moment in our lives is fertilization when we inherit either an X or a Y 

chromosome from our father- “the profoundly different journeys of male and female life 

are thus decided by a genetic coin toss” (Wilhelm et al., 2007).  

In placental mammals, the presence of a Y chromosome determines sex. Normally, cells 

from females contain two X chromosomes, and cells from males contain an X and a Y 

chromosome. Occasionally, individuals are born with sex chromosome aneuploidies, and 

the sex of these individuals is always determined by the absence or presence of a Y 

chromosome (Hake and O'Connor, 2008). 

Although the role of the Y chromosome in mammalian sex determination has been known 

since the early twentieth century, it was not until 1959 that scientists were able to identify 

the region of the Y chromosome that controlled this process (Jacobs and Strong, 1959). 

Later, researcher David C. Page analyzed the chromosomes of sex-reversed XX men 

(individuals who look like men but have two X chromosomes instead of one X 

chromosome and one Y chromosome). Using DNA hybridization with probes 

corresponding to different regions of the Y chromosome, he discovered that sex-reversed 

males carried genes from a 140-kilobase region on the short arm of the Y chromosome. 

Presumably, this region had been transferred to the X chromosome during a translocation 

(Page et al., 1985). Subsequent experiments narrowed down this region and found that the 

Y chromosome showed a reduced number of functional genes, containing between 70 and 

200 genes along its 50-million base pair length (Noordam and Repping, 2006) and one 

gene, the sex-determining region of the Y, or SRY, was the master regulator of sex 

determination (Noordam and Repping, 2006). The Y chromosome induces testis formation 
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and thus male sexual development. Subsequent male sexual differentiation is largely a 

consequence of hormonal secretion from the testis. In the absence of a Y chromosome, 

gonads differentiate into ovaries and female development ensues. Molecular genetic 

studies have identified the Y-located testis determining gene SRY as well as autosomal and 

X-linked genes necessary for gonadal development. The phenotypes resulting from 

mutation of these genes, together with their patterns of expression, provide the basis for 

establishing a hierarchy of genes and their interactions in the mammalian sex 

determination pathway (Schafer and Goodfellow, 1996).  

SRY encodes a protein containing a high mobility group (HMG) motif, which confers the 

ability to bind and to bend DNA. Genetic evidence supporting SRY as TDF (Testes 

determining factor) came from the observation of a male phenotype in XX mice transgenic 

for a small genomic fragment containing Sry, and from the study of XY sex-reversed 

individuals who harbor de novo mutations in the SRY coding sequence. Other non-Y-

linked genes involved in sex determination were subsequently found by genetic analysis of 

XY sex-reversed patients not explained by mutations in SRY. These genes are WT1 (Wilm 

tumor), SF1 (Steroidogenic factor 1), DAX1 (Divergent Antennapedia class homeobox 

gene 1) and SOX9 (SRY related HMG-box 9). A regulatory cascade hypothesis for 

mammalian sex determination, proposing that SRY represses a negative regulator of male 

development, was supported by observation of mice that expressed a DAX1 transgene and 

developed as XY sex-reversed females (Vilain and McCabe, 1998).  The role of some sex-

determining genes, such as DAX1 and SF1, in the development of the entire reproductive 

axis, a functionally integrated endocrine axis, leads to a new concept. Normal sexual 

development may result from the functional and developmental integration of a number of 

different genes involved in sex determination, sexual differentiation, and sexual behavior. 
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In the absence of SRY, three genes may convert the undifferentiated gonad to become 

female sex organ. If the embryo has at least one X and lacks a Y chromosome, two genes 

work together to give the embryo the female phenotype. The first gene, called DAX1 

(Mizusaki et al., 2003), is found on the X chromosome. The second gene, WNT4 is found 

on chromosome 1. Together, these genes stimulate the development of ovary tissue. 

However, despite their indubitable importance, the only other candidate that has emerged 

for this role to date is FoxL2, a member of the large family of forkhead/winged helix 

transcription factors, known to play important roles during vertebrate development 

(Kaufmann and Knochel, 1996). It is expressed in mesenchymal pregranulosa cells and 

later in granulosa cells (Schmidt et al., 2004). The ovary tissue excretes the hormone 

estrogen, which turns on other genes that control the development of the remaining female 

reproductive structures. Once testis or ovary differentiation has occurred, our sexual fate is 

further sealed through the action of sex-specific gonadal hormones. 

Supporting evidence for SRY also derived from work in the mouse. First, Sry (the mouse 

ortholog) is deleted in a line of XY female mice (Gubbay et al., 1990). Second, Sry is 

expressed in the somatic component of the genital ridge at exactly the predicted time for 

testis determination, i.e., just before the appearance of testis cords (Koubova et al., 2006). 

Finally, transgenic XX mice carrying a genomic fragment containing the Sry gene develop 

as males (Koopman et al., 1991), which are sterile due to the adverse effect of two X 

chromosomes in spermatogenesis.  

The early development of gamete appears to be controlled more by the environment than 

the genotype of the germ cells. Female primordial germ cells (PGCs) introduced in the 

testis will begin to differentiate into sperm, and male PGCs introduced into the ovary will 
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begin to differentiate into oocytes (Strachen and Read, 2004). The regulation of the cell 

cycle may be reflected by this since PGCs entering the testis arrest prior to meiosis while 

those entering the ovary commence meiosis immediately (Ross and Capel, 2005). 

Therefore, PGCs of either sex that constitute or colonise somatic tissue outside the gonad 

begin to differentiate into oocytes since there is no signal to arrest the cell cycle. In all of 

these unusual situations, however, functional gametes are not produced. Differentiation 

aborts at a relatively late stage, presumably because the genotype of the germ cells 

themselves also plays a critical role in gonad development (Strachen and Read, 2004). 

Unlike the situation with primary sex characteristics, it appears that female secondary sex 

characteristics are the default state (Wilhelm et al., 2007). One of the genes regulated by 

SRY is NR5A1, which encodes another transcription factor steroidogenic factor. This 

activates genes required for the production of male sex hormones, including HSD17B3 

(encoding hydroxy steroid-17-β-dehydrogenase 3, which is required for testosterone 

synthesis) and AMH (the gene encoding anti-Mullerian hormone). Both hormones play 

important roles in the differentiation of male urogenital system (Nef and Parada, 2000). 

AMH, for example causes the Mullerian ducts (which become the fallopian tubes and 

uterus in females) to break down. Feminised XY individuals may be produced by the 

mutations inhibiting the production, distribution, elimination or perceptions of such 

hormones (Strachen and Read, 2004).  

So, genes are not enough to make a male or female. To produce a human male requires not 

only the XY chromosome pair but also an adequate level of testosterone exposure during 

fetal development. If testosterone or the cellular receptors for it are lacking, as in 

androgen-insensitivity syndrome (AIS), an XY human may be born with female genitalia 
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and misidentified as a baby girl. AIS results from defects in the testosterone receptor, 

which prevents the body responding to the hormone even if it is produced at normal levels 

(Strachen and Read, 2004). XY individuals with this disease appear outwardly as normal 

females, but due to the effects of SRY and AMH, they possess undescended testes instead 

of ovaries, and they lack a uterus and fallopian tubes. 

Conversely, if an XX fetus is exposed to a testosterone excess (from the adrenal glands), 

the labia may fuse into a scrotumlike sac, the clitoris may grow to resemble a penis, and 

the baby may be misidentified as a boy; this is called adrenogenital syndrome (AGS). The 

mistaken identity often comes to light only at puberty, when the individual fails to develop 

as he or she normally would for the mistakenly assumed sex. Such belated discovery of the 

child's genetic sex creates some difficult issues of gender identity (Villinski and Mattox, 

2003).  

Although testis development is brought about through the action of the sex determining 

region located on the short arm of the Y chromosome, correct doses of other genes on 

autosomes as well as the X chromosome, are also required. Sry appears to be widely 

expressed in human fetuses, suggesting the possibility that its influence on development is 

not confined to the testes (Mittwoch, 1997). There is additional evidence of a difference in 

developmental rates between XY and XX cleaving embryos, in which Sry and another 

gene in the sex-determining region named Zfy, for the zinc finger protein it encodes, are 

already expressed. These findings are consistent with the possibility that Y-chromosomal 

genes affect somatic sex differences prior to the formation of steroid hormones (Mittwoch, 

1997).  
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1.4.2 Sex determination in birds 

Birds are well known for their striking sexual dimorphisms, often characterised by gaudy 

plumage or ornamental feathering in males versus the more drab or cryptic colouration of 

females (Smith, 2010). Birds lack SRY and have a non-homologous set of sex 

chromosomes, designated ZZ male and ZW female (Griffiths, 1991; McBride et al., 1997; 

Stiglec et al., 2007). Research has been performed to reveal if it is the female-specific W 

chromosome of birds that causes the avian embryo to develop a female phenotype, 

analogous to the dominance mode of genetic sex differentiation seen in mammals, or it is 

the number of Z chromosomes that triggers male development, similar to the balance mode 

of differentiation seen in Drosophila and C. elegans. Although definite answers to these 

questions have not been given, some data have provided support for the latter hypothesis 

(Ellegren, 2000). The discovery that the Z-linked DMRT1 gene, which is conserved across 

phyla as a gene involved in sexual differentiation, is expressed early in male development, 

which suggests that it might be the number of Z chromosomes that regulate sex in birds 

(Smith, 2010). On the other hand, the recent identification of the first protein unique to 

female birds, encoded by the W-linked PKCIW gene, and the observation that it is 

expressed early in female gonads, suggests that the W chromosome plays a role in avian 

sexual differentiation (Ellegren, 2001; Smith, 2010). Moreover, despite the potentially 

common features of sex determination in mammals and birds, comparative mapping shows 

that the avian sex chromosomes have a different autosomal origin than the mammalian X 

and Y chromosomes (Ellegren, 2000). 
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1.4.3 Sex determination in insects 

When geneticists first began studying chromosomes in the early 1900s, insects were the 

organisms of choice. They are the most diverse class of organisms on the planet, so it is not 

too surprising that they show considerable diversity in their mechanisms of sex 

determination (Saccone et al., 2002). The majority of insects have dimorphic sex 

chromosomes that can be distinguished cytologically. 

Clarence Erwin McClung (American geneticist and paleontologist) discovered the role of 

chromosomes in sex determination in a species of grasshopper (http://www.todayinsci.com). 

In 1901, he determined that female grasshoppers had two X chromosomes, but males had 

one. This arrangement, now known as XX-XO, with the O representing a lack of a 

chromosome, occurs in many insects. For these organisms, the number of X chromosomes 

in relation to the autosomal chromosomes (X: A) determines maleness or femaleness. A 

similar situation occurs in fruit flies. Male fruit flies are XY, but the Y does not have any 

sex-determining genes on it. Instead, sex is determined by the number of X chromosomes 

compared to the number of sets of autosomes (Suzuki, 2010). An XX fly with two sets of 

autosomes would be female. An XY fly with two sets of autosomes would be male.  

 

Bees and wasps have no sex chromosomes at all (Robinson, 2005). Instead, they reproduce 

by haplodiploidy. How gender is determined under haplodiploidy in the absence of 

heteromorphic sex chromosomes is still an unanswered question although much progress 

has been made in recent years. Under haplodiploidy, males and females differ in ploidy 

level; females are diploid and develop from fertilized eggs, whereas males are haploid and 

develop parthenogenetically from unfertilized eggs. This mode of reproduction occurs in 

several invertebrate groups including pinworms, mites, thrips, and beetles, but occurs 

http://www.todayinsci.com)/
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ubiquitously only in the hymenopteran insects (ants, bees, wasps and sawflies). Almost all 

knowledge about the genetics of sex determination in haplodiploid systems has been 

obtained from this group of insects, of which the honeybee, Apis mellifera, and the jewel 

wasp Nasonia vitripennis, have been investigated most intensively (Beukeboom and Van 

de Zande, 2010). Recently, the complete genome sequences of these two species have been 

published (The Honeybee Genome Sequencing Consortium 2006; Werren et al., 2010), 

increasing their worth as hymenopteran model organisms. For a long time it has been 

known that multiple different sex-determining mechanisms exist within the Hymenoptera. 

Whiting (1933) was the first to show that sex determination in the wasp Bracon depends 

on the allelic state of a single locus. This mode of sex determination is called 

complementary sex determination (CSD). According to this model, if an individual is 

heterozygous for a certain locus, it develops into a female, whereas hemizygous and 

homozygous individuals develop into males. Since hymenopteran mother and sons share 

the same genes they are especially sensitive to inbreeding which may cause reduction in 

the number of different sex alleles present in a population, hence increasing the occurrence 

of diploid males (but infertile). This model of sex determination has now been reported for 

over 60 hymenopteran species (VanWilgenburg et al., 2006), including the honeybee.  

 

The species of the insect order Lepidoptera (moths and butterflies) and their closest 

relatives, Trichoptera (caddis flies), share a female-heterogametic sex chromosome system. 

Originally a Z/ZZ (female/male) system, it evolved by chromosome rearrangement to a 

WZ/ZZ (female/male) system in the most species-rich branch of Lepidoptera. Further 

sporadic rearrangements created multi-sex chromosome systems; sporadic losses of the W 

changed the system formally back to Z/ZZ in some species. Primary sex determination 

http://en.wikipedia.org/wiki/Heterozygous
http://en.wikipedia.org/wiki/Locus
http://en.wikipedia.org/wiki/Hemizygous
http://en.wikipedia.org/wiki/Homozygous
http://en.wikipedia.org/wiki/Inbreeding
http://en.wikipedia.org/wiki/Allele
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depends on a Z-counting mechanism in Z/ZZ species, but on a female-determining gene, 

Fem, in the W chromosome of the silkworm (Traut et al., 2007).  

Study of the sex chromosomes of the  Drosophila melanogaster (fruit fly)  has played an 

important role in our understanding of heredity. Sex is primarily determined by the X: A 

ratio in this species (Cline and Meyer, 1996) and is independent of the Y chromosome. 

Conventionally, it is thought that the ratio of the number of X chromosomes to autosomes 

(X: A) constitutes the signal to determine the sex because XX: AA are females, X: AA are 

males and triploid flies bearing two X chromosomes and three sets of autosomes (XX: 

AAA) are intersexual. Under this model, the X: A signal is defined as the balance between 

a set of X-linked “numerator” proteins that promote female development and autosomally 

encoded “denominator” proteins that counteract the numerator elements. Erickson and 

Quintero (2007) claimed that although the X: A signal is a textbook standard, only one 

strong denominator element exists, and it cannot account for the effects of altered 

chromosome number (ploidy) on sex. To understand how X and autosome doses influence 

sex, they examined haploids (1X; 1A) and triploids during the brief embryonic period 

when sex is determined and found that ploidy affects sex indirectly by increasing in 

haploids, or decreasing in triploids, the number of embryonic cell cycles in which 

chromosomal sex is assessed. Their findings indicate that the fly sex-determination signal 

is more accurately viewed as a function of the number of X chromosomes rather than as a 

value of the X: A ratio. 

Though the primary signal for sex determination seems quite variable among different 

insects, lower down the cascade there are some conserved genes or functions. These 

include the transformer (tra) and doublesex (dsx) genes (Dafa’alla et al., 2010).  Both of 
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these genes were first identified in Drosophila melanogaster in classical genetic screens, 

loss-of-function mutants showing abnormalities in sexual differentiation (Baker and Ridge, 

1980). The sex-specific alternative splicing of tra is regulated by Sex-lethal (Sxl). tra in 

turn regulates the sex specific alternative splicing of dsx. Sxl has therefore been described 

as the ‘master switch’ for sex determination in Drosophila. Homologues of Sxl have been 

identified in different groups of insects including other dipterans (Saccone et al., 1998; 

Lagos et al., 2005) and lepidopterans (Niimi et al., 2006), hymenopterans and coleopterans 

(Traut et al., 2006). However, the sex determination role of Sxl does not seem to be 

conserved or ancestral, rather it appears to be a recently acquired novel function restricted 

to a rather small group of insects (Dafa’alla et al., 2010). 

 
 
1.4.4 Sex determination in fish with particular emphasis on tilapia  
 

Reproductive mechanisms in fish are highly variable (Devlin and Nagahama, 2002). Most 

fish reproduce sexually. However a few have an asexual method of reproduction, for 

example, sailfin molly (Poecilia formosa), consists of all-female gynogens and to initiate 

embryogenesis, mating with a male (who does not contribute genetic material) from a 

related species (P. latipinna) is necessary (Schlupp and Ryan, 1996). Some fish are 

protandrous hermaphrodites, which change sex from male to female, for example, Asian 

sea bass, Lates calcarifer (Guiguen et al., 1993) and some are protogynous  which change 

sex from female to male, for example, bluehead wrasse Thalassoma bifasciatum (Kramer 

and Imbriano, 1997).  

Among gonochoristic fish species, both genetic and environmental mechanisms of sex 

determination are at work. Genetic sex is determined on the basis of inheritance of major 

sex factors (including chromosomal systems) and/or minor sex factors (polyfactorial with 
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no differentiated sex chromosomes). Chromosomal sex determination systems are 

classified into XX-XY (male heterogamety, for example in Oncorhynchus mykiss, 

Thorgaard, 1977; Cyprinus carpio, Nagy et al., 1981), WZ-ZZ (female heterogamety, for 

example in Aulopus japonicas with highly differentiated sex chromosomes: Ota et al., 

2003;  Oreochromis aureus: Guerrero, 1975, Campos-Ramos et al., 2001; two unlinked 

loci predicted by major WZ-ZZ and secondary XX-XY and have also been postulated to 

work in this species, Lee et al., 2004), multiple sex chromosomes (X1X1X2X2-X1X2Y in 

Eigenmannia sp and XX-X1X2Y in Hoplias sp for examples; Almeida Toledo and Foresti, 

2001) and multifactorial systems (e.g., in Xiphophorus maculatus, male is XY or YY and 

female is XX, WX or WY; Kallman, 1984). In addition to major sex determination loci, 

other sex determining genes may influence the sex determination in some fish species such 

as blue poecilia (Kosswig, 1964) and X. helleri (Kallman, 1984).  

Direct chromosome staining can be useful for detecting morphologically differentiated sex 

chromosomes in a few species (e.g., lake trout, Salvelinus sp: Reed et al., 1995). In 

Leporinus and Clarias sp, they have been used to identify female heterogamety (WZ-ZZ 

system; Pandey and Lakra, 1997). Most often the chromosomes are not morphologically 

differentiated and cannot be identified by chromosome staining techniques. In such cases, 

it requires other techniques (or combination of techniques) to analyse the system. For 

example, in salmonids and channel catfish, the evidence of female homogamety was 

revealed by hormonal sex reversal and progeny testing (Johnstone et al., 1978; Davis et al., 

1990). Other genome manipulation techniques, for example chromosome set 

manipulations, have also been used (e.g., in Cyprinus carpio, Komen et al., 1991). 

Difficulty in sex chromosome identification has also led researchers to put considerable 



                                                        General Introduction                                             Chapter 1 
 

M G Q Khan                                                         Institute of Aquaculture Page 27 
 

effort to produce Y-specific probes, e. g., for several species of Oncorhynchus (Devlin et 

al., 1994; Donaldson and Devlin, 1996; Nakayama et al., 1998).  

 

Environmental sex determination mechanisms, principally involving temperature, have 

been suggested for a range of fish. The first evidence of temperature dependent sex 

determination (TSD) was found in the atherinid Atlantic silverside, Menidia menidia 

(Conover and Kynard, 1981), where higher temperatures during a thermosensitive period 

during larval development result in a higher incidence of males. Sea lampreys, Petromyzon 

marinus (Beamish, 1993), American eels, Anguilla rostrara (Krueger and Oliveira, 1999), 

Odontesthes bonariensis (Strussman et al., 1997), sockeye salmon, Oncorhynchus nerka 

(Craig et al., 1996), channel catfish, Ictalurus punctatus (Patino et al., 1996) and seabass, 

Dicentrarchus labrax (Blazquez et al., 1998) are some more examples (out of around 60 

species) of fish with TSD.  Three major types of reaction norms have been postulated 

concerning the response of sex ratios to temperature (Reviewed by Penman and Piferrer, 

2008): I) the number of males increases with temperature, II) the number of males 

decreases with temperature, and III) the number of males is higher at extreme (high and 

low) temperatures. The temperature or other environmental factors can affect (overlay or 

modify) sex ratios depending on the genetic background (Conover et al., 1992; Strüssman 

et al., 1997; Abucay et al., 1999). But measurement of the interactions between genotypic 

and environment factors is a complex trait since different populations and strains may 

exhibit different degrees of interactions depending on the genetic constitution and the 

relative strength of the sex factors (Mylonas et al., 2005). Other environmental factors, for 

example, pH can affect the sex ratios in the genus Apistogramma (Römer and Beisenherz, 

1996) that may use changes in water pH brought by periodic precipitation as an 

environmental cue to determine sex. 
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The use of genetic markers to identify sex is relatively new but is now a widely used 

approach. Various methods, e.g., RAPD (Random Amplification of Polymorphic DNA), 

AFLP (Amplified Fragment Length Polymorphism), VNTR (Variable Number Tandem 

Repeats) can be applied to identify sex-linked or sex-specific molecular markers in species 

with well established genetic sex determination such as in salmonids (Devlin et al., 2001), 

in three spine stickleback (Griffiths et al., 2000), in platyfish (Coughlan et al., 1999; Nanda 

et al., 2000) and also in some catfishes (Galbusera et al., 2000). The use of molecular 

markers is discussed in more detail (section 1.5) following discussion on tilapia sex 

determination systems.   

 

Tilapia have been the focus of considerable biological research with genetics receiving 

much emphasis (Mair et al., 1997). The success of producing genetically monosex tilapia 

(as opposed to sex reversed tilapia production, SRT) progeny for commercial ventures 

depends on an understanding of the sex determining mechanism and application of this 

knowledge to precisely manipulate the genetics. The knowledge of the precise action of 

genetic influences (as well as other factors) on sex determination is likely to facilitate 

genetic manipulation in a proper and a predictable way that would allow monosex 

production of this species.   

 

The system of sex determination has been analyzed using a variety of procedures for many 

species without differentiated sex chromosomes and where no appropriate markers existed. 

Analysing phenotypic sex ratios among fish produced by hybridisation, chromosome set 

manipulations and progeny testing of sex-reversed individuals has allowed identification of 

the basic genetic sex determining systems, XX-XY or WZ-ZZ (Reviewed by Penman and 

Piferrer, 2008). However, the precise mechanism of determining the sex in tilapia, 
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particularly in Nile tilapia, is not well understood. Early hypotheses were based on the sex 

ratios observed in hybrid crosses of different species (Chen, 1969). Later, Avtalion and 

Hammerman, (1978) developed a theory of autosomal influence to explain sex ratios in 

hybrids. Most researchers suggest that Nile tilapia has a predominantly monofactorial 

mechanism of sex determination with heterogametic XY males and homogametic XX 

females (Calhoun and Shelton, 1983; Mair et al., 1991a). However, this theory fails to 

explain some deviations from predicted sex ratios based on studies involving sex reversal 

and chromosome set manipulation (Mair et al., 1997). The existence of an autosomal sex 

modifying locus (with alleles SR and sr) epistatic to the gonosomal locus was hypothesized 

by Hussain et al. (1994).  This hypothesis was developed to explain the occurrence of 

varying proportions of males in heterozygous and homozygous meiotic and mitotic 

gynogenetic progeny (Mair et al., 1991a; Hussain et al., 1994); the autosomal gene induces 

female to male sex reversal when sr is homozygous. However, this hypothesis still fails to 

explain some of the aberrant sex ratios observed in crosses of hormonally sex reversed 

fish. Additional autosomal influences and/or environmental influences have been 

suggested (Mair et al. 1990; Trombka and Avtalion 1993).  

 
Environmental effects on sex differentiation of tilapia have also been demonstrated. 

Baroiller et al. (1995) presented evidence for a temperature effect on sex differentiation. 

They observed significantly higher proportions of males in progeny reared at high 

temperatures (36 °C) in putative all-female progeny from sex reversed neomales (XX) 

crossed with normal females. Abucay et al. (1999) reported the effects of environmental 

conditions during the period of sex differentiation on the sex ratio of the Nile tilapia 

(Oreochromis niloticus). Different sex genotypes were exposed to varying temperatures 

(putative all-female, all-male and all-YY males) and salinities (putative all-female progeny 
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only) for a minimum period of 21 days after first feeding and were on grown prior to 

sexing by gonad squash. The majority of the putative all-female progeny exposed to high 

temperature (36.54±0.39 °C) produced significantly higher percentages of males (up to 

44.23%) compared to controls reared at ambient temperature (27.87±1.40 °C). Similarly, at 

high temperature, some of the all-male and YY male progenies had significantly lower 

percentage of males (up to 73.39%) compared to controls. Sex differentiation in YY males 

appears to be more labile than in normal XY males although this could possibly be 

attributable to different levels of inbreeding. Low temperature (25.78±0.24 °C) and varying 

levels of salinity (11.30 to 26.65 ppt) did not significantly affect sex ratios.  An overall 

theory on how this environmental factor acts is therefore difficult to develop. Thus, 

currently available data indicate that sex determination in O. niloticus, while influenced by 

several factors, is best described as “predominantly monofactorial”, with an underlying 

mechanism of male heterogamety playing the major role (Mair et al., 1997). 

 

Cytogenetics (the branch of biology that deals with heredity and the cellular components, 

particularly chromosomes, associated with heredity) can give some hints to identify the sex 

determining mechanism in some fish. In tilapias, the karyotype analyses (organised profile 

of chromosomes) do not distinguish heterogametic sex chromosomes. When homologous 

chromosomes were observed with electron microscopy and were tightly paired, two 

unpaired regions were observed in the nuclei of female (heterogametic) O. aureus 

(Campos-Ramos et al. 2001). The two regions were on different chromosomes. There were 

no unpaired regions in the male. One of the unpaired regions corresponded to the unpaired 

region in bivalent 1 of male (heterogametic) O. niloticus. However, male Nile tilapia had 

only one such region whereas blue tilapia had two. It appears that O. aureus may have two 
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pairs of sex chromosomes which may contribute to the observed sex ratios, which is also 

supported by the works of Mair et al. (1991b) and Lee et al. (2004). 

 
It seems from the discussion, there are a number of proposed theories on the mechanism of 

tilapia sex determination. However, none describes the mechanism specifically enough to 

account for all the variation observed. The uncertainty in understanding the exact process 

of sex determination mechanism in tilapia resulting from unpredictable sex ratios and other 

variable factors (especially unspecific minor-sex determining factors) raises questions as to 

whether sex inheritance in tilapia is predictable enough for a YY breeding program to be 

practical on the basis of simple Mendelian inheritance. 

 

1.5. Molecular markers in fish sex determination mechanisms 

DNA markers are expressed regions of DNA (genes) or more often some segment of DNA 

with no known coding function but whose pattern of inheritance can be determined (Avise, 

1994). For aquaculture species, three types of polymorphic markers are predominant: 

AFLPs (Amplified Fragment Length Polymorphism), microsatellites and SNPs (Single 

Nucleotide Polymorphism). The value of each type of marker depends on the application 

for which they are intended, their ease and cost of genotyping and their level of 

information content i.e. how many different alleles are present in the population at the 

marker locus and the frequency of these alleles. 

 

AFLPs are the result of PCR amplification of a subset of genomic fragments after the DNA 

has been cut with restriction enzymes and PCR primer binding sites have been ligated to 

the ends. These amplified fragments are then analysed by gel electrophoresis which 
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generates bands to be compared for polymorphisms. As they are dominant markers, it is 

not possible to distinguish between the heterozygote and dominant homozygote. As a 

result their information content is low. Microsatellite markers are generally dinucleotide 

repeats, and the alleles are scored according to the size, in base pairs, of the amplified 

DNA fragments containing the repeated DNA motifs (generally AT or CG). They are often 

highly polymorphic i.e., many alleles in a population and have high information content. 

However, detection of microsatellites is more difficult than detecting AFLPs (locus- 

specific primers are required) and they are more expensive as well to genotype. They may 

also not be present in sufficient density in the genome to be closely linked to genes and can 

affect mapping of genes responsible for important traits in aquaculture production. SNPs 

occur very frequently throughout the genome, approximately 1 every 1000 bases. They are 

not as informative as microsatellites are because they have a maximum of two alleles. 

Generally five SNPs are required to give the same amount of information as a single 

microsatellite (Glaubitz et al., 2003). 

 

Molecular markers can play a vital role to locate master switch genes for sex 

determination. Unlike humans and other mammals where the male-inducing master sex-

determining gene is SRY, no master sex-determination gene has yet been unambiguously 

identified in fish or other non-mammalian vertebrates. However, Matsuda et al. (2002) 

have described an outstanding candidate and subsequent research (for example, transgenic 

researches) has strengthened the evidence for the first master sex-determining gene in fish, 

from medaka, Oryzias latipes. Sex determination in medaka involves male heterogamety. 

Unlike human sex chromosomes, there is no visible cytogenetic difference between X and 

Y in medaka, and X-Y pairing occurs along almost the complete chromosome length. This 

suggests that the male-determining region on the Y chromosome should be relatively small 
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(Matsuda et al., 2002). They restricted this region to 530 kb by positional cloning and 

identified 52 putative genes by sequencing of about 422 kb from this region. Deletion 

analysis of the Y chromosome of an XY congenic female further shortened the region to 

250 kb, containing 27 candidate genes. Only three of these were expressed in embryos; and 

only one gene, called DMY, was expressed exclusively in XY embryos and was present on 

the Y but not on the X chromosome. DMY has also been found in O. curvinotus, the most 

closely related species to medaka (Kondo et al., 2003). Functional evidence of the male 

sex-determining role of DMY in these species has been obtained with loss-of-function and 

gain-of-function studies. Thus, knockdown of DMY results in the initiation of female 

development in genetically male medaka (Paul-Prasanth et al., 2006) whereas transgenic 

DMY induced male development in genetically female medaka (Matsuda et al., 2007). 

However, the presence of some spontaneous XX males that may contain autosomal 

modifiers for sex determination (Nanda et al., 2003) suggests that DMY may not always be 

essential for male development and may be in the process of replacement by another 

master gene derived from one of such autosomal modifiers (Takehana et al., 2007). Such 

modifiers are normally rare, and caused by alleles of autosomal loci which can influence or 

override the master (sex chromosomal) gene(s) (Penman and Piferrer, 2008). In zebra fish 

or in puffer fish, no master gene(s) or sex-linked markers have been identified although 

these are well-studied fish species (Volff, 2005; Charlesworth and Mank, 2010). 

 

Appropriate sex linked and sex specific markers are useful to reduce the time and effort 

involved in progeny testing. For example, identification of XX neomales by the absence of 

a Y-specific DNA marker (Devlin et al., 1994) allows separation of these fish from XY 

males as soon as they are large enough to be tagged. However, it is likely that in most 

cases only a very small proportion of the genome will be sex-specific or tightly sex-linked. 
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Simply screening male and female fish taken at random from species with an unknown or 

poorly characterized sex determination system has a relatively low probability of success 

(e.g., several sturgeon species), which could be due to the size of the genome, the number 

of markers screened and the proportion of the genome (if any) that is sex-specific in the 

species studied (Penman and Piferrer, 2008). Bulked segregant analysis (BSA; separate 

pooling of DNA from males and females) is therefore likely to be more useful (Ezaz et al., 

2004b; Felip et al., 2005) for detecting sex-linked as well as sex-specific markers.  

 

1.6 Genetic mapping in Tilapia 

Since most performance and production traits are controlled by multiple genes and 

therefore inherited as quantitative traits, analysis of their associated quantitative trait loci 

(QTL) is emerging as a very important part of aquaculture genetics/genomics. QTL are 

largely unidentified genes that affect performance traits (such as growth rate and disease 

resistance) that are important to breeders (Liu and Cordes, 2004). Linkage markers for 

unknown single gene traits (e.g., sex) can also be useful for marker-assisted selection and 

positional cloning. 

 

Relative chromosomal positions of QTL in a species genome can be identified in a two-

step process that begins by constructing a genetic linkage map. Genetic linkage maps are 

constructed by assigning (mapping out) polymorphic DNA markers (such as 

microsatellites, SNP, or AFLPs) to chromosome configurations based on their segregation 

relationships. This requires two elements: polymorphic DNA markers and families in 

which these markers segregate. Once a linkage map has been constructed for a given 

species, it can be used in combination with studies of breeding and assessment of 
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quantitative traits to identify markers that are closely associated (linked) to QTL of 

interest, thus allowing the QTL to be positioned on the linkage map. This information can 

then be used in selection within a population to maximize growth, disease resistance, or 

some other desirable trait through marker-assisted selection (MAS). Typically, evenly 

spaced markers covering the entire genome are selected for screening of trait-linked 

markers, and this process is known as a genome scan for QTL. Once the QTL are mapped 

to a chromosomal region, fine mapping can be conducted using polymorphic markers near 

the chromosomal regions containing the QTL. 

 

One of the problems faced by aquaculture is that some of the resources required to locate 

QTL accurately, such as dense linkage maps, are not yet available for many species. Thus 

the limitations for marker assisted selection are the number of genetic markers and QTL 

maps as well as suitable population for QTL detection. Recently, however, information 

from expressed sequence tag (EST) databases has been used to develop molecular markers 

such as microsatellites and single nucleotide polymorphisms (SNPs) (Martinez, 2007). 

Genetic maps are available for some cultured species, for example, tilapia, catfish, tiger 

shrimp, kuruma prawn, Japanese flounder, rainbow trout, carp, sea bass, sea bream and 

Atlantic salmon. However, the density of these genetic maps is very low with the map for 

rainbow trout having the highest density (1359 genetic markers and a sex phenotype: 

Nichols et al., 2003). A second generation map was also developed in rainbow trout 

ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM 

(Kosambi) and having 2.6 cM resolution was constructed (Rexroad III et al., 2008). In 

tilapia, linkage maps have also been produced, using different mapping approaches. The 

microsatellite DNA markers that were developed by Lee and Kocher (1996) were used in 

these studies. 
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First generation maps in tilapia 

The first comprehensive attempt by Kocher et al. (1998) to map the tilapia genome 

documented the segregation of 62 microsatellite and 112 AFLP markers in 41 haploid 

embryos derived from a single O. niloticus female. The map consisted of 30 linkage groups 

spanning 704 cM and an estimated total map length of approximately 1,200 cM. 

McConnell et al. (2000) used 49 offspring of a backcross (male O. niloticus × O. aureus 

that was crossed with O. niloticus female). A partial genetic linkage map was constructed. 

The O. aureus male linkage map comprised 28 markers and 10 linkage groups, covering 

213 cM, and a smaller genetic linkage map of the O. niloticus female comprised nine 

markers and four linkage groups, covering 41 cM.  

 

Second generation map in tilapia 

A second-generation linkage map of tilapia from the F2 progeny of an interspecific cross 

between O. aureus and O. niloticus was constructed following the development of many 

more microsatellite markers. This map contains 525 microsatellite and 21 gene-based 

markers. It spans 1,311 cM, for an average marker spacing of 2.4 cM. The markers are 

linked in 24 linkage groups, 22 large and two small ones (now 22 LGs, Shirak et al., 2006; 

J.F.Baroiller, pers. comn). The linkages and order of markers in this map are largely 

congruent with the previous linkage maps of tilapia (Kocher et al., 1998; Agresti et al., 

2000; McConnell et al., 2000).  

 

This more comprehensive linkage map of the tilapia genome is one of the most extensive 

linkage maps available for fishes. This map was based largely on sequenced microsatellite 

markers that are supposed to be highly polymorphic and therefore informative in most 

crosses. The distribution of recombination along linkage groups can be very different 
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between males and females, suggesting that tilapia have a sex-specific pattern of 

recombination. Although the overall levels of recombination are nearly identical, internal 

linkages are often larger in females, while terminal linkages are larger in males (Lee et al., 

2005). This map provides the infrastructure for systematic genome scans for detection of 

quantitative trait loci (QTL) in tilapias, as already demonstrated in several studies (Lee et 

al., 2003, 2004, 2005; Cnaani et al., 2004, 2008). 

 

Sex-linked markers have been identified based upon the linkage map, in O. niloticus and 

O. aureus (Lee et al., 2003, 2004; Shirak et al., 2006; Cnaani et al., 2008, Baroiller et al., 

2009). Lee et al. (2003) demonstrated that markers in LG1 were tightly linked to sex in 

95% of the individuals from two out of three crosses studied in Nile tilapia (XX/XY) but in 

the third family, markers did not segregate for the same Y-haplotype. Additional sex-

determining factors were hypothesized but BSA did not show any association of markers 

and sex. In O. aureus two unlinked loci were found to interact to determine sex (Lee et al., 

2004). Analysis of epistatic interactions among the loci suggests the action of a dominant 

male repressor (the W haplotype on LG 3) and a dominant male determiner (the Y 

haplotype on LG1). One third of the individuals with the ZZXX genotype under this model 

were female, in contrast to none of the fish with the ZZXY genotype. Two distinct QTL for 

sex determination in tilapias were reported on LG23 in a hybrid cross between O. aureus 

and O.mossambicus (Cnaani et al., 2003, 2004). A variety of sex-determining systems was 

demonstrated for these closely related species. The pattern of epistasis among the alleles of 

the different systems identified on LG1 and LG3 is complex. Cnaani et al. (2008) 

confirmed the complexity of sex determination by DNA marker segregation patterns 

showing variations in both the strain and the species amongst the tilapia group. Segregation 

of sex-linked DNA markers (Lee et al., 2003, 2004; Shirak et al., 2006; Cnaani et al., 
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2008) complies with what has been postulated previously on the existence of a single or a 

multi-allelic major sex determinant as well as an additional epistatic locus (or perhaps 

several loci) presumably autosomal (Hammerman and Avtalion, 1979; Mair et al., 1991a; 

Baroiller et al., 1995, 1996; Mair et al., 1997; Baroiller and D'Cotta, 2001). 

 

1.7 Marker Assisted Selection 

Traits such as growth, disease resistance, fillet quality, feed efficiency and maturation are 

under selection in many aquaculture species. If DNA markers are close to a variable locus 

or QTL, in which one allele has a more favourable effect on a quantitative trait then this 

information can be used more accurately to select broodstock which are genetically 

superior for the quantitative trait. Marker-assisted selection (MAS) or genome-wide 

marker-assisted selection (G-MAS) using linkage disequilibrium within families or across 

populations is not widely used in aquaculture (Martinez, 2007) but their application in 

actual breeding programmes is expected to be a fertile area of research.   

 

To implement marker-assisted selection, phenotypic, pedigree and marker information is 

combined to estimate the breeding values (Fernando and Grossman, 1988). If accuracy of 

predicting breeding values is already high without marker information, the DNA marker 

data will not add much extra accuracy (Goddard and Hayes, 2002). Simulation studies 

investigating the advantage of marker-assisted selection with a trait that is measured on all 

animals prior to selection, growth rate for example, found only marginal gains from 

additional marker data (Lande and Thompson, 1990) whereas for traits such as disease 

resistance or meat quality (e.g., fillet colour in salmon), the gains are much larger. The 
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breeding candidate should be genotyped prior to selection to see if the QTL have large 

effect and to increase the potential breeding value. 

 

Information from flanking markers on each side of the QTL is more accurate unless a 

single marker is very closely linked to the QTL. In practice, using markers which are not 

closely linked to the QTL is difficult because large families are needed to estimate allele 

effects accurately and marker-QTL phase information i.e., which marker allele is 

associated with the favourable QTL allele in each family should be re-estimated (Hayes 

and Andersen, 2005). By contrast, very tightly linked markers are easy to utilize because 

reliability on estimates of the QTL allele effects obtained is higher.  

 

The great advantage of marker-assisted selection is that it is possible to identify breeding 

candidates of high genetic value at an early age. Marker-assisted selection also reduces the 

time and labour effort in progeny testing. In salmon breeding programmes, markers linked 

to the QTL explaining large proportion of genetic variation for fillet colour and disease 

resistance could be available. IPN (infectious pancreatic necrosis) QTL has already been 

used in commercial breeding programmes for salmon in Scotland and Norway (Houston et 

al., 2008).  In tilapia, marker-assisted selection (MAS) is quite new. MAS can be well 

applied to sort out potential Nile tilapia broodstock by early selection before maturity and 

help reduce the time and effort in breeding programmes. However, high-resolution genetic 

map saturated by markers in the vicinity of a target locus (gene) is one of the limitations of 

MAS in this species. The successful implementation of MAS in Nile tilapia would be 

useful to supplement conventional methods of monosex production approach by hormonal 

sex reversal and progeny testing. 

 



                                                        General Introduction                                             Chapter 1 
 

M G Q Khan                                                         Institute of Aquaculture Page 40 
 

1.8 Aims and objectives of the present research 

The present work on inheritance of sex and sex-linked markers in Nile tilapia is focused on 

obtaining better understanding of the complex dynamics of sex determination system in 

this species. Segregations of DNA microsatellite markers from across the genome were 

carefully observed in a variety of crosses to obtain informative sex-linked markers and to 

apply these markers in selecting broodstock for genetically male tilapia production. The 

main objectives of this PhD were:  

 

(1) To validate a clonal line of females of Nile tilapia to be used for sex determination 

studies using molecular markers (mostly microsatellite DNA markers) 

  

(2) To analyse sex determination system in the Stirling population of Nile tilapia using 

molecular markers (mostly microsatellite DNA markers), including attempting to identify 

markers linked to unknown genes (by studying inheritance of markers from genome wide 

selection)  that cause departures from the sex ratios predicted by an XX/XY system 

 

(3) To demonstrate marker-assisted selection to produce progeny with close to 100% 

genetically male offspring 
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1.9 Structure of the present thesis 

 
This research is structured as follows, starting with a general introduction (this Chapter) 

and materials and methods (Chapter 2), followed by three major experimental chapters, 

each of which contains a brief introduction and methodology with details on experimental 

results and discussion. The first experiment, validation of a clonal line as a reference line 

for sex determination studies is described in Chapter 3. Chapter 4 describes sex linkage 

study in three groups/types of families (based on the progeny sex ratios) in the Stirling Nile 

tilapia (Oreochromis niloticus) population involving the validated clonal females crossed 

with putative XY males (type ‘A’), putative YY males (type ‘B’) and ‘unknown’ (type ‘C’) 

groups of males. Screened markers (mostly microsatellite DNA) from LG1 were used to 

observe and confirm the LG1-associated pattern of inheritance of phenotypic sex in type 

‘A’ families. Screened markers from LG1, LG3 and LG23 were used (based on some 

works suggesting the presence of sex determining genes in different tilapia sp.) to 

investigate inheritance of DNA markers in type ‘B’ and type ‘C’ families for association 

with sex using bulked segregant analysis (BSA) of female and male DNA pools, followed 

by further analysis (on DNA from individuals) using informative markers in BSA. This 

Chapter also deals with genome wide scan of selected markers (except markers from LG1, 

LG3 and LG23), approximately evenly spaced from the rest 21 LGs, and study them in 

type ‘B’ families in BSA for any association with sex. Chapter 5 deals with marker-

assisted selection for genetically male tilapia (GMT) production. Finally, a general 

discussion on the experimental outcomes with future implications of this research work is 

given in Chapter 6, followed by literature references and appendices. 
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Chapter 2. General Materials and Methods 
 
2.1 Experimental fish and basic maintenance 

The fish used throughout the study were the Nile tilapia, Oreochromis niloticus (Linnaeus), 

introduced to the University of Stirling in 1979 from Lake Manzala, Egypt. The basic 

maintenance of the experimental stock rigorously followed working procedures under 

ASPA (Animals Scientific Procedures Act, 1986) and monitored by the Home Office in the 

United Kingdom. An accredited training for personnel working under ASPA had to be 

followed and a Personal Licence obtained before carrying out experimental work with fish 

approved by ASPA. 

All experimental fish were maintained in the Tropical Aquarium Facilities (TAF) of the 

Institute of Aquaculture, University of Stirling. Selection of broodstock was done initially 

from the TAF’s broodstock in larger tanks and selected fish were transferred into separate 

tanks with labelling which included project and personal licence number, project holder’s 

name, name of species, tank number, number of fish kept, the category of procedures (to 

be applied), starting date of the experiment and notes on any special requirements for the 

experimental fish in question.  

Individual brood fish were held in the square (with rounded corners) fibreglass tanks 

(generally the males) or in glass aquaria (generally the females). Continuous water flow 

and aeration was in operation in each tank. All tanks were in water recirculating systems 

(Figure 2.1) within a controllable rearing environment and with proper facilities for 

filtering and cleaning the water before recycling back through the fish rearing tanks. New 

water was added to the systems to replace the water used to flush out fish waste materials 

as well as to make up water loss due to evaporation. The water quality parameters, 
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particularly dissolved oxygen, ammonia and nitrate and nitrite contents were checked 

periodically. The standard temperature of the water in the TAF was maintained at 27.5±0.5 

oC.  

 

 

Figure 2.1 Water Recirculatory System in Tropical Aquarium Facilities, with spawning 

circular tanks and glass aquaria (L) and circular and rectangular fibreglass tanks (R). 

 

The main experimental brood stock kept in individual rearing tanks consisted of different 

genotypes: 

i. Clonal line females (XX) (details are discussed in Chapter 3) 

ii. Outbred XX females 

iii. Putative YY females 

iv. Clonal neomales (XX neomales) 

v. Outbred XY males 

vi. Putative YY males  

 

2.2 Fish handling and breeding  

Handling of fish was performed with care. Nets of proper mesh sizes were used to take the 

fish out of tanks and these were held in plastic buckets filled with water from storage tanks 
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(temperature 27.5 oC) before being transferred to the wet laboratory for experimental 

procedures. Nets were soaked in disinfectants (Total Farm Iodophor, Downland marketing 

Ltd, Carlisle; major components phosphoric acid, iodine and non-ionic surfactant) before 

and after use. A solution of 100 ml of Iodophor was used in 40 liters of warm water for this 

purpose. Fish were anesthetised to avoid excessive handling stress prior to tagging, 

breeding or fin biopsy sampling. For this purpose, benzocaine (ethyl-4-aminobenzoate, 

Sigma-Aldrich, UK) solution at a final concentration of 1:10,000 was used. A stock 

solution was first prepared by dissolving benzocaine powder at 10% (w/v) in ethanol. This 

concentration took about 5 minutes to anesthetise the fish. 

 

Females were kept in glass aquaria so that they could be easily observed for signs of 

readiness to spawn. A swollen reddish genital papilla was the main sign of this. Females 

also showed nest building behaviour during the onset of spawning. Handling of such fish 

to breed them always followed sedation as described above. The anesthetic agent is 

absorbed across the gills (and referred to as inhalation anesthesia) resulting in gill and fin 

immobilization and loss of balance.  

 

Stripping was carried out in the wet lab of the TAF. Male fish that were ready to give milt 

were kept in another bucket with aeration and anesthetised if the eggs of the female were 

of good quality (e.g., not under ripe or over ripe, and not whitish in external observation)  

and of sufficient quantity. The anesthetised fish was taken out of the bucket and placed on 

the bench on wet tissue paper. The eggs were released by slight ventral pressure (stripping) 

and kept in a Petri dish partially filled with clean water (temperature 27.5 °C) directly from 

the incubator system where the eggs were to be hatched. The spent fish was immediately 
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transferred to another bucket filled with oxygenated water for recovery. The male fish was 

then placed in anesthetic solution. Meanwhile, the collected eggs were washed several 

times with water to remove any faeces, mucus and scales. The washed eggs were left with 

enough water just to cover the eggs. The milt was collected from anaesthetised selected 

males in glass capillaries (1 mm diameter, Drummond Scientific Co. USA) directly from 

the urogenital pore of the male once the urine was drained, by applying ventral pressure. 

This avoided activation of the sperm. Milt was added to the eggs in a proportion of 

approximately 100μl of milt per 500 eggs and gently stirred for about 1 minute, then left 

standing for another 2-3 minutes to ensure maximum fertilization rate before they were 

transferred into a plastic downwelling incubator in a recirculation system. The spent fish 

were transferred to an aerated bucket filled with water for about 10 minutes for recovery 

and then returned to their original tanks. 

 

Fertilized eggs were washed with clean water and transferred to a series of 750 ml round 

bottomed plastic jars (soft drink bottles) for incubation. These jars were connected to a 

recirculating system where warm water was fed from a 125 litre (L) overhead tank to the 

jars by gravity. The water from the overhead tank first passed through a 30 W UV 

sterilisation unit (flow rate 20 L/min, UV dosage 62,000 µW sec/cm2), then through 20 

mm PVC pipe to the jars. They received water from the PVC pipe flow via Perspex tubing 

connection with the flow in the jars being controlled by small airline taps in such a way 

that the eggs in the jars were kept in gentle motion at all times. UV treatment of the water 

system was done to prevent bacterial infection of the eggs. The wastewater was discharged 

into the bottom settling tank (180 L capacity) via two filters filled with shell unit 

positioned just above the settling tank. The shell filters helped to maintain the pH of the 
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system and act as a surface for bacteria. Fertilized eggs were kept in hatching incubators 

for a total period of 11 days before they were ready to transfer to circular plastic tanks. The 

initial number of eggs was recorded and dead eggs and embryos were removed by 

siphoning during this period.  

 

Fry were transferred into 25 L circular plastic tanks in a recirculation system (except those 

used for sex reversal) immediately after the yolk sac was absorbed (day 12) and reared for 

3 months. The fry density was 60 per tank. Fry for sex reversal experiments (section 2.4) 

were transferred into 10 L rectangular static tanks and kept for three weeks before 

transferring them in 25 L circular plastic tanks. The fish were immersed in an overdose of 

anesthesia (0.05% benzocaine) for about 10 minutes before destruction of the brain and 

being sexed at this age by gonad dissection and examination of a squash preparation 

(Guerrero and Guerrero, 1988). Fish that were kept for further crosses were kept either in 

similar 25 L tanks with densities of 20-25 fish/tank, a range suggested to minimize 

aggression, or in large tanks (2 m diameter). 

 

Every brood fish was tagged by a TROVAN Passive Integrated Transponder (PIT) tag that 

had a unique 10 digit code. The routine technique of anesthesia was followed before 

introducing the tag with the aid of a special wide tip syringe (previously disinfected in 70% 

ethanol) on the lateral-abdominal side of the fish, lifting a scale and making an incision 

under it. The incision was sealed with the same scale and fish was immediately placed into 

clean aerated water until full recovery before return to the original tank or an aquarium to 

rear as broodstock. 
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2.3 Feeding regimes 

Fish of all sizes (from fry to brood) were fed with an appropriate size (designated as no. 3-

5) of commercial trout feed (Trouw Aquaculture Nutrition, UK; manufacturer Skretting, 

Preston, UK; Product code 470405) twice a day. Hatchlings were fed with powdered food 

(0.25-0.50 mm in diameter), prepared by grinding feed size 5 (4 mm diameter) and fed ad 

libitum for the first four to six weeks followed by feeding a mixture of ground food and no. 

3 feed size as the fish grew. Advanced fry and fingerlings weighing between 5 g to 40 g 

received no. 3 size feed twice a day at a rate of approximately 5% of their body weight. 

Fish weighing 40 g to 80 g and >80 g were fed with no. 4 and no. 5 sized feed respectively, 

at a rate of approximately 2% of their body weight per day. 

 

Composition of feed ingredients: 

Wheat, Soybean meal, maize gluten (60%), fish meal, sunflower meal, fish oil, minerals, 

vitamins 

Nutrient compositions: 

Trout food no.3: 8% oil, 5.7% ash, 0.9% phosphorus, 38% protein, 4% fibre, +12000 iu/kg 

Vit.A, +2000 iu/kg Vit.D3, 100 iu/kg Vit.E as alpha tocopherol acetate, antioxidants (BHT, 

butylated hydroxytoluene; BHA, Butylated hydroxyanisole)  

 

Trout food no.4: 18% oil, 9% ash, 1% phosphorus, 54% protein, 1% fibre, +12000 iu/kg 

Vit.A, +2000 iu/kg Vit.D3, 250 iu/kg Vit.E as alpha tocopherol acetate, antioxidants (BHT, 

BHA)  
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Trout Food no.5: 8% oil, 8% ash, 1.2% phosphorus, 40% protein, 2% fibre, 12000 iu/kg 

Vit.A, 2000 iu/kg Vit.D3, 100 iu/kg Vit.E as alpha tocopherol acetate, antioxidants (BHT, 

BHA)  

 
2.4 Steroid food preparation 
 
 
Steroid hormone treatment for masculinisation was performed in clonal female (inbred 

line) to change their sex to ‘neomale’ (phenotypically male, genetically female).To prepare 

100 g of food for masculinisation, the procedure according to Abucay and Mair (1997) was 

carried out with some modifications, as follows: a 3 mg/ml stock solution of 17α-

methyltestosterone (MT) hormone (Cat. No. M7252, SIGMA, UK) was prepared in 

absolute ethanol, then 1 ml of stock solution was diluted in 30 ml absolute ethanol. In a 

fume hood, this diluted solution (the whole 30 ml) was mixed with 100 g ground and 

sieved fish food then dried. The final concentration of the hormone was 30 mg/kg. 

 

Steroid hormone treatment for feminisation was performed in XY and YY males to change 

their sex to ‘neofemale’ (phenotypically female, genetically male). To prepare 100 g of 

food for feminisation, 100 mg of diethylstilbestrol (DES) hormone (Cat. No. D4628, 

SIGMA, UK) was dissolved in 30 ml absolute ethanol. This stock solution was mixed with 

100 g ground and sieved fish food by gently pouring the stock solution onto the food and 

stirring with a spatula to homogenise the sample. The final concentration of hormone in the 

food was 1g/kg.  

The treated food was allowed to dry before being packed into individual sealed plastic 

bags, stored at 4°C and protected from direct light. Treated food was kept for a maximum 

of three months. 
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2.5 DNA extraction and quantification 

2.5.1 Collection of tissue 

Tissues from dorsal or anal fin were collected from live (broodstock) or dead (gonad-

squashed offspring) fish and preserved in 95% ethanol in 1.5 ml Eppendorf tubes. The date 

of collection of tissue, PIT tag number, cross details and sample number were recorded. 

The same information as a laser printed label were also kept in every Eppendorf, immersed 

in ethanol with the finclips.  

 
2.5.2 DNA extraction   

Three extraction techniques were used: 

i. Phenol-chloroform protocol (Taggart et al., 1992)  

ii.  REAL DNA extraction protocol (Purification kit by REAL laboratories, Spain) 

iii. HotSHOT genomic DNA preparation 

The first method is the standard and preferred way to extract high quality and reliable 

quantity of DNA. However, as the protocol was time-consuming and dealt with highly 

toxic phenol, this method was replaced with the other two as the number of samples 

increased. 

The second technique of DNA extraction was easier compared to the phenol-chloroform 

method and could be used in tube or plate extraction method. The quality of DNA was 

good and the quantity was sufficient enough for the PCR analyses required, giving 

consistent results and allowing an efficient extraction of more samples per unit time (200 

to 250 samples with one kit). This method was used extensively throughout the research 

work. 



                                                General materials and methods                                     Chapter 2 
 

M G Q Khan                                                           Institute of Aquaculture Page 50 
 

The third method of extraction was the quickest method of DNA extraction but the quality 

of DNA was not always good and too much starting tissue inhibited PCR reactions.  This 

protocol yields relatively short DNA fragments but can work for PCR. This method was 

used during the later stages when time was a more limiting factor. These three methods of 

DNA extraction are described in detail below: 

2.5.2.1 Phenol-chloroform extraction method  

The tissue samples (approximately 50 mg) were placed in individual nucleic acid free 1.5 

ml microcentrifuge tubes containing 340 μl of 0.2M EDTA (Ethylenediaminetetraacetic 

acid) solution (pH 8.0) with 0.5% SDS (Sodium lauroylsarcosine, Sigma). Ten μl of 20 

mg/ml proteinase K (ABgene) was added to each tube, mixed briefly and the tube was 

incubated overnight at 55 oC in a hybridisation oven (Techne Hybridizer HB-1). During 

incubation, the tubes were tumbled to ensure constant and homogenous mixing. Following 

this step 10 μl of 20 mg/ml DNAse free RNAse (ABgene) was added to each tube, which 

was then shaken vigorously and incubated for 60 min at 37 oC in a hybridization oven. 

About 350-400 μl of buffered phenol (Fisher Scientific) was added to each tube and 

vortexed for 10 seconds. About 350-400 μl of chloroform (Fisher Scientific) was added to 

each tube and shaken vigorously for 10 sec. The tubes were centrifuged at 14,000 rcf for 5 

min to separate the organic and aqueous phases. About 300 μl of the top aqueous layer was 

removed to a clean tube, carefully avoiding proteins at the aqueous: organic interface. 

About 900 μl of chilled 92% ethanol was added to the aqueous solution and mixed by 

vigorous inversion of the tubes 5-6 times to precipitate the DNA. After allowing the 

precipitate to stand for 2-3 min, most of the ethanol was carefully decanted off. One ml of 

70% ethanol was added to wash the DNA pellet, centrifuged at 14,000 rcf for 2 min and 
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again decanted off. Finally the tubes were left in a rotary evaporator (Stuart Scientific) for 

around an hour to allow the ethanol to evaporate completely. The DNA was allowed to 

partially dry for 5-10 min at room temperature before resuspending in 50 μl TE buffer (10 

mM Tris.Cl, 1 mM EDTA; pH 8.0). The DNA was stored at -20 oC in a freezer. 

 

2.5.2.2 REAL DNA extraction protocol 

The reagents were supplied with REAL DNA extraction kit (REAL laboratory, Spain). The 

tissue samples were placed in individual nucleic acid free 1.5 ml microcentrifuge tubes and 

600 μl of lysis solution was added. Three μl of proteinase K was added, mixed with gentle 

vortexing for 1 min and kept in a hybridization oven overnight at 55 oC. Three μl of 

RNAse was added to each tube and gently vortexed for 1-2 min followed by incubation at 

37 oC for 60 min. Samples were brought to room temperature and 360 μl of protein 

precipitation solution was added. Mixing was done by vortexing at high speed for 30 sec 

and then centrifuged at 14,000 rcf for 5-10 minutes. Precipitated protein formed a pellet. 

The supernatant containing the DNA was poured into a fresh microtube containing 300 μl 

of isopropanol and mixed a few times. The DNA pellet should be visible at this stage. The 

tubes were centrifuged at 14,000 rcf for 3 min and supernatant was removed by decanting 

off the tube or by pipetting.  600 μl of 70% ethanol was added, centrifuged at 14,000 rcf 

for 2 min to wash the pellet. Ethanol was removed carefully avoiding touching the pellet 

and the tubes were air-dried by keeping upside down on absorbent paper. Finally 100-250 

μl hydration solution was added and incubated at 65 oC for 1 hr or keeping at room 

temperature overnight for proper dilution of DNA. DNA was stored at -20 oC (in freezer) 

for longer term storage. 
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2.5.2.3 HotSHOT (hot sodium hydroxide and tris) genomic DNA preparation  

Extraction of genomic DNA using HotSHOT (Truett et al., 2000) method is one of the 

quickest methods of DNA extraction. Fin tissue (less than 10 mg) was placed in a 0.65 mL 

tube. 75 μl alkaline lysis reagent (Table 2.1) was added and the sample was heated to 95 ºC 

for 10 minutes to an hour (30 minutes is optimal) in a thermocycler. The solution was 

cooled to 4 ºC (optional) and 75 μl neutralization buffer (Table 2.2) was added. DNA was 

used immediately. 

 

Table 2.1 Preparation of Alkaline Lysis Reagent 

 

Reagent Final Conc. Amount for 200 mL 

NaOH 25 mM 200 mg 

EDTA 0.2 mM 14.88 mg 

Note: Distilled H2O was added to make a final volume of 200 mL.  pH of Alkaline Lysis Reagent 

would be 12. There was no need to adjust the pH of this solution.   

 

 

Table 2.2 Preparation of Neutralization Buffer 

 

Reagent Final Conc. Amount for 200 mL 

Tris-HCl 40 mM 1.3 g 

Note: Distilled H2O was added to make a final volume of 200 mL.  pH of Neutralization 

Buffer will be 5.  There was no need to adjust the pH of this solution.   

 

2.5.3 Genomic DNA quantification 

Genomic DNA was quantified using a Nanodrop (ND-1000) spectrophotometer. DNA 

concentration was standardised to 100 ng/μl by adjusting with molecular grade water. The 
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quality of DNA was measured by OD parameter, OD260/OD280 = 1.8-2.0 being good 

enough for running PCR. 

2.6 Polymerase chain reaction 

Amplification of DNA was performed by Polymerase Chain Reaction (PCR). PCR was 

routinely performed in 0.2 ml well DNAse free plates.   

Both ABgene™ Taq  and KBioscience Taq DNA polymerase kit (UK) were used which  

included 10× Buffer IV (750 mMTris-HCl pH 8.8, 200 mM (NH4)2SO4 and 0.1% (v/v) 

Tween20), 25 mM MgCl2 and 5 U/μl Taq polymerase. Primer sequences were retrieved 

from NCBI database and ordered from MWG (Germany) or Sigma (UK). The stock 

concentration of primers was adjusted to 100 pmol/μl (100 μM) by resuspending in 

molecular grade water. PCR reactions were performed using a fluorescent labeled tailed 

primer method. This approach reduced the cost of purchasing individual fluorescent tagged 

primers for each locus under investigation. The principles of the tailed primer method 

(Raposo, 2001) are briefly described below: 

 

In order for the DNA fragments to be detected by the Beckman-Coulter sequencer, they 

must be labeled with Beckman-Coulter dyes. The simplest way to label the DNA 

fragments is to incorporate the dye into a PCR product using a labeled primer.  A less 

expensive way to label the DNA fragments is using the tailed primer method. 

 

This method employs a two-part primer in which a standard primer sequence or "tail" is 

added to the 5'-end of the primer sequence. The tail sequence usually corresponds to a 

readily available standard primer such as an M13 universal primer. Only one primer used 
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in the PCR reaction needs to have the tail. There are three M13 universal primers labeled 

with the three different Beckman-Coulter dyes (5’Dye-CACGACGTTGTAAAACGAC-

3’). So the tail on the forward or reverse primers should have the same sequence as the 

M13 labeled primers. In the example below, the forward primer is the one that has the M13 

universal tail. 

 

The amplification is performed with three primers; the forward primer with an M13 

universal tail, a reverse primer (non-tailed, not to be confused with the M13 forward or 

reverse primers) and a labeled primer (with a Beckman-Coulter dye). 

 

Initial synthesis of newly formed DNA is primed from M13-tailed primer and the reverse 

primer on the original template DNA. DNA generated in the first round of synthesis 

becomes the template for further amplification with either the forward or reverse primers. 

By the second round of amplification, the product being amplified will have the M13-tail 

sequence incorporated into the PCR product. Hence by the third round, being in 10 fold 

excess, the M13 labeled primer will take the place of the forward primer (the M13-tailed 

primer) to create an amplified product containing the fluorescence dye that can be detected 

by the Beckman-Coulter sequencer (Figure 2.2). 
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Fig. 2.2 Principles of ‘tail’ primer with Beckman-Coulter dyes (after Raposo, 2001) 
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Standard PCR reaction mixtures for amplification of DNA are given in Table 2.3. 

 
Table 2.3 Calculated PCR recipe for 20 μl and 15 μl reaction mixture  
 
 
Stock solution and 

components 

Per reaction For 20 μl Mastermix For 15 μl Mastermix 

10X Reaction buffer 1X 2 μl 1.5 μl 

25 mM MgCl2 1.5 mM  1.2 μl 0.9 μl 

2 mM stock dNTPs 0.2 mM 2.0 μl 1.5 μl 

10μM (10 pmol/μl)  

 Labeled primer 

 0.3  μM 

 

0.6  μl 0.45 μl 

10μM (10 pmol/ μl)  

 FW/RV primer 

0.3  μM 

 

0.6  μl 0.45 μl 

5 μM Tailed primer  0.02μM 0.08 μl 0.06 μl 

5 U/ μl Taq 

polymerase 

0.05U/μl 

 

0.2 μl 

 

0.15 μl 

H20 - 12.32 μl 8.99 μl 

DNA  0.05μg to 1  μg  1   μl 1   μl 

 

The thermocylcer conditions varied for different fluorescent primers in polymerase chain 

reaction. A general amplification condition in tail primer method was: 

 
Table 2.4 Thermocycler conditions for PCR  
 
Step Temperature Duration Cycles 

Initial activation  

(with KBioscience Taq) 

95 ºC 14 min - 

Denaturation 95 ºC 1 min  

40 Annealing 57 ºC/58 ºC/60 ºC 1 min 

Extension 72 ºC 1 min 

Final extension 72 ºC 30 min - 
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2.7 Genotyping  

The labeled PCR fragments were genotyped using the CEQ 8800 capillary sequencer to 

observe the specific allele makeup of the individuals with reference to a specific character 

(i.e., sex) under consideration. For each capillary run, 0.9 μl product of single PCR 

reaction was added into a 96 well sequencer plate (Beckman Coulter®,USA) containing 30 

μl SLS (Sample Loading Solution) and 0.25 μl DNA Size Standard kit-400 (SS400, 

Beckman Coulter®,USA) containing fragments labeled with D1-red dye. One drop of 

mineral oil was added on the top of each sample. An electrophoresis buffer tray, 96 well 

plate with flat bottom (Beckman Coulter®, USA), was prepared. Each row of 8 samples 

ran for 45 min using Beckman Frag-3 genotyping method. 

2.8 Statistical analyses 

Genotype data were generated automatically by the sequencer, and analysed later with the 

same Beckman-Coulter software (Fragment analysis module) which identified and 

quantified the detected allelic fragment. All genotype results were transferred to Excel 

spreadsheets and linkage analysis (wherever necessary) was performed using CRI-MAP 

(version 2.4). The significance of linkage between markers was hypothesized from LOD 

scores (significant LOD value >3.00) from two-point analyses in CRI-MAP. QTL Express 

was used to locate quantitative trait locus. Test of association (between markers and QTL) 

was done mainly by chi-square at its 0.05 level. Correlation studies (e.g., sex ratios from 

clonal and outbred females) were done using SPSS version 17. 

http://en.wikipedia.org/wiki/Allele
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Chapter 3  

Validation of a clonal line of females as a reference line for sex determination studies 
 
3.1 Introduction 

Clonal individuals play a significant and expanding role in many scientific disciplines, 

including biomedicine, genomics, toxicology, immunology and evolutionary biology 

(Trevarrow and Robinson, 2004). They are central to much basic research and have 

promising applications in medicine, industry and conservation. Reliable cloning can be 

used to make farming more productive by replicating the best animals.  It can make 

medical testing more accurate by providing test subjects that all react the same way to the 

same drug.  It can allow mass production of genetically altered animals, plants and 

bacteria.  It may replicate exceptional animals like rescue dogs. It may settle once and for 

all what part of personality is dependent on genetics and what part on environment.  In 

short, it can be beneficial to almost every area of biological science.  

 

The term “clones” refers to identical copies of genetic material, cells or whole organisms. 

Mitotically produced cells are genetically identical, and thus all the somatic cells of an 

individual are technically a clone. Monozygotic twins are clones, because they have 

identical DNA.  Protozoa and bacteria can reproduce asexually by binary fission, a process 

in which a single-celled organism undergoes cell division (Nill, 2002) and results in two 

cells with identical genetic composition. Many plants reproduce asexually via a process 

known as apomixis. Some multicellular animals can also reproduce asexually by budding 

or binary fission (e.g., polyp separates into two halves in some species of sea anemone 

Anthopleura elegantissima) resulting in exact clones (Geller et al., 2005). However, the 

ability to intentionally create a clone in the animal kingdom involving complex laboratory 

http://science.jrank.org/pages/1725/Conservation.html
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techniques on the cellular level is a relatively recent scientific advancement that is at the 

forefront of modern biology.   

 

The first deliberate cloned animal was created by Hans Dreisch in the 1894 (Gould, 2007).  

Dreich's original goal was to prove that genetic material is not lost during cell division.  

Dreich's experiments involved sea urchins, which he picked because they have large 

embryo cells, and grow independently of their mothers.  Dreich took a 2-celled embryo of 

a sea urchin and shook it in a beaker full of sea water until the two cells separated.  Each 

grew independently, and formed a separate, whole sea urchin. In 1902, Hans Spemann, an 

embryologist, used a hair from his infant son as a knife to separate a 2-celled embryo of a 

salamander, which also grows externally.  He later separated a single cell from a 16-celled 

embryo.  In these experiments, both the large and the small embryos developed into 

identical adult salamanders (Gould, 2007). Major advances in cloning came in November 

of 1951, when a team of scientists in Philadelphia cloned a frog embryo by taking the 

nucleus out of a frog embryo cell and used it to replace the nucleus of an unfertilized frog 

egg cell.  Once the egg cell detected that it had a full set of chromosomes, it began to 

divide and grow (Briggs and King, 1952).  This nuclear transfer technology was later used 

to produce clone of the sheep, Dolly in 1996 followed by other mammals, e.g., cows, 

goats, horses, mules, pigs, rabbits, rats, mice, cats, and dogs (King et al., 2006), and 

essentially are outbred clonal individuals.  

 

The recent scientific developments of cloning broadly cover three main methods: i) 

artificial embryo twinning, ii) somatic cell nuclear transfer (and microinjection), and iii) 

induced parthenogenesis.  

 

http://science.jrank.org/pages/1521/Clone-Cloning.html�
http://science.jrank.org/pages/1521/Clone-Cloning.html
http://science.jrank.org/pages/885/Biology.html
http://library.thinkquest.org/20830/Frameless/Manipulating/Experimentation/Textbook/Glossary/main.htm#Embryo
http://library.thinkquest.org/20830/Frameless/Manipulating/Textbook/Glossary/main.htm#Nucleus
http://library.thinkquest.org/20830/Frameless/Manipulating/Textbook/Glossary/main.htm#Egg Cell
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Artificial embryo twinning mimics the natural process of creating identical twins. In 

nature, twins occur just after fertilization of an egg cell by a sperm cell. In rare cases, when 

the resulting fertilized egg, called a zygote, tries to divide into a two-celled embryo, the 

two cells separate. Each cell continues dividing on its own, ultimately developing into a 

separate individual within the mother. Since the two cells came from the same zygote, the 

resulting individuals are genetically identical. Artificial embryo twinning uses the same 

approach, but it occurs in a Petri dish (or any external media) instead of in the mother's 

body (http://learn.genetics.utah.edu). This is accomplished by manually separating a very 

early embryo into individual cells, and then allowing each cell to divide and develop on its 

own. The resulting embryos are placed into a surrogate mother, where they are carried to 

term and delivered. Again, since all the embryos came from the same zygote, they are 

genetically identical. The born animal is a clone of its brothers and sisters. 

 

Somatic cell nuclear transfer (SCNT) uses a different approach than artificial embryo 

twinning, but it produces the same result: an exact clone, or genetic copy, of an individual. 

This was the method used to create Dolly the Sheep (Campbell et al., 1996). To make 

Dolly, researchers isolated a somatic cell from an adult female sheep. Next, they 

transferred the nucleus from that cell to an egg cell from which the nucleus had been 

removed. After a couple of chemical tweaks, the egg cell, with its new nucleus, was 

behaving just like a freshly fertilized zygote. It developed into an embryo, which was 

implanted into a surrogate mother and carried to term. The microinjection technique, also 

said to be a subset of nuclear transfer (fusion), uses only the adult cell nucleus to fuse with 

an egg cell rather than fusing entire adult animal cell. In nuclear transfer, the born animal is 

a clone of its parent. 
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Parthenogenesis (from the Greek, parthenos, "virgin", genesis, "birth": Liddel and Robert, 

1940) is a form of mode of reproduction by which offspring arise from a single parent and 

does not involve meiosis, ploidy reduction, or fertilization. Parthenogenesis occurs 

naturally in certain invertebrates (e.g., water fleas, aphids, nematodes, some bees, some 

scorpion species, and parasitic wasps) and in some vertebrates, particularly in some reptiles 

and fish (Watts et al., 2006), and also has been recorded occasionally in mammals, 

including humans (Kono et al., 2004). The ‘virgin birth’ is also a religious tenet of 

Christianity and Islam (for the believers), which hold that Mary miraculously conceived 

Jesus (pbuh) while remaining a virgin (Gospels of Matthew and Luke; Quran, 3:47, 3:59, 

66:12).  

Induced parthenogenesis is artificially performed ‘natural parthenogenesis’ where 

offspring inherit the genes of a single parent only. Normal egg cells form after meiosis and 

are haploid, with half as many chromosomes as their mother's body cells. Haploid 

individuals, however, are usually non-viable, and parthenogenetic offspring usually have 

the diploid chromosome number. If the chromosome number of the haploid egg cell is 

doubled during development, the offspring is "half a clone" of its mother. If the egg cell 

was formed without meiosis, it is a full clone of its mother.  

Fish species that have external fertilization can be reproduced (cloned) by induced 

parthenogenesis, e.g., gynogenesis or androgenesis (techniques reviewed by Dunham 

2004; Komen and Thorgaard, 2007) that may result in clonal individuals or novel 

genotypes (such as YY males or WW females). The nuclear content of either the sperm or 

egg is destroyed by UV or gamma irradiation, and the treated gamete then is fused with an 

untreated egg or sperm to form a haploid embryo. The haploid embryo, which is a good 

http://en.wikipedia.org/wiki/Meiosis
http://en.wikipedia.org/wiki/Ploidy
http://en.wikipedia.org/wiki/Fertilization
http://en.wikipedia.org/wiki/Water_flea
http://en.wikipedia.org/wiki/Aphid
http://en.wikipedia.org/wiki/Nematodes
http://en.wikipedia.org/wiki/Bee
http://en.wikipedia.org/wiki/Scorpion
http://en.wikipedia.org/wiki/Parasitic_wasp
http://en.wikipedia.org/wiki/Vertebrate
http://en.wikipedia.org/wiki/Reptile
http://en.wikipedia.org/wiki/Fish
http://www.worldlingo.com/ma/enwiki/en/Mary_(mother_of_Jesus)
http://www.worldlingo.com/ma/enwiki/en/Jesus
http://www.worldlingo.com/ma/enwiki/en/Virginity
http://en.wikipedia.org/wiki/Meiosis
http://en.wikipedia.org/wiki/Haploid
http://en.wikipedia.org/wiki/Diploid
http://en.wikipedia.org/wiki/Cloning
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resource for gene-mapping (being equivalent to large single gametes that contain enough 

DNA for gene-mapping purposes; Kocher et al., 1998), will continue to develop but will 

normally die before hatching. However, it is possible to make the embryo diploid by 

inhibition of the second meiotic division (in gynogenesis) or first mitotic division; such 

individuals retain a duplicated set of chromosomes from the untreated gamete. Eggs 

fertilised by UV treated milt can become meiotic gynogenetic offspring by shocks that 

interfere with the second meiotic division, causing the retention of the second polar body. 

In terms of homozygosity, meiotic gynogenetic offspring are on average homozygous at 

50% of the loci that were heterozygous in the mother because they retain a pair of sister 

chromatids, which undergo recombination (Purdom, 1969; Nace et al., 1970; Allendorf and 

Leary, 1984; Hussain et al., 1994). If the shock is delayed to suppress the first mitotic 

division (in mitotic gynogenesis or androgenesis) then two haploid copies of the maternal 

or paternal chromosomes respectively are retained to produce a mitotic gynogenetic 

offspring (also known as double haploid or dihaploid offspring). These offspring carry 

only the duplicated set of chromosomes and are, by definition, fully homozygous 

individuals.   

Several authors have pointed out that the timing of the temperature or pressure shock 

should coincide with the prophase of the first mitotic division (Nagoya et al., 1990; Komen 

et al., 1991). However, embryonic development is probably highly asynchronous, as 

evidenced by the fact that the optimal “window” for heat or pressure shocks can be several 

minutes (Komen and Thorgaard, 2007). In common carp and zebrafish, a comparison has 

been made between window length and yields obtained when embryos were shocked 

immediately after fertilisation (when all eggs are in prophase of the second meiotic 

division) and those of embryos shocked to inhibit the first mitosis. In the first case, the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib108
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib84
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib84
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window was only 1-2 min and the yields could be as high as 50%. In the second case, the 

optimal window was 6-8 min, and the yield was correspondingly lower (Komen et al., 

1991; Hörstgen-Schwark, 1993). However, there is no reduction in the length of the 

optimum window when comparing genetically uniform F1 hybrids with outbred female 

common carp. 

The dihaploids (mitotic gynogenetics or androgenetics) are homozygous at all loci but 

different individuals in the same family will be fixed for different alleles at any given locus 

depending on the recombinant event that generated that gamete. These dihaploid 

individuals from either a gynogenetic or androgenetic background can be used to generate 

clonal or isogenic lines as all gametes produced by such an individual will be identical, 

even after recombination. When these gametes are used in a second round of induced 

parthenogenesis, all of the offspring will be identical and clonal. Mitotic or meiotic 

gynogenesis, or androgenesis may be used in this second round (Hussain et al., 1998) to 

advance the line. It is therefore possible to generate clonal lines in as little as two 

generations for any particular species or strain of fish. However, it may be easier to 

hormonally sex reverse a proportion of the fish within a line to obtain both sexes (second 

generation or later), which then allows the line to be propagated by simple crosses. 

Additionally, it is possible to produce genetically uniform but non-inbred groups of fish by 

crossing between clonal lines which are referred to as outbred clones (Sarder et al., 1999). 

Gynogenetic and androgenetic double haploids have been produced in at least 24 fish 

species (12 species of Cyprinidae, 3 species of Salmonidae, 3 marine species and 6 other 

fresh water species, reviewed by Komen and Thorgaard, 2007). Fully inbred clonal lines 

have been successfully produced in nine of these species by gynogenesis and four by 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib84
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib84
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib68
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androgenesis. Table 3.1 presents the species for which homozygous clones and/or F1 

hybrids have been produced using gynogenesis or androgenesis. 

Table 3.1 Species for which homozygous clones have been produced using gynogenesis 

(G) and androgenesis (A) (after Komen and Thorgaard, 2007) 

Common 
name 

Species name G/A Clone F1 
hybrid 

Reference 

Zebrafish Brachydanio rerio G + + Streisinger et al. (1981) 

Medaka Oryzias latipes G + + Naruse et al. (1985) 

Common 
carp 

Cyprinus carpio G + + Komen et al. (1991) 

A + + Bongers et al. (1997) 
G + + Ben-Dom et al. (2001) 

Nile tilapia Oreochromis 
niloticus 

G + + Müller-Belecke and Hörstgen-
Schwark (1995) 

G + + Hussain et al. (1998) 

A + + Sarder et al. (1999) 
Amago 
salmon 

Oncorhynchus 
rhodorus 

G + + Kobayashi et al. (1994) 

A + - Nagoya et al. (1996) 
Ayu Plecoglossus altivelis G + + Han et al. (1991) 

G + + Takagi et al. (1995) 

Rainbow 
trout 

Oncorhynchus 
mykiss 

G + + Quillet (1994) 

A + + Young et al. (1995) 
Hirame Paralichthys 

olivaceus 
G + + Hara et al. (1993) 

Red 
seabream 

Pagrus major G + + Kato et al. (2002) 

 

In Nile tilapia, completely homozygous gynogenetic individuals have been produced by 

using irradiated sperm and interfering with the first mitotic division using late heat shock 

(at temperature 42- 42.5 oC) starting at 27-29 minutes after fertilization.  Müller-Belecke 

and Hörstgen-Schwark (1995) produced first-generation clonal fish from mitotic 

gynogenetic females in O. niloticus. Hussain et al. (1998) produced first-generation clonal 

O. niloticus and an outbred clonal group by crossing between a mitotic gynogenetic female 

and a mitotic gynogenetic male in the Stirling Nile tilapia population. Since then, clonal 

lines of females have been produced by i) either mitotic gynogenesis or meiotic 

gynogenesis from mitogyne individuals (clone founders homozygous females) and by ii) 

hormonally sex reversing a proportion of the fish within a line to obtain both sexes, and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib149
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib114
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib84
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib10
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib105
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib105
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib69
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib82
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib65
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib154
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib132
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib67
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crossing them to produce and advance homozygous line at the Tropical Aquarium 

Facilities (TAF), Institute of Aquaculture, Stirling. A schematic diagram of production of 

gynogenetic clonal line is presented in Figure 3.1. The clonal line used in the present 

experiments is one of the lines produced by Ezaz et al. (2004b). 

Figure 3.1 Production of gynogenetic clonal lines in Oreochromis niloticus 

Mitotic gynogenetic 
females (homozygous)

Outbred XX female

MITOTIC GYNOGENESIS

MEIOTIC   GYNOGENESIS

MT

males females
Fully inbred 
clonal line

NORMAL   CROSS

MT = masculinization by treatment with 17α-methyltestosterone (D. J. Penman, pers.com)

 

In fisheries and aquaculture research, such clonal fish present tremendous potential. 

Genetic uniformity allows for comparisons of the same genotype over time and under 

different ambient conditions. This allows estimation of genetic correlations and detection 

of genotype-by-environment interactions and phenotypic plasticity for complex traits such 
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as sex and gonadal differentiation, stress response, and disease resistance (Bongers et al., 

1998). Production of uniform, homozygous experimental material is particularly 

advantageous for many genetic mapping and genome sequencing studies in which 

interpretations are facilitated by homozygosity. Large-scale BAC (bacterial artificial 

chromosome) fingerprinting and sequencing can benefit when variation due to allelic 

heterozygosity is eliminated by using homozygous clonal material (Wayne and McIntyre, 

2002). The current sequencing of the Nile tilapia and Atlantic salmon genomes is based on 

the clonal line and mitogynes respectively (Liu, 2007). Another promising avenue of 

research lies in the development of lines for studying physiological effects of 

mitochondrial variation. When androgenesis is utilized, there is the potential to produce 

individuals with identical nuclear genotypes, but which vary in their mitochondrial 

genotype (Brown and Thorgaard, 2002).  They exploited this approach to produce lines of 

rainbow trout which are identical or near-identical in their nuclear genome but which differ 

in their mitochondrial haplotype. Bercsenyi et al. (1998) produced androgenetic dihaploid 

goldfish from irradiated common carp eggs. The hybrid progeny had inherited the nuclear 

genotype from the goldfish and the mitochondria from the carp. These hybrids will be 

useful for dissecting the significance of mitochondrial haplotype variation for 

development, physiological functioning and evolution of species. Brown et al. (2006) 

found that differences in development rate among rainbow trout from one clonal line 

potentially could be related to variations in mitochondrial type following androgenesis. 

Dihaploids and clones can also be used for the analysis of epistatic interactions and 

estimation of genetic correlations, as well as for the detection of QTL. Markers for QTL 

related to “difficult traits”, such as meat quality and disease resistance, are needed to 

execute marker-assisted selection (MAS), marker-assisted introgression (MAI) and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib11
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib23
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marker-assisted differentiation (MAD) breeding programmes (Komen and Thorgaard, 

2007). In sex ratio studies, clonal lines play a highly advantageous role for examples as 

reference strains and constant factors in crosses to analyse sex-determination mechanism. 

Any genetic variation acquired by the offspring is attributable to the individuals with 

whom the clonal animals are mated. This knowledge of sex determination is useful in 

monosex production approach in many species.  

There are some limitations of gynogenesis or androgenesis approaches as well. Reduced 

reproductive capacity, survival and fertility, and extremely low yields of dihaploids are 

obstacles. Heat and pressure shocks are easy to apply, but have wide ranging, undesirable 

side-effects on embryo development (Yamaha et al., 2002). In addition, maintenance of 

clonal lines and quality control of them for sustainable use are fundamental challenges.  

 

3.1.1. Verification of gynogenetic or androgenetic inheritance 

Once putative gynogenetics or androgenetics have been obtained, it is important to 

determine the success of the procedure to avoid contamination in setting up homozygous 

lines. Phenotypic (morphological) markers can be used if the trait is based on a recessive 

allele (Galbusera et al., 2000) and such characteristics have been used to assess inheritance 

in gynogenetic fish such as common carp (Nagy et al., 1978) and tilapia (Don and 

Avtalion, 1988; Varadaraj 1990; Myers et al., 1995). However, such morphological 

markers are rare (Ezaz et al., 2004a), and, confirmation using biochemical or molecular 

markers is required to allow the unambiguous identification of inheritance. The screening 

for homozygosity at greater number of loci with large number of genetic markers should 

allow more accurate verification of gynogenetic clonal females. 
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Genetic markers can provide evidence on whether diploid gynogenesis results from a 

blockage of the first mitotic division, or from a blockage of polar body extrusion. 

Biochemical markers such as allozyme loci have been used to evaluate the success of 

gynogenesis in tilapia (Hussain et al., 1998; Sarder et al., 1999). Multilocus DNA 

fingerprinting has been used in several fish species including tilapia (Carter et al., 1991; 

Muller-Belecke and Horstgen-Schwark, 1995), African catfish (Volckaert et al., 1994) and 

sea bass (Felip et al., 2000). RFLP (Restriction Fragment Length Polymorphism), RAPD 

(Random amplified polymorphic DNA) and simple sequence repeat-anchored PCR (SSRa-

PCR) have also been useful to study the clonal status of clone founders and to examine the 

uniformity of the gynogenetic offspring of founders and the genetic differences among the 

clones (Jenneckens et al., 1999; Galbusera et al., 2000; Peruzzi and Chatain, 2000).  

 

Microsatellite DNA markers could be a proper tool to investigate the homozygous nature 

of clonal line fish. They have a number of desirable properties, including high 

polymorphism and consequently high information content, and ease of amplification. 

Microsatellites are generally found in the non-coding part of the genome and so have no 

effect on gene expression. Single nucleotide polymorphism (SNP), on the other hand can 

either be in non-coding DNA or in a specific gene. SNP detection involves comparing 

sequences from multiple animals for base substitutions and high throughput technology 

such as mass arrays allows a low cost for genotyping large numbers of animals for large 

number of markers (Vignal et al., 2002). However in terms of polymorphism, SNPs are not 

as informative (since they deal a maximum of two alleles) as microsatellites are. 

Polymorphic microsatellite markers are therefore considered to be very useful in 

identifying the minor genetic variation in population. They can detect and compare 
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polymorphism between clonal and outbred animals, identify loci with high gene-

centromere recombination rates in meiotic gynogenetics which can be used to discriminate 

meiotic from mitotic gynogenetics (Ezaz et al., 2004b), and can serve as unique 

‘identifiers’ of clonal lines. 

  

3.1.2 Objectives of the study 

This study was performed to verify fully inbred females of a clonal line (previously 

developed by gynogenesis) using DNA markers (mostly microsatellite DNA) from across 

tilapia genome, and to validate the line as a reference line for studies on sex determination 

of Nile tilapia. The specific objectives were to: 

i. Screen for marker homozygosity at loci across the genome 

ii. Observe the progeny sex ratio clonal line females x clonal neomales 

iii. Correlate sex ratios from crosses between a range of males of different genotypes 

with clonal and outbred females  
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3.2 Materials and methods 

3.2.1 Fish Stock  

A number of fully inbred clonal lines of O. niloticus were produced previously by 

gynogenesis (Sarder et al., 1999; Ezaz et al., 2004b). Many of these showed low fertility. 

One XX line that showed good fertility was maintained in the TAF, Institute of 

Aquaculture, Stirling and the line advanced through breeding of clonal females and clonal 

neomales (the latter produced by hormonal masculinisation). This line was verified to 

evaluate them as a standard reference line for sex determination studies. 

 

Six sexually mature females from this inbred line were selected for the study. Each of the 

females was tagged with a passive integrated transponder (PIT) tag and kept in a glass 

tank, table 3.2 shows the tag numbers and the tank numbers of aquaria they were reared in. 

Six outbred females were also reared (to be used for comparison of sex ratios with clonal 

females for a range of males, Section 3.2.7, this chapter) and the same information on these 

females is also given in Table 3.2. The general maintenance followed the methods 

described in Chapter 2 (sections 2.1 to 2.3).  

 

Table 3.2 PIT tag numbers and tank numbers of the clonal females in TAF 

Clonal line females Outbred females 

  PIT tag number        Tank number   PIT tag number        Tank number 

00 068C F2E0  N1a 00 0633 2FB5 N3a
00 068C D9B1 H35 00 0638 E8DD N3b
00 068D 0073 N1b 00 064E 1D98 H35b
00 0633 EA38 N2a 00 068D 0559 H36b
00 064E 4714 N2b 00 068D 0EEC H37b
00 068C D6BE H36 00 064C EFB4 H38b
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3.2.2 DNA extraction and quantification  

DNA was extracted from fin clips using the phenol-chloroform and REAL kit method 

(details described in Chapter 2 sections 2.5.2.1 and 2.5.2.2) and quantified with a 

Nanodrop spectrophotometer (Chapter 2 section 2.3). 

 

3.2.3 Selection of DNA markers 

DNA markers were selected from the recent tilapia linkage map (Lee et al., 2005). The 

criteria of this selection were to pick up markers at intervals from each linkage group and 

to cover the whole genome. A total of 97 markers (93 microsatellites and four gene-based 

markers) covering all 24 LGs were selected for this study (Table 3.3). Markers from LG1, 

LG3 and LG23 were given more emphasis in selection criteria (n=29) because sex 

determining genes have been mapped on these LGs in different species of tilapia (Lee et 

al., 2003, 2004; Shirak et al., 2006; Appendix II). The oligo sequences of screened markers 

are given in Appendix III (LG1 markers), Appendix IV (LG3 markers), Appendix V 

(LG23 markers), Appendix VI (modified SNP Wt1b marker), Appendix VII (fluorescent 

label primers) and Appendix VIII (Markers from other LGs except 1, 3 and 23). 
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Table 3.3 Screening of DNA markers for verification of clonal line of gynogenetic females 

Linkage 
group 

Name of markers No. in 
each LG 

1 GM633, UNH985, UNH931, UNH213, GM201, UNH148, UNH995, UNH104, 
GM258, UNH719, UNH846, modified WT1b_short 

 

12 

2 GM420, GM096, UNH860, UNH854, UNH159 5 

3 GM354, GM271, UNH971, GM150, GM128, GM526, UNH982, ClCn5, dmo 9 

4 GM470, UNH124, UNH170, GM553 4 

5 UNH817, UNH884, UNH309, UNH980 4 

6 UNH948, UNH908, UNH968, GM440 4 

7 GM205, UNH899 2 

8 GM027 1 

9 UNH843, UNH886, GM343, UNH132, GM062  5 

10 UNH994, UNH960, GM080, GM472 4 

11 UNH990, UNH192, GM215, GM399, UNH878, UNH979  6 

12 GM377, UNH874, UNH1009, Rasgrf 4 

13 GM373, UNH954 2 

14 GM070, GM665, UNH885 3 

15 GM664, UNH880, GM129 3 

16 GM056, GM168, UNH176 3 

17 UNH103, UNH974, UNH440 3 

18 UNH904, UNH888, GM285 3 

19 UNH419, UNH943, UNH844,  3 

20 UNH174, UNH866, GM363 3 

21 UNH957, GM221 2 

22 GM531, UNH905, UNH840 3 

23 GM557, UNH848, UNH197, GM597, UNH898, UNH879, GM576, UNH907 8 

24 GM173 1 

Markers with italic bold: Failed in either PCR or genotype 
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3.2.4 DNA amplification 

Polymerase chain reaction of the quantified DNA from clonal females was carried out in 

20 μl reaction mixtures. The components used for a single reaction mixture (of 20 μl) are 

given in Chapter 2 Table 2.3. The thermocycler conditions varied for different fluorescent 

primers; three such primers were used: M13 blue (ggataacaatttcacacagg), CAG tag green 

(cagtcgggcgtcatca) and Godde black (catcgctgattcgcacat). The forward and reverse 

sequences of the primers were retrieved from the NCBI databank and any one of the three 

fluorescent sequences (blue or green or black) was added at 5’ end of either the forward or 

of the reverse primer, thus that primer was the ‘tailed’ primer. Three fluorescently labeled 

primer sequences were added randomly for all the microsatellites tailing. The annealing 

temperatures for markers from LG1, LG3 and LG23 were determined from salt-adjusted 

and base stacking melting temperatures (Rychlik and Rhoads, 1989; Mueller et al., 1994; 

Santalucia, 1998) and used in PCR (Table 3.4 and 3.5) with some modifications and 

standardization from thermal gradient PCR. The formulae are given below and are 

available online (www.promega.com/biomath) to calculate Ta. 

Salt-Adjusted Tm Calculations 

Tm =  81.5°C  +  16.6°C  x  (log10[Na+] + [K+])  +  0.41°C  x  (%GC)  –  675/N;  N is the number of 

nucleotides in the oligo. 

Base-Stacking Tm Calculations 

The most sophisticated Tm calculations take into account the exact sequence and base 

stacking parameters, not just the base composition. The equation used is: 

ΔH 
kcal 

°C*Mol 
Tm  =     –  273.15°C

ΔS + R ln([primer]/2)
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Where:  

 ΔH is the enthalpy of base stacking interactions adjusted for helix initiation factors 

ΔS is the entropy of base stacking adjusted for helix initiation factors  and for the 

contributions of salts to the entropy of the system  

 R is the universal gas constant (1.987Cal/°C*Mol)  

 

For the rest of the markers from genome wide selection, annealing temperatures of 57 oC,  

58 oC and 60 oC were used for primers having M13 tail, CAG tag green and Godde black, 

respectively. The other steps in thermocycler conditions were kept same as described in 

Chapter 2 (section 2.6, Table 2.4). 

Table 3.4 Annealing temperatures for markers from LG1 used in PCR  
   

LG Marker Annealing temperatures used in PCR cycles 
1 GM633_L1_CAG_F 2 cycles at 65, 38 cycles at 60  

  GM633_L1_R   
  UNH985_L1_F 2 cycles at 64, 38 cycles at 60  
  UNH985_L1_God_R   
  UNH931_L1_M13_F 2 cycles at 64, 38 cycles at 57  
  UNH931_L1_R   
  UNH213_L1_M13_F 2 cycles at 65, 38 cycles at 58  
  UNH213_L1_R   
  GM201_L1_CAG_F 2 cycles at 65, 38 cycles at 60  
  GM201_L1_R   
  UNH148_L1_M13_F 2 cycles at 65, 38 cycles at 57  
  UNH148_L1_R   
  UNH995_L1_God_F 2 cycles at 64, 38 cycles at 60  
  UNH995_L1_R   
  UNH104_L1_CAG_F 2 cycles at 65, 2 cycles at 56, 36 cycles at 60  
  UNH104_L1_R   
  GM258_L1_M13_F 2 cycles at 65, 2 cycles at 60, 36 cycles at 57  
  GM258_L1_R   
  UNH719_L1_God_F 2 cycles at 64, 38 cycles at 60  
  UNH719_L1_R   
  UNH846_L1_CAG_F 2 cycles at 65, 38 cycles at 61  
  UNH846_L1_R   
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Table 3.5 Annealing temperatures for markers from LG3 and LG23 used in PCR  
   

LG Marker Annealing temperatures used in PCR cycles 
3 GM354_L3_M13_F 2 cycles at 65, 2 cycles at 60, 36 cycles at 57  

GM354_L3_R   
GM271_L3_F 2 cycles at 62, 38 cycles at 60  
GM271_L3_God_R   
UNH971_L3_F 2 cycles at 66, 2 cycles at 63, 36 cycles at 60 
UNH971_L3_CAG_R   
GM150_L3_F 2 cycles at 63, 38 cycles at 58  
GM150_L3_M13_R   
GM128_L3_God_F 2 cycles at 64, 38 cycles at 61 
GM128_L3_R   
GM526_L3_M13_F 2 cycles at 65, 2 cycles at 63, 36 cycles at 60 
GM526_L3_R   
UNH982_L3_CAG_F 2 cycles at 65, 2 cycles at 62, 36 cycles at 60 
UNH982_L3_R   

23  GM557_M13_F 2 cycles at 65, 2 cycles at 60, 36 cycles at 57 
GM557_R   
UNH848_CAG_F 2 cycles at 65, 38 cycles at 61 
UNH848_R   
UNH197_Godde_F 2 cycles at 65, 2 cycles at 56, 36 cycles at 60 
UNH197_R   
GM597_F 2 cycles at 64, 2 cycles at 60, 36 cycles at 57 
GM597_M13_R   
UNH898_F 2 cycles at 65, 38 cycles at 61 
UNH898_CAG_R   
UNH879_F 2 cycles at 64, 38 cycles at 61 
UNH879_Godde_R   
GM576_M13_F 2 cycles at 64, 2 cycles at 62, 36 cycles at 57 
GM576_R   
UNH907_CAG_F 2 cycles at 66, 38 cycles at 60 
UNH907_R   

 

3.2.5 Genotyping and fragment analyses  

CEQTM 8800 Series, a specialized and efficient tool for genetic analysis system with robust 

software and chemistries, was used for analyses of the fragments after PCR gel 

electrophoresis (described in chapter 2).  An array of eight capillaries takes full advantage 

of the 96-well plate format, while reducing the cost and complexity associated with larger 

arrays. The components required for genotyping and the procedure have been explained in 

Chapter 2 section 2.7. 
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3.2.6 Evaluation of sex ratios between clonal females and sex-reversed neomales 

Once the clonal nature of the females was determined, sex ratios were observed in crosses 

between females and neomales (hormonally masculinized XX individuals) within this line. 

A total of 8 crosses were performed, four neomales each crossed to two females, with six 

different females involved. The survival rates in clonal line progeny was also compared 

with those in outbred groups on day 11, after the completion of yolk sac absorption period. 

  

3.2.7 Evaluation of sex ratios involving clonal and outbred females with a range of   

males  

Progeny sex ratios were also observed using clonal and outbred females. Each type was 

crossed with XY males, putative YY males and clonal neomales (XX males) to determine 

the correlation of the sex ratios produced by both types of females. Three XY males, three 

putative YY males and two neomales were used in this study. 

 

3.2.8 Statistical analysis 

The correlation coefficient of sex ratios between clonal female and outbred female crossed 

with different males was analyzed using SPSS (version 17.0) following arcsine 

transformation of data.  
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3.3 Results  

3.3.1 Proof of clonal nature 

Out of 97 DNA markers, 89 (87 microsatellites and two gene-based markers) successfully 

amplified the DNA. Analyses of the fragments after genotyping revealed that the clonal 

individuals (six broodstock with markers from LG1, 3 and 23; and three broodstock from 

the rest of the LGs) were homozygous at all of the loci concerned. The name of all the 

markers, number of the clonal females used and the genotypes with these markers are 

given in Table 3.6. Numbers of alleles from outbred individuals are also shown for 

predicting marker polymorphisms. Sixty seven markers were found to be polymorphic in 

outbred individuals (Table 3.6).  

Table 3.6 Inheritance of alleles in clonal line of females (XX) with DNA markers from all 

linkage groups of tilapia  

  
Linkage group and 

no. of markers 
screened 

Name of 
markers 

No. of clonal 
females used for 

genotyping 

Genotypes of 
clonal 

females 

No. of alleles 
found in 
outbred 
animals 

Presence of 
mono-(M) or 

polymorphism 
(P) 

LG1 (12) GM633 6 206/206 3 P 
UNH985 6 144/144 2 P 
UNH931 6 227/227 3 P 
UNH213 6 211/211 2 P 
GM201 6 164/164 2 P 

UNH148 6 172/172 3 P 
UNH995 6 184/184 3 P 
UNH104 6 147/147 3 P 
GM258 6 144/144 3 P 

UNH719 6 127/127 3 P 
UNH846 6 190/190 3 P 
WT1short 6 64/64 2 P 

LG3 (7) GM354 6 142/142 2 P 
GM271 6 134/134 2 P 

UNH971 6 215/215 3 P 
GM150 6 217/217 2 P 
GM128 6 157/157 2 P 
GM526 6 260/260 2 P 

UNH982 6 124/124 1 M 
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Table 3.6 (Cont’d) Inheritance of alleles in clonal line of females (XX) with DNA markers from all 

linkage groups of tilapia  

Linkage group and 
no. of markers 

screened 

Name of 
markers 

No. of clonal 
females used for 

genotyping 

Genotypes of 
clonal 

females 

No. of alleles 
found in 
outbred 
animals 

Presence of 
mono-(M) or 

polymorphism 
(P) 

LG23 (8) GM557 6 268/268 2 P 
 UNH848 6 208/208 2 P 
 UNH197 6 205/205 2 P 
 GM597 6 151/151 2 P 
 UNH898 6 286/286 2 P 
 UNH879 6 238/238 2 P 
 GM576 6 242/242 2 P 
 UNH907 6 134/134 2 P 

LG2 (3) GM420 3 137/137 1 M 
 UNH860 3 216/216 2 P 
 UNH159 3 251/251 2 P 

LG4 (2) UNH170 3 162/162 1 M 
 GM553 3 257/257 2 P 

LG5 (3) UNH884 3 160/160 3 P 
 UNH309 3 199/199 2 P 
 UNH980 3 233/233 2 P 

LG6 (3) UNH948 3 197/197 2 P 
 UNH908 3 124/124 1 M 
 UNH968 3 226/226 2 P 
 GM440 3 275/275 1 M 

LG7 (3) GM205 3 127/127 1 M 
 UNH899 3 158/158 1 M 

LG8 (1) GM027 3 176/176 2 P 
LG9 (5) UNH843 3 125/125 1 M 

 UNH886 3 185/185 1 M 
 GM343 3 191/191 2 P 
 UNH132 3 131/131 1 M 
 GM062 3 286/286 2 P 

LG10 (4) UNH994 3 235/235 2 P 
 UNH960 3 182/182 2 P 
 GM080 3 245/245 2 P 
 GM472 3 355/355 2 P 

LG11 (6) UNH990 3 168/168 3 P 
 UNH192 3 156/156 1 M 
 GM215 3 223/223 3 P 
 GM399 3 273/273 2 P 
 UNH878 3 120/120 1 M 
 UNH979 3 271/271 1 M 

LG12 (4) GM377 3 312/312 2 P 
 UNH874 3 214/214 2 P 
 UNH1009 3 173/173 3 P 
 Rasgrf 3 119/119 2 P 
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Table 3.6 (Cont’d) Inheritance of alleles in clonal line of females (XX) with DNA markers from all 

linkage groups of tilapia  

Linkage group and 
no. of markers 

screened  

Name of 
markers  

No. of clonal 
females used for 

genotyping  

Genotypes of 
clonal 

females 

No. of alleles 
found in 
outbred 
animals 

Presence of 
mono-(M) or 

polymorphism 
(P) 

LG13 (2) GM373 3 318/318 2 P 
UNH954 3 178/178 2 P 

LG14 (3) GM070 3 144/144 1 M 
GM665 3 238/238 1 M 
UNH865 3 235/235 1 M 

LG15 (3) GM664 3 245/245 1 M 
UNH880 3 204/204 1 M 
GM129 3 120/120 1 M 

LG16 (2) GM056 3 243/243 2 P 
GM168 3 336/336 3 P 

LG17 (3) UNH103 3 232/232 2 P 
UNH974 3 210/210 3 P 
UNH440 3 198/198 2 P 

LG18 (3) UNH904 3 184/184 2 P 
UNH888 3 226/226 1 M 
GM285 3 162/162 2 P 

LG19 (3) UNH419 3 202/202 3 P 
UNH943 3 155/155 2 P 
UNH844 3 133/133 1 M 

LG20 (3) UNH174 3 190/190 3 P 
UNH866 3 167/167 2 P 
GM363 3 210/210 1 M 

LG21 (2) UNH957 3 192/192 4 P 
GM221 3 197/197 3 P 

LG22 (3) GM531 3 231/231 2 P 
UNH905 3 168/168 3 P 
UNH840 3 153/153 2 P 

LG24 (1) GM173 3 285/285 2 P 
 

3.3.2 Sex ratios and viability in clonal lines 

The overall sex ratio result (at three months) obtained from 8 crosses involving all 6 clonal 

females showed that 105 of 106 progeny sexed were females. However, in almost all the 

crosses the number of offspring was small (ranging from 2 to 26). Table 3.7 presents the 

sex ratios from these crosses between clonal line females and neomales.  
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Table 3.7 Sex ratios in crosses between clonal line females and neomales 

Neo♂♂ Clonal♀♀        No. male (M) No. female (F) Sex ratios (M: F) 

00 068C FD8F 00 068C F2E0  0 22 0:100 
00 068C D9B1 0 17 0:100 

00 0633 E607 00 068D 0073 0 12 0:100 
00  0633 EA38 0 2 0:100 

00 064D 1843 00 064E 4714 1 13 7:93 
00 068C D6BE 0 4 0:100 

00 064C EBEE 00 068C D6BE  0 26 0:100 
00 064E 4714  0 9 0:100 

Total                    1 105 0.9: 99.1 

 

The viability of the offspring from clonal group is shown in Table 3.8 which shows mean 

survival rate of only 5.16% on day 11 (after yolk sac absorption period) significantly 

different (P<0.05) from that in outbred males crossed with outbred females (68.46%). 

Table 3.8 Viability studies in clonal line compared to outbred crosses 

Cross groups        No. of 
eggs 

No. live on day 4 
(hatched fry)  
 

No. live on day 11 
(YSR fry stocked in 
tanks) Clonal ♂♂ x Clonal ♀♀ 

00 068C FD8F 00 068C F2E0  200 40 (20%) 35 (17.5%) 
 00 068C D9B1 200 20 (10%) 17 (8.5%) 

00 0633 E607 00 068D 0073 380 26 (6.8%) 12 (3%) 
00  0633 EA38 100 2 (2%) 2 (2%) 

00 064D 1843 00 064E 4714 200 18 (9%) 14 (7%) 
00 068C D6BE 150 4 (2.6%) 4 (2.6%) 

00 064C 00 068C D6BE  250 29 (11.6%) 26 (10.4%) 
00 064E 4714 150 14 (9.3%) 10 (6.67%) 

00 068C E132 00 068C F2E0 350 0 (0%) 0 (0%) 
00 064D 0E7A 00 068C 

DD59* 
150 0 (0%) 0 (0%) 

 Mean %=7.13±6.24 Mean %=5.76±5.45a 
Clonal ♂♂ x Outbred ♀♀    
00 068C FD8F 00 0638 E8DD 300 35 (11.67%) 32 (10.67%) 
00 0633 E607 00 0633 2FB5 250 55 (22%) 49 (19.6%) 

 Mean 
%=16.84±7.30 

Mean %=15.14±6.31b 

Outbred ♂♂ x outbred ♀♀    
00 068C FBE2 00 0633 2FB5 350 NR 240 (68.57%) 

00 064C 
FEED 

00 0638 E8DD 300 NR 205 (68.33%) 

  - Mean %=68.45±0.17c 
 P(χ2a,b)>0.05; P(χ2a,c)<0.05, *this clonal female was not verified but was from same line 
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3.3.3 Sex ratios involving clonal and outbred females with a range of males  

Table 3.9 shows and compares the sex ratios obtained from clonal females and outbred 

females when crossed with different types of male individuals. Correlation analysis of sex 

ratios obtained from paired (half-sib) crosses involving clonal and outbred females with a 

range of males (clonal line neomales, XY males and YY males) was conducted.  

Table 3.9 Comparison of sex ratios of clonal and outbred females with males 

Sex ratios with clonal female Sex ratios with outbred female 
% Male (No.) % female (No.) % Male (No.) % female (No.) 

C
lo

na
l 

m
al

e 

00 068C FD8F (J12) 0 (0) 100 (39) 0 (0) 100 (28) 
00 0633 E607 (H51) 0 (0) 100 (14) 0 (0) 100 (49) 
00 064C EBEE (H53) 0 (0) 100 (35) - - 

X
Y

 
m

al
e 

00 068C D9E3 (G15) 49(71) 51(75) 47(189) 53(194) 
00 068C FBE2 (G16) 52 (61) 48(57) 57(34) 47(26) 
00 064E 46A8 (G26) 49(60) 51(62) 51(33) 49(32) 

Y
Y

 
m

al
e 

 00 013E 315C (C3) 95(404) 5 (36) 88(112) 12(15) 
00 068C E167 (G35)  93(206) 7(15) 93(167) 9(13) 
00 068C F8BB (H60) 97(76) 3(4) 99(277) 1(1) 

 

The correlation coefficient between the sex ratios obtained from the clonal and outbred 

females was 0.994 (P<0.01; n=8) (Figure 3.2). The chi-squared test statistics of the paired 

values of sex ratio did not differ significantly (P>0.05, d.f 1) between clonal and outbred 

female sets.  
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Figure 3.2 Correlation of sex ratios (%) between clonal and outbred females crossed with a range 

of males 

 

3.4 Discussion 

Some published works are available on the verification of the gynogenetic clonal females 

(founders) as well as clonal line individuals in Nile tilapia (Oreochromis niloticus). 

However, very few studies have been performed to validate the clonal lines by using 

polymorphic microsatellite markers. Some of these methods and the outcomes have been 

discussed below and the interpretation of the results from the present study is given. 

 

The clonal status of the clone founders, the genetic uniformity of gynogenetic offspring 

from each clone founder and the genetic differences between clonal lines on DNA level in 

Nile tilapia other than the Stirling strain have been observed by using different DNA based 
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techniques (Jenneckens et al., 1999), e.g., multilocus DNA fingerprinting, random 

amplified polymorphic DNA (RAPD) and simple sequence repeat-anchored PCR (SSRa-

PCR). Multilocus DNA fingerprinting and RAPD demonstrated that carryover of male 

chromosomal DNA by the use of UV-irradiated sperm for induction of gynogenesis did not 

occur and that the clonal lines could be accurately distinguished from each other. However, 

the primers used in SSRa-PCR could not determine the absence of paternal genomic 

transmission due to a lack of visible informative paternal bands. In such cases, 

microsatellite markers could be advantageous because of their high information content. 

 

A study by Hussain et al. (1998) was aimed at producing heterozygous and homozygous 

clones of Nile tilapia using reproductively viable mitotic gynogenetic fish. Eggs were 

collected from a female heterozygous at the adenosine deaminase (ADA*) locus for 

135/113 alleles. Two batches of eggs were fertilized separately with UV irradiated sperm, 

initially collected from a normal diploid male and exposed, respectively, to optimal early 

pressure shock treatment (Hussain et al., 1991) for the production of meiotic gynogens and 

late pressure shock treatment (Hussain et al., 1993) for the production of mitotic gynogens. 

These mitotic gynogens were reared to sexual maturity as they were viable, and four of 

them used as broodstock (two female homozygous for the 113 ADA* allele and two males 

homozygous for the 135 ADA* allele). Eggs from each of the two females were divided 

into batches for the production of meiotic gynogens or inbred clones, ICL (by UV 

treatment followed by early pressure shock of eggs), and diploid controls or outbred 

clones, OCL (separately fertilized by each of the two males). The use of the ADA* marker 

enabled both clones to be identified and confirmed that there was no paternal inheritance in 

the ICL produced by gynogenetic reproduction (retention of 2nd polar body). All of the 
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outbred clonal progeny (N=80) were heterozygous (113/135) and all of the inbred clonal 

progeny (N=7) were homozygous at ADA* locus. Sarder et al. (1999) studied the same 

isozyme locus ADA* genotypes of control and gynogenetic progeny from experiments in 

which O. niloticus females (genotype 113/135) and an O. aureus males (genotype 138/138) 

were used as parents. The absence of the male parent’s genotype in gynogenetic offspring 

was an evidence of successful gynogenesis, Female parents had 113/135 or 135/135 

genotypes. The ADA* locus was useful to discriminate meiotic (113/135) and mitotic 

gynogenetic offspring (113/113 or 135/135) where the female parent was heterozygous 

(113/135) for this locus. The use of such allozyme markers to detect the variation, in the 

absence of marker genes or more reliable polymorphic markers (e.g., microsatellites or 

SNPs) is quite common for assessing parental contribution and the genetic status of the 

progeny in all forms of ploidy manipulations. The ability to study a large number of 

variable allozyme loci has also been particularly useful in estimating the frequency of 

heterozygotes in meiotic gynogenesis and thereby the level of recombination that has 

occurred at the first meiotic division (reviewed by Seeb and Miller, 1990). ADA* used in 

the studies of Hussain et al. (1998) and Sarder et al. (1999) to determine the gynogenetic 

status was known polymorphic enzyme locus. This locus was found to give highest ‘y’ 

value (proportion of heterozygotes, y= 1- NR/Total, where NR is number of recombinants) 

of 1.0 (100% recombinants) in six different meiotic gynogenetic progeny groups, a total of 

150 meiotic gynogenetic offspring from heterozygous females, in a study conducted by 

Hussain et al. (1994) on estimation of gene-centromere recombination frequencies in 

gynogenetic diploids of Nile tilapia. In contrast to the EST-2* locus where there was no 

evidence of any recombinant genotypes (y=0.00) in any of the meiotic gynogenetic 

offspring (N=150) (and hence suggests the EST-2* locus is very close to its respective 



                                                   Validation of clonal line females                                   Chapter 3 
 

M G Q Khan                                                           Institute of Aquaculture Page 85 
 

centromere) the results for the ADA* locus suggested that it was placed distally on a 

chromosome arm. 

 

Microsatellite markers are co-dominant and can express polymorphism in individuals. 

Therefore they are more appropriate than allozyme markers (codominant markers) or 

AFLPs (dominant markers) in analyzing the products of chromosome set manipulations, 

for example, clonal gynogenetic line of females. Polymorphic microsatellite loci were 

investigated in several gynogenetic families and clonal progeny of Nile tilapia by Ezaz et 

al. (2004b) to verify gynogenesis and clonal lines. They worked with 6 microsatellite 

markers in two meiotic gynogenetic families in selected loci with high gene-centromere 

recombination rates, which could be used to discriminate meiotic from mitotic 

gynogenetics. Microsatellite loci UNH189 and UNH211 showed 96.7% and 92.0% 

heterozygosity, respectively and thus indicated very low probability of an individual 

meiotic gynogenetic being homozygous for both loci. Polymorphic microsatellite loci were 

also used successfully to verify maternal inheritance in gynogenetic populations of African 

catfish and European sea bass by Galbusera et al. (2000) and Peruzzi and Chatain (2000). 

Genotyping of clonal line gynogenetic females with a moderately large number of 

microsatellite DNA primers was considered to be a reasonable way to verify the clonal 

nature and to validate them as ‘pure inbred’ and to help establish the line as a reference 

line for sex ratio studies in Nile tilapia. The present study showed that the representative 

sample of females from the clonal line were demonstrated to be homozygous at all of the 

89 microsatellite loci, thereby strengthened the hypothesis of being fully inbred clonal 

females. 
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The viability of clonal female offspring (as shown in Table 3.7) was found to be low. One 

popular explanation behind such viability is that these low and variable survival rates are 

caused by expression of deleterious genes and inbreeding depression. In theory, double 

haploid clone founders produced by androgenesis or gynogenesis should suffer from 

inbreeding depression due to the expression of homozygous deleterious mutations (Purdom 

et al., 1985). Many of these mutations could act during early embryo development, thereby 

causing a significant reduction in survival of double haploid fry. Assuming an average 

genetic load of 1-2 harmful recessive genes for any female parent, the mortality in her 

doubled haploid progeny could be as high as 50-75% (Komen and Thorgaard, 2007). 

Müller-Belecke and Hörstgen-Schwark (2000) obtained survival of clonal line females at 

first-feeding varying between 1 and 20% in comparison to about 45% in controls. Sarder et 

al. (1999) obtained mean survival rates of 63.11 ± 6.41%, 30.89 ± 6.30%, and 4.34 ± 

1.24% respectively at yolk sac resorption in diploid control, meiotic gynogenetic, and 

mitotic gynogenetic groups of O. niloticus. In zebrafish, gynogenesis was used to identify 

14 recessive maternal effect mutations. Homozygosity for these mutations in adult females 

led to the inviability of their offspring (Pelegri et al., 2004). As homozygous animals show 

inbreeding depression, it is likely that the performance of homozygous clones in terms of 

viability and fertility usually follows that of the parent from which they were derived. The 

offspring derived from the clonal line of females (produced from mitogynes) in this study 

may have deleterious genes fixed which have caused poor fertility of germ cells. 

 

Analysis of sex ratio results obtained from 8 crosses involving all 6 clonal females and 4 

neomales in this study confirms sex ratios very close to all-female (99.1%). This result 

supports earlier results (Sarder et al., 1999; Ezaz et al., 2004b) in producing nearly all 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib106
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4NS0KMF-1&_user=241825&_coverDate=09%2F14%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1517686072&_rerunOrigin=google&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=4bfd397656961a89d1a2b91f6cd83d91&searchtype=a#bib125
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female progeny in mitotic gynogenetic clonal lines. Analyses of sex ratios of gynogenetic 

O. niloticus by Penman et al. (1987) revealed all females among 89 meiogynes pooled 

from progeny of seven different mothers whereas Mair et al. (1991a) found eight males 

within a greater sample size of 187 meiogynes derived from 11 mothers. They suggested 

that the occurrence of males in gynogenetics may result from some form of “natural sex 

reversal” of females and this sex reversal mechanism develops from homozygosity of rare 

autosomal, recessive, sex-influencing genes. Sarder et al. (1999) observed presence of 

males in all of four mitogyne groups and in three out of four meiogyne groups. They also 

observed sex ratios in gynogenetic inbred clonal lines of Nile tilapia. With the exception of 

the clonal line founded from one female, all of the lines contained only female fish 

regardless of how the clonal groups were propagated.  

  

The presence of fairly high proportions of males in both meiogyne and mitogyne groups 

has been observed in some studies although this is not predicted by the XX/XY sex 

determining system. Hussain et al. (1994) obtained 7.5% and 47.5% males in the meiotic 

and mitotic gynogenetic progenies of O. niloticus respectively and suggested that an 

epistatic locus (SDL-2, two alleles, SR and sr) causing sex reversal from female to male 

under homozygous condition. Thus a female that is heterozygous at this locus (XX SRsr) 

would be expected to produce non-recombinant homozygous males (XX srsr) and both 

non-recombinant and recombinant females (XX SRSR and XX SRsr respectively) in 

meiotic gynogenesis and only XX srsr males and XX SRSR females in mitotic 

gynogenesis. Komen et al. (1992, 1995) described a recessive mutation in Cyprinus carpio 

(mas) which in the homozygous state in XX animals (XX mas/mas) results in female to 

male sex reversal. Müller-Belecke and Hörstgen-Schwark (1995) reported 35.3% male 
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progeny in the mitogynes of O. niloticus. All female meiogynes were derived from two 

females which produced males among mitotic gynogenetic progenies. Gynogenetic 

reproduction of six mitogyne females led to all female-homozygous clones. Progenies of 

five mitogyne males mated with different females were all male, all female or 

predominantly female (Crosses to one of the control females produced only female 

offspring, while crosses to the mitotic mother of the clonal males produced high 

percentages of males). They suggested the occurrence of two or more minor sex 

determining factors, which are able to override the XX-XY mechanism when they act in 

combination and occur in homozygous state might account for the sex ratios observed. 

They also interpreted in an another way that the genotype exhibits greater instability in sex 

differentiation, perhaps through greater susceptibility to environmental effects. The 

presence of males was also evident in a study by Sarder et al. (1999) in a gynogenetic 

clonal line. Data from progeny testing of those males suggested that that line was 

homozygous for an allele or combination of alleles at an autosomal locus or loci which 

caused female to male sex reversal but with limited penetrance. 

 

Following the discussion and based on the assumption of locus polymorphism (autosomal 

or sex-determining locus) in (many) outbred females for determination of sex in Nile 

tilapia, an interpretation on occurrence of progeny sex can be done on the basis of meiotic 

gynogenesis, mitotic gynogenesis and clonal line individuals produced from mitotic 

gynogens. As an example, if the female parent is XX but heterozygous for a hypothetical 

recessive autosomal sex reversal locus (SR/sr), meiotic gynogenesis will result in XX, 

SR/SR and XX, SR/sr genotypes consisting of females and XX, sr/sr consisting of male 

and/or females depending on the penetrance and position of the locus. Mitotic gynogenesis 
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will produce XX, SR/SR (only females) or XX, sr/sr (males and/or females depending on 

the penetrance) and occurrence of more males may be apparent. In producing clonal line of 

females, these mitotic males are eliminated (since they are not used as clone founders). A 

clonal line of nearly all females founded from mitotic female clone founders (e.g., the 

outcome of the present study) thereby could hypothetically account for a strong selection 

against the sex reversal allele (sr/sr) with strong penetrance.  

 

The homozygous nature of the clonal line females in this study with good number of 

microsatellite markers, the yield of very close to 100% female progeny with sex-reversed 

neomales and the strong positive correlation with the outbred females in giving sex ratios 

with a range of males suggests that this line of clonal females could be used as standard, 

‘reference line’ for sex determination studies in Nile tilapia. 
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Chapter 4 
Sex linkage study in the Stirling Nile tilapia (Oreochromis niloticus) population 

 
 
4.1 Introduction 

Teleost fish display an amazing variety of sex determination systems. The primary sex 

determination in most species is genetic (Valenzuela et al. 2003); nevertheless, the sex 

differentiation of fishes is remarkably plastic and is determined by both genetic and 

environmental factors in many species (Baroiller and D’Cotta 2001). Although genetic 

factors probably regulate sex determination in most fishes, relatively few teleosts have 

karyotypically distinct sex chromosomes (Arkhipchuck, 1995) and sex chromosomes can 

display variable degrees of molecular differentiation (Volff, 2005).  

 

In tilapia species in general, a variety of evidence suggests that sex determination is 

principally monofactorial (Wohlfarth and Wedekind 1991). There are no gross 

morphological differences between the sex chromosomes (Majumder and McAndrew, 

1986) and the sex chromosomes of tilapia are thought to be still at an early stage of 

differentiation (Shirak et al., 2006). The hypothesised sex-chromosome systems suggest 

that some species have the XX: XY system (Oreochromis mossambicus, O. niloticus) 

whereas others have the WZ: ZZ system (O. aureus, O. macrochir, O. urolepis hornorum) 

(Lee et al., 2004). A wide variety of techniques have been used to analyse the sex 

determination system in these species, for example, sex reversal and progeny testing, 

ploidy manipulation, inter- and intra-specific hybridization. Several karyotype studies have 

also been carried out to identify the sex chromosomes in tilapia species (Foresti et al., 

1993; Carrasco et al., 1999; Campos-Ramos et al., 2001; Harvey et al., 2002; Ocalewicz et 

al., 2009). Foresti et al. (1993) worked with XY type males to identify the difference 

between each type of chromosome by synaptonemal complex analysis of meiotic 



                                                Sex linkage in Stirling Nile tilapia                                     Chapter 4 
 

M G Q Khan                                                        Institute of Aquaculture Page 91 
 

chromosomes. Similar work was done by Carrasco et al. (1999) with three type of 

individuals-XX, XY, YY and they found an absence of pairing in the terminal portion of 

largest chromosome pair in 25% of the pachytene preparations obtained from XY males 

while normal pairing was observed in homogametic individuals from both XX and YY 

genotypes. The inhibition of pairing of this large chromosome was explained by the 

accumulation of heterochromatin corresponding to the sex determining region (Griffin et 

al., 2002). 

 

Although the genetic sex of Nile tilapia is thought to be an XX/XY male heterogametic 

system (Jalabert et al., 1975; Penman et al., 1987; Mair et al., 1991a) controlled by a major 

gene, mass spawning and interspecies (or intraspecific) cross-breeding shows unexpected 

sex ratios based on a simple monofactorial sex determination model (Mair et al. 1987; 

Rosenstein and Hulata, 1994). It has been postulated that the departures from the sex ratios 

predicted by a chromosomal monofactorial model can be caused by other unidentified 

genetic factors, which appear to be autosomal (Majumdar and McAndrew, 1983; Mair et 

al., 1991a) and to have partial penetrance (Mair et al., 1991a; Hussain et al., 1994; Sarder 

et al., 1999). In Nile tilapia, the success of monosex (genetically male) production largely 

depends on a clear understanding of the genetic factors affecting sex where effects of 

temperature (or other environmental factors) are controlled in a regulated environment. 

Studies on sex linkage help us to understand the total phenomenon of the sex determination 

mechanism, in such species with genetic sex determination (GSD) systems.  

 

The advent of DNA analyses techniques has opened up possibilities to identify sex-linked 

and sex-specific markers in different fish species. A variety of molecular approaches are 
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now used to find the sex determining region or to identify the sex determining gene. Some 

of these approaches, e.g., DNA profiling/fingerprinting, look directly for sequences which 

differ between the male and female genomes; “candidate gene” approaches, look for genes 

or sequences that are sex-determining or sex-linked in one species and assessed in a new 

target species; linkage mapping approaches, where phenotypic sex is scored with many 

segregating markers (mostly DNA-based) to place the sex determining gene(s) into one or 

more linkage groups, which may lead to positional cloning of such genes later; and 

molecular-cytogenetic approaches, e.g., to relate linkage and karyotypic data (Penman and 

Piferrer, 2008). The study of sex linkage in Nile tilapia is likely to give us an insight into 

the molecular mechanism of sex determination by identifying DNA markers linked to 

unknown genes (QTL) which can help to improve the production of genetically male 

tilapia. 

 

DNA markers have been used in a number of studies to identify association between 

markers and the QTL (for sex) in different tilapia species and their hybrids (Shirak et al., 

2002; Lee et al., 2003, 2004; Cnaani et al., 2004; Ezaz et al., 2004a; Karayucel et al., 2004; 

Cnaani et al., 2008). In Nile tilapia, notable works on sex-linkage using DNA markers are 

those of Lee et al. (2003) and Lee and Kocher (2007). Lee et al. (2003) found an 

association between microsatellite DNA markers in tilapia linkage group (LG) 1 with sex 

(tightly linked) in two out of three crosses studied in Nile tilapia (XX/XY) but no 

association with markers in any of the LGs in the third one. Genes that were known to be 

involved in the sex determination pathway of other vertebrates (e.g., WT1b, CYP19A1) 

were also mapped in Nile tilapia but they were excluded as being the major sex-

determining genes after break point analyses (Lee and Kocher, 2007). Mapping of a 
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functional gene close to QTL for sex determination has also been performed but based on 

hybrid crosses (Shirak et al., 2006). Some work suggests there may be autosomal modifiers 

in establishing sex of tilapia (e.g., LG1 and LG3 markers contributed in some families of 

both Nile and blue tilapia: Cnaani et al. 2008). Another model of sex determination, in the 

absence of any interaction (or in inconsistent pattern of interaction) between two such sex 

chromosomes is the segregation of an allelic series (multiple alleles) at the sex determining 

locus (Wohlfarth and Wedekind, 1991) which was partially supported by Cnaani et al. 

(2008) because of the apparent differences among families of the same species. However, 

they did not have evidence for multiple alleles segregating at the same sex determining 

locus across crosses. Therefore, the current state of knowledge on the sex determination 

system of Nile tilapia is vague. A possible hypothesis suggests a ‘predominant’ 

monofactorial genetic system, and but we need a better understanding of the genetic factors 

behind the establishment of sex. Further linkage mapping studies using DNA markers 

(mostly microsatellites from the current linkage map of tilapia: Lee et al., 2005) in intra-

specific Nile tilapia families are likely to give better explanation of how sex is genetically 

determined. 

 

The present chapter describes an investigation of the association of DNA markers (mostly 

microsatellites) with sex in a variety of crosses involving XX clonal females and different 

types of males (designated on the basis of progeny sex ratios and pedigree information) to 

get a further understanding of the genetic sex determination mechanism in Stirling red Nile 

tilapia in a controlled environment with a regulated temperature (27.5±0.5 oC). The 

inheritance pattern of sex- linked markers in this species, screening for QTL for sex, 

presence of any allelic series at sex determination loci and segregation patterns of those 



                                                Sex linkage in Stirling Nile tilapia                                     Chapter 4 
 

M G Q Khan                                                        Institute of Aquaculture Page 94 
 

alleles (if present) and  interaction of any autosomal locus/loci were of fundamental 

scientific curiosity in this current study. 

In this study, three types of sires (crossed with clonal line females) would be identified 

based on progeny sex ratios: type ‘A’- apparently normal XY males; type ‘B’- putative YY 

males and type ‘C’- not matching either of these presumed sex determination hypothesis.  

By using molecular markers from LG1 (thought to be the site of main sex determining 

gene in Nile tilapia), the inheritance of phenotypic sex by their allelic segregation will be 

observed to confirm LG1 associated pattern in type ‘A’ families. In the other two types of 

families, in addition to LG1 markers, LG3 and LG23 markers are used to investigate any 

association of markers from these LGs that can explain slight to moderate departure of sex 

ratios from prediction. LG3 is thought to be the site of main sex determining gene in blue 

tilapia (Lee et al., 2004), and in LG23, QTLs for sex determination have been found in 

hybrid tilapia (Shirak et al., 2006). In addition, markers from genome wide scan (n=62; 

except these three LGs) are applied to investigate any association between any of the 

markers and sex in type ‘B’ families only. So the objectives of this study were: 

i. To study the inheritance of alleles/genotypes in clonal females x putative XY males (type 

‘A’) by using screened markers from linkage group (LG)1 to confirm the LG1-associated 

pattern of inheritance of phenotypic sex and the structure of LG1 

 

ii. To study the inheritance of alleles/genotypes in clonal females x putative YY males 

(type ‘B’) producing >90% male progeny by using screened markers from LG1, LG3 and 

LG23 for association with sex using bulked segregant analysis (BSA) of female and male 
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DNA pools, followed by further analysis (on DNA from individuals) using informative 

(sex-linked polymorphic) markers in BSA 

 

iii. To study the inheritance of alleles/genotypes in clonal females x unknown group sires 

(type ‘C’) producing ~60-80% male progeny by using the same markers (as in objective ii) 

for association with sex using bulked segregant analysis (BSA) of female and male DNA 

pools, followed by further analysis (on DNA from individuals) using informative (sex-

linked polymorphic) markers in BSA 

 

iv. To undertake a genome wide scan of selected markers (apart from LG1, LG3 and LG23 

markers), approximately evenly spaced from the remaining 21 LGs (Lee et al. 2005), and 

study them in type ‘B’ families in BSA for any association with sex, followed by further 

analysis (on DNA from individuals) using informative markers (if any, in BSA) 
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4.2 Materials and Methods 

4.2.1 Screening of broodfish and PIT tagging 

Five putative XY and 16 putative YY male fish were taken from stock tanks at Tropical 

Aquarium Facilities (TAF), tagged and kept at individual tanks. Putative YY males were 

selected from the pedigreed stock of putative YY fish produced in the TAF. The general 

maintenance followed the procedures described in Chapter 2 section 2.1. 

4.2.2 Breeding of fish  

 
Three putative XY and 14 putative YY fish (randomly chosen) were successfully bred 

(Table 4.1 in Results section) with the clonal line females. Details of breeding procedures 

were discussed in Chapter 2, section 2.2.  

4.2.3 Selection of different types of families for sex linkage study  

A total of three groups/types of crosses (each type consisting of three families) were 

selected from those described in section 4.2.2. A frequency distribution of the sex ratio 

from each male was observed. 

The first type of cross was selected from the apparent normal males giving sex ratios not 

significantly different from 1:1 (and therefore should be XY). This normal XY group was 

considered as type ‘A’ for sex linkage study. Type ‘B’ included the families giving high 

frequencies of males (with >90 % male) and significantly different from 1:1 sex ratio. This 

type of crosses was repeated to try to get enough females (shown in Table 4.1) for results 

from subsequent marker association studies to be statistically meaningful. The sires of type 

‘B’ group were designated as putative YY males. The third type consisted of families 
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giving intermediate sex ratios (~64-80% males), considering them as neither normal XY 

males nor putative YY males. This type was designated as group ‘C’. Throughout this 

experimental chapter (along with other chapters, if mentioned), the designations of these 

types are used. The details of the selected families are given in Table 4.2. 

4.2.4 Fin biopsy and DNA extraction  

 
Fin samples were biopsied from the parents and offspring in each of the 9 families 

screened. DNA was extracted, quality checked and quantified by Nanodrop. Details of the 

DNA extraction methods are given in Chapter 2 (section 2.5). 

 
4.2.5 PCR and Genotyping 

 
The method of PCR has been described in Chapter 2 (section 2.6). PCR was performed for 

DNA samples of parents and offspring (n=48) of type ‘A’ families with LG1 markers 

(n=12), then for type ‘B’ and ‘C’ families, initially with LG1 markers and then with LG3 

markers (n=7) and LG23 markers (n=8). The names of the markers are given in Chapter 3, 

section 3.3, and the oligo sequences are given in Appendix III to VII. Genotyping of 

amplified DNA was performed using CEQ Beckman-Coulter Sequencer 8800 as described 

in Chapter 2 section 2.7. Specific strategies were taken to reduce the amount of genotyping 

of large number of samples considering the cost. These approaches were: 

i) Genotyping of parents DNA: Identifying polymorphic loci in sires and checking the 

clonal females were homozygous 

ii) Bulk segregant analyses (BSA): Pooling of DNA samples from male and female 

progeny separately into two bulk samples and diluting to 50-100 ng/µl. Thus, only 

two (bulk) samples represented all male and female progeny DNA of a single 
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family. Polymorphic loci were run only (from LG1, LG3, LG23 and genome wide 

scan, depending on family type). While this is regarded as a ‘dirty’ method, a quick 

analysis of microsatellite loci can be done in order to identify sex-associated alleles. 

iii) Individual genotyping approach: If BSA suggested an association with sex, 

individual samples were run to allow statistical analysis and build linkage maps. 

4.2.6 Genome wide scan in families of type ‘B’  

The pooled DNA samples from male and female progeny along with their parents in type 

‘B’ families were amplified with 62 additional markers from 21 other LGs (in addition to  

27 markers from LG1, 3 and 23) and genotyped at those loci. The genotypes were carefully 

studied to investigate any interaction between alleles at different loci, particularly with 

LG1 marker alleles. 

 
4.2.7 Fragment and statistical analyses  
 
The analyses of fragments were performed using Beckman-Coulter software (Fragment 

analysis module) which identified and quantified the detected allelic fragments. All 

genotype results were transferred to Excel spreadsheets where data were used for further 

linkage mapping analysis. The CRI-MAP software v 2.4 (Green and Crooks, 1990) was 

used to construct linkage maps. These maps were created through Build and Flips options. 

The software is available online at http://www.ba.cnr.it/Embnetut/Crimap. The graphical 

representation of linkage maps was done by MapChart version 2.2 (Voorrips, 2002). Chi-

square (goodness of fit) statistics were performed to test for significant difference of 

observed sex ratios in each cross from 1:1 ratios. The same statistics were used to test the 

allelic segregation at each locus for polymorphic informative markers.  

 

http://www.ba.cnr.it/Embnetut/Crimap
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4.3 Results  
 
4.3.1 Sex ratios from breeding of clonal females with a range of males 

The cross details and sex ratios from various crosses are presented in Table 4.1. 

Table 4.1 Breeding of clonal females with different types of males 
 

Put. XY males  
tag and tank no. 

Tag no. of  
clonal females 

No. of male/ 
female 

% 
male 

 χ2

(against H0=1:1) 
Inferred 
sire genotype 

00 068C D9E3 (G15) 00  0633 EA38  71/75 48.6 0.11, P(χ2
[1])>0.05  

XY ♂ 00 068C FBE2 (G16) 00  0633 EA38 61/57 51.6 0.136, P(χ2
[1])>0.05 

00 064E 46A8 (G26) 00 068C F2E0 60/62 49.2 0.033, P(χ2
[1])>0.05 

Put. YY males 
 tag and tank no. 

     

00 068D 0B95 (C8) 00 068C F2E0  45/62 42.1 0.033, P(χ2
[1])>0.05  

 00 068C D9B1 68/43 61.3 0.033, P(χ2
[1])>0.05  

 00 068C DD59  9/7 56.3 0.033, P(χ2
[1])>0.05  

 Overall/mean 122/112 52.1 0.427 p(χ2
[1])>0.05 XY ♂?

00 061E E4E0 (G34) 00 068C D6BE 26/13 66.7 4.33, P(χ2
[1])<0.05 ?? 

00 013E 315C (C3) 00 068C F2E0 72/4 94.7   60.84, P(χ2
[1])<0.001  

 00 068C F2E0 110/2 98.2 104.14, P(χ2
[1])<0.001  

 00 064C FDF1  222/30 88.1 146.28, P(χ2
[1])<0.001  

 Overall/mean 404/36 91.8 307.78, P(χ2
[1])<0.001 YY♂? 

00 064E 44F0 (G4) 00 068D 0073  80/46 63.5 9.12, 0.01 >P>0.001  
 00 068C D9B1  7/3 70.0 1.6, P(χ2

[1])>0.05  
 Overall/mean 87/49 64.0 10.62, P(χ2

[1])<0.01 but 
>0.001 

?? 

00 064C F99B (G5) 00 068D 0073  107/41 72.3 29.43, P<0.001  
 00 068C D9B1 13/5 72.2 3.5, P>0.05  
 Overall/mean 120/46 72.3 32.99, P<0.001 ?? 
00 068C E167 (G35) 00 068D 0073  197/14 93.4 158.72, P(χ2

[1])<0.001  
 00 064E 4714 9/1 90.0 6.4, P(χ2

[1])<0.05; >0.01  
 Overall/mean 206/15 93.2 165.07, P(χ2

[1])<0.001 YY? 
00 064C FC4D (G24) 00 068C F2E0  10/170 5.5 142, P(χ2

[1])<0.001 XX neo♂? 
00 064E 1559 (G7) 00 068C F2E0  32/81 28.3 21.24, P(χ2

[1])<0.001 ??
00 064C F5FC (G14) 00 068C F2E0  50/13 79.4 21.73, P(χ2

[1])<0.001  
 00 068C F5C9  36/8 81.8 17.81, P(χ2

[1])<0.001  
 Overall/mean 86/21 80.4 39.48, P(χ2

[1])<0.001 ?? 
00 068C F8BB (H60) 00 064E 4714  7/2 77.8 2.778, P(χ2

[1])>0.05  
 00 068C DD59  69/2 97.2 63.225, P(χ2

[1])<0.001  
 Overall/mean 76/4 95.0 64.8, P(χ2

[1])<0.001 YY♂?
00 064C FEED (H61) 00 064E 4714  18/2 90.0 12.8, P(χ2

[1])<0.001  
 00 064C FDF1  57/24 70.4 13.44, P(χ2

[1])<0.001  
 Overall/mean 75/26 74.3 23.77, P(χ2

[1])<0.001 ?? 
00 068C D843 (H62) 00 068D 0B19  23/1 95.8 20.16, P(χ2

[1])<0.001  
 00 068C D9B1 27/3 90.0 19.2, P(χ2

[1])<0.001  
 00 068C F2E0  30/0 100 30, P(χ2

[1])<0.001  
 Overall/mean 80/4 95.2 68.66, P(χ2

[1])<0.001 YY♂?
00 068C E90E (H63) 00 068C D9B1  12/1 92.3 9.30, 0.01 >P>0.001  
 00 068C F2E0  36/7 83.7 19.56, P(χ2

[1])<0.001  
 Overall/mean 48/8 85.7 28.57, P(χ2

[1])<0.001 ??
00 068C F923 (H64) 00 068C D9B1  4/2 66.7 - - 
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4.3.2 Selection of three groups of families for sex linkage study 

The first selected group (type ‘A’) of families for linkage study were sired by three XY 

males represented in the first three crosses in Table 4.1. The other two groups were 

selected from the observation of frequency distribution (Figure 4.1) of sex ratios sired by 

pedigreed putative YY sires in TAF. Thus second group (type ‘B’) consisted of families 

from highest frequency class (91-100). The third group with intermediate sex ratios (60-

80% male progeny) also showed higher frequency. Table 4.2 presents all three types of 

crosses (consists of nine families) for sex linkage study. 

 

 

Figure 4.1 Frequency distribution of sex ratio means (% male offspring) of putative YY 

males x clonal XX females  
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Table 4.2 Selection of three types of crosses (consists of nine families) for sex linkage study 
 

Designated 
group/type of 
cross for sex 
linkage study 

Designated 
Family 

Tag no. of  
Sire x Dam 

No. of  
male/ 
female 

% 
male 

Inferred 
Sire 
genotype 

Basis of selection 

 
 

Type A 
 

Fam 1 00 068C D9E3 x   
00  0633 EA38 

71/75 48.6 XY  Sex ratios do not 
significantly differ 
from 1:1 (Table 4.1), 
(P(χ2

[1])>0.05) 
Fam 2 00 068C FBE2 x   

00  0633 EA38 
61/57 51.6 XY 

Fam 3 00 064E 46A8 x  
00 068C F2E0 

60/62 49.2 XY 

 
 
 
 

Type B 
 

Fam 4 00 068C E167 x 
 00 068D 0073 and 
 00 064E 4714 

206/15 93.2 Putative 
YY 

Sex ratios differ 
significantly from 1:1 
(Table 4.1), 
(P(χ2

[1])<0.001);  
High frequency of 
males (91-100%, 
Figure 4.2) 

Fam 5 00 013E 315C x 
 00 068C F2E0,  
00 068D 0B19 and  
00 064C FDF1  

404/36 91.8 Putative 
YY 

Fam 6 00 068C F8BB x 
00 064E 4714 and  
00 068C DD59   

76/4 95.0 Putative 
YY 

 
 
 
 

Type C 
 

Fam 7 00 064E 44F0 x  
00 068D 0073 and 
00 068C D9B1 

87/49 64.0 ?? Sex ratios differ 
significantly differ 
from 1:1 (Table 4.1); 
intermediate 
frequency of males 
(64-80%) 
 

Fam 8 00 064C F99B x  
00 068D 0073 and  
00 068C D9B1  

120/46 72.3 ?? 

Fam 9 00 064C F5FC x  
00 068C F2E0 and  
00 068C F5C9 

86/21 80.4 ?? 

 
 
 

4.3.3 Analyses of marker genotypes in type ‘A’ families 
 
Heterozygosity was detected in seven loci (out of 12) in LG1 in the sires of type ‘A’ 

families. The genotyping and subsequent analyses of pooled progeny DNA samples (BSA) 

from male (N=23) and female (N=23) showed polymorphisms at all of the seven markers. 

Individual progeny DNA were genotyped (after amplification of DNA with seven markers 

from LG1) along with parental DNA samples with those markers (N=48 in each family). 

The segregations of alleles with polymorphic markers are presented in Table 4.3. The 

details of the genotype profiles for each marker in BSA are given in Appendix IX.  
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4.3.4 Linkage and QTL analyses in type ‘A’ families 

Six loci were found to be significantly linked (LOD>3.00) following linkage analyses 

using the genotype information (Table 4.3). UNH719A was not found to be linked with 

any of those six loci (LOD<1.00) in Crimap ‘twopoint’ analysis. Crimap ‘Build’ produced 

the order of the linked markers for the six loci concerned (Table 4.4). The positioning of 

QTL (sex) obtained by ‘QTL Express’ from the individual genotype results of three 

families of type ‘A’ cross is given in Table 4.5. The graphical representation of linked 

markers and the QTL for sex on LG1 is given in Figure 4.2. 

 
 
Table 4.3 Segregation of LG1 markers in individuals of type ‘A’ families  
 

Marker 
name 

Sire 
tag 

code 

Sire 
genotype 

Dam 
genotype 

Possible 
genotypes in 

progeny 

No. of progeny with different 
genotypes 

Male (N=23) Female (N=23) 
UNH985  
 

D9E3 144/154 144/144 144/144 
144/154 

2 
21 

23 
0 

46A8 144/154 144/144 144/144 
144/154 

1 
22 

22 
1 

FBE2 144/154 144/144 144/144 
144/154 

0 
23 

23 
0 

UNH931 D9E3 227/261 227/227 227/227 
227/261 

1 
22 

22 
1 

46A8 227/261 227/227 227/227 
227/261 

1 
22 

22 
1

FBE2 227/261 227/227 227/227 
227/261 

4 
19 

21 
2

UNH213 D9E3 190/211 211/211 211/211 
190/211 

2 
21 

22 
1

46A8 190/211 211/211 211/211 
190/211 

1 
22 

22 
1

FBE2 190/211 211/211 211/211 
190/211 

6 
17 

22 
1

UNH995 D9E3 184/236 184/184 184/184 
184/236 

4 
19 

21 
2 

46A8 184/236 184/184 184/184 
184/236 

3 
20 

21 
2 

FBE2 184/236 184/184 184/184 
184/236 

0 
23 

23 
0 
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Table 4.3 (cont’d)  Segregation of LG1 markers in individuals of type ‘A’ families  
 

Marker 
name 

Sire 
tag 

code 

Sire 
genotype 

Dam 
genotype 

Possible 
genotypes in 

progeny 

No. of progeny with different 
genotypes 

Male (N=23) Female (N=23) 
UNH104 D9E3 147/197 147/147 147/147 

147/197 
4 

19 
21 

2

 46A8 147/197 147/147 147/147 
147/197 

2 
21 

22 
1

 FBE2 147/197 147/147 147/147 
147/197 

0 
23 

23 
0

UNH719A D9E3 121/127 121/127 121/121 
121/127 

2 
21 

1 
22 

 46A8 121/121 121/127 121/121 
121/127 

1 
22 

0 
23 

 FBE2 121/127 121/127 121/121 
121/127 

5 
18 

5 
18 

UNH719B D9E3 141/null Null/null Null/null 
141/null 

7 
16 

17 
6 

 46A8 141/143 Null/null 141/null 
143/null 

18 
5 

9 
14 

 FBE2 141/null 141/null Null/null 
141/141

0 
23 

3 
20

 

 

Table 4.4 Male-specific map of Nile tilapia LG1 produced from offspring genotypes of  

XY males x XX clonal females (type ‘A’ families) 

 

# 1 2 3 4 5 6 

Marker UNH931 UNH213 UNH985 UNH995 UNH104 UNH719B 

Distance cM 0.0 2.9 5.8 5.1 0.7 30.0 

Position cM 0.0 2.9 8.7 13.8 14.5 44.5 

# Sires Genotyped (%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 

# Dams Genotyped (%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 

# HS Genotyped (%) 138 (100%) 138 (100%) 138 (100%) 138 (100%) 138 (100%) 138 (100%) 

# Het Sires 3 3 3 3 3 3 

# alleles 2 2 2 2 2 3 
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Table 4.5 Mapping the QTL in linkage group 1 in cross type ‘A’ 

Linkage group Trait QTL location F value 
1  sex 9 cM 355.1 

*** 

LG1

UNH9310.0

UNH2132.9

UNH985
SEX

8.7
9.0

UNH995
UNH104

13.8
14.5

UNH719B44.5

 

Figure 4.2 The location of sex on linkage group (LG) 1 in Nile tilapia (from XY males x 

clonal females XX) 

4.3.5 Analyses of marker genotypes in type ‘B’ families 

The sires of type ‘B’ families were found to be heterozygous at seven loci (out of 12 

markers screened) in LG1, four loci in LG3 (out of seven markers screened) and seven loci 

in LG23 (out of 8 markers screened). The genotyping and subsequent analyses of pooled 

progeny DNA samples (BSA) from males (N=20 from each of the two families and N=28 
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from third family) and females (N=10 from each of the two families and N=4 from third 

family) showed that four markers from LG1 were polymorphic in sires of all three 

families. These were UNH995, GM258, UNH719 and UNH846. The other three markers 

showed polymorphism in at least one sire. Among those, only UNH995 seemed to show a 

strong association with sex during pooled sample analyses. The four markers from LG3 

and seven markers from LG23, although showing polymorphism in all of the three families 

of type ‘B’, did not show any association with sex in the BSA. The details of genotype 

profiles in BSA for families of type ‘B’ are presented in Appendix X. Individual progeny 

DNA were genotyped with UNH995, the only marker seemed to be tightly linked to sex in 

families of type ‘B’ and the analysis of allelic segregations is given in Table 4.6.  

 

Table 4.6 Association between UNH995 (LG1) and phenotypic sex in individual progenies  

of family type ‘B’ (putative YY males x clonal females)  

 
Cross type 
 
 

Sire tag code Sire 
genotype 

Dam 
genotype 

Male progeny  Female progeny 
Genotype No.  Genotype No.  

 
Type ‘B’ 
 
YY x XX 
(producing > 
90% male in 
progeny sex 
ratios) 

Fam 4 
00 068C E167 

184/236 184/184 184/184 
184/236 

11/20 
  9/20  
   ns 

184/184 10/10 
* 

Fam 5 
00 013E 315C 

184/236 184/184 184/184 
184/236 

  9/20 
11/20  
   ns 

184/184 
 

10/10 
* 

Fam 6 
00068C F8BB 

184/236 184/184 184/184 
184/236 

15/28 
13/28  
   ns 

184/184 
 

4/4 

* χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.05;  
               ns: Not significant: P>0.05 
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4.3.6 Analysis of marker genotypes in family ‘C’ families 

The sires of type ‘C’ families were found to be heterozygous at nine loci (out of 12 

screened) in LG1, six loci in LG3 (out of 7 markers screened) and all of the eight loci in 

LG23. The genotyping and subsequent analyses of pooled progeny DNA samples (BSA) 

from male (N=23) and female (N=23) showed five markers from LG1, four markers from 

LG3 and eight markers from LG23 to be polymorphic in all three families. Among these, 

only markers from LG1 showed association with sex in BSA. Three polymorphic LG1 

markers in family 7, two in family 8 and three in family 9 seemed to be associated with 

sex. Individual progeny DNA were genotyped with these markers in each family of type 

‘C’ to test the association between marker and sex. Table 4.7, 4.8 and 4.9 illustrate the 

genotypes for individual male and female progeny for these markers in families 7, 8 and 9 

respectively. The details of genotype profiles in BSA for families of type ‘C’ are presented 

in Appendix XI. 

 

Table 4.7 Segregation of LG1 polymorphic markers in family 7 (00 064E 44F0 male x 

clonal XX female) of cross type C (unknown sire genotype producing ~60-80% male 

progeny)  

 
Cross type 
 
 

Marker and 
LG 

Unknown 
Sire (44F0)  
genotype 

Dam 
(0073 

clonal ♀) 
genotype 

Male progeny  Female progeny 
Genotype No.  Genotype No.  

 
Type C 
 
Family 7 

UNH931 (LG1) 227/240 227/227  227/227  
227/240  
 

10/23 
13/23 
ns 

227/227  
227/240  

21/23 
2/23 
*** 

UNH995 (LG1) 236/252  184/184  184/236  
184/252  
 

12/23 
11/23 
ns 

184/252  23/23 
** 

UNH104 (LG1) 190/210  147/147  147/190  
147/210  

12/23 
11/23 
ns 

147/210  23/23 
** 

*** χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.001; ** P<0.01; 
               ns: Not significant: P>0.05 
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Table 4.8 Segregation of LG1 polymorphic markers in family 8 (00 064C F99B male x 

clonal XX female) of cross type C (unknown sire genotype producing ~60-80% male 

progeny)  

 
Cross type 
 
 

Marker and LG Unknown
Sire 
(F99B) 
genotype 

Dam 
(0073 

clonal ♀) 
genotype 

Male progeny  Female progeny 
Genotype No.  Genotype No.  

Type C 
 
Family 8 

UNH104 (LG1) 147/190 147/147  147/147 
147/190 

11/23 
12/23 
ns 

147/147 
 

23/23 
*** 

UNH719 (LG1) 127/141  127/127  127/127 
127/141 
 

10/23 
13/23 
ns 

127/127 
127/141 
 

19/23 
4/23 
** 

*** χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.001 
** χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.01 
               ns: Not significant: P>0.05 
 
 

Table 4.9 Segregation of LG1 polymorphic markers in family 9 (00 064C F5FC male x 

clonal XX female) of cross type C (unknown sire genotype producing ~60-80% male 

progeny)  

 
Cross type 
 
 

Marker and 
LG 

Unknown 
Sire 
(F5FC) 
genotype 

Dam 
(F2E0/F5C9 

clonal ♀) 
genotype 

Male progeny  Female progeny 
Genotype No.  Genotype No.  

Type C 
 
Family 9 

UNH931 (LG1) 227/245 227/227  227/227  
227/245  
 

  6/18 
12/18   
    ns 

227/227  
227/245  
 

  4/20 
16/20   
** 

UNH995 (LG1) 236/252  184/184  184/252  
184/236  
 

10/18 
  8/18 
   ns 

184/252  
 

20/20 
*** 

 UNH104 (LG1) 190/210  147/147  147/190 
147/210  
 

  8/18 
10/18   
   ns 

147/210  20/20 
*** 

*** χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.001 
** χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.01 
              ns: Not significant: P>0.05 
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4.3.7 QTL analyses using three families of cross type ‘C’ and using 6 families 

altogether from cross type ‘A’ and ‘C’ 

Following the QTL analyses in three XY families in section 4.3.4, two additional maps 

were constructed and QTL was positioned by  

i) using the genotype information from family 7, 8 and 9 of cross type ‘C’ with 4 markers 

(Table 4.10 and 4.11 and Figure 4.3a); and  

ii) using the genotype information, collectively, from three families of type ‘C’ and from 

three families of type ‘A’, with 4 markers (Table 4.12 and Table 4.13 and Figure 4.3b). 

 

Table 4.10 QTL analyses for type ‘C’ families 
 
# 1 2 3 4 

Marker UNH931 UNH995 UNH104 UNH719 

Distance cM 0.0 27.5 0.0 11.0 

Position cM 0.0 27.5 27.5 38.5 

# Sires Genotyped (%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 

# Dams Genotyped (%) 3 (100%) 3 (100%) 3 (100%) 3 (100%) 

# HS Genotyped (%) 138 (100%) 138 (100%) 138 (100%) 138 (100%) 

# Het Sires 2 2 3 1 

# alleles 2 3 3 2 

 

Table 4.11 Mapping the QTL in linkage group 1 for type ‘C’ families 

Linkage Group Trait QTL Location F value 

1 SEX 28 cM 23.87 

*** 
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Table 4.12 QTL analyses for genotypes of 6 families, combining crosses of type ‘A’ and ‘C’  

# 1 2 3 4 

Marker UNH931 UNH995 UNH104 UNH719 

Distance cM 0.0 16.2 0.4 18.6 

Position cM 0.0 16.2 16.6 35.2 

# Sires Genotyped (%) 6 (100%) 6 (100%) 6 (100%) 6 (100%) 

# Dams Genotyped (%) 6 (100%) 6 (100%) 6 (100%) 6 (100%) 

# HS Genotyped (%) 276 (100%) 276 (100%) 276 (100%) 276 (100%) 

# Het Sires 5 5 6 4 

# alleles 3 3 5 3 

 

Table 4.13 Mapping the QTL in linkage group 1 from combined A+C crosses: 

Linkage Group Trait QTL Location F value 
1 1 (sex) 17 cM 53.4 

*** 

LG1LG1

UNH931 0.0 UNH9310.0

UNH995
UNH104
SEX

16.2
16.4
17.0

UNH 95 UNH104 9
SEX 

27.5
28.0

UNH71935.2
UNH719 38.5

 

  (Figure 4.3a)                       (Figure 4.3b) 

Figure 4.3 The location of sex on LG1 in Nile tilapia (using genotype data from type ‘C’ 

families, 4.3a; and combined data from type ‘A’ + ‘C’ families, 4.3b) 
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4.3.8 Genome wide scan (GWS)  
 

An investigation of 62 DNA markers (mostly microsatellites) from all other LGs (i.e., 

except LG1, 3 and 23) to follow the segregation of alleles in pooled DNA samples of 

selected offspring in cross type ‘B’ (families of putative YY sires x clonal line females) 

showed a number of polymorphic markers from different LGs that seemed to be associated 

with sex from the BSA results. Genotyping of individual samples for these selected 

markers showed the segregation patterns illustrated in Tables (4.14, 4.15 and 4.16). The 

details of all the markers in the genome wide scan (GWS) and the fragment sizes from 

pooled DNA samples of male and female offspring along with the parental samples are 

given in Appendix XII. 

 

Table 4.14 Inheritance of polymorphic markers putatively associated with sex in BSA (during 

GWS) and genotyping individual samples (♂N=20, ♀N=10) for family 4 of cross type ‘B’ 

 
Cross 
type 
(fam)  
 
 

Marker  
(LG) 

Sire 
(E167  
putative 
YY♂) 
genotype 

Dam 
(0073 Cl 
XX ♀) 
genotype 

Male progeny  Female progeny 
BSA 

Genotype  
Individual
Genotype 

N=20 BSA 
Genotype  

Individual
Genotype 

N=10 

 
‘B’ (4) 
 
 

UNH159 
(2)  

251/257  251/251  251/257 
(257 LP)  

 251/251  
 251/257  

11 
  9 
ns 

251/257  251/251  
251/257  

5 
5 
ns 

UNH884 
(5)  

133/146  160/160  133/146/160 
(133 P) 
 

133/160 
146/160  

  9 
11 
ns 

133/146/160 
( 133 NP) 

133/160 
146/160  

2 
8 
ns 

UNH309 
(5)  

199/203  199/199  199/203  199/199  
199/203  

  9 
11 
ns 

199/199  199/199  
199/203  

4 
6 
ns 

GM027 
(8)  

176/191  176/176  176/191  176/176  
176/191  

10 
10 
ns 

176/191  
(191 NP)  

176/176  
176/191  

5 
5 
ns 

UNH960 
(10)  

153/182  182/182  153/182 182/182  
153/182  

 8 
12 
ns 

153/182 
(153 LP) 

182/182  
153/182  

6 
4 
ns 

P= Prominent, LP= Less prominent, NP= Not prominent (fragment peak size relative to size standard);  
ns=Not significant, P>0.05 (against expected ratio of 1:1 of each genotype) 
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Table 4.15 Inheritance of polymorphic markers putatively associated with sex in BSA (during 

GWS) and genotyping individual samples (♂N=20,  ♀N=10) for family 5 of cross type ‘B’ 

Cross 
type 
(fam) 
 
 

Marker 
(LG) 

Sire 
(315C 
putative  
YY♂) 
genotype 

Dam 
(0B19 Cl 
XX ♀) 

genotype 

Male progeny  Female progeny 
BSA 

Genotype  
Individual
Genotype 

N=20  BSA 
Genotype  

Individual
Genotype 

N=10 

 
 ‘B’ (5) 

UNH159 
(2)  

251/257  251/251  251/257 
(257 LP)  

 251/251  
 251/257  
 

9 
11 
ns 

251/257  251/251  
251/257  

5 
5 
ns 

GM215 
(11)  
 

223/248  223/223  223/248 223/223  
223/248  
 

9 
11 
ns 

223/223  223/223  
223/248  
 

6 
4 
ns 

GM377 
(12)  

280/310 310/310 280/310 
 

280/310  
310/310  

11 
9 
ns 

310/310 280/310  
310/310 

4 
6 
ns 

UNH974 
(17)  
 

184/232  
 

210/210  
 

184/210/232 210/232   
184/210  

11 
9 
ns 

210/232 
 

210/232   
184/210  

6 
4 
ns 

LP= Less prominent (fragment peak size relative to size standard) 
ns=Not significant, P>0.05 (against expected ratio of 1:1 of each genotype) 
 

Table 4.16 Inheritance of polymorphic markers putatively associated with sex in BSA (during 

GWS) and genotyping individual samples (♂N=16,  ♀N=4) for family 6 of cross type ‘B’ 

Cross 
type 
(fam) 
 
 

Marker 
(LG) 

Sire 
(F8BB  
putative 
YY♂) 
genotype 

Dam 
(0073 Cl 
XX ♀) 
genotype 

Male progeny  Female progeny 
BSA 

Genotype  
Individual 
Genotype 

N=16 BSA 
Genotype 

Individual 
Genotype 

N=4 

 
‘B’(6) 

UNH159 
(2)  

247/257  251/251  247/251/257  247/251  
 251/257  

8 
8 
ns 

251/257  247/251  
 251/257 

1 
3 
ns 

UNH440 
(17) 

176/198 198/198  
 

176/198 176/198 
198/198 

7 
9 
ns 

198/198  
 

176/198 
198/198 

2 
2 
ns 

UNH904 
(18) 

155/174 184/184  
 

155/174/184 155/184   
174/184   
 

9 
7 
ns  

155/184 155/184   
174/184   
 

2 
2 
ns 

ns =Not significant, P>0.05 (against expected ratio of 1:1 of each genotype) 
 
 

The genotyping of individual samples (in Tables 4.14, 4.15 and 4.16) in genome wide scan 

did not show any significant association between markers and sex. However, a single 

marker from LG5, UNH884, showed marginal P value (0.057) for significant association. 



                                                Sex linkage in Stirling Nile tilapia                                     Chapter 4 
 

M G Q Khan                                                        Institute of Aquaculture Page 112 
 

Therefore, an attempt was made to observe if there was any autosomal interaction between 

marker(s) from main sex determining region (LG1) and that in LG5. 

 

4.3.8.1 Inter-allelic interaction study between UNH995 (LG1) and UNH884 (LG5) 

The potential interaction of UNH995, a tightly sex-linked LG1 marker (as observed by 

QTL analyses) with one of the LG5 markers (UNH884) selected from GWS, in family 4 of 

cross type ‘B’ was observed. The genotypes in individual progenies in type ‘B’ with 

UNH995 (from Table 4.6) and genotypes in individual progenies in family 4 of type ‘B’ 

(marginal P value was observed only in this family) with UNH884 (from Table 4.14) are 

given in Table 4.17. 

 

Table 4.17 Interaction study of UNH995 (LG1) and UNH884 (LG5) loci in family 4, cross 

type ‘B’ (Putative YY males x clonal XX females)  

 
Marker and 
Cross type 
 
 

Family Sire 
genotype 

Dam 
genotype 

Male progeny  
Genotype 

(n=20) 

Female progeny 
Genotype 

(n=10)  

UNH995 
Type ‘B’ 
 

Fam 4 184/236 184/184 184/236=  9  
184/184=11 
 ns 

184/236=0 
184/184=10 
* 

UNH884 
Type ‘B’ 

Fam 4 
 

133/146 160/160 133/160=9 
146/160=11 
 ns 

133/160=2 
146/160=8  
ns 

* χ2 (against expected ratio of 1:1 of each genotype in female progeny):  P<0.05; ns= not significant 
 

From Table 4.17, it can be seen that one of the two types of UNH995 genotypes (184/236) 

produced exclusively male progeny. The other genotype (184/184) produced both types of 

progeny. An interaction could be hypothesised as, in presence of one of the two UNH884 

genotypes (133/160), the progenies with 184/184 (UNH995) could be male-biased, 

whereas the other (146/160) segregates approximately equally. There was no interaction 
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between these markers to explain female biased progeny. In addition, individual 

genotyping of progeny DNA from another family (family 5) of the same cross type ‘B’ 

was done with UNH884 (although, BSA did not show any association) and did not show 

any association with sex (Table 4.18). 

 

Table 4.18 Individual genotypes for UNH884 (LG5) in family 5 of cross type ‘B’   

Cross 
type 
(Family) 
 
 

Marker and 
LG 

Sire 
genotype 

Dam  
genotype 

Male progeny Female progeny 
Individual 
Genotype 

No.  Individual 
Genotype 

No.  

B (5) UNH884 (5)  146/160  160/160   146/160 
 160/160 

8/16 
8/16 

 146/160 
 160/160 

11/24 
13/24 
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4.4 Discussion 

4.4.1 Sex ratios in clonal females and different males 

The sex ratios in the three families of cross type ‘A’ (Table 4.2) were not significantly 

different (P>0.05) from 1:1 and there was a strong association between polymorphic sex 

and LG1. Therefore it can be postulated that a monofactorial model of sex determination is 

at work in all three families with female homogamety (XX) and male heterogamety (XY). 

The sex ratios in the three families of cross type ‘B’ (Table 4.2) were >90% male and 

significantly different (P<0.001) from 1:1. The sex ratios in three families of cross type ‘C’ 

(Table 4.2) were significantly different from 1:1 (P<0.01or P<0.001) and in the range of 

64-80% male. In contrast to the arbitrary designations of the families by Mair et al. (1997), 

where potential YY genotypes producing sex ratios significantly not different from 1:1 or 

only significant at the 5% level (0.01<P<0.05) were designated as XY and sex ratios 

significantly different at a probability level of 0.1% (P<0.001) were designated as YY, the 

current study assigned a criteria of P<0.001 with  >90% male progeny in the families as 

putative YY (cross type B). The other type of families (type ‘C’ families) had no such 

specific criteria (one family with P<0.01 and two families P<0.001, against 1:1 in progeny 

sex) and selected from the frequency distribution with a criterion of up to ~80% male 

progeny. The sires of these families are neither XY nor YY based on the sex ratios 

obtained. 

 

The basic sex determination mechanism of some species of Oreochromis (besides 

niloticus) has been proposed to be ‘predominantly’ monofactorial by several authors. 

Jalabert et al. (1971) studied the sex determination of O. niloticus and O. macrochir by 

evaluating the sex ratios of hybrid progeny and concluded that O. niloticus had a basic XX: 
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XY sex determination. However the sex ratios from the back cross of the male hybrid to a 

female O. niloticus did not conform to the expected ratios. Clemens and Inslee (1968) and 

Chen (1969) proposed that in O. mossambicus the female was the homogametic sex (XX) 

and the male heterogametic (XY) as in O. niloticus. There are some other studies where 

significant variations were observed from predicted sex ratio of 1:1 in this species. Shelton 

et al. (1983) reported sex ratios from mass spawnings of O. niloticus that ranged from 31 to 

83% male. Progeny sex ratios from normal XY males and XX females varied from 34.2 to 

70% with a mean close to 50%, with a slight but significant overall excess of males (Mair 

et al., 1997).  Tuan et al. (1999) reported a range of 15 to 100% male among 95 families of 

O. niloticus. Calhoun and Shelton (1983) examined the sex ratios within individual spawns 

of Nile tilapia. Numerous spawns significantly deviated from 1:1 sex ratios. Some females 

produced as high as 90% male progeny and others as high as 70% female progeny. 

Calhoun and Shelton (1983) reported that the female component of variation was 

responsible for 13-fold more variation in progeny sex ratios than the male component of 

variation suggesting the possibility that the modifying loci may actually lie on the X 

chromosome rather than the autosomes (Dunham, 2004). This would result in variants of 

the X chromosome of varying strength, if there was genetic variation at these modifying 

loci or at the X allele itself. However, where an appropriate XX: XY pattern of inheritance 

is assumed, the male would produce either an X or Y sperm, and an X-containing egg 

would be fertilized. If no autosomal factors influence sex ratios, or no variation exists at 

the XY locus, the fertilization of the egg with a Y sperm should result in male progeny. 

This would be particularly evident in a highly inbred population such as one produced by 

androgenesis (Phelps and Warrington, 2001). The highly inbred clonal line of females used 

as dams in the present experiment may also account for such uniform sex ratios provided 
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that the male component of variation was only ‘Y’ in absence of such variants (autosomal 

or XY locus) in the three families concerned in the current study. 

 
 
There are a number of studies where significant variations were observed from predicted 

sex ratios concerning the YY nature of the male parents, like the sex ratios in family type 

‘B’ and ‘C’ in the current study (both types were selected from YY pedigree). The sex 

ratios produced by the males that were designated as YY genotypes in a study by Mair et 

al. (1997) were not quite in accordance with those predicted by the hypothesis of simple 

monofactorial sex determination, many of them being somewhat lower than the expected 

100% male. Mair et al. (1991a) observed a single female in the progeny of one of four YY 

males progeny tested. YY male genotypes of Nile tilapia sired a mean of 95.6% males 

when mated with XX females (Beardmore et al., 2001) and reflected predominantly 

monofactorial genetic sex determining mechanism. However, Scott et al. (1989) observed 

no females in the sexing of 285 progeny of a single YY male crossed to 10 separate 

females.  

 

The families of type ‘C’ in the current study showed sex ratios significantly different from 

1:1, but approximately intermediate sex ratios (% male) between the other two groups (XY 

and putative YY). Significant overall excess of male progeny (as in type ‘C’ of the present 

study) has also been observed in a number of studies on Nile tilapia where an arbitrary 

designation of the sires was hypothesized. Mair et al. (1997) observed 70% male offspring 

in one family of Nile tilapia, but did not designate the sires as putative YY on the basis of 

an arbitrary designation (P>0.01 but <0.05 against 1:1 denoted as XY) for a range of sex 

ratios obtained from such families. Such criteria can be set to designate inferred genotypes 
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in the absence of genetic markers. The present experiment did not categorize such families 

in either YY or XY, and attempts to identify if families of such group (type ‘C’ crosses) 

possess any genetic variation (at single sex determining locus or any autosomal locus/loci) 

that can be identified by a sex linkage study.  

 

The existence of autosomal influence or a polyfactorial mechanism are popular hypotheses 

for the departed sex ratios observed. Capili (1995) described highly variable sex ratios of 

progeny from two YY males of Nile tilapia, ranging from 36% to 100% male (Capili, 

1995). This high level of heterogeneity was explained by polyfactorial sex determination in 

this species. The greater sample size and varieties of families may account for such 

aberrant sex ratios with significant percentage of females in progeny of arbitrary YY 

males. Mair et al. (1997) increased the overall proportions of males in the progeny of YY 

males derived from crosses of selected YY males (on the basis of the 100% male sex ratios 

in initial progeny tests) and indicated that the sex ratios could be some form of genetic 

response to the selection. The mean sex ratios of non-selected YY was lower than that 

from ‘selected’ YY and was explained by the erroneous inclusion of one or more sex ratios 

from XY males, incorrectly designated as YY males. It is therefore important to carefully 

define which statistical criterion should be set to designate the YY genotype. In the present 

study although two families were observed (in cross type ‘C’) with significant deviation 

from 1:1 at P<0.001 (and another at P<0.01), they were not designated as putative YY 

males (type ‘B’, also with P<0.001 against 1:1 sex ratio in progeny) considering a 

hypothesis that these families could be genetically different from normal (XY) or putative 

super (YY) males, and this difference may be due to the effect of autosomal loci or due to 

different variants at the XY locus. 
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Autosomal sex modifying loci have been postulated to explain the deviation from predicted 

sex ratios in some studies. Karayucel et al. (2004) postulated two unlinked ‘sex reversal’ 

loci in the Nile tilapia to explain the presence of males in a clonal line of females. Shirak et 

al. (2006) also observed effects of autosomal loci for sex determination in hybrid tilapia. 

 

An autosomal sex reversal locus was also postulated to explain the sex ratio departure in 

blue tilapia, O. aureus (Mair et al., 1991b, Hussain et al., 1994). Two unlinked loci have 

been hypothesised to control sex in blue tilapia (Lee et al., 2004), the action of a dominant 

male repressor (the W haplotype on LG3) and a dominant male determiner (the Y 

haplotype on LG1). Cytogenetic studies on male (ZZ), female (WZ) and neomale (WZ) 

blue tilapia (with synaptonemal complex), revealed unpaired regions in two bivalents in 

heterogametic individuals, the largest one and a small bivalent (Campos-Ramos et al., 

2001). This was intriguing given other evidence for a secondary sex-determining locus in 

this species (Mair et al., 1991b; Lee et al., 2004).  

 

It seems therefore, the sex ratios obtained in different crosses are supported by factors such 

as additional genetic, polygene or multiple alleles playing role to positively skew the male 

percentage in a population in a hypothesized XY male parents (additive or dominant locus 

or multiple alleles suppressing the expression of female genotype) or negatively skewing 

the male percentage in crosses sired by hypothesized YY male parents (suppressing the 

expression of ‘male’ determining locus or alleles by other loci/alleles).  

 

Environmental parameters are also thought to play a role (particularly temperature, 

Baroiller et al., 2009) in sex differentiation of this species. But in the present research the 
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environmental effects particularly of temperature is highly unlikely (because of controlled 

environmental conditions) and reinforces some other genetic sex determination system 

apart from single chromosomal effect which could be revealed by analysing the inheritance 

of markers in these families as well as genome wide scanning of the markers and studying 

the inheritance pattern (follows next).  

 

4.4.2 QTL and association study of markers 

Study on the seven loci from LG1 and segregation of alleles in individual male and female 

offspring in cross type ‘A’ and QTL analyses of the genotypes revealed six loci to be 

significantly linked (LOD> 3.00). UNH719A was not found to be linked with any of those 

six loci (LOD< 1.00) in CRI-MAP ‘twopoint’ analysis. The order of the markers produced 

by Crimap ‘Build’ showed that the genetic map length from the present study considering 

six loci was 44.5 cM (Table 4.4, Figure 4.2, results section). This was a sex-specific (male) 

map. No female recombination map could be constructed in the females due to their inbred 

clonal nature- homozygous for every locus (described in Chapter 3). Considering those six 

markers, the genetic map produced by Lee and Kocher (2007) gives a map length of 42.2 

cM, very close and comparable with the male-specific map in current study. The extensive 

linkage map of tilapia genome constructed from F2 progeny of an interspecific cross 

between Oreochromis niloticus and O aureus (Lee et al., 2005) shows significance linkage 

between SEX and six markers at the end of LG3 for a single family consisting of 70 

individuals. In LG1, the map distance (Lee et al., 2005) between UNH931 and UNH719 

was shorter (33 cM) compared to the LG1 map of Lee and Kocher (2007) and that in the 

current study. The linkage and order of markers in the present study are largely congruent 

except the double flip of UNH985 with previous maps (by Lee and Kocher, 2007; Lee et 
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al., 2005). Such flipping of the markers was also evident in the male-specific map 

produced by Lee et al. (2004) for Oreochromis aureus. Although the basic karyotype 

seems to be very similar and each linkage group can represent each chromosome by a 

series of DNA markers, the small scale difference of map orders could be due to a number 

of factors, for example number of individuals genotyped, genotyping accuracy/errors, 

different strains and species etc. 

 

The distance of the QTL for SEX in the study of Lee and Kocher (2007) was 3.4 cM from 

UNH995. The flanking marker on the other side of the QTL in their study, Wt1b, was 

closer to SEX, only 2.5 cM away but excluded as candidate for sex determination because 

of the two recombinants identified in breakpoint analyses. In the present study, the Wt1b 

marker (modified as Wt1b_short) was found to be monomorphic and SEX was positioned 

in between UNH985 and UNH995, being 4.8 cM away from UNH995 (QTL lies at 9 cM, 

Fstat =355.1, Figure 4.2, results section).  

 

Segregation of markers in three families of intraspecific O. niloticus was observed in order 

to map the sex determining region by Lee et al. (2003). Out of 105 markers, 80 markers 

successfully amplified and only two markers, UNH995 and UNH985, showed segregation 

differences between males and females in 2 of 3 families in BSA. Those two markers are 

also sex-linked in QTL analyses with the three families in the current study (Table 4.4, 4.5, 

Figure 4.2, results section) as UNH985(8.7)-SEX(9.0)-UNH995(13.8). From genotyping of 

individual fishes and subsequent scoring of the proportion of individuals whose phenotypic 

sex was consistent with the hypothesized Y chromosome by analysing the inheritance of 

multilocus haplotypes, Lee et al. (2003) showed that microsatellite markers GM201, 
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UNH995 and UNH104 were significantly associated with phenotypic sex. In their study, 

the markers had no association with the sex of fishes in the third family despite the fact 

that all three families came from the same stock (i.e., Stirling stock). Lee et al. (2003) 

suggested additional sex determining factors may be segregating in this stock and 

suggested analysing more families and strains from various sources for complete 

enumeration of the genes controlling sex in O niloticus. The current study was also 

designed to extend the analyses (using intraspecific Stirling Nile tilapia) of the segregation 

of markers in various families including type ‘C’ (as unknown type) and elaborated below 

for a precise understanding of the sex determining mechanism in this species. 

 

Study on sex determining mechanism on another species of tilapia (blue tilapia, 

Oreochromis aureus) has identified markers linked with two sex-determining loci 

segregating in a single family of blue tilapia (Lee et al., 2004). Sex determination of blue 

tilapia is thought to be a WZ-ZZ (female heterogametic) system controlled by a major 

gene. Lee et al. (2004) searched for DNA markers linked to this major gene using the 

technique of BSA and identified 11 microsatellite markers on linkage group 3 which were 

linked to phenotypic sex. The putative W chromosome haplotype correctly predicted the 

sex of 97% of male and 85% of female individuals. They have suggested the W locus lies 

on LG3 (within a few cM of markers GM354, UNH168, GM271 and UNH131). Markers 

on LG1 also showed a strong association with sex in this species, and indicated the 

segregation of a male-determining allele in this region. Analysis of epistatic interactions 

among the loci suggested the action of a dominant male repressor (the W haplotype on LG 

3) and a dominant male determiner (the Y haplotype on LG1). In the current study, SEX 

was positioned in LG1 with statistically highly significant F values (Fstat =355.1) and hence 
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LG3 markers were not used to observe the segregation difference in any of the three 

intraspecific same strain XYx XX families (type ‘A’).  

 

The genetic map from the three families of cross type ‘C’ shows a map length of 38.5 cM 

considering four loci (Table 4.10, Figure 4.3a, results section). This falls in between the 

map by Lee et al. (2005), 33 cM and that by Lee and Kocher (2007), 42.2 cM, accounting 

the four markers, which are also built in same order with those two maps. SEX (28 cM, 

Table 4.11, Figure 4.3a, results section) was positioned only 0.5 cM away from UNH995 

and UNH104 (both positioned at 27.5 cM). The male specific map of Lee et al. (2003) on 

O. niloticus also shows very similar positions of these two markers (Figure 4.4b, this 

section).  

 

The genetic map from the six families considering type ‘A’ and type ‘C’ cross shows a 

map length of 35.2 cM considering four loci (Table 4.12, Figure 4.3b, results section) 

which can be compared to that produced by using genotypic data of three putative YY 

families of type C cross (38.5 cM). This map length is much closer to that of Lee et al. 

(2005), 33 cM. The marker orders are congruent with those of Lee et al. (2003, Figure 

4.4b, this section), Lee et al. (2005, Figure 4.4c, this section) and Lee and Kocher (2007, 

Figure 4.4d, this section). SEX (17 cM) was positioned only 0.8 cM away (Figure 4.4a, 

this section) from UNH995 (16.2 cM) and 0.4 cM away from UNH104 (16.6 cM). This 

genetic map produced by the genotypic data of 6 families (consisting of family ‘A’ and 

‘C’; offspring N=276) supports the highest correspondence of phenotypic sex with two of 

three microsatellite markers as shown by Lee et al. (2003) and also an evidence for the two 

markers (UNH995 and UNH104) to be tightly linked (only 0.4 cM, comparable to the 0.7 
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cM by Lee and Kocher, 2007) and on the same side of the QTL for sex, which maps closer 

to these markers in the current study (0.8 cM from UNH995) compared to the distance of 

3.4 cM in the study of Lee and Kocher (2007). The linkage maps from Lee et al. (2003), 

Lee et al. (2005) and Lee and Kocher (2007) are presented for a comparison of marker 

order and position of sex compared to that in the present study (Figure 4.4).  

 

 

 Fig 4.4a                      Fig 4.4b                        Fig 4.4c                           Fig 4.4d 

Figure 4.4 Location of SEX in the present study (a) using four informative markers in six 

families (type ‘A’+ type ‘C’) and comparing orders of map and/or location of sex with 

other works: b) Lee et al. (2003), c) Lee et al. (2005) and d) Lee and Kocher (2007) 
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The higher similarity of the map orders using different families (in combination) and 

mapping the QTL very close to UNH995 and UNH104 refines the location of the major 

sex determining region in LG1 in Oreochromis niloticus. 

 

An observation of the allelic inheritance pattern of LG1 markers in families of cross type 

‘B’ (Table 4.6) and ‘C’ (Table 4.7, 4.8 and 4.9) illustrated that microsatellite marker 

UNH995 was an informative (in terms of segregation of alleles) polymorphic marker in all 

families of cross type ‘B’ (family 4, 5 and 6) as well as two of the families of cross type 

‘C’ (family 7 and 9) while another marker UNH104 was informative in all of the families 

in cross type ‘C’. These two markers along with GM201 showed increasing association 

with phenotypic sex and predicted phenotypic sex with 95% accuracy in two out of three 

families in the study of Lee et al. (2003). Analysis of the inheritance of marker UNH995 

and UNH104 in F7 (cross type ‘C’) in the current study showed that progeny that inherited 

one of the UNH995 alleles (i.e., 236) and UNH104 alleles (i.e., 190) from the male parent 

were all male, while inheritance of the other allele (allele 252 in case of UNH995 and 

allele 210 in case of UNH104) was associated with a mixture of male and female progeny. 

In the case of UNH931, allele 240 was predominant in male progeny of family 7. In family 

8, only UNH104 showed such a pattern of allelic association with sex. In family 9, 

inheritance of marker UNH995 as well as UNH104 alleles followed the same pattern of 

allelic segregation with sex as that in family 7. This finding suggests that some alleles of 

the sex determining system in this species are “ambivalent” (symbolized as allele ‘A’)– 

thus the male parents of type ‘C’ families would be labeled as ‘YA’ rather than putative 

YY. The same is true to a lesser extent for families of type ‘B’, where one paternal LG1 

haplotype was associated with only male progeny and the other with some female progeny. 
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Thus, the allele(s) giving close to 100% males are ‘strong Y’ (symbolised as “Y”) and the 

allele(s) giving some female progeny are “weak Y” (tentatively symbolised as “Ұ”). On 

the other hand, the allele(s) producing exclusively female individuals (as in clonal line 

females) can be considered as “strong X”. The presence and actions of such multiple 

alleles (X, Y, Ұ and A) at the same sex-determining locus of Nile tilapia are the unique 

findings in the present study. 

 

A summary of LG1 haplotypes using UNH995 and UNH104 is given in Table 4.19 for 

type ‘B’ and ‘C’ families that show the ‘ambivalent’ and weak Y nature of some parental 

sex-determining alleles. 

 

Table 4.19 Summary of segregation of UNH995 and UNH104 alleles in families of type 

‘B’ and type ‘C’ with ‘ambivalent’ nature  

 
Marker  

 

 

Cross type Sire 

genotype 

Dam 

genotype 

Male progeny  Female progeny 

Genotype No.  Genotype No.  

UNH995 

 

Type B  

(all families) 

184/236 184/184 184/184 

184/236 

35/68 

33/68 

184/184 

184/236 

22/22 

 0/22 

Type C  

(2 families) 
236/252 184/184 184/236  

184/252  
22/41 

19/41 

184/236  

184/252 
 0/43 

43/43 

UNH104 Type C (fam 7) 190/210 140/140 140/190  

140/210 

12/23 

11/23 
140/190 

140/210 
 0/23 

23/23 

Type C (fam 8) 140/190 140/140 140/140 

140/190 

 8/16 

 8/16 
140/140 

140/190 

23/23 

 0/23 

Type C (fam 9) 190/210 140/140 140/190  

140/210 

12/23 

11/23 
140/190 

140/210 
 0/23 

23/23 
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The discovery of “ambivalent” alleles at the main sex determining locus in this experiment 

could explain the failure to associate phenotypic sex and any region of the genome in one 

of the three families in the study of Lee et al. (2003).  XA individuals seem to show a sex 

ratio of approximately 1:1 (see sex ratios in Table 4.19, for type ‘C’ families: with 

UNH995, progenies of genotype 184/236 are all male, whereas progenies of genotype 

184/252 giving sex ratio approximately 1:1, giving 64-80% males overall), if the female 

parent was XX and the male was AA (homozygous for ambivalent ‘A’). This hypothesis 

could also explain the single fully inbred gynogenetic clonal line with a sex ratio close to 

1:1 (but expected to be all female) in the study of Sarder et al. (1999). If the founder 

mitotic gynogenetic female was AA, this ratio would be observed. 

 
 
4.4.3 Association studies of markers from LG1 and genome wide scan 

 
After an initial BSA investigation of association of markers from genome wide scan 

(GWS) with sex in three families (family 4, 5 and 6) of cross type ‘B’, an observation of 

the genotype data of the individual offspring was performed. The analysis showed that, in 

family 4, one marker from LG5 (UNH884) was informative in the sense that one allele 

(133) was less prominent in females. However, no significant departure of the two 

genotypes was observed against 1:1 (8:2, P=0.057). Females were predominantly 146/160 

whereas males 133/160 and 146/160, two alleles (133, 146) being distributed 

approximately equally. Although the sample number of female individuals was low (type 

‘B’ crosses had >90% ♂), an attempt was made to see if there was any interaction of this 

locus with one of the LG1 markers (UNH995) in association with sex (Table 4.17). It 

seemed allele 236 of locus UNH995 might interact with allele 133 of locus UNH884. On 

the other hand, an analysis of the genotype of 184/184 (UNH995) which showed a 
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segregation in female as well as in male could be made with the two types of genotypes 

predicted by UNH884. In the presence of allele 133 (UNH884), the fish of genotype 

184/184 (UNH995) turns into male whereas with allele 146 (UNH884), individuals could 

be either male or female. Thus loci or allele/s from LGs other than LG1 that could show an 

interaction with sex determining alleles linked to 184/184 (UNH995) to establish female 

sex in those families (hypothesizing the male as YY) were not observed. An increased 

number of genotyped progeny with UNH884 for another family of type ‘B’ (family 5), was 

merely a further demonstration that there was no significant association between UNH884 

and sex (Table 4.18).  

 

4.4.4 Summary 

A summary and comparison of the investigation and outcomes of the sex-linkage study in 

Nile tilapia (in the present work) can be done with those of others. Several studies have 

identified genetic markers linked to sex determination in tilapia, with either pure or hybrid 

strains. Lee et al. (2003) identified an XY system on LG1 in Nile tilapia, Lee et al. (2004) 

observed epistatic interactions between a WZ system on LG3 and the XY system on LG1 

in a strain of blue tilapia. Two distinct QTL for sex determination in tilapias were reported 

on LG23 in a hybrid cross between blue tilapia and Mozambique tilapia (Cnaani et al., 

2003, 2004). Eshel et al. (2009) provided evidence of association of a microsatellite marker 

on LG23 (UNH898) with sex in Nile tilapia, besides weak association of markers from 

LG1. A complex model augmenting the sex chromosome with an autosomal locus was 

suggested by Hammerman and Avtalion (1979) where simple genetic models did not 

explain all of the observed progeny sex ratios. New QTL for sex determination might 

emerge in hybrids due to the interactions of alleles from different species such as those 
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predicted by the autosomal theory (Hammerman and Avtalion, 1979). Cnaani et al. (2008) 

provided support for this model, in that both LG1 and LG3 contribute to sex determination 

in some families in Oreochromis spp. However, Mair et al. (1991b) and Shirak et al. 

(2006) reported significant complications in sex-linkage study in hybrid lines of tilapia 

because of the probability of interactions between multiple QTLs in the sex determination 

pathway. The sex-linkage analyses in the present study was based on pure strain Nile 

tilapia with a reference line of clonal females, and using three different types of crosses 

involving nine families (selected on the basis of sex ratios from varieties of families), so 

that a clear scenario of the sex-determination system in this species can be found. The 

genome wide scanning of markers and study on the inheritance of markers and sex in the 

present study did not support the theory of an autosomal modifier or interaction of loci in 

the families studied. Rather, another model, of segregation of multiple alleles at the same 

sex determining locus, similar to that proposed by Wohlfarth and Wedekind (1991), was 

more appropriate in the current study. The observation of polymorphism in a single sex 

determining locus (in XX/XY system) was the key finding in the sex determination studies 

in the Stirling strain of Nile tilapia.  
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Chapter 5 
Marker-assisted selection in Nile tilapia (O. niloticus)  

 
5.1 Introduction 

The concept that it is possible to infer the presence of a gene from the presence of a marker 

tightly linked to the gene is the basis of marker-assisted selection (MAS). MAS refers to a 

selection process in which future broods are chosen based on genotypes using molecular 

markers. To implement MAS, researchers need to produce high-resolution linkage maps, 

understand the number of QTL affecting a given performance or production trait and their 

mode of inheritance and relative contribution, determine the linkage and potential 

interactions of different QTL for the trait and for other traits, and estimate the economic 

importance of each trait (Poompuang and Hallerman, 1997). Selection of one trait may be 

made at the expense of another, and a well-planned MAS program should take all 

economically important traits into consideration (Liu and Cordes, 2004).  

 

In marker-assisted selection, breeders select animals or plants carrying beneficial 

genotypes and alleles of markers that are associated with or contribute to a trait of interest. 

Thus, as soon as knowledge about genes or QTL affecting essential traits becomes 

available and haplotypes carrying preferred alleles are flanked by molecular markers or 

causative mutations are found within the genes responsible for particular traits, MAS can 

be implemented (Rothschild and Ruvinsky, 2007). Successful implementation of MAS 

requires well-developed genomic tools, including information on genetic variations 

relevant to the QTL phenotype, mode of inheritance, interactions with other contributing 

QTLs and economical magnitude of the QTL studied (reviewed by Poompuang and 

Hallerman, 1997). MAS can be well applied to sort out potential broodstock by early 

selection before maturity and help reduce the time and effort in breeding programmes.  



                                            Marker-assisted selection in Nile tilapia                                Chapter 5 
 

M G Q Khan                                                    Institute of Aquaculture Page 130 
 

It is important to have high-density and high-resolution genetic maps, which are saturated 

by markers in the vicinity of a target locus (gene) that will be selected. It is generally 

expected that the maximum separation between markers and the QTL is no greater than a 

few centimorgans (generally 1-2 cM) (Chistiakov et al., 2005). Strategies to find markers 

tightly linked to the target gene are similar to those that are used for fine QTL mapping. 

When implementing flanking marker analysis, a large segregating population is screened 

with markers flanking the target interval (usually 5-10 cM) in order to identify individuals 

with a crossover within that interval (Dixon et al., 1995). In pooled sample mapping, DNA 

from individuals from a large segregating population that share a given phenotype is 

pooled (Churchill et al., 1993). DNA from each pool is analysed with markers flanking the 

target gene. Once a tight linkage is found between a molecular marker and a gene of 

interest, the inheritance of the gene can be traced in selective breeding programs.  

 
 
Not all traits are equally suitable for MAS implementation. This is because the MAS 

technology should be economically justifiable in terms of the cost of development of 

technology and any potential gains. Assuming that this technology is based on relatively 

complex and expensive methods of sampling, DNA extraction, marker identification, and 

analysis on a mass scale, costs can initially be quite high until the marker is identified. 

Additional costs of running a MAS could be relatively small. There are several criteria 

affecting potential benefits of MAS that need to be considered. For examples, in a variety 

of situations, traits (e.g., meat quality) are not known or cannot be recorded prior to the 

required selection decisions.  So, markers might be very valuable in improving the 

genotypes of hidden phenotypes of sires and dams in relation to the meat or flesh quality. 

Another example is resistance or susceptibility of animals to a certain disease or parasite, 
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which might occur only at the time of exposure. Here again MAS could be useful in 

promoting the most resistant genotypes. In some species (including numerous marine 

species) selection at the time of exposure could be an alternative option particularly when 

there is a major locus determining resistance (Notter and Cockett, 2005). MAS can be used 

in sex control in aquaculture species for desirable production performance. Young animals, 

which have yet to be involved in progeny-test schemes, present a better opportunity for 

MAS to be used than older individuals who might have a significant number of offspring 

with measured traits. As estimated breeding values (EBV: estimation of genetic worth of 

animals or animal's performance in a trait as compared to the base for that flock or breed. 

The value of an EBV in one individual is compared to all the animals in its linked gene 

pool that is within that flock, and across flocks, as well as across years, greatly increasing 

the accuracy of that information in predicting genetic superiority) of such young 

individuals can not be predicted, MAS using markers for the desired traits can be quite 

useful to preselect animals for further testing or to speed generation interval. In some 

instances, unfavourable haplotypes carrying alleles with the opposite effect on the breeding 

value might occur in a population. Such undesirable linkage disequilibrium can be better 

handled by MAS, which will facilitate identification of rare and desirable recombinant 

haplotypes. These recombinant haplotypes might present a new opportunity for selection 

and could be very beneficial. However, the initial investments in gene and QTL mapping, 

which are unavoidable, might be significant. For companies selling improved breeding 

stocks, active use of MAS can be viewed also as a marketing tool and may serve as 

evidence of the high genetic quality of their product to some customers. GeneSTAR® is a 

very suitable example of such situations to assess potential high meat quality in young 

bulls (Genetic Solutions, 2006). Buyers are willing to pay premium prices for animals with 
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presumed superior qualities. MAS has successfully been implemented in farmed animals, 

such as cattle (Maillard et al., 2003), pig (Rothschild, 2003), sheep (Notter and Cockett, 

2005) and chicken (Malek and Lamont, 2003). In livestock, commercial implementation of 

MAS related to improvement of quantitative traits has been employed for removal of 

deleterious major genes, growth rate, meat quality, disease resistance, and reproductive 

traits in pigs and in other species such as cattle where markers are used routinely for 

improvement of protein percentage in milk and marbling and tenderness in beef cattle 

(Dekkers, 2004). 

 

In aquaculture, most of the genetic improvements in quantitative traits to date have been 

performed following the use of traditional breeding approaches. The growing numbers of 

markers and the development of useful maps and candidate genes and markers in some 

species have allowed investigation of QTL(s) for a number of traits in some aquaculture 

species, for examples, in rainbow trout for thermal tolerance (Perry et al., 2001, 2005), 

spawning time (O’Malley et al., 2003), embryonic development (Robison et al., 2001), and 

disease resistance (Ozaki et al., 2001); in salmon, for body weight and condition factor 

(Reid et al., 2005); in arctic charr, for temperature tolerance (Somorjai et al., 2003); in 

catfish, for feed efficiency and performance traits (Karsi and Waldbeiser, 2005), and 

immune response (Karsi et al. 2005). However, in commercial aquaculture ventures, using 

markers in selection programmes is quite new. One good example of actual application of 

MAS is IPN (infectious pancreatic necrosis) disease resistance in salmonids (Houston et 

al., 2008)- which to the author’s knowledge is the first commercial application of QTL in 

fish.  
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MAS can be applied in aquaculture species where sex control is important. One sex may 

grow faster than the other or has maturation features that are less desirable for production 

purposes. For example, in fish species such as Atlantic halibut, barfin flounder and half-

smooth tongue sole, females grow faster and bigger than males while in tilapia species, the 

males grow faster, and therefore are of greater value. Monosex stocks have been developed 

in various fish species including rainbow trout, chinook salmon (Hunter et al., 1983), Nile 

tilapia (Mair et al., 1997) and halibut (Tvedt et al., 2006) typically combining sex reversal, 

progeny testing and selection depending on the sex determination system (XX/XY or 

WZ/ZZ) and the desired sex (all female or all male). Mixtures of genetic males and 

females are treated with androgens in order to masculinise the genetic females into 

functional males (except half smooth tongue sole, with WZ-ZZ system of sex 

determination). The identification of the two types of males (XY and XX) is commonly 

carried out by means of a test crossing of each individual with regular females (XX) and 

progeny testing of the sex of the offspring.  

 

The generation and maintenance of monosex stocks require that genetic and phenotypic 

sexes are independently discernible. The inability to identify the genetic sex of neo-males 

could hamper the development of monosex stocks. Various molecular markers, including 

sex-specific and sex-linked genetic markers have been isolated and used for the assessment 

of the genetic sex of fish. For example, male (Y)-specific DNA markers were isolated and 

used for genetic sex identification in salmonids (Devlin and Nagahama, 2002; Felip et al., 

2005). Also, male-specific RAPD markers were isolated from African catfish (Clarias 

gariepinus) (Kovacs et al. 2000). Two male-specific AFLP markers were also identified in 

the three-spined stickleback, Gasterosteus aculeatus (Griffiths et al., 2000), but were found 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib11
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib22
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib15
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib9
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not to be applicable in the nine-spined Pungitus pungitus and 15-spined stickleback 

Spinachia spinachia (Griffiths et al., 2000). A sex-determining gene, DMY, was isolated 

from medaka (Oryzias latipes) (Matsuda et al., 2002); however, this gene, although sex-

specific in medaka and O. curvinotus, is not the sex-determining gene in any other fish 

tested (Volff et al., 2003). Recently, sex-linked AFLP (Ezaz et al., 2004a) and 

microsatellite markers (Lee et al., 2003; Lee and Kocher, 2007) have been identified in 

Nile tilapia (Oreochromis niloticus). However, marker-assisted sex control has been 

reported only in salmonids (Devlin and Nagahama, 2002) and half-smooth tongue sole, 

Cynoglossus semilaevis (Chen et al., 2008).  

 

Microsatellite markers are useful in early stages of MAS for the primary selection of 

parents for further crossing and subsequent genetic characterisation of progeny. For this, 

markers tightly linked to the target QTL are used. In the present study, one of the two 

tightly sex linked LG1 markers, UNH995, in Nile tilapia was utilised in MAS. Males were 

isolated on the basis of genotypes that were homozygous for the allele associated with the 

strongest male (sex) determination to designate them as “true” or “super (YY) males”. 

These were stocked as ‘true’ YY red line male to add to the existing YY pedigree in 

Tropical Aquarium Facilities to advance YY line further or to assist production of 

genetically male Nile tilapia.  

The objectives of the present study were: 

i. To identify ‘true’ YY males on the basis of genotype data in sex linkage study 

ii. To breed the ‘true’ YY males with clonal and outbred females for sex ratio study 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib23
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib5
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5.2 Materials and methods 

5.2.1 YY female broodstock 

Two putative YY females were used in the study. They were selected based on the YY 

pedigree of the Tropical Aquarium Facilities at the Institute. 

5.2.2 Validation of YY females with sex ratios 

The selected YY females were crossed with different types of males to ensure their YY 

nature on the basis of progeny sex ratios and not on marker genotype at this stage. A total 

of nine males (3 putative YY males, 4 XY males and 2 XX neomales) were used to 

observe the progeny sex ratios in a total of 833 individuals (146 offspring with YY males, 

562 with XY and 125 with XX neomales). The sexing of offspring started at 2.5 months 

old using the acetocarmine gonad squashing method described in Chapter 2. 

5.2.3 Breeding of YY females to initiate MAS 

The YY females, after a validation with sex ratios, were used to breed with two putative 

YY males and three XY males that were earlier confirmed using sex linkage studies 

(Chapter 4). 

 

5.2.4 Sex reversal and Control group progeny 

DES treatment (hormonal feminization) was carried out for half of the offspring from YY 

females x YY males and YY females x XY males. The details of the sex reversal technique 

were described in Chapter 2 section 2.4. Two replicates were set up (except two crosses) 

for each treatment and control group with 50 offspring/tank. Thus the intention was that 

half of the offspring from YY female x YY male crosses would be reversed to YY 
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neofemales and that treated fry from YY female x XY male crosses would result in a 

mixture of XY neofemales and YY neofemales. The YY neofemales would be separated 

(after genotyping) to stock in TAF YY pedigree as broodstock. The other half of the 

progeny groups were kept as controls, which should give putative YY male progenies from 

YY females x YY males, and a mixture of putative YY male and XY male progenies from 

YY females x XY males. The MAS would be used to separate ‘true’ YY males for 

increased production of all genetically male tilapia (GMT). 

 

5.2.5 Rearing the offspring in recirculated tanks 

The DES treated individuals were transferred from static plastic tanks to tanks in 

recirculating systems after three weeks of hormone treatment, where they were grown for 

six months. The control groups were also kept in the same kind of tanks. At the age of 

three months, one replicate from each of two types of crosses from DES treatment and 

control groups were sexed by gonad squash to observe the sex ratios.  

 

5.2.6 PIT tagging of grow-out individuals (F1) 

A total of 47 fish from the control groups (including both types of crosses) were selected 

randomly, PIT tagged and fin biopsied. A total of 16 fish from the DES treated groups 

(including both types of crosses) were selected, PIT tagged and fin biopsied. 

 

5.2.7 DNA extraction, PCR and genotyping 

DNA was extracted from the fin clips, amplified and genotyped for only a single marker-

UNH995 from LG1. 
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5.2.8 Separation of ‘true’ supermales (YY males) 

On the basis of earlier studies on sex linkage and genotype profiles (Chapter 4), putative 

‘true’ supermales were separated. Thus, the selected (and separated) YY males were 

homozygous for the strongest male-associated UNH995 allele (with genotype 236/236 at 

UNH995 locus). 

 

5.2.9 Verification of ‘true’ YY males 

Two first-generation selected YY ‘true’ supermales (selected with marker UNH995) were 

verified. One was crossed to a clonal line female and the other crossed to an outbred 

female to observe the sex ratio in progeny. The breeding plans for MAS are outlined in 

Figure 5.1.   

Put. YY ♀♀ Put. YY ♂♂XY ♂♂ XX

Separate ‘true’ YY ♂♂
based on genotype

XY neo ♀♀
YY neo ♀♀

YY ♂♂

DES NON-DES

XY ♂♂
YY ♂♂

NON-DES DES

YY neo ♀♀

Separate ‘true’ YY neo ♀♀
based on genotype, stock 
at TAF as potential broods

Separate ‘true’ YY neo ♀♀
based on genotype, stock 
at TAF as potential broods

Putative ‘true’  
supermales XX outbred ♀♀Clonal ♀♀

Observe sex ratios to validate ‘true’ YY ♂♂
and the success of MAS

Screened 
by crossing 
to XX

 
Figure 5.1 Flowchart of breeding strategies in marker-assisted selection of Nile tilapia 
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5.3 Results 

 
5.3.1 Observation of sex ratios 

Progeny sex ratios of putative YY females (selected from YY pedigree at TAF) crossed 

with different types of males are given in Table 5.1. In one cross between a putative YY 

female (00 068D 00AD) and a clonal neomale (00 064D 1843), a slight variation from 

expected progeny sex ratio was observed (94% male, N=117). Nevertheless, based on the 

observed progeny sex ratios (~100% male progeny) from crosses with two other types of 

males (putative YY and XY), the two putative YY females were used to initiate MAS.  

 

  Table 5.1 Sex ratios in putative YY females x different types of males  
 
 

Males PIT tag no.  Sex ratios with putative  YY females  (% ♂ in parentheses) 

00 068D 00AD  00 068C F30D  

Putative YY 00 013E 315C  M=25 F=0 (100) M=54 F=0 (100) 

00 068C E167  M=37 F=0 (100) - 

00 068D F8BB  M=30 F=0 (100) - 

XY 00 068C D9E3  M=179 F=1 (99) - 

00 068C FBE2  M=34 F=0 (100) - 

00 064E 46A8  M=66 F=0 (100) M=121 F=1 (99) 

00 0638 D41C  M=160 F=0 (100) - 

XX neo 00 064D 1843  M=110 F=7 (94) M=3 F=0 (100) 

00 064C EBEE - M=5 F=0 (100) 

   M=male progeny, F= female progeny 
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5.3.2 Observation of the rare females’ genotype(s) with UNH995 in putative YY 

female x XX neomale 

The genotypes of small number (N=7) of female offspring derived from a cross (Table 5.1) 

between a putative YY female (00 068D 00AD) and a clonal neomale (00 064D 1843 XX 

male). The other putative YY female crossed with two XX neomales produce very small 

number of viable progeny (n=8) and no females were present to be genotyped. 

Table 5.2 Genotypes of the female progeny with UNH995 in cross between YY female 

and XX clonal neomale (Nine male progeny were also genotyped) 

Cross 
type Dam tag Dam 

genotype Sire tag Sire 
genotype 

Offspring genotype 
Female progeny 
(n=7) 

Male progeny 
(N=9) 

(YY 
female  
x XX 
male) 

00AD YY♀   236/252 1843 XX ♂  184/184 184/236 (N=0) 
184/252 (N=7) 

* 

184/236 (N=4) 
184/252 (N=5) 
 ns 

*  χ2 (against expected ratio of 1:1 of each genotype):  P<0.05;  ns: Not significant: P>0.05 

 
The genotype results can be compared to that obtained from cross type ‘B’ (putative YY 

males crossed with clonal XX females giving >90% male progeny) where all females had 

same paternal allele (allele 252). No female was found with allele ‘236’ (Table 5.2). This 

result further justified the strategy of marker-assisted selection. 

5.3.3 Survival and sex ratios in DES treated and control group progeny 

The survival rates and sex reversal rates (in treatment groups) were variable in putative YY 

females x YY males and YY females x XY males and are shown in Table 5.3.  
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Table 5.3 Observation of progeny sex in sex-reversed group and control group  
 
Cross type Dam 

tag 
Sire 
tag 

R Survival (no.) in DES-
treated group (initial 
no.=50/R) 
 

Survival (no.) in control 
group  
(initial no.=50/R) 
 

3 mo No. of  ♂ and ♀ 
by HS in 6 mo 

3 mo No. of  ♂ and ♀ 
by HS in 6 mo 

Putative 
YY♀ x 
putative 
YY♂ 

 F30D  315C R1 20a

♂=12 
♀=8 

- 38 b 

♂=38 
- 

R2 18 ♂=3 
♀=2 

40 ♂=26 
♀=0 

00AD  F8BB R1 35 ♂=26 
♀=2 

        35 ♂=30 
♀=0 

R2 38 ♂=29 
♀=3 

       35 * - 

Putative 
YY♀ x 
XY♂ 

F30D  
  

 D9E3  R1 12 a

♂=7 
♀=5 

- 33 ♂=28 
♀=0 

46A8  R1 25* - 36 ♂=26 
♀=0 

R2 28 ♂=12 
♀=6 

34 b 

♂=34 
- 

00AD  
 

 D9E3  R1 20 1 
♂=1 

 

40 ♂=35 
♀=0 

 FBE2  R1 32* - 38 ♂=32 
♀=0 

R2 30 ♂=12 
♀=10 

 35 * 
 

- 

a gonad-squashed batch from treatment group   b gonad-squashed batch from control group  HS=Hand sexing;  
R= Replication; * these batches were discarded at 4 months of age due to the shortage of tanks  
 
 

The mean survival rates in DES treated and control groups in three months were 51.6% 

and 72.8% respectively. The low number of individuals obtained in six months 

(particularly in treatment groups) was due to the mortality by cannibalism and aggression. 

The mean sex reversal rates (male to female) in DES treated groups and controlled groups 

were 40.8% and 0% respectively in three months. Sufficient number of males (n=177) was 

obtained from control groups in six months to be tagged. The number of sex-reversed 

individuals from DES treated group was rather low (n=23). 
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5.3.4 Genotype of offspring with UNH995 

The genotypes of 47 normal (control group) and 16 sex-reversed PIT-tagged F1 progeny 

(that were grown up to mature sexually) are summarized in Table 5.4 and 5.5.  

 
Table 5.4 Genotypes of control group fish (F1) with UNH995 
 
 
Cross type Dam tag Dam genotype Sire tag Sire genotype No.  

of tagged 
progeny 

Genotype 

Control 
(YY female  
x YY male) 

00AD YY♀  236/252 F8BB YY ♂ 184/236 6 184/252 (N=2) 
236/252 (N=3) 
236/236 (N=1) 

F30D YY♀  184/252 315C YY♂  184/236 14 184/184 (N=1) 
184/236 (N=3) 
184/252 (N=7) 
236/252 (N=3) 

Control 
(YY female  
x XY male) 

00AD YY♀   236/252 FBE2 XY ♂ 184/236 8 184/236 (N=2) 
184/252 (N=3) 
236/252 (N=2) 
236/236 (N=1) 

00AD YY♀   236/252 D9E3 XY ♂ 184/236 5 184/236 (N=4) 
236/236 (N=1) 

F30D YY♀  184/252 Mixture of 
D9E3 XY ♂ 
and  
46A8 XY ♂ 

184/236 14 184/184 (N=7) 
184/236 (N=3) 
184/252 (N=2) 
236/252 (N=2) 

 
 
 
Table 5.5 Genotypes of treatment group fish (F1) with UNH995 
 
 
Cross type Dam tag Dam genotype Sire tag Sire genotype No.  

of tagged 
progeny 

Genotype 

DES treated 
(YY female  
x XY male) 

00AD YY♀   236/252 FBE2 XY ♂ 184/236             10 184/236 (N=2) 
184/252 (N=5) 
236/252 (N=3) 

F30D YY♀  184/252 46A8 XY ♂ 184/236 6 184/184 (N=2) 
184/236 (N=2) 
184/252 (N=1) 
236/252 (N=1) 
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5.3.5 Separation of ‘true’ YY males 
 
The three individuals having genotype 236/236 with UNH995 (anticipated as ‘true’ YY 

males, as described in section 5.2.8) were separated (from Table 5.4) and kept in individual 

tanks to breed further (Table 5.6). In sex-reversed group, putative ‘true’ YY neofemales 

with 236/236 genotype were not obtained (out of 16). 

 
Table 5.6 Selection of ‘true’ YY males with UNH995  
 
 
PIT tag Genotype Stocked in TAF as Parents ID 

  

00 038D 078C  236/236 Possible true breeder (YY supermale) 00AD YY♀ x D9E3 XY♂ 

00 068C F032  236/236 Possible true breeder (YY supermale) 00AD YY♀ x FBE2 XY♂ 

00 064E 2DD8 236/236 Possible true breeder (YY supermale) 00AD YY♀ x F8BB XY♂ 

 
 
 
5.3.6 Verification of ‘true’ YY supermales 

The sex ratios obtained from crosses between selected ‘true’ YY males and clonal/outbred 

females are given in Table 5.7. 

 
Table 5.7 Sex ratios in putative ‘true’ YY males x clonal and outbred females 
 
Cross 
type 

Sire tag Sire 
genotype 

Dam tag Dam 
genotype 

No. of male 
progeny  

No. of 
female 
progeny 

Sex ratio 
(M:F) 

‘True’ 
YY male 
x clonal 
female  

00 068C 
F032 
YY♂  

236/236 F2E0 
clonal♀  

184/184 99 2 98:2 

‘True’ 
YY male 
x outbred 
female 

00 038D 
078C 

236/236 2FB5 
outbred 
♀ 

184/184 75 0 100:0 
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5.4 Discussion 
 
The study on sex linkage in Stirling Nile tilapia (Chapter 4) and observation of a ‘strong’ 

‘Y’ allele linked to allele 236 of sex-linked marker UNH995 associated with mainly male 

progeny and the absence of that allele in rare females from crosses between YY females 

and XX neomales (Table 5.2) justify the utility of sex-linked markers (UNH995 and 

UNH104) in broodstock selection to improve GMT sex ratios. The selection of three F1 

progeny based on UNH995 genotype and breeding two of them with clonal and outbred 

females gave 98-100% male progeny. The presence of nearly all male progeny (in F2) is 

clear evidence that a marker-assisted selection approach could be practical for 

monosex/genetically male tilapia production.   

 
Genetic improvement in fish and other aquaculture species is a relatively new 

development. Most of the genetic improvements of aquaculture broodstock to date have 

been through the use of traditional selective breeding techniques such as selection, 

crossbreeding, and hybridization (reviewed by Hulata, 2001). To produce all-male or all-

female progeny in aquaculture, two methods are commonly used. The direct method is 

inducing fry to differentiate toward males by androgen treatment or towards females by 

estrogen treatment. The indirect method includes the following steps: 1) Genotypic males 

are reversed to phenotypic females (neo-females) by estrogen treatment, or genotypic 

females are reversed to phenotypic males (neo-males) by androgen treatment, and cultured 

to adults; 2) All (genetically) male fry (in species with WZ/ZZ sex determination) and all 

(genetically) female fry (in species with XX/XY sex determination) are then obtained by 

crossing neo-females and normal males, and neo-males and normal females, respectively. 

Production of genetically all-male progeny in XX/XY sex determination requires 

production of ‘YY’ males which is conventionally achieved by the indirect method 
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(described in Chapter 1 section 1.3) but only confirmed after progeny sex ratio studies. 

Studies on inducing female fry to reverse to males with androgen treatment have been 

reported in several species, for example, rainbow trout (Oncorhynchus mykiss) (Johnstone 

et al., 1983), Japanese flounder (Paralichthys olivaceus) (Yamamoto, 1999), Atlantic 

halibut (Hippoglossus hippoglossus) (Hendry et al., 2003), blue tilapia, O. aureus (Desprez 

et al., 1995; Melard, 1995), Nile tilapia (Mair et al., 1997) and tongue sole Cynoglossus 

semilaevis (Zhou et al., 2005; Chen et al., 2007). The indirect method is considered to have 

greater value in terms of application than the first method because hormone treatment is 

not allowed in the culturing of commercial fish in many countries, the reason being the 

desire to have no residual pollution of hormones and no problem of food safety. Marker-

assisted selection could be a very efficient technique to facilitate the development of the 

second method. For example, male-specific DNA markers have been isolated in some 

salmonids (Devlin and Nagahama, 2002) and are extensively used in sex control in these 

species. A female-specific AFLP marker (CseF305) has been isolated in half-smooth 

tongue sole Cynoglossus semilaevis (Chen et al., 2008) where females grow larger and 

faster than males. In this species, the female-specific CseF305 band of 160 bp was 

amplified in all 30 phenotypic females examined, but not in 30 phenotypic males. The 

availability of this female-specific marker in the sole lays a foundation for the development 

of a molecular marker-assisted sex control technique in the sole, and should prove to be 

very useful for controlling sex and producing monosex stock for half-smooth tongue sole. 

In addition, Chen et al. (2008) produced 130,000 fry from WZ neo♂ x WZ ♀ crosses. 

Genetic sex identification demonstrated that 73% of the neo-male progeny fry contained 

female-specific DNA markers. Three combinations of sex chromosomes (ZZ, ZW and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib24
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib10
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4D-4T0FF37-3&_user=241825&_coverDate=10%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=4972&_sort=d&_docanchor=&view=c&_acct=C000014938&_version=1&_urlVersion=0&_userid=241825&md5=78ffa7c55464d6baf1dae2d7a48443be&artImgPref=F#bib5
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WW) were observed in the neo-male progeny. These super-females WW could be founders 

for all-female stock. 

 

Apart from monosex production, one of the great utilities of genetic markers is to improve 

disease resistance in aquaculture species. Ozaki et al. (2001) identified QTL associated 

with resistance to infectious pancreatic necrosis (IPN), which is a well-known acute viral 

disease in rainbow trout. Two putative QTL affecting disease resistances were detected. 

These markers were of great potential for use in MAS for IPN resistance. MAS for IPN 

disease resistance was first applied in commercial salmon breeding programmes in 

Scotland and then in Norway (Houston et al., 2008). In tilapia, QTLs for a number of traits 

have been investigated, e.g., for body colour (Howe and Kocher, 2003), sex determination 

(Shirak et al., 2002), innate immunity, response to stress, biochemical blood parameters 

and body size (Cnaani et al., 2004), disease-related parameters (Shirak et al., 2006). 

Successful detections of QTL(s) could lead to the implementation of MAS. In shellfish 

species QTL and association studies are considerably more limited and have for the most 

part been confined to shrimp and prawns. Glenn et al. (2004) found SNPs in the cathepsin 

L gene and found suggestive associations with growth rate in both Pacific white shrimp 

and black tiger shrimp. Rocha et al. (2005) attempted to identify putative associations 

between DNA-markers and shrimp (Litopenaeus vannamei) production traits. Two SNP 

markers were found to be associated with statistically significant effects on an array of 

production traits, including harvest weight (HWT), test daily gain (TDG), biomass yield, 

grow-out survival, nursery, stocking and brood-stock weights, and several shrimp carcass 

and meat quality traits.  Such QTL mapping in all these species can lead to MAS for 

efficient and precise selection, and significantly affect the aquaculture industry. 
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Some companies are using markers for other applications, such as parentage and selection 

decisions. One such example is Landcatch Natural Selection (http://www.swim-

back.com/), which is a breeding company that is attempting to apply the latest methods in 

selective breeding technologies to its aquaculture operations worldwide. They use markers 

for traceability to parental stocks and some selection for trait improvement in salmon and 

advertise developments and expertise for markers in several other species. Another 

example is Aquagen AKVAFORSK Genetic Center (http://www.afgc.no/), which has been 

conducting genetic improvement with Atlantic salmon, rainbow trout, Atlantic cod, turbot, 

sea bass, and several other species. However, MAS implementation activities are in their 

infancy in aquaculture and fisheries industries and have limitations such as poorly 

developed genetic maps and knowledge of the relationships between the markers and traits 

of economic importance.  

 

The present study has successfully shown how marker-assisted selection can enhance 

genetically male Nile tilapia production. On the basis of the association between departures 

from predicted sex ratios and alleles of markers in LG1, this study has also developed 

plans for upgrading the YY gene pool. The advancement of YY lines (along with a 

broadened gene pool) will help production of GMT on a sustainable basis. Figure 5.2 

illustrates how GMT production by MAS and advancement of YY lines could be done. 

 
 

http://www.swim-back.com/
http://www.swim-back.com/
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Put. XY ♂♂clonal XX ♀♀ XX

Select YY neo ♀♀ X

sex progeny, screen for association 
between any ♀ and LG1; if OK

verified YY ♀♀

Discard XY progeny on the basis of 
LG1 genotype 

Mixture of XY  
and YY neo ♀♀

Mixture of XY  
and  YY ♂♂

DES NON-DES

Select YY ♂♂

outbred population♦

1 2

Add to YY population 
(broaden gene pool, 
improve GMT sex ratios)

outbred ♀♀ X YY♂♂

GMT production

Step 1: confirmation of genotypes by LG1 markers, of OK, then proceed step 2; 
♦ could be used for selective breeding programme for other traits

 
  Figure 5.2 Advancing and broadening YY line through MAS, and increasing GMT production  
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Chapter 6 
General Discussion 

 
This PhD research has attempted to elaborate the mode of genetic sex determination in 

Nile tilapia (Oreochromis niloticus) by investigating inheritance of sex and sex-linked 

markers, and to facilitate marker-assisted selection in genetically monosex (male) 

production. An overall discussion on the experimental objectives and outcomes can briefly 

be given as follows: 

 

6.1 Verification of clonal line females for sex determination studies 

The clonal line of females was verified with microsatellite markers for sex determination 

studies in the Stirling Nile tilapia population. Such experiments are ideal to resolve the 

ambiguity if the female (parental) genetic components may also play a role in genetic 

variation affecting sex ratios in progeny. For example, Guan et al. (2000) suggested that 

female Nile tilapia may have a greater influence than males on variation of sex ratios 

because of the presence of two sex determining genes in tilapia that appeared to be 

different versions of the ‘doublesex’ gene first described in Drosophila. Drosophila has 

only one doublesex gene, and produces male and female products by RNA splicing after 

transcription. One of these genes is known to express in vertebrate testis (including 

Zebrafish). Tilapia has a variant of the same gene and is reported to express in ovaries 

(thereby known as female version of ‘doublesex’). The expression of two doublesex genes 

is often mutually exclusive and therefore, it is anticipated additional genes or 

environmental factors may also control the expression of sex in this species. The use of a 

clonal line of females should reduce the female influence on sex ratios where interpretation 

on such sex determinants is complex, by acting as ‘control’ individuals in a predicted 

predominantly XX-XY sex determining mechanism. This makes male parents the 
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‘hypothetical indicators’ for any genetic variation inherited in progeny across a range of 

families in this study. 

 

A number of studies have been performed to prove the gynogenetic and clonal line status 

in this particular species but with limited markers. Allozyme markers (ADA and EST for 

example), Multilocus DNA fingerprinting, RAPD, SSRa-PCR, AFLP and microsatellite 

markers have been used to investigate the clonal status (in terms of homozygosity) of 

either gynogenetic clonal founder and/or subsequent line of the progeny by a number of 

authors (Hussain et al., 1998; Jenneckens et al., 1999; Sarder et al., 1999; Ezaz et al., 

2004a). Microsatellite markers were used for five fully inbred clonal lines by Ezaz et al. 

(2004b) and a single marker (UNH208) could differentiate each of the five lines of clonal 

females. They suggested, for other purposes (apart from identifying lines from each other), 

a multiplex of the five loci would serve as an identifying fingerprint for each clone.  The 

clonal line of females used in the current PhD study is one of the several fully inbred 

clonal lines developed previously by gynogenesis (Sarder et al., 1999; Ezaz et al., 2004b) 

and showed good fertility compared to the others. The homozygous nature of this line with 

DNA markers (n=89) from across the whole genome provided very strong evidence of the 

fully inbred clonal nature of this line, that can be used as a reference line for different kinds 

of basic research including sex determination studies and quantitative genetics.  

 

6.2 Sex linkage study in Stirling Nile tilapia population 

Sex determination in tilapia species has been the subject of intensive research for 

approximately half a century. Approaches such as interspecific hybridization, sex reversal 

and progeny testing, chromosome set manipulations, morphological study of cell and 
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chromosome and molecular study have been performed for clarifying the basic sex 

determining system in tilapia. A low level of influence from environment or autosomes has 

been predicted in most of these approaches.  

 

The present study investigated markers to screen a range of crosses to detect loci affecting 

sex ratio. The QTL for sex was positioned (in LG1) using genotype information from 6 

different crosses and the pattern of allelic inheritance in association with  sex in progeny 

was studied. Inheritance of LG3 and LG23 marker alleles was studied on the basis of some 

research works, where for example, LG3 markers were useful in association studies 

(between sex and markers) in O. aureus and O. karongae (Lee et al., 2004, 2005; Cnaani et 

al., 2008) and LG23 markers, in O. aureus x O. mossambicus (Shirak et al., 2006).  

 

Three groups of animals selected in the present PhD study for sex linkage were screened 

based mainly on progeny sex ratios from a variety of crosses. The male parents of those 

groups were identified as normal XY (gave progeny sex ratios not significantly different 

from 1:1 in crosses to clonal line females), putative YY males (gave progeny sex ratios of 

>90% male in crosses to clonal line females) and males of unknown sexual genotype (gave 

intermediate progeny sex ratios, i.e., 60-80%). A monofactorial (chromosomal) sex 

determination system seemed to work in XY families (type A), but a small departure 

(<10%) in progeny sex ratios in YY families (type B) and a large departure (20-40%) in 

progeny sex ratios in putative YY families (type C) suggested that the sex determining 

system is not exclusively a monofactorial XX-XY. The effects of ‘female components’ and 

the influence of any environmental factors, particularly temperature were excluded in these 

groups because of using a standard clonal line as reference animals and because of running 
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the system in regulated temperature of 27.5±0.5 oC with all other water parameters in 

control. Therefore, the outcomes of the study were hypothesized to be genetic in any of the 

two possible modes: i) autosomal locus/loci interacts with major sex-determining locus (in 

LG1) to cause departure in the sex ratios, ii) variation at the major sex-determining locus 

with multiple alleles (allelic state at single locus, also known as complementary sex 

determination) to produce the departure from expected sex ratios. 

 

The markers from LG1 were used in normal male group (type A, XY) followed by the 

other two groups (type ‘B’ and ‘C’) to observe any LG1-associated pattern of inheritance 

of phenotypic sex. The genotyping and association studies showed LG1 markers (UNH995 

and UNH104) to be strongly associated with the QTL for sex in all three groups. The high 

association between sex and one of the markers in LG1 (UNH995) verifies earlier reports 

that the XX/XY locus is situated close to this microsatellite marker (Lee et al., 2003; Lee 

and Kocher, 2007; Cnaani et al., 2008). In the study of Lee et al. (2003) two such crosses 

from the Stirling population of Nile tilapia showed a very strong association between 

phenotypic sex and markers in LG1, while a third cross showed no association with 

screened markers from any of the 24 linkage groups, despite showing a sex ratio not 

significantly different from 1:1. All three crosses here showed a strong association between 

these LG markers and sex. 

 

The genome wide scan with markers from other LGs to study the association with sex 

using bulked segregant analysis of female and male DNA pools and further analysis on 

DNA from individuals (where BSA initially showed an association, e.g. absence of one 

paternal allele, or strongly reduced allele peak height, in progeny DNA pool from one sex) 
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did not discover any sex-linked informative markers or any proper association that can 

support departed sex ratios in progeny sired by type B or type C male parents, rather 

specific LG1 markers (UNH995 and UNH104) were found to be informative to explain the 

genotypes in progeny sex in family type C. This demonstrated male progeny had 

approximately equal proportions (P>0.05 against H0: 1:1) of each paternal UNH995 allele 

(in family 7 and 9), while female progeny had inherited one allele only. Considering the 

overall sex ratios of ~60-80% male in that family type (‘C’), one allele (ambivalent ‘A’) 

was associated with 1:1 ♀♀: ♂♂, and the other (say ‘P’) with all male; thus males would 

be 2P: 1A (in an overall sex ratio of 75% males). However, testing such association was 

difficult in the type ‘B’ cross due to the lack of females. By repeating the crosses, some 

more female progeny were obtained for the analyses which also showed an association 

between LG1 (illustrated by UNH995) and sex where female offspring inherited only one 

of the paternal alleles.  

 
The attempt to reveal any associations between markers from LG3 and LG23 with markers 

from LG1 in the experimental families of Nile population was based on the work of Lee et 

al. (2004) who found that sex in O. aureus appeared to be determined by interaction 

between the WZ/ZZ system in LG3 and a locus in LG1, and that loci in LG3 and LG23 

appear to affect sex determination in some crosses in O. niloticus and in some other tilapias 

(Karayucel et al., 2004; Lee et al., 2005; Shirak et al., 2006). Limited heterozygosity 

expressed by the markers from these LGs in the males concerned (putative YYs) prevented 

a thorough investigation of such associations. 

 

However, it is apparent from this work that the departures from the sex ratios predicted by 

using a “simple” XX/XY model (i.e. YY x XX should give all-male progeny) were 
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strongly associated with the XX/XY system itself, rather than being associated with loci in 

other LGs (e.g. LG3 or LG23). The allelic variation in this XX/XY model demonstrates 

some alleles could be stronger in effect (producing close to all male) while some others are 

weaker giving intermediate sex ratios in the progeny. The allele giving intermediate sex 

ratios- tentatively named as an ‘ambivalent’ is of scientific interest as it may explain, the 

failure of an association of phenotypic sex with any region of the genome in one out of 

three families in the study of Lee et al. (2003) (e.g. if the female parent was XX and the 

male AA, progeny would all be XA and expected to have a sex ratio of approximately 1:1). 

Likewise, this could explain the single fully inbred clonal line with a sex ratio close to 1:1 

in the study of Sarder et al. (1999) (if the clonal line was AA). To verify these 

assumptions, some future works can be done. The males that produced male: female ratio 

approximately 70: 30 (denoted as YA) in sex linkage study can be crossed with clonal 

females (XX) to produce XY (male) and XA (supposed to be a mixture of males of 

females). The ‘XA’ female can be crossed with ‘XA’ male (these will be identified through 

genotyping on the basis of ‘ambivalent’ allele) to produce animals homozyogous for allele 

‘A’. The ‘AA’ line then can be advanced to cross with XX or putative YY to observe the 

progeny sex ratios. In addition, the interaction between these alleles and interactions with 

other QTL in the genome should be fine mapped with more markers to discover any other 

factors (other than multiple alleles) for sex determination in this species. 

 

6.3 Marker assisted selection 

The sex-linkage study in several families of Nile tilapia population was designed to find 

informative marker/s that can be used in a marker-assisted selection programme for 

producing increased male percentages in “genetically male” Nile tilapia. The knowledge 
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on the sex-linked informative marker/s along with the expression of multiple alleles and 

their mode of inheritance in progeny helped to identify ‘true’ ‘Y’ allele (strongest allele 

associated with only male progeny, a ‘weak’ Y allele and an ‘ambivalent’ allele (associated 

with equal numbers of male and female progeny) at a single locus. This knowledge was 

deliberately used to separate ‘true’ supermales (YY) in first generation offspring 

(segregation of ‘strong’ dominant homozygous alleles were hypothesized to form YY 

individuals from crosses between putative YY females and normal XY/putative YY 

males). The rearing of the putative ‘pure supermales’ (from the F1) to maturity and 

subsequent breeding with clonal and outbred females produced enough progeny for sex 

ratio studies. The sex ratios in the F2 generations sired by those selected YY males 

(avoiding alleles 184 and 252) produced very close to all-male progeny with both types of 

female parents. These findings were strong evidence of suitability of LG1 marker/s in 

separating putative ‘pure’ strains of supermales from normal males in Stirling Nile tilapia 

as well as producing all-genetically-male tilapia production. 
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6.4 Conclusions 

The present PhD study was aimed to enhance male tilapia production without the direct use 

of hormones in direct food chain. It has demonstrated, by a thorough investigation of 

inheritance of sex (as QTL) and sex-linked as well as genome-wide markers using a 

(verified) fully inbred clonal line of females, novel allelic variation in the XX/XY system 

of the Nile tilapia, and showed that the marker assisted selection (MAS) in monosex 

production approach in this species could be practical. However, ideally such MAS would 

always be carried out using tightly linked informative markers on either side of the QTL in 

question. This seemed to be a limitation of the existing microsatellite markers in the tilapia 

linkage map – in some crosses, at least one marker was available to one side of the sex 

determining locus, but markers on the other side were either non-informative or a 

considerable distance from the QTL. 

 

Although enough crosses were performed to obtain variable sex ratios for association 

studies (on QTL), there were some limitations of this work where future works are 

warranted. The clonal females used in this study were from a single line. More clonal lines 

of females could show genetic variation among them and should better reflect the variation 

in the XX/XY system. The number of individuals in the genome wide scan was rather low 

and prioritised BSA screening of sexed progeny can help understand more about any other 

QTL affecting establishment of sex in progeny. Furthermore, generation of additional 

polymorphic sex-linked markers and potentially sex-specific markers by RAD sequencing 

(Baird et al., 2008) would enhance MAS, both for mapped loci known to influence sex 

ratio and potentially to locate others in the genome.  
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Future work could be focused on further validation of MAS based on allelic variation in an 

XX/XY system to select for “strong Y” alleles giving 100% male progeny (or very close to 

this) and against “weak Y” or “ambivalent” alleles and to broaden the gene pool of YY 

males by making the process of selecting/adding new “strong Y” alleles from the general 

population of XY males more efficient (screening XY males and selecting YY males from 

XY x YY female crosses). 

 

This research work has furthered our current knowledge on the sex determination system 

in Nile tilapia. The success of selecting and separating pure YY broodstock after sex 

linkage study and verifying them in pilot scale inspire undertaking MAS to improve 

monosex production approach. Further understanding of the sex determination system 

along with the current findings, using extended families and larger population of different 

strains will enhance genetically male tilapia production using a MAS approach, which 

should contribute to improving aquaculture practices worldwide, to help reducing hormone 

use in food fish and producing environment-friendly all male tilapia.  
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Appendix I. Scientific and common names of the species used in the thesis 
 
 
 
Anguilla rostrara: American eel 
 
Apis mellifera: Honey bee 
 
Apistogramma: Dwarf Cichlid 
 
Aulopus japonicus: Japanese Thread-sail fish 
 
Brachydanio rerio: Zebra fish 
 
Caenorhabditis elegans: Round worm  
 
Carassius auratus: Gold fish 
 
Clarias gariepinus: African catfish  
 
Ctenopharyngodon idella: Grass carp 
 
Cynoglossus semilaevis: Tongue sole  
 
Cyprinus carpio: Common carp 
 
Dicentrarchus labrax: European Sea bass 
 
Drosophila melanogaster: Fruit fly 
 
Eigenmannia sp: Electric knife fish 
 
Gasterosteus aculeatus: Three spine stickleback 
 
Hoplias sp: Wolf fish 
 
Hippoglossus hippoglossus: Atlantic halibut 
 
Ictalurus punctatus: Channel catfish 
 
Lates calcarifer: Asian Seabass 
 
Leporinus sp: Black banded leporinus 
 
Menidia menidia: Atlantic silverside 
 
Nasonia vitripennis: Jewel wasp 
 
Odontesthes bonariensis: Argentinian silverside 
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Appendix I (Cont’d). Scientific and common names of the species used in the thesis 

 

Oncorhynchus mykiss: Rainbow trout 
 
Oncorhynchus nerka: Sockeye salmon 
 
Oreochromis andersonii: Three spotted tilapia  
 
Oreochromis aureus: Blue tilapia 
 
Oreochromis macrochir: Longfin tilapia 
 
Oreochromis mossambicus: Mozambique tilapia 
 
Oreochromis niloticus: Nile tilapia 
 
Oreochromis spilurus spilurus: Sabaki tilapia 
 
Oreochromis urolepis hornorum: Wami tilapia 
 
Oreochromis variabilis: Victoria tilapia 
 
Oryzias curvinotus: Hynann ricefish 
 
Oryzias latipes: Medaka/Japanese killifish 
 
Oryzias rhodorus: Amago salmon 
 
Pagrus major: Red seabream 
 
Paralichthys olivaceus: Hirame 

Petromyzon marinus: Sea lamprey 

Plecoglossus altivelis: Ayu 

Poecilia formosa: Amazon molly 

Poecilia latipinna: Sailfin molly 
 
Pungitius pungitius: Nine spine stickleback 
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Appendix I (Cont’d). Scientific and common names of the species used in the thesis 

 

Salvelinus sp: Charr 
 
Sarotherodon melanotheron: Blackchin tilapia 
 
Spinachia spinachia: 15 spine stickleback 
 
Thalassoma bifasciatum: Bluehead wrasse 
 
Tilapia rendalli: Redbreast tilapia 
 
Tilapia zilli: Redbelly tilapia 
 
Xiphophorus maculatus: Platy fish 
 
Xiphophorus helleri: Sword tail 
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Appendix II. Putative sex determining gene(s) that can affect sex ratios in tilapia 

Nile tilapia main sex determining 
gene (XX/XY: also influences sex 
determination in blue tilapia)

Blue tilapia main sex 
determining gene (WZ/ZZ: can 
also affect sex ratio in Nile 
tilapia?)

Two other loci that can 
affect sex determination

(Lee et al. 2003, 2004, 2005, 2007; Karayucel et al. 2004; 
Shirak et al. 2006;  Penman pers. comm.)  
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  Appendix III. Screened markers from Linkage group (LG)1 with oligo sequences 

 

Number Oligo name Oligo sequence Scale Size GC Content Salt adjusted Tm base stacking Tm* 
1 GM633_L1_CAG_F cagtcgggcgtcatcagtgtcccaagaaaaccagga 0.01 36 56% 57 76 
2 GM633_L1_R gacccaggactcatgtgctt 0.01 20 55% 42 65 
3 UNH985_L1_F gcgtcttgatgcaggataca 0.01 20 50% 40 63 
4 UNH985_L1_God_R catcgctgattcgcacattcccgacgagcaactgttat 0.01 38 50% 56 75 
5 UNH931_L1_M13_F ggataacaatttcacacaggacgttggtttgtcgggtaag 0.01 40 45% 55 73 
6 UNH931_L1_R taagtcagtgcgaccagacg 0.01 20 55% 42 65 
7 UNH213_L1_M13_F ggataacaatttcacacaggactgctcctcttgtttt 0.01 37 41% 52 70 
8 UNH213_L1_R tgtgataaggttaattaaagttagg 0.01 25 28% 38 58 
9 GM201_L1_CAG_F cagtcgggcgtcatcatattcaggctcttcttttgct 0.01 37 49% 55 74 

10 GM201_L1_R cagaatgaactccctccag 0.01 19 53% 39 60 
11 UNH148_L1_M13_F ggataacaatttcacacaggcttgaagttgcatttgc 0.01 37 41% 52 70 
12 UNH148_L1_R aaacactctcagctcaa 0.01 17 41% 30 57 
13 UNH995_L1_God_F catcgctgattcgcacatccagccctctgcataaagac 0.01 38 53% 57 75 
14 UNH995_L1_R gcagcacaaccacagtgcta 0.01 20 55% 42 66 
15 UNH104_L1_CAG_F cagtcgggcgtcatcagcagttatttgtggtcacta 0.01 36 50% 55 73 
16 UNH104_L1_R ggtatatgtctaactgaaatcc 0.01 22 36% 38 56 
17 GM258_L1_M13_F ggataacaatttcacacaggccttcacctccaccactttct 0.01 41 46% 56 74 
18 GM258_L1_R agatcgaacgtcgtcctctg 0.01 20 55% 42 64 
19 UNH719_L1_God_F catcgctgattcgcacataaaccattcatccttcactcg 0.01 39 46% 55 73 
20 UNH719_L1_R gaatgcttagtgcccatcaat 0.01 21 43% 39 62 
21 UNH846_L1_CAG_F cagtcgggcgtcatcatggagcagcttcttctacatca 0.01 38 53% 57 75 
22 UNH846_L1_R cacatgatggaagccgtgta 0.01 20 50% 40 63 

* with adjusted Mg concentration at 1.5 mM as well as adjusted primer concentration (tail 20 nM, others 200-300 nM), in www.promega.com/biomath/calc11.htm  

 

http://www.promega.com/biomath/calc11.htm
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Appendix IV. Screened markers from Linkage group (LG)3 with oligo sequences 

 

Number Oligo name Oligo sequence Scale Size GC Content Salt adjusted Tm base stacking Tm* 
1 GM354_L3_M13_F ggataacaatttcacacaggcgggagagcaggtcag 0.01 36 53% 56 74 
2 GM354_L3_R cacgttcagggttactgtgtt 0.01 21 48% 41 64 
3 GM271_L3_F gcagctggatcagtctctg 0.01 19 58% 42 63 
4 GM271_L3_God_R catcgctgattcgcacattgggaagtcgttcatacaaag 0.01 39 46% 55 73 
5 UNH971_L3_F ggtgggcagtgtgtgttttt 0.01 20 50% 40 65 
6 UNH971_L3_CAG_R cagtcgggcgtcatcattttcatccaggcctcagtt 0.01 36 53% 56 75 
7 GM150_L3_F gtctcagtttgtttggcttac 0.01 21 43% 39 60 
8 GM150_L3_M13_R ggataacaatttcacacaggaggtgattggcttagatgat 0.01 40 40% 53 71 
9 GM128_L3_God_F catcgctgattcgcacatatgatgagagaaagggaaaga 0.01 39 44% 54 72 

10 GM128_L3_R cattactgtgcctctgtgaag 0.01 21 48% 41 62 
11 GM526_L3_M13_F ggataacaatttcacacaggtcttcctcagcccatctgtt 0.01 40 45% 55 73 
12 GM526_L3_R caactgttggcagtgacagg 0.01 20 55% 42 65 
13 UNH982_L3_CAG_F cagtcgggcgtcatcatcaatactgtggtcccctcttt 0.01 38 53% 57 75 
14 UNH982_L3_R tctcagagcgctatcttcctg 0.01 21 52% 43 64 

* with adjusted Mg concentration at 1.5 mM as well as adjusted primer concentration (tail 20 nM, others 200-300 nM), in www.promega.com/biomath/calc11.htm  

 

 

 

 

 3.02 

http://www.promega.com/biomath/calc11.htm
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Appendix V.  Screened markers from Linkage group (LG)23 with oligo sequences 

Number Oligo name Oligo sequence Scale Size GC Content Salt adjusted Tm base stacking Tm* 
1 GM557_M13_F ggataacaatttcacacaggcagctcgataaagggagacg 0.01 40 47% 56 73 
2 GM557_R gctgcattagcatcgtgtgt 0.01 20 50% 40 64 
3 UNH848_CAG_F cagtcgggcgtcatcatcccccgtaataaattaaacca 0.01 38 47% 55 73 
4 UNH848_R gcctgtgaataacaatgtatttcct 0.01 25 36% 41 63 
5 UNH197_Godde_F catcgctgattcgcacatcaggatggtgagatgttt 0.01 36 47% 54 73 
6 UNH197_R ttaagtggaagaagtcaatg 0.01 20 35% 34 56 
7 GM597_F acttgggtttgagcttggag 0.01 20 50% 40 63 
8 GM597_M13_R ggataacaatttcacacaggctctgtaatcccgcaccatt 0.01 40 45% 55 73 
9 UNH898_F gatgtccccacaaggtatgaa 0.01 21 48% 41 63 

10 UNH898_CAG_R cagtcgggcgtcatcataatccactcaccccgtttc 0.01 36 56% 57 75 
11 UNH879_F gcataaggtgactggctggt 0.01 20 55% 42 65 
12 UNH879_Godde_R catcgctgattcgcacatacaaaggggtcctgcaattt 0.01 38 47% 55 74 
13 GM576_M13_F ggataacaatttcacacaggccctggagaacagagtggtc 0.01 40 50% 57 74 
14 GM576_R cttggacttggctctgacct 0.01 20 55% 42 65 
15 UNH907_CAG_F cagtcgggcgtcatcacaggaccgactctgcaagat 0.01 36 58% 58 77 
16 UNH907_R gagctcttttgttgttcaaaatc 0.01 23 35% 38 60 

* with adjusted Mg concentration at 1.5 mM as well as adjusted primer concentration (tail 20 nM, others 200-300 nM), in www.promega.com/biomath/calc11.htm  

 

 

 

 
 

http://www.promega.com/biomath/calc11.htm
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Appendix VI. Oligo sequences of modified SNP (Wt1b) primers

Modified SNPs Oligo sequence Scale Size GC Content
US001_F_M13 (Wt1b_1) ggataacaatttcacacaggatgacagtgaccccatatg 0.01 39 44% 
US001_R (Wt1b_R) gcctctgaagtcttcgcaac 0.01 20 55% 
US002_F_CAG (Wt1b_2) cagtcgggcgtcatcaatgacagtgaccccatatc 0.01 35 54% 
US001_R (Wt1b_R) gcctctgaagtcttcgcaac 0.01 20 55% 

 

Appendix VII. Oligo sequences of fluorescent labeled primers 

Number Oligo name Oligo sequence Size GC Content Salt adjusted Tm base stacking Tm 
1 M13R_Blue ggataacaatttcacacagg 20 40% 36 57 
2 CAGtag_Green cagtcgggcgtcatca 16 63% 37 61 
3 Godde_Black catcgctgattcgcacat 18 50% 36 61 
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Appendix VIII. Oligo sequences of genome wide scanned markers (except LG1, 3 and 23)  
 

No. Oligo name Oligo sequence Size GC Content 
1 GM420M13F ggataacaatttcacacaggTTAATTCTGGGTCTGGTGG 39 44% 
2 GM420R GGATAAGCGAATGGATGATAG 21 43% 
3 UNH860GodF  catcgctgattcgcacatACTGTTTACCCACTGCGACA 38 50% 
4 UNH860R AGATGTGTCTGAGCCATCCA 20 50% 
5 UNH159CAGF cagtcgggcgtcatcaTTGTTTTAGGAGCTTCTTTTGTC 39 46% 
6 UNH159R ATATTCATCTGGATTTGGCTCTAA 24 33% 
7 UNH170GodF catcgctgattcgcacatTCCCAATTAGAGCTAGCAAAGTCC 42 48% 
8 UNH170R TATTGTAATTATGAAGAGATGTAG 24 25% 
9 GM553CAGF cagtcgggcgtcatcaGCTGGATTTGCATTGAGTGA 36 53% 

10 GM553R TAGACCGAGGCTGAAAGCTG 20 55% 
11 UNH884CAGF cagtcgggcgtcatcaGTAAATTGCTCGGGGCTCT 35 57% 
12 UNH884R ATCCTGCTCGGAGAGCTACA 20 55% 
13 UNH309F AGCGAGCGAGAGAGCTAGTG 20 60% 
14 UNH309GodR catcgctgattcgcacatGTGTCTTTCACGGACACCCT 38 53% 
15 UNH980M13F ggataacaatttcacacaggGAAGATATGCATGCGGACAC 40 45% 
16 UNH980R CACTCCCATTTCCTGTGTTG 20 50% 
17 UNH948F GCTCGCTCCAGAAAAATCAC 20 50% 
18 UNH948GodR catcgctgattcgcacatGTCAAAAAGGCATGGCAAAG 38 47% 
19 UNH908F CTTGCCATTCCTTTGTGCTT 20 45% 
20 UNH908M13R ggataacaatttcacacaggGTATGAACCTCCTGGCCTTC 40 48% 
21 UNH968GodF catcgctgattcgcacatACTGCTCCTCCTGTGTCTGG 38 55% 
22 UNH968R TCTTGCTGCTTCTCTCCACA 20 50% 
23 GM440M13F ggataacaatttcacacaggCTGCACTTTTACTGAGGG 38 45% 
24 GM440R TGGGAGATTAACAGAATAACA 21 33% 
25 GM205CAGF cagtcgggcgtcatcaAATGTAGCACTTTTAAGGAGA 37 46% 
26 GM205R AATGTAAGGAAATTTGTGTTT 21 24% 
27 UNH899F ACGTCACATGGAGGTGCTTA 20 50% 
28 UNH899CAGR cagtcgggcgtcatcaGCTAGACCTCTGTCCCCTGA 36 61% 
29 GM027M13F ggataacaatttcacacaggTGGCTCCAGTTAATCCTCT 39 44% 
30 GM027R TCTCATTCATTTACCCTGTTG 21 38% 
31 UNH843CAGF cagtcgggcgtcatcaCGTTCTACTCTGAAGAAAGACATGA 41 49% 
32 UNH843R CCACTCGACGGACGTTTTAG 20 55% 
33 UNH886GodF catcgctgattcgcacatACCCCTCCTAACTTGCTTCT 38 50% 
34 UNH886R TGCCTGCCACTAACTGTGAC 20 55% 
35 GM343M13F ggataacaatttcacacaggCCCTGCTGTTTCCTCCT 37 49% 
36 GM343R CCTTATCAGCTTTTCGTGTTC 21 43% 
37 UNH132CAGF cagtcgggcgtcatcaATATAAGAAACTGAGTCGGTGAG 39 49% 
38 UNH132R TGGAAATAGAGGGTGGGTGAG 21 52% 
39 GM062GodF catcgctgattcgcacatTTCAGTTTTTCAGCCAAATAC 39 41% 
40 GM062R CTGCAGCGTTAGAGTCCT 18 56% 
41 UNH994M13F ggataacaatttcacacaggCGCATGACCCTTACATACCC 40 48% 
42 UNH994R CAGCCAGCTTGGTTGTCATA 20 50% 
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Appendix VIII (Cont’d) Oligo sequences of genome wide scanned markers (except LG1, 3 and 23)  

No. Oligo name Oligo sequence Size GC Content 
43 UNH960CAGF cagtcgggcgtcatcaCTGTCGATGTGTCCCTGTGT 36 58% 
44 UNH960R ACCCGGGACATACACTTGTC 20 55% 
45 GM080GodF catcgctgattcgcacatTGAATAATAAACCAGCGTGTA 39 41% 
46 GM080R TAGAAGCCCAGTGAGCA 17 53% 
47 GM472M13F ggataacaatttcacacaggCTAAATCTCCACGCAGTCC 39 46% 
48 GM472R TGTAATTGCTCCACAAATCTG 21 38% 
49 UNH990F  GCCACAGGTGACCATGTTAG 20 55% 
50 UNH990CAGR cagtcgggcgtcatcaGGTGTCTGATTGCACTGACG 36 58% 
51 UNH192GodF catcgctgattcgcacatGGAAATCCATAAGATCAGTTA 39 41% 
52 UNH192R CTTTTTCAGGATTTACTGCTAAG 23 35% 
53 GM215M13F ggataacaatttcacacaggGGATAATGATGGCAGTGGT 39 44% 
54 GM215R TATTTTTCTTCCCAATGGTTC 21 33% 
55 GM399CAGF cagtcgggcgtcatcaCGCCCTGAGAGCAACA 32 63% 
56 GM399R AGTGTGCCGTTCCAAAAATAC 21 43% 
57 UNH878GodF catcgctgattcgcacatTTTCAGGAGGACGAGCAGTT 38 50% 
58 UNH878R CAGGCGGCAGATATTCATTT 20 55% 
59 UNH979M13F ggataacaatttcacacaggAGCTCACTGCCAACACACTG 40 48% 
60 UNH979R CATGTCTGGCAAAAGTGACG 20 50% 
61 GM377CAGF cagtcgggcgtcatcaACCAGCAGCAATACTCAAAC 36 53% 
62 GM377R ACAGGGACACAGATAGCAGAT 21 48% 
63 UNH874GodF catcgctgattcgcacatAGTAAAATGGGCGAACGTGT 38 47% 
64 UNH874R TGAAGCTGGGAGTTTCCTGT 20 50% 
65 UNH1009M13F ggataacaatttcacacaggCCATCTGCATGCTGTAAGACA 41 44% 
66 UNH1009R TCCCATTTGTCAGGTTCAGG 20 50% 
67 rasgrf2GodF catcgctgattcgcacatCTTGATCACCCCACCAAAAC 38 50% 
68 rasgrf2R TGGGTCTCCAAACATTCACA 20 45% 
69 GM373M13F ggataacaatttcacacaggGGCACCATCTCTAAGGAAA 39 44% 
70 GM373R TAAAGGGGACAAATGTGAAAT 21 33% 
71 UNH954CAGF cagtcgggcgtcatcaGGAAAACGTTTGGAGAGACG 36 56% 
72 UNH954R AAACGGAGCTCCTGTCTGAA 20 50% 
73 GM070_L14_M13_F ggataacaatttcacacaggccctgtgccagaatccat 38 47% 
74 GM070_L14_R ggcaaacagggtaaatgagag 21 48% 
75 GM665_L14_CAG_F cagtcgggcgtcatcatagttggtccctggttgctt 36 56% 
76 GM665_L14_R cagtgtttgttaggttctgcttg 23 43% 
77 UNH865_L14_GodF catcgctgattcgcacatacaaccccattcaccacact 38 50% 
78 UNH865_L14_R agcgttgcttgggaaaagta 20 45% 
79 GM664_L15_F gtgaactcagctcggactca 20 55% 
80 GM664_L15_M13_R ggataacaatttcacacaggacgcaatgggctgtaaaaat 40 40% 
81 UNH880_L15_F ggcagcagtataacaatcacca 22 45% 
82 UNH880_L15_CAG_R cagtcgggcgtcatcattctgacatccatccagcag 36 56% 
83 GM129_L15_F taataattgtgcgaggtgttt 21 33% 
84 GM129_L15_God_R catcgctgattcgcacataactagtgtgcaggtgcc 36 53% 

 

 

 



Appendices 
 

M G Q Khan                                                        Institute of Aquaculture Page 197 
 

Appendix VIII (Cont'd): Oligo sequences of genome wide scanned markers (except LG1, LG3 

and LG23)  

No. Oligo name Oligo sequence Size GC Content 
85 GM056_L16_M13_F ggataacaatttcacacagggacacaatgcctaaaaatctg 41 39% 
86 GM056_L16_R cctcaccgtccctctc 16 69% 
87 GM168_L16_CAG_F cagtcgggcgtcatcatcagaggggaaagtggaaaa 36 53% 
88 GM168_L16_R caacacgcgtagcagtaatga 21 48% 
89 UNH176_L16_God_F catcgctgattcgcacatgatcagctctcctctactta 38 47% 
90 UNH176_L16_R gatctgatttcttattactacaa 23 26% 
91 UNH103_L17_F caatgtccatccttcct 17 47% 
92 UNH103_L17_M13_R ggataacaatttcacacaggctgtctgactgcaaatgtaa 40 40% 
93 UNH974_L17_F gcacgtctgagagtgtggaa 20 55% 
94 UNH974_L17_CAG_R cagtcgggcgtcatcacagctttcacaccagcctaa 36 56% 
95 UNH440_L17_F acacatatggccaccagaca 20 50% 
96 UNH440_L17_God_R catcgctgattcgcacatgatctgctctccctgctgat 38 53% 
97 UNH904_L18_M13_F ggataacaatttcacacagggtcactgctgagccccttta 40 47% 
98 UNH904_L18_R gcattcagagtgccagagttc 21 52% 
99 UNH888_L18_CAG_F cagtcgggcgtcatcagatccgcccacctcaatta 35 57% 

100 UNH888_L18_R gcgccacctgggatataatac 21 52% 
101 GM285_L18_God_F catcgctgattcgcacattgcactttgggggatg 34 53% 
102 GM285_L18_R taatagctctgccgtttgttc 21 43% 
103 UNH419_L19_F tcccagcagccgtatagaat 20 50% 
104 UNH419_L19_M13_R ggataacaatttcacacaggggtgggatgttgctgaagtt 40 45% 
105 UNH943_L19_F ctgtccgccttaaagacctg 20 55% 
106 UNH943_L19_CAG_R cagtcgggcgtcatcagcgctcctgaggttactgtt 36 58% 
107 UNH844_L19_F gccacaatgtcaaggtttca 20 45% 
108 UNH844_L19_God_R catcgctgattcgcacatgcagctgctcacacactctt 38 53% 
109 UNH174_L20_M13_F ggataacaatttcacacaggtgaaaaatggaatttgg 37 35% 
110 UNH174_L20_R ttagatgagatatgaaactgc 21 33% 
111 UNH866_L20_CAG_F cagtcgggcgtcatcaactcccgctgttgctgttag 36 58% 
112 UNH866_L20_R gaggggagcctacaacgtaa 20 55% 
113 GM363_L20_God_F catcgctgattcgcacatccagtcccagtcatcct 35 54% 
114 GM363_L20_R agaaaacctgttgccattatc 21 38% 
115 UNH957_L21_F ctccgtgacaccaagctttc 20 55% 
116 UNH957_L21_M13_R ggataacaatttcacacaggatggcatccactacaagctg 40 45% 
117 GM221_L21_F tacagaagtcgaggcgagatg 21 52% 
118 GM221_L21_CAG_R cagtcgggcgtcatcagtggtggcgattgtgtcat 35 57% 
119 GM531_L22_F aaagccaacggtctgaattg 20 45% 
120 GM531_L22_God_R catcgctgattcgcacatagcagaggacacccctcat 37 54% 
121 UNH905_L22_M13_F ggataacaatttcacacaggtgatgacggtgaagtgaagc 40 45% 
122 UNH905_L22_R caagcagaaaatcctggagtg 21 48% 
123 UNH840_L22_CAG_F cagtcgggcgtcatcatttcctgttcacccagtttt 36 50% 
124 UNH840_L22_R gggctgagcagtctggtatt 20 55% 
125 GM173_L24_God_F catcgctgattcgcacattgaacttctagtctgcctctg 39 49% 
126 GM173_L24_R gtgttttgattcagggtatga 21 38% 

 

 



Appendices 
 

M G Q Khan                                                                                                            Institute of Aquaculture                                                                                                            Page 198 
   
 

Appendix IX. Parental and progeny DNA genotypes (in BSA) in clonal females x XY males (type ‘A’)  
 

  

F1♀parent 
(EA38 
ClF) 

F1♂parent 
D9E3 XY 

F1♀pool F1♂pool F2♀parent 
(F2E0 ClF) 

F2♂parent 
46A8 XY  

F2♀pool F2♂pool F3♀parent 
(EA38 
ClF) 

F3♂parent 
FBE2 XY  

F3♀pool F3♂pool ‘P’ in 
male 

parents 
LG1                           
GM633 206/206 214/214  206/214  206/214 206/206 214/214  206/214  206/214 206/206 214/214  206/214  206/214 *** 
UNH985 144/144 144/154 144/144 144/154 144/144 144/154 144/144 144/154 144/144 144/154 144/144 144/154 *** 
UNH931 227/227 227/261 227/227 227/261 227/227 227/261 227/227 227/261 227/227 227/261 227/227 227/261 *** 
UNH213 211/211 190/211 211/211 190/211 211/211 190/211 211/211 190/211 211/211 190/211 211/211 190/211 *** 
GM201 164/164 162/162 162/164 162/164 164/164 162/162 162/164 162/164 164/164 162/162 162/164 162/164 *** 
UNH148 172/172 182/182 172/182 172/182 172/172 182/182 172/182 172/182 172/172 172/172 172/172 172/172 ** 
UNH995 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 *** 
UNH104 147/147 147/197 147/147 147/197 147/147 147/197 147/147 147/197 147/147 147/197 147/147 147/197 *** 
GM258 142/142 148/148 142/148 142/148 142/142 148/148 142/148 142/148 142/142 148/148 142/148 142/148 *** 
UNH719 127/127 127/141 127/127 127/141 127/127 127/141 127/127 127/141 127/127 127/141 127/141 127/141 *** 
UNH846 187/187 187/199 187/199 187/199 187/187 187/199 187/199 187/199 187/187 187/199 187/199 187/199 *** 
Notes: P- Polymorphic locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix X. Parental and progeny DNA genotypes (in BSA) in clonal females x putative YY males (type ‘B’) 
 

  

F4♀parent 
0073 
clonal  

F4♂parent 
(E167 
YY) 

F4♀pool F4♂pool F5♀parent 
0B19 
clonal   

F5♂parent 
(315C 
YY) 

F5♀pool F5♂pool F6♀parent 
DD59 
clonal 

F6♂parent 
(F8BB 
YY) 

F6♀pool F6♂pool Polymorphism 
in male 
parents 

LG1                           
GM633 206/206 206/218 206/218 206/218 206/206 206/206 206/206 206/206 206/206 218/218 206/218 206/218 ** 
UNH985 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/157 144/157 144/157 M 
UNH931 227/227 227/227 227/227 227/227 227/227 227/227 227/227 227/227 227/227 227/241 227/241 227/241 * 
UNH213 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211   211/211  211/211  211/211 M 
GM201 164/164 164/164 164/164 164/164 164/164 164/164 164/164 164/164 164/164 164/164 164/164 164/164 M 
UNH148 172/172 172/172 172/172 172/172 172/172 170/172 170/172 172/172 172/172 172/172 172/172 172/172 * 
UNH995 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 184/184 184/236 *** 
UNH104 147/147 147/147 147/147 147/147 147/147 147/147 147/147 147/147 147/147 147/147 147/147 147/147 * 
GM258 142/142 142/150 142/150 142/150 142/142 150/150 142/150 142/150 142/142 142/150 142/150 142/150 *** 
UNH719 127/127 141/141 127/141 127/141 127/127 141/141 127/141 127/141 127/127 141/141 127/141 127/141 *** 
UNH846 187/187 189/189 187/189 187/189 187/187 189/189 187/189 187/189 187/187 189/189 187/189 187/189 *** 
LG3                           
GM354 142/142 142/142 142/142 142/142 142/142 142/142 142/142 142/142 142/142 142/142 142/142 142/142 M 
GM271 134/134 134/134 134/134 134/134 134/134 134/134 134/134 134/134 134/134 134/134 134/134 134/134 M 
UNH971 215/215 215/226 215/226 215/226 215/215 226/232 215/226/232 215/226/232 215/215 215/226 215/226 215/226 *** 
GM150 217/217 209/217 209/217 209/217 217/217 209/217 217/217 209/217 217/217 209/217 209/217 209/217 *** 
GM128 157/157 157/164 157/164 157/164 157/157 157/164 157/164 157/164 157/157 157/164 157/164 157/164 *** 
GM526 260/260 260/270 260/270 260/270 260/260 260/270 260/270 260/270 260/260 260/270 260/270 260/270 *** 
UNH982 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 M 
                            
Notes: M: monomorphic at locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix X. Parental and progeny DNA genotypes (in BSA) in clonal females x putative YY males (type ‘B’)-cont’d 

 

  

F4♀parent 
0073 
clonal  

F4♂parent 
(E167 
YY) 

F4♀pool F4♂pool F5♀parent 
0B19 
clonal   

F5♂parent 
(315C 
YY) 

F5♀pool F5♂pool F6♀parent 
DD59 
clonal 

F6♂parent 
(F8BB 
YY) 

F6♀pool F6♂pool Polymorphism 
in male 
parents 

LG23                            
GM557 268/268 227/227 227/268 227/268 268/268 227/227 227/268 227/268 268/268 227/227 227/268 227/268    *** 
UNH848 208/208 220/220 208/220 208/220 208/208 208/220 208/220 208/220 208/208 220/220 208/220 208/220    *** 
UNH197 205/205 198/198 198/205 198/205 205/205 196/205 196/205 196/205 205/205 196/196 196/205 196/205    *** 
GM597 151/151 155/155 151/155 151/155 151/151 151/155 151/155 151/155 151/151 155/155 151/155 151/155    *** 
UNH898 218/218 218/218 218/218 218/218 218/218 218/218 218/218 218/218 218/218 218/218 218/218 218/218     M 
UNH879 238/238 213/213 213/238 213/238 238/238 213/238 213/238 213/238 242/242 213/213 213/242 213/242    *** 
GM576 242/242 218/218 218/242 218/242 242/242 218/242 218/242 218/242 242/242 218/218 218/242 218/242    *** 
UNH907 134/134 134/136 134/136 134/136 134/134 134/134 134/134 134/134 134/134 134/143 134/143 134/143    ** 

Notes: M: monomorphic at locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix XI. Parental and progeny DNA genotypes (in BSA) in clonal females x type ‘C’ males 
 

F7♀parent 
(0073 
clonal) 

F7♂parent 
44F0  

F7♀pool F7♂pool F8♀parent 
(0073 
clonal) 

F8♂parent 
F99B  

F8♀pool F8♂pool F9♀parent 
(F2E0 
clonal) 

F9♂parent 
F5FC 

F9♀pool F9♂pool ‘P’ in 
male 

parents 
LG1     
GM633 206/206 206/218 206/218 206/218 206/206 206/206 206/206 206/206 206/206 206/218 206/218 206/218 ** 
UNH985 144/144   144/144    144/144      144/144 144/144 132/144 132/144 132/144 144/144   144/144    144/144      144/144 * 
UNH931 227/227 227/240 227/227 227/240 227/227 227/227 227/227 227/227 227/227 227/245 227/227 227/245 ** 
UNH213 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 211/211 M 
GM201 164/164 160/160 160/164 160/164 164/164 164/164 164/164 164/164 164/164 160/160 160/164 160/164 ** 
UNH148 172/172 172/172 172/172 172/172 172/172 172/172 172/172 172/172 172/172 172/172 172/172 172/172 M 
UNH995 184/184 236/252 184/252 184/236/252 184/184 188/234 184/188/234 184/188/234 184/184 236/252 184/252 184/236/252 *** 
UNH104 147/147 190/210 147/210 147/190/210 147/147 147/190 147/147 147/190 147/147 190/210 147/210 147/190/210 *** 
GM258 142/142 148/148 142/148 142/148 142/142 142/148 142/148 142/148 142/142 148/148 142/148 142/148 *** 
UNH719 127/127 121/141 121/127/141 121/127/141 127/127  127/141 127/127 127/141 127/127 121/141 121/127/141 121/127/141 *** 
UNH846 187/187 189/189 187/189 187/189 187/187 189/189 187/189 187/189 187/187 189/189 187/189 187/189 *** 
LG3     
GM354 142/142 142/142 142/142 142/142 142/142 132/142 132/142 132/142 142/142 142/142 142/142 142/142 * 
GM271 134/134    134/134     134/134      134/134 134/134 145/145 134/145 134/145 134/134    134/134     134/134      134/134 * 
UNH971 215/215 215/224 215/224 215/224 215/215 215/224 215/224 215/224 215/215 215/224 215/224 215/224 *** 
GM150 217/217 207/217 207/217 207/217 216/217 207/217 207/217 207/217 217/217 207/217 207/217 207/217 *** 
GM128 157/157 163/163 157/163 157/163 157/157 163/163 157/163 157/163 157/157 163/163 157/163 157/163 *** 
GM526 260/260 260/268 260/268 260/268 260/260 268/268 260/268 260/268 260/260 260/268 260/268 260/268 *** 
UNH982 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 M 
LG23     
GM557 268/268 227/227 227/268 227/268 268/268 227/227 227/268 227/268 268/268 227/227 227/268 227/268 *** 
UNH848 208/208 220/220 208/220 208/220 208/208 220/220 208/220 208/220 208/208 220/220 208/220 208/220 *** 
UNH197 205/205 197/197 197/205 197/205 205/205 197/197 197/205 197/205 205/205 197/197 197/205 197/205 *** 
GM597 151/151 155/155 151/155 151/155 151/151 151/155 151/155 151/155 151/151 155/155 151/155 151/155 *** 
UNH898 218/218 218/222 218/222 218/222 218/218 218/226 218/226 218/226 218/218 218/222 218/222 218/222 *** 
UNH879 238/238 215/215 215/238 215/238 238/238 215/215 215/238 215/238 238/238 215/215 215/238 215/238 *** 
GM576 242/242 218/218 218/242 218/242 242/242 218/218 218/242 218/242 242/242 218/218 218/242 218/242 *** 
UNH907 134/134 134/143 134/143 134/143 134/134 134/134 134/134 134/134 134/134 134/143 134/143 134/143 ** 

Notes: P: Polymorphic, M: monomorphic at locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix XII. Parental and progeny DNA genotypes (in BSA) in clonal females x putative YY males (type ‘B’) with markers from genome wide 
selection (except LG1, 3 and 23 markers)  
 

  

F4♀parent 
0073 
clonal  

F4♂parent 
(E167 
YY) 

F4♀pool F4♂pool F5♀parent 
0B19 
clonal   

F5♂parent 
(315C 
YY) 

F5♀pool F5♂pool F6♀parent 
DD59 
clonal 

F6♂parent 
(F8BB 
YY) 

F6♀pool F6♂pool ‘P' in 
male 

parent 
LG2                            
GM420 137/137 137/137 137/137 137/137 137/137 137/137 137/137 137/137 137/137 137/137 137/137 137/137 M 
UNH860 216/216 216/222 216/222 216/222 216/216 216/222 216/222 216/222 216/216 216/222 216/222 216/222 *** 
UNH159 251/251 251/257 251/257 251/257 251/251 251/257 251/257 251/257 251/251 247/257 251/257 247/251/257 *** 
LG4                            
UNH170 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 M 
GM553 257/257 294/294 257/294 257/294 257/257 294/294 257/294 257/294 257/257 257/294 257/294 257/294 *** 
LG5                           
UNH884 160/160 133/146 133/146/160 133/146/160 160/160 133/146 133/146/160 133/146/160 160/160 133/146 133/146/160 133/146/160 *** 
UNH309 199/199 199/203 199/199 199/203 199/199 199/203 199/199 199/203 199/199 199/203 199/203 199/203 *** 
UNH980 233/233 220/220 220/233 220/233 233/233 220/220 220/233 220/233 233/233 220/220 220/233 220/233 *** 
LG6                            
UNH948 197/197 197/199 197/199 197/199 197/197 197/197 197/197 197/197 197/197 197/197 197/197 197/197 * 
UNH908 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 124/124 M 
UNH968 226/226 226/244 226/244 226/244 226/226 244/244 226/244 226/244 226/226 244/244 226/244 226/244 *** 
GM440 275/275 275/275 275/275 275/275 275/275 275/275 275/275 275/275 275/275 275/275 275/275 275/275 M 
LG7                            
GM205 127/127 127/127 127/127 127/127 127/127 127/127 127/127 127/127 127/127 127/127 127/127 127/127 M 
UNH899 158/158 158/158 158/158 158/158 158/158 158/158 158/158 158/158 158/158 158/158 158/158 158/158 M 
LG8                            
GM027 176/176 176/191 176/191 176/191 176/176 176/191 176/191 176/191 176/176 176/191 176/191 176/191 *** 
LG9                            
UNH843 125/125 125/125 125/125 125/125 125/125 125/125 125/125 125/125 125/125 125/125 125/125 125/125 M 
UNH886 185/185 185/185 185/185 185/185 185/185 185/185 185/185 185/185 185/185 185/185 185/185 185/185 M 
GM343 191/191 191/193 191/193 191/193 191/191 191/193 191/193 191/193 191/191 191/193 191/193 191/193 *** 
UNH132 131/131 131/131 131/131 131/131 131/131 131/131 131/131 131/131 131/131 131/131 131/131 131/131 M 
GM062 286/286 284/284 284/286 284/286 286/286 284/286 284/286 284/286 286/286 284/286 284/286 284/286 *** 

Notes: P: Polymorphic, M: monomorphic at locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix XII (Cont'd). Parental and progeny DNA genotypes (in BSA) in clonal females x putative YY males (type ‘B’) with markers from 
genome wide selection 
 

  

F4♀parent 
0073 clonal  

F4♂parent 
(E167 YY) 

F4♀pool F4♂pool F5♀parent 
0B19 
clonal   

F5♂parent 
(315C YY) 

F5♀pool F5♂pool F6♀parent 
DD59 
clonal 

F6♂parent 
(F8BB YY) 

F6♀pool F6♂pool ‘P' in 
male 

parent 
LG10                            
UNH994 235/235 235/239 235/239 235/239 235/235 235/235 235/235 235/235 235/235 235/239 235/239 235/239 ** 
UNH960 182/182 153/182 153/182 153/182 182/182 153/182 153/182 153/182 182/182 153/182 153/182 153/182 *** 
GM080 245/245 237/245 237/245 237/245 245/245 237/245 237/245 237/245 245/245 237/245 237/245 237/245 *** 
GM472 355/355 341/341 341/355 341/355 355/355 341/355 341/355 341/355 355/355 341/355 341/355 341/355 *** 
LG11                            
UNH990 168/168 164/168 164/168 164/168 168/168 154/168 154/168 154/168 168/168 168/168 168/168 168/168 ** 
UNH192 156/156 156/156 156/156 156/156 156/156 156/156 156/156 156/156 156/156 156/156 156/156 156/156 M 
GM215 223/223 217/217 217/223/227 217/223/227 223/223 223/227 223/223 223/227 223/223 227/227 223/227 223/227 *** 
GM399 273/273 263/263 263/273 263/273 273/273 263/273 263/273 263/273 273/273 263/273 263/273 263/273  *** 
UNH878 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 M 
UNH979 271/271 271/271 271/271 271/271 271/271 271/271 271/271 271/271 271/271 271/271 271/271 271/271 M 
LG12                            
GM377 312/312 280/280 280/312 280/312 312/312 280/312 312/312 280/312 312/312 280/280 280/312 280/312 *** 
UNH874 214/214 210/210 210/214 210/214 214/214 210/210 210/214 210/214 214/214 210/210 210/214 210/214 *** 
UNH1009 173/173 192/192 173/192 173/192 173/173 208/208 173/208 173/208 173/173 208/208 173/208 173/208 *** 
Rasgrf 119/119 117/117 117/119 117/119 119/119 117/117 117/119 117/119 119/119 117/117 117/119 117/119 *** 
LG13                            
GM373 318/318 312/318 312/318 312/318 318/318 318/318 318/318 318/318 318/318 312/318 312/318 312/318 *** 
UNH954 178/178 150/178 150/178 150/178 178/178 178/178 178/178 178/178 178/178 150/178 150/178 150/178 *** 
LG14                            
GM070 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144 M 
GM665 238/238 238/238 238/238 238/238 238/238 238/238 238/238 238/238 238/238 238/238 238/238 238/238 M 
UNH865 235/235 235/235 235/235 235/235 235/235 235/235 235/235 235/235 235/235 235/235 235/235 235/235 M 
LG15                            
GM664 245/245 245/245 245/245 245/245 245/245 245/245 245/245 245/245 245/245 245/245 245/245 245/245 M 
UNH880 204/204 204/204 204/204 204/204 204/204 204/204 204/204 204/204 204/204 204/204 204/204 204/204 M 
GM129 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 120/120 M 

Notes: P: Polymorphic, M: monomorphic at locus *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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Appendix XII (Cont'd). Parental and progeny DNA genotypes (in BSA) in clonal females x putative YY males (type ‘B’) with markers from         
genome wide selection 
 

  

F4♀parent 
0073 
clonal  

F4♂parent 
(E167 
YY) 

F4♀pool F4♂pool F5♀parent 
0B19 
clonal   

F5♂parent 
(315C 
YY) 

F5♀pool F5♂pool F6♀parent 
DD59 
clonal 

F6♂parent 
(F8BB 
YY) 

F6♀pool F6♂pool ‘P’in 
male 

parent 
LG16                            
GM056 243/243 243/243 243/243 243/243 243/243 243/243 243/243 243/243 243/243 238/243 238/243 238/243 * 
GM168 336/336 336/352 336/352 336/352 336/336 336/352 336/352 336/352 336/336 336/338 336/338 336/338 *** 
LG17 
UNH103 232/232 225/225 225/232 225/232 232/232 225/232 225/232 225/232 232/232 225/225 225/232 225/232 *** 
UNH974 210/210 184/184 184/210 184/210 210/210 184/234 210/234 184/210/234 210/210 184/184 184/210 184/210 *** 
UNH440 198/198 176/198 176/198 176/198 198/198 198/198 198/198 198/198 198/198 176/198 198/198 176/198 ** 
LG18                            
UNH904 184/184 174/184 174/184 174/184 184/184 174/184 174/184 174/184 184/184 174/174 184/184 174/184 *** 
UNH888 226/226 226/226 226/226 226/226 226/226 226/226 226/226 226/226 226/226 226/226 226/226 226/226 M 
GM285 162/162 154/162 154/162 154/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 162/162 * 
LG19                            
UNH419 202/202 210/220 202/210/220 202/210/220 202/202 198/220 198/202/220 198/202/220 202/202 202/210 202/210 202/210 *** 
UNH943 155/155 134/155 134/155 134/155 155/155 134/134 134/155 134/155 155/155 134/155 Failed Failed *** 
UNH844 133/133 133/133 133/133 133/133 133/133 133/133 133/133 133/133 133/133 133/133 133/133 133/133 M 
LG20                            
UNH174 190/190 206/206 190/206 190/206 190/190 184/206 184/190/206 184/190/206 190/190 184/206 184/190/206 184/190/206 *** 
UNH866 167/167 167/167 167/167 167/167 167/167 167/167 167/167 167/167 167/167 167/176 167/176 167/176 * 
GM363 210/210 210/210 210/210 210/210 210/210 210/220 210/220 210/220 210/210 210/210 210/210 210/210 * 
LG21                            
UNH957 192/192 192/192 192/192 192/192 192/192 182/182 182/192 182/192 192/192 172/178 172/178/192 172/178/192 ** 
GM221 197/197 197/197 197/197 197/197 245/245 238/245 238/245 238/245 197/197 197/197 197/197 197/197 * 
LG22                            
GM531 231/231 231/233 231/233 231/233 231/231 231/233 231/233 231/233 231/231 231/233 231/233 Failed ** 
UNH905 168/168 168/171 168/171 168/171 168/168 158/168 158/168 158/168 168/168 158/168 158/168 158/168 *** 
UNH840 153/153 151/153 151/153 153/153 153/153 151/153 151/153 151/153 153/153 151/153 151/153 153/153 *** 
LG24                            
GM173 285/285 242/242 242/285 242/285 285/285 242/285 285/285 242/285 285/285 242/242 242/285 242/285 *** 

 
Notes: P: Polymorphic, M: monomorphic at locus, *polymorphism in one family, **polymorphism in two families, ***polymorphism in all three families of male 
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