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We show that, for any tubular algebra, the lattice of pp-definable subgroups of the
direct sum of all indecomposable pure-injective modules of slope r has m-dimension
2 if r is rational, and undefined breadth if r is irrational- and hence that there are no
superdecomposable pure-injectives of rational slope, but there are superdecomposable
pure-injectives of irrational slope, if the underlying field is countable.

We determine the pure-injective hull of every direct sum string module over a
string algebra. If A is a domestic string algebra such that the width of the lattice
of pp-formulas has defined breadth, then classify “almost all” of the pure-injective
indecomposable A-modules.
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We consider two different classes of finite dimensional K-algebras: In chapters 3
and 4, we consider tubular algebras, and in chapters 5, 6 and 7, we consider string
algebras.

Tubular algebras are defined as being tubular extensions of a tame concealed
algebra Ay, of extension type either (2,2,2,2), (3,3,3), (4,4,2) or (6,3,2).

Tubular algebras are usually described in terms of their Auslander-Reiten quiver:
the set of all finite dimensional indecomposable modules over a tubular algebra A
can be partitioned into sets Py U Q. U UWEQSO 7T,- where Py is a connected prepro-
jective component, Q. a connected preinjective component, and each 7, is a set of
pairwise orthogonal, sincere, standard tubes. Furthermore, the components satisfy

the following conditions:

e For all v € QF, every tube in 7, is stable, whereas 7 and 7., contain non-
stable tubes: one tube in 7, contains a projective module, and one tube in 7

contains an injective module.
e Hom(Q.,7,) = Hom(7,Py) = Hom(Q., Py) = 0 for all v € Q.
e Hom(7,,75) =0 for all v > §.

e Given any v € Qf°, and any tube in 7,, any homomorphism from a module
in Py U U(5<'y 7s to a module in Q. U U6>'y 7Ts factors through a direct sum of

modules in 7.

Any module M € A-Mod is said to have slope r if Hom(M,lJ,.,7;) = 0 and
Hom(Js., 75, M) = 0. Ringel and Reiten proved in [22] that every indecompos-
able module over a tubular algebra (other than those in Py and Q) has a unique
slope. We study the lattice of pp-formulas over this algebra, with the aim of further
extending the knowledge of modules over this algebra.

In section 3.5, we describe the pure-injective A-modules of which lie in the sup-

port of 7., for any positive rational «, and that this set coincides with the set of all
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indecomposable pure-injective modules of slope 7. We also prove that the Cantor-
Bendixson rank of Supp(7Z;) is 2, and that the m-dimension of the lattice of pp-
definable subgroups of @ MeT, M- which in turn implies that there are no superde-
composable modules of slope 7.

In chapter 4 we consider the lattice of pp-definable subgroups of M (r)- the direct
sum of all indecomposable pure-injectives of slope r- for any irrational r. By theo-
rem 30, a pp-pair is closed on M(r) if and only if there exists € > 0 such that ¢/1) is
closed on all modules in U, ., 7.

We consider four specific tubular algebras: C(4,\), C(6), C(7) and C(8). We
prove in theorem 31 that ¢pp(M(r)) is wide for every irrational r.

In section 4.7, we extend this result to all tubular algebras through shrinking
functors- which are a type of tilting functor between two tubular algebras. We prove
that, given any irrational r, we can induce from a shrinking functor X7 : A — B, an
embedding from ppp/ ~; to ppp*/ ~, (for some irrational s and k > 1). It follows
that if w(gpp/ ~s) = oo for all irrational s, then w(gpp/ ~,) = oo for all irrational
T.

In [23], Ringel shows that given any tubular algebra A, there exists a finite set of

tubular algebras By, ... B, and a series of shrinking functors:

b bX P
A 1 Bl 2 B2 . n Bn

-with B, being either C'(4, \), C(6), C(7) or C(8). It therefore follows that w(4pp/ ~
) = oo for all tubular algebras A and all positive irrationals r.

It follows that, if the underlying field K is countable, then there exists a pure-
injective superdecomposable A-module of slope r.

We define string algebras at the start of chapter 5. It was proved.... that the finite
dimensional indecomposable modules over a string algebra are all string modules or
band modules.

Given any infinite word, one can extend the definition of a finite dimensional
string module, to define, to give a number of infinite dimensional string modules:

In particular, the direct sum string module, M (w), which is of countable dimension



15

over the underlying field K, and the direct product string module, M (w), which
is of uncountable dimension over K. It was proved in [13] that every direct sum
string module is indecomposable. We show, in proposition 4, that the direct product
module M (w) is always pure-injective.

In [24], Ringel introduced a number of infinite dimensional string modules over
periodic and almost periodic words- which we refer to as Ringel’s list- with the inten-
tion of proving that it contained all the indecomposable pure-injective modules over
a domestic string algebra. It follows from our results that every module on Ringel’s
list is indeed indecomposable.

In [6], Burke describes some pure-embeddings between direct sum and direct
product modules over periodic and almost periodic words. We extend this result
to all words- in particular, that for all aperiodic words, w, the canonical embedding
from M (w) to M(w) is a pure embedding.

In [18], Prest and Puninski proved that, for every N-word, w, there exists a unique
infinite dimensional one-directed indecomposable pure-injective module- which we
denote as M,- and that the map w +— M, defines a bijection between N-words
and (isomorphism classes of) infinite dimensional one-directed indecomposable pure-
injective modules. If w is periodic or almost periodic, then M,, must be the module
on Ringel’s list. If w is aperiodic, then we prove, in corollary 29, that M, is the
pure-injective hull of M (w).

In chapter 6, we find necessary and sufficient conditions on an infinite word, w,
to determine whether or not the direct sum string module w is pure-injective, and to
determine whether or not the direct product module M (w) is indecomposable.

Specifically, we prove that the direct sum module M (w) is pure-injective (and
indeed Y-pure-injective) if and only if both W, and U, (cf. 6.1) satisfy the ascending
chain condition. Also, M(w) is indecomposable if and only if the poset of standard
basis elements {z; : i € I} satisfies both the descending chain condition and (IC) (cf.
6.1).

It follows from these results that there are aperiodic N-words, w such that neither

M (w) nor M(w) is both pure-injective and indecomposable- and hence that M, is
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neither M (w) nor M(w).

In chapter 7, we attempt to extend theorem 40 to two-directed modules. We
show in theorem 51- that for every non-periodic Z-word, u, 'wy, there exists a unique
(up to isomorphism) two-directed module M,,, containing a fundamental element (cf.
(7.1.2)) with right-word wy and left-word wy.

Furthermore, we prove that there is exactly one two-directed pure-injective inde-
composable module containing a fundamental element with right-word w, and left
word ug- giving us a bijective correspondence between non-periodic Z-words and
pure-injective indecomposables containing a fundamental element x such that u 'w,
is not periodic (where w, and u, denote the right-word and left-word of x in M).
This correspondence implies that if every pure-injective indecomposable A-module
does contain a fundamental element, then we can classify almost all the indecompos-
able pure-injective A-modules.

We extend the results of [6] by finding the pure-injective hull of every direct sum
string module M(w). As in the one-directed case, H(M(w)) = M, whenever w
is aperiodic. Again, it follows from these results that M, is a direct summand of
M (w). However, unlike in theorem 40, we cannot prove that M, % M,, for any pair
of distinct Z-words, w and w'.

It is conjectured that w(pp) < oo for every domestic string algebra, A. We
prove that, if w(4pp) < oo, then every pure-injective indecomposable A-module
contains a fundamental element. Given such an algebra, it follows that every infinite
dimensional indecomposable pure-injective A-module is either a module on Ringel’s
list, or a module obtained from a homogeneous tube, or an “anomaly” (theorem 53).

Given any aperiodic Z-words, w and w’, we write w < w’ if every finite subword
of w is also a finite subword of w’. We prove in section.... that w < w’ if and only
if Supp(M (w)) C Supp(M (w')). We also show that there exists distinct Z-words, w
and w’ such that M (w) 2 M(w’) and Supp(M (w)) = Supp(M (w')).

We prove in section 7.5 that Supp(M(w)) = Supp(M(w)) for every aperiodic
Z-word or N-word, w.

Finally, we show in section 7.6 that there are examples of words w and u such
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that M (w) is a direct summand of M (u): Indeed, we construct a pure embedding

from M (w) to M(u) to show this.
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First of all, we point out a few conventions, which we use throughout the thesis:
we denote by N the set of all non-negative integers, and by N the set of all strictly
positive integers.

We denote by Q7 the set of all strictly positive rationals, and by Qg° the set
QT U{0} U{oo} (where co > ¢ for all ¢ € Q).

We will also assume throughout the thesis that K denotes an algebraically closed

field.

2.1 Homological algebra

Throughout this section, R will denote any ring, K any field, and A any K-algebra.
Given any ring R, we denote by R-Mod and Mod-R the set of all left R-modules
and the set of all right R-modules respectively. We denote by R-mod (respectively,
mod-R) the set of all finitely presented left R-modules (respectively, right R-modules).
We will only be working over finite dimensional K-algebras. Such rings are Ar-
tinian, and hence Noetherian, and so every finitely generated module over such an
algebra is finitely presented.

The opposite algebra of A, denoted A°P, is the K-algebra with the same underlying
vector space, but with multiplication reversed: i.e. a x b in A is the element ba of
A.

Of course, (A°P)°P is A, and every left (respectively, right) A-module may be
considered as a right (respectively, left) A°°-module.

Given any M € A-Mod, the K-dual of M, denoted DM, is the K-vector space
Homg (A, K). We may consider it as a right A-module, where for all a € A, fa :
M — K is the map taking every m € M to f(am).

The K-dual D induces a duality between A-mod and mod-A (since D(DM) = M
for all M € A-mod).

A map f € Hom(L, M) is called a section if there exists h € Hom(M, L) such
that hf = 1,- any such h is called a retraction of f. A map g € Hom(M, N) is called

a retraction if there exists h € Hom(N, M) such that fh = 1y.
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A chain complexr in A-Mod is a sequence of A-modules M; and homomorphisms
Ji:
RN VASECIS, VLI /A N

-such that f;fir1 = 0 for all i € N. It is called an exact sequence if Im(f;11) = Ker(f;)
for all 7 € N.

Similarly, a cochain compler in A-Mod is a sequence of A-modules N; and homo-
morphisms f;:

02 Ny 25 Ny 2N, B

-such that g;119; = 0 for all i € N. It is called an ezact sequence if Im(g;) = Ker(g;+1)
for all 7 € N.

A short exact sequence is any sequences of modules L, M, N € A-Mod and homo-
morphisms f, g:

0—L - M- N_—0

-such that f is an embedding, g a surjection, and Im(f) = Ker(g). A short exact

sequence is said to be split if f is a section, or equivalently, ¢ is a retraction.

2.1.1 Projective and injective modules

A module P € R-Mod is said to be projective if, for all M, N € R-Mod, surjections
g : M — N, and homomorphisms f € Hom(P, N), there exists h € Hom (P, M) such
that f = gh.

Dually, a module E € A-Mod is said to be injective if, for all L, M € R-Mod,
embeddings ¢ : L — M, and homomorphisms f € Hom(L, E), there exists h €
Hom(M, E') such that f = hg.

Given any M € R-Mod, the projective cover of M is an epimorphism hqy : P — M
such that any submodule N of P with Ker(hy) + N = P must in fact be P. If a
projective cover exists, then it is unique up to isomorphism.

A mainimal projective presentation of M is an exact sequence:

PP M —0
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-where hg is the projective cover of M, and hy is the composition of the projective
cover of Ker(hg) and the natural embedding Ker(hg) — M.

Given any M € A-Mod, a projective resolution of M is any sequence:
. LopPp I
-and map fp € Hom(P, M) such that the sequence:
e Eap o

-is exact. The projective dimension of M- denoted pd M- is defined to be the minimal

m € N such that there exists an exact sequence of the form:
0O—P~P,—>P,1—>—>P—>F—-M-—0

-with every P; being projective. If no such m exists, then pdM := cc.
Dually, given any M € R-Mod, the injective envelope of M is an embedding
ho : P — M such that N N Im(hy) # 0 for all non-zero submodules N of M. The

minimal injective copresentation of a module M is an exact sequence:
fo f
00— M — EO I E1

-such that fy and the map Ey/Im(fy) — E; induced by f; are injective envelopes.

Given any M € A-Mod, an injective resolution of M is a complex:
0— By 2% By 22 By 15
-and a map hy € Hom(M, Ey) such that the sequence:
0— M2 B p 2 p, e

-is exact. The njective dimension of M- denoted idM is defined to be the minimal

m € N such that there exists an exact sequence of the form:
0O—-M—-FE,—F —-—FE,1—F,—0

-with every F; being injective. If no such m exists, then idM := oco.
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The right global dimension of A is defined to be max{pdM : M € Mod-A}, and
the left global dimension of A is defined to be max{idM : M € A-Mod}. If Ais a
finite-dimensional K-algebra, then the right global dimension of A and the left global

dimension of A are equal (see (A.4.9) of SS1). We refer to it as the global dimension
of A.

2.1.2 Ext and Tor

Given any M, N € A-Mod, and any k > 1, Ext*(M, N) is defined as follows: take a

projective resolution of M:

e Ep o

Applying the functor Hom(_, N'), we obtain a cochain complex:

Hom(f1,N) Hom(f2,N)

Hom(Py, N) "2 tom (P, N) 28 Hom(py, N) TREY

Define:
Ext*(M, N) := Ker(Hom(fii1, N))/Im(Hom(fy, N))

Theorem 1. Given any X € A-Mod, and any short exact sequence in A-Mod:
0— LM N—0

There exists a long exact sequence:

0 — Hom(N,X) ™% Hom(M, X) "% Hom(L, X)

— Ext’(N, X) — Ext' (M, X) — Ext*(L, X)

— BExt*(N,X) — Ext* (M, X) — Ext*(L, X) — ...
Proof. See [4, (2.5.2)] O

Given any M € A-Mod, and N € Mod-A, and k > 1, Tor? is defined as follows:

given a projective resolution of M:

Cbp p Ip L
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-we induce the chain complex:

%N@AP:&%N@APQ%N@APO

Then:
Tor, (N, M) := Ker(1 ® fi)/Im(1 ® fri1)

2.2 Model theory of modules

Given any ring, R, we denote the language of rings by Lz. A formula ¢(vy,...,v,)

in Lg called a pp-formula if it is of the form:

k n+m

ity Ungm /\ g rijv; =0

i=1 j=1
-with r;; € R for all ¢ and j. Fora all M € R-Mod, and pp-formulas ¢(v1, ..., v,), we
define:
(M) :={m e M": M |= ¢(m)}
Any such subset is called a pp-definable subset of M"™. We say that two pp-formulas
d(v1,...,v,) and Y (vq, ..., v,) are equivalent if ¢(M) = (M) for all M € R-Mod.
Given any n € N, there exists a partial ordering on the set of all (equivalence

classes of) pp-formulas in the free variables vy, ..., v,, given by:
¢ > <= o(M) D yY(M) for all M € R-Mod

Furthermore, this poset- denoted zpp”- is in fact a modular lattice, with the meet

operation given by ¢(7) A ¥(v), and the join given by:

Jw(g(w) A (v —w))

In general, we refer to the lattice zpp' as grpp.

Given any M € R-Mod, we define grpp(M) := {¢(M) : ¢(v) €r pp}- referred to
as the lattice of pp-definable subgroups of M (the lattice operations <, A,V being
C, N, + respectively). Of course, it is a quotient lattice of gpp- with the surjection

being the map taking ¢(v) to ¢(M).
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Given any n € N*t, a pp-n-type is a set of pp-formulas in rpp”, which is closed
under conjunction and logical implication. For example, given any M € R-Mod and

m € M"™, the pp-type of m in M is:
pp™ (M) == {¢ €r pp" : M € ¢(M)}

Also, given any ¢ € gpp", the pp-type generated by - denoted (v) is the set {¢ €r
pp” : ¢ < ¢}. It is clearly a pp-type. A pp-n-type is said to be finitely generated if
there exists ¢ € zrpp™ such that the pp-type is equal to (1)).

A map f € Hom(M, N) is said to be a pure embedding if, for all n € N* and

m e M:
pp" (m) = pp™ (f())
In fact, f is a pure embedding if and only if pp™(m) = pp™(f(m)) for all m € M.

Note that any pure embedding is an embedding (taking ¢(v) to be v = 0 shows this).

Lemma 1. Given any set of modules {M; :i € I}, @ Mier and [],.; M; are elemen-

tarily equivalent.
Proof. [16, (2.23)] O

Given any n € N, an n-pointed module, denoted (M, m), is an R-module M and
an n-tuple m = (my, ..., my,) in M™. Given any such module, we define fy/m) to be
the unique map in Hom(R"™, M) taking the element ¢; = (0,...,0,1,0,...,0) of R™
(with ith coordinate 1) to m,;.

Given any n-pointed modules (M,m) and (C,¢) (where m = (m4,...,m,) and
¢=(c1,...,¢n)), amorphism from (M, m) to (C,¢) is any f € Hom(M, C') such that
f(m;) = ¢; for all i < n.

We write (M, m) > (C,¢) whenever there exists a morphism from (M,m) to
(C,e). (M, m) and (C,¢) are said to be equivalent if both (M,m) > (C,¢) and
(C,e) > (M, m)

The set of equivalence classes of finitely presented n-pointed modules, endowed

with >, is a poset. Furthermore, this poset has a lattice structure, where the join of
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(M,m) and (C,¢), is given by (M @& C, (m,¢)), and the meet is the pushout of f(sm)

and f(c’g) .

An n-pointed finitely presented module (C,¢) is said to be a free realisation of

$(v1,...,va) if PP©(c) = (9).

Lemma 2. Given any M € R-mod, and any n-tuple m in M, the pp-type of m in

M s finitely generated.

Proof. See [17, (1.2.6)] O
Lemma 3. FEvery pp-formula has a free realisation.

Proof. See [16, (8.12)] O

Theorem 2. The lattice of n-pointed finitely presented modules is equivalent to rpp™.
Furthermore, the equivalence is obtained by taking every pp-formula to a free

realisation, and every pointed module (M, m) to a generator of ppM (M)
Proof. See [17, (3.1.4)] O

Lemma 4. Given any pp-formula ¢(vy, .. .,v,), with free realisation (C,¢), and any

M € A-Mod, the exact sequence:
R" f(c_cg C L Coker(f(aa) — 0

-gives rise to the exact sequence of abelian groups:
0 — Hom(Coker(fcz), M) () Hom(C, M) -4 ¢(M) — 0
Where g is the map taking any h € Hom(C, M) to h(c) = (h(c1),...,h(cn)).

Proof. See [17, (1.2.19)] O

2.2.1 Pure-injectives

An R-module, M is said to be pure-injective if it is injective over pure embeddings:
i.e. given any pure embedding f € Hom(L,N), any map g € Hom(L, M) factors
through f.
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A module is said to be algebraically compact if every finitely satisfiable system of
linear equations in (possibly infinitely many) free variables, with parameters in M,
is satisfiable in M.

Equivalently (by [17, (4.2.1)]), a module is algebraically compact if every pp-1-

type with parameters from M has a solution in M.
Theorem 3. An R-module is pure-injective if and only if it is algebraically compact.

Proof. See [17, (4.3.11)] O

A module is said to be X-pure injective if every direct sum of copies of M is

pure-injective.

Theorem 4. A module M is X-pure-injective if and only if pp(M) has the descending

chain condition.
Proof. See [17, (4.4.5)] O

Lemma 5. Let A be a K-algebra, and M any A-module, which is of countable di-

mension over K. Then M is Y-pure-injective if and only if it is pure injective.
Proof. See [17, (4.4.9)] and [17, (4.4.10)] O

Lemma 6. Suppose M is a module, such that -for any x,y € M- there exists a

pp-formula p(v,v') such that:
e (z,y) € p(M)
o (2,0) ¢ p(M)

Then M is indecomposable.

Proof. Let M = M; & M, and pick any non-zero m; € M; and mo € Ms. Let

x = (my,mg) and y = (0, my). Then the map:

Ml@MQ—»MlcﬂMl@MQ
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(where the maps are the canonical projection and canonical embedding of the direct

summand) takes x to x, and y to 0. Consequently, given any pp-formula p(v;, vs):

M = p(z,y) = M |= p(z,0)
-so there are no pp-formulas which satisfy the required conditions. O

Lemma 7. Suppose M is a pure injective indecomposable module. Then, for any

x,y € M, there exists a pp-formula p(v,v’) such that:
o (z,y) € p(M)

* (2,0) ¢ p(M)

Proof. See [16, (4.11)] O

Every module with local endomorphism ring is indecomposable: to see this, take

any non-indecomposable module, M; & M, and let f be the map:
Ml@MQ—»Ml‘HMl@MQ

-where there two maps are the projection onto, and the embedding of, the direct
summand M. Then clearly both f and 1 — f are non-invertible, so End(M; @& M)

is not local.

Theorem 5. Fvery indecomposable pure-injective module has local endomorphism

Ting.

Proof. See [17, (4.3.43)] O

2.2.2 Pp-pairs and finitely presented functors

An object C of a category is said to be finitely presented if the functor Hom(C, _) com-
mutes with direct limits. The following result describes the finitely presented objects

in the category of functors from R-mod to Ab (the category of abelian groups).
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Lemma 8. For every finitely presented functor F € (R—mod, Ab), there exists
A, B € R-mod and f € Hom(A, B) such that F' ~ Coker(f,_ ).
Furthermore, every functor in (R-mod, Ab) of the form Coker(f,_) (with A, B €

R-mod) is finitely presented.
Proof. See [17, (10.2.1)] O

We denote by (R-mod, Ab)™ the full subcategory of (R-mod, Ab) containing all
the finitely presented functors.

A pp-pair is any pair of pp-formulas ¢(v) and ¥ (v) such that ¢ > 1. We usually
write them as ¢/¢. Given any pp-pair ¢/, and any M € R-Mod, we say that ¢/
is open on M if ¢(M) > (M), and closed on M otherwise.

A pp-pair is said to be proper if there exists M € R-Mod such that ¢(M) >
(M). Given any pp-pair ¢/¢ and M € R-Mod, we denote by (¢/¢)(M) the group
H(M) /9(M).

Every pp-pair ¢/v determines a unique functor Fy,;, : R—Mod — Ab which takes
any R-module M to (¢/v)(M).

Let ¢/¢ and ¢'/1)' be pp-pairs in n and m free variables (respectively). Suppose
that there is a pp-formula p(Z,7) (where T has length n and 7 has length m) such

that:
p(T,Y) N (E) <Y (Y)
p(T,Y) N o(T) < ()
¢(7) < Jyp(T.7)

Then p defines a unique map f : (¢p/¢)(M) — (¢'/Y') (M), for any M € R-Mod, as
follows: Given any a € ¢(M), there exists b € M such that M = p(a,b). Define
f@+(M)) to be b+'(M). This map is well defined: Given any b, ¢ € ¢/ (M) such
that M = p(a,b) and M = p(@,¢), we have that:

M E (0) A p(0.5—2)

-and hence that b —¢ € ¢/(M), so b+ ¢'(M) = ¢+ (M), as required.
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Any two such pp-formulas, p(Z,7) and p/(Z',7'), satisfying those three conditions
are said to be equivalent if, for all M € R-Mod, the map (¢/¢)(M) — (¢'/¢") (M)
defined by p is equal to the map (¢/¢)(M) — (¢'/¢')(M) defined by p'.

We define the category of pp-pairs, denoted gIL°4*, to be the category whose
objects are the pp-pairs, and whose morphisms are the equivalence classes of pp-

conditions of the form p(Z,7), as described above.
Theorem 6. For any ring, R, (R—mod, Ab)™ is equivalent to pIL°*.

Proof. See [17, (10.2.30)]. O

2.2.3 Pure-injective hulls

Given any M € R-Mod, the pure-injective hull of M is a pure-injective module H (M)
and a pure-embedding f : M — H (M) such that f does not factor through any direct
summand of H(M). The module H(M) may also be referred to as the pure-injective
hull of M.

Theorem 7. Every module M € R-Mod has a pure-injective hull f : M — H(M).
Furthermore, it is unique up to isomorphism: given any second pure injective hull

g: M — N of M, there exists an isomorphism j : H(M) — N such that jf = g.
Proof. See [17, (4.3.18)] O

Theorem 8. FEvery module M is elementarily equivalent to its pure-injective hull-

i.e. given any sentence o, M = o if and only if H(M) |= o.
Proof. See [26, Cor 4]. O

Lemma 9. Let f : M — H(M) be a pure-injective hull of M. Then given any
pure-injective N € R-Mod, and pure embedding g : M — N, there exists h €
Hom(H (M), N) such that hf = g.

Furthermore, any h such that g = hf must be pure, and hence a section.

Proof. See [17, (4.3.17)] O
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Theorem 9. Given any M € R-Mod, any pp-pair is open on M if and only if it is
open on H(M).

Proof. See [17, (4.3.21)] O

A module M is said to be superdecomposable if it has no indecomposable direct

summands.

Theorem 10. Given any pure-injective module, M, there exists a set of indecom-
posable pure-injective modules {Ny : X € A} and a superdecomposable pure-injective
module N, such that M ~ N.® H(E, N)

Furthermore, N. and the modules Ny (and their multiplicities) are unique up to

1somorphism.
Proof. See [17, (4.4.2)] O

Lemma 10. Let {M; : i € I} be any collection of R-modules. Given any pure-

injective indecomposable module N, and pure embedding f : N — €,.; M;, N must
be isomorphic to a direct summand of some M.
Proof. See [17, (4.4.1)] O

2.3 Ziegler spectrum

Given any set of pp-pairs T' = {¢;/1; : i € I}, let Mod(T") denote the subcategory
of R-Mod whose objects are precisely the R-modules M such that ¢;(M) = ¢;(M)
for all © € I. Any such category is called a definable subcategory of R-Mod, and the
object class of Mod(7') is called a definable subclass of R-Mod.

Theorem 11. Let Z be a subclass of R-Mod. Then Z is definable if and only if it

18 closed under direct products, direct limits and pure submodules.

Proof. See [17, (3.4.7)] O
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Given any M € R-Mod, the definable subcategory of R-Mod generated by M,
denoted (M), is defined to be intersection of all definable subcategories of R-Mod
containing M.

The left Ziegler Spectrum of a ring R- denoted gZg- is the topological space whose
points are the pure-injective indecomposable left R-modules, and whose closed sets

are the sets of the form:
{X : ¢)(X) =9(X) for all i € I}

-for any set {¢;/v; : i € I} of pp-pairs.

Theorem 12. Given any proper pp-pair ¢/, and any M € R-Mod such that

d(M) > (M), there exists a pure injective indecomposable module N in (M) such
that ¢(N) > 1(N).

Proof. See [28, (4.8)] O

Given any M € R-Mod, define the support of M- denoted Supp(M )- to be the set
of all pure-injective indecomposables in (M). Notice that, given any M, N € R-Mod,
Supp(M) C Supp(N) if and only if every pp-pair closed on N is closed on M.

Given any set Z of R-modules, we define Supp(Z) to be the set of all pure-injective
indecomposable modules M such that every pp-pair closed on every module in Z is

closed on M.

2.3.1 Cantor-Bendixson rank

Given a topological space T, we say a point p € T is isolated if {p} is an open set.
In order to define the Cantor-Bendixson rank of 7', one has to recursively define
a topological space T, for every ordinal «, as follows: First of all, let Ty be T'.
Given Ty, let T,,+1 be the set of all non-isolated points of T,- this is a closed set
in T,. Let the topology on T,.; be the topology induced from T,: i.e. the closed
subsets of T, are those of the form X N7T,,;- where X is a closed subset of T,,.

Given a limit ordinal v, define T, = (), T4, and let the closed subsets of T, be

a<y

the sets X NT,- for every closed subset X of T'.
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We say that a point p in T has Cantor-Bendizson rank o if p € T,\T,_1. We say
that 7' has Cantor-Bendixson rank o if T,y # () and T,, = ()

Given any pp-pair ¢/, (¢/1) denotes the set of all indecomposable pure-injective
R-modules M such that ¢(M) > ¢(M). We say that a pp-pair is minimal on M if
d(M) > (M), and there is no pp-formula x such that ¢p(M) > x(M) > (M).

We say that a closed subset X of gZg satisfies the isolation condition if, for all

closed subsets Y of X and all isolated points IV of Y, there exists a Y-minimal pp-pair
¢/ such that (¢/) NY = {N}.

Lemma 11. Given any closed set X of rZg, the following are equivalent:

1. X satisfies the isolation condition.

2. Bvery N € X which is isolated in some closed subset of X is isolated in Supp(N)

by a minimal pair.

Proof. See [17, (5.3.16)] O

2.4 Bound quiver algebras

Let Q@ = (Qo, Q1) denote any finite quiver- where @)y is the set of vertices, and ¢
the set of arrows. Given any « € @y, let s(a) and t(«) denote the source and target
of a.

A path of length n in @) is any string w = ajQs . . . a,, of elements of ()1, such that
s(a;) = t(ayq) for all i <n — 1. We define s(w) = s(a,) and t(w) = t(ay).

For each a € @, we define a “path of length 0", e,, such that s(e,) = t(e,) = a.

Given a field, K, the path algebra K () is defined as follows: As a K-vector space,
it has basis given by the set of all paths in (): the multiplication of elements in K@

is such that:
wu if s(w) = t(u)
w X U=
0 otherwise

w if s(w) =a
w X e, =
0 otherwise
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w if t(w) =0
ep X W =
0  otherwise

For each a € Q, e, is an idempotent. And 1 = Zaer €a-

A relation in K@ is a finite K-linear combination of paths in (- all of which have
a common source, and a common target. A bound quiver algebra is any K-algebra
of the form K@Q/Z, where Z is an ideal generated by finitely many relations.

A K-representation of @ is any set of K-vector spaces {M, : a € Qv}, and a set of
morphisms { fo € Homg (M), Myq)) : @ € Q1}. We say that it is finite dimensional
if D,eq, Ma is finite dimensional.

Given any path w = ajay ... ay, in @, denote fo, fa, - - - fa, by f. We say that a
K-representation of @ is bound by I, if ), \; f,,, = 0 for all relations ), A\;w; which
generate 7.

We denote by Repg(Q,Z) (and respectively, repx(Q,Z)) the category of all K-
representations of ) (respectively, finite dimensional K-representations of )) which

are bound by Z.

Theorem 13. Repg(Q,Z) and Mod KQ/Z are equivalent categories.
Furthermore, if Q is a finite quiver, then repx (Q,Z) and mod KQ/Z are equivalent

categories.

Proof. See [1, (I111.1.6)] O

A quiver is said to be acyclic if there are no cyclic paths in Q. The underlying
graph of a quiver is the (undirected) graph obtained by replacing each arrow in ¢y

by an undirected edge.

2.4.1 The quiver of an algebra

Let A be any finite dimensional K-algebra. An idempotent of A is any element e € A
such that e? = e. Idempotents e; and e; are said to be orthogonal if e;e; = eje; = 0.
An idempotent e is said to be primitive if there is no pair of orthogonal idempotents
e; and e; in A such that e = e; +e;. A central idempotent of A is any idempotent e

of A such that ae = ea for all a € A.
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The radical of A, denoted rad(A), is the intersection of all maximal right ideals
of A.

An algebra A is said to be connected if it cannot be written as a direct product of
two non-zero algebras- or equivalently, the only central idempotents of A are 0 and
1.

Let {e1, €9, ...,e,} be the complete set of primitive orthogonal idempotents in A.
We say that A is basic if e;A 2 e;A for all @ # j.

The quiver of A- denoted Q- is the quiver with vertex set {1,2,...,n}, and

dimg (e;(rad(A) /rad?(A))e;) arrows from the vertex i to the vertex j.

Theorem 14. For any basic, connected, finite dimensional K -algebra A, there exists

an admissible ideal, T of KQa such that A= KQ4/T.

Proof. See [1, (11.3.7)] O

2.5 Auslander-Reiten quivers

Given any M, N € A-mod, a map f € Hom(M, N) is said to be irreducible if f is

neither a section nor a retraction, and given any factorisation:

N

-either g must be a section, or h a retraction.

M

Given any K-algebra A, the Jacobson radical of A-mod (denoted rad,) is the

two-sided ideal in the category A-mod defined by:
rada(X,Y) = {h € Homa(X,Y) : 1x — g o h is invertible for all ¢ € Hom(Y, X)}

-for all X,Y € A-mod. Given any n € N, define rad’; to be the ideal consisting of all
finite sums of maps of the form:

X=X x L& Iy Iux, =y

-with each map h; € rad(X;_1, X;). Notice that rad’y"™" C rad’} for all n > 1. Define

S SR n
rady’ := (1,5, rad}.
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Lemma 12. Take any X,Y € A-mod, and f € Hom(X,Y). Then f irreducible if
and only if f € rads(X,Y)\rad%(X,Y).

Proof. See [1, (IV.1.6)] O

2.5.1 Translation quivers

A quiver (finite or infinite) is said to be locally finite if, given any a € @y, there are
only finitely many a € @); with source a and only finitely many 3 € )7 with target
a.

A translation quiver is a locally finite quiver, endowed with a a subset Q) C Qo
and an injective map 7 : Qf — Qo such that, for all a € @} and b € )y the number

of maps from b to a is equal to the number of maps from 7a to b.

2.5.2 The Auslander-Reiten quiver

Given any basic, connected, finite dimensional K-algebra, A, the Auslander-Reiten

quiver I'4 is given as follows:

e The vertices of I' are the (isomorphism classes of ) indecomposable modules in

A mod.

e Given any such modules M and N, there are precisely dimg (radgx (M, N)) —

dimg (rad? (M, N)) arrows with source M and target N.
An almost split exact sequence is a short exact sequence:
f g
0O—-L—>M-—=N-—=0

-where L and N are indecomposable, and f and ¢ are irreducible.

A map f € Hom(L, M) is left minimal if any h € End(M) such that hf = f is an
isomorphism. It is left almost split if it is not a section, and any map h € Hom(L, X),
which is not a section, factors through f. We say that f is left minimal almost split

if it is left minimal, and left almost split.
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Dually a map g € Hom(M, N) is right minimal if any h € End(M) such that
gh = ¢ is an isomorphism. It is right almost split if it is not a retraction, and any
map h € Hom(X, N), which is not a retraction, factors through g. We say that f is

right minimal almost split if it is left minimal, and left almost split.
Lemma 13. Given any short exact sequence:

0—L-L M- N—0
The following are equivalent:

e The sequence is an almost split exact sequence
o f s left minimal almost split

e g is right minimal almost split.
Proof. See [1, (IV.1.13)] O

Given any M € A-mod, we denote by M*' the A°°-module Hom4(M, A). The
functor (1)! : A-mod — A°P-mod induces an isomorphism between the set of finitely
generated projective right A-modules, and the set of finitely generated projective left
A-modules.

Given any M € A-mod which is not projective, take a minimal projective presen-

tation of M:

psp v —o
The functor (1) is left exact. Applying it gives the exact sequence:
0— M' S, P} i P} — Coker(f{) — 0
Define Tr(M) := Coker(f}). Define 7= (M) := DTr(M), and 7(M) := TrD(M).

Lemma 14. Let M be any indecomposable module in A-mod. If M is not injective,

then there exists an almost split exact sequence of the form:
0—-M-—->N-—-7TM-—0
If M is not projective, then there exists an almost split exact sequence of the form:

O0— 7™M —-N—-M-—0
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Proof. See [1, (IV.3.1)] O
Theorem 15. Let M, N € A-mod be indecomposable. If N is not injective, then:
Ext! (M, N) ~ DHom (7~ N, M)
If M is not projective, then:
Ext} (M, N) ~ DHomu (N, TM)
If either M 1is projective, or N injective, then:
Exty(M,N) =0
Proof. See [1, (IV.2.13)] O
Theorem 16. Let A be a K-algebra, and M, N € A-Mod.
o [f M € A-mod and pdM < 1 then Ext(M,N) ~ DHom(N,7(M))
o If N € A-mod and idN < 1 then Ext(M, N) ~ DHom(r'(N), M)
Proof. See [15] O

A connected component of the Auslander-Reiten quiver is said to be preprojective
if it is acyclic, and every indecomposable M € A-mod in the component is isomorphic
to 77" P, for some n > 0 and projective P € A-mod.

Dually, a connected component of the Auslander-Reiten quiver is said to be prein-
jective if it is acyclic, and every indecomposable M € A-mod in the component is
isomorphic to 7" E, for some n > 0 and injective F € A-mod.

Two components I'; and I's of an Auslander-Reiten quiver are said to be orthog-

onal if Hom(M, N) = Hom(N, M) =0 for all M in I'y and N in I's.

2.5.3 Projective covers in quiver algebras

Let A be any bound quiver algebra, K@ /Z, such that @y is finite. Then, given any
a € @, the stationary path e, is a primitive idempotent of A. Furthermore, every

primitive idempotent is equal to e, for some a € Q).
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For each a € @, define P(a) € A-mod to be Ae,. As a K-vector space, it has

basis the set of all paths in ) with source a, modulo Z.

Lemma 15. Let A = KQ/Z, for some finite quiver Q. Then given any a € Qo, P(a)
s an indecomposable projective in A-Mod.
Furthermore, every projective module in A-mod is isomorphic to a finite direct

sum of copies of modules in {P(a):a € Qo}.
Proof. See [3]. O
Dually, for each a € Qy, define I(a) € A-mod to be D(eqA).

Lemma 16. Let A = KQ/Z, for some finite quiver Q. Then given any a € Qo, I(a)
is an indecomposable injective in A-Mod.
Furthermore, every injective module in A-mod is isomorphic to a finite direct sum

of copies of modules in {I(a) :a € Qo}.

To every a € @y, we also assign a simple module S(a), with M, ~ K, and M, =0

for all b € Qp\a. Every simple A-module is isomorphic to S(a), for some a € Q.

Lemma 17. Let A= KQ/Z, for some finite quiver Q.

Then every M € A-mod has a projective cover.

Proof. See [1, (1.5.8)] O

2.6 Torsion pairs and tilting

Given any class Z of modules in A-Mod, we write Hom(M, Z) = 0 (respectively,
Hom(Z, M) = 0) to mean that Hom(M, Z) = 0 (respectively, Hom(Z, M) = 0) for
all Z € Z.

We define r(Z) to be the class of all M € A-Mod such that Hom(Z, M) = 0, and
[(2) to be the class of all M € A-Mod such that Hom(M, Z) = 0.

Let F and G be classes of left A-modules. We say that (F,G) is a torsion pair
if both [(F) = G and r(G) = F. We call F the torsionfree class, and G the torsion

class.
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Lemma 18. (F,G) is a torsion pair if and only if the following condition holds:
e Hom(N,M) =0 for all M € F and N € G

o [orall M € A-Mod, there exists a submodule M’ of M in F such that M /M’ €
g.

Proof. See lemma 1 of [22]. O

In any torsion pair, the torsionfree class is closed under submodules, and the
torsion class is closed under quotient modules.

A torsion pair (F,G) is said to be split if Ext'(F,G) = 0- or, equivalently, if every
M € R-Mod can be decomposed into M’ & M"”, with M’ € F and M" € G.

2.6.1 Tilting functors

Given any set Z of A-modules, we define add(Z) to be the set of all direct products
of direct summands of modules in Z. We also define [ Z to be the set of all direct
summands of direct products of modules in Z.

Given any M € A-Mod, we define add(M) = add({M }).

Given any finite dimensional K-algebra A, a tilting A-module is any T € A-mod

such that:
e pd(7T) <1
e Ext(T,7)=0
e There exists an exact sequence:
054 A=T —-T"—>0
-with 77 and 7" in add(T).

Given any algebra A, and any tilting module 7' € A-mod, let B = End4(47T),

and define the functors:

Yr:=Homy(T,_) : A-Mod — B-Mod
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= Exta(T,.) : A-Mod — B-Mod
Yri=4 T ® _: B-Mod — A-Mod
Y. := Tor{ (T, ) : B-Mod — A-Mod

Define two subclasses of A-Mod by F(T') := Ker(Xr) and G(T') := Ker(X/).
Define two subclasses of B-Mod by X(T') := Ker(Y7) and Y(T) := Ker(1/).

Theorem 17. (F(T),G(T)) is a torsion pair in A-Mod, and (Y(T),X(T)) is a

torsion pair in B-Mod.

Theorem 18. X and Y1 are mutually inverse equivalences between the categories
G(T) and X(T).
Also, ¥l and Y. are mutually inverse equivalences between the categories F(T)

and Y(T).

Proof. See [9, (1.4)] O



Chapter 3

Tubular Algebras

41



42 CHAPTER 3. TUBULAR ALGEBRAS

3.1 Tubular algebras

3.1.1 Integral quadratic forms

Given any finite dimensional K-algebra A, the Grothendieck group Ky(A) is defined
as follows: Let F' be the free group generated by isomorphism classes of modules in
A-mod. Given any M € A-mod, let [M] denote its image as an element of F. Let
E be the subgroup of F' generated by elements of the form [Y] — [X] — [Z], for every

short exact sequence in A-mod:
0—-X—-Y—-272—-0

Then Ky(A) := F/E.

Let A be any finite dimensional K-algebra. It follows from the Jordan-Holder
theorem that Ky(A) is isomorphic to Z"- where n is the number of non-isomorphic
simple A-modules.

Let K@Q/Z be the bound quiver algebra isomorphic to A. Recall that there is
exactly one simple K@ /Z-module for each vertex of Q- so we may label the vertices
of Qas {1,2,...,n}.

Recall, the set of simple modules {S(a) : a € Qp} from (2.5.3). Given any M € A-
mod, let zy,...,z, be such that [M] = >_"_, z,[S(a)] (as elements of K(A))- or
equivalently, let z, = dimg (e, M). Define (z1,...,x,) to be the dimension vector of
M- which we denote as dim(M).

Given a finite dimensional basic K-algebra A, let {P(a) : a = 1,...,n} denote
the indecomposable projective A-modules. The Cartan matriz C4 is defined to be

the n x n matrix whose i-j-th entry is dimg(Hom4(P(3), P(j))).

Lemma 19. Let A be any finite dimensional K -algebra with finite global dimension.
Then C4 has an inverse in M,(Q).
Furthermore, if Cy is upper triangular, and dimg(Enda(P(i))) = 1 for all inde-

composable projectives P(i), then Cy has an inverse in M,(Z).

Proof. See page 70 of [23]. O]
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In particular, if A = KQ/Z for some acyclic quiver @), then C4 has an inverse in
M, (Z).

Let A be any finite dimensional K-algebra such that C'y is invertible. Define the
bilinear form (_, ) : Z™ x Z" — Z by:

(@, 7) :=zC~ Ty for all 7,7 € Z"

Lemma 20. Let A be a basic algebra of finite global dimension. Then, for all X,Y €

A-mod:
(dim(X), dim(Y)) = Y (=1)"dimg (Ext"(X,Y))
-where Ext’(X,Y) := Hom(X,Y). _
Proof. See [1, (3.1.3)] O

Given any K-algebra A such that C}y is invertible in M, (Z), define x4 : Z" — 7Z
by:

Then y 4 is an integral quadratic form- i.e. it is of the form:
XA : (1}1, e ,xn) — sz + Z,uij:cixj
i=1 i<j
-with p;; € Z for all ¢,5. We say that a quadratic form x : Z" — Z is positive

semi-definite if x(z1,...,2,) > 0 for all (z4,...,x,) € Z™. We define:
rad(x) :={7 € 2" : x(z) = 0}

rad, is a subgroup of Z", and every element of rad(x) is called a radical vector. The
radical rank of y is defined to be the rank of rad(y) as a subgroup of Z".

Let T = (21,...,x,) be any element of Z". We say that T is sincere if x; # 0 for
all 7. It is positive if x; > 0 for all i.

The support of T is the set of all i € @y such that z; # 0. We say that 7 is
connected if and only if the full subquiver of ) on the support of T is a connected
subquiver of ). We say that T is a root of x4 if xa(Z) = 1.

Let U be any subset of Ky(A), such that x(Z) > 0 for all T € U. Let ) be any

module class in A-mod. We say that ) is controlled by the restriction of x4 to U if:
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e For all indecomposable A-modules M in Y, dim(M) is either a connected pos-

itive root, or a connected positive radical vector of x4 in U.

e For every connected positive root T of x4 in U, there is one indecomposable

A-module M (up to isomorphism) in Y with dim(M) = 7.

e For every connected, positive radical vector T € U, there is an infinite family of
(isomorphism classes of) indecomposable modules in ) with dimension vector

T

3.1.2 Tubes

Given any translation quiver I' = (I'y, 'y, 7), the geometric realisation of I' is defined
formally in [5, (4.1)]. Informally, we may define it as follows:

For all non-injective = € I'y, define -, to be an arrow from = to 7-x. Let I} be
the set of all such arrows.

Recall that, for all non-injective z € ['y, and all y € T'y, the number of maps from
x to y equals the number of maps from y to 77 z- we may therefore assign, to each
a:x — Yy, a unique map 3 :y — 7~ 2- which we shall denote as o(«).

For each arrow a € I'y, assign a 2-dimensional simplex, A, to «, which is the

triangle:

y
7’ W)
Yo

T—>7«x

We may informally define the geometric realisation of I" to be the “shape” obtained
from the set of all triangles A, by identifying any edges of triangles which correspond
to the same arrow in I'y, or in I},

A translation quiver I' is called a tube if it contains a cyclic path, and the geometric
realisation of T"is S* x R} (where S is the unit circle).

Given any ring R, let I” be a component of I'(R-mod) which is a tube. We say
that I is a stable tube if and only if every R-module associated to a vertex of I is

neither projective nor injective.
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Given any n € N*T, define ZA,,/n to be the translation quiver with vertex set
Z,, x NT, and arrow set:
U UHaws: () = (5 +1), 805 (6 +1) = (i + 1,5)}
1€Zn jENT

-with 7(i,7) = (i — 1, ) for all (i,5) € Z,, x N*.

Lemma 21. A component I'" of an Auslander-Reiten quiver is a stable tube if and

only if it is of the form ZA /n for some n € NT.
Proof. See [23, (3.1.0)]. O

Given any stable tube I'; which looks like ZA ., /n, we define the rank of T' to be
n. A stable tube is said to be homogeneous if it has rank 1. We define the mouth of
" to be the vertices in {(i,1) : 1 € Z,}.

Given any stable tube of rank n, we will normally write the module associated to

the vertex (i,7) as E;[j], and the maps as:
f+ Bilj) = Eilj + 1]

gl  Eia[j +1] — Eilj]

-for all © € Z, and 5 > 1. Notice that, for all 7, we have an almost split exact

sequemnce:

1
fi 9it1

0 — Eill] — Ei[2] — Eija[1] =0
And for all i € Z,, and k > 2, we have an almost split exact sequence:

k—1 k—1
(fz'k7gi+1 ) (g£€+1,fi+1 )t
—_— e

0 — Ei[k] Eilk + 1] ® Eia[k — 1] Ei[k] — 0

Given any quasisimple module E; in a stable tube, we denote by FE;[oc] the direct
limit of the sequence:

1 2 3
EN] 25 B2l 15 B3

And we denote by E, the inverse limit of the sequence:

93 97 9

C E%_Qkﬂ e EQ_J[Q]———>f%[I
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Lemma 22. Take any module E;[k] in a stable tube of rank n, and any indecomposable
M € A-Mod which is not isomorphic to E;m] for any j € Z,, and m < n.

Then for all f € Hom(E;[k], M) there exists g € Hom(E;[k + 1], M) such that
f=gff

Proof. We prove the result by induction on k: Assume that we have the result for

k — 1. Consider the almost split exact sequence:

k k—1 k k—1
(fz 9itr1 ) (9i+17f7;+1 )t

0 — E;i[k] Elk+1]® Eiyalk — 1] Eilk] — 0

Since M 2 E;[k], f is not a section, so there exists h € Hom(FE;[k + 1], M) and
W € Hom(E;41[k — 1], M) such that f = hfF + W g;}'. By the induction hypothesis,

W factors through /5!~ i.e. there exists h” € Hom(E;41[k], M) such that ' = h” fF!

i1
Then:
fo= hff+nWgidt
= hff+ Rl
= hfz‘k - hﬂgfﬂfik
-so f factors through f*, as required. n

Given any component I, we say that an indecomposable module M, € A-mod
(but not in I") is a proper predecessor of I if there exists a finite set of modules
My, ..., M} € A-mod such that M, € I" and Hom(M,;_q, M;) # 0 for all i < k. We
say that an indecomposable module Ny € A-mod (but not in I") is a proper successor
of I if there exists a finite set of modules Ny,..., N, € A-mod such that N, € T”
and Hom(N;, N;_1) # 0 for all ¢ < k. I" is said to be standard if no indecomposable

M € A-mod is both a proper predecessor and a proper successor of I

Lemma 23. Let T (p) be any standard stable tube. Given any indecomposable modules
M ,N in T (p), any map in Hom(M, N) is a K linear combination of the identity map
(if M = N) and compositions of irreducible morphisms in the tube (i.e. the ones

associated with arrows of the tube).
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Proof. See [27, (2.7)] O

Corollary 1. Given any two modules E;m] and Ey[m’] in a standard stable tube
T (p), let J be the set of all a > 0 such that m —m/' <a <m —1 and n,|(?' —i+ a).
Then every map in Hom(E;[m], E;y[m']) can be written in the form:

m'—1 pm/—2 m—a _m—a m—2 _m—1
E :)‘afz" LR M i
acJ

~with all A\, € K.

Proof. Let h : E;jm| — E;[m'] be any composition hg . .. hghohy of irreducible maps.
Let a be the number of maps hj which are of the form gj (for some j and n). Of
course, the other a’ — a maps take the form g7, for some j and n.

Notice that, for all n > 2 and j the almost split exact sequence starting at E;[n]

fn—l n—1

3 n n __
glves gj+1fj = ~Ji+1 9j+1-

If a > m, then we can “re-shuffle” h into a map of the form:

’ 1 1 1 2 k
Wi mfim-19-m-19i-m-1--Gi-m—1

-for some h' € Hom(E; ,,11[2], Ev[K']). The exact sequence starting at F;_,,1[1]
gives that g} fl = 0- and hence that h = 0.

If a < m, then- since, we can “re-shuffle” h into a map of the form:

m'—1 pm/—2 m'—(a'—a) m—a m—2 m—1
L/ i Sy 9ita - Yir2 9it1

Notice that:
/=L =2 @) e Hom(Ey[m! — (df — a)], Eq[K])
gt gy gt € Hom(E;[m], Eio[m — al)
-and so Ey[m' — (a' —a)] 2 E;_4[m —a]. Thus a’ =2a+m' —m, and i/ — i+ a is

divisible by n,,.

Lemma 23 completes the proof. O
Notice that the following lemma can be applied to any quasisimple module E;|[1]

in a standard stable tube- where the left-minimal almost split map is the map f} :

Ei[l] — E;[2]:
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Lemma 24. Let L € A-mod be indecomposable and such that End(L)) ~ K, and
let f: L — M be left-minimal almost split. Then Coker(f, L) is 1-dimensional as a

K -vector space, and Coker(f, X) = 0 for all indecomposable modules X (other than
L).

Proof. Given any indecomposable X which is not isomorphic to L, any map g €
Hom(L, X) cannot be a section (since that would imply that L is a direct summand
of X), and hence factors through f.

The identity map in End(L) does not factor through f: since that would imply
that there exists h : M — L such that hf = 1- i.e. that f is a section, which
contradicts the fact that it is almost split. The fact that dimg(Coker(f, L)) <

dimg (Hom(L, L)) completes the proof. O
Notice that, given any tube, and any k£ > 2, the sequence:

k—1 k—1
f; ~~-fi2fi1 9it1

0— E& b fﬂ[k]--ﬁ i+l[k —*1]'——% 0

3.1.3 Generalised tubes

A generalised tube is any collection of modules and morphisms (M;, fi, g:)ien+, where
fi s M; — M, and g; : M; .1 — M; for all i € NT, such that the following sequence
is exact:

a0\t . f.
0— M, (M Mi+1 S M;_1 (gzi;l) M, — 0

(where M, is the zero module, and fy and gy are zero maps, by convention). Given

any generalised tube, let M., denote the direct limit of the sequence:
My oy oy
-and let M denote the inverse limit of the sequence:
- My 2 My 25 M,

Of course, any homogeneous tube is a generalised tube. In fact, every stable tube

(in the notation of (3.1.2)) gives us a generalised tube: where M; = E\[i]®- - -® E, [i],
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and f; and g; are given by the maps:
fir(@n,an,) = (filen),. o fa, (20,))

i (s Uny) = (G0, WUn,)s G1(01)s -+ Gy -1 (Yny 1))

Furthermore, My = Ej[oo] @ --- ® L, [oo] and M =~ E, @---@Enp.

3.1.4 Krause’s canonical exact sequence

Let (M, fi, gi)ien+ be any generalised tube. Fix any j € N. Then for all i € N we
have a commutative diagram with exact rows:

fi+j—1"~fi gj--Gi+j—1

0 My Mty M; 0
lgi igiﬂ‘
0 M, fitj—1--fi Mz‘+j gj---Gitj—1 Mj 0

Taking the inverse limit of such sequences, we obtain an exact sequence of the form:

0—> A —= M —= M, 0

-where ® € Hom(]\/i , M ) is the kernel of h;. Now, for all j € Nt the following

diagram commutes:

0— 3 — M; 0
® lgj
0 M Hi+l M +1 M]+1 0

Taking the direct limit of such sequences, we obtain an exact sequence:
00— M — Q— M, —0

This sequence- as originally described by Krause in [14]- will be referred to as the

canonical exact sequence associated to (M;, fi, gi)ien+-

Theorem 19. Given any generalised tube over a finite dimensional K -algebra, con-

sider the canonical exact sequence:
0— M —> Q— My, —0

Then:
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1. Every infinite dimensional module in the Ziegler closure of {M; : 1 € N} is a
direct summand of My, ® Mo Q.
2. Q) has finite length over its endomorphism ring.
3. Every module in the Ziegler-closure of My, is a direct summand of My @ Q)
4. Bvery module in the Ziegler-closure ofj\/f s a direct summand ofJ\//TEB Q
Proof. See [14, (8.10)] O

Given any ring R, a module G € R-mod is said to be generic (in the sense of [11])

if it is indecomposable, of finite endolength, and is not finitely presented.

Theorem 20. Let E; and E; be any modules lying on the mouth of a stable tube in
T,. Then:

o The direct limit E;[oo] is X-pure injective and indecomposable.
o E;[oo] = Ej[o0] if and only if E; = E;.

e The Ziegler closure of E;[oc] consists of E;[oo] and finitely many generic mod-
ules (which are the distinct direct summands of the middle term @Q of the canon-

ical exact sequence)
Proof. See [17, (15.1.9)] O

Theorem 21. Let E; and E; be any modules lying on the mouth of a stable tube in
T,. Then:

e The inverse limit E, s pure injective and indecomposable.
o [ Ej if and only iof E; = Ej.

e The Ziegler closure of E consists of EZ and finitely many generic modules
(which are the distinct direct summands of the middle term @Q of the canon-

ical exact sequence)

Proof. See [17, (15.1.9)] O
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3.1.5 Tubular families

A tubular family (indexed by I) is any set of tubes {T'(p) : p € I} in a given
Auslander-Reiten quiver. It is said to be stable if T'(p) is stable for all p € I.

Given a stable tubular family 7 = {T'(p) : p € I}, let n, be the rank of 7 (p) for
cach p € I. Define the type of T to be the map I :— NT taking each p € I to n,. If
T contains only finitely many non-homogeneous tubes- say 7 (p1), ..., 7 (p;)- then we
say that 7 has type (n,,,...,n,,)- we will usually assume that the tubes are labeled
so that n, > --->mn,,.

We say that a module M lies in 7 (written M € T) if and only if it lies in one of
the tubes in 7.

Lemma 25. Let T be a standard stable tubular family in A-mod. Then add(7) is

an abelian category, which is serial, and closed under extensions.
Proof. See [23, (3,1,3)] O

A tubular family is said to be sincere if, given any simple A-module S, there exists
a module 7" in one of the tubes T'(p) such that S is one of the composition factors of
T. If A is a bound quiver algebra K@ /Z, then this is equivalent to saying that, for
all vertices a € @)y, there exists a module T" in some tube such that e, T # 0.

A tubular family 7 = {7 (p) : p € 1} is said to be separating if there exist subsets
P and Q of A-mod such that:

e PUT U Q is a partition of the set of all indecomposable modules in A-mod.
e Hom(Q,7) = Hom(7,P) = Hom(Q, P) = 0.
e Hom(7 (p),7(p')) =0 for all p# p' in I.

e Given any M € P, any N € Q, and any tube T'(p) in 7, every map f €
Hom(M, N) can be factored through a module in add(7 (p)).

In which case, we say that 7 separates P from Q.
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3.1.6 Hereditary algebras and concealed algebras

The FEuclidean diagrams are the graphs A, (with n > 1), D, (with n > 4), IEG, IE7,

and ]Eg- which are defined as follows:

Aj: e e
A, : . \ (n + 1) vertices
o/— —— —o °
D, : . o (n+ 1) vertices
° ° o — — — — — ° ° °
IEG : L4
[ ]
[ ] [ ] [ ] [ ] [ ]
IE7 : L4
[ ] [ ] [ ] [ ] [ ] [ ] [ J
IEg : ®
[ ] [ J [ [ ] ® [ [ J [ ]

A K-algebra A is said to be hereditary if every submodule of a projective A-module

is projective.

Lemma 26. Let Q be any acyclic quiver, whose underlying graph is a Euclidean
diagram. Then KQ is a representation-infinite hereditary algebra. The Auslander

Reiten quiver of KQ can be partitioned into P U 7T U Q, where:

e P is a connected preprojective component, containing all the projective KQ-

modules.
e O is a connected preinjective component, containing all injective KQ-modules.

e T is a family of standard stable tubes {7 (p) : p € PY(K)}, which separates P
from Q.
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e Letn, denote the rank of T, for each p € P1(K), and n be the number of vertices
in Q. Then ZpePl(K) (n, — 1) < n—2. In particular, only finitely many tubes

are non—homogeneous.

e add(7) is a serial abelian category.
Proof. See [27, (X1.2)] O

A concealed algebra of Euclidean type is any algebra of the form End(47)-where
A = K@ is any quiver algebra over an acyclic quiver (), whose underlying graph is
Euclidean, and T is any preprojective tilting A-module (as defined in section 2.6).

End(47) is said to be tame if and only if A is tame.

Theorem 22. Let B be any concealed algebra of Euclidean type- i.e. B = End(47T)
for some tilting module AT over a quiver algebra A = KQ, where Q) is an acyclic
quiver, whose underlying graph, Q, is Euclidean.

Then the Auslander Reiten quiver can be partitioned into components P, T and

Q, where:
e P is a preprojective component, containing all the projective B-modules.
o Q is a preinjective component, containing all the injective B-modules.
o 7 is a stable tubular family {7 (p) : p € PY(K)}, separating P from Q.

e There is a group isomorphism f : Ko(A) — Ko(B) such that the following

diagram commutes:

Ko(A) x Ko(A) —= Ky(B) x Ky(B)

In particular, xgf = xa-
o xg(x) >0 for all x € Z", and rad(xg) is a rank 1 subgroup of Ky(B).

e gl.dim(B) < 2, and pd(X) < 1 for almost all (isomorphism classes of ) inde-

composable B-modules.
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e pd(X) =id(X) =1 for all modules X in T.
e The category add(7T) is serial, abelian, and closed under extensions.
Furthermore, the tubular type of T 1is:

e (min(p, q), max(p,q)), if Q is A,,- where p and q are the number of anticlockwise

and clockwise arrows (respectively) in Q.
e (2,2,m—2)ifQ isD,, (withm >4)
e (2,3,3), if Q is Eq
e (2,3,4), if Q is By
e (2,3,5), if Q is Es
Proof. See [27, (X1.3.3)] and [27, (XIL.3.4)] O

An algebra A is called minimal representation-infinite if it is representation-
infinite, but such that A/(AeA) is representation-finite for all idempotents e of A
(other than 0 and 1).

We define an extended Kronecker quiver to be any quiver of the form @ = (Qo, Q1),

where Qg = {0,1} and Q1 = {ay,...,a;} for some t > 3, with o; : 0 — 1 for all i < ¢.
Theorem 23. The following are equivalent, for any basic connected algebra, A:

o A is minimal representation-infinite, and I'(A—mod) has a preprojective com-

ponent containing all the projectives.

e A is either a concealed algebra of FEuclidean type, or the path algebra of an

extended Kronecker quiver.
Proof. See [27, (XIV.2.4)] O

A finite dimensional K-algebra A is said to be tame if, for all d € N, there is
a finite set of A — K[X]-bimodules Mj, ..., M,, (which are free and of rank d over
K[X]) such that all but finitely many indecomposable A-modules of dimension d are
isomorphic to M; ®@gx) K[X]/(X — A) for some A € K and i < n.
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The K-algebras over extended Kronecker quiver are well known to not be of tame

representation type. Which gives the following result:

Corollary 2. Let A be any basic connected algebra of tame representation type. Then

the following are equivalent:

o A is minimal representation-infinite, and I'(A—mod) has a preprojective com-

ponent containing all the projectives.

e A is a concealed algebra of Euclidean type.

3.1.7 Branches

Let S(—1,1) denote the set of all finite sequences in {1, —1} (including the sequence
of length 0, denoted 0).

The complete branch is an infinite bounded quiver @ = (Qo, Q1), with Qo = {b; :
seS(1,-1)}, and Q1 = {B41): s € S(1, =1)} U{Bs,-1) : s € S(1, 1)}, where:

ﬁ(s,—l) : b(s,—l) — by

5(s,+1) tby — b(s,+1)
-with a relation S5 1) 4+1) = 0 for every s € S(—1,1). Define a finite branch to be
any finite, full, connected subquiver of the complete branch, containing the vertex by.
The length of any finite branch is the number of vertices in it.

Notice that a finite branch B is uniquely characterised by a finite set of non-empty
finite sequences in +1 and —1: namely, let S be the set of non-empty sequences
a € §(—1,41) such that b, is a vertex of B. Then the vertex set of B is {by} U {b,, :
a € 8B}, and the arrow set is {3, : a € SP}.

Let KQ/I be a bound quiver algebra, and B a finite branch- let By denote the
vertex set of B, and B; the set of arrows, and Zg the set of relations. Let Q U B
denote the quiver whose vertex set is the disjoint union of Qg and By, and whose
arrow set is the disjoint union of ()7 and B;.

Let @' be the quiver obtained from Q) U B by identifying vertex a with the vertex

by. Every relation in Z or in Zp gives us a unique relation of the quiver Q': let Z’ be
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the ideal generated by all such relations in @'. We call KQ'/Z' the algebra obtained
from KQ/I by adding the branch B at a.
For example: if () is the quiver:
1-%2-253
-with ideal Z = (y«), and B is the branch uniquely determined by the set {—1,+1}:

by S by b

-with relation Zp = ((_1041), then the algebra obtained by adding B at 2 is the

K-algebra over the quiver:

By Yl
b1 b1
-with the ideal being (a~y, B_1841).

Let B be any finite branch. Given any vertices b;, we say that

..... in

1y
..... i depends on b;, o if (j1,...,7m) is an initial subsequence of (i1, ..., 14,)- ie.
if m <n and jp =i for all k € {1,2,...,m}.

Given any vertex b, of a finite branch B, we define B(bs) to be full subquiver of
B whose vertex set is the set of all vertices in B which depend on bs. Let £5(bs) be
the number of vertices in B(by).

Recall that B is a bound quiver (B,Zg). Let {p be the element of Ko(KB/Ip)
given by:

EB - Z KB(bS)S(bS)

bs€B
For example, if B is the branch uniquely characterised by the set {—1,+1}, then

lp = 3[5(5@)] + [S(b71)] + [S(b71)].

3.1.8 Tubular extensions

Let A be a K-algebra, and X € A-mod. The one-point extension of A by X- which
is denoted A[X], is the K-algebra:

A A Xk

0 K
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-where addition is matrix addition, and the multiplication of two elements is given
by matrix multiplication.

If A is a quiver algebra KQ/Z, then A[X] will be (isomorphic to) a quiver algebra
KQ'/T', where @)’ is obtained from @ by adding an extra vertex, say 0, and precisely
dimg (X) arrows from 0 to vertices of . We call the vertex 0 of @)’ the extension
vertez.

Let A be a K-algebra, and 7 = {7 (p) : p € I} a family of pairwise orthogonal
stable tubes in A-mod. Given any module E; lying on the mouth of a tube in 7, and
any finite branch By, define A[E), B;] to be the algebra obtained from the one-point
extension A[FE,| by adding the branch B; to the extension vertex of A[E].

Given any s € N, any pairwise non-isomorphic modules E}, . . ., E,- each of which
lies on the mouth of a tube in 7- and any set of finite branches By, ..., By, define

A[E;, B;;_, inductively, using the formula:
AlE;, B = (AlE;, Bi_y)[Ers1, B

-for all £ > 1.

Any algebra A[E;, B;];_, of this form is called a tubular extension of Ay using
modules in T. For each module E;, let p; € I be such that E; lies in 7 (p;). Let r;
be the rank of 7 (p;), and define the extension type of A[E;, B;]5_, over A to be the
map n : I — NT, such that:

nipem,=r, b Y |B
E:€T(p)
(where | B;| denotes the number of vertices in B;). If n, = 1 for almost all p € I, then
we write the extension type as (n,,,...,n,,)- where {p1,...p;} is the set of all p € I

such that n, # 1, and (by convention) n,, > n,, > --- > n,,.

Theorem 24. Let Ag be an algebra with a tubular family T, which separates P from
Q.
Let A = AgE;, Bil'_, be any tubular extension of Ay (where E; € T ). Then we

can partition A-mod into Py U Ty U Qg- where:
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o Py is the class of all modules in P (of course, every Ag-module is also an A-

module).

e 7y is the class of all indecomposable M € A-mod such that either M|Ay is
a non-zero element of T, or the support of M is contained in some B; and

<€Bmdl_muw)> <0.

e Qy is the class of all indecomposable M € A-mod such that either M|Aqy is
a non-zero element of Q, or the support of M is contained in some B; and

Furthermore, Ty is a tubular family, which separates Py from Qy.
Proof. See [23, (4.7.1)] O

A tubular algebra is defined to be any tubular extension of a tame concealed
algebra Ay (using modules in the separating tubular family as defined in theorem 22),

of extension type either (2,2,2,2), (3,3,3), (4,4,2) or (6,3,2).

3.1.9 Basic properties of a tubular algebra

Dual to the idea of tubular extension is the idea of tubular coextension. Given any
algebra A, with a separating tubular family 7', let 7* be the set of all A%®-modules
which are duals of modules in 7. It is a separating tubular family of A%-mod. A

tubular coextension of Ao, using modules from 7T is an algebra A such that:

AP = AR(DE, KP)_,

1

-where A®[DE;, K;*]i_, is a tubular extension of A% using modules from 7*. The
extension type of A is defined to be the extension type of AP[DE;, K;*]_;.
An algebra A is said to be cotubular if it is a tubular coextension of a tame

concealed algebra A, of extension type either (2,2,2,2), (3,3,3), (4,4,2) or (6,3,2).

Of course, an algebra A is tubular if and only if A°? is cotubular.

Lemma 27. Let A, be an algebra with a tubular family T, which separates P from
Q.
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Let A be a tubular coextension of As using modules fromT. Then we can partition

A-mod into Ps U 7o U Qn, where T, is a tubular family, which separates P, from
Qoo

Proof. This is just the dual of theorem 24 ]
Theorem 25. An algebra is tubular if and only if it is cotubular.
Proof. See [23, (5.2.3)]. O

Theorem 26. Let A be a tubular algebra. Let Ay and Ay be tame concealed algebras,
such that A is a tubular extension of Ag, and a cotubular extension of As. Then Ag
and Ay, are uniquely determined by A.

Let hg and ho, be the positive radical generators of Ag and A respectively. Then
rad(xa) is a group of rank 2, and the subgroup of rad(xa) generated by hy and he

has finite index in rad(xa).
Proof. See [23, (5.1.1)]. O

Notice that, since (_, ) is a bilinear form, and (hg, ho) = (oo, hoo) = 0, we have
that:
<h07 hoo> - _<h007 h0>

Define ¢o : Ko(A) — Z and 1o : Ko(A) — Z by:
to(x) = (ho, )

Loo () = (oo, T)
Given any x € K((A), we define the index of x to be the element of Q° given by:

Lo(x)
Loo ()

-which we denote «(x). Given any M € A-mod, define the index of M to be
t(dim(M)). For all v € Q>°, define ¢, : Ko(A) — Q by:

by () 7= 1o(2) + Yioo(2)

Note that © € Ker(s,) if and only if ¢(z) = 7.
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Lemma 28. Given any v € QF, pick any a,b € N such that v = b/a. Let ¢ be the
greatest common divisor of the coordinates of ahg + bhs.

Then Ker(c,) Nrad(xa) is a subgroup of Ko(A) of rank 1- which is generated by
(a/c)ho + (b/c)hs.

Proof. Take any x € Ker(t,) Nrad(xa). Since rad(x) is a rank 2 subgroup, and hg
and h., are linearly independent elements of rad(x), there exist ¢, g2 € Q such that

x = q1ho + @ahso. Then:

z) = _<h0>Q1ho + @2hoo)
(ho, q1ho + q2hso)
_Q2<h07 hoo)
Q1<hoo,h0>

= Q2/Q1

Then:
bja=v=1uz)=q/qn

And so every element of rad(x) N Ker(c,) is equal to g(ahg + bhe), for some ¢ € Q-
so the subgroup does have rank 1.

Finally, note that every element of the set {¢(aho+bhs) : ¢ € Q} NZ™ must equal
d((a/c)ho + (b/c)hs) for some d € Z. O

Define Py, 7y, and Qg to be the module classes as in theorem 24. Dually, define
Puos T, and Q. to be the module classes as found in lemma 27

Define P, (respectively, 7., Q,) to be the set of all indecomposable M € A-mod
such that ¢, (dim(M)) < 0 (respectively, ¢, (dim(M)) = 0, ¢, (dim(M)) > 0).

Theorem 27. For ally € QF, T, is a sincere stable tubular P'(K)-family of type T,
separating P, from Q.

It is controlled by the restriction of x4 to Ker(iy).
Proof. See [23, (5.2.2)]. O

Lemma 29. For ally € QF°, P, =PoUU,, Za, and @y = Quo U U, 7
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Proof. By [23, p275], A-mod can be partitioned as:

-and we have the following:

to(dim(X)) > 0 and ¢4 (dim(X)) < 0 for all X € P, N Qq

to(dim(X)) <0 and too(dim (X)) < 0 for all X € Py U T,

to(dim(X)) > 0 and too(dim(X)) > 0 for all X € P, U7

So, given any X € Py U 7y, ¢, (dim(X)) < 0 <. So Py U7y C P,, and similarly,
QOO U TOO g QT‘

Now, given any X € P,, N Q, we have:

XeP, < o(dim(X)) + Yteo(dim(X)) <0
= (dim(X)) = g for some 3 € (0,7)

= X €T, for some 3 € (0,7)

And so P, =Py UlJ 7,. The proof for Q. follows similarly. O

a<ly

Given any r € RT\Q™", we define:

,Pr = POU U/];
a<r

Q'r’ = QooU U%
B>r

Note that Q, U P, is a partition of the set of all indecomposable modules in A-mod,

and Hom(Q,,P,) = 0. Note that, given any r,s € RJ:
r<s<=P CP; <= Q;CQ,

By convention, we set 7, := 0 for all » € RT\Q.
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3.2 Slope

Throughout this section, A will be a tubular algebra, and the components P, 7, ,Q,

(for all v € R®) are as described in the previous section.

Lemma 30. Take any v € Q1 and any stable tube T (p) in 7,.

Given any M € add(P,) there exists a module T' € add(7 (p)) such that there is
an embedding M — T.

Dually, given any N € add(Q,) there exists a module T" € add(7 (p)) such that

there is a surjection T" — N.

Proof. Let h : M — E(M) be an injective hull of M. Since 7, separates P, from
Q,, there exists T € add(7 (p), and maps f: M — T and g : ' — E(M) such that
h = gf. Since h is an embedding, so must f be.

The other case is proved dually. O

Corollary 3. Take any o, € QF° with o« < (3. Then, for all M € A-Mod,
Hom(M,73) = 0 implies Hom(M,7,) = 0, and Hom(7,,M) = 0 implies that
Hom (73, M) = 0.

Consequently, for all o € Q3°, I(7,) C l(P,) and r(7,) C r(Q,) (where r(-) and
[() are as defined in section 2.0).

Proof. Take any X € 73 and any map f € Hom(M, X). By lemma 30, we can
pick Y € add(73) such that there exists an embedding A : X < Y. Then hf €
Hom(M,73) = 0, and hence f = 0 (since h is an embedding). The other case is

proved dually. O

Let A be any tubular algebra. Given any r € RF® , we say that a module M € A-
Mod has slope r if and only if Hom(Q,, M) = Hom(M, P,) = 0.

Lemma 31. Given any M € A-Mod, and any r € R§°, the following are equivalent:
1. M has slope r.

2. Hom(Q,, M) = Ext(P,, M) = 0.
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3. There exists € > 0 such that:

Hom(Q, N P,ye, M) = Hom(M, P, N Q,_) =0

4. There exists € > 0 such that:

Hom(Q, N Prie, M) = Ext(P, N Q,_, M) =

(where Q, := Qp if @« < 0 and Quorc := Qo).

Proof. First of all, given any connected component IV of the AR quiver, theorem 16

gives that:

Ext(X,M)=0forall X e < Hom(M,7X)=0forall X el

<= Hom(M,X)=0forall X €T

(since components of an Auslander Reiten quiver are closed under 7 and 7). And
so (2) is equivalent to (1), and (3) is equivalent to (4).

Clearly, (1) implies (3). To show the converse, suppose that there exists € > 0 as in
(3). Then given any Y € Q, and f € Hom(Y, M), we can pick a rational 3 € (r,r+¢)
such that Y € Qg. By lemma 30, there exists a module 7" € add(73) such that there
exists a surjection g : T'— Y. Then fg € Hom(T, M) = 0 by our assumption. Since

g is a surjection, f must be zero. Dually, one can show that Hom(M, P,) = 0. [

Of course, if M is finite dimensional and indecomposable, and does not lie in Py
or Qu, then it lies in 7, for some unique v € QF°- and, since each tubular family 73

separates Ps from Qg, the slope of M is .

Theorem 28. Let M € A-Mod be any indecomposable module, which does not lie

in Py or Q. Then there exists a unique r € RF" such that M has slope 7.
Proof. See [22], Theorem 6. O

Given any X € A-mod, there exists (by theorem 6) a pp-pair ¢/t such that
(¢/)(M) = Hom(X, M) for all M € A-Mod. We denote the sentence Vo (p(v) —
() by Hom(X,_) = 0.
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Similarly, there exists a pp-pair ¢/¢ such that (¢/v)(M) = Ext(X, M) for all
M € A-Mod. We denote the sentence V(v)(¢(v) — ¢ (v) by Ext(X,_) = 0.

Given any r € R°, we define the theory ®, by:
O, :={Ext(Y,.)=0:Y e P.}U{Hom(X,.)=0: X € Q,}
So for all M € A-Mod, M = ®, if and only if M has slope 7.

Lemma 32. Given any r € R§°, any A-module M lies in [(P,) if and only if it is

generated by T, for all rational v < r.
Proof. See lemma 11 of [22]. O

Lemma 33. Given any r € Ri°, € > 0, and any M € A-Mod of slope r, there exists
a directed system (M;, fi;)r (with every M; € add((P, U7,) N Q,_.)) with direct limit

1somorphic to M.

Proof. Let {M) : A € I} be the set of all finite dimensional submodules of M which
are isomorphic to a module in add((P, U 7,) N Q,_.). Let < be the partial ordering
on [ such that ¢ < j if and only if M; is a submodule of M;.

Consider the directed system, with modules {M) : A € I}, and morphisms f;; :
M; — M;: where f;; is the natural inclusion map of M; into M;

For all ¢ € I, define h; : M; — M be the natural embedding of the submodule M;
into M. We claim that (M, (h;);er) is the direct limit of the system.

Firstly, given any ¢ < j, the following diagram clearly commutes:

M M,

N
M
(since all the maps involved are inclusions of submodules).

Now, given any module N, and set of maps {¢g; : M; — N : i € I} such that
gi = g;fi; for all i, j € I such that ¢ < j, we construct a map F' € Hom(M, N) such
that Foh; = g; for all 7 € I.

Pick any a € (r —€,7). By lemma 32, there exists a module &, ; Tk, with each

T}, € T, and a surjection ¥ : @, ., T, — M.
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Given any m € M, pick any t € @, T} such that W(t) = m. Let J' be the set

of all £ € J such that t has a component in T}, and let:

keJ’ keJ
-be the natural embedding of the direct summand. Now, Im(¥p) is a finite dimen-
sional submodule of M which is isomorphic to a module in add((P,U7Z,)NQ,_.). Let
M, be the relevant submodule in the directed system. We define F'(m) to be g;Vp(t).
One can check that this map is well defined, and that it satisfies the required

conditions. O]

3.3 Modules in stable tubes

Throughout this section, 7 (p) will be a standard stable tube of rank n- and the
modules in 7 (p) will be denoted {E;[m] : i € Z,,m € N*}, and ~ will denote the

slope of all the modules in 7 (p). We define E;[0] to be the zero module for all i € Z,.

Lemma 34. For alli € Z,, and m € N*:
dim(Em]) = 3 dim(Bey, 1]
j=1
Proof. For all i € Z,, and k € N*, there exists an exact sequence:
0 — Eilk| — Eilk+1]® Eilk—1] — Eiq[k] — 0
And so:
dim(E;[k + 1]) = dim(E;[k]) + dim(E 4 [k]) — dim(Ei [k — 1))
The result follows by induction on k. ]

Lemma 35. Take any v € QF and any tube T (p) in 7,.

Given any M € A-Mod with slope greater than vy, there ezists a module T € T (p)
such that Hom(7T, M) # 0.

Dually, given any N € A-Mod with slope less than vy, there exists a module T' €
T (p) such that Ext(T", M) # 0.
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Proof. We will only prove the first half. The proof of the second half follows a similar
argument.

Let 7 € R be the slope of M. Since r > =, then pick any € € (0,7 — ). We claim
that there exists a module N € P, N Q,_. such that Hom(N, M) # 0: if not, then
Hom(Q,_., M) = 0 and Hom(M,P,_.) = 0 (since P,_. C P,), and so M has slope
r — e- contradicting theorem 28 (since M has slope 7).

Consequently, we can pick a module N € P, N Q,_., and a non-zero map g €
Hom(N, M). By lemma 30, there exists 7" € add(7 (p)) and a surjection f : T —»
N. Then gf # 0, so Hom(add(7(p)), M) = 0, and so Hom(7 (p), M) # 0, as

required. O]

Lemma 36. Take any v € Q*, and any homogeneous tube T (p) in T,. Denote the
modules in T (p) by E[1], E[2], E[3],....
Then for all M € A-Mod with slope less than v, and all k > 1:

dimg (Hom (M, E[k])) # 0
Furthermore, if Hom(M, E[k]) is finite dimensional, then:
dimg (Hom (M, E[k])) = kdimg (Hom (M, E[1]))
Dually, for all N € A-Mod of slope greater than v, and all k > 1:
dim g (Hom(E[1], N)) # 0
-and if Hom(E[1], N) is finite dimensional, then:
dimg (Hom(E[k], N)) = kdimg (Hom(E[1], N))
Proof. For all k € N*, we have an exact sequence:
0 — Ek| — E[k—-1]® E[k+1] — E[k] — 0
Since Ext(M, E[k]) = 0 for all k € N*, we induce the exact sequence:

0 — Hom(M, E[k]) — Hom(M, E[k + 1] & E[k — 1]) — Hom(M, E[k])

— Ext(M, E[k]) =0
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And so:
dimg (Hom(M, E[k + 1])) = 2dimg (Hom(M, E[k])) — dimg (Hom (M, E[k — 1]))
By induction we get that:
dimg (Hom(M, E[k])) = kdimg (Hom (M, E[1]))

Finally, by lemma 35, there exists k" € N such that Hom(M, E[k']) # 0. Then, for all
ke N:
k
Hom(M, E[k]) = yHom(M, E[K]) #0

-as required. O

Lemma 37. For all k, k' € N, and any indecomposable module E on the mouth of a

stable tube:
dimg (Hom(E[k], E[K'])) = dimg (Ext(E[k], E[K'])) = min(k, k')
Proof. Follows straight from corollary 1 ]

Corollary 4. Let E; and E; be any pair of modules on the mouth of a stable tube
T (p), and take any k > 1. Then Hom(E;, Ej[k]) # 0 if and only if E; = E;.
Furthermore, dimg (Hom(FE;, E;[k])) = 1 for all k € NT.

Proof. Follows straight from corollary 1 [

3.4 Lattices and dimension

An equivalence relation ~ on a lattice L is called a congruence if, for all a,b,c € L,
a ~ bimplies both a+c ~ b+cand aAc ~ bAc. Given any class £ of modular lattices,
which is closed under sublattices and quotient lattices, we define the £-dimension of
a modular lattice L as follows:

Let Lo := L. Define, for every non-zero ordinal «, a modular lattice L, and a

lattice surjection m, : L — L, by induction:
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Given L, and 7, : L — L, define ~, 1 to be the smallest equivalence on L such
that, a ~+1 b whenever the interval |7, (a) 7, (b)] in L, is isomorphic to a lattice in
L. Then the quotient lattice L/ ~,y1 is a modular lattice, which we denote Lq 1.
Define w41 : L = Loyq to be the natural projection.

For a limit ordinal 7, define ~, to be the congruence on L such that, for all
a,b € Ly:

a ~, b if and only if 7, (a) ~, 7,(b) for some a < 7

And define L., := Lo/ ~, and 7, : Ly — Lo/ ~., to be the obvious surjection.

Let 1, and 0y, denote the top and bottom elements of L. If 7w, (0.) # ma(1y) for
all o, then we define the £-dimension of L to be co. Otherwise, let a be minimal such
that 7,(01) = mo(1z). Then « is not a limit ordinal, so we define the £-dimension of
L to be a — 1: it is denoted £-dim(L).

Notice that, if £’ is a subclass of £, then £'-dim(L) > £-dim(L).

Lemma 38. Let L be any class of modular lattices, closed under sublattices and
quotient lattices. Let L be any modular lattice, and a,b € L. Let ~1 be the congruence
defined on L by L as above.

Then, for all a,b € L, a ~1 b if and only if there exists a finite set of elements

o, C1, - - - Cp Of L such that:
aNb=cp<c1<...ch1<c,=a+b
-and every interval [c;, c;—1] is isomorphic to a lattice in L.
Proof. PSL 290 See [17, (7.1.1)] O

Let L,, be the class of all 1-point and 2-point lattices. Then the L,,-dimension of

L is called the m-dimension of L- and is denoted mdim(L).

Lemma 39. Let R be any ring, and X any closed subset X of rZg which satisfies
the isolation condition. Then CB(X) = mdim(pp(X)).

Proof. See [17, (5.3.60)]. O
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Let £, be the class of all totally ordered lattices. Then L£,-dim(L) is called the
breadth of L- and is denoted w(L).

A subposet P of a modular lattice L is said to be wide if, given any two points
a > bin P, there exists ¢,d € P such that ¢ € d, and d £ ¢, and the elements ¢ + d

and ¢ A d of L satisfy a >c+d>cANd>0.
Lemma 40. Given any modular lattice L, the following are equivalent:
o w(L)=o0.
e [ has a wide subquotient.
e L has a wide subposet
Proof. See [17, (7.3.1)] O
Theorem 29. Let R be any ring, and M an R-module. Then:

e [f there exists a superdecomposable pure-injective R-module, N with Supp(N) C
Supp(M), then w(pp(M)) = oo.

e [fpp(M) is countable (for example, if R is countable) and w(pp(M))oo, then

there exists a superdecomposable pure-injective R-module, N, with Supp(N) C

Supp(M).
Proof. See [28, (7.8)]. O

Corollary 5. Let A be a tubular algebra. Given any r € R°, let M(r) denote the
direct sum of all pure-injective indecomposable A-modules of slope 7.

If there exists a superdecomposable pure-injective A-module N of slope r, then the
breadth of pp(M(r)) is oc.

Furthermore, if A is countable, and the breadth of pp(M(r)) is oo, then there
exists a superdecomposable pure-injective A-module N of slope r.
Proof. By thm 29, it is enough to prove that, given any N € A-Mod, supp(N) C
supp(M (r)) if and only if NV has slope r. Recall (from section 2.3) that Supp(N) C
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Supp(M (7)) if and only if every pp-pair closed on M (r) is closed on N. If Supp(N) C
Supp(M (7)), then N € Supp(M(r)), so N has slope r, by lemma 41.

To prove the other direction, suppose that N has slope r (i.e. that N | ®,),
and that a pp-pair ¢/t is open on N. By theorem 12 there exists a pure-injective
indecomposable M in (N) such that ¢(M) > ¢(M). Then M = &, (since every
pp-pair closed on N is closed on M), i.e. M slope r, and hence must be a direct

summand of M(r). Since ¢/t is open on M, it is open on M (1), as required. O

Given any r € R™, we shall attempt to calculate the m-dimension and the breadth
of the lattice pp(M (r)), which will determine whether or not there exists a superde-

composable A-module of slope r (if R is countable).

3.5 Modules arising from separating tubular fam-
ilies

Throughout this section, A will be any K-algebra, such that A-mod has a sincere,
stable tubular family 7 = {7 (p) : p € P!(K)} which separates the set of proper pre-

decessors in A-mod (denoted P) from the set of proper successors in A-mod (denoted

Q).

3.5.1 Infinite dimensional modules

Define:
Cr:=1r(Q)={M € A-Mod : Hom(Q, M) = 0}

Dr :=1(T)={M € A-Mod : Hom(M,T) = 0}
Ry :=r(Dr) ={M € A-Mod : Hom(Dz, M) = 0}
wr :=CrNDr
Br :=1(P)={M € A-Mod : Hom(M, P) = 0}

MT = BTHCT
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Notice that, if A is a tubular algebra, and 7 is a tubular family 7,, then M7 is the

set of all A-modules of slope 7.

Lemma 41. Let A be a tubular algebra, and r € R§°. Given any set of A-modules
{M; : i € N}, all of which have slope r, any module in Supp(@D,.; M;) also has slope

r.

Proof. Pick any module N in Supp(@D,.; M;). For all i € N, M; has slope r, and so
M; = ®,.. Since every sentence in ®, is the “closure of a pp-pair” and every pp-pair

closed on all M; is closed on N, we have:
N E o,
-i.e. N has slope r. [

Let E be any module lying on the mouth of a tube 7 (p) in 7. Then the direct
limit F[oo] obtained from the ray starting at E is called a Prifer module. Dually,

the inverse limit £ obtained from the coray ending at F is called an adic module.

Lemma 42. There ezists exactly one (up to isomorphism) infinitely generated inde-
composable module G in wr such that End(G7) is a division ring.

Furthermore, Gr s generic.
Proof. See theorem 2 and corollary 6 of [22]. O

The module described in lemma 42 will be referred to throughout this section as

Gr.

Lemma 43. For all quasisimple modules E in T, the Prifer module E[oco] lies in
wr. Furthermore, every module in wr is a direct sum of copies of Gr and Priifer

modules.
Proof. Theorem 4 of [22] O

Lemma 44. Let E and E’ be any two quasisimple modules lying in tubes in T . Then:

Hom(E' E[x]) #0<= E=F'
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Furthermore:

dimg (Hom(F, E[x])) =1

Proof. By theorem 20, E[oc] lies in the definable subcategory generated by the set
{E[1], E2], E[3],... }- so any pp-pair closed on the module @, y+ E[k] is closed on

By theorem 6 there is a pp-pair ¢/t such that Fj/, ~ Hom(£',_). If £/ £ E,
then Hom(E', E[k]) = 0 for all k (by corollary 4). So ¢/ is closed on E[k] for all k,
and hence closed on E[oo]- so Hom(E', E[oo]) = 0, as required.

Since the functor Hom(F, _) commutes with direct limits, we have that:
Hom(E, E[oc]) = Hom(E, lim E[k]) = lim Hom(E, E[k])
By corollary 4, dimyg(Hom(FE, E[k])) = 1 for all k£ > 1. It follows that:

dimg(Hom(E, E[x])) =1

Dually, one can prove that:
Lemma 45. Let E and E’ be any two quasisimple modules lying in tubes in T . Then:
Hom(E,F') #0 < E~ F'

Furthermore:

dimy (Hom(E, E)) = 1

Lemma 46. Let E;[oo] be any Priifer module, associated to a module E;, in a tube

T (p) inT. Then Hom(Gr, E;[c0]) = 0.
Proof. See [22], chapter 8. O
Corollary 6. Ext(7,G7) = Hom(7,Gr) = 0.

Proof. Of course, Hom(7,G7) = 0- since Gr € wr. To show the second result,

take any module E;[k] in a tube 7 (p) in 7, and any map h, € Hom(E;[k],Gr). By
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repeatedly applying lemma 22, we obtain a series of maps h,, € Hom(E,,[k], G1)
such that h,, = hy,41f]" for all m > k. Then hj, must factor through the direct limit
of the sequence:

Bk % Byl +1] 2 gk o) M2

However, the direct limit of this sequence is the Priifer module E;[oc]. By lemma 46,

Hom(E;[o0], G7) = 0. It follows that hy, = 0, as required. O

Lemma 47. Given any stable tube T (p) in T, let (M, fi, gi) be the generalised tube
associated with T (p). Then the middle term @ of the canonical exact sequence lies
m wr.

Consequently, Q) is a direct sum of copies of Gr.

Proof. By theorem 20, every indecomposable direct summand of () lies in the support
of M, and hence in the support of {M; : i € NT}. By lemma 41, QQ € M+ (since
M; € M+ for all i > 1): In particular, @ € Cr.

To prove that @ € Dz, it is enough to prove that Hom(Q, E;) = 0 for all qua-
sisimples E; of T (p). Suppose, for a contradiction, that there exists a non-zero map
[ € Hom(Q, E;), for some i. Let {p; : i € N*} be the set of maps such that

(Q, (pj)jen+) is the direct limit of the sequence:

-so p; = pj41® for all j € N*. Since f # 0, there must exist j € N such that
fopj#0. Then fopj #0 (since fpj1® = fp; #0).

By lemma 45, Hom(]\//.T, E;) = Hom(Ei,Ei)—which is a 1-dimensional K-vector
space. Let m : By & --- @ E,, - E; be the natural projection, and let the maps
hi,ha,h, ... be as in (3.1.4). Since 7 and h; are surjections, why # 0, and so every
map in Hom(]\//j, E;) is a K multiple of wh;.

In particular, f o p;y1 = Amh; for some A € K. And so:

Ipj = fpj1® = Arh @

However, since we have an exact sequence:

0— M- M5 M — 0
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-we must have that fp;;; = 0- giving our required contradiction.
Consequently, @ € wr. By lemma 43 it is a direct sum of copies of G (since no

direct summands of @) are Priifer modules). O

3.5.2 The pure-injective modules in Supp(7)

Lemma 48. (R, D7) is a split torsion pair.
Proof. See corollary 1 of [22] O

Lemma 49. Let M be a pure-injective module in Mz N 'Ry. Then there exists a

module M, € T[(7T (p)) for all p € P(K) such that:

M= [ M,

pEP(K)

Proof. See [25, (2.2)] O

Lemma 50. The following s a complete list of all the indecomposable pure-injectives

i A-Mod which lie in Mz

The modules in T (i.e. all the finitely generated ones).

A unique Prifer module E[0o] for each indecomposable E lying on the mouth

of a tube in T.

o An unique adic module E for each indecomposable E lying on the mouth of a

tube in T .

The generic module, Gr.

Proof. Clearly the set of all indecomposable modules in A-mod in M7 is the set of
modules lying in tubes in 7. Now, let M be any infinitely generated pure-injective
indecomposable in M7. Since (R, D7) is a split torsion pair, M must lie in either
Rt or Dr.

If M € Dy, then M € wy, and so it is either one of the Priifer modules or G'7-

by lemma 43.
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If M € Ry, then by lemma 49, there exists modules M, € [[(7(p)) for all
p € P}(K) such that:

M= ] M,
)

peP (K
Pick any p' € P}(K) such that M, # 0 (at least one must exist, since M # 0). Then:
M=M,o[]M,
e
Since M is indecomposable, [] ot Mp = 0-s0 M = M. Since definable categories
are closed under direct products and direct summands, M, must lie in the definable
category generated by 7 (p)- and hence in the support of 7.,. By theorem 19, M must
be either a Priifer, or an adic, or a direct summand of ()- which, by lemma 47, must
be G7. Since G and all relevant Priifer modules lie in w7, M, must be an adic

module- which completes the proof. ]

Corollary 7. The set of all pure-injective indecomposables of slope v is equal to

supp(7).

Proof. By lemma 41 every module in the support of 7 lies in Mz- and hence is one
of the modules listed in lemma 50.

Conversely, any Priifer module lies in the support of some tube 7 (p) (by theo-
rem 20), and hence in the support of 7- and similarly for the adic modules. Finally,
G is a direct summand of the middle term () of a canonical exact sequence associ-
ated to a tube 7 (p) in 7, and hence lies in the support of any given Priifer module

from that tube- and hence in the support of 7. ]

3.5.3 The CB-rank of Supp(7)

Lemma 51. Let X be the Ziegler-closure of the set of all modules in T. Then the

CB-ranks of the modules in X are as follows:
e The finite dimensional modules (i.e. those in T ) have CB-rank 0.

e Fvery Priifer and adic module has CB-rank 1.
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o The generic module Gy has CB-rank 2.
Furthermore, X satisfies the isolation condition.

Proof. Let X, denote X, and X be the set of all non-isolated points in X (with the
induced topology), and X, the set of all non-isolated points in X;. We shall prove
that X7 contains precisely the Priifers, adics, and the generic, and that X5 contains
just the generic.

We shall also prove that every point M in X can be isolated in its closure by an
M-minimal pair. By lemma 11, this is enough to prove that X satisfies the isolation
condition.

First of all, every finite dimensional module F;[k] in X is isolated: Let f denote

the left minimal almost split map:

By theorem 6, there exists a pp-pair ¢/ such that F};;, ~ Coker(f,_). By lemma 24,
¢/ is closed on every indecomposable module other than F;[k|- so {E;[k]} is indeed
a closed set of 4Zg. Also, (¢/v)(FE;[k]) is a 1-dimensional K-vector space over K (by
lemma 24), and so ¢/t is an E;[k]-minimal pair, isolating E;[k] in its closure.

Now, any given Priifer module FE;[0o] is not isolated: By theorem 20, any closed
set containing { F;[k] : k € N} must contain E;[co], and so the set X'\ {E;[oco]} cannot
be closed. Thus CB(E;[oc]) > 0.

Let ¢/1¢ be a pp-pair such that Fy,, ~ Hom(E;,_). Then Hom(E;, G7) = 0 by
corollary 6, and Hom(FE;, E’]) = 0 for all j (since Ej € Rr), and so, by lemma 44,
(p/9) N Xog = {FE;[k] : k € N} U{E;[o0]}. Thus (¢/v) N Xy = {E;[oo]}- so E;[oo] is
isolated in X;- and hence has CB-rank 1.

By theorem 19, the Ziegler-closure of E;[oo] is { E;[oo], G1}- so ¢ /1) isolates E;[00]
in its closure (since Hom(E;, Gr) = 0). Furthermore, by lemma 44, ¢/¢ E;[oc]-
minimal.

Similarly, one can show that every adic module is isolated in X;- and hence has

CB-rank 1- and also that it is isolated in its Ziegler closure by a minimal pair.
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Finally, the generic module G7 is not isolated in X, or indeed Xy- since it lies
in the Ziegler closure of any given Priifer module E;[cc] (by theorem 20. Conse-
quently, Xy = {Gr} (since every other module in X has CB-rank less than 2). Thus
CB(Gr) =2.

Since G7 has finite dimension over End(G7), the lattice of pp-definable subgroups
of G has no infinite descending chains: so we can pick ¢ € pp such that ¢(G7) # 0,
and the pp-pair ¢/(v = 0) is minimal on Gr.

Since the Ziegler closure of G is {G7}, this pp-pair isolates G in its closure, as

required. [

Corollary 8. The lattice pp(D ;7 M) has m-dimension 2.

Consequently, there are no superdecomposable modules in M.

Proof. By lemma 51, the set supp(7) has the isolation condition. Thus, by lemma 39
the m-dimension of pp(7) is equal to the CB rank of supp(7)- which, by lemma 51,
is 2. 0]

3.6 Irrational cuts

Throughout this section, A will be a tubular algebra. Given any r € R, we denote
by M(r) the direct sum of all pure-injective indecomposable A-modules of slope r.

By corollary 8, we have:
Proposition 1. Given any v € QF, pp(M(v)) has m-dimension 2.

Proof. We claim that any pp-pair ¢/v is closed on M () if and only if it’s open on
@Direr, M. Of course, one direction is obvious, since ez, M is a direct summand
of M(v). Conversely, every direct summand of M(y) is either a Priifer, adic, or
generic module, and hence lies in Supp(7), and so any pp-pair closed on € MeT, M
is closed on M (7).

Consequently, we have an isomorphism between the two lattices, pp(M(r)) and

pp(D ez, (M)) (the map taking ¢(M (7)) to ¢(D ez, (M)) for all pp-formulas ¢).
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Since 7, is a sincere, stable, separating tubular family, corollary 8 completes the

proof. O

Given any Given any r € R™\Q, the Auslander-Reiten quiver of A partitions into
P, U Q,, with Hom(Q,,P,) = 0. We refer to the modules of slope r as “lying in the
irrational cut”- in the sense that they lie between the modules in P, and the modules
in Q,.

We wish to determine the m-dimension, and indeed the breadth of pp(M (7)) when
r is irrational.

Given any pp-pair, ¢/1 and any r € R, we say that ¢/1 is closed near the left
of r if there exists € > 0 such that ¢(X) = (X) for all X € P, N Q,_.. We say that
it is open near the left of r if it is not closed near the left of r.

We say that ¢/v is closed near the right of r if there exists € > 0 such that
d(X) =¢(X) for all X € PN Q,. We say that it is open near the right of r if it

is not closed near the right of r.

Lemma 52. Let r € RY. Let ¢/¢ be any pair which is open near the right of v, or
open near the left of r.

Then there exists a pure-injective indecomposable module M of slope r such that
(M) > p(M).

Proof. We denote by Th(A-Mod) the theory of left A-modules. We claim that the
theory:
Th(A-Mod) U @, U {Fv(o(v) A =b(v))}

-is finitely satisfiable. By the completeness theorem, this will imply that the theory
is satisfiable.

Given any finite subset ®" of ®,., there are only finitely many X € P, such that
Ext(X,_) = 0 appears in ®’- so we may pick a < r such that every such X lies in
P,. Similarly, we may pick 5 > r such that Y € Qg for every Y such that Hom(Y, .)
appears in @'

Recall that we are assuming that ¢/1 is open either near the left of r or near the

right of r.
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1. If it is open near the left of r, then there exists a module M € P,.NQ, such that
¢(M) > (M). Then Ext(X, M) = 0 for all sentences of the form Ext(X,_) in
¢’ (since X € P,). Furthermore, Hom(Y, M) = 0 for all sentences of the form
Hom(Y,_) = 0 in &'( since Y € Q,), so:

M =& U {Fu((v) A =h(v))}

2. If ¢/1 is open near the right of r, then there exists a module M € PgN Q,
such that ¢(M) > ¥(M). Then Ext(X, M) = 0 for all sentences of the form
Ext(X,_) in ¢’ (since X € P,). Furthermore, Hom(Y, M) = 0 for all sentences
of the form Hom(Y,_) = 0 in ®'( since Y € Qp), so:

M |= @' U {3v((v) A —p(v))}

So the theory is indeed finitely satisfiable. Let N be any model of it. Then N € A-
Mod. Since ¢(N) > 9(N), theorem 12 implies that there exists a pure-injective
indecomposable M in (N) such that ¢(M) > ¢(M). Since N has slope r, so does
M, by lemma 41. [

3.6.1 Pp-formulas at an irrational cut

Recall that, given any 1-pointed A-module (C, ¢), we denote by f(c) the unique map

in Hom (A, C) taking 1 to c.

Proposition 2. Let r be any positive irrational and ¢(v) be any pp-formula.
Then there exists a pp-formula ¢' > ¢, with free realisation (M',m’), and e > 0

such that:
o M' € add(P,—.)
o Coker(fiar my) € add(Qre)
o O(X) = ¢'(X) for all indecomposable X € A-Mod with slope in (r — €,r + €).

o dimg(¢p(X)) = dimg(¢'(X)) = dimgx (Hom (M, X)) for all X € Q,_c NPy .
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Proof. Let (N,n) be the free realisation of ¢(v). Decompose N as M @& L, with
M € add(P,) and N € add(Q,). Let m € M and [ € L be such that the element

(m,1) of M & L corresponds to the element n of N. Notice that, for all X € P,:

¢(X) = {f(m): f € Hom(M, X)}

Let Cr € add(Q,) and Cp € add(P,) be such that Coker(fism)) = Cr @ Ck.
Let 7, € Hom(M,CL) and mg € Hom(M, Cg) be such that the natural surjection

M — Coker(f,) is the map:

M T 0 @ O

Let Kj, = Ker(ry) and Kr = Ker(mg). Notice that:
e Since they are both submodules of M, K and K both lie in add(P,.).

e Since 7y (m) = wr(m) = 0 we can think of m as an element of K, and as an

element of Kg

Let iy : K, — M and i1g : Kgr — M denote the natural embeddings. Notice that

'L.Lf(KL,m) = in(KR,m) - f(Mm and so:
m(ip fipm) = IM(irfirpm) = Im(farm)) = (m)

(Where (m) := {am : a € A}). Since the lattice of submodules of M is modular, the

interval:
-gives us that M/Kg ~ K /(m), and hence that the following sequence is exact:

O—>(m>—>KL7rR—zL>CR—>O

(since mrir(m) = mr(m) = 0). And so Cr = Coker(f(x, m))-



3.6. IRRATIONAL CUTS 81

Now, let ¢’ be a pp-formula which generates ppz(m), and pick € > 0 such that
no indecomposable direct summands of M & Cp & Cr & Kr & K have slope in
(r—er+e).

Given any X € P, N Q,_., Hom(Cg,X) = 0, so Hom(Coker(frrm)), X) =~
Hom(Cp, X). Thus:

dimg (¢(X)) = dimg (Hom(M, X)) — dimg (Hom(Cp, X))
Since Hom(Coker(f(x, m)), X) = Hom(Cg, X) = 0, we have that:
dimg (¢'(X)) = dimg (Hom(Kp, X))

Applying theorem 1 to the exact sequence 0 — K; — M — C — 0 gives an exact

sequemnce:

0 — Hom(Cyp, X) — Hom(M, X) — Hom(K, X) — Ext(CL,X) =0

So:
dimp(¢/)(X) = dimp(Hom(Ky, X))
— dimg(Hom(M, X)) — dimg (Hom(Cy, X))
— dimy(Hom(M, X)) — dimy (Hom(Coker(f(ysm), X))
= dimg(o(X))
So ¢(X) = ¢/(X). Taking (M, m') to be (K1, m) completes the proof. O

Corollary 9. Let ¢/ be any pp-pair, and r > 0 any irrational.

If ¢/ is open near the left of v, then there exists € > 0 such that ¢/ is open on
every module lying in a homogeneous tube in P, N Q,_..

Similarly, if ¢/ is open near the right of r, then there exists € > 0 such that ¢ /¢

s open on every module lying in a homogeneous tube in Q. N P,y.

Proof. We shall only prove the first assertion. The second proved similarly.
Apply proposition 2 to ¢ and v to obtain pp-formulas ¢’ and v’ with free re-
alisations (M',m’) and (N',;n’), and €, €5 satisfying the relevant conditions. Let

€ = min(ey, €2).
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Suppose that there exists v € (r —¢,7) N Q, and a module E[k] lying in a homo-
geneous tube 7 (p) in 7., such that ¢/¢ is closed on E[k]. We shall prove that ¢/
is therefore closed near the left of r.

Then ¢'(E[k]) = ¢(E[k]) = Y (E[k]) = ¢'(E[k]), and so:
dimy (Hom(M’, E[k])) = dim (Hom(N', E[k]))
Then, as in the proof of lemma 36, it follows that, for all m € N*:
dimg (Hom(M’, E[m])) = dimx (Hom(N', E[m]))

-thus ¢’ /1’ is closed on every module in 7 (p).
Now, given any X € Q, NP, and any = € ¢(X) = ¢'(X), there exists f €
Hom(M’, X) such that f(m') = z. Then f factors through a module Y € add(7 (p)):

Since g(m’) € ¢'(Y) = ¢/'(Y), there exists ¢ € Hom(N',Y') such that ¢'(n’) =
g(m’). Then hg'(n') = x, and so = € '(X) = ¢¥(X). Thus ¢/ is closed on every

module in @, N P,- as required. n

Proposition 3. Let ¢/v be any pp-pair, and r any positive irrational.
Then, there exists € > 0 and a vector v € Ky(A) such that dimg((¢/¥)(X)) =
v.dim(X) for all X € Prye N Q.

Proof. Let M’, m’ and € be as in proposition 2. Since M’ € P,_., it has projective

dimension at most 1.....(find reference....): and so there exists an exact sequence:
0—P —P— M —0

-with Py and P; being projective, and hence in Py U 7. Given any X € Q,_ NP,

we can induce an exact sequence:

0 — Hom(M, X) — Hom(Py, X) — Hom(Py, X) — Ext(M', X) =0
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Consequently:
dimg (¢(X)) = dimg (Hom(M', X)) = dimg (Hom(Fy, X)) — dimg (Hom(Py, X))

Now, label the vertices of @) as 1,2,...n, and consider the indecomposable pro-
jectives {P(a) : a € Qp} of A-mod. Then there exists ¢1,...,¢,,d1,...,d, € N such
that Py = @"_, P(a)®™ and P, 2 @"_, P(a).

Now, given any X € A-mod, let (x1,2s,...,z,) be dim(X). Then for all a € Q,
dimg (Hom(P(a), X) = z,, and so:

dimg (Hom(FPp, X)) = (c1,. .., cn) (21, ..., 24)
dimg (Hom (P, X)) = (dy,...,dp).(21,...,2,)
Let vy = (¢; — dy,...,¢p —dy). Then for all X € P,_. N Q,
dimg (¢(X)) = dimg (Hom(M’, X)) = (v1).dim(M)

Similarly, there exists 6 > 0 and a vector vy in Z™ such that, for all X € P,_s N

Qr+§:
dimy (1(X)) = (v2).dim(N")

Taking v = v; — ve and relabeling min(e, §) as € completes the proof. ]

3.6.2 The lattice of pp-formulas at an irrational cut

Theorem 30. Given any irrational r € R, let M(r) denote the direct sum of all
indecomposable pure-injective A-modules of slope r. Then, given any pp-pair ¢/,

the following are equivalent:
1. ¢/v is closed near the left of r

2. ¢/¢ is closed near the right of r
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Proof. First of all, lemma 52 gives that (3) implies (2) (and indeed, (1)).

To prove that (1) implies (3)- suppose that ¢/t is closed near the left of r- i.e.
that there exists € > 0 such that ¢(X) = ¢(X) for all X € P, N Q,_.. By lemma 33,
there exists a direct system ((M;), (fi;)), with each M; in add(P, N Q,.), with direct
limit M (r). Since pp-formulas commute with direct sums (by [17, (1.2.31)]), we have
that:

¢(lim M;) = lim ¢(M;) = lim ¢ (M;) = (lim M;)

-s0 ¢/ is indeed closed on M (r)- as required.

Finally, we prove that (2) implies (1). Let v and € be as in proposition 3. Assume
that (2) holds- i.e. there exists 6 > 0 such that ¢/t is closed on all modules in
QNP5

We claim that v.hg 4+ yv.he = 0 for all v € (r; 7+ ) N Q. Indeed, given any such
~, pick any k € N such that kv € N. By corollary 12, there exists a homogeneous
indecomposable module X with dim(X) = khg + kyho. Then X has slope 7, and so
(¢/1)(X) =0, and hence k(v.hg + yv.hso) = 0, s0 v.hg + Yv.hs = 0 as claimed.

Since this holds for all v € (r,r + ¢€), it follows that v.hy = v.he = 0. Now,
given any module X in a homogeneous tube in P, N Q,_s, dim(X) € rad(x4), and so
dim(X) = bhg + b'hy for some b, 0’ € N. Thus vdim(X) = 0, and so (¢/1)(X) = 0.

It follows from corollary 9 that ¢/ is closed near the left of r- which completes
the proof

O

We refer to any pp pair satisfying the conditions of theorem 30 as being closed
near r. We say that a pp-pair is open near r if it is not closed near r.

Notice that theorem 30 does not hold if r is rational- for example, take a stable
tube 7 (p) in 7, and let E[1] be any quasisimple in it. Let f; be the irreducible map
in Hom(E/[1], E[2]). By theorem 6, there exists a pp-formula ¢/ which is equivalent
to Cok(f1,-)- where (f1,-). By lemma 24, ¢/t is open on E; and closed on all other
modules in A-Mod- and hence is open on a module in 7., but is closed near the left

and near the right of r.
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Given any r € R®, let ~, be the relation on ppp such that ¢ ~, v if and only if
there exists € > 0 such that ¢(X) = ¥(X) for all X € Q,_. N (P, U7T,). It is clearly
a congruence on ppg. Of course, if ¢/t is a pp-pair and r ¢ Q, then ¢ ~, ¥ if and
only if ¢/1 is closed near the left of r.

Corollary 10. Given anyr € RT\Q, let M(r) be the direct sum of all indecomposable
pure-injectives of slope r.

Then the lattices pp(M(r)) and app/ ~, are naturally isomorphic.

Proof. Define a map from pp(M(r)) to app/ ~,, taking any pp-definable subgroup
¢(M (r)) to the equivalence class of ¢ in 4pp/ ~,. By theorem 30 it is an isomorphism.

One can easily check it is a well defined map. ]
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In the last chapter we proved that, given any r € RT\Q, the lattices pp(M (r))
and pp/ ~, are equivalent- where M (r) is the direct sum of all pure-injective inde-
composables in A-mod of slope r. We prove in this chapter that the breadth of this
lattice is undefined.

We prove the result, first of all, for a few specific tubular algebras- C'(4, ), C(6),
C(7) and C(8)- and then show how the result can, through tilting functors, be ex-

tended to all tubular algebras.

4.1 Modules in tubular families

Throughout this section A will be any tubular algebra, and T = (n4,...,n;) will be
the tubular type of A. v will denote any positive rational. The set of tubes in 7, will
be denoted {7 (p) : p € P}(K)}. For each p € P}(K), n, will denote the rank of the
tube 7 (p). By theorem 27, there exist pairwise distinct py, ..., p; € P}(K) such that
n,, =nsforall s € {1,2,...,t}, and n, =1for all p ¢ {p1,...,p:}.

Given any stable tube 7 (p) of rank k, the quasisimple modules will normally be
denoted {Ef : i € Zy}- such that 7= (E!) = Ef,, for all i € Z.

Lemma 53. Given any stable tube T (p), any indecomposable quasisimple module E;

inT(p), and any k > 1:

_ 0 ifn,lk
xa(dim(E;[k])) =
1 otherwise

Proof. Since E[k] lies in a stable tube, it has projective dimension 1 (by theorem...).

Thus, by lemma 20 and theorem 16:
xa(Eilk]) = dimg(Hom(E;[k], Ei[k])) — dimg (Ext(E;[k], Ei[k]))
= dimg(Hom(E;[k], E;[k])) — dimx (Hom(E;[k], T E;[k]))

It follows from corollary 1 that dimy(Hom(E;[k], E;[k])) is the number of elements
a of {1,2,...,k} such that n,|(a — k). Similarly, dimg(Hom(E;[k], E;_1]k])) is the
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number of elements a in {1,2,...,k} such that n,[(a —1 — k). The result follows

straight from these facts. O

Lemma 54. Let V be the subgroup of Ko(A) generated by the set {dim(M) : M € T,}.
Then the rank of V is 1 —t+ 3 n,.

Proof. By [23, (5.3.2")], the rank of V is at least 1 — ¢+ >_'_, n,. Pick any a,b € N
such that b/a = . By lemma 28, rad(y4) N Ker(z,) is a subgroup of Ky(A) of rank
1- in fact every element of it is equal to g(ahg + bho,) for some ¢ € Q. Let C be the
set:

t
C = {aho + bhoo} U | J{dim(Ef) : 1 < j <n, — 1}

s=1
Since |C| <1—-t+ 22:1 ns, it will be enough to prove that V' is spanned (over Q)
by C.

Given any p € I, the elements dim(EY),...dim(E; _;) lie in C. Furthermore, by
lemma 34:

Zdlm (E?1]) = dim(Ef[n,))

By lemma 53, dim(EY[n,]) € rad(x), and since dim(E{[n,]) € Ker(z,), there exists
g € Q such that:
dim(EY[n,]) € rad(x) = q(aho + bho)

-thus dim(EY ) lies in the Q-span of C.
Finally, every indecomposable module in 7, is isomorphic to E[k] for some p € I,

k€N, and i € Z,,. By lemma 34:

dim(E?[k Zdlm Yoial1)

-and hence lies in the Q-span of (', as required. O

Given an element = € Ky(A), let (z) denote the subgroup of Ky(A) generated
by x. We say that x is primitive if and only if the quotient lattice Ko(A)/(z) is
torsionfree- i.e. if and only if there is no y € Ky(A) and integer n > 2 such that

ny = x.
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Lemma 55. Assume that every X € 7, has both projective dimension and injective
dimension 1. Let U be any subgroup of Ko(A) of rank 1 —t + Zizl ns, such that
dim(M) € U for all M € T,. Then the following are equivalent:

1. For all connected positive v € Ko(A) such that xa(z) € {0,1}, there exists an

indecomposable module M € T, with v = dim(M).

2. For all s € {1,2,...,t}, >, di_m(Ei(ps)) is primitive in U, and the subgroup
of U generated by {x € U : xa(x) € {0,1}} is the subgroup of U generated by
{dm(M) : M e Ty},

Proof. See [23, (5.3.3)]. O

Corollary 11. Pick any a,b € N such that v = b/a. Let ¢ be the greatest common

divisor of all the coordinates of ahg + bho.. Then, given any stable tube T (ps):
> dim(E") = (a/0)ho + (b/)ho
i=1

Proof. Let U be the subgroup of Ky(A) generated by {dim(M) : M € 7,}. By
lemma 54, it has rank 1 — ¢+ >_'_ n,. Notice that U is a subgroup of Ker (7).

Given any connected positive x € U such that x(z) € {0,1}, there exists an
indecomposable module M € 7., such that dim(M) = = (by theorem 27).

Thus, by lemma 55, >, di_m(Ei(ps)) is primitive in U. As in the proof of
lemma 54, 27 dim(E"*) € rad(x4) N Ker(xc).

By lem 28:

rad(xa) NKer(ty) = {(d/c)(ahg +bhs) :d € Z} CU

Since Y1, dim(Ei(pS)) is primitive in U, it must be primitive in rad(xa) N Ker(c,),

and so:

=1

-as required. O

Corollary 12. Given any a,b € NT, there exists a homogeneous indecomposable

module with dimension vector ahg + bhs.
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Proof. Since ahg + bhs € rad(x) N Ker(t), there exist infinitely many (isomorphism
classes of ) A-modules with dimension vector ahg + bho.

One can easily check (from lemma 34) that there can only be finitely many inde-
composable modules in any given tube with dimension vector ahg 4 bh.,. Since there

are only finitely many non-homogeneous tubes, the result follows. O

4.2 The tubular algebras, C'(4,)\), C(6), C(7) and
C(8)

We now introduce the bound quiver algebras, C'(4,A), C(6), C(7) and C(8), as well
as calculating their characteristic y, and quoting a few other properties from [23,

(5.6)]. Indeed, they are tubular algebras, by [23, (5.6.1)].

4.2.1 C(4,)\)

Given any A € K\{0,1}, C'(4, \) denotes the algebra over the quiver:

1 4
‘\B\ /0612 a‘;l\
3 6
/ 0:;2\ ){/&2 1
2 )

-subject to the relations [(ajar; — qaoar) and y(ajaaq; — Aagsaey). The tubular

type of C'(4,\) is (2,2,2,2). The Cartan matrix is:

101111

Cowuy =

o o o o O
o o o O
o o O

ja=)

—

—
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And (C~HT is:

1 0 0 0 0 O
0 1 0 0 0 0
o _ -1 -1 1 0 0 O
0 0 -1 1 0 0
0 0O -1 0 1 0
1 1 0 -1 -1 1
The characteristic is:
1 2 1 2
Xcan (T, ..., 1) = 5@1 — T9)" + (z3 + 5(371 + Ty + T4 + T5))
1 1
+ (136 + 5(5(?1 + To — Ty — 135))2 + 5(%4 — SC5>2

Also, hg = (1,1,2,1,1,0) and ho, = (0,0,1,1,1,1), and so the index of any element
(iL‘l, e ,$6) S Ko(A> is:

T4+ T — T — Ty
T3 — Te

L(xh s al‘ﬁ)

Also, (hg, heo) = 2.

4.2.2 C(6)

C'(6) is the algebra with underlying quiver:

-with relations y(azasay — G30201) = 0.



92 CHAPTER 4. MODULES OF IRRATIONAL SLOPE

The tubular type of C'(6) is (3,3, 3), and the Cartan matrix is:

11111111
01 111111
00111112
Cow 00011001
000O01O0O0T1
000O0O0OT1TT171
000O0O0O0T1T1
00 0O0O0O0OTO0T1
1 0 o0 0 0 0 0 0
-1 1 0 0 o0 0 0 0
o -1 1 0 O 0 0 O
o-T o 0 -1 1 0 0 0 O
N o 0 o0 -1 1 0 0 O
o 0 -1 0 0 1 0 O
o o o o0 0 -1 1 O
o 1 0 o0 -1 0 -11
And so the characteristic is:
Xew = (o= 5o+ (02 — 3 (05 — 7)) + (@4 — (s + 25))?
b (= (s ) (s — 52 + )+ (o — 5 (20 + 7))

So ho = (1,2,3,2,1,2,1,0) and hy = (0,0,1,1,1,1,1,1). And the index of any

element (z1,...,xg) of Ko(C(6)) is given by:

Xy + X5+ T+ X7 — X1 — Ty — T3
T3 — Ty

L(‘rlv s ,ZEB)

Also, (hg, heo) = 3
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4.2.3 C(7)

C(7) is the algebra with quiver:

3<2 4<2 5
Y4 Y1
1<——9 9
N i
05 7% ®

-with the relation y(ayazasay — B4036231) = 0.

The tubular type is (4,4,2), and the Cartan matrix is:

111111111
0111111712
001110001
000110001

Cen=]1000010001
000001111
000000T1T11
000000011
000000001

1 0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0 0

0O -1 1 0 0 0 0 0 0

O 0 -1 1 0 0 0 0 0
cC"=[ 0o 0o 0o -1 1 0 0 0 0
0O -1 0 0 0 1 0 0 0

O 0 0 0 0 -1 1 0 0

O 0 0 0 0 0 -1 1 0

1 0 0 0 -1 0 0 -11

So the characteristic xc(r) : Ko(C(7)) — Z is given by:
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2 1 2 1 1
X = g(l?g — Z(Z’g -+ 31‘2))2 + 5(176 — Z(Z’g -+ 31‘2))2 + (1131 — §($2 — xg))Q
3 1 3 1
+ Z(ZL‘7 — g(l’g + 25(]6))2 —+ Z([E4 — g(l’g + 25(]3))2
1 2 1 2
+ (25— 5(:1:7 +29))" + (25 — 5(1'4 + 29))

Also, ho = (2,4,3,2,1,3,2,1,0) and h,, = (0,1,1,1,1,1,1,1, 1), so the index of any
element (x1,,...,29) is given by:

8
—21‘1 — 21’2 + Zi:?) ZT;
T2 — Ty

L(xh cee ,I‘g)

Also, (hg, heo) = 4.

4.2.4 (C(8)
C'(8) is the algebra with quiver:

J~— 32— 4

a1
10
AN S
5556547538ﬂ29

-with relation y(agasaq — Bs0504030251) = 0. The tubular type of C(8) is (6,3, 2),

and its Cartan matrix is:

1111111111
0111111112
001 1000O0O0O01
0001O00O0O0O01
Com — 00001111T171
0000O0O1T1T1T1T1
0000O0OO0OT1T1TI1
0000O0OO0OO0OT1T171
000O0O0O0OO0OO0OTI1
00 0O0O0OO0OO0OO0O®O01
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i1 0 o0 o0 o0 o0 0 0 0 0
-1 0 0O O O 0O 0 0 0
0 -1 1 o o0 o0 0 0 0 0
o 0 -1 1 0 O O 0 0 0
o-T 0o -1 0 O r 0 0 0 0 O
o 0 0 O 11 0 0 0 0
o o0 o0 o o0 -1 1 0 0 0
o o0 o0 o o o0 -1 1 0 0
o 0 o0 o0 O O 0 -1 1 0
1 0o o0 -1 0 0 0 0 -—-11
The characteristic is:
Xc@®) = (21 — %(@ - 9510))2 + 2(953 — %(iﬁo + 2902))2 + (4 — %(953 + 3710))2
+ g(% - é(fﬂlo + 5$2))2g(ﬂ76 - %(1’10 +4x5))? + %(1’7 - i(xm +31))°
1 %(Ig — %(:clo +227))? + (w9 — %(Q?g + 119))?

Also, ho = (3,6,4,2,5,4,3,2,1,0), heo = (0,1,1,1,1,1,1,1,1,1) and the index of any
element (xy,...,210) of Ko(C(8)) is:

—921 — 329 + 8x3 + 4xy + dx5 + dag + 37 + 228 + X9
T2 — T10

L(Qfl, R ,ZL‘lo) =

Also, (hg, heo) = 6.

4.3 Indecomposables over C(4,)), C(6), C(7) and
C(8)

Throughout this section C' will denote one of the four tubular algebras, C'(4, \), C(6),
C(7) or C(8). And Ky(C') will be identified as Z"- where n is the number of vertices
of the quiver associated to C.

In order to study the lattice cpp/ ~, (where r is irrational), we need a few results

regarding the dimension vectors of indecomposable C'-modules.
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4.3.1 The dimension vectors of C-modules

Lemma 56. rad(x) = {ahy + bhw : a,b € Z}

Proof. By theorem 26, rad(x) is a rank 2 subgroup of Ky(C'), and hg, hoo € rad(x) are
linearly independent elements of it. Consequently, we can write any (z1,...,z,) €

rad(y) as a Q-linear combination of hg and h:

(ZEl, Ce ,ZL‘n) = tho + q2hoo

Notice that the (n — 1)-th and n-th coordinate of hy are 1 and 0 respectively, and the
(n — 1)-th and n-th coordinate of hy, are both 1.

By projecting onto the (n — 1)-th coordinate and the n-th coordinate of Q", we

get:
Q1+ q2 = Tn—
q2 = Tn
Since x,, and x,_1 lie in Z, so must ¢; and ¢o- which completes the proof. O

Lemma 57. For all x € Ko(C):

Xc(z + ho) = xc(T + hoo) = Xo(® — ho) = X (T — hoo) = X ()

Proof. For all four of the tubular algebras, y¢ takes the form:

k
X(x1, ... xp) = ij(xl, Ty
j=1

-where each p;(z1,...,x,) is a (homogeneous) polynomial in Q[z1, ..., x,], of degree
1.

Since x(ho) = 0, it follows that p;(hg) = 0 for all 5. And so, for example,
pi(x + ho) = pj(x). It follows that:

ij(x + ho)* = ij(x)2

-Le. x(z) = x(z + ho). One can similarly show the other results. O
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Of course, since x4 : Z" — Z is just a polynomial in n variables, we may also

consider it as a map from Q" to Q.

Lemma 58. There exists p € N such that, given any (x1,...,2z,) € Q", with x, 1 =

z, =0 and x(z1,x2,...,2,) = 1:
|z;| < p forallie{1,2,...n—2}

Proof. T'm only proving this for C'(4, \)- the other cases are proved similarly. Recall

that, for any = = (z1,...,76) € Q°:

1 1

Xc(4,)\)(flz1, Ce ,SCG) = §<I1 — 562)2 + (SL’g + 5(561 + X9+ x4 + I5))2
1 1

+ 5(1’4 — 1‘5)2 + (1’6 + 5(1’1 + To — Ty — 1‘5))2

So if x5 = 26 = 0, and x(z) = 1, then:
1 2
(G(z1+ 2 —2g))* <1

1
(ZE3 + —<ZU1 + Zo + ZE4))2 S 1

2
1 2
§(I1 — LL’Q) S 1
1
5(934)2 <1

Consequently, 4] < /2, and |z;—x5| < /2. Furthermore, since (x1+xo—14)%/4 < 1,
we have that:

‘xl—l-l'g‘ §2—|—|QZ4‘ <4

It follows that |z;| < 3 and || < 3. Finally, since (z3 + (71 + 9 + 24)/2) < 1, we

have that |z3| < 4- which completes the proof. O

Define Q2 C Ky(C) to be the set of all elements (x1,...,x,) of Ko(C), such that

T, = x,—1 =0 and xo(zq,...,2,) = 1.

Lemma 59. The set () is finite, and we have a bijective correspondence between the

set {x € Ko(C) : x(x) =1} and the set:

{aho +bhe +y:a € Z,beZ,yc Q}
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Proof. Take any (z1,...,2,) € Ko(C) such that x(z1,...,2z,) = 1, and let y =
(X1, ..y Tpn) — (Tp—1 — Tp)ho — Tnheo. By lemma 57, x(y) = 1, and the last two
coordinates of y are clearly 0.

The finiteness follows straight from lemma 58 O]

Define p : Ko(A) — N to be the map such that p(dim(M)) = dimg (M) for all
M € A-mod.

Lemma 60. Take any coprime a,b € Nt such that b > —n,(hs,y) for ally € Q and
p € PYK). Let v =0b/a. We can pick p > 0 such that, for all y € Q:

1

| <h07 h00>

(1({hoo, y)ho = (ho, y)hoo)) +y| < p

Let T (p) be any non-homogeneous stable tube in T,. Let E be any quasisimple in
T(p). Then:

ahg + bhsy) —
<h0, hQQ)H’( 0 ) b

Furthermore, if n, = (ho, hoo), then:

|dimg (E) — p(aho + bhso)| < p

1
<h07 hoo>
Proof. Let Ey, Es, ..., E,, denote the quasisimples of 7(p). By lemma 59, there

exists (for each i) unique ¢;,d; € N and y; € € such that:
dim(E;) = ciho + dihoo + ¥

Since the slope of E; is b/a we have:

o= daim() = St et

Let k; = ged(d;(ho, hoo) + (ho, ¥i), ¢i{ho, hoo) — (Roo, ¥i)) (noting that both things

are indeed non-zero). Then:

kib = d;(ho, heo) + (ho, Yi)

kia = Ci<h07 hoo) - <hooa yz)
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So:
1
<h0a hoo>

Recall, from corollary 11, that ahg + bhe = >_5°, dim(FE;). By considering the last

dim(E;) = ((Bia + (hoo, yi) )ho + (kib — (ho, yi) ) hoo)

coordinate in Z" of this equation, we get:

h07 )
b—Zd —Zd Z—<h0’<hoo>y>

=1

np

(ho, Zk:) = (hoor ui)

i=1
Since b > —n,(hoo, y) > 0 for all y € Q, we must have:

(ho, hoo Zk

Recall that we are trying to prove two statements: Firstly, if n, = (ho, hoo), then
k; =1 for all « < k, so:

di = (b~ (ho,u:))

Ny

1
P = heo, Yi
6 = o(at (heo, i)

(for all i < n,). Thus:

dimic () — ~—(u(aho + bho)
= = (Cho, (o) — o, ide) + 1)

p
<P

Secondly, if n, # (ho, hoo), then n, < (ho, he) (no stable tube has rank greater
than (hg, hso)). Then:

dimg (E;) — m(u(aho + bhoo))
= <ho,1hoo> (1((kia + (hoo, ¥i) o) + pu((Kib — (ho, ¥i) ) o) — p1(aho + bheg))
= <h0’1h ) (1((a + (hoo,s Yi) ) o) + 1((b = (ho, Yi))hoo) — p1(aho + bhe))
> -p

-as required.
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4.3.2 Pp-pairs near an irrational cut

Lemma 61. Given any ri,r2 € R such that 0 < ry < ry, and any v1,7v2 € Q, there

are only finitely many pairs (a,b) € N? such that:

Proof. Given any a,b € N:

b+ b m—(b/a)y
a—+ Y2 a a4+ v

LetS::{(a,b)GNQ:§§T1<T2§%~

Let s = |y1]| + 72|72|. Then for all a,b such that b/a < s:
b+ Y1 b Y1 — (b/CI,)")/Q

— 2 O oy
a+vy a a—+ v a—+ Yo

Consequently, we can pick ¢’ € N large enough such that (a,b) ¢ S, for all @ > o’
and b € N.
Finally, given any a < o, there are only finitely many b € N such that b/a < ry.
It follows that .S is finite.
O

Lemma 62. Given any ri,r2 € R such that 0 < r; < ry, and any v1,7v2 € Q, there

are only finitely many pairs (a,b) € N? such that:

b b
T <r <rg<-—
a+ Y2 a

Proof. Let S :={(a,b) € N*: % <1 <ry < 2} We claim that there exists k € N
such that:

sup{(b/a)y2 — 71 : (a,0) € S} <k

Indeed, if 75 < 0, then let kK = —7;. Whereas, if 75 > 0, then, (a,b) € S implies that:
b<—m+rila+)
And hence that:

(b/a)y2 = < (r2/a)(=n +7ri(a+92)) =
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-and one can clearly see that there exists k£ € N such that, for all a € N:

(re/a)(=n +rila+) —n <k

Now, given any such k, we have that, for all (a,b) € S:

(b/a)72—%< k
aty2 T atn

Now, pick any aq large enough such that k/(a+72) < ro —r; for all @ > ag. Then,

for all @ > ag and b € N:

a a—+ e a—+ v T a+

b b b — k

B +’71_(/a>72 N <ry—1
-and so (a,b) ¢ S.

Finally, for all a < ag, there are only finitely many b € N such that % <r,

and hence only finitely many b such that (a,b) € S- which completes the proof. [

Corollary 13. Take any v1,7v € QF, any irrational r > 0, and any € > 0.

Then there exists § € (0,¢€) such that, for all a,b € N, and y € Q:
t(ahg + bhoo +7) € (r — §,7 4+ 0) = t(ahg + bheo) € (r —€,7 + ¢€)

Proof. Recall that (hg, hoo) = —(hoo, ho). For all a,b € N, and y € Q:

(ho, ahg + bhoo + 1)
(hoo, ahg + bheo + Y)
(ho, bhoo) + (ho, y)
<hoo’ CLh0> + <h007 y>

b+ ({ho, y))/({ho, bheo))
a = ((hoo, y))/((ho, bhoo))

Let v1 = (ho,y))/({ho,bhs) and let v5 = —({heo,y))/({ho, bhe)), and pick any € €
(0,€). Then by lemma 62 , there are only finitely (a,b) € N? and y € 2 such that:

t(ahg 4+ bhoo +7) = —

b+ 7

a—"72

<r+éd<r+e<b/a

Similarly, by lemma 61, there are only finitely (a,b) € N* and y € Q such that:

< b+

bja<r—e<r—¢< <r4¢
a— 2
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Consequently, we can pick § € (0, €¢') such that, for all a,b € N and y € Q:

t(ahg +bho +y) € (r—0,r+0) =r—e<bla<r+e

]

Lemma 63. Let ¢/1) be any pp-pair which is open near r (cf (3.6.2)). Then there

exists € > 0 such that ¢/ is open on every C-module in P, N Q,_..

Proof. By corollary 9 there exists ¢ > 0 such that ¢/ is open on every module lying
in a homogeneous tube in P, o N Q,_o.

By proposition 3 there exists € > 0 and a vector v € Z" (i.e. Ky(C)) such that
dimg(¢/¥)(X) = v.dim(X) for all X € P,y N Q,_.. We may assume that € < ¢,
and that € € Q.

We claim that v.hg + yv.he > 0 for all v € (r —€e,7 + €) N Q: to see this,
take any a € NT large enough such that ay € N. By corollary 12 there exists a
homogeneous indecomposable module X € A-mod, with dim(X) = ahg + avheo.
Then X € (Q,_¢, Pric), and so ¢/1 is open on X, and so a(v.hg + 7.hoo) > 0, as
required.

By corollary 13, there exists 6 € (0,¢€) such that, for all a,b € N and y € Q:

t(ahg 4 bhoo +y) € (r — 6,7 + ) => 1(ahy + bhe) € (r —€,7 + €)

Now, let:

s = min(v.hg + (r — €)v.hoo, v.ho + (7 + €)v.hso)

Notice that s € R\Q (since r + ¢ € R\Q), and that s = inf{v.hg + Y0.hoo = 7 €
(r —e,r+¢)}.Thus s > 0.
Now, pick any o’ € N such that ¢’ > —(v.y)/s for all y € Q. We can pick §' > 0
small enough such that t(ahg + bhe +y) & (r—38,r) forally € Q, b€ Nand a < d'.
We claim that ¢/ is open on every X € Q, 5 N P,. Indeed, given any such X,
let a,b € N and y € Q be such that dim(X) = ahg + bhy + 3. Then a > @’ (by our
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choice of €'), and b/a € (r — §,r + 0) (by our choice of §), and so:

= av.(hg + (b/a)hs) + v.y
> ds+oy

> 0

So ¢/ is open on X, as required. Relabeling ¢’ as € completes the proof. [

4.4 rad"(y)

Define rad™ () to be the set {ahg + bho : a,b € N2\{(0,0}}. Let ¢ : rad™(x) —
Q" U {co} be the map ¢ : ahg + bhe — b/a. Let p : rad*(x) — N be the map such
that pu(dim(M)) = dimg (M) for any M with dim(M) € rad™ ().

Lemma 64. Take any x,y € rad™(x) such that 1(x) < u(y). Then:
z) <z +y) <uly)
limy ootz + ny) = o(y)
Proof. These can be easily checked. ]
We define a pre-order on rad™ () by:
<y = ux) <uy)or (u(x) = (y) and p(x) < p(y))

It is in fact a total order: If ahg + bho < a’'hg + b'he and a'hg + b he < ahgy + bho

then one can easily check that a = a’ and b =1V'.

Lemma 65. Given any r € RT\Q, k € N, and any e > 0, there exists x € rad™ ()

such that r — e < 1(z) < r, and, for all y € rad™ (x):

vz) <uly) <r = wly) > plx) +k
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Proof. First of all, given any &’ > 1, consider the set:
{x erad®(x) : plx) <K, u(x) <7}

There exists &' > k such that this set is non-zero. It is clearly finite, so we can pick
an element xg = aghg + bohe which is maximal in this set (w.r.t. the total order on

rad® (x)). Notice that, for all y € rad™ (y):

Wr) <uly) <r = u(y) > p(xo)

Suppose, for a contradiction, that for all z € rad™ () with r —e < 1(x) < 7, there
exists y € rad™ () with «(z) < «(y) < r and p(y) < p(z)+k. Then we can recursively

define non-empty sets Sy, 53, 53, ..., and elements x; = (a;ho + bjhe) € S; by:
Sivr = {y € rad™(x) : ply) < plwi) + ko) < ely) <r}

Tir1 = max(Siy1)

Define ¢; :== a; — a;—1 and d; = b; — b;_; for all i > 1: So x; — x;_1 = c;ho + d;hs.

Notice that, for all 7:
o 0 < u(cihg + dihs) < k (by our choice of z;_1)
e ¢; and d; can’t both be negative (since 0 < p(c;ho + dihoo))

e d; > 0- Suppose for a contradiction that d; < 0. Then ¢; > 0 (by above), and

SO:

v(z;) =b;/a; = (di + bi—1)/(ci + a;-1) < bi—1/a;—1 = t(xi1)
-contradicting the definition of S;.

e ¢; > 0: Suppose for a contradiction, that ¢; < 0. Then:

bi—1 < bi—1 < bi—1+d;
a1 a1 — 17 a1 +¢

=1x; <T

-and so (a;—1 — 1)ho + bi—1heo € S;—1-contradicting our choice of x;.
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e d;/c; > 1(x;_1)- since d;/¢; < 1(x;_1) would imply that:
bi/a; = (bic1 +di) /(a1 + ¢;) < bi_1/a;_1
(by lemma 64), which contradicts the fact that x; = a;hg + b;hs € S;.

Of course, it follows from our choice of xy that d;/c; > r.

Now, let A be the finite set:

A= {y erad”(x) : p(y) < k,u(y) >}
And define, for all n:
A, = {zn:yZ cy; € Afor all i < n}
i=1
Notice that S; C {zg + 2z : z € A;} for all .. We claim that there exists n such that:
t(xg+2)>rforall z€ A,

-this will give our required contradiction.

To prove this, let zp € A be such that ¢(zp) is minimal (if there is more than
one, then pick the one such that p(zp) is minimal too). Let eg, fo € N be such that
eoho + foheo = 20-

By lemma 64, we can find N such that ¢(xo+Nzy) > r. Take any z = ehg+ fhy €
Ang,- Then f > Nfy. Let ¢ = f/Nfy > 1. Notice that:

bo + N fo < bo + qN fo
ao+ Ney — ag+ qNeg

r < u(xg+ Nzo) =

(since (b+ N fy)/(a+ Neg) < fo/eo ). Also:

Jo f . aN fo

_S__
eg ~ e e

So e < qNey. And so:
- bo + gN fo < b+ f
ag+qNey — a—+e

-s0 t(xo + z) > r for all z € A,- thus proving the claim. O
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Lemma 66. Let C be either C'(4,\), C(6), C(7) or C(8). Given any irrational r > 0,
and any € > 0, and any d > 1, there exists a tube T (p) of rank (ho, he), and index

in (r — €,7r) such that, given any quasisimple E of T (p), and any indecomposable

N € C-mod:
((dim(N)) € («(dim(F)),r) = dimg(N) > dimg(E) +d

Proof. Let p be the bound from lemma 60. Pick any £ > 1 large enough such that:

1
<h07 h'oo>

By lemma 65, there exist coprime a,b € N, such that r — € < b/a < r, and given

(k—=p)—p=>d

any a’,b' € N:
bla <b'/d <r = p(a'hy+ bhs) > pu(ahg + bh) + k

Pick 7' (p) to be any tube of index b/a and rank (hg, hoo).

Now, take any indecomposable N € C-mod, with slope in (b/a,r). Of course,
N = FE'[j] for some quasisimple E[j']. Let a/,b’ be coprime integers such that b'/a’ is
the slope of E'.

By lemma 65 and lemma 60:

dim (E'[j])

v

dimg (E'[1))
1

<h'07 hoo>
1

>
- <h07h00>
m«ho, heo)dimg(E) —p+k) —p

dimg (E) + d

v

(u(a'ho + b'hos)) — p

(u(ahg + bhe) + k) — p

v

v

4.5 The width of ¢pp/ ~;

We assume throughout this section, that C'is one of the four tubular algebras: C'(4, \),
C(6), C(7), C(8).
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Lemma 67. Given any r € R"\Q, d € N, € > 0 and any pp-pair ¢/ which is open
near r, there exists v € (r — €,r) and a stable tube T (p) in T, of rank (ho, hoo) such
that:

e ¢/v is open on every module in the tube.
o Given any quasisimple E in T (p), and any X € Q, NP,:

Proof. By lemma 63, there exists 6 > 0 such that ¢/t is open on every module in
P.N Q,_s. By lemma 66, there exists v € (r — d,7) N Q satisfying the required

conditions. H

Theorem 31. Let C be either C(4,)), C(6), C(7) or C(8). Then, given any r €
RT\Q, the lattice cpp/ ~, is wide.

Proof. Take any pp-pair ¢/t such that ¢ ~,. 1. Apply proposition 2 to ¢ (and N)
to obtain a pointed module (M, m) (respectively (N,n)) and €; > 0 (respectively,
€2 > 0). Let € = min(ey, €2).

Let d = dimg (N), and apply lemma 67 to find v € (r —e,7)NQ and a tube 7 (p).
Since 7 (p) is a non-homogeneous tube (it has rank (hg, hy) > 1), we can pick any
two non-isomorphic modules, £ and E’, on the mouth of 7 (p).

Pick any x € ¢(E)\¢(E), and any 2’ € ¢(E)\¢(E"), and let § and 6’ be generators
of pp¥(x) and pp” (2') respectively. We shall prove that the images of ¢ + @ and
¥+ ¢ in pp/ ~, are incomparable.

First of all, notice that every quotient module of E (other than E itself) has
dimension less than dimg(E), and hence lies in add(Q,). In particular, every non-
zero map from E to a module in (Q, U 7,) NP, is an embedding.

As a non-trivial quotient of £, Coker(f(g,)) must lie in add(Q,). So, given any
Z € QNP

dimg(0(Z)) = dimg(Hom(E, 7)) — dimg (Hom(Coker(f(g4), Z))

= dimg(Hom(E, 7))
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Similarly:
dimg (0'(Z)) = dimg (Hom(E', Z))

Now, we suppose for a contradiction, that 0+ <, 6’ +1. Then § ~,. OA+(+0')-

i.e. there exists 0 > 0 such that, for all X € Q,_s NP,
0(X)= (0N (¥ +0))(X)

Since § can be arbitrarily small, we may assume that § < e. We can find a free

realisation for 6 A (1) 4 ¢'), by considering the pushout, L, of the maps f(g,) and

f(NoE (na):

C f(E,z) E

|
f(NGDE/,(n,;c’))\L I 3g

/ Y
NoE L
Let I = g(x). Then (L,1) is a free realisation of 6 A (1) + 6’). Notice that there exists

a surjection £ & N & E' — L with non-zero kernel, and so:

We claim that every map h from E to a module Z € P, N Q,_s factors through g:
Indeed, since h(z) € 0(Z) = ON(Y+0')(Z), there must exist a map h' : L — Z taking
[ to h(x). Furthermore, since (h'g — h)(z) = 0, it must factor through Coker(f(g.4)).
However, since Hom(Coker(f(g4)), Z) = 0, it must be zero. So h = I'g, as required.

Given any direct summand Y of L, let 7y : L — Y denote the projection onto Y.

We can split L into L' & L" & L", where:

e [/ is the direct sum of all indecomposable direct summands Y of L in P, such

that myg # 0.

e [” is the direct sum of all indecomposable direct summands Y of L in P, such

that myg = 0.
e [ is the direct sum of all indecomposable direct summands of L in Q,.

Let 7 : L - L', 7" : L - L", and " : L - L" be the natural surjections onto the

direct summands. We claim that Coker(Hom(n'g, Z)) =0 for all Z € Q,_. N P,.
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To prove this, take any h : E — Z. Since Coker(Hom(g, 7)) = 0, h factors

through g- i.e. there exist maps h’, h”, b’ such that the following diagram commutes:

(n'g,m" g7 g)

E L/ @ LI/ EB L///

h : (h/ h// h///)
\]

Z

Since X € Q,_., Hom(L",Z) = 0, so i = 0. Also n”¢g = 0 (by our choice of L").
Thus h = h/7’g, as required.

Define f’ := 7’g- we have proved that Coker(f’,Z) = 0 for all Z € P. N Q,_s.
Also, f’ is an embedding (as shown at the start of the proof). Consider the exact

sequence:
0—e 1 Coker(f') — 0

Now, since L' € add(P,), we can pick 7' € (r — d,7) N Q such that L' € add(P,).

Take any module Z in a homogeneous tube in 7,,. Then Ext(L’,Z) = 0, and theo-

rem 1 gives us an exact sequence:

0 — Hom(Coker(f"), Z) — Hom(L', Z) <Y Hom(E, 2)

—  Ext(Coker(f'), Z) — Ext(L', Z) =0

So Ext(Coker(f), Z) = Coker(f’, Z) = 0 (by the claim above). Lemma 36 therefore
implies that Coker(f’) has no direct summands in Q./, In particular, Coker(f’) €
add(P,).

Now, notice that:

dimg (Coker(f")) = dimg (L") — dimg(FE)
Since every module in P, N Q, has K-dimension at least dimg(N) + dimg(E’) (by

our choice of v, using lemma 67), Coker(f’), cannot have any direct summands in

P, N Q,_., and hence Coker(f’) € add(Z,).
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The surjection L' — Coker(f’) implies that L’ must have a direct summand Y in
7,. By our definition of L', Hom(E,Y') # 0, and so Y = E[k| for some k > 1 (by
corollary 4). Indeed, we will say that Y = E[k].

Recall that Y is a direct summand of L, and 7y : L — Y denotes the natural pro-
jection onto Y. By our choice of L', myg # 0. By corollary 4, dimg (Hom(E, E[k])) =
1, and so 7y g is equal to (a non-zero scalar multiple of ) the embedding p in the short

exact sequence:

0— E[1] % Ek] = 7 E[k—1] —0

-as described in at the end of (3.1.2). We will assume that myg = p. Then y = p(x) #

0. Now, the map:

NoE 2L ™y

-takes (n,z’) to y. Since Hom(E',Y") = 0 (by corollary 4), the map mygiy : N — Y
(where iy : N — N @ E’ is the natural embedding) takes n to y.

Now, 7y gin(n) = m(y) = mp(x) = 0, and hence factors through Coker( f(x ).
Since Coker(f(nn) € add(Q,), we have that mygiy € Ker(m) = Im(p), and hence

factors through p:

Since p is an embedding, and p(x) = pf”(n), it follows that f”’(n) = x.

Since £ € P, N Q,_, our choice of N, n and € (cf. proposition 2) give that
x € Y (F)- which contradicts our choice of z.

Thus 6 + ¢ £, 6’ + ¢, and similarly 6 + ¢ #, 6 + - and so the lattice is indeed
wide. O

4.6 Other classes of tubular algebras

In order to extend theorem 31 to all tubular algebras, we first need to define a few

more types of tubular algebra:
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4.6.1 Canonical algebras

Given any t > 2, take any ny,...,n; > 1. Let A(ny,na,...,n:) denote the quiver:

(1) (1)
122 () Mmoo
al CL2 (an_l

(1 Ne) a<2)71 NG
a1 (1) 2 1) . a "1
/al ) ni—1
/a?z) ' . Ca®

0 . . o w
S ® (1) -
(t) o Xpy—1 (t)
¥ agl) 2 agl) e ¢ a’nlfl Qny

For all i < t, let o be shorthand for the path o). ..ag)agi). Let V' be the
t-dimensional vector space, with basis {a(),...,a®}. A generic subspace T of
V is any (¢t — 2)-dimensional subspace such that, given any m,n € {1,2,... t},
TN {a™ a™) = {0}. Of course, any generic subspace of V is also an ideal in
KA(ny,...ny).

A bound quiver algebra KQ /T is called a canonical algebra if Q) is a quiver of the
form, A(ny,...,n;), and Z an ideal of K@ given by a generic subspace.

Given any canonical algebra C' = KA(ny,...,n)/Z, define:
P ={M € C-mod : dimg (e, M) — dimg(egM) < 0}
7 ={M € C-mod : dimg (e, M) — dimg(egM) = 0}
Q = {M € C-mod : dimg (e, M) — dimg(egM) > 0}

Lemma 68. Given any canonical algebra C, T is a sincere, stable tubular family,

indexed by P (K), which separates P from Q.

We define a canonical tubular extension of a canonical algebra C' to be any tubular

extension of C' (as described in (3.1.8)) using modules from 7.

4.6.2 Bush algebras

Recall the set S(+1, —1) of finite sequences of +1 and —1. We say that a sequence
a € §(—1,+1) is strictly positive (or strictly negative) if it has length at least one,

and every element of it is +1 (respectively, —1).
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Let BW ... B® be finite branches. Recall from (3.1.7) that, for each branch
B®) | there exists a finite subset S € S{—1,+1} such that {bé)s)} U {b((f) ta € SW}
is the vertex set of B®*), and {5&3) :a € S} the arrow set of B, Let n, = [S®)|+1
(the number of vertices of B®*)). Label the vertex bés) of B®) as w.

Let Q = (Qo, Q1) be the graph with )y containing one vertex, w, and @1 being
empty. Let A the algebra obtained from K@ by adding the branches {B®, ... B®}
to w. Any such algebra A is called a bush algebra, and the branching type of A is
(ny, .. my).

For example, taking BY to be the branch with vertex set BS"” = {by,b_1, b1},
and B® to be the branch with vertex set B(()Z) = {béz), b(f}, bfi, bfi_l, bfiﬂ}, then

the bush algebra obtained has underlying quiver:

2
oo
Bif/ \
a3
2 2
bgri,fl bgrz,ﬂ
-and the ideal T is (8%]8%), 828, 68 188 1)
Given any bush algebra, an A-module is called a coordinate module if its K-

representation satisfies the following:

e The vector space associated to w is a 2-dimensional K-vector space (denoted

M,)

e There exists a pairwise different set of 1-dimensional subspaces Uy, Us,...U;
of M, such that, given any vertex b of B, the K-vector space associated to
it is U if a is strictly positive, and M,, /U if it is strictly negative, and 0

otherwise.

e The K-homomorphism associated to any arrow of the form ﬁfl) is the natural

embedding U®) — M,
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e The K-homomorphism associated to any arrow of the form 3" (where a is

strictly positive, and has length at least 2) is the identity map U® — U®),

e The K-homomorphism associated to any arrow of the form ﬁ(_sl) is the natural

projection M,, — M/U®),

e The K-homomorphism associated to any arrow of the form 66({9) (where a is a
strictly negative sequence of length at least 2) is the identity map M/U®) —
M/U®).

e The K-homomorphism associated to any other arrow is the zero map.

For example, if A is the branch algebra as defined above, then the coordinate modules

are the A modules with representation:

1,A) / A)
\

KoK

N

A
(K @ K)/{(1, 1)) ((1,u)>\
o/ (1, 1))

~for some distinct A, 4 € P*(K') (where the maps to and from K ¢ K are just the em-

(Ko K

beddings of subspaces, and canonical projections onto the factor spaces respectively).

Lemma 69. An algebra C' is a canonical tubular extension of a canonical algebra C
if and only C is a coextension of a bush algebra Cy by a coordinate module.

If so, then the extension type of C' over Cy equals the branching type of C.

Proof. By [23, (4.8.1)]. O

4.7 Shrinking functors

Let A be any tubular algebra. By theorem 26, there is a unique tame concealed
algebra Ag such that A is a tubular extension Ag[E;, K;]i_; of Ag- where Ey, ..., E; are

elements of the separating tubular family 7 in Ag-mod, and K1, ..., K; are branches.
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A tilting module T € A-mod is called a shrinking module if there exists a prepro-
jective tilting Ag-module Tj and a projective A-module T}, such that T"= Ty & T),.

Given any shrinking module 47, the functor Hom(7', _) : A-mod — B-mod (where
B :=End(4T)) is called a left shrinking functor.

We define By := End(A4,).

Lemma 70. Let ¥y be the functor Hom(Ty, ) : Ag-mod — Bg-mod. Then B =
Bo[Xo(E:), Kili_y

Proof. By [23, (4.7.4)]. O

Theorem 32. If A is a tubular algebra, and AT a shrinking A-module, then B =

End(4T) is a tubular algebra.

Proof. By [23, (5.5.1)]. O
Lemma 71. There exists a linear transformation or : Ko(A) — Ko(B), such that:
o7 (dim(M)) = dim (S M) — dim (S M)

-where ¥, := Ext(T, ).
Proof. By [23, (4.1.7)]. H

Let hj' and hZ be the positive radical generators in rad(y.) as in theorem 26.
Since B is also a tubular algebra, there are positive radical generators hf and hZ in
rad(hg) (as in the theorem).

Define 1 := (h{', ) : Ko(A) — Z and & := (b, ) : Ko(B) — Z.

Lemma 72. or(hi) = h¥. Furthermore, o(h2) is in rad(xp), and so there exist
N0, Moo € QF such that:

o(h2) = nohl? +noh?
Proof. For the first assertion, see page 290 of [23]. The second is by [23, (5.4.a)]. O
Define 7 : Q° — Qg by:

e
- oney +1

a(
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-where ny and n., are as in lemma 72. Notice that 7 : QF° — {0 € QF : 0 < § <
Neo/Mo} is an order preserving bijection. Y is said to be a proper shrinking functor

Lemma 73. Let 4T be a shrinking module. Suppose that an indecomposable M &
A-mod doesn’t lie in G(T) (cf (2.6.1)). Then M is a preprojective Ag-module.

Proof. See [23, (5.4.1)] O
Lemma 74. X7 defines an equivalence from P2L N G(4T) onto PE_
Proof. By [23, (5.4.2’)]- noting that 7.Z_ is indeed a separating tubular family. [

Theorem 33. Given any v € Q°, Xr induces an equivalence of categories from T,

B
onto T,
Proof. See [23, (5.4.3)] O

Corollary 14. Given any r € R, Sp gives an equivalence between PA N G(T) and
B
PE(T)‘

4.7.1 Inducing an embedding of pp-lattices
First of all, note the following:

Lemma 75. Let ¢/ be any pp-pair in any algebra, A, and let (M, m) and (N, 7) be
the free realisations of ¢ and v respectively.
Then, given any module X, ¢/¢ is closed on X if and only if, for every h €

Hom(M, X) there exists h' € Hom(N, X) such that the following diagram commutes:

f(M,m)

AR

=

f(N,n)

N

-
=

>

Proof. This can easily be checked. ]

Throughout the rest of this subsection, A will be a tubular algebra, 47T a shrinking
module, and B = End(47") (which is also a tubular algebra, by 32. We fix an irrational

r > 0.
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Recall (from (2.6.1)) that there exists a functor Yr given by:
ATs ® _: B-Mod — A-Mod

-and that T7 and X7 induce some mutually inverse equivalences (as in theorem 18).

In fact:

Lemma 76. Y1 induces an equivalence of categories between PANG(4T) and Pgﬂ—

with the mutually inverse functors being Y and Y.
Proof. Fairly easy, given lemma 74 and theorem 33. O

We denote by M (r) the direct sum of all indecomposable pure-injective A-modules
of slope r, and by N(a(r)) the set of all indecomposable pure-injective B-modules of
slope @(r). We aim to show that w(gpp(M(a(r)))) = oo implies w(ppp(M(r))) = oo.

We denote by ~z(,) the equivalence relation on gpp (and hence on the lattice of
1-pointed finitely presented B-modules) such that ¢ ~z() ¢ if and only if there exists
€ > 0 such that ¢(Y) =¢(Y) for all Y € Pgr) N QEB(T_E).

Let ty, ..., be any generating set for T' (as a K-module). Notice that, given any
Y € A-mod, and any maps f,g € Hom(7,Y):

f=g9g< f(t;)=g(t;) for all i < k

We define a map from gpp! to 4pp* as follows: Given any ¢(v) € ppl, let (C,c)
be a free realisation of ¢(v), and let g(c) € Hom(p,z C) be the unique map taking 1
to c.

Consider the k-pointed A-module:

(YrC, ((Yrgce)(t), - (Trgce)(tr)))

We define T7(¢) to be any pp-formula 1) € 4 pp* such that:

(@) = pp " ((Trgico)(tr); -, (Trgico)(tr)

We shall show this map induces an embedding from gpp'/ ~z() into app*/ ~;,.
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Lemma 77. Given any ¢, €p pp:

T(¢) ~r T() = ¢ ~o(r) ¢

Proof. Let (5C,c) and (gD, d) be the free realisations of ¢ and 1 respectively.
Suppose that T(¢) ~, T(¢). Pick any € > 0 such that (Y(¢))(X) = (Y(¥))(X)

for all X € PAN Q1 .. We claim that ¢(Y) = 4(Y) for all Y in Pgr) N Qg(r_e).
Take any y € ¢(Y)- so there exists a map h € Homp(C,Y") taking ¢ to y. Consider

the map:
Trgc,e Yrh

TTB I TTC — TTX

Let x; = (Yrg(c,e))(Yrh)(t;) for each @ < k. Then:

(@1, 2n) € (T(0))(TrY)

(by our definition of T7(¢). Of course, TrY € PA N Q4

r—€e?

so, by our assumption:

(T(@)(TrY) = (T(¥))(TrY)

- thus there exists a map f € Hom(YrD, YY) such that (f)(Yrgp,a))(ti) = x; for
all i < k.

Then (f)(Yrgw.a)(ts) = i = (Yrgce)(Yrh)(t;) for all i < n, and hence
(/) (Yrgp,a) = (Yrgce))(Yrh) (since ti, ..., t, generated T').

Of course, the equivalence of categories gives that:

Er((Yrh)(Yrgce)) = 2o Yr(hgce) = hgc,e

Also the equivalence of categories implies that f = T+ f. And so:

Sr((H(Yrga) = Er(YrErf)(Yrgm.a))
= ErTr((Erf)(9m.0))
= Cr/)9p.a)
O

Corollary 15. The map ¢ — Yr(¢) induces a lattice embedding of from gpp'/ ~z@
to app*/ ~,.. Consequently, if w(gpp*/ ~5(r)) = 00 then w(appt/ ~,) = oo, and

hence w(app'/ ~,) = o0
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Proof. By lemma 77, the induced map is an embedding. One can easily check that
it is a well defined lattice homomorphism.

The fact that w(app®/ ~,) = oo implies w(app'/ ~,) = oo follows from [17,
(7.3.8)]. O

4.7.2 Shrinking functors between different tubular algebras

Lemma 78. Given any canonical tubular algebra A, there exists a proper left shrink-
ing functor from A-mod to C-mod- where C is either C(6), C(7), C(8) or C(4,))
(for some A € K\{0,1}.

Proof. See [23, (5.7.1)]. O

Corollary 16. Given any canonical tubular algebra, A, and any r € RT\Q, the

lattice pp,/ ~, has infinite breadth.

Proof. By lemma 78 there exists a proper shrinking functor from A to either C'(4, \),
C(6), C(7) or C(8). The result follows, by corollary 15 and theorem 31. O

Lemma 79. Let By be a tame concealed bush algebra, and M a coordinate module
for B. Let B = Bo[M]- note that, by lemma..., B°? is a canonical tubular extension
of a canonical tubular algebra.

If B is not a canonical algebra, then there exists a proper left shrinking functor

from B-mod to C-mod- for some canonical tubular algebra C'
Proof. See [23, (5.7.2)] O

Corollary 17. Let By be a tame concealed bush algebra, and M a coordinate module
for B. Let B = By[M].

Then, given any r € RT\Q, the lattice ppg/ ~, has infinite breadth.

Proof. If B is a canonical tubular algebra, then corollary 16 gives the required result.
If not, then by lemma 79 there exists a proper shrinking functor from B-mod to
C-mod- for some canonical tubular algebra C.

The result follows, by corollary 15 and corollary 16. O]
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Lemma 80. Given any tubular algebra A, there exists a proper left shrinking functor
from A-mod to B-mod- for some canonical tubular extension B of a tame concealed,

canonical algebra.
Proof. See [23, (5.7.1)] O

Theorem 34. Given any tubular algebra A, and any r € RT\Q, the lattice ppy/ ~,
has infinite breadth.
And consequently, if K is countable, then there exists a superdecomposable pure-

injective A-module of slope r.
Proof. Follows from lemma 80, corollary 15 and corollary 17. [

Recall, from theorem 28, that every indecomposable pure-injective module over
a tubular algebra has unique slope. If K is countable, then this result does not
extend to superdecomposable modules: For example, given any positive irrationals
r, s such that » > s, theorem 34 gives us a pure-injective superdecomposable modules
M and N of slope r and s respectively. By lemma 35, Hom(7,, N) # 0 (and hence
Hom(7,, M & N) # 0) for all v < r. Thus M @& N cannot have slope less than r.

Similarly, Hom(M, 75) # 0 (and hence Hom(M & N, 75) # 0) for all 6 > s, and so
M & N cannot have slope greater than s. Hence it is a pure-injective superdecom-
posable module, which doesn’t have slope.

This raises the question of whether or not every pure-injective superdecomposable
module can be expressed as a direct sum of modules, each of which has slope. We

leave this question open.
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5.1 String algebras

A string algebra is a bound quiver algebra K@Q/Z (over a finite quiver, @) satisfying

the following conditions:

e For all a € )y there are at most two arrows with source a, and at most two

with target a.

e Given any a € @i, there is at most one § € @y such that s() = t(a) and
Ba ¢ T

e Given any a € (1, there is at most one v € )y such that ¢(y) = s(a) and

ay ¢ T
e There exists N € N such that any @-path of length at least N lies in 7

For example, the path algebra of the Kronecker quiver is a string algebra, as is the

path algebra of the quiver:

a b#c d
/8 €

-and ideal 7 = (v, yc). Another example is the Gelfand-Ponomarev algebra, G,

(for all m,n > 2)- which has underlying quiver:

aCaQﬁ

-and ideal (o™, 8", af3, fa).

5.1.1 Finite dimensional string modules

For every o € 1, we define a formal inverse a™!, with s(a™!) = t(a) and t(a™!) =
s(a). We define Q7! to be the set of all such inverse arrows. We define (a™!)~! to
be a, for all o' € Q7"

Define a letter to be any element of Q; U Q;'. Every letter in @, is said to be
direct, and every letter in Q" is said to be inverse. A finite word is any finite string

of letters lil5l5...1,, such that:
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o t(li1) =s(l;) forallie {1,2,...,n—1}
° li#l;ll foralli € {1,2,...,n—1}

e No substring of it (i.e. string of the form liljgr ...l with j > 1 and £ < n) lies
inZ.

e There are no substrings [;{;; ...l such that l,;l . lj_jllj_l lies in 7

The length of a finite word [ ..., is n. We refer to [; and [,, as the first and last
letters, respectively, of Iy ...1,. We define ¢(l;...1,) :=t(ly) and s(ly ...1,) := s(l,)-

For any such word [; .. .1,, we define w™! := [ 1

...17". Notice that w™! is also a
word.

For each a € @)y, we define two more words, 1, 1 and 1, _1, of length zero- such
that s(1,1) = $(1a-1) = t(1a1) = t(14-1) = a. Furthermore, we define (1,;)~"' =
lo—1 and (1, _1)"" = 1,1. We define W to be the set of all finite words for KQ/Z
(including the words of length zero).

Given any word D = [y ...1l,, a subword of D is any word of the form [, ...[,,, for

some k£ > 1 and m < n such that & < m. We call it an nitial subword if £k = 1.
Lemma 81. D # D!, for all D € W.

Proof. Write D as lylyly...1,. Assume, for a contradiction, that D = D~!. So
li=107" foralliec{0,1,2,...,n},

If n is even, say n = 2k, then [, = l;ik— which, since n — k = k, is clearly
a contradiction. However, if n is odd, say n = 2k 4+ 1, then [, = l;ik = 51;11‘

contradicting the definition of a word. O]

Given any finite word w = [; .. .1, (with n > 0), let M (w) be an n+ 1-dimensional
K-vector space with basis zg, 21, 22, . . ., z,. We endow it with an A-module structure

as follows: For all a € Qg and i € {0,1,...,n}, define:

z ifi>0ands(l;) =a
€a%i = 20 if 1 =0 and t(ll) =0

0 otherwise
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For all o € @1, define:
zio1 il =«
azip =194 z ifl;=a7!
0 otherwise
Any module of this form is called a (finite dimensional) string module. And we call

the set {zo, 21, ..., 2, } the standard basis of M(w).

Theorem 35. For allw € W, M(w) is an indecomposable A-module.
Furthermore, for all u,w € W, M(w) = M(u) if and only if either w = u or

w=u

Proof. See [8] page 161. O

5.1.2 Finite dimensional band modules

Given any D = (I;...1l,) € W, and k € N*, define D* to be the string of letters

L1y ... I, such that [},

fmod n) = [; for all i < nk- note that it is not necessarily a word.

A word D is said to be cyclic if D¥ € W for all k € N. A cyclic word D is
primitive if there is no C € W and k > 2 such that D = C*. Any primitive cyclic

word is called a band.

Lemma 82. Let D be any band. Then D does not equal any (non-trivial) cyclic
permutation of D.

Furthermore, D does not equal any cyclic permutation of D~'.

Proof. Write D as ly...l,. First of all, suppose that D is a cyclic permutation of

D' i.e. there exists k such that:
Lo by=0 G

Then, in particular, Iy ...l = lk_l ... I7!- contradicting lemma 81
Now, suppose that D is a non-trivial cyclic permutation of itself- i.e there exists

k€ {0,1,...n — 1} such that:

ll...ln:lk+1...lnl1...lk
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-so, for all ¢« € Z,, l; = l;1x. Let m be the highest common factor of n and k.

Elementary number theory gives us that, for every i € {1,2,...m}:

li = lier = li+2m == ln72m+i = lnferi
And so y = (I ...1,)"™- contradicting the definition of a band. O

Given any band, D = [; ...l,, and any indecomposable N € K|[T,T~!]-mod, we
define an A-module M ( -1V, D) as follows: First of all, recall that any N €
K[T,T~']-mod is uniquely determined by a finite dimensional K-vector space, K™,
and an automorphism ¢ € Auty(K™) (which is the action of multiplying by 7"). Let
Vo, Vi, ... Va1 be copies of Ky, and define M (g7, D) to be the module with
underlying vector space @f;ol V;. The A-module structure is defined as follows:

Given any a € o, define e, to be the identity map on all V; such that t(l;11) = a,
and zero on all the other V;. And for all o € @)1, define a to be the map such that,

for any V; and any z € V;:

)
x (as an element of V;_4) ifi£20and [; =«

¢(z) (as an element of V,,_;) ifi=0andl,_; =«
ar = 4 x (as an element of V; ) ifi#n—1andl;;; =a !

¢ (z) (as an element of V}) ifi=n—1and [, =a"!

\ 0 otherwise

We will normally denote this module as M (D, m,®). In fact, since m is the K-
dimension of Im(¢), we need not specify m in the notation- so we may refer to the

module as M (D, ¢). Any module of this form is called a band module.

Theorem 36. For all indecomposable module (K™, ¢) in K[T,T']-mod and all
bands C, M(C, ¢) is an indecomposable A-module.
Moreover M(C,¢) and M (D, ) are isomorphic if and only if one of the following

is true:

e C is a cyclic permutation of D, and the K[T,T~!]-modules corresponding to ¢

and ¢ are isomorphic.
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e ('is a cyclic permutation of D!, and the K[T,T~!]-modules corresponding to

¢ and ¢! are isomorphic.
Proof. See [8] page 161. ]

Theorem 37. Every indecomposable M € A-mod is either a string module M (C),
or a band M(D, ¢).
Furthermore, no finite dimensional string module is isomorphic to a (finite dimen-

sional) band module.

Proof. See [8] page 161. O

5.2 Infinite words

We define an N-word to be any infinite string of letters lyly ...l L, 11 ... such that
li...l1, e Wior all n € N*. An N-word l1l5l5 ... is said to be periodic if there exists
k > 1 such that [, = [, for all n € N.

Every periodic N-word can be written in the form D*-for some unique band D.
We say that a periodic N-word D> is contracting (respectively, expanding) if the last
letter of D lies in Q; (respectively, in Q).

An N-word [il5l3... is said to be almost periodic if there exists k& > 1 such
that lgi1lgiolpss ... is periodic, but lglgi1lgsolgss ... is not. A N-word is said to be
aperiodic if it is not periodic or almost periodic.

For any almost periodic Z-word, w, there exists a unique band D, and a unique
kE > 0 such that [° is not periodic, and [; ... l,_1lzD*>°. It is said to be contracting
(respectively, expanding) if D> is contracting (respectively, expanding). Notice that
both 1/,l7 and [;l} are both words, and so [/, and [] can’t both be direct (by the
definition of a string algebra), and similarly, can’t both be inverse.

We define a Z-word to be any 2-sided infinite string of the form:

vl ol s g

-such that, for all m,n e N, [_,,...1_1lply ... 1, € W. We say that a Z-word is:
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e periodic- if there exists k € N such that I, = [, for all n € Z.

1

e almost periodic- if is not periodic, but is of the form ™" w, where u and w are

almost periodic N-words.

1

o half-periodic- if it is of the form w™"w, with one of the N-words w,u being

almost periodic, and the other being aperiodic.
e aperiodic- if it is none of the above.

Any almost periodic Z-word, w can be written in the unique form u=l; ...1,v- for
some periodic N-words u, v, and finite word [; . .. [,;, such that [,,v and I} Ly are almost

periodic. We say w is:

e contracting- if both v and v are contracting.

e cxpanding- if both v and v are expanding.

e mized- if u is contracting, and v expanding.

e negative mized- if u is expanding, and v contracting.
Lemma 83. The following are equivalent for any string algebra A:

1. There are only finitely many bands

2. Every N-word s periodic or almost periodic

3. Every Z-word is periodic or almost periodic

Proof. Proposition 2 of [24]. O

A string algebra is said to be domestic if it satisfies the conditions of lemma 83,

and non-domestic otherwise.
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5.2.1 Infinite dimensional string modules

We will be dealing a lot with K-vector spaces of the form:

[IVv

i€l
-where V; is a 1-dimensional K-vector space. Elements of such a space are usually
written in the form (x;);c; (with each z; in V;)- however, we will write such an element
as ) ,.;o; throughout the chapters on string algebras.

Let w be any N-word, l1l5l3. .., or Z-word, ...l_1lplils . ... Define the index set
I of w to be N in the former case, and Z in the latter.

We define an infinite dimensional A-module M (w)- referred to as the direct product
module over w- as follows: For each ¢ € I, let V; be a one dimensional K-vector space,
and let z; be any non-zero element of V;. We define M (w) to be the A-module with
underlying K-vector space [[,.; V; , such that, for all a € Qy and i € I:

zi ift(liz1) =a

€qRi =
0 otherwise

-and such that eq(D,.; A\izi) = D_;c; Ai€az; for all elements D, A;z; of M (w). Also,

for all a € Qq:

ziq il =«
azi =194 ziy iflig=a!
0 otherwise
-and (Y, Nizi) = D e iz for all elements Y, ; Az of M (w).
We define the direct sum string module- denoted M (w)- to be the submodule of
M (w) with underlying K-vector space @, ; V;.
If w is a Z-word, then we define M*(w) and M~ (w) to be the submodules of
M (w) with underlying K-vector space [[iz0Vi® @i Vi and Do Vi © [0 Vi)
respectively.
We define a string module over w to be any module of the form M (w), M(w),
M (w) or M~ (w). Notice that, for any string module M over w, M (w) is a submod-
ule of M, and M is a submodule of M(w). We refer to the embeddings M (w) — M
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and M < M (w) (corresponding to the inclusion of submodules) as canonical embed-
dings.

We call the set {z; : i € I} the standard basis of M(w). In fact, given any string
module M over w, we refer to {z; : i € I} as the standard basis of M (even though

it is not strictly a basis of, for example, M (w)).

5.2.2 Some isomorphisms between string modules

We say that w is an infinite word if it is either a Z-word, an N-word, or the inverse
of an N-word. We call w a word if and only if it is a finite word, or an infinite word.

Given any two words u and w, we say that u is a subword of w if there exist
words u and u” such that w = v'uu” (of course, u” would have to be a finite word
or N-word, and «’ a finite word or inverse of an N-word).

Given any two words, w = ... 1_1lplily ..., and w’' = ... 1_ol_1lplyly ... (with index
sets I and J respectively), we write w = w’ whenever there exists k € Z such that
{i+k:iel}=Jandl; =1, forallicl.

Of course, given any two such words, M (w) & M (w'), M (w) = M(w'), M~ (w) =
M~ (w') and M*(w) = M*(w'), via the map >, ; Nizi — > _.c; Niviqw (Where {z; :
iel}and {y;:j € J} are the standard bases of M (w) and M (w') respectively).

Also, we write w = (w’) ™! whenever there exists k € Z such that {k—i: i€ [} = J
and [; = [}, for all i € I. Of course, given any two such words, M(w) = M (w’),

M(w) = M(w'), M~ (w) = M*(w') and M+ (w) = M~ (w'), via the map > _,.; \iz; —

Zie[ AiYk—i-

5.2.3 Ringel’s List

In [24] Ringel focusses on the following set of modules:
e A module M (w), for every contracting periodic or almost periodic N-word, w.
e A module M(w), for every expanding periodic or almost periodic N-word, w.

e A module M (w), for every contracting almost periodic Z-word, w.



5.2. INFINITE WORDS 129

e A module M (w), for every expanding almost periodic Z-word, w.
e A module M*(w) for every mixed almost periodic Z-word, w.
e A module M~ (w) for every negative mixed almost periodic Z-word, w.

We will refer to the set of all such modules as Ringel’s list. Since M+ (w) = M~ (w™!)
for any mixed almost periodic Z-word, w, we may ignore the modules on that list

over negative mixed words.

Theorem 38. Every module on Ringel’s list is pure-injective.
Proof. See [24]. O

It was suspected that every module on Ringel’s list is also indecomposable. Indeed,
this result (theorem 41) does follow from our results in the next chapter.

It was conjectured that every infinite dimensional pure injective indecomposable
module over a string algebra is a string module over some infinite word w: and
further, that every infinite dimensional indecomposable pure-injective module over a

domestic string algebra is isomorphic to a module on Ringel’s list.

Proposition 4. Let w be any N-word or Z-word over a string algebra A. Then M (w)

18 pure-injective.

Proof. Consider the opposite algebra A°? = Homg (A, K). It will be enough to prove
that M (w) is the K-dual of an A°P-module- since any such module is a pure-injective
A-module- by [17, (4.3.29)].

Given any x € A, let f, denote the corresponding element in Hom(A, K). One
can easily check that A°P is a string algebra, with {f., : @ € Qo} being primitive
orthogonal idempotents (i.e. the stationary paths), and {f, : @ € Q;} the set of
arrows (i.e. the paths of length 1).

Given any arrow f, in A°?, denote the inverse letter associated to f, as f,-1. This
gives an obvious bijection between the letters of A and the letters of A°P- where each

[ corresponds to f;.
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If [1l5l5 ... is a word in A, then one can easily check that f;, fi, fi, ... is a word in
A°P,

Consider the string module M (f;, fi, fi5 - .. ) over A°?. One can easily check that
Hom(M (f1, fi, fis - -.), K) is isomorphic (as an A-module) to M (w). O

Theorem 39. Let w be any infinite word. Then M (w) is indecomposable.

Proof. See [13]. O

5.3 Some pp-formulas over string algebras

5.3.1 Partially ordering the set of words

Let W' denote the set of all finite words and N-words. Of course, W can be par-

titioned into W!- where W/ is the set of all w € W’ such that t(w) = a.

a€Qo
Furthermore, we partition each W into two sets H(a) and H_;(a), as follows:

By definition of a string algebra, there exists at most two direct letters in ()1 with
target a, and at most two inverse letters in Q' with target a. We can arbitrarily

place each of these (at most four) letters in either Hi(a) or H_;(a), to satisfy the

following criteria:

e H.(a) contains at most one direct letter, and at most one inverse letter (for

each s € {—1,+1}.
e Given any Iy, € Hy(a), the string I;'l5 is not a word
e Given any ly,ly € H_y(a), the string I; 'l is not a word

By the definition of a word (and of a string algebra), there is always at least one way
of doing this. Now place 1,41 € Hy(a) and 1, 1 € H_1(a). Given any w € W' of
non-zero length, we place w in whatever subset we placed its first letter in.

Given any s € {—1,+1} and w € Hy(a), we define 1, sw to be w. Now we define

a total order on Hg(a) such that C' < D if and only if one of the following holds:

e D = (CakF for some word F and o € ()4
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e C = DB 'F for some word F and 3 € Q,
o O =FE v 'F, and D = E\§F, for some words Ey, Fy, F» and 7,6 € Q;

Lemma 84. Given any u,wy, ..., w, € Hy(a) such that uw < w; for all i, there exists

a finite word D such that u < D < w; for all i.

Proof. Let w = min{w; : 1 < i < n}. If w is finite, then let D = w. If not, then
there are two possibilities:

Firstly, if u is an initial subword of w, then (since u < w) there exists a € @; and
a word w’ such that w = uaw’- in which case set D = ua.

Secondly, if w is not an initial subword of w, then (since u < w) there exists
a, € Q1, and words D, ' and w’ such that u = D37 'u' and either w = Doaw’ or

w=D. Then u < D < w, as required. ]

Lemma 85. Given any w = lilyl3--- € Hi(a), let D =11} ... 1} be any finite word
(with k > 1) in Hy(a) which is not an initial subword of w. Then D > w implies
ll--'lk—l Zw

Stmilarly, D < w implies Iy ... l_1 < w.

Proof. Firstly, if w = [} ...l for some n < k — 1, then [}, ,; must be a direct letter

(since D > w), and so:
Lo Ll ey >, =w

-as required. Secondly, if w is not an initial subword of D, then there must exist

n < ksuch that [y ..., =1]...1

n’

and l,41 € Q7' and I/, € Q1. And so:
Lol ey >, > w
-as required. O

Lemma 86. Given any a € Qo and s € {—1,+1}, let wy,wo, w3, ... be any strictly
descending infinite sequence of words in Hs(a). Then there exists w € Hg(a) such

that w < w;, and is mazimal such- i.e. w > u for all u € Hy(a) such that w; > u for

all © € N.
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Furthermore, w is an N-word, and given any finite initial subword D of w, there

exists k > 1 such that, D s an initial subword of w;, for all 1 > k.

Proof. We can write each w; as [;1l;2l;3...- where each [; ; is either a direct letter,
an inverse letter, or “zero” (in the case that w; is finite, of length less than j).
We define, recursively, letters Iy, s, l3, ... as follows: First of all, there are at most

two possible words in H;(S), which we denote a and 3~!. Define:

l a ifl;; =« foralli € NT
1=

B! otherwise
Notice that, if [;; = 37! for any 4, then l;117 = 87! (since w;+1 < w;). Furthermore,
if w;1 = 1, for some %, then l;41; = Bt Define k; € N to be minimal such that
leya =1
Now, assume that we have defined a word [y ...[l,_1, and a smallest possible k,,_,
such that ; 10;2...lin—1 =10 ... [,y foralli > k,_;. As before, let a, 3 € ()1 be such

that l,_;a and 1,,_13~! are words. Define:

« itl;, =aforalli>k,

l, =
B~ otherwise

Define k,, € N to be minimal such that k, > k,_; and Iy, ,, = [,,. Notice that:

lkmllka e lkn,n = lllg e ln

Define w := lllglg e
To show that w,, > w for all 7 > 0, it is enough to prove that wy, > w, for all
> ...). Suppose, for a contradiction, that wy, < w for

i (since wy, > Wy, > W,

some 7. Then there must exist m such that:
Lis .ol =1l lgm
-with [,,11 = o and Iy, ;1 = S for some «, 3 € Q;. However, given any j > k;:

l1l2 e lm - lkj71a lkj,z e lkjvm

-and , since Iy, mi1 = 671, Ljme1 must be 571 (otherwise w; > wy,). Thus, by its

definition, I,,,, = B~ !- giving our required contradiction.
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To show it is a greatest lower bound, take any v > w. Let n € N be such
that lyly ... [, is the longest possible common initial subword of v and w- notice that
u>1y...1,, and 1 must be an inverse letter.

Now, consider the word wy,,,,. Then:

lnsialnsi2 g = hila ol < iy 1, <
-as required. ]
We refer to the word w as defined in lemma 86 as hi>nw,

Corollary 18. Given any a € Qo and s € {—1,+1}, any subset Y C Hy(a) has a
unique infimum, inf(Y)- i.e. a word w € Hy(S) which is mazimal in Hs(a) such that
w<wu foralluey.

Furthermore, if sup(Y) is not an element of Y, then it is an N-word.

Proof. If Y has a minimal element, then the result is obvious. So we assume it does
not.

For each n € N, let D,, be the minimal word of length at most n such that there
exists v € Y with v < D,,. Of course, D; > Dy, > D3 > ..., and there isnon > 0
such that Dy = D, for all £ > n (this would imply that D,, € Y and it is a minimal
element of V).

Define inf(Y) = lim D,,. By lemma 86, it is an N-word, and one can easily check

that it satisfies the required conditions. O
Of course, we have similar results regarding upper bounds:

Lemma 87. Given any a € Qg and s € {—1,+1}, let wy, wy, w3, ... be any strictly
ascending infinite sequence of words in Hs(a). Then there exists w € Hs(a) such that
w > w;, and is minimal such- i.e. w < u for all w € Hy(a) such that w; < u for all
1€ N.

Furthermore, w is an N-word, and given any finite initial subword D of w, there

exists k > 1 such that, D is an initial subword of w;, for all © > k.

We denote the word defined in lemma 87 as h_I)an
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Corollary 19. Given any a € Qo and s € {—1,+1}, any subset Y C H(a) has a
unique supremum, sup(Y)- i.e. a word w € Hy(S) which is minimal in Hs(a) such
that w > u for allu € Y.

Furthermore, if sup(Y) is not an element of Y, then it is an N-word.

5.3.2 pp-definable subsets obtained from words

Given any M € A-Mod, subset X C M of M, and o € (); we define:
aX ={ax:r € X}

a'X :={meM:ame X}

So, given any finite word D = lyl5...l,, we can induct this notation to define:
DX :=1L(l(...(l,(X))...))
Of course, if X C Y, then DX C DY.

Lemma 88. Given any D € W, suppose there exists a, 3 € Q1 such that D3 € W
and Dot € W. Then o and 3 are unique, and for all M € A-Mod:

DAM C DM C Da~'M

DB0 C DO C Da~t0

DB(M) C Da~(0)

Proof. 1f D is of non-zero length, then the uniqueness of « and 3 (if they exist) follows
from the definition of a string algebra, as does the fact that a8 € Z- and hence that
afBM = {0}.

If D has zero length- without loss of generality D = 1, _41- then the uniqueness of
C and D, and the fact that af € Z follows from the definition of H,4(a).

The remaining assertions follow straight from the definition, and the fact that

aBM = {0}. 0
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Let D =1;...l, be any finite word. For any x € M, we define Dz to be D{z}.
There exists a pp-formula ¢(v,v’) such that, for all M € A-Mod:

¢(M) = {(z1,29) € M? : 71 € Dy}

-namely, the formula:
Fui, .o U1 (L = v 1) A (Lo = 0) /\ liv; = v;_1)

(Where, if [; € Q;', say I; = 37}, then [;u; = v;_; refers to the pp-formula v; = Bv;_1).
We shall refer to this pp-formula as v € Dv’. Of course, for all M € A-Mod, and
x € M:

x € DM <= M = ' (x € D)

Notice that v € Dv" and v' € D~ are logically equivalent, and that 0 € DO.

5.3.3 Subword notation

For a finite word w = l,,41 ... [, we define wy := 11 ..., and u = l;l lmﬁﬂlmﬁrl
, for all k in the index set of w.

If w is an N-word, lil5l3,..., then we define wy = lp 1lpi2lprs... and ug =
LN for all k€ N7

If wis aa Z-word, ...l ol _1lylylsls, ..., then we define wy := 1 1lpiolprs. .. and
Uy = l,;ll,;_lll,;_lQ ... forallk cZ.

Given any word w, and any ¢ in the index set of w, we define:

w; if w; € Hy(a) for some a € Qg
w; ‘=
w; if w; € H_1(a) for some a € Qg

w; if u; € H_q1(a) for some a € Q

A

U; =
w; if u; € Hi(a) for some a € Q

Of course, for any word w, and any k, u; 'wy, = w.

For example, if we take A to be the string algebra over the following quiver:
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-with ideal Z = (37, ya), then we could take H;(b) to be the set of all words starting
with o or y~1 (and 1,4(b)), and H_; to be the set of all words starting with 3 (and
1_4(b)). Take w to be the word:

l1l2l3l4l5l6 = avﬁa‘lﬁofl

Then wy = w € Hy(b), and wy = Ba'Ba™t € H_1(b). So wy = w, and Gy = 1_1(b).

Also iy = Ba~Ba~t and Wy = v o™t

5.3.4 Results about pp-formulas defined by words

Lemma 89. Let w be any word. If there exist distinct 1, 7 in the index set of w, such

that w; = w;, and u; = u;, then w is a periodic Z-word.

Proof. Without loss of generality, we may assume that ¢ < j. There are two possi-
bilities: Either w; = u; and w; = u;, or w; = w; and u; = u;.

Suppose we have the former case. By considering the first 7 — i letters of w; and
uj, we have:

liziliva. .. l; = l;l - li;lzlijrll

-contradicting lemma 81.

We must therefore have that w; = w; = l;41...l;w;. Consequently, both w; and
w; are N-words, and [ = lj4,—; for all & > ¢ + 1: so w; is indeed periodic, and
w; = (Ligr ... ;).

Similarly, u; = u; = (I; 15}, ... 1;}}})>- completing the proof. O

Lemma 90. Let w = l1lsl3 ... be any periodic N-word. Let E =1 ..., be the unique
band such that w = E*. Then, for all i € N, E is not an initial subword of u;, and

E is an initial subword of w; if and only if i € N.
Proof. Follows from lemma 82. [

Given any word w, M any string module over w ,and X any subset of the standard

basis {z; : i € I} of M, the K-span of X in M is the K-vector subspace:

spr(X) = {Z Nizit N € K} M
z;€X
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For example, if w = ljlsl3... is an N-word, and X = {z; : i > n} for some n € N,
then Spg(w) (X) =1lis, Kz, and sp]\]g(w) = D>n Kzi.

Notice that, given any subsets Xy, X1, Xs, X3,... of the index set:

SPK(U Xj) = ZSpK<Xj)
jEN jeN

Lemma 91. Let M be any string module over a word w, with standard basis {z; :
iel}. Letx =)

Then x € BM if and only if, for all i € I' exactly one of the set {l;,1,1; '} is 3.

Niz; be any element of M, such that \; # 0 for alli € I'.

el’

Proof. First of all, suppose that 3 € {l;;1,1; '} for every i such that \; # 0.
Let [, ={i:l;;1 =B}, and I, = {i : [; = $7'}. Then:

BO - Nizisa) + B Nizio) =

el i€lq
To show the other direction, assume that € M. Pick any y = . j;2; in M

such that x = By. Notice that, for all s:

Bsprc(2i) = spx (B2i) C sp(2iv1, 2ig1)

Suppose, for a contradiction, that there exists j € I such that A; # 0, and neither
lj+1 nor lj_1 is f. Then fzj41 # zj, and so 5241 € Sp(%j42). Similarly, fz;_; €

SPK(ijZ)'

Also, for all i ¢ {j + 1,5 — 1}, Bz; € spg(zi_1, zir1), so for all i:

Bzi € sp({zr 1k # j})

-and so:
By € spr({z : k # j})

However, By = x ¢ spr({zx : k # j}) (since \; # 0)- giving our required contradic-

tion. ]

Lemma 92. Let M be any string module over a word w, with standard basis {z; :

i€I}. Then, for alli,j € I such thati < j:

M ): 2 € lH_llH_Q c. lj(zj)
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Proof. Clearly M |= 2y, € lyy12541 for all k € {i,i+1,...,7 — 1}. The result follows

by induction. O

Lemma 93. Let w be any word, and M any string module over w, with standard
basis {z; 11 € I}.
Let x =), Apzi and y = Y, iz, be any two elements of M. Suppose that, for

some n:.

MEyelx

Then N\, = pip_1.

Proof. We may assume without loss of generality that [, is direct- if it is inverse,
then we can instead write:

MEzelly

-with ! being a direct letter (and consider M as a module over w™!).
Let a € Q be such that [, = a. Then [, # o' (by definition of a word), so

Qzp—9 € Spg(zn—3). Also, for all k ¢ {n —2,n}:

azy, € sp(zk-1, 211) CsPg(z 1 #n—1)

And so:
alx — A\yzy) = Z)\j&zj € spx({z:j#n—1})
i#n
Thus:
>\nzn—1 — Up—-12n-1 = a)\nzn — Mp—12n—1
= —ar+ a\Zp + Y — fn-12n-1
= —a(x—A\yzp) + Z [iZi
i€I\{n—1}
€ spx({zm :m#n—1})
Thus A\, — p,—1 = 0, as required. O

The following result follows by induction on m:
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Corollary 20. Let w be any word, and M any string module over w, with standard
basis {z; : 1 € I}.
Let C = lps1 .. lygm, be any subword of w, and x = ), \pzi, and y = Y, pi2y
any elements of M such that:
MEyeCx

Then \pym = fhn-

5.3.5 Pre-Subwords and Post-Subwords

Given any finite word w = [; ... [, a pre-subword is any subword l,,,1 ..., such that
either m = 0 or I, € Q7 ', and either n = k or ;1 € Q.

Given any N-word w = lylyl3. .., every subword of w is either of the form w;, =
lks1lgso ... or of the form [,,11...0,. In the former case, it is a pre-subword if and
only if either k = 0 or I, € Q7' In the latter case, it is a pre-subword if I, € Q1,
and either m =0 or [, € Q;*

Finally a pre-subword of a Z-word, w = ...l_1lplils ... is any subword of the form
w, or wy, for some k € Z such that I, € Q7', or u,:l for some k such that [y, € Q1,

or Iyt ... I, such that [,, € Q7' and I, € Q1.

Lemma 94. Let M be any string module over a word w, and let {z; : i € I} be the
standard basis of M.

Let u be any subword of w, and let I' be the index set of u. Then spy({z;:i € I'})
1s an A-submodule of M if and only if u is a pre-subword. And if so, then the

submodule is isomorphic to some string module over wu.

We refer to the module as defined in lemma 94 as the submodule of M defined
by u. The map from it to M corresponding to the inclusion of the submodule will be
called the canonical embedding.

For example if w = ...l 1lplyls... is a Z-word, and u = I 1lpi2... a pre-
subword of w, then the submodule obtained from M™(w) has underlying K-vector

space [[;5; K zi- and is isomorphic to M (u).
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The definition of a post-subword of a word w is the same as the definition of a
pre-subword, but with every every occurrence of @, replaced by @', and vice versa.

For example, [y ...[,, is a post subword of lyl; ... 1,1 if and only if [y € @1 and

lm—H € Qfl

Lemma 95. Given any string module M over w, and any subword u of w, let I' be
the index set of u. Then u is a post-subword if and only if there exists a well-defined

homomorphism g : M — M (u) given by:

(where {y; : i € I'} is the standard basis of M (u)).
Furthermore, if g does exist, then the image of g is isomorphic to a string module

over u.

Given any post-subword u of w, we refer to the the string module Im(g) as defined
in lemma 95 as the quotient module of M defined by u- and we refer to the projection
of M onto Im(g) as the canonical projection.

For example, given any N-word, w, with post-subword v = l,11l, 42013 .., let
{2; : i > 0} and {y; : ¢ > k} denote the standard bases of M (w) and M (u) respec-
tively. Then there exists a well defined homomorphism f : M(w) — M(u) given
by:

f(z Aizi) = Z Aili

€N i>n
Similarly, there exists a well defined homomorphism from M (w) to M (u) (which is

defined the same way).

5.4 Comparing infinite and finite strings

In order to study the model theory of string modules, one often wishes to consider
the pp-type of a given element of a given module. If the underlying word of a string

module is infinite and aperiodic, then this can be a fairly daunting prospect. The
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results of this section show that we only need to look at a certain finite substring of
w, in order to determine whether a given pp-formula lies in the pp-type.

Given any aperiodic word w, and any x € M(w), there is clearly a finite pre-
subword E of w such that x lies in the subword M (E) of M(w). We shall prove
that, for any m € N, we can pick a finite pre-subword ™ E(™) of w such that E is a

subword of ™ E(™) and:
M("™E™) [ ¢(x) <= M(w) k= ¢(z) <= M(w) = 6(z)

-for all pp-formulas ¢(v) which contain at most m equations. We will also find a

post-subword (™) E(m+) guch that:
M(T"DumD) = (r(x)) <= M(w) | ¢(z) <= M(w) | ¢(z)

(Where 7 : M(w) — M((™Y)E+)) is the canonical projection, as defined after
lemma 95.)

Throughout this section, w will be any word, and {z; : i € I} will be the standard
basis of M(w). We call a standard basis element z; of M(w) a trough provided ;1
(if it exists) is a direct letter and [; (if it exists) is an inverse letter. Similarly, we
say that z; is a peak if ;11 (if it exists) is inverse and [; (if it exists) is direct. By
lemma 94, every trough z; gives a submodule of M (w), with underlying vector space
K z;- we shall refer to this submodule as K z;.

We say that two troughs z; and z; in w (with ¢ < j) are adjacent if there is no
trough z with 1 < k < j.

Notice that the distance between in between two adjacent troughs in any word
w is bounded- i.e. there exists N € N such that |j — | < n for all pairs of adjacent
troughs 2; and z;: this is because ;41 ...l; = ED™!, for some words E, D consisting
of only direct letters letters. By the definition of a string algebra, there exists N’ € N
such that there are no paths in A of length greater than N’. Consequently j—i < 2N’.
Of course, this implies that every infinite word has infinitely many troughs.

Given any trough T' = z;, let wy denote the subword w; of w, ur the subword w;

of w™!. By lemma 94, M (ur) and M (wr) are submodules of M (w), with standard
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bases {z; : j <i} and {z; : j > i} respectively, such that:

M(UT) N M(U)T) == KZ,;

M (ur) + M(wr) = M(w)

We say that two troughs T" and T are comparable provided there exists a €
and s € {—1,41} such that both wy and wy lie in Hy(a). We define a pre-order <r

on the set of of w troughs by:
T <7 T' <= T and T" are comparable and wr < wy

Lemma 96. Fvery set of 2m|Qo|+1 troughs in w contains a subset {T;,, Ty, ..., T;, }
such that:

Ty <71y <r--- <77

Furthermore, if wr;, is mot a periodic N-word, for all j, then we may choose the
troughs T; such that:

Tig <7t Tiy <7 - <7 T}

Tm

Proof. First of all, we can partition the set into:
U U %
a€Qo s=—1,41
- where X* is the set of those troughs 7" such that e, 7 = T and wy € Hy(a).
Then there must exist a € Qo and s € {—1,+1} such that |[X?| > m + 1. Since
wr € Hg(a) for all T € X;(a), they must be pairwise comparable.
Furthermore, if wy, = wr, (for any distinct ¢ and j) implies that both wr, and

wr, are periodic (as in the proof of lemma 89), which proves the last assertion. [

Take any trough z. in w, and consider the subword u;' = ... 1. sl._1l. of w. Given
any m € N, we define the subwords (u;")™ and (u;')™+) of w as follows:

Pick N > ¢ to be minimal such that the set {z; : ¢ < ¢ < N} contains m + 1
pairwise comparable troughs- if no such N exists (i.e. because the word w, is finite,

and not long enough) then define both (u;!)™ and (u;!)™*) to be w. Otherwise,
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denote these troughs as Ty, 11, . .., T),. For each trough T}, let ¢; be such that z;, = T;.
We assume that the troughs are labeled such that t; < ¢;,; for all i.

Of course, t,, = N. If wy is periodic, then define both (u;)™ and (u;')(™*) to
be w.

If wy is not periodic, then, for each distinct pair 4,5 € {0,1,...,m}, the words
wy; and wy, are distinct- let d; ; be the length of the longest possible common initial
subword of wy, and wy;.

Now, let k € Z be minimal such that z; is a trough, and:

k> max{t; +d;;:i,j €{0,1,...,m},i # j}

Then define (u, !

- of w, and define v to be uy -

1) to be the pre-subword wu;
where k; > k is maximal such that [, ...l is a string of direct letters.

For an example over the string algebra G35 (defined at the start of the chapter),
first of all, set H;(a) to be the set of all words with first letter o or 571, and H_;(a)
to be the set of all words with first letter a=! or 3. Let w be the Z-word with
wo = af 1 af Y aaB )™ and ug = (8 'a)>®. We shall show how to find the
subword (ug )™ of w.

Of course, zp is a trough, and z3 is an adjacent comparable trough. So tg = 0
and t; = 3. The longest possible common initial subword of w, and ws is o371, so
do1 = 2. Then k > t; +dp1 = 3+ 2, is minimal such that z; is a trough. Then k£ = 8§,

and so uél) =ug' = ...lgl;ls. And since lylioli; = aaf™!, uélﬂ =up.

Lemma 97. Let (u;')™ and Ty, Ty, ... T,, be as above. Then given any distinct i, j
such that Ty < Tj, there exists a map f € Hom(M (wr,), M (w)), with image contained
in M((u;1)™), such that f(T;) = Tj.

Proof. First of all, if wy, = wr,, then M(wr,) and M (wr,) are isomorphic via the

map g : M(wr,) — M(wr,) defined by:

g: E )\ti+k2ti+k'—> E )\tj+k;2tj+k

keNt keNt

Since wr, = wr;, they must both be periodic, and so the subword (uz")™ of w must
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be w itself. Since wr, is a pre-subword of w, there exists a canonical embedding
M(wr,) — M(w).

Now, if wr, # wr,, then let d;; be as above: so ly,11.. . lt;4a,; = l41 - lij1ai
and ly, 44, .41 7 lt;4+d, ,+1- Since wr, < wry, ly; 14, ;41 € Ql_l and Iy, 14, ;41 € @1, and so
lt;+1 - li4d,, 18 @ post-subword of wr,, and Iy, 41 ... l;; 14, ; a pre-subword of wr;, and
hence of w (since z; is a trough).

Consider the map:
M(sz) - M(ltﬁ-l s lti+di,j) - M<ltj+1 SR ltj-i-di,j) - M(w)

-where the first map is the canonical projection (as in lemma 95), the third map
is the canonical embedding (as defined after lemma 94), and the second map is the
isomorphism as described in (5.2.2).

Of course, this map takes z;, to z;,, and Iy, 1...l;44,, is a subword of (uc_l)(m)

(by the definition of (u;')™), and so the image of this map lies in M ((u;')™). O

In our example, wy < ws, and so there exists a map f : M(wog) — M(w) given
by:

I Z Aizi = Aozs + A124 + Aazs

i>0
-which clearly has image contained in the K-span of {z; : i < 8}- and and hence in

M ((ug')™). -which takes T} = z3 to Ty = 2o, as in lemma 97.

5.4.1 Comparing pp-types

Lemma 98. Let w be any word, z, a trough of w, and m € N. Then, for any

x € M(u;b), and any ¢(v) € pp, with at most m equations:

M(w) [ ¢(z) = M((u,")"™) E ¢(x)

In particular, if (u;')™ is either a finite word, or the inverse of an N-word, then:

M(w) E ¢(z) <= M~ (w)  é(z) <= M((u,")™) [ ¢(x)
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Proof. Of course, there exists a canonical embedding M ((u;!)™) — M (w), so:

M((u,")"™ | é(x) = M(w) [ ¢(x)

Assume from now on that M(w) = ¢(x). Write ¢(v) as Jvy,...v,00(vy, ..., v,0),

where 1) is the formula:

Now, take any witnesses 1, ... 1, to the statement M (w) = ¢(x). We shall use the
maps as described in lemma 97 to “patch together” a set of witnesses y1,...,y, to

the statement:
M((u,")™) E é()

Let Ty, Ty, . .., T,, be the pairwise comparable troughs of w, as in the definition of
(u7')™). For each such trough T, we can write every z; (not necessarily uniquely)
as =7 4 7" where the former lies in M (uz)), and the latter in M (wr,).

Now, since 1,. ..z, are witnesses to M(w) = ¢(20), they must satisfy (for all

Jj <m):

n

Z Tij(xi) = le'

i=1

n n
<T.

E Tijl',?Ts = — E Tij.ff s+ 7"]'1'

i=1 i=1

Since the left hand side lies in M (wr, ), and the right hand side in M (uz."), both sides

Consequently:

must lie in K7,- so both sides equal p;,T},, for some p;s € K.

Having done this for every j € {1,...m}, consider the set of vectors in K™

{(plpw"pms):OSSSm}

This set must be linearly dependent over K, so we can pick pg, ft1, - .. b (n0t all
zero) such that ) ¢ pspjs = 0 for every j € {1,...,m}.

Now, recall that we have a total ordering on {7 : 0 < s < m}. Pick the largest
T}, with respect to this ordering, such that py is nonzero. By lemma 97, there must

exist maps fs € Hom(M (wr,), M(wr,)), for every s € S\{k}, taking T; to T} - and

each one must have image contained in M ((u,!)(™).
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We may assume that p, = 1, and hence that pj, + Z#k tppjs = 0. Now, for

every 1 < n, define:

=i+ e ™)
s#k

First of all, notice that every y; lies in M((u_")™). Also, for every j € {1,...m} we

have:

Zrijyi = Zrij(xiSTk) + Zrij Zﬂsfs(xzﬂs)
i=1 i=1

i=1 s;ék
SRS WA W
i=1 s#k i=1
= ZW‘T‘“ 2 pafilpTy)
s#k
= 1%+ pirdi + Z tsPjs L
s#k
= T + Z :U’spjsTk
ses
= ;T

Since y1, . .. yp lie in M((u;")™) and satisfy 1 (y1, . .. Yn, ), we have that:

M((u,)™) [ ¢(x)
-as required. O

Given any subword of w of the form wy, = x4 1l 1o (With z; a trough), the subword
(M wy, of w is defined symmetrically: i.e. take the subword w,;l = lkj2lk+11 of w1,
and consider the subword (w; )™ of w™!. If it is of the form "'lj_J:2lj_+1 for some
j < k, then define ™y, to be liz1lj42 . ... Otherwise, define My, to be w.

Now, given any word w, and any finite pre-subword E = [} ..., of w, such that

2, and z, are troughs in w, we define ™ (E)™ to be the subword:

() (L .. 1)) ™

Corollary 21. Let E =l ...l be any pre-subword of w, such that z, and z, are

troughs. Then for all x € M(F), and pp-formulas ¢(v) with at most m equations:

M(w) | ¢(x) == M("™E™) | ¢(x)
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In particular, if ™ E™) is a finite word, then:

M(w) E ¢(x) == M(w) E ¢(z) <= M("E™) = ¢(z)

5.4.2 Comparing words with similar subwords

Suppose we have two words w and w’, and a pre-subword E of w such that (™ E(™) ig
a pre-subword of w’. We may consider M (™ E(™)- and hence M (E) as a submodule

of M(w"). We prove, in this section, that for all z € M(E):
M(w) [ ¢(z) <= M(™E™) | ¢(z) <= M(w') £ ¢(x)
-for any ¢(v) € pp with at most m equations.

Lemma 99. Let w = ...11lplils... andw' = .. I [jI11; ... be any two words, with
index sets I and I' respectively. Take any i € I N 1" such that z; and 2, are troughs,
and any m € N.

71 m) __ 71 . . .
Suppose that (u; )™ = u; -, for some j > i, and that.

7/ / 17/
l2+1“‘l]lj+1_lz—‘,-l"'lz—‘,-l"’l‘]l]—‘,-l

Then ((u})™)™ = (u))™ = .. I\l I/

J J=1%
Proof. This follows straight from the way that (u;')(™ is constructed: Let N > i
be minimal such that the set {z;, z;41,...,2x5} contains m + 1 comparable troughs.
Label the troughs in {2z : i <k < N} as {z, : 0 < s < m'}- of course, m’" > m.

Notice that N < j (by the definition of (u;*)(™), and so:

li-l—l . -lNlN+1 = l;—l—l . l?V%V—i—l

Therefore the set {zg : 0 < s < m'} is precisely the set of troughs of w’ in the
set {2, 2{,1,...,2y}. Furthermore, any two given troughs 2, and z; are comparable
(under the ordering troughs in w’) if and only if z; and z; are comparable (under
the ordering of troughs in w).

So, given any two comparable troughs, z; and z; inw’, z;, and 2, are comparable

in w. Let d, be as in the definition of (u; ')(™. Then:

lts+1 cte lts+dr,s = ltr+1 R ltr+dr,s
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-and Uy, v, 1 7 lty+d, .+1. By definition of (u; ")(™:
max(ts +d.s + 1,t, +d,s +1) <

And so:
/ / o /
lts+1 T lts"!‘dr,s - ltr+1 e ltr+dr,.s

-and Uy g 1 # U g, 41- The result follows. O
Lemma 98 and lemma 99 give the following two results:

Corollary 22. Let w,w', k,i,j and m be as in lemma 99. Then, for any x € M (u;*"):

M(w) | ¢) < M((u;)™) E d(z) < M(w) E (a)

Corollary 23. Given any word w, any subword of the form u,;l, and any v €

M (u;t):
M(w) | ¢(z) <= M((5;")™) | ¢(x) <= M((u;)" ) | o(x)
Also, given any finite subword E of w and x € M(E):

M(w) E ¢(x) &= M("™E™) | ¢(x) <= M("HVE™) | ¢(x)

5.4.3 A further comment on these subwords

Take any Z-word, w, and any ¢ € Z such that wu; is not periodic. We shall prove
in this subsection, that for all sufficiently small j < 4, the subword (u;")[™ of w
lies “strictly to the left of z;”- and hence that z; is not contained in the submodule
M((uj_l)(m)) of M(w).

Consequently, given given an aperiodic N-word or Z-word, w, and any m € N and
z;, there are only finitely many j € Z such that z; € M ((m)zj(-m)).

First of all, given a cyclic word [ ...l,, and any k € N*, we define (I ... L)k

to be the word ] ...[;- where [} = [; for all i € {1,...,k}. We also define

i mod n

By .. 1) to be (((Iy ... 1) ~H)*™) 71, For example:
(ays™)7? = ayptarf e

Yianp™h) =B ay s
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Lemma 100. Let ;1 1l,49l,15... be any finite word or N-word. Take any m > n

and k € N such that:

ln+1 e ln+k == lm+1 e lm+k

Then L1 .. dpsk = (lny1 - - - L)9- where ¢ = k/(m — n)

Proof. Let d =m —mn. Since l,41 ... lpik = byt - - - Lk, it follows that ,,; = 1 g1

for all 7 < k. The result follows. O

Corollary 24. Let w = ...l _1lplyly ... be any Z-word, such that ual 18 not periodic.

Then for all i € Z such that z; is a trough, there exists ¢ < i such that, for all j < c,

j_l)(m) 1s of the form u,;l for some k < 1.

And hence that z; ¢ M ((u;)™).

J

(u

Proof. Let N = 2m|Qo|N’- where N’ is the maximal possible distance between two
troughs in w.
Relabeling if necessary, we may assume that ¢ > 0 and zj is a trough of w. Then

for all positive n < N, let k£, € N be maximal such that:
UMy )™ = 1N

(k, exists, since uy ! is not periodic). Pick any ¢ < min{—k, : 1 <n < N} such that
Z. is a trough.

Now, given any j < c, let Ty, Th, ..., T,, be the comparable troughs in w as in the
definition of (u;')™: note that, given any ji, jo <'s, [t; — t;| < N.

Given any distinct ji, j2 < m let d;, j, be as in the definition of (uj_l)(m). It will
be enough to prove that max(t;, + d;, j,,tj, + dj, j,) < 0.

Assume without loss of generality, that j; < j5. Suppose, for a contradiction, that

tjl + djth Z O By the deﬁnition Of dj1,j2:

tj1+1 e tj1+dj1712 = tj2+1 e tj2+d].1’j2
-and so, by lemma 100, there exists ¢ € Q1 such that:

—_ q
ltj2+]_ o« e ltj2+dj1,j2 — (ltj1+1 o e lth)
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-and hence a rational ¢’ < ¢ such that:

/

ltj2+1 o l*llO = (ltlerl “e lth)q
-and so there exists a cyclic permutation £ of l;; 41 ...1; such that:
ltj/Jrl e l,llo :ql E

Sincely; 41 ... lt;,, and hence E, has length at most N, we have contradicted our choice

of ¢- completing the proof. ]

Corollary 25. Take any aperiodic Z-word, w, and m € N. Then for all i € 7 there
are only finitely many j € Z such that z; lies in the submodule M((m)z](-m)) of M(w).
Similarly, given any i € Z, there are only finitely many j € Z such that the

(m+))

canonical projection M (w) — M((m+)zj takes z; to 0.

5.5 Simple String Maps

In [10] Crawley-Boevey describes the the homomorphisms between any two direct
sum string modules M (w) and M (u), in terms maps called windings. We extend this
idea to any pair of string modules M and N, by defining what we call “simple string
maps”.

If we restrict to maps between direct sum modules, then every simple string map
is a winding, and every winding is a simple string map.

The set of all simple string maps are defined as follows:

1. If w is a word, and M a string module over w, then the canonical embedding

of the subword M (w) of M into M is a simple string map.

2. If w is a word, and M a string module over w, then M is a subword of M (w),

and the canonical embedding of M into M (w) is a simple string map.

3. If wis a word, and M a string module over w, and u is a pre-subword of w,
then the natural embedding of the submodule of M defined by u into M (see

lemma 94) is a simple string map.
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4. If w is a word, and M a string module over w, and u is a post-subword of w,
then the natural projection of M onto the quotient module of M defined by u

(see lemma 95) is a simple string map.

5. If w = w, then the obvious isomorphisms M(w) — M(u), M~ (w) — M~ (u),
M*(w) — M*(u), and M(w) — M(u)- (as described in 5.2.2)- are simple

string maps.

6. If w = u™', then the four isomorphisms M(w) — M(u), M~ (w) — M™*(u),
M*(w) — M~(u), and M(w) — M(u)- as described in (5.2.2)- are simple

string maps.
7. 1f f: M — N and g: L — M are simple string maps, thensois gf : L — M

Let M and N be any string modules over words w and u respectively. Let {z; :
i €1} and {y; : j € J} be the standard bases of M and N respectively.

Given any non-zero simple string map f, there exists s € {—1,+1}, k € Z and
a,b € IU{—o00,+00} (with a + 1 < b) such that for all elements > ., \;z; of M(w).
f(z Aizi) = Z Ailsi+h

iel ier'n(a,b)
Furthermore, any simple string map in Hom(M, N) is uniquely determined by such
an a,b,s and k.

Given any simple string map, these elements a,b € IU{—00, 400} define a unique
subword I, 0lq13 ... l,_2lp_1 of w. For a couple of examples: If w is a Z-word, b = +00
and a € I, then the subword is the N-word [, 5l 3. ..; if w is a finite word, a = —o0,
and b = 400, then the subword is w itself.

One can easily check that [,,1 € @y (if a € I): Suppose, for a contradiction, that

loy1 =a € Q7. Then:

f(zaz1) = flaz,) = af(z,) = a0 =0

-contradicting the choice of a. Similarly, I, € Q7" (if b € I) and 50 loqalays ... lp—1 is

a post-subword of w.
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!/

Furthermore, if s =1 then I} .., ...l ,_; is a pre-subword of u, and:

/ / _
ivatra - lepoo1 = lavolays . Lo

Similarly, if s = —1, then [} _,.,...1,_,_, is a pre-subword of u, and:

l;ibJrl e l;gfa72 = la+zla+3 ‘e lb—l
The following lemma follows straight from these conditions:

Lemma 101. Let M and N be any two string modules, with standard bases {z; : i €
I} and y; = j € J} respectively. Let f,g €Hom(M, N) be any simple string maps,
such that f(z;) = g(z;) # 0 for some ¢ € I.

Then f = g.

5.6 Pure embeddings between string modules

5.6.1 Periodic and almost-periodic results

Let w = ...lyl1l5... be any N-word or Z-word such that, for some s € Z, I is direct
(if it exists), and ls1ls0lsy3 -+ = D>, for some band D (of length n) with inverse
last letter.

Let w' = ... I',0" 31115 . .. be the periodic Z-word, such that lj, ,...l;,,,, =D
for all k € Z.

Let hp : M(w) — M(*°D>) denote the simple string map uniquely determined
by the post-subword lsy1ls12ls13... of w and the pre-subword {I505 ... of w'.

In [6] the following pure-embeddings were found between string modules over

periodic N-words:

Lemma 102. For any contracting periodic or almost periodic Z-word or N-word, w,

the canonical embedding M (w) — M (w) is pure.

Lemma 103. Let w = lilsl3ly ... be any expanding periodic or almost periodic

N-word. Let f € Hom(M (w), M(w)) be the canonical embedding, and hp be as
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defined above. Then the map:
(f,hp) : M(w) — M(w) & M(*D*)
-is a pure embedding.

Ifw=...lglils... is a Z-word such that [; is inverse, and lo_lljl:% - = B, for
some band F with inverse last letter, then we can define, as above, a simple string

map gg : M(w) — M(®E>), using the post-subword uy " of w.

Lemma 104. Let w =* FEly...l,D* be any almost periodic Z-word. Let f :

M(w) — M(w) be the natural embedding. Then.:
e [f w 1s contracting, then f is a pure-embedding.
o [f w 1s expanding, then the map:
(f, 98, hp)" + M(w) — M(w) & M(*E*) @& M(*D>)
-1s a pure embedding.
o If w is mized (i.e. D™ is expanding and (E~1)*° contracting) then the map:

(f.hp)" = M(w) — M(w) & M(*D>)

-1s a pure embedding.

5.6.2 Aperiodic and half-periodic results

Our results from section 5.4 extend Burke’s results to all infinite words, w:

Proposition 5. Suppose that w is an aperiodic N-word or Z-word. Then the natural

embedding M (w) — M (w) is pure.

Proof. Take any x € M (w), and any pp-formula ¢(v). Pick any troughs z; and z, in
w (with & < n) such that x lies in the submodule M (I ...1,) of M(w).
Pick any ¢ € ppﬁ(w)(:c), and let m be the number of equations in ¢. Since w is

aperiodic, ™ (I;41 .. .1,)™ is a finite word, and so, by corollary 21, z € ¢(M (w)). O
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Proposition 6. Let w be any contracting half-periodic Z-word. Then the natural
embedding M (w) — M (w) is pure.

Proof. Let s € Z be such that wy = D> (for some band D) and ws_; is not periodic.
Take any pp-formula ¢(v), and let m be the number of equations in ¢. Pick any

x € M(w) such that z € ¢(M(w)).

Pick any trough z, in w such that n < s and = € M(w,). By lemma 98:

M("™w,) | ¢(x)

1

Since u,, " is aperiodic, (m)ap,, is an N-word- i.e. there exists k < n such that ™w,, is

the subword wy of w. Of course wy = lxy1...1;D>™ is a contracting almost periodic

Z-word, and so, by lemma 102, the canonical embedding:
M((m)wn) N M((m)wn)

-is pure, so x € ¢(M(™w,)). This completes the proof, since M(™w,) is a sub-

module of M (w). O
Proposition 7. Let w = ...l;_1l;D*> be any expanding half periodic Z-word. Then
the map:

(f hp) : M(w) — M(w) & (* D)
(where f is the canonical embedding, and hp is as defined above) is a pure embedding.

Proof. Take any pp-formula ¢(v), and let m be the number of equations in ¢. Pick
any v € M(w) such that z € ¢(M(w)) and gp(z) € ¢(M(®°D>)).

Pick any trough z, in w such that n < s and x € M(w,). By lemma 98:

M(™w,) E ()

Since u,; l'is an aperiodic N-word, there exists & < n such that (M), is the subword
wy, of w. Of course wy = lx41...1;D>™ is an expanding almost periodic Z-word, and

so, by lemma 103, the map:
M("™w,) — M("™w,) & (M>D>)

-is a pure embedding. Thus = € (M ("™ w,))- which completes the proof, since
M(™,,) is a submodule of M (w). O
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5.7 Pp-formulas obtained from finite words

Take any D € W, and let a = t(D). There is at most one v € @, such that
D~y~' € W. The pp-formula (.D)(v) (as defined in [18]) is the pp-formula:

(v =re,v) Av € Dy 1(0) if such a v exists
(:D)(v) =

(v=a.v) Ave D(M) otherwise

Similarly there exists at most one o € @)1 such that aD € WW. We define:

(1.D)(v) := (.D)(v) Naw =0 if such an « exists
(.D)(v) otherwise

Also, there exists at most one 3 € Q; such that 371D € W. We define:

(*1.D)(v) := (.D)(v) Nv e BM if such a 8 exists
v=20 otherwise

Too illustrate these pp-formulas, one may look at their free realisations (as described

in [18)]):

e Let E be the longest possible string of direct letters such that ED € W. Then
(M(ED), z) is a free realisation of (.D)(v) (where z is the standard basis element

which lies “in between E and D”).

e The free realisation of (1.D)(v) is the pointed module (M(D), z), where z is

the basis element of M (D) which lies “furthest to the left”.

e Let E be a longest possible string of direct letters such that E3~1D is a word.
Let 2 be the element of the standard basis of M(FE3~!D) which lies “between
EB~!' and D”. Then (M(EB7'D), z) is a free realisation of (T.D)(v).

For example, working over Gj3- if D is the word a3~!, then a free realisation of

(.D)(v) is (M(a™ta™'3), z1), where the string module looks like:

KZQ
N
K2’1 KZg

KZO
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A free realisation of (1.D)(v) is (M (a™'3), 20):

K,Zl
VN
KZO KZQ

And a free realisation of (T1.D)(v) is M(a ta™'Ba™1p), 23):

KZQ KZ4
/ X / X
KZl KZ3 KZ5
KZO
Given any C, D € W such that C~'D € W, we define:

(C7L.D)(v) := (.C)(v) A (.D)(v)

The free realisation of (C~1.D)(v) is (M (C~'D), 2)- where let 2 denotes the standard
basis element of M (C~'D) which lies “in between C~! and D”: for example, if C is
Ba~? and D is 7 a, then a free realisation of (C.D)(v) is (M(a?32a), 23), where

the string module looks like:
N
KZ3 KZ5
/ x /
KZ4

5.7.1 Links to simple string maps

KZO

Throughout this section, w will be any word, and M a string module over w, with

standard basis {z; : i € I}.

Lemma 105. Let C = (I, ... [}l}) "t and D =1, .. .1, be any finite words such that
CDeW. Let 2, 21y 2h_1, 2, be the standard basis of M(C~'D).
Take any v € M, and write it in the form Zielo Nizi- where N\; # 0 for all i € .

Then the following are equivalent:
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1. u; > C and w; > D for all i € I.
2. For alli € Iy, there exists a simple string map M(C~'D) — M taking z to z;

3. There exists f € Hom(M(C~'D), M), which is a K -linear combination of sim-

ple string maps, taking z| to x.
4. v € (C7L.D)(M).

Proof. Clearly (3) implies (4), as (M (], ...1},), zy) is a free realisation of (C.D)(v).
We shall prove that (4) implies (1), (1) implies (2), and (2) implies (3).

Assume that (4) holds, and suppose, for a contradiction, that there exists i € I
such that (without loss of generality) w; < D. We may assume (without loss of
generality) that w; = w;. Let k& < m be maximal such that ;41 ...l =1]...1}.

Suppose, first of all, that £ = n. Since w; < D, ;111 must be an inverse letter- say
a'. Then Da™' =1l ... Likliswr € W, so (.D)(v) is the pp-formula v € Da~1(0)
(by definition). But if x € (.D)(M), then:

M ): S li+1 S li+kli+k+1 (O)

Since \; # 0, this contradicts corollary 20.

Now, if £ < n, then [}, must be a direct letter- say § (since w; < D). Then:
z € (C.D)(M) C (.D)(M)C DM Cl,...1,B(M)

Pick any y € M such that = € l]...[}(y) and y € BM. By corollary 20, y must
have z;,p-coefficient \;. Since l; 1111 # [ (by our choice of k), lemma 91 gives that
livk = 6" Then k # 1- since that would imply that 716 =l 0}, = [}, € W-
so k= 0.

But if & = 0, then I;* € H_i(a) (since u; € H_1(S)) and 8 € Hy(a) (since
D € Hy(a))- giving our required contradiction.

Now, assume that (1) holds. Take any i € Iy. Assume without loss of generality
that w; € Hi(a). Let j and k be maximal such that { ...l = l;41...l;4x and
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Then le ...}, is a post-subword of C™'D and l;_;...l;; is a pre-subword of w.

Consider the map:

-where the first map is the natural projection onto the quotient module, the third
map is the natural embedding of the submodule, and the second map is isomorphism
as in (5.2.2). This map clearly takes z{ to z;.

Finally, assume that (2) holds. For each i € Iy, let f; be the simple string map
such that fi(zy) = 2. Let f = >_,c, Aifi- one can easily verify that f is a well defined
homomorphism: For example, if M is M (w), then Iy must be finite, and so, for all
y € M(C™'D), >, fily) is a K-linear combination of finitely many z;- and hence
is a well defined element of M (w). O

Corollary 26. Let ¢p(v) be any pp-formula of the form (C.D)(v), (.D)(v) (1.D), or
(T1.D)(v).
Xizi of M. Then x € ¢(M) if and only if z; € ¢(M)

Take any element v =), ,

for all i € I such that \; # 0.
Proof. If ¢(v) is (C.D)(v), then this follows straight from lemma 105

By considering their free realisations, it is easy to see that any pp-formula of the
form (.D)(v), (1.D)(v) or (*1.D)(v) is equivalent to one of the form (C.D)(v)- the

result follows. N

Lemma 106. Toke any a € Qo,s € {—1,+1}, and C, D € Hy(a). Then (.D) — (.C)
if and only if C < D.

Proof. Recall the free realisations of (.C')(v) and (.D)(v), as described above: Let
Ec and Ep be the longest possible strings of direct letters such that EcC € W
and EpD € W. Let z and y denote the standard basis elements of M(E-C') and
M(EpD) such that (M(EcC), z) (respectively, M (EpD),y)) is a free realisation of
(.C")(v) (respectively (.D)(v)).

If (D) — (.C), then y € (.D)(M(EpD)) C (.C)(M(EpD)), and so C' < D by

lemma 105.
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Conversely, suppose that C < D. Then EpC € W: to see this, let F' be the
longest possible initial subword of C' which contains only direct letters. Since C' < D,
F must also be an initial subword of D ,and so EpF € W (since it is a subword of
EpD). Thus EpF doesn’t lie in the ideal Z of K@Q. It follows, by definition, that
EpC is a word.

Consequently, E[_)1 is an initial subword of Egl, and hence E,:_)1 < Egl. Thus, by

lemma 105, there exists a map from M (EcC) to M(EpD) taking z to y. O

Notice that, given any finite word, D, we can express DM in terms of the pp-
formulas of the form (.C)(v): for example, if the first letter of D is direct, then
DM = (.DE)(M), where E is the longest possible string of inverse letters such that
DE eW.

The following corollary follows straight from this fact, and corollary 26:

Corollary 27. Let x =) .., \iz be any element of a string module M over a word

w (where \; # 0 for alli € I). Then, for any finite word D:

x € DM <=z, € DM foralliel

5.7.2 Homomorphisms between string modules

Lemma 107. Given any words w and w', any homomorphism from M (w') to M (w)

1s a K-linear combination of simple string maps.
Proof. See [10]. O
Our results from the last section give a slight extension of this:

Lemma 108. Let D = [y ...l be any finite word, and w any word. Then, for any
string module M over w, any f € Hom(M (D), M) is a K-linear combination of

simple string maps.

Proof. We prove the result by induction on k: assume we have the result for all n < k,

and take any word [} ...[; of length k.
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Let z{, 21, ..., 2, be a standard basis of M(l]...l}). Pick m < k to be maximal

!/

mai is inverse for all ¢ such that 1 <7 < k —m.

such that 2], is a peak. Of course, [
Say, lmyi = a; * € Q7" for all such i.

Let C = (I}...Il,)" " and D = I, ., ... 1. Then 2}, € (C~1.D)(M(l}...1})), so
f(zl) € (C~1.D)(M). By lemma 105, there exists g € Hom(M (I} ...l},), M)- which

is a K-linear combination of simple string maps- such that g(z!,) = f(z],).

Then (f — g)(z],) = 0, and furthermore:

(f — 9)<Z7In+z) =(f—g)(v...0q2zm) =i...oq(f —g)(2m) =0

-for all ¢ > 1. Consequently, (f — g) factors through the canonical projection 7 :
My ... L) —» M. 0, )

By induction, h is a K-linear combination of simple string maps- and hence so is hA7.

Thus so is f = g + hr. n

Let M be any string module over a word w, and let {z; : i € I} be its standard
basis. Let N be any string module over a pre-subword u of w- of course, it has
standard basis {z; : i € I'}, for some I' C .

Given any simple string map f: N — M, we say that f is a right shift if, for all
i, f(z;) is either zero, or z;, for some j > . Similarly, we say that f is a left shift if,

for all i, f(z;) is either zero, or z;, for some j < i.

Lemma 109. Let w,u, M,N,I and I' be as above. Then, for any simple string map
f: N — M, exactly one of the following holds:

e f is a right shift.
o fis a left shift.

o f(z) ==z foralli el (ie. f isthe canonical embedding of the submodule, as

in lemma 94).
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Proof. First of all, if f(z;) = z; for any ¢ € I’, then by lemma 101, f must be the
canonical embedding (as defined after lemma 94).
Assume from now on, that f(z;) # z; for all i. Recall that there exists a,b €

I'U{—00,00} and k € Z such that either:

Zpes fa<i<b
f(zi) =

0 otherwise

-or:
ey fa<i<b

flzi) =

0 otherwise
In the first case, £ must be non-zero. Then f is a right shift if £ > 0, and a left shift
if £ <O0.

Assume, that we have the second case. Suppose, for a contradiction, that there
exists 4,7 € I’ such that a < i < j <band k —7 >k — j. Let m = max{i € I’ :
i <k—i}. Then m+ 1 < b (otherwise k — i > i for all i € (a,b), contradicting our
assumption), and so f(zm+1) = Zk—(m+1)-

Of course, m+1 > k — (m + 1), by our choice of m, and som+1 >k — (m+1)
(since f(zm+1) # Zm+1), and so k —m = m+ 1 and k — (m + 1) = m. Assume,

without loss of generality, that [,,, is direct- say [,,4+1 = . Then:

azm = O[f(Zm+1) - f(azm—‘rl) = f(zm> = Zm+1

-and 5o [,,.1 must be a1~ which is clearly a contradiction. [

5.7.3 Simple string endomorphisms

Let M be any string module over a word w, with standard basis {z; : i € I}. We
define the binary relation <,, on the set {z; : ¢ € I} by:
Z; §w2j<:>1f}i§?f)j andﬁigﬁj

If w is not a periodic Z-word, then, by lemma 89, there are no distinct 7,7 € I such

that both 4; = 4; and w; = w;- and so <,, is a well defined partial ordering of

{z; i eI}.
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Lemma 110. Let w be any word, f € End(M (w)) any simple string map, and i € I
such thatf(z;) # 0. Then f(z;) >uw 2.
Furthermore, if w is not a periodic Z-word and f is not the identity, then f(z;) >

Zi-

Proof. For all finite words D < w0, z; € (.D)(M), and so z; = f(z;) € (.D)(M), so
D < w;. It follows that w; < w;, and similarly, 4; < w;.
To prove the second assertion, lemma 109 gives that f(z;) = z; for some j # i,

and either w; # w; or 4; # u; (by lemma 89). Thus z; > z;, as required. O

5.8 1-Sided Modules

Given any M € A-Mod, any a € @, and any non-zero m € e, M, the set {D €
Hi(a) : D is finite, and m € (.D)(M)} is downwards-closed (by lemma 106). We
define the right-word of m in M to be the supremum of it.

Similarly, we define the left-word of m in M to be the supremum of {C' € H_;(a) :
C' is finite, and m € (.C)(M)}.

Lemma 111. Let M be any string module over a word w, with standard basis {z; :

i€1l}. Then, for alli € 1, z; has right-word w;, and left word ;.
Proof. Follows straight from lemma 105. O

Lemma 112. Take any pure-injective M € A-Mod, and any mo € M. Let w =
lilsls ... be the right word of mg in M.

If mg € (1.D)(M) for some D < w, then there exists f € Homa(M(w), M) such
that f(z9) = mo (where {z; : i € N} is the standard basis of M (w)).

Proof. Let r € A denote the unique a € @y such that o' € H_;(a) (if such an «
exists, and 0 otherwise). Since mg € (1.D)(M), rmo = 0.

Consequently, it will be enough to find a set {m; : i € N*} such that l;m; = m;_;
for all i € N*: given such a set, we let f be the unique map such that f : z; — m;

for all 7 € N.
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Since M is pure-injective, and hence algebraically compact, it will be enough to

show that the set:

{ll’Ul = mo} U U lﬂ)i = Uifl}

i>2

-is finitely satisfiable in M. Given any finite subset X of it, pick any trough z; of w
such that no equation of the form [;v; = v;_1; with ¢ > k liesin X. Let C =1y ...1.

Since C' < w:
M = (.C)(mo)

(by the definition of right-word). Consequently there exists mq,...,my € M such

that [;m; = m;_1 for all ¢ < k- as required. O

A module M € A-Mod is said to be one-directed (as defined in [18]) if there exists
a finite word D such that the pp-pair (1.D)/(t1.D) is open on M. M is said to be

two-directed if it is not one-directed.

Lemma 113. Any M € A-Mod is two-directed if and only if, for all a € Q1 and
m € e, M, both the right-word and the left word of m in M are N-words.

Proof. See [18] O

Let M be any string module over a word, w, with standard basis {z; : i € I}.
Take any a € @y, and x € e, M, and write x as Zielo Nizi- where \; # 0 for all ¢ € .
It follows from lemma 105, that x has right-word inf{w; : ¢ € Iy}, and left-word
inf{a,; : i € In}.

Consequently, every string module over a finite word or N-word is one-directed.
Furthermore, every string module over a Z-word is two-directed: Any element x =
> icr, Nizi of M has right-word sup{w@; : i € I}, which is an N-word, by lemma 87,
and similarly, the left word is an N-word, so the above lemma implies that M is

two-directed.

Lemma 114. Take any a € Qo, s € {—1,+1}, and finite word D € H(a). Let ¢(v)

be any pp-formula such that:

(1.D) < ¢ < (*1.D)
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Then there ezists E > D such that ¢ is equivalent to (T1.D) + (1.E).
Proof. See [18, (4.4)] O

Let M be a one-directed module. Take any mqo € (1.D)(M)\(*1.D)(M) (where D
is a finite word). Assume without loss of generality that D € H;(a) for some a € Q.
Let w be the right word of mg in M. We say that mg is homogeneous in M if, for all
D <wand FE € Hi(a):

mo € ((T1.D) + (LLE))(M) <= E <w

Lemma 115. Take any a € Qo and w € Hy(a). Let M be either M(w) or M(w),

with standard basis {z; : i € I'}. Then zy is homogeneous in M, with right word w.

Proof. We only need to prove that z; is homogeneous: Suppose, for a contradiction,
that zp € (*1.D)+(1.E) for some D < w and E > w. Then there exists x € (1.E)(M)
such that zo—z € (t1.D). Since zg ¢ (1.E)(M), z has zp-coefficient 0- by corollary 26.

Recall (from the definition) that (*1.D)(M) is either (.D)(M)NSM (if there exists
Be€@QiNH_1(a)) orv=0 (if not). Of course, zg # 0. Furthermore, z, has left-word
14-1, and hence zy ¢ M C (T1.D)(M). Since zy — = has zy-coefficient 1, it follows

from corollary 26 that zy — x ¢ (t1.D)(M)- giving our required contradiction. [

Theorem 40. Given any a € @Qo, and w € Hii(a) (respectively, H_1(a)), there
exists a unique (up to isomorphism) pure-injective indecomposable one-directed M, €
A-Mod containing a homogeneous element mq with right-word (respectively, left-word)
w.

Furthermore, every indecomposable pure-injective one-directed module is isomor-

phic to M,,, for some finite word or N-word, w.
Proof. See [18, (5.4)] O

Notice that, if w is a finite word, then M (w) is one-directed, pure-injective, and
indecomposable, and 2 satisfies the conditions required of mg in theorem 40. Thus

M, = M(w). Also, we have the following result for N-words:
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Corollary 28. Let w be any N-word, such that M(w) is pure-injective. Then M (w)

1s not indecomposable.

Proof. First of all, notice that z, is a homogeneous element of both M (w) and M (w),
with right-word (or left-word) w- by lemma 115. Consequently, if M (w) was inde-
composable, then both M (w) and M (w) would be indecomposable and pure-injective
(by theorem 39 and proposition 4), and so M (w) and M (w) would be isomorphic (by
theorem 40).

Since M (w) is of countable dimension over K, and M (w) of uncountable dimen-

sion, they cannot, however, be isomorphic. ]

By lemma 112, there exists f € Hom(M (w), M,,) such that f(zg) = mo (where
{z; 1 € I} is the standard basis of M (w)). We shall prove that, if w is an aperiodic
N-word, then f is a pure embedding.

In fact, we will prove a slightly more general result- which will be needed for some

of the proofs in chapter 7. First of all, we will need the following result:

Lemma 116. Let w = lyly... be any N-word, and M be either M (w) or M(w). Let

k > 0 be such that zj is a trough in w, and let i, 7 € N be such that:

Zj € ((ll c lz>(lz+1 c. lk))(M)

If liy1 ...l s not an initial subword of either w; or u;, then there exists a simple

string map h € End(M) such that h(z;) = z;, and h(z,) =0 for all n > k.

Proof. Assume, without loss of generality, that [;11 ...l € Hy(a) for some a € Q.
Since z; € ((I1...0).(lix1...1g))(M), lemma 105 implies that [;1;...l; < @w; and
(Iy... L) <,

Since (liy1...lg) is not an initial subword of w;, lemma 85 gives that w; >
liz1...lp_1, and so:

s (L 1) (i - Leen)) (M)

Let yo, . ..yr—1 be the standard basis of M(ly...l;_1). By lemma 105, there exists a

simple string map h: M(ly ... l—1) — M(w) taking y; to z;.
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Since zj is a trough, [y ...lp_1 is a post-subword of w. Let m be the canonical
projection M (w) — M(ly...l;—1). Then hx is a simple string map, and satisfies the

required conditions. O

5.8.1 1-Sided Modules over Aperiodic Words

Lemma 117. Let w be an aperiodic N-word (without loss of generality, w € Hy(a) for
some a € Qo). Let M be a one-directed module, containing a homogeneous element

mg with right word w, such that my € (1.D)(M)\(*1.D)(M) for some D < w.

Then ppM ™) (29) = pp™ (my).

Proof. Of course, the map in lemma 112 gives that pp™(™)(z,) C pp™ (my).
To show the converse, take any ¢(v) € pp™(mg). We must prove that z, €

¢(M(w)). Let m € N be the number of equations in ¢. Since w is aperiodic, the

subword z(()m) is finite, so we may pick k£ € N such that z; is a trough, and zémH is

an initial subword of l1ly ... l;_1.

Pick any k&’ € N large enough such that:
e For every i € {2,3,...,k}, ;... 1y is not an initial subword of w; or w;
® zi. 1s a trough in w.

Let D denote I ...lg . Since zpip is a trough, D < w. Define ¢ (v) to be ¢(v) A
(1.D)(v). Of course, (1.D) > ¢ + (T1.D) > (*1.D). Furthermore, ¢ + (*1.D) >
(t1.D)- since mg € Y(M)\(T1.D)(M). By lemma 114, there exists £ > D such that
¥+ (T1.D) is equivalent to (1.E) + (T1.D). Of course:

mo € (M) C (L.E) + (1.D))(M)
Since my is homogeneous in M, E < w- and so M(w) k= (1.E)(z). Thus:
20 € (LE) + ("L.D)(M(w)) = (¢ + ("1.D))(M (w))
Pick any z € M(w) such that:

M(w) = ¥(z0 — x) A (T1.D)(x)
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We can write z uniquely as ) .., A\iz; (where A\; # 0 for all 4 € I). By corollary 26,
zi € (T1.D)(M(w)) for all ¢ € I. In particular, 0 ¢ I. Now, partition I into
Ip=In{l,...k—1}yand I =InNn{i € N:i¢ > k}. Let x, = >,
TR =D icry Ni%ie

Given any i € I, z; € (Y1.D)(M(w)) € (1.D)(M(w)). By our choice of k', D

iel, Az and

is not an initial subword of w; so by lemma 116, there exists a simple string map
g; € End(M (w)) taking zp to z; , such that g;(z;) =0 for all j > k + k'

Notice that g; is a right shift (by lemma 109, since g;(z0) = 2;). Let g =>_._; Az

i€l

(note that g(zp) = x1). Then g(z;) € spx{z, : n > j} for all j € N, and ¢(z;) =0

for all j >k + k', so ¢** = 0. So:

k+k' k+k'

(D 9MGo—ar) = (D g1 = g)(z0) = (1= ¢"*)(20) = 20

Now, let 7 : M(w) - M (z(()m+)) denote the canonical projection. Since z(()mﬂ is

an initial subword of wy, it follows that 7(zr) = 0, and hence that 7(¢"(zg)) = 0
for all n > 0. Thus:

(Y ") (20 — 2L — Tr) = Teyw-1(20) = 7(20)

n=0

Since M (w) | ¥ (20 — x, — xg), we have that:
m(20) € H(M (") C oM (7))
And hence zy € ¢(M(w)), by corollary 23 O

Proposition 8. Let w,a, M and mg be as in lemma 117. Then any map [ : M (w) —

M taking zy to mg is a pure-embedding.

Proof. Take any z € M(w), and any ¢ € ppM(f(x)). We must show that z €
P(M (w)).

Write x as Zie[ Aizi, where \; # 0 for all ¢ € I. Let m be the number of
equations in ¢. Pick any d > max{i : ¢ € I} such that z; is a trough. Then z

lies in the submodule M(l; ...l;) of M(w), so- by corollary 23- it will be enough to
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prove that 7(x) € ¢(M((l; ...15)™H)))- where 7 : M(w) — M((Iy...13)™") is the
canonical projection.

Since w is aperiodic, we can pick £ € N such that:
o (Iy...13)"%) is an initial subword of I, ...1l;_;
e For all distinct 4,7 < d, l;1; ...l is not an initial subword of u; or w;
e 25 is a trough.
Now pick any &’ > 0 large enough such that:
e for all 7,7 < k such that i £ 4, ;... Lipw # L. Ly g
® z.. 1s a trough in w.

Let D =1y...lj+x, and let ¢(vg) be the pp-formula:

1, Uk (X(UO, Vi Ok A SO Aﬂh’))

iel

-where x(vo, V1, ..., Vpsr) is a pp-formula generating pp™ P (2, 21, . . ., Ziyr).
Of course, mg € (M) (we could take f(z1), f(22),... f(zktx) to be witnesses for
V1,Va, ..., Ui ). Thus, by lemma 117, zg € (M (w))- i.e. there exists xy, ... Tpip

in M (w) such that:

M(w) ): X(ZQ, T1,T9, ... 7xk+k’) AN (,b(/\OZO + Z )\zxz>
i1\ {0}

By the definition of y, there exists f € Hom(M (D), M (w)) taking zo to zo, and z; to
x; foralli € {1,2,...,k+k'}.

We shall construct a map 7' € End(M(w)) such that h'(z0 + > ;cp o) Ni%i) =
> icr Nizi + @'~ where 2’ lies in the submodule M (wy,) of M (w). This will be enough
to complete the proof, since it will imply that 7(2’) = 0 (by our choice of k), and
hence that:

W(Z Nizi) = h'(Mozo + Z Aiwi) € M((Iy ... 1g)"™"))

iel iel\{0}
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Since zg4p is a trough, M (D) is a submodule of M (w). Let p : M(D) — M(w)
denote the canonical embedding. By lemma 108, f — p is a K-linear combination of
finitely many simple string maps:

F=p=> ul
jed
Since (f — p)(20) = 0, each such map is either a left shift or a right shift. Let .Jy
be the set of all j € J such that f;(z;) # 0 for some i < k4 k’. Of course, for all
i <k+K:

Z 1 fi(zi) = Zﬂjfj(zz‘) =T — %

j€Jdo jeJ
Partition Jy into J;, U Jg U Jrg, where:

e j € Jy if and only if it is a left shift.
e j € Jrif and only if it is a right shift and f;(z;) € {zit1, ..., 2} for some i < d.
e j € Jrif and only if it is a right shift and f;(z;) ¢ {20, 21,..., 2} for all i <d.

Given any j € Jy, pick any i < d such that f;(z;) = 2y for some ¢’ < i. Then
zi € (Iy - ) (Lixr -+ leswr)) (M (w)) and l;4q . . . Iy is not an initial subword of w; or
w; (by our choice of k).

By lemma 116, there exists a simple string map h; : M(w) — M (w) such that
h(z;) = zy, and h;(z,) = 0 for all n > k. By lemma 101), h;p = g;.

Similarly, given any j € Jg, pick any ¢ < d such that f;(z;) = z; for some ¢ < k.
Then zy € (L. 6)-(ligr -+ lgywr)) (M (w)) and L4y . . . lp4gs is nOt an initial subword
of wy or uy (by our choice of k'), so there exists (by lemma 116) a simple string
map h; : M(w) — M(w) such that h(z;) = zy, and h;(z,) = 0 for all n > k. By
lemma 101 hjp = g;.

Define h € End(M (w)) to be the map:

h = Z il

jeJLUJRr
First, we claim that A*+¥+1) = 0: suppose, for a contradiction, that A5 +1) () £ 0

for some i- so there exists 71, J2, . . ., Jeaw+1 € JpUJg such that h; oo hyyhy (7)) #

T4k +1

0.
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Since h; h . hjl (Zz) 7£ 0, it follows that hjn . hjzhjl (Zz) € {Zo, VAT Zk—l—k’—l}

]n+1

for all n < k+ k'. And so:
Zi <w hjl (Zl) h’ h]l (Zl) w "’ h hh(ZI)

-giving us k + k' + 1 distinct elements of {2, z1, . . . Zg4—1 }- which is clearly a con-
tradiction.
Now, given any i < k, let z; = h(z) and z = >, p;fi(2). Of course,

/ /" : 7 .
zi + x; + x! = z;. Notice that =} € spg{zk, 2k+1, 2k12, ... }. Now:

O (0 4 2) = (Y ()" ") (h+ 1)(2) = 2

Notice that, given any n > k, h;(z,) = 0 for all j € Jp, and that hj(z,) €
Spri{ 2k, Zks1, Zkro, .- | for all j € Jg. It follows that, for all n € N, h"(z}) €

SPr{ 2Ky Zkt1, Zkt2, - - - 1, and hence that:

k+k/
n()_(=1)rh)(af) =0
n=0
Define h' = Zf;’g(—l)”h”. Then, for all z < d:
k+k/ k+k/
oh'(w;) = w(Y ()W) (z o+ ) F (Y (1) R ()
n=0 n=0

= 7(z)
So wh' (3 ,e; Nii) = m(D_;c; Nizi), and hence:

7(D Niz) € (M ((L ... 1))

i€l
-as required. O
Corollary 29. Given any aperiodic N-word, w, let M, and mg € M, be as in
theorem 40. By lemma 112, there ezists f € Hom(M (w), M,,) such that f(zg) = my.
Then f: M(w) < M,, is the pure-injective hull of M(w). Furthermore, M, is a
direct summand of M (w)
Proof. By proposition 8 it is indeed a pure embedding. Furthermore, since M, is

indecomposable (by theorem 40), f cannot be factored through a direct summand of

M,,.
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Corollary 30. Let w be any N-word. Then M, is a direct summand of M(w).

Proof. If w is expanding, then M (w) satisfies the conditions of theorem 40 (for its
indecomposability, see corollary 32- and so M (w) = M,,, by the theorem.

If w is contracting, then M (w) satisfies the conditions of theorem 40, and so
M (w) = M,,, by the theorem. The canonical embedding M (w) — M (w) is pure (by
lemma 102), and hence split- so M,, is indeed a direct summand of M (w).

Finally, if w is contracting or aperiodic, then by proposition 5, the canonical
embedding M (w) — M (w) is pure. Thus by lemma 9, M,, is a direct summand of
M (w). O

5.8.2 1-Sided Modules over Contracting Words

Throughout this section, w = lylsl3 ... will be a contracting periodic or almost peri-
odic N-word, and M will be a 1-directed module, containing a homogeneous element
mo € (1.D)(M)\(T1.D)(M) (for some D < w) which has right word w.

Let s € N be minimal such that [5y1lso ... is periodic. Then there exists a unique
n > 0 such that ;11 ...lsy, is a band- we let C =l ... l54,.

For all i € {1,2,...,,}, we denote by C; the cyclic permutation of C' with first
letter ls.;.

There exists (as in [24]) a simple string map ®,, : M (w) — M(w), defined by:

Q- Z Aizi Z AitsZi

€N 1>5

-we refer to it as the Ringel shift.

Notice that, given any simple string map f € End(M (w)) which is not a power
of ®,, (or the identity), Im(f) is finite dimensional: Indeed if Im(f) is infinite dimen-
sional, then f is uniquely determined by an infinite post-subword w; and an infinite
pre-subword w; of w such that w; = w;. It follows that either i = j (i.e. f is the

identity) or i = s + kn (for some k € N¥) and j = s- and hence that f = ®F.

Lemma 118. Let w be any contracting N-word, and M a 1-directed module, con-
taining a homogeneous element mo € (1.D)(M)\(T1.D)(M) (for some D < w) which

has right word w.
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Then pp™ ™) (zy) =pp™ (my).

Proof. Take any ¢ € pp™(mg). We must show that zy € ¢(M(w)).

First of all, we claim that there exists a trough 2, of w such that, for all © > 0
with z; € (1.(I; ... 1)) (M(w)), Iy ...lx is not an initial subword of ;.

Recall from lemma 111 that, for all words D € Hy(a),andi > 1, z; € (1.D)(M (w))
if and only if w; > D, and 4; > 1, 1 (and hence that its first letter is direct).

First of all, if w is periodic, then pick any & > n such that z; is a trough. Given
any ¢ > 0, it follows from lemma 82 that C is an initial subword of w; if and only
if i € nN. However, for any such i, the first letter of @; ' is the first letter of C~!-
which is inverse, since w is contracting.

If w is not periodic (i.e. s > 1), then we claim that there exists k£ > 0 such that,
for all € NT, [ ...l is not an initial subword of w;. Indeed, pick any k > 0 such

that:

k> 2s

For all © > 0, [y...l; is not an initial subword of w;- this is possible, since
w; # w for all i > 0, and the set {w; : i« > 0} contains only finitely many

different words.

Iy ...l is not an initial subword of (C")*, for any cyclic permutation C” of C~1.

e 2 is a trough

Given any ¢ > 1, [; ...l is not an initial subword of w; (by our choice of k). Fur-
thermore if ¢ < 2k, then [; ...[; cannot be an initial subword of u; (it follows from
lemma 81), and if ¢ > 2k > k + s, then the initial subword of w; of length £ is equal
to (C")*/™, for some cyclic permutation C' of C~'- and so it cannot equal I; ...l (by
our choice of k). So [y ...l is not an initial subword of w;, as required.

Given any such k, let D =1; ..., and let ¢)(v) be ¢(v) A(1.D)(v). Then (1.D) >
¥+ (T1.D) > (*1.D), so by lemma 114 there exists £ € H;(a) such that ¢+ (t1.D)
is equivalent to (1.E) + (T1.D).
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Since mg € ¢(M), we must have E < wy. Thus:
20 € (LE)Y(M(w)) € (4 + ("1.D)) (M(w)

Pick any = € (T1.D)(M(w)) such that zy — x € (M (w)). Write x as > ._; \izi-

i€l
where \; # 0 for all 7 € .

By corollary 26, z; € (T1.D)(M(w)) for all i € I- in particular, i # 0, and D < ;.
By our choice of k, D is not an initial subword of w;, so lemma 116 implies that there
exists a simple string map f; € End(M (w)) taking 2z to z;, and such that f;(z;) =0
for all 7 > k.

Let f =3 ,c; Aifi- Then f(2;) € spx{2j+1, 2j12,...} forall j € N, and f(z;) =0

for all j >k, so f5+! =0, and hence:
Z:fj(Zo —z)=>_ f(1-f)(2) =2
Since 2y — x € Y(M(w)) C ¢(M(w)):
20 € (M (w)) C (M (w))
O]

Proposition 9. Let w, M, mg and zy be as in lemma 118. Let f : M(w) — M be

any map taking zo to mg. Then f is a pure-embedding.

Proof. Take any element x = >,y Az of M(w). Pick any k > s such that z, is a
trough, and \; = 0 for all i« > k- so x = Zf:o N\izi. Take any ¢ € ppM(f(z)). We
must show that = € ¢(M(w)).

We claim that there exists k&’ such that for all i, j < k, l;41...l;14 is not an initial
subword of u;, and it’s an initial subword of w; if and only if w; = w;: Indeed, pick

any k' such that:
o k'>s+n
® livi...liyk # ljy1...lj4y for all distinct 4,7 < s.

e For all i < s, l;11...li1 is not an initial subword of (C’)*, for any cyclic

permutation C’ of C~1.
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® 2.k is a trough.

One can easily check it satisfies the required condition.
Let D = ly...lgyp. It is a pre-subword of w, and so M(D) is a submodule of
M (w), with standard basis zg, 21, ..., 2ksk. Let x(vo,v1,. .., 0pr) be a pp-formula

which generates pp™(?) (2, 21, .. ., Zrpw ). Let 1h(vg) be:

k
ElUl, RO <X(U0, V1, V2, ... ) A\ qb(z )\/UJ)
=0

Of course, my € ¥(M) (we could take f(z1), f(22), ..., f(zk+x) to be witnesses to it),

s0 zg € Y(M(w)), by lemma 118- i.e. there exists xy,...Tpipr € M(w) such that:

k
M('LU) ): ¢()\OZO + Z'TZ) N X(z(]?xl’IQu s 'Tk+k'>

i=1
-so there exists a map g : M (D) — M (w) such that g(zy) = zo and g(z;) = z; for all
ie{l,2,....k+k}.

Let p: M(D) — M (w) be the canonical embedding as defined after lemma 94.
By lemma 108, g — p is a K-linear combination of (distinct) simple string maps:

g—pr= Z Hj9j
jeJ

Let J’ be the set of all j € J such that g;(z;) # 0, for some i < k, and let ¢ =
> jer 1395(2i). Then ¢'(2) = 20, and ¢'(2;) = g(21) = x; — 2; for all i such that
1 <1<k

We claim that, for all j € J', there exists a simple string map h; € End(M (w))
such that g; = hjp.

Given any j € J', take any ¢ < k such that g;(z;) # 0. By lemma 101, it’s enough
to find a simple string map h; such that h;(z;) = g;(z).

Let ¢/ € N be such that g;(z;) = 2zy. Assume, without loss of generality, that
w; = w;- i.e. that w; € Hyi(a) for some a € Q.

If liy1...lkep is an initial subword of wy, then w; = wy (by our choice of k)

and so ¢/ — i € nZ. Since u; = (Iy...1;)"" < wy, it follows that ¢ < 4, and so
@S‘i')/"(z,-) = zy = g(z;), as required.
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Ifl;11...lp 4 is not an initial subword of w;, then lemma 116 gives our required

Now, define h := —3 ", pi;h; € End(M(w)). Of course, (1 —h)(z9) = 2, and
(1 = h)(z) = a; for all i € {1,2,...,k}. We claim that Y -, h" is a well-defined
endomorphism of M (w): it’s enough to prove that, for all i € N, there exists N € N
such that A (x;) = 0.

Partition J into J; U Jo- where j € Jp if and only if Im(h;) is finite dimensional.
Notice that if j € Jy, then h; is a finite power of ®- and hence is a left shift.

Given any j € Ji, Im(h;) is finite dimensional- so (since .J; is finite) we can pick
N such that, for all : € N and j € Ji, hj(z) € {0, 20,21, 22, ... 2nv_1}.

Also, for all j € Jy and ¢ < N, h;(z) € {0, 20, 21, 2, ... 2n-1}. Consequently,
h™N(2;) = 0- otherwise there would be jo, j1 ... jx € J such that g;, ...g291(2:) # 0,

and hence a descending chain:

Zi ZPw 91(%) ZSw ottt Pw G - -ngl(zi)

-with each element in {zo, 21, ..., 2,1}~ which is clearly a contradiction.

Now, given any ¢ > N, and j € J, either g;(z;) = 0, or g;(z;) = ®%z) =
Zi_an for some d € NT. It follows that there exists N’ € N such that hV1(z;) €
SPr{%0, 215 - - 2y_1}. Thus KNV (2;) = 0, as required.

Of course:

SRt X)) =Y RO ML= h)(z) =D Nz
n=0 i n=0 i i

Since M (w) = ¢(>, Nix;), we have that:

M(w) |= ¢(x)

5.8.3 1-Sided Modules over Expanding Words

Throughout this section, w = l1l5l3 ... will be a expanding periodic or almost periodic

N-word.
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Let s € N be minimal such that [; 10515 ... is periodic. Then there exists a unique
n > 0 such that [;...l54, is a band. We denote it E.

For all i € {1,2,...,n}, we denote by E; the cyclic permutation of E with first
letter ls.;.

There exists (as in [24]) a simple string map ®,, : M (w) — M (w), defined by:

P, : Z iz Z AiZitn
ieN i>s

-we refer to it as the Ringel shift.

Notice that, given any simple string map f € End(M (w)) either f is a positive

power of @, or the identity, or Im(f) is finite dimensional.

Lemma 119. Let w be any expanding periodic or almost periodic N-word. Let R
be the set of all f € End(M(w)) which are a K-linear combination of simple string
maps which are right shifts.

Then R is a local ring.

Proof. R is closed under addition, and multiplication- since the composition of any
two simple string right shifts is a simple string right shift. Thus R is indeed a ring,
with Oz and 1 being the zero map and the identity map of End(M (w)).

Now, take any f in R. We can write it uniquely as Alp — >, A; fi- where each
fi is a simple string right shift, and \; # 0 for all ¢ € I.

We need to show that either f or 1 — f is invertible. We may therefore assume
that A # 0. By multiplying through by A~!, we may assume that \ = 1.

Let g =1 — f. We claim that >~ ¢" is a well defined endomorphism of w. If
so, then it is an element of R, and ("2 ¢")f = f(D oo, 9") = 1, as required.

Take any € M(w). We must show that > > ¢"(x) is a well defined element
of M(w). It will be enough to prove that, given any k € N, the 2, coefficient of
>, 9" (x) is an element of K.

Given any n € N, define:

I,={f €R: f(x) € spr{zni1, Zni2; Zni3,--- } }

One can easily check that it is an ideal of R, and that I,,1,,, C I,,.,, for all m,n € N.
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Now, since g € I1, g" € I, for all n > 1. So the z-coefficient of °"° .\ ¢g"(z) is
zero. So the z-coefficient of Y~ | ¢™(x) is the z,-coefficient of ZZ:O g"(z)- which is

clearly a well defined element of K. ]

Lemma 120. Let w be any expanding periodic N-word, and {f; € End(M(w)) :i €
I} be any set of simple string maps, such that f;(z) = z; for alli € 1.

Then every map of the form >_._; \ifi is a well defined endomorphism of M (w).

il

Proof. Assume that w € H;(S). Given any i € I, if w; € H{(5), then f; is a simple
string map taking every z; to either z;;, or zero.

If w; € H_1(S), then w > u; ', and f; takes every z; to zj_; or zero. Of course, if
J < 2i, then j —i <4, and so f;(z;) =0 (by lemma 109).

So, for any i € I, Im(f;) € spg{z; : j > i/2}. Thus, given any k € N, and any
x € M(w), the z-coefficient of >, ; A; fi(z) is the z;-coefficient of > icon Aifi(T)

Of course, ZiSQk Ai fi is a well defined endomorphism, so we are done.

]

Lemma 121. Let w = l1lsl3 ... be a expanding periodic or almost periodic N-word.
Suppose that M is a one-directed module, and contains a homogeneous element mgy €
(1.D)(M)\(T1.D)(M) (for some D < w) which has right word w.

Then pp™ ™) (z0) =pp™ (my).

Proof. Take any ¢ € pp™(mg). We must show that zy € ¢(M(w)).

First of all, we claim that there exists a trough z; of w such that, for all i > 0
with z; € (1.(I; ... 1)) (M(w)), there exists a simple string map in End(M (w)) taking
2o to z;.

If w is not periodic, then as in the proof of lemma 118, there exists k € N* such
that, for all 4 > 0, [; ...l is not an initial subword of w;. Then lemma 116 gives the
required simple string map.

If w is periodic, pick any k£ > n such that z; is a trough. Then, given any ¢ > 0
such that z; € (1.0;...1)(M(w)), the first letter of ; is inverse, and Iy ...l < ;. If

ly ...l is an initial subword of w;, then it follows from lemma 82 that i € nN- and
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so ®¥/™ is the required simple string map. If [; ...l is not an initial subword of w0,
then lemma 116 gives the required simple string map .

Now, let ©¥(v) be ¢(v) A (1.D)(v). Then (1.D) > ¢ + (*1.D) > (*1.D), so by
lemma 114 there exists E € H;(a) such that ¢+(71.D) is equivalent to (1.E)+("1.D).

Since mg € ¢(M), we must have E < wy. Thus:
2 € (LE)(M(w) € (4 + ("LD)(M(w))

Pick any = € (*1.D)(M(w)) such that zy — 2 € (M (w)). Write z as >, ; Nz
where \; # 0 for all i € I. Of course, v € (T1.D)(M(w)), and 2o — x € (M (w)) too.

By corollary 26, z; € (T1.D)(M(w)) for all i € I- in particular, ¢ # 0. Since

zi € (1.D)(M(w)), our choice of k gives that there exists a simple string right shift

h; € End(M (w)) taking zg to z;.

Define h = > ._; \;h;. By lemma 120, it is a well defined element of the subring

el

R of End(M(w)), and so by lemma 119, there exists g € R such that gh = 1g, 77 w))

Then g(z0 — x) = gh(20) = 20, 50 20 € (M (w)) (since 2o — x € (M (w))). O

Proposition 10. Let w, M, myg, zo be as in lemma 121. Let f: M(w) — M be any
map taking zy to mg. Let hg : M(w) — M(®E>) be the map as defined before
lemma 103.

Then (f,hg) : M(w) — M & M(®E>) is a pure-embedding.

Proof. Take any element x = ), Aiz; of M(w). Pick any k > s such that z is a
trough, and \; = 0 for all ¢+ > k- so x = Zf:o AiZi.

Take any pp-formula ¢ such that f(x) € ¢(M) and hg(z) € ¢(M>*E>). By
lemma 103, it’s enough to prove that x € ¢(M(w)).

As in the proof of proposition 9, we can pick &’ such that for all 7, j < k, l; 41 ... liix
is not an initial subword of u;, and it’s an initial subword of w; if and only if w; = w;-
and also such that z,,, is a trough.

Let D =y ...lgsp. It is a pre-subword of w, and so M (D) is a submodule of

M (w), with standard basis 2o, z1, . . ., Zgsr- Let x(vo,v1, ..., vpip) be a pp-formula
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which generates pp™(P) (2o, 21, ..., Ze4rr). Let 1(vg) be:

k
Elvl, RPN 0) "Ny (X(Uo, U1,V2, ... ) A ¢(Z )\zvz)>
1=0

Of course, mg € (M) (we could take f(21), f(22),..., f(zk1r) to be witnesses to it),

so zo € Y(M(w)), by lemma 118- i.e. there exists xy,... 2 € M(w) such that:

k

M(w) gzﬁ(z xi) A x(20, 1, T2y . .. Tpyrr)
=0

-s0 there exists a map g : M (D) — M (w) such that g(z9) = zo and g(z;) = z; for all

i€{0,1,...,k+ K}

We shall, from now on, consider g as a map in Hom(M (D), M(w)) (by simply
composing it with the canonical embedding of M (w) into M (w)).

Let p : M(D) < M(w) be the canonical embedding as defined after lemma 94.
By lemma 108, g — p is a K-linear combination of (distinct) simple string maps:

g—prP= Z H3i9;
jeJ
We claim that, for all j € J, there exists a simple string map h; € End(M (w)) such
that hjp = g;:

Take any ¢ such that g;(z;) # 0. Then g;(z;) = 2z for some i'. Notice that
zie (- b)), (Livr - legw)) (M (w)).

Ifl;11 ... li1grs is not an initial subword of w;/, then lemma 116 gives the required
map. If it is an initial subword, then w; = w; (by our choice of k'), and so i —i’ € nZ.
Since u; < 7', i — 7' must be negative, and so ®8l71)/n(zi) = zy. Thus @55/*1)/"/) = gj,
by lemma 101.

Now, define h 1= —3 ", ujh; € End(M (w)). Of course, (1 — h)(z) = 2, and
(1 = h)(2z:) = a; for all i € {1,2,...,k}. We shall prove that }_ h" s a well
defined endomorphism of M (w).

Let N be maximal such that hj(zy) # 0 for some j € J such that h; is not a

power of ®,. We claim that A" is a K-linear combination of right shifts. Notice

that, for all j € J and i > N, h;(z;) is either 0, or z;;4n, for some d € N*
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Given any ¢ < N, we have that h¥"*1(2;) € spp{zni1, 2n42,..- }: If not, then
there must be jo, ji ...jn € J such that h,, ... h;,hj (%) # 0, and hence a descending
chain:

Zi >w hjl (Zz) >0ttt Cw h .. hjghjl (Zl)

in -
-with each element in {zg, 21, ..., zy }- which is clearly a contradiction.

Of course, given any j € J and i > N, g;(x;) € spg{zi+1, Zi+2, ...} (since either
g;i(x;) = 0, or j is a power of ®,). Thus, given any z € M(w), and any n’ > N,
Im(h™) C spr{zn, Zuit1, Zwsas - - . Consequently, as in the proof of lemma 120,
> on b is a well defined element of R- and so > onis0 h" € End(M(w)). Then:

S n (@) =D (1= h)(z) =z

n’'>0 n’>0

-and similarly » h™ (29) = 2o. Since M (w) = ¢((1—h)(x)), we have that M (w) =

¢(x)- which completes the proof. O
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Let w be any N-word or non-periodic Z-word. Recall from theorem 39 and propo-
sition 4 that M (w) is indecomposable, and M (w)is pure-injective. In this chapter,
we determine what conditions on w determine whether or not M (w) is pure-injective,

and what conditions on w determine whether or not M (w) is indecomposable.

6.1 Indecomposable Direct Product Modules

Given any word, w, we define W,, :== {w; : i € I} and U,, := {u; : i € I}. Of course,
these are subsets of | J,., H1(a) and (J,., H-1(a) respectively, and so we can define
partial orders on them both. For example, the partial order on W,, will be defined
by:

W; < Wj <= 1y, w; € Hy(a) for some a € Qp and w; < w;
If w is not a periodic Z-word, then we define a partial order on the standard basis
{zi 11 € I} of M(w) by:

z; < z; if and only if w; < w; and 4; < 4,

-indeed, this is equal to the partial order <,, as defined in (5.7.3).
Given any subset J C I, we say that the set {z; : i € J} satisfies the “Indecom-

posability Criterion”-or (IC)- if:

e Given any a € (), we can partition any subset of {j € J : z; € e,M(w)} into

I, U{ip} U Ik, where inf{w; : i € I} > u;, and inf{w; : i € Iz} > w;,.

We say that w satisfies (IC) if and only if {z; : i € I} satisfies (IC).
We shall prove that- given any N-word or non-periodic Z-word, w- M (w) is inde-
composable if and only if w satisfies (IC) and the poset {z; : i € I} has no infinite

descending chains.

Lemma 122. Let w be any N-word or Z-word (other than a periodic Z-word). Let
{2; :i € I} be the standard basis for M (w). Then, for any subset J C I:

o If{z;:j € J} satisfies (IC), then so does {z;, } U{z; :j € J}, for any j; € I
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o If {z; : j € J} satisfies (IC), then so does {z;, : k > 1} U{z; : j € J}, for any

ascending chain z; < zj, < z;, < ... in{z i€}

Proof. Take any subset Jy of J. By our assumption, it can be partitioned into

Jr U{jo} U Jg of Jy, as in the definition of (IC). Let:
w' = inf{w; : j € Jp} > Wy,

u = mf{ﬁj 1] € JL} > lALjO

There are three different cases to consider: Firstly, if w; > w;,, then let Ji =
JrU{j1}. Then:
inf{w; : j € Jp} = min(w', w;,) > Wy,
-s0 the partition JpU{jo}UJg of JoU{j1} satisfies the definition of (IC). Furthermore,
if we define Jj, = J,U{z;, : k > 2}, then the partition {jo}UJ,UJ}, of JoU{z;, : k €
N} satisfies the definition of (IC). If @, > 1u;, then the result is proved symmetrically.
Finally, suppose that both w; < w;, and u;, < u;,. w is not a periodic Z-word,

so by lemma 89, w;, < w;, (without loss of generality). Let J = Jg U {jo}. Then:
inf{lbj 1] € Jllq} = ’LZJjO > 71]]'1

And so J, U {j1} U Jy is a partition of Jy U {j;} satisfying the conditions required of
(IC). Furthermore, since zj;, > z;, we have, without loss of generality, that w;, > wj,,
and that, for all £ > 2:

Uy, > Wi, > Wy,

And so, setting Ji; = JpU{zj, : k > 2}, the partition J,U{j; }UJ} of joU{jr : k > 1}

satisfies the conditions required of (IC). O

Corollary 31. Let w = ...l 5l _1loD> be any expanding half-periodic Z-word. Let
{z; i € Z} be the standard basis of M(w).

Then w satisfies (IC) if and only if, for all i € Iy, the set {z; : i < iy} satisfies
(IC).
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Proof. Of course, if w satisfies (IC), then so does {z; : i < 0}.
To prove the converse, let s € Z be minimal such that wy is periodic, and let
n € N be minimal such that ws = (ls41...ls4,)>. Since w is expanding half-

periodic, I, € Q1, and I,,,, € Q;'. Consequently, for all i such that s <i < s+ n:
2y < Zhti < 22kti < 23kt < .-
We can partition {z; : j € Z} into:

{zj:j<s}U U {Zssitmn : m € N}

0<i<n—1

So, if {z; : 1 < s — 1} satisfies (IC), then, by lemma 122, so does w. O

6.1.1 Words satisfying (IC) and the descending chain condi-
tion

Recall that we refer to every element of M(w) in the form >, ; A;z;- where there

may be infinitely many non-zero ;. This is the element corresponding to the element
()\izi)iel of HiEI KZ@

Proposition 11. Let w be any Z-word or N-word, which satisfies (IC), such that the
poset {z; : i € I} contains no infinite descending chains.

Then M (w)is indecomposable.

Proof. Take any two elements z,y € M(w). Pick any a,,a, € Qo such that e, x # 0
and e,y # 0. Write e,z as Y., Az and eq,y as Ziely i zi- where \; # 0 for all
i€ 1, and p; # 0 for all i € I,.

Partition I, into I, U{io}UIR, as in the definition of (IC). Relabeling the standard
basis of w, we may assume that i = 0. Let D be the longest possible common initial
subword of wy and inf{w; : i € Ir}. Since wy < inf{w; : i € Ix}, there are two cases

to consider:

o If wy = D, then there exists o € @)1 such that D« is an initial subword of

inf{w; : i € Ig}. Define ¢1(v) to be the pp-formula such that:

¢1(M) = DaM
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Notice that zo ¢ ¢1(M(w)), and that z; € ¢y (M (w)) for all i € I.

e If iy < D, then let ¢; be (.D)(M). Then 2z & ¢1(M(w)) (by lemma 105), and
for all i € I, ; > D, so z € ¢1(M(w)) (by lemma 105).

Notice that, given any element m = Y, v;2; of M(w):
m € ¢1(M(w)) if and only if v;2; € ¢ (M (w)) for all i such that v; # 0

-by corollary 27, or corollary 26.
We can similarly find a pp-formula ¢, (v) such that zy & ¢o(M(w)), z; € ¢o(M(w))

for all 7 € I, and given any element m = ), v;2; of M(w):
m € ¢o(M(w)) if and only if v;2; € (M (w)) for all i such that v; # 0

Similarly, we may partition 7, into J, U{jo} U Jg, and find pp-formulas ¢ (v) and
Yo(v) such that zj, & 11 (M(w)), zj, & w2(M(w)), and:

2 € 1 (M(w)) for all i € Jg
2z € Po(M(w)) for all i € Jp,
-and also, for all elements m = >, v;z; of M(w), and k € {1,2}:
m € (M (w)) if and only if v;2; € ¢, (M (w)) for all i such that v; # 0

We may assume, without loss of generality, that jo > 0. Let p(vq,v2) be the

pp-formula:
Fug, V4, 05,06 (P1(v3) A P2(va) A1 (v5) A o(v6)
A (vy —vs—wvg) €1y... L, (ve — v5 — 1))

We claim that this satisfies the conditions required of lemma 6. Indeed, taking
U3 = ZieIR AiZi, Vg = ZieIL AiZi, Vs = ZieJR Hiziy Vg = ZieJL Hizi, we have:
M(w)  p(z,y)

Suppose, for a contradiction, that M(w) = p(x,0). Let ms, my, ms, mg € M(w) be

any witnesses to it.
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Since my € 11 (M), its zj, component must be zero. Also mg € 11(M), so its 2,
component must be zero.

Since M = (x —mg —my) € l;...Lj;_1(—ms — mg), it follows from corollary 20
that © — m3 — my has zy component zero.

However, m3 and my4 must have zg-component zero. And therefore, so must x-
giving our required contradiction. So M(w) = p(x,0), and hence M (w) is indecom-

posable, by lemma 6. O

Corollary 32. Let w be any N-word or Z-word, which is expanding periodic or ex-

panding almost periodic. Then M (w)is indecomposable.

Proof. By proposition 11, it’s enough to prove that w has (IC), and {z; : ¢ € I} has
no infinite descending chains. We will take the case where w is an N-word, l1lsl5. . .-
the proof for a Z-word is similar.

Recall that there exists unique s € N and n € N* such that D = I, ...l,, is a
band, Ly 1lepo - = D™, Iy, € Q7Y and I, € Qy (if s > 1).

Since w is an expanding, we have that, for all ¢ such that s <i < s+ k:
Zi < Zpti < 22k4i < Z3k4i < .-

We can partition N into:

k
{Zh s 7Zn} U U{Zi+mk -m Z 1}
i=1

Thus {z; : ¢ € N} has no infinite descending chains, and, by lemma 122 the finite set

{z1,...,2,} satisfies (IC), and hence so does {z; : i € N}, as required. O

These arguments can also be applies to mixed Z-words, to prove that Mt (w) is

indecomposable:
Proposition 12. Let w be any mized Z-word. Then M (w) is indecomposable.

Proof. First of all, given any subset J C 7Z containing only finitely many negative
elements, the set {z; : i € J} satisfies (IC), and has the descending chain condition-

one can show this by mimicking the proof of corollary 32.
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Now, given any two elements z and y of M7 (w), one can mimic the proof of

proposition 11 to find a pp-formula p(vy, ve) such that:

M*(w) = p(x,y) A —p(z,0)
-which completes the proof, by lemma 6. O]
Theorem 41. Fvery module on Ringel’s list s indecomposable.

Proof. 1t follows straight from from theorem 39, corollary 32 and proposition 12. [

6.1.2 Words not satisfying the descending chain condition

We shall prove in this section, that M (w) is not indecomposable, for all words w
such that the set of standard basis elements of M (w) contains an infinite descending

chain.
Lemma 123. If w is one of the following words:

e A contracting periodic or almost periodic N-word.
o A contracting almost periodic Z-word
e A mized almost periodic Z-word

o A contracting half-periodic Z-word.
Then M (w) is not indecomposable.

Proof. Write w as either lil5l3... or ...l _1lplils ..., depending on whether it is an
N-word or a Z-word. Let s be minimal such that ;105120513 .. is a periodic N-word,
and let n > 1 be minimal such that ls1lsiolsis - = (Lot - - lspn)™
Notice that l,y, € Q1, and I, (if it exists) lies in Q' (if w is a mixed word, then
we consider w™! rather than w- in order for it to satisfy this property).
Consequently, wgy, = lsiniilsiniolsinis... is a post-subword of w, and w,; =
lei1lsiolsis ... a pre-subword of w. Since ws = ws,,, there exists a simple string

map ¢ € End(M (w)), defined by:

b : Z )\izi = Z )\Z'JrnZi

el 1>5
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-where {z; : i € I} is the standard basis of M (w).
Suppose for a contradiction, that M (w) is indecomposable. Since M (w) is pure-

injective (by proposition 4), there exists- by lemma 6- a pp-formula p(vy,v,) such

that:
M(w> ): p(z Zkn+s) 28) N _‘p(fﬁ, 0)
kEN
And hence:
M(w) E gb(‘I)(Z Zhnts), P(25))
keN

However, ® (>, oy Zkn+s) = Dopen Zknts and @(z;) = 0, which gives our required
contradiction. ]

Corollary 33. Let w be any Z-word or N-word. Suppose that there exists a sequence
11,1%9,13,... such that:

Wi, = Wi, = Wiy =

Uiy > Uiy > Uiy > ...
Then M(w) is not indecomposable.

Proof. 1t suffices to prove that w is one of the words described in lemma 123. Let
a € Qo be such that z;, € e,M(w) for all k € N.

We can pick a subsequence j1, jo, ... of i1, 19, ... which is either strictly ascending
or strictly descending, and such that either w;, € H;(a) forall k € Nor w;, € H_1(a)
for all k € N. We assume, without loss of generality, that w;, € Hy(a) for all k € N.

Since wj, = wj, for all & € N, there must exist a band D, such that w;, = D> for
all k. Note that w cannot be a periodic Z-word- since it would imply that u;, = u;,
for all £ € N. Let s < jp be minimal such that ws = ls11ls49ls13 ... is periodic. Then
wg = E*° for some cyclic permutation E of D.

If E* was expanding, then there would be a map ® : M (w) — M (w) given by:

D : Z Aizi Z AiZitn
i i>s

-where n is the length of D. And so ®U1=40)/?(z, ) = 2z, - contradicting the fact that

2, > zi,. Consequently, £ must be contracting, and so w (or w™!) is indeed one of

the four types of word as described in lemma 123. O
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Lemma 124. Let w be any N-word or non-periodic Z-word. Suppose that the poset

{2; i > 0} contains an infinite descending chain. Then M (w)is not indecomposable.
Proof. Suppose that an infinite descending chain exists:

Zig > Ziy > Zip > ...
Let a € Qg be such that z;, € e,(M(w)) for all k. First of all, consider the chains:

Wiy 2 Wiy = Wiy = ...

Uiy > Ugy > Uiy > .
If either of them is eventually stationary, we can apply corollary 33. If not, then by
picking a suitable subsequence, we may assume that w;, ., < w;, and 4, < u;, for
all k € N.

As in the proof of corollary 33, we may- by picking a suitable subsequence- assume
that the sequence ig, 41,19, ... is strictly increasing or strictly decreasing, and that
there exists s € {—1,+1} such that w;, € H(a) for all £k € N.

We assume, without loss of generality, that g, 71, 7o, ... is strictly ascending, and

w;, € Hy(a) for all k € N. We define, recursively, a subsequence jg, j1, j2,... of

i, 11,12, ... and finite words Cy, Dy, (for every k > 0) such that:
1. jo< 1 <o <jg<...

2. Dy, is an initial pre-subword of wj,, and an initial post-subword of w;, for all

n > k.

3. C} is an initial pre-subword of w;,, and an initial post-subword of w;, for all

n > k.

4. For all k > 0, jri1 — Jk > ¢, + di, (where ¢; denotes the length of Cy, and d,
the length of D).

To do this, consider the descending chains w;,, w;, , w;,, ... and w;,, Wi, , U4y, . ... Write
: 1711 : IN—=1/711 -1/ -1
limw;, as [l ..., and limw,, as (I5)~'(1,) "' (I"y) ...

Assume that- for some n € N, we have found ji, Dy and C} for all & < n, such

that:
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L jo<i<jge<jgs<-<Jn

2. For all m < n, D,, is an initial pre-subword of w;,,, and an initial post-subword

of limwy, .
—

3. For all m <n, C,, is an initial pre-subword of u;, , and an initial post-subword

of lim u;,
—

4. For all m < n, jm — jm-1 > Cm-1 + dp_1 (where ¢,,_1 denotes the length of

Cin-1, and d,,,_1 the length of D,, ;).

Let k > 0 be such that i, = j,. Consider the descending chain z;, ,, > z;, ., > 2, ., >

As in the proof of lemma 86, there exists k" > k such that: I3 ...1; [ |, is an initial
subword of w;,, and (Ig)~' (1)~ ... (I, 1) ' (I",) " is an initial post-subword of
u;,,. Furthermore, we may pick k' large enough such that iy — j, > ¢, + d,,.

Define j, 11 to be this é}.. Let d,;; be maximal such that [} ... l;lH is an initial

1

subword of wj, ., and let Dy =17 ... 05 .

Similarly, let ¢, 1 be maximal such that (I;)~'... (! )~!is an initial subword

—Cn+1+1
of uj,.,, and let Cpyy = (lg) " ("¢ 11

)=t Then j,11, Dpy1 and C,yq clearly
satisfy the required conditions.

Having defined the sequence, consider, for each k£ > 0, the finite string module
M(C_;'Dy). Let y*) denote the standard basis of M(C, 'D}) with left-word Cy
and right-word Dj. Since Cy and Dy are initial post-subwords of u; ,, and wj,

respectively, there exists a canonical projection:
M(w) — M(C; " Dy)

-taking 2;,,, to y*). Since Cy and Dy, are initial pre-subwords of u;, and wj, respec-

tively, there exists a canonical embedding:
M(Cy'Dy) — M(w)
-taking y™® to 2j,. Combining these two maps, we have a map fj:

M(w) - M(C™'D) — M(w)
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-which takes zj;,,, to z;. Notice that, for every k, Im(fx) = spx{zi : jr — & <
i < jr + di}. Therefore, Im(fyx) N Im(frr) = {0} for all &' # k, and so the map
f = >0 fx is a well defined endomorphism of M (w). Furthermore, fe(zi,) =0
for all &' # k. So:

f(z Ziy) = Zzik

k>0 k>0

Now, assume for a contradiction, that M is indecomposable. Consider the ele-
ments z;, and Y-, 2i,. Since M (w)is pure injective, lemma 7, gives a pp-formula

p(v1,v9) such that:

M ): P(Zz'm Z Zz'k) A _‘p(07 Z Zik)

k>0 k>0

However, this implies that:
M IZ p(f(zio)v f(.?f))

-giving our required contradiction. O]

6.1.3 Words not satisfying (IC)

Let w be any Z-word or N-word. Given any ¢ € I and m € N, recall the post-subword
(+m) (M%) of 1w, as defined in section 5.4. Let 7 : M(w) — M (4™ 2™} denote the

[ 7

canonical projection.

Lemma 125. If w is an aperiodic Z-word or N-word, then for all j € I and m > 1,
there are only finitely many i € I such that ﬂ;”(zz) # 0.

If w is a half periodic Z-word, then given any j € Z and m € N, there are only
finitely many i < 0 in I such that 7} (z;) # 0.

Proof. 1t’s a straightforward extension of corollary 25. ]

Given any word w with standard basis {z; : ¢ € I}, any subset J C I, and any
i € J, wesay z; is J-minimal if z; £ z; for all j € J.
Given any N-word or Z-word, w, and any standard basis elements z;,, 2;,, 2j5, - - -

of M(w) and z;, we say that the sequence z;,, zj,, 2js, - . . Tight converges on z; if:

o uj, <y, and u; <4, for all k € N*
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o W > wj, > wWj, > ..., with limw;, = w;.
Similarly, we say that zj,zj,,2j,,... left converges on z; if w; < wj,, and
w;, <w; for all k > 1, and 4, > u;, > 0, > ..., with lima,, = ;.

Lemma 126. Let w be any N-word or non-periodic Z-word, with standard basis
{z; 11 € I}, which contains no infinite descending chains. Let Iy be any subset of I,
such that {z; : 1 € Iy} doesn’t satisfy (1C).

Then, given any j € Iy such that z; is Ip-minimal, there exists iy,12,13,... in Iy
such that each z;, is Iy-minimal, and the sequence z;,, zi,, Ziy, - . . either left-converges

or right converges on z;.

Proof. If wis a Z-word, then both w; and @; are N-words, so we may pick descending
chains of finite words D; > Dy > D3 > ... and C| > Cy > C3 > ... with such that
liL)nDn = w; and li_I)nCn = 1, respectively.

If w is an N-word, then (without loss of generality) w; is an N-word, and 4; a
finite word, so we pick a descending chain of finite words D; > Dy > D3 > ... such
that lim D,, = w;, and we let C,, = 4, for all n € N*.

i
Given any n € N*, we can partition the set 7\{j} into sets [JUIFUIFUI}UIFUIY,
where:
' ={ielh\{j} :w; > D,}
Ig' = {Z c I(]\{j} CUy < ﬂj and ’lZJj <w; < Dn}
IE = {Z S I()\{]} : ’LZ}Z < 'LZJj and ﬁj < ’lALZ < On}
[gz = {Z € Io\{]} : 'LAL]' <u; < Cn and UA)J' <w; <D,
Ig = {Z S ]0\{]} . lALZ S ﬂj and ’(Z)Z S 12)]}

Of course, I = ) for all n- since z; is minimal with respect to I, and w is not a
periodic Z-word. Furthermore, there must exist ny € N such that I:° = 0 - if not,
then we could easily find an infinite descending chain z;, > z;,, > z;; > ... in I-

contradicting our assumption.



6.1. INDECOMPOSABLE DIRECT PRODUCT MODULES 193

Now, for all n > nyg, either 1§ # 0 or I} # (): Suppose, for a contradiction,
that I} = I = ) for some n > ng- then [y can be partitioned into I U Iy U {j}.
Since w; > D, for all i € I, it follows that inf{w; : i € I7} > D,. If w; is
infinite, then D,, > w;. Whereas, if w; is finite, then w; # w; for all ¢ # j, and so
inf{w; : i € I7'} > w; (by lemma 86).

Similarly, inf{a; : i € I}'} > 4;, and so the partition I7 U I3 U{j} is a partition of
Iy as in the definition of (IC)- giving our contradiction.

Now, as I§ D Iy*h and I} D I}™' for all n, we must have (without loss of
generality), that I} # 0 for all n > ny.

Pick any ¢ € I3°, and take iy € Iy such that z; < z;, and z;, is minimal with
respect to Iy. Of course, 4; ¢ I5°, and so i; € I35°.

Now take any n; > ng such that i; ¢ I3". Repeating the argument, we can find
ig € 13" such that z;, is minimal with respect to .

Inducting this argument will give us a set ji, jo, J3, ..., such that:
o u;, < uj; for every k.
e Every u;, is minimal with respect to .

o For every k, w; < wj, < Dj.

Since lim D,, = wj, limw,; = w;. Now, we can pick a subsequence iy,1s,13,...
of ji,72,73,... such that u; ,4;,, U, ... is either non-decreasing or non-increasing.

Since {z; : ¢ € I} contains no infinite descending chains, the sequence must be non-
decreasing: thus z;,, 2,, 2i,, ... right-converges on z;, as required.
Note that, if we had I} # 0 for all n > ng, then we would have found a chain

which left-converges on z;. ]

Lemma 127. Let w be any aperiodic N-word, or any aperiodic or half-periodic
Z-word. Take any j,i1,12,13, -+ € I, such that z;,, z,, 2is, ... right-converges on
2.

Take any pp-formula ¢(v) such that z;, € ¢(M(w)) for all k € NT. Then z; €
S(M(w)).
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Proof. We may assume, without loss of generality, that w; = w;. Let m be the
number of equations in ¢.

First of all, if w; is aperiodic, then there exists & € N such that (uj_l)(m) is the
subword u]’ik of w. Since lim w;, = w;, we can pick d € N such that l;y1 ... [jlj x4
is an initial subword of w;,.

Assume, without loss of generality, that w;, € Hy(a) for some a € Qp- so w;, =

w;,. Since zj, € ¢(M(w)), lemma 98 gives that:
2 € S(M((u;,H)™))

By lemma 99, (uj_dl)(m) is the subword uj_dik ofw. Now, asu;, <wjandlj,11...lj,+p =
lit1 ... lj4r < wj, there exists a simple string map:

FoM((u,)™) — M(w)

Jd
-such that f(zj,) = 2;. So z; € ¢(M(w)), as required.

Now, if w; is not aperiodic, then w must be half-periodic- so #; must be an
aperiodic N-word- and so there exists d € Z such that (m)wj is the subword wy =
lgs1lgss ... of w.

We assume, for now, that (lzlg41...1;)"" is an initial pre-subword of lim @, , then
(by lemma 87) there exists n € NT such that, for all & > n, (lglgt1...1;)"" is an
initial subword of 4;,- and so (lg41...1;)”" is an initial pre-subword of 4;,. Thus, by
lemma 98:

M(w) = ¢(z) = M(las - Liby,) = 6(25,)

Given any k > n, since w;,,, < wj,, there exists a simple string map:
gt Mgy L, ) — M(lagy - Labg,)
-taking zj,,, to z;,. Note that Im(gj) is finite dimensional. Now consider the chain:
I M (g - g, ) T M (Lay - L, ) 2 M(lays - - - Ly,

Since h_n>1wjk = wj, the inverse limit of this sequence is M(lgyq ... ljw;), endowed

with maps hy, € Hom(M (lgy1 ... [j05), M (lgsr - . . ljw;,)) for each k > n: hy, being the

simple string map taking z; to z;, .
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Let (C,c) be a free realisation of ¢(v). For each k > n, consider the set of maps:

Se:={gk-1--.gnf : f € Hom(C, M(lgy1 ...1lj0;,)), such that f(c) € spx(z;.)}

Such a set is non-empty, since z;, € ¢(M(lgy1 . ..1j0;,)) for all k > n.
Furthermore, Sy is a K-vector space, which is finitely generated (since Im(g,) is

finitely generated), and Si,1 C Sy for all £ > n, and so:

ﬂsk%@

k>n
Consequently, there exists a series of maps (f, € Hom(C, M (lg41 - .. jW;,))k>n such
that fi(c) = z;, and grfrt1 = fi for all & > n- and hence there exists a map
f:C — M(lgyy ...lj0;) such that f, = hyf for all k > n. It follows that f(c) = zj-
and so z; € ¢(M(lgy1 ... Lj10;)), as required.

Now, if (lglg+1...1;)"" is not an initial subword of lim 4, , then let d < d be

-1

maximal such that (lg41...0;)”" is an initial subword of lim @;,. Let £ = lgyq...1;.

Since lim j, < (lalay1...1;)7", it follows that there exists n € N* such that:
iy, < E"'forallk>n
So there exists a canonical projection 7y, : M(w) — M(E~'w;, ), which gives that:
M(E™ w;,) = é(mi(z))
As above, we can construct a sequence
B M(E y,,,) 5 M(E ™y, ) 2 M(E ;)
Since 7y (z;,) € ¢(M(E 1w, )) for all k > n, the same argument as above gives that:
2 € p(M(E™"iy;))
-and, since this is a submodule of M (™0;), and hence of M (w):
M(w) E o("™wy)

-as required. O
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Lemma 128. Let ¢(v) be any pp-formula with m equations. Let w be any aperiodic
Z-word, and Iy any subset of I such that z; € ¢(M(w)) for all i € Iy. Then:

>z € ¢(M(w))

i€l
Similarly, if w is an expanding half-periodic Z-word, and Iy any subset of I N{i €
7 :i <0} such that z; € ¢(M(w)) for all i € Iy, then:

>z € ¢(M(w))

i€lp

Proof. Similar to the proof of lemma 171. [

Proposition 13. Let w be word, other than a periodic Z-word. If w doesn’t satisfy

(IC), then M (w)is not indecomposable.

Proof. Since every finite word satisfies (IC), w must be a N-word, or a Z-word. If the
poset {z; : i € Z} has an infinite descending chain, then we may apply lemma 124. We
assume therefore that it does not. If w is periodic, or almost periodic, then it cannot
be expanding (by corollary 32)- so lemma 123 gives that M (w) is not indecomposable.

We therefore assume, from now on, that M(w) is either aperiodic, or is a half-
periodic Z-word. Assume, for a contradiction, that M (w)is indecomposable. Take
any subset Iy C [ which cannot be partitioned as in the definition of (IC). Note
that, if w is half-periodic, then it must be expanding (since we are assuming that
{z; 1 i € I} has d.c.c.)- and so, by corollary 31, we may assume that i < 0 for all
1 € Iy.

We claim that there exists an infinite subset J C I, such that:
e For all j € J, z; is Ip-minimal.

e Forall m € N, there are only finitely many distinct 4, j € J such that 7]"(2;) # 0
(where 77" : M(w) —» M((m”z](-mﬂ) is the canonical projection associated from

the post-subword, as in lemma 95).

e For every j € J, there exists ji, jo, js, ... in J, such that z;, 2;,, 2j,, ... either

right-converges on z;, or left-converges on z;.
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We shall first explain why such a set implies that M (w) is not indecomposable- and
then prove that it exists.

Let J be any set satisfying the claim. Assume, for a contradiction, that M (w)is
indecomposable. Pick any ¢ € J. Relabeling w if necessary, we may assume that
i = 0. Since M (w) is pure-injective, there exists- by lemma 7- a pp-formula p(vy,vs)
satisfying:

M(w) = p(z, Z z;) A =p(0, Z %)

Let m be the number of equations in p. Define:
J={jeJ:35 € J\{j} such that 7}"(z}) # 0}

By the conditions of J, J’ is finite. Since J is infinite, J\J' # 0. Given any non-zero
i € J\J', consider the natural projection ©™ : M(w) — M(™H ™). Of course,
W}”(Zjej z;) = 7" (%), so:

M2 p(0, 77 (=)

So, by corollary 23, we have that M (w) |= p(2;,0). Thus lemma 128 gives:

M(w) (0, 3 2)

NTAV
Now, given any j € J', there exists a sequence ji, Jo, . .. of elements of J such that-
without loss of generality- z;,, zj,, 25, . . . Tight converges on z;. Thus, by lemma 127,

M(w) E p(0, 2;). Since J' is finite, we have that:
M(w) = p(0,) %)
jeJ’
And so = p(0,> e z;), giving our required contradiction.
All that remains, therefore, is to show that such a set exists. Let Iy be any subset
of I which cannot be partitioned as in the definition of (IC). Note that, if w is a
half periodic Z-word, then it must be expanding (since w has no infinite descending
chain) so we may use the subset {i € Iy : i < 0} instead of I: by proposition 11, it
cannot be partitioned (as in the definition of (IC)). Furthermore, by corollary 125, for

all i € Iy and m > 1, there are only finitely many j < 0 in Iy such that 77"(2;) # 0.
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Given any n € N, let S,, denote the set of all sequences of elements of N* such

that the sum of all the terms is a given sequence is n. For example:

Sz = {(17 L, 1)? (172)7 (27 1)7 <3>}}

Also, we let Sy := {0}. Given any sequence s € S,, of length k, and any ¢ € NT,
we denote by s,t the sequence in S,,; of length k£ 4 1, such that s is an initial
subsequence, and whose last term is t. For example, if s is (1,2,1), and ¢ = 4, then
s,tis (1,2,1,4).

We shall define, recursively, for every n € N, a set J, = {is : s € S,,} C I, and-

for every s € y<p<n Sk @ sequence yi, 42,43, .. in {2 : i € Io} such that:

e 2; is Ip-minimal for all s € §,,.

y" is Iy minimal, for all s € Us<n Sk, and n’ € N*

For every k < n and s € Sy, the sequence z;,,,2i 5, %, o U U2, U2, . ..

either right converges or left converges on x,

Given any n < m and any s € S,,, ' € U, Sk

m () = 7, (25) = 0

For the n = 0 case, pick any iy € Iy such that z;, is [p-minimal. By lemma 126,
there exists a sequence y3,y2,ys, ... of Ip-minimal elements in {z; : i € Iy}, which
either left converges or right converges on z;,.

Now, suppose that, for some n, we have sets Jy, Jq, Jo,...J,, and a sequence
yl oy y3, ... for every s € U0§k§n Sk, satisfying the given conditions.

Notice that any element of S,, can be written uniquely in the form (s, m)- where

1<m<nandséeS,_,,. Furthermore:
S ={(s,m,1): (s,m) € S,} U{(s,m+1):(s,m) €S}

-except when n = 0, in which case S = {(1)}.
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Of course, there are- by corollary 125- only finitely many j € o\ ngn Jy such
that:
w1 (2;,) # 0 for some s € U Jj.

k<n

-and also only finitely many j € Io\ U, Jx such that:
T (2;) # 0 for some s € U I,
k<n
Consequently, given any element of S, of the form (s, m) (with m > 1, s € S,,_),
consider the sequence y!, 42,43, .... We can therefore pick k such that y* ¢ {z, :
s' € U<, S}, and such that:
(k) = 7T",;H(zZ ,)=0forall s e U Jy

k<n

+

(where 7r" means the map ﬂ”“- where j is the element of Iy such that y* = 2;).

k+2 as y?+2

Define i, 11 to be the j € I such that y* = zj. Relabel Yy as yl, and ¢!
and so on. Of course, the sequence y!, 42, 43, ... still (either right or left) converges
on x.

Also, by lemma 126, we can pick a sequence y} .1, Y2, 1, Yo i1, - - Which either
left converges or right converges on z;,,, ;.

Now, if n # 0, then consider the sequence y; ..92,.,9:,,,... which either left
converges or right converges on z,,,. Again, we can pick k£ > 1 such that:

"H(ysm) "H (,zz ,)=0forall s’ € U Ji

k<n

k+2 as

-and we define iy 1 to be such that z;,,,, = y%,,. Relabel y}f! as y! . and yit:
Y2, and so on. Notice that y; ., 42,95, .. still (left or right) converges on z; .
Also, pick any sequence ¥ .. 1, Y 15 Yo 1, - - - of Io-minimal elements which either

left converges or right converges on @, 1.

We can do this for every element of .J,,, taking care to ensure that:

T (z,) =i, (2,) =0 for all 5,5 € S,

1s

-which will give us an element i, for every s € S,,;1, and a sequence y!, 32, vy3, ... for

every s € Jycp<nyr Sk satisfying the required conditions.
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Having done this for every n € N, one can easily check that the set J, .y Jn

satisfies the conditions required of J. O

6.2 Pure-injective direct sum string modules

Given any N-word or non-periodic Z-word, w, we define W,, := {w; : i € I} and
Uy, = {t; i € I}. Of course, these are subsets of (J,cq, Hi(a) and U,cq, H-1(a)
respectively, and so we can define partial orders on them both. For example, the

partial order on W, will be defined by:
w; < Wy <= w;, w; € Hy(a) for some a € Qp and w; < w;

We shall prove that M (w) is pure-injective if and only if both W, and U,, satisfy the

ascending chain condition.

Proposition 14. Let w be any N-word or Z-word. If either of the posets {w; : i € Z}

or {u; : i € Z} contains an infinite ascending chain, then M (w) is not pure-injective.

Proof. Suppose, without loss of generality, that {w; : i € Z} contains an infinite
ascending chain:

UA)7;1<UA)Z'2<’UAJZ'3<...

For each n € N*| pick a finite word D,, such that w;, < D;, < w;, +.- Notice that

(.Dps1)(v) — (.D,)(v) for all n € N, and that:
Zi, € (Do) (M(w)\(-Dis1) (M (w))
Thus we have an infinite descending chain of pp-definable subgroups of M (w):
(-.D1)(M(w)) > (:D2)(M(w)) > (.Ds)(M(w)) > ...

Thus M (w) is not X-pure-injective (by theorem 4), and so- since w is of countable

dimension over K, it is not pure-injective (by lemma 5).

The rest of this chapter is devoted to proving the converse of proposition 14:
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Theorem 42. Suppose that w is an N-word, or a non-periodic Z-word, such that
both W,, and U,, have the ascending chain condition.

Then M (w) is totally transcendental- i.e. the lattice pp(M(w)) contains no infinite
descending chains.

And consequently M (w) is pure injective.

6.3 Maps between string and band modules

First of all, we need a little background on band modules.

6.3.1 Tubes in the AR-quiver of a string algebra

Recall that every finite dimensional K [T, T~']-module can be written as (M, ¢)- where
M is a finite dimensional K-vector space, and ¢ is an automorphism of M.

Every indecomposable finite dimensional K[T,T~!]-module is isomorphic to a
module of the form (K™, J,)- where n € N, A € K\{0}, and J,, is the n x n
Jordan matrix, with every entry on the diagonal being A (which is an indecomposable
automorphism of K") . Furthermore, (K™, J, ) = (K™, J;,,.) if and only if m = n
and A = p.

It is known (see [8]) that the Auslander-Reiten quiver of K|[T,T'] consists of a
family of orthogonal homogeneous stable tubes {7, : A € K\{0}}, where, for each A,

the unique ray in 7, is given by:
(K, Jiy) 25 (K2, Jon) 2 (K3, J50) 2
Lemma 129. Given any band, D =1, ...1l,,, there exists a functor:
Fp : K[T,T~'-mod — A-mod

-taking each module (V, @) to the band module M(D,n, ¢).
Furthermore, Fp preserves almost-split exact sequences, and takes every homoge-

neous tube in K[T,T~']—mod to a homogeneous tube in A-mod.

Proof. See [8, pl164] O
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We shall write each band module M (D, n, J,,») as SP[n], and the irreducible maps
between band modules as fp,,» : SP[n] — SP[n+1] and gp . : SP[n+1] - SP[n].
When it is clear which tube we are talking about, we will refer to the modules as

just S[n|, and the morphisms as f,, and g,. Furthermore, we will write the map:
Jnk—1- fos1fn: Sf[n] - Sf\)[n + K]

-as f®) and the map:
nGn+1 - - - Gntk-1: S)?[TL + k] - S/\D[n]

-as g,
Recall that every band module has underlying K-vector space @;1_01 V;, where
Vi = K" for all i. Let ¢;1,...,¢€;, be the canonical basis for each V;. Then we refer

to the set {e;;: 0 <i<m—1,1<j <n} as the standard basis of SY[n].

6.3.2 Maps between string and band modules

The homomorphisms between band modules and direct sum string modules have been
determined in [12]. We present an equivalent definition, which is more consistent with
the notion of simple string maps, as defined in section 5.5.

Fix any non-zero A € K and band D. This gives us a unique tube in the AR
quiver: we shall denote its elements as S[n] and its irreducible morphisms as f,, and
Jn.-

Consider the string module M(*D>). Let {z : i € Z} be a standard basis for
it (such that zy has right word D>). We can define a map 7}, : M(*°D>) — SP[1]
such that:

T - (Zierj) — )\*"zl,j

-for all ¢ € Z and 7 such that 0 < 7 < m — 1. One can easily check that it is well
defined.

Lemma 130. There ezists, for every n, a map m, : M(*D>) — S[n| such that:

T1 = g192-..-9n-1Tn
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Proof. This can be proved by induction on n, using the dual result of lemma 22,
noting that every m, cannot be a retraction, since M (°°D>) is indecomposable (by
theorem 39).

O

Given any direct sum string module M (w), we define a simple string map from

M(w) to SP[n] to be any map of the form:

M(w) L MED=) 5 s;) S sl

-where f is a simple string map, and 1 < j < n.

Theorem 43. Every homomorphism from a string module M (w) to a band module

Sin| is a K-linear combination of simple string maps.
Proof. See [12] O

By a dual argument, we can define a series of maps:
{i,, € Hom(S[n], M(*D*)) : n € N}

-such that, for all n:
/I/nfn_l .« 0. f2f1 — Zl

(Each map i, is the K-dual of the map m, over the opposite algebra A%.
We define a simple string map from a band module SP[n] to a string module
M (w) to be any map of the form:
sl 5 S T D) B M(w)

-where h is a simple string map (with finite dimensional image), and j < n.

Theorem 44. Let f: SP[n] — M(w) be any homomorphism from a band module to
a direct sum string module.

Then f is a K-linear combination of finitely many simple string maps.

Proof. See [12] O
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Finally, a simple string map map from a band module SP[n] to a band module
C . . . .
S,/ [m] is any map f which takes one of the following two forms:

1. A map of the form:

9=

flm=Fk)
SX[n) — SY[K]

— 8./[m]

(which can only happen if C = D and A = p- i.e. both band modules lie in the

same tube).

2. A map of the form:

(n—k) i — 5 m—
T SPIR S M(*D>) B M(20>) 2 S9[)T— SSm]

Sy [n]
-for some k < n, j < m, and simple string map h.

Notice that, in the second case, h must be a simple string map of the form:

M(®D®) = M(E) — M(*C™)

-where F is a post-subword of *D*°, and a pre-subword of *C*°, and the maps are
the canonical projection and canonical embedding as defined after lemma 95 and
lemma 94 respectively.

It follows that, if A’ is a simple string map of the second kind, then given any
standard basis element z of S{'[n], the right-word (and left-word) of A'(z) in SS[m]

is strictly greater than the right-word (respectively, left-word) of z in S¥[n].

Theorem 45. Any map between two band modules is a finite K-linear combination

of simple string maps.

Proof. See [12] O

6.3.3 Results about simple string maps

Lemma 131. Let M and N be any direct sum string modules or band modules, and
f,g € Hom(M, N) be simple string maps.

Let z be any standard basis element of M such that f(z) # 0. Then f = g if and
only if f(z) = g(2).
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Proof. Lemma 101 gives the case when M and N are both string modules. The other
cases also follow from this lemma, by considering what the simple string maps look

like. ]

Let M and N be any band modules or direct sum string modules. We define
Hom'(M, N) to be the K-vector subspace of Hom(M, N) consisting of all maps f
which are a K-linear combination of finitely many simple string maps. Notice that,
if M is a finite dimensional string module or band module, then Hom(M, N) =
Hom'(M, N): Indeed, every f € Hom(M, N) is a K-linear combination of distinct
simple string maps > ied Ajfj. Given any standard basis element z of M, there are
only finitely many different j € J such that A; f;(2) is non-zero- otherwise >, ; A; f;
would be an infinite sum of different basis elements of N- which cannot happen in a
band module or a direct sum string module. Since M has only finitely many basis
elements, it follows that there are only finitely many j € J such that A; is finite.

Define End'(M) to be Hom'(M, N). Notice that, if M is a band module, then
End' (M) = End(M), and so it is a ring. Also, if M is a string module, then the
composition of two simple string maps in End’(M) is a simple string map, so End’(M)

is a ring.

6.3.4 A variant of Konig’s Lemma

Given any Xi, X5,Y:,Y; € A-Mod, any map f : X; &Y, — Xy, & Y; can be written

in the form:

Jin S [ X Xo
for fa2 ‘ Y) Y5
-we define the restriction of f from X; to X5 to be the map fi; : X7 — Xo.
For each i € NT, let M; = @], Xi;, where X;,,..., X;,, are indecomposable.

Take any infinite sequence:
My Do, 3o B

We define an indecomposable subchain of this sequence, to be any sequence of the
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form:

g1 g2 g3
Xigy, = Xogy, = X3ps = ...

-with &; € {1,2,...,n;} for each i € N, and with each map ¢; : Xir, — Xit1x

i+1
being the restriction of f; from X, to X 14,

In the interests of easing notation, we shall usually write an indecomposable sub-
chain as X1, X, ...- where X; = X, (for some k;) for each i € NT.

We define a finite indecomposable subchain (of length n) of the sequence to be

aly sequence:

91 g2 g3
Xig = Xog, = X3py — .. Xk,

-with k; € {1,2,...,n;} for each i < n, and with each map ¢; : X;x, — Xij1x

i+1
being the restriction of f; from X, to X1, ;-

We shall usually write a finite indecomposable subchain as X, Xs,...- where
X; = X, (for some k;) for each i € NT.

The following result is a variant of Konig’s lemma, written in terms of these

sequences:

Lemma 132. For eachi € N, let M; = @;“:1 X j, for some indecomposable modules

Xy Xin,. Take any infinite sequence:
VLSV AECS U AEC S

Let (1) be any unary predicate on the set of all finite indecomposable subchains of this

sequence, such that,:

(T)(Xl,kla . 'Xn,kn) = (T)(lekl’XZkQ’ S 7Xn—17kn71)

-for every finite indecomposable subchain (X1 k,, Xoky, - Xnk,)-
Suppose that, for all n > 1, the sequence has a finite indecomposable subchain
X17k1’ X27k27 N ,kan S’LLCh th(lt (T)(Xl,ku X27k-2, e aXn,kn)-

Then there exists an infinite indecomposable subchain:
Xl,k1 — X2’k2 — X37k3 — ...

-such that (T)( X1k, Xokys - - Xk, for allm > 1.
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Proof. Given any n > 0, let C,, be the set of all indecomposable subchains of length
n satisfying (). By our assumption, C, # ) for all n.

Given any finite indecomposable subchain X x,, Xog,, ... X;n,,, and any n > 0,
let Co( X1k, Xokys--- Xmk,,) be the set of all indecomposable subchains of length
m + n whose first m modules are Xi z,, Xo ko - - - Xk, and which satisfy ().

We shall recursively define a sequence:
Xl,kl — X27k2 — XS,kg — ...

-such that, for all m and all n > 0, C,.,(X1.4y, Xokgs - - - s Xk, ) # 0: and hence that
(1) (X1 ks - - - Xing,,) for all m > 1.

Assume that, for some m > 0, we have found X x,, Xog,, ..., Xmk, satisfying
the condition.

Then, for all n > 0, C,,( X1 4y, - - - Xonk,,) Partitions into:

U Cn—l <X1,k‘17 LR Xm,k'm’ Xm+17])

J<nm+1
So there exists j < ny41 such that Cp1(Xi gy, - Xing, Xet1,5) 7 0 for all n > 0.

We define k,, 1 to be any such j- completing the induction.

6.4 Spanning sets and almost-invertible maps

We assume from now on that w is an N-word or Z-word. Notice that, given any finite
word D, there is at most one ¢ € I such that w; = D.

Define Z,, to be the basis set {z; : i € I} of M (w), and define two maps w : Z,, —
W, u: 2y — Uy, by w(z;) := w; and u(z;) = ;.

We aim to prove that if both W,, and U, have the ascending chain condition,
then M (w) is totally transcendental- i.e. it has no infinite descending chains of pp-
definable subgroups. In order to do this, we need a fair amount of groundwork.

Recall that, given any descending sequence z;;, > z;, > 2, > ..., hingk and

lim @;, are either finite words or N-words. We claim that they are both N-words:
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First of all, if the sequence w;, > w;, > w;, > ... is eventually stationary, then the
limit cannot be a finite word (by our observation above. Whereas, if the sequence is
not eventually stationary, then by lemma 86, @)nw(zik) is an N-word.

We define Z to be the “closure of Z under limits of descending chains”- i.e.
a smallest possible set containing every element of Z, such that, for every infinite
descending chain in Z:

Ziy > Zig > Rig > .-
-there exists an element z € Z such that w(z) = limw(z;,) and u(z) = limu(z;,).

Lemma 133. Let z be any element of Z\Z. Then u(z) ‘w(z) is a word. Further-
more, if we label w(z) = LlGly ... and u(z) = (I5)"*( )" *('y) " ..., then, given

any j € 7, there evists 2’ € Z\Z such that:

u) = () ) 1)

w(2) = l;+1l;+2l;+3 e
Proof. Since z € Z\ Z, there exists an infinite descending chain:
Zip > Zig > Zig > ...

-such that lim w(z;,) = w(z) and limu(z;, ) = u(z). Consider the chains:

w(zil) > w(2i2> > w(zis) g

w(ziy) > ulziy) > u(zy) > ...

Given any j > 0, there exists- by lemma 86- & € N¥ such that /}...l and
(I 41 140)7) 7" are initial subwords of w(z;,) and u(z;,) respectively (for all n. >

k). Thus I’ ;... 0" lgl} ... I} is indeed a word for all j, and hence so is u(z) " 'w(z).

It also follows that:

O Zintj 7 Riny14i = Zipgoti = -
: _q/ / /

* ﬂnw(ziwj)} = llioliys -

¢ hLQU(szH)} = (l;)_l(l;—1>_1(l;—2>_1(l;—3)_1 T
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And so there must exist 2/ € Z such that u(2’) = (I5)~"(l;_,)""(I;_5)""... and

N o1 / / .
w(2') = U U bl 5. .., as required. O

One can easily check that the set {w(z) : z € Z} (respectively {u(z) : z € Z})

has the ascending chain condition if and only if W, (respectively, U,,) does.

6.4.1 The spanning set of a pp-definable subgroup

Given any z € Z, (u(z)) 'w(z) is a word. We denote by M (z) the string module
M ((u(z)) " w(2)). Define:

A:={M(z):z¢€ Z,M(z) is not a periodic Z-word}

P:={M(z):z € Z,M(z) is a periodic Z-word}
B:={SP[n]:n>1,X¢e€ K\{0},3z € Z with w(z) = D*® and u(z) = (D~')>}

And define M := AU P UB. We write add(M) to mean the set of all finite direct
sums of modules in M.
Notice that, for all M € M, and standard basis elements x of M, there exists
z € Z such that z has right-word w(z) and left-word u(z) in M (by lemma 133).
Define E := End'(M(w)). Given any pointed module (M, m), with M € add(M),
we define:

(M, m)(M(w)) :={f(m) : f € Hom'(M, M(w))}

It is clearly an E-submodule of M (w).
We define an M-sequence to be any collection (M, fi,m;)ien+- where M; €
add(./\/l), fl c HOIHI(MZ',Mi_H), and m; € Mz for all 7 2 1, and fz(ml) = Miy1

for all i. Such a sequence will usually be written in the form:
(Ml,ml) L>J\4'2 £>]\4"g, L

An M-sequence is said to be eventually stationary (respectively eventually zero) on
M (w) if there exists & > 1 such that (M;,m;)(M(w)) = (Mg, my)(M(w)) (respec-
tively (M;, m;)(M(w)) = 0) for all j > k.
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Given a second M-sequence, (N, g;, n;)ien+, We say the two sequences are equiv-
alent if (M, my)(M(w)) = (Ng,ng)(M(w)) for all & > 1.

Given any pp-formula ¢(v), we say that a pointed module (M, m) is a spanning
set for ¢(M(w)), provided M € M, m € ¢p(M), and (M, m)(M(w)) = ¢(M(w)).

Given any descending chain of pp-definable subgroups of M (w):

p1(M(w)) > ¢o(M(w)) > ¢3(M(w)) > ...

- a spanning sequence for ¢1(M(w)), p2(M(w)), ... is defined to be any M-sequence,
(M;, fi;mi)ien+ such that, for all k& > 1, (Mg, my)(M(w)) is a spanning set for
Pr(M(w)).

We shall prove the following two results:

Theorem 46. Let w be any N-word, or non-periodic Z-word, such that W,, and U,
have the ascending chain condition.

Then every M-sequence is eventually stationary on M (w).

Theorem 47. Let w be any N-word, or non-periodic Z-word, such that W,, and U,
have the ascending chain condition.
Then every descending chain of pp-definable subgroups of M(w) has a spanning

Sequence.

Of course, it follows from these two results that if w is an N-word, or non-periodic
Z-word, such that W, and U,, have the ascending chain condition, then M (w) is

totally transcendental.

6.4.2 Almost-invertible morphisms

Lemma 134. Let M and N be any pair of modules in M. Given any m € M, and
any f € Hom(M, N), there exists g € Hom'(M, N) such that g(m) = f(m).

Proof. It M € B, then f € End(M,N) = Hom'(M, N) (as in (6.3.3)) as required.
Assume, therefore, that M € AUP- and hence that M is a direct sum string module.

Let {f; : j € N} be the set of all simple string maps in Hom(M, N).
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Let J' C N be as large as possible such that the subset {f;(m) : j € J'} of N
is linearly independent over K. Given any j € J\J', A;f;(m) lies in the K-span
of {fj(m) : j € J'} (otherwise, the set {f;(m) : j € J'} U{j} would be linearly
independent, contradicting, the maximality of .J).

Consequently, there exists p; € K for all j € J’ such that:

Flm) =" p;f;(m)
je
Since N is either a direct sum string module or a band module, and all the f;(m) are
linearly independent, only finitely many of the y; can be non-zero. Let J' := {j €

J :pj # 0}. Setting g = ZjeJ’ w;f; € Hom'(M, N) completes the proof. ]

Given any periodic Z-word, D> (where D is a band, of length n), there exists a
simple string map in End(M (*°D>) taking every standard basis element y; to y;ip.
We shall refer to this map as ®. Of course, it is invertible, and we refer to its inverse

as ¢1.

Lemma 135. Given any M € M, and any simple string map f € End' (M), the

following are equivalent:
e f is an isomorphism.

e For all standard basis elements z of M, f(z) is fundamental (cf 7.1.2) in M,

with right-word w(z) and left-word u(z)
e [ is the identity map if M € AU B, or a power of ®, if M € P.

Proof. These can easily be checked, using lemma 110 and lemma 156, and the defi-

nition of simple string maps. ]

Given any M € M, a map h € End' (M) is almost-invertible if it cannot be
expressed as a K-linear combination of finitely many non-invertible simple string
maps.

Of course, any simple string map f € End(M) is invertible if and only if it is

almost-invertible.
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6.4.3 Facts about almost-invertible maps

In general, given any M, N € M, we say that a map f € Hom'(M,N) is almost

wnvertible if and only if one of the following occurs:
e M € AUP, N= M, and f is an almost invertible map in End'(M).

o M € B-say, M = SP[n], and N = SP[n + k] for some k > 0, and f = hf® for

some invertible map h € End'(N).

The concept of an almost invertible map may seem somewhat arbitrarily defined, but

they have a practical property: Given any M, N € M,z € M, and f € Hom'(M, N):
(M, x)(M(w)) = (N, f(z))(M(w)) if f is almost-invertible
In fact, given any g € End'(M):
(M, x)(M(w)) = (M, g(x))(M(w)) if and only if ¢ is almost-invertible
-although these results won’t actually be proved.

Lemma 136. Take any L, M,N € M, and any maps f,h € Hom'(L, M), g €
Hom'(M, N).
If gf 1is almost invertible, then so must both f and g be.

Also, if f + h is almost invertible, then at least one of f and h must be.

Proof. The second assertion follows straight from the definition of an almost invertible
map.
The first assertion can be checked case by case. For example, if L € A, then gf

is almost invertible if and only if N = L and gf is invertible. Then the map:

Ay Y I Ly}

-implies that L is a direct summand of M. Since M is indecomposable (by theorem 39,
or theorem 36), M must be isomorphic to L, and g and f are invertible- and hence

almost-invertible. OJ
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Consequently, given any M € M, the set of all non-almost-invertible f € End’(M)
is a two-sided ideal in End'(M).

Lemma 137. Take any M, N € M, and any simple string map f : M — N which

18 not almost-invertible. If f is not one of the following two types of map:

e A map of the form f@gl+k) . SPp] — SPn — k]

o A map of the form M (*D>) 5 SPi] ey SPn].
-then, for all standard basis elements z of M, f(z) is a K-linear combination of
finitely many standard basis elements y of N- all of which satisfy y > z (under the
ordering of Z ).

Proof. If M and N are string modules, then f(y) is a standard basis of N, so we may
consider both z and f(z) as elements of Z. Then M = M(z) and N = M(f(2)). It
follows that z < f(z) (the proof is similar to that of lemma 110).

Now suppose, for a contradiction, that both w(f(z)) = w(z) and u(f(z)) = u(z),
then u(z)tw(z) = u(f(2)) tw(f(2)), and so M(z) = M(f(z)), and- by lemma 110-
f is either the identity map, or a power of the shift map ® (if M(z) € P)- and hence
is invertible, giving our required contradiction. Thus f(z) > z as required.

One can check the other cases similarly, using this fact, and the definitions of

simple string maps. O]
Lemma 138. Suppose that we have a M-sequence:
(thl) E>)(2 E>)(3 — ...

-where each X; in indecomposable, and each h; is a non-invertible simple string map.

Then the sequence is eventually zero.

Proof. 1t will be enough to prove that, for any standard basis element z of X5, there

exists n > 1 such that A, ...hohi(z) = 0. Define ny,no, ... as follows:

ny =1
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niy1 := min{k > n; : hy_1 is not of the form D4 or of the form m;g" }

-note that such a set is always non-empty: since any chain of maps of the form:

(31) g(i1) . . (32) g(i2) . . . . (43) g(i3)
ey S[n+31—zl]f—g> Sin+ j1 — i1 + jo — i9) AN

Sn|

(with each i > 0) will eventually be zero.

For all 7 > 1, define Y; := X,,, and g; := hy,,—1... hp,41hy,. Notice that, for all
1, g; takes any standard basis element 2’ of Y; to a K-linear combination of standard
basis elements zy,.. ., z, of Y;,, each satisfying 2} > 2.

Assume, for a contradiction, that h,, ...hyhi(z) # 0 for all n. Then let z() = z,
and define 2?20 . inductively, as follows: Given 2™ such that for all m > n,
Gm -+ - Gns19n(2) # 0, write g,(2™) in terms of the standard basis of Yj,:

g () =" Ny
jed
(where J is finite, and A; # 0 for all j € J). By our assumption, at least one of the
y; must satisfy g, - .. gnrogni1(y;) # 0 for all m > n. Let 2™ be any such y;.
Now, we have that:

M <D<
-contradicting the fact that Z has no infinite ascending chains. O]
Corollary 34. Take any M-sequence:
(My,my) & My 2 My — ...
-where each M; s indecomposable, and each g; is not almost invertible.
Then there ezists n € N such that g, ... gag1(m) = 0.

Proof. Write each map g; as Z;Zl Aij fij- with each f; ; being a non-invertible simple

string map, and each )\; ; being non-zero. We can define a M-sequence:
M, M2(”1) EN Mg("lm) s, M§”1"2n3) N

-such that, for all n > 2, the set of all indecomposable subchains of length n is in
bijective correspondence with the set of all chains of the form:

fia f2,5 Fr—1.n_1

My — M, — - — M,
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(with 1 < jp < ny for all & < n). Given any finite subchain Xi,..., X, let

(t)(Xy,...,X,) be the condition:

fo1ju s+ Sogofr(ma) # 0

Given any infinite indecomposable subchain X, X5, X3, ..., there exists n such that
X1, ..., X, does not satisfy (1) (by lemma 138).

Thus, by lemma 132, there exists n € Nt such that g, 1...g291(m1) = 0. O

6.4.4 Inverses of almost-invertible morphisms

Lemma 139. Given any M € AU B, every almost invertible map in End’ (M) has

an inverse in End(M).

Proof. By lemma 135, the only invertible simple string map in End(M) is the identity
map. Consequently, every almost invertible map in End’M can be written in the form
A1 — g), where g € End'(M) is a finite combination non-invertible maps- i.e. g is
non-almost-invertible.

It’s enough to prove that Y .-, ¢* is a well defined endomorphism of M, since:
AML=g) AT g =0"D g1 —g) =1y
i=0 i=0

Given any x € M, we can find n > 1 such that ¢"(x) = 0, by corollary 34. Then
Yoo 9t (x) = >, g (x), which is a well defined element of M. So Y ;= ¢ is indeed

a well defined endomorphism- completing the proof. O

Corollary 35. Take any M € A, and N in M, and almost invertible f € End'(M).
Given any m € M, and any g € Hom'(M, N), there exists h € Hom'(M, N) such
that hf(m) = g(m)

Proof. By lemma 139 f has an inverse f~! € End(M). The map ¢gf~' € Hom(M, N)
takes f(m) to g(m)- so, by lemma 134, there exists h € Hom'(M, N) taking f(m) to

g(m), as required. O
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Corollary 36. Let SP[n] be any module in B. Let f € Hom'(SP[n], SP[n + k]) be
any almost invertible map. Take any M € M which is not isomorphic to SP[i] for
any i <n+k.

Then for any g € Hom'(SP[n], M), there exists h € Hom'(SL[n+ k|, M) such that
g=nhf.

Proof. By repeatedly applying lemma 22, there exists k' € Hom(S[n + k|, M) such
that g = b/ f®),

By the definition of almost-invertible, there exists an invertible p € End’(SP[n +
k]) such that f = pf®).

Let h = h'p~' (p~! exists, by lemma 139). Then hf = Wp~'pf* = g. Since
Hom'(S[n + k], M) = Hom(S[n + k], M), we are done. O

6.5 Infinite almost-invertible chains
Given any M-sequence:
(Ml,ml) £> MQ E M3 — ...

We say that an indecomposable direct summand X; of M; admits infinitely many
almost invertible maps if there exists, for every n, a direct summand Z of M, such

that the restriction of f,,_1 ... fof1 from X; to Z is almost invertible.
Lemma 140. Suppose we have a M-sequence:
M1£M2£M3—>...

-and that an indecomposable direct summand X, of My admits infinitely many almost
imvertible maps.
Then there exists, for every n > 2, an indecomposable direct summand X,, of M,

such that:
o For alln > 1, the restriction of f, from X, to X, 11 is almost invertible.

e Foralln > 1, the restriction of f._1... fafi from Xy to X,, is almost invertible.
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Proof. We wish to apply lemma 132, with (1)(X3, Xa,..., X,,) being the conjunction

of the following two conditions:
1. The restriction of f,_1... faf1 from X; to X, is almost invertible
2. for all j < n, the restriction of f; from X; to Xj;,; is almost invertible

By lemma 132, it’s enough to prove that, for all n > 1, there exists Xy, Xo,..., X,
such that (1)(Xy, Xa, ..., X,) holds.

Indeed, given any n, there exists a direct summand X,, of M, such that the
restriction of f,_; ... fi from X to X, is almost invertible (since X; admits infinitely
many almost invertible chains).

Furthermore, this map is the sum of all maps of the form h,_;...hyh; corre-

sponding to finite indecomposable subchains:

h h h hn_2 hp—1

Then, by lemma 136, at least one such map is almost invertible. And for that finite

indecomposable subchain, each h; must be almost invertible. O

We define any subchain X, X5, X3, ..., satisfying the properties of lemma 140 to
be an almost invertible subchain of the M-sequence.

The contrapositive of lemma 140 gives us:
Corollary 37. Suppose that we have a M-sequence:
f1 f2
(Ml,l') —>M2—>M3—>...

-which does not admit an infinite almost invertible subchain. Then there exists n > 1
such that for all direct summands X of My and Z of M,,, the restriction of f,_1 ... fof1

from X to Z 1is not almost invertible.
Lemma 141. Suppose that an M-sequence:

(Ml,.T)L)MQﬁ)Mg...
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-18 such that, for all n, the sequence:
f’ﬂ fn+1
(Mnafn—lﬂ-fl(x))_) n+1_>Mn+2---

-does not admit an infinite almost invertible chain.

Then there ezists n such that f, ... fofi(z) =0

Proof. Let ny := 1, and define ny, n3, ny, - - - € N* inductively, as follows: Given any

ng, write M, as a direct sum of indecomposables:

M, ~ é Y;
i=1

Since each Y; does not admit an infinite almost invertible subchain, there exists-

by corollary 37- an ng,1 > n; such that, for all direct summands Z of M, the

Nk4+1)

restriction of f, . —1... fu,+1fn, from Y; to Z is not almost invertible.

Now consider the M-sequence:
91 92 93
(M, x) — M,, — M,, — ...

Where gy := fn,,,—1-.. [n, for all k > 1. Given any finite indecomposable subchain

X1, X, let (1)(X, ..., X,) be the statement:

gn—-1--. gggl(fb) 7é 0

Given any infinite indecomposable subchain Xi, X5, ..., corollary 34 implies that
there exists n such that X ... X, doesn’t satisfy (). So, by lemma 132 there exists

n such that no infinite indecomposable subchain of length k satisfies (f), and so
Ok - - - 929190(x) = 0. Thus:
Joger - fofi(x) =0

-as required. O

6.6 Periodic string modules

Suppose that we have an M-sequence:

(Ml,ml)i)MQLMgﬂ...
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-such that, for all n > 1, no direct summands of M,, in AUP admit an infinite almost
invertible chain.

We shall prove, in this section, that this sequence is eventually stationary on

M (w).

6.6.1 Power series rings

Take any band D = [{... I/, Let w' = ... I',I' [ [